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ABSTRACT

The problem of multiple diffraction of an incident plane wave by a perfectly

conducting double wedge is investigated. A new technique based on the spectrum

of cylindrical waves (CWS) is developed to calculate the multiply scattered fields

between two cylindrical objects in general. In this technique the current induced

on the surface of each scatterer due to the original source of excitation is viewed

as an Írrray of line sources. Each order of interaction between the tìilo scatterers

is then expressed as an integral over these sources with the integrand correspond-

ing to the solution for a single line source excitation. The method is applied to

solve for the diffraction by a double wedge and to the scattering by two parallel

cylinders. The results for the scattering by two cylinders agree numerically with

those based on the available exact boundary value solution, whereas the transmis-

sion coefficient compa¡es favorably with the exact values for the special case of a

slit geometry and with asymptotic results for a wide double wedge configuration.

In order to focus on the nature of the edge-to-edge interaction, a two term

asymptotic solution with modified formulation is also derived. The first term is

the non-interaction ûeld due to the incident plane wave, whereas the second term

is the interaction diffracted freld due to two fictitious line sources located at tbe

edges of the two wedges. In particular, the dependence of the transmission

coefficient on the sharpness of the edges is specifically investigated by considering

rounded, capped and dielectric loaded edges" The analogous modification of the

aperture through loading with a third scatterer, such as a conducting or a dielec-

tric cylinder, ís also investigated. Although the radius of rounding or capping is

considered small relative to the wavelength, significant changes in the diffraction

pattern and transmission coefficient are observed. It is also noticed that the aper-

ture loading by a dielectric cylinder produces a higher transmission coefficient

while loading by a conducting cylinder yields a lower transmission coefficient rela-

tive to the unloaded aperture.



-

ilìtì:

- 111

In order to establish the accuracy of the CWS technique for narrow wedge

to wedge separations, the method of moments is modified and initially veriÊed by

application to the scattering by two large parallel cylinders as well as the

diffraction by a double semi-infinite wedges (with sharp and blunt edges) where

favourable agreement with published data is shown.
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CHAPTER T

INTRODUCTION

The diffraction of a plane wave incident on a slit in an infinite conducting

screen has received considerable attention due to its importance in optics and

microwave applications. However, a comprehencive study of the diffraction charac-

teristics by the aperture between two conducting semi-infinite planes or wedges is not

available for practical applications, especially when a third scatterer is located at or

near the aperture plane or when the edges of the half planes are not sharp. Since

the slit is one of the special cases of the double wedge geometry, it is useful to con-

sider the double wedge in the present investigation rather than the slit case.

There is a wíde variety of geometries which fall under the double semi-infinite

wedge problem. Some of these geometries are the parallel plate waveguide with and

without flanges, slit and staggered parallel half planes or wedges. The ray optical

method has been successfully employed for the analysis of propagating modes in

parallel plate waveguides and horn antennas [1]. The radiation from parallel plate

waveguide with right flanges was treated extensively using different methods. One of

these methods was introduced by Nussenzvieg where the radiation problem is

reduced to an infinite system of linea¡ equations [2]. The línear system of equations

is then solved using Neumann's iteration method where the initial step was evaluated

by the Kirchhoff approximation. Following Nussenzvieg's analysis, the diffraction of

the principal mode at the open end of a semi-infinite parallel plate waveguide ter-

minated by an infinite plane flange r,vas studied for narroìt, waveguide widths by

Amaral and Vidal [3]. They computed the evanescent mode correction term to the

reflection amplitude using three different asymptotic approxiurations. The geometri-

cal theory of diffraction (GTD), originally proposed by Keller [4-B] was also used to

r:ì:li
:rit :lr
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evaluate the coupling between TEIII and. TE91 modes of t$¡o parallel plate

waveguide apertures where each waveguide was formed of two wedges [9]. Further-

more, the reflection coefficients of these rnodes at the aperture were analyzed for

different wedge angles by Rudduk and Tsai [10]. On the other hand, the usefulness

of high frequency methods in analyzing the radiation characteristics of a parallel

ffanged waveguide was extended by using the surface integration technique where

the surface integral was obtained by Green's second identity [11J. A totally different

approach for the diffraction of an H-polarized plane wave obliquely incident on a

flanged parallel plate waveguide was presented by Henke et. al. U2l. They used

discrete spectra of periodic fur:ctions inside the waveguide region and l¡fathieu func-

tions in the half spâce. The solution is then obtained by matching the diffracted ûeld

components in the aperture plane. Reflection coefficient at the waveguide-horn

junction (open end of a waveguide with infinite flanges) was studied by Flamid and

Jull using the GTD [13,14J. Schwartz's iterative procedure of overlapping region was

also employed by Iskander and Hamid to determine the scattering coefficients at the

born junction [15]. Furthermore, the coefficients of the scattering matrix describing

transmission, reÍlection and couversion of modes at the junction were obtained

asymptotically by Borovikov and Kaloshin [16].

With respect to the staggered parallel wedges geometry, an approximation to the

attenuation of an incident wave due to single diffraction by the knife edges of dou-

ble parallel wedges was presented in terms of the single knife edge diffraction

coefficient by Wilkerson [17]. However, the multiply diffracted fields by the knife

edges \r,as expressed by Vogler as a nnultiple integral which can be transformed into

series form for calculation purposes [18]. More recently a new ray approximation for

calculating the diffraction attenuation due to several knife edges was derived by

Whitteker using the Fresnel approximation [19]. Asymptotic and experimental

results of the radiation pattern of a slotted-waveguide antenna with wedges *àre also

reported by Borovikov and Narbut in terms of a generalized Fresnel integral [20].
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Tiberio and Kouyoumjian used a uniform extension to the GTD (namely the uniform

theory of diffraction (UTD) [21] along with the modifred slope diffraction (MSD)

l¿2l) to determine the contribution from the doubly diffracted ray due to a pair of

staggered wedges with parallel edges Í23,241. In this geometry the edge of one wedge

is illuminated by the shadow boundary ûeld of the other edge, whereas the original

illumination was considered plane, cylindrical or spherical wave. The diffraction by

an infinite set of parallel half planes was also investigated by Luneburg and Hurd,

where in one case the total field on each plate vanishes on one side and the normal

derivative vanishes on the other side [25], wirile in other case the total field or its

normal derivative vanishes on alternative half planes [26]. It should be pointed out

that the multiple diffraction by perfectly conducting parallel half planes has been the

subject of intensive research due to its usefulness in modeling a waveguide array

which can be built by a number of parallel equi-spaced semiplanes orthogonal to the

straight line joining their edges Í27-321.

It is well known that an exact solution of the slit problem (double wedge of

zero angle) can be found in terms of eigenfunction series of lvfathieu functions [3]
35], but its usefulness is limited to small slit widths because of the difficulty in tabu-

lating the Mathieu functions and because of poor convergence of the series. Power

series solutions in terms of the slit electrical width for narrow slit widths was

reported by Bouwkanp [36]. For wide slits, Clemmow [37] and Karp and Russek [38]

used the concept of edge currents, while Millar presented an asymptotic solution of

the resulting integral equations by successive iterations [39]. A \#iener-Hopf treat-

ment of the integral equation approach was given by Levine [40]. Clemmow pro-

posed a plane wave spectrum representation of the first order diffracted field by a

modified rffiener-Hopf method and formulated the second order diffracticn by a slit

in integral f.orm 14'1,421" Further, he derived approximate solutions for the narrow

and wide slits. Keller and Karp proposed an alternative asymptotic approach based

on the GTD for the diffraction by the aperture of a wide slit [5,43]. The method
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they proposed provides physical insight into the mechanism of diffraction sinçe the

geometrical p¿úameters dictate the paths of the propagating rays. Another advantage

of thís method lies in its simplicity as it employs elementary (trigonometric) functions

for the far ûeld calculations and the resulting asymptotic solution is comparable in

accuracy wíth the infinite series solution resulting from using the boundary value

approach for large aperture dimensions. The closely related problem of diffraction

by a thick slit is also investigated in great detail in the literature using different

approaches. Some of the reported methods are the Wiener-Hopf and the generalized

scattering matrix techniques which were used by Kashyap and Hamid [44]. Although

numerical methods are not suítable for semi-infinite scatterers, Mo¡ita was able to

use the method of moments (MM) along with the current on an infinite conducting

plane as a priorí knowledge to study the diffraction of a plane wave by a two-

dimensional aperture with arbitrary cross-section Í45-471. Furthermore, experimental

investigations of the diffraction cha¡acteristics of a thick slit v¿ere reported by Hamid

et. al. [48,49], but they a¡e límited in number and scope.

The diffraction by a double wedge forming a slit type geometry was only investi-

gated asymptotically by Teague and Zitron [50]. Their analysis is based on the Zitron

and Karp approximation for the scattering by multiple cylinders [51]. It is obvious

that further investigation is needed, especially when variations in the geometry are

considered. One of the main objectives of this thesis is to show the relation between

the double wedge geometry (wedge angle, shape of the wedge edge and separation

between the two wedges relative to wavelength) and diffraction characteristics

(induced surface currents, diffracted pattern, transmission coefficient, aperture field,

etc.) for an incident plane ìvave. More important for engineering applications is the

interdependence between the various variables. It is obvious that the absence of an

exact solution for this problem corresponds to lack of knowledge of the exact edge-

to-edge interaction mechanísm and the resulting exact field distribution on thb aper-

ture plane. Therefore, a novel technique based on the spectrum of cylindrical waves
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(CWS) will be developed in Chapter 2 to solve the problem of scattering by multiple

bodies. The CWS technique is first applied to the problem of scattering by two

parallel conducting cylinders to verify its validity. Then the diffraction by two semi-

infinite wedges is attempted for rvedges with sharp as well as cylindrically capped

edges.

In view of the advantages of using dielectric inserts to improve the behavior of

aperture antennas [52], asymptotic solutions for the loaded aperture of a wide double

wedge are presented in Chapter 3. These inserts are introduced in order to control

the effect of edge-to-edge interaction on the total diffracted field by placing an addi-

tional cylindrical scatterer near or at the aperture plane. This scatterer is chosen to

be a circular conducting cylinder, a circular homogeneous dielectric cylinder or a cir-

cula¡ dielectric shell with inhomogeneous permittivity profiles. In addition the

effects of rounding or cylindrically capping the sharp edges of the two wedges on the

diffraction characteristics are also presented. It is worth mentioning that the main

asymptotic solution in Chapter 3 is based on an extension of the Karp and Russek

[38] technique to the diffraction by a wide slit to handle the problem of scattering by

three different cylindrical objects (dielectric and/or conducting). Keller's ray tech-

nique for the diffraction by a slit in a perfectly conducting screen [5], is also used in

some geometries to derive alternative simple expressions for the diffracted fields and

the transmission coefficient.

Since there has been no comprehensive solution to cover the entire scope of

geometrical possibilities of a double wedge in a simple analytical form and to further

check the CWS results for narrow separations between the two wedges, a nunrerical

method based on modiûcation of the MM for the scattering by two cylindrical

scatterers is investigated in Chapter 4. The method is verified by cçmparing the

numerical results for some special cases, namely two parallel cylinders, thin slit and

thick slit with previously published data. Furthermore, the diffraction characteristics

of a double truncated and capped wedge are presented.
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Chapter 5 summarizes the general conclusions of this thesis and points out the

areas of future research. In particular, the possibility of partial cancellation of the

edge diffraction terms is suggested through an active technique involving a line

source located near the edge of each wedge.



CHAPTER 2

RIGOROUS SOLUTION BY THE CYLINDRICAL

WAVE SPECTRUM TECTTNISUE

The two body scattering problem is a special case of the urultiple body scatter-

ing problem and is encountered in a variety of engineering applications. For example,

the solution may be applied to antenna coupling, aperture arrays and grid simulation

of reflector antennas and many more. An exact solution for the scattering problem is

usually obtained using anal¡ical techniques which involve the boundary value

approach. This is only useful if the geometry of the bodies permits separation of

variables in the wave equation and frequently when the size and separation between

the bodies are of the order of the wavelength. Various analytical and numerical

methods have been developed for finding solutions to multiple scattering problems.

However, the great majority of these techniques is restricted to different approxima-

tions, such as the low frequency (IÌ.ayleigh) or high frequency approximations. The

non-uniform GTD is useful for large bodies with large separations although it suffers

when the bodies become too close to one another or complex in shape (bodies con-

taining sharp points, or curves with small radii of curvature such as edges and

corners) or when the contribution of the geometrical shadow regions becomes impor-

tant [8]. On the other hand the MM is most useful for small bodies and relatively

small separations; however the memory size needed to store and invert the generated

impedance matrix becomes unmanageable as the size and complexity of the problem

increases. Therefore successive scattering in the frequency domain may be con-

sidered the most logical approach to determine the total scattered field due to multi-

ple bodies. Previous attempts to solve the multiple scattering problem by successive

scattering assume plane or cylindrical waves or combination of plane waves and their
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derivatives (with respect to íncident and observation angles) in order to account

more accurately for the interaction between the bodies. Unfortunately these

methods tend to fail when the separation distauce approaches zero as the wave front

of the interaction becomes more and more complex. This problem can be avoided by

adopting a different approach which consists of first evaluating the exact current dis-

tribution initially induced on a sheet which coincides with the surface of each body

(due to a specified source) prior to taking interaction into account. If the nature of

the body and the source are such that there is an exact solution for the initial

current distribution on each body due to the given source, then the multiple interac-

tion process can in principle be treated exactly resulting in a series where each term

accounts for one interaction. This is achieved by employing the solution for the

scattering of either body by a point or a line source field. Thus if the initial current

sheet is viewed as an array of infrnitesimal point or line sources, then each order of

interaction can be expressed as an integral over these sources with the integrand

corresponding to a solution for a single point or line source, and the integral desig-

nated as a spherical wave spectrum (SWS) or a cylindrical wave spectrurr (CWS),

respectively. Theoretically the multiple interaction problem reduces to the computa-

tion of an infinite number of terms each involving a spectrum type integral. It is

obvious that in two-dimensional scattering problems, the point source array reduces

to line source array in the same manner as aperture diffraction is computecì by

Huygens'principle for apertures of infinite extent in one dimension.

In this chapter an iterative scattering is developecl where in each iteration a

cylindrical wave spectrum (CWS), due to induced Huygens type line sources on the

scattering surface and emanating from each object towards the other, is computed.

This is employed iteratively in order to determine the additional interaction field due

to multiple scattering and consequently the modified surface current distribution on

all the scattering surfaces. Once the final induced surface çurrent distributions are
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known, the fields can be evaluated using well known relations. This techniqug does

not suffer from any limitation on separation and can handle small as well as large

scatterers, provided that the scattering by a single body in isolation is obtained in a

rigorous form. The method is applied specifically here to tÌ+,o parallel circular con-

ducting cylinders and two semi-infinite conducting wedges, whereas it can in fact be

used for any number of similar or diffçrent scatterers.

In the past tbe problem of scattering by two ç,r multiple circular conducting

cylinders has receive{ great âttention in the literature. Row considered the scatter-

ing from an arbitrary array of parallel cylinders in general and two identical conduct-

ing cylinders in particular where ap infinite matrix equation is inyolved [53]. He con-

sidered a finite number of equations as an approximation and solved the matrix

equation numerically using a diagonal approximation. Twersky employed an iterative

procedure to obtain closed form solutions for several cases by retainíng only the larg-

est terms involving the separation between the scatterers in each order of scattering

[54]. Some of these forms are for t\r,o scatterers with radii and spacing small com-

pared to wavelength, for two arbitrary cylinders with each in the far field of the

other and for multiple equi-spaced coplanar cylinders (a finite grating) when end

effects are neglected. Millar considered the two cases of parallel and perpendicular

polarization for a row of perfectly conducting cylinders of arbitrary cross-sectional

shape [55]. For two cylinders and parallel polarization, his closed form approxima-

tions for the multiple scattering coefficients are identical with those forms given by

Twersky for two arbitrary scatte¡ers. Zitron and Karp showed that the diffraction

by two parallel cylinders of arbitrary shape can be expressed in terms of the unper-

turbed scattering amplitudes of the individual cylinders [51]. The formula is valid

when the spacing between the scatterers is large compared to their dimensions. It

involves derivatives of the scattering amplitudes with respect to the angles of

incidence and observation. A formulation based on multipole expaqsion of the
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scattered field due to two or three paralle conducting cylinders is presented by

Howarth and Pavlasek [56,57]. They also evaluated the diffracted field and the

induced current on the surface of two cylinders and verified their numerical results

experimentally. Hongo gave a comparison between two asymptotic approximations

for the multiple scattering by two circular conducting cylinders [58]. A boundary

value solution was also derived by Young and Bertrand for the scattering by two

parallel cylinders [59]. Their solution includes all terms of multiple scattering

between the two cylinders. Ragheb and Hamid used Twersky's technique for the

scattering by N parallel cylinders to develop an inûnit1 ma:rrx 
lluation 

which they

solved numerically after trulcation [60] They also extended one of the asymptotic

solutions used by Hongo for the scattering by two cylinders to the scattering by mul-

tiple cylinders. The scattering by parallel conducting cylinders of arbitrary cross-

section was also investigated numerically by Andreasen [45] and Mullin et al. [61]

using two different methods, while the problem is usually reduced to a solution of

integral equations which result from applying the boundary conditions in terms of

the unknown induced surface currents. The numerical evaluation of the integral

equations is usually carried out using the method of moments [45,46]. More recently

a modification to the method of moments is presented for the case of scattering by

two circular cylinders Í62,63).

2.7 Computation of the induced su¡face currents

Consider the E-polarization case (TM with respect to z axis) where the electric

field has a z component only with all vectors'independent of z of the circular

cylindrical coordinates (p,0, z), while the time clependence ei'' is considered and

suppressed throughout. For a plane wave of unit amplitude incident on two parallel

cylindrical scatterers at angle $g with respect to the negative x axis, the incident

field Ej is given by

(2-1)
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whefe ft is the wave numbel 2T fl\, À is the wavelength and the subscript p

a plane $/ave. The boundary condition on a conducting surface is

E;+Es =0

while the scattered ûeld E s is given by

Es = _ + î, r(p) Ho(k tÞ _ Þ.r) dc

Ei =-of¡ro(frR)

refers to

(2-2)

(2-3)

where C is the total contour of the cross-section of the scatterer, the superscript S

refers to the scattered field, r¡ is the intrinsic impedance of free space and ,t is the z

directed linear surface current. ¡10(t) is the Hankel function of order zero and

argument ¡ while the superscript (2) is implied and suppressed throughout. It is also

known that the ûeld of any infinite line source of unit amplitude located at (po , 0o)

and parallel to the z axis can be expressed in terms of the Hankel function as follows

[6a] :

(z-4)

where R is the distance between the line source and the field point and the subscript

/ refers to the line source.

For the scattering by two bodies one may consider each of the two bodies as

excited by the original incident field and the scatterecl field which results from the

other body due to the original inçident field where only first order interaction

between the two bodies is assumed. For higher orders of interaction, the resulting

scattered field from previous order is considered as a new excitation for the other

body. In each interaction the basic formula that describes the scattered field is given

by Eq. (2-3), where the Hankel function in the integrand represents a cylindrical

wave of normalized intensity "/. In view of Eqs. (2-3) and (2-4) we notice tl¡at the
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scattered ñeld in each iteration can be represented as an integral or sum over

cylindrical waves with different amplitudes and origins. Each of these waves is

incident on the second scatterer and produce additional scattered fields. It is clear

that the application of this method requires knowledge of the induced currents on

the surfaces under consideration due to an incident plane wave and a line source

ûeld separately. For geometries which consist of scatterers like half planes, circular

or elliptic cylinders, wedges or any combinations, it is always possible to use the

exact expressions for the surface currents since there are exact solutions for the

scattering by each of these individual bodies in isolation. In fact the proposed tech-

nique is still applicable to bodies of arbitrary cross-sectional shape once the surface

currents are obtained using any appropriate method [45,46,67,65-67].

As an example, consider a perfectly conducting circular cylinder defined by the

surface p = a with its axis coinciding with the z axis of the circular cylindrical coor-

dinates (p , 0 , r ). The exact expression for the scattered field due to an incident

plane wave and a line source ñeld (defined by Eqs. (2-1) and (2-4), respectively) are

given W nì and E¡s, respectively t64l and can be rewritten after some mathematical

manipulations in the following modified form

Ei: - I .n
n:0

Ert:+å,

t" m H,,(kp) cos ¿(o - oo)

,, m H n(kPo) än (e p) cos n (0 - 0o)

(2-5)

(2-6)

is the Bessel

Hankel func-

3lì

,È;:

"{:

.N.
s.:ì

1,ù

ì:i
t{::

,r-l
s.:
.*:
!ì
*
-iì:l

where Neumann's number en is 1 for n = 0 and 2 f.or n ) 0 , Jr(t)
function of the first kind of order n and argument ¡ and H n(t ) is the

tion of the second kind of order r¡ and argument r.

From the boundary conditions fhe electrical surface current on a conducting

surface J- can be given in terms of the total magnetic ûeld Ft on the s,rrface as
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I =ft xE'

where Ê is the outward unit

magnetic field in this case is

F'=Hoî' +Hôô.

The electric surface current

replaced by the outward unit

aEl
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vector normal to the

(2-7)

conducting surface and the total

ur= # ðp

where E' denotes the total field (Eí + Es) due

exact expression for the z directed linear current

wave Jo is given by

(2-8)

can then be determined using Eq. (2-7) where ñ is

vector normal to the cylinder surface, i.".Þ.Since

(2-e)

to the original incident field, the

density due to an incident plane

For a line source ûeld defined by

curfent density J¡ is derived using

of Bessel functions. The result is

cos n(0 - 0o)

H n(ka)

Eq. (2-4), the corresponding z

Eqs. (2-4), (2-6), (2-7), (2-9) and

rP=#å."r" (2-10)

directed linear

the 'Wronskians

Jt = - cos r(0 - 0o). (2-ll',)

Another example is a sharp wedge defined by two half-planes at 0 = 0 and

ö = 2 î - T intersecting along the z axis. In order to find the exact current distri-

bution on the surface of the wedge due to an incident plane $,ave or line source

field, we use the exact expressions for the total field E| andE/, respectively, i.e.

*å0."



r.:-!
a: ì',1

rl:i'

4å
"frt

5r-:.ì.ììrt:t:
ä.ir..i:'1.

:::' .ì:l ..1 : Êtlll ="p

-L4

J ,(k p) sin (Jl 0) sin (a 0o)yv

t 
i?eo) 

äi(e p) sin (¿

J ,(kp) H ,(kps) sin (¿
vv

El* =

lat =l-ô

-lk
u

-q&
v

i"/"

ûs2n:l
æs
Z¿
¡=1

g) sin (¿ Oo)
v

g) sin (A ôo)'v

(2-12)

'F)Po
(2-13)

, P(Po

where the superscrípts f and W tef.er to the total field and a sharp wedge, respec-

tively, and

v=(2r.-l)/n.

Since the outward unit vector normal to the wedge surface É is defined by

(2-14)

(2-1s)

(2-16)

,0=0
,Ö=2rr-l

the electrical surface çurrent can be written using Eqs. (2-7), (2-8) and (2-15) in the

following form

JUW

JLW

Hg=

Thus, using

reduce to

,

,

-Hp
HP

0=0
ö=2¡ -"t

where the Jaw and JLw are the z directed surface currents and the superscripts U

and L refer to the upper and lower surfaces of the wedge, respectively. Furtber-

more, we have

aEtw

ir'kp

Eqs. (2-12)

a0
(2-17)

and (2-13), tho exact expressions for the sr¡rface currents
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rln=-+i
PY- ¡:1
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jn/' I n(*p)

n (-l)n ¡nh

J n(kpe) Irr(ep) sin
vv

n (-l)" J n(kpo) ä 
" 

(e p) sin tf +rl
v

æ

sLI
n:l
æ

sa
n:1

sln tf, o,l

sin (Jl 6o)J 
^(kp)

(2-18)

, p0( p (2-19)

(2-20)

tf o,t

For pg)p, the arguments of the Bessel and Hankel functions in Eq. (2-19) are inter-

changed. To avoid the numerical difficulty which would aríse if we use the surface

currents on the upper surface of each of the two wedges, we let lfw Ue written as a

sum of the physical optical current JPo plus the edge diffraction current Jd. Obvi-

ously Jd and Jlw decay as the distance from the wedge edge increases until they

finally vanish at infinity. Moreover, the scattered field component, EÊo, from a sin-

gle wedge due to JPo can be written for a normally incident plane wave as

In terms of the local coordinates of the wedge, it is obvious that ff, is zero in the

far region to the left of the ¡ = 0 plane, while in the far region to the right of the

¡ = 0 plane and for y < 0, Efg reptesents the wave which completely cancels the

incident \ilave, while for y ) 0 it corresponds to the wave that would be reflected

from an infinite conducting plane. Since we are interested in the near as well as the

far fields, the value o1. Ef6 is investigated at the position of the edge of the opposite

wedge. Since Efs can be expressed in a simple closed form in the near field [68,69],

therefore in the presence of a secon{ wedge (see Fig. 2-Ð EÊo is replaced by a line

source located at the wedge edge. The intensity C9 of that line source is found to be



Incidenl plane wave

Wedge B

Fig . 2- 1 : Double wedge geometry

q --,"1

l[edge A

X

l2

I

H
oì

I

"-,.. ,.,/



(see APPendix A)

s12

co = f # - + I H s(kt) dt I / H s(ksn)

in order to represen t Espo at the edge of the opposite $,edge.
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sin(Jl0) sin(11öo)

(2-21)

(2-22',)

(2-23)

, Pàr (2-24)

, p2 r. (Z-25)

For a single wedge with cylindrical cap of radius r and axis coinciding with the

wedge edge, the total fields E! or E/ due to a plane wave incident or a line source

field, respectively, are given exactly by

El=ø]w+ø|c

El =Elw+Elc

where Elw and Elw are given by Eqs. (2-12) and (2-13), respectively, and

Elt =
J "(kr)

v

H 
"(kr)v

tún

+ >. i' H,(kp)
d:t v

E!' :+ 
å, 

u 
îro 

rrr 

t# 
H,(k p) sin(40) sin(116)

The surface of the capped wedge , Scw , is composed of two plane surfaces say Sy

and.S¿ and the cylinder cap surface.56. as shown in Fig.2-2. Scw may be character-

ized by the following relations

Scw : Su * Sc + ^S¿ (2-26)

where for Sür,0:0o,plr, fgr 56. , p:r r05ö=Zn-.y and for S¿ ,

þ = 2¡ -L p ) r . The unit vectors normal to the surfaces S¿r , Sç and S¿ are

then definedby âu , fiç and É¿, respectively, and given by
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On Sy, the electric surface current due to a plane wave

denoted W ll and Jl, respectively, and are given by

rl=tfw+tfc

and

Jf = tltn + Jlt' .

Similarly on .S¿, we have

r!=tlw+tlc

and

tl=tlw+tlc

where Jfn ,J[tn ,Jln
while

and J lw are given by Eqs. (2-18) and

ûu =ö ì
Ittc=P I

ù=-þl
(2-27)

or a line source filed a¡e

(2-28)

(2-2e)

(2-30)

(2-31)

(2-19), respectively,

æn
2 n j'

r¡ :1

æn
E n(-1)" j"
n:1

J 
^(kr)

tUC - -4-uP 
inkprz

tuC- 1
.tl . .,

I pv-

tLC- 4
"P - J"kr"'

H,(kp)
v

sin (¿60)
H ,(kr)

v

(2-32)

(2-33)tn
n:1

H,(kpo)H"(ep)
J n(kr)

v 

- 
-:^ tfl.

H "(kù 
sin (:$6)

;

H 
^(kp)v

J n(kr)

ffisin(J140)
(2-34)
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(-1f nf&po)H"(frp) sin (J160). e-is)v
Jl'= .+

I pv-

rC- I
"p - lkrlnv

_n
tC - 

t'
"I Írv

i,
¡:1

æsaJ
n:1

J ,(kr)

H n(kr)
v

However, for the current distribution on .S6 due to a plane wave incident, we have

whereas for a line source field, the corresponding expression of the surface current is

given by

Jt = Jp +> rf
/V =l

(2-36)

(2-37)

(2-38)

-,ftsin(¿ 4)sin(¿ '¡u)

11" (ft po)

;Fa sin(4 $) sin tf, +'l'>
¡:1

Furthermore, it should be noted that the upper limit of the integral in Eq. (2-21)

which is denoted by stz for a double sharp wedge geometry, sbould be replaced by

s tz * c for the double capped wedge case.

In this representation the final induced surface current J' is given by

where Jo represents the surface current due to the original incident wave, J¡il

represents the additional surface current due to the previously induced surface

current on the other body and the superscript N denotes the order of interaction.

In other words Jrl is evaluated from the scattered field due to the initial surface

currents "/o produced by the incident plane wave times an appropriate phase

difference according to 00, whereas J ¡2, J ¡3 , on one body are due to

J ¡r, J t2, ' ' ' on the other body.
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2.2 Far field Dattern

A convenient representation of the total fteld can be written as

Et =E'+8" (2-3e)

where the non-interaction field E represents the geometrical optics field E8 plus the

diffracted fields (or the incident ûeld Et plus the scattered fields) when each body is

excited by the original incident ûeld separately. The interaction field E 
" can be

determined once the total surface current Jt is evaluated. Referring to Fig. 2-3, E'

due to two parallel cylinders of radii ¿ and b can be given exactly by

co Í ¡ -(ka\E'= Eí - å en in 
Ie+it"'o'0' ffi 

H,(kp1) cosn(0r - 0o)

¡ "-iksz.o"a,42 H,(kp2) cos "(0, - 0r)] (2-40)

(2-41)

(2-42)

(2-43)

.(2-44)

while E may be written as

n" - +{"å ." ffi Hn(ko) lo" r,(0r) cos ,r (02 - q) H oþpù d öt

* 
å, 

,, m Hn(kpr) lr" r,(02) cos n(0r - qì Ho(kpr)

where J' is given by Eq. (2-38) and

p1:

o*, 
)

Qt= T - tan-1
å sin $2

s1z - å cos $2

pz: lþrz - d cos g1)2 + (ø sin g)z
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For the double wedge geometry (see Fig. 2-1) the far non-interaction field can

be determined using Keller's geometrical theory of diffraction for all observation

points away from the shadow and reflection boundaries. Upon using the asymp-totic

expression of the diffracted field due to an incident plane wave on a conducting

sharp wedge, E' can be written in the following form

E =EB LHo?pl)e+lÈ"cosô0 , (ôr,ö01 ,v1 ,11)

tH0&p2)e-ik"cosÔ0, (02, öoz,vz,rz)l Q-si)

while the diffraction pattern function g is replaced by gw o, gw + gc for a sharp

or capped wedge, respectively, where

'1r.1.-
¿l

sw (ô,00, v ): **a{,..- (î) - cos 133¡ ¡-r

i,., ril - cos rïLlr')
and

(2-54')

(2-ss)
_Q:

gc(0, 00, r, ,) = 3
7fv

J 
^(kr)v.-.--.-Slll

H ,(kr)
;

(¿o) sin(Jl40).vu
æzn
Xj'
¿:1

Furthermor€, v1 and v2 are defined by Eq. (2-14) except that ^y equals a or B for u1

or u2t respectively and r1 and r2üe the radii of the cylindrical caps at the edges of

the two weclges A and B , respectively. $g1 r ösz are the angles of the incident plane

wave in terms of the local coordinates of the two wedges A and B, respectively.

For any far field point E" can be determined using Eqs. (2-3) and (2-13) and can

be written as
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¡'(pJ f (ö2, Pz, ez¡ vz) d ptE=

o, =fn

['

t,
Qz= J

["

+ H o(koì Iç,

Pz * sn

Yþzcos p * t tùz + (pz sin p)z

p2 sin p

I'(pù,/ (0r, pt, er, ur) O orl

öz:o
öz:2n

(2-s6)

(z-s't)

(2-sB)

p wedgeshar

{:

where for a

pl= -p

t ^ r-I P1 'ù12
tt^ : fY¿ I Vþrcosa *tn)z +(prsinc)2

t

,

t

0r=o
öt=2,

0z:o
öz=27

-ct

while / is given by f w for a sharp wedge or by f w

whereas according to Appendix B, we have

rw (þ,P0, ö0, u ) = - "jkPscos($ 
-$s)

(2-se)

ör:0
Öt:2n-a (2-60)

If c î.ora capped wedge,

sin14) rin1&¡vv
(2-61)

-p
*tan-1

* tan-l

p2cos9*srz

p1 sin c
pl cos ct * s12

*13,#t
n

ju J,(Épo)
v
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"f 
c(0, Po,00, v, r) =

Eo(p,0)= + r(ô).
vrtkp

As a result, the transmission coefficient T for a normally

given by

ï : Re[ (1-i) n 1!¡7¡r,,rr.

J 
^(kr)

#¡H, (È po) sin(Jlq) sin(J140). e-62)fln\Kr) - v v

n

* 2,,'

C 1 and C 2 arc finite parts of the semi-infinite cross-sectional contours of the two

wedges A and B, respectively, on which "Id and J!,¡ exist It is to be noticed that

J' in Eq. (2-56) is given by Eq. (2-3S) except that Jo is replaced by Jd and the

assumed line source intensity C9 at the edge of the wedge. Hence, the total far

diffracted field Ed from the two wedges (E' + E" - Et) is completely determined

and the far diffracted field pattern F (.Þ) can be defined when the far diffracted field

is expressed as

(2-63)

incident plane wave is

(2-64)

23 Numerical examoles

Due to the numerical limitations, the maximum number of interactions used in

the following results is assumed the value 9, whereas the number of line sources per

wavelength is chosen to be approximately 10 to give appropriate accuracy up to the

third decimal point in the values of o and T for the closest separatíon between the

two wedges or cylinders. In Fig.2-4,lve present the total scattered field pattern due

to a plane wave incident at angle 0o : 90" on t\r,o identical conducting parallel

cylinders of radii ka = kb = 05 and ks = 2. As shown in the figure the Es pattern

due to the CWS technique approaches the pattern due to the boundary valug solu-

tion [59,60] as the number of interactions iV increases. It is found that the maximum
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deviations from the exact pattern for any small value of N are always in the forward

and backwa¡d directions of the incident plane lilave. To further indicate this

behaviour the interaction scattered field component E" is computed and presented in

Fig.2-5 for the same parameters in Fig.2'4.

As a criterion for terminating the interaction process, one may observe the

additional increment in "/' after each iteration and set a minimum quantity for that

increment after which the interactions can be terminated. In fact a better approach

is to check the tangential electric field E, on the surface of one of the two cylindri-

cal conductors due to the scattered ûeld from the additional induced surface current

on the other conductor. An example of this process is shown in Fig. 2-6 lor E, on

the surface of cylinder 1 which is part of the two cylinders geometry as shown in Fig.

2-3. In the figure 0O = 90o,ka = kb :0.5 and kt1 : ktl:2- It is found that the

peak value of. E, is nearly at ù = 180o which is the direction of cylinder 2 and

where the multiple interactions between the two cylinders reach a maximum. It is

also clear that all the points of the E, pattern decay as N increases and approaches

zero when lV tends to infinity.

One of the important parameters in the scattering by conducting bodies is the

scattering cross-section. In table 2-l the forward and backward scattering cross-

sections of the double cylinder geometry are indicated for different values of ks,

namely 3 and 6, and for $g = 90o. The numerical values of o are shown for two

identical cylinders of radii ka : kb = 0.5, 1.0 and 1.5. From the table one notices

that s increases with fta regardless of the value of &s. It is clear that the required

number of iterations to obtain a value of o close to the exact value depends on the

ratio s /a. As an example, for s /a > 10 four interactions (rtf : 4) are sufficient for

at least two digits of accuracy. Higher values of N are needed when s /a < 10 as

shown in the table. Table 2-2 is similar to table 2-1 except for $s : 180o. In com-

paring the numerical results in tables 2-1 and 2-2, we find that the forward as well as
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( a ) Forward scattering cross-section ( ö : 270" ).

( b ) Back scattering cross-section ( + = 90" ).

Table 2-1 : Scattering cross-section of two parallel cireular conducting
cylinders with Ss : 9(P.

N
€

ks:3 És:6
ka:0.5 ka:l.A ka:15 ka:OS ka:l.O ka:1.5

I
2

3

4

5

6

7

8

I

2.4765

22977

23881

23743

23718

23735

23732

23732

23732

93s6ó

8.9939

85758

8.4624

8.4736

8.4921

8.4974

8.4969

8.4961

t9:t297

22.7429

24.7345

24.7672

?5.0520

?5.1796

?5.2366

25.26?Ã

25.2734

2.9273

2"7688

23932

2.7957

2"7946

2.7946

2.7947

23947

2.7947

9.2810

9.3779

9lf,46
9.2733

9.2666

9.2661

9.2663

9.2664

9.2664

765740

17.2872

17.4196

17.4334

17.4300

17.4269

17.42s5

17.4250

17.4249

Boundary

value

23728 8.4962 252913 2.7945 9.2680 17.4272

N

t
&s:3 ks:6

ka:0.5 kø:1.0 ka:15 ka:OS ka:7.O ka:7.5

I
2

J

4

5

6

7

I
9

4.7ß4
0.7417

0.7795

41662

o.7673

o1679

a:7676

o1677

0:t677

t.4324

4.9923

o.9537

0.9913

1.0092

1.0110

1.0093

1.0084

1.0084

3.0372

2.9375

2.9449

2.9627

2.9743

2.9804

2.9835

2.985()

2.9857

0.99f)

0"9488

0.9680

0.9674

0.9668

0.9669

0.9669

0.9669

0.9669

1.8684

1.6338

15832

15787

15800

15807

15808

15809

15809

3.4599

3.6272

3.7166

3.7513

3.7629

3.7665

3.7675

3.7677

3.7678

Boundary

value

o:t674 1.0079 2.9870 0.9667 15805 3.7683
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( a ) Forward scattering cross-section ( 0 : 0' ).

( b ) Back scattering cross-section ( 0 : 180e )"

Table 2-2 : Scattering cross-section of two parallel circular conducting
cYlinders with Se : 180e 

"

N

îr
&s:3 ks:6

ka:0.5 ka:1.0 ka:15 ka:0.5 ka:l.O ka:15

I
2

3

4

5

6

7

I
9

23800

22076

22667

22512

22s14

22531

22528

22s28

22528

5.0808

43791

45418

4.4522

4.4656

4.4870

4.4826

4.4814

4.4817

4.6033

7.4917

s.9731

65665

6.2699

63892

63303

63s41

63424

21506

2590/
2.6087

2.6111,

2.61M

2.61ü7

2.61U7

2"6tüt

2.61W

5.2042

5.2124

5.2255

5.1873

5.1943

5.1940

5.1940

5.1941

5.1941

6.4998

7.7396

7 3913

7.4460
't.4384

7.4374

7.4387

7.4382

7.4383

Boundary

value

22524 4.4804 63432 2.6104 s.1932 7.4365

iV

(r
Ês:3 ts:6

ka:O.5 ka:7.O ka:15 ka:0.5 ka:1.O ka:1.5

I
2

3

4

5

6

7

I
9

0ó009

0"6s28

0"6958

0.6859

0.6865

0ó868

0.6865

0.6865

0.6865

0.6971

0.9298

0.8678

0.8721

0"8980

0.8929

0.8907

0"8912

0.8911

0"7848

13704

0.9898

t"t37t
1.0656

1.0956

1.0817

1.0876

1.0849

0.6513

0.6560

4.6727

0.6715

0.6710

o.67tt
0.6711

4.671,1

o.6711

0.9785

1.0920

1.0247

1.03ó0

1,.0373

1.0370

1.0372

1.0372

1.0372

13ó13

13031

13468

13148

13256

l3ztl
ts223
132t9
1.3220

Boundary

value

0.6863 0.8908 1.08s1 0.6709 1.0369 13217
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the backward values of o for 0o = 180o are always smaller than the corresponding

values when öo = 90o regardless of. ka and ks. The good agreement between the

numerical results in tables 2-l and 2-2 obtained by the CWS technique and those

evaluated using the boundary value solution establishes the validity of the CWS tech-

nique.

For all double wedge results, we consider for simplicity the symmetric

configuration where 0o = 90o, frsl = ktz: ks, kr¡: krz= kr and a = F : T.

Furthe¡more, it is worth presenting the behaviour of some of the physical parameters

involved in the calculations. As an example, consider Fig.2-7 in which the field due

to the physical optics current on the surface of one wedge at the edge of the oppo-

site wedge is shown as a function of fts. Obviously it is necessary to include øfo in

the double wedge analysis for all narro\+, separations between the two wedges. How-

ever for wide separations it can be ignored since the value of. Esps decays in an oscil-

latory fashion and tends to zero as ks approaches infinity. On the other hand, the

peak to peak value of the intensity of the assumed line source C9 is found to be

increasing as &s increases. Although the oscillations of Ef¿ and Cg are similar and

have the same period, it is clear that the maxima and minima of these oscillations do

not coincide with each other.

Since there is an exact solution for the diffraction by a slit (double wedge

geometry with ct = P = 0o), the diffracted field is computed for the slit geometry in

order to check the accuracy of the solution. For this special case, each of the series

in Eqs. (2-18) and (2-19) can be transformed into two nerv series. As an example for

v = 2, Eq. (2-18) can be written after some mathematical manipulations in the fol-

lowing form,

_1
I 

--"o - jrßP
æ -+12 rr^+r) i'* ' r _, r (k o) sin [(m +å) oo 1

rn:o ^* z
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(2-6s)

r+,here tbe upper sign pertains toJouw and the lower sign to tlw. ln comparing Eqs.

(2-18) and (2-65), it is found that the expressions given by Eq. (2-65) for the surface

currents are much simpler than those given by Eq.(2-18) regarding the numerical cal-

culations. This is simply due to the use of the recurrence relation of the Bessel func-

t
tion (Jv+r(¡): i J,(r) -/,-r(¡)) while evaluating the summation in Eq.(2-

65), whereu, io eq. (2-18) the orders of the Bessel functions prevent the use of any

recurrence relation and one is therefore forced to evaluate Jn¡r(kp) for each

different value of. n. Furthermore, since the Bessel functions of an order equal to

integer plus half (as those in the first series of Eq. (2-65)) have simple expressions in

terms of triagonometric functions, the execution time is greatly reduced when using

Eq. (2-65) instead of Eq. (2-18). Similarly Eq. (2-19) can be written in terms of two

series. The first series contains Bessel functions of orders equal to integer plus half

while the second series contains Bessel functions of integer orders only. Fig. 2-8

shows the diffracted field pattern of the slit due to an incident plane wave and

&s : 8. It is obvious that the dashed curve, which represents the singly and multiply

diffracted fields up to the fifth order of interaction, is closer to the exact solution

than the solid curve which accounts for the singly diffracted fields. For narrow slits,

one expects a significant contribution from the multiply diffracted fields to the total

field. This is clearly shown for one case in the same figure, namely ks : 4.

To further check the accuracy of the numerical calculations, the transmission

coefficient T defined by Eq. (2-64) is computed. The resulting values of T obtained

using the CWS technique are compared ín table 2-3 with the available exact as well

as asymptotic (GTD) values of T [34,5]. It is to be noticed that the values based on

the CWS technique are computed with relatively small number of interactiorls and

, 
är, 

it tthp) sin (, 0r) 
)
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Table 2-3 : Slit transmission coefficient for 0o = 90'.

/V
T

&s =0.8 ks =1 ks =2 &s =3 fts =5 ks:8

1

2

3

4

5

6

7

I

0.4439

02779

025?5

0255()

02580

02590

0.2592

0.2592

0.7099

05930

o5562

0546ó

05446

o5444

0544ø

05444

1.1912

1.1913

1.1838

1.1838

1"1841

1.1841

1.1841

1.1841

0.9625

0.9751

o.9724

0.9729

4.9728

0.9728

0.9728

0.9728

t.0475

1.0504

1.0498

1.0498

1.0498

1.0498

1.0498

1.0498

1.0217

1.0232

1.0232

1.0232

1.0232

1.u232

1.U232

1.0232

Exact 0.2605 05454 1.1842 0.9720 1.0499 t.0233

GTD 0.1555 0.6428 1.1861 0.9601 1.0512 1.t239
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are in better agreement with the exact values than those based on Keller's asymptotic

solution in which all infinite interactions are considered.

Figure 2-9 shows the transmission coefficient of a double wedge geometry as a

function of interior wedge angle 1 for different values of &s , namely 1,2 and 4. In

this figure the results based on the CWS technique are shown along with two

different asymptotic solutions. The ûrst asymptotic solution 170,7lJ is an extension of

a technique used for the diffraction by a wide slit [38]. In this solution the interac-

tion between the two wedges is in the form of cylindrical waves. In the second

asymptotic approach the interaction between the two wedges is expressed in terms of

plane waves and derivatives of plane waves with respect to the incidence and obser-

vation angles [50]. The numerical results in Fig. 2-9 indicate good agreement

between the CWS technique and the other t\ro asymptotic techniques for ks = 4,

whereas for &s : 2 small deviations are observed. It is believed that the results

obtained using the CWS technique are closer to the exact solution as in the case of

T : 0. Furthermore, for small separations, namely ks =1, it is clearly shown that

both asymptotic solutions deviate from the CWS results. In general one observes

that the effect of the interior wedge angle on T is large for small values of Ès

whereas for large values of ks the changes in T become very small except for very

large ct or p.

With respect to the double capped wedge geometry, the total current distribu-

tion on the surface of one of the two wedges is shown in Figs. 2-70,2-11 and 2-72

where ,tr is equal to 0.05, 0.1 and 1.0, respectively, and for N = 1, 2, 3, ...,6. One

can easily notice that Jt converges after a few interactions between the two wedges

for the case when 0O : 90o, ks : 7 and I : 10o. It is also found that the peak

value of Jt decreases with increasing kr. The transmission coefficient is shown for

different valuesof I,namely'Y = 0o,I = |0o and 1:20o with $9:90o and for

kr = 05 in Fig. 2-13. The Figure also shows an asymptotic solution 172,73lbase¿ on
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the assumption that two ûctitious line sources (located at the virtual edges of tþe two

wedges) are used to account for the total interaction between the wedges. It is

clearly shown that there is an excellent agreement between the computed values of T

using the CWS technique and the asymptotic method for all large values of /<s .

However, for small values of frs some deviations are observed. Although, these devi-

ations are small (because I is an integral quantity based on the diffracted field

values at all observation points), it is obvious that the deviations in the diffraction

pattern are significant especially for small values of fts. These deviations in the

diffraction field pattern are shown in Fig. 2-8 for the uncapped slit and in Figs. 2-14,

2-15 and 2-76 f.or the capped slit geometry where ks :4,6, and 8, respectively, and

kr :1.0. It is obvious that as ks increases the results based on the asymptotic solu-

tion are in good agreement with those obtained using the CWS technique, as

expected.
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CHAPTER 3

MODIFIED ASYMPTOTIC SOT.UTION FOR

A LOADED APERTURE

In the previous chapter, the problem of two-dimensional scattering by two

bodies is formulated rigorously using a novel CWS technique. Although the CtilS

technique is valid for small as well as wide electrical sepruations between the two

bodies, it is found that for wide separation the numerical results based on the asymp-

totic solution agree very well with those obtained by the CWS technique. Therefore,

it is appropriate to use an asymptotic solution where it is valid to show the relation

between the diffraction cl¡a¡acteristics and the geometrical parameters of the double

wedge. Moreover, the effect of adding new scatterers or changing some of the

geometrical shapes of the two wedges (see Fig. 11) on the diffraction characteristics

can be investigated if the asymptotic solution is valid for obtaining the parameters in

question. Among the suitable loading objects for the dor:ble wedge geometry is the

circular cylinder or cylindrical shell, where the cylinder may be located at, above or

below the aperture plane. For example, if the cylinder axis coincides with either

edge of the wedge, the resulting geometry is nothing more than a capped wedge.

Thus, for a metallic cylinder loading the edge of the wedge may be physically

blocked and the resulting diffracted field from the capped wedge will depend mainly

on the radius of the metallic cap. However, if the cap is a dielectric cylinder the

edge diffracted field will be modiûed according to the cylinder radius and the dielec-

tric permittivity. One should also point out that the edge diffracted field can be par-

tially or totally absorbed if the dielectric is considered lossy. Another loading

geometry is when the cylinder is along the center of the aperture plane while the

plane wave is normally incident; in such case the forward diffracted field will be
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greatly affected by the cylinder radius as well as the permittivity of the dielectric

cylinder. In addition to variations in the diffracted ûeld in the forwa¡d direction,

new diffraction lobes may appear which are considered as losses. It is predicted that

the existence of a third scatterer near the edges of the two wedges may create more

oscillations in the forward transmission coefficient through the aperture. Although

the location of the additional scatterer is arbitrary, there may be some restrictions on

the spacing between the edges of the two wedges and the additional scatterer or

sc¡tterers to allow using the asymptotic solutions.

In this chapter, two simple asymptotic solutions are obtained in a physically

interpretable form and are convenient for calculation purposes. Furthermore, the

proposed sr"rlutions offer much physical insight into the complex mechanism of multi-

ple interaction between the scatterers. The double wedge diffraction problem is

attempted in Sec. 3.1 using the known solution of the diffracted ûeld from a single

wedge. The dependence of the total diffracted field from the two wedges on the

interaction between the two edges is clearly represented by simple relations.

In Sec. 3.2, we investigate the effect of loading the sharp edges of tl¡e two

wedges by cylindrical caps whose axes coincide with the edges. The caps are con-

sidered to be conducting or dielectric infinite cylinders with circular cross-sections.

Since the edge of a wedge is assumed perfectly sharp, it is also our objective to

investigate the effect of small rounding of the two edges on the diffraction charac-

teristics of the double wedge problem. Therefore, we present in Sec. 33 the effect of

small edge rounding using an asymptotic solution based on plane wave interaction

between the two wedges.

The scattering of an incident plane wave by two sharp wedges and an additional

cylindrical scatterer with ci¡cular cross-section is derived in Sec. 3.4. Some numerical

examples for the diffracted ûeld and the transmission coefficient due to an incident

plane wave are presented in Sec. 35. The range of validity of the proposed
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asymptotic solutions as well as the effects of aperture loading are also investigated.

3.1 Diffraction þy g wide double wedqe with sham edqes.

For a single wedge defined by two half-planes at $ : T and þ :2n - ^y inter-

secting along the z-axis of the circular cylindrical coordinates (p,0, z), the total

field is the geometrical optics ûeld Es plus the diffracted field. The asymptotic

diffracted fields due to a plane wave (Eq. (2-l)) and a line source freld (Eq. (2-4))

incident on a conducting sharp wedge a¡e denotedby Elw and Efw, respectively,

[74] where

EíN Ho&p) sw( o, oo,, )

Ef* : +Ho (e ù fw(0, Po, ge, u )'

The diffraction patterns gw and / w are given, respectively by

-nfr:.+
4

(11)

(r2)

sw(0, 00, u) = #sin(rrlv) - cos19- Ôo 
¡¡-r

u
ft"o,ta)Iv

(13)
v

-f 
w(0, ps, ge, u) no(k po) slv (ö, 00, ,) (34)

where

v=2(t-l)/¡ (}s)

while the superscript w refers to a sharp wedge and the asymptotic form of the

Hankel function is replaced by the Hankel function itself in the / w function. From

Eqs. ($1) and (12) one notices that the field diffracted by a sharp wedge due to

eíther a plane waye or a line source field, is in the form of a cylindrical wave

- lcos(Jl¡v
-ö + 0o

- cos(- 3)r_,)

= -î&
4
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emanating from a fictitious line source at the edge of the wedge.

Employing the Karp and Russek technique for the interaction between the two

sharp wedges [38], the diffracted field due to an incident plane wave plus a fictitious

line source, located at the edge of the second wedge, is derived.

For the case of two wedges separated by stz (sharp edge to edge distance where

frs p)) 1) and illuminated by a plane wave of unit amplitude (see Fig. 12), the total

field at any point is considered as being composed of the incident field plus a

response ûeld from each of the two wedges or, alternatively , as a geometrical optics

field plus two diffracted fields (one from each wedge). It is assumed that each of

these diffracted Êelds is of the same nature as the field known to be diffracted by an

isolated wedge. These fields can be presented in the region far from the edge of the

wedge (e¡ or en ) by Eqs. (}.1) and (12). Since Ô1 has the constant value Í aÌ, €B t

the diffracted field due to wedge.á at es is of the form ¿-ikPffrp which

represents the asymptotic field of a line source 
^t 

eA. A simila¡ remark holds for the

excitation of wedge .,4. Hence each wedge may be thought of as being excited by the

incident ûeld plus a line source located at the edge of the opposite wedge. The

strengtb of this line source depends on the value of Íw ( r, " llt,Ítt 
v ) for the

opposite wedge.

The total field can be expressed as a linear combination of the fields due to the

diffraction of the incident plane wave (non-interaction term), and line source fields

diffracted by the two wedges (interaction term). In this representation the total

diffracted field Ed 1o, -i +2s,< r= t -2B and 0<a or F< f, it

given by

where

Ed =Edl+Edz (16)
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*"tÍ *(Ör, s12erÍ,ur)J

H oG pz) I e+jls2 sin tog* (ôr, ôu¿, vz)

* rz f * (ör, sy2t rr, rz ) I . (18)

In Eqs. (17) and (3-B) c1 and c2 àte the unknown strengths of the fictitious line

sources at e¡ and d¿ r r€spoctively, and u1 and v2 are defined by Eq. (3-5) where 1 is

replaced by c and p , respectively. s12 is defined by Eq. (2-46) whereas $s1 and $s2

are the polar angles of the incident plane wave measured in terms of the local coor-

dinates of the two wedges A and B, respectively. For any far field point the quanti-

ties p1 , pz , 0r and $2 are given in terms of p and $ by Eqs. (2-47) to (2-49) where

o=3t -ô.
2

To determine the complex values of c1 and c2, one may follow the same

aualysis given in [38] by imposing the requirement that the diffracted fields of the

two wedges be consistent with each other. This leads to the following equations

cr = [ ,-iksr sin oorw (r, ôot, vt) f * (n, J12¡ zr , vz)

(!7)

(&e)¡ 
"+ikszsin 

oorw(r,0m, 
"ùl /*

cz = L r*iksz sin 0ort7(r, 
öoz, vz) f n (n, s12t rÍ, ur )

¡ ,-ikstsin oorw(r, 
öot, "t)l /* (110)

where

w : | - I w (r, s12r Ít tvL) Í w (r, s12,,n, vz) (111)

Hence, the total diffracted field Ed is fully determined and can be written after
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using the far ûeld approximations in the following form

Ed =+F(0,s1ts2tvr,vz)vttr p

where F is the diffraction pattern of a double sharp wedge.

Another convenient representation for the total field can be written as

Et=E'+8"

where

($12)

(113)

(!14)

E' = Et - + lHo&p1) e-ik',sin 0o 
rw(0r, ôor, rr )

+ H o(kpz) e+ik', sin oo 
¡lw (02, 0oz, "z) I

fi" - + l."tHo(frpJ .f w(0r, s12, 1r, v1 )

+ c2 H s(k pz) f n (ör, s 12¡,Ít, rz ) l. (1ls)

The non-interaction term E represents the excitation of each sharp wedge separately

by the incident plane $,ave. This may be a good approximation for extremely wide

wedges. However, for na¡rower wedges the interaction term E" is required .

The transmission coefficient T for a plane wave incident at angle 0g is given by

[38, Eq. (31) I,

I = Re t (1 - i) r I / kstz (116)

where F is given by F(0, s1, s21v1; v2) in the limit as 0 approaches 0¡.
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3.2 Diffraction_ [ a wide double wedqe with capped edges.

The diffraction of an incident E-polarized plane wave by a cylindrical dielectric

capped wedge was derived by Adey [75] and generalized by Towaij et al. [76] to many

concentric dielectric shells. tlamid presented a diffraction coefficient for the

dielectrically capped wedge [77], while Hamid and Towaij showed the effects of the

dielectric cap on the radiation cha¡acteristics of a capped half plane excited by a line

source field [78].

The diffraction by a wedge with a conducting cylindrical cap was solved exact¡y

by Karp in terms of an infinite series of angular eigenfunctions [79]. The half plane

with a conducting cap was studied by many authors. Keller investigated the darkness

of the shadow of rounded and capped screens using ray theory and GTD [80]. A

modification to Keller's approach to this problem was proposed by Kouyoumjian and

Burnside by including additional ray systems and using a more accurate diffraction

coefficient [81]. Keller and Magiros [82] gave an alternative exact solution for the

diffraction by a capped half plane in terms of an infìnite series of radial eigenfunc-

tions and showed that their solution agrees with Karp's solution [79]. They also

derived an approximate asymptotic expression for the diffracted field in the shadow

and illuminated regions. Starting with the exact solution, Chu et al. derived an alter-

native uniform fa¡ field asymptotic solution for the diffraction of an electromagnetic

plane wave by a conducting capped half plane [83]. More recently, Hallidy derived

uniform asymptotic expressions for electric and magnetic type plane waves diffracted

by a perfectly conducting cylinder-tipped wedge [84].

The present analysis of multiple diffraction between two cylindrically capped

wedges (see Fig. $3) is based upon the exact ûeld expressions for a single capped

wedge due to an incident plane n'ave at any angle and a line source field derived

using the boundary value approach 176,79J, as well as the technique used in Sec. 3.1

for the diffraction by a wide double wedge. The single capped wedge geometry may

be defined by two half-planes at ö - "y and ö = 2n - 1 intersecting along the z
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axis and an infinite circular cylinder of radius r rvhose axis coincides with the z axis.

For a conducting capped wedge the diffracted field patterns drre to a plane wave

given by Eq. (2-1) aad a line source field defined by Eq. (2-a) are given for small

values of frr by

s( ô,00, v, r ) = gw( ô, So,, \ + gc (117)

and

/ ( 0, Po, ö0, v,r ) = Íw(0, Po, 00, v) + f c

respectively, where

(118)

sin J116 - 1) sin r(00 - r)vv
(11e)

Il,(kpo) sin ¿16 - 1¡

(320)

due to a plane wave

8c=-#å,
¿n

j;
J,(kr)

v

II n(kr)
v

J,(kr)
v

H n(kr)
v

lc :

- sin a(öo - î)v

while the superscript c refers to a conducting cap.

For a dielectric capped wedge the diffracted field patterns

and line source field are given, respectively, by

8( 0, 0s, u, r, er ) = 8w( Ô, 00, v) + gD

/ ( 0, Po, ö0, v,r,er ) = f *(0, 
Po, ô0, ù + f D

where the superscript D refers to a dielectric cap, k t = G
permittivity of the dielectric cap and provided that & 1r is not

i 2,+

(}2t)

(T22)

k , er is the relative

too large relative to
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k1J,(kr)t,$rr)

sD = - +q-
rlK v

2n

î. ¡; rn sin J1(6
n:L v

+ å, 
ii 

'+H"(ftpo)

- 1) sin 4(00 - r)v

sin J1-16 _ ^y) sin
v

(r23)

- r) (T24)a(öo

kJn(kt)J^(kr)-

k I n(kt) H,(frr) - k1 H n(kr) t " 
(*tr¡

(125)

where the prime denotes differentiation with respect to the full argument.

For small values oL kr and k 1r relative to unity, the geometrical optics com-

ponent due to the cylindrical cap (in the presence of the wedge) is much less than

the diffracted ûeld component [77]. Therefore, the terms denoted by gc ,.f c 
, BD ,

and / D 1*hich account for the reflected and diffracted fìelds due to a cylindrical

cap in each of Eqs. (!17), ($18), (T2l) and ($22)) may be considered as a perturba-

tion to the diffracted field clue to a sharp wedge.

Flono Eqs. (&1), (UZ), (T77), (118), (321) and (3-22) one notices that the freld

diffracted by a conducting or dielectric capped wedge, due to either a plane wave or

line source excitation, is in the form of a cylindrical wave emanating from a fìctitious

line source at the virtual edge of the sharp wedge. Therefore, the same technique

used in Sec. 3.1 can be applied here to obtain the total diffracted field and the

transmission coefficient through the aperture of a double capped wedge. However, it

should be noted that the diffraction pattern functions gw and / w defined by Eqs.

($3) and (34) must be replaced by the corresponding g and / functions of the con-

ducting capped wedge or those of the dielectric capped wedge.

tn-
;
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3.3 Diffraction þy q wide double weclqe with rounded eclses.

The multiple diffraction between the two wedges with rounded edges is based

upon the scattered field expression from a single rounded wedge due to an incident

plane \ilave at any angle which was derived by Ross and Hamid [85], and the tech-

nique proposed by Karp and Keller for the diffraction by a slit in an infinite con-

ducting screen [43].

The far scattered field Es, due to an incident plane wave on a perfectly con-

ducting wedge of half angle "y with a rounded edge of radius ¿ with the virtual apex

located along the z axis, is given by

Es = Eo f n (t,ô0,0,ø) (T26)

where

"fn (r, Ö0, 0, a) = Et + Ez * Es

_ ^t,
Eo(p) = t' ¡ro(kp)

Et= 8w

Ez= 8c

"inr 
/2v

sin ¡11(6-1)lv
H n ¡,(kr)

æ

s,&l
p=0

ó, 
ån:l

> ro(kr)
q:_Ø

(t27)

(128)

(rze)

(130)

(3-31)

(3-32)

(133)

- I itd cosEj= 

- 

e'
lfrlrc v

t.lte+q$d)
t ffiHp+c(-')l IdpIt + hPlzl

d:a cscl

r=dcosï=acot^l

?n1
It= 

{ 
sinII1(0-r)]cos(qg) dþ

.,.ì,.:.ì..Ì.:¡l¡l\:ì.t.,



= ^r/' [1 - (-1)"'] co's (q1)
(L)- - q'

v

L+ tqt
v

-rylsin(q1)

= ^r/u [1 + (-l),'']sin (q"y) ,

(L)- - q'
v

.rylcos(q^Y)

(136)

In Eq. (T26) the first term EsEl is the field diffracted by a sharp wedge. The

first and the second terms, Eo(Et* E2), denote the solution of a plane wave

incident on a wedge with a metallic cylindrical cap of radius r. dll these terms

Eo(Et*Ez+El) represent the scattered freld expression for the rounded

wedge. Furthermore, for small rounding (i.e. kø not too large relative to unity) we

may considet f n as the diffracted field pattern where Eo(Ez+ Et) is considered

to be a perturbation term due to the edge rounding of the sharp wedge diffiaction

term E o E t . Equation (&36) represents a solution for the coefficients do (when rn

ffi Hp+q(*, )l l, d, I | + hp I zl

sin I s(40 - î) ] "xp [ -, roocos gç -vt

:¡- f I-r.2

I
ï

..îtv:-{-l--r 2

ææss2A
p:0 q--æ

.1r,.,(kd) -

Trl=_lLkr

2n-'l
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sin [ 4(ô - î) ] sin (qg) dö
v

lJo$r)H; (frr) - to(t<r)H ^(kr)l

m_= +e
v

L+ tqt
v

m = !e
u

(134)

(3-3s)

Iz=

Further, we have
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is odd), and h, (when rn is even) and leads to two independent sets of simultaneous

equations.

Figure 3.4 shows the case of two identical conducting rounded wedges separated

by % (apex to apex distance between the virtual sharp edges) where Zks >> 1 and

illuminated by a plane n,ave represented by Eq. (2-1). The field at any point is con-

sidered to be composed of the geometric optics field, a singte diffracted field from

each u'edge, and a diffracted field due to multiple interaction between the two

wedges . The singly diffracted field is given by

Es =Eo(pr+ ssin0s) fn(r,0or,0r,a)

sin 0s ) Í n (v, þoz, ö2, a ).+ Eo( pz- s (r37)

To determine the ûeld due to the multiple interaction between the two wedges,

a table similar to that of Karp and Keller is constructed [43]. By referring to this

table and using Eq. ($26), the total multiply diffracted field E- is obtained by

adding all types of fields in the table . Thus E,, can be written in the form

IE^: {ro(Zs) f n (r,öoz,t¡,a) [Es(2s) E'o(pz)
t

'f n(r,Í,T,a) f n (r,t,þ2,a)+Eo(pr)

.Í n (r, tr, ö1, a) I + Es(2s) .f n (", öor, r, o)

'IEo(2s) Ee(pr) /¡ (u,n,öt,a) /n (r,t,T,a)

+ Eo (pz) f n (u, 7t, ö2,", , 
)

.t1- nfiQs) f Ê (r,',Í,a)

Hence, the total diffracted freld Ed equals in the

l- 
1.

¿'s

(138)

range* E^ which is valid
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-Í/2*2'!'0= t/2-21 and 0= I < Tl4.

The total diffracted field is then expressed in a normalized coordinate system

with a common origín centered between the two wedges. Employing the well known

approximations for the far field and using the r"sultiog relations between the angles

and distances shown in Fig. 3-4 and given by Eqs. (2-47) to (2-49), the total diffracted

field may be expressed as

Ed=Eo(p)r(O,s,v,ø) ($39)

where the diffracted field pattern F of the double rounded wedge is given by

F ( 0, s rv, ø ) : "ikt 
(sin0-sin0o) Í n (rrÖot, 0t,ø)

* e- iks (sin o -sin os) Í n (r,0oz, 02, a)

(

* Eo (2r) I ¿its sino 
"f n (r, r, S1, a)

t

' ll n (r, 0oz, r, a) * Eo Qt) fn (t, $e1, rr, ø)

.f n(r,Í¡Í,d)l+ e-iks sino ¡^ (r,n,S2,a)

. [/n (r, ôor, n, a) + Eo(zs) Í n (r, þoz, T, a)

ì.f n(u,TtTtr)l lll-E/ (2s) f l(",Í¡T,ø)l-1
)

(140)

The transmission coefficient T lor a plane wave incident at any angle 09 is given

by

f =Ret(1 - i)F (0,s,u, a)/2kí I (141)

where í =s *a *ø/sin1 and F is given by Eq.(140) in the limit as 0

approaches 09. It is obvious that as ø approaches zero, f approa.hes I which is the
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transmission coefficient of â sharp double wedge of aperture 2s given by Eq. (3-16).

3.4 Scattering þy 4 double wedqe and g parallel cvlinder

An asymptotic solution based on the field scattered by three objects due to an

incident E-polarized plane wave has not received great attention in the literature. A

possible approach is to use ûctitious line sources, properly located according to the

geometry of each scatterer, to account for the interaction fields between the scatter-

ers. In this section we show that it is possible to apply an asymptotic technique for

trvo or more different scatterers provided that all of them are infinite along one of

the coordinûte axes. Examples of such scatterers are infinite cylinders with arbitrary

cross sections, half planes, wedges with sharp, rounded, or capped edges, or any

combination of these bodies. In the present geometry, we consider a circular con-

ducting or dielectric cylindrical scatterer located half way between the edges of a

double sharp wedge or along the normal to the aperture plane of two sharp wedges

at a distance d from the center. Both the cylindrical scatterer and the double wedge

are assumed to be infrnite in the z direction. It should be pointed out that any

improvement in the diffraction or scattering behavior of a double wedge (or a slit)

using a third body (as shown in Fig. 3-5) could be useful particularly for tandem or

coupled apertures and aperture arrays. A similar loading of the full aperture of a

slit by a circular dielectric cylinder was investigated by Hurd and Sachdeva [86]

whose solution is restricted to narrow slit widths (&s << 2.4 / \E) and yields a

maximum error of 2.7 %o in the transmission coefficient when €, : 1.

In the following analysis the interaction fields between the cylindrical scatterer

and the two wedges are clearly presented by simple relations using the known solu-

tions for the scattered field by a wedge alone and a cylindrical scatterer alone due to

plane wave incidence and line source excitation.

For a line source of unit amplitude at (po, $g) and parallel to the z axip, the

total field in the presence of the wedge is the incident ûeld Ei, given by Eq . (2-4)
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plus the scattered field Efw. After some mathematical manipulations Ef can be writ-

ten in the following form (see Appendix B)

Ei : + H o& p) 
"i'Pscos 

($ - $s) (r42)

and by using the exact series solution of the total field due to a line source near a

conducting sharp wedge Í871, Efw is found to be

Efn = + Ho]Gùf w(o,Po,oo,v) (143)

where

.f w( ö, Po, oo, v ) = - ,irPocos(ó -ôo)

sin å (0 - r ) sin 4 ( 0o - r ) (T44)vv

and where the asymptotic expression of tbe Hankel function is replaced by the

Hankel function itself in the expression of Efw.

For a plane wave of unit amplitude given by Eq.(2-1) the far diffracted field

øfw is the same as the far scattered field øsow in the forward direction. Hence,Ejw

may be obtained from Eqs. (3-1) and (3-3).

If the loading object is a circular cylinder defined by the surface p : ø with

axis along the z axis, the scattered fields due to line source and plane wave excitation

of a circular cylinder are given by Ersc and Efc, respectively [88,89], and nray be

rewritten in the following form

t@n*+ E iu r,(&po)
' n:L v

Ef, -nÊ: 

--l- 4
Ho&p) /(0,P0,ô0,ø ) (145)

(346)Eì'= + Ho]Gp) e(0,ö0,¿ )'
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Flere the superscript c refers to the cylinder, / and g are the scattered field pat-

terns due to a line source field and an incident plane rvave, respectively. For a con-

ducting cylinder, the / and g functions in Eqs. (3-45) and (3-46) are denoted by Í 
"

and g. respectively , where

.f ,( ö, po,0o, ¿ ) = - I.n in
n:0

and

8'( ô, ö0, ¿

J -(ka\
ffi Hn(kPs) cos n(ö - oo)

.4
)=-

T|e ,å." 
(-r)" ffi*sn(o -öo)

(3-47)

(3-48)

(14e)

whereas for a dielectric cylinder of relative permittivity e' the corresponding scat-

tered field patterns,f ¿ and g¿ due to a line source field and a plane wave incident

are given, respectively, by

and

Í ¿(þ,p0,00, (r ,€r ) = - Ë."j' Tn Hn(kpo) cos n(0 - Oo)
¿:0

8¿ ( 0' ö0, a, Q, i ." (-r)n Tn cos n (0 - 0o)
¿:0

.4,- qk
(}so)

where

k J,(k ra) t ^(*a) - kt Jn$a) t^(kta)
tn - k J n(k ta) A 

^$ø) - 
k 1 H n(ka) t,(* ta)

(3-s1)

One may also use a circular cylindrical dielectric shell defined by the two sur-

faces p=po and p:po with its axis coinciding with the z axis and of inhomogeneous

permittivity as a loading object. Due to the difficulty of finding a formal solution to

the time harmonic electromagnetic fields in regions where the permittivity e is a
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general function of position, one has to force the permittivity variations to fit in one

of the special cases which has a formal solution. If e is proportional to p-2 aqd is a

function of $ in circular cylindrical coordinates , the z component of the electromag-

netic fields can be represented by infinite series involving Mathieu functions as

shown by Casey [90]. In Appendix C we formulate the solution of the problem of

scattering by a plane wave incident on an infinitely long dielectric cylindrical shell

having radial and azimuthal inhomogeneity profiles. The corresponding scattered

field patterns due to a line source and an incident plane wave are then given, respec-

tively by (see Appendix C),

î, : i ." cn Hn(epo) cos tt (ö - öo)
n:0

(}s2)

and

o:ôs €n cn jn cos n (0 - 0o) (3.s3)

where the expansion coefficients cn are determined by Eq. (C-19). From Eqs. (145)

to (153) one notices that the far scattered field from a wedge or any of the above

mentioned cylindrical scatterers due to either plane wave or line source excitation

has the appearance of a cylindrical wave emanating from a fictitious inhomogeneous

line source at the edge of the wedge or at the axis of the cylindrical scatterer.

In case of two conducting wedges separated by a distance2s, where Zks>>l

and a circular cylinder (or a cylindrical shell) whose axis is parallel to the edges of

the two wedges, and where all three bodies are illuminated by a plane wave of unit

amplitude (see Fig. 35), the field at any point is considered to be composed of the

incident freld E) plus a scatte¡ed field Es from each of the two wedges and the

cylindrical scatterer. The latter field consists of an unperturbed term due to the

three scatterers plus an interaction field which will be evaluated using three fictitious

-4 ir¡k #-o
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line sources located at the wedge edges ( e¿ and e¡ ) and along the cylindrical

scatterer axis. If the plane wave incidence angle is restricted such that the incident

field does not illuminate the lower faces of the wedges, the scaittered field Es in the

forward direction ís given by

.ES=Esl +Bs2¡ps3 (&s4)

where

Esl : *tr,ftpr) [ r-its sin'o g*( 0r,0or, rr )

* "tÍ 
*( 0r, 11, ôrr, vr ) * czf w ( 0r,2r,02r, vr )

Esz - +H oG pz) l. "*ir'sin 
0o 

,$r ( ö2, öoz, uz)

*"cf *(0r, lz,ötz,vz)*ctf w (02,fu,örz,rz)I

Es3 : +Ho(ep¡) Le-i*¿ 
cos0o r( 0¡,00¡, ø )

* "tf ( 0s, f r,$re, ø ) + czf (öylz,özt,a )l

v¡: 2(rr - a) / ,r

v2:2(rn-þ)/n.

(1ss)

(1s6)

(3-s7)

(3-s8)

(}se)

In the above equations c1;c2r and ca are the unknown strengths of the line sources

at ê¡r e¡ and along the cylindrical scatterer axis, respectively.

For the determination of cpc2 and ca one may applying the principlc of con-

sistancy of the scattered field components which are shown in Figs. 36 and 3-7.

This leads to the following results

2.ct- czl.f t( 0rr,2s,özt, vr ) + f w(ön,2s,özt,"r ) I
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Fig. !6 : Scattered field components due to a plane wave incident

on two sharp wedges and a parâllel cylindrical scatterer.
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Fig.3-7 : Alternatiye representation of the scattered ñeld components

due to a plane wave incident on two sharp wedges and a parallel
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cylindrical scatterer.
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+ f w ( ôzr, /1,01r, "r ) l

vr ) * gw (ön,Öor, rr ) l

- cr I f w (ön,2s, ön,vz) * f w (ön,2s, ötz,rz ) ] I 2c2

- c¡ [ f w (ön, 1,2, ötz,rz) * f w (ör,, lz, ön,uz ) I

= r*ltssin uo 
I gt( 0¡2, öoz,rz) + gw( 0rz,0oz, vz ) ]

- cr ["f ( 0r¡, lr, $re, d ) + f (þzt,tr, 0r¡,a ) ]

- czl,f ( 0r¡, 12, özt, a ) + Í (özt' 12, özt, a )l + Zca

= ¿-ikd cos0o 
¡ g( 0rr, 0o¡, ø ) + s( öæ, 0o¡, a ) ì .

(160)

($61)

(3-62)

Upon solving Eqs. (160),(161) and (!62) for c1, c2arld ca, the scattered field Es is

found and can be expressed in a normalieed coordinate system, where the z axis

coincides with the center of the aperture as shown in Fig. 3-5 and the well known far

ûeld conditions are used. In addition to Eqs. (2-47) to (2-49), \te have

0o¡ : r f2+0o, 0¡ : 0r, Ötz : þzr= n, Öt¡ : Ù = tan-'(a /ù,
öer = þn= tr+,|r, özs= tr-r! and pt= p-d. cos 0 , where 11 and 12 are the

distances between e¿ and es and the cylindrical scatterer axis, respectively. Es can

then be written in the following form

Es = +F (0, s,d,v11v2ta,er) (163)
l".kp _ -. L¿ . , .

where the scattered Êeld pattern F of the present geometry is obtained from Eq. (1
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63) and the transmission coefficient i tor plane wave incidence is calculated using

Eq. (3-16).

3.5 Numerical examples

Although the formulation is general, it seems reasonable to concentrate on the

symmetric configuration where 00 = 0o, c = F = T, rl= 12: r, €r1 = Gr2: er

and s1: s2: s. Furthermore, when the field point approaches the wedge surface,

the UTD is used to avoid the errors due to the non-uniform functions gw and f w 
.

Fig. }8 shows the normalized Ed pattern for two wedges with 1 : 150 and frs : 5.

The 6gure demonstrates the effects of E" on the far field diffraction pattern with

and without the interaction term E'. The dependence of T , c1 (or c2) and E" on

however the oscillations die down and T converges to unity as expected for large ks.

The interaction term E" is damped in an oscillatory fashion with increasing &s and

approaches zero when frs approaches infinity. The period of oscillation is equal to tr.

It is found that the location of maxima of E" remains the same white their peak

values change for variations in 1 170,71). Furthermore, one should point out that the

oscillations in the current intensity (c1 or c2) due to E is critically dependent on

frs. The period of oscillations is again equal to tr. The fact that the oscillations of

E" and c1( or c2) arc similar confirms the dependence of E" on c1(or c7).

Figure $10 shows the effect of the conducting cap radius on the normalizecl Ed

pattern of a double capped wedge for ks = I and '! = 50. It is found that the

beamwidth increases with the cap radius. For example, as ftr assumes the values 0.0,

0.3, 0.6 and 0.9 the beamwidth becomes 17.03o,18.92o,215o and 22.59o, respec-

tively. However, for the case of a dielectric capped double wedge, Fig. 3-11 shows

that the beamwidth decreases with e, for ks : 7, ^,1 : 10o and ,tr = 05. For the

indicated values of e, , namely 7, 5, 7 and 9, the corresponding values of the

beamwidth are 21.960, 19.11' , 17.72o and 16.82o, respectively. Similar reduction in
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the beamwidth is observed when the electric radius of the dielectric cap k ¡r

increases although this is not shown here.

The dependence of T on &r is shown in Fig. 3-72 f.ot a conducting capped slit.

It is clear that T decreases in general with frr. However, for large values of &s the

effect of capping decreases and T approaches unity. For a dielectrically capped slit,

T is found to be increasing with e, as shown in Fig. 3-13 for kr : 05. The agree-

ment between the decrease in T with increasing frr (shown in Fig. 112) as well as

the increasing beamwidth of the radiation pattern with /<r (shown in Fig. 3-10) estab-

lishes the relation between T and the beamwidth. In other words the figures clearly

show that T decreases with increasing beamwidth. Also, it is clear from Figs. 3-11

and &13 that T inçreases with decreasing beamwidth, as expected.

In Fig. 3-14, the effect of the interior wedge angle 21 on T is shown for

&r = 05 and e, : 4. It is found that the peak to peak value of the oscillations of T

increases with "y for fixed values of &r and €r. A similar effect is also observed for a

conducting capped double wedge. For large &s the oscillations die down and T con-

verges to unity, as expected.

Figure &15 represents a comparison between the normalized Ed pattern of the

two sharp wedges (Ez= Et= 0 ), two capped wedges (Et=O,ka = 0.5 ) and

two rounded wedges (ka = 05 ) when 00 :0', ks : l0 and T : 15o. As shown,

there is a remarkable change in the pattern characteristics. As an example, the

beamwidth, first sidelobe position and level shift from 15.290,27.15o, -13.58 dB for

ka=0 to 23.850 , 37.61o, -1058 dB for ka:0.5 (El:0) and

13.43" , 23.05o , -13.06 dB, for ka =0.5, respectively.

Figure 316 demonstrates the effects of rounding on the normalized Ed pattern

for different values of. ka with 0g : 0o, ks = 10 and ^y = 10o. Table 3.1 illustrates

the pattern characteristics shown in Fig. 3-16, in which it is seen that the beamwidth

decreases with /c¿ as well as the first sidelobe position. It is also found that for
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ka
Beam-

width

First sidelobe

Position Level

0.0

0.4

0.8

1.0

ß.230

ß3Zo

12.800

10.4f

26.890

22.990

21.800

18.870

-13.56 dB

-12.67 dB

-11.16 dB

-11.93 dB

Table &1 : Diffracion pattern characteristics of a double

rounded wedge for 0g = 0o, fts = 10 and 1 = 10o.
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increasing values oÍ. ka, f d""t""ses and is usually less than T fot all values of &s

f91,921.

The error and region of validity of the asymptotic solution regarding the

geometry of Fig. 15 a¡e investigated by comparing with numerical results based on

the exact solution of the unloaded slit gíven by Skavlem for normally incident plane

wave [34]. Skavlem employed the method of separation of variables to the wave

equation in elliptic coordinates and was able to calculate the transmission coefficient

for slits of 0 < fts < 10 to five correct decimal points. As shown in table 3-2 the

transmission coefficient is computed using the diffraction pattern function / w based

on Eq. (14), the new/ w based on Eq. (3-44) as well as the corresponding function

based on the UTD. It is obvious that the new expression for / w produces more

accurate values than those based on Eq. (3-4) or the UTD, whereas the error in the

T values does not exceed 0.25 Vo for &s > 2. Furthermore, for oblique incidence, our

results 
^gree 

with the curves provided by Millar for different values of 09 away from

grazing incidence (00 = 90') [39]. It should be pointed out that Millar's investiga-

tion of the diffraction of an E-polarized plane wave \r,as based on the solution by

successive substitutions of a pair of integral equations. The resulting expression for

I was in the form of a series in inverse powers of &s and is in good agreement with

the exact results for ks > 4. This comparison emphasizes the validity of the present

solution for the unloaded slit for ks > 2.

In the presence of the cylinder, there are no published solutions for this

configuration to compare with. However, if ks1,2)) ka or k( , the asymptotic

far field expression for the field scattered by the cylinder is valid for calculating the

near field around the cylinder [93]. Hence, when the cylinder is present the accuracy

of the results is dependent on ks y ks¡, ka and e,

The transmission coefficient for a slit with a circular cylinder at or down below

the center of the aperture plane is shown in Figs. 3-17 and 118, respectively, for a
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Table 3-2 : Slit transmission coefficient for 0o = 90o.
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&s

T

Exact

Asymptotic

Based on (3-44) Based on UTD Based on (3-4)

1.0

1.2

t.4

1.6

1.8

2.0

2.4

3.0

3.4

4.0

5.0

6.0

7.0

8.0

9.0

10.

0.54540

0.87693

t.tt7t9

1.21669

1.22129

t.tB426

1.08650

0.97202

0.92824

0.94244

1.04992

0.99559

o.97174

1.02332

1.00199

0.98224

0.55843

0.91s69

t.ts646

1.23058

1.2332t

t.l8717

1.08358

0.96819

0.92629

0.94351

1.04989

o.99575

0.v7169

1.02318

1.001s8

0.98222

056833

0.90869

1.14831

124153

123631

1.18997

1.08225

0.96605

0.92519

0.94392

1.05078

0.99420

0.97777

1.02331

1.00120

0.98220

0.60538

0.99629

t.2t3t8

1.26970

1.24293

1.18802

1.07780

0.96293

0.9234s

0.94615

t.05125

0.99471

0.97237

1.02390

1.00121

0.98228
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normally incident plane wave (0s = 0') with ka = 0.5 and €, :4. When the dielec-

tric cylinder is at the center of the aperture plane (i.e. d : 0), f is always larger

than T. However, f d""^yr in an oscillatory fashion with increasing ks, as expected,

and tends to unity (i.e. geometrical optics value) as fts tends to infinity. However for

a conducting cylindet, f ir in general less than f . If the loading cylinder is shifted

down below the center of the aperture plane (Fig. &18), then f oscillates around T

for dielectric cylinder and oscillates with increasing amplitude tending to unity as frs

tends to infinity for conducting cylinder.

The behavior of f ¡or an obliquely incident plane wave is shown in Figs. 119

and 3-20 for kd =0 and kd :1,5, respectively. For 0 :40" re, :5r9 and

ka :03, Fig. 119 shows that f exceeds unity at some values of &s and generally has

large oscillations than that of the unloaded slit case (fra = 0). Also it is observed

that the peak value of f lies in the lower range of &s ( ks s 6 ) and increases with

er. For 0g -- 40o and all other cylinder parameters kept constant ( Fig. 3-20), one

notices that the peak to peak value of oscillations decrease as ftd exceeds zero. In

Figs. 3-21 and 3-22, f is shown for a conducting cylinder with different values of ka ,

namely 0.7,0.2,0.8,kd = 0 (Fig.3-21) and kd :5 (Fig.3-22). The fact that loading

with a conducting cylinder does not increase the transmission coefficient of a slit is

possibly due to the effect of blocking of part of the incident field by the cylinder.

The effect of the interior wedge angle on f of a double wedge in the presence

of a conducting or dielectric cylinder is shown in Fig. 3-23 f.ot 00 : 0o , ka : 05,

G, = 4 and 1 =20o. In comparing Figs.3-17 and 3-23,it is found that the interior

wedge angle changes the levels of maxima and minima of the oscillations of f ,

whereas the peak positions remain the same.

The diffraction pattern of a slit loaded by an inhomogeneous dielectric shell

located at the center of the aperture is shown in Fig. 3-24 lor öo : 90o , .eo 
: 3,

kpo :0,2, \ = 2, ô = 1 and different values of frp¿, namely 0.4, 0.6 and 1.0. It is
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clearly shown that the outer radius of the shell affects the beamwidth and level of

the first sidelobe. One concludes that for the parameters shown, the increase in fr p¿

results in an increase in the sidelobe level and decrease in beamwidth.

To further investigate the diffraction pattern characteristics of a double wedge

loaded by this type of inhomogeneous scatterer, we present tables 13 and 34. In
tables &3 the variations in these characteristics are shown for different values of ô,

where öo = 90', frs = 8, €o = 5,kpu: 1.0, kpo = 0.2 and T =2.5. The changes

in these characteristics are shown in table 14 for different values of r¡ with õ : 1.0

while 0g, e o , k p t and ft po remain the same as in table 3-3. In addition to variations

in beamwidth, sidelobe level and position due to the presence of a dielectric shell in

the center of the aperture plane of a slit, it is found that T increases over the

unloaded case for all cases studied.
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Table 3-3 : Diffraction pattern characteristics of a slit loaded

by a cylindrical shell in the aperture plane for 0o = 90o,

fts = 8, Go -- 5, kpt = 1.0, fr Po = 0.2 and r¡=J5. 1t
i

õ
Beam-

width

Position of

first null

First sidelobe

T

Position Level

0.01

0.1

0.2

05

0.8

1.0

1.2

15

1.8

2.O

19.4lo

19390

19340

19.93"

17.930

16.49o

15.720

13.770

13.160

13.040

22.660

22.730

22.970

24.850

27.090

23.790

27.120

26.250

25.430

25.07"

36.970

36.ggo

36.glo

37.09o

37.0v

36.930

36.640

36.050

35.40',

35.070

-12.40 dB

-1237 dB

-12.28 dB

-11.62 dB

-10.47 dB

-9.65 ¿s

-9.43 dB

-957 ¿s

-9.92 dD

-10.12 ¿s

1.05282

1.053397

1.0ss364

1.071263

1.104884

1.13095s

1.147672

1.147302

1.131s91

1.122447
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Table 14 : Diffraction pattern characteristics of a slit loaded

by a cylindrical shell ín the aperture plane for 0o : 90o,

&s :8, €o = 5, kpt = 1.0, & po :0.2 and õ=1.0.

rl
Beam-

width

Position of

first null

First sidelobe

T

Position Level

2.0

2.2

25

2.7

3.0

3.2

35

3:t

4.0

4.2

45

4J

5.0

13.430

13.190

13.030

13.010

13.140

13370

14.07"

14.970

17 390

19.970

19.760

19.450

19350

23.950

24.17"

24.630

u.930

?5.44"

25.930

26560

27.09"

n 360

?5.O70

23.900

20.99"

21.460

33.950

34.19o

34.61o

34.930

35.400

35.730

36.250

36.61o

37.060

37.090

35.320

32.ggo

32.05"

-10.89 dB

-10.66 dB

-1039 ¿s

-10.20 dB

-9.91 dB

-9.72 dB

-9.46 ¿s

-9.40 dB

-10.12 dB

-1154 ¿s

-1353 dB

-13.67 dB

-12.97 dB

1.086759

1.096530

1.109869

1.118564

1.131864

1.140707

1.1$876

1.149546

1.115615

1.073484

1.030141

1.023326

1.028158
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CHAPTER 4

SOLUTION BY MODIFIED METHOD OF MOMENTS

We have introduced in Chapter 2 a new iterative technique fo¡ the scattering by

two cylindrical bodies, where in each interaction a spectrum of cylindrical waves

emanating from one body is used to excite the opposite scatterer. This technique

does not suffer, in principle, from any limit on the separation between the scatterers

and can handle small as well as large scatterers, provided that the scattering by a sin-

gle body is manageable. As shown from the numerical results in Sec. 23, excellent

agreement ís obtained between the results due to the scattering by two cylinders

using the CWS and the boundary value techniques. Furthermore, the diffraction by

a double wedge is also presented and good agreement is observed with the exact

solution for the special case of a slit as well as with two asymptotic solutions for the

double wedge geometry of any wedge angle and wide separation. To further check

the uumerical results based on the CWS technique for the diffraction by a narrow

double wedge geometry, \re present in this chapter a numerical solution since experi-

mental verification is practically inrpossible.

A useful numerical method for such problems is the MM [45,46] where the exact

integral equation formulation is reduced to an approximate equivalent matrix form.

The matrix system involves the unknown surface current distribution which is

expressed in terms of suitable basis functions. The point matching technique is then

used to solve the matrix system. The number of matching points depends on the

length of the contour of the cross-section for conducting cylindrical scatterers. The

MM, while being generally applicable to many scattering problems, is limited by the

storage and computation time of available computers when the body dimensions are

large relative to the wavelength. Regarding this limitation in dealing with two
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scatterers having large electrical dimensions, the MM in its classical form does not

usually yield a convergent solution. However, one can apply the MM to infinite

planar scatterers by first subtracting out the surface current density associated with

the incident and reflected fields and then solve for the residual or the diffraction

current Í47,681. It is also possible to apply the MM to electrically large scatterers if it

is used to solve for the surface current that appears only due to the interaction

between any t\yo scattercrs. In other words, the total surface current can be divided

into two parts. The first part is the current that would appear on the surface if each

scatterer is excited by the original source in isolation while the second part of the

surface current is due to the interaction fields between the scatterers.

Another objective of this chapter is to confirm the validity of this new approach

in order to numerically deal with large scatterers. In Sec. 4.1 the scattering by two

large parallel conducting cylinders will be presented. The reduction in the execution

time when applying this technique over other methods, namely the boundary value

solution and the ordinary MM, is outlined for the case of the scattering by two large

cylinders. Furthermore, the surface currents and the scattered field due to the

interaction between the cylinders is investigated (in the backward and forward direc-

tions) as a function of the separation between the cylinders and the electrical radius

of the cylinders.

The diffraction by the aperture of a double serni-infinite wedge is also investi-

gated in Sec. 4.2. The aperture is considered to be infinite along the z direction,

whereas the edges of the two wedges may be loaded. The upper faces of the two

wedges which a¡e illuminated by the incident plane wave should be uniform in the

region far from their edges to facilitate the evaluation of the total diffracted field

[94,95]. The transmission coefficient of a plane wave incident on a slit geometry is

computed and compared with the exact values to check the accuracy of the computa-

tion procedure. Then the diffraction characteristics of related geometries, o"."ly,

thick slit, double truncated wedge and double capped wedge (see Fig. 4-1) are
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Fig. 4-1 : Schematic diagram of different types of a double

Double
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presented and compared with other available solutíons.

4.1 Scatterinq þy two parallel conductinq circular cvlinders

If two parallel conducting circular cylinders are illuminated by an incident

plane \¡/ave as shown in Fig. 2-3, the z directed electric linear current density J on

the surface of either cylinder can be divided into two parts, i.e.

I =J +J

whene J is the current on the surfaces of the scatterers when each is illuminated by

the plane wave in isolation. J " is the additional surf ace current due to the multiple

interaction between the scatterers.

Using Eqs. (2-1), (2-3) ancl (4-1), an integral equation over the only unknown .I'

can be obtained, i.e.

(4-1)

E;- T!,,' '(pí) u o(e rF-pi t) dc;

t !r,t'(pi)¡io(fr I F-F;t) dc;

- 1k f t"rp)no(tctp-p t)dc'4 Jcr+cz" \l (4-2)

where Cl and C2arc the contours of the cylinders l and 2, respectively.

It is obvious from the physical view point that the first integral on the right

hand side of Eq. (4-2) cancels the incident plane wave when p- represents a point on

contour C1, whereas the incident plane wave is canceled by the second integral if þ'

represents a point on C 2. The remaining integral in each case (þ- on C 1 or p on C 2)

represents the scattered field from one cylinder at a point on the surface of the other

cylinder.

As a result of the above discussion, Eq. (a-2) reduces to a matrix form by apply-

ing the method of moments, i.e.
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Un,ol [on] = [g,]

where the unknown current J " is expressed

tions with unknown coefficients co, i.e.

as a linear combination

(4-3)

of pulse func-

J" = Ë o","
n:1

and where Jn = ton A Cn and 0 elsewhere whileN is the

pulses assumed. The point matching technique is then used

tem. As a result, tbe elements of ln,n are then given by [46]

(4-4)

total number of current

to solve the matrix sys-

,m*n

,fr=ft
(4-5)

and

(4-6)

terms of the local

number. For any

,-
'mn

3T
4

rl
4 lr - j2Í

where Euler's constant T is 0577215665"', ê=2.718281828

ffi , f,:1,2r3, N.

Since the elements of g,, represent the scattered field from cylinder 1 (or

cylinder 2) at a point on the surface of cylinder 2 (or cylinder 1), the exact expres-

sion for the scattered field from a cylinder due to plane wave incidence is used.

Thus, we can write

where p,, and 0, represent the mid point of any ÂC, on C 1 in

coordinates of cylinder 2 (í.e. p2 and $2) and e¡ is Neumann's

ÀC,n on C 2, gn is given by

B^ = å ,, "i't ffi Ht(kp^) cos /(0,, - oo)

B^: å ,, "i'i ffi Ht(kp^) cos /(0,, - oo)

Ho&ffi)ac,
k Lc_(r-ln( 4;))l^c,

(4-7)
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JPo (x,o) = sin $6 
" 

jbcos óo
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where pn, and $, are expressed in terms of the local coordinates of cylinder 1

(í.". pr and $j.

After solving Îor J" the scattered field E" due to the interaction between the

cylinders is given by

f r,*r,¡'i+) H o& tp - Þ''l) dc (4-8)

while the non-interaction scattered field E and the scattered field pattern are given

by Eqs. (2-40) and (2-50), respectively,

4.2 Diffraction I two wedses with blunt edses

\ilhen two wedges with sharp edges are excited by an incident plane wave (as

shown in Fig. 2-1) the electric linear current density on the conducting surface can

be divided as given by Eq.(4-1), where J'represents the current on the upper (Ju)

and lower (J¡') surfaces of the wedge and is given exactly by Eq.(2-18) while J" is

evaluated using the ordinary MM. However, J on the surface of two wedges with

blunt edges, due to the incident wave and all the interactions between the wedges,

can be divided into a physical optical current JPo and a residual or diffraction

current denoted by Jd ,i.e.

J _ JPo + Jd (4-e)

where

JPo =2ft xÊ¡ (4-10)

Flere È' is the incident magnetic field vector and ñ is a unit outer vector normal to

the upper surface of either wedge. Since the incident field is a plane wave, Eq.(a-

10) can be written in terms of the local coordinates of either wedge as

F":-Tlk
4

2

rl
(4-11)
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From Eqs. (2-2) and (2-3) we can obtain an integral equation whose only unknown

quantity is Jd by using Eqs. (a-9) tc (4-11), i.e.

* l-- r'o ("') H oG tp-î t) dx' =

(
r&-l r "' tpo t-') H o$ tp_f't) dx.4 [ J-'r" \¡

* Ir,*r,rd b) H oqtÞ'-p t) dcJ .

l),',!'o(x)nolttp-r )dx'= Ir,*r, td(p')Hoo. lp-p t)dc

E;-

It is obvious that the unkno\vn current Jd diminishes with increasing distance from

the edge along the surface of either wedge. Thus, C iC 2 in Eq. (4-12) is a finite

contour on which Jd exists and is determined by the paths from point ll to point /2

and from point 13 to point 14 as shown in Fig. 2-2.

Since the reflected wave EI f.rom a conducting infinite plane may be expressed

as the radiation field from the surface current excited on the infinite plane by the

incident rvave, we obtain the following :

(4-13)

Thus

-T& f--f r--r,o(¡)¡ro(r tp-x t)dx'=ltt iï í::

It is clear from Eq. (4-13) that the left hand side of Eq. (a-12) reduces to zero.

Eq. (a-12) may be rewritten in the following form :

(4-12)

(4-14)

Now, the MM can be applied to the above equation to solve for the unknown

part of the surface currents Jd. For the special case of two sharp wedges, Eq. (a-la)

reduces to
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I ),),,t'o e) n o@ tl-r ) dx' - [r,*r,t¡'(p) - Jpo(p)] ao(t rÞ'-Þ t) dc'

= I cftc2t"(p) H o& tÞ'-Þ' t) dc', . (4-1s)

where J" is the only unknown part of the surface current due to the interaction

between the two wedges.

Once the total current distribution on the surfaces of the two wedges is known,

the neÍIr as well as far fields can be evaluated using well known relations. The scat-

tered field at a fa¡ observation point can be evaluated using Eq . (2-3) while if the

identities given by Eq.(4-13) are used, the diffracted field can be written as

Ed = -'\k 
(

u 4 t 
lr,*.' td (P') H oG lÞ"-Þ t) dc'

- ,f-": J'o (r') n o(krp-r ,) o'J . (4-16)

cos(S -6 ) ¿C' (4-17)

(4-18)

(4-le)

Substituting Eq.(4-11) in Eq. (4-16) and using the usual far field approximations, the

o- jlc P
diffracted field pattern F (0) can be normalized by the factor 

ffi 
and expressed

as

¿-itr/4 [rr*r,* - ,-ir'rú ]F(0) = tñ, +

- # ¿i'/4 1,,*',td 1P) ei*e

where

0

:cos$-sin0g

=**u.
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An example of near freld calculations is the aperture freld E! ( where ¡l : 0 and

-s2 S ¡ s s1), which can be evaluated by adding the incident field E) to the scat-

tered field Es. The result is given by

E!(x) = J'o (r') H o& tî-î t) dx'i{r":
(4-20)

43 Numerical examples

A computer program based on the above analysis was written to calculate the

surface current distribution and the scattered field pattern with and without incor-

porating the effect of the interactions between the two scatterers. To check the

accuracy of the procedure, the total scattered field pattern from the two cylinders is

compared with numerical results obtained from an available boundary value solution

[59,60] for different cases. One of such cases is shown in Fig. 4-2, where

ka = kb = 5, &s1 = ksz: 8 and 0o = 90o. It is clear from the figure that the pro-

posed solution is in complete agreement with the boundary value solution of the

scattering by two cylinders.

In Fig. 4-3 the scattering pattern of two cylinders of larger radii, namely

ka : kb :7, and for ksl: Ês2:8 and 0o:90o, is presented. Again, it is to be

noticed that the two indicated curves are in good agreement although the execution

time of the program based on the boundary value solution was 1.5 times as long. It is

also worth mentioning that the same scattered ûeld pattern is obtained by using the

ordinary method of moments with N : T2whereas in the present solution N was set

equal to 36. The execution time by the ordinary method of moments \yas 2.2 times

the execution time by the proposed technique.

- I r,*r,ld (p') H o& tx -Fl) dc 
J 

.
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Fig. 4-2: Scatlered field paLtern for Lwo circular cylinders.
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oo Proposed solution
Boundary value solution

o
120

9s
ka=
k=, =

: 90o

kb=?
ksa:B

o
90

\
I

I

oo
dB

2400

2700

Fig. 4-3 : Scatlered field paLtern for two circular cylinders.
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The amplitude of the surface current on cylinder 1 due to interactions between

the two cylinders is shown in Fig. 4-4 f,or different values of. ka. The cylinder shown

in Fig. 4-4 (cylinder 1) is one of two identical cylinders in the double cylinder

geometry presented in Fig.2-3 with kb = ka,kst = ks? = 5 and 0o = 90o. Regard-

ing this geometry, there is a symmetry with respect to the y axis, whereas there is no

symmetry around the ¡ axis. Due to the asymmetry around the x axis, one notices

that the peak value of J" is not at ü - 180'. However, it is found that J 
" 

decays in

an exponential form and tends to a very small value when rþ approaches 0o. More-

over, it is found that the peak value does not monotonically increase with &ø. To

illustrate this behavior, we present Fig. 4-5 where the scattered field pattern due to

the interaction between the cylinders is shown as a function of ka lor the forward

(ö :270o ) and backward (0 = 90o) directions. The figure indicates that for

0o = 90o, frs1 : ktz= 5 there exists certain values of ka where the forward and

backward interaction fields are maximum and this explains the variations in the lev-

els of the peak value of. J " in Fig. 4-4.

Since the interaction component of the scattered field is an important quantity

in the multiple scattering analysis, we further investigate the effect of the electrical

separation between the centers of the two cylinders on E" in Fig. 4-6 for

ka = kb : 1 and öo = 90o. Here E" is found to be decaying in an oscillatory

fashion with respect to &s and tends to zero when ks tends to infinity. It is also

noticed that the peak value of. E" in the forward direction is larger than the

corresponding peak value in the backward direction. Furthermore, it is found that

the oscillations are similar in both the forward and backward directions and the

period of oscillations is very close to t.

Regarding the double wedge geometry, we will consider for the sake of simpli-

city in the numerical computations the symmetric case where ttl= ks2 = fts,

tr : P = 1 and 0o:90o (or 0g:0o). Furthermore, the finite integrals in Eqs. (4-

14), (4-15) and (4-16) are normalized to match the integration formulas of the
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Gaussian type [96]. Therefore the value of any of these integrals is reduced to sum

of a finite number of terms. Each term consists of the integrand (evaluated at one of

the zeroes of the Legendre polynomials) times a weighting factor. A forty point

integration is used in all our calculations. The thin slit case is considered first where

the transmission coefficient T defined by Eq.(3-16) is calculated and compared with

the exact values [3a] in table 4-1. From this table one notices that for all values of

frs > 1.0 the absolute value of the percent error does not exceed 0.28Vo. It is worth

mentioning that the number of sampling points on the contour C iC 2 was 180

points. For higher accuracy, especially for small values of frs where severe interac-

tion between the two edges takes place, one should increase this number of points.

In Fig. 4-7 the transmission coefficient of a double vedge is shown as a function of

wedge angle 1 and for different values of &s, namely 1, 2 and 4. As shown in the

figure, there is good agreement between the results based on the numerical and the

CWS methods for all indicated edge to edge separations. This verifies the validity of

the CìWS technique Í97,99) for diffraction by narro$/ double wedge geometries.

For better understanding of the behaviour of the diffracted field due to edge-

edge interaction in the double wedge geometry, it is worth presenting some numeri-

cal values for the amplitude and phase of the aperture field. In Figs. 4-8 and 4-9, we

show the amplitude (Ej) and phase (ù) "f the aperture field of the slit geometry for

0o : 90' and different values of ks. As shown, the amplitude of the aperture field

oscillates around unity for large values of ks. Although the number of oscillations

increases with &s, the peak to peak value of the oscillations decreases with ks , as

expected. The phase of the aperture field is also found to be oscillating for large

values of frs and the oscillations are around 00, whereas for small values of fts, rþ is

almost constant through the whole aperture and E! has a cosine shape where the

peak value is proportional to ks.

In Fig.4-10 the electrical current component Jd onthe surface of a thick slit

(of electrical thickness ftd ) is shown and compared with the corresponding current
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frs

T Percent

efrofExact Numerical

0.2

0.4

0.6

0.8

1.0

1.2

t.4

1.6

1.8

2.0

2.4

3.0

3.4

4.0

5.0

6.0

7.0

8.0

9.0

10.

0.00262

0.u2392

0.09484

0.26059

054540

0.87693

l.ll719

1.21669

1.22129

1.18426

1.08650

0.97202

o.92824

0.94244

1.04992

0.995s9

o.nL74

1.02332

1.00199

0.98224

0.00156

0.02192

0.09213

0.25781

054388

0.87771

1.11961

1.21929

1.22329

1.18s49

1.08688

0.97138

0.92746

0.94244

t.0s12t

0.99521

0.97170

1.02403

1.00175

0.98211

-4051

-835

-2.85

-1.07

-0.28

0.09

0.22

0.27

0.16

0.10

0.03

-0.07

-0.08

0.00

0.12

-0.04

0.00

0.07

-0.02

-0.01

Table 4-1 : Slit transmission coefficient vs. ks for ôo = 90o.
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on the surface of a thin slit. The resulting diffracted field patterns for the same

geometries are presented in Fig. 4-11 where the results for the thick slit are com-

pared the experimental results reported in [aa] and good agreement is observed. To

illustrate the effect of kd on the Ed pattern, consider the case where

0o : 90", &s = 8.06. For this case the beamwidth and the first sidelobe level of the

ðd pattern vary from 18:16o and -13.4 dB lor kd : 0 to 22.37" and -12.6 dB for

lcd = 4.18, respectively. Figures 4-l2and 4-13 show the amplitude of Jd and theEd

patiern of a double truncated wedge, respectively, for 0o = 90o, ,ts = 8.06 and

T = 15o, for two values of. kd, namely kd = 0 (which corresponds to a double

sharp-wedge) and kd = 4.18. In comparing the two curves in Fig. 4-13, we find that

the effect of. kd on the Ed pattern of a double wedge is similar to the effect of kd

on the Ed pattern of a thick slit. To further investigate the diffraction pattern

characteristics of a double truncated wedge, we present tables 4-2,4-3 and 4-4 where

the independent parameters in these tables are kd, 1 and ks , respectively. Referring

to table 4-2, it is found that small truncations do not have significant effect on the

beamwidth, position of the first null and first sidelobe position and level for the case

where 0O:90o, ks :7 and 1 =20". However, for large values of. kd significant

changes in the diffraction pattern characteristics are observed. It is clear that the

effects of the interior wedge angle 1 on the diffraction pattern of a truncated double

wedge (as shown in table 4-3 for 0 = 90o, &s = 7 and kd = 0.5) become significant

for large values of T. 'With respect to table 4-4, where öo = 90o , T = 10o and

kd = 0.5, it is obvious that the electrical separation between the two wedges is the

parameter with most effect on the diffraction characteristics of the double wedge.

The diffraction by a double capped wedge is also investigated where the electri-

cal radius of the cap is denoted by kr. It should be noticed that for this geometry,

the limits of the first integration in Eqs. (4-14) and (4-15) and those of the last

integration in Eq. (4-16), which are denoted by -s1 and s2, should be chang'ed to

-(s2*r) and (s1*r), respectively. Fig.4-14 shows the Ed pattern of a capped slit
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Table 4-2 : Diffraction pattern characteristics of a double

truncated wedge for $g = 90o, ks = 7 and I = 20o .

kd
Beam-

width

Position of

first null

Fírst sidelobe

T

Position Level

0.0

0.1

o.2

03

0.4

05

0.6

0:t

0.8

0.9

1.0

15

2.0

25

23r90

23.49"

2397"

24.150

24.450

24.67"

24.970

25.09"

25.21o

25.40"

25520

25.71o

2559o

25290

28.890

29.000

29.75"

29.790

29.93"

29.95"

29.ggo

29.99"

29.900

29.990

29.970

29.740

29.14"

2934"

45.59o

45.750

45:t40

45.970

45.83'

45.960

45.ggo

45.940

45:180

45.69"

45.590

45.040

44.yo

4338',

-133ó dB

-13.04 dB

-12.81 dB

-12.61 dB

-12.44 dB

-1237 dB

-12.89 dB

-12.12 dB

-12.06 dB

-12.00 dB

-11.97 dB

-11.95 dB

-12.13 dB

-12.35 dB

0.96382

0.95114

0.94004

0.93235

o.92453

0.9ty2t

0.91451

0.91009

0.90751

o.90437

0.902s3

0.90095

0.90527

0.91ffi5
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Table 4-3 : Diffraction pattern characteristics of a double

truncated wedge for Sq = 90o, frs = 7 and kd = 05.

I
Beam-

width

Position of

first null

First sidelobe

T

Positfon Level

0o

50

100

150

?00

250

300

350

24:t40

24.950

24.ggo

24J70

24.69o

25.050

26350

29.070

29.000

29.69"

29.790

29.970

29.960

29.720

29.190

2g.7go

46.60"

46.970

46.930

46.%o

45.990

44.940

43.glo

43350

-13.07 dB

-12.89 dB

-12.66 dB

-12.46 dB

-1231 dB

-12.15 dB

-11.89 dB

-11.71 dB

0.92329

0.92114

0.91966

0.91956

0.91884

0.91266

0.89746

0.87918
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Table 4-4 : Diffraction pattern characteristics of a double

truncated wedge for $s = 90', I : l0o and frd = 05.

&s
Beam-

width

Position of

first null

First sidelobe

T

Position Level

2

3

4

5

6

7

8

9

10

12

15

20

69.940

59.97"

49290

30.790

27.170

24.ggo

19.950

17.940

16.75"

13.69o

10.910

9310

35.930

32ß50

29:t90

22.990

2059"

19300

15.670

12330

9.91o

48.200

48.160

46.930

32.71o

30.26"

29370

22550

17.990

73.630

-12.09 dB

-1230 dB

-12.66 dB

-1319 dB

-13.13 dB

-13.24 dB

-13.43 dB

-133ó dB

-13.t2 dB

1.10639

0.94977

0.82909

0.90854

0.97944

0.91966

0.98217

0.98932

0.95151

0.96169

0.96389

0.95519

I r'. .,.r.ì::..
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for different values of. kr, namely 0.0, 0.5 and 15 and where öo = 90o and &s = 8.

Moreover, the corresponding diffraction patterns computed using an asymptotic solu-

tion 172,73ì are also shown in the figure. It is obvious that the deviations between

the two curves increases with Êr. This is due to the fact that the asymptotic solution

is valid for small values oÍ. kr. Furthermore, one notices that the cap affects the

diffraction pattern characteristics especially for large values of frr . In addition to

the changes in the diffraction pattern due to the conducting cap, it is also clear from

Fig. 4-15 that the amplitude of the aperture field of a double capped wedge is greatly

affected by kr. It seems that for large values of &r the oscillations in the amplitude

of the aperture field disappear, leading to a cosine shape distribution. To further

investigate this geometry, tables 4-5, 4-6 and 4-7 are included. In table 4-5 where

0o : 90', .ts = 7 and I = 20o, the beamwidth, first null and first sidelobe level and

position increase with frr. However, T is found to decrease with increasing values

of fts. The effect of the internal wedge angle on the diffraction pattern characteris-

tics for Öo = 90o , kr :0.5 and ks = 7 is illustrated in table 4-6. From the table it

is clear that small changes are observed for the given parameters. This indicates

again that the wedge angle does not produce significant effects on the diffraction

pattern for wide separations between the two wedges regardless of the shape of the

edge of either wedge. Finally, it is clearly shown in table 4-7 that the beamwidth and

first sidelobe level of the Ed pattern decrease with ks when 0o = 90o, T : 10' and

tr = 0.5. However the T values oscillate around a value less than unity. This indi-

cates that the transmission coefficient of a double conducting capped wedge is always

less than the corresponding value of T of the uncapped case for all possible separa-

tions. In general the transmission coefficient is found to be more sensitive to any

small variations in kd , kr, I or ks than the remaining parameters that describe the

diffraction pattern.
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Fig. 4-15 : Lhe aperture field of a double capped wedge
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Table 4-5 : Diffraction pattern characteristics of a double

capped wedge for $9 = 90o, frs = 7 and ^! = 20o .

kr
Beam-

width

Position of

first null

First sidelobe

T

Position Level

0.0

0.05

0.1

03

05

0:l

0.9

1.0

1.5

2.0

23.090

23.440

2339o

24.940

25.90"

26560

27.01o

27.15"

27.69'

30540

28.890

29.990

29.470

30.110

30.93"

31.25"

31.83',

31.970

33.940

39.76"

4558',

45.630

45.720

46.lgo

46560

46.960

47 350

47 560

49.600

46.030

-1336 dB

-13.20 dB

-13.05 dB

-1258 dB

-12.40 dB

-1233 dB

-1237 dB

-1234 dB

-1224 dB

-10.45 dB

0.96382

0.95200

0.94115

0.90652

0.88064

0.86176

0.84588

0.83994

0.7974t

0.67879
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Table 4-6 : Diffraction pattern characteristics of a double

capped wedge for $s = 90o, fts = 7 and kr = 05.

I
Beam-

width

Position of

first null

First sidelobe

T

Position Level

0o

50

100

150

200

250

300

350

26.140

26.lgo

26.130

25970

25900

2639o

27.61o

29.93"

30.910

30.96"

30.93"

30.950

30.930

30530

30.10'

29500

48.260

49.160

47.930

47.no

46560

45.650

44.69"

44.09o

-12.84 dB

-12.73 dB

-12.58 dB

-12.47 dB

-12.40 dB

-12.v dB

-12.25 dB

-12.24 dB

o.87952

0.87886

0.87896

0.88036

0.88064

o.87542

0.86323

0.85074
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Table 4-7 :Dífftaction pattern characteristics of a double

capped wedge for $s = 90o, T = 15o and &r = 05.

&s
Beam-

width

Position of

first null

First sidelobe

T

Position Level

2

3

4

5

6

7

I
9

10

t2

15

20

93.240

70290

54"920

%.71o

29.17"

26.170

2l.9lo

18.910

17.230

13.900

10.950

g.2go

39.640

33.170

30.99o

25.91"

21.490

19.960

15.670

12.170

9.910

44.430

4951o

47.ggo

36.69o

31350

29.420

22.94"

18.060

1357"

-9.97 dB

-11.81 dB

-1236 dB

-14.16 dB

-12.79 dB

-13.05 dB

-13.07 dB

-13.21 dB

-13.29 dB

0.64026

0.86163

0.76612

0.84029

0.92322

0.87797

0.89533

0.94600

0.9227s

0.95971

o.96382

0.95688



CHAPTER 5

DISCUSSION AI,ID CONCLUSIONS

In Chapter 2 tbe multiple scattering of an incident plane wave by two bodies is

investigated. A novel technique based on the cylindrical wave spectrum is presented

and applied to some practical configurations. The validity of this technique is

verified by comparing the numerical results due to the scattering by two parallel con-

ducting cylinders with those obtained using the boundary value solution and the

method of moments. The technique is then used to solve for the diffraction by a

double wedge which has no exact solution except for the special case of the slit

geometry. Again good agreement between computed data for the transmission

coefficient of a slit and the exact values is obtained. It appears that this theory along

with the approximation used to facilitate the diffraction by semi-infinite scatterers,

provides accurate results for slits of any half electrical width greater than or equal to

unity.

One of the main advantages of the CWS technique is that it simplifies the han-

dling of the scattering by multiple objects because the method deals with each body

individually. Another advantage of the technique is that the memory size required

to apply the CWS technique is linearly proportional to the total number of Huygens

current sources, whereas in the MM the order of the impedance matrix is propor-

tional to the squÍre of the number of points at which the unknown surface currents

are evaluated. Moreover, in the CWS technique no matrix inversion is required.

In principle, the CWS technique is applicable for the scattering by many objects

without any restriction on their size or separation. However, it is found that large

execution time is needed in order to achieve good accuracy for complicated

geometries. The procedure used here is capable of yielding both near and far fields
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in terms of known solutions for each body involved in isolation.

As far as the asymptotic solution is concerned, it is clear that the improvement

in dealing with edge-to-edge interaction developed in Chapter 3 using fictitious inho-

mogeneous line sources located at the edges could lead to a wider domain of validity

of the ray-optical method. Thus it could be applied to an increasing number of

waveguide and free space scattering problems especially for scatterers which involve

edges and corners. Moreover, it is found that when cylindrical dielectric edge caps

are introduced significant changes in the diffraction characteristics of the double

wedge problem is observed. Furthermore, the loading of the aperture plane by a

cylindrical scatterer indicates considerable changes in the transmission coefficient.

Loading the aperture by a dielectric cylinder of homogeneous or inhomogeneous per-

mittivity profiles yields an increase in the transmission coefficient over the unloaded

aperture, while a lower transmission coefficient is observed when a conducting

cylinder is used. Rounding the edges of the wedges or using cylindrical conducting

caps at the edges in the double wedge geometry produces a lower transmission

coefficient whereas, the use of cylindrical dielectric caps of homogeneous permit-

tivity yields a higher transmission coefficíent relative to the unloaded case.

With regard to the numerical solution presented in Chapter 4, the diffracted

field due to a plane wave incident on two wedges forming a slit type geometry is for-

mulated using an integral equation for the surface current. The use of the ordinary

method of moments to solve for the unknown surface currents will not yield a con-

vergent solution due to the semi-infinite dimensions of the wedges and the fact that

the total current does not vanish on the illuminated surface for this type of excita-

tion. Therefore, the surface current is divided into two components, namely a

known non-interaction term and an unknown term due to the infinite number of

interactions between the wedges. The non-interaction term is considered to be the

physical optics current for those geometries which have wedges with non-rn".p

edges, whereas the exact surface current for a single wedge is used for double
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\iledges with sharp edges. The interaction term is thei:, evaluated using the ordinary

method of moments since it decays with increasing distance from the edge along the

surface of either wedge. It is found that this technique leads to an efficient solution

and makes it possible to use the method of moments for the multiple scattering by

bodies of semi-infinite or large dimensions without the need for a large size com-

puter memory. Furthermore, by applying this technique the saving in execution time

over the ordinary method of moments or even the exact boundary value solution

increases with the electrical dimensions of the scatterers. Numerical results for the

diffracted fields and transmission coefficients for a variety of related structures such

as the thin slit, thick slit, double truncated wedge and double capped wedge are

presented and compared with available solutions. It should be noted that this

method is applicable to arbitrary number of cylinders or scatterers of different

shapes.

It is found, in general, that the diffraction pattern of a double wedge is less sen-

sitive to small truncation or capping than the transmission coefficient. Moreover, it

is also noticed that the interior wedge angle has a significant effect on the diffraction

pattern characteristics only for small wedge to wedge separation distances. Although

an incident plane wave is assumed throughout the present analysis, the extension to

more practical types of excitations (e.g. line source field) is simple and straightfor-

ward.

5.1 Suggestions for future research

Many promising problems arise from the present study and their investigations

may lead to some useful results and applications. As an example, although we have

used the CWS technique for the scattering by cylindrical objects, it is obviously of

interest to extend this technique to handle three-dimensional scattering problems by

using a spherical wave spectrum (SWS) due to induced point sources in each interac-

tion between the scatterers. Another interesting study involves the extension of the

CWS technique to deal with dielectric and dielectric coated cylindrical conductors
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by using the polarizatíon currents in the dielectric media and the electrical linear

currents on the conducting surfaces. Furthermore, the C\ilS technique can be used

to solve for the scattering by lV infinite circular conducting cylinders forming one or

two dimensional array which can be achieved easily, especially if the symmetry is

considered in the analysis.

It should be noted that the efficiency of the modified MM solution could be

substantially improved by introducing a GTD term in the basis functions to represent

the diffraction current as shown by Burnside et. al. for diffraction by a single right

angle conducting wedge [100].

With respect to loacling the aperture plane of the double wedge, it is obvious

that finding the optimal parameters that produce a higher transmission coefficient

when using a lossy dielectric cylinder or a dielectric lens as a loading object is of

great interest. Another possibility is to fill the aperture of a thick slit or a double

truncated wedge by a lossy or inhomogeneous dielectric material in order to focus

the main diffracted lobe in a certain direction.

Since tbe surface current distribution is the main parameter in determining the

diffraction properties of the double wedge, it is useful to investigate the effect of

loading one or both surfaces of the the two wedges by a lossy dielectric lining or by

introducing corrugations to further cont¡ol the surface current distribution. It is

also possible to place the corrugations on the truncated edges of a double truncated

wedge geometry.

So far, we have used only passive elements to modify the diffraction characteris-

tics of the double wedge geometry. Another possibility, of course, is to use an active

elements and one of these geometries, which requires further investigation, is the

diffraction of the field of an array of sources by the double wedge geometry. It is

worth mentioning that a similar excitation of a single finite wedge was investigated

and significant changes in the radiation characteristics of the corner array are
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reported elsewhere [101,102].

Finally, since the diffraction by an imperfectly conducting or a dielectric wedge

is available U0!1101, it is of great interest to investigate the extension of the tech-

niques used in this thesis to solve for the diffraction by a double dielectric or imper-

fectly conducting wedge.



APPEN DIX A

DENVATTON OF ESUATTON (2-21)

The physical optics current of a plane wave incident on an infinite conduct-

ing plane is given by

(A-1)JPo = å ,in 09 ejÈ'cosÓo
rl

the corresponding scattered field is

Eio b,0) = -f rin þo [ ,iu cosös r'(k tp - x t) dx (A-z)

however for normally incident plane wave ( öo : 90o ), EÊo reduces to

EÊo (r,,,180) = -t lo uoro(srz * x)) dx. (A-4)

Letting Jtz * x = t, we obtain

EÉ, (ru,reo) = -t] ,ro1o,¡0,
s¡2

EÈo b,0) = + I H o&rp - f- t) dx. (A-3)

For a single sharp wedge illuminated by an incident plane wave, Ef6 is zerc

in the region fa¡ from the wedge edge. However, near the edge Esp6 for

Öo = 90o can be given by Eq.(A-3) where p , ô are the local coordinates of the

wedge. Since we are interested in the value of Esp6 at the edge of the opposite

wedge, i.e. at p = s12 and ö : 180o, Eq. (A-3) reduces to
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I
2

t"f
0

+ka,

- r41, -

.Sp

H o(kt) dt - [ n oçu¡ at
0

S12

I n oçu¡ at.
0

(A-s)

located at the edge

(A-6)

T'hus if the effect of the nfo is compensated by a line source

of the wedge, the amplitude C6 of this line source is given by

co=l+
rl ,c

stz

- i I H s(kt) dt I / H s(ksn).



APPENDIX B

FAR SCATTERED FIELD PATTERN OF A LINE SOURCE

EXCITING A SHARP WEDGE

The incident field from a line source of unit amplitude in free space at an

observation point p (p,0) in the cylindrical coordinate system is given by

Ei = + Ho&/)'4

where p' is the distance between the point p and the

For far observation points ( i.e. kp>> 1) we have

p:p-pecos(0-00)

(B-1)

line source position (po,0o).

(B-2)

Hankel function, theapproximation for theand upon using the large argument

incident field expression reduces to

Ei =+\Æ,-ïro e+jkpo 
cos ($ - $s). (B-3)

The above expression can be easily written in the following form

Ei : + H o¡p) ,*irps cos (S - $6). (B-4),4

In the presence of a sharp wedge defined by two faces at 0 : 0" and

= 2rr - 1 and its along the z axis, the total field E/ is given by

4: -a!- i ¡"(ftpo) H n(kp) sin (4 O) sin (11 0o) , p)po (B-s)' v #, : ; 'v 'v

where
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u = (2t - l) /,r¡.

For far field observation points, E t becomes

Eí :+ \Æå,,o(opo)ii sin (å 6)
. ,n

srn (-
v

(¿ oo)v

0o).

(B-6)

(B-7)

(B-8)

Thus the fa¡ scattered ûeld Ers is given by

Ef =+ ao(tp) å
n:L

+ _d_
4

J ,(kpù ji sin (¿ g) sin
;v

H oG ù "+ikeo 
cos ($ - $6)

where the large argument expression of the Hankel function is replaced by the

Hankel function itself. As a result the far scattered field pattern / w can be

determined according to the following definition

Ef = -ú HoGù lw. (B-e),4

It should be noted that the scattered field patterns /, and /¿ defined by

Eqs. (3-47) and (3-49) are derived using the same procedure used in this Appendix

todeterminef w.



APPENDIX C

SCATTERTNG BY A CYLINDNCAL DIELECTRIC

SHELL WITH RADIAL AND AZIMUTHAL

PERMITTTVITY PROFILES

For a dielectric shell with outer and inner

a permittivity variation of the form

€ (p,ö) : eo (if ("r - õcos2g )

radii po and p¿ , respectively, and

(c-1)

where €¿, p0, r¡ and õ are constants, the dielectric medium is considered inho-

mogeneous in two coordinate variables, namely p and $ in the circular cylindrical

coordinates. The field in region I (see Fig. C-1) is then the super-position of the

incident and scattered waves and is given by

ø!(p,ô):Eo

where rþ = Ö $9 . The first summation in Eq. (C-2) represents the incident

plane \+,ave Eoei ÈR cos 'l' expressed in circular cylindrical coordinates and

J 
^(k 

p) is the Bessel function of the first kind of argument & p and order n . The

second summation represents the scattered \rave where cn are unknown

coefficients to be determined while Hn(kp) is the Hankel function of the second

kind of argument k p and order n and is used to denote an outrvard traveling

rvave. The S component of the magnetic field in region I is then given by

{ Ë .,r'r, (k p) cos z rþ

I n=o
* å ." cnl,(t p) cos n,¡ ] G-z)

n=0 )

, EO
nL b, o) :' J @lLo {:

enjn k lr(*p) cos nrþ



Fie C-1

- 145 -

wa ve

Plane wave incident on a cylindrical dielecLric
shell in circular cylindrical co-ordinates

Incident plane
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encn k (c-3)

where the prime indicates differentiation with respect to the argument & p .

For region II, where e is given by Eq.(C-1), E (p , $) satisûes the following

equation

A,Qrù*r"* 
)

æ+sa
n:o

I
p

a ð8,
^ (p ^ )-rdp dP

I ð28" .,

-;-* + 0)' l¡o € E, : 0
P' ð+'

(c-4)

(c-6)

by means of separation of variables based on the assumption that

E, (p ,0) = p* " O(,ö) [90] , Eq. (C-4) reduces to

d2Q
, f, 

+(o -zq cosþ)o =o (c-5)

where o =o2 +,o2 l¡o co p&\, e =*r' 1f,0€¿ plõ, and c is the separa-

tion constant . Equation (C-5) represents a Mathieu differential equation . Since

the problem is symmetric with respect to the ü : 0 plane, only even solutions of

O(0) should be considered. In addition, E, has a period of. 2r in 0 . Hence a

superposition of all possible solutions satisfying these conditions is given by

ø!'(p,0 ):", 
,å{ 

Ldzn pou * bzn p-qu f ,"zn(ù , q )

+ldzn+1 po2"*r tbzn+rp a?'+rl cêzn+l (U,q)l
)

whereGl¡=ffiunaamisthecharacteristicnumberof
the Mathieu function ce^ (ü , e). The cosine elliptic funcrions

ce^ (ú ,e) and cezm+r (ù, q) have periods of tr and 2n, respectively [111].

The field É/ 6 in region II is then given by
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( d zn p"u -t - brn p- az' -t ) ,"rn (û,q)l

*lozn*t(dzr+l pot*t -' - brn+t p a¡+¡-1 )r"zn*r ( û ,q )l ) ,"-r,

since the field should be finite at p = 0 , the field in the interior region can be

expressed as an infinite series of Bessel functions of the first kind, i. e.

@(

åt r",

dition *at nI, and EI.I are equal at p = po leads to

æfl
å."1r" 

," (kp,) * cn Hn(kp,) 
Jcos 

n,l,

E!"(P,o):Eo

and as a result

E .n Bn Jn(kp) cos n rþ

n:0
(c-8)

(c-e)

(c,11)

n'i' (p, ô ) = fi; å." s^ k t,(*p) cos nrþ

cez^(ù,q)=2ePcos2rrþ
r:0

The unknown expansion coefficients d^, b^, c^ and g, are evaluated

from the continuity of the tangential fields E" and F16 at po and p6. The con-

: 
å { ['r, p:^ + bzn p" oul 

"'rn( ù, q )

+ lorr*rpïu*, * bzo+r p, ou*,l r"rn*r ( ù,, ) ) (c-10)

The left hand side of Eq. (C-10) is then multiplied by ce^(ù , q) where the right

hand side is multiplied by the expansion of. ce^ (ù , q ), i.e.
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in which the coefficients A|! can be computed [111] once q and the characteristic

numbers am ale known. Integrating both sides of the resulting equation from 0 to

2n and using the orthogonal properties of the Mathieu and the trigonometric

functions [112], we obtain

drn pin * bz^ p;"n = å .r. i2, Jzr$p)¡îi
r:0

æ

* 2 .r, cz, H z,(kpo) Aîf . (C-tz)
r=0

Again multiplying Eq. (C-10) by ce2^*r(ù , q) and using the expansion

cez^+t(ù, q ) = i oîf.\l cos (2r +1)rþ (c-13)
r=0

and integrating from 0 to 2¡, we obtain

dz^*tp:nn * bz^*r p, c2'+r - X .r, *t jZ'*t Jrr+r(kpa) Aîfirl
r:0

* I .r, +t c 2r +t H z, *t(k po) Aîffir (C-14)
r:0

whereffi:0r7r2r3, "'and r =0, lr2,

Equations (C-12) and (C-14) can be combined to form a matrix equation, i.e.

lullDl + [w][B]= [s] + Lzltpl (c-1s)

where each element of the matrices [D], [B] and [C] is one of the unknown

expansion coefficientsdo,bo and co, respectively. The matrices [U] and [W] are

diagonals and each of their elements is given by poo' and po-o' , respectively. Each

element of the column matrix tS] is denoted by s¡ and is given. by

æ

I.r jì l¡(kp,)A! . Ízj is a square matrix with elements z¡,o given by
Í:0
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For H[ to be equal to HI$ at p

2r, j' k J;(kpo) cos nrþ * i ."
¡:0 ¡:0

* ozn*l
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and i have the values 0,1,2,

: po w€ should have

c, k n,(kp")

æ

=SZl
¿:0 þ" L zn PTu 

-' - urn p;'u -'7,,r^(ù, q)

lF 
rr*, oou*t-r - bzn*t po 

o'*t

* .z^ cz^ k u í^&p")

drn pÏo -t - ,rn p; "u -tl Oî1;

-tl 
"r,*r(û, ø l) . tc-ror

Replacing the Mathieu functions in Eq. (C-16) by their expansions as given in Eqs.

(C-11) and (C-13) and multíplying by cos ln rþ and integrating f rom 0 to 2 1r , \\¡e

obtain

,z^ j2^ k I nQ, p.)

æf
= loz" I¡:0

and

ezm+t jzn+r k J;*r(ftpo) i rz^+Lczm+Lk H;^*r(ftp,)

= Ë orn*, [, zn+r p:2'*' -1 - bzn*t r- 
qu+r-' 

I o îåI', . (c-ta)
n:0

Equations (C-17) and (C-18) a¡e combined and written in the following matrix

form

[cl:[r]+vllDl+[x][B]

where tF I is a column matrix in which each element,

- ip J;(kp) /no&o), the elemenrs of trl and Ixl

fP

are

(c-17)

(c-1e)

is given' by

denoted by
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tp,t , xp,t and are given by cr¡ pÍ' -t ol /Írp k H;(kpo) l,

- c, p-o' -r At /lep k H;(kpo) l, respectively.

Following the same procedure at p = p¿ we obtain after some manipulations

( tit - trt trt ) tDl = ( [r1 til - tw] ) tal (c-20)

where [Û ] and lW I are diagonal matrices and each of their elements is given by

pf' ana pr"' , respectively. [r], [r] and tXl are square matrices and their ele-

ments are denoted by !1,p, ip,trip,l and given by .p Jp(kp,) ¡l ,

ot pl'-t ¡l /l.tk J;(kpùl and -..r p¿ 
o' -r A' /Í.p k J;(kp¿) l,

respectively. Furthermore, the coefficients gp Ne given by

! o" 
'ro, oî^-t - 

'nn:0

1

t o1c eu)
p;"^-t I o; (c-21)

k

ati

an

U)

lu

1

cP

Equ

tBl

=1,

=

t,

8p

lD

tDl

ions (C-15),

rd [C].The

l-tzltrl

(C-19) and (C-20) are solved for the unknown matrices

results are

- (Lzt txt- tryt ) [frt f"l - tí"l) '

- 1ul - trl trl ) ì-' , ,, I + ÍzJ tFt ) (c-zz)
)

( - - ì-1[ð]:[trltxl-tw]j (tul -trltrl)tDl . (c-23)

Once the vectors of the unknowns do and b6 are computed from Eqs. (C-22)and

(C-23), respectively, $r9 can obtain the unknowns gp and co from Eqs. (C-21) and

(C-19), respectively, which completes the solution.

Since all the matrices are infinite, they are suitably truncated during the com-

putations in order to lead to a convergent solution.
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The properties of the plane \r¡ave scattering by any cylindrical body of

infinite length are described in terms of the echo width which is denoted bV W (0)

and defined by Harrington [89] as follows :

w (o)=,rigznp l**- [ (c-24)

where Et and Es are the incident and scattered fields, respectively. From Eqs.

(C-2) and (C-24) the echo width of the dielectric cylindrical shell is given by

cn jn 
"o* 

,r,Þ 
l'

w (o )= k+o Itn
n:0

(c-2s)

where the Hankel function is replaced by its asymptotic expression for large argu-

ment,

For the sake of comparison, an alternative way of calculating the fields as

well as the echo width due to scattering by a cylindrical shell is also computed

using the method of moments. It should be noted that the application of the

method of moments for the scattering by dielectric bodies is fully explained in the

literatu¡e [11]1141. This method is used here for solving the integral equation for

the resulting scattered field by expanding the unknown in terms of pulse f unctions

and using point matching procedure for testing, hence generating a well condi-

tioned matrix whose elements are easily evaluated. Further, to account for ti¡e

permittivity variations in both p and $ directions, each shell is divided into a

number of subshells in the p direction and each subshell is divided into another

number of equal cells to allow for variations in the $ direction. The number of

subshells and the cells are suitably chosen to give accurate results such that the

edge dimension of each cell should not exceed 0.2'À/\E where e, is the rela-

tive permittivity of the cell as proposed and verified by Richmond [113].
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Figure C-2 shows the echo width of a cylindrical dielectric shell with

po :027 )r , p¿ = 0.25I and excited by a plane wave incident at angle

0o = 180o . In this figure the solid curve represents the boundary value solution,

whereas the squares represent the computed echo width based on the method of

moments. During the computations by the moment method, the shell was subdi-

vided into 3 subshells and each subshell was divided into 26 equal cells. Excellent

agreement is observed from the two curves in Fig. C-2, however, it should be

mentioned that the method of moments is not suitable for problems with this type

of inhomogeneity relative to the solution obtained by the boundary value

approach. This is clearly understandable when we note that the execution time for

the case shown in Fig. C-2 was 15 times longer by the method of moments than by

the boundary value method. The method of moment results showed excellent

agreement with published data by Richmond [11a] for a dielectric shell of constant

permittivity. Remarkable changes in the echo width and the radiation pattern,

corresponding to different values of ô, rì, pø and ea , 
^re 

also investigated and

the results are reported elsewhere [115,116].
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