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ÀBSTRÀCT

This thesis describes the application of shape analysis
methodologies for the purpose of grading wheat. Shape de-

scriptors and metric properties of objects of interest to

the wheat grading process vùere computed and compared. The

Fourier descriptor, moment method and moment invariant tech-
niques of shape representation were applied to the problem.

The properties so determined were evaluated for their ca-

pacity to discriminate between classes, varieties and grades

of wheat and admixture elements affecting wheat grades. Var-

ious specific pattern recognition problems were posed. Step-

wise discriminant analysis was applied to select the most

discriminatory features. Linear discriminant functions were

generated to evaluate the results of optimal decision-theo-
retic classification.

Discrimination of Hard Red Spring wheats from cereal
grains which most frequently contaminate wheat samples was

achieved. It vras also possible to distinguish certain
cfasses and cultivars of wheat from others. Visibly unsound

kernels were separable from mature vitreous kernels. The

usefuLness of the methods and resu]ts are discussed.
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Chapter I

APPLICÀTION OF MACHINE VISION TO T^THEAT GRADING

1.1 TNTRODUCTION

The wheat inspection process may be significantly assist-
ed by computer vision. A human inspector might be rerieved
of the burden of counting objects in samples of wheat which

in part determine its grade. Greater accuracy and better
statistical estimates of such objects might be achieved" ob-
jective measurements of certain attributes such as kernel
vitreousness may be possible which have not previously been

so.

Primary grading determinants for Red spring wheat are

shown in Table 1.1 reproduced from the officiar Grain Grad-

ing Guide ( hereafter referred to as OGGG , 1985 Ed. ). rden-

tification and enumeration of objects of the categories
shown is necessary and armost sufficient to achieve grading.

The identification of a kernel ês, say, belonging to a non-

prescribed variety of wheat is a classic problem of pattern
recognition. The solution of a set of such subprobrems could

eventually enable automatic arading of a majority of sam-

ples.

t-
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Initially, however, information from the machine vision
system is expected to supplement that from other objective
tests such as moisture content, protein analyses and test
weight in the grading process.

1 .2 WI{EAT GRAD]NG

1.2.1 Official wheat qradinq standards

The assignment of grades is made on the basis of sets of

standards issued by the Canadian Grain Commission. These are

a highly evolved set of guidelines which are authoritatively
set forth in the official Grain Grading Guide of the canadi-

an Grain commission. Tabres simirar to those for canada

western Hard Red Spring wheat are pubrished for every major
. class of wheat grown in Canada.

In every case the major quality determinants are the

same. These are:

1. the test weight of a standard vol_ume of grain
2. the variety identity
3. the minimum percentage by weight of hard vitreous

kernel s

4. the degree of soundness

5. absence of foreign material other than wheat

6. absence of wheats of other classes and varieties

In addition to the primary determinants which apply to
every sample, grading factors occasionally apply to wheat

4



which has been adversely affected by a specific condition.
These are no less important, however, inasmuch as excessive
quantities of any one condition may cause the wheat to be

rejected as unsuitable for numericar grading. The "order of
precedence" of such factors stated in the OGGG is

Salvage, Fireburnt, Excreta, Odour, Rotted Ker-nels, Heated Kernels, Mildewed KerneIs, Damaged
KerneIs, Sprouted KerneIs, Dried Kernels, Admix-ture, Stones

The significance of this order is that the highest ranking
of these degradations which is present in excess of a mini-
mum standard appears as part of the officiaÌ grade of a re-
jected sampre. Machine vision courd assist some of these

evaruations and play a role as an independent arbiter.

The factors causing a sample to be rejected may be pres-
ent to a lesser extent in sampres erigibre for numeric arad-
ing. Numeric grades f rom '1 to 3 in decreasing order of gual-
ity are assigned to Hard Red spring ( Hns ) wheat. The grade

i s dimini shed i f admixtures, damaged kernel-s or other f ac-
tors exceed the limits set for a particular grade.

1 .2.2 Wheat classes and varieties

The wheats grown in canada are crassified on the basis of
agronomic, physical and end use characteristics ( Bushuk,

1977 ). while a broad range of wheat cLasses are grown, the

canada western Hard Red spring crass and Amber Durums com-

prise between 80 to 90% and 10 to 20eo of the annual_ volume

5-



of western canadian production ( prairie Grain Variety sur-
vêy, 1984 ). Dominant varieties of Hard Red Spring Wheat

include Neepawa (52e"), Columbus ( 18e" ), Benito ( 5c. ),
Gleniea ( 2.2e" ), sinton ( 2.0e" ), canuck ( 1.3eo ) and Lead-

er ( 1.7e" ) in decreasing order of production acreage ( 1984

crop year ). The Wakooma, Wascana and Coulter varieties of

Durum predominate. Minor crasses grov¡n include the soft
glhite spring wheats, the Hard Red winter wheats and semi-

dwarf varieties.

1.3 ROLE OF VISUÀL PROPERTIES IN THE GRÀDING OF WHEAT

t^7hile a human inspector uses all sensory inputs for evar-

uation of a wheat sampre, most of the necessary information

is visual. For this reason, licensed varieties of Hard Red

spring wheat are bred to be visuarry indistinguishable in

order that wheats of other classes or l-esser quality are not

confused with them. QuariLy characteristics such as vitre-
ousness or the discolored states of being "grass-green",
"artificially-" or "naturally- stained", "pink" or "dark im-

mature" are by definition visually determined. Many other
grading factors, for example, presence of insects, insect
damaged or fungus-affected kerners are primarily identified
by visuar characteristics. rncluded among the latter are

ergot, sclerotinia, mildew, smudge and blackpoint-affected
kernels. Visual- properties may play roles varying from rni-

nor to major in the "key determinants". They are important

6-



for identification of foreign materials, contrasting wheat

crasses and kernel soundness. sprouted, shrunken, broken,

degermed and "weathered" states are visua1ly identifiabre
conditions of unsoundness. conversery, other conditions
such as "odour" and "fireburnt" have no visual features.

1¿" ÀPPLI CÀTI ON OF MACHINE VISION TO WHEAT GRADTNG

of the major determinants, it is presentry possible to
measure test weight in an objective and potentially automat-

ic way.

Machine vision could play a major but as yet largely un-

determined rore in evaruating the remaining factors. For ex-
ampIe, the key property of "vitreousness" which is essen-

tiarly the light transmission characteristic of wheat

kernels is expected to be measurable. This probrem may be

approached using well-estabrished image processing tech-
niques based on grey levers ( pixer right intensity values

). under controlled illumination conditions, the percentage

of. kerneLs having a mean intensity value exceeding a speci-
fied threshold may be easily counted or mean values of a

field of kernels may be computed.

À variety identification method based on the griadin
erectrophoregram has been deveroped recentry by sapirstein
and Bushuk ( 1985 ). since the erectrophoretic band pat-
terns may be perceived by machine vision and identified us-

7-



ing computers,

extent.

this procedure could be automated to a great

Àny automated process for ascertaining the presence of

foreign materiars, contrasting wheat classes and unsound

kernels is compricated by the large variety of such objects.
Arguabry, since physicar or chemicar tests are unlikely to
be broadly applicable, precise or rapid enough for this pur-
pose, the image processing and pattern recognition approach

seems more attractive.

Previous efforts to measure visual characteristics useful
for grading in a potentialLy automatic way are described in
the sections that fo11ow. The use of electro-optical means

for perception is common to all this work, but the systems

used are remarkably diverse. Initially, the differential
reflectance of light of various wavelengths from various
grains, i.e. the colour properties, vrere investigated to de-

termine whether grain identity or wheat vitreousness could

be found or measured ( Sec. 1.5 ). Later, the use of grain
size characteristics to discriminate among various crops was

extensively studied as described in sec. 1.6. The study of

shape characteristics for the same purpose is described in
sec. 1.7. Final1y, an overview of past and present research

at the university of Manitoba is presented ( sec. 1.8 ) and

the objectives of current research are outi-ined ( sec . 1.9

).

I



1.5 USE OF L]GHT REFLECTÀNCE PROPERTIES

Chen, Skarsaune and Watson ( 1972 ), using a Hunter CoI-

our Difference Meter, found col-our differences between sam-

pres of graded wheat and among wheat crasses. The corour

features used were rel-ative refrectance of brue ( 435.8 nm),

green ( 546.1 nm ) and red ( 700 nm ) tight. while no dis-
criminant moders nor murtivariate tests !¡ere applied to the

data, the individuar corour features used vrere stated to be

insufficient to distinguish between grades. significantly,
however, kernel vitreousness, a major grading factor, and

Hunter col-our value were f ound to be correl-ated.

Hawk, Kauffmann and watson ( 1970 ) used a Beckman DK-2A

spectroreflectometer to measure the refLectance from grain
samples of infra-red and ul-travioret right in addition to
visibre frequencies. Each wheat sampie tested consisted
predominately ( 95e" ) of e i ther Hard Red Spr ing ( HnS ) ,

Hard Red winter ( Hnw ), soft Red winter ( snw ) , white or

Durum wheats. The comprementary portion was made up of a

mixture of oats, barluy, rye and flax in proportions that
reflect expected levels of contamination characteristic of a

grade. Ranges of waverengths within spectral bounds of 420

and 700 nanometers that could maximarly discriminate among

such samples and others consisting primariry of other cere-
a1s, corn or oilseeds vrere reported. Distinguishing among

all samples using such refrectance data was not possible;
notable failures of separation were HRS from HRW wheat and

barley from oats.

-9



t.b USE OF KERNEL SI ZE CHÀRÀCTERISTICS

Edison and Brogan ( lsl2 ) have presented size measure-

ment statistics of various grains including Fy€, barley,
oats and wheat. Length, width, depth and area data were

generated for each kernel. "Plan" and "elevation" views of

individual kerners $rere simultaneously projected onto a

viewing screen; Iength, width and depth measurements were

then taken manually with electronic calipers. Area was

measured independentry using a special apparatus which meas-

ured the reduction in light flux received by a photocelr ob-

scured by the kernel. High measurement precision v¡as

achieved using these techniques.

The distribution parameters presented vrere similar for
the four cereal grains investigated; individual- cereals were

generally separated by ress than 1.25 standard deviations in
the four dimensional feature space. Nevertheless, high

grain classification accuracies vrere achieved using a recur-
sive self-Iearning pattern recognition procedure. This

method incorporated "learning" of the class probabirities
and classification according to the nearest class mean.

The use of a prototype device for automatic classifica-
tion of feed grains has been reported by the same workers (

Brogan and Edison, 1974 ).
The "feature extraction" system operates in the
following manner. A sample of a few hundred ker-
nels to be 100e" measured is deposited in a coni-
cally shaped hopper. A vacuum tube moves into the
hopper, picks up a kernel and deposits it in a

10



polished groove on a rotating Iucite platform.
The kernel, otiented with its long axis parallel
to the groove, is carried under a 0.5-in. charge-
coupled Iine scanner where plan-form measurements
are obtained in digital form with a resolution of
about */-1 ml I sic ]. A similar O.2S in. scan-
ner measures the kernel depth. These measurements
are formatted and stored in a buffer and then sent
over a telephone link to a remote computer for
processing.

Using this apparatus,

could be taken rapidly
might be developed to
quisition.

Grain identif ication based on

v¡as unsuccessf uI; accuracies of

length, width and depth measurements

and automatically. À similar system

present samples for digital image ac-

the nearest class mean rule
greater than 85e" f or any

grain were not achieved. However, when an unsupervised

learning approach based on the discrete Kalman firtering ar-
gorithm was appried to the same data, accuracies exceeded

98e" for all cereal classes.

1.7 USE OF KERNEL SHÀPE INFORMÀTION

other workers have included at reast one shape feature in
their investigations of kerner differences. rn the earliest
study, segerlind and weinberg ( 1972 ) used shape features
exclusivery to discriminate among various grains and edible
beans. The first ten coefficients of the Fourier transform
of the Hough transform of the kernel contour were used as

shape features. The kernel image was projected onto a piece

of paper having 48 radial lines angularly displaced by 7.5

11



degrees. Data acguisition was rargery manuar requiring that
the kernel profire be visually centered and then traced by

hand. The co-ordinates of intersection of the radial rines
v¡ith the profile contour were acquired automatically with a

digitizer.

The cereals studied included single varieties of ry€,
white rvheat, red wheat, oats, coach oats, 6 row barley and z

row barley; 50 kernels of each variety were tested. The

"nearest crass mean rule" operating in a feature space con-

sisting of the 10 harmonics was appried to the training set.
The cereal cLassification accuracies reported were: rye (

96e" ), white wheat ( 57>" ), red wheat ( g3eo ), oats ( 71e" ),
coach oats ( 72>" ), 6 row barì.ey ( 84e" ) and 2 row barley (

gje" ) .

While the application of digital image processing to
wheat grading is in its infancy, ât least two reports of its
related use have appeared in the academic literature. Draper

and Travis ( 1 984 ) , employing a row cost image analysis
system similar to ours, investigated a variety of plant ma-

terials which included grains, seeds of weeds and leaves of

lettuce. The weeds studied occur as the five most common

species contaminating wheat lots in Britain. A singre curti-
var of wheat ( 'ÀvaIon' ) and of barley ( 'Tr iumph' ) vrere

included in the study neither of which is grown in canada.

The metric properties of the objects investigated included

area, p€rimeter, length and width. Length and width were

12



taken to be equivalent to the sides of the rectangre within
which the seed would fit wíth its long axis pararler to the

long side of the rectangre. The two shape factors used yrere

an "aspect ratio" defined to be the ratio of the length to
width and the thinness ratio ( 4r x area / p"rimeter squared

).

The statistical data presented clearly showed that sig-
nificant differences among the various seeds and grains ex-

ist for almost every feature used. No analysis of the dis-
criminatory power of individuar features was made nor were

the results of optirnal classification by linear discriminant
functions presented. However, the data suggested that a

small number of features and especially aspect and thinness

ratios would enable discrimination of wheat from barley.

Certain aspects of the study were unclear. The method of

object segmentation from the image background is not stated
nor are the discretization or quantization levers of the im-

ages. Further, the seed orientations apparent to the view-

€Er i.e. whet,her "1atera1", "dorsal/ventral" or otherwise,

are not described.

other criticisms of the study are the failure to use the

fuIl discriminatory power of the avaitabre features using

discriminant analysis. Varietal differences in size and

shape of wheat and barley $¡ere not taken into account. since

the authors were primarily concerned with distinguishing

13



seeds of weeds from crop species this may not have been nec-

essary.

In an as yet unpublished work ( Travis and Draper, 1985

) , the authors greatly increased the number of species exam-

ined. The seeds of seven crop species were examined. The

Avalon cultivar of wheat was the only cerear examined and

barley was excluded from the study. The seeds of 42 common

weeds were included. The same metric properties were used,

however, the only shape factor computed vras the thinness ra-
tio. Wheat was shown to be well-separated from a1l other

test species in a two-dimensional- feature space consisting
of thinness ratio and seed length.

Zayas, Pomeranz and Lai ( 1985 ) were able to distinguish
the wheat cultivar Arkan from Àrthur using image analysis.
since the curtivar Àrkan has similar morphologicar charac-

teristics to its Soft Red Winter parent Arthur, their re-
sults suggest that fine shape features such as exist between

wheat curtivars and crasses can be resolved by relativery
few shape attributes. Moreover, these features appear to be

sufficiently robust for pattern cl-assification since samples

from different geographical l-ocations v¡ere also accuratery

classified.

The shape analysis approach taken was more developed than

that of the Sritish investigators in the use of a greater

number of features and Lhe inclusion of three-dimensional
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information. The characteristics of the projections of two

orthogonar kernel orientations, crease down and crease

rightr w€re measured. Newly introduced features, among oth-
ers, included a volumetric measurement ( ttre vol-ume of an

assumed "equivarent cone" ) and Feret's diameters represent-

ing more "1oca1" information about the kernel contour.

It is not clear how useful these are since neither the

canonical discriminant functions nor measurements of the

discriminatory pov¡ers of the variables , ê.9. WiIks' Iambda,

are presented.

The Feret's diameters are the distances between pairs of
pararlel tangents to the objects taken at angles differing
from each other by 45 degrees. The angles are measured with
respect to an arbitrary reference axis which must be identi-
cal for each kernel. Therefore, for a typical sound kernel,
I points on the contour are sampled.

In contrast, all available information about a digitized
contour can be represented using Fourier Descriptors ( zahn

and Roskies, 1972 ). There is no need to fix a reference

axis or conLour starting point since Fourier coefficient
magnitudes are invariant to the starting position on the

contour used as a reference. Precise alignment of kernels is
not required due to the invariance of these values to posi-
tion or rotation. whire Feret's diameters are apparently

suitable for objects having very gradual changes of curva-
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ture around their perimeter, they may vary considerably for
small changes in position of the reference axis for elongat-
ed or highly invaginated shapes. The Fourier Descriptors are

insensitive to contour energy and are therefore more broadly

appl icable.

Since the methodology of Zayas et aI requires precise

orientatíon and alignment of individual kernels, its poten-

tial for automation is low.

1.8 USE OF DI GT TAL IMÀGE PROCESSING SYSTEMS

In view of the rapid cost reduction and growth of comput-

er-vision hardware and software technology in recent years,

their use for wheat grading nov¡ seems appropriate. Hereto-

forer Do application of image processing methodologies have

been made to this specific problem. In fact, they have rare-
Iy been used for the broader problem of grading other
grains, oilseeds and vegetable products. CIearly, the meth-

ods developed for wheat grading should easily and rapidly
extend to these and other problems.

The paucity of previous work contrasts greatly with the

wealth of work in biology and medicine. Chromosome analysis,
discrimination between and counting of brood cerrs and cras-
sification of cancerous cells ( Preston and Onoe, 1g76 ) are

all especially well- developed areas of applied work in im-

age processing and pattern recognition. There is fortuitous
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similarity between cytological images and those of grains

and seedsi for exampre, a nucleated fibrobrast appears much

like a germed wheat kernel. Methods developed for such im-

ages are rikely to be werl-suited to the wheat-grading prob-

l-em.

1.9 UNIVERS T TY OF MÀNTTOBA MACHINE VISION RESEÀRCH

Preliminary work towards developing a machine vision sys-

tem has been described by Wright ( ¡t.Sc. thesis, 1985 ). An

electro- opticar imaging system for the purpose of acquiring
images of wheat sampres was designed. rmage arrays of up to
482 by 627 pixels each having 256 revel-s of intensity regis-
tration courd be acquired. Major system capabilities in-
crude selecting regions within an image, pêrforming thresh-
olding, "zooming" and histogram anarysis of such regions,
and storing and transferring of image data to main-frame

computers for subsequent processing.

rn addition, methods for segmentation of images into con-

stituent kernels and for finding structures internal to the

kerner such as the germ and crease vrere developed. several
object perception approaches vrere taken to the segmentation

problem. These included edge detection based on the Haral-
ick ( 1982 ) zero-crossing of the second derivative edge op-

erator, use of the Hough transform for detection of erripti-
cal objects and minimum cost function constrained heuristic
contour boundary searches. The methods were specially

17



adapted for kernels that
and/or mutually shadowed.

are touching, sIightIy occluded

The features available from monochrome digitized images

for the purpose of pattern recognition may be roughly parti-
tioned into gray leve1, texture, shape and metric ( Gonzalez

and Wintz,1977 ). Each of these categories has been or is
being independently studied at the University of Manitoba.

Wright ( 1985 ) sought texture features that could dis-
criminate between mature vitreous and unsound kernel-s having

a "shrivell-ed" or "wrinkled" appearance readily apparent to
the untrained viewer. The texture analysis technique used

$Ias two dimensional autoregression modelling; the autore-
gression model parameters characterized the spatial depen-

dence of pixel values. A discriminant model developed using

the most discriminatory features achieved correct crassifi-
cations never exceeding 70e" for each category. While it is
not clear that the texture analysis approach chosen v¡as op-

timal, its failure to achieve discrimination between such

highly texture-differentiated kerners suggested that texture
analysis would not be generally useful in the overall pro-

cess of wheat grading. Since texture is the primary visual
characteristic of kerner soundness and vitrousness, these

results were particularly disappointing.

The grey level aspects are undergoing study by Sapirstein
( Sapirstein et aI, 1985 ). The intensity of reflected and
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transmitted light from individual kernels and kernel aggre-

gates are expected to differentiate among various categories

of objects including foreign materials, wheat classes, vari-
eties and possibly grades. Light transmittance is expected

to directly measure vitreousness and therefore correlate
highly with grade.

Research on shape and metric properties has proceeded in
parallel and is the major focus of this thesis.

1.10 ROLE OF SHAPE IN WHEAT GRÀDING

The intimate relationship between shape analysis and pat-
tern recognition has been the subject of theoretical studies
( Pavel, 1983 ) and much applied work. Àttneuve ( 1954 )

demonstrated that the information content of shape is con-

centrated along boundary contours and furthermore at points

on these contours at which the direction changes most rapid-
ly. Thus, a general rationale exists for using boundary

shapes for recognizing wheat grading elements.

The purpose of the work described in this thesis is to
investigate the role that shape and metric features may play

in wheat grading. Candidate applications include distin-
guishing foreign materials such as dockage from wheat, dis-
tinguishing other cereals from v¡heat, distinguishing among

various classes of wheat or various species of unsound

wheat.
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The primary role of shape recognition in wheat grading is
expected to be identification of foreign or non-wheat ma-

terials. The identification of foreign cereals and discrim-
ination of admixture elements appearing in wheat samples are

of importance to most major wheat grading systems of the

world ( Bushuk , 1977 ). Foreign materiars and wheats of

contrasting crasses are incruded among the primary grade de-

terminants of the canadian system ( orticiar Grain Grading

Guide, 1985 ). wheats of different crasses and varieties
are primarily differentiated on the basis of grain morpholo-

gy ( zayas et aI, 1985, Owens and Àinslie, 1971 ). The ker-
nel profile, be it oval, ovate, oE elliptical is a major

criterion in cultivar identification ( owens and Àinsrie,
1971 ).

OnIy the few studies discussed previously relate in any

vray to distinguishing wheat from potential contaminants us-

ing size or shape characteristics. In general, image pro-
cessing techniques v¡ere not used for extracting this infor-
mat ion. Shape analysis has been performed on very few

var iet ies most of which are not grovln in Canada. In the

current work, special attention is paid to varieties of in-
terest to the Canadian wheat grading system.

While wheat grading is the primary concern of this the-
sis, the separation of other cerears from each other is nec-

essary for their grading, hence this work is more broadry

applicable.
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Ànother goal of the research is to ascertain the extent
to which shape can differentiate among wheat classes and va-

rieties. In particui-ar, the separation of Hard Red spring
wheats from the Durum species, the utility varieties and

other classes of wheat has not been previously attempted. À

recent grading problem is that of distinguishing semi-dwarf

varieties from established Hard Red spring varieties. This

is presently done on on the basis of the ratio of the germ

length to the germ contour length. These are characteris-
tics that may be measured by a machine vision system.

Identification of dockage in wheat sampres has not been

attempted. The reasons for this are:

1. thè samples made available to us have negligible
amounts of such material

objective measurements of dockage can presently be

made using a Carter dockage tester.
it has become clear at a very early stage in the re-
search that the highly unusually shaped dockage ma-

terials are separable from either wheat or other fre-
quent contaminants.

In relation to soundness, the greater presence of shri-
verl-ed and immature kernels in the lower grades shourd be

reflected in smarrer kerner perimeters and lesser areas.

The separation of damaged kernels such as sprouted, broken

or shrunken kernel-s is expected. These assunptions remain

to be verified.

2.

)
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Chapter I I

METHODS

2.1 ]NTRODUCTTON

The methods applied to the problems posed for experimen-

tal resolution are described in this chapter. Each pattern
recognition experiment vras conducted in three stages. Dur-

ing the first stage, digital images were acquired and sub-

sequently processed to identify and extract the contours of

individual seed images. The image acquisition and segmenta-

tion aspects are discussed in Section 2. Next, size and

shape characteristics of individual seed images vrere quanti-
fied by methods of contour shape analysis and shape feature

description which are the subject of Section 3. Finally,
appJ-ying the pattern recognition methods overviewed in Sec-

tion 4, these features ïrere used to develop and evaluat,e the

discriminant model for each "Iearning problem". In the fol-
lowing chapter, the results of the seguential application of

these methods to specific wheat grading problems are de-

scribed.

22



2.2

¿.¿.1

I mage

IMÀGE PROCESSING OF

Image Àcquisition

GRAIN SÀMPLE IMÀGES

Acquisition Hardware

Images were acquired using the image acquisition system

developed at the University of Manitoba ( University of Man-

itoba Kernel Frame Grabber Manua1 ). The major components

of system hardware are, a Fairchild CCD3000 digitizing camera

under the control of a 80186 based slicer board, a dual 8"

disk drive and a display monitor. Image arrays of up to 482

x 627 pixels each having 256 leveIs of intensity registra-
tion may be interactively acquired by an operator issuing

commands at a visual 500 terminal. subsequent commands are

interpreted by the microprocessor to perform windowing,

thresholding, histográm analysis and display of images resi-
dent in the 256 Kilobytes of on-board memory. Other avail-
able software functions incrude transferring the acquired

images to and from 8" floppy disks and the main-frame Data

General Eclipse Model MV8000 mainframe upon which most of

the subsequent segmentation and shape analysis is performed.

Illumination of samples

For shape analysis, illumination v¡as set up to optimize

the contrast between the image object's boundary and its
white background. Avoidance of shadow and specurar reflec-
tion from kernels was desired to facilitate segmentation.

These goals were achieved by backlighting the samples in an
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otherwise darkened room and providing illumination with a

specially modified light box. The tight box encÌosed a 20.3

cm diameter toroidar lamp ( panasonic F289/cw/Rs ) located

underneath and encircling the sampre fierd. The oblique in-
wardly directed illumination so obtained minimized the prob-

lem of shadows. The top surface of the light box vras covered

with black cardboard in which a 5.5 cm hole had been cut to
allow the oblique passage of light but preventing its direct
transmission from lamp to camera. À sheet of opaque white

acryric plastic was praced over the cardboard to diffuse
light passing through the aperture. sampres were supported

on the prastic surface. The apparatus succeeded in providing
backlit, uniform, diffuse, oblique illumination of the field
of interest.

Optical adiustments

The digitizing camera was fitted with a Fujinon CCTV

cF50B fixed focus lens having a focal- ratio of 121.4 and a

focal rength of 50 mm. The focar rength was extended by ei-
ther 1 0 or 7 mm with cosmicar Ex-c6 extension tubes depend-

ing on the field size desired. Using the 1O-mm extension, a

256 by 256 pixel rectangurar window centered in the focal
plane at a distance of 220 mm f rom the objective r.ras 21 .0 by

21.0 mm. In subsequent sections, images of this size are

referred to as "higher resolution" ( Un ). Otherwise, the

fierd was opÈimal1y focussed 305 mm distant from the objec-
tive and vras 29.0 by 29.0 mm ( "lower resolution", LR ) .
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The lens aperture was set

contrast between the kernel

tion to depth of field suff
ary in focus.

at f./2.8 thus achieving optimal

boundary and background in addi-

icient to keep the entire bound-

The illumination and optical adjustments described per-

formed uniformly over a range of grain samples of different
shapes, sizes and opacity.

2.2.2 Seqmentation and Encodinq

Segmentation of sample images is required in order to ex-

tract the thinned simply-connected contours necessary for
shape description. À threshold-based isodensity contour

follower proved satisfactory for the range of objects tested

under the previously described conditions of illumination.
The method is an adaptation of the Left-most-looking rule
applied to an 8-neighbourhood described in Gonzalez and

Wintz ( 1977 ) with refinements to cope with "unusual" geo-

metries. contours were encoded according to Freeman's method

( 1961 ) which, in essence, sequentially encodes the tangent

angle at successive points along a guantized curve ( Bennett

and MacDonald, 1975 ). The contour-position functions de-

scribed by Tang ( 1981 ) enabled rapid regionfilling.

Segmentation of images into image constituents vras great-

Iy simplified because:
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1.

2.

)

the background was completely untextured

the foreground objects v¡ere non-occluded;

contrast beween object boundary and background was

max imi zed .

a)

2.3.1

segmentation produces a chain-encoded representation of an

object's shape Lhat may be further analyzed by methods de-

scribed in the following section.

SHÀPE DESCRIPTTON ÀND ÀNALYST S

Introduction

The central problem of shape description is to represent

a shape or provide shape information in a mathematicar form

appropriaLe to pattern recognition techniques. Major meth-

ods of shape representation are reviewed in this section.
The most fundamental of these, employing a curvature func-

tion, is described in 2.3.2; the Freeman chain code is a

form of discrete curvature representation. Sampling aspects

of the discrete representation of shape are arso discussed

in the context of curvature representation. In Lhe subsec-

tions that fo11ow, three classical methods used for pattern

r'ecognit ion, namely, normal ized shape moments ( 2.3.3 ) , mo-

ment invariant functions ( 2.3.4 ) and Fourier descriptors (

2.3.5 ) are described. FinalIy, descriptors of shape attri-
butes are discussed ( 2.3.6 ).
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2.3.2 Curvature representation

Because of the salient role that curvature and particu-
larly points of maximum absolute curvature appear to have in

shape recognition and understanding ( ¡ttneuve , 1954 ), rep-

resentation by some curvature function seems logical. For

the simple continuous closed contour shown in Fig. 2.1, the

shape may be described by specifying its curvature as a

function of arc length. The contour curvature , K (s) , is de-

fined as the rate of change of the angle 0 with respect to
the arc J,ength s, i.e.

r(s) = # 2.1

where 0 is the angle between the tangent of the curve and

the positive x-direction. Some geometric sense of the mean-

ing of the curvature function may be had by considering the

radius of curvature, I/r(s), of a circle normal to the arc

tangent. The arc is concave on the left if r(s)>0 as s in-
creases in the counter-clockwise direction. The curvature

function is periodic in s having a period egual to the per-

imeter length ( S ) of the closed contour. The shape can be

reconstructed by finding its rectangular coordinates from

x(s) = /l .o,

sy(s) = .fo sin

r(À)dÀ * 0o) da + ¡19¡

r(À)dÀ * 0o) d4 + y(0)

(f"

e( Io

2.2

2.3
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gr¡(xrryt)

Fig. 2.1 Contour Curvature

where x(0) and y(0) are starting co-ordinates.

For curvature functions defined

the tangent angle and curvature

on discrete

become

lmage arrays

2.4ô("j ) =
. _1 y("j) - y(s3_1)
tan - w

r(s¡)=0(sj)-0(s3_r) 2.5

The Freeman chain code is a special case of the above where

0(s+) is alloned to take on one of eight values r/4 radians
J

apart. Such discrete shape representations are produced

from samples of an ùnderl.ying continuous shape acquired by

the image sensing elements.
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The fidelity of the discrete representation, i.e. the

Freeman chain code, depends on the image sampiing frequency.

The requisite frequency may be easily related to curvature

representation requirements. The sampting intervals must be

fine enough in order that the high curvature characteristic
of the boundary detail be represented. Implicitly, a sub-

jective decision as to what boundary detail is significant
must be made. For most objects found in wheat samples, the

most important information resides towards the ends.

The problem of accurately representing the curvature at
every point of a sampJ.ed closed curve of , for example, a

wheat kernel was addressed by Young ( 1974 ). If such a

curve has a point of maximum curvature Km, then, the sam-

pling increments of arc length must satisfy

Ás<¡/zREl 2.6

This especially pertains to distinguishing rounded, pointed

or blunt ends which tend to characterize wheat and Iike ker-
nels. Quantization error, inherent to discrete representa-

tion¡ êffects curvature and the mathematical descriptions
that follon.

WhiIe intuitively appealing and conceptually useful,
problems associated with the curvature representation limit
its use for pattern recognition studies. One difficulty is
that if a shape has sharp corners, the curvature function is
undefined at these points. Zahn and Roskies ( lgZZ ) pro-
posed the use of a cumulative curvature function defined as
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o(s) = /l *(ø)dc - 2ns
s

2.7

Èo overcome this problem.

Another inconvenience is that suitabre features for pat-
tern recognition must be developed from the representation
which is noÈ, unlike following rnathematicar descriptions, in
a form immediatery usable for statistical pattern recogni-
tion. The Fourier Descriptor and Moment methodologies are
appropriate to distinguish subtle differences between shapes
( Pavradis, 1978 ) such as exist between wheat kernels.
These techniques are described in the sections that follow.

2.3.3 Shape Moment Representation

Two variants of the method of moments ¡¡hich are invariant
to size, position and rotation have been described in the
literature. rn one method, the principar axes of the image

are determined and the moments are transformed to align with
these axes. Reeves and Rostampour ( 1981 ) describe the
principal axis meÈhod in reration to the task of identifying
segmented objecÈs in aerial photographs.

The second method consists of generating a set of simple

combinations of moments called moment invariants which are

aigebraicarry invariant to positional change. Hu ( 1962 )

describes seven such functions derived from moments up to
order three. The finding of principat axes is not necessary
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for their evaLuation.

crafc identification (

ing ( wong , 1978 ).

This method

Dudani et aI,
has been used for air-
1977 ) and scene match-

2.3.3. 1 Moment Method 1 : principal-axis Method

The basis of this method is the discrete computation of
the image moment defined as

ll(u,vl = I
(x,y)

In the discrete case, the

is defined by

t
€R

f(x,y) xuyvdxdy 2.8

The function f(x,y) may represent binary or grey-level im-

ages ( Reeves and Rostampour, 1981 ). rn the latter case,

the moments depend on the grey lever distribution interior
to the contour as well as the contour shape. In future,
such gray-Ievel moments may be usefur for describing the
visual "texture" of image contituents. However, only binary
images are considered in this thesis; the derived moments

are dependent only on contour shape.

Mpo 2.9

noment Mnn of a digital image

=EE*PyQf(x,y)
xy
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lrhere x and y are integer-valued pixel co-ordinates. The

image function, f(x,y), is unity orr and within the object's
contour and zero otherwise. The set of moments

{tnn} rp,g=0 ,Ir2. . is uniquely def ined by f (x,y) and converse-

Iy f(x,y) is uniquely determined by {tnn} . The moments

with respect to the image co-ordinate axes x and y up to the

order ( p*q ) of interest are first computed. A series of

normalization procedures such as described by Reeves ( 1981

) are performed to generate size, orientation and position-
invariant guantities.

First, â11 moments are referred to an object's centroid
in order to translationally normalize them. The position of

the centroid ( Í,y ) of the object may be determined from

toThe

Èhe

the object's area ( tOO ) and first order momenÈs:

x = ìlrO/MOO

Y = hr/too

central moments which are invariant

object are defined by

Ino = E E (x-x)P (y-y)a f(x,y)
xy

They may be rapidly computed from the original moments using

pq
Fpq = 

"!o =!ot(p,r) 
c(q,s) (-r)r*s Hp_r,q_s

2.10

2 .11

translations of

2.12
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¡rhere

c(p,rl = ¡j;"¡ 2.14

The rotational normalization procedure refers aIl moments

to the major principal axis of the object being analyzed.

The angle 0 from the original x-axis to the principal axis
of the object ( Fig.2.2 ) satisfies

tan (20') - 2F r t/ ut 2o-Bo. ) 2.15

computed fromThe rotationally normalized moments may be

pq
0^^ = E E (-r)9-"c(P,r)c(q,s)(cos
LY r=0 s=0

o¡Þ-r+s(sin 0)q-"lro_"*q_s,r+s 2.16

When the

there are

vention, a

object is m-fold

multiple possibLe

unique principal

symmetric, 0 is
sets of principal

axis is chosen by

ô.o t oo.

ô >0'os

not unique and

axes. By con-

requiring that

1.

2.

The correct rotation angle

subst i tuted

const ra i nÈs

moments.

=0+nn/Z 2 .17

into the above expression will satisfy these

and produce the correct rotationally normalized
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Size normalization is achieved by employing the following
transformation:

npq = opq/oooÀ 2.18

where

2.19

The moment measures obtained are physically interpreta-
ble; the moment seguences {nno} and {"ôp},p=1,2..are the mo-

ments of a projection of the object along the minor and ma-

jor axes onto the x'and y'axes ( fig 2.2 ) respectively.

xr

0
_ __ J.¡

Fig. 2.2 Co-ordinate System Transformation

Moments referred to x'-y' system
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2.3.3.2 Rapid Computation of Moments

À rapid method f or the cornputation

based on the discrete implementation of

described in Tang ( 1981 ).

Green's theorem in the continuous x-y

of object moments

Green's theorem is

plane states that

II
R

(!s - F) o*0, ='dx dy / r¿v + gdx
c

page

the

form

2.20

the

37)

ele-
the

where C is a boundary consisting of piecewise smooth simple

closed curves and f(x,y) and g(x,y) are continuously differ-
entiable functions defined in a region containing R and C.

When 9=0, this equation simplifies to

dxdy fdv 2.21

Tang shows how this expression can be computed over R, a

discrete 8-connected region without holes in the subspace

s' = { (hrk), h>0, k>o , hrk:integers }

having a boundary expressed as an l-element chain code:

B: { (xg rYg ), å0, â¡ o.. ô1-, }.

À summation over the sequential boundary is performed;

=l
c

/{åi

contour position functions C" and \ ( rable 2.1,

are computed for each boundary element to calculate

ment's contribution to the summation. In discrete

expression becomes
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E f(m,n)
n, neR

l-1
=E

l=0
F*(x'v1)Dr(ar-1,ai)+f(xi,V¡)Cr(a1_1,ai¡ 2.22

where

xi
F*(xt ,tt, = 

,lo
uv*J vi 2.23

2.24

2.25

2.26

R is
com-

2.27

and

x, - = x. + a.x.t+1. I I I

Vi*l=Yi+aiVi

The uv-th moment of the region R is defined as

M=f,tunuuv (n,n)eR

where ( m,n ) is the co-ordinate of any point in R.

in chain-encoded form Èhen the moments may generally
puted from

l-1
Huu = 

rt=o 
t*(*t'yi)Dy(ui-1'ui) + f(xt'vt)cr(at-t'al)

If

be
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where Fr(x1,y1) in this case is

x.
Fx(xi,yt) = ,Er f(xr,vi) 2.2g

J=o

rf the moment-defining relationship is used to compute the

moments, the number of computations is proportional to Mgg (

i.e. the area ) whereas if the discrete method is used, the

number of computations is proportional to the rength of the

sequential- boundary which is related to /M00.

Table 2.1

Contour position Functions
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2.3.4 Moment Method Moment Invariant Functions

The central moments defined previousry may be normarized

with respect to size and combined to determine functions
which are also invariant to positional, rotational and size
change. These are abstract quantities which are not geome-

tricarry interpretabre. The moment invariants derived by Hu

( 1962 ) are listed below.

2¿

H., = (u.o+uo.)

t. = (B.o-Bo 
"l¿+4ltrr¿

M, = (Bro-3urr)t*{sur,,-Bor)'

H. = (uro+ur.)t*{B.r*For)'
ü, = (u"o-3ur.)r(uro*!rr) [(uro*xr.)á-3(u.r+uo!)e] +

(38. r-Bo. ) (u. r*Bo, ) [3(u.o*B r, ) e- (u. 
r+,¡o r ) 

a ]

t. = (u.o-Bo.)[(uro*Br.)e-(urr*ro").] *
4r, , 

(u"o+Pr, ) (¡rs r*ro. )

t, = (3frr-Bor) (u"o+Br.)[(uro+urr).-3(urr*uor).] -
(rro-3l.tr, ) (ur., *ro, ) [3(u"o*rr., ) ¿- (u, r+uor ) 2 ]

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

size normalization of central moments is again accomplished

by division of a particular moment by an appropriate po¡rer

of uOo ( wong, 1978 )

xpq
Bpq

xo oÀ

l=Þ+Q
2
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2.3.5 Fourier Descriptor Representation

The theoretical basis of this method is discussed by Zahn

and Roskies ( 1972 ). Àn object may be viewed as being in
the complex plane in which the points ( x,y ) on the contour

of the object become the complex numbers x + iy. À seguence

of complex numbers is generated by traversing the contour in
a counterclockwise direction and sampling it at intervals of

arc length. The boundary function described in this gray is
periodic and may alternately be expressed as its Fourier

transform. The Fourier descriptor is defined as the discrete
Fourier transform of the complex number seguence.

The procedures required to normalize the representation

follow from the properties of the transform. By linearity,
if the size of the contour is changed by multiplying the de-

scriptor cornponents by a constant, then the contour co-ordi-
nates are multiplied by the same constant. Rotation of the

conÈour by angle 0 is achieved by multiplying the coeffi-
cients by exp(j0). The contour starting point may be shift-
ed by multiplying the k-Èh frequency component in the fre-
guency domain by exp(jkt) where t is the fraction of the

period 2r .

The normalized representaÈion is invariant to object

sizer orientation and position within the image and the

starting point on the contour. Standardization of size is
achieved by the division of all components by the magnitude
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of the first Fourier harmonic. Position invariance natural--

Iy resulÈs from referring the description to some point on

the contour itself. The orientation and starting point nor-
marizat,ions require a phase transformation of the Fourier
descriptor and leave component magnitudes unchanged. There-

fore, Èo reconstruct a shape in its original orientation re-
ferred to its correct starting point, the descriptor phase

information must be known. If, ês for the work in this the-
sis, such reconstruction is unnecessâFy, then the phase in-
formation can be ignored. The set of size-normalized compo-

nent magnitudes are sufficient to unique).y describe a given

shape and will be invariant to rotation, position and start-
ing point.

The major problems associated with the Fourier Descriptor
method are avoided by neglecting the orientation-starting
point normalízation. One difficulty is that the procedure

is performed according to a complicated set of rules ( de-

scribed by Zahn and Roskies ( 1972 ) ) which add greatly to
the required computation. Also, this procedure, being de-

pendent on selection of harmonics having the largest magni-

tude, is sensitive to quantization noise.

In addition to problems inherent to the Fourier Descrip-

tor method are the inconveniences of the originat technigue

used by Zahn and Roskies. Tireir method required the entry

of the coordinates of 2n ( n an integer ) equally-spaced

samples of a continuous contour. In contrast ¡ ð meÈhod
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which is both computationally simpler and adapted to vari-
able length Freeman-encoded contours such as are extracted
from digital images is described by Chuan-Juan and euing-yun
( 1980 ). Their procedure is outlined below.

The boundary contour C of a segmented object can be rep-

resented by a complex-valued function:

u(t) =

y(t)where x(t)
contour.

where s is

and

x(t) + Jy(t), O< t< 2n

are co-ordinates of a point

2.38

A on the

Qo(xorYo)

The normalized arc length

point QO (xO,VO ) is
ofo from the contour starting

2.39

in the counterclockwise

, t = 2nslS

the arc length measured

direcÈion from QO and S is the contour perimeter length.
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Since u is periodic in t,
series of rhe form

be expressed as a Fourierir can

having Fourier coef f ic ients

æ

u(t) = E P-"Jnt, 0S t< 2n
n

D=-co

u1t¡ e-Jntdt, n = 0, t1, !2,

( nlO ) may

code using

D_
n

2nlr
ztr I

2 .40

2.41

The n-th coefficient
from the contour chain

be approximately computed

lt
E- "r"=I

2.42

denotes the m-th component of an M-length chain

Pn= 1

2nni-D
¡ti q -

nM
'nn *=t, "*/ *I, u*), n = *1, !2,

where o-m
code and

The coefficient
centroid may be

âk = [: 
1r qk is even

V2 tf qk ls odd

PO representing the

calculated from

2.43
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ll n-l
Po = uo - ,,Ir"r"J(n/alq^(*!, "* '

I{

*1, ut) 2 .44

where u^=u(0)=x(a)+y(0). The other coefficients are abstract
0

guantities.

Às previously stated, Fourier coefficient magnitudes may

be used as pattern recognition features. The range of har-
monics usefur for this purpose must be determined. Àrso,

various important geometric properties of a contour e.g.
roundness, curvature and elongation, may be computed as sum-

mations of functions of Fourier coefficients. rt is there-
fore important to consider bandwidth, series convergence and

truncation effects on their computation.

The highest harmonic that can be considered for any pur-
pose is mod(nr,Z) where nr is the length of the shortest
chain code representing a contour. In fact, the useful
bandwidth is much less, being restricted by noise which dom-

inates at high freguencies. This effect is a consequence of
the emphasis of guantization noise at high frequencies by

the linear transfer function magnitude of the differenÈia-
tion operations necessary to compute the tangent angle and

curvature.

The problem is exacerbated by the non-linear pro-
cess of both curvature and tangent angle function
measurement ¡rhich amplifies the high frequencyquantization noise components on the quantizeã
shape boundaries and to some extent distribute
this guantization noise over the entire specÈraÌ
range of the one-dimensional functions.( Bennett and MacDonald, 1975 ).
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The nl/4-th harmonic is the highest that may be considered

unaffected by noise. Àccording to Bennett and MacDonald (

1975 ), the range of harmonics that contribute to shape dis-
crimination is even narrower. They related the highest har-

monic, Hu, usefuf for this purpose to the number of signifi-
cant points, P, of high convex curvature of the shape,

stat ing, as a generaì- rule :

Hu<3Pto4P

Observing this guideline, the first
erally been computed for the objects

2 .45

ten harmonics have gen-

studied in this thesis.

2.3.6 Other Descriptors

In the previous sections, "information-preserving" ( Pav-

Iadis, 1978 ) descriptions of shape have been outlined.
Such representations enable complete reconstruction of the

shape ¡vithin the limits of discretization error. In the

secÈions that follow, descriptors of specific size and shape

characteristics are outlined. Freguently such attributes
may be computed as functions

tors.
of moments or Fourier descrip-

2.3.6.1 Size Properties

â. Perimeter Length
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The contour

case by

where, ãs be f ore

Iength may be approximated in the discrete

b. Contour Àrea

À rapid method for computing the

man chain-encoded contour is based

tion of the expression

2 .46

2.47

contour area of a Free-

on the discrete calcula-

2.48

S=
it

r]r"k

a.= f r ir e¡ is even
K lØ ir c¡ ls odd

II
R

dxdy=/xdy=¡""u
c

l-1

tlo 
*iot (at-t'a1) * cy(ui-1'ui)

derived from Green's theorem. As before, R is the region

enclosed by and incJ.uding Èhe contour C. In the discrete
region R having boundary B described in Section 2.3.2 the

area is

Area = ll =
'o0

45
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Tthere cy and Dy are the contour position functions
described previously.

c. Minimum Enclosing Rectangle: Length, Width

These dimensions represent the length and width of the

minimal enclosing rectangre ( uen ) of the contour. À trans-
lationar and rotational transformation is first apptied to
the contour co-ordinates such that the origin of the new co-

ordinate system is rocated at the centroid and the object's
major principal axis becomes the x-axis while the minor

principar axis maps into the ordinate axis. The transforma-

tion necessary to accomplish this is

hl [::: :-::: t F.il
2.50

2-1.'3. I

where 0 is found as in section 2-3*J+ñ The transformed con-

tour co-ordinates form M-element sets { *k' } and { yk' }.
The MER has length

L - nax t\' l - ¡in [*,.'l 2.51
k=1,11 k=1.11

and width

* = *lii, {v*'l - *llï, 
(v*') 2's2
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2.3.6.2 Elongation Measurements

In previous investigations ( oraper and lravis, 1984,

Travis and Draper, 1984 ) elongation measurements were shown

to be powerful discriminatory features. One ubiquitous

measure is the thinness ratio defined by

T = an(t/p¿l 2.53

where A is the figure area and p is the perimeter length.

The more elongated the figure is, the closer the thinness

ratio will be to zero.

Aspect ratio is a second property that can be used to

measure the elongation of a figure. One definition is the

ratio of length to width of the MER. The sides of the MER

are parallel to the eigenvectors of the binary image func-

tion. The eigenvectors physically correspond to the direc-
tions about which the figure has maximum and minimum moments

of inertia; the corresponding eigenvai-ues are the two mo-

ments of inertia. The ratio of the larger to smaller eigen-

value defines a second aspect ratio.
this as:

Tang(1981) gives

A = aax (o,Ê)/nin(4,Ê)

where o and ß are eigenvalues of the maÈrix

2.54

[i.o
þ,,

crl
c"" )
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and

eo
ll¿ o Èlr ot- \
Moo tl,loo'

- Mo, to,
02 - 

- 

- /-l
too tlloo'

t. Mo' Mro
rr =il;-Èr""*t""

2.55

2.56

2.57

2.3.6.3 Energy

The occasional appearance of "unusually-shaped" objects
in wheat sample images may be expected. Such objects, for
example insects, generally have more complex shapes than

those of wheat or other cereals. Their rapid screening,

without complete shape description being necessary, might be

achieved using a "complexity" feature.

Several curvature-based features are correlated with the

psychological perception of boundary complexity. These in-
clude the circularity measurement P2/A, the number of chang-

es of sign of the curvature function along the boundary and

measurements of convex deficiency. Young ( lgl+ ) describes

the concept of boundary energy in analogy with bending ener-

gy in elasticity theory. The average energy per unit length

of a simpJ.y-connected closed conÈour is given by
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r(s)l tds 2. s8

The discrete equivalent described by Young eras implemented.

2.3.6.4 Symmetry

Many of the objects of interest in wheat sample images

are bilaterally symmetric, e.g. wheat is e1liptical. Certain

objects such as broken kernels might be detected by abnormal

asymmetry about one axis. The moments n'q and np' represent

the statistical moments of the projection of the object on

to one of Èhe principal axes. The projection may be thought

of as a statistical distribution. The usual parameters that
describe such a distribution are

E=å;r
o

variance = Deo

skewness = n. o,/n. o

kurtosis = nro/n"o

2.59

2.60

2.61

of skewness.

obta ined.

3/¿

z
-3

Abnormal asymmetry is reflected in high values

Similarly, parameters for the other axis can be

2.3.6.5 Ellipse ritting

The eIIipÈicaI characteristics of certain wheat varieties
differentiates them from other varieties and cereals ( Owen

and Àinslie, 1971 l. Therefore, the two parameters which
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describe an elliptical shape, i.e. lengths

and semi-minor axes may be useful for this
of the semi-major

purpose.

may be fitted to a contour in the least-squared-error sense.

The solution is given by

¿.6¿

2 .63

2 .64
cl

s=tE,.

ai
!I

.âv.â1'r
ltyi
f 
tyi

*it
*it
x.v. a
l-t

xfvi
x. 2v.
I 't

*itYit
x.v, ¿
l-t

vi'
vit
*ivi t

*itvi
x. v.l-l

vit
vi'
x.v. e

l-l

*i"vi-l
*i'vi 

I*ivi'I
*ivi' 

I*i'vilJ

An ellipse of genera). form

2
alx + E¿X + asV¿ + â¡V + ¡¡XV - 1 = 0

_t
9=S Þ

where S is the symmetric matrix

and bT = {Exr2 Ix, Iyi lyi fxrV, ). The subscript denotes the

i-th element of the contour and summation is taken over all
such elements.

À measure of deviation from the elliptical
mean- squared error defined as

shape is the

Enus
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The total sguared error of the ellipse fit is given by

^ cI
tr' = 

,1, 
(arxia 4 a2xj + asvia a arvÍ + arxrv, - 1) 2.66

2 .67

The fractional difference
fitted ellipse is another

elliptical shape.

in area between a contour and its
useful indicator of deviation from

2.4

2.4.1

PATTERN

Linear

RECOGNITION ÀSPECTS

Discriminant Ànalvsis

Single stage cl-assifiers have been applied to the prob-

lems of supervised learning described in the following chap-

ter. The average probability of sampre misclassification is
minimized by the Bayes cLassifier approach. Bayes discrimi-
nant functions of the form

were deveroped from the training data where i represents a

set of features { *j }, j = 1,2, oo. d in a d-dimensional

feature space X and i denotes one of the M classes among

which discrimination is sought. The state conditionar prob-

ability density functions describing individual features are

assumed to be normal, i.e.

di (i) = ñiTi

o(xrl or, , = 
# 

oi" (xi-tri I /zo ' 
= N(m, ,ø, )

51

2.68



! posteriori probabilities of class membership are given by

P(orl i¡ =

Pr(o. ) p(i)l úri )

lt

,lrt"(ar, 
)n{{ or, )

2 .69

Samples are classified into
poster ior i probabi I ity of

squared Mahalanobis distance

the group having the highest e-

correct classification. The

between class mean vectors

"t = (4, - E, )Tc,-t,0. - Ê, ) 2.70

is a convenient measure of class separation.

2.4.2 Stepwise Discriminant Ànalvsis

Choice of appropriate classification variables may be as-

sisted by stepwise discriminant analysis ( SeS , 1982 ). The

discriminaÈory power of a set of features as measured by

Wilks' lambda ( Tatsuoka, 1970 ) is the basis for this anal-
ysis

Letting SW(i) denote the Within-Class Scatter Matrix for
variables i = (*r,*rr ...xn ), pcd and sT(i) the total gen-

eralized dispersion for the same set of variables, then

Wilks' lambda
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detl sw(r)l

^(r) =
2.71

detl sr(Í)f

indicates the group separation capacity of i.

Variables enter the discriminant model in order of the

magnitude of the change of Â(*)aue to the addition of that
variable. The F-statistic is used to test the significance
of the change in Â (i) . Only features exceeding an F

threshold are allowed to enter and remain in the discrimi-
nant model. Àn F-test significance level of 15% was chosen

as the threshold tor entry or removal of a variable.
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Chapter I I I

RESULTS AND DISCUSSION

3.1 T NTRODUCTI ON

The rol-e that size and shape features described in the

previous chapter can play in various wheat grading problems

is presented in this chapter. In particular, their capacity

to identify the technical categories of foreign materials,
admixture cereals, wheats of other classes, wheat and other

cereal varieties are discussed. These problems have been

posed tor resolution in increasing order of difficulty of

the recognition task. The major shape description methodol-

ogies were compared in relation to their cereal- discrimina-
tion capacity. FinalIy, discernment of damaged or unsound

wheat species from sound mature wheat species was attempted.

Experimental materials referred to throughout the chapter

are described in the following section.

3.2 MATERIÀLS

Samples of dockage-free, pedigree cereal seed were ob-

tained from United Grain Growers of Winnipeg and the Àlberta

Wheat Pool. A broad set of wheat cultivars were provided

from seed stocks maintained by the P1ant Science Department
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Table 3.1

Crop species chosen for investigation

SEED CÀTEGORY SPECI ES/CULTIVAR

CANÀDÀ WESTERN
RED SPRING WHEÀT

WHEAT ( tnfTICLM aestivum L. )

'Neepawa'
'Columbus'

' Ben i to'
'Katepwa'
'Glenlea'tParkt

HÀRD RED WINTER WHEÀT I^IHEÀT ( TnTTICUM aestivum L. )
t Norstar t

SOFT WHITE SPRING WHEÀT
WHEÀT ( TnITICUM aestivum L. )

t Owens t

'Fielder'

UTILITY WHEAT
WHEAT ( TRTTICUM aestivum L. )

'Glenlea'
Hy320

AMBER DURUM WHEAT

WHEÀT ( TNTTICUM dUrUM L. )
'Àrcola'
'CouIter'
'wakooma'tWascanat

ADMIXTURE CEREALS

RYE ( sncer.n Cereale )

'Muskateer'
t Puma t

'Gazelle'
BÀRLEY ( HOnoeUM vulgare L. )

'Johnston'
t Bonanza t

'K1ages

oÀTS ( eveNe Sativa )

'Fidler'
'Harmon'

ÀDMIXTURE OILSEEDS cÀNoLA ( gnassrcA napus, L. )

WEED SEEDS WILD OÀTS ( eVeNa fatua, L. )
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tically, the sprouts had barely emerged ( between 1 and 2 mm

) from the germ end. OnIy those showing this early stage of

germination were sel-ected.

))
J¡J DISCRIMINATION BETWEEN WHEÀT AND FOREIGN MATERIALS

Foreign materials are defined to be objects

wheat which appear in samples following cleaning.

there are many such objects.

fore restricted to

The investigation

other than

Clea r 1y

vJas there-

a) those most frequently occurring and/or

b) those which are defined by statute to be contaminants.

The category of foreign materials is further dichotomized

into the sub-categories of cereal grains and materials other

than cereal grains ( table 1.1, page 2-3 ).

The extraneous matter includes dockage materials that
would ordinarily be removed by cleaning. Examples of this
group are wheat heads, husks, loose sprouts, straw and other

air liftings and small seeds, wild oats and stones ( Bushuk,

1977 ) witn stones counted apart from other objects. À1so

included are an unlimited set of objects which may not nec-

essarily be anticipated in a wheat sample.

WhiIe dissimilar to wheat and other cereals, such alien
objects are generally non-uniform in size and shape; the

visual characteristics that distinguish them are their asym-

metry and "comp1exity". In the final system reaLization,
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of the Uníversity of Manitoba in addition to the above

sources. Wheat variety identities were verified by gliadin
electrophoregram ( Sapirstein and Bushuk, .1985 

) .

Cultivars were

grains:
chosen from the following categories of

a. Hard Red Spring Wheat (

b. Hard Red Winter Wheat (

c. Soft white Spring Wheat

d. Utility wheat.

e. Durum Wheat

Classes a. to d. are referred to as

guish them from the Durum species.

HRS )

HRW )

(sws)

Common Wheats to distin-

Samples of graded wheats were obtained from the Grain In-
spection Division of the Canadian Grain Commission. Miscel-
laneous samples, including wild Oats and Canola, were pro-

vided by a l-ocal grov¡er. Crop species and cultivars chosen

for investigation are summarized in Table 3.1.

Samples of "unsound" wheat were obtained from the Plant

Science Department of the University of Manitoba. These in-
cluded the "broken", "shrunken" and "sound mature" wheat

categories. The sprouted kernels vrere developed by germina-

tion of "sound" kernels. Samples were placed in Petri dish-
es on dampened filter paper and stored at 4 degrees Centi-
grade for 12 hours in the dark. They were then incubated

for 48 hours at room temperature in sunlight. Characteris-
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such foreign material may be operationally defined as ma-

terials which do not fa11 into the remaining identifiable
classes of wheats, cereals, etc. - That is, any object whose

Mahalanobis, Fisher or other statistical distance exceeds a

threshold value from the other groups would be categorized

as "aIien". The representative samples of graded wheats

have had very small amounts of this material.

More regularly-shaped objects that have appeared

available samples have been investigated.

3.4

1n

CEREÀL,
STUDY

T,ÍEED SEED, AND OI LSEED DI SCRI MT NÀTI ON_ I NT TI AL

In an initial study, the feasibility of identifying com-

mon contaminants of wheat samples using size and shape fea-

tures v¡as established. Discrimination among the most fre-
quenLly occurring of the weed seed, oilseed and cereal

contaminants, namely, wild Oats, Canola, Barluy, Durum and

Rye from Wheat was attempted using four metric properties:
perimeter length, contour area, number of contour pixels and

thinness ratio. Of the cereal contaminants, BarIey appears

most often, while the other crops may be expected to appear

in order of their relative acreage of production ( table 3.2

).

Between 96 and 100 LR kernel images of each species were

acquired and processed. These were used to develop a Iinear
cl-assifier whose performance was evaluated by resubstitu-
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Table 3.2

Àcreage of Crop Grownl

lsource: Prairie Grain Variety Survey ( 1984 )
Prairie Provinces,1984

2Acres x 106

Crop Àc reage 2 ( Percent )

Bread Wheats
Ba r Iey
CanoIa
Durum
OatS
FIax
Rye

27 .550
1 1 .050
7.050
4.168
3.650
1.739
0.796

49.19)
19 .7 3)
12.s9)
(7 .44)
(6.s2)
(3.11)
(1.42)
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tion. The results of linear discriminant analysis applied

to the total training set of the 584 contours generated are

summarized in Tab1e 3.3.

Greater than 95eo correct classification of training sam-

ples was achieved for Canola ( 100e" correctly classified ),
wild Oats ( 97 .0e" ) and Hard Red Spring tiheat ( 96.9>" ) .

For Barley, the most frequent cereal contaminant, 89.6>o of

the samples vrere correctly classif ied while Durum ( 60.4e" )

and Rye ( 69.8>" ) were poorly cl-assif ied. The overall error
rate was 14.2e" for all classes and 20.8e. for the cereals

only.

These results indicated that the small oilseeds and large

weed seeds could easily be differentiated from wheat on the

basis of few characteristics. FIax seeds, being even small-

er than rapeseed and similarly round in shape are al-so

clearly distinguishable from the cereals. The data recently

reported by Travis and Draper shows that a broad range of

weed seeds can be distinguished using features similar to

those of this study.

The results of the present study also suggest that reso-

Iution among the cereals which are "similar" in size and

shape to wheat would require more comprehensive shape de-

scription. Similarity of shape was considered to mean being

roughly elliptical or bilaterally symmetric, having fewer

than three or four points of maximum or undefined curva-
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To
From Grain
Grain

I

O)
J

I

HRS wheat
( n=96 )

Durum wheat
( n=96 )

Table
Discrimination of

lnitial

HRS
wheat

Rye
( n=96 )

Wild Oats( n=100 )

96.9%

Bar ley
( n=96 )

Durum
wheat

6.3%

3.3
Cereal Grains

Study

Canola
( n=100 )

7 .3%

3 .1%

60.4%

Rye

22.9%

30.2%

wi ld
Oats

7.3%

69.8%

3.0%

Barley

3 .1%

97 .0%

Canola

3 .1%

89.6%

100.0%



ture, and having a single-valued Hough transform. The ma-

terials that pass through a Carter Dockage tester and appear

in samples to be graded are necessarily approximately wheat

ke rnel-s i zed.

îtr
J.J DISCRIMINÀTION ÀMONG CEREÀL GRAiNS

The initial study v¡as followed up by an expanded one

which included a greater variety and number of cereals. À11

cereaf and wheat cultivars listed in Table 3.1 vrere selected

for study whil-e Canola and wild Oats, having been shown to

be easily distinguishable, were eliminated. Of the cereals,

all the most frequently grown cultivars were included. Ta-

ble 3.4, compiled from the Prairie Grain Variety Survey (

1984 ), shows these ranked in order of percentage of acreage

grovrn.

Since Neepawa is the predominant HRS cultivar grown, sam-

ples Ìrere obtained from two geographically separate sources;

the classification sets, therefore, totalled 23 in number.

The training sets consisted of between 48 and 50 grain or

kernel images giving, in total, 1108 prototypes. Separately

acquired eval-uation sets contained identical numbers of each

cultivar.

WhiIe several different recognition pattern problems were

of interest, all cultivars were simul-taneously included in

the model to provide maximum opportunity for confusion.
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Table 3.4

Most Frequently Grown Cereal VarieLies

Source: Prairie Grain Variety Survey ( 1984 )
Prairie Provinces, 1 984

Ce real Cultivar (Percent ) Rank

Bread Wheats Neepawa
Columbus
Ben i to
Park
Sinton
GlenLea

(61 .8%)
(8 .1%)
(6.6%)
(4.0%)
(3.e%)
(2.7%)

1

2
3
4
5
6

Durum Wakooma
Wascana
Coul te r
ÀrcoIa

(50 .1%)
( 33.0%)
(8 .6%)
(<1 .0%)

1

2
3

OatS Harmon
Cascade

(28.1%)
( 16 .0%)

1

2

Ba r ley Bonanza
KIages

(28.0%)
(18.9%)

1

2

Rye Puma
Cougar
Gaze I 1e
Muskateer

(34.2%)
(30 .1%')
( 5 .3%)
(2.1%)

1

2
6
7
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Linear discriminant functions vrere computed for individual
cultivars using combinations of shape features; equal prior
probabilities were assumed for Bayes classification. Indi-
vidual cultivars vrere considered to be correctly classified
as to cereal if either the cultivar was correctly identified
or cl-assi f ied as belonging to the same cereal class.

The discriminatory capacity of features from each shape

description methodology was investigated. Classification
results using normalized shape moments of fifth and lower

order are summarized in Tabl-e 3.5. Those for the Moment In-
variants, the Fourier Descriptors up to the tenth harmonic

and the Ellipse-fit features follow in Tab1es 3.6 to 3.8.

Of these methods, only the ElIipse-fit parameters retain
size information.

The overall error frequency of grain

each method was:

classi f ication for

Fourier Descriptors:

Shape Moments:

Moment Invariants:

12.9e"

18.1e"

23.7e"

Ellipse-fit featuresz 24.5>"

For each method, the classification accuracies for common

Wheat approached 90e" and the admixture cereals, collective-
Iy, were infrequently ( <7e" ) classified as the aestivum

species. In the last respect, the Fourier Descriptors (

1 .jeo ) , Ellipse-f it f eatures ( 1 .3e" ) and Shape Moments (

2.3eo ) were significantly better than the Moment Invariants
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Common wheat
( n=528 )

Table
Discrimination of

Moments only (

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

89.0%

Oats
( n=100 )

3.5
Cereal Grains

<6th Order )

Durum
wheat

9.9%

Ba r ley( n=144 )

3.5%

9.5%

83.3%

Rye

2.8%

11.1%

21 .0%

Oat s

2.6%

6.9%

80.6%

Ba r ley

30.0%

3.7%

6.3%

2.8%

1 .s%

45.0%

<1%

3.5%

2.1%

4.0%

80.6%
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Common wheat
( n=528 )

Table 3.6
Discrimination of CereaI Grains

Moment Invariants

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

90.0%

Oats
( n=100 )

Durum
wheat

38.5%

Barley
( n=144 )

11 .8%

7 .8%

2 .0%

47.4%

Rye

4.9%

17.4%

<1%

21 .0%

Oats

5.7%

5 .6%

66.0%

BarIey

3.0%

<1%

1 .4%

1 .5%

47 .0%

7 .8%

4.2%

4.9%

27.0%

84.0%
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Common wheat
( n=528 )

Table 3.7
Discrimination of Cereal Grains

Fourier Descriptors

Durum wheat(n=192)

Common
wheat

Rye
( n=144 )

91 .1%

Oats
( n=100 )

Durum
wheat

9.4%

Barley
( n=144 )

1 .4%

8.9%

81 .8%

Rye

1.4%

4.2%

Oats

1 .0%

6.7%

1 .4%

90.3%

Barley

11.0%

2 .1%

4.2%

<1%

84.0%

4.9%

3.5%

4.0%

88 .2%
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Common wheat
( n=528 )

TabIe
Discrimination of

Ellipse-fit

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

87 .7%

Oats
( n=100 )

3.8
Cereal Grains

Features

Durum
wheat

13.5%

Ba r ley
( n=144 )

2.1%

6.4%

50.0%

Rye

1 .4%

16.7%

<1%

't 4 .0%

OaLs

8.3%

9.0%

77 .8%

BarIey

18.0%

6.8%

2 .1%

<1%

5.5%

50.0%

21 .4%

8.3%

1 .4%

18.0%

80.6%



( 6.7e" ). Classification accuracies for the non-Wheat cere-

a1s were l-ow ranging f rom 45 to 91eo, the highest accurac ies

being achieved with Fourier Descriptors. Using as criteria
the minimum classification error frequency, correct wheat

classification and minimum false label1ing of admixture ce-

reals as common wheat, Fourier descriptors and Shape moments

gave the best over-a11 performance.

As no single method provided satisfactory wheat discrimi-
nation, aII previous data vras combined and supplemented with

the features: length, width, pêrimeter length, area, total
contour energ]¡, average energy, and aspect and thinness rat-
ios. Classification performance was significantly improved

by these additions; the grain cl-assification error vras re-
duced to 2.5e". Results of discriminant analysis using all
features are shown in Table 3.9. Greater than 98eo of all
non-Durum Wheat, Oats and Barley samples were correctly
categorized while Durum ( 97 .4e" ) and Rye ( 88.2e. ) were

classified less accurately. None of the 576 non-wheat con-

stituents were misclassified as wheat. AII of the fewer

than 1eo falsely-]abeIled "common" wheat kernels were classed

as Durum wheat.

When the least discrimi.natory f eature classes, i.e. the

Moment Invariants and Ellipse features and the noise-affect-
ed fourth and fifth moments h'ere excluded, the results of

Table 3.10 vrere obtained; average grain classification er-

ror v¡as f urther reduced to 1 .8e". This slight improvement
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Commr>n wheat
( n=528 )

Table 3.9
Discrimination of CereaI Grains

Alt Features ( Sg )

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

99.6%

Oats( n=100 )

Durum
wheat

Barley
( n=144 )

<1%

97.4%

Rye

11.8%

Oats

2.6%

1.4%

BB.2%

Ba r Iey

1 .0% 98.0% 1 .0%

98.6%



indicates that the inclusion of non- discriminating features

degrades the classifier performance. The remaining "core"

set consisting of Fourier descriptors, low order moments and

the additional features listed above has the discriminating
capacity of the entire set.

To systematically reduce the dimensionatity of the fea-

ture space further while retaining high wheat classification
accuracy, stepwise discriminant analysis was first applied

to generate a ranking of features. Listed in Table 3.11 in
their order of addition to the discriminant model are all
features whose significance of change to Wilks' lambda ex-

ceeds 15.0e". The "shape-space" could be reduced to as few

as eight dimensions before wheat tended to be misclassified
as barley. Classification results using this reduced fea-

ture set are summarized in Table 3.12.

while Rye ( 81 .3ga ) and Durum wheats ( 87 .5% ) were less

frequently correctly identifiedr correct classification of

non-Dururn Wheats, Oats and Barley again exceeded 99e". Con-

fusion among aI1 grains except non-Durum wheats generally

increased. The Canadian wheat grading system is tolerant of

this confusion as admixture grains are lumped as one evalua-

tion category.

The discrimination capacity of the single best feature,

rectangular aspect ratio, is apparent in Table 3.13. Great-

er than 95% of wheat and oats kernels could be correctly
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Common wheat
( n=528 )

Table 3.1 0
Discrimination of Cereal Grains( Reduced Feature Set )

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

99.8%

Oats
( n=100 )

Durum
wheat

Ba r ley
( n=144 )

<1%

96 .4%

Rye

6.3%

Oat s

3 .1%

<1%

93 .1%

Bar ley

99.0%

<1%

<1%

1 .0%

99.3%



Table 3.1 1

Ranking of Features by
Stepwise Discriminant Analysis

Var iable
entered

Àspect Ratio
widrh
Four. Des. ( -1
Perimeter Length
LengLh
Sh. Mom. ( 0,2 )
Àspect Ratio ( nig.)
Sh. Mom. ( 2,1 )
Four. Des. ( 4 )
Four. Des. ( -4 )

Thinness Ratio
Contour Pixel No.

Number F-
in stat i st ic

Wi lks'
Lambda

0.04931 1 s9
0.01116110
0.00224756
0.00080276
0.00047524
0.00026693
0.00018043
0.00011470
0.0000831 1

0.0000s810
0.000040s6
0.00002773
0.00001 952
0.00001 484
0.00001 1 38
0.0000080s
0.00000680
0.00000587
0.00000s1 2
0.00000447
0.0000037 1

0.00000332
0.00000299
0.00000245
0.00000218
0. 00000 1 97
0.00000180

Sh. Mom.
Area
Mom. Inv.
Mom. Inv.
Four. Des
Sh. Mom.
Sh. Mom.
Mom. Inv.
Mom. I nv.
Four. Des
Sh. Mom.
Sh. Mom.
Mom. Inv.
Four. Des. ( 7 )
Four. Des. ( -8

112

2
1

( -g
2r0
4r0

1

2
3
4
5
6
7
I
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

9s0.816
1 68 .422
195.229
88.517
33.854
38.310
23.512
28.077
18.607
21 .055
21.131
22.596
20. s08
15 .37 4
14.786
20.132
8.947
7.629
7.172
6.969
9.926
s.800
5.237

1 0.607
6.088
5.046
4 .634

Prob
>F

0.0001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 1

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0. 000 1

0. 000 1

0. 000 1

0.0001
0. 000 1

0. 000 1

0.0001

3
5 (-z
5,0 )
3,0 )
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Table 3.1 1 ( cont. )
Ranking of Features by

Stepwise Discriminant Analysis

Variable
entered

Sh. Mom. (

Four. Des.
Four. Des.
Four. Des.
Sh. Mom. (

Semi -Ma j or
Four. Des.
Four. Des.
Mom. Inv.6

Number F-
in statistic

Wi lks'
Lambda

0.00000 1 64
0.00000151
0.00000139
0.00000128
0.00000119
0.000001 1 2
0.00000105
0.00000098
0.00000093
0.00000088
0.00000084
0.00000080
0.00000077
0.00000074
0.00000071
0.00000069
0.00000067
0.00000064
0.00000062
0.00000060
0.00000058
0.000000s6
0.00000054
0.000000s2
0 . 0000005 1

0.00000049

0,3 )-s)2)
-e )

0,5 )

Length
(g)(s)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

4.488
4.235
4.208
4.076
3.438
3.232
3.1s0
3.272
2.772
2.569
2 .409
2 .133
2.031
1 .828
1.793
1.756
1.625
1 .650
1.626
1.s18
1 .821
1 .716
1 .538
1 .565
1 .450
1 .401

Prob
>F

0.0001
0.0001

F.nergy /r,ength
Four. Des. ( -10
Four. Des. ( -7
Four. Des.
Four. Des.
Four. Des.

10
I
9

)

)
)

0.0003
0.0018
0.0034
0.0113
0.0138
0.0170
0.0345
0.0302
0.0342
0.0s93
0.0118
0.0212
0.0s37
0.0469
0.0823
0.1 034

Energy ( rotal
Eliipse Area Dev
Four. Des. ( -6
Four. Des. ( 6 )

Sh. Mom. ( 2,2 )

Semi-minor Àxis
Mom. Inv.7
Sh. Mom. ( 1,3 )
Fitted Ellipse Àrea
Sh. Mom. ( 2,3 )

Sh. Mom. ( 3,1 )

L.
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Common wheat
( n=528 )

Table 3.12
Discrimination of Cereal Grains
8 Most Discriminatory Features )

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

99.2%

Oats
( n=100 )

Durum
wheat

Ba r ley
( n=144 )

81 .3%

Rye

11.8%

Oats

10.9%

<1 .0%

87.5%

Barley

<1 .0%

100.0%

7 .8%

<1%

99.3%



classified using this single feature. These results confirm

the observations of Travis and Draper.

The cereal grain size features vary more than the "shape"

characteristics which are used for identification. Large

size differences exist even between kernels on an individual

stalk. Moreover, the grain size statistics are more like1y

to be affected by the cleaning process and dockage tests.
Therefore, a classifier using "pure" shape features ( invar-

iant to kernel size ) was developed. High classification
accuracies r,rere again achieved ( table 3.14 ) . Wheat was

correctly classified for 99.8e" of the 528 kernels tested and

barley v¡as rarely ( 1.4e" ) misclassif ied as wheat.

FinalIy, the shape data generated from the "core" feature

set !¡as reorganized by cereal, discriminant analysis vras

performed and the Mahalanobis distances between cereals were

obtained. While some confusion between Rye and Ðurum ( ta-
b1e 3.15 ) is evident, the remaining cereals are at least
piecewise linearly separable in the 35-feature hyperspace.

The interclass distances, summarized in Table 3.16, are nor-

malized by the maximum cereal separation from Common Wheat

which is taken to be 100 units. By this index, Barley ( 100

) is by far the most dissimilar to wheat, followed in order

by Oats ( 27.4 ), Rye ( 13.9 ) and Durum ( S.l ).
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Common wheat
( n=528 )

TabIe
Discrimination

Aspec t

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

95.8%

3.13
of CereaI Grains
Ratio

Oats( n=100 )

Durum
wheat

<1%

Ba r ley
( n=144 )

<1%

68.7%

Rye

2.1%

26.4%

Oat s

9 .4%

52.8%

27 .8%

Ba r ley

9.0%

3.4%

96.0%

21 .4%

1 .4%

45.8%

4.0%

34.7%
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Common wheat
( n=528 )

Table 3.
Discrimination of
( Shape Features

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

99.8%

Oats
( n=100 )

'14

Cereal Grains
Only Used )

Durum
wheat

Ba r Iey
( n=144 )

<1 .0%

94.8%

Rye

1.4%

6.9%

Oat s

5.2%

1.4%

93 .1%

Barley

1 .4%

1 00.0%

95.8%
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Common wheat
( n=528 )

Table 3.1 5
Discrimination of Cereal Grains( nata Grouped By Cereal )

Durum wheat
(n=192)

Common
wheat

Rye
( n=144 )

98.3%

Oats
( n=100 )

Durum
wheat

Ba r Iey
( n=144 )

1.7%

97.4%

Rye

9.0%

Oats

2.1%

2 .1%

91 .0%

Barley

<1%

99.9% 1 .0%

97 .9%
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Table 3. 1 6
Mahalanobis Distances

-normalized to Wheat-Barley ( IOO units

Common wheat

Durum wheat

Common
wheat

Rye

0.00

Oats

Durum
wheat

Barley

5.08

0.00

Rye

13 .92

Oat s

5. 99

0.00

27 .37

Ba r ley

19.70

22.02

1 00.00

0.00

73.64

63.66

107.01

0.00



3.6 D]SCRIMINATION AMONG WHEÀT CLASSES ÀND VÀRIETIES

Further analyses of the wheat classification results were

made to investigate the capacity of shape to distinguish be-

tween wheat cultivars and classes. The wheat classes con-

sidered were Hard Red Spring ( HnS ), Hard Red winter ( Hnw

), soft white spring ( sws ), utility, prairie spring ( ps )

and Durum Wheats. The five most commonly grovrn varieties (

Tab1e 3.4, page 63 ), collectively comprising more than 80e"

of the acreage grolrn, of the predominant Hard Recl Spring

class were included. Cultivars were considered to be cor-

rectly labelled as to class if either correctly identified
or classified as another cultivar of the same class. The

results, using all available shape data, are shown for each

cultivar in Table 3.17 and grouped by class in Table 3.18.

These resufts likely represent the maximum cfassification
accuracies achievable with a linear classifier based soleIy

on shape. Correct classification by class was high for HRS

wheat ( 98.9e" ) and Durum wheats ( 97 .Leo ). On average,

wheat of the remaining classes vras poorly classi f ied ( 53. 3

eo ). WhiIe confusion among these cl-asses vras high, none

were categorized as HRS wheat. The non-HRS wheats are col-
Iectively counted in the "wheat of other cl-asses" category

for wheat grading purposes.

Reduction of the feature set is possible without loss

HRS discrimination. When Moment Invariants, Ellipse-f
of

ir
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features and high order moments vrere again eliminated, the

confusion pattern v¡as unchanged. Durum and HRS classifica-

tions were slightly diminished ( rables 3.19 and 3.20 ).

For wheat grading, identification of unlicensed HRS or

utility varieties is required. In general, individual wheat

varieties could not be accurately identified using shape in-

formation ( table 3.21 ). The l-ow accuracies for individual

HRS varieties are attributable to their being bred to be

visually indistinguishable. The licensed utility wheat

Glenlea, which has a distinctive elongated shape was cor-

rectly identified for 75e" of samples. Notably, other hard

red varieties Norstar ( Hnw ) and Hy320 ( PS semi-dwarf )

while not identified vrere at l-east distinguishable from the

HRS class as a whole.

3.7 DISCRIMINATION ÀMONG NON_WHEAT VÀRIETIES

I^7hi Ie wheat grading i s of pr imary importance , the cereal

discrimination results apply equally to grading of other

grains. The grading factors and objects that are identified

in Barley, Oats and Rye largely parallel those of wheat (

OGGG, 1985 ). Of these cereals, the Barley varieties and

Harmon Oats could be discerned with relatively high frequen-

cy ( >80e", Table 3.21 ). The Rye varieties and Fidler Oats

vrere correctly labeIled less often having classification ac-

curacies ranging from 42e" to 62e". These are nevertheless

high in relation to the 4.3e" to 4.seo prior probabilities of

selection.
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Classification of

HRS Neepawa_
Neepawa_
Katepwa
Columbus
Ben i to
Park

HRW Norstar

HRS

SWS Fielder
Owens

Table 3.17
Wheat Cultivars into Grain Classes
All Features Used

100.0%
93.8%

100,0%
100.0%
100.0%
1 00.0%

Util. Glenlea

HRW

PS Hy320

Durum Coulter
I^lakooma
Wascana
Arcola

SWS

4.2%

56.3%

Utility

27.1%
2.1%

2.1%

25.0%

PS

45.8%
64.6%

8.3%

2.1%

29.2%

Durum

8.3%
1 4.6%

75.0%

16 .7%

Other
Cereals

43.8%

18.8%
18.8%

14.6%

25.0%

2 .1%

2.1%

97.9%
95.8%
95.8%

100.0%

2.1i(
4.2%
4.2%
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Hard Red
Spr i ng
( n=288 )

Hard Red
Wi nter
(n=48)

Table 3. 1 I
Discrimination of Wheat Classes( aff Features Used )

Hard
Red

Spr i ng

Soft White
Spr i ng
(n=96)

98.9%

Hard
Red

Winter

Utility
9fheat
(n=48)

Prairie
Spr ing
(n=48)

Sof t
gvhite

Spr i ng

Durum
Wheat
(n=192)

56.3%

<1%

1 4.6%

Utility

25.0%

<1%

Prairie
Spr i ng

55.2%

2 .1%

8.3%

11.5%

Durum

29.2%

16 .7%

75.0%

Other
Cerea 1 s

18.8%

43.8%

14.6%

25.0%

2.1%

2 .1%

97.4% 2 .6%
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Table 3.1 9
Classification of Wheat Cultivars into Grain Classes

Reduced Feature Set

HRS Neepawa i

Neepawa
Katepwa
Columbus
gen i to
Park

HRW Norstar

HRS

SWS Fielder
Owens

100.0%
91 .7%

100.a%
1 00.0%

97.9%
97.9%

Ut i I. Glenlea

HRW

PS Hy320

Durum Coulter
Wakooma
Wascana
Arcola

SWS

e .ir

z.7z

31 .3%

Utitity

10.4%
2.1%

z.iz

2.7y"

52.1%

PS

66.7%
79.2%

12.5%

2 .1%

37.5%

Durum

10 .4%
1 4.6%

75.0%

14 .6%

Other
Cereals

39.6%

12.5%
4.2%

10.4%

22.9%

2 .1%

97 .9%
93.7%
95.8%
97.9%

2 "1%
6.3%
4.2%
2.1%
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Hard Red
Spr i ng
( n=288 )

Hard Red
Wi nter
(n=48)

Table 3.20
Discrimination of Wheat Classes

-Reduced Feature Set

Hard
Red

Spr i ng

Soft White
Spr i ng
(n=96)

97.9%

Hard
Red

Wi nter

Utility
Wheat
(n=48)

Prairie
Spr i ng
(n=48)

Sof t
Whi te

Spr ing

Durum
Wheat
(n=192)

31 .3%

1 .4%

6.3%

Utility

52.1%

<1%

Prairie
Spr i ng

72.9%

2.1%

12.5%

12.5%

Durum

37 .5%

1 4.6%

75.0%

Other,'
CereaLs

B .3%

39.6%

10 .4%

22.9%

2.1%

96.3% 3.7%



Wheat
c Iass

I

oo
!
I

HRS

Cultivar

Tab1e 3.21
Discrimination of Cereal Grains

Cultivar Identif ication

HRW

PS

Utility

SWS

Neepawa-a
Neepawa-b
Katepwa
Columbus
Ben i to
Park

No r star

HY32O

GIen lea

F i elder
Owens

Cor rec t ly
ident i f ied

1. Based on a traìning and
respectively.

2. Grain samples of Neepawa
3. Abbreviations: Hard Red

( Hnw ), Prairie Spring (

98%
69%
67%
19%
48%
75%

31%

23%

75%

Grain

Durum
wheat

evaluation set of 48 kernels

obtained from two sources.
Spring ( HnS ), Hard Red l.finter
PS ), Soft white Spring ( sws )

50%
73%

CulLivar

Ba r Iey

Wakooma
Wascana
ÀrcoIa
Coul te r

Bonanza
Klages
John s ton

F idle r
Harmon

Gazelle
Mus ka tee r
Puma

Oats

Rye

Cor rec L 1y
identified

31%
50%
88%
60%

88%
94%
83%

62%
B6%

42%
58%
52%



3.8 ÐTSCRIMINATION AMONG UNSOUND KERNELS

À further inquiry was made to determine whether certain

characteristically damaged or degraded kernels could be dis-
tinguished from sound kernels by size and shape differences.

Included for study were shrunken, broken and sprouted ker-

nels of HRS wheat each representing a separate grading cat-

egory. These, apart from frost-damaged and bleached ker-

nels, are the most frequently occurring unsound species.

In total, 96 LR images of each l¡ere acquired and pro-

cessed. All shape descriptors s¡ere computed including sym-

metry attributes. A linear classifier llas developed and

evaluated by the hold-out method with the results summarized

i n Table 3 .22 .

The broken ( 95. Be" ) and sprouted groups ( 99.0e" ) were

successfully identified. Broken kernels were most often

misclassified as shrunken. The broken kernels included in

this study were any with apparent fracture; many exceeded

the "three-quarters of a whole kerneL" defining threshold.

Therefore kernels with very minor breakage and minimal

sprouting were resolved.

However, considerable

sound kernels is evident.

confusion between shrunken and
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t
co
LO

I

To

From

Broken
(n=96)

Shrunken
(n=96)

Broken

Table 3.22
Kernel Soundness

Sound
(n=96)

95.8%

Sprouted
(n=96)

Shrunken

0

0

3 .1%

1 .0%

87.5%

Sound

9.4%

0

0

12.5%

Sprouted

90.6%

1 .0%

0

0

0

99.0%



Chapter IV

CONCLUSIONS ÀND RECOMMENDÀTIONS

The objective of the work described in this thesis has

been to investigate the capacity of machine-vision perceiv-

able size and shape characteristics to differentiate eIe-
ments that must be quantified for wheat grading purposes.

This research has proceeded in parallel with that on texture

and lighL transmission characteristics performed by others (

Wright, 1 985, Sapirstein et aI, 1 985 ) . Specific problems

that have been posed for experimental resolution are:

1.

¿.

)

4.

distinguishing other cereal grains,

seeds from wheat

distinguishing other wheat classes

9iheat

distinguishing certain categories of

from mature sound wheat kernels

the capacity of size and shape to

vidual cultivars not only of wheat

cereals.

oiLseeds and weed

from Red Spr i ng

damaged RS wheat

distinguish indi-
but also of other

For the first time, machine perceivable kernel size and

shape characteristics have been used to discriminate between

commonly grown Canadian oilseeds, wheat and cereal vari-
eties. Further, their use for distinguishing between un-
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sound and sound wheat kernels has not been previously de-

scribed. Previous studies that have attempted to discrimi-
nate among various cereals and/or weed seeds have primarily
employed either size or shape characteristics but not both.

ÀIso unlike the approach taken herein, with one exception (

Segerlind and Weinberg, 1972 ) , no effort has been made to

use all information present in ah: seed shape. Whereas all
past studies of seed shape have required extensive manual

involvement in orienting kernels, extracting contours or

taking measurementsr âctivities which inhibit their use for
automaLic grading, these tasks have either been avoided or

accomplished automatically by the described methods.

Discrimination of contaminating cereals from wheat was

achieved using a rapidly computable set of shape and size

features. À11 major methodologies of contour shape descrip-

tion were applied to this problem. The best results were

achieved using a set of features which included Fourier de-

scriptors, low order shape moments, rectangular aspect ratio
and length, width and area measures. Correct cereal classi*
fication using this set of features were:

Non-durum wheats: 99.8%

Durum wheats: 96.4%

Oats z 99.0%

Rye: 93.1%

Barley. 99.3%
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When size features lrere eliminated from this set, i.e. only

shape dependent features vrere used, cereal classification
performance deteriorated only slightly; the overall error
rate v¡as 2.4 % as compared with 1 .8 %. I f only the eight

most discriminatory features e¡ere used, confusion among atl
cereals but the non-Durum wheats increased. For these

wheats of primary interest for wheat grading, classification
exceeded 99%.

The most common oilseed ( Cano1a ) and weed seed ( wlfa

Oats ) were easily distinguished from all other cereal

classes on the basis of four features. While shrunken ker-

nels $¡ere occasionally confused with sound kernels, broken

and sprouted kernels were not. The high classification ac-

curacies achieved for certain wheat and cereal cultivars de-

spite low prior probabilities indicate that certain culti-
vars such as Neepawa and Glenlea or Neepawa and semi-dwarf

varieties might be reliably separated on a pairwise basis.

To verify this, further study will be required on a wider

range of samples of different provenance.

The research may be extended in several other ways which

include improvements and modifications to the image acquisi-
tion system, expansion of features extracted from the system

and consideration of other pattern recognition methodolo-

gies. The existing experimental system, with certain im-

provements, could be developed into a real-time wheat analy-

sis system, the ultimate goal of the research effort. Shape
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anarysis routines may be implemented in assembry language

ano discriminant functions rapidiy computed and compared on-

board avoiding time consuming image transfer. In future,
the intrinsic parallerism of the procedures may be exploited
to simurtaneousry analyze many objects within the image. At

present, the singre time-rimiting manual- procedure is the

placement of samples on the optical platform. This proce-

dure might be eliminated by suitable adaptation of the sam-

pre acquisition system described by Brogan and Edison ( 1974

).

colour imagery is the most desirable system modification
in that a broader range of recognition probrems could be

proposed including the f inding of grass-green, pink,
stained, dark immature, vitreous, insect and fungus-affected

kernels. Discrimination among Àmber durum, Red and white
wheats would likely be enhanced using tristimulus values in-
tegrated over individual kernels. Therefore, in synergy,

shape and corour characteristics may suffice to identify ob-

jects in a large fraction'of the categories guantified for
wheat grading purposes

rn the absence of colour, only monochrome texture fea-
tures may presently be extracted from the digital images.

rn general, such features are very irlumination sensitive
being affected by specular refrection and mutuar and self-
shadowing of image constituents. under carefurry controlled
illumination and sample orientation conditions, Wright (
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1985 ), using autoregression modelling, failed to discrimi-
nate between mature vitreous and "wrinkied" unsound kernels.

This result suggests that texture analysis would contribute
only marginally to the major discrimination problems of

wheat grading for which visual texture differences are much

less evident. However, two additional approaches might be

considered for specific problerns. The grey leve1 run length

features described by Galloway ( 1 975 ) might resoLve the

previously-mentioned shrivelled or "wrinkled" wheat. The

moment method described in this thesis can be extended to

use the grey leve1 information within the contour boundary (

Tang, 1981 ). Such grey leve1 moments, which give the dis-
tributional shape of ranges of pixel intensity, might be ap-

plied to finding "blackpoint"-affected kernels or other con-

ditions that affect local appearance of the kernel.

Entirely apart from the addition of nel, features, other

pattern recognition methodologies may be considered. The

present study vras conducted in the supervised learning mode

since training samples were readity available. Àn alterna-
tive recursive self-learning approach, particularly that us-

ing Kalman filtering ( Brogan and Edison, 1974 ) might be

applied to "reaI" wheat samples. A more important require-
ment is the introduction of a loss function ( fou and Gonza-

lez, 1974 ) to reflect the unequal costs of misclassifica-
tion. The misidentification of an ergot-affected kernel,

for example, ßây be more significant than that of a contami-

nating barley kernel.
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In t.his thesis, a single stage classifier was developed

to simultaneously discrirninate among a large number of wheat

cultivars. This problem may be restructured using multis-
tage classification which has recently received much atten-
tion in the pattern recognition literature. Àt each stage

of classification, corresponding to the leve1 of an hier-
archical tree, a pattern is compared with a set of classes.

Each such comparison, represented by a tree node, determines

whether testing paths emanating from that particular node

will be followed. Paths which result in the comparison of a

pattern with unlikely subclasses are ignored resulting in

the rapid exclusion of many al-ternatives. However, all com-

parison branches are followed for which the likelihood ex-

ceeds a prescribed level; i.e unlike a decision tree, more

than one parallel path may be followed. For each node, a

much smaller number of features optimized for the partial

discrimination problem are used than would be for an overall
single stage classifier.

In illustration, the overall wheat grading procedure

might be performed in stages. Àn object in a wheat sample

image could first be classi.fied as either "wheat" or "non-

wheat'J. If chosen as the latter, a determination of "for-
eign cereal" against "alien matter" would be made and more

specific identification would follow by comparisons made in

one of the two alternative test branches. The "alien" path

might include such categories as weed seeds, oilseeds, in-
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sect ova, Iarvae and adults, excreta, machine bolts and

unlimited range of other rare objects that coul-d be aoded

the substage class set as experience is gained.

Similarly, if the object is wheat, then it might undergo

a seguence of comparisons to determine the likelihood of its
1. belonging to either aestivum or durum species

2. if the former, belonging to the Red Spring or

White class

3. if Red Wheat, whether it is damaged or adversely

affected in any way.

Of course, this is just one of many possible comparison

structures and is not optimal in any vray. Kurcynski ( 1983

) has developed a strategy for the design an hierarchical
classifier to minimize the overall probability of error giv-
en complete problem probabilistic information. Implicitty,
a single stage classifier developed from training data may

be recast as an optimal multistage classifier.

The development of an appropriate multistage classifier
for wheat grading would Iikely be the most fruitful direc-
tion of pattern recognition research. Such a classifier,
unlike a single stage one, could accommodate the broad range

of objecls that must be correctly identified in a wheat sam-

p1e for accurate grading. The conformity of hierarchical
classifiers with human decision procedures makes them espe-

cially attractive in the context of the development of an

overall "expert system" for wheat grading.

an

to
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