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ABSTRACT

This thesis describes the application of shape analysis
methodologies for the purpose of grading wheat. Shape de-
scriptors and metric properties of objects of interest to
the wheat grading process were computed and compared. The
Fourier descriptor, moment method and moment invariant tech-

nigues of shape representation were applied to the problem.

The properties so determined were evaluated for their ca-
pacity to discriminate between classes, varieties and grades
of wheat and admixture elements affecting wheat grades. Var-
ious specific pattern recognition problems were posed. Step-
wise discriminant analysis was applied to select the most
discriminatory features. Linear discriminant functions were
generated to evaluate the results of optimal decision-theo-

retic classification.

Discrimination of Hard Red Spring wheats from cereal
grains which most frequently contaminate wheat samples was
achieved. It was also possible to distinguish certain
classes and cultivars of wheat from others. Visibly unsound
kernels were separable from mature vitreous kernels. The

usefulness of the methods and results are discussed.
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Chapter I

APPLICATION OF MACHINE VISION TO WHEAT GRADING

1.1 INTRODUCTION

The wheat inspection process may be significantly assist-
ed by computer vision. A human inspector might be relieved
of the burden of counting objects in samples of wheat which
in part determine its grade. Greater accuracy and better
statistical estimates of such objects might be achieved. Ob-
jective measurements of certain attributes such as kernel
vitreousness may be possible which have not previously been

So.

Primary grading determinants for Red Spring Wheat are
shown in Table 1.1 reproduced from the Official Grain Grad-
ing Guide ( hereafter referred to as OGGG, 1985 Ed. ). Iden-
tification and enumeration of objects of the categories
shown is necessary and almost sufficient to achieve grading.
The identification of a kernel as, say, belonging to a non-
prescribed variety of wheat is a classic problem of pattern
recognition. The solution of a set of such subproblems could
eventually enable automatic grading of a majority of sam-

ples.



RED SPRING WHEAT

Table 1.1

PRIMARY GRADE DETERMINANTS

w.0.0.C. or
Forengn Materinl Non-prescribed Bin-
. Minimum [T F_ M Tolal variotivs burnt Tolul
tlard Excluding hictuding Totif Severe Heated Snudge
Vitre- Other Other Con- Inct. Mildew tnel, and
Grade Alin. Degroe of ous Cerenl Ceraeul trusting | Cont. Rotted Bin- Fire- Sclero- Black-
Name Kg/hl | varioty Soundness Kernels | Grains Grains Classes | Classes IsproutedMouldy { burnt burnt _ |Stones Ergot {linia Smudge | point
No. | 5.8 Any prescribed | Reasonably well 85.00 About About About 3.0% incl.f0. 5% 2K 0.1% Nil JK 3K IK 30K 10.0%
c.w, varioty of red | mutured, ruason- 0.2% 0.75% 1.0% not more
Red spring whoat ably free from includes than 1.0%
8Spring equal to damaged kerncls max. 20K non- pro-
Marquils insepurable scrived
sceds vorieties
NGT% T3.¥ | Any prescribed | Falrly well maturcd} 35.0% About Ahout About G.0% InclJT.5% B3 o7 Nil IK BK {4 1.0% LN
Cc.w. variety of red |may be moderately 0.5% 1.5% 3.0 not more
Red spring wheat bleached, or frost includes thun 2.01
8pring equsl to damuged, but max. 50K nor-pre-
Marquls reasonably free insoparable scrived
from movarely socds varieties
weather damaged
kornels
No. ¥ |80F Any prescribed [ Excluded from KNo About About About 10.0% Inclf5.07  |10K 2.0% Nl 5K 24K ELT3 L. 97} } LN
C.w, variety of red | higher grades on Minimum| 0.5% 3.5% 5.0% not more
Red apring wheat account of frosted, Includes than 5.0%
Spring immature or uther- max. 10UK non-pre
wise damaged Inseparablo seribed
kernels seeds vurieties
CTarada JNo Any prescribed [ Excluded from all | No T.0% T0.0% No No No 10.0%7 10°0% | Z.0% [10K 0.1 0.2V [Ne [No
Yoed ind or non- other grades on Minimum! includes Limit Limit Limit Limit Limit
Whaeat prescribed account of light max. }.0%
variety of weight or dumage, Insspurable
wheat May contain 10% seeds
heat damage but
shall be reuson-
ably swoet
Finel Can. No. 3 Over 1.0V | Over 10.0%| Cunada | Canada JCunnda [Over 10.0% Over Over Over |Over Canada | Canada
Grade Foed [N grude grude Feed Foed Feed grade Wheat, 2.0 grade 0.25¢ [0.25% Feed Feed
Nams Wheat Red wheat, Mixed wheat Wheat wheat Sumple C. W. grade |[tolersnce | grade |grude Wheat Wheat
Spring Sample Grain, Account Jeated Wheat, [up to Wheat, {Wheat, .
C. W, No. 1 (clugs) Sample [2.5% Sample [Sample .
Account C.W. C.W. |grade C.W. C.w.
Admixture A Rej d | Accounfa t
{nseparabld Fire- |“grade" Ergot | Admix-
Bueds) burnt [Account (class) | ture
{closs) (clags) |Stones, {Sclero-
Over tinia)
2.5 {clasn)
grade
Wheat
Bample
Selvage
NOTE: THE LETTER "K' IN THESE TABLES REFERS TO KERNELS OR KERNEL SIZE PIECES IN 500 GRAMS
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RED SPRING WHEAT

Table 1.1
— PRIMARY GRADE DETERMINANTS

LIT]
Shrunken and Broken ve Artificial Inscct Damage
Grade M Gruss Pink Stain Natural Sawliy Grasshopper | Dark
Name Shrunken Broken Totol Degermed Green Kernels No Resldue | Stain Midge Army Worm | immature
No. I C.w, 6.0% s.0% 7.0t 4.0% 0.75% 1.5 Nil 0.5% 2.0% t.08 1.08
Red Spring
No. 2 C.w, 10.0% 10.0% 1.0t 7.0% 2.0% 5.0% SK 2.0% 8.0% 3.0% 2.8%
Red Spring
Ho. 3 C.W. No Limit 15.0% No Limit 13.0% 10.0% 10.0% 10K 5.0% 25.0% 8.0V 10.0%
Red Spring Providing
Broken
. Toler

Canada No Limit 50.0% ::;eeded No Limit No Limit No Limit 2.0% No Limit No Limit| No Limit No Limit
Feed Whest
Final Grade | No. 3 C.w. Over 50% Canada Canadn Canada Over 2.0% Cenada Canada | Cansda Canada
Name Red Spring grade Feed Feed Feed grade Feed Feed Feed Feed

Sample Wheat Wheat Wheat Wheat, Wheat Wheat Wheat Wheat

Broken Sample

Grain Cc.w,

(notations Account

re kind on Stained

request) Kernels

(cliss)
*Degermed: Tolerances apply to kernels not classed ns sprouted.

**Gross Green Kernels:

***Insect Damage:

with the overall ‘quality of the sample.
Note: The letter “K" In these tables refers to kernel size picces in 500 grams.

Tolerances are glven as a general guide and nuy be increased or reduced in the judgment of the Iinspector
after consideration of the overnll quality of a sample.

Tolerances are not absolute maximums. Inspectors must consider the degree of demage in conjunction



Initially, however, information from the machine vision
system is expected to supplement that from other objective
tests such as moisture content, protein analyses and test

weight in the grading process.

1.2 WHEAT GRADING

1.2.1 Official wheat grading standards

The assignment of grades is made on the basis of sets of
standards issued by the Canadian Grain Commission. These are
a highly evolved set of guidelines which are authoritatively
set forth in the Official Grain Grading Guide of the Canadi-
an Grain Commission. Tables similar to those for Canada
Western Hard Red Spring wheat are published for every major

class of wheat grown in Canada.

In every case the major quality determinants are the

same. These are:

1. the test weight of a standard volume of grain

2. the variety identity

3. the minimum percentage by weight of hard vitreous
kernels

4. the degree of soundness

5. absence of foreign material other than wheat

6. absence of wheats of other classes and varieties

In addition to the primary determinants which apply to

every sample, grading factors occasionally apply to wheat



which has been adversely affected by a specific condition.
These are no less important, however, inasmuch as excessive
quantities of any one condition may cause the wheat to be
rejected as unsuitable for numerical grading. The "order of
precedence" of such factors stated in the OGGG is
Salvage, Fireburnt, Excreta, Odour, Rotted Ker-
nels, Heated Kernels, Mildewed Kernels, Damaged
Kernels, Sprouted Kernels, Dried Kernels, Admix-
ture, Stones
The significance of this order is that the highest ranking
of these degradations which is present in excess of a mini-
mum standard appears as part of the official grade of a re-

jected sample. Machine vision could assist some of these

evaluations and play a role as an independent arbiter.

The factors causing a sample to be rejected may be pres-
ent to a lesser extent in samples eligible for numeric grad-
ing. Numeric grades from 1 to 3 in decreasing order of qual-
ity are assigned to Hard Red Spring ( HRS ) wheat. The grade
is diminished if admixtures, damaged kernels or other fac-

tors exceed the limits set for a particular grade.

1.2.2 Wheat classes and varieties

The wheats grown in Canada are classified on the basis of
agronomic, physical and end use characteristics ( Bushuk,
1977 ). While a broad range of wheat classes are grown, the
Canada Western Hard Red Spring class and Amber Durums com-—

prise between 80 to 90% and 10 to 20% of the annual volume



of Western Canadian production ( Prairie Grain Variety Sur-
vey, 1984 ). Dominant varieties of Hard ﬁed Spring Wheat
include Neepawa (52%), Columbus ( 18% ), Benito ( 5% ),
Glenlea ( 2.2% ), Sinton ( 2.0% ), Canuck ( 1.3% ) and Lead-
er ( 1.7% ) in decreasing order of production acreage ( 1984
crop year ). The Wakooma, Wascana and Coulter varieties of
Durum predominate. Minor classes grown include the Soft
White Spring wheats, the Hard Red Winter wheats and semi-

dwarf varieties.

1.3 ROLE OF VISUAL PROPERTIES IN THE GRADING OF WHEAT

While a human inspector uses all sensory inputs for eval-
uation of a wheat sample, most of the necessary information
is visual. For this reason, licensed varieties of Hard Red
Spring Wheat are bred to be visually indistinguishable in
order that wheats of other classes or lesser quality are not
confused with them. Quality characteristics such as vitre-
ousness or the discolored states of being ‘'"grass-green",
"artificially-" or "naturally- stained", "pink" or "dark im-
mature" are by definition wvisually determined. Many other
grading factors, for example, presence of insects, insect
damaged or fungus-affected kernels afe primarily identified
by visual characteristics. Included among the latter are
ergot, sclerotinia, mildew, smudge and blackpoint-affected
kernels. Visual properties may play roles varying from mi-

nor to major in the "key determinants". They are important



for identification of foreign materials, contrasting wheat
classes and kernel soundness. Sprouted, shrunken, broken,
degermed and '"weathered" states are visually identifiable
conditions of wunsoundness. Conversely, other conditions

such as "odour" and "fireburnt" have no visual features.

1.4 APPLICATION OF MACHINE VISION TO WHEAT GRADING

Of the major determinants, it is presently possible to
measure test weight in an objective and potentially automat-

ic way.

Machine vision could play a major but as yet largely un-
determined role in evaluating the remaining factors. For ex-
ample, the key property of "vitreousness" which 1is essen-
tially the 1light transmission characteristic of wheat
kernels is expected to be measurable. This problem may be
approached using well-established image processing tech-
niques based on grey levels ( pixel 1light intensity values
). Under controlled illumination conditions, the percentage
of kernels having a mean intensity value exceeding a speci-
fied threshold may be easily counted or mean values of a

field of kernels may be computed.

A variety identification method based on the gliadin
electrophoregram has been developed recently by Sapirstein
and Bushuk ( 1985 ). Since the electrophoretic band pat-

terns may be perceived by machine vision and identified us-



ing computers, this procedure could be automated to a great

extent.

Any automated process for ascertaining the presence of
foreign materials, contrasting wheat «classes and unsound
kernels is complicated by the large variety of such objects.
Arguably, since physical or chemical tests are unlikely to
be broadly applicable, precise or rapid enough for this pur-
pose, the image processing and pattern recognition approach

seems more attractive.

Previous efforts to measure visual characteristics useful
for grading in a potentially automatic way are described in
the sections that follow. The use of electro-optical means
for perception is common to all this work, but the systems
used are remarkably diverse. Initially, the differential
reflectance of light of various wavelengths from various
grains, i.e. the colour properties, were investigated to de-
termine whether grain identity or wheat vitreousness could
be found or measured ( Sec. 1.5 ). Later, the use of grain
size characteristics to discriminate among various crops was
extensively studied as described in Sec. 1.6. The study of
shape characteristics for the same purpose is described in
Sec. 1.7. Finally, an overview of past and present research
at the University of Manitoba is presented ( Sec. 1.8 ) and
the objectives of current research are outlined ( Sec. 1.9

).



1.5 USE OF LIGHT REFLECTANCE PROPERTIES

Chen, Skarsaune and Watson ( 1972 ), wusing a Hunter Col-
our Difference Meter, found colour differences between sam-
ples of graded wheat and among wheat classes. The colour
features used were relative reflectance of blue ( 435.8 nm),
green ( 546.1 nm ) and red ( 700 nm ) light. While no dis-
criminant models nor multivariate tests were applied to the
data, the individual colour features used were stated to be
insufficient to distinguish between grades. Significantly,
however, kernel vitreousness, a major grading factor, and

Hunter colour value were found to be correlated.

Hawk, Kauffmann and Watson ( 1970 ) wused a Beckman DK-2A
spectroreflectometer to measure the reflectance from grain
samples of infra-red and ultraviolet 1light in addition to
visible frequencies. Each wheat sample tested consisted
predominately ( 95% ) of either Hard Red Spring ( HRS ),
Hard Red Winter ( HRW ), Soft Red Winter ( SRW ), White or
Durum wheats. The complementary portion was made up of a
mixture of oats, barley, rye and flax in proportions that
reflect expected levels of contamination characteristic of a
grade. Ranges of wavelengths within spectral bounds of 420
and 700 nanometers that could maximally discriminate among
such samples and others consisting primarily of other cere-
als, corn or oilseeds were reported. Distinguishing among
all samples wusing such reflectance data was not possible;
notable failures of separation were HRS from HRW wheat and

barley from oats.



1.6 USE OF KERNEL SIZE CHARACTERISTICS

Edison and Brogan ( 1972 ) have presented size measure-
ment statistics of various grains including rye, barley,
cats and wheat. Length, width, depth and area data were
generated for each kernel. "Plan" and "elevation" views of
individual kernels were simultaneously projected onto a
viewing screen; 1length, width and depth measurements were
then taken manually with electronic calipers. Area was
measured independently using a special apparatus which meas-
ured the reduction in light flux received by a photocell ob-
scured by the kernel. High measurement precision was

achieved using these technigues.

The distribution parameters presented were similar for
the four cereal grains investigated; individual cereéls were
generally separated by less than 1.25 standard deviations in
the four dimensional feature space. Nevertheless, high
grain classification accuracies were achieved using a recur-
sive self-learning pattern recognition procedure. This
method incorporated "learning" of the class probabilities

and classification according to the nearest class mean.

The use of a prototype device for automatic classifica-
tion of feed grains has been reported by the same workers (
Brogan and Edison, 1974 ).

The "feature extraction" system operates in the
following manner. A sample of a few hundred ker-
nels to be 100% measured is deposited 1in a coni-

cally shaped hopper. A vacuum tube moves into the
hopper, picks up a kernel and deposits it 1in a

- 10 -



polished groove on a rotating lucite platform.

The kernel, oriented with 1its long axis parallel

to the groove, is carried under a 0.5-in. charge-

coupled line scanner where plan-form measurements

are obtained in digital form with a resolution of

about +/-1 ml [ sic ]. A similar 0.25 in. scan-

‘ner measures the kernel depth. These measurements

are formatted and stored in a buffer and then sent

over a telephone link to a remote computer for

processing.
Using this apparatus, length, width and depth measurements
could be taken rapidly and automatically. A similar system
might be developed to present samples for digital image ac-

guisition.

Grain identification based on the nearest class mean rule
was unsuccessful; accuracies of greater than 85% for any
grain were not achieved. However, when an unsupervised
learning approach based on the discrete Kalman filtering al-
gorithm was applied to the same data, accuracies exceeded

98% for all cereal classes.

1.7 USE OF KERNEL SHAPE INFORMATION

Other workers have included at least one shape feature in
their investigations of kernel differences. In the earliest
study, Segerlind and Weinberg ( 1972 ) used shape features
exclusively to discriminate among various grains and edible
beans. The first ten coefficients of the Fourier transform
of the Hough transform of the kernel contour were used as
shape features. The kernel image was projected onto a piece

of paper having 48 radial lines angularly displaced by 7.5



degrees. Data acquisition was largely manual requiring that
the kernel profile be visually centered and then traced by
hand. The co-ordinates of intersection of the radial lines
with the profile contour were acquired automatically with a

digitizer.

The cereals studied included single varieties of rye,
white wheat, red wheat, oats, coach oats, 6 row barley and 2
row barley; 50 kernels of each variety were tested. The
"nearest class mean rule" operating 1in a feature space con-
sisting of the 10 harmonics was applied to the training set.
The cereal classification accuracies reported were: rye (
96% ), white wheat ( 57% ), red wheat ( 93% ), oats ( 71% ),
coach oats ( 72% ), 6 row barley ( 84% ) and 2 row barley (
90% ).

While the application of digital image processing to
wheat grading is in its infancy, at least two reports of its
related use have appeared in the academic literature. Draper
and Travis ( 1984 ), employing a low cost image analysis
system similar to ours, investigated a variety of plant ma-
terials which included grains, seeds of weeds and leaves of
lettuce. The weeds studied occur as the five most common
species contaminating wheat lots in Britain. A single culti-
var of wheat ( 'Avalon' ) and of barley ( 'Triumph' ) were
included in the study neither of which is grown in Canada.
The metric properties of the objects investigated included

area, perimeter, length and width. Length and width were



taken to be equivalent to the sides of the rectangle within
which the seed would fit with its long axis parallel to the
long side of the rectangle. The two shape factors used were
an "aspect ratio" defined to be the ratio of the length to
width and the thinness ratio ( 47 x area / perimeter squared

).

The statistical data presented clearly showed that sig-
nificant differences among the various seeds and grains ex-
ist for almost every feature used. No analysis of the dis-
criminatory power of individual features was made nor were
the results of optimal classification by linear discriminant
functions presented. However, the data suggested that a
small number of features and especially aspect and thinness

ratios would enable discrimination of wheat from barley.

Certain aspects of the study were unclear. The method of
object segmentation from the image background is not stated
nor are the discretization or guantization levels of the im-
ages. Further, the seed orientations apparent to the view-
er, i.e. whether "lateral", "dorsal/ventral"” or otherwise,

are not described.

Other criticisms of the study are the failure to use the
full discriminatory power of the available features using
discriminant analysis. Varietal differences 1in size and
shape of wheat and barley were not taken into account. Since

the authors were primarily concerned with distinguishing



seeds of weeds from crop species this may not have been nec-

essary.

In an as yet unpublished work ( Travis and Draper, 1985
), the authors greatly increased the number of species exam-
ined. The seeds of seven crop species were examined. The
Avalon cultivar of wheat was the only cereal examined and
barley was excluded from the study. The seeds of 42 common
weeds were included. The same metric properties were used,
however, the only shape factor computed was the thinness ra-
tio. Wheat was shown to be well-separated from all other
test species in a two-dimensional feature space consisting

of thinness ratio and seed length.

Zayas, Pomeranz and Lai ( 1985 ) were able to distinguish
the wheat cultivar Arkan from Arthur using image analysis.
Since the cultivar Arkan has similar morphological charac-
teristics to its Soft Red Winter parent Arthur, their re-
sults suggest that fine shape features such as exist between
wheat cultivars and classes can be resolved by relatively
few shape attributes. Moreover, these features appear to be
sufficiently robust for pattern classification since samples
from different geographical locations were also accurately

classified.

The shape analysis approach taken was more developed than
that of the British investigators in the use of a greater

number of features and the inclusion of three-dimensional



information. The characteristics of the projections of two
orthogonal kernel orientations, crease down and crease
right, were measured. Newly introduced features, among oth-
ers, included a volumetric measurement ( the volume of an
assumed "equivalent cone" ) and Feret's diameters represent-

ing more "local" information about the kernel contour.

It is not clear how useful these are since neither the
canonical discriminant functions nor measurements of the
discriminatory powers of the variables , e.g. Wilks' lambda,

are presented.

The Feret's diameters are the distances between pairs of
parallel tangents to the objects taken at angles differing
from each other by 45 degrees. The angles are measured with
respect to an arbitrary reference axis which must be identi-
cal for each kernel. Therefore, for a typical sound kernel,

8 points on the contour are sampled.

In contrast, all available information about a digitized
contour can be represented using Fourier Descriptors ( Zahn
and Roskies, 1972 ). There is no need to fix a reference
axis or contour starting point since Fourier coefficient
magnitudes are invariant to the starting position on the
contour used as a reference. Precise alignment of kernels is
not required due to the invariance of these values to posi-
tion or rotation. While Feret's diameters are apparently

suitable for objects having very gradual changes of curva-



ture around their perimeter, they may vary considerably for
small changes in position of the reference axis for elongat-
ed or highly invaginated shapes. The Fourier Descriptors are
insensitive to contour energy and are therefore more broadly

applicable.

Since the methodology of Zayas et al reguires precise
orientation and alignment of individual kernels, 1its poten-

tial for automation is low.

1.8 USE OF DIGITAL IMAGE PROCESSING SYSTEMS

In view of the rapid cost reduction and growth of comput-
er-vision hardware and software technology in recent years,
their use for wheat grading now seems appropriate. Hereto-
fore, no application of image processing methodologies have
been made to this specific problem. In fact, they have rare-
ly been wused for the broader problem of grading other
grains, oilseeds and vegetable products. Clearly, the meth-
ods developed for wheat grading should easily and rapidly

extend to these and other problems.

The paucity of previous work contrasts greatly with the
wealth of work in biology and medicine. Chromosome analysis,
discrimination between and counting of blood cells and clas-
sification of cancerous cells ( Preston and Onoe, 1976 ) aré
all especially well- developed areas of applied work in im-

age processing and pattern recognition. There is fortuitous



similarity between cytological images and those of grains
and seeds; for example, a nucleated fibroblast appears much
like a germed wheat kernel. Methods developed for such im-
ages are likely to be well-suited to the wheat-grading prob-

lem.

1.9 UNIVERSITY OF MANITOBA MACHINE VISION RESEARCH

Preliminary work towards developing a machine vision sys-
tem has been described by Wright ( M.Sc. thesis, 1985 ). An
electro- optical imaging system for the purpose of acquiring
images of wheat samples was designed. 1Image arrays of up to
482 by 627 pixels each having 256 levels of intensity regis-
tration could be acquired. Major system capabilities in-
clude selecting regions within an image, performing thresh-
olding, "zooming" and histogram analysis of such regions,
and storing and transferring of image data to main-frame

computers for subsegquent processing.

In addition, methods for segmentation of images into con-
stituent kernels and for finding structures internal to the
kernel such as the germ and crease were developed. Several
object perception approaches were taken to the segmentation
problem. These included edge detection based on the Haral-
ick ( 1982 ) zero-crossing of the second derivative edge op-
erator, use of the Hough transform for detection of ellipti-
cal objects and minimum cost function constrained heuristic

contour boundary searches. The methods were specially



adapted for kernels that are touching, slightly occluded

and/or mutually shadowed.

The features available from monochrome digitized images
for the purpose of pattern recognition may be roughly parti-
tioned into gray level, texture, shape and metric ( Gonzalez
and Wintz, 1977 ). Each of these categories has been or is

being independently studied at the University of Manitoba.

Wright ( 1985 ) sought texture features that could dis-
criminate between mature vitreous and unsound kernels having
a "shrivelled" or "wrinkled" appearance readily apparent to
the untrained viewver. The texture analysis technique used
was two dimensional autoregression modelling; the autore-
gression model parameters characterized the spatial depen-
dence of pixel values. A discriminant model developed using
_the most discriminatory features achieved correct classifi-
cations never exceeding 70% for each category. While it is
not clear that the texture analysis approach chosen was op-
timal, 1its failure to achieve discrimination between such
highly texture-differentiated kernels suggested that texture
analysis would not be generally useful in the overall pro-
cess of wheat grading. Since texture is the primary visual
characteristic of kernel soundness and vitrousness, these

results were particularly disappointing.

The grey level aspects are undergoing study by Sapirstein

( Sapirstein et al, 1985 ). The intensity of reflected and



transmitted light from individual kernels and kernel aggre-
gates are expected to differentiate among various categories
of objects including foreign materials, wheat classes, vari-
eties and possibly grades. Light transmittance is expected
to directly measure vitreousness and therefore correlate

highly with grade.

Research on shape and metric properties has proceeded in

parallel and is the major focus of this thesis.

1.10 ROLE OF SHAPE IN WHEAT GRADING

The intimate relationship between shape analysis and pat-
tern recognition has been the subject of theoretical studies
( Pavel, 1983 ) and much applied work. Attneuve ( 1954 )
demonstrated that the information content of shape is con-
centrated along boundary contours and furthermore at points
on these contours at which the direction changes most rapid-
ly. Thus, a general rationale exists for wusing boundary

shapes for recognizing wheat grading elements.

The purpose of the work described in this thesis 1is to
investigate the role that shape and metric features may play
in wheat grading. Candidate applications 1include distin-
guishing foreign materials such as dockage from wheat, dis-
tinguishing other cereals from wheat, distinguishing among
various classes of wheat or various species of unsound

wheat.



The primary role of shape recognition in wheat grading is
expected to be identification of foreign or non-wheat ma-
terials. The identification of foreign cereals and discrim-
ination of admixture elements appearing in wheat samples are
of importance to most major wheat grading systems of the
world ( Bushuk, 1977 ). Foreign materials and wheats of
contrasting classes are included among the primary grade de-
terminants of the Canadian system ( Official Grain Grading
Guide, 1985 ). Wheats of different classes and varieties
are primarily differentiated on the basis of grain morpholo-
gy ( Zayas et al, 1985, Owens and Ainslie, 1971 ). The ker-
nel profile, be it oval, ovate, or elliptical is a major
criterion in cultivar identification ( Owens and Ainslie,

1971 ).

Only the few studies discussed previously relate in any
way to distinguishing wheat from potential contaminants us-
ing size or shape characteristics. In general, image pro-
cessing techniques were not used for extracting this infor-
mation. Shape analysis has been performed on very few
varieties most of which are not grown in Canada. In the
current work, special attention is paid to varieties of in-

terest to the Canadian wheat grading system.

While wheat grading 1is the primary concern of this the-
sis, the separation of other cereals from each other is nec-
essary for their grading, hence this work is more broadly

applicable.



Another goal of +the research is to ascertain the extent
to which shape can differentiate among wheat classes and va-
rieties. In particular, the separation of Hard Red Spring
wheats from the Durum species, the utility varieties and
other classes of wheat has not been previously attempted. A
recent grading problem is that of distinguishing semi-dwarf
varieties from established Hard Red Spring varieties. This
is presently done on on the basis of the ratio of the germ
length to the germ contour length. These are characteris-

tics that may be measured by a machine vision system.

Identification of dockage in wheat samples has not been

attempted. The reasons for this are:

1. the samples made available to wus have negligible
amounts of such material

2. objective measurements of dockage can presently be
made using a Carter dockage tester.

3. it has become clear at a very early stage in the re-
search that the highly unusually shaped dockage ma-
terials are separable from either wheat or other fre-

guent contaminants.

In relation to soundness, the greater presence of shri-
velled and immature kernels in the lower grades should be
reflected in smaller kernel perimeters and lesser areas.
The separation of damaged kernels such as sprouted, broken
or shrunken kernels is expected. These assumptions remain

to be verified.



Chapter 1I1I

METHODS

2.1 INTRODUCTION

The methods applied to the problems posed for experimen-
tal resolution are described in this chapter. Each pattern
recognition experiment was conducted in three stages. Dur-
ing the first stage, digital 1images were acquired and sub-
sequently processed to identify and extract the contours of
individual seed images. The image acquisition and segmenta-
tion aspects are discussed in Section 2. Next, size and
shépe characteristics of individual seed images were qQuanti-
fied by methods of contour shape analysis and shape feature
description which are the subject of Section 3. Finally,
applying the pattern recognition methods overviewed in Sec-
tion 4, these features were used to develop and evaluate the
discriminant model for each "learning problem". 1In the fol-
lowing chapter, the results of the sequential application of
these methods to specific wheat grading problems are de-

scribed.
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2.2 IMAGE PROCESSING OF GRAIN SAMPLE IMAGES

2.2.1 Image Acquisition

Image Acquisition Hardware

Images were acquired using the image acquisition system
developed at the University of Manitoba ( University of Man-
itoba Kernel Frame Grabber Manual ). The major components
of system hardware are.a Fairchild CCD3000 digitizing camera
under the control of a 80186 based slicer board, a dual 8"
disk drive and a display monitor. Image arrays of up to 482
X 627 pixels each having 256 levels of intensity registra-
tion may be interactively acquired by an operator issuing
commands at a Visual 500 terminal. Subsequent commands are
interpreted by the microprocessor to perform windowing,
thresholding, histogram analysis and display of images resi-
dent in the 256 Kilobytes of on-board memory. Other avail-
able software functions include transferring the acquired
images to and from 8" floppy disks and the main-frame Data
General Eclipse Model MV8000 mainframe upon which most of

the subsequent segmentation and shape analysis is performed.

Illumination of samples

For shape analysis, 1illumination was set up to optimize
the contrast between the image object's boundary and its
white background. Avoidance of shadow and specular reflec-
tion from kernels was desired to facilitate segmentation.

These goals were achieved by backlighting the samples in an
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otherwise darkened room and providing illumination with a
specially modified light box. The light box enclosed a 20.3
cm diameter toroidal lamp ( Panasonic F289/CW/RS ) 1located
underneath and encircling the sample field. The oblique in-
wardly directed illumination so obtained minimized the prob-
lem of shadows. The top surface of the light box was covered
with black cardboard in which a 5.5 cm hole had been cut to
allow the obliqgue passage of light but preventing its direct
transmission from lamp to camera. A sheet of opague white
acrylic plastic was placed over the cardboard to diffuse
light passing through the aperture. Samples were supported
on the plastic surface. The apparatus succeeded in providing
backlit, uniform, diffuse, obligue illumination of the field

of interest.

Optical adjustments

The digitizing camera was fitted with a Fujinon CCTV
CF50B fixed focus 1lens having a focal ratio of 1:1.4 and a
focal length of 50 mm. The focal length was extended by ei-
ther 10 or 7 mm with Cosmicar Ex—-C6 extension tubes depend-
ing on the field size desired. Using the 10-mm extension, a
256 by 256 pixel rectangular window centered in the focal
plane at a distance of 220 mm from the objective was 21.0 by
21.0 mm. In subsequent sections, images of this size are
referred to as "higher resolution" ( HR ). Otherwise, the
field was optimally focussed 305 mm distant from the objec-

tive and was 29.0 by 29.0 mm ( "lower resolution", LR ).
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The lens aperture was set at £/2.8 thus achieving optimal
contrast between the kernel boundary and background in addi-
tion to depth of field sufficient to keep the entire bound-

ary in focus.

The illumination and optical adjustments described per-
formed uniformly over a range of grain samples of different

shapes, sizes and opacity.

2.2.2} Segmentation and Encoding

Segmentation of sample images is required in order to ex-
tract the thinned simply-connected contours necessary for
shape description. A threshold—based isodensity contour
follower proved satisfactory for the range of objects tested
under the previously described conditions of illumination.
The method 1is an adaptation of the Left-most-looking rule
applied to an 8-neighbourhood described 1in Gonzalez and
Wintz ( 1977 ) with refinements to cope with "unusual" geo-
metries. Contours were encoded according to Freeman's method
( 1961 ) which, in essence, sequentially encodes the tangent
angle at successive points along a quantized curve ( Bennett
and MacDonald, 1975 ). The contour-position functions de-

scribed by Tang ( 1981 ) enabled rapid regionfilling.

Segmentation of images into image constituents was great-

ly simplified because:

- 25 -



1. the background was completely untextured
2, the foreground objects were non-occluded;
3. contrast beween object boundary and background was

maximized.

Segmentation produces a chain-encoded representation of an
object's shape that may be further analyzed by methods de-

scribed in the following section.

2.3 SHAPE DESCRIPTION AND ANALYSIS

2.3.1 Introduction

The central problem of shape description is to represent
a shape or provide shape information in a mathematical form
appropriate to pattern recognition technigues. Major meth-
ods of shape representation are reviewed in this section.
The most fundamental of these, employing a curvature func-
tion, 1is described 1in 2.3.2; the Freeman chain code is a
form of discrete curvature representation. Sampling aspects
of the discrete representation of shape are also discussed
in the context of curvature representation. In the subsec-
tions that follow, three classical methods used for pattern
recognition, namely, normalized shape moments ( 2.3.3 ), mo-
ment invariant functions ( 2.3.4 ) and Fourier descriptors (
2.3.5 ) are described. Finally, descriptors of shape attri-

butes are discussed ( 2.3.6 ).
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2.3.2 Curvature representation

Because of the salient role that curvature and particu-
larly points of maximum absolute curvature appear to have in
shape recognition and understanding ( Attneuve, 1954 ), rep-
resentation by some curvature function seems logical. For
the simple continuous closed contour shown in Fig. 2.1, the
shape may be described by specifying its curvature as a
function of arc length. The contour curvature ,k(s), is de-
fined as the rate of change of the angle ¢ with respect to

the arc length s, i.e.

where ¢ is the angle between the tangent of the curve and
the positive x-direction. Some geometric sense of the mean-
ing of the curvature function may be had by considering the
radius of curvature, 1/k(s), ©of a circle normal to the arc
tangent. The arc is concave on the left if k(s)>0 as s in-
creases in the counter-clockwise direction. The curvature
function is periodic in s having a period equal to the per-
imeter length ( S ) of the closed contour. The shape can be

reconstructed by finding its rectangular coordinates from

s a :
x(s) = fo cos ( ]o k(A)dx + ¢ ) da + x(0) 2.2

S a
v(s) = ]o sin ( !o K(A)dA + ¢ ) da + y(0) 2.3
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62:(xz,y2)

¢(5|)

S0:(xo,y0)

Fig. 2.1 Contour Curvature
where x(0) and y(0) are starting co-ordinates.

For curvature functions defined on discrete image arrays

the tangent angle and curvature become

_, V(s;) - v(s;_4)
¢(sj) = tan 1 J ] , 2.4

X(Sj) - x(sj_l)

]

K(SJ) ¢(sj) - ¢(Sj-1) . 2.5

The Freeman chain code is a special case of the above where
¢(Sj) is allowed to take on one of eight values 1/4 radians
apart. Such discrete shape representations are produced
from samples of an underlying continuous shape acquired by

the image sensing elements.
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The fidelity of the discrete representation, i.e. the
Freeman chain code, depends on the image sampling frequency.
The requisite frequency may be easily related to curvature
representation requirements. The sampling intervals must be
fine enough in order that the high curvature characteristic
of the boundary detail be represented. Implicitly, a sub-
jective decision as to what boundary detail 1is significant
must be made. For most objects found in wheat samples, the

most important information resides towards the ends.

The problem of accurately representing the curvature at
every point of a sampled closed curve of, for example, a
wheat kernel was addressed by Young ( 1974 ). If such a
curve has a point of maximum curvature Ky, then, the sam-

pling increments of arc length must satisfy

As <m / 2 K, . 2.6

This especially pertains to distinguishing rounded, pointed
or blunt ends which tend to characterize wheat and like ker-
nels. Quantization error, inherent to discrete representa-
tion, affects curvature and the mathematical descriptions

that follow.

While intuitively appealing and conceptually useful,
problems associated with the curvature representation limit
its use for pattern recognition studies. One difficulty is
that if a shape has sharp corners, the curvature function is
undefined at these points. Zahn and Roskies ( 1972 ) pro-
posed the use of a cumulative curvature function defined as
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- f° _ 2ms
9(s)-—f° k(a)da S 2.7

to overcome this problem.

Another inconvenience is that suitable features for pat-
tern recognition must be developed from the representation
which is not, unlike following mathematical descriptions, in
a form immediately usable for statistical pattern recogni-
tion. The Fourier Descriptor and Moment methodologies are
appropriate to distinguish subtle differences between shapes
( Pavladis, 1978 ) such as exist between wheat kernels.

These techniques are described in the sections that follow.

2.3.3 Shape Moment Representation

Two variants of the method of moments which are invariant
to size, position and rotation have been described in the
literature. In one method, the principal axes of the image
are determined and the moments are transformed to align with
these axes. Reeves and Rostampour ( 1981 ) describe the
principal axis method in relation to the task of identifying

segmented objects in aerial photographs.

The second method consists of generating a set of simple
combinations of moments called moment invariants which are
algebraically invariant to positional change. Hu ( 1962 )
describes seven such functions derived from moments up to

order three. The finding of principal axes is not necessary
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for their evaluation. This method has been used for air-
craft identification ( Dudani et al, 1977 ) and scene match-

ing ( Wong, 1978 ).

2.3.3.1 Moment Method 1: Principal-axis Method

The basis of this method is the discrete computation of

the image moment defined as

M(u,v) = [ J f(x,y) xYyVdxdy . 2.8
(x,y) €R

The function f(x,y) may represent binary or grey-level im-
ages ( Reeves and Rostampour, 1981 ). In the latter case,
the moments depend on the grey level distribution interior
to the contour as well as the contour shape. In future,
such gray-level moments may be useful for describing the
visual "texture" of image contituents. However, only binary
images are considered in this thesis; the derived moments

are dependent only on contour shape.

In the discrete case, the moment Mpq of a digital image

is defined by
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where x and y are integer-valued pixel co-ordinates. The
image function , f(x,y), is unity on and within the object’'s
contour and zero otherwise. The set of moments
{Mpq},p,q=0,l,2..is uniquely defined by f(x,y) and converse-
ly f(x,y) is uniquely determined by {Mpq} . The moments
with respect to the image co-ordinate axes x and y up to the
order ( p+g ) of interest are first computed. A series of
normalization procedures such as described by Reeves ( 1981

) are performed to generate size, orientation and position-

invariant Quantities.

First, all moments are referred to an object's centroid
in order to translationally normalize them. The position of
the centroid ( X,¥ ) of the object may be determined from

the object's area ( MOO ) and first order moments:

«
f

-MOI/MOO . 2.11

The central moments which are invariant to translations of

the object are defined by

uoo=ILI (xx)P (yv-)9 £(x,y) 2.12
Xy

pq
They may be rapidly computed from the original moments using

q
L C(p,r) C(q,s) (-1)7* 5 m 2.13

r=0 s=0 pTr.g-s

™MT

Hpq =
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where

!
C(p,r) =F%p_—;_)—! . 2.14

The rotational normalization procedure refers all moments
to the major principal axis of the object being analyzed.
The angle 6 from the original x-axis to the principal axis

of the object ( Fig. 2.2 ) satisfies

tan (20) = 2:.1”/(;120-11 ) 2.15

o2

The rotationally normalized moments may be computed from

P dq _ - . -
¢ . = E £ (-1)975c(p,r)C(q.s) (cos 8)P " S(sin 0)7 Sup_r+q—s.r+s 2.16

Pd o0 s=0

When the object is m-fold symmetric, © is not wunique and
there are multiple possible sets of principal axes. By con-

vention, a unigue principal axis is chosen by requiring that

1. ¢ > ¢

20 o2

2. ¢ >0

The correct rotation angle

6 =6 + nn/2 ' 2.17

substituted into the above expression will satisfy these
constraints and produce the correct rotationally normalized

moments.,

- 33 -



Size normalization is achieved by employing the following

transformation:

where

A= (prq)/2 + 1 2.19

The moment measures obtained are physically interpreta-
ble; the moment sequences {ﬁpo} and {nap},p=1,2"are the mo-
ments of a projection of the object along the minor and ma-

jor axes onto the x' and y' axes ( Fig 2.2 ) respectively.

Fig. 2.2 Co-ordinate System Transformation

Moments referred to x'-y' system
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2.3.3.2 Rapid Computation of Moments

A rapid method for the computation of object moments
based on the discrete implementation of Green's theorem is

described in Tang ( 1981 ).

Green's theorem in the continuous x-y plane states that

[/ (%E —%5) dxdy = [ fdy + gdx | 2.20
R C

where C is a boundary consisting of piecewise smooth simple
closed curves and f(x,y) and g(x,y) are continuously differ-
entiable functions defined 1in a region containing R and C.

When g=0, this equation simplifies to

Tang shows how this expression can be computed over R, a
discrete 8-connected region without holes in the subspace

s' = { (h,k), h>0, k>0 , h,k:integers }
having avboundary expressed as an l-element chain code:

B: { (xq,¥p)s 8p, @y ... a;_, }.
A summation over the sequential boundary is performed; the
contour position functions Cy and Dy ( Table 2.1, page 37 )
are computed for each boundary element to calculate the ele-
ment's contribution to the summation. In discrete form the
expression becomes
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1-1

r f(m,n) = L F_(x,,y,)D (a, ,,a,)+f(x,,y.)C. (a _4,85) 2,22
n.neR 1=0 x*itviT Ty i1 S 1'7if Ty Ti-10
where
XN ou v
Fe(x30¥5) = L x4, 2.23
j=0
and
Xjpqp = X3 *agx, 2.24
Yiep T Y3 ¥ a3V 2.25
The uv-th moment of the region R is defined as
M = I n'n’ | 2.26

uv (m,n)eR

where ( m,n ) is the co-ordinate of any point in R. If R is
in chain-encoded form then the moments may generally be com-

puted from

1-1
Muv = izo Fx(xi’yi)ny(ai-l'ai) + f(xi'yi)cy(ai—l'ai) 2.27
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where F, (x; ,y;) in this case is

X.
1
Fx(xi'yi) = j§0 f(xj'yi) 2.28

I1f the moment-defining relationship is used to compute the
moments, the number of computations is proportional to Mgg (
i.e. the area ) whereas if the discrete method is used, the
number of computations is proportional to the length of the

sequential boundary which is related to VMgge

Table 2.1

Contour Position Functions

Dy(a i-1r@ l) Cy(a i-1r8 i)

4] 2] 3 $

a;ty 4| 5] 6] 71 8 a{:a 1 2| 31 4] 5| 6] 7| 8
1 0| 1 1 1 1 0] 0 O 1 0| 0f 0f of of Ol 0| ©
2 0| 1 1 1 1 0] 01 O 2 6f 0] 0y O O] 1 0| 0
3 0! 1 1 1 1 0r 0 O 3 0f 0 Oof of o 1 1 0
4 0| 1 1 1 1 0! ol 0 4 0l 0y O] 01 O 1 1 1
5 [-1 0] 0 Of O]-11-1]-1 5 1 0] 0f 01 0] 1 1 1
6 (-1 0] 0}y Of O|-1}=11-1 6 1 1 0y 0 0] 1 1 1
7 1-1 0] 0] O Oj-1]~1]-1 7 1 1 1 0f 0 1 1 1
8 -1 0 0] O O|-11-11]-1 8 1 1 1 1 0: 1 1 1
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2.3.4 Moment Method 2: Moment Invariant Functions

The central moments defined previously may be normalized
with respect to size and combined to determine functions
which are also invariant to positional, rotational and size
change. These are abstract guantities which are not geome-
trically interpretable. The moment invariants derived by Hu

( 1962 ) are listed below.

L T | 2.29

Mz - (uao~uoz)z+4u11z 2.30

Ma = (“30-3“1z)z+(3u21_u03)2 2.31

Ma = (uao+“1z)z+(uz1+uoa)z 2.32

MS = (uao_sulz)z(uso+u1z)[(uao+u|z)z-3(“at+uoa:z] + 2 33
(3uz,—u°3)(uz,+u°3)[3(uao+u,z)2—(ua,+u°,) ]

MS = (uzo_uoz)[(uso+uvz)z—(uz1+uos)2] M 2.34
4“11(uao+u1z)(“zt+uoa)

H’ - (3“?-‘-“03)(u30+u1z)[(uao+u1a)z_3(“z1+“oa)2] - 2.35

(ua°-3u,z)(u,,+u°,)[3(u,°+uz,)*—(u,,+u°a)2]

Size normalization of central moments is again accomplished
by division of a particular moment by an appropriate power

of 1y, ( Wong, 1978 )

u = _ bq , 2.36
Pq u A
00

A=P_g_ﬂ . 2.37
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2.3.5 Fourier Descriptor Representation

The theoretical basis of this method is discussed byFZahn
and Roskies ( 1872 ). An object may be viewed as being in
the complex plane in which the points ( x,y ) on the contour
of the object become the complex numbers x + iy. A sequence
of complex numbers is generated by traversing the contour in
a counterclockwise direction and sampling it at intervals of
arc length. The boundary function described in this way is
periodic and may alternately be expressed as its Fourier
transform. The Fourier descriptor is defined as the discrete

Fourier transform of the complex number seguence.

The procedures required to normalize the representation
follow from the properties of the transform. By linearity,
if the size of the contour is changed by multiplying the de-
scriptor components by a constant, then the contour co-ordi-
nates are multiplied by the same constant. Rotation of the
contour by angle 6 is achieved by multiplying thé coeffi-
cients by exp(j®). The contour starting point may be shift-
ed by multiplying the k-th frequency component 1in the fre-
guency domain by exp(jkt) where t 1is the fraction of the

period 27 ,

The normalized representation is invariant to object
size, orientation and position within the 1image and the
starting point on the contour. Standardization of size is

achieved by the division of all components by the magnitude
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of the first Fourier harmonic. Position invariance natural-
ly results from referring the description to some point on
the contour itself. The orientation and starting point nor-
malizations require a phase transformation of the Fourier
descriptor and leave component magnitudes unchanged. There-
fore, to reconstruct a shape in its original orientation re-
ferred to its correct starting point, the descriptor phase
information must be known. 1If, as for the work in this the-
sis, such reconstruction is unnecessary, then the phase in-
formation can be ignored. The set of size-normalized compo-
nent magnitudes are sufficient to wuniquely describe a given
shape and will be invariant to rotation, position and start-

ing point.

The major problems associated with the Fourier Descriptor
method are avoided by neglecting the orientation-starting
point normalization. One difficulty 1is that the procedure
is performed according to a complicated set of rules ( de-
scribed by Zahn and Roskies ( 1972 )) which add greatly to
the required computation. Also, this procedure, being de-
pendent on selection of harmonics having the largest magni-

tude, is sensitive to quantization noise.

In addition to problems inherent to the Fourier Descrip-
tor method are the inconveniences of the original technigque
used by Zahn and Roskies. Their method required the entry
of the coordinates of 2" ( n an integer ) equally-spaced

samples of a continuous contour. In contrast, a method
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which is both computationally simpler and adapted to vari-
able length Freeman-encoded contours such as are extracted
from digital images is described by Chuan-Juan and Quing-Yun

( 1980 ). Their procedure is outlined below.

The boundary contour C of a segmented object can be rep-

resented by a complex-valued function:

u(t) = x(t) + jy(t), 0< t< 2n 2.38

where x(t) and y(t) are co-ordinates of a point Q on the

contour.

Qo(xo0,Y0)

—>
X

The normalized arc length of Q from the contour starting

point Qo(xo,yo) is
t = 2ns/S 2.39

where s is the arc length measured in the counterclockwise

direction from QO and S is the contour perimeter length.
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Since u is periodic in t, it can be expressed as a Fourier

series of the form

ut) = £ pel™, o< tcoem 2.40
n=-w
having Fourier coefficients
, 2" int
R | -Jn -
P o= 3 Jult) e?hdt, n=0, #1, 22, ... . 2.41

o

The n-th coefficient ( n#0 ) may be approximately computed

from the contour chain code using

n M

M j(E -2nt L a,/ L a
P = - T ae 4 n k=1 K’ k=1 k). n = #1, 2,

where 9, denotes the m-th component of an M-length chain

code and

a, = 1 if qy is even 2.43
Y2 if qQy is odd

The coefficient P, representing the position of the shape

centroid may be calculated from
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M n-1 M
n/4 I / E 2.44
P =u - ).‘.aej( )qm(k— % 7 ki1 %)
° ] n=2 m

where uo=u(0)=x(0)+y(0). The other coefficients are abstract

guantities.

As previously stated, Fourier coefficient magnitudes may
be used as pattern recognition features. The range of har-
monics useful for this purpose must be determined. Also,
various important geometric properties of a contour e.gq.
roundness, curvature and elongation, may be computed as sum-
mations of functions of Fourier coefficients. It is there-
fore important to consider bandwidth, series convergence and

truncation effects on their computation.

The highest harmonic that can be considered for any pur-
pose is mod(nl,2) where nl is the length of the shortest
chain code representing a contour. In fact, the useful
bandwidth is much less, being restricted by noise which dom-
inates at high frequencies. This effect is a consequence of
the emphasis of guantization noise at high freqguencies by
the linear transfer function magnitude of the differentia-
tion operations necessary to compute the tangent angle and
curvature.

The problem is exacerbated by the non-linear pro-
cess of both curvature and tangent angle function
measurement which amplifies the high frequency
quantization noise components on the quantized
shape boundaries and to some extent distribute
this quantization noise over the entire spectral

range of the one-dimensional functions.
( Bennett and MacDonald, 1975 ).
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The nl/4—th harmonic is the highest that may be considered
unaffected by noise. According to Bennett and MacDonald (
1975 ), the range of harmonics that contribute to shape dis-
crimination is even narrower. They related the highest har-
monic, Hu, useful for this purpose to the number of signifi-
cant points, P, of high convex curvature of the shape,

stating, as a general rule:

Hu<3P to 4P . 2.45

Observing this guideline, the first ten harmonics have gen-

erally been computed for the objects studied in this thesis.

2.3.6 Other Descriptors

In the previous sections, "information-preserving" ( Pav-
ladis, 1978 ) descriptions of shape have been outlined.
Such representations enable complete reconstruction of the
shape within the limits of discretization error. In the
sections that follow, descriptors of specific size and shape
characteristics are outlined. Frequently such attributes
may be computed as functions of moments or Fourier descrip-

tors.

2.3.6.1 Size Properties

a. Perimeter Length
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The contour 1length may be approximated in the discrete

case by

M
S=x [ a 2.46
k=1k
where, as before
8, 1 if 9y is even ) 2.47
V2 if q is odd

b. Contour Area

A rapid method for computing the contour area of a Free-
man chain-encoded contour is based on the discrete calcula-

tion of the expression

[ | dxdy = [xdy = Area 2.48
R c

derived from Green's theorem. As before, R is the region
enclosed by and including the contour C. In the discrete
region R having boundary B described in Section 2.3.2 the

area is

. 1-1
Area = M = L

oo = E xiDy (a;_q.85) + Cy(ai—l'ai) 2.49
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where Cy and Dy are the contour position functions

described previously.
c. Minimum Enclosing Rectangle: Length, Width

These dimensions represent the length and width of the
minimal enclosing rectangle ( MER ) of the contour. A trans-
lational and rotational transformation is first applied to
the contour co-ordinates such that the origin of the new co-
ordinate system is located at the centroid and the object's
major principal axis becomes the x-axis while the minor
principal axis maps into the ordinate axis. The transforma-

tion necessary to accomplish this is

X! . cos 8 - sin 6 X- ' 2.50
y' " .|sin 6 - cos @ v-k

2.2.3.1

P AN

where 6 is found as in Section 2.3.1Y. The transformed con-
tour co-ordinates form M-element sets { x ' } and { Y }.

The MER has length

L= max {x '} - min {x_ '} 2.51
k=1,M Xk k=1,M k
and width
W = max {yk'} - min (y') . 2.52
k=1,M k=1,M
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2.3.6.2 Elongation Measurements

In previous investigations ( Draper and Travis, 1984,
Travis and Draper, 1984 ) elongation measurements were shown
to be powerful discriminatory features. One ubiguitous

measure is the thinness ratio defined by
T = an(a/p’) | 2.53

where A is the figure area and p is the perimeter length.
The more elongated the figure is, the <closer the thinness

ratio will be to zero.

Aspect ratio 1is a second property that can be used to
measure the elongation of a figure. One definition is the
ratio of length to width of the MER. The sides of the MER
are parallel to the eigenvectors of the binary image func-
tion. The eigenvectors physically correspond to the direc-
tions about which the figure has maximum and minimum moments
of inertia; the corresponding eigenvalues are the two mo-
ments of inertia. The ratio of the larger to smaller eigen-
value defines a second aspect ratio. Tang ( 1981 ) gives

this as:

A = max (a,B)/min(a,B) 2.54

where @ and B are eigenvalues of the matrix

Coo Cqy
Cyv Co2
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and

= Mao Mio
c,, - ( ) 2.55
MOO MOO
M M2
Coo = 22 _ (2 2.56
MOO MOO
c _ MH M01 M1o
1 = - X 2.57

2.3.6.3 Energy

The occasional appearance of "unusually-shaped" objects
in wheat sample images may be expected. Such objects, for
example insects, generally have more complex shapes than
those of wheat or other cereals. Their rapid screening,
without complete shape description being necessary, might be

achieved using a "complexity" feature.

Several curvature-based features are correlated with the
psychological perception of boundary complexity. These in-
clude the circularity measurement Pz/h, the number of chang-
es of sign of the curvature function along the boundary and
measurements of convex deficiency. Young ( 1974 ) describes
the concept of boundary energy in analogy with bending ener-
gy in elasticity theory. The average energy per unit length

of a simply-connected closed contour is given by
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2.58

E=17 1kl “ds

O -0

The discrete equivalent described by Young was implemented.

2.3.6.4 Symmetry

Many of the objects of interest in wheat sample images
are bilaterally symmetric, e.g. wheat is elliptical. Certain
objects such as broken kernels might be detected by abnormal
asymmetry about one axis. The moments Nyg and Nbo represent
the statistical moments of the projection of the object on
to one of the principal axes. The projection may be thought

of as a statistical distribution. The usual parameters that

describe such a distribution are

2.59
variance = n,,
_ 3/2
skewness = n,y4o/n,, 2.60
2
kurtosis = ngo/n,o, ~3
2.61

Abnormal asymmetry is reflected in high values of skewness.
Similarly, parameters for the other axis can be obtained.
2.3.6.5 Ellipse Fitting

The elliptical characteristics of certain wheat varieties
differentiates them from other varieties and cereals ( Owen

andAAinslie, 1971 ). Therefore, the two parameters which
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describe an elliptical shape, i.e. lengths of the semi-major
and semi-minor axes may be useful for this purpose.
An ellipse of general form
2

alx + 8B,x + a,y? + 8,y + 8gxy -1 =0 2.62

may be fitted to a contour in the least-squared-error sense.

The solution is given by

a=5 b 2.63

4 3 2y .2 2
Xy Xy X% %'y X%y
3 2 y.2 2
ol Xy Xy XiV¥y Xi¥5 XV
s = I, LTS PO A TR Pl v oxgy;° 2.64
) XifV;  oxv; vye v;® X;v;®
3 2 3 2
L_"j Vi o XtYy X3y X;Vi® o XjPyy®

and bT = (ix;®1x; 1y;®

i i Lyy inyi). The subscript denotes the

i-th element of the contour and summation is taken over all

such elements.

A measure of deviation from the elliptical shape is the

mean- squared error defined as

EpMs =!/SEa/cl . 2.65
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The total squared error of the ellipse fit is given by

- 2 2 2
S = I (a,x;° + 8Ky + a3y, * Ay +agxyy; - 1) . 2.66

The fractional difference in area between a contour and its
fitted ellipse is another useful indicator of deviation from

elliptical shape.

2.4 PATTERN RECOGNITION ASPECTS

2.4.1 Linear Discriminant Analysis

Single stage classifiers have been applied to the prob-
lems of supervised learning described in the following chap-
ter. The average probability of sample misclassification is
minimized by the Bayes classifier approach. Bayes discrimi-

nant functions of the form

d. (%) = &, % 2.67
1 1

were developed from the training data where x represents a
set of features { X5 }, 3=1,2, ... din a d-dimensional
feature space X and i denotes one of the M classes among
which discrimination is sought. The state conditional prob-

ability density functions describing individual features are

assumed to be normal, i.e.

p(xjw;) = —— oje =N(mi,0;) . 2,68



A posteriori probabilities of class membership are given by

Pr(w,) P(%)| w.)
P(wil i) - 1 1

z Pr(w,)p(¥ w;)

i=1

Samples are classified into the group having the highest a

posteriori probability of correct classification. The

squared Mahalanobis distance between class mean vectors

2 T. -1
ro= (@, -p)C TR, - R 2.70

is a convenient measure of class separation.

2.4.2 Stepwise Discriminant Analysis

Choice of appropriate classification variables may be as-
sisted by stepwise discriminant analysis ( SAS, 1982 ). The
discriminatory power of a set of features as measured by
Wilks' lambda ( Tatsuoka, 1970 ) is the basis for this anal-

ysis.

Letting Sy (%) denote the Within-Class Scatter Matrix for
variables ¥ = (xl,xz, “ee Xy ), p<d@ and ST(R) the total gen-
eralized dispersion for the same set of variables, then

Wilks' lambda
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det] S_(%)]
AR) = 7
det] s..(%)|

indicates the group separation capacity of Xx.

Variables enter the discriminant model in order of the
magnitude of the change of A(X) due to the addition of that
variable. The F-statistic is used to test the significance
of the change 1in A(X) . Only features exceeding an F
threshold are allowed to enter and remain in the discrimi-
nant model. An F-test significance level of 15% was chosen

as the threshold for entry or removal of a variable.
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Chapter I1II

RESULTS AND DISCUSSION

3.1 INTRODUCTION

The role that size and shape features described 1in the
previous chapter can play in various wheat grading problems
is presented in this chapter. In particular, their capacity
to identify the technical categories of foreign materials,
admixture cereals, wheats of other classes, wheat and other
cereal varieties are discussed. These problems have been
posed for resolution in increasing order of difficulty of
the recognition task. The major shape description methodol-
ogies were compared in relation to their cereal discrimina-
tion capacity. Finally, discernment of damaged or unsound
wheat species from sound mature wheat species was attempted.
Experimental materials referred to throughout the chapter

are described in the following section.

3.2 MATERIALS

Samples of dockage-free, pedigree cereal seed were ob-
tained from United Grain Growers of Winnipeg and the Alberta
Wheat Pool. A broad set of wheat cultivars were provided

from seed stocks maintained by the Plant Science Department



Table 3.1

Crop species chosen for investigation

SEED CATEGORY SPECIES/CULTIVAR

WHEAT ( TRITICUM aestivum L. )
'Neepawa'
'Columbus’
CANADA WESTERN 'Benito’
RED SPRING WHEAT 'Katepwa'
'Glenlea’
'Park’

HARD RED WINTER WHEAT WHEAT ( TRITICUM aestivum L. )
'Norstar'

WHEAT ( TRITICUM aestivum L. )
SOFT WHITE SPRING WHEAT 'Owens'
‘Fielder'

WHEAT ( TRITICUM aestivum L. )
UTILITY WHEAT 'Glenlea’
Hy320

WHEAT ( TRITICUM durum L. )
'Arcola’

AMBER DURUM WHEAT 'Coulter’

'Wakooma'

'Wascana'

RYE ( SECALE Cereale )
'Muskateer'
'Puma’
'Gazelle'’

BARLEY ( HORDEUM vulgare L. )
ADMIXTURE CEREALS 'Johnston’

'Bonanza'

'Klages'

OATS ( AVENA Sativa )
'Fidler’
'Harmon'

ADMIXTURE OILSEEDS CANOLA ( BRASSICA napus, L. )

WEED SEEDS WILD OATS ( AVENA fatua, L. )
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tically, the sprouts had barely emerged ( between 1 and 2 mm
) from the germ end. Only those showing this early stage of

germination were selected.

3.3 DISCRIMINATION BETWEEN WHEAT AND FOREIGN MATERIALS

Foreign materials are defined to be objects other than
wheat which appear in samples following cleaning. Clearly
there are many such objects. The investigation was there-
fore restricted to

a) those most frequently occurring and/or

b) those which are defined by statute to be contaminants.
The category of foreign materials is further dichotomized
into the sub-categories of cereal grains and materials other

than cereal grains ( Table 1.1, page 2-3 ).

The extraneous matter includes dockage materials that
would ordinarily be removed by c¢leaning. Examples of this
group are wheat heads, husks, ioose sprouts, straw and other
air liftings and small seeds, wild oats and stones ( Bushuk,
1977 ) with stones counted apart from other objects. Also
included are an unlimited set of objects which may not nec-

essarily be anticipated in a wheat sample.

While dissimilar to wheat and other cereals, such alien
objects are generally non-uniform in size and shape; the
visual characteristics that distinguish them are their asym-

metry and "complexity”. In the final system realization,



of the University of Manitoba in addition to the above
sources. Wheat variety identities were verified by gliadin

electrophoregram ( Sapirstein and Bushuk, 1985 ).

Cultivars were chosen from the following categories of

grains:

a. Hard Red Spring Wheat ( HRS )
b. Hard Red Winter Wheat ( HRW )
c. Soft White Spring Wheat ( SWS )
d. Utility Wheat.
e. Durum Wheat
Classes a. to d. are referred to as Common Wheats to distin-

guish them from the Durum species.

Samples of graded wheats were obtainea from the Grain In-
spection Division of the Canadian Grain Commission. Miscel-
laneous samples, including wild Oats and Canola, were pro-
vided by a local grower. Crop species and cultivars chosen

for investigation are summarized in Table 3.1.

Samples of "unsound" wheat were obtained from the Plant
Science Department of the University of Manitoba. These in-
cluded the "broken", "shrunken" and "sound mature" wheat
categories. The sprouted kernels were developed by germina-
tion of "sound" kernels. Samples were placed in Petri dish-
es on dampened filter paper and stored at 4 degrees Centi-
grade for 12 hours in the dark. They were then incubated

for 48 hours at room temperature in sunlight. Characteris-



such foreign material may be operationally defined as ma-
terials which do not fall 1into the remaining identifiable
classes of wheats, cereals, etc. \ That is, any object whose
Mahalanobis, Fisher or other statistical distance exceeds a
threshold value from the other groups would be categorized

as "alien". The representative samples of graded wheats

have had very small amounts of this material.
More regularly-shaped objects that have appeared in

available samples have been investigated.

3.4 CEREAL, WEED SEED, AND OILSEED DISCRIMINATION-INITIAL
STUDY

In an initial study, the feasibility of identifying com-
mon contaminants of wheat samples wusing size and shape fea-
tures was established. Discrimination among the most fre-
guently occurring of the weed seed, oilseed and cereal
contaminants, namely, wild Oats, Canola, Barley, Durum and
Rye from Wheat was attempted using four metric properties:
perimeter length, contour area, number of contour pixels and
thinness ratio. Of the cereal contaminants, Barley appears
most often, while the other crops may be expected to appear

in order of their relative acreage of production ( Table 3.2

).

Between 96 and 100 LR kernel 1images of each species were
acquired and processed. These were used to develop a linear

classifier whose performance was evaluated by resubstitu-



Table 3.2

Acreage of Crop Grown'

Crop Acreage? (Percent)
Bread Wheats 27.550 (49.19)
Barley 11.050 (19.73)
Canola 7.050 (12.59)
Durum 4,168 (7.44)
Oats 3.650 (6.52)
Flax 1.7389 (3.11)
Rye 0.796 (1.42)

'Source: Prairie Grain Variety Survey ( 1984 )
Prairie Provinces, 1984
2Acres x 106
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tion. The results of 1linear discriminant analysis applied
to the total training set of the 584 contours generated are

summarized in Table 3.3.

Greater than 95% correct <classification of training sam-
ples was achieved for Canola ( 100% correctly classified ),
wild Oats ( 97.0% ) and Hard Red Spring Wheat ( 96.9% ).
For Barley, the most frequent cereal contaminant, 89.6% of
the samples were correctly classified while Durum ( 60.4% )
and Rye ( 69.8% ) were poorly classified. The overall error
rate was 14.2% for all classes and 20.8% for the cereals

only.

These results indicated that the small oilseeds and large
weed seeds could easily be differentiated from wheat on the
basis of few characteristics. Flax seeds, being even small-
er than rapeseed and similarly round in shape are also
clearly distinguishable from the cereals. The data recently
reported by Travis and Draper shows that a broad range of
weed seeds can be distinguished wusing features similar to

those of this study.

The results of the present study also suggest that reso-
lution among the cereals which are "similar" in size and
shape to wheat would_require more comprehensive shape de-
scription. Similarity of shape was considered to mean being
roughly ellipﬁical or bilaterally symmetric, having fewer

than three or four points of maximum or undefined curva-
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Table 3.3

Discrimination of Cereal Grains

Initial Study

To
From Grain
Grain

HRS
wheat

Durum
wheat

Rye

wild
QOats

Barley

Canola

HRS wheat
( n=96 )

96.9%

3.1%

Durum wheat
( n=96 )

6.3%

60.4%

30.2%

3.1%

Rye
( n=96 )

7.3%

22.9%

69.8%

Wild OQats
( n=100 )

3.0%

97.0%

Barley
( n=96 )

7.3%

3.1%

89.6%

Canola
( n=100 )

100.0%




ture, and having a single-valued Hough transform. The ma-
terials that pass through a Carter Dockage tester and appear
in samples to be graded are necessarily approximately wheat

kernel-sized.

3.5 DISCRIMINATION AMONG CEREAL GRAINS

The 1initial study was followed up by an expanded one
which included a greater variety and number of cereals. All
cereal and wheat cultivars listed in Table 3.1 were selected
for study while Canola and wild Oats, having been shown to
be easily distinguishable, were eliminated. Of the cereals,
all the most frequently grown cultivars were included. Ta-
ble 3.4, compiled from the Prairie Grain Variety Survey (
1984 ), shows these ranked in order of percentage of acreage

grown.

Since Neepawa is the predominant HRS cultivar grown, sam-
ples were obtained from two geographically separate sources;
the classification sets, therefore, totalled 23 in number.
The training sets consisted of between 48 and 50 grain or
kernel images giving, in total, 1108 prototypes. Separately
acquired evaluation sets contained identical numbers of each

cultivar.

While several different recognition pattern problems were
of interest, all cultivars were simultaneously included in

the model to provide maximum opportunity for confusion.



Table 3.4

Most Frequently Grown Cereal Varieties

Cereal Cultivar (Percent) Rank

Bread Wheats Neepawa (61.8%) 1
Columbus (8.1%) 2
Benito (6.6%) 3
Park (4.0%) 4
Sinton (3.9%) 5
Glenlea (2.7%) 6

Durum ' Wakooma (50.1%) 1
Wascana (33.0%) 2
Coulter (8.6%) 3
Arcola (<1.0%)

Oats Harmon - (28.1%) 1
Cascade (16.0%) 2

Barley Bonanza (28.0%) 1
Klages (18.9%) 2

Rye Puma (34.2%) 1
Cougar (30.1%) 2
Gazelle (5.3%) 6
Muskateer (2.1%) 7

Source: Prairie Grain Variety Survey ( 1984 )
Prairie Provinces, 1984
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Linear discriminant functions were computed for individual
cultivars using combinations of shape features; equal prior
probabilities were assumed for Bayes classification. Indi-
vidual cultivars were considered to be correctly classified
as to cereal if either the cultivar was correctly identified

or classified as belonging to the same cereal class.

The discriminatory capacity of features from each shape
description methodology was investigated. Classification
results using normalized shape moments of fifth and lower
order are summarized in Table 3.5. Those for the Moment In-
variants, the Fourier Descriptors up to the tenth harmonic
and the Ellipse-fit features follow. in Tables 3.6 to 3.8.
Of these methods, only the Ellipsg—fit parameters retain

size information.

The overall error fregquency of graih classification for

each method was:

Fourier Descriptors: 12.9%
Shape Moments: 18.1%
Moment Invariants: 23.7%

Ellipse-fit features: 24.5%
For each method, the classification accuracies for common
Wheat approached 90% and the admixture cereals, collective-
ly, were infrequently ( <7% ) <classified as the aestivum
species. In the last respect, the Fourier Descriptors (
1.0% ), Ellipse-fit features ( 1.3% ) and Shape Moments (

2.3% ) were significantly better than the Moment Invariants



Table 3.5
Discrimination of Cereal Grains

Moments only ( <6th Order )
To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 89.0% 9.5% - - 1.5%
( n=528 )
Durum wheat 9.9% 83.3% 2.6% 3.7% <1%
( n= 192 )
Rye 3.5% 11.1% 80.6% 2.8% 2.1%
( n=144 )
Oats - 21.0% 30.0% 45.0% 4.0%
( n=100 )
Barley 2.8% 6.9% 6.3% 3.5% 80.6%
( n=144 )
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Table 3.6
Discrimination of Cereal Grains

Moment Invariants
To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 90.0% 7.8% <1% - 1.5%
{ n=528 )
Durum wheat 38.5% 47.4% 5.7% <1% 7.8%
( n= 192 )
Rye 11.8% 17.4% 66.0% - 4.,9%
( n=144 )
Oats 2.0% 21.0% 3.0% 47.0% 27.0%
{ n=100 )
Barley 4.9% 5.6% 1.4% 4.,2% 84.0%
( n=144 )
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Table 3.7
Discrimination of Cereal Grains

Fourier Descriptors
To ]
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 91.1% 8.9% - - -
( n=528 )
Durum wheat 9.4% 81.8% 6.7% 2.1% -
( n= 192 )
Rye 1.4% 4.2% 90.3% <1% 3.5%
( n=144 )
Oats - 1.0% 11.0% 84.0% 4.,0%
( n=100 )
Barley 1.4% 1.4% 4.2% 4,9% 88.2%
( n=144 ) . .
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Table 3.8

Discrimination of Cereal Grains

Ellipse-fit Features

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 87.7% 6.4% <1% - 5.5%
( n=528 )
Durum wheat 13.5% 50.0% 8.3% 6.8% 21.4%
( n= 192 )
Rye 2.1% 16.7% 77 .8% 2.1% 1.4%
( n=14242 )
Oats : - 14.0% 18.0% 50.0% 18.0%
( n=100 )
Barley 1.4% 9.0% <1% 8.3% 80.6%
( n=144 )




( 6.7% ). Classification accuracies for the non-Wheat cere-
als were low ranging from 45 to 91%, the highest accuracies
being achieved with Fourier Descriptors. Using as criteria
the minimum classification error frequency, correct wheat
classification and minimum false labelling of admixture ce-
reals as common wheat, Fourier descriptors and Shape moments

gave the best over-all performance.

As no single method provided satisfactory wheat discrimi-
nation, all previous data was combined and supplemented with
the features: length, width, perimeter length, area, total
contour energy, average energy, and aspect and thinness rat-
ios. Classification performance was significantly improved
by these additions; the grain classification error was re-
duced to 2.5%. Results of discriminant analysis using all
features are shown 1in Table 3.9. Greater than 98% of all
non-Durum Wheat, Oats and Barley samples were correctly
categorized while Durum ( 97.4% ) and Rye ( 88.2% ) were
classified less accurately. None of the 576 non-wheat con-
stituents were misclassified as wheat. All of the fewer
than 1% falsely-labelled "common" wheat kernels were classed

as Durum wheat.

When the least discrim;natory feature classes, 1i.e. the
Moment Invariants and Ellipse features and the noise-affect-
ed fourth and fifth moments were excluded, the results of
Table 3.10 were obtained; average grain classification er-

ror was further reduced to 1.8%. This slight improvement
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Table 3.9
Discrimination of Cereal Grains
All Features ( 58 )

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 99.6% <1% - - -
( n=528 )
Durum wheat - 97.4% 2.6% - -~
( n= 192 )
Rye - 11.8% 88.2% - -
( n=144 )
Oats - - 1.0% 98.0% 1.0%
( n=100 )
Barley - 1.4% - - 98.6%
( n=144 )




indicates that the inclusion of non- discriminating features
degrades the classifier performance. The remaining "core"
set consisting of Fourier descriptors, low order moments and
the additional features listed above has the discriminating

capacity of the entire set.

To systematically reduce the dimensionality of the fea-
ture space further while retaining high wheat classification
accuracy, stepwise discriminant analysis was first applied
to generate a ranking of features. Listed in Table 3.11 in
their order of addition to the discriminant model are all
features whose significance of change to Wilks' 1lambda ex-
ceeds 15.0%. The "shape-space" could be reduced to as few
as eight dimensions before wheat tended to be misclassified
as barley. Classification results wusing this reduced fea-

ture set are summarized in Table 3.12.

While Rye ( 81.3% ) and Durum wheats ( 87.5% ) were less
frequently correctly identified, correct classification of
non-Durum Wheats, Oats and Barley again exceeded 99%. Con-
fusion among all grains except non-Durum wheats generally
increased. The Canadian wheat grading system is tolerant of
this confusion as admixture grains are lumped as one evalua-

tion category.

The discrimination capacity of the single best feature,
rectangular aspect ratio, is apparent in Table 3.13. Great-

er than 95% of wheat and oats kernels could be correctly
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Table 3.10
Discrimination of Cereal Grains

( Reduced Feature Set )
To
From Cereal Common Durum Rye Oats Barley
Cereal wheat + wheat
Common wheat 99.8% <1% - - -
( n=528 )
Durum wheat - 96.4% 3.1% - <1%
( n= 192 )
Rye - 6.3% 93.1% - <1%
( n=144 )
Oats - - - 99.0% 1.0%
( n=100 )
Barley - <1% - - 99.3%
( n=144 )




Stepwise Discriminant Analysis

Table 3.11

Ranking of Features by

Variable Number
entered in
Aspect Ratio 1
Width 2
Four. Des. ( -1 ) 3
Perimeter Length 4
Length 5
Sh. Mom. ( 0,2 ) 6
Aspect Ratio ( Eig.) 7
Sh. Mom. ( 2,1 ) 8
Four. Des. ( 4 ) 9
Four. Des. ( -4 ) 10
Thinness Ratio 11
Contour Pixel No. 12
Sh. Mom. ( 1,2 ) 13
Area 14
Mom. Inv. 2 15
Mom. Inv. 1 16
Four. Des. ( -3 ) 17
Sh. Mom. ( 2,0 ) 18
Sh. Mom. ( 4,0 ) 19
Mom. Inv. 3 20
Mom. Inv. 5 21
Four. Des. ( -2 ) 22
Sh. Mom. ( 5,0 ) 23
Sh. Mom. ( 3,0 ) 24
Mom. Inv. 4 25
Four. Des. ( 7 )~ 26
Four. Des. ( -8 ) 27

P

statistic

950.816
168.422
195.229
88.517
33.864
38.310
23.512
28.077
18.607
21.055
21.131
22.596
20.508
15.374
14.786
20.132
8.947
7.629
7.172
6.969
9.926
5.800
5.237
10.607
6.088
5.046
4.634

- 73 -

Prob
>F

.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001

owlolololololoNeNoNoNoeNe)
L]

Wilks'
Lambda

0.04931159%
0.01116110
0.00224756
0.00080276
0.00047524
0.00026693
0.00018043
0.00011470
0.00008311
0.00005810
0.00004056
0.00002773
0.00001952
0.00001484
0.00001138
0.00000805
0.00000680
0.00000587
0.00000512
0.00000447
0.00000371
0.00000332
0.00000298
0.00000245
0.00000218
0.00000197
0.00000180



Table 3.11 ( cont. )
Ranking of Features by
Stepwise Discriminant Analysis

Variable Number F- Prob Wilks'

entered in statistic >F Lambda

Sh. Mom. ( 0,3 ) 28 4.488 0.0001 0.00000164
Four. Des. ( -5 ) 29 4.235 0.0001 0.00000151
Four. Des. ( 2 ) 30 4,208 0.0001 0.00000139
Four. Des. ( -9 ) 31 4,076 0.0001 0.00000128
Sh. Mom. ( 0,5 ) 32 3.438 0.0001 0.00000119
Semi-Major Length 33 3.232 0.0001 0.00000112
Four. Des. ( 3 ) 34 3.150 0.0001 0.00000105
Four. Des. ( 5 ) 35 3.272 0.0001 0.00000098
Mom. Inv. 6 36 2.772 0.0001 0.00000093
Energy/Length 37 2.569 0.0001 0.00000088
Four. Des. ( -10 ) 38 2.409 0.0003 0.00000084
Four. Des. ( -7 ) 39 2.133 0.0018 0.00000080
Four. Des. ( 10 ) 40 2.031 0.0034 0.00000077
Four. Des. ( 8 ) 41 1.828 0.0113 0.00000074
Four. Des. ( 9 ) 42 1.793 0.0138 0.00000071
Energy ( Total ) 43 1.756 0.0170 0.00000069
Eliipse Area Dev. 44 1.625 0.0345 0.00000067
Four. Des. ( -6 ) 45 1.650 0.0302 0.00000064
Four. Des. ( 6 ) 46 1.626 0.0342 0.00000062
Sh. Mom. ( 2,2 ) 47 1.518 0.0593 0.00000060
Semi-minor Axis L. 48 1.821 0.0118 0.00000058
Mom. Inv. 7 49 1.716 0.0212 0.00000056
Sh. Mom. ( 1,3 ) 50 1.538 0.0537 0.00000054
Fitted Ellipse Area 51 1.565 0.0469 0.00000052
Sh. Mom. ( 2,3 ) 52 1.450 0.0823 0.00000051
Sh. Mom. ( 3,1 ) 53 1.401 0.1034 0.00000049
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Table 3.12 .
Discrimination of Cereal Grains
( 8 Most Discriminatory Features )

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 99.2% - - - <1.0%
( n=528 )
Durum wheat - 81.3% 10.9% - - 7.8%
( n= 192 )
Rye - 11.8% 87.5% - <1%
( n=144 )
Oats - - - 100.0% -
{ n=100 )
Barley - <1.0% - - 99.3%
( n=144 )




classified using this single feature. These results confirm

the observations of Travis and Draper.

The cereal grain size features vary more than the "shape"
characteristics which are used for identification. Large
size differences exist even between kernels on an individual
stalk. Moreover, the grain size statistics are more likely
to be affected by the cleaning process and dockage tests.
Therefore, a classifier using "pure" shape features ( invar-
iant to kernel size ) was developed. High classification
accuracies were again achieved ( Table 3.14 ). Wheat was
correctly classified for 99.8% of the 528 kernels tested and

barley was rarely ( 1.4% ) misclassified as wheat.

Finally, the shape data generated from the "core" feature
set was reorganized by cereal, discriminant analysis was
performed and the Mahalanobis distances between cereals were
obtained. While some confusion between Rye and Durum ( Ta-
ble 3.15 ) 1is evident, the remaining cereals are at least
piecewise linearly separable in the 35-feature hyperspace.
The interclass distances, summarized in Table 3.16, are nor-
malized by the maximum cereal separation from Common Wheat
which is taken to be 100 units. By this index, Barley ( 100
) is by far the most dissimilar to wheat, followed in order

by Oats ( 27.4 ), Rye ( 13.9 ) and Durum ( 5.1 ).
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Table 3.13
Discrimination of Cereal Grains
Aspect Ratio

-

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 95.8% <1% - - 3.4%
( n=528 )
Durum wheat <1% 68.7% 9.4% - 21.4%
( n= 192 )
Rye - 26.4% 27.8% - 45.8%
( n=144 )
Qats - - - 96.0% 4.0%
( n=100 )
Barley 2.1% 52.8% 9.0% 1.4% 34.7%
( n=144 )




Table 3.14
Discrimination of Cereal Grains
( Shape Features Only Used )

-a8[—

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 99.8% <1.0% - - -
( n=528 )
Durum wheat - 94.8% 5.2% - -
( n= 192 )
Rye - 6.9% 93.1% - -
( n=144 )
Qats - - - 100.0% -
( n=100 )
Barley 1.4% 1.4% 1.4% - 95.8%
( n=144 )




Table 3.15
Discrimination of Cereal Grains
( Data Grouped By Cereal )

_\-6[-

To
From Cereal Common Durum Rye Oats Barley
Cereal wheat wheat
Common wheat 98.3% 1.7% - - -
( n=528 )
Durum wheat - 97.4% 2.1% <1% -
( n= 192 )
Rye - 9.0% 91.0% - -
( n=144 )
Qats - - - 99.9% 1.0%
( n=100 )
Barley - 2.1% - - 97.9%
( n=144 )




Table 3.16
Mahalanobis Distances
-normalized to Wheat-Barley ( 100 units )

..08..

From Ce?gal Common Durum Rye Oats Barley
Cereal wheat wheat

Common wheat 0.00 5.08 13.92 27.37 100.00
Durum wheat - 0.00 5.99 19.70 73.64
Rye - - 0.00 22.02 63.66
Oats - - - 0.00 107.01
Barley - - - - 0.00




3.6 DISCRIMINATION AMONG WHEAT CLASSES AND VARIETIES

Further analyses of the wheat classification results were
made to investigate the capacity of shape to distinguish be-
tween wheat cultivars and classes. The wheat classes con-
sidered were Hard Red Spring ( HRS ), Hard Red Winter ( HRW
), Soft White Spring ( SWS ), Utility, Prairie Spring ( PS )
and Durum Wheats. The five most commonly grown varieties (
Table 3.4, page 63 ), collectively comprising more than 80%
of the acreage grown, of the predominant Hard Red Spring
class were included. Cultivars were considered to be cor-
rectly labelled as to class if either correctly identified
or classified as another cultivar of the same class. The
results, using all available shape data, are shown for each

cultivar in Table 3.17 and grouped by class in Table 3.18.

These results likely represent the maximum classification
accuracies achievable with a linear classifier based solely
on shape. Correct classification by class was high for HRS
wheat ( 98.9% ) and Durum wheats ( 97.4% ). On average,
wheat of the remaining classes was poorly classified ( 53.3
% ). While confusion among these classes was high, none
were categorized as HRS wheat. The non-HRS wheats are col-
lectively counted in the "wheat of other classes" category

for wheat grading purposes.

Reduction of the feature set 1is possible without loss of

HRS discrimination. When Moment Invariants, Ellipse-fit
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features and high order moments were again eliminated, the
confusion pattern was unchanged. Durum and HRS classifica-

tions were slightly diminished ( Tables 3.19 and 3.20 ).

For wheat grading, identification of unlicensed HRS or
utility varieties is required. 1In general, individual wheat
varieties could not be accurately identified using shape in-
formation ( Table 3.21 ). The low accuracies for individual
HRS varieties are attributable to their being bred to be
visually indistinguishable. The licensed wutility wheat
Glenlea, which has a distinctive elongated shape was cor-
rectly identified for 75% of samples. Notably, other hard
red varieties Norstar ( HRW )} and Hy320 ( PS semi-dwarf )
while not identified were at least distinguishable from the

HRS class as a whole.

3.7 DISCRIMINATION AMONG NON-WHEAT VARIETIES

While wheat grading is of primary importance, the cereal
discrimination results apply equally to grading of other
grains. The grading factors and objects that are identified
in Barley, Oats and Rye largely parallel those of wheat (
OGGG, 1985 ). Of these cereals, the Barley varieties and
Harmon Oats could be discerned with relatively high frequen-
cy ( >80%, Table 3.21 ). The Rye varieties and Fidler Oats
were correctly labelled less often having classification ac-
curacies ranging from 42% to 62%. These are nevertheless
high in relation to the 4.3% to 4.5% prior probabilities of
selection.
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Table 3.17

Classification of Wheat Cultivars into Grain Classes
All Features Used

From

To
Class

Cultivar

HRS

HRW

SWS

Utility

PS

Durum

Other
Cereals

HRS

Neepawa_a 100.0%
Neepawa_b 93.8%

Ratepwa
Columbus
Benito
Park

100.0%
100.0%
100.0%
100.0%

4.2%

2.1%

HRW

Norstar

56.3%

25.0%

2.1%

16.7%

SWS

Fielder
Owens

27.1%
2.1%

45.8%
64.6%

8.3%
14.6%

18.8%
18.8%

Util.

Glenlea

8.3%

75.0%

14.6%

2.1%

PS

Hy320

29.2%

43.8%

25.0%

2.1%

Durum

Coulter
Wakooma
Wascana
Arcola

97.9%
95.8%
95.8%
100.0%

2.1%
4.2%
4.2%




Table 3.18
Discrimination of Wheat Classes

( All Features Used )

To
From Class
Class

Hard
Red
Spring

Hard
Red
Winter

Soft
White
Spring

Utility

Prairie
Spring

Durum

Other
Cereals

Hard Red
Spring
( n=288 )

98.9%

<1%

<1%

Hard Red
Winter
( n= 48 )

56.3%

25.0%

2.1%

16.7%

Soft White
Spring
( n= 96 )

14.6%

55.2%

11.5%

18.8%

Utility
Wheat
( n= 48 )

8.3%

75.0%

14.6%

2.1%

Prairie
Spring
( n= 48 )

29.2%

43.8%

25.0%

2.1%

Durum
Wheat
( n= 192 )

97.4%

2.6%
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Table 3.19
Classification of Wheat Cultivars into Grain Classes

Reduced Feature Set

From

To
Class

Cultivar

HRS

HRW -

SWS

Utility

PS

Durum

Other
Cereals

HRS

Neepawa_a 100.0%
Neepawa_b 91.7%

Ratepwa
Columbus
Benito
Park

100.0%
100.0%
97.9%
97.9%

6.3%

2.1%

2.1%

2.1%

HRW

Norstar

31.3%

52.1%

2.1%

14.6%

SWS

Fielder
Owens

10.4%
2.1%

66.7%
79.2%

10.4%
14.6%

12.5%
4.2%

Util.

Glenlea

12.5%

75.0%

10.4%

2.1%

PS

Hy320

37.5%

39.6%

22.9%

Durum

Coulter
Wakooma
Wascana
Arcola

97.9%
93.7%
95.8%
97.9%
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Table 3.20
Discrimination of Wheat Classes

-Reduced Feature Set

To
From Class
Class

Hard
Red
Spring

Hard
Red
Winter

Soft
White
Spring

Utility

Prairie
Spring

Durum

Other
Cereals

Hard Red
Spring
( n=288 )

97.9%

1.4%

<1%

Hard Red
Winter
( n= 48 )

31.3%

52.1%

2.1%

14.6%

Soft White
Spring
( n= 96

6.3%

72.9%

12.5%

8.3%

Utility
Wheat
( n= 48 )

12.5%

75.0%

10.4%

2.1%

Prairie
Spring
( n= 48 )

37.5%

39.6%

22.9%

Durum
Wheat
( n= 192 )

96.3%

3.7%
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Table 3.21
Discrimination of Cereal Grains
Cultivar Identification

Wheat Cultivar Correctly Grain Cultivar Correctly
class identified identified
HRS Neepawa-a 98% Durum Wakooma 31%
Neepawa-b 69% wheat Wascana 50%
Katepwa 67% Arcola 88%
Columbus 19% Coulter 60%
Benito 48%
Park 75% Barley Bonanza 88%
Klages 94%
HRW Norstar 31% Johnston 83%
PS HY320 23% Oats Fidler 62%
Harmon 86%
Utility Glenlea 75%
Rye Gazelle 42%
SWS Fielder 50% Muskateer 58%
Owens 73% Puma 52%

1.

2.
30

Based on a training and evaluation set of 48 kernels

respectively.

Grain samples of Neepawa obtained from two sources.

Abbreviations: Hard Red Spring ( HRS ), Hard Red Winter
( HRW ), Prairie Spring ( PS ), Soft White Spring ( SWS )




3.8 DISCRIMINATION AMONG UNSOUND KERNELS

A further inguiry was made to determine whether certain
characteristically damaged or degraded kernels could be dis-
tinguished from sound kernels by size and shape differences.
Included for study were shrunken, broken and sprouted ker-
nels of HRS wheat each representing a separate grading cat-
egory. These, apart from frost-damaged and bleached ker-

nels, are the most freguently occurring unsound species.

In total, 96 LR images of each were acquired and pro-
cessed. All shape descriptors were computed including sym-
metry attributes. A linear <classifier was developed and

evaluated by the hold-out method with the results summarized

in Table 3.22.

The broken ( 95.8% ) and sprouted groups ( 99.0% ) were

successfully identified. Broken kernels were most often
misclassified as shrunken. The broken kernels included in
this study were any with apparent fracture; many exceeded

the "three-quarters of a whole kernel" defining threshold.
Therefore kernels with very minor breakage and minimal

sprouting were resolved.

However, considerable confusion between shrunken and

sound kernels is evident.
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Table 3.22
Kernel Soundness

To
Broken Shrunken Sound Sprouted

From
Broken 95.8% 3.1% 0 1.0%
( n= 96 )
Shrunken 0 87.5% 12.5% 0
( n= 96 )
Sound 0 9.4% 90.6% 0
( n= 96 )
Sprouted 1.0% 0 0 99.0%

( n= 96 )




Chapter IV

CONCLUSIONS AND RECOMMENDATIONS

The objective of the work described in this thesis has
been to investigate the capacity of machine-vision perceiv-
able size and shape characteristics to differentiate ele-
ments that must be guantified for wheat grading purposes.
This research has proceeded in parallel with that on texture
and light transmission characteristics performed by others (
Wright, 1985, Sapirstein et al, 1985 ). Specific problems

that have been posed for experimental resolution are:

1. distinguishing other cereal grains, oilseeds and weed
seeds from wheat

2. distinguishing other wheat classes from Red Spring
Wheat

3. distinguishing certain categories of damaged RS wheat
from mature souna wheat kernels

4. the capacity of size and shape to distinguish indi-
vidual cultivars not only of wheat but also of other

cereals.

For the first time, machine perceivable kernel size and
shape characteristics have been used to discriminate between
commonly grown Canadian oilseeds, wheat and cereal vari-

eties. Further, their use for distinguishing between un-



sound and sound wheat kernels has not been previously de-
scribed. Previous studies that have attempted to discrimi-
nate among various cereals and/or weed seeds have primarily
employed either size or shape characteristics but not both.
Also unlike the approach taken herein, with one exception (
Segerlind and Weinberg, 1972 ), no effort has been made to
use all information present in the seed shape. Whereas all
past studies of seed shape have required extensive manual
involvement in orienting kernels, extracting contours or
taking measurements, activities which inhibit their use for
automatic grading, these tasks have either been avoided or

accomplished automatically by the described methods.

Discrimination of contaminating cereals from wheat was
achieved using a rapidly computable set of shape and size
features. All major methodologies of contour shape descrip-
tion were applied to this problem. The best results were
achieved using a set of features which included Fourier de-
scriptors, low order shape moments, rectangular aspect ratio
and length, width and area measures. Correct cereal classi-

fication using this set of features were :

Non—-durum wheats: 99.8%
Durum wheats: 96.4%
Oats: 99.0%
Rye: 93.1%
Barley: 99.3% .



When size features were eliminated from this set, i.e. only
shape dependent features were used, cereal classification
performance deteriorated only slightly; the overall error
rate was 2.4 % as compared with 1.8 %. If only the eight
most discriminatory features were used, confusion among all
cereals but the non-Durum wheats increased. For these
wheats of primary interest for wheat grading, classification

exceeded 99%.

The most common oilseed ( Canola ) and weed seed ( Wild
Oats ) were easily distinguished from all other cereal
classes on the basis of four features. While shrunken ker-
nels were occasionally confused with sound kernels, broken
and sprouted kernels were not. The high classification ac-
curacies achieved for certain wheat and cereal cultivars de-
spite low prior probabilities indicate that certain culti-
vars such as Neepawa and Glenlea or Neepawa and semi-dwarf
varieties might be reliably separated on a pairwise basis.
To verify this, further study will be required on a wider

range of samples of different provenance.

The research may be extended in several other ways which
include improvements and modifications to the image acquisi-
tion system, expansion of features extracted from the system
and consideration of other pattern recognition methodolo-
gies. The existing experimental system, with certain im-
provements, could be developed into a real-time wheat analy-

sis system, the ultimate goal of the research effort. Shape



analysis routines may be implemented in assembly language
and discriminant functions rapidly computed and compared on-
board avoiding time consuming image transfer. In future,
the intrinsic parallelism of the procedures may be exploited
to simultaneously analyze many objects within the image. At
present, the single time-limiting manual procedure 1is the
placement of samples on the optical platform. This proce-
dure might be eliminated by suitable adaptation of the sam-
ple acquisition system described by Brogan and Edison ( 1974

).

Colour imagery is the most desirable system modification
in that a broader range of recognition problems could be
proposed including the finding of grass-green, pink,
stained, dark immature, vitreous, insect and fungus-affected
kernels, Discrimination among Amber durum, Red and White
wheats would likely be enhanced using tristimulus values in-
tegrated over individual kernels. Therefore, in synergy,
shape and colour characteristics may suffice to identify ob-
jects in a large fraction of the categories quantified for

wheat grading purposes .

In the absence of colour, only monochrome texture fea-
tures may presently be extracted from the digital images.
In general, such features are very 1illumination sensitive
being affected by specular reflection and mutual and self-
shadowing of image constituents. Under carefully controlled

illumination and sample orientation conditions, Wright (



1985 ), using autoregression modelling, failed to discrimi-
nate between mature vitreous and "wrinkled" unsound kernels.
This result suggests that texture analysis would contribute
only marginally to the major discrimination problems of
wheat grading for which visual texture differences are much
less evident. However, two additional approaches might be
considered for specific problems. The grey level run length
features described by Galloway ( 1975 ) might resolve the
previously-mentioned shrivelled or "wrinkled" ‘wheat. The
moment method described in this thesis can be extended to
use the grey level information within the contour boundary (
Tang, 1981 ). Such grey level moments, which give the dis-
tributional shape of ranges of pixel intensity, might be ap-
plied to finding "blackpoint"-affected kernels or other con-

ditions that affect local appearance of the kernel.

Entirely apart from the addition of new features, other
pattern recognition methodologies may be considered. The
present study was conducted in the supervised learning mode
since training samples were readily available. An alterna-
tive recursive self-learning approach, particularly that us-
ing Kalman filtering ( Brogan and Edison, 1974 ) might be
applied to "real" wheat samples. A more important require-
ment is the introduction of a loss function ( Tou and Gonza-
lez, 1974 ) to reflect the unequal costs of misclassifica-
tion. The misidentification of an ergot-affected kernel,
for example, may be more significant than that of a contami-

nating barley kernel.
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In this thesis, a single stage classifier was developed
to simultaneously discriminate among a large number of wheat
cultivars. This problem may be restructured using multis-
tage classification which has recently received much atten-
tion in the pattern recognition literature. At each stage
of classification, corresponding to the level of an hier-
archical tree, a pattern is compared with a set of classes.
Each such comparison, represented by a tree node, determines
whether testing paths emanating from that particular node
will be followed. Paths which result in the comparison of a
pattern with wunlikely subclasses are ignored resulting in
the rapid exclusion of many alternatives. However, all com-
parison branches are followed for which the 1likelihood ex-
ceeds a prescribed level; i.e unlike a decision tree, more
than one parallel path may be followed. For each node, a
much smaller number of features optimized for the partial
discrimination problem are used than would be for an overall

single stage classifier.

In 1llustration, the overall wheat grading procedure
might be performed in stages. An object in a wheat sample
image could first be <classified as either "wheat" or "non-
wheatd. If chosen as the latter, a determination of "for-
eign cereal” against "alien matter" would be made and more
specific identification would follow by comparisons made in
one of the two alternative test branches. The "alien" path

might include such categories as weed seeds, oilseeds, in-
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sect ova, larvae and adults, excreta, machine bolts and an
unlimited range of other rare objects that could be added to

the substage class set as experience is gained.

Similarly, if the object is wheat, then it might undergo
a sequence of comparisons to determine the likelihood of its
1. belonging to either aestivum or durum species
2. if the former, belonging to the Red Spring or
White class
3. if Red Wheat, whether it is damaged or adversely
affected in any way.
Of course, this is just one of many possible comparison
structures and is not optimal in any way. Kurcynski ( 1983
) has developed a strategy for the design an hierarchical
classifier to minimize the overall probability of error giv-
en complete problem probabilistic information. Implicitly,
a single stage classifier developed from training data may

be recast as an optimal multistage classifier.

The development of an appropriate multistage classifier
for wheat grading would likely be the most fruitful direc-
tion of pattern recognition research. Such a cl;ssifier,
unlike a single stage one, could accommodate the broad range
of objecfs that must be correctly identified in a wheat sam-
ple for accurate grading. The conformity of hierarchical
classifiers with human decision procedures makes them espe-
cially attractive in the context of the development of an

overall "expert system" for wheat grading.
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