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Abstract 

The objective of this study is to apply digital image processing (DIP) techniques to 

optical coherence tomography (OCT) images and develop computer-based non-subjective 

quantitative analysis, which can be used as diagnostic aids in early detection of dental 

caries. This study first compares speckle reduction effects on raw OCT image data by 

implementing spatial-domain and transform-domain speckle filtering. Then region-based 

contour search and global thresholding techniques examine digital OCT images with 

possible lesions to identify and highlight the presence of features indicating early stage 

dental caries. The outputs of these processes, which explore the combination of image 

restoration and segmentation, can be used to distinguish lesion from normal tissue and 

determine the characteristics prior to, during, and following treatments. The combination 

of image processing and analysis techniques in this thesis shows potential of detecting 

early stage caries lesion successfully.  
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Chapter 1  

Introduction 

A significant amount of research is directed towards earlier and better caries 

detection. Next to the question of detecting caries at its early stages, is the issue of 

treatment decision which relies on acquiring quantitative measure of lesion extent. A 

quantitative measure of early stage caries is important to monitor lesion progress, and to 

determine whether surgical intervention is needed, or the lesion can be arrested or is 

arrested or reversed. In contrast to the attention given to the discovery and development 

of new diagnostic imaging technologies, few applications use the quantitative evaluation 

of dental images to diagnose caries. As an emerging technology for performing high 

resolution imaging, optical coherence tomography (OCT) can be used to identify tooth 

damage due to caries, compensating for the low sensitivity (high false negative) rate of 

visual inspection by dentists. The addition of OCT as well as other imaging tools to 

traditional dental practice could lead to a shift in diagnosis from subjective interpretation 

to quantitative analysis and measurement. If the shape of caries can be quantified, and the 

relationship between the numerical value and the condition of the lesion can be 

demonstrated, this information would be helpful to diagnose dental caries with great 

precision. 

 

Reproducible dental image analysis driven by algorithms that enable geometric 

measurement of structures is guided with the information present in the images, as well 

as embedded anatomical features. The aim of this study is to assess the possibility of 
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digital image processing and analysis of OCT dental images, by means of applying image 

restoration methods to speckle contaminated images, and applying semi-automatic image 

segmentation to generate image partition with geometric details which defines basic 

anatomical landmarks. Here I first provide an overview of current clinical dental caries 

diagnostic methods and a review of some new imaging tools to bring forward the 

understanding of the present development in dental imaging. 

 

1.1 Current Clinical Dental Caries Detection Overview 

Dental caries, also generally known as tooth decay, is a common bacteria based 

disease. The mechanism of dental caries is well-understood. It is caused by the acid 

erosion of tooth enamel. The process starts with the plaque on the surface of the tooth and 

the plaque consists of a bacterial film that produces acids. As the amount of bacterial 

plaque increases, acid produced by bacterial action diffuses into the tooth and dissolves 

the carbonated mineral - a process called demineralization [1], [2], [3]. Dental caries is a 

dynamic process with periods of demineralization alternating with periods of 

remineralization (re-deposition of mineral). However, if this process is not halted or 

reversed via remineralization, it eventually becomes a frank cavity. Dental caries of the 

enamel typically is first observed clinically as a so-called “white spot” lesion.  

 

Current and previous clinical technologies, largely based on subjective parameters such 

as color, translucency and hardness aided by relatively basic instruments such as 

explorers, viewing mirrors, and artificial light sources, usually result in low sensitivity 

and high specificity, meaning a large number of lesions may be missed.  This visual and 
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tactile approach is often supplemented by the use of selected radiographs to help in the 

diagnosis of small lesions on the surfaces between adjacent teeth [4], [5].  The prime 

treatment objective for carious teeth is complete removal of infected tooth enamel or 

dentin followed by placement of restorative materials. Since dental caries is a dynamic 

process, the recent trend in management of non-cavitated early stage lesions has been a 

shift from the operative to a more conservative approach to inhibiting and reversing 

lesion progression. Thus, the early clinical detection of incipient carious lesions has 

attracted increasing interest because of the possibility that primary preventive procedures 

(e.g. topical fluorides) may enhance remineralization and even arrest dental decay rather 

than requiring operative intervention.   

 

In the past 20 years, many efforts have been dedicated to the development of new 

technologies for early stage caries detection [6]. The on-going progress in caries research 

has offered us great opportunities to better understand, detect, and monitor the disease. 

These new technologies include quantitative laser or light fluorescence (QLF), electrical 

conductance measurements (ECM), infrared laser fluorescence and digital fiber-optics 

trans-illumination [7].  A significant recent discovery in the field of biomedical science is 

the utilization of light and fiber-optics to view living biological tissues in a technique 

known as optical coherence tomography (OCT). OCT imaging has been applied to 

diagnose dental caries in its incipient stage with its advantage over conventional digital 

radiography without ionizing radiation, and benefits in non-invasive, and thus 

nondestructive imaging the anatomical feature of the dental structure over other 

conventional imaging modalities, including eye inspection (EI), digital intraoral 
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radiography (DIOR), light illuminating examination (LIE), and electron probe micro 

analyzer (EPMA) [8]. For further reading, one can also refer to Hall & Girkin [9] for a 

review of potential new diagnostic modalities for caries lesions, including multi-photon 

imaging, infrared thermography and infrared fluorescence, ultrasound, terahertz imaging 

and optical coherence tomography. Among these novel medical imaging techniques, 

optical coherence tomography has offered better resolution, depth in penetration, and 

quality.  

 

1.2 An OCT Approach and Digital Image Analysis 

Optical coherence tomography techniques generate cross-sectional images from a 

series of laterally adjacent depth-scans [ 10]. Optical tomographic techniques are of 

particular importance in the medical fields, as these techniques can provide non-invasive 

diagnostic images. Along with rapid expanding in research and commercial development 

in OCT imaging techniques, an OCT imaging system has characteristics of compact 

dimension, and reliability, in addition, offers a therapeutic potential in providing 

anatomic and functional information in intact tissues with micron-scale resolution. One of 

the attractive features of OCT is that it uses near-infrared light instead of ionizing 

radiation. Furthermore, high transversal and depth resolution on the order of 10 µm can 

be obtained. The very first commercialized applications are in the field of ophthalmology, 

where OCT enables a total non-invasive view of the retinal tissue structure. The 

capability of bringing microscopic detail in vivo equals “optical biopsy” which 

potentially could replace many invasive biopsy procedures to support diagnosis in many 

fields beyond ophthalmology.  
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Owing to its high axial (~10-20 μm) and transversal (~10 μm) resolution, OCT is 

expected to improve the management of dental caries. OCT holds promise for detecting 

early lesion involving enamel and for quantifying enamel demineralization. With its 

potential application in dentistry, researchers investigate the assessment of imaging 

dental soft and hard tissues [11]. Some preliminary studies have applied OCT technique 

to obtain tomographic images of extracted sound and decayed human teeth in order to 

evaluate its possible diagnostic potential for dental applications [12], [13], [14], [15], 

[35] , [36], [37]. Optical scattering properties of different tissues are translated into 

contrast variations that can be used to image and identify structural components. The 

image contrast between healthy and carious tooth structures attainable from OCT images    

is a promising prognosis for detection of caries. Despite this obvious advantage, OCT 

images suffer contrast and resolution degradation caused by contaminating speckle noise  

and it is the primary hurdle to be overcome in digital image processing concerning the 

inability to adequately identify the carious lesion.  Thus, prior to image analysis based 

lesion segmentation, the image preprocessing aims at noise reduction, and 

contrast/resolution enhancement.  

 



 

 6

Chapter 2  

OCT Background  

This chapter reviews the basic concepts of OCT signal formation, and the OCT 

imaging applied to early stage dental caries detection. Some fundamental anatomy of 

human tooth is also reviewed. 

 

2.1 Principles of OCT 

In many ways, time domain OCT can be represented as an optical analogue to 

ultrasound (US) imaging [16]. Laterally adjacent depth-scans are similar to A-scan of 

ultrasound imaging. Typically, OCT techniques, like the reflectometry technique, are 

based on time-domain low coherence interferometry depth-scans. Due to the speed of 

light however, practical OCT systems cannot measure return signal on time-of-flight 

basis (compared to ultrasound) and the time "delay" is translated into time difference 

during the interference. An optical interferometric scheme is used as an indirect way to 

visualize coherently reflected or scattered light. A standard Michelson interferometer, 

with a low-coherence time-domain broadband light source, is used to measure the relative 

optical path difference between a reference arm and the various layers of tissue samples 

in the sample arm. Figure 2.1 depicts a standard OCT scheme. In its simplest form, a 

particular incoherent light source illuminates a Michelson interferometer. The signal 

beam is reflected from the biological specimen and a reference beam is reflected from a 

reference mirror while scanning over an optical delay line at kHz speed. Two beams 

interfere at a depth in the tissue corresponding with the position of the reference mirror at 
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each moment and a detector measures the intensity of the backscatters of the interference. 

This way, an axial image (A-scan) of the tissue is produced. By scanning the beam 

transversely, a two dimensional (2-D) cross section image (B-scan) of the tissue can be 

formed. If the whole construction is additionally moved in a direction perpendicular to 

the transversal direction, a full three dimensional (3-D) image volume can be imaged. 

 

 

Figure 2.1 Standard OCT scheme based on a low-coherence time-domain Michelson 
interferometer [17].  
 

The time delay is controlled by varying the position of the reference mirror and the 

constructive interference effects from two beams are observed at the output of the 

interferometer when the relative path length is changed during scanning of the reference 

mirror. If the light source has a long coherence length, the interference fringes will be 

observed for a wide range of relative path lengths of the reference and measurement arms.  
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In OCT imaging, it is necessary to measure precisely the absolute distance of the 

structures within the biological tissues. Thus, a short-coherence light (broad bandwidth) 

is used (shown in Figure 2.2).  

 

 
Figure 2.2 Examples of light source 
with long coherence length and short 
coherence length. The low-coherence 
light is desired for a Michelson-type 
interferometer to perform micrometer 
resolution measurements [10]. 
 

 

The coherence length clΔ  is a measure of the coherence and it is inversely proportional to 

the frequency bandwidth λΔ . For a Gaussian optical spectrum, the coherence length is 

presented by  

λ
λ

λ
λ

π Δ
≈

Δ
=Δ

22

44.0)2ln(2
cl                                        (2.1) 

where λ  is the mean (center) wavelength and λΔ  is the spectral width of the power 

spectrum [18]. The coherence length is normally measured from the full-width at half-

maximum (FWHM) of the autocorrelation function (A-scan envelope). The axial 

resolution in OCT images is determined by the coherence length of the light source. In 

fact, one can prove that the axial resolution of an OCT system is proportional to the 

bandwidth of the light source, thus it is crucial to use sources with wide bandwidth (i.e. 

super luminescent diodes can provide bandwidth of 50-100 nm for ~1300 nm 

wavelength). In contrast to standard microscopy, e.g. confocal microscopy where the 

choice of wavelength is decided between desired wavelength and axial resolution, OCT 

can achieve fine axial resolution independent of the beam focusing and spot size. Figure 
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2.3 summarizes the relationship of axial resolution versus bandwidth for light sources at 

different wavelengths [19]. The transverse resolution is the same as in optical microscopy 

and it is determined by diffraction-limited spot size of the focused optical beam. The 

diffraction-limited spot size is inversely proportional to the numerical aperture (NA) of 

the beam.  

 

Figure 2.3 Axial resolutions versus 
bandwidth of the light sources for center 
wavelength of 800 nm, 1060 nm and 1300 
nm. Micro-scale axial resolution requires 
extremely broad optical bandwidths. 
Bandwidth drastically increases for longer 
wavelength [19]. 
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2.2 Dental Caries and OCT Signal Formation 

 2.2.1 Dental Caries 

 

Figure 2.4 Schematic of tooth anatomy [20]. 
 

 A cross section of a human tooth is shown in Figure 2.4. The crown is the part of 

the tooth that is visible above the gums. The root is the region of the tooth that is below 

the gums. The crown of each tooth has a coating of enamel, which protects the 

underlying dentin. The layers of tooth we are concerned with are the outmost enamel, the 

dentin, and the pulp. Enamel is the hardest substance in the human body. It gains its 

hardness from tightly packed rows of calcium and phosphorus crystals within a protein 

matrix structure. The enamel is organized into hard rods or prisms that are 4-6 μm in 

diameter, with glycoprotein prism sheaths 0.1-0.2 μm wide in between [21].   

 

The major component of the inside of the tooth is dentin. This substance is slightly softer 

than enamel. It is elastic and compressible in contrast to the brittle nature of enamel. It 
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also contains tubules throughout its structure that connect with the central nerve of the 

tooth within the pulp. The dentin-enamel junction (DEJ) constitutes a unique boundary 

between two highly mineralized tissues with very different matrix composition and 

physical properties. Enamel and dentin are believed to be linked by many parallel 80-120 

nm diameter fibrils, which are inserted directly into the enamel mineral and also merge 

with the interwoven network of the dentin matrix.   

 

Dental caries is a dynamic process that does not necessarily result in the formation of 

cavities. The tooth may undergo cycles of demineralization and remineralization. It is 

believed that the net loss of minerals will ultimately determine the extent of caries.  The 

earliest changes are dissolution of the enamel leading to the pathways where diffusion 

can occur. If over a period of months to years, the surface weakens sufficiently then 

cavitations may result. Early lesions cannot be detected with current clinical detectable 

techniques due to lack of resolution. The possible clinically observable amount of caries 

is the white spot lesion, where demineralization has progressed to at least 300-500 μm.  

The white spot can be a reversible stage, and the lesion may ultimately revert to normal 

enamel.  

 

 2.2.2 Dental OCT Signal Formation 

 The use of light as a high resolution imaging tool in dental applications has been 

greatly compromised by the turbid nature of dental tissue. The average scattering and 

absorption properties have been recorded for both enamel and dentin. The average 

scattering coefficient is significantly affected by wavelength. In general, the shorter the 
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wavelength, the greater the scattering coefficient is observed [ 22 ]. The amount of 

absorption in the near infrared is much lower compared to tissue absorption of light in 

visible region, where light absorption is greatly affected by electronic transition. 

Improved light penetration is achieved by performing imaging with light having an 

incident wavelength around 1310 nm. Absorption is low because this wavelength is too 

long to result in large amount of electron transition [23]. Conclusions can be drawn from 

these optical properties with respect to dental OCT imaging: longer wavelength sources 

should penetrate much further in enamel than shorter wavelengths and visible to near-

infrared light should propagate much further through enamel than through dentin. These 

findings are consistent with OCT images features, where penetration depth in human 

tooth beyond 3 mm is not usual.  

 

The OCT contrast or the reflected signal intensity is based on Fresnel reflection [24]: 

only at a depth of location where significant changes of the reflection index results in a 

consequence of changes in the return signal. A simple relationship can be governed by 

the equation: 

2

21

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
nn
nnR                                                 (2.2) 

where n1 and n2 are the refractive indices of the media, and R is the reflectivity. Two light 

beams originate from the same source: reference field (Er) and sample field (Es) which 

are considered as time-variant fields. The sample field focuses on the tissue sample and 

the scattered sample field (Es’) is reflected back and fed into the interferometer. If two 

beams (Er and Es’) meet at a location within the coherence length, and the scattered field 

(Es’) has traveled with extra time delay τ, where such delay is caused by the spatial and 
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temporal properties of the sample, the resultant total field received at the photodetector is 

[23] 

( ) ( ) ( )τ++= tEtEtE sr
'                                          (2.3) 

The intensity of the combined light beam with interference can be expressed as, 

( ) ( ) ( )τ+++== tEtEIItEI srsr
'*2 Re2                            (2.4) 

where Ir and Is are mean intensity (dc value) returning from the reference and sample 

arms of the interferometer respectively, and ( ) ( )τ+tEtE sr
'*Re is the real part of the 

complex field. The interference signal can be analogously viewed as reflectivity profile 

mapping of the sample tissue [23]. A simple model of treating biological tissue is to 

regard them as small flat mirrors, however most hard or soft tissues are optically dense 

and differences in the refractive index can also cause the light to scatter at various angles. 

Thus such model does not conform well in practice. A single-backscattering model which 

describes the aspects of attenuation of a focused beam in tissue composed of particular 

scatters, has been adapted to the analysis of OCT [5], [25]. This model only accounts the 

scattering interactions either due to total loss of coherence (a full reflection) or no loss (a 

wide angle scatter cannot be detected by photo detectors). Two articles by Pan et al and 

Hellmuth et al have outlined the concept that OCT systems respond to the discontinuities 

of the refractive index structure on the scale of wavelength [ 26],[ 27]. In fact, the 

coherence “gate” behaves as an optical band-pass filter centered at 2π/λ (λ is the center 

wavelength), with a width set by the coherence length of the source. Overall, scattering is 

a relatively complex phenomenon which has its origin in refractive index mismatches. 

The intensity and angular dependence of scattering is determined by the size, position, 
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and shape of the scatter relative to the wavelength of the incident light in addition to the 

index mismatch [28].  

 

2.3 Dental OCT Images 

Previously, Colston et al had firstly employed in vitro and ex vivo imaging of 

dental structures, where polarization-dependent backscattering might play an important 

role in dental OCT [29], [30].  Feldchtein et al have reported the imaging of hard and soft 

tissues containing oral mucosa, caries of a tooth, and dental restorative procedures [31]. 

Amaechi et al measured the reflectivity variation, induced by demineralization, for 

quantitatively assessing the dental caries lesion [32]. Wang et al has applied polarization-

sensitive OCT (PS-OCT) for characterizing dentin and enamel, and Fried et al  have also 

shown images of caries lesions and lesion progression with PS-OCT [33]. Brandenburg 

et al have imaged demineralized tissues, caries lesions, restored teeth, and oral mucosa 

[34]. The Spectroscopy group at the National Research Council of Canada – Institute of 

Biodignostics (NRC-IBD) reported ex vivo studies examining the correlation between 

morphological information provided by histological images and OCT images. This 

information is aided by Raman spectroscopy to assure the biochemical confirmation of 

the caries [35], [36]. Two OCT images of early stage dental caries are illustrated in 

Figure 2.5. Data were collected using a commercially available OCT system by Zeiss and 

a higher wavelength system built in house at the NRC-Industrial Materials Institute 

(NRC-IMI). Instrumentation details have been previously described in [37]. Some of two 

OCT system parameters are listed in Table 2.1. 
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Table 2.1 List of OCT systems used in this study. 

 Galvanometer 
Imaging System (IMI) 

Humphrey OCT-2000 
Imaging System (Zeiss) 

Central Wavelength 1310 nm  850 nm 

Axial/depth resolution 12 µm 15 µm 

Transverse/lateral resolution 24 µm 10-20 µm 

Scan depth (in air) 4 mm 3 mm 

 

Imaging was performed across the tooth surface using OCT probe. Images are 

acquired with image size of 500 x 100 pixels for 850 nm system and 2500 x 280 pixels or 

3700 x 1800 pixels for 1310 nm system. Two photographs of extracted human molars 

cross-section obtained by destructive histological sectioning and light microscopy (Figure 

2.5 B and D) along side are shown. Two non-destructive cross-section depth scans of 

human teeth are shown in Figure 2.5 A and C. The two-dimensional OCT image (B-scan) 

shows the light backscattered signals collected at the OCT detector and details the 

morphology of a carious lesion, and its surroundings. At 850 nm, most the data is 

obtained at the surface of the image. At 1310 nm, structural details identified deeper 

within the tissue, with the DEJ (dentin-enamel junction) line clearly identified. The 

regions of interest (ROIs) are manually delineated to demonstrate the comparison 

between OCT images and histology images. 
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Figure 2.5 Influence of wavelength on penetration depth. In these four graphs, lesions are 
manually delineated. Images A and C are the cross-section depth scans. Images B and D are the 
cross-section images obtained by destructive histological sectioning and light microscopy. OCT 
imaging at 1310 nm (Image C) is demonstrated with higher resolution and greater penetration 
depth than imaging at 850 nm (Image A), where at 850 nm wavelength the DEJ can not be 
identified. 
 

OCT images clearly are capable of identifying the suspicious carious lesion with greater 

speckle contrast compared to rest of the sound enamel. The advantage of OCT imaging at 

1310 nm is also demonstrated with higher resolution and greater penetration depth than 

imaging at 850 nm, where at 850 nm wavelength the DEJ can not be identified. The 

actual size of 850 nm OCT images used in this study is 1.9 × 2 mm. For 1310 nm system, 

the axial resolution is 12 µm, and the transverse resolution is ~20 µm. Figure 2.6 A shows 

a 1310 nm OCT image of 5 × 8 mm in size, and B is 4 × 7 mm in size. Possible lesions in 

both images are indicated by circles. 
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Figure 2.6 Two 1310 nm OCT images with different resolutions. A: 3700 x 1800 pixels (5 x 8 mm 
in size). B: 2500 x 280 pixels (4 x 7 mm in size). 
 

A 

 

 

200 400 600 800 1000 1200 1400 1600 1800

500

1000

1500

2000

2500

3000

3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

50 100 150 200 250

500

1000

1500

2000

2500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B 



 

 18

Note that the OCT data in this study are direct measures of the backscattered signal 

without log-compression to reduce the dynamic range. The logarithm transformation 

results in compression of relative variations in signal, which might be or might not be 

desirable depending on applications. The direct display of the backscatter intensities on 

computer monitor in gray scale provides only 8-bits or 256 gray levels.  The white level 

corresponds to the highest reflection or backscatter in the signal, and the black level 

corresponds to the weakest back reflection. In our case, the dynamic range of gray-scale 

image is very limited. In addition, the eye has a limited ability to differentiate gray levels 

with close similarities, so gray scale images do not faithfully represent the full dynamic 

range of information available in OCT images. This can be shown in Figure 2.7, when 

they are compared with Figure 2.5.  To enhance the differentiation of different structure 

within the image, the images can be also displayed in a false color representation as seen 

in Figure 2.5. The highest back reflection or backscattering is displayed by red and yellow, 

whereas the lowest backscattering is represented by blue. The false color representation 

demonstrates the improvements in differentiation of different structures. However, the 

principle disadvantage of using false color display is that it can produce artifacts in the 

image. Thus normalization of signal levels is required. In addition, different signal levels 

in the image are mapped to different colors that do not necessarily correspond to different 

physical structures. 
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Figure 2.7 Same OCT images from Figure 2.5 (A and B) are displayed in 8-bit or 256 gray levels. 
The white level corresponds to the highest reflection or backscatter in the signal, and the black 
level corresponds to the weakest back reflection. The possible lesions are not visible when 
compared with false color representation.  
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Chapter 3  

OCT Image Speckle Fundamentals 

The significant portion of the image post-processing is speckle noise reduction. If 

the speckle reduction produces promising results, meaning that majority of the image 

features are preserved, then difficulties in many following processing procedures such as, 

edge detection, image segmentation, classification and image compression and 

registration are efficiently reduced.  This chapter will first describe the OCT image 

speckle formation and speckle modeling (section 3.1 and section 3.2). As necessary steps 

prior to speckle suppression, some preliminary procedures like homophonic 

transformation (section 3.3) and image contrast enhancement (section 3.4) are introduced.  

 

3.1 OCT Systematic Noise and Image Artifacts  

The OCT system mainly consists of optical and electronics components, 

especially the detection unit. In addition, because factors such as variation in detector 

sensitivity, transmission and quantization error, temperature, components mismatch, etc. 

observational total noise still includes systematic noise signal. The systematic noise is 

unavoidable and can be treated as an additive noise (noise floor),  

noise
true
s

meas
s III +=                                                   (3.1) 

where meas
sI  is the measured signal and true

sI  is the “true signal”. Since constant properties 

of the noise do not affect the qualitative properties of an OCT image, and assuming the 

noise to be of random nature, the time average of the noise must be zero. 0=noiseIE . 
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An often used measure of noise is the root-mean-square (RMS) standard deviation, which 

can lead to a series of definitions like signal-to-noise ratio (SNR) and contrast to noise 

ratio (CNR). Thorough developments of the systematic noise models, including thermal 

noise, photon shot noise, amplifier noise, and filter noise have been extensively discussed 

in [38] and [39].  

 

A common difficulty with the interpretation and analysis of OCT noise besides 

systematic noise and speckle noise is the artifacts. There are three types of primary image 

artifacts generally associated with any OCT images:  motion, birefringence and echo.  

The motion artifacts can lead to a loss of spatial resolution in both the axial and 

transverse directions. Transverse motion error can occur during relatively long image 

acquisition times and lead to inaccuracies in the transverse resolution. The motion 

artifacts can be minimized by limiting the acquisition time to the order of few seconds. 

Tissue birefringence can occur in conventional OCT system, due to the polarization of 

light within the enamel, where refractive indices are different in the direction along the 

prism axis and direction perpendicular to the axis. One method for eliminating these 

artifacts is to use a polarization-sensitive OCT (PS-OCT) system. The last and potentially 

serious type of artifact is reflection echoes created by multiple reflection paths in the 

OCT interferometer. The strength of these echoes is proportional to the magnitude of the 

interface creating a specular reflection and is a function of source output power. One 

solution is to use imaging gel at the interface. The gel provides an index-matching 

medium that prevents overly bright specular reflections and eliminates artifacts.  
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3.2 Speckles in OCT Imaging 

Speckle noise reduces image contrast and makes the boundaries between tissues 

difficult to resolve, especially in highly scattering tissues. Speckle noise gives a grainy 

and granular appearance to OCT images and has a negative effect on texture based 

analysis of carious lesions [40]. In addition to OCT imaging, speckles occur in other 

coherent imaging systems as well including synthetic aperture radar (SAR), medical 

ultrasound, and radio astronomy. Speckles arise as a result of a coherent superposition of 

constructively and destructively backscattered light waves sampled from different areas 

containing densely packed scattering particles. 

 

Speckles significantly degrade image quality and complicate further image processing 

tasks, like image segmentation and edge detection. The nature of speckle has been a 

major subject of investigation. Schmitt et al investigated the origin and the formation of 

speckles together with their influence on OCT images, in which speckles play a dual role 

both as a noise source and as a carrier of information about tissue structure [23]. 
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Figure 3.1 Example of an OCT image of a sound tooth (image of the air-tooth surface and 
enamel below) containing high-contrast speckle. The image is acquired at 850 nm. Image A is an 
example of an OCT image with strong backscatters below the air-tooth surface. A natural 
curvature of the air-tooth surface is straightened to demonstrate the transition of the speckle 
pattern below the surface (image B). 
 

There are two types of speckle noise based on the methods of image formation. The first 

type involves the random phase variation of the wave front. This occurs when imaging 

through a turbulent medium. The second case involves the random interference of the 

various phases when they are scattered by microscopic fluctuation on the tissue surface. 

If the target’s surface is very rough when compared to the optical wavelength of the laser, 

a fully developed speckle results [41]. This type of speckle is the most predominant in the 

OCT images and is usually treated as the result of uncorrelated backscatters.  

 

Figure 3.1 shows an example of an OCT image with strong backscatter below the air-

tooth surface. The appearance of the speckle has no obvious dependence on the depth, 

which suggests that the statistical properties of the OCT speckle are dominated by the 

effects of multiple scatters, rather than by phase aberrations incurred during the 

propagation through the dental hard tissue [42]. In addition to the optical properties 

(multiple scattering and phase aberrations), the speckle formation is also influenced by 

A B
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physical parameters of the imaging device: size and temporal coherence of the light 

source and the aperture of the detector [43].  Assuming the tissue sample has been 

imaged coarsely enough so that the degradation at any point can be assumed to be 

independent from all other points, the speckle can be modeled as multiplicative noise 

with univariate statistics. The intensity of the “zero-mean” symmetric Gaussian random 

variable obeys the negative exponential distribution [23] 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

σσ
I

I
I

I
Ip exp1exp1                                (3.2) 

where I denotes the time average intensity of a homogeneous region (which equals to 

the standard deviationσ , 22 II −=σ ). In denoising studies, it is often simplified 

that a logarithmical transformation converts multiplicative speckle noise into additive 

Gaussian noise [ 44]. It is also shown that this assumption is oversimplified, and a 

preprocessing procedure is proposed, which modifies the acquired images so that the 

noise in the log-transformation domain becomes close to Gaussian noise [45] (throughout 

this thesis I only applied the first assumption, the complicated model is left for future 

studies). The corresponding magnitude (square root of intensity) of full developed 

speckle is well modeled by a Rayleigh distribution [47] 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2 2
exp

σσ
AAAp

, 0≥A                            (3.3) 

where A is the amplitude factor and σ denotes the standard deviation of the random 

backscatter amplitude of the individual scatters. The ratio of the standard deviation to the 

mean produces a speckle contrast (
A
σ ).  The Rayleigh model proves to be a good model 
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for the first-order statistics of OCT images as well [46], [47], even though under certain 

assumptions a Gaussian model holds [ 48].  An analytical model that describes the 

performance of OCT signals in both single and multiple scattering regimes has previously 

been presented [49], [50]. The symmetric Gaussian, the negative exponential, and the 

Rayleigh distributions are equivalent. They are applicable to the complex, intensity, and 

magnitude representation of the same data, with 2/I=σ . To demonstrate this, the 

probability density function of a selected highly scattered region below air-tooth surface 

(assumed homogenous) together with its power and logarithmic transformations are 

shown in the figure below.  

 

 

 
 
Figure 3.2 The histograms of an OCT image of a high-contrast speckle region. Image A is the 
original OCT image. Image B is the enlarged high-contrast speckle region. The intensity of the 
speckles distribution appears the have a Rayleigh-similar distribution (image C), and its square-
power transformation follows a negative exponential distribution (Image D). The log-transform of 
the speckles then has become a Gaussian-like shape (image E). 
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Given the nature of speckle noise, speckle is conventionally modeled as a multiplicative 

noise, which provides us with a more sophisticated image noise model, adding 

multiplicative speckle noise to the observation [51].  

( ) ( ) ( ) ( )yxWyxNyxfyxf true ,,,, +⋅=                                (3.4) 

We replaced I (from equation 3.1) with function f corresponding to location coordinates 

(x, y) to give a spatial representation. The additive noise noiseI  is also explicitly described 

as white noise with spatial variables ( )yx, . ( )yxf ,  is the noisy observation of the noise-

free image ( )yxftrue , .  This model has been successfully used both in ultrasound and 

SAR imaging. Moreover, when applied to OCT images, only the multiplicative 

component N of the noise needs to be reckoned with, as the multiplicative noise is the 

dominant source of noise when compared with the additive noise. Thus the model from 

above equation can be simplified as, 

( ) ( ) ( )yxNyxfyxf true ,,, ⋅=                                       (3.5) 

There also exist alternative models for describing speckle noise as the additive noise, and 

some proposed the idea where the amplitude is proportional to the square root of the 

image. Equation 3.5 is more recognized as a general simplified expression for OCT 

speckle noise model.  

 

3.3 Logarithmic Transformation 

The combination of additive and multiplicative noise in OCT data makes direct 

processing of the OCT images a challenging task. A common approach to address this 

problem is to log-transform the observed data prior to processing. To understand the 
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effects that log-transformation has on OCT data, we assume that the previously 

mentioned noise model is true, which is ( ) ( ) ( ) ( )yxWyxNyxfyxf true ,,,, +⋅= (equation 

3.4). The theoretical development of log-transformation was originated from the 

polarized light source model free of additive noise. Such light source obeys a Rayleigh 

distribution.  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2 2
exp

K
A

K
AAp , 0≥A                           (3.6) 

where A and K are simplified amplitude and constant factors, respectively. It can be 

shown that the probability density of the natural logarithm of the above distribution is 

[52],  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

~2

2

~2

2
exp~

K
e

K
eAp

AA

                                      (3.7) 

where )ln(~ AA = . Though not exact, the distribution of A~ can be reasonably 

approximated with a Gaussian distribution. Thus applying the log-transformation to an 

OCT image corrupted with speckle noise, converts the multiplicative noise N into 

additive Gaussian noise. To clearly state the transformation, the assumption here is that 

once a multiplicative model undergoes logarithmical transformation which converts 

multiplicative speckle noise into additive noise (the additive noise is mutually 

uncorrelated). Now let us consider the treatment for original additive noise. Let R denote 

the difference between the logarithm of the complete observation and logarithm of the 

simplified observation. 

( ) ( ) ( )( ) ( ) ( )( )yxNyxfyxWyxNyxfR truetrue ,,ln,,,ln ⋅−+⋅=              (3.8) 
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Further numerical test has proven the difference R value is also well approximated by a 

Gaussian distribution [52]. This combined with the results for speckle only observation 

implies that ( ) ( ) ( )( )yxWyxNyxftrue ,,,ln +⋅  is reasonably well approximated by a signal 

( ( ) ( )( )yxNyxftrue ,,ln ⋅ ) plus additive Gaussian noise (R) and when speckle is the 

dominant noise, as is often the case, the additive log-domain noise is zero mean. 

Therefore, one will model the logarithm of the observed OCT data as 

( )( ) ( ) ( ) ( )( )yxWyxNyxfyxf true ,,,ln,ln +⋅=                      (3.9) 

                                            ( )( ) ( )( ) WNtrue Gyxfyxf ,,ln,ln +=                                                       

  ( )( ) Ntrue Gyxf +≈ ,ln                                  (3.10) 

where WNG ,  and NG are zero-mean Gaussian noise that is independent of the noise-free 

signal and captures the total noise in the log-domain. NG  is an approximation of WNG ,  

and WNG ,  is considered as the combined noise of ( )yxN ,  and ( )yxW ,  that is modeled as 

a general Gaussian. The assumed noise model and its log-transformation provide an 

estimate of the noise free signal and noise. In the context of speckle denoising, the aim is 

to estimate the log-domain signal ( )( )yxftrue ,ln  given the log-domain 

observation ( )( ).,ln yxf  After having approximated the completed OCT observation, we 

now have a general scheme that utilizes the noise model assumption.  

 

3.4 Image Contrast Enhancement 

 A spatially varying refractive index continuum can accurately represent turbid 

biological medium such as tooth enamel and dentin. The light scattering strength and 

directionality depend on the gradient of the refractive index. As stated earlier in this 
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chapter, we usually adopt a particle model of the tissue in which scatters are randomly 

distributed throughout the sample. The assumption is that speckle arises from the 

superposition of multiple scatters within the sample volume, rather than the effect of 

wave-front distortion that occurs in the propagating through the sample volume. Hillman 

[53] has demonstrated that the speckle contrast is correlated with the concentration of 

scatters in the OCT sample volume, which is in agreement with the random phasor model 

resulted from multiple backscatters. A recent study by Popescu [ 54 ] analyzes the 

difference in A-scan OCT signal attenuation between sound and carious enamel. Due to 

the process of demineralization creating pores in the carious enamel tissue, the OCT 

signal attenuates slower when compared with sound enamel. Another study by Li [55] 

has described the contrast ratio as being proportional to the detection depth and scattering 

coefficient of tissue and for the deeper layer, the contrast ratio approaches a constant.  

The histogram of the OCT image pixel intensities, which we have seen in Figure 3.3, 

roughly follows a negative exponential distribution. The majority of the image pixels are 

considered as dark background.  
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Figure 3.3 A is the original image acquired at 850 nm and C and E are acquired at 1310 nm 
center frequency. B, D and F are the histograms (probability density functions of the pixel 
intensities with respect to 16-bit grayscale levels) of the corresponding OCT images.  
 

The task of image contrast enhancement here is to process an image so that the outcome 

is more suitable for lesion detection in terms of better contrast over the sound enamel 

surrounding it. In this investigation, only the spatial domain method is investigated, 

which deals with a direct manipulation of pixels in the raw image and also it is among the 

simplest of all images enhancement techniques. Some of the popular methods include 

linear transformation, log/power-law transformation, and histogram matching. Keeping in 

mind the multiplicative nature of speckle noise, some of these methods are not suitable 

for OCT image contrast enhancement. The characteristics of the speckle allow us to apply 
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power/exponential operation to the raw image pixels without changing the nature of the 

speckle noise. Power-law transformation has the basic form, 

γfcf ⋅=                   (3.11) 

where c and γ are positive constants. Through most of the operations, the constant c  is 

chosen as 1, and the only tuning parameter is γ.  The purpose of the power-law 

transformation is to increase the darker pixel intensities so that the ones with close 

similarities will likely cluster. And the results in the next chapter have proven to be so. 

However γ cannot be set to a small number, as it will amplify the background noise. A 

very simple way to look at the impact of such transformation is to substitute Equation 3.5 

into Equation 3.11, 

( ) ( ) ( )( )γyxNyxfyxf true ,,, ⋅=  

  ( )( ) ( )( )γγ yxNyxftrue ,,=                                  (3.12) 

In case of log-transformation, 

( ) ( )( )[ ] ( )[ ] ( )[ ]yxNyxfyxNyxf truetrue ,ln,ln,,ln ⋅+⋅=⋅ γγγ  

                                     ( )[ ] Ntrue Gyxf ⋅+⋅= γγ ,ln                             (3.13) 

From both cases, the speckle noise amplitude has been magnified, and it will affect the 

denoising outcomes later during the speckle denoising stage. However, the risk of 

introducing more noise is greatly compromised by the improvement in regional contrast. 

As image quality can be a subjective measure, the viewer is the ultimate judge. However, 

such subjective measure can be evaluated based on certain anatomical landmarks as 

references. The anatomical landmarks are three distinguishable regions in OCT images: 

strong backscatters in the carious region, high intensities in dentin and enamel region, 
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and the dentin-enamel junction (DEJ). Figure 3.4 displays four examples of carious and 

sound tooth images acquired at 1310nm to demonstrate the difference of image contrast. 

The top two images in have lower signal-to-noise ratio when compared with the bottom 

two images, resulting in less contrast in the carious lesion region. Also the DEJ lines are 

not as visible as the images from the second row. Ideally a layer of surface reflection with 

strong backscatters should be observable near the air-tooth surface. This is clearly 

evidenced by high intensity pixels shown near the surface from the second row images, 

whereas the images from the first row were not able to highlight some of the anatomical 

landmarks. 
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Figure 3.4 Original images acquired at 1310 nm. A and B are obtained with the same resolution 
settings (3700 x 2800 pixels). Images of C and D are measured using the same instrument 
settings (2500 x 280 pixels). Possible lesions are outlined by circles. Image A and B have less 
backscatter intensities, thus present less speckle contrast, and the lesion is more difficult to be 
indentified. The color bar represents the normalized backscattering intensities. 
 

Speckle contrast is a measure of speckle characteristics, which is a direct assessment of 

the backscatters intensities. The speckle contrast is defined as the ratio of the mean 

intensity and standard deviation of the intensity fluctuation, and its value lies between 0 

and 1. The speckle contrast is expressed by the following terms, 
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where ROIμ  and ROIσ  are the mean value and standard deviation of the regions of interest 

(ROIs) respectively.  Four regions are manually chosen to calculate the local speckle 

contrast: 1) background, 2) lesion area and 3) sound enamel and 4) dentin under surface 

area. 

 

Figure 3.5 Four regions representing background, sound enamel, carious enamel and sound 
dentin (marked by boxes 1, 2, 3 and 4 respectively) are manually selected in two original OCT 
images (A and B)  to compare the speckle contrast improvement after contrast stretching 
technique is applied. Images C and D show the difference in pixel intensity histograms (for the 
whole image) between two 1310 nm images acquired at different parameter settings. The 
highlighted region in D represents the high intensity pixels in the image. 
 
 

The numerical values of these four local contrasts are listed in the Table 3.1 below. The 

low value of “background contrast” in Figure 3.5-B image is possibly due to the low 
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variance at the background and higher signal to noise ratio which gives a “sharper” look 

when it is compared with image in Figure 3.5-A. 

 

Table 3.1 OCT image local speckle contrast. 

 Image A Image B 

Background Contrast 0.2396 0.0281 

Dentin Contrast 0.0812 0.1976 

Lesion Contrast 0.1870 0.1921 

Enamel Contrast 0.1920 0.1904 

 

 

From the observation of histogram distributions of these two images one can conclude 

that the image in Figure 3.5-B is preferable, as the possible lesion region has strong 

backscatter (shown in higher pixel intensities in area “2” in Figure 3.5-B). This is due to 

the high intensity pixels located near the tail of the histogram distribution (Figure 3.5-D). 

In other words, the contrast in image Figure 3.5-B is better. To achieve the same effect on 

the “weakly” scattered image Figure 3.5-A, we apply a contrast stretching technique that 

re-maps the intensity range of [0, 0.5] from the original image to [0, 1] and then 

reconstruct the spatial distribution. The consequence of truncating the pixels located 

between [0.5, 1] and mapping them to a value “1”, is negligible since only less than 

0.006% (455 out of 666000) pixels are saturated to maximum value. Therefore the 

positive result gives a more spread-out distribution over the original image (Figure 3.5-A) 

and it provides more contrast in the lesion area (shown in Figure 3.6). 
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Figure 3.6 Images A is the original OCT image and image B is obtained after contrast stretching 
operation. The visual improvement can be easily noticed in image B. The lesion area is observed 
to have more back scatters with higher intensity. This is the result of saturating the pixels that 
have intensity between 0.5 and 1 to the maximum value of the image. 
 

The numerical results are shown in the Table 3.2. The contrast stretching operation does 

not change the homogeneity of the following three regions: background, dentin and 

enamel. It only adjusts the lesion contrast, which is helpful in caries visualization. The 

resulting higher contrast in the lesion area is possibly due to the fact that high intensity 

backscatters with intensities between [0.5, 1] are mostly located in the lesion region. The 

contrast stretching only amplifies the contrast in that region locally.  

 

Table 3.2 OCT image local speckle contrast comparison. 

 Before Stretching After Stretching 

Background Contrast 0.2396 0.2396 

Dentin Contrast 0.0812 0.0812 

Lesion Contrast 0.1870 0.1781 

Enamel Contrast 0.1920 0.1920 

 

A B
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The power-law transformation is implemented after the contrast stretching step. The 

parameter γ in Equation 3.11 is experimentally set between 0.7-0.8. This is chosen to 

achieve a balance between noise amplification and visual separation of the lesion. One set 

of two 1310 nm OCT images (one with carious enamel and one with sound enamel) are 

compared after contrast stretching and power-law transformation in the Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7 Two original 1310 nm images A and B with carious enamel and sound enamel 
respectively. Images C and D are the obtained by contrast stretching and power-law 
transformation. The visual improvement is subjected to three landmark areas: carious lesion, 
below surface dentin/enamel intensity and DEJ line, where these three areas are not easily 
visible from the original images. 
 

Based on the visual examination of landmark regions (carious lesion, sound 

enamel/dentin and DEJ line), the enhancement in enamel below the air-tooth surface and 
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the contrast between carious and sound enamel are both easily visualized. The contrast 

enhancement will also play an important role in speckle reduction later on to be 

mentioned in the next chapter.  

 

Now we will look at how the contrast enhancement on OCT images has affected the pixel 

intensity histogram index (HI) and the nature of the probability distribution. Similar to 

foregoing steps, three representative regions are selected: carious enamel, sound enamel 

and background. They are corresponding to boxes 1, 3 and 4 in Figure 3.5. Ideally, a 

group of pixels with similar characteristics (usually within assumed homogenous region) 

will cluster based on their similarity in the statistical distribution. And the clustering 

result is improved, as the variance of each distribution (assumed Rayleigh distribution, 

thus the variance is the deterministic parameter) will also be increased and therefore the 

shape of sample distribution is distinguishable. Figure 3.8 illustrates the histogram 

distributions at selected locations before and after the non-linear contract enhancement. 

At each image, the pixel histogram distributions of a group of two areas (background and 

caries, or enamel and caries) are plotted in the same graph with different colors to 

separate the distribution patterns.  

 

 
1 
2 3 
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Figure 3.8 Three regions are selected from two images (A and B) and histogram distributions 
from three sampled regions are calculated to compare the normalized histogram distribution 
patterns before and after contrast enhancement. Plot C is the histogram distributions of region 1 
(blue) and 2 (black) fitted in one graph. Similarly, plot D is a graph of region 2 (blue) and 3 (black) 
from image A. Plots E and F are generated from image B. Plot E is generated from region 1 
(blue) and 2 (black). And plot F is generated from region 2 (blue) and 3 (black). 
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The distinctive sampled histogram distribution patterns provide some unique features to 

characterize the homogenous regions statistically. A second order statistics will provide 

sufficient information to separate lesion areas from its surroundings. We selectively 

compare the histogram distributions between background and lesion, and sound enamel 

and lesion, as carious lesion normally borders with background and rest of sound enamel. 

Once we can focus on this small region and manage to parameterize these three assumed 

homogenous entities, the following segmentation work becomes trivial.   
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Chapter 4  

OCT Speckle Reduction and Image 

Restoration Techniques 

 Techniques of digital image processing have been extensively developed in many 

mathematical models, thus the choice of terms is quite deliberate. For the purpose of this 

investigation, some of the common definitions are restated for clarity.  “Observed image” 

refers to general OCT data that is acquired and measured from the OCT imaging system. 

The “estimated image” denotes the estimated solution through image reconstruction and 

the “true image” denotes the original image or the underlying true image giving rise to 

the “observed image”. In case of possible ambiguity, “image model” is used to describe 

the estimated prior knowledge about the “true image”.  This chapter begins with a brief 

review of existing speckle reduction techniques, followed by some general discussion of 

the mathematical preliminaries related to each technique. The numerical results are tested 

with Signal-to-Noise Ratio (SNR), Contrast-to-Speckle Ratio (CSR) and Equivalent 

Number of Looks (ENL). Two categories of speckle reduction techniques are detailed in 

this study: 1) single resolution (spatial domain) and 2) multi-resolution (wavelet-

transform domain). Some numerical results on representative images are provided. 

 

4.1 Review of OCT Speckle Reduction Techniques  

OCT image restoration can be a difficult task because of the substantial 

contamination of the speckle noise in the image, yielding only minor trace of the desired 
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data. Many approaches towards speckle reduction in OCT images have been based on 

two classes of techniques: employing some form of spatial/frequency compounding 

(polarization, frequency, spatial diversity) [23], or image restoration techniques (image 

post-processing methods). The first category is based on modifications to the OCT 

system design and speckle reduction occurs during the image acquisition stage. The latter 

category is based on numerical image processing algorithms, and is considered as image 

post-processing. 

 

With OCT being an optical analog to medical ultrasound and synthetic-aperture radar 

(SAR), many speckle reduction techniques are similar to those employed in the fields of 

medical imaging and remote sensing, where extensive research has been devoted to 

speckle reduction in these two areas. In this chapter, some of the speckle reduction 

techniques in OCT are first reviewed. A few of the earlier techniques includes ZAP (zero 

adjustment procedure) [56] and CLEAN (originally proposed by Jan Hogborn) [57] 

algorithms, based on iterative deconvolution that were developed originally for use in 

radio astronomy. Standard adaptive spatial filters such as the Lee [58], Kuan [59], and 

Frost [60] filters, which use the second order statistics within a minimum mean squared 

error estimation approach and based on a multiplicative speckle model, have widely been 

used to reduce speckle in SAR, ultrasound and OCT images. A comparative analysis of 

these and related filters is presented in [61].  More recent speckle filters in the image 

domain such as the enhanced Lee and enhanced Frost filters [62], are implemented in 

combination with a preliminary classification knowledge about the texture of the images. 

Rotating Kernel Transformation (RKT), another adaptive speckle suppression filter has 
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been applied to coronary OCT images [63]. Filtering techniques based on the RKT can 

produce good contrast enhancement of image features, but they also result in significant 

edge blurring when strong noise reduction is required. Anisotropic diffusion (AD) filter is 

another type of noise reduction algorithm that has been previously applied for speckle 

noise reduction in OCT images. The performance of two variations of the AD algorithm 

was compared in reference [64]. The main problem with any image processing algorithm 

based on AD is the large number of iterations necessary to reach a steady state solution. 

Also some results have shown that for images with large noise components, AD will have 

no significant effect [65].   

 

The use of multi-resolution (wavelet-based) techniques has been recently reported by 

several groups with promising results [66] [67]. The approaches take into account the 

signal and noise properties in spatial and frequency domain.  Several representative 

wavelet denoising methods for OCT range from thresholding to vector based minimum 

mean squared error estimation. Some notable examples of wavelet based OCT noise 

reduction include the optimal non-linear wavelet thresholding method [67], originally 

developed for ultrasound [68], which applies soft-thresholding, with image dependent 

and sub-band dependent thresholds and multi-dimensional method [69], which processes 

multiple OCT image slices by making use of both spatial and temporal correlations. 

 

4.2 Evaluation Matrices 

 Image denoising can be an objective process, as one can control the image 

outcome in order to achieve the psychological satisfaction by the human visual system. 
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Whereas on the other hand, one cannot promise such procedure will yield an optimal 

estimation of the desired result in the absence of a true reference (original image). 

Therefore, there are no absolute subjective measures or criteria of image restoration 

quality to provide reliable standards consistent with human perception. Only tolerable 

qualitative measures are being regularly used. Filter performance was compared using 

established evaluation measures, including Root Mean Squared Error (RMSE), Peak 

Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR) and Contrast-to-Speckle 

Ratio (CSR). However, all these measures only partly cover the visual quality. The visual 

quality of an image is difficult to define with mathematical precision, since it is 

dependent on the properties of our visual system. We know, for example, that our visual 

system is more tolerant to a certain amount of noise than to a reduced sharpness. On the 

other hand our eyes are very sensitive to certain specific artifacts. Unintended artifacts 

may give rise to a wrong interpretation of the image, which may lead to a faulty diagnosis. 

Also in judging the performance of a speckle suppression technique and comparing 

speckle suppression techniques, aspects that evaluate visual performance are: the ability 

to retain small details and preserve edges, i.e., sudden transitions in gray level or texture, 

and gradual changes in grey level.  

 

The first evaluation method is the basic SNR which is a quantitative measure of the noise 

suppression ability. It measures the variation in the speckle of the image and is defined as 
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where the top part of the fraction describes the square root power sum of each pixel (x 

and y represent the position of each pixel within the image) from the original OCT image 

and the denominator is the Root Mean Square Error (RMSE) between the observed 

image ( )yxf ,  and image after speckle filtering ( )yxf ,
)

.s While this metric is intuitive and 

widely used, it does not always provide an accurate visual display of image quality. 

Another similar image quality measure is the Peak Signal-to-Noise Ratio (PSNR) [70], 

and this measure is defined by 

                  ⎟
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⎞
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RMSE
PSNR 255log20                                     (4.2) 

where 255 is the maximum pixel value for a standard 8-bit per pixel gray scale image. 

 

Contrast-to-Speckle Ratio (CSR), also generally known as Contrast-to-Noise Ratio 

(CNR), is another quantity measure that assesses image quality [23]. It describes the 

ability to perceive a target from the background region. CSR is defined as 
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where backgroundμ  and ROIμ  are the mean brightness of the background and the ROI and 

2
backgroundσ  and 2

ROIσ are the variance of background and ROI, respectively. The CSR is a 
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distortion measure that predicts image integrity. This CSR is a more robust measure 

compared to SNR as it employs the contrast that perceptually is convenient for humans to 

detect pattern differences. The above measures are assumed theoretically correct upon the 

condition that the ROI under investigation is homogenously distributed, whereas the 

actual calculation of a scattering region is the result of compounding multiple A-scans, 

containing statistical isotropically distributed scatters of one dimension. However, certain 

assumptions about tissue homogeneity may not be true in reality. 

 

Another commonly used measure for speckle suppression is the Equivalent Number of 

Looks (ENL), which measures smoothness in the areas that should appear homogenous, 

but are corrupted by speckle [71]. For an OCT image, we calculate this value only in 

highly scattered region. The reason for this is that only within the region below the tooth-

air surface we can assume that the ideal intensity should be homogenous. Hence we 

evaluate 
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log10
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ROIENL
σ
μ

                                             (4.4) 

where ROIμ and ROIσ denote mean value and variance of the regions with high intensity 

backscatters, respectively. This is also generally referred to as a different form of speckle 

contrast. A large ENL indicates a stronger speckle smoothing in the corresponding region. 

 

The Structural Similarity Index Matrix (SSIM) is a method for measuring the similarity 

between two images [72]. The SSIM index is a full reference metric, in other words, the 

measuring of image quality based on an initial image as reference. SSIM is designed to 
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improve on traditional methods like PSNR and RMSE, which have been shown to be 

inconsistent with human eye perception [72]. The SSIM metric is calculated on various 

windows of an image. 
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where fμ and 
f̂

μ are the mean intensities of the original image and filtered image 

respectively. fσ and 
f̂

σ are the standard deviations of the original image and estimated 

image respectively. 
ffˆ

σ  is the covariance matrix. ( )2
11 Lkc = and ( )2

22 Lkc = are two 

variables stabilizing the equation. The default values for L  is 256, for 01.01 =k and for 

03.02 =k are by default. The resultant SSIM index is a decimal value between -1 and 1, 

and the value 1 is only reachable in the case of two identical sets of data. Typically it is 

calculated on window sizes of 8×8. 

 

4.3 Adaptive Spatial Filtering 

 In this category, the image processing function in the spatial domain can be 

expressed as  

( ) ( ){ }yxfTyxf ,,ˆ =                                               (4.6) 

where the original image is defined as a two dimensional function ( )yxf , , with x and y 

the spatial coordinates, ( )yxf ,ˆ is the estimated image after the transform, and T is the 
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transformation function. The amplitude of f and f̂ at any pair of coordinates ( )yx,  is the 

intensity or grey level of the image at that point. Speckle spatial filtering consists of 

moving a kernel over each pixel in the image and applying a mathematical calculation 

using the pixel values under the kernel and replacing the central pixel with the calculated 

value.  

 

Figure 4.1 A simple 3 x 3 kernel is shown with a center pixel indicated in red. 
 

The kernel is moved along the image one pixel at a time until the entire image has been 

covered. The visual appearance of the speckle reduction is achieved by applying various 

levels of a smoothing filter. We start by introducing some the simplest form of speckle 

smoothing filters. The typical size of the filter window can range from 3 × 3 to 33 × 33, 

with the size of the window is considered odd, in most cases. A larger filter window 

means that a larger area of the image can be used for calculation and possibly requires 

more computation time depending on the complexity of the filter algorithm. If the size of 

the filter window is too large, the important details will be lost due to over smoothing. On 

the other hand, if the size of the filter window is too small, speckle reduction may not be 

very effective. During numerical tests, a 7 × 7 or a 9 × 9 filter window usually yields the 

best results, but sometime, we can be more conserved with choosing the size of the 

kernel, thus on large images with finer details, a 5 × 5 filters were also applied. 
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Mean filter actually does not remove the speckles but averages them into the data. As 

speckle noise appears as a high frequency component in the OCT image, the mean filter, 

a widely-used low-pass filter, can be used for speckle suppression purposes. Generally 

this method results in loss of details and resolution. However, it can be used for 

applications where resolution is not the first concern. In mean filtering, the center pixel of 

the kernel is calculated through a mean value in a local neighborhood. The value of the 

estimated image ( )yxf ,ˆ  at any point ( )yx,  is simply the arithmetic mean computed 

using the pixels within the moving window. In other words, 

( ) ( ){ }nmfmeanyxf ,,ˆ = , xySnm ∈,                              (4.7) 

where xyS is the sub-image, or in this case, the moving window/kernel. m and n are the 

defining parameters for the size of the window. The mean filter has the property of 

locally reducing the variance thus reducing the SNR and it requires the user to specify 

only the size of the window. However it has the effect of potentially blurring the image.  

 

For median filter instead of calculating the center pixel value with the mean value of the 

neighboring pixels, it simply computes the median value in the area encompassed by the 

filter, 

( ) ( ){ }nmfmedianyxf ,,ˆ = , xySnm ∈,                             (4.8) 

One can think that the low-value and high-value pixels correspond to destructive and 

constructive speckles. Thus the median filter can be used for such erratic variations. 

Median filtering also works really well for random distributed noise, such as salt and 

pepper and spike noises. The conventional median filter does not shift edges and 

therefore results in fewer artifacts near the boundary of different objects in the image.  
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Lee filter utilizes the statistical distribution of the pixel values within the moving kernel 

to estimate the value of the center pixel. The noise model is assumed to be a 

multiplicative Gaussian. The Lee filter is based on the assumption that the mean and 

variance of the center pixel is equal to the local mean and variance of all the pixels within 

the moving kernel [73].   

( ) { } ( ) { }[ ]mnmn SmeannmfKSmeannmf −+= ,,ˆ                          (4.9) 

where mnS  is a kernel window of size m by n pixels. The statistical values associated with 

mnS  are computed at the center pixel. An estimator of ( )yxf ,ˆ  is obtained by minimizing 

either the mean square error or the weighted least square estimation. K is calculated as: 
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                              (4.10) 

The Lee filter is based on the approach that if the variance over an area is low or 

constant, then the smoothing will be performed. Otherwise, if the variance is high (e.g. 

near edges), smoothing will not be performed. If there is no smoothing, the filter will 

output only the mean intensity value of the filter window. Otherwise, the difference 

between center pixel and original image is calculated and multiplied with a weighting 

function and then summed with the original image [73]. 

 

Kuan filter is very similar to the Lee filter. It does not make an approximation on the 

noise variance within the filter window. The Kuan filter simply models the multiplicative 

model of speckle into an additive linear form, but it relies on the ENL from an image to 

determine a different weighting function to perform the filtering [74], 
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Frost filter, similar to Lee filter, is based on the local statistics and the multiplicative 

model. The Frost filter replaces the pixel of interest with a weighted sum of the values 

within the m-by-n moving kernel. The weighting factors decrease with distance from the 

pixel of interest. The weighting factors increase for the central pixels as variance within 

the kernel increases [59].  

( ) ( )∑ −=
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Dnmf αα exp,ˆ                                  (4.12) 
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σ
α 1 , and D is the absolute value of the pixel distance 

between the center pixel to its surrounding pixels in the filter window. The parameters in 

the Frost filter are adjusted according to the local variance in each area. If the variance is 

low, then the filtering will cause extensive smoothing. While in high variance areas, little 

smoothing occurs and edges are retained [60]. 

 

RKT Filter. The rotating kernel transformation operates through selecting the largest 

filter output at each pixel from a set of templates that consists of kernels with small 

incremental steps from 0 to 360 degrees.  The kernel itself consists of zeros and ones and 

is typically an elongated, line-like structure that is rotated in small discrete steps through 

360 degrees. In essence, the RKT is an elongated neighborhood that repeats along 

different directions and retains the maximum result. This technique is efficient but rather 
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in ad hoc fashion and uses no information concerning the speckle statistics. The 

convolution can be written as 

( ) ( ) ( )nmKnmfnmf ,,,ˆ
θθ ∗= , mnSnm ∈,                    (4. 13) 

where ( )nmK ,θ is the kernel orientated at rotation angle θ.  mnS  is the moving window 

defined by size m x n. The maximum values are calculated over all the rotated kernels 

and the output image is defined by, 

( ) ( ) ( ){ }00 3600:,,maxarg,ˆ <≤∗= θθ nmKnmfnmf             (4.14) 

The RKT algorithm is related to the class of “rotating kernel min-max transformation” 

(RKMT) [75]. In this case, the RKT technique is the maximum value output. 

 

Anisotropic Diffusion Filter is a partial differential equation (PDE) based speckle 

removal approach that allows the generation of an image scale space, i.e. a set of filtered 

images that vary from fine to coarse, without bias due to filter window size and shape. 

Speckle reduction anisotropic diffusion (SRAD) filters [76] not only preserve edges but 

also enhances edges by inhibiting diffusion across edges and allowing diffusion on either 

side of the edge. SRAD is adaptive and does not utilize hard thresholds to alter 

performance in homogeneous regions or in regions near edges and small features. The 

diffusion technique is based on the same minimum mean square error (MMSE) approach 

to filtering as the Lee/Kuan and Frost filters. SRAD can be related directly to the Lee and 

Frost window-based filters. Thus, SRAD is the edge sensitive extension of conventional 

adaptive speckle filter. SRAD describes the idea of incorporating minimum mean square 

error, the local statistics of image, and anisotropic diffusion algorithm. Recall in Lee and 

Frost filter, the local statistics yxC , , the coefficient of variation (COV) at position ( )yx, . 
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To implement a PDE version of the speckle reduction filters, an approximation version of 

yxC ,  is derived,  
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A function q, called the instantaneous coefficient of variation, is introduced and can be 

view as a discretization version of the COV, 
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This term combines a normalized gradient magnitude operator and normalized Laplacian 

operator to act as an edge detector. High relative gradient magnitude and low relative 

Laplacian value tend to indicate an edge. The SRAD algorithm is evolved according to 

diffusion equation, 
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Where Ω∂ denotes the border of image domain Ω , and initial image ( )yxf ,0 has non-

zero support over the image domain. nr is the normal to Ω∂ . The diffusion coefficient is 

defnied as,  
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where ( )[ ]tzvar  and ( )[ ]tzmean  are the variance and mean over a homogenous area at 

time t, respectively. In SRAD, ( )tyxq ;, serves as the edge detector in the speckled image. 

The function will exhitbit high values at edges and yields values near ( )tq0  in 

homogenous region. Thus, SRAD maybe viewed as the edge senstitive PDE version of 

the conventional adaptive speckle reduction filters such as Lee and Frost.  

 

4.4 Spatial Speckle Reduction Results  

 For the purpose of evaluating the performance of the adaptive spatial filters 

quantitatively, five quality measures (SNR, PSNR, CSR, ENL and SSIM) are used first to 

evaluate the optimal kernel size. Fig. 4.2 shows the plots of speckle filtering results with 

respect to different kernel sizes, ranging from 3 × 3 up to 31 × 31. Five spatial filtering 

algorithms are applied to 850 nm OCT caries image, as the images acquired at 1310 nm 

are considered as less speckle contaminated due to their high signal-to-noise ratio. Thus, 

the speckle reduction results are more apparent in 850 nm images.  SNR and PSNR are 

standard measures of ideal noise suppression. CSR is a measure based on MSE to 

quantify an ROI in contrast to background speckle. The CSR is generally a more robust 

measure of image quality because it incorporates a measure of contrast (the difference of 

mean over variance) that does not increase without bound as the image becomes 

smoother. ENL is the measure of regional homogeneity, and SSIM is the measure of 

similarity between the original and speckle reduced images. Edge and fine detail 

preservation are measured by visual examination. For locally adaptive filters like Lee, 

Kuan and Frost, the SNR and PSNR values are inversely proportional to RMSE. After 

applying large kernel windows, these algorithms usually consider regions within the 
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kernel window to be homogenous. As a result, the SNR and PSNR curves do not 

decrease like the other algorithms do. However, mean, median or even RKT filters are 

considered as straight forward pixel manipulation without prior knowledge of local 

statistics and they are not locally adaptive. Therefore, SNR and PSNR values decrease as 

a result of increasing RMSE. Notice that with the same window size, the RKT filter has 

higher values for CSR and ENL measures. This is possibly due to the fact that RKT filter 

is a “maximum” output filter that produces higher values over the other filters. This also 

cab be seen in Figure 4.3 with more bright pixels in the lesion regions. SSIM is a 

comprehensive measure of image similarity and apparently local adaptive filters have 

advantages in retaining structural information when compared to simple mean or median 

filters.  
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Figure 4.2 Five image quality matrices 
are computed with the increasing 
kernel size from 3 x 3 to 31 x 31. 
These matrices are different speckle 
reduction measures. SNR, PSNR, CSR 
and ENL are plotted with dB units. 
SSIM is plotted with similarity ratio (i.e. 
between 0~1). 
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By examining the numerical results from Figure 4.2, it appears that for most of the filters, 

when the window sizes range from 5 × 5 to 9 × 9, the evaluation metrics reach a 

“transition” region, where the slopes of most curves are at their minimum. As the kernel 

window size increases, detailed features are blurred, and the values of these metrics stay 

within small variations. The effect of kernel size on the image appearance is shown in the 

following representative 850 nm images (Figure 4.3). For comparison, image speckle 

filtering results with kernel sizes of 3 × 3, 7 × 7 and 21 × 21 are shown.  When the kernel 

size is large, most algorithms generate artifact along the air-tooth surface, which is not 

desirable if the edge detection algorithm is applied. Overall, the kernel size 7 × 7 and 9 × 

9 seem to produce reasonable results by suppressing the speckle grainy appearance and 

retaining homogeneity in certain region.  

 

 

 

Mean 3x3 Mean 21x21Mean 7x7

Median 3x3 Median 21x21Median 7x7
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Figure 4.3 Images after speckle reduction with spatial adaptive filters with respect to kernel 
window sizes. Three representative kernel window sizes 3 x 3, 7 x 7 and 21 x 21 are displayed. 
 

A comparison between SRAD and other adaptive spatial speckle reduction filters is 

shown in Figure 4.4.  One of the parameters associated with SRAD filter is the number of 

iterations. Thus the quantities measures are plotted versus number of iterations from 0 to 

Lee 3x3 Lee 7x7 Lee 21x21

Kuan 21x21 Kuan 7x7 Kuan 3x3 

Frost 3x3 Frost 7x7 Frost 21x21 

RKT 3x3 RKT 7x7 RKT 21x21 
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140 with increment of 10 at each step. The PSNR and SSIM values are scaled in order to 

plot all five metrics into one graph.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4 A comparison of SRAD filter speckle reduction parameter and three other adaptive 
speckle filters. SRAD plot is generated with increasing number of iterations from 0 to 140. The 
corresponding parameters are fitted in one graph, including SSIM and PSNR whose magnitudes 
are scaled to fit in the plot as indicated. 
 

Similar conclusion can be drawn with the number of iterations as the increasing 

parameter since the evaluation metrics also appear to have a “transition” period at 
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iteration numbers between 20 and 40. Similar gain levels are achieved. The image details 

and edges are also blurred as the iteration number goes up. For an overall visual 

comparison, the most satisfying filtering results are displayed for the purpose of 

identifying the pros and cons of each filter class. The algorithms are now applied to both 

850 nm and 1310 nm images to give an overall evaluation for visual judgments. Figure 

4.5 shows different algorithms applied to 850 nm OCT images. Each image is labeled 

with the corresponding noise reduction method. The color difference in the background 

when comparing the filtered images with the original image is likely due to the changes 

in image intensities after applying each algorithms and its corresponding representation 

in false color scale. And it is one of the limitations representing intensity image with false 

color scale, as such false color representation can be sensitive to small changes in image 

intensities. When the proper window size is chosen, most of the algorithms seem to 

suppress speckle noise sufficiently. For the 850 nm image, the RKT filter provides good 

sharp edges and regional homogeneity. Lee and SRAD filters also give good results in 

outlining the shape of lesion, only with less sharp edges along the air-tooth surface. 

However, the result can be different from application to application. 
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Figure 4.5 The above five speckle reduction algorithms are applied to 850 nm tooth image. For 
mean, median, Lee and RKT filters, the window size is chosen as 7 x 7. For SRAD filter, the 
number of iterations is chosen as 40. 
 

Original 850nm mean

Median Lee

RKT SRAD
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When these algorithms are applied to 1310 nm images with higher resolutions, a different 

conclusion can be drawn. Assuming the same level of speckle reduction in the 

background from Figure 4.6, Lee, median and mean filter seem to produce reasonable 

results in the lesion region, where the results from RKT and SRAD filtering appear to be 

more noise contaminated. A second test image with contrast previously adjusted, is also 

filtered with these speckle suppression filters (Figure 4.7). RKT and Lee filter seem to 

produce more contrast in the lesion region. Visual enhancement as a result of contrast 

enhancement and speckle filtering could produce better lesion segmentation. However, 

with some drawbacks, the RKT and Lee filter generate more artifacts along the air-tooth 

surface, which blurs the sharp edge that was originally present. This is more apparent 

when applying these algorithms to a sound tooth image, shown in Figure 4.8. Sometimes, 

a strong edge response is desirable for the simple purpose of edge detection. However, 

loss in resolution near the edge could result in measurement errors when quantifying 

lesion sizes. 
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Figure 4.6 Five speckle reduction algorithms are applied to 1310 nm carious tooth image. For 
mean, median, Lee and RKT filters, the window size is chosen as 7 x 7. For SRAD filter, the 
number of iterations is chosen as 40. On the right hand column, the enlarged lesion region is 
shown to demonstrate the speckle reduction result. 
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RKT
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Figure 4.7 Five speckle reduction algorithms applied to another separate 1310 nm carious tooth 
image, whose image contrast has been previously adjusted. For mean, median, Lee and RKT 
filters, the window size is chosen as 7 x 7. For SRAD filter, the number of iterations is chosen as 
40. On the right hand column, the enlarged lesion region is shown to demonstrate the speckle 
reduction result. 
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Figure 4.8 Three speckle reduction algorithms are applied to a 1310 nm sound tooth image, 
whose image contrast has been previously adjusted. For Lee and RKT filters, the window size is 
chosen as 7 x 7. For SRAD filter, the number of iterations is chosen as 40. 
 

RKT

Original 1310nm sound tooth Contrast adjusted

Lee SRAD
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In general, adaptive filters such as Lee filter and SRAD filter allow both image 

enhancement and information conservation. Local adaptive filters provide good SNR. 

However the rule is not universal. Some results have shown discrepancies after applying 

speckle filtering to images acquired at different frequencies and resolution set-up. This 

can be explained by the fact that biological OCT images are very complex and contain 

various kinds of speckles and they differ with frequency response. A globally assumed 

homogeneity generally does not fit well to different regions within an image of biological 

tissue, and that is why the mean and median filters failed. The RKT filter smoothes the 

images and reveal interesting properties and features such as layers of the caries and light 

backscattered intensity response in the lesion area. However, the disadvantage is that 

artifacts appear near the air-enamel boundary, where the sharp edge gets blurred. 

 

Some of the adaptive speckle reduction algorithms are applied to sound tooth image in 

combination with contrast enhancement. A good visual improvement is clearly displayed. 

The original image shows weak backscatters even in sound enamel region. After the 

contrast enhancement, unavoidably the speckle noise is also amplified along with the 

contrast. Three filters, Lee, SRAD and RKT have been applied to the noisy image. Good 

speckle reduction results are shown with all three filters. The features below the air-tooth 

surface, including DEJ line and sound enamel can be clearly identified. The RKT filter 

gives a strong response along the edge, as it is considered as an edge-detection filter. 

However, the loss in resolution is one of its disadvantages. This shortcoming can be 

greatly compensated by the process of image deconvolution later on to be discussed later 

in this chapter. 
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4.5 Wavelet-based Speckle Filters 

 In this Section, we review several representative wavelet based denoising 

methods for OCT ranging from thresholding to vector based minimum mean squared 

error estimation.  

 

 4.5.1. Discrete Wavelet transform 

 The wavelet transform has many unique features that have made it a popular 

method for the purpose of image processing. The wavelet transform performs a high 

degree of de-correlation between neighboring pixels, and it provides a distinct 

localization of the image in the spatial as well as the frequency domain. This transform 

also provides sub-band frameworks in which both high and low frequency components of 

the image can be analyzed separately. The significant wavelet coefficients corresponding 

to important edge information and other high-frequency content of the signal are often 

dispersed among a large number of insignificant coefficients.  

 

There are many wavelet that can be used effectively, such as the “Haar", “Daubeschies”, 

“Coiflets", “Symlets", “Morlets", “Mexican Hat", “Meyer" and “Biorthogonal" wavelets 

[77]. All these wavelets share the following three general characteristics: 

1. A wavelet system is a set of building blocks to construct or represent a 

signal or function. It is a two-dimensional expansion set (usually a basis) 

for some class of one- (or higher) dimensional signals. 
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2. The wavelet expansion gives a time-frequency localization of the signal. 

This means most of the energy of the signal is well presented by a few 

expansion coefficients. 

3. The calculation of the coefficients from the signal can be done efficiently. 

It turns out that many wavelet transforms (the set of expansion 

coefficients) can be calculated with O(N) operations. More general 

wavelet transforms require O(N log(N)) operations, the same as for the 

fast Fourier transform (FFT) [77]. 

 

Throughout this thesis, the Daubeschies wavelet system [78] of order N = 8, denoted as 

“Db8" is used when implementing wavelet-based schemes. For the purpose of signal 

denoising, a smooth wavelet system is generally desired. While there are many wavelet 

systems that possess varying degree of smoothness and regularity, the selection of the 

“Db8" wavelet, which possesses the required properties, is somewhat arbitrary. Clearly, 

one could have chosen any one of the other smooth wavelets, such as “Symlets" or 

“Coiflets" wavelets. 

 

The wavelet transform reorganizes image content into a low-resolution approximation 

and a set of details of different orientations and different resolution scales. A fast 

algorithm for the discrete wavelet transform is the iterative filter bank algorithm of 

Mallat [79], where a pair of high-pass and low-pass filters followed by down sampling by 

two is iterated on the low-pass output. In a decimated wavelet transform that we consider 

here, down sampling is included, and instead the filters are down sampled at each 

decomposition stage. The outputs of the low pass filter are the scaling coefficients and 
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the outputs of the high-pass filter are the wavelet coefficients. At each decomposition 

level, the filter bank is applied sequentially to the rows and to the columns of the image. 

Low-pass filtering of both the rows and the columns yields the low-pass LL sub-band and 

other combinations of low-pass and high-pass filtering yield the wavelet sub-bands at 

different orientations: High-pass filtering of rows and low-pass filtering of columns (HL) 

yields horizontal edges and the opposite combination (LH) yields vertical edges, while 

high-pass filtering of both the rows and the columns (HH) yields highest frequency 

information, corners and edges that are close to diagonal orientations.  

 

 

 

 

 

 

 

 

 

 
Figure 4.9 Illustrates wavelet decomposition using low-pass and high-pass filters. At each level, 
image is decomposed into four components, representing the original image: LL, LH, HL and HH. 
At each level, the image is also down-sampled and later on will be up-sampled when the inverse 
wavelet is applied. 
 

The j-th decomposition level yields the coefficients at the resolution scale 2j. Critically 

sampled (orthogonal) wavelet transform is not shift-invariant. In such a representation, 

small errors in estimation of the coefficients result in annoying blobs and ringing 
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artifacts. Denoising performance is much improved when using redundant and (nearly) 

shift invariant transforms. Common approaches include using non-decimated wavelet 

transform [ 80], dual-tree complex wavelet transform [ 81] and cycle-spinning [ 82]. 

Cycle-spinning yields a similar improvement over the critically-sampled case as the non-

decimated transform. More recent approaches achieve further improvements in the 

denoising performance by using highly redundant representations with multiple 

orientation bands such as curvelets [83] and steerable pyramids [84]. Another approach 

for a non-decimated wavelet transform is implemented with the method à trous [80].  

 

 4.5.2. The Wavelet Thresholding  

 Wavelet thresholding for image denoising attempts to remove the noise present in 

the signal while preserving most of the signal characteristics. If the image model or the 

true image is available, designing a thresholding transform ( )txT ,  with threshold t requires 

the MSE,  

( ) },),({
2

yxfyxfEMSE true−=
)

                             (4.20) 

To be minimized. Generally the global methods are referred to hard thresholding and soft 

thresholding. The hard thresholding operator is defined as, 

( )
⎩
⎨
⎧ ≥

=
otherwise

txifx
txT

0
,

,                                    (4.21) 

The soft thresholding operator is defined as, 

( )
⎪
⎩

⎪
⎨

⎧

+
≤+
≥−

=
otherwiset

txftx
txiftx

txT
0

,
,                              (4.22) 
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Figure 4.10 Examples of hard and soft thresholding applied on the wavelet coefficients. 
 

Note that the hard thresholding appears to be more an intuitive procedure. On the other 

hand, soft thresholding shrinks coefficients above the threshold t. The underlying concept 

of wavelet denoising of images is similar to the above mentioned one-dimensional case. 

In the following section, some of the standard wavelet thresholding methods will be 

briefly described, implemented and compared.  These techniques include VisuShrink, 

SureShrink, MinimaxiShrink and BayesShrink which differ in the selection of the 

threshold t and the strategy employed in applying the thresholding operator.  

 

VisuShrink technique consists of applying the soft thresholding or hard thresholding 

using a universal threshold [80]:  

( ) σ)×= Mtuniversal ln2                                     (4.23) 

where M is the signal size and σ) is the estimated noise standard deviation. σ) is estimated 

by the empirical rule that if the speckle is assumed to be distributed Gaussian, the 

standard deviation can be approximated by the sample statistics: ( )1HHmediank ⋅=σ  . 
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k is a magnitude correction factor, and 1HH  is obtained by high-pass filtering of both the 

rows and the columns of the original image at the first level.  The maximum of any M 

values as normal distribution will be smaller than the universal threshold with high 

probability, with the probability approaching 1 as M increases. Thus, with high 

probability, a pure noise signal is estimated as being identically zero. However, for 

denoising images, VisuShrink is found to yield an overly smoothed estimate. This is 

because the universal threshold ( universalt ) is derived under the constraint that with high 

probability, the estimate should be at least as smooth as the signal. So the universalt  tends 

to be high for large values of M, killing many signal coefficients along with the noise. 

Thus, the threshold does not adapt well to discontinuities in the signal. 

 

SureShrink is based on applying a sub-band adaptive threshold, a distinct threshold is 

computed for each detail sub-band upon SURE (Stein’s unbiased risk estimator), a 

method for estimating the risk of mean squared error. The risk is defined as [85], 

( ) ( )},{, txTxEtxR jj −=                                    (4.24) 

where R denotes the associate risk of a soft thresholding operator as each decomposition 

level j. The results have shown superiority over VisuShrink. The image sharp features of 

the image are retained and the MSE is considerably lower. This is because SureShrink is 

subband adaptive. 

 

MinimaxiShrink [86] is developed according to Minimax thresholding. It uses a fixed 

threshold chosen to yield Minimax performance for mean square error against an ideal 

procedure. The Minimax principle is used in statistics in order to design estimators. Since 
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the de-noised signal can be assimilated to the estimator of the unknown regression 

function, the Minimax estimator is the one that realizes the minimum of the maximum 

mean square error obtained for the worst function in a given set. 

 

BayesShrink [87] threshold is driven in a Bayesian framework, and the assumption for  

generalized Gaussian distribution (GGD) still holds for the wavelet coefficients in each 

sub-band. The goal is to find the threshold t which minimizes the Bayesian Risk. 

Assuming such distribution for the wavelet coefficients, the standard deviation and 

Gaussian shape parameter is estimated for each sub-band threshold. The threshold t is 

found which minimizes the Bayesian Risk, i.e. 

( ) ( )},{, txTxEtxR jj −=                               (4.25) 

Then the optimal threshold is given by  

( ){ }},{minarg txTxEt jj −=∗                           (4.26) 

Numerical calculation is used here to find its value, since there is no closed form 

solution. T is found to be, 

)(
)var(

signalstd
noiset β=∗                                      (4.27) 

The parameter β is the Gaussian shape parameter, and it is to be estimated together with 

the standard deviation of the signal. The noise variance is not estimated based on the 

original image, but it is estimate from the first level sub-band 1HH by median estimator.  
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4.6 Wavelet Domain Speckle Reduction Results  

 Different thresholding methods are implemented for the purpose of speckle 

reduction and image restoration. For 850 nm OCT images, the range of thresholds for 

different algorithms is between 3.2486 and 4.6518. Only the two extreme values are 

selected to show how soft/hard thresholding affects image denoising outcomes. Good 

speckle reduction result is shown with soft thresholding (Figure 4.11). The edge sharpness 

is preserved and the lesion area is clearly outlined. Refer to Figure 4.5 for a comparison 

with spatial speckle reduction results. 

 

 

Figure 4.11 Results of applying VisuShrink and Minimax with soft and hard thresholding, to 850 
nm OCT image. With both algorithms, soft thresholding gives satisfying results. 

VisuShrink Soft VisuShrink Hard

Minimaxi HardMinimaxi Soft
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To compare the wavelet-domain filter and the other spatial-domain filters, in terms of 

gain level and the tendency of gain over the wavelet decomposition at each level, the five 

image quality measures similar to previous plots are shown (Figure 4.12). Again, PSNR 

and SSIM values are scaled to fit in one graph. The horizontal parameter is the wavelet 

decomposition levels, from 0 up to 4. ‘level-4’ is set as the upper bound. As the 

decomposition level increases, the image starts losing structural information. Similar 

results to spatial filtering can be observed. For different metrics, the corresponding gain 

levels are calculated. Different thresholding methods only change their corresponding 

gain, as they are merely the differences in threshold values. The dynamics of the graphs 

seems follow the same trend as spatial filtering. The SNR and PSNR decrease as the 

decomposition level increases.  
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Figure 4.12 Plots of image quality measure when applying various wavelet-domain denoising 
techniques. These metrics can be compared with previous similar plots from spatial domain 
speckle filtering. 
 

Different thresholding schemes were also applied to 1310 nm images. The threshold 

range is between 1.3119 and 5.1882. Similarly, only the two extreme values are shown 

here. Figure 4.13 demonstrates the wavelet domain denoising results with two 

thresholding schemes at first decomposition levels. The overall image despeckling effects 

are shown on the left hand column and on the right hand column are the enlarged lesion 
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regions. The noticeable advantage of wavelet filtering is the edge preservation. The 

border line at the air-tooth surface is not blurred. At proper threshold levels, good 

intensity response at the lesion region is shown. 

 

 

 

 

VisuShrink Soft

VisuShrink Hard
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Figure 4.13 Results of applying SureShrink and VisuShrink with soft and hard thresholding, to 
1310 nm image. Zoomed areas are the lesion areas. 
 

The SureShrink thresholding was implemented on a second set of 1310 nm OCT images. 

This set of images has been previously adjusted with contrast stretching and histogram 

power-law transformation. A visual improvement as compared to the original noisy 

image is clearly observed. Comparing this result to the other spatial filtering results 

(Figure 4.6 and Figure 4.7), less intensity is shown in the lesion area. The consequences of 

different intensity response at the lesion area after filtering which affect segmentation 

outcomes is to be studied in the next chapter.  

SureShrink Hard

SureShrink Soft
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Figure 4.14 Results of applying SureShrink and VisuShrink with soft and hard thresholding, to 
1310 nm image. Zoomed areas are the suspicious lesion (right column). 
 

Figure 4.15 is the result of wavelet-domain speckle reduction from a sound tooth image. 

Notice that wavelet domain techniques yield similar results when compared with the 

other spatial domain filters. This is evident when comparing the sound enamel region and 

the outcomes of wavelet-filtering is not “washed-out”.  

VisuShrink Hard
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Figure 4.15 Results of applying wavelet-domain speckle reduction to 1310 nm OCT sound tooth 
image. This result is compared with spatial domain filtered images. 
 

 

Contrast adjusted RKT

Lee SRAD

SureShrink Hard Sureshrink Soft
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Both quantitative and visual assessment suggest that both spatially adaptive and wavelet-

transform domain filters have considerable value. The use of local statistics helps to 

improve the differentiation of speckle noise from image pixels and preserve detail 

information. Although some of these existing spatial speckle filters are termed as "edge-

preserving” and "feature preserving," there exist limitations of the filtering approach. The 

spatial filters are sensitive to the size and shape of the filter window. Given a filter 

window that is too large (compared to the scale of interest), over-smoothing will occur 

and edges will be blurred. A small window will decrease the smoothing capability of the 

filter and will leave speckle when any portion of the filter window contains an edge. The 

coefficient of variation will be high and smoothing will be inhibited. Therefore, 

noise/speckle in the neighborhood of an edge (or in the neighborhood of a point feature 

with high contrast) will remain after filtering. Spatial domain filters are not directional. In 

the vicinity of an edge, all smoothing is precluded, instead of inhibiting smoothing in 

directions perpendicular to the edge and encouraging smoothing in directions parallel to 

the edge. The advantages of wavelet decomposition enable noise reduction in all 

horizontal, vertical and diagonal directions. Also the fashion of ad hoc implementation 

only demonstrates the insufficiency of the window-based approaches. The straight 

forward pixel operation enacts neighborhood averaging and filtering in the extreme cases 

leads to blotching artifacts from averaging filtering and noisy boundaries from leaving 

the sharp features unfiltered.  The log-transform prior to wavelet domain denoising is 

necessary and adheres to multiplicative nature of speckle noise. Overall, wavelet-domain 

filter demonstrates appealing features for its versatility, efficiency and adaptability. 
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4.7 Speckle Reduction in Conjunction with Iterative Deconvolution 

 Most of the methods mentioned above suppress only noise, while another class of 

methods attempt at resolution improvement/deblurring by applying deconvolution. In fact, 

one of the occurrences in image denoising, especially with spatial “averaging” filters like 

RKT, is the resolution loss. Also, the interferometric distortion of OCT as a result of the 

convolution between the point spread function (PSF) of the OCT scanner and tissue 

reflectivity function, introduces blurring.  

 

Ideally the noise-free observation ( )yxf ,  is the result of the convolution of 

( )yxf true , and the PSF ( )yxh , , given by 

( ) ( ) ( )yxhyxfyxf true ,,, ∗=                               (4.28) 

In the Fourier domain the convolution is replaced by multiplication. 

( ) ( ) ( )vuHvuFvuF true ,,, =                                (4.29) 

where ( )vuF , , ( )vuFtrue , and ( )vuH ,  are the Fourier domain representation of the spatial 

domain function respectively. Therefore, the deconvolution finds the true image in 

Fourier domain by division.  

( ) ( )
( )vuH

vuFvuFtrue ,
,, =                                            (4.30) 

However, in practice this algorithm is not desirable, as it is sensitive to noise. In fact, 

mathematically most imaging tools are usually posed in the form of inverse problems. 

The mathematical description of this leads to an inverse problem where one wants to 

infer the spatial distribution of scatters, which is a coefficient in a diffusion-type equation. 

Regular linear and non-linear deconvolution techniques utilize a known PSF. The non-
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linear deconvolution can be performed iteratively, whereby each iteration improves the 

estimation of the restored image.  Iterative methods include maximum-likelihood 

estimation (ML), maximum-a-posteriori estimation (MAP) and expectation-maximization 

algorithm (EM). A good estimate of the PSF is helpful for quicker convergence.  

 

The iterative deconvolution methods developed for OCT usually require a priori 

information about the point-spread function (PSF) of the imaging optics. Experimentally 

the properties of the PSF can be obtained by averaging multiple scans towards a 

reflective mirror, and the modeling of scanning tissue is subjected to phantom studies.   

Some of the related research involving deconvolution can be found in the following 

references [88], [89], [90], [91] and [92]. A study by S. Paes and I.K. Hong [93] applied 

adaptive speckle filtering followed by iterative deconvolution. The authors reviewed 

various deconvolution methods and preliminary adaptive speckle filtering. A combination 

of the Frost filter and Richardson-Lucy deconvolution (ML algorithm) methods has 

shown superiority in noise reduction and speckle reduction, due to the Richardson-Lucy 

algorithm high noise resistance property. Most of the previous deconvolution work was 

investigated on 1-D OCT signal (A-scan) deconvolution. In this work, we extend the 

iterative deconvolution to the image as a whole by incorporating a deconvolution mask 

that is restrained by axial/longitudinal and lateral/transverse resolution limits. 

 

The FWHM value which is calculated as full width at half the maximum of the PSF 

profile, is generally considered as the measure of spatial resolution. A narrow FWHM 
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means better resolution whereas the wider FWHM presents worse resolution. The lateral 

resolution of the OCT system is defined as 

cL lR =
Δ

⋅=
λ

λ
π

2
02ln2

                                      (4.31) 

where 0λ is the center wavelength and λΔ is the FWHM of the power spectrum. Ralston 

[ 94 ] has proposed that the transverse resolution and longitudinal resolution are 

uncorrelated. The longitudinal resolution is determined by the coherence length of the 

light source. The transverse resolution is characterized by the Gaussian beam profile 

incident on the sample and the confocal parameter. Figure 4.16 illustrates the geometry of 

the Gaussian beam profiles at different numerical aperture (NA). 

 

 

Figure 4.16 Geometry of a Gaussian beam for low and high NA lenses. b is the confocal 
parameter, ω0 is the beam radius at the focus, and lc is the coherence length of the source [94]. 

 

Typically in OCT, lenses with a lower NA are used, where a relatively uniform transverse 

resolution over the entire axial scan is preferred. The transverse resolution is determined 

by the diameter of the spot size 02ω , or equivalently by the width of the incident beam on 
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the sample where the edges are determined by a decrease in intensity by a factor of 

21 e and it is approximated by: 

D
fRT

0
0 44.22

λ
ω ≈≈                                     (4.32) 

where f is the focal length of the lens, D is the beam diameter incident on the objective 

lens, and 0λ is the center wavelength. In our current OCT system, f = 25.6 mm, D = 4 

mm and 0λ = 1310 nm. An approximation of the transverse resolution is calculated as,  

( )( ) m
mm

nmmmRT μ45.20
4

13106.2544.2 ≈≈                    (4.33) 

As the longitudinal and transverse resolutions are properly defined, the next step is to 

first construct longitudinal and transverse PSFs with respect to the resolution requirement 

Figure 4.17 is obtained by averaging 10 A-scans against a reflective mirror. The “delay” 

appearing on the second half of the PSF is possibly due to the thinness of the metal 

coating on the surface of the mirror which the OCT system is not able to resolve.  
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Figure 4.17 Results of averaging 10 A-scans and normalization of the magnitude. 
 

By duplicating the first half of the original PSF, we create an ideal axial/longitudinal-

direction PSF, shown in Figure 4.18.  At FWHM, the width of the PSF is approximately 

14 resolution cells. Each resolution cell is measured at 1 μm. Therefore the axial 

resolution, in this case, is 14 μm.   
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Figure 4.18 A reconstructed ideal PSF with matching axial resolution of 14 μm. 
 

A separate PSF using Gaussian fitting is constructed satisfying the FWHM of 20 μm in 

the transverse direction is shown in Figure 4.19. 

 

Figure 4.19 An ideal PSF with matching transverse resolution of 20 μm. 
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A deconvolution mask is consequently generated by convolving the longitudinal PSF and 

transverse PSF, and the iterative deconvolution process is thus ready to be used.  

 

First a quick review of the Richardson-Lucy algorithm [95] [96] is discussed. A given 

image model Mf , which is the prior knowledge about the true image truef , results in an 

observation f . The probability of the estimation f̂ in turn is determined by a conditional 

probability function ( )ffp |ˆ . Two common statistical distributions for natural 

occurrences are Gaussian and Poisson distributions. Assuming the noise in different 

pixels is statistically independent, the joint probability of all the pixels is the product of 

the probabilities of the individual pixels. In practice, it is usually convenient to work with 

the log-likelihood function of the joint probability. 

( )[ ] ( )[ ]∑=
i

ii ffpffp |ˆln|ˆln                                      (4.33) 

where i denotes the individual pixel that gives rise to observed data. For a Poisson 

distribution, a simplified log-likelihood function after dropping the constants, is 

( )[ ] ( )∑ +=
i

iii fffffp ˆlnˆ|ˆln                                    (4.34) 

The above non-linear log-likelihood function is minimized iteratively using 

multiplicative corrections: 

( )
)(

)(
)1( ˆ

ˆ
ˆ k

k
Tk f

hf

fhf ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∗
∗=+                               (4.35) 
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where Th is the transpose of the PSF h . The square brackets on the right-hand side 

enclose the factor by which the previous )(ˆ kf is multiplied to give the new )1(ˆ +kf . The 

ratio between observation f  and the estimation ( ) )(ˆ k
hf ∗  from the previous iteration is 

back projected by the transpose of the PSF. It has also been shown empirically that if this 

iteration converges, it converges to the maximum likelihood solution. 

 

On the representative graphs (Figure 4.20), Figure 4.20-A is the original image with 

speckle noise. Figure 4.20-B is the OCT image filtered by RKT algorithm (window size of 

7 x 7). Strong surface intensity response and noise suppression can be observed. Figure 

4.20-C and Figure 4.20-D are the regions near the air-tooth surface. The RKT filter has 

introduced resolution loss (blurring). After applying iterative convolution to both images 

with 20 iterations, we obtained Figure 4.20-E and Figure 4.20-F. The algorithm seems to 

provide good resolution enhancement. Note that in the parallel comparison between 

images without and with speckle reduction (Figure 4.20-E and Figure 4.20-F, respectively), 

the iterative deconvolution algorithm restores the sharpness near the edge by removing 

the blurry aspects of the RKT-filtered image. The advantage is also shown in the level of 

noise suppression by introducing speckle reduction prior to the iterative deconvolution, 

over straight forward applying deconvolution to the raw image (Figure 4.20-E). Thus a 

procedure combining spatial speckle reduction and iterative deconvolution is used to 

optimize the process of noise suppression and resolution restoration.  
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Figure 4.20 Results of applying iterative deconvolution algorithms to an original image and RKT 
filtered image. Image A is original OCT image. Image B is the OCT image filtered by RKT 
algorithm. The resolution loss is introduced (comparing with C and D). Image E is the restored 
image from raw observation. Image F is image after applying deconvolution to noise reduced 
image. 
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In summary, the effects of speckle reduction on raw OCT images are demonstrated, 

where the presence of speckle often obscures the underlying image content and reduces 

the interpretability of the image. Substantially reducing the speckle noise while 

effectively preserving image detail are two important speckle reduction considerations. In 

many applications, it is the balance between these two considerations that determines the 

success of a speckle suppression filter. For this reason, a cross examination of potential 

speckle reduction filters was performed. The optimal choice of speckle filter is an attempt 

of integrating the advantages of speckle reduction and denoised image visual 

interpretation. The performance of both spatial domain and wavelet domain filters was 

evaluated using a number of quantitative criteria. These included SNR, PSNR, ENL, CSR 

and SSIM. Three sets of OCT images were tested for evaluation purposes. The 

superiority of wavelet domain filtering is able to achieve effective speckle noise 

reduction while preserving details.  For the simple purpose of OCT image restoration, 

wavelet domain filtering is a preferable choice. 
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Chapter 5   

Caries Lesion Segmentation 

5.1 Region-based Active Contour 

 A second purpose of speckle suppression, besides providing a visual aid to obtain 

a correct diagnosis, is to serve as a pre-processing step for region segmentation. In this 

application, speckle is considered noise in the image that prohibits classical segmentation 

algorithms from working optimally. The main goal of image segmentation, which plays 

an essential role in both qualitative and quantitative image analysis, is to divide an image 

into sets of regions that are visually distinct and uniform with respect to some property, 

such as gray level, texture, or color. Image segmentation is strongly influenced by the 

quality of the image data, and the lesion segmentation performance is severely degraded 

owing to the speckle, tissue textures, and other artifacts resulting from the imaging 

process.   

 

The segmentation techniques on speckle contaminated images have been well 

investigated in the area of ultrasound medical imaging. Many methods, including 

thresholding, region growing, watershed, Markov random fields and active contours, [97], 

[98], [99], [100] and [101] were proposed. For this work, OCT image segmentation 

methods focus on the following main approaches: 1) thresholding technique, 2) region-

based active contour segmentation technique. 

In general active contour models, a contour is initiated on the images and is left to deform 

in a way that, firstly, moves it towards the features of interests in the image and, then 
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maintain a certain degree of smoothness and continuity in the contour. In order to favor 

this type of contour deformation, an energy term is associated with the contour and is 

designed to be inversely proportional to the contour’s smoothness and fit to desired 

image features. The deformation of the contour in the image plane will change its energy, 

thus one can imagine an energy surface on top of which the contour moves seeking the 

valleys of low energy.  

 

Level sets based on active contour models can be divided into two categories: edge-based 

contour and region-based contour. Edge-based active contour models utilize image 

gradients in order to identify object boundaries [102]. This type of highly localized image 

information is adequate in some situations, but has been found to be very sensitive to 

image noise. Region-based active contour models the foreground and background regions 

statistically and find an energy optimum where the model best fits the image. More 

advanced techniques attempt to model regions by known distributions, intensity 

histograms, texture maps, or structure tensors. More recently, work in active contours has 

been focused on incorporating region statistical information. This investigation is 

inspired by the region-competition work of Chesnaud et al [103], who present a frame 

work for segmentation of images with various statistical models.  Sarti et al [101] 

extended this work for the case of Rayleigh distributions. In this study, we apply a similar 

approach for segmenting OCT images. To deal with the low signal to noise ratio in OCT 

images, contour shapes are described using low order parametric deformable models. 

This low order parameterization is sufficient to accommodate the expected shape and size 
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variations, yet provides robustness against noise, image artifacts and regions of missing 

data.  

 

This approach consists of a maximum likelihood estimation approach to parametric 

deformable models. The basic building block is a probabilistic observation model 

( )ω|),( yxfp characterizing the observed data ),( yxf with the conditional class 

parameter ω . ω denotes a binary window function that defines a certain shape of the 

object (i.e. lesion) so that ( )yx,ω is equal to one within the object and to zero elsewhere. 

Then the image is composed of two regions ( ) ( ){ }1,|, ==Ω yxyxi ω  

and ( ) ( ){ }0,|, ==Ω yxyxo ω . “ i ” and “ o ” subscripts describe the locations of the 

observation either “inside” or “outside” ω . The purpose of the segmentation is, therefore, 

to estimate the most likely shape ω  for the lesion. To achieve this estimation, different 

shape descriptions could be used to define ω . Here we only apply our approach to 

polygonal description. We assume that ( )ω|),( yxfp  has a known parametric form (in 

this case, Rayleigh distribution for OCT speckles), and is therefore determined uniquely 

by the value of a parameter vector θ . For instance, we have ( )iiyxfp θω ,|),( and 

( )ooyxfp θω ,|),( for each of the regions inside and outside the polygon. The assumption   

is that suppose the pixels (observations) are independent and identically distributed 

random variables drawn from domain f , which contains observations/samples ),( yxf , 

oiyx ΩΩ∈ ,),( . Then the joint probability density function of the observed image, given 

a parameter vectorθ , can be written as, 

( ) ( ) ( )ooii fpfpfp θωθωθω ,|,|,| ⋅=                             (5.1) 
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The right hand of the equation is the likelihood function of ( )θω, , and can be written as 

the joint probabilities of individual observations. 

( ) ( )( )
( )

( )( )
( )
∏∏

Ω∈Ω∈

⋅=
io yx

ii
yx

oo yxfpyxfpfp
,,

,|,,|,,| θωθωθω      (5.2) 

To show the dependence of ( )θω,|fp on θ  explicitly, we write ( )θ|fp  as ( )θω,|fp . 

Now the problem is simplified to only use the information provided by the observations 

to obtained good estimates for the unknown parameter vectorθ . 

( ) ( )( )
( )

( )( )
( )
∏∏

Ω∈Ω∈

⋅=
io yx

i
yx

o yxfpyxfpfp
,,

|,|,| θθθ           (5.3) 

The maximum-likelihood estimate of θ  is, by definition, the value θ̂  that 

maximizes ( )θ|fp . Since the log function is strictly increasing, the maximum value of 

( )θ|fp  will occur at the same points as the maximum value of ( ) ( )( )θθ |log, fpfl =  

This function is the log-likelihood function and in many cases it is easier to work with it 

than with the likelihood function. Indeed the product structure of the probability function 

is transformed in a summation or integral structure of the log-likelihood. We need to 

maximize the function ( )θ,fl , that is, 

( )θθ
θ

lmaxargˆ =                                               (5.4) 

Therefore, the log-likelihood function has become, 

( ) ( )( ) ( )( )( )
( )

( )( )( )
( )
∑

∑

Ω∈

Ω∈

+

+==

i

o

yx
i

yx
o

yxfp

yxfpfpfl

,

,

|,ln

|,ln|ln,

θ

θθθ

            (5.5) 

Given that OCT images follow a Rayleigh distribution, the pixel marginal probability 

densities have the form, 
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( )( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2

,exp,|,
σσ
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And in this case, [ ] [ ]ioio σσθθσθ ,, === , where oσ and iσ are the variances of the 

inside and outside polygon respectively.  

( ) ( ) ( )
( )

( ) ( )
( )
∑

∑

Ω∈

Ω∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

o

yx ii

yx oo

yxfyxf

yxfyxffl

,
2

2

2

,
2

2

2

,exp,ln

,exp,ln,

θθ

θθ
θ

                   (5.7) 

Since the dependence on f is implicit, thus we have from the above equation, 

( ) ( )( ) ( ) ( )
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               (5.8) 

and  

( ) ( )( )
( )

( )( )
( )
∑∑

Ω∈Ω∈

∇+∇=∇
io yx

i
yx

o yxfpyxfpl
,,

|,ln|,ln θθθ θθθ     (5.9) 

Thus, the necessary condition for the maximum-likelihood estimate for θ  can be 

obtained by setting, 

( ) 0=∇ θθ l                                           (5.10) 

A solution ( )θθ
θ

lmaxargˆ =  represents the maximum, and two sets of equation are 

derived. 
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Or equivalently, 
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Then solve for oθ̂ and iθ̂  
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where oN and iN are the number of pixels outside and inside the polygon. Now we can 

introduce these two estimations in the log-likelihood function, and we can write, 
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Now substituting the maximum estimations for oθ̂ and iθ̂ . 
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After simplification we have, 
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The last two terms on the right hand of this equation do not depend on the shape of the 

polygon and thus can be omitted. Then we obtain the following expression for ( )θ̂l  
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This is also an identical expression for the Rayleigh distribution, which has been referred 

by Chesnaud [103]. The following task is to embed this likelihood function as part of the 

region-based contour energy function that has been described by Chan [100]. According 
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to Chan, a length term that has been introduced as regularization in the shape of the curve, 

and finally we ask to minimize the functional:  
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To implement the polygon/contour as a deformable mask that was mentioned as the 

beginning of this chapter, the energy function can be written using Heaviside 

function ( )ϕH , and in the mean time we replace the summation with integral, 
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Also the pixel values are replaced by the Heaviside function, where: 
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and 

( ) ( ) ( )∫∫
ΩΩ

∇=∇== dxdydxdyHlength ϕϕδϕϕ 0                   (5.21) 

After minimizing with respect toϕ , the associated Euler-Lagrange equations forϕ are 

deduced. Parameterizing the descent direction by time 0≥t , the equation in ( )yxt ,,ϕ  is, 
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The initial condition ( ) ( )yxyx ,0,, 0ϕϕ =  defines the initial contour. 
( )

nr∂
∂

∇
ϕ

ϕ
ϕδ

 is the 

boundary conditions, where nr denotes the exterior normal to the boundary Ω∂ , and 

nr∂∂ϕ denotes the normal derivative of ϕ at the boundary. The numerical approximation 

was carried out in a similar fashion using finite difference approximation that is described 

by the Chan-Vese method in [100].  

 

5.2 Lesion Segmentation Results 

 In this study, the method is applied to all three sets of OCT images. As mentioned 

earlier, speckle statistics are not known. We here first outline how to validate some of the 

parameters from the noisy image. The statistics of Rayleigh speckle are uniquely 

determined by the speckle contrast (variance). The spatial-domain method is based on the 

assumption that an image has many regions of almost uniform intensity and most changes 

in these regions of insignificant variations are due to speckle noise. The proposed 

algorithm is applied to the second set of OCT images, shown in Figure 5.1. The lesion 
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boundaries are marked with dark lines. The lesion segmentation algorithm is applied 

individually to each image with different de-noising filtering prior to the segmentation 

process. The final image outlines the boundaries of areas of possible lesions. After setting 

an initial contour and the evolution process of the contour shrinking, in most cases, the 

contour reaches the convergence around 250 iterations, and the evolving contour can 

reach the real upper boundary in less than 100 iterations.  
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Figure 5.1 Results of applying region-based contour algorithm to 1310 nm images. The images 
only show the zoomed area near the carious lesion.  
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We can observe that the algorithm converges to the right contour even when directly 

applied to raw OCT image (Figure 5.1). The underlying difference in image intensity, 

which is not visible before contrast adjustment, still provides sufficient information for 

successful region-based segmentation. With proper contrast adjustment and speckle 

filtering, the algorithm produces similar segmentation results. The Lee and RKT filters 

seem to provide a smoother contour, and better contrast. Similar procedures were applied 

to the first set of 1310 nm OCT images (Figure 5.2). With less resolution, the 

convergence time is less than 200 iterations. The lesion is located near the surface of the 

tooth. The algorithm seems to provide satisfying results with both original image and 

filtered images. The contour also includes the regions of surface reflection as part of the 

contour. The depth measure of the lesion is much greater than normal surface reflection, 

and also the pixel intensity is another characteristic parameter to determine the possible 

lesion region. Finally, the algorithm is applied to 850 nm images that has lower signal to 

noise ratio compared to 1310 nm images (Figure 5.3). Again for most of the images, both 

original and filtered, the contour converges with similar shape regardless of whether the 

speckle reduction is applied or not.  
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Figure 5.2 Results of applying region-based contour search algorithm to the first set of 1310 nm 
OCT images. Lesions are highlighted with dark lines. 
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Figure 5.3 Results of applying contour algorithm to 850 nm OCT images. 
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To determine the reliability of the segmentation results versus the “true image”, the 

histology images of the tooth are shown in Figure 5.4. The results of the segmentation 

were assessed by comparing the disease-indicating areas found by the region-based 

contour and areas assessed by global thresholding. Images on the left column are the 

original 850 nm OCT images of tooth sample with different lesion depths. Images in the 

middle column are filtered with 11 × 11 median filter to retain the sharp edges. For 

comparison, the black lines are the direct results of region-based contour algorithm. The 

contours outlined by white lines are results of global thresholding and contouring of the 

binary images. Images from the third column are the histology images of the 

corresponding teeth. In essence, it is a comparison of OCT image segmentation results 

and histology images from the same sample. From visual examination when comparing 

with the histology images, the region-based contour algorithm seems to under-segment 

the lesion. This might greatly be due to the fact that the assumption of Rayleigh 

distribution model is not appropriate for 850 nm images. The algorithm tends to converge 

to the region where the pixels intensity is higher (yellow and red regions near the surface). 

The global thresholding is applied to the same filtered images and with the same global 

threshold level, the contour in white line appears to confine with better approximation to 

the “gold standard”.  
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Figure 5.4 Results of region-based contour algorithm (blue lines) and global thresholding 
methods (white lines). The contour shape is compared with histological sectioning images of the 
samples. 
 
 

For a wide range validation of the segmentation algorithm, the region-based contour 

search technique is applied to 14 images acquired at 1310 nm. Half of the images have 

carious lesion present and the other half are sound teeth. They are arranged in the way 

that two images (one carious and one sound) taken from the same sample, are placed in 

parallel for comparison. For example the two images from the first row in Figure 5.6, two 

images are acquired from the same tooth. Usually the carious and sound tooth images are 

taken with a few B-scans apart, which means the carious tooth image is the measure at 

the location of caries and the sound tooth image is scanned at the nearby location. Such 

comparison is based on the similarity in anatomical features (i.e. the location of DEJ) and 

parameter setting (i.e. same instrument and same sample).  Figure 5.5-5.10, are the 7 sets 

of images from 7 individual tooth samples. The contrast adjustment parameters were set 

identically in all 14 images. Then a window size of 7 × 7 RKT filter was applied to these 

images. For each image, a carefully selected initial contour is placed near the lesion 

region, to avoid large number of interactions that are associated with inappropriate 

contour initialization. The number of iterations ranges from 200 ~ 300 for contour 

convergences.  At the writing of the thesis, the tooth samples have not yet been 

0.2 mm
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histologically sectioned for examination by light microscopy as the samples are part of a 

larger study. 

 

 

 

 
Figure 5.5 Images from the first row 
are the raw OCT data from the same 
tooth sample with carious and sound 
enamel. Images from the second row 
are processed after proper contrast 
adjustments and RKT filtering, and the 
bottom image is the zoomed-in region 
of possible segmented lesion.  
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Figure 5.6 Images from the first 
row are the raw OCT data from the 
same tooth sample with carious 
and sound enamel. Images from 
the second row are processed 
after proper contrast adjustments 
and RKT filtering, and the bottom 
image is the zoomed-in region of 
possible segmented lesion. 
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Figure 5.7 Images from the first row 
are the raw OCT data from the same 
tooth sample with carious and sound 
enamel. Images from the second row 
are processed after proper contrast 
adjustments and RKT filtering, and the 
bottom image is the zoomed-in region 
of possible segmented lesion. 
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Figure 5.8 Images from the first row 
are the raw OCT data from the same 
tooth sample with carious and sound 
enamel. Images from the second row 
are processed after proper contrast 
adjustments and RKT filtering, and the 
bottom image is the zoomed-in region 
of possible segmented lesion. 
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Figure 5.9 Images from the first row 
are the raw OCT data from the same 
tooth sample with carious and sound 
enamel. Images from the second row 
are processed after proper contrast 
adjustments and RKT filtering, and the 
bottom image is the zoomed-in region 
of possible segmented lesion. 
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Figure 5.10 Images from the first row 
are the raw OCT data from the same 
tooth sample with carious and sound 
enamel. Images from the second row 
are processed after proper contrast 
adjustments and RKT filtering, and the 
bottom image is the zoomed-in region 
of possible segmented lesion. 
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Figure 5.11 Images from the first 
row are the raw OCT data from the 
same tooth sample with carious and 
sound enamel. Images from the 
second row are processed after 
proper contrast adjustments and 
RKT filtering, and the bottom image 
is the zoomed-in region of possible 
segmented lesion. 
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The region-based active contour that evolves according to image statistical properties was 

applied to OCT dental images in this chapter. The analysis of the images in local regions 

has led us to model the B-scan image intensity with Rayleigh distributions. The main 

interests of the algorithm presented in this study are its local adaptiveness and robustness 

against noise. The semi-automatic lesion segmentation is achieved by evolving from a 

good guess of the initial contour. The experimental results are extremely good when 

applied to 1310 nm OCT images. The results have also demonstrated the discrepancy and 

error when the algorithm is implemented with 850 nm OCT images. A more suitable 

segmentation method, which is to apply a globally assumed threshold, can generate more 

accurate segmentation results with less error.  This is likely due to the optical property 

difference with dental hard tissue at 850 nm and 1310 nm frequencies. Also it can be a 

result of error in image modeling, which we have assumed to be Rayleigh distributed for 

most of the images. Some further investigation on improvements of the algorithm has 

been proposed and involves the study to quantify the influence of the contour 

initialization. Generally, the farther the initial contour is from its final position, the more 

computations must be done for the contour to converge. Hence, if the contour is selected 

in almost near the lesion area, it drastically reduces the time needed for segmentation. A 

global thresholding technique can be first applied to create a rough guess that is close to 

the shape of the contour. In the case of multiple region segmentations, a heuristic or 

ranking process can be carried out. 
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Conclusions and Future Works  

 The main objective of this thesis was to develop and apply image processing 

techniques to identify early stage caries and assess lesion extent to determine the stage of 

the disease. The image processing techniques implemented in the thesis have shown 

potential results in the early study of non-invasive OCT imaging of incipient stage caries. 

For OCT images acquired with a 1310 nm center frequency, the combination of image 

speckle reduction and segmentation has generated satisfying results that holds promise 

for non-destructive visualization of dental caries and other anatomical structures and is 

approaching the elusive goals of in-vivo histopathology and optical biopsy. The presence 

of strong speckles for OCT images obtained at 850 nm center frequency tends to cause 

under-segmented lesions. Measuring the accuracy of the contour in this case is difficult 

due to the fact that the lesion areas from 850 nm images do not have clearly defined 

boundaries. As a result, generating similar contours from the same sample is challenging, 

and arguably of little reproducibility. However, if a spatial filter with a large filtering 

mask is applied, an “artificial” boarder line is created, but with an ad hoc fashion where a 

global thresholding is followed adaptively to generate a segmented region.  

 

A number of image processing techniques have been used as part of this project. The 

techniques implemented all show potential, and different results could possibly be 

applied to specific applications depending on what types of procedures are required. 

Other alternative image processing techniques could also be explored. Methods of 

evaluating tissue texture are also worth exploring. Before any further work is undertaken, 

three key areas are addressed. First, analysis if speckle reduction results reveal that 
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general spatial domain methods have the advantages of fast computation, adapting image 

local information and overall better speckle reduction results. The combining different 

filters within the same speckle reduction step would possibly be beneficial. Also, some 

research can be done in finding a more sophisticated image evaluation measure to give 

subjective judgments with greater proximity to human visual perception system. 

Secondly, a better way of evaluating the image deconvolution results yet needs to be 

established. Restoring the resolution at the air-tooth surface has a number of applications, 

such as line detection and image registration. Thirdly, for most of the OCT tooth images, 

ideally we would like to have a “gold standard” segmentation (a good segmentation that 

is directly measured from histology images). In such case we could compare the 

computer generated segmentation with the gold standard. If we could perform this 

process on a reasonable amount of clinical images, it would be possible to validate and 

evaluate the performance of the segmentation algorithms. For instance, we could test the 

hypothesis that the computer generated algorithm is not statistically different from the 

gold standard. Another approach would simply be to evaluate the difference between the 

active contour segmentations and the gold standard images or manual segmentation 

results. If successfully defining a quantitative measure that can reliably indicate a certain 

region as “carious lesion”, an automated system can be developed for caries assessment. 

To make a reliable segmentation as such, one would need much more data than in the 

current study. Obviously, the development of such automatic system for clinical study 

was beyond the scope in this M.Sc. research. Another possibility is to exploit the ability 

of computerized texture analysis and tissue classification to automatically monitor the 

rate of caries progression during the course of treatment.   
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