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Abstract 

Extended redundancy analysis (ERA) is used to reduce multiple sets of predictors to a smaller 

number of components and examine the effects of these components on a response variable. In 

various social and behavioral studies, auxiliary covariates (e.g., gender, ethnicity, etc.) can often 

lead to heterogeneous subgroups of observations, each of which involves distinctive relationships 

between predictor and response variables. ERA is currently unable to consider such covariate-

dependent heterogeneity to examine whether the model parameters vary across subgroups 

differentiated by covariates. To address this issue, we combine ERA with model-based recursive 

partitioning in a single framework. This combined method, MOB-ERA, aims to partition 

observations into heterogeneous subgroups recursively based on a set of covariates while fitting 

a specified ERA model to data. Upon the completion of the partitioning procedure, one can 

easily examine the difference in the estimated ERA parameters across covariate-dependent 

subgroups. Moreover, it produces a tree diagram that aids in visualizing a hierarchy of 

partitioning covariates, as well as interpreting their interactions. In the analysis of public data 

concerning nicotine dependence among US adults, the method uncovered heterogeneous 

subgroups characterized by several sociodemographic covariates, each of which yielded different 

directional relationships between three predictor sets and nicotine dependence.    

 

Keywords: Extended redundancy analysis, model-based recursive partitioning, covariate-

dependent heterogeneity, decision tree, model visualization 
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Introduction 

Extended redundancy analysis (ERA; Takane & Hwang, 2005) is a statistical method that relates 

multiple sets of predictors to response variables. In ERA, a component is extracted from each set 

of predictors in such a way that it accounts for the maximum variation of a response variable. In 

this regard, ERA aims to perform data reduction and linear regression simultaneously, providing 

a simpler description of directional relationships among many sets of variables. ERA has been 

extended to improve its data-analytic flexibility, including generalized ERA for the analysis of a 

response variable that arises from an exponential-family distribution (Lee et al., 2016), 

functional ERA for the analysis of smooth functions or curves (Hwang et al., 2015; Tan, Choi, & 

Hwang, 2015), multivariate ERA for the analysis of multiple correlated responses (Kim et al., 

2020; Lee et al., 2019; Lee et al., 2018), and Bayesian ERA (Choi, Kyung, Hwang, & Park, 

2019). 

 In many social and behavioral studies, researchers often identify heterogeneous 

subgroups of observations based on auxiliary covariates, e.g., age, gender, ethnicity, etc., each of 

which involves different strengths/directions of relationships between variables of interest 

(Merkle & Zeileis, 2013; Raudenbush, 1997; Royston & Sauerbrei, 2004; Shadish, Cook, & 

Campbell, 2002). For example, many nicotine dependence studies show that the effects of 

occupation type, alcohol consumption pattern, or physical activity level on smoking initiation or 

cessation differ by ethnicity and race (Daza et al., 2006; Hu, Davies, & Kandel, 2006; Kandel, 

Kiros, Schaffran, & Hu, 2004; Robinson et al., 2006). In psychological and educational testing, 

item bias or differential item functioning is often present between different gender or cultural 

groups (Cauffman & MacIntosh, 2006; Fleishman, Spector, & Altman, 2002; Smith & Reise, 

1998; Strobl, Kopf, & Zeileis, 2015). In pediatric obesity studies, the relationship between 
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obesity and its predictors related to impaired health-related quality of life is shown to vary across 

sex, race, and/or nations (Maher, 2004; Wake, Salmon, Waters, Wright, & Hesketh, 2002; 

Williams, Wake, Hesketh, Maher, & Waters, 2005; Zeller & Modi, 2006). Moreover, the growth 

rate of intelligence in early childhood appears to be divergent across parental SES groups 

(Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013; McArdle & Epstein, 1987; Von 

Stumm & Plomin, 2015). Although such covariate-dependent heterogeneity is prevalent in 

practice, ERA has no mechanism to account for this heterogeneity efficiently, thus being unable 

to examine whether the relationships between predictor and response variables vary across 

subgroups of observations differentiated by additional covariates. 

One may attempt to investigate covariate-dependent heterogeneity in ERA using a 

multiple-group analysis, where researchers prespecify relevant covariates (and subgroups derived 

from different combinations of the covariates) ahead of data analysis and examine differences in 

the ERA parameter values across the subgroups. In practice, however, it is difficult to know a 

priori which covariates (and their interactions) might affect the parameter heterogeneity. In 

addition, possible combinations of comparison subgroups are numerous when there are 

continuous covariates, categorical covariates with multiple levels, and/or a number of covariates 

at the same time (Strobl et al., 2015; Su, Tsai, Wang, Nickerson, & Li, 2009; Zeileis, Hothorn, & 

Hornik, 2008).  

 To address this issue, we propose to combine ERA with model-based recursive 

partitioning (MOB; Zeileis, Hothorn, & Hornik, 2008) in a unified framework so as to capture 

covariate-dependent heterogeneity efficiently. Classical recursive partitioning methods, such as 

classification and regression trees (Breiman, Friedman, Stone, & Olshen, 1984; Loh, 2011), 

focus on identifying subgroups involving different values of a response variable only. On the 
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other hand, MOB aims to fit a specified statistical model to each of heterogeneous subgroups 

identified successively based on an additional set of covariates. In this way, it can detect 

covariate-dependent subgroups that lead to different parameter estimates of the fitted statistical 

model (Seibold, Zeileis, & Hothorn, 2016; Strobl et al., 2015; Strobl, Wickelmaier, & Zeileis, 

2011). 

The proposed method, called MOB-ERA hereinafter, begins by fitting an ERA model to 

all observations, producing a single set of the ERA parameter estimates, and then successively 

inspects whether there are substantial changes in the estimated parameter values across 

covariate-dependent subgroups. This is achieved through the so-called parameter instability test 

in MOB that uses the individual contributions to the score function, as will be discussed in detail 

in the Methods section. The method provides a tree diagram that displays hierarchically a nested 

structure of all the covariates selected for partitioning. Each end node of the tree represents a 

non-overlapping subgroup that entails its own ERA parameter estimates. This tree can greatly aid 

in visualizing how the partitioning covariates interact with each other in a hierarchical manner 

and how each group can be characterized by combinations of these covariates. 

The paper is organized as follows. We begin with an overview of ERA and present the 

proposed method, focusing on how MOB can be combined with ERA for finding covariate-

dependent subgroups. We then conduct a simulation study to evaluate the performance of MOB-

ERA. We apply the method to data from the 2012 National Survey on Drug Use and Health 

(NSDUH) concerning nicotine dependence among US adults and their associated predictors. 

This application shows the use of continuous and categorical sociodemographic covariates for 

subgroup identification in ERA. We conclude by briefly discussing the implications of the 

method and potential topics for future research.  
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 Methods 

Parametric ERA 

Assume that there are K different sets of predictors, each of which consists of Pk predictors (k = 

1, ⋯, K). Let xikp denote the ith value of the pth variable in the kth predictor set (i = 1, ⋯, N; p = 

1, ⋯, Pk) and ix = (xi11, ⋯, xikp) denote a 1 by P vector of predictors for the ith observation, where 

1
K
k kP P  . Let yi denote the ith value of the response variable. We assume that yi follows an 

exponential family distribution with a mean μi and variance ϕσi
2, where ϕ is a constant dispersion 

parameter. Let wkp denote a component weight assigned to xikp and wk = 1( , , )
kk kPw w  denote a Pk 

by 1 vector of component weights in the kth predictor set. Let 1
kP

ik p ikp kpf x w   denote the ith 

component score of the kth component, which is the sum of weighted predictors for the ith 

observation in the kth predictor set. Let bk denote the regression coefficient relating the kth 

component to the response variable. Let ηi and g(⋅) denote the ith linear predictor of yi and a 

known link function that describes how μi is related to ηi, respectively. We assume that all the 

predictors are standardized with zero means and unit variances (Takane & Hwang, 2005). 

The ERA model (Hwang et al., 2015; Lee et al., 2016) is then expressed as 

 1 1

1

( )

          

         ,

W

i i

PK

ikp kp k i
k p

K

ik k i
k

k

g

x w b

f b

 

 





 
  

 

 

 



x b

f b

 
(1) 



7 

 

where 
1
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   
  

w 0

W

0 w

 , 1( , , )i i iKf f f , and 1( , , )Kb b  b . As shown in (1), each set of 

predictors reduces to a single component, which in turn influences the response variable. Each 

component weight wkp shows the contribution of each predictor variable to obtaining its 

component as in canonical correlation analysis, whereas the regression coefficient bk signifies the 

effect of each component on the response variable as in linear regression. In this regard, ERA 

carries out data reduction and linear regression simultaneously, as discussed earlier. Figure 1 

displays an example of the ERA model, where a response variable is influenced by three 

components (K = 3), each of which is associated with two predictors (P1 = P2 = P3 = 2). For this 

example, W and b are given as  
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_________________________________ 

Insert Figure 1 around here 

_________________________________ 

We assume a canonical link function g(‧) that sets Wi i i  x b f b . Then, the log-

likelihood function of the ERA model for N observations can be written as 

 ERA 1
1 1

( ; , , ) ( ) ( )θ W W f
N N

N i i i i i i
i i

y y y y 
 

      x b x b f b b , (2) 
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where θERA denotes a (P+K) by 1 vector that stacks kw  and b. The maximum-likelihood (ML) 

parameter estimates of a log-likelihood are typically obtained by iteratively reweighted least 

squares (IRLS) based on the Newton-Raphson optimization algorithm (McCullagh & Nelder, 

1989, Chapter 2.5; Nelder & Wedderburn, 1972). For ERA, maximizing (2) via IRLS is 

equivalent to minimizing the following generalized least-squares criterion (Hwang et al., 2015; 

Lee et al., 2016) 

 ,

2 2
( ) 1

1 1 1 1

(  ) ( )
kp k

N K N K
P

w b i i ikp kp k i i ik kp
i k i k

kz x w b z f b  


   

         , (3) 

with respect to wkp and bk, subject to 2

1

N

iki
f N


 , where ωi = (∂μi/∂ηi)2/τi, τi is the variance 

function value evaluated at μi, and zi is the so-called adjusted response variable with elements zi 

= ηi + (yi - μi)/ωi (McCullagh & Nelder, 1989, Chapter 2). An iterative algorithm similar to the 

alternating least-squares algorithm was proposed to minimize (3) (Hwang et al., 2015; Lee et al., 

2016). This algorithm yields the ML estimates of the ERA parameters and their asymptotic 

standard errors. Refer to the Appendix for a detailed description of the algorithm. 

 

Recursive Partitioning of ERA 

As discussed earlier, ERA currently has no standard method for capturing covariate-dependent 

heterogeneity in the model parameters, thus potentially ignoring subgroup-specific relationships 

between predictor and response variables. To identify heterogeneous subgroups based on a given 

set of covariates in ERA, we propose MOB-ERA that combines ERA with the general steps of 

the MOB algorithm. More specifically, the so-called parameter instability test in MOB (Seibold 

et al., 2016; Zeileis et al., 2008) is used to split the data recursively into disjoint subgroups (also 

called nodes) Bs (s = 1, ⋯, S), each of which contains its own ERA parameters including 
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component weights and regression coefficients. This test focuses on whether there are 

statistically significant changes in parameter estimates (i.e., parameter instabilities) across 

subgroups derived from a partitioning covariate, under the null hypothesis of parameter 

homogeneity. To be clear, the term ‘covariate’ refers to a variable that affects the direction 

and/or strength of the relation between predictor and response variables, which has been 

interchangeably used with the term ‘moderator’ (Arah, 2008; Bollen & Bauldry, 2011; Seibold et 

al., 2016; Thomas, Bornkamp, & Seibold, 2018). 

 Let  ERAs θ  denote the score function, i.e., the first derivative of the log-likelihood 

function in (2). Let i̂  be the empirical contribution of the ith individual to the score function,  

 i̂ =  ERA
ˆ ; is yθ =

ERA

ERA

ERA ˆ

( ; )iy
 θ

θ

θ


, (4) 

where ERAθ̂  denotes the ML parameter estimates at convergence. If only one set of parameters 

θERA holds for all N observations (i.e., no presence of covariate-dependent heterogeneity), then 

the empirical score contributions ( i̂ ; i = 1, ⋯, N) would fluctuate randomly around their mean 

(i.e., zero), regardless of how the observations are divided or grouped by a covariate. For 

example, let us consider “age” a partitioning covariate. After obtaining a set of the ERA 

parameter estimates over all N observations, we can sort their empirical score contributions, i̂ , 

by age. If no age-dependent heterogeneity is present, the ordered score contributions will not 

show any structural fluctuations over the entire range of age. But, in the presence of age-

dependent heterogeneity, a systematic deviation of the ordered contributions from zero over the 

range of age will be observed.  
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 This way of investigating the individual score contributions over the range of a covariate 

gives rise to several test statistics for the parameter instability test (see Merkle, Fan, & Zeileis, 

2014; Zeileis & Hornik, 2007; Zeileis et al., 2008). All these statistics are based on the 

cumulative sum of the sorted empirical score contributions, the so-called empirical fluctuation 

process, and the exact form of the test statistic depends on whether the covariate is continuous 

(e.g., age), ordinal (e.g., education levels), or nominal (e.g., gender). For example, a test statistic 

for a continuous covariate is given by the maximum of the squared L2 norm of the empirical 

fluctuation process scaled by its variance. Details of the parameter instability tests are discussed 

in Zeileis and Hornik (2007). The parameter instability test is performed for each and every 

covariate considered, and the observations are divided into subgroups if at least one of the 

partitioning covariates yields a p-value below the pre-specified significance level of α. The 

covariate associated with the smallest p-value is used as the partitioning variable at the current 

stage of data partitioning. 

After choosing a covariate most associated with parameter instability, MOB-ERA 

determines a certain cutoff value (or a cut-point) in the selected covariate that makes two 

resulting subgroups of observations, say B1 and B2, as different as possible with respect to the 

estimated ERA parameters ERAθ̂ . More specifically, for every conceivable value of the covariate, 

the sum of each subgroup’s log-likelihood is calculated based on the ERA parameters estimated 

for the two groups, i.e., 1(B )

ERA
ˆ( )θ + 2(B )

ERA
ˆ( )θ . The covariate value that maximizes the sum of the 

partitioned log-likelihoods is selected as the cut-point, leading to two subgroups of observations. 

Subsequently, within each of the subgroups, the same procedures of parameter instability test 

and cut-point selection are repeated until some stopping criteria met, as discussed in the next 

subsection. 
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Figure 2 displays an illustrative example of a MOB-ERA tree, where three subgroups (B1, 

B2, and B3) of different sizes (n1, n2, and n3) are identified based on two partitioning covariates 

(age and gender). Based on the ERA model in Figure 1, all observations are first partitioned into 

males and females. The male group (subgroup 3) involves no significant parameter instability by 

age, whereas the female group is further split by age, resulting in two more subgroups of women 

aged up to 30 (subgroup 1) and over 30 (subgroup 2). Each identified subgroup will provide its 

own ERA parameter estimates that are generally displayed in the boxes. 

_________________________________ 

Insert Figure 2 around here 

_________________________________ 

Pruning Strategy 

In a recursive partitioning method, pruning is generally used to remove nodes to avoid 

overfitting (Strobl, Malley, & Tutz, 2009). In MOB-ERA, the following pre-pruning strategies 

are available: the data partitioning procedures are repeated until (a) no more covariate leads to 

statistically significant parameter instabilities, (b) a pre-specified threshold for the minimum 

number of observations left in a node is reached, or (c) all nodes are pure with respect to 

covariate values, where a pure node represents a subgroup that has observations belonging to the 

same covariate group. For large samples, however, these pre-pruning strategies may be less ideal 

because even a small degree of parameter instability can turn out to be statistically significant 

(Seibold et al., 2016; Zeileis et al., 2008).  

 MOB-ERA can also adopt the post-pruning strategy using information criteria, such as 

AIC or BIC, where pruning is started from the bottom of the tree upwards, removing one sub-
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node at a time. For example, we may compare the following two AIC values to decide whether 

to prune a node: 

 AIC(Parent node) = -2∙
(Parent node)

ERA
ˆ( )θ + 2∙h(Parent node) (5) 

and 

 AIC(Subsequent nodes: A and B) = -2∙(
(Node A)

ERA
ˆ( )θ +

(Node B)

ERA
ˆ( )θ ) + 2∙(h(Node A) + h(Node B)), (6) 

where ( )

ERA
ˆ( )θ  denotes the log-likelihood of the ERA model evaluated at the estimated 

parameters, and h denotes the number of free parameters. The AIC in (5) represents the relative 

amount of information assuming a single set of parameter estimates (simpler model of 

homogeneity), where the AIC in (6) quantifies the information assuming different sets of 

parameter estimates (complex model of heterogeneity). For example, in Figure 2, assume that 

AIC(Node 2) > AIC(B1 and B2). Then, the split of Node 2 into the subgroups B1 and B2 is kept in the 

final tree because this results in a smaller AIC value than the tree without these subgroups. By 

means of the pre- and/or post-pruning strategies, MOB-ERA can generate a hierarchy of selected 

covariates, which leads to heterogeneous subgroups of observations, in an automatic manner. 

 

Simulation Study 

We investigated a Type Ⅰ error rate, power, and classification accuracy of MOB-ERA. In the 

MOB framework, a Type Ⅰ error can be defined as the probability of having at least one split 

when none of the covariates are associated with parameter instabilities (Fokkema, Smits, Zeileis, 

Hothorn, & Kelderman, 2018; Seibold, Hothorn, & Zeileis, 2018; Wickelmaier & Zeileis, 2018). 

The Type I error performance of a new MOB extension has important practical implications 

because it is closely related to overfitting, where the tree partitions observations according to the 
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noise rather than the true covariate-dependent structure. Thus, we examined whether the Type Ⅰ 

error rate was controlled across different simulation conditions. We also investigated how well 

and accurately MOB-ERA could detect parameter instability, thereby identifying the subgroups 

derived from pre-specified partitioning covariates correctly. 

 

Simulation Design and Data Generation 

We specified an ERA model that was composed of two components (K = 2) and a response 

variable. No correlation between the components was assumed. We fixed one regression 

coefficient b1 to .3 but allowed the other regression coefficient b2 to vary depending on how 

much of the variance in the response variable was accounted for by the two components (R2). We 

considered three levels for the variance explained (R2 = .2, .4, and .6), which in turn resulted in 

three different values of b2 (b2 = .33, .56, and .71). Each component was linked to four predictor 

variables (Pk = 4) with the pre-determined weight values, w1 = (.7, .6, .5, .4)’ and w2 = 

(.6, .5, .4, .3)’. The number of components and predictors remained the same over the different 

simulation conditions.  

 We considered six different sample sizes: N = 90, 120, 180, 300, 600, and 900. This total 

sample size N was then divided into three subgroups, whose sizes were denoted by n1, n2, and n3, 

with respect to two partitioning covariates, Z1 and Z2. Z1 was randomly sampled from a binomial 

distribution, Z1 ~ B(N, p1), whereas Z2 was from a uniform distribution between -1 and 1. 

Accordingly, three covariate-dependent subgroups were defined as follows: 

1 1

2 1 2

3 1 2

  Group1 ( ): if  =0

Total  Group2 ( ): if  ( =1)  ( 0)

 Group3 ( ): if  ( =1)  ( 0).

n Z

N n Z Z

n Z Z


  
  
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The value of p1 = P(Z1=0) was either 1/3 or 2/3 to generate two different subgroup size 

conditions—unbalanced and balanced subgroup sizes. Note that when p1 = 1/3, the number of 

observations for each subgroup was, on average, (n1, n2, n3) = (1/3, 2/3×1/2, 2/3×1/2)N, leading 

the number of observations to be all equal across the subgroups (balanced condition). When p1 = 

2/3, (n1, n2, n3) = (2/3, 1/3×1/2, 1/3×1/2)N, resulting in the unbalanced condition where one 

group size was larger than the others. We also included a noise covariate Z3 that was completely 

unrelated to the subgroups to examine whether MOB-ERA could accurately select the correct 

covariate when partitioning data. The noise covariate Z3 was sampled from a uniform distribution 

between -1 and 1.  

In this study, the degree of parameter instability in component weights was controlled by 

an instability control parameter δ = {0, 0.1, 0.2, or 0.3}, the amount of deviation from the pre-

determined weight values w1 and w2: WGroup1 = 1

2


 




 

 

w 0

0 w
, WGroup2 = 1

2

 
 
 w

0

0

w
, and 

WGroup3 = 1

2


 




 

 

w 0

0 w
. We used δ to generate either the homogeneity condition for 

evaluating the Type I error (δ = 0) or the heterogeneity condition for evaluating power and 

accuracy (δ ≠ 0). Under the heterogeneity condition, we further differed the two regression 

coefficients by changing the signs (directions) as follows: 

Group1 1 2 1

Group2 1 2 1 2

Group3 1 2 1 2

  ( , )  if   =0

 ( , )   if  ( =1)  ( 0)

 ( , )   if  ( =1)  (  > 0).

b b Z

b b Z Z

b b Z Z

   


     
    

b

b b

b

 

 Following the data generation approach of Becker, Rai, and Rigdon (2013), the variance-

covariance matrix of the predictor and response variables, Σ, was obtained based on the ERA 

parameters described above. We generated 1000 datasets from a multivariate normal distribution 
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with zero means and Σ for each combination of variance explained (R2), sample size (N), 

parameter homogeneity or heterogeneity (δ), and number of observations across subgroups 

(balanced or unbalanced). We applied MOB-ERA to the datasets to compute its empirical Type Ⅰ 

error rate, power, and classification accuracy under each condition. All data generation and 

computations were carried out using the R system for statistical computing version 3.5.1. We 

wrote an R code to implement ERA, which is archived on GitHub at 

https://github.com/generalizedERA. We used the “lmtree” function of the R package “partykit” 

(version 1.2-5; Hothorn & Zeileis, 2015) for the parameter instability test and cup-point 

selection. 

 

Results 

In this study, an empirical Type Ⅰ error was calculated by counting how many of the samples 

were falsely partitioned under the homogeneity condition (δ = 0). Table 1 presents the empirical 

Type Ⅰ error rates across the different sample sizes and the different values of R2. In all the 

conditions, MOB-ERA tended to produce somewhat conservative Type Ⅰ error rates, i.e., yielded 

smaller values than the nominal significance level of .05, and this pattern became more apparent 

in smaller samples (N < 300). This is consistent with previous MOB studies (e.g., Frick, Strobl, 

& Zeileis, 2014; Seibold et al., 2018), in which the parameter instability test in MOB with many 

partitioning covariates were often shown to be conservative, especially in small samples, because 

of the Bonferroni correction applied. In large samples (N ≥ 300), however, MOB-ERA seemed 

to control Type Ⅰ errors reasonably well regardless of the value of R2 and remain close to the 

nominal significance level of .05. To hold the nominal Type Ⅰ error rate, therefore, it may be 

important to ensure a sufficiently large number of observations relative to the number of 
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partitioning covariates considered for the parameter instability test, e.g., at least 300 observations 

for three partitioning covariates in this study. 

_________________________________ 

Insert Table 1 around here 

_________________________________ 

 Table 1 also provides the empirical power of MOB-ERA for different combinations of 

sample sizes, δ, and R2 values under the heterogeneity condition, i.e., when the null hypothesis of 

parameter stability was not true. For the calculation of the empirical power, we counted how 

many times the parameter instability test was turned out to be significant, so that a sample was 

correctly partitioned by Z1 and/or Z2 out of 1000 random samples. As shown in the table, the 

empirical power estimates tended to increase when the sample size and/or R2 increased. More 

specifically, the influence of the sample size or R2 on the power was strongly dependent on the 

number of observations for each subgroup: Under the balanced condition, MOB-ERA was able 

to detect instabilities beyond a power threshold of .9 across all the sample sizes and R2 values. 

Under the unbalanced condition, conversely, the power dropped quickly in small samples (N ≤ 

120) even when the difference in the magnitude of regression coefficients between groups was 

large (e.g., R2 = .6). The influence of the component weight instability (i.e., the magnitude of δ) 

on the power was minimal until the δ value approached 0.3. Thus, to ensure an adequate level of 

power of MOB-ERA in small samples, the size of any subgroup should not be too dominant. 

Although not reported in Table 1, we found that the estimated probability that a sample was 

erroneously partitioned by the noise covariate Z3 was zero across all the conditions. 

 Finally, the classification accuracy of subgroup memberships was measured using the 

Cramér’s V, which is a normalized χ2 statistics of true and predicted group memberships in a 
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cross-table (Mirkin, 2001). It ranges between 0 and 1, where 1 means complete match between 

true and predicted subgroup memberships. Table 1 also displays the average Cramér’s V values 

for the different sample sizes, δ, and R2 values under the heterogeneity condition. Under the 

balanced condition, on average, the Cramér’s V increased with the sample size, δ, and R2. 

Moreover, Cramér’s V were all over .9 even in small samples, which indicates a high level of 

accuracy in recovering the true subgroup memberships. Under the unbalanced conditions, 

Cramér’s V decreased when the sample size and R2 were small. This is expected because the row 

totals in a cross-table are extremely uneven when one group size is much larger than the others, 

leading to exaggerated V estimates (Mirkin, 2001). Conversely, the V estimates almost 

approached 1 when the sample size increased (N > 180) and the values of δ and R2 became large. 

Interestingly, Cramér’s V decreased again when N = 900 because MOB-ERA ended up further 

partitioning the largest subgroup into more than the pre-specified one. This suggests that post-

pruning might be necessary in large samples to avoid such overfitting, especially when a group is 

dominant in size. 

 

Empirical Application 

We applied MOB-ERA to public data collected from the 2012 National Survey on Drug Use and 

Health (NSDUH) (United States Department of Health and Human Services, Substance Abuse 

and Mental Health Services Administration [SAMHSA], 2013). This survey was conducted from 

January through December 2012 and interviewed a number of residents aged 12 and older in 

American households. The respondents were asked to answer various questions concerning their 

use of substances (e.g., tobacco, alcohol, marijuana, etc.), mental and physical health issues, and 

sociodemographic characteristics (e.g., age, gender, ethnicity, marital status, etc.). 
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In this application, we attempted to examine sociodemographic differences in the effects 

of predictors related to early exposure to substances, mental health, and SES on nicotine 

dependence among US adults. The response variable, the degree of nicotine dependence, was the 

average score of the Nicotine Dependence Syndrome Scale (SAMHSA, 2013). We identified a 

total of 11 predictors that were available in the 2012 NSDUH data based on previous studies 

concerning the predictors of nicotine dependence on samples of US adults (e.g., Bohadana, 

Nilsson, Martinet, & Rasmussen, 2003; Breslau, Fenn, & Peterson, 1993; Breslau, Kilbey, & 

Andreski, 1994; Daeppen et al., 2000; Green, Jucha, & Luz, 1986; Hu et al., 2006; Jackson, 

Knight, & Rafferty, 2010; Kandel, Chen, Warner, Kessler, & Grant, 1997; Kandel & Chen, 

2000; Khuder, Dayal, & Mutgi, 1999; Schmitz, Kruse, & Kugler, 2003). Then, the predictors 

were grouped into three categories, such as substance initiation age (F1), mental health status 

(F2), and SES (F3), which were represented as components in the ERA model. Table 2 presents a 

description of all the variables and their summary statistics. It also shows which component is 

associated with which predictors. Figure 3 displays the specified ERA model, where three sets of 

predictors related to F1, F2, and F3 were to influence the degree of nicotine dependence. The 

number of respondents was N = 8,412 in our analysis. 

_________________________________ 

Insert Table 2 and Figure 3 around here 

_________________________________ 

The use of an independent hold-out dataset (often called a test or validation set) for 

model evaluation has been emphasized in many contexts, especially in the recursive partitioning 

literature (Bauer & Kohavi, 1999; Elith, Leathwick, & Hastie, 2008; Hastie, Tibshirani, & 

Friedman, 2009). Thus, we divided the dataset randomly into two disjoint sub-datasets—training 
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(Ntrain = 4,206) and test (Ntest = 4,206) datasets. We used the test set to validate the 

generalizability of our MOB-ERA results obtained from the training set. 

As partitioning covariates, we considered four sociodemographic variables: age, gender, 

marital status, and ethnicity. Refer to Table 2 for their summary statistics. Many previous studies 

have reported several subgroups of nicotine dependence that could be differentiated by age, 

gender, or ethnicity (e.g., Bohadana et al., 2003; Breslau et al., 1993; Daeppen et al., 2000; Hu et 

al., 2006; Jackson et al., 2010; Kandel et al., 1997; Kandel & Chen, 2000; Khuder et al., 1999). 

In these studies, covariate-dependent subgroups were pre-defined by researchers (e.g., females 

vs. males, Black vs. White smokers, etc.). However, in practice, it is often unclear how and 

which covariates may interact with each other, and difficult to determine such subgroups in 

advance, especially when there are continuous covariates, categorical covariates with multiple 

levels, and/or a number of covariates at the same time (Strobl et al., 2015; Su et al., 2009; Zeileis 

et al., 2008). 

As stated earlier, the final MOB-ERA model can be decided by pre- and post-pruning to 

avoid potential overfitting. The following pruning procedures were the same for both training 

and test sets: When splitting the data, the tree size was determined by the parameter instability 

tests (i.e., data splitting is continued until no covariate was statistically significant at α = .05) and 

the minimal node size of 500 (pre-pruning). Considering the large number of respondents, we 

then pruned the tree afterwards using the AIC-based pruning function (post-pruning). Figure 4 

presents the final MOB-ERA solutions obtained from the training and test sets. In the figure, the 

internal nodes, represented by circles, show which and how covariates partition the data into 

subgroups in a hierarchical manner. Each circle shows the selected covariate and its p-value 

obtained from the parameter instability test, as will be further discussed shortly. Each grey box at 
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the bottom denotes a leave or terminal node of the tree, representing a subgroup identified. It also 

displays the number of respondents and the estimated regression coefficients of each subgroup. 

Node number is given at the top of every circle and box. 

_________________________________ 

Insert Figure 4 around here 

_________________________________ 

Table 3 summarizes the results of the parameter instability tests. Each node in the table 

shows the values of the test statistics and p-values for each of the four covariates. A node was 

partitioned into subgroups when at least one covariate was statistically significant at α = .05 

(until the minimum node size of 500 was reached). The covariate with the smallest p-value is 

used as the partitioning variable at each node. In the training set, ethnicity was selected as the 

first partitioning covariate (Node 1), splitting them into two groups—Whites and all the other 

ethnicities (Hispanic and Non-Hispanic-All). For the group of Whites, two age groups (i.e., up to 

22.5 and over 22.5) were found to be significantly different (Node 3), whereas for all other 

ethnicities, no further split was carried out. As shown in the table (and also displayed in Figure 

4), the final hierarchy of the partitioning covariates was the same for both training and test sets. 

This suggests that, using the pre- and post-pruning strategies, MOB-ERA could reliably identify 

heterogeneous subgroups of nicotine dependence based on the partitioning covariates. 

_________________________________ 

Insert Table 3 around here 

_________________________________ 

Table 4 presents the estimated component weights, their standard errors, and p-values for 

the identified subgroups in Nodes 2, 4, and 5. The first three columns of the table show the 

results obtained from the training set. As shown in the table, the component weight estimate for 
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age of first cigarette use (w11) was positive and statistically significant across all three subgroups, 

indicating that cigarette initiation contributed to forming F1, substance initiation age, in 

explaining the degree of nicotine dependence. Alcohol and marijuana initiation age were also 

statistically significant in the group of young Whites aged up to 22.5 (Node 4). With regard to 

the second predictor set related to F2, mental health status, different predictors were statistically 

significant among the subgroups: the functional impairment level in daily life (w22) in the non-

White respondents (Node 2), the overall level of nonspecific psychological distress (w21) in 

young Whites (Node 4), and the history of serious suicidal ideation (w23) in older Whites aged 

over 22.5 (Node 5). In the last predictor set, the weight estimate for education level (w31) was 

statistically significant, contributing to determining F3, SES, across all the subgroups. In 

addition, the health insurance status (w32) was also significant in Nodes 2 and 4, whereas the job 

status (w34) was significant in Node 5. As shown in the table, many of the estimated component 

weights turned out to be statistically insignificant. This is, however, common in practice when 

dealing with a large number of predictors simultaneously (DeSarbo, Hwang, Blank, & Kappe, 

2015; Kim et al., 2020; Lee et al., 2016). Lastly, as provided in the last three columns of the 

table, similar results were obtained from the test set. 

_________________________________ 

Insert Table 4 around here 

_________________________________ 

Table 5 shows the estimated regression coefficients and their standard errors per 

subgroup. The estimates are also displayed at each terminal node in Figure 4. Note that we can 

compare the relative magnitudes of the regression coefficient estimates because they are 

standardized ones in ERA. As shown in the table, earlier substance use (F1), worse mental health 
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(F2), and lower SES (F3) were associated with a higher level of nicotine dependence in all 

identified subgroups. However, the magnitudes of their effects varied across the groups. For 

example, earlier substance use had a larger effect on nicotine dependence in the group of young 

Whites aged up to 22.5 (Node 4), compared to the other groups. SES had the smallest effect on 

the nicotine dependence in the non-White respondents (Node 2), whereas it had larger effects in 

White respondents (Nodes 4 and 5). Moreover, the group of older Whites showed the largest 

effect of mental health status on nicotine dependence among the three groups. Again, similar 

findings were obtained from the test set. 

_________________________________ 

Insert Table 5 around here 

_________________________________ 

 

Concluding Remarks 

We combined ERA with MOB to identify potentially heterogeneous subgroups of observations 

based on a set of auxiliary covariates in the context of ERA. The proposed method, MOB-ERA, 

successively repeats the procedures of probing parameter instabilities and finding a cut-point for 

covariates, given a specified ERA model. This results in a tree diagram that displays covariate-

dependent characteristics of identified subgroups, facilitating an understanding of subgroup-

specific effects of components on a response variable. Unlike conventional multiple-group 

analyses, where grouping covariates are pre-specified ahead of data analysis, MOB-ERA detects 

a meaningful combination of covariates upon the completion of the recursive partitioning 

procedure.  
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The simulation study showed that MOB-ERA seemed to control for the Type Ⅰ error rate 

reasonably well over the whole range of the simulation conditions considered. The relatively 

conservative level of Type Ⅰ error rates in small samples became close to the nominal level of .05 

when the sample size became large. The empirical power and classification accuracy also 

showed that MOB-ERA satisfactorily recovered the predefined heterogeneous subgroups 

particularly when the number of observations was roughly equal across the subgroups.  

We also demonstrated how MOB-ERA could identify covariate-dependent heterogeneous 

subgroups, using a well-known national survey dataset in the US. When partitioning the data 

based on the specified ERA model, we applied both pre- and post-pruning strategies to avoid 

overfitting and enhance the generalizability of the resulting MOB-ERA tree. The final hierarchy 

of partitioning covariates was derived in a data-driven manner, without needing to specify in 

advance which covariates should be included and how they interact with each other. The 

combination of the selected covariates in the final MOB-ERA tree resulted in socio-

demographically diverse subgroups, each of which showed different strengths of component 

effects on the response variable. Moreover, the findings obtained from a random half of the 

dataset (a training set) were much the same as those from the other half (an independent 

validation set), suggesting that MOB-ERA was reliable in detecting heterogeneous subgroups. 

As with many other recursive partitioning methods, a major limitation of MOB-ERA is 

that its single-tree solution can be highly variable, i.e., the hierarchy of partitioning structure can 

be changed entirely by a small change in training data (Garge, Bobashev, & Eggleston, 2013; 

Strobl et al., 2009). It may be necessary to technically refine the method to alleviate this potential 

variability problem of a single MOB-ERA tree. For example, we may combine the proposed 

method into the frameworks of bagging (Breiman, 1996) or random forests (Breiman, 2001). 
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These so-called ensemble methods build a large number of separate trees and average them to 

improve generalizability of a single tree estimator. Both bagging and random forests fit trees 

independently to random samples of the original training dataset, where the random sampling 

procedure is carried out either using bootstrapping (i.e., sampling with replacement of the same 

size) or subsampling (i.e., sampling without replacement of smaller size). Random forests also 

include random selection of predictors to prevent some predominant predictors from being 

repeatedly selected across random trees. Adopting these ensemble methods to MOB-ERA may 

help enhance the generalizability and predictive performance of a single MOB-ERA tree, which 

warrants future research. 

Lastly, it would be worthwhile to further investigate the generalizability of the final 

solution of MOB-ERA. In many social and behavioral studies, it is often assumed that a sample 

at hand (i.e., training data) is a good reflection of what will be encountered in future data; thus, 

the final model is selected as the one optimized on the training data. But when researchers aim to 

develop a model that can better assist decision-making in future unseen data, it would be crucial 

to assess a model’s performance on an “out-of-sample” (i.e., independent data not used for 

model development). In the Empirical Application section, we randomly split the data into two 

separate subsets and obtained very similar findings on both sets. However, this split-sample 

approach can be limited in two ways. First, it is inefficient when sample size is small, leading to 

training and validation datasets, both of which are small. Second, high variability in the final 

model selection can be introduced because of its reliance on a single split of the data. Thus, in 

future research, we may consider applying resampling methods, such as cross validation or the 

bootstrap method, to evaluate the performance of MOB-ERA models as alternatives to the split-
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sample approach. This may be of particular use for researchers who seek to build a model that 

generalizes to unseen samples, especially when overfitting is of concern. 
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Table 1. Type I error, power, and Cramer’s V coefficients under different sample and subgroup 
sizes obtained from the proposed method. 

    Total Sample Size (N) 
Measures Subgroup Sizes δ R2 90 120 180 300 600 900 
Type I error (N/A) (N/A) .2 .01 .03 .03 .04 .04 .04 
   .4 .02 .02 .03 .04 .04 .04 
   .6 .02 .03 .03 .04 .05 .05 
Power Balanced 0.1 .2 .91 .91 .93 1.00 1.00 1.00 
   .4 .93 .94 1.00 1.00 1.00 1.00 
   .6 .93 .98 1.00 1.00 1.00 1.00 
  0.2 .2 .91 .91 .93 1.00 1.00 1.00 
   .4 .93 .95 1.00 1.00 1.00 1.00 
   .6 .93 .98 1.00 1.00 1.00 1.00 
  0.3 .2 .94 .96 1.00 1.00 1.00 1.00 
   .4 .96 1.00 1.00 1.00 1.00 1.00 
   .6 .98 1.00 1.00 1.00 1.00 1.00 
 Unbalanced 0.1 .2 .11 .12 .90 1.00 1.00 1.00 
   .4 .10 .11 .96 1.00 1.00 1.00 
   .6 .11 .12 1.00 1.00 1.00 1.00 
  0.2 .2 .10 .11 .91 1.00 1.00 1.00 
   .4 .11 .12 .96 1.00 1.00 1.00 
   .6 .12 .12 1.00 1.00 1.00 1.00 
  0.3 .2 .12 .12 .90 1.00 1.00 1.00 
   .4 .15 .15 1.00 1.00 1.00 1.00 
   .6 .21 .22 1.00 1.00 1.00 1.00 
Cramer’s V Balanced 0.1 .2 .90 .90 .94 .97 .98 .99 
   .4 .91 .91 .95 .98 .98 .99 
   .6 .93 .94 .99 .99 .99 .99 
  0.2 .2 .90 .91 .95 .97 .98 .99 
   .4 .91 .91 .95 .98 .98 .99 
   .6 .94 .94 .99 .99 .99 .99 
  0.3 .2 .91 .91 .95 .98 .99 .99 
   .4 .91 .93 .98 .99 .99 .99 
   .6 .95 .95 .99 .99 .99 .99 
 Unbalanced 0.1 .2 .79 .83 .84 .91 .93 .90 
   .4 .82 .83 .83 .92 .95 .89 
   .6 .83 .84 .84 .95 .96 .90 
  0.2 .2 .81 .83 .84 .92 .95 .88 
   .4 .81 .84 .85 .92 .96 .89 
   .6 .83 .84 .85 .99 .99 .90 
  0.3 .2 .85 .85 .85 .95 .96 .90 
   .4 .86 .86 .86 .99 .99 .90 
   .6 .86 .86 .90 .99 .99 .90 
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Table 2. A description of variables and summary statistics for the 2012 NSDUH data (N=8,412) 

Variable Names Measures (Range or Categories) Mean (Q1, Q3) a 

Response Variable   
Nicotine (cigarette) dependence Average score over 17 items of the Nicotine Dependence 

Syndrome Scale (1-5) 
2.55 (2, 3) 

Predictors   

F1: Substance initiation age   

Cigarette (Cig) Age of first cigarette use 15.81 (14, 18) 

Alcohol (Alc) Age of first alcohol use 16.82 (15, 18) 

Marijuana (Mar) Age of first marijuana use 16.94 (15, 18) 

F2: Mental health status   

Distress level (Dis) Nonspecific psychological distress scale (K6) score 2.01 (0, 2) 

Impairment (Imp) Daily functional impairment due to problems with emotions, 
nerves, or mental health 

1.09 (0, 3) 

Suicidal thought (Sui) Serious thoughts of suicide in the past year (Yes=1/No=0) %Yes: 9.58 

Depression (Dep) Major depressive episode in the past year (Y=1/N=0) %Yes: 12.5 

F3: Socioeconomic status   

Education (Edu) 5th grade or less (=5), 6th grade (=6), …, Freshman/13th year 
(=13), Sophomore/Junior (=14), Senior/Grad or more (=15) 

12.41 (12, 14) 

Insurance (Ins) Having any health insurance (Y/N) %Yes: 71.75 

Family income (Fam)  Less than $10,000 (=1), ~$19,999 (=2), ~$29,999 (=3), …, 
~$39,999 (=4), ~$49,999 (=5), …, ~$74,999 (=6), $75,000 or 
more (=7) 

4 (2, 6) 

Employment Status (Emp) Employed (Y=1/N=0) %Yes: 67.02 

Partitioning Covariates   

Age b Groups of 18YearsOld, 19YO, 20YO, 21YO, 22/23YO, 
24/25YO, b/w26-29YO, b/w30-34YO, b/w35-49YO, b/w50-
64YO, or 65YO-older 

27.38 (21, 32) 

Gender Male / Female %Male: 54.64 

Marital status (been married) Married (N=1,797), Widowed (=83), Divorced/Separated 
(=1,072), Single/never been married (=5,460) 

- 

Ethnicity Non-Hispanic-White, Hispanic, Non-Hispanic-All c %:68.93/11.73/19.34 
a For continuous variables, the first quartile (Q1), mean, and third quartile (Q3) are given. 
b In the original survey, the age of each respondent was encoded as an ordinal variable. The group of 22/23 years old is the most 
dominant one, 17.27%. The average % of the other age groups are 9.09%. 
c The category of “Non-Hispanic-All” includes non-Hispanic Native American/Alaskan Natives, non-Hispanic Hawaiians/other 
Pacific Islanders, non-Hispanic Asians, and people reporting more than one race (other than Hispanic).  
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Table 3. A summary of the parameter instability tests for the 2012 NSDUH data. A test statistic 
value and p-value are given for each partitioning covariate. The node numbers are consistent 
with those in Figure 4. 
 

  Age Gender Marital Status Ethnicity 

 Node Statistic p-value Statistic p-value Statistic p-value Statistic p-value 

(a) Training set 1 18.57 .02 2.15 .96 12.73 .54 7.52 .00 

 3 24.78 .00 .45 1.00 16.42 .17 0 a - 

(b) Test Set 1 27.99 .00 3.18 .84 19.27 .09 44.01 .00 

 3 31.84 .00 .98 .99 21.58 .03 0 a - 
a Node 3 is ethnically homogeneous. 
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Table 4. The component weight estimates (Est.), and their standard errors (S.E.) and p-values 
from MOB-ERA for the 2012 NSDUH data. 
 

   (a) Training set (b) Test set 

Subgroups Components Predictors Est. S.E. p-val Est. S.E. p-val 

Node 2 F1 Cigarette initiation (w11) .87 .30 .00 .97 .29 .00 
  Alcohol initiation (w12) -.26 .30 .38 -.11 .29 .72 
  Marijuana initiation (w13) .39 .30 .19 .15 .30 .61 
 F2 Distress level (w21) .07 .29 .81 .38 .29 .20 
  Impairment (w22) .50 .25 .05 .56 .28 .05 
  Suicidal thought (w23) .31 .24 .20 -.06 .25 .81 
  Depression (w23) .45 .27 .10 .30 .27 .26 
 F3 Education (w31) .75 .24 .00 .65 .32 .04 
  Insurance (w32) .52 .23 .03 .17 .31 .58 
  Family income (w33)  .12 .25 .62 .38 .32 .24 
  Employment Status (w34) .27 .24 .26 .57 .32 .07 

Node 4 F1 Cigarette initiation (w11) .89 .15 .00 1.03 .14 .00 
  Alcohol initiation (w12) -.32 .13 .02 -.28 .13 .03 
  Marijuana initiation (w13) .33 .15 .03 .27 .14 .05 
 F2 Distress level (w21) .83 .42 .05 .67 .34 .05 
  Impairment (w22) .23 .41 .57 .61 .33 .06 
  Suicidal thought (w23) .42 .34 .22 .02 .27 .93 
  Depression (w23) -.68 .38 .08 -.43 .29 .14 
 F3 Education (w31) .87 .11 .00 .87 .09 .00 
  Insurance (w32) .33 .10 .00 .28 .09 .00 
  Family income (w33)  .09 .10 .37 .01 .09 .91 
  Employment Status (w34) .00 .10 1.00 .05 .09 .54 
Node 5 F1 Cigarette initiation (w11) 1.01 .18 .00 .67 .21 .00 
  Alcohol initiation (w12) -.03 .18 .85 .04 .22 .84 
  Marijuana initiation (w13) -.13 .19 .47 .53 .22 .01 
 F2 Distress level (w21) .25 .20 .22 .46 .31 .14 
  Impairment (w22) .36 .20 .07 .13 .30 .66 
  Suicidal thought (w23) .50 .16 .00 .25 .23 .28 
  Depression (w23) .19 .18 .29 .43 .27 .11 
 F3 Education (w31) .72 .10 .00 .55 .11 .00 
  Insurance (w32) .15 .09 .11 .17 .11 .12 
  Family income (w33)  .11 .10 .25 .41 .12 .00 
  Employment Status (w34) .45 .10 .00 .34 .11 .00 
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Table 5. The regression coefficient estimates (Est.), and their standard errors (S.E.) and p-values 
from MOB-ERA for the 2012 NSDUH data. 
 

  F1: Substance initiation F2: Mental health status F3: Socioeconomic status 

 Node Est. S.E. p-val Est. S.E. p-val Est. S.E. p-val 

(a) Training set 2 (N=1,298) -.11 .03 .00 .12 .03 .00 -.12 .03 .00 

 4 (N=1,609) -.23 .03 .00 .09 .03 .00 -.28 .03 .00 

 5 (N=1,299) -.14 .02 .00 .16 .02 .00 -.26 .02 .00 

(b) Test Set 2 (N=1,316) -.11 .03 .00 .12 .03 .00 -.09 .03 .00 

 4 (N=1,591) -.22 .03 .00 .10 .02 .00 -.28 .03 .00 

 5 (N=1,299) -.14 .03 .00 .13 .03 .00 -.25 .03 .00 
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Figure 1. An exemplary ERA model. Square boxes indicate observed predictor and response 
variables. Circles represent components and an error term.   
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Figure 2. An illustrative example of MOB-ERA. Gender and age are used as partitioning 
covariates. Each identified subgroup provides its own ERA parameter estimates. 
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Figure 3. The ERA model for the 2012 NSDUH data. Variable names are consistent with those 
in Table 2. 
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(a) Training set (Ntrain = 4,206) (b) Test set (Ntest = 4,206) 

 
Figure 4. MOB-ERA for the 2012 NSDUH data: The final MOB-ERA trees obtained from (a) the training set and (b) the test set. 
Node numbers are given at the top of every internal (circle) and terminal (grey box) node. Each internal node corresponds to the 
selected partitioning covariate and its p-value obtained from the parameter instability test. Each terminal node represents an identified 
subgroup and provides the number of observations and regression coefficient estimates for the subgroup. 
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Appendix: Estimation and Inference in ERA 

We express (7) in matrix notation as 

 ( ) ( ) ( ) ( )XW Ω XW F Ω F       z b z b z b z b  (A1) 

with respect to W and b, subject to diag(F′F) = NI, where z  is an N by 1 vector of adjusted 

response variable values zi, X is an N by P matrix of predictors, W is a P by K matrix of 

component weights, b is a K by 1 vector of regression coefficients, Ω is an N by N diagonal 

matrix of the ith diagonal element ωi, and F is an N by K matrix of component scores. 

To estimate ERA parameters, we aim to minimize (A1) by an iterative method in which 

each iteration involves the following steps: 

Step1. Update W for fixed b, z, and Ω. This is equivalent to minimizing the following criterion 

with respect to W, 

 

( )

* *

( ) ( )

       [vec( )] [vec( )]

       [ ( )vec( )] [ ( )vec( )]

       ( ) ( )

W XW Ω XW

XW Ω XW

X W Ω X W

U Ω U

   

  

      

  

z b z b

z b z b

z b z b

z w z w

 (A2) 

where indicates the Kronecker product, vec(W) indicates the vec operator that creates the 

column vector of W obtained by stacking the columns of W, U denotes an N by P matrix formed 

by eliminating the columns of Xb  corresponding to the nonzero elements in vec(W), and *w  

denotes the P by 1 vector of the nonzero elements in vec(W). Then, the estimates of *w  are 

obtained by 

 1
*ˆ ( )U ΩU U Ω w z . (A3) 

Subsequently, the nonzero elements in W are replaced with the corresponding values in *w . 

Step2. Update b for fixed W, z, and Ω. This is equivalent to minimizing 
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( ) ( ) ( )

      ( ) ( )

b XW Ω XW

F Ω F

   

  

z b z b

z b z b
 (A4) 

with respect to b, subject to diag(F′F) = NI. The least-squares estimate of b is given by  

 1ˆ ( )F ΩF F Ω b z . (A5) 

Step3. Update z and Ω for fixed W and b. As discussed in the Methods section, z is updated 

based on zi = ηi + (yi - μi)/ωi. The calculation of Ω varies depending on which member of the 

exponential family is assumed for the response variable (refer to McCullagh & Nelder, 1989). 

For example, in the case of the normal distribution, 2ˆ ˆ 1i i    yielding Ω = IN. 

We repeat the above steps until the changes in Ŵ and b̂  between previous and current iterations 

are below a pre-determined threshold, e.g., 10-5. 

 Let ERAθ̂ = [ *ŵ ; b̂ ] denotes the ML parameter estimates at convergence that stacks *ŵ  and

b̂ . The asymptotic covariance matrix of ERAθ̂  can be obtained by computing negative Hessian 

matrix evaluated at ERAθ̂  and inverting it (Hwang et al., 2015; Yee & Hastie, 2003). Let ERA
ˆ ˆθ θ

for simplicity. The negative Hessian matrix or the second-derivative of the log-likelihood is 

given as 

 

2 2

2

2 2

* * *

*

( ) ( )
( )

H( )
( ) ( )

θ θ
θ

θ
θ θ θ θ

'

'

  
          

    
     

 


 
w w w b

b w b b

. (A6) 

The diagonal terms in (A6) can be obtained by fixing *w  and b, respectively: 

 
2

* *

( )θ

'



 


w w
U ΩU   (A7) 

and 
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2 ( )θ


 


b b

FΩF . (A8) 

The off-diagonal terms can be obtained using the profile likelihoods (Richards, 1961) 

 
2

*

( )θ

'



 


b w

2
*

* *

( )θ'

'

  
      

w

b w w
. (A9) 

To compute 
*'



w

b
 in (A8), let jδ denote a K by 1 vector of 0 except having 1 in the jth element 

(j = 1, …, K) and   denote a matrix formed by eliminating the columns of δ Xj    

corresponding to the fixed elements in vec(W). Then, 
*'



w

b
is calculated by 

 
*'



w

b
=  1 1( ) - ( )        U ΩU Ω ΩU U ΩU U Ωz z   (j = 1, …, K). (A10) 

 


