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ABSTRACT

The problem of multiple diffraction of an incident plane wave by a perfectly
conducting double wedge is investigated. A new technique based on the spectrum
of cylindrical waves (CWS) is developed to calculate the multiply scattered fields
between two cylindrical objects in general. In this technique the current induced
on the surface of each scatterer due to the original source of excitation is viewed
as an array of line sources. Each order of interaction between the two scatterers
is then expressed as an integral over these sources with the integrand correspond-
ing to the solution for a single line source excitation. The method is applied to
solve for the diffraction by a double wedge and to the scattering by two parallel
cylinders. The results for the scattering by two cylinders agree numerically with
those based on the available exact boundary value solution, whereas the transmis-
sion coefficient compares favorably with the exact values for the special case of a

slit geometry and with asymptotic results for a wide double wedge configuration.

In order to focus on the nature of the edge-to-edge interaction, a two term
asymptotic solution with modified formulation is also derived. The first term is
the non-interaction field due to the incident plane wave, whereas the second term
is the interaction diffracted field due to two fictitious line sources located at the
edges of the two wedges. In particular, the dependence of the tramsmission
coefficient on the sharpness of the edges is specifically investigated by considering
rounded, capped and dielectric loaded edges. The analogous modification of the
aperture through loading with a third scatterer, such as a conducting or a dielec-
tric cylinder, is also investigated. Although the radius of rounding or capping is
considered small relative to the wavelength, significant changes in the diffraction
pattern and transmission coefficient are observed. It is also noticed that the aper-
ture loading by a dielectric cylinder produces a higher transmission coefficient

while loading by a conducting cylinder yields a lower transmission coefficient rela-

tive to the unloaded aperture.




- iii -

In order to establish the accuracy of the CWS technique for narrow wedge
to wedge separations, the method of moments is modified and initially verified by
application to the scattering by two large parallel cylinders as well as the

diffraction by a double semi-infinite wedges (with sharp and blunt edges) where

favourable agreement with published data is shown.




ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Professor M. Hamid for his
advice, continuous encouragement and helpful discussion throughout the course

of this research.

The author also wishes to thank Professor R. G. Kouyoumjian of the Electri-
cal Engineering Department, Ohio State University, for suggesting the use of the
uniform theory of diffraction instead of the geometrical theory of diffraction in

order to get reliable results near the wedge surface.

The financial assistance of the Natural Sciences and Engineering Research
Council of Canada and the University of Manitoba Faculty of Graduate Studies in

the form of a University Fellowship is highly appreciated.

The use of the computing facilities at the University of Manitoba as well as
the plotting and printing facilities at the Electrical Enginecering Department are

also appreciated.

Finally, my sincere thanks to my parents and my wife for their great support

during the time of this work.

_iv...




TABLE OF CONTENTS

Page

ABSTRACT ii

ACKNOWLEDGEMENTS , iv

TABLE OF CONTENTS v

LIST OF TABLES . vii

LIST OF FIGURES ' ix

LIST OF PRINCIPAL SYMBOLS xii

CHAPTER 1—- INTRODUCTION 1
CHAPTER 2— RIGOROUS SOLUTION BY THE CYLINDRICAL

WAVE SPECTRUM TECHNIQUE 7

2.1 Computation of the induced surface current 10

2.2 Far field pattern 21

2.3 Numerical examples 26

CHAPTER 3—- MODIFIED ASYMPTOTIC SOLUTION FOR

A LOADED APERTURE 48

3.1 Diffraction by a wide double wedge with sharp edges 51

32 Diffraction by a wide double wedge with capped edges 56

33 Diffraction by a wide double wedge with rounded edges 60

34 Scattering by a wide double wedge and a parallel cylinder 65

3.5 Numerical examples 74

CHAPTER 4— SOLUTION BY MODIFIED METHOD OF MOMENTS 100

4.1 Scattering by two parallel conducting circular cylinders 103

4.2 Diffraction by two wedges with blunt edges 105

4.3 Numerical examples 108

-V -




CHAPTER 5-

_Vi_.

DISCUSSION AND CONCLUSIONS

5.1 Suggestions for future research

APPENDIX A-

APPENDIX B-

APPENDIX C —

REFERENCES

DERIVATION OF EQUATION (2-21)

FAR SCATTERED FIELD PATTERN OF A LINE
SOURCE EXCITING A SHARP WEDGE
SCATTERING BY A CYLINDRICAL SHELL WITH

RADIAL AND AZIMUTHAL PERMITTIVITY PROFILES

135
137
140

142

144

154




LIST OF TABLES
Page

Scattering cross-section of two parallel circular conducting

cylinders with ¢ = 90°. 31

Scattering cross-section of two parallél circular conducting

cylinders with ¢y = 180°. 32
2-3  Slit transmission coefficient for ¢y = 90°. 37
31 Diffraction pattern characteristics of a double rounded-wedge

for 65 = 0°, ks = 10 and v = 10°. 85
3-2  Slit transmission coefficient for ¢y = 90°. 87
33 Diffraction pattern characteristics of a slit loaded by

a cylindrical shell in the aperture plane for ¢y = 90°, ks = 8,

e, =5,kp, =10,kp, =02 andm = 2.5. 98
3-4 Diffraction pattern characteristics of a slit loaded by

a cylindrical shell in the aperture plane for ¢y = 90°, ks = 8,

€, =5,kp, =10,kp, =02andd = 10. 99
4-1  Slit transmission coefficient for ¢y = 90°. 116
4-2 Diffraction pattern characteristics of a double truncated wedge

for g = 90°, ks = 7 and y = 20°. 126
4-3  Diffraction pattern characteristics of a double truncated wedge

for g =90°, ks =T and kd = 05. 127
4-4 Diffraction pattern characteristics of a double truncated wedge

for ¢g = 90°, vy = 10° and kd = 0.5. 128
4-5 Diffraction pattern characteristics of a double capped wedge

for g =90°, ks =7 and y = 20°. 132
4-6  Diffraction pattern characteristics of a double capped wedge

for ¢y =90°, ks = 7 and kr = 0.5. 133

- vii -




- viii -

Table ' Page

4-7 Diffraction pattern characteristics of a double capped wedge

for ¢y = 90°,y = 15° and kr = 0.5. ’ 134




LIST OF FIGURES

Figure Page
2-1 Double wedge geometry. 16
2-2  Capped wedge geometry. 18
2-3 Two parallel conducting cylinders geometry. 22

2-4 The total scattered field pattern for two parallel circular
conducting cylinders. 27

2-5 The interaction scattered field pattern for two parallel circular

conducting cylinders. 29
2-6 Amplitude of the tangential electric field vs. . 30
2-7  Ejo and amplitude of C vs. ks . 34
2-8 Diffraction pattern of a slit. 36
2-9 T vs. wedge angle . 39

2-10  Surface current vs. kI of a double conducting capped-wedge

forks =7,y = 10° and kr = 0.05. 40
2-11  Surface current vs. kI of a double conducting capped-wedge

forks =7,y = 10° and kr = 0.1. 41
2-12  Surface current vs. k[ of a double conducting capped-wedge

forks =7,y = 10° and kr = 10. 42
2-13  Surface current vs. kI of a double conducting capped-wedge

forks =7,y = 10° and kr = 05. 43
2-14  Diffracted field vs. 0 of a double conducting capped slit

forks = 4 and kr = 1.0. 45
2-15 Diffracted field vs. 6 of a double conducting capped slit

forks = 6 and kr = 1.0. 46
2-16  Diffracted field vs. 6 of a double cénducting capped slit

for ks =8 and kr = 1.0. 47
31 Schematic diagram of different types of loading the aperture of

a double wedge. 49
32 Double sharp-wedge geometry. 53

_ix_




Figure Page
3-3 Double capped-wedge geometry. 57
3-4 Double rounded-wedge geometry. 63
3-5 Double sharp-wedge and a parallel cylindrical scatterer. 66
3-6 Scattered field components due to a plane wave incident on two

sharp wedges and a parallel cylindrical scatterer. 71
37 Alternative representation of the scattered field cémponents due to a plane

wave incident on two sharp wedges and a parallel cylindrical scatterer. 72

3-8  Normalized diffracted field vs. 8 for 65 = 0°,y = 15° and ks = 5. 75
39 T,cqy(orcy)and E vs. ks for 8 = 0° and y = 15°. 76
3-10 Normalized diffracted field vs. § of a double conducting

capped-wedge for ks = 8and y = 5°. 77
3-11 Normalized diffracted field vs. 8 of a doubie dielectric

capped-wedge for ks = 7,y = 10° and kr = 05. 78
3-12 T vs. ks of a conducting capped slit. 80
3-13 T vs. ks of a dielectric capped slit for kr = 0.5. 81

3-14 T vs.ks of a double dielectric capped-wedge for kr = 0.5
and e, =4, 82

3-15 Normalized diffracted field vs. ® of a double rounded-wedge

for 6 = 0°, vy = 10° and ks = 10. 83
3-16 Normalized diffracted field vs. 6 of a double rounded-wedge

for 8 = 0%,y = 10° and ks = 10. 84
3-17 T vs. ks of aloaded slit for 85 = 0° and ka = 0.5. 88
3-18 T vs.ks of aloaded slit for 6y = 0°, ka = 0.5and kd = 5. 89
3-19 T vs. ks of aloaded slit for 6, = 407. 91
3-20 T vs. ks of aloaded slit for 85 = 40° and kd = 1.5. 92
3-21 T vs. ks of aloaded slit for 65 = 0°. 93

3-22 T vs. ks of aloaded slit for 63 = 0° and kd = 5. . 94




Figure

3-23

3-24

4-2
4-3
4-4
4-5
4-6

4-8a
4-8b
4-9

4-10
4-11
4-12
4-13

4-14

4-15

C-1

C-2

- xi -

T vs. ks of aloaded double wedge for 85 = 0%, ka = 0.5
and y = 20°.

Diffracted field vs. 8 of a slit loaded by an inhomogeneous

dielectric shell for ks =8,¢, =3, kp, =02, n=2and d = 1.0.

Schematic diagram of different types of a double wedge geometry
with non-sharp edges.

Scattered field pattern for two circular cylinders.

Scattered field pattern for two circular cylinders.

Amplitude of the interaction current vs. .

Amplitude of the interaction field vs. ka.

Amplitude of the interaction field vs. ks .

T vs. wedge angle vy.

Amplitude of the slit aperture field for ¢y = 90°.

Amplitude of the slit aperture field for ¢y = 90°.

Phase of the slit aperture field for ¢y = 90°.

Current density vs. k[ for ks = 8.06.

Normalized diffracted field vs. 8 of a thick slit for ks = 8.06.
Current density vs. kI for ks = 8.06 and y = 15°.
Normalized diffracted field vs. 8 of a double truncated-wedge
for y = 15° and ks = 8.06.

Normalized diffracted field vs. 8 of a conducting

capped-slit for ks = 8.0.

Amplitude of the aperture field of a double capped wedge
for &g = 90°.

Plane wave incident on a cylindrical dielectric shell in circular
cylindrical co-ordinates.

W vs. .

Page

95

96

102
109
110
112
113
114
117
118
119
120
121
123
124

125

129

131

145
153




4

ejwt

(ps b, 2)
by

Ju(x)
H,(x)
(Po» do)

p

LIST OF PRINCIPAL SYMBOLS

V-1

base of the natural logarithm (2.718281828...)
time dependence

circular cylindrical co-ordinates

plane wave incident angle

incident plane wave

scattered field

intrinsic impedance of free space

wave number

3.141592653...

wavelength

Hankel function of the second kind of order zero and argument x
scattered field due to a plane wave incident

scattered field due to a line source field

Neumann’s number (1 forn =0and 2 forn = 1)

Bessel function of the first kind of order n and argument x
Hankel function of the second kind of order n and argument x
position of the line source

outward unit vector normal to a conducting surface

unit vector in the p direction




E’tw

- xiii -

unit vector in the ¢ direction

total magnetic field vector

p component of the magnetic field vector

¢ component of the magnetic field vector

z directed linear current density due to a plane wave incident

radius of a circular cylinder; radius of rounding of a rounded wedge

z directed linear current density due to a line source field

interior wedge angle

total field of a plane wave incident in the presence of a sharp wedge
total field of a line source field in the presence of a sharp wedge

z directed linear current density on the upper surface of a sharp wedge
z directed linear current density on the lower surface of a sharp wedge

z directed linear current density on the upper surface of a sharp wedge
due to a plane wave incident
z directed linear current density on the lower surface of a sharp wedge

due to a plane wave incident

z directed linear current density on the upper surface of a sharp wedge

due to a line source field

z directed linear current density on the lower surface of a sharp wedge

due to a line source field

scattered field component due to the physical optic current on the top

surface of a wedge




o
EP

EIIC

23

E&

- Xiv -

radius of a conducting or dielectric cap whose axis coincides with the

wedge axis

component of the total field of a plane wave incident on a capped

wedge due to the conducting cap.

-]

component of the total field of a line source field exciting a capped

wedge due to the conducting cap.

z directed linear current density on the upper surface of a capped

wedge due to a plane wave incident

z directed linear current density on the upper surface of a capped

wedge due to a line source field

z directed linear current density on the lower surface of a capped

wedge due to a plane wave incident

z directed linear current density on the lower surface of a capped

wedge due to a line source field

z directed linear current density on the cap surface of a capped wedge

due to a plane wave incident

z directed linear current density on the cap surface of a capped wedge

due to a line source field

total z directed linear current density due to all infinite interactions

between two cylindrical scatterers
non-intercation field
interaction field

geometrical optics field




F($)

scattered or diffracted field pattern
scattering cross-section

Keller’s wedge diffraction pattern of a sharp wedge due to a plane wave

incident

component of the capped wedge diffraction pattern due to the conduct-

ing cap with a plane wave incident

Keller’s wedge diffraction pattern of a sharp wedge due to a line source

field

component of the capped wedge diffracti_on pattern due to the conduct-

ing cap with a line source excitation

total diffracted field

transmission coefficient of a double wedge

diffracted field due to a plane wave incident on a sharp wedge
diffracted field due to a line source filed incident on a sharp wedge
edge of wedge A

edge of wedge B

intensity of an inhomogeneous line source at ep

intensity of an inhomogeneous line source at e,

physical distance between e, and ¢

total diffracted field

component of the capped wedge diffraction pattern due to the dielectric

cap with a plane wave incident




E SwW

8c

fe

84

fa

&8s

fs

- xvi -

component of the capped wedge diffraction pattern due to the dielectric

cap with a line source excitation
relative permittivity of a dielectric cap or a dielectric cylinder

scattered field pattern due to a rounded wedge due to a plane wave

incident

singly diffracted field

multiply diffracted field

scattered field from a sharp wedge due to a plane wave incident
scattered field from a sharp wedge due to a line source field

scattered field from a cylindrical scatterer due to a plane wave incident
scattered field from a cylindrical scatterer due to a line source field

scattered field pattern of a conducting circular cylinder due to a plane
wave incident
scattered field pattern from a conducting circular cylinder due to a line

source field

scattered field pattern of a dielectric circular cylinder due to an

incident plane wave

scattered field pattern of a dielectric circular cylinder due to a line

source field

scattered field pattern of a dielectric shell with inhomogeneous permit-

tivity profiles due to an incident plane wave

scattered field pattern of a dielectric shell with inhomogeneous permit-

tivity profiles due to a line source field




z directed non-interaction linear current density
z directed interaction linear current density

physical optics current due to a plane wave incident on an infinite con-

ducting plane

z directed diffraction linear current density

reflected wave from an infinite conducting plane due to a plane wave

incident

outer radius of a dielectric shell

inner radius of a dielectric sheli

characteristic number of the Mathieu function
cosine elliptic function of period

cosine elliptic function of period 2w

echo width of a cylindrical dielectric shell




CHAPTER 1

INTRODUCTION

The diffraction of a plane wave incident on a slit in an infinite conducting
screen has received considerable attention due to its importance in optics and
microwave applications. However, a comprehencive study of the diffraction charac-
teristics by the aperture between two conducting semi-infinite planes or wedges is not
available for practical applications, especially when a third scatterer is located at or
near the aperture plane or when the edges of the half planes are not sharp. Since
the slit is one of the special cases of the double wedge geometry, it is useful to con-

sider the double wedge in the present investigation rather than the slit case.

There is a wide variety of geometries which fall under the double semi-infinite
wedge problem. Some of these geometries are the parallel plate waveguide with and
without flanges, slit and staggered parallel half planes or wedges. The ray optical
method has been successfully employed for the analysis of propagating modes in
parallel plate waveguides and horn antennas [1]. The radiation from parallel plate
waveguide with right flanges was treated extensively using different methods. One of
these methods was introduced by Nussenzvieg where the radiation problem is
reduced to an infinite system of linear equations [2]. The linear system of equations
is then solved using Neumann’s iteration method where the initial step was evaluated
by the Kirchhoff approximation. Following Nussenzvieg’s analysis, the diffraction of

the principal mode at the open end of a semi-infinite parallel plate waveguide ter-

minated by an infinite plane flange was studied for narrow waveguide widths by

Amaral and Vidal [3]. They computed the evanescent mode correction term to the
reflection amplitude using three different asymptotic approximnations. The geometri-

cal theory of diffraction (GTD), originally proposed by Keller [4-8] was also used to




evaluate the coupling between TEM and TE() modes of two parallel plate

waveguide apertures where each waveguide was formed of two wedges [9]. Further-
more, the reflection coefficients of these modes at the aperture were analyzed for
different wedge angles by Rudduk and Tsai [10]. On the other hand, the usefulness
of high frequency methods in analyzing the radiation characteristics of a parallel
flanged waveguide was extended by using the surface integration technique where
the surface integral was obtained by Green’s second identity [11]. A totally different
approach for the diffraction of an H-polarized plane wave obliquely incident on a
flanged parallel plate waveguide was presented by Henke et. al. [12]. They used
discrete spectra of periodic fu::ctions inside the waveguide region and Mathieu func-
tions in the half space. The solution is then obtained by matching the diffracted field
components in the aperture plane. Reflection coefficient at the waveguide-horn
junction (open end of a waveguide with infinite flanges) was studied by Hamid and
Jull using the GTD [13,14]. Schwartz’s iterative procedure of overlapping region was
also employed by Iskander and Hamid to determine the scattering coefficients at the
horn junction [15]. Furthermore, the coefficients of the scattering matrix describing
transmission, refection and conversion of modes at the junction were obtained

asymptotically by Borovikov and Kaloshin [16].

With respect to the staggered parallel wedges geometry, an approximation to the
attenuation of an incident wave due to single diffraction by the knife edges of dou-
ble parallel wedges was presented in terms of the single knife edge diffraction
coefficient by Wilkerson [17]. However, the multiply diffracted fields by the knife
edges was expressed by Vogler as a multiple integral which can be transformed into
series form for calculation purposes [18]. More recently a new ray approximation for
calculating the diffraction attenuation due to several knife edges was derived by
Whitteker using the Fresnel approximation [19]. Asymptotic and experimental
results of the radiation pattern of a slotted-waveguide antenna with wedges were also

reported by Borovikov and Narbut in terms of a generalized Fresnel integral [20].




Tiberio and Kouyoumjian used a uniform extension to the GTD (namely the uniform
theory of diffraction (UTD) [21] along with the modified slope diffraction (MSD)
[22]) to determine the contribution from the doubly diffracted ray due to a pair of
staggered wedges with parallel edges [23,24]. In this geometry the edge of one wedge
is illuminated by the shadow boundary field of the other edge, whereas the original
illumination was considered plane, cylindrical or spherical wave. The diffraction by
an infinite set of parallel half planes was also investigated by Luneburg and Hurd,
where in one case the total field on each plate vanishes on one side and the normal
derivative vanishes on the other side [25], while in other case the total field or its
normal derivative vanishes on alternative half planes [26]. It should be pointed out
that the multiple diffraction by perfectly conducting parallel half planes has been the
subject of intensive research due to its usefulness in modeling a waveguide array
which can be built by a number of parallel equi-spaced semiplanes orthogonal to the
straight line joining their edges [27-32].

It is well known that an exact solution of the slit problem (double wedge of
zero angle) can be found in terms of eigenfunction series of Mathieu functions [33-
35], but its usefulness is limited to small slit widths because of the difficulty in tabu-
lating the Mathieu functions and because of poor convergence of the series. Power
series solutions in terms of the slit electrical width for narrow slit widths was
reported by Bouwkamp [36]. For wide slits, Clemmow [37] and Karp and Russek [38]
used the concept of edge currents, while Millar presented an asymptotic solution of
the resulting integral equations by successive iterations [39]. A Wiener-Hopf treat-
ment of the integral equation approach was given by Levine [40]. Clemmow pro-
posed a plane wave spectrum representation of the first order diffracted field by a
modified Wiener-Hopf method and formulated the second order diffraction by a slit

in integral form [41,42]. Further, he derived approximate solutions for the narrow

and wide slits. Keller and Karp proposed an alternative asymptotic approach based

on the GTD for the diffraction by the aperture of a wide slit [5,43]. The method




they proposed provides physical insight into the mechanism of diffraction singce the

geometrical parameters dictate the paths of the propagating rays. Another advantage

of this method lies in its simplicity as it employs elementary (trigonometric) functions
for the far field calculations and the resulting asymptotic solution is comparable in
accuracy with the infinite series solution resulting from using the boundary value
approach for large aperture dimensions. The closely related problem of diffraction
by a thick slit is also investigated in great detail in the literature using different
approaches. Some of the reported methods are the Wiener-Hopf and the generalized
scattering matrix techniques which were used by Kashyap and Hamid [44]. Although
numerical methods are not suitable for semi-infinite scatterers, Morita was able to
use the method of moments (MM) along with the current on an infinite conducting
plane as a priori knowledge to study the diffraction of a plane wave by a two-
dimensional aperture with arbitrary cross-section [45-47]. Furthermore, experimental
investigations of the diffraction characteristics of a thick slit were reported by Hamid

et. al. [48,49], but they are limited in number and scope.

The diffraction by a double wedge forming a slit type geometry was only investi-
gated asymptotically by Teague and Zitron [50]. Their analysis is based on the Zitron
and Karp approximation for the scattering by multiple cylinders [51]. It is obvious
that further investigation is needed, especially when variations in the geometry are
considered. One of the main objectives of this thesis is to show the relation between
the double wedge geometry (wedge angle, shape of the wedge edge and separation
between the two wedges relative to wavelength) and diffraction characteristics
(induced surface currents, diffracted pattern, transmission coefficient, aperture field,
etc.) for an incident plane wave. More important for engineering applications is the
interdependence between the various variables. It is obvious that the absence of an
exact solution for this problem corresponds to lack of knowledge of the exact edge-
to-edge interaction mechanism and the resulting exact field distribution on the aper-

ture plane. Therefore, a novel technique based on the spectrum of cylindrical waves




(CWS) will be de\}eloped in Chapter 2 to solve the problem of scattering by multiple

bodies. The CWS technique is first applied to the problem of scattering by two
parallel conducting cylinders to verify its validity. Then the diffraction by two semi-
infinite wedges is attempted for wedges with sharp as well as cylindrically capped
edges.

In view of the advantages of using dielectric inserts to improve the behavior of
aperture antennas [52], asymptotic solutions for the loaded aperture of a wide double
wedge are presented in Chapter 3. These inserts are introduced in order to control
the effect of edge-to-edge interaction on the total diffracted field by placing an addi-
tional cylindrical scatterer near or at the aperture plane. This scatterer is chosen to
be a circular conducting cylinder, a circular homogeneous dielectric cylinder or a cir-
cular dielectric shell with inhomogeneous permittivity profiles. In addition the
effects of rounding or cylindrically capping the sharp edges of the two wedges on the
diffraction charactcristics are also presented. It is worth mentioning that the main
asymptotic solution in Chapter 3 is based on an extension of the Karp and Russek
[38] technique to the diffraction by a wide slit to handle the problem of scattering by
three different cylindrical objects (dielectric and/or conducting). Keller’s ray tech-
nique for the diffraction by a slit in a perfectly conducting screen [5], is also used in
some geometries to derive alternative simple expressions for the diffracted fields and

the transmission coefficient.

Since there has been no comprehensive solution to cover the entire scope of
geometrical possibilities of a double wedge in a simple analytical form and to further
check the CWS results for narrow separations between the two wedges, a numerical
method based on modification of the MM for the scattering by two cylindrical
scatterers is investigated in Chapter 4. The method is verified by comparing the
numerical results for some special cases, namely two parallel cylinders, thin slit and
thick slit with previously published data. Furthermore, the diffraction charact‘eristics

of a double truncated and capped wedge are presented.




Chapter 5 summarizes the general conclusions of this thesis and points out the
areas of future research. In particular, the possibility of partial cancellation of the

edge diffraction terms is suggested through an active technique involving a line

source located near the edge of each wedge.




CHAPTER 2

RIGOROUS SOLUTION BY THE CYLINDRICAL
WAVE SPECTRUM TECHNIQUE

The two body scattering problem is a special case of the multiple body scatter-
ing problem and is encountered in a variety of engineering applications. For example,
the solution may be applied to antenna coupling, aperture arrays and grid simulation
of reflector antennas and many more. An exact solution for the scattering problem is
usually obtained using analytical techniques which involve the boundary value
approach. This is only useful if the geometry of the bodies permits separation of
variables in the wave equation and frequently when the size and separation between
the bodies are of the order of the wavelength. Various analytical and pumerical
methods have been developed for finding solutions to multiple scattering problems.
However, the great majority of these techniques is restricted to different approxima-
tions, such as the low frequency (Rayleigh) or high frequency approximations. The
non-uniform GTD is useful for large bodies with large separations although it suffers
when the bodies become too close to one another or complex in shape (bodies con-
taining sharp points, or curves with‘ small radii of curvature such as edges and
corners) or when the contribution of the geometrical shadow regions becomes impor-
tant [8]. On the other hand the MM is most useful for small bodies and relatively
small separations; however the m’eﬂmory size needed to store and invert the generated
impedance matrix becomes unmanageable as the size and complexity of the problem
increases. Therefore successive scattering in the frequency domain may be con-
sidered thie most logical approach to determine the total scattered field due to multi-
ple bodies. Previous attempts to solve the multiple scattering problem by successive

scattering assume plane or cylindrical waves or combination of plane waves and their




derivatives (with respect to incident and observation angles) in order to account
more accurately for the interaction between the bodies. Unfortunately these
methods tend to fail when the separation distance approaches zero as the wave front
of the interaction becomes more and more complex. This problem can be avoided by
adopting a different approach which consists of first evaluating the exact current dis-
tribution initially induced on a sheet which coincides with the surface of each body
(due to a specified source) prior to taking interaction into account. If the nature of
the body and the source are such that there is an exact solution for the initial
current distribution on each body due to the given source, then the multiple interac-
tion process can in principle be treated exactly resulting in a series where each term
accounts for one interaction. This is achieved by employing the solution for the
scattering of either body by a point or a line source field. Thus if the initial current
sheet is viewed as an array of infinitesimal point or line sources, then each order of
interaction can be expressed as an integral over these sources with the integrand
corresponding to a solution for a single point or line source, and the integral desig-
nated as a spherical wave spectrum (SWS) or a cylindrical wave spectrum (CWS),
respectively. Theoretically the multiple interaction problem reduces to the computa-
tion of an infinite number of terms each involving a spectrum type integral. It is
obvious that in two-dimensional scattering problems, the point source array reduces
to line source array in the same manner as aperture diffraction is computed by

Huygens’ principle for apertures of infinite extent in one dimension.

In this chapter an iterative scattering is developed where in each iteration a
cylindrical wave spectrum (CWS), due to induced Huygens type line sources on the
scattering surface and emanating from each object towards the other, is computed.
This is employed iteratively in order to determine the additional interaction field due
to multiple scattering and consequently the modified surface current disiribution on

all the scattering surfaces. Once the final induced surface current distributions are




known, the fields can be evaluated using well known relations. This technique does
not suffer from any limitation on separation and can handle small as well as large
scatterers, provided that the scattering by a single body in isolation is obtained in a
rigorous form. The method is applied specifically here to two parallel circular con-
ducting cylinders and two semi-infinite conducting wedges, whereas it can in fact be

used for any number of similar or different scatterers.

In the past the problem of scattering by two ¢r multiple circular conducting
cylinders has received great attention in the literature. Row considered the scatter-
ing from an arbitrary array of parallel cylinders in general and two identical conduct-
ing cylinders in particular where an infinite matrix equation is involved [53]. He con-
sidered a finite number of equations as an approximation and solved the matrix
equation numerically using a diagonal approximation. Twersky employed an iterative
procedure to obtain closed form solutions for several cases by retaining only the larg-
est terms involving the separation between the scatterers in each order of scattering
[54]. Some of these forms are for two scatterers with radii and spacing small com-
pared to wavelength, for two arbitrary cylinders with each in the far field of the
other and for multiple equi-spaced coplanar cylinders (a finite grating) when end
effects are neglected. Millar considered the two cases of parallel and perpendicular
polarization for a row of perfectly conducting cylinders of arbitrary cross-sectional
shape [55]. For two cylinders and parallel polarization, his closed form approxima-
tions for the multiple scattering coefficients are identical with those forms given by
Twersky for two arbitrary scatterers. Zitron and Karp showed that the diffraction
by two parallel cylinders of arbitrary shape can be expressed in terms of the unper-
turbed scattering amplitudes of the individual cylinders [51]. The formula is valid
when the spacing between the scatterers is large compared to their dimensions. It

involves derivatives of the scattering amplitudes with respect to the angles of

incidence and observation. A formulation based on multipole expansion of the
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scattered field due to two or three paralle conducting cylinders is presented by
Howarth and Pavlasek [56,57]. They also evaluated the diffracted field and the
induced current on the surface of two cylinders and verified their numerical results
experimentally. Hongo gave a comparison between two asymptotic approximations
for the multiple scattering by two circular conducting cylinders [58]. A boundary
value solution was also derived by Young and Bertrand for the scattering by two

parallel cylinders [59]. Their solution includes all terms of multiple scattering

between the two cylinders. Ragheb and Hamid used Twersky’s technique for the
scattering by N parallel cylinders to develop an infinite matrix equation which they

solved numerically after truncation [60]. They also extended one of the asymptotic

solutions used by Hongo for the scattering by two cylihders to the scattering by mul-

tiple cylinders. The scattering by parallel conducting éylinders of arbitrary cross-

section was also investigated numerically by Andreasen [45] and Mullin et al. [61]
_using two different methods, while the problem is usually reduced to a solution of
integral equations which result from applying the boundary conditions in terms of
the unknown induced surface currents. The numerical evaluation of the integral
equations is usually carried out using the method of moments [45,46]. More recently
a modification to the method of moments is presented for the case of scattering by

two circular cylinders [62,63].

2.1 Computation of the induced surface currents

Consider the E-polarization case (TM with respect to z axis) where the electric

field has a z component only with all vectors independent of z of the circular

cylindrical coordinates (p, ¢, z ), while the time dependence ¢/®! is considered and
suppressed throughout. For a plane wave of unit amplitude incident on two parallel
cylindrical scatterers at angle ¢, with respect to the negative x axis, the incident

field E;; is given by

B = o hpeos (o)



where k is the wave number 24t /A , M is the wavelength and the subscript p refers to

a plane wave. The boundary condition on a conducting surface is
i 5 —
E, +E° = 0

while the scattered field ES is given by

ES = - LE [ ) Hok 15 -1 dC @3)

where C is the total contour of the cross-section of the scatterer, the superscript §
refers to the scattered field, m is the intrinsic impedance of free space and J is the z
directed linear surface current. H y(x) is the Hankel function of order zero and
argument x while the superscript (2) is implied and suppressed throughout. It is also
known that the field of any infinite line source of unit amplitude located at (p, , $g)
and parallel to the z axis can be expressed in terms of the Hankel function as follows

[64] :

; k
Ef =— L= HokR) (2+4)

where R is the distance between the line source and the field point and the subscript

! refers to the line source.

For the scattering by two bodies one may consider each of the two bodies as
excited by the original incident field and the scattered field which results from the
other body due to the original incident field where only first order interaction
between the two bodies is assumed. For higher orders of interaction, the resulting
scattered field from previous order is considered as a new excitation for the other
body. In each interaction the basic formula that describes the scattered field is given
by Eq. (2-3), where the Hankel function in the integrand represents a cylindrical

wave of normalized intensity J. In view of Egs. (2-3) and (2-4) we notice that the




scattered field in each iteration can be represented as an integral or sum over
cylindrical waves with different amplitudes and origins. Each of these waves is
incident on the second scatterer and produce additional scattered fields. It is clear
that the application of this method requires knowledge of the induced currents on
the surfaces under consideration due to an incident plane wave and a line source
field separately. For geometries which consist of scatterers like half planes, circular
or elliptic cylinders, wedges or any combinations, it is always possible to use the
exact expressions for the surface currents since there are exact solutions for the
scattering by each of these individual bodies in isolation. In fact the proposed tech-
nique is still applicable to bodies of arbitrary cross-sectional shape once the surface

currents are obtained using any appropriate method [45,46,61,65-67].

As an example, consider a perfectly conducting circular cylinder defined by the
surface p = a with its axis coinciding with the z axis of the circular cylindrical coor-
dinates (p , ¢ , 7). The exact expression for the scattered field due to an incident
plane wave and a line source field (defined by Eqs. (2-1) and (2-4), respectively) are
given by E ,‘,9 and E,s , respectively [64] and can be rewritten after some mathematical
manipulations in the following modified form

= ., Ja(ka)
=3 € o (ka) T (kp) cos n(d — &) (2-5)

n=0

a)
4 ka)

A’
nk S e, —H-—(E——— H,(kpg) H,(kp) cos n(d — &) (2-6)

n=0

where Neumann’s number €, is 1 for n =0 and 2 for n > 0, J,(x) is the Bessel
function of the first kind of order n and argument x and H,(x) is the Hankel func-

tion of the second kind of order n and argument x.

From the boundary conditions the electrical surface current on a conducting

surface J can be given in terms of the total magnetic field H' on the surface as




follows :
J=hxH' 27

where A is the outward unit vector normal to the conducting surface and the total

magnetic field in this case is
H =H,p+Hyd. (2-8)

The electric surface current can then be determined using Eq. (2-7) where A is

replaced by the outward unit vector normal to the cylinder surface, i.e. f. Since
Hy=—"—T—7—— (2-9)

where E' denotes the total field (E’ + ES) due to the original incident field, the
exact expression for the z directed linear current density due to an incident plane
wave J, is given by

2 < . €08 (b — &)

J, = —— . 2-10
P mmka EOE"J H,(ka) (2-10)

For a line source field defined by Eq. (2-4), the corresponding z directed linear
current density J; is derived using Egs. (2-4), (2-6), (2-7), (2-9) and the Wronskians
of Bessel functions. The result is

1 ot Hn (k pO)

2_0 €, m cos n($p — ¢p). (2-11)

Another example is a sharp wedge defined by two half-planes at ¢ = 0 and
¢ =2 w — v intersecting along the z axis. In order to find the exact current distri-

bution on the surface of the wedge due to an incident plane wave or line source

field, we use the exact expressions for the total field E; and F { , respectively, i.e.




Jﬁ(kPO) Hl(kp) sin (% d’) sin (% ¢0) ’ P>p0

. ; (2-13)
J_n_(kp) H_ﬂ(kPO) sin (; (b)’Sin (_; d)O) ’ p<p0

v

where the superscripts 1 and W refer to the total field and a sharp wedge, respec-

tively, and

v=0Q2w—¥vy)/w.

Since the outward unit vector normal to the wedge surface /i is defined by

. ) =0
A=]_s &= 2w — (2-15)

the electrical surface current can be written using Egs. (2-7), (2-8) and (2-15) in the

following form

, $=0

, d=2m — vy (16)

JUW JLW

where the and are the z directed surface currents and the superscripts U

and L refer to the upper and lower surfaces of the wedge, respectively. Further-

more, we have

W
H = — ,1 9E ~ (2-17)
e jnkp 8

Thus, using Eqs. (2-12) and (2-13), the exact expressions for the surface currents

reduce to




4 < ; i
Jov = —— 3 n J" T (kp) sin (% &)
Jnkpv n=1 v v
(2-18)
= s 3 5 00 sin 6
Jnkpv n=1

JP¥ = __.I__ E nJ,(kpo) H ,(kp) sin (— $o)-
pv n=1 v v
> Po<p(2-19)
I = - E':T 3 n (<1 I, (ko) H , (kp) sin (2 )
n=1 v v

For py> p, the arguments of the Bessel and Hankel functions in Eq. (2-19) are inter-

changed. To avoid the numerical difficulty which would arise if we use the surface

currents on the upper surface of each of the two wedges, we let J If] ¥ be written as a

JPO

sum of the physical optical current plus the edge diffraction current J 4 Obvi-

ously J 4 and Jpl'W decay as the distance from the wedge edge increases until they

finally vanish at infinity. Moreover, the scattered field component, E go , from a sin-

gle wedge due to JPO can be written for a normally incident plane wave as

ES, = ——’;-fHO(k 15 - %1) dx. (2-20)
0

In terms of the local coordinates of the wedge, it is obvious that E3, is zero in the

far region to the left of the x = 0 plane, while in the far region to the right of the

x =0 plane and for y < 0, Ego represents the wave which completely cancels the
incident wave, while for y > 0 it corresponds to the wave that would be reflected
from an infinite conducting plane. Since we are interested in the near as well as the
far fields, the value of £ ;.50 is investigated at the position of the edge of the opposite

wedge. Since E ,‘50 can be expressed in a simple closed form in the near field [68,69],

therefore in the presence of a second wedge (see Fig. 2-1) E ;.50 is replaced by a line

source located at the wedge edge. The intensity C of that line source is found to be
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(see Appendix A)

Co=1 f; - —n— [ Hokeydt ]/ Hohs ) (2.21)

in order to represent E 1‘§0 at the edge of the opposite wedge.

For a single wedge with cylindrica! cap of radius r and axis coinciding with the
wedge edge, the total fields E; or E,’ due to a plane wave incident or a line source

field, respectively, are given exactly by
t — W 1C
E, =E," +E,

El' - EltW + EIIC

where E ;w and E ,’W are given by Eqs. (2-12) and (2-13), respectively, and

J (kr)

n

Ef=23 jvH 560 7y sin( % $) sin( 2 4,) e=r (22

H(k)

v

—F H (kp) sm( ) sm( ) ,p=r. (2-25)

The surface of the capped wedge , Scw , is composed of two plane surfaces say Sy
and §; and the cylinder cap surface S as shown in Fig. 2-2. Sy may be character-

ized by the following relations

Scw =8y +8¢ + 8, (2-26)

where for Sy, $ =0° ,p>r, for S¢ , p=r ,0=¢=2w—y and for §; ,
¢ =2w—y ,p>r. The unit vectors normal to the surfaces Sy; , Sc and S; are

then defined by Ay , A¢c and A, respectively, and given by



Upper surface S

= X !

8T

Lower surface SL

Fig. 2—2 : Capped wedge geometry.




On Sy, the electric surface current due to a plane wave or a line source filed are

denoted by J ‘fj and J ,U, respectively, and are given by

U_ juw uc

Jp =J," +J;

JIU=JIUW+JIUC.
Similarly on §; , we have

L _ jLW LC
Jp=J," U,

JE=a% + g€

(2-31)

where JI?W , J,UW , J;‘w and J,LW are given by Eqs. (2-18) and (2-19), respectively,

while

. J (kr)

Jﬂk n2=1 o (kp) H (k )

n
v

sin ( dp)

J (kr)
iy S G

1 4

n J (k1)
Jnkpv2 nzln( T (kp) Hn(k )

v

sin ( )

(2-33)

| (2:34)




J (kr)

oo

n (-1)" H (kpo)H kp) 7=

n=1 v

H K] sm( do).  (235)

v

However, for the current distribution on Sc due to a plane wave incident, we have

n

C
Tr = 'qkr'rrv 2 H (k)

v

Lo sin(> ¢) sin(Z ¢o) (2-36)

whereas for a line source field, the corresponding expression of the surface current is

given by

H (k Po)

.._.2 o0

'rrrv"

sin( = ) sin (2 o).

1 H a(kr)
v
Furthermore, it should be noted that the upper limit of the integral in Eq. (2-21)
which is denoted by s, for a double sharp wedge geometry, should be replaced by

512 + ¢ for the double capped wedge case.

In this representation the final induced surface current J* is given by

Jt =17, + i TN (2-38)
N=1

where J, represents the surface current due to the original incident wave, J,N
represents the additional surface current due to the previously induced surface
current on the other body and the superscript N denotes the order of interaction.
In other words .I,l is evaluated from the scattered field due to the initial surface
currents J, produced by the incident plane wave times an appropriate phase
difference according to ¢, whereas J2,J3, -+ on one body are due to

J,l, J,z, -+ - on the other body.




22 Far field pattern

A convenient representation of the total field can be written as
E'=E +E (2-39)

where the non-interaction field E ’ represents the geometrical optics field E4 plus the
diffracted fields (or the incident field E? plus the scattered fields) when each body is
excited by the original incident field separately. The interaction field E~ can be
determined once the total surface current J' is evaluated. Referring to Fig. 2-3, E

due to two parallel cylinders of radii a and b can be given exactly by

® : J,(ka)
. +jk
-3 e [e oo b ey Ha(kp) cos 1 (b~ &9

FAD)

+ e—-jksz cos &g
H,(kb)

H,(kpjy) cos n(d; — dy)

while E may be written as

© n k
{ 3 €n T, ((kb)) H (sz)f -"(4’1) cos n(dy — q3) Holkp,) d &y

=0

J_(k
+ 3 € Tt ( <) H,(kpy) f J'(d’z) cos n(dby — q1) Hylkpy) d $, (2-41)
n=0 H (k ) .

where J! is given by Eq. (2-38) and

P1="V(s1; — b cos $,)* + (b sin $,)?

b sin ¢,
— b cos ¢,

-1

ql—w—tan

= \/(512 — a cos (bl)z + (a sin ¢1)2
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g2 =m — tan™! su“_si“ct; ™ (2-45)

S12 =89 t+ 5,. (2-46)
Upon using the far field approximations

P = p—s,c08 ¢ (2-47)

P2 = p +s55c08 ¢ (2-48)

db1=6% (2-49)

the scattered field pattern F (¢) of the two parallel cylinders can be conveniently

expressed as

e—jkp

Es (p"b) = vm F(‘b) (2'50)

where F may represent the non-interaction scattered field pattern (E" — E') or the

E " pattern or the total scattered field pattern ES (ie. E'+E" - E .

The properties of plane wave scattering by any conducting cylindrical structure
of infinite length along one of the coordinate axes are usually described in terms of
the scattering cross-section which is denoted by o and defined as follows [64]

'ES I2
o(d) = lim 2xwp I—-(L'-i)-l .
p~ @ |

FY (2-51)

From Egs. (2-1) and (2-50), the scattering cross-section of the double cylinder

geometry is given by

@)= IF@)I2 (252)



For the double wedge geometry (see Fig. 2-1) the far non-interaction field can
be determined using Keller’s geometrical theory of diffraction for all observation
points away from the shadow and reflection boundaries. Upon using the asymptotic
expression of the diffracted field due to an incident plane wave on a conducting

sharp wedge, E “can be written in the following form

E =E% + %T,‘ [Hokpy) e ™ 1°% g (b1, do1,vi,71)

+ H(kpy) e ks2cos bo o ( by, b2, v2,72) ] (2-53)

while the diffraction pattern function g is replaced by gV or g% + g€ for a sharp

or capped wedge, respectively, where

8 (4, 4,0 ) = SO o (T — cos (2—20) 1

[eos (1) ~ eos (220 1

r) = _.L v -
g% (o, dg, v, 1) "21 H (k ) sm( &) sin(— ¢0) (2-55)

V
Furthermore, v{ and v, are defined by Eq. (2-14) except that y equals o or B for v,
or v,, respectively and r{ and r, are the radii of the cylindrical caps at the edges of
the two wedges A and B , respectively. &g , &g, are the angles of the incident plane

wave in terms of the local coordinates of the two wedges A and B, respectively.

For any far field point E “ can be determined using Egs. (2-3) and (2-13) and can

be written as
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. k
E =- 32“ H ok py) fCIJ'(Pl)f (b2, P2, 92, v2) d Py

+ Ho(kpq) fCZJ'(Pz)f (1, P1, 91, v dp2

where for a sharp wedge

P1=

P2 =

q1 =

q2 =

;

P2 t+s12

! . 2
V(p; cos B + 519)* + (py sin B)
.
Pr 512
Vpy cos a +519)* + (py sin )’
13
w +tan~! Pz sin B
pycos P + 59
1
4 o + tan™! ! sin &
pl cos o + le

b

’

’

¢2=0
b, =2mw — B

¢ =0
;=27 —«a

$;=0
b, =2w - B

$1=0
b =27 —«a

(2-56)

(2-57)

(2-58)

(2-59)

(2-60)

while f is given by f ¥ for a sharp wedge or by f W + £C for a capped wedge,

whereas according to Appendix B, we have

FY (b, po dg, v ) = — /P (790

and

4 = =
+-— j.v
v

n=1 v

nd
7 (ko) sin (=2) sin (—2)

(2-61)
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on J (kr)
f€(d,po ¢0,v,r)=--‘:;‘-1— 2 jv H (k )H a(kpo) sm( b) sm( dg).  (2-62)

n=1
1 4

C, and C, are finite parts of the semi-infinite cross-sectional contours of the two

wedges A and B, respectively, on which J ¢ and J ;‘ ,1 exist. It is to be noticed that
J! in Eq. (2-56) is given by Eq. (2-38) except that Jp .is replaced by J¢ and the

assumed line source intensity C; at the edge of the wedge. Hence, the total far

diffracted field E? from the two wedges (E "+E"—E* ) is completely determined
and the far diffracted field pattern F ($) can be defined when the far diffracted field

is expressed as

._'k

E4(p,d) = 2= F(&) (263)
Vark p

As a result, the transmission coefficient T for a normally incident plane wave is

given by
T = Re (1)) F (ZD)/ks

23 Numerical examples

Due to the numerical limitations, the maximum number of interactions used in
the following results is assumed the value 9, whereas the number of line sources per
wavelength is chosen to be approximately 10 to give appropriate accuracy up to the
third decimal point in the values of o and T for the closest separation between the

two wedges or cylinders. In Fig. 2-4, we present the total scattered field pattern due

to a plane wave incident at angle ¢y = 90° on two identical conducting parallel
cylinders of radii ka = kb = 0.5 and ks = 2. As shown in the figure the ES pattern
due to the CWS technique approaches the pattern due to the boundary value solu-

tion [59,60] as the number of interactions N increases. It is found that the maximum
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deviations from the exact pattern for any small value of N are always in the forward
and backward directions of the incident plane wave. To further indicate this
behaviour the interaction scattered field component E ~ is computed and presented in

Fig. 2-5 for the same parameters in Fig. 2-4.

As a criterion for terminating the interaction process, one may observe the
additional increment in J' after each iteration and set a minimum quantity for that
increment after which the interactions can be terminated. In fact a better approach
is to check the tangential electric field E, on the surface of one of the two cylindri-
cal conductors due to the scattered field from the additional induced surface current
on the other conductor. An example of this process is shown in Fig. 2-6 for E, on
the surface of cylinder 1 which is part of the two cylinders geometry as shown in Fig.
2-3. In the figure ¢y = 90°, ka = kb = 05 and ks, = ks, = 2. It is found that the
peak value of E, is nearly at ¢ = 180° which is the direction of cylinder 2 and
where the multiple interactions between the two cylinders reach a maximum. It is
also clear that all the points of the E, pattern decay as N increases and approaches

zero when N tends to infinity.

One of the important parameters in the scattering by conducting bodies is the
scattering cross-section. In table 2-1 the forward and backward scattering cross-
sections of the double cylinder geometry are indicated for different values of ks,
namely 3 and 6, and for ¢y = 90°. The numerical values of o are shown for two
identical cylinders of radii ka = kb = 0.5, 1.0 and 1.5. From the table one notices

that o increases with ka regardless of the value of ks. It is clear that the required

number of iterations to obtain a value of o close to the exact value depends on the

ratio s /a. As an example, for s /a = 10 four interactions (N = 4) are sufficient for
at least two digits of accuracy. Higher values of N are needed when s/a < 10 as
shown in the table. Table 2-2 is similar to table 2-1 except for ¢y = 180°. In com-

paring the numerical results in tables 2-1 and 2-2, we find that the forward as well as
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Fig. 2-5 : The interaction scattered field pattern.for

two parallel circular conducling cylinders.
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Fig. 2-6 : Amplitude of the tangential electric field
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O 0 NN O v & N =

Boundary
value

ks =3 ks=

ka =05 ka=1.0 ka=15 ka =05 ka=10 ka=15

24765 9.3566 19.7297 29273 9.2810 16.5740
22977 8.9939 22.7429 2.7688 9.3779 17.2872
2.3881 8.5758 24.1345 27932 9.3046 17.4196
2.3743 8.4624 247672 2.7957 9.2733 17.4334
2.3718 8.4736 25.0520 2.7946 9.2666 17.4300
2.3735 8.4921 25.1796 2.7946 9.2661 17.4269
2.3732 8.4974 25.2366 2.7947 9.2663 17.4255
2.3732 8.4969 25.2620 2.7947 9.2664 17.4250
23732 8.4961 25.2734 2.7947 9.2664 17.4249
2.3728 8.4962 252913 2.7945 9.2680 17.4272

( a ) Forward scattering cross-section ( ¢ = 270° ).

Z

ks =3

ks =6

W e N &N W N

0.7164
0.7417
0.7795
0.7662
0.7673
0.7679
0.7676
0.7677
0.7677

14324
0.9923
0.9537
0.9913
1.0092
1.0110
1.0093
1.0084
1.0084

3.0372
2.9375
2.9449
2.9627
29743
2.9804
2.9835
2.9850
2.9857

0.9950
0.9488
0.9680
0.9674
0.9668
0.9669
0.9669
0.9669
0.9669

1.8684
1.6338
1.5832
1.5787
1.5800
1.5807
1.5808
1.5809
1.5809

3.4599
3.6272
3.7166
3.7513
3.7629
3.7665
3.7675
3.7677
3.7678

Boundary
value

0.7674

1.0079

29870

0.9667

1.5805

3.7683

( b ) Back scattering cross-section ( ¢ = 90° ).

Table 2-1 : Scattering cross-section of two parallel circular conducting

cylinders with ¢, = 90°.
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( a ) Forward scattering cross-section ( ¢ = 0° ).
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( b ) Back scattering cross-section ( ¢ = 180° ).

~ Table 2-2 : Scattering cross-section of two parallel circular conducting °
cylinders with ¢, = 180°.
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the backward values of o for ¢ = 180° are always smaller than the corresponding
values when ¢y = 90° regardless of ka and ks. The good agreement between the
numerical results in tables 2-1 and 2-2 obtained by the CWS technique and those
evaluated using the boundary value solution establishes the validity of the CWS tech-
nique.

For all double wedge results, we consider for simplicity the symmetric
configuration where ¢y = 90°%, ks = ks, =ks, kry=kry=kr and a = = v.
Furthermore, it is worth presenting the behaviour of some of the physical parameters
involved in the calculations. As an example, consider Fig. 2-7 in which the field due
to the physical optics current on the surface of one wedge at the edge of the oppo-
sitc wedge is shown as a function of ks. Obviously it is necessary to include E go in
the double wedge analysis for all narrow separations between the two wedges. How-
ever for wide separations it can be ignored since the value of Ej, decays in an oscil-
latory fashion and tends to zero as ks approaches infinity. On the other hand, the
peak to peak value of the intensity of the assumed line source C is‘ found to be
increasing as ks increases. Although the oscillations of ES, and C are similar and
have the same period, it is clear that the maxima and minima of these oscillations do

not coincide with each other.

Since there is an exact solution for the diffraction by a slit (double wedge
geometry with a = B = 0?), the diffracted field is computed for the slit geometry in
order to check the accuracy of the solution. For this special case, each of the series
in Egs. (2-18) and (2-19) can be transformed into two new series. As an example for
v = 2, Eq. (2-18) can be written after some mathematical manipulations in the fol-
lowing form,

"

0 m
Jp = ——— (2m+1) j
jmkp ,,,2=0

Iy k0)sin [(n+3) b0




Fig. 2-=7 : ES and amplitude of C; vs. ks.
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2 i I j! J,(kp) sin (I &) (2-65)
1=1

where the upper sign pertains to Jlf’w and the lower sign to J;W. In comparing Eqgs.
(2-18) and (2-65), it is found that the expressions given by Eq. (2-65) for the surface
currents are much simpler than those given by Eq. (2-18) regarding the numerical cal-

culations. This is simply due to the use of the recurrence relation of the Bessel func-
tion (J,41(x) = 2 J,(x) —J,_1(x)) while evaluating the summation in Eq. (2-
x

65), whereas in Eq. (2-18) the orders of the Bessel functions prevent the use of any
recurrence relation and one is therefore forced to evaluate J,,(kp) for each
different value of n. Furthermore, since the Bessel functions of an order equal to
integer plus half (as those in the first series of Eq. (2-65)) have simple expressions in
terms of triagonometric functions, the execution time is greatly reduced when using
Eq. (2-65) instead of Eq. (2-18). Similarly Eq. (2-19) can be written in terms of two
series. The first series contains Bessel functions of orders equal to integer plus half
while the second series contains Bessel functions of integer orders only. Fig. 2-8
shows the diffracted field pattern of the slit due to an incident plane wave and
ks = 8. It is obvious that the dashed curve, which represents the singly and multiply
diffracted fields up to the fifth order of interaction, is closer to the exact solution
than the solid curve which accounts for the singly diffracted fields. For narrow slits,
one expects a significant contribution from the multiply diffracted fields to the total

field. This is clearly shown for one case in the same figure, namely ks = 4.

To further check the accuracy of the numerical calculations, the transmission
coefficient T defined by Eq. (2-64) is computed. The resulting values of T obtained
using the CWS technique are compared in table 2-3 with the available exact as well
as asymptotic (GTD) values of T [34,5]. It is to be noticed that the values based on

the CWS technique are computed with relatively small number of interactioris and
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Table 2-3 : Slit transmission coefficient for ¢y = 90°.




are in better agreement with the exact values than those based on Keller’s asymptotic

solution in which all infinite interactions are considered.

Figure 2-9 shows the transmission coefficient of a double wedge geometry as a
function of interior wedge angle y for different values of ks, namely 1, 2 and 4. In
this figure the results based on the CWS technique are shown along with two
different asymptotic solutions. The first asymptotic solution [70,71] is an extension of
a technique used for the diffraction by a wide slit [38]. In this solution the interac-
tion between the two wedges is in the form of cylindrical waves. In the second
asymptotic approach the interaction between the two wedges is expressed in terms of
plane waves and derivatives of plane waves with respect to the incidence and obser-
vation angles [50]. The numerical results in Fig. 2-9 indicate good agreement
between the CWS technique and the other two asymptotic techniques for ks = 4,
whereas for ks = 2 small deviations are observed. It is believed that the results
obtained using the CWS technique are closer to the exact solution as in the case of
v = 0. Furthermore, for small separations, namely ks =1, it is clearly shown that
both asymptotic solutions deviate from the CWS results. In general one observes
that the effect of the interior wedge angle on T is large for small values of ks
whereas for large values of ks the changes in T become very small except for very

large a or B.

With respect to the double capped wedge geometry, the total current distribu-
tion on the surface of one of the two wedges is shown in Figs. 2-10, 2-11 and 2-12
where kr is equal to 0.05, 0.1 and 1.0, respectively, and for N =1, 2, 3, ..., 6. One
can easily notice that J' converges after a few interactions between the two wedges
for the case when ¢y =90°, ks =7 and y = 10°. It is also found that the peak
value of J! decreases with increasing kr. The transmission coefficient is shown for
different values of y, namely y = 0%,y = 10° and y = 20° with ¢y = 90° and for

kr = 0.5 in Fig. 2-13. The Figure also shows an asymptotic solution [72,73] based on
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the assumption that two fictitious line sources (located at the virtual edges of the two
wedges) are used to account fof the total interaction between the wedges. It is
clearly shown that there is an excellent agreement between the computed values of T
using the CWS technique and the asymptotic method for all large values of ks.
However, for small values of s some deviations are observed. Although, these devi-
ations are small (because T is an integral quantity based on the diffracted field
values at all observation points), it is obvious that the deviations in the diffraction
pattern are significant especially for small values of ks. These deviations in the
diffraction field pattern are shown in Fig. 2-8 for the uncapped slit and in Figs. 2-14,
2-15 and 2-16 for the capped slit geometry where ks = 4, 6, and 8, respectively, and
kr = 1.0. It is obvious that as ks increases the results based on the asymptotic solu-
ticn are in good agreement with those obtained using the CWS technique, as

expected.
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CHAPTER 3

MODIFIED ASYMPTOTIC SOLUTION FOR
A LOADED APERTURE

In the previous chapter, the problem of two-dimensional scattering by two
bodies is formulated rigorously using a novel CWS technique. Although the CWS
technique is valid for small as well as wide electrical separations between the two
bodies, it is found that for wide separation the numerical results based on the asymp-
totic solution agree very well with those obtained by the CWS teclinique. Therefore,
it is appropriate to use an asymptotic solution where it is valid to show the relation
between the diffraction characteristics and the geometrical parameters of the double
wedge. Moreover, the effect of adding new scatterers or changing some of the
geometrical shapes of the two wedges (see Fig. 3-1) on the diffraction characteristics
can be investigated if the asymptotic solution is valid for obtaining the parameters in
question. Among the suitable loading objects for the double wedge geometry is the
circular cylinder or cylindrical shell, where the cylinder may be located at, above or
below the aperture plane. For example, if the cylinder axis coincides with either
edge of the wedge, the resulting geometry is nothing more than a capped wedge.
Thus, for a metallic cylinder loading the edge of the wedge may be physically
blocked and the resulting diffracted field from the capped wedge will depend mainly
on the radius of the metallic cap. However, if the cap is a dielectric cylinder the
edge diffracted field will be modified according to the cylinder radius and the dielec-
tric permittivity. One should also point out that the edge diffracted field can be par-
tially or totally absorbed if the dielectric is considered lossy. Another loading
geometry is when the cylinder is along the center of the aperture plane while the

plane wave is normally incident; in such case the forward diffracted field will be
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Fig. 3-1 : Schematic diagram of different types of

§ ' loading the aperture of a double wedge. :




greatly affected by the cylinder radius as well as the permittivity of the dielectric
cylinder. In addition to variations in the diffracted field in the forward direction,

ew diffraction lobes may appear which are considered as losses. It is predicted that
the existence of a third scatterer near the edges of the two wedges may create more
oscillations in the forward transmission coefficient through the aperture. Although
the location of the additional scatterer is arbitrary, there may be some restrictions on
the spacing between the edges of the two wedges and the additional scatterer or

scatterers to allow using the asymptotic solutions.

In this chapter, two simple asymptotic solutions are obtained in a physically
interpretable form and are convenient for calculation purposes. Furthermore, the
proposed solutions offer much physical insight into the complex mechanism of multi-
ple interaction between the scatterers. The double wedge diffraction problem is
attempted in Sec. 3.1 using the known solution of the diffracted field from a single
wedge. The dependence of the total diffracted field from the two wedges on the

interaction between the two edges is clearly represented by simple relations.

In Sec. 32, we investigate the effect of loading the sharp edges of the two
wedges by cylindrical caps whose axes coincide with the edges. The caps are con-

sidered to be conducting or dielectric infinite cylinders with circular cross-sections.

Since the edge of a wedge is assumed perfectly sharp, it is also our objective to
investigate the effect of small rounding of ‘the two edges on the diffraction charac-
teristics of the double wedge problem. Therefore, we present in Sec. 33 the effect of
small edge rounding using an asymptotic solution based on plane wave interaction

between the two wedges.

The scattering of an incident plane wave by two sharp wedges and an additional
cylindrical scatterer with circular cross-section is derived in Sec. 34. Some numerical
examples for the diffracted field and the transmission coeificient due to an incident

plane wave are presented in Sec. 35. The range of validity of the proposed
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asymptotic solutions as well as the effects of aperture loading are also investigated.

3.1 Diffraction by a wide double wedge with sharp edges.

For a single wedge defined by two half-planes at =y and ¢ = 2w — v inter-
secting along the z-axis of the circular cylindrical coordinates (p, ¢, z), the total
field is the geometrical optics field EZ plus the diffracted field. The asymptotic
diffracted fields due to a plane wave (Eq. (2-1)) and a line source field (Eq. (2-4))

incident on a conducting sharp wedge are denoted by E :W and E,dw , respectively,

[74] where
E§w=_—‘;ﬁlio(kp) g¥ (&, g v) | (3-1)
EfY = =% 1o kp) 77 (4, po, b0, v )- (3-2)

4

The diffraction patterns gw and f ¥ are given, respectively by

g% (b, by, v) = 2 sin(w /v) [[cos(l) - cos(-(-bi—————di(-)-)]'1
nkv v v
- [eos(Z) - cos( 2202V )l“] ()
v v
fw(d’) Pos (bO’ v) = _:_?,i HO(kPO) gw(d)’ ¢0’ v) (3'4)
where
v=2w—-v)/m (3-5)

while the superscript w refers to a sharp wedge and the asymptotic form of the
Hankel function is replaced by the Hankel function itself in the f ¥ function. From
Egs. (3-1) and (3-2) one notices that the field diffracted by a sharp wedge due to

either a plane wave or a line source field, is in the form of a cylindrical wave
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emanating from a fictitious line source at the edge of the wedge.

Employing the Karp and Russek technique for the interaction between the two
sharp wedges [38], the diffracted field due to an incident plane wave plus a fictitious

line source, located at the edge of the second wedge, is derived.

For the case of two wedges separated by s, (sharp edge to edge distance where
ks {,>> 1) and illuminated by a plane wave of unit amplitude (see Fig. 3-2), the total
field at any point is considered as being composed of the incident field plus a
resf:onse field from each of the two wedges or, alternatively , as a geometrical optics
field plus two diffracted fields (one from each wedge). It is assumed that each of
these diffracted fields is of the same nature as the field known to be diffracted by an
isolated wedge. These fields can be presented in the region far from the edge of the
wedge (e, or eg ) by Eqgs. (3-1) and (3-2). Since ¢ has the constant value w at ep,
the diffracted field due to wedge A at ez is of the form e"jk”/\/lz_p— which
represents the asymptotic field of a line source at e, . A similar remark holds for the
excitation of wedge A. Hence each wedge may be thought of as being excited by the
incident field plus a line source located at the edge of the opposite wedge. The
strength of this line source depends on the value of f ¥ (mr, sy, w,v) for the
opposite wedge.

The total field can be expressed as a linear combination of the fields due to the

diffraction of the incident planc wave (non-interaction term), and line source fields

diffracted by the two wedges (interaction term). In this representation the total

diffracted field E? for ——;—+2ch 0 =< %—ZB and 0 =a or B < -E— is
given by
E? =E4l + g2 (3-6)

where




Incident plane wave

Wedge A

Fig. 3—2 : Double sharp—wedge geometry.
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E4t = = Holkpy) [/ %Y (41, o1, v1)

+er f¥ (b 512w, vy) ] (3-7)

E92 = =T k) [ €77 0¥ (8, duz v2)

+ey f ¥ (dg 51w, v2) ], (3-8)

In Eqgs. (3-7) and (3-8) ¢y and c, are the unknown strengths of the fictitious line
sources at eg and e, , respectively, and v and v, are defined by Eq. (3-5) where v is
replaced by a and B , respectively. s, is defined by Eq. (2-46) whereas ¢g; and &g,
are the polar angles of the incident plane wave measured in terms of the local coor-
dinates of the two wedges A and B, respectively. For any far field point the quanti-

ties p; , p2 , d; and ¢, are given in terms of p and ¢ by Egs. (2-47) to (2-49) where

9=—i~—¢.

To determine the complex values of ¢4 and ¢, , one may follow the same
analysis given in [38] by imposing the requirement that the diffracted fields of the

two wedges be consistent with each other. This leads to the following equations
ey =[ e %W (m, by, v ) F ¥ (m, 515 W, vy)
e e O W b, v ) 1/ w (39
cy=[ eI %W, dop 2 ) f ¥ (w, 5020w, vy )
e I Sng W, gy, vy ) 1/ w (3-10)
where

w=1—fW(m, spmv)f¥@, sy mvy). ©(3-11)

Hence, the total diffracted field E? is fully determined and can be written after
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using the far field approximations in the following form

d e Jkp
E¢ = \/m F(O,sl,sz,vl,vz)

where F is the diffraction pattern of a double sharp wedge.

Another convenient representation for the total field can be written as
E'=E +E"
where
E =E% + ::TIE [Hotkpy) e 150 % oW (b, o1, vy )
+ Ho(kpy) e 7F250 % oW (4, bz, v2) ]

. =k
E =“‘?‘[¢1H0("P1) V@, s1m,vp)

+cyHolkpy) f¥(dg 512 m,v2) ]

(3-12)

(3-13)

(3-14)

(3-15)

The non-interaction term E represents the excitation of each sharp wedge separately

by the incident plane wave. This may be a good approximation for extremely wide

wedges. However, for narrower wedges the interaction term E  is required .

The transmission coefficient T for a plane wave incident at angle 8 is given by

[38, Eq. 31 ],
T =Re[(1"'j)i‘ ]/ksu

where F is given by F (0, sy, s, v1, v2) in the limit as 8 approaches 0,

(3-16)
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3.2 Diffraction by a wide double wedge with capped edges.

The diffraction of an incident E-polarized plane wave by a cylindrical dielectric
capped wedge was derived by Adey [75] and generalized by Towaij et al. [76] to many
concentric dielectric shells. Hamid presented a diffraction coefficient for the
dielectrically capped wedge [77], while Hamid and Towaij showed the effects of the
dielectric cap on the radiation characteristics of a capped half plane excited by a line

source field [78].

The diffraction by a wedge with a conducting cylindrical cap was solved exactly
by Karp in terms of an infinite series of angular eigenfunctions [79]. The balf plane
with a conducting cap was studied by many authors. Keller investigated the darkness
of the shadow of rounded and capped screens using ray theory and GTD [80]. A
modification to Keller’s approach to this problem was proposed by Kouyoumjian and
Burnside by including additional ray systems and using a more accurate diffraction
coefficient [81]. Keller and Magiros [82] gave an alternative exact solution for the
diffraction by a capped half plane in terms of an infinite series of radial eigenfunc-
tions and showed that their solution agrees with Karp’s solution [79]. They also
derived an approximate asymptotic expression for the diffracted field in the shadow
and illuminated regions. Starting with the exact solution, Chu et al. derived an alter-
native uniform far field asymptotic solution for the diffraction of an electromagnetic
plane wave by a conducting capped half plane [83]. More recently, Hallidy derived
uniform asymptotic expressions for electric and magnetic type plane waves diffracted
by a perfectly conducting cylinder-tipped wedge [84].

The present analysis of multiple diffraction between two cylindrically capped
wedges (see Fig. 3-3) is based upon the exact field expressibns for a single capped
wedge due to an incident plane wave at any angle and a line source field derived
using the boundary value approach [76,79], as well as the technique used in Sec. 3.1

for the diffraction by a wide double wedge. The single capped wedge geometry may

be defined by two half-planes at & =y and ¢ = 27 — v intersecting along the z
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Fig. 3—3 : Double capped—wedge geometry.
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axis and an infinite circular cylinder of radius r whose axis coincides with the z axis.

For a conducting capped wedge the diffracted field patterns due to a plane wave
given by Eq. (2-1) and a line source field defined by Eq. (2-4) are given for small
values of kr by

g(¢1¢0’vsr)=gw(¢:¢0,v)+gc : (3'17)

and

f(¢9p0)¢0’v’r)=fw(¢’p0’¢07v)+fc (3'18)

respectively, where

2 J (kr)
SC -7 Tlfv n2=1j ’ H (k ) sin _((b ~ ) sin ""(¢0 v &)
J (kr)
c_ _ 43 .5 v no.
f€ = V,,2=1J - (k)H a(kpo) sin (d) Y)
- sin %(% - ) (3-20)

while the superscript C refers to a conducting cap.

For a dielectric capped wedge the diffracted field patterns due to a plane wave

and line source field are given, respectively, by
g( &, b0, v, 7,6, ) =g¥ (b, b v) +g° (3-21)
f(d),po,dno,v,r,e,)=fw(¢,p0,¢o,v)+fD (3'22)

where the superscript D refers to a dielectric cap, ky = Ve, k, €, is the relative

permittivity of the dielectric cap and provided that kyr is not too large relative to
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unity. This leads to the relations

2n

16 s + VvV : 1
g2 = -2 5 T, sin (e —y) sin Z(4g - v) (29
‘“kv n=1 v v v
4.2 .7
;; ) ..n .
fP = — = S, J" TaHylkpy) sin :(d: =) sin -:lj(¢o —v)  (324)
n=1 v v

kJu(kyr)J , (kr) —kyJ,(kr) J , (kyr)

4 v v 14

T, = . . (3-25)
v kI (kyr)H, (kr) —kyH,(kr)J, (kyr)

v 1 4 14 v

where the prime denotes differentiation with respect to the full argument.

For small values of kr and kr relative to unity, the geometrical optics com-
ponent due to the cylindrical cap (in the presence of the wedge) is much less than
the diffracted field component [77]. Therefore, the terms denoted by g€ , £ ¢ , gP ,
and f 2 (which account for the reflected and diffracted fields due to a cylindrical
cap in each of Egs. (3-17), (3-18), (3-21) and (3-22)) may be considered as a perturba-

tion to the diffracted field due to a sharp wedge.

From Egs. (3-1), (3-2), (3-17), (3-18), (3-21) and (3-22) one notices that the field
diffracted by a conducting or dielectric capped wedge, due to either a plane wave or
line source excitation, is in the form of a cylindrical wave emanating from a fictitious
line source at the virtual edge of the sharp wedge. Therefore, the same technique
used in Sec. 3.1 can be applied here to obtain the total diffracted field and the
transmission coefficient through the aperture of a double capped wedge. However, it
should be noted that the diffraction pattern functions gw and f W defined by Egs.
(3-3) and (3-4) must be replaced by the corresponding g and f functions of the con-

ducting capped wedge or those of the dielectric capped wedge.
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3.3 Diffraction by a wide double wedge with rounded edges.

The multiple diffraction between the two wedges with rounded edges is

based

upon the scattered field expression from a single rounded wedge due to an incident

plane wave at any angle which was derived by Ross and Hamid [85], and the

tech-

nique proposed by Karp and Keller for the diffraction by a slit in an infinite con-

ducting screen [43].

The far scattered field E°, due to an incident plane wave on a perfectly con-

ducting wedge of half angle y with a rounded edge of radius a with the virtual apex

located along the z axis, is given by
E¥ =Eg fr (v, $o, §, a)
where
fr(,dpdb,a)=E +E, +E;

Eo(p) = =% Holkp)

sin [Z(6-Y)] . .

-8 jkd cos & ~ inw /2
Ey=——¢’ ¢ e/nmIey J,(kr)

I

I, (k
g kd) - -I—f—((—,:‘:;-))-HpM(kd) [d,I + k1]
p

d =a cscvy

r =d cosy =a cot y '

27—y

Iy= [ sin[ 26 = v)]cos (¢4) d¢
v

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)
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=L (1 -~ cos (aV) LAPPY
) — 4 ’
v
== | “21' _ Hn g‘”) Isin (¢v) , -'f-= ¥q (3-34)
2n—y
Ip= [ sin[2(6=v)]sin(gd) d¢
Yy .
= —"F 14 (-)msin @) Mg
(_"L) _ A2 v
- q
=+ [ ’n’zv " sin ;24']’) ] cos (gv) L’:_.___ +q (3-35)
q v
Further, we have
S S (4, Gr)H ) (kr) = () H p(kr) ]
p=0 g=—w v v
J,(ka)
. Jp+q(kd)—me+q(kd)][dp 11+hp 12]
= — % sin | L:—((bo - v)]exp [—j (kd cos ¢y — %T—) (3-36)

In Eq. (3-26) the first term E j E is the field diffracted by a sharp wedge. The
first and the second terms, E ( E, + E;), denote the solution of a plane wave
incident on a wedge with a metallic cylindrical cap of radius r. All these terms
Eo(E{ +E;+Ej3) represent the scattered field expression for the rounded
wedge. Furthermore, for small rounding (i.e. ka not too large relative to unity) we
may consider f p as the diffracted field pattern where Ey ( E5 + E3 ) is considered

to be a perturbation term due to the edge rounding of the sharp wedge diffraction

term E E; . Equation (3-36) represents a solution for the coefficients d, (when m
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is odd), and h, (when m is even) and leads to two independent sets of simultaneous

equations.

Figure 3-4 shows the case of two identical conducting rounded wedges separated
by 25 (apex to apex distance between the virtual sharp edges) where 2ks >>1 and
illuminated by a plane wave represented by Eq. (2-1). The field at any point is con-
sidered to be composed of the geometric optics field, a‘single diffracted field from
each wedge, and a diffracted field due to multiple interaction between the two

wedges . The singly diffracted field is given by

Egs =Eo(py+ ssin8y) frp(v,dp,d1,a)

+Eo(py—ssinby) fr (v, doy b2, ). (3-37)

To determine the field due to the multiple interaction between the two wedges,

B e

a table similar to that of Karp and Keller is constructed [43]. By referring to this
table and using Eq. (3-26), the total multiply diffracted field E, is obtained by

adding all types of fields in the table . Thus E,, can be written in the form

E, = {EgQ@2s) fr(v,dp,m,a) [Eg(@2s) Eg(p2)

'fR (v’ w, 'n',a) fR (va ™, ¢2s a) +E0 (pl)

fr,m,d1,a)] +Eo(2s) fr (v, bgy, 7, a)

"[E¢(25) Eg(py) fr (v, 7, by a) fp(v,m,m, a)
+Eg(p2) fr (v, 7, b3 a)]

[1-E}@s) fE@,m,ma)] L. L (3-38)

Hence, the total diffracted field E¢ equals Eg + E, which is valid in the range
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Fig. 3—4 : Double rounded—wedge geometry.
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—m2+2y=0=<7/2—-2y and 0= y < w/4

The total diffracted field is then expressed in a normalized coordinate system

with a common origin centered between the two wedges. Employing the well known

. approximations for the far field and using the resulting relations between the angles

and distances shown in Fig. 3-4 and given by Eqs. (2-47) to (2-49), the total diffracted

field may be expressed as
E? =Ey(p) F (0,5,v,a) , (3-39)
where the diffracted field pattern F of the double rounded wedge is given by
F(8,5,v,a)=e™ 0700 0y gy, 1, a)

+ g ke (sin®=sinbo) £ (b, by, by, @)

+E0(25) ej’“ sin 9 fR (v,'n',cbl,a)

[fR (v: ¢02’ W, a) +EO(ZS) fR (v’ ¢01! '":a)
“fr(vy,w,w,a)] 4 ¢ Jjks sin © fr (vym, &y a)

[ fr (@, b0, m,8) + Eg(25) fr (v, g, 7, a)

fr @ m,m,a)] H[1-EF (25) fg (v, m,m,a)] 7). (3-40)
The transmission coefficient T for a plane wave incident at any angle 6 is given

by
T =Re[(1-j)F (8,s,v,a)/2ks] (3-41)

where § =s +a +a /siny and F is given by Eq. (3-40) in the limit as @

approaches 6. It is obvious that as a approaches zero, T approaches T which is the
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transmission coefficient of a sharp double wedge of aperture 2s given by Eq. (3-16).

3.4 Scattering by a double wedge and a parallel cylinder

An asymptotic solution based on the field scattered by three objects due to an
incident E-polarized plane wave has not received great attention in the literature. A
possible approach is to use fictitious line sources, properly located according to the
geometry of each scatterer, to account for the interaction' fields between the scatter-
ers. In this section we show that it is possible to apply an asymptotic technique for
two or more different scatterers provided that all of them are infinite along one of
the coordinate axes. Examples of such scatterers are infinite cylinders with arbitrary
cross sections, half planes, wedges with sharp, rounded, or capped edges, or any
combination of these bodies. In the present geometry, we consider a circular con-
ducting or dielectric cylindrical scatterer located half way between the edges ¢f a
double sharp wedge or along the normal to the aperture plane of two sharp wedges
at a distance d from the center. Both the cylindrical scatterer and the double wedge
are assumed to be infinite in the z direction. It should be pointed out that any
improvement in the diffraction or scattering behavior of a double wedge (or a slit)
using a third body (as shown in Fig. 3-5) could be useful particularly for tandem or
coupled apertures and aperture arrays. A similar loading of the full aperture of a
slit by a circular dielectric cylinder was investigated by Hurd and Sachdeva [86]
whose solution is restricted to narrow slit widths (ks <<2.4 /\/e_,_) and yields a

maximum error of 2.1 % in the transmission coefficient when €, = 1.

In the following analysis the interaction fields between the cylindrical scatterer
and the two wedges are clearly presented by simple relations using the known solu-
tions for the scattered field by a wedge alone and a cylindrical scatterer alone due to

plane wave incidence and line source excitation.

For a line source of unit amplitude at (pg, ¢¢) and parallel to the z axis, the

total field in the presence of the wedge is the incident field Ef, given by Eq. (2-4)
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Fig. 3—5 : Double sharp—wedge and a cylindrical scatterer.
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plus the scattered field ES%. After some mathematical manipulations E] can be writ-

ten in the following form (see Appendix B)

Eli = :_ZTI.,f. Ho(kp) gk Pocos (b — &g (3-42)

and by using the exact series solution of the total field due to a line source near a

conducting sharp wedge [87], E,SW is found to be

Ef¥ = ;‘fﬁ Hokp) f¥ (b, po o, v) (3-43)

where

F¥ (b, po, by v ) = — ekPecos (6 =40

n

Y Talkpo) sin (@ —y) sin (4 -v) (4
1 v

s

L4
14

n

and where the asymptotic expression of the Hankel function is replaced by the

Hankel function itself in the expression of EJV.

For a plane wave of unit amplitude given by Eq. (2-1) the far diffracted field
E:W is the same as the far scattered field El‘fw in the forward direction. Hence, Ei,gw
may be obtained from Egs. (3-1) and (3-3).

If the loading object is a circular cylinder defined by the surface p = a with

axis along the z axis, the scattered fields due to line source and plane wave excitation

ESC

of a circular cylinder are given by EJC and P

respectively [88,89], and may be

rewritten in the following form

£5C = =K Hokp) £ (4, p0, b0 ) (345)

E)¢ = :_43!i Hykp) g(d, dg,a). (3-46)
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Here the superscript C refers to the cylinder, f and g are the scattered field pat-
terns due to a line source field and an incident plane wave, respectively. For a con-
ducting cylinder, the f and g functions in Egs. (3-45) and (3-46) are denoted by f

and g. respectively , where

_ [ on Jn (ka) k
fe(d,po dgya ) = “nz=0€n J _H—,,—(kT)H"( po) cos n(d — ¢p) (3-47)
and

4 = w Jn(ka)
g.(db,dg,a )= vy "2=o€n -1 T (ka) cos n(db — ¢g) (3-48)

whereas for a dielectric cylinder of relative permittivity €, , the corresponding scat-
tered field patterns f ; and g; due to a line source field and a plane wave incident

are given, respectively, by
£al8:00, 80,0 €)== 3 eJ" T, Hylkpo) cosn(6 = b)) (349
and
84( b, dg,a,¢, )= -;:};c- éoen (-1)" T, cos n(p — bg) (3-50)

where

- k Jn(kla)"n’(ka) ——kl‘ln(ka)‘,n’(kla)
K Jn(kla)Hn’(ka) - len(ka)Jn’(kla) -

n (3-51)
One may also use a circular cylindrical dielectric shell defined by the two sur-
faces p=p, and p=p, with its axis coinciding with the z axis and of inhomogeneous

permittivity as a loading object. Due to the difficulty of finding a formal solution to

the time harmonic electromagnetic fields in regions where the permittivity € is a
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general function of position, one has to force the permittivity variations to fit in one
of the special cases which has a formal solution. If € is proportional to p 2 and is a
function of ¢ in circular cylindrical coordinates , the z component of the electromag-
netic fields can be represented by infinite series involving Mathieu functions as
shown by Casey [90]. In Appendix C we formulate the solution of the problem of
scattering by a plane wave incident on an infinitely long dielectric cylindrical shell
having radial and azimuthal inhomogeneity profiles. The corresponding scattered

field patterns due to a line source and an incident plane wave are then given, respec-

tively by (see Appendix C),

= i €, ¢, H, (k pO) COos n((b - ¢0) (3-52)
n=0
and
8 = —: 3, € ca i cos n(d — o) (3-53)
n=0

where the expansion coefficients ¢, are determined by Eq. (C-19). From Egs. (3-45)
to (3-53) one notices that the far scattered field from a wedge or any of the above
mentioned cylindrical scatterers due to either plane wave or line source excitation
has the appearance of a cylindrical wave emanating from a fictitious inhomogeneous

line source at the edge of the wedge or at the axis of the cylindrical scatterer.

In case of two conducting wedges separated by a distance 25, where 2ks>>1
and a circular cylinder (or a cylindrical shell) whose axis is parallel to the edges of
the two wedges, and where all three bodies are illuminated by a plane wave of unit
amplitude (see Fig. 3-5), the field at any point is considered to be composed of the
incident field E; plus a scattered field ES from each of the two wedges and the
cylindrical scatterer. The latter field consists of an unperturbed term due to the

three scatterers plus an interaction field which will be evaluated using three fictitious
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line sources located at the wedge edges ( ¢4 and ey ) and along the cylindrical

scatterer axis. If the plane wave incidence angle is restricted such that the incident

field does not illuminate the lower faces of the wedges, the scattered field ES in the

forward direction is given by
ES =ESl +ES2 +ES3

where

— k —7 1
ES! = _ZTLHO("PO [e 77 5% gW (&, dops v1)

+esf ¥ (bl davy) Foa f¥ (1,25, 41 v1) ]

R jks sin 0
ES2 = =g o(kpy) [ 5% g¥ ( 0z, b0p, v )

+ea f¥( byl dagvy) g f ¥ (b 25, dypv2) ]

— 7nk —7
£ = =it [ 00

tei1f(daly,diza) teaf (b3l dy,a)]
vi=2(w—a)/m

v, =2(w —B)/w.

(3-54)

(3-55)

(3-56)

(3-57)

(3-58)

(3-59)

In the above equations ¢y, ¢5, and c3 are the unknown strengths of the line sources

at e, , eg and along the cylindrical scatterer axis, respectively.

For the determination of ¢, ¢, and ¢ one may applying the principle of con-

sistancy of the scattered field components which are shown in Figs. 3-6 and 3-7.

This leads to the following results

2c; ey [f W (bap, 25, bap, vy ) +F ¥ (da1, 25, dppy 1) ]
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Fig. 3-6 : Scattered field components due to a plane wave incident

on two sharp wedges and a parallel cylindrical scatterer.

R A A B 5




il
I

ESZ €4
e _—
ES3
\
£53
ES2 v £51
O =
y =—d

Fig. 3-7 : Alternative representation of the scattered field components
due to a plane wave incident on two sharp wedges and a parallel

cylindrical scatterer.
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—c3 [ ¥ (dap by, b3 ve ) +F ¥ (das Lys b3, 1) ]

= ¢ S0 [ W (31, bo1s v )+ 8" (a1, bo1, v1) ] (3-:60)

— e  [F ¥ (bg 25, b1 vz ) +fF ¥ (d1z, 25, d1p, v2) | + 2¢5
—c3[f ¥V (daglg b3z vy ) +F ¥ (d1zs gy b330 v2) ]

= RS0 oW (3, bz v2) + &Y (D120 b0z v2) ] (3-61)

—ci[f (bl d13,a ) +f (b, 1y, dy3,a ) ]
—ca[f (b3l b0 ) +f (o3, g, dp3,a ) ]+ 2¢5

- e—jkd cos B, [g( ¢13, ¢03’ a ) + g( ¢23’ d)03’ a )] . (3-62)

Upon solving Egs. (3-60) ,(3-61) and (3-62) for ¢, ¢, and c3, the scattered field ES is
found and can be expressed in a normalized coordinate system, where the z axis
coincides with the center of the aperture as shown in Fig. 3-5 and the well known far
field conditions are used. In addition to Eqgs. (2-47) to (2-49), we have
b3 = w/2+8y, b3 = by, b2 =y = m, b13 =¥ = tan7(d /s),
b3 = b3 = wHY, &3 = w—Y and p3 = p—d cos 6, where /1 and [, are the
distances between e, and ep and the cylindrical scatterer axis, respectively. ES can
then be written in the following form

e Ik

Vrrk p

ES = F (0,s,d,vy,vy,a,¢€,. ) (3-63)

where the scattered field pattern F of the present geometry is obtained from Eq. (3-
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63) and the transmission coefficient T for plane wave incidence is calculated using

Eq. (3-16).

3.5 Numerical examples

Although the formulation is general, it seems reasonable to concentrate on the
symmetric configuration where 8y =0°, a =B =y, r{=ry=r, €1 =¢€,, = ¢,
and sy = 5, = 5. Furthermore, when the field point appfoaches the wedge surface,
the UTD is used to avoid the errors due to the non-uniform functions g% and f%.
Fig. 3-8 shows the normalized E“ pattern for two wedges with y = 15 and ks = 5.
The figure demonstrates the effects of E” on the far field diffraction pattern with
and without the interaction term E . The dependence of T, ¢, (or ¢,) and E on
ks is shown in Fig. 3-9 for y = 15°. It is apparent that T oscillates with varying ks,
however the oscillations die down and T converges to unity as expected for large ks .
The interaction term E is damped in an oscillatory fashion with increasing ks and
approaches zero when ks approaches infinity. The period of oscillation is equal to r.
It is found that the location of maxima of E remains the same while their peak
values change for variations in vy [70,’71]. Furthermore, one should point out that the
oscillations in the current intensity (c¢q or ¢,) due to E " is critically dependent on
ks . The period of oscillations is again equal to 7. The fact that the oscillations of

E” and c1( or ¢ ;) are similar confirms the dependence of E” on cy(orcy).

Figure 3-10 shows the effect of the conducting cap radius on the normalized E ¢
pattern of a double capped wedge for ks =8 and y = 5°. It is found that the
beamwidth increases with the cap radius. For example, as kr assumes the values 0.0,
0.3, 0.6 and 0.9 the beamwidth becomes 17.03°, 18.92°, 21.5° and 22.59°, respec-
tively. However, for the case of a dielectric capped double wedge, Fig. 3-11 shows
that the beamwidth decreases with €, for ks =7, y = 10° and kr = 0.5. For the
indicated values of €, , namely 1, 5, 7 and 9, the corresponding values of the

beamwidth are 21.96°, 19.11%, 17.72° and 16.82°, respectively. Similar reduction in
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for 6, = 0° y = 15° and ks = 5

Fig. 3—8 : Normalized diffracted field vs. 0
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Fig. 3—10 : Normalized diffracted field vs. 6 of

a double conducting capped—wedge for
ks = 8 and y = 5° .
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the beamwidth is observed when the electric radius of the dielectric cap kqr

increases although this is not shown here.

The dependence of T on kr is shown in Fig. 3-12 for a conducting capped slit.
It is clear that T decreases in general with kr. However, for large values of ks the
effect of capping decreases and T approaches unity. For a dielectrically capped slit,
T is found to be increasing with €, as shown in Fig. 3-13 for kr = 0.5. The agree-
ment between the decrease in T with increasing kr (shown in Fig. 3-12) as well as
the increasing beamwidth of the radiation pattern with k» (shown in Fig. 3-10) estab-
lishes the relation between T and the beamwidth. In other words the figures clearly
show that T decreases with increasing beamwidth. Also, it is clear from Figs. 3-11

and 3-13 that T increases with decreasing beamwidth, as expected.

In Fig. 3-14, the effect of the interior wedge angle 2y on T is shown for
kr = 0.5 and €, = 4. It is found that the peak to peak value of the oscillations of T
increases with y for fixed values of kr and €, . A similar effect is also observed for a
conducting capped double wedge. For large ks the oscillations die down and T con-

verges to unity, as expected.

Figure 3-15 represents a comparison between the normalized E¢ pattern of the
two sharp wedges ( E, = E5 = 0), two capped wedges (E3 =0 ,ka =05) and
two rounded wedges ( ka = 0.5) when 68y, = 0°, ks = 10 and y = 15°. As shown,
there is a remarkable change in the pattern characteristics. As an example, the
beamwidth, first sidelobe position and level shift from 15.29°, 27.15%, —13.58 dB for
ka =0 to 2385 , 3761°, -1058 dB for ka=05 (E;=0) and
13.43°, 23.05°, —13.06 dB, for ka =0.5, respectively.

Figure 3-16 demonstrates the effects of rounding on the normalized E¢ pattern
for different values of ka with 8 = 0°, ks = 10 and y = 10°. Table 3-1 illustrates
the pattern characteristics shown in Fig. 3-16, in which it is seen that the beamwidth

decreases with ka as well as the first sidelobe position. It is also found that for
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Fig. 3—12 : T vs. ks of a conducting capped-slit .
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Fig. 3-13 : T vs. ks of a dielectric capped-—slit
for kr = 0.5.




ks

Fig. 3—14 : T vs. ks of a double dielectric capped-
wedge for kr = 0.5 and € = 4.
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Fig. 3—15 : Normalized diffracted field vs. angle 6
of double rounded—wedge for 6, = 0°,
v = 10° and ks = 10.
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Fig. 3-16 : Normalized diffracted field vs. angle 6
of double rounded—wedge for 90 = 0°,
v = 10° and ks = 10.
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First sidelobe
Beam-

ka

width | Position Level

00 | 1523 | 26.89° -13.56 dB

;;;
.
z

04 | 13320 | 22999 -12.61 dB
08 | 12.80° | 21.80° -11.16 dB

10 | 1045° | 18.87° -11.93 dB

|
% ‘ Table 3-1 : Diffracion pattern characteristics of a double
i rounded wedge for 0 = 0%, ks = 10 and y = 10°.

§
i
1
.
|
};
?é




- 86 -

increasing values of ka, T decreases and is usually less than T for all values of ks
[91,92].

The error and region of validity of the asymptotic solution regarding the
geometry of Fig. 3-5 are investigated by comparing with numerical results based on
the exact solution of the unloaded slit given by Skavlem for normally incident plane
wave [34]. Skavlem employed the method of separation of variables to the wave
equation in elliptic coordinates and was able to calculate the transmission coefficient
for slits of 0 = ks = 10 to five correct decimal points. As shown in table 3-2 the
transmission coefficient is computed using the diffraction pattern function f ¥ based
on Eq. (3-4), the new f ¥ based on Eq. (3-44) as well as the corresponding function
based on the UTD. It is obvious that the new expression for f ¥ produces more
accurate values than those based on Eq. (3-4) or the UTD, whereas the error in the
T values does not exceed 0.25 % for ks = 2. Furthermore, for oblique incidence, our
results agree with the curves provided by Millar for different values of 8; away from
grazing incidence (69 = 90%) [39]. It should be pointed out that Millar’s investiga-
tion of the diffraction of an E-polarized plane wave was based on the solution by
successive substitutions of a pair of integral equations. The resulting expression for
T was in the form of a series in inverse powers of ks and is in good agreement with
the exact results for ks = 4. This comparison emphasizes the validity of the present

solution for the unloaded slit for ks = 2.

In the presence of the cylinder, there are no published solutions for this
configuration to compare with. However, if ks{ 5 >> ka or kja , the asymptotic
far field expression for the field scattered by the cylinder is valid for calculating the
near field around the cylinder [93]. Hence, when the cylinder is present the accuracy

of the results is dependent on ks, k53, ka and €,.

The transmission coefficient for a slit with a circular cylinder at or down below

the center of the aperture plane is shown in Figs. 3-17 and 3-18, respectively, for a




- 87 =~

T
ks Asymptotic
Exact
Based on (3-44) | Based on UTD | Based on (3-4)

1.0 0.54540 0.55843 0.56833 0.60538
12 0.87693 0.91569 0.90869 0.99629
14 1.11719 1.15646 1.14831 1.21318
1.6 1.21669 123058 124153 126970
1.8 1.22129 1.23321 123631 1.24293
20 1.18426 1.18717 1.18997 1.18802
2.4 1.08650 1.08358 1.08225 1.07780
30 0.97202 0.96819 0.96605 0.96293
34 0.92824 0.92629 0.92519 0.92345
4.0 0.94244 0.94351 0.94392 0.94615
50 1.04992 1.04989 1.05078 1.05125
6.0 0.99559 0.99575 0.99420 0.99471
7.0 097174 0.97169 097177 0.97237
8.0 1.02332 1.02318 1.02331 1.02390
9.0 1.00199 1.00158 1.00120 1.00121
10. 0.98224 0.98222 0.98220 0.98228

Table 3-2 : Slit transmission coefficient for ¢y = 90°.




- 88 -

—e— Conducting cylinder

| 1.4 - . . :
—o— Dielectric cylinder,

ks

Fig. 3—17 : T vs. ks of a loaded slit
for 6, = 0 and ka = 0.5,
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16 —— ka = 00
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Fig. 3-18 : T- vs. ks of a loaded slit for
90 = 0° ka = 05 and kd = 5.
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normally incident plane wave () = 0°) with ka = 0.5and ¢, = 4. When the dielec-
tric cylinder is at the center of the aperture plane (ie. d = 0), T is always larger
than T . However, T decays in an oscillatory fashion with increasing ks, as expected,
and tends to unity (i.e. geometrical optics value) as ks tends to infinity. However for
a conducting cylinder, T is in general less than T . If the loading cylinder is shifted
down below the center of the aperture plane (Fig. 3-18), then T oscillates around T
for dielectric cylinder and oscillates with increasing amplitude tending to unity as ks

tends to infinity for conducting cylinder.

The behavior of T for an obliquely incident plane wave is shown in Figs. 3-19
and 3-20 for kd =0 and kd = 1.5, respectively. For 6 =40°,¢, = 5,9 and
ka =0.3, Fig. 3-19 shows that T exceeds unity at some values of ks and generally has
large oscillations than that of the unloaded slit case (ka = 0). Alsc; it is observed
that the peak value of T lies in the lower range of ks (ks = 6) and increases with
€,. For 6y = 40° and all other cylinder parameters kept constant ( Fig. 3-20), one
notices that the peak to peak value of oscillations decrease as kd exceeds zero. In
Figs. 3-21 and 3-22, T is shown for a conducting cylinder with different values of ka,
namely 0.1, 0.2, 0.8, kd = 0 (Fig. 3-21) and kd = 5 (Fig. 3-22). The fact that loading
with a conducting cylinder does not increase the transmission coefficient of a slit is

possibly due to the effect of blocking of part of the incident field by the cylinder.

The effect of the interior wedge angle on T of a double wedge in the presence
of a conducting or dielectric cylinder is shown in Fig. 3-23 for 0, =0°, ka =05,
€, =4 and y = 20°. In comparing Figs. 3-17 and 3-23, it is found that the interior
wedge angle changes the levels of maxima and minima of the oscillations of T,

whereas the peak positions remain the same.

The diffraction pattern of a slit loaded by an inhomogeneous dielectric shell

located at the center of the aperture is shown in Fig. 3-24 for ¢y = 90°, ¢, = 3,

kp, =02, m =2,8 =1 and different values of k p,, namely 04, 0.6 and 10. It is




- 91 -~
|
Dielectric cylinder
1.2 '
—— ka =0
—— ka = 03, €. =5
1.0 1 —o— ka =03, € =9 o
0.8
T
0.6 -
0.4
|
i
0.2 -
0.0 T
0 20

ks

Fig. 3-19 : T vs. ks of a loaded slit
for 6, = 40° .

T R R A o s




|
|

- 92 -

1.2

1.0

0.8

0.6

0.4

0.2

Dielectric cylinder
—— ka =0

—e— ka = 03, €, =09
—— ka =03, € =9

0.0

ks

Fig. 3—20 : T vs. ks of a loaded slit
for 6, = 40° and kd = 15,




—3 2

- 93 -

1.0

0.8

0.6

0.4

0.2

Conducting cylinder

—— ka = 0.1
—6— ka = 02
—o— ka = 0.8

0.0

I I ¥

4 8 12 16 20

ks

Fig. 3=21 : T vs. ks of a loaded slit

for 90 = 0°




—32

- 94 -

1.0 -
0.8 - Conducting cylinder
— ka = 0.1
—e— ka = 0.2
0.6
—— ka = 0.8
0.4 - ——
==
0.2 - d
0.0 ; , : : '
0 4 8 12 16 20
ks

Fig. 3—-22 : T vs. ks of a loaded slit
for 6, = 0° and kd = 5.




- 95 -

1.6 1

1.4

1.2

-3 2

1.0

0.8 -

0.6

—— ka = 00
—6— Conducting cylinder

—o— Dielectric cylinder,

0.4

(N
0
[y
A
[a—
[>]
48]
o

ks

Fig. 3—23 : T vs. ks of a loaded double wedge

for 0, = 0°, ka = 0.5 and y = 20°




1.00
i \{\“‘. ——— Unloaded slit
\\
I kp, = 0.4
\\\\ ________ Pp = Y
|\
\y e — prams
075\ kp, = 06
N —
e,
[
N
o
o
©
£ 050
~
o)
Z
N’
o
m -
0.25
0.00 , . . . : .
0 15 30 45 60 75 90
90

Fig. 3—24 : Diffracted field vs. 6 of a slit

loaded by an inhomogeneous
dielectric shell for ks = 8,

ea=3,kpa:O.2,77=2and6:1.




- 97 -

clearly shown that the outer radius of the shell affects the beamwidth and level of
the first sidelobe. One concludes that for the parameters shown, the increase in kp,

results in an increase in the sidelobe level and decrease in beamwidth.

To further investigate the diffraction pattern characteristics of a double wedge
loaded by this type of inhomogeneous scatterer, we present tables 3-3 and 3-4. In
tables 3-3 the variations in these characteristics are shown for different values of 3,
where &g =90°, ks =8,¢, =5,kp, =10,kp, =02 and q = 2.5. The changes
in these characteristics are shown in table 3-4 for different values of m with 8 = 1.0
while ¢, €,, k pp and k p, remain the same as in table 3-3. In addition to variations
in beamwidth, sidelobe level‘ and position due to the presence of a dielectric shell in

the center of the aperture plane of a slit, it is found that T increases over the

unloaded case for all cases studied.
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First sidelobe
5 Beam- | Position of T
width first null Position Level
0.01 | 1941° 22.66° 36.87° | —1240dB | 1.05282
0.1 | 19.39° 22.73° 36.88° | —1237d4B | 1.053397
02 | 19.34° 22.97° 36.91° | —12.28 4B | 1.055364
05 | 18.93° 24.85° 37.08° | —11.62d4B | 1.071263
08 | 17.93° 27.09° 37.09° | —1047 dB | 1.104884
10 | 16.48° 23.79° 36.93° -9.65dB | 1.130955
12 | 15.12° 27.12° 36.64° —943dB | 1.147672
1.5 | 13.77° 26.25° 36.05° —-9.57dB | 1.147302
1.8 | 13.16° 25.43° 35.40° -992dB | 1.131591
20 | 13.04° 25.07° 35.07° | —10.12d4B | 1.122447

Table 3-3 : Diffraction pattern characteristics of a slit loaded

by a cylindrical shell in the aperture plane for ¢ = 907,
ks =8,€,=35,kp, =10, kp, = 0.2 and n=25.

\ |
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First sidelobe

Beam- Position of
m T

width first null Position Level
20 | 1343° 23.85° 33.85¢ —10.89 dB 1.086759
22 | 13.19° 24.17° 34.18° —-10.66 dB 1.096530
2.5 | 13.03° 24.63° 3461° | —10.39dB | 1.109869
2.7 | 13.01° 24 .93° 34.93° -1020dB | 1.118564
30 | 13.14° 25.44° 35.40° —991 dB 1.131864
32 { 13.37° 25.83° 35.73° -9.72 dB 1.140707
35 | 14.07° 26.56° 36.25° —9.46 dB 1.150876
37 | 14.97° 27.09° 36.61° -9.40 dB 1.149546
40 | 17.39° 27.36° 37.06° —10.12dB | 1.115615
42 | 18.87° 25.07° 37.09° —11.54 dB | 1.073484
4.5 | 19.76° 23.80° 35.32° ~13.53dB | 1.030141
4.7 | 19.45° 20.89° 32.99° —-13.67 dB | 1.023326
50 | 18.35° 21.46° 32.05° —-12.97 dB | 1.028158

Table 3-4 : Diffraction pattern characteristics of a slit loaded

by a cylindrical shell in the aperture plane for ¢y = 90°,
ks =8,e,=5,kp, =10, kp, = 0.2 and 3=1.0.




CHAPTER 4

SOLUTION BY MODIFIED METHOD OF MOMENTS

We have introduced in Chapter 2 a new iterative technique for the scattering by
two cylindrical bodies, where in each interaction a spectrum of cylindrical waves
emanating from one body is used to excite the opposite scatterer. This technique
does not suffer, in principle, from any limit on the separation between the scatterers
and can handle small as well as large scatterers, provided that the scattering by a sin-
gle body is manageable. As shown from the numerical results in Sec. 2.3, excellent
agreement is obtained between the results due to the scattering by two cylinders
using the CWS and the boundary value techniques. Furthermore, the diffraction by
a double wedge is also presented and good agreement is observed with the exact
solution for the special case of a slit as well as with two asymptotic solutions for the
double wedge geometry of any wedge angle and wide separation. To further check
tiie numerical results based on the CWS technique for the diffraction by a narrow
double wedge geometry, we present in this chapter a numerical solution since experi-

mental verification is practically impossible.

A useful numerical method for such problems is the MM [45,46] where the exact
integral equation formulation is reduced to an approximate equivalent matrix form.
The matrix system involves the unknown surface current distribution which is
expressed in terms of suitable basis functions. The point matching technique is then
used to solve the matrix system. The number of matching points depends on the
length of the contour of the cross-section for conducting cylindrical scatterers. The
MM, while being generally applicable to many scattering problems, is limited by the

storage and computation time of available computers when the body dimensions are

large relative to the wavelength. Regarding this limitation in dealing with two
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scatterers having large electrical dimensions, the MM in its classical form does not
usually yield a convergent solution. However, one can apply the MM to infinite
planar scatterers by first subtracting out the surface current density associated with
the incident and reflected fields and then solve for the residual or the diffraction
current [47,68]. It is also possible to apply the MM to electrically large scatterers if it
is used to solve for the surface current that appears only due to the interaction
between any two scattercrs. In other words, the total surface current can be divided
into two parts. The first part is the current that would appear on the surface if each
scatterer is excited by the original source in isolation while the second part of the

surface current is due to the interaction fields between the scatterers.

Another objective of this chapter is to confirm the validity of this new approach
in order to numerically deal with large scatterers. In Sec. 4.1 the scattering by two
large parallel conducting cylinders will be presented. The reduction in the execution
time when applying this technique over other methods, namely the boundary value
solution and the ordinary MM, is outlined for the case of the scattering by two large
cylinders.  Furthermore, the surface currents and the scattered field due to the
interaction between the cylinders is investigated (in the backward and forward direc-
tions) as a function of the separation between the cylinders and the electrical radius

of the cylinders.

The diffraction by the aperture of a double semi-infinite wedge is also investi-
gated in Sec. 4.2. The aperture is considered to be infinite along the z direction,
whereas the edges of the two wedges may be loaded. The upper faces of the two
wedges which are illuminated by the incident plane wave should be uniform in the
region far from their edges to facilitate the evaluation of the total diffracted field
[94,95]. The transmission coefficient of a plane wave incident on a slit geometry is
computed and compared with the exact values to check the accuracy of the computa-

tion procedure. Then the diffraction characteristics of related geometries, namely,

thick slit, double truncated wedge and double capped wedge (see Fig. 4-1) are
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Thick slit

o

Double truncated wedge

7N

Double capped wedge

Fig. 4.1 : Schematic diagram of different types of a double

wedge geometry with non-sharp edges.
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presented and compared with other available solutions.

4.1 Scattering by two parallel conducting circular cylinders

If two parallel conducting circular cylinders are illuminated by an incident
plane wave as shown in Fig. 2-3, the z directed electric linear current density J on

the surface of either cylinder can be divided into two parts, i.e.
J=J+J (4-1)

where J is the current on the surfaces of the scatterers when each is illuminated by
the plane wave in isolation. J  is the additional surface current due to the multiple

interaction between the scatterers.

Using Egs. (2-1), (2-3) and (4-1), an integral equation over the only unknown J -

can be obtained, i.e.

. k .o . .
E, - ﬂZ“ fcl-’ (p1) Ho(k 1p—py1) dCy

k .o . .
= L= I 7o) Holk 15—531) dC

k . o
= ﬂ4_ fc,+c2‘l (p) Holk Ip—p 1) dC (4-2)

where C; and C, are the contours of the cylinders 1 and 2, respectively.

It is obvious from the physical view point that the first integral on the right
hand side of Eq. (4-2) cancels the incident plane wave when p represents a point on
contour C 1, whereas the incident plane wave is canceled by the second integral if p
represents a point on C,. The remaining integral in each case (p on C; or p on C,)
represents the scattered field from one cylinder at a point on the surface of the other

cylinder.

As a result of the above discussion, Eq. (4-2) reduces to a matrix form by abply-

ing the method of moments, i.e.
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Umnl [on] = [8m] (4-3)

where the unknown current J is expressed as a linear combination of pulse func-

tions with unknown coefficients o, , i.e.
. _ X
J= 3 e, (4-4)
n= :

and where J, =1 on A C, and 0 elsewhere while N is the total number of current
pulses assumed. The point matching technique is then used to solve the matrix sys-

tem. As a result, the elements of [,,, are then given by [46]

B%Ho(k\/(xm — X, )2+ Om—ya)?)AC, , m # n
lmn = kAC (4‘5)
212 (o -m (=m0 1AC, L m=n
4 T 4e
where Euler’s constant <y is 0577215665 ---, e = 2.718281828 --- and

m,n=123 --- N.

Since the elements of g, represent the scattered field from cylinder 1 (or
cylinder 2) at a point on the surface of cylinder 2 (or cylinder 1), the exact expres-
sion for the scattered field from a cylinder due to plane wave incidence is used.
Thus, we can write

> J;(kb)

gm = — 50 € e ? () Hy(kpy) cos L(d, — bo) (4-6)

where p, and ¢, represent the mid point of any AC,, on C, in terms of the local
coordinates of cylinder 2 (i.e. p, and ¢;) and €; is Neumann’s number. For any

AC,, on C,, g, is given by

w a= J,(ka)
gy = — ,‘éo g e 2 "HI,TT Hy(kpp) cos | (dp — o) 7




- 105 -

where p, and ¢, are expressed in terms of the local coordinates of cylinder 1
(i.e. p1and ¢y).
After solving for J ” the scattered field E~ due to the interaction between the

cylinders is given by

E” = -"—:131‘- Jooo J @)Y Hok 15 —51) dC’ (4-8)

11C3

while the non-interaction scattered field E  and the scattered field pattern are given
by Eqs. (2-40) and (2-50), respectively.

4.2 Diffraction by two wedges with blunt edges

When two wedges with sharp edges are excited by an incident plane wave (as
shown in Fig. 2-1) the electric linear current density on the conducting surface can
be divided as given by Eq. (4-1), where J’ represents the current on the upper (J7)
and lower (J ) surfaces of the wedge and is given exactly by Eq. (2-18) while J is
evaluated using the ordinary MM. However, J on the surface of two wedges with
blunt edges, due to the incident wave and all the interactions between the wedges,

JPO

can be divided into a physical optical current and a residual or diffraction

current denoted by J.ie.

J =JF0 + g4 (4-9)
where

JPO =24 x H' . | (4-10)

Here H' is the incident magnetic field vector and 7 is a unit outer vector normal to
the upper surface of either wedge. Since the incident field is a plane wave, Eq. (4-

10) can be written in terms of the local coordinates of either wedge as

JPO(x 0) = 2 sin ¢y /o b0 (4-11)
M




g
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From Egs. (2-2) and (2-3) we can obtain an integral equation whose only unknown

quantity is J¢ by using Eqs. (4-9) tc (4-11), i.e.

; k o . - .
E} - 1]1— S _IPOGYHok 15-% 1) dx" =

. ¥ . . .
—'g—‘-[ — [ PO Holk 15-51) dx
—52

d . —__’ ’ .
Jewe, 7 @) Ho(k 15—p 1) dC} . (4-12)
It is obvious that the unknown current J¢ diminishes with increasing distance from
the edge along the surface of either wedge. Thus, C{+C, in Eq. (4-12) is a finite
contour on which J¢ exists and is determined by the paths from point [ to point [,

and from point /3 to point /4 as shown in Fig. 2-2.

Since the reflected wave E; from a conducting infinite plane may be expressed
as the radiation field from the surface current excited on the infinite plane by the

incident wave, we obtain the following :

~FEi f
ek @ ) _ . p for y<O0
—il—f_w JPO(xYH y(k 1p—% 1) dx = B for y>0 - (4-13)
It is clear from Eq. (4-13) that the left hand side of Eq. (4-12) reduces to zero. Thus

Eq. (4-12) may be rewritten in the following form :
s » L4 rd LA ’ »

[ P IPOGYHyk 155 1) dx = [ J4(p) Hylk 1p—p 1) dC (4-14)
5y " C+C,

Now, the MM can be applied to the above equation to solve for the unknown
part of the surface currents J¢. For the special case of two sharp wedges, Eq. (4-14)

reduces to
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5y PO (" - . N 1po(n - .
J_, IP0@) Hok 1p—x 1ydx"~ [ [ (p)—IP ()] Holk 15—p 1) dC
= cuc,’ @) Holk1p—p 1)dC". (4-15)

where J is the only unknown part of the surface current due to the interaction

between the two wedges.

Once the total current distribution on the surfaces of the two wedges is known,
the near as well as far fields can be evaluated using well known relations. The scat-
tered field at a far observation point can be evaluated using Eq. (2-3) while if the

identities given by Eq. (4-13) are used, the diffracted field can be written as

—nk . _ .
gl = =& {fc‘,rCsz(p)Ho(k 15— 1) dC

s ’ ” .
~ IR0 Ho(k 15-%1) dx| . (4-16)
82

Substituting Eq. (4-11) in Eq. (4-16) and using the usual far field approximations, the

—jkp
diffracted field pattern F ($) can be normalized by the factor £ and expressed
Vwkp
as
Ry {ejksvb _ e—jkw]
F =
@) v
_ Mk /4 d(p) ek cos (¢ =) go° .
5 waz J9(p) e dC (4-17)
where
Y = cos ¢ — sin @ (4-18)
b=32 10, (4-19)
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An example of near field calculations is the aperture field E/ ( where y = 0 and
—§, = x = §,), which can be evaluated by adding the incident field E;; to the scat-

tered field ES . The result is given by

E!(x) = 1{45 f_s‘zJPO(x') Hok |x—% 1) dx’
J4(pYHy(k 1T-p 1) dC'} . (4-20)

- fc1+c2

43 Numerical examples

A computer program based on the above analysis was written to calculate the
surface current distribution and the scattered field pattern with and without incor-
porating the effect of the interactions between the two scatterers. To check the
accuracy of the procedure, the total scattered field pattern from the two cylinders is
compared with numerical results obtained from an available boundary value solution
[59,60] for different cases. One of such cases is shown in Fig. 4-2, where
ka = kb = 5,ks; = ks, = 8 and ¢y = 90°. It is clear from the figure that the pro-
posed solution is in complete agreement with the boundary value solution of the

séattering by two cylinders.

In Fig. 4-3 the scattering pattern of two cylinders of larger radii, namely
ka = kb =17, and for ks, = ks, = 8 and ¢y = 90°, is presented. Again, it is to be
noticed that the two indicated curves are in good agreement although the execution
time of the program based on the boundary value solution was 1.5 times as long. It is
also worth mentioning that the same scattered field pattern is obtained by using the
ordinary method of moments with N = 72 whereas in the present solution N was set

equal to 36. The execution time by the ordinary method of moments was 2.2 times

the execution time by the proposed technique.
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oo  Proposed solution | @, = 90°
-—— Boundary value solution ka = kb =5
90 = —
o ] ks, = ks, = 8
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Fig. 4-2 : Scattered field pattern for two circular cylinders.
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Proposed solution

' P, = 90°
Boundary value solution ka = kb = 7
90 ks, = ks, = 8
O
120 6c°

180

Fig. 4-3 : Scattered field pattern for two circular cylinders.
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The amplitude of the surface current on cylinder 1 due to interactions between
the two cylinders is shown in Fig. 4-4 for different values of ka. The cylinder shown
in Fig. 4-4 (cylinder 1) is one of two identical cylinders in the double cylinder
geometry presented in Fig. 2-3 with kb = ka, ks = ks, = 5 and ¢y = 90°. Regard-
ing this geometry, there is a symmetry with respect to the y axis, whereas there is no
symmetry around the x axis. Due to the asymmetry around the x axis, one notices
that the peak value of J  is not at y = 180°. However, it is found that J ~ decays in
an exponential form and tends to a very small value when ¢ approaches 0°. More-
over, it is found that the peak value does not monotonically increase with ka. To
illustrate this behavior, we present Fig. 4-5 where the scattered field pattern due to
the interaction between the cylinders is shown as a function of ka for the forward
(¢ =270°) and backward (¢ = 90°) directions. The figure indicates that for
by = 90°, ks| = ks, = 5 there exists certain values of ka where the forward and
backward interaction fields are maximum and this explains the variations in the lev-

els of the peak value of J " in Fig. 4-4.

Since the interaction component of the scattered field is an important quantity
in the multiple scattering analysis, we further investigate the effect of the electrical
separation between the centers of the two cylinders on E " in Fig. 4-6 for
ka = kb =1 and &y = 90°. Here E” is found to be decaying in an oscillatory
fashion with respect to ks and tends to zero when ks tends to infinity. It is also
noticed that the peak value of E” in the forward direction is larger than the
corresponding peak value in the backward direction. Furthermore, it is found that
the oscillations are similar in both the forward and backward directions and the

period of oscillations is very close to .

Regarding the double wedge geometry, we will consider for the sake of simpli-
city in the numerical computations the symmetric case where ksy = ks, = ks,

a =B =+ and ¢y = 90° (or 65 = 0°). Furthermore, the finite integrals in Eqs. (4-

14), (4-15) and (4-16) are normalized to match the integration formulas of the
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Gaussian type [96]. Therefore the value of any of these integrals is reduced to sum
of a finite number of terms. Each term consists of the integrand (evaluated at one of
the zeroes ’of the Legendre polynomials) times a weighting factor. A forty point
integration is used in all our calculations. The thin slit case is considered first where
the transmission coefficient T defined by Eq. (3-16) is calculated and compared with
the exact values [34] in table 4-1. From this table one notices that for all values of
ks = 1.0 the absolute value of the percent error does not exceed 0.28%. It is worth
mentioning that the number of sampling points on the contour C{+C, was 180
points. For higher accuracy, especially for small values of ks where severe interac-
tion between the two edges takes place, one should increase this number of points.
In Fig. 4-7 the transmission coefficient of a double viedge is shown as a function of
wedge angle y and for different values of ks, namely 1, 2 and 4. As shown in the
figure, there is good agreement between the results based on the numerical and the
CWS methods for all indicated edge to edge separations. This verifies the validity of

the CWS technique [97,99] for diffraction by narrow double wedge geometries.

For better understanding of the behaviour of the diffracted field due to edge-
edge interaction in the double wedge geometry, it is worth presenting some numeri-
cal values for the amplitude and phase of the aperture field. In Figs. 4-8 and 4-9, we
show the amplitude (E}) and phase (§) of the aperture field of the slit geometry for
$g = 90° and different values of ks. As shown, the amplitude of the aperture field
oscillates around unity for large values of ks. Although the number of oscillations
increases with ks, the peak to peak value of the oscillations decreases with ks, as
expected. The phase of the aperture field is also found to be oscillating for large
values of ks and the oscillations are around 00, whereas for small values of ks, { is
almost constant through the whole aperture and E] has a cosine shape where the

peak value is proportional to ks .

In Fig. 4-10 the electrical current component J¢ on the surface of a thick slit

(of electrical thickness kd) is shown and compared with the corresponding current
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T Percent
ks
Exact Numerical error
0.2 | 0.00262 0.00156 —40.51
04 | 0.02392 0.02192 : —835
0.6 | 0.09484 0.09213 -2.85
0.8 | 0.26059 0.25781 -1.07
1.0 | 0.54540 0.54388 -0.28
12 | 0.87693 0.87771 0.09
14 | 1.11719 1.11961 0.22
16 | 1.21669 1.21929 0.21
1.8 | 122129 1.22329 0.16
2.0 | 1.18426 1.18549 0.10
24 | 1.08650 1.08688 0.03
3.0 | 097202 0.97138 —-0.07
34 | 092824 0.92746 —0.08
40 | 094244 0.94244 0.00
5.0 | 1.04992 1.05121 0.12
6.0 | 0.99559 0.99521 ~-0.04
70 | 097174 0.97170 0.00
8.0 | 1.02332 1.02403 0.07
9.0 | 1.00199 1.00175 -0.02
10. | 0.98224 0.98211 -0.01
Table 4-1 : Slit transmission coefficient vs. ks for ¢y = 90°.
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Fig. 4-8a : Amplitude of the slit aperture field for ¢, = 90°
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Fig. 4—8 b : Amplitude of the slit aperture field for Py = 90°
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on the surface of a thin slit. The resulting diffracted field patterns for the same
geometries are presented in Fig. 4-11 where the results for the thick slit are com-
pared the experimental results reported in [44] and good agreement is observed. To
illustrate the effect of kd on the E? pattern, consider the case where
$g = 902, ks = 8.06. For this case the beamwidth and the first sidelobe level of the
E? pattern vary from 18.76° and —13.4 dB for kd = 0 to 22.37° and ~12.6 dB for
kd = 4.18, respectively. Figures 4-12 and 4-13 show the amplitude of J¢ and the E¢
pattern of a double truncated wedge, respectively, for ¢g = 90°, ks = 8.06 and
v = 15°, for two values of kd, namely kd = 0 (which corresponds to a double
sharp-wedge) and kd = 4.18. In comparing the two curves in Fig. 4-13, we find that
the effect of kd on the E? pattern of a double wedge is similar to the effect of kd
on the E4 pattern of a thick slit. To further investigate the diffraction pattern
characteristics of a double truncated wedge, we present tables 4-2, 4-3 and 4-4 where
the independent parameters in these tables are kd , y and ks, respectively. Referring
to table 4-2, it is found that small tru.ncations do not have significant effect on the
beamwidth, position of the first null and first sidelobe position and level for the case
where ¢g = 90°, ks = 7 and y = 20°. However, for large values of kd significant
changes in the diffraction pattern characteristics are observed. It is clear that the
effects of the interior wedge angle y on the diffraction pattern of a truncated double
wedge (as shown in table 4-3 for & = 90°, ks = 7 and kd = 0.5) become significant
for large values of y. With respect to table 4-4, where ¢y = 90%, y = 10° and
kd = 0.5, it is obvious that the electrical separation between the two wedges is the

parameter with most effect on the diffraction characteristics of the double wedge.

The diffraction by a double capped wedge is also investigated where the electri-
cal radius of the cap is denoted by kr. It should be noticed that for this geometry,
the limits of the first integration in Eqs. (4-14) and (4-15) and those of the last

integration in Eq. (4-16), which are denoted by —s; and s,, should be chang‘ed to

—(s,+r) and (s;+r), respectively. Fig. 4-14 shows the E¢ pattern of a capped slit
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First sidelobe

Beam- | Position of
kd T

width first null Position Level
00 | 23.09° 28.89° 45.58° —-13.36 dB | 0.96382
0.1 | 2349° 29.00° 45.75° —13.04 dB | 095114
02 | 2387° 29.75° 45.74° —12.81 dB | 0.94004
03 | 24.15° 29.79° 4587° -12.61 dB | 0.93235
04 | 2445° 29.83° 45.83° —-12.44 dB | 0.92453
0.5 | 24.67° 29.85° 45.86° -1231dB | 091921
0.6 | 24.87° 29.88° 45.89° -12.89 dB | 091451
0.7 | 25.08° 29.89° 45.84° -12.12 dB | 0.91009
08 | 25.21° 29.90° 45.78° -12.06 dB | 0.90751
09 | 2540° 29.89° 45.68° —12.00 dB | 0.90437
10 | 25.52° 29.87° 45.59° -11.97 dB | 0.90253
15 | 25.71° 29.74° 4504° —11.95 dB | 0.90095
20 | 25.58° 29.14° 44 34° —12.13dB | 0.90527
25 | 2529° 28.34° 43.38° -1235dB | 0.91075

Table 4-2 : Diffraction pattern characteristics of a double
truncated wedge for ¢g = 90°, ks =7 and y = 20°.
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Beam- | Position of First sidelobe
Y T
width first null Position Level
0° 24.74° 29.00° 46.60° —13.07 dB | 0.92329
5° 24 .85° 29.69° 46.97° —12.89 dB | 0.92114
10° | 24.88° 29.79° 46.93° -12.66 dB | 0.91966
15° | 24.77° 29.87° 46.56° —12.46 dB | 0.91956
20° | 24.68° 29.86° 45.89° —1231dB | 0.91884
257 | 25.05° 29.72° 44 84° —12.15dB | 091266
30° | 26.35° 29.19° 4391° —11.89 dB | 0.89746
35° | 28.07° 28.78° 43.35° ~11.71dB | 0.87918

Table 4-3 : Diffraction pattern characteristics of a double
truncated wedge for ¢, = 90°, ks = 7 and kd = 0.5.
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First sidelobe
ks Beam- | Position of r
width first null Position Level

2 | 68.84° — _— — 1.10639
3 | 59.87° — —_— —_— 0.94977
4 | 49.29° —_— —_— — 0.82909
5 | 30.79° 35.83° 48.20° —12.09 dB | 0.90854
6 | 27.17° 32.05° 48.16° -12.70 dB | 0.97944
7 | 24.88° 29.79° 46.93° —12.66 dB | 0.91966
8 | 19.95° 22.99° 32.71° —13.79 dB | 0.98217
9 | 17.84° 20.58° 30.26° —13.13dB | 0.98932
10 | 16.75° 19.30° 28.37° —13.24 dB | 0.95151
12 | 13.68° 15.67° 22.55° -13.43 dB | 0.96169
15 | 1091° 12.33° 17.99° —1336 dB | 0.96389
20 | 831° 9.91° 13.63° —13.12 dB | 0.95519

Table 4-4 : Diffraction pattern characteristics of a double
truncated wedge for ¢y = 90°, y = 10° and kd = 05.
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for different values of kr, namely 0.0, 0.5 and 1.5 and where ¢y = 90° and ks = 8.
Moreover, the corresponding diffraction patterns computed using an asymptotic solu-
tion [72,73] are also shown in the figure. It is obvious that the deviations between
the two curves increases with kr. This is due to the fact that the asymptotic solution
is valid for small values of kr. Furthermore, one notices that the cap affects the
diffraction pattern characteristics especially for large values of kr. In addition to
the changes in the diffraction pattern due to the conducting cap, it is also clear from
Fig. 4-15 that the amplitude of the aperture field of a double capped wedge is greatly
affected by kr. It seems that for large values of kr the oscillations in the amplitude
of the aperture field disappear, leading to a cosine shape distribution. To further
investigate this geometry, tables 4-5, 4-6 and 4-7 are included. In table 4-5 where
$g =90%, ks =7 and y = 20, the beamwidth, first null and first sidelobe level and
position increase with kr. However, T is found to decrease with increasing values
of ks. The effect of the internal wedge angle on the diffraction pattern characteris-
tics for ¢y = 90°, kr = 0.5 and ks = 7 is illustrated in table 4-6. From the table it
is clear that small changes are observed for the given parameters. This indicates
again that the wedge angle does not produce significant effects on the diffraction
pattern for wide separations between the two wedges regardless of the shape of the
edge of either wedge. Finally, it is clearly shown in tabie 4-7 that the beamwidth and
first sidelobe level of the E¢ pattern decrease with ks when bp =90°, v = 10% and
kr = 0.5. However the T values oscillate around a value less than unity. This indi-
cates that the transmission coefficient of a double conducting capped wedge is always
less than the corresponding value of T of the uncapped case for all possible separa-
tions. In general the transmission coefficient is found to be more sensitive to any

small variations in kd , kr, y or ks than the remaining parameters that describe the

diffraction pattern.
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First sidelobe

ir Beam- | Position of r
width first null Position Level

0.0 | 23.09° 28.89° 45.58° —13.36 dB | 0.96382
005 | 2344° 28.99° 45.63° —13.20 dB | 0.95200
0.1 | 23.78° 29.47° 45.72° —13.05dB | 0.94115
03 | 2494° 30.11° 46.18° —12.58 dB | 0.90652
05 | 25.90° 30.83° 46.56° —12.40 dB | 0.88064
0.7 | 26.56° 31.25° 46.96° —1233 dB | 0.86176
09 | 27.01° 31.83° 47.35° —12.37 dB | 0.84588
10 | 27.15° 31.97° 47.56° —1234 dB | 0.83994
1.5 | 27.68° 33.84° 48.60° —1224 dB | 0.79741
20 | 30.54° 38.76° 46.03° —10.45 dB | 0.67879

Table 4-5 : Diffraction pattern characteristics of a double

capped wedge for ¢y = 90°, ks =7 and y = 20°.
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First sidelobe

v Beam- | Position of T
width first null Position Level
0° 26.14° 30.81° 48.26° —12.84 dB | 0.87952
5° 26.18° 30.86° 48.16° —12.73 dB | 0.87886
10° | 26.13° 30.93° 47.83° —12.58 dB | 0.87896
15° | 2597° 30.95° 47.30° —12.47 dB | 0.88036
20° | 2590° 30.83° 46.56° —12.40 dB | 0.88064
25° | 26.38° 30.53° 45.65° | —1234 dB | 0.87542
30° | 27.61° 30.10° 44.69° —1225dB | 0.86323
35 | 28.93° 29.50° 44.08° —12.24 dB | 0.85074

Table 4-6 : Diffraction pattern characteristics of a double

capped wedge for ¢y = 90°, ks =7 and kr = 05.
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First sidelobe
‘s Beam- | Position of T
width first null Position Level

2 | 83.24° —_— — — 0.64026
3 | 70.29° — —_— —_ 0.86163
4 | 54.82° — —_— — 0.76612
5 | 36.11° 39.64° 44 .43° -997 dB | 0.84029
6 | 29.17° 33.17° 49.51° —11.81dB | 092322
7 | 2617° 30.98° 47.88° —12.36 dB | 0.87797
8 | 2191° 25.81° 36.68° —14.16 dB | 0.89533
9 | 1881° 21.49° 31.35° —12.79 dB 0.94600
10 | 17.23° 19.96° 29.42° —13.05 dB | 092275
12 | 13.80° 15.67° 22.84° —13.07 dB | 0.95971
15 | 10.95° 12.17° 18.06° —13.21 dB | 0.96382
20 | 8.28° 9.91° 13.57° —-13.29 dB | 0.95688

Table 4-7 : Diffraction pattern characteristics of a double

capped wedge for ¢y = 90°, y = 15° and kr = 05.




CHAPTER 5

DISCUSSION AND CONCLUSIONS

In Chapter 2 the multiple scattering of an incident plane wave by two bodies is
investigated. A novel technique based on the cylindrical wave spectrum is presented
and applied to some practical configurations. The validity of this technique is
verified by comparing the numerical results due to the scattering by two parallel con-
ducting cylinders with those obtained using the boundary value solution and the
method of moments. The technique is then used to solve for the diffraction by a
double wedge which has no exact solution except for the special case of the slit
geometry. Again good agreement between computed data for the transmission
coefficient of a slit and the exact values is obtained. It appears that this theory along
with the approximation used to facilitate the diffraction by semi-infinite scatterers,
provides accurate results for slits of any half electrical width greater than or equal to
unity.

One of the main advantages of the CWS technique is that it simplifies the han-
dling of the scattering by multiple objects because the method deals with each body
individually. Another advantage of the technique is that the memory size required
to apply the CWS technique is linearly proportional to the total number of Huygens
current sources, whereas in the MM the order of the impedance matrix is propor-
tional to the square of the number of points at which the unknown surface currents

are evaluated. Moreover, in the CWS technique no matrix inversion is required.

In principle, the CWS technique is applicable for the scattering by many objects
without any restriction on their size or separation. However, it is found that large

execution time is needed in order to achieve good accuracy for complicated

geometries. The procedure used here is capable of yielding both near and far fields
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in terms of known solutions for each body involved in isolation.

As far as the asymptotic solution is concerned, it is clear that the improvement
in dealing with edge-to-edge interaction developed in Chapter 3 using fictitious inho-
mogeneous line sources located at the edges could lead to a wider domain of validity
of the ray-optical method. Thus it could be applied to an increasing number of
waveguide and free space scattering problems especially for scatterers which involve
edges and corners. Moreover, it is found that when cylindrical dielectric edge caps
are introduced significant changes in the diffraction characteristics of the double
wedge problem is observed. Furthermore, the loading of the aperture plane by a
cylindrical scatterer indicates considerable changes in the transmission coefficient.
Loading the aperture by a dielectric cylinder of homogeneous or inhomogeneous per-
mittivity profiles yields an increase in the transmission coefficient over the unloaded
aperture, while a lower transmission coefficient is observed when a conducting
cylinder is used. Rounding the edges of the wedges or using cylindrical conducting
caps at the edges in the doﬁble wedge geometry produces a lower transmission
coefficient whereas, the use of cylindrical dielectric caps of homogeneous permit-

tivity yields a higher transmission coefficient relative to the unloaded case.

With regard to the numerical solution presented in Chapter 4, the diffracted
field due to a plane wave incident on two wedges forming a slit type geometry is for-
mulated using an integral equation for the surface current. The use of the ordinary
method of moments to solve for the unknown surface currents will not yield a con-
vergent solution due to the semi-infinite dimensions of the wedges and the fact that
the total current does not vanish on the illuminated surface for this type of excita-
tion. Therefore, the surface current is divided into two components, namely a
known non-interaction term and an unknown term due to the infinite number of
interactions between the wedges. The non-interaction term is considered to be the

physical optics current for those geometries which have wedges with non-sharp

edges, whereas the exact surface current for a single wedge is used for double
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wedges with sharp edges. The interaction term is tﬁehs evaluated using the ordinary
method of moments since it decays with increasing distance from the edge along the
surface of either wedge. It is found that this technique leads to an efficient solution
and makes it possible to use the method of moments for the multiple scattering by
bodies of semi-infinite or large dimensions without the need for a large size com-
puter memory. Furthermore, by applying this technique the saving in execution time
over the ordinary method of moments or even the exact boundary value solution
increases with the electrical dimensions of the scatterers. Numerical results for the
diffracted fields and transmission coefficients for a variety of related structures such
as the thin slit, thick slit, double truncated wedge and double capped wedge are
presented and compared with available solutions. It should be noted that this
method is applicable to arbitrary number of cylinders or scatterers of different

shapes.

It is found, in general, that the diffraction pattern of a double wedge is less sen-
sitive to small truncation or capping than the transmission coefficient. Moreover, it
is also noticed that the interior wedge angle has a significant effect on the diffraction
pattern characteristics only for small wedge to wedge separation distances. Although
an incident plane wave is assumed throughout the present analysis, the extension to
more practical types of excitations (e.g. line source field) is simple and straightfor-

ward.

5.1 Suggestions for future research

Many promising problems arise from the present study and their investigations
may lead to some useful results and applications. As an example, although we have
used the CWS technique for the scattering by cylindrical objects, it is obviously of
interest to extend this technique to handle three-dimensional scattering problems by
qsing a spherical wave spectrum (SWS) due to induced point sources in each interac-

tion between the scatterers. Another interesting study involves the extension of the

CWS technique to deal with dielectric and dielectric coated cylindrical conductors
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by using the polarization currents in the dielectric media and the electrical linear
currents on the conducting surfaces. Furthermore, the CWS technique can be used
to solve for the scattering by N infinite circular conducting cylinders forming one or
two dimemnsional array which can be achieved easily, especially if the symmetry is

considered in the analysis.

It should be noted that the efficiency of the modified MM solution could be
substantially improved by introducing a GTD term in the basis functions to represent
the diffraction current as shown by Burnside et. al. for diffraction by a single right

angle conducting wedge [100].

With respect to loading the aperture plané of the double wedge, it is obvious
that finding the optimal parameters that produce a higher transmission coefficient
when using a lossy dielectric cylinder or a dielectric lens as a loading object is of
great interest. Another possibility is to fill the aperture of a thick slit or a double
truncated wedge by a lossy or inhomogeneous dielectric material in order to focus

the main diffracted lobe in a certain direction.

Since the surface current distribution is the main parameter in determining the
diffraction properties of the double wedge, it is useful to investigate the effect of
loading one or both surfaces of the the two wedges by a lossy dielectric lining or by
introducing corrugations to further control the surface current distribution. It is
also possible to place the corrugations on the truncated edges of a double truncated

wedge geometry.

So far, we have used only passive elements to modify the diffraction characteris-
tics of the double wedge geometry. Another possibility, of course, is to use an active
elements and one of these geometries, which requires further investigation, is the
diffraction of the field of an array of sources by the double wedge geometry. It is

worth mentioning that a similar excitation of a single finite wedge was investigated

and significant changes in the radiation characteristics of the corner array are
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reported elsewhere [101,102].

Finally, since the diffraction by an imperfectly conducting or a dielectric wedge
is available [103-110], it is of great interest to investigate the extension of the tech-

niques used in this thesis to solve for the diffraction by a double dielectric or imper-

fectly conducting wedge.




APPENDIX A

DERIVATION OF EQUATION (2-21)

The physical optics current of a plane wave incident on an infinite conduct-

ing plane is given by
JP0 = 2 o by eftx o8 do (A-1)
n

the corresponding scattered field is

Efo (p,9) = —-;- sin g [ e SN H(k1p - X1)dx (A-2)
0

however for normally incident plane wave ( &y = 90°), E§, reduces to
k o _
Efo (psd) = ) J Ho(k 1p - x1) dx. (A-3)
0

For a single sharp wedge illuminated by an incident plane wave, E ,§o is zero
in the region far from the wedge edge. However, near the edge E;go for
b = 90° can be given by Eq. (A-3) where p , ¢ are the local coordinates of the
wedge. Since we are interested in the value of E;go at the edge of the opposite

wedge, i.e. at p = 515 and ¢ = 180°, Eq. (A-3) reduces to
s k¢
Epo (512,180) = Y J Ho(k(sqp +x)) dx. (A-4)
0

Letting 545 + x =, we obtain

Efo (s12,180) = ‘% [ Ho(ke) at

S12
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S2

A [ J Ho)ydr = [ Holkr) dr |
0 0

2

I

S12

1,k
5 + ) fo H o(kt) dt. (A-5)

]

Thus if the effect of the E5, is compensated by a line source located at the edge

of the wedge, the amplitude C g of this line source is given by

S12

2 2
Co =1 nE n fo H(kt) dt ]/ H o(ks ). (A-6)




APPENDIX B

FAR SCATTERED FIELD PATTERN OF A LINE SOURCE
EXCITING A SHARP WEDGE

The incident field from a line source of unit amplitude in free space at an

observation point p (p,d) in the cylindrical coordinate system is given by

i - —mk -
E; =_‘:LH0("P) ‘ (B-1)

where p’ is the distance between the point p and the line source position (pg,d).

For far observation points ( i.e. kp>>1) we have

p =p —pocos (& — &) (B-2)

and upon using the large argument approximation for the Hankel function, the

incident field expression reduces to

Ef == nk 2] -ikp ,tikpocos (b — do) (B-3)
4 wkp

The above expression can be easily written in the following form
Ell - — !Ik H()(k p) e‘*‘ﬂ‘Po cos (d’ - d’O). (8_4)
4

In the presence of a sharp wedge defined by two faces at ¢ = 0° and

$ = 2w — <y and its along the z axis, the total field E/ is given by

El = -_—:li i J n(kpo) H , (kp) sin (L:- $) sin (% $o) p>po (B-5)

n=1 v

where
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v=_2mr —vy) /. (B-6)
For far field observation points, E’ becomes
k 2l & v
E! = . L '\/-:L_ J (k c v oin (JE (1 . B-7
=0 Vi Z7ake0 i dn (G o)sin (G o, B9

Thus the far scattered field E,s is given by

n

Ef = K Hykp) 3 7, (ko) 57 sin (2 ¢) sin (2 &)

n=1

+ 1!4& H ok p) g tikpacos (b — g (B-8)

where the large argument expression of the Hankel function is replaced by the
Hankel function itself. As a result the far scattered field pattern f ¥ can be
determined according to the following definition

Ej = —}"5 Ho(kp) f V. (B-9)

It should be noted that the scattered field patterns f . and f, defined by

Eqgs. (3-47) and (3-49) are derived using the same procedure used in this Appendix

to determine f V.




APPENDIX C

SCATTERING BY A CYLINDRICAL DIELECTRIC
SHELL WITH RADIAL AND AZIMUTHAL
PERMITTIVITY PROFILES

For a dielectric shell with outer and inner radii p, and p, , respectively, and

a permittivity variation of the form

e, =¢, (—‘E})2 (m—8cos2d) ()

where €,, pg m and d are constants, the dielectric medium is considered inho-
mogeneous in two coordinate variables, namely p and ¢ in the circular cylindrical
coordinates. The field in region 1 (see Fig. C-1) is then the super-position of the

incident and scattered waves and is given by
El'(p,d)=Eo{ 3 €,i"J,(kp) cos n{ + 3, €,c,H,(kp) cos ni (C-2)
n=0 n=0

where y = & — &y . The first summation in Eq. (C-2) represents the incident
plane wave Ege/ ¥P €% ¥ expressed in circular cylindrical coordinates and
J,(kp) is the Bessel function of the first kind of argument k p and order n . The
second summation represents the scattered wave where ¢, are unknown
coefficients to be determined while H,(kp) is the Hankel function of the second
kind of argument kp and order n and is used to denote an outward traveling

wave. The ¢ component of the magnetic field in region I is then given by

E o .
o S €,i" k J,(kp) cos ni

HY (p,d) =

j w p‘o n::O
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Fig C-1 : Plane wave incident on a cylindrical dielectric
shell in circular cylindrical co-ordinates .
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+ 3 e,c, k H,(kp) cosny (C-3)

n=0

where the prime indicates differentiation with respect to the argument kp .

For region II, where € is given by Eq. (C-1), E (p , ¢) satisfies the following

equation
2
1 3 oFE 19
—a—p-(p a;)—i—;;—a&}?z' +(1)2 o € Ez = ( (C-4)

by means of separation of variables based on the assumption that

E, (p,d)=p* *¥(d)[90] , Eq. (C-4) reduces to

d? o
d &?

+(a —2gcos2p)P =0 (C-5)

where a = a? + w? o €, pg'q y @ = —;— w? Ko €4 p& 9, and a is the separa-

tion constant . Equation (C-5) represents a Mathieu differential equation . Since
the problem is symmetric with respect to the = 0 plane, only even solutions of

®(¢) should be considered. In addition, E, has a period of 2w in ¢ . Hence a

superposition of all possible solutions satisfying these conditions is given by

Ez"(p ’¢)=E0 E [d2n pah +b2n p—ab]‘:eZn (‘b,Q)
=0

t[dypar PP + bgpyrp” M g (¥, ) (C-6)

where a, = \/am - ? o €4 pg m and a, is the characteristic number of
the Mathieu function «ce, (y ,q). The cosine elliptic functions

ce, (U,q) and ce,, 41 (U, g¢) have periods of w and 2w, respectively [111].

The field H 4 in region II is then given by
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Eo 2 -1 —
2 [aZn(danah —ban o )ceZn(‘!”Q)]
O Ry =

Ez”(p ’¢)=—.
J

+ "'1 - + "‘1
+ [z (doger PP — b1 p” " Vcegusy (U ,9 )] (C-7)

since the field should be finite at p = 0 , the field in the interior region can be

expressed as an infinite series of Bessel functions of the first kind, i. e.

EM(p,b)=E, i €y 8 Ju(kp) cos ny (C-8)
n=0

and as a result

Eo o .
E € &n k Jn(kp) cos nd’ - (C-9)

HI (p,d)=-
¢ jopy 2

The unknown expansion coefficients d4,,, b, ,c,, and g, are evaluated
from the continuity of the tangential fields E, and H4 at p, and p,. The con-

dition that Ez’ and Ez" are equal at p = p, leads to

[><]

en[j" Jukpg) + c, Hy(kp,) ] cos ny

n=0

= i [{dZn p:h +b2n pa—ah} Cean (\ll,q )

n=0

+ [d2n+1 Pa*t + boys1 Pa a"'“] cezn+1 (¥, 9 ) ] . (C-10)

The left hand side of Eq. (C-10) is then multiplied by ce,, (¥ , ¢) where the right

hand side is multiplied by the expansion of ce,, (y , g), ie.

cerm(W,q )= i;OA%,"' cos 2ry (C-11)
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in which the coefficients A 2™ can be computed [111] once q and the characteristic
numbers a,, are known. Integrating both sides of the resulting equation from 0 to
2w and using the orthogonal properties of the Mathieu and the trigonometric

functions [112], we obtain

o]

d'lm p:bu +b2m p;“zm = 2 €2 j2r JZr(kpa)AZZrm

r=0

+ 3, € o Holkp,) AT . (C-12)
r=0

Again multiplying Eq. (C-10) by ce,,, +1(¥ , ¢) and using the expansion

-]

ceomir( W, 9 ) =3, AL cos (2r +1)y (C-13)
=0

r

and integrating from 0 to 27, we obtain

o0

a — gy _ 2r +1 2m+1

doms1Pa " F boms1 Pa 7" =3 €1 S T alhp,) A
r=0

+ 3 €341 €041 Hopslkp,) AZMHE (C-14)
r=0

wherem =0,1,2,3, ---andr =0,1,2, ---

Equations (C-12) and (C-14) can be combined to form a matrix equation, i.e.
Wwimpj+wlisl=I[s]1+[Z]IC] (C-15)

where each element of the matrices [D], [B] and [C] is one of the unknown
expansion coefficients d,, b, and c,, respectively. The matrices [U] and [W] are

i i

diagonals and each of their elements is given by p : and p a- * , respectively. Each

element of the column matrix [S] is denoted by s; and is given. by

2 €; ji J;(kpy) A} . [Z] is a square matrix with elements z;, , given by
i=0
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€, H, (kp,) Alﬂ while the integers p, [ and i have the values 0,1,2, - - -

For Hfb to be equal to Hg at p = p, we should have

Een J" k J,(kp,) cos ny + 2 €, c, k H,(kp,)

n=0 n=0

od [ -1 ~a, —1]
= 2 A2y I_dZn p:h - b2n pa_azn JceZn(‘l” q)

n=0

1

- a, . —a, -1]
+ oz, 41 ld2n+1 paza - b2n+1 Pa e J ce2n+1(¢: Q) - (C-16)

Replacing the Mathieu functions in Eq. (C-16) by their expansions as given in Eqgs.
(C-11) and (C-13) and multiplying by cos m{ and integrating from 0 to 2 7 , we

obtain

€m j2m k JZ’m(kPa) t €3y Com K Him(kpa)

2 [ -1 —a, -1
= 2“2’1 l_dZn p:h —ban Pa o JAZZ:x (C-17)

n=0

and

€2m+1J 2"k T i1 (kpa) + €ami1 Comi1 k Homir (kp,)
< a, ., —1 —a, ,, 1
= Ea2n+1 [d2n+1 paza ' - b2n+1 Pa o ]Azzr:i} : (C-18)
n=0

Equations (C-17) and (C-18) are combined and written in the following matrix

form
[Cl=IF]+[T][D]+[x][B] (C-19)

where [F] is a column matrix in which each element, f, is given' by

—jP JP‘(kpa)/Hp’(kpa), the elements of [T] and [X] are denoted by
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. -1 .
th 1 s %p,1 and are given by o p, Ap' /le, k Hy(kp,) ],

- p ™ -1 Alf /e, k Hp'(k p,) ], respectively.

Following the same procedure at p = p, we obtain after some manipulations

(W1-ITDPRl= (¥ X]-[W])(B] (C-20)

where [U] and [W] are diagonal matrices and each of their elements is given by

!

pp' and p, ', respectively. [Y], [T] and [X] are square matrices and their ele-

-

ments are denoted by y; ,, f, ;,%, ; and given by ¢, Jp(kp,,)Ag ,

-1 . ~a, -1 .
o, py'  Af /[ epk Jy(kpp)] and  —oyp, ' Ay /L€, k J,(kpy) ],
respectively. Furthermore, the coefficients g, are given by
1 ot [ a -1 ]

a —1 -~
8, = - S a, [dsPy”  — by Py Al . (C-21)
d €, k J,(kpp) n=0 n L " 1%

Equations (C-15), (C-19) and (C-20) are solved for the unknown matrices
[D], [B] and [C]. The results are

_ ~ -1
D] = [w] ~ 21T - (21X - WD) {1 ] - 1)

-1

(W1-I1rD | (S1+21F]D (C-22)

- . -1 -
B]= {1 X1 - 7]} (0]-1r1F]) D). (c23)

Once the vectors of the unknowns d, and b, are computed from Eqgs. (C-22) and
(C-23), respectively, we can obtain the unknowns g, and ¢, from Egs. (C-21) and

(C-19), respectively, which completes the solution.

Since all the matrices are infinite, they are suitably truncated during the com-

putations in order to lead to a convergent solution.
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The properties of the plane wave scattering by any cylindrical body of
infinite length are described in terms of the echo width which is denoted by W (¢)

and defined by Harrington [89] as follows :

W(d)=Ilim2wp

p-.m

(C-24)

where EY and ES are the incident and scattered fields, respectively. From Eqgs.

(C-2) and (C-24) the echo width of the dielectric cylindrical shell is given by

2]

> e, c, j" cosny

n=0

W ()= : (c-25)

k IE' % 1EV12

where the Hankel function is replaced by its asymptotic expression for large argu-

ment.

For the sake of comparison, an alternative way of calculating the fields as
well as the echo width due to scattering by a cylindrical shell is also computed
using the method of moments. It should be noted that the application of the
method of moments for the scattering by dielectric bodies is fully explained in the
literature [113-114]. This method is used here for solving the integral equation for
the resulting scattered field by expanding the unknown in terms of pulse functions
and using point matching procedure for testing, hence generating a well condi-
tioned matrix whose elements are easily evaluated. Further, to account for the
permittivity variations in both p and ¢ directions, each shell is divided into a
number of subshells in the p directiqn and each subshell is divided into another
number of equal cells to allow for variations in the ¢ direction. The number of
subshells and the cells are suitably chosen to give accurate results such that the

edge dimension of each cell should not exceed 0.2\ /\/e, where ¢, is the rela-

r

tive permittivity of the cell as proposed and verified by Richmond [113].
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| Figure C-2 shows the echo width of a cylindrical dielectric shell with
ps =027 A, p, = 0250 and excited by a plane wave incident at angle
éo = 1807 . In this figure the solid curve represents the boundary value solution,
whereas the squares represent the computed echo width based on the method of
moments. During the computations by the moment method, the shell was subdi-
vided into 3 subshells and each subshell was divided into 26 equal cells. Excellent
agreement is observed from the two curves in Fig. C-2, however, it should be
mentioned that the method of moments is not suitable for problems with this type
of inhomogeneity relative to the solution obtained by the boundary value
approach. This is clearly understandable when we note that the execution time for
the case shown in Fig. C-2 was 15 times longer by the method of moments than by
the boundary value method. The method of moment results showed excellent
agreement with published data by Richmond [114] for a dielectric shell of constant
permittivity. Remarkable changes in the echo width and the radiation pattern,

corresponding to different values of 8, n, p, and €, , are also investigated and

the results are reported elsewhere [115,116].
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0.8 -

Fig C—2 : W vs. ¢ .
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