The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "A Precision Approach to Architectural Planning," submitted by Mr. Hussein Mohamed Tawfik in partial fulfillment of the requirements for the degree of Master of

Date \qquad
\qquad

A THESIS

SUBMITIED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARCHITECTURE

Department of Architecture

Winnipeg, Manitoba

May, 1971
(C) Hussein Me Tawfik 1972

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to Professor Ben Harnish, Faculty of Architecture, University of Manitoba for his able guidance and encouragement during the course of this work.

Acknowledgement is also due to Professor A. Koerte, Faculty of Architecture and Professor J. Wells, Department of Computer Science, Faculty of Science for their valuable assistance and interest.

Also the author would like to thank Mr. E. Hillman, Director of Campus Planning, University of Manitoba, Mr. R. DeCuypere, Associate Registrar, Mr. D. Thompson, Assistant Registrar, Mr. G. Phillips, Senior Accountant, Professor J. Gray, Department of Economics and the staff members of the Registrar's Office for their cooperation and assistance. Acknowledgement is also due to the faculty and colleagues in the Department of Architecture for their valuable criticisms and encouragement.

ABSTRACT

This study illustrates a method of architectural planning by use of a digital computer. The computer uses as input data relating to the performance of an existing building similar to that under design. These data include interactions between different activities, time and motion study of personnel, salaries and cost of operation, fire requirements and site limitations.

The computer output is a scale plan of the required project that insures optimum performance for a minimum running cost. The study allows the user to place restrictions in the plan such as pre-located stairwells, outside configurations., etc. It can be applied either for the planning of a new building, or re-allocation of facilities within an existing building.

TABLE OF CONTENTS

Page
INTRODUCTION 1
Chapter
I. METHODOLOGY. 3
1.I Architectural Concept 3
1.2 Economical Merits 4
1.2.1 Analogy between original and running costs 5
1.2.2 The impact of efficiency of performance. 7
1.3 Methodology of Planning 9
1.3.1 Procedure of practical application 10
1.3.2 Growth and change 11
II. CRITERIA OF DESIGN 13
2.1 Collection of Data. 13
2.1.1 Activities analysis 15
2.1.2 Categorization of personnel 21
2.1.3 Summary of activities 27
2.2 Time and Motion Study 27
2.2.1 Preparatory procedures. 31
2.2.2 Motion recording technique 33
2.3 Establishment of the Criteria of Design. 41
2.3.1 Space allocations 41
2.3.2 Modular presentation. 42
2.3.3 Final pattern of interactions 45
Chapter Page
III. THE PLANNING PROCESS 48
3.1 Definitions 48
3.2 Standardization of Interactions 49
3.2.1 The multiplier 49
3.2.2 The logic of computer subprogramme 'STNVST' 50
3.3 Evaluation of Relative Cost of Communications 53
3.3.1 The logic of computer subprogrammes 'ACCOST' and 'SMCOST' 53
3.3.2 The logic of computer programme 'SMSORT' 54
3.4 An Outline of the Linear Planning Sequence. 54
3.4.1 The logic of computer subprogramme 'PRIORT' 56
3.4.2 The logic of computer subprogramme 'AKTLMN'. 58
3.4.3. The logic of computer subprogramme 'ELMTRK' 59
3.5 Optimum Arrangement of Modular Elements 61
3.5.1 The free planning process 61
3.5.2 The restricted planning process 64
3.5.3 The logic of computer subprogramme 'RSTRCT'. 66
3.5.4 The Graphical output 67
3.6 The Actual Cost of Communications 69
IV. ANALOGY BETWEEN EXISTING AND
COMPUTED PLANS 70
4.1 Evaluation of Existing Plan 70
4.2 Re-allocation of Facilities within the Existing Building. 72
4.3 Planning in a Non-restricted Site 79
Chapter Page
4.4 Analogy between Free and
Restricted Plans. 82
CONCLUSIONS. 84
Limitations and points of Interest for Future Investigation. 84
BIBLIOGRAPHY 87
APPENDIXES
Appendix A 91
Computations Flow Chart 92
Subprogramme 'PLOTER' Flow Chart. 93
Appendix B 94
The Computer Programme. 95
Appenđix C 119
Tables of Time and Motion Study 120
Appendix D 153
Tables of Interactions Between Activities. 154
Appéndix E 177
Cost Figures on Administration Building。 178

INTRODUCTION

The creative act in architecture occurs throughout the design process. The architect is an artist whose brain serves as the ultimate computer, programmed by years of experience and sensitivity to visual phenomena. This means that the planning process is largely influenced by the experience, imagination and talents of the individual designer, rather than by solid facts. Programming of facilities for a cextain project may be interpreted differently according to particulars of the architect involved. Various interpretations result in wide varieties of concepts regarding the same project. The basis of comparison are often quite arbitrary. These facts expose architectural work to casual criticism from any individual who can derive his own concepts. This is not the case in engineering discipline, where rigid facts and rules of procedure can protect the scientific work from any unqualified criticism.

Previous efforts have been made to emphasize the impact of 'facts' on architectural planning, rather than individual judgement. These 'facts' were interpreted mathematically to form the pattern of relative interactions between various components of the project. The final integration of these components were based upon the computed pattern of interactions.

The purpose of this study is to expand the approach to computer aided design and to investigate the prospects of its practical applications.

The interactions between different components of the project will be evaluated in terms of costs involved and time consumed etc. in order to determine their optimum locations. Components with relatively dense patterns of interactions will be located closer to each other than to those with lighter patterns. Because of the complexity of differentiating various patterns of interactions with respect to all locations available to those components, a digital computer is utilized to generate the required plan by optimizing proximities of its components according to their relative interactions. The economical merits of this approach will be evaluated to investigate the prospects of its practical applications.

CHAPTER I

METHODOLOGY

1.1 Architectural Concept

The pattern of interactions between different components of a project will have to be expressed in digital forms before a computed integration of these components can take place. Such interactions may be of any type and would be adjusted to any scale to suit the problem considered. For example, the micro interactions considered when evaluating the relative locations of furniture or equipment within a limited space, can be expanded to handle allocation of facilities in a large city.

The following are a few suggestions of various forms of these interactions:
A. Quantitative evaluation of density of movements between different components.
B. Qualitative categorization of movements based on functions or cost involved in these movements.
C. Particulars of materials to be handled, such as unit weight and size, nature and function, frequency and cost of handling or storing.
D. Mixed patterns of physical communications between activities. For example, if a belt conveyor is the means of communication between two activities, and if the objective
is to minimize the cost of communications, then these two activities would have to be brought close to each other. But if a third activity communicates with the first activity through a pneumatic system and with the second by personal contacts, then a system of compound pattern of interactions has to be used. The running cost per linear foot of the pneumatic system should be compared to that of the belt conveyor and the movement of personnel. The relative locations would be determined to minimize the over-all running cost of communication.
E. Cost of relative locations with respect to rent rates, vacancies, assessment of taxes, etc. The optimum plan should satisfy assumptions based upon any of these factors.

The previous presentation of forms of physical interactions has not accounted for the spiritual aspects which, in many cases, may be of primary importance. The impact of cultural and sociological considerations on the planning process would be evident when comparing two buildings of the same function, built in two different places, or built in two different time periods within the same locality. Such spiritual considerations have to be assigned physical values before they can enter into a computational process.
1.2 Economical Merits

The approach of founding the planning process on daily interactions between different activities not only
optimizes the performance of the building, but also could result in substantial savings with respect to the building economics. The fixed cost of a project, in terms of site value and erection expenses is usually taken as the prime factor to consider when studying the economics of the project. The annual running, or operating cost, including lighting, heatingr maintenance, taxes, insurance and salaries of personnel working in the building is usually a secondary consideration. This should not be so, as preliminary studies showed that the annual running cost of any building could be many times the amortized capital cost of construction.
1.2.1 Comparison between original and running cost

Taking the University of Manitoba Administration building as a sample for a comparison between the running and original costs:
A. It was found that the original fixed cost at the time of erection (1914) was $\$ 271,400$. Then assuming this cost was paid through a mortgage of 60 years length, with an interest rate of 7%, we find the annual equivalent cost by using the formula:

$$
r=\operatorname{Vo} \times \frac{i(1+i)^{n}}{(1+i)^{n}-1} *
$$

where:
*Reginald D. Forbes, 'Forestry Handbook', Ronald Press Comp., New York, 1955, Section 15, 16.
r: annual equivalent cost
Vo: original fixed cost
i : interest rate
n : building life or length of mortgage

Then the annual equivalent cost of the building

$$
\begin{aligned}
& =\frac{271,400 \times .07(1.07)^{60}}{(1.07)^{60}-1} \\
& =\$ 19,300 \text { approx. }
\end{aligned}
$$

B. As for the annual running cost of the building, the data obtained from the accounting department of the University of Manitoba, concerning the annual running cost of the Administration building, shows that the total annual salary costs of employees working in the building is $\$ 1,458,615$, and the operating and maintenance costs are equal to $\$ 43,443$. This brings the total running cost of the building to $\$ 1,502,058$. The ratio between the annual running cost to the annual equivalent rate of the fixed cost would be 1,502,058:19,300 or 77:1. This ratio may be exceptionally high for special reasons related to this specific building. Applying any reasonable tolerance as a factor of safety, we still find that the ratio of the annual running cost to the annual equivalent rate of the original cost is large.

The previous analysis suggests that any small percentage reduction of a building's annual running cost would be much more significant than if the same percentage was saved of its original fixed cost. This would justify any
effort meant to reduce the running cost of the building. The summary of the cost figures on the University of Manitoba Administration building demonstrates that the major part of the annual running cost is consolidated in staff salaries; and, therefore, the effort to minimize the running cost should be focused on this area. A considerable saving might be achieved by optimizing the performance of personnel.
1.2.2 The impact of efficiency of performance An appropriate allocation of facilities will have an immediate saving by minimizing the time spent on movements between different. locations. This would allow the same number of activities to be carried out by a fewer number of personnel or widening the range of activities that may be carried out by the present number. These savings may be surpassed by gains from optimizing the efficiency of performance of staff members. The physical interactions of an individual reflect on his mental potential. While a reasonable amount of physical effort may stimulate his mental energy, an excessive amount of movement can lead to exhaustion and drop of efficiency. Mental duties assigned to each individual have to be considered in the light of the physical effort involved. Adjusting the pattern of physical and mental duties of each individual to fall within the zone of optimum performance, Figure (1), will optimize his capability and consequently the performance of the whole plant.

FIGURE 1 Boundary of human potentials
1.3 Methodology of Planning

As optimizing the efficiency of performance can minimize the running cost of the building, it will be used to formalize a precision approach to the planning process. The performance of an existing building of similar functions will be analysed to determine the space requirements and the pattern of interactions expected to take place in the building to be designed. Efficiency of performance of a building may be expressed analytically in terms of running expenses involved, time consumed, quality and quantity of output. Several factors may affect such performance. A brief outline of some of the main factors:
A. Spocialization and training of personnel.
B. Systems analysis of the sequence of operations and network analysis and/or simulation to optimize productivity and eliminate slacks or contradictions.
C. Quantity and quality of equipment available. Sufficient amounts of modern equipment will speed processing, while inadequate, or old fashioned equipment may cause drastic "bottle necks".
D. Space requirements. An overcrowded space may reduce efficiency of performance as an oversized space might. E. Relative allocations of facilities. Proper distribution of locations may minimize intermediate movements and save time and cost spent on such interactions.

As is evident from the previous outline, a
comprehensive analysis of all factors affecting efficiency of performance may lead to areas beyond the scope of this study. This study shall confine its concern to the physical aspects of space requirements and a two dimensional arrangement of facilities. Particulars pertaining to other factors are assumed to be adjusted to perfection before the start of our procedure.

1.3.1 Procedure of practical application

The actual merits and limitations of this approach may be more evident through an illustration of its practical applications.

The University of Manitoba's existing Administration building will serve, in this example, as the source of data required for design of a new modern administration building. The procedure adopted for the planning process may be divided into two main phazes:
A. Establishing the criteria of design: This will be accomplished by evaluating the present performance with respect to daily interactions and space allocations. A sample of field study will take place at the registrar's general office. The pattern of movements of different personnel will be recorded and the cost of these movements, in terms of salaries of the individuals involved, will be computed. Space allocated to different activities will be checked to evaluate its impact on the present performance.

The data collected from this survey will be modified to present the specific requirements of the new building. Space allocations will be represented by a number of space modular elements, and the predicted pattern of interactions will be prepared from the data available.
B. Computation stage: The interactions determined from the previous study will be used to arrange the modular space elements allocated to different activities in a way that would minimize the cost of their communication. This procedure will be explained in detail in the following chapters.
1.3.2 Growth and change

The computed plan should be as flexible as the rate of change of activities accommodated within it. An updating process should be performed periodically to any plan to insure a particular level of performance. This updating depends largely on the degree of flexibility maintained in the plan. Flexibility may be measured in two ways: A. The cost and time consumed for alterations of space allocations.
B. The number of alternative allocations of facilities that can be accommodated within the same space.

The degree of desired flexibility depends largely on the type of building considered, while the functions of some buildings are hardly changeable, other buildings may require a high degree of flexibility. The factors governing
flexibility are:
A. Structural systems with respect to live loads and clear spans. It should not only answer the present needs, but also be capable of accommodating any predictable changes of present activities.
B. Means of vertical and horizontal circulations, and the number of alternative arrangements of facilities that could be served by these means.
C. Allowances through the mechanical system that can be switched to locations with changing needs.
D. The boundaries of space allocated to different facilities. This includes structural walls, partitions systems, built in furniture or equipment.

The updating process should check not only the relative locations, but also the space allocations to insure the capability of accommodating the short term growth of different activities. Some activities have to be provided with spaces substantially larger than the actual needs to serve as an overflow for other growing activities. However, a substantial expansion of many activities will necessitate an over-all expansion of the space available.

CRITERIA OF DESIGN

2.1 Collection of Data

The data to be collected for this study are required to cover three main items:
A. Activities, including procedures and involvements of each activity, space allocations and cycles of change, if any.
B. Personnel, including categorization, changes in numbers, and interactions between different individuals. C. Any special considerations affecting the present image, that have to be eliminated or manipulated during the planning process.

These data have to be collected over a representative lapse of time to insure a valid image of the existing performance. It should be noticed that the final design would be as good as the degree of accuracy maintained in establishing its criteria. Three main sources of information will be considered for the preparation of the required data:
A. Documents: For any confidential informations pertaining to personnel. (i.e., salaries, administrative status, or different cost estimations).
B. Interviewing: For the outline of sequence of performance, duties involved, and the output of different activities

FIGURE 2 Collection of data
and personnel.
C. Observations and work study, using time and motion recording techniques in preparing a detailed pattern of interactions between different individuals and activities.

A summary of particulars of the required data and the corresponding sources of information is presented in Figure (2).
2.1.1 Activities analysis

The registrar's general office considered for this study occupies an area of about 3600 square feet, in the south side of the third floor of the U. of M. Administration bujlding. One of the main architectural features of this classical building is the central hall accommodating the main staircase and connecting the four wings of the building. The disadvantage of this plan form became evident as related activities taking place in one wing grew larger and had to be allocated extra space in other wings or other floors of the building. This compulsory allocation of space results in a considerable drop of efficiency and causes inconvenience to personnel involved in daily communications between separated departments.

From the various sources of information discussed previously, particulars pertaining to each activity were collected. A concise summary of these particulars is as follows:

Activity \# 1: Examinations \& I.D. Cards
Allocated an area of 220 square feet, and performed by one staff member classified as examinations assistant. Duties include preparation of I.D. cards for the university community and preparatory arrangements for examinations seating. The interactions of this activity are seasonal and largely expanded during the examination periods and the start of the academic year. The normal load of work necessitates some visits to the I.D. center in the Fletcher Argue building and other locations outside the Administration building. Movements within the area are mainly to the reception counter to answer any students inquiries pertaining to I.D. cards or examination seating. In the peak periods, extra personnel are hired to help in clearing the excess load of work. A space for those extra personnel is provided within the area, but it is considered idle in the normal load period.

Activity \# 2: General Files

Allocated an area of 520 square feet, and attended by two filing clerks. Duties other than filing, include mail distribution and periodical relief of the telephone operator. The students files are kept in this room for a period of five years before they are transfered downstairs to the microfilm department. The general files act as a nucleus to all other activities within the registrar's
office. Staff members located in different parts of the building contact the filing room for any information pertaining to students.

Activity \# 3: Associate Registrar
Allocated a space of 275 square feet, which provides for a private office for the associate registrar and a work station for his secretary. Duties include communications with departments located in other parts of the building. The internal interactions within the area are mainly with the registrar and the records supervisor. Inconvenience to visitors are caused by the lack of waiting space, and the twisted route, through cramned desks, they have to take to reach this office.

Activity \# 4: Records Supervision
Allocated a private office for the records supervisor and a working station for his secretary, a total area of 220 square feet. Duties involved in this activity include communications with departments located in the other side of the building, other floors, and with various faculties on campus. The internal interactions are mainly with the associate registrar and the general files.

Activity \# 5: Convocations
This activity is performed by a staff member
classified as convocation coordinator and an assistant. Their duties include arrangements for convocations, and therefore a substantial amount of the activity communications involves with places outside the administration building. The space allocated to this activity is about 260 square feet.

Activity \# 6: Check of Records
This activity is performed by one person classified as records examiner. The duties include visits to the microfilm department, one floor below. The space allocated to this activity is about 70 square feet.

Activity \# 7: Fees
This is one of the busiest activities in the registrar's office. It is performed by a chief fee clerk and two assistants. Space allocated is about 170 square feet. It has relatively dense interactions with the reception counter. A small number of visits are made to the upper floor. The load of work and density of interactions depends upon the season of the year. In the peak periods, extra space and personnel may be required to handle the extra load.

Activity \# 8: Control.
This is performed by a control clerk and an assistant.

The area allocated is about 120 square feet, with a space for sorting students forms and keeping other relevant materials. The daily communications include visits to the data processing center across the stair hall, and to the current files located in the upper floor.

Activity \# 9: Transcripts
The main functions of this activity are to receive the students applications for transcripts, check their courses and grades with different departments and finally prepare a laminated photo copy of the student's history. This activity is carried out by two staff members. Their internal interactions are mainly with the control department, and the vault. A few visits are made to the comptroller's office in a lower floor. The space allocated to this activity is about 120 square feet including the area required for both the Xerox and laminating machines. This activity passes through peak periods during which extra space, and sometimes personnel, are required to carry the excess load of work.

Activity \# 10: Education and Graduate Studies
Performed by a senior personnel and two assistants. Their interactions within the area are mainly with the reception desk and the general files. The daily work necessitates a number of visits to the admissions department
located in the north end of the building, and to the upper floor. A few visits may be made periodically to the faculties of Education and Graduate Studies. The area allocated to this activity is about 1,20 square feet.

Activity \# 11: The Registrax
Allocated a space of 275 square feet which provides for a private office for the registrar and a small reception area and work station for his secretary. Duties involve communications with the associate registrar, and a substantial number of visits to other departments within and without the Administration building.

Activity \# 12: Mature Student Adviser
This activity is performed by one staff member. The daily interactions are mainly with offices outside the area considered with the exception of a few visits to the registrar's office. The area allocated to this activity is about 120 square feet. Its location next to the stair hall is not justified by the few interactions made to the outside departments.

Activity \# 13: The Reception
Allocated a space of 350 square feet which provides for a small waiting area, a reception counter and a dummy waiter for delivery of materials it is attended by a
receptionist who operates the switchboard and is responsible for addressing students inquiries to different departments.

Activity \# 14: The Vault
This activity involves the safe keeping of the academic documents of the University. It has been allocated an area of 160 square feet. Special measures were taken for protection against fire and to secure documents from theft or distruction. Filing duties within this activity are attended by the staff of the general files. Its internal interactions are mainly with the transcripts department.

Activity \# 15: The Stairhall
An area of 300 square feet located in the southern side of the stairhall represents the access to the registrar's general office. A very dense pattern of interactions between this access and the reception desk is formed by students. Staff members from most activities pass through this area during their daily interactions with external activities.

2.1.2 Categorization of Personnel

A consistent way of evaluating the interactions between different individuals is by categorizing these interactions with respect to any choosen datum. The form of interactions considered for this study is the physical movements of persons. The datum considered is the cost of
these movements in terms of time consumed and salaries of persons involved. To minimize complications when dealing with large numbers of persons and wide variety of salaries, a system of grouping will be adopted. Staff members will be classified in a number of categories according to their salaries and administrative status. The range of each category, illustrated in Figure (3), will be represented by a number of salary strata. The following considerations are suggested to determine the number of strata in each category:
A. The salary range of lower categories should be narrower than those of higher categories, as the number of persons in the lower salary strata are usually high; and therefore, even a narrow range would include a substantial number of persons.
B. Within the range of a category, the number of persons in its central strata could be slightly higher than in its border strata. This expresses the fact that most of the new comers to any category would progress to its central strata and a lesser number are promoted to its higher strata. C. A significant sudden drop in number of staff at any stratum would suggest the starting of a new category.figure (4) illustrates graphically the boundaries of different categories according to the previous considerations. We shall apply these criteria to determine the number and range of different categories of personnel in the registrar's

FIGURE 4 CATEGORIZATION
office.
From the payroll authorization report the staff members were grouped according to their annual salaries in $\$ 1000$ intervals. The number of persons in each stratum are shown in Table (1).

The different strata were plotted graphically. Applying the previous criteria, it became evident that personnel can be grouped into three categories as illustrated in Figure (5). The mean salary of each category was calculated according to the number of persons in each strata in the following way:

CATEGORY (I): The salaries of persons in this category ranges from $\$ 9,500$ to $\$ 17,500$. The staff within this range are the three top executives. The average annual salary for a person in this category $=\frac{10,000+13,000+17,000}{3}=$ $\$ 13,300$.

CATEGORY (2): Under this category 13 senior staff members are considered. Their salaries range from $\$ 5,500$ to $\$ 9,500$. The average annual salary for personnel in this category $=$ $\frac{(3 \times 6000)+(4 \times 7000)+(3 \times 8000)+(3 \times 9000)}{13}=\$ 7,400$.

CATEGORY (3): The bulk of the tasks in the registrar's office are performed by the 21 persons under this category. The annual starting salary is $\$ 2,500$ and its upper bracket

TABLE 1
Number of Persons in Different Salary Strata

	$\begin{gathered} \text { From } \\ \$ \\ 2500 \\ \hline \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 3500 \\ \hline \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 4500 \end{gathered}$	$\begin{gathered} \text { Erom } \\ \$ \$ \\ 5500 \\ \hline \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 6500 \end{gathered}$	$\begin{gathered} \text { From } \\ \$ 5 \dot{\$ 50} \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 8500 \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 9500 \\ \hline \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \$ \\ 12500 \end{gathered}$	$\begin{gathered} \text { From } \\ \$ \\ 16500 \\ \hline \end{gathered}$
Number of persons	5	9	7	3	4	3	3	1	1	1

FIGURE 5 Categories of personnel
is $\$ 5,500$ per year.
Then the annual average salary of category 3
$=\frac{(5 \times 3000)+(9 \times 4000)+(7 \times 5000)}{21}$
$=\$ 4,000$.
2.1.3 Summary of Activities

After categorization of personnel each staff member was assigned a number as a form of identification during the computation process. The number and category of each person and an outline of his involvement with external activities are summarized in Table (2). Figure (6) shows the working stations of different personnel.
2.2 Time and Motion Study

The previous summary of activities involvements with locations outside the area, is complementary information to the precise pattern of their interrelationships. This will be determined through a detailed time and motion study of personnel. Such a study must be made over a representative period of time, as the nature and quantity of work handled in the registrar's office varies over different seasons of the academic year. Even the number of personnel performing different activities and the pattern of their interactions may vary from time to time. For example, an activity with normally very few interactions at the start of the academic year may double its interactions during the

TABLE 2
Summary of Existing Activities

Activity			Persons				Involvement with External Locations			
			Area (Sq.Ft.)			$\begin{aligned} & 1, \\ & y \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				
Room No.	0 $\frac{3}{3}$ \square	Description			Classification		$\begin{gathered} \text { North } \\ \text { side } \end{gathered}$	Upstairs	Downstairs	Outside the Building
303	1	Examinations \& I.D.	220	1	Exam. Assistant	2				frequent
305	2	General Files	520	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Sen. Filing Clerk Filing Clerk	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	frequen frequen	limited limited	limited limited	
306A	3	Associate Registrar	275	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	Associate Registrar Secretary	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	frequen frequen	limited frequent	limited	
306B	4	Records Supervisor	220	6 7	Records Supervisor Secretary	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	frequent	frequent		limited
306 C	5	Convocations	260	8 9	Conv. Coordinator Conv. Assistant	$\begin{aligned} & 2 \\ & 3 \end{aligned}$				frequent
306	6	Check of Records	70	10	Record Examiner	3			Iimited	
306	7	Fees	$170-11$	11 12 13	```Chief Fee Clerk Fee Clerk Fee Clerk```	$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$	frequen frequen	limited frequent		limited limited
306	8	Control	$120 \quad 1$	14 15	Control Clerk Control Clerk	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	frequen	frequent		N

TABLE 2 (Continued)

			Persons							
$\begin{aligned} & \text { Room } \\ & \text { No. } \\ & \hline \end{aligned}$		Activity Description	$\begin{gathered} \text { Area } \\ \text { (Sq.Ft. } \\ \hline \end{gathered}$		Classification	$\begin{array}{r} 4 \\ \hline 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} \text { Involven } \\ \begin{array}{c} \text { North } \\ \text { side } \end{array} \end{gathered}$	ment with Upstairs	External Down- stairs	$\begin{gathered} \text { Locations } \\ \hline \text { Outside } \\ \text { the } \\ \text { Building } \end{gathered}$
306	9	Transcripts	120	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Transcript Clerk Transcript Clerk	$\begin{aligned} & 3 \\ & 3 \end{aligned}$				
306	10	Educ. \& Grad. Stud.	120	$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Sen. Grd. St. Clerk Education Clerk Clerk	$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$	frequent frequent	limited frequent		limited limited
$\begin{aligned} & 307 \\ & 308 \mathrm{~A} \end{aligned}$	11	The Registrar	300	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	Registrar Secretary	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	limited limited.	Iimited	limited	limited
308	12	Mature St. Adv.	120	23	Student Advisor	2				frequent
309	13	Reception*	350	24	Receptionist	3				
304	14	Vault*	160	--		-				
300	15	Stairhall*	300	--		-				

*Interactions of this activity are confined to receiving visits from other activities.

examinations season.
However, this study was carried out over a relatively short period of time. Other sources of information helped in adjusting the collected data to present the years activity.
2.2.1. Preparatory procedures

Preparatory steps made before starting the time and motion study:
A. Definition of boundaries: The boundary of each activity has been determined according to the number and size of working stations allocated to persons and equipment performing this activity. A person from another activity has to cross these boundaries physically or verbally in order to count a qualified visit to this activity. Unqualified visits are those made for reasons other than work, however such visits were neglected and have not been recorded. Verbal visits, i.e. those made without physical interception with the activity boundaries were included, as they are quite common when dealing with large areas accommodating adjacent activities.
B. Destination points: Within the space allocated to each activity there are focal points that receive the visits made to this activity. These points are either work stations or locations of specific equipment or furniture. Each of those destination points had been assigned an identification

number. This number will be needed in case of desire to relocate the working stations within each activity according to internal interactions between them.
C. Guide points of communication routes: The locations of doors and the arrangement of desks and other pieces of furtniture or equipment governs the routes connecting different destination points. In order to locate a particular route on plan, serial numbers have been assigned to various points in plan where a change of direction may take place. For example a typical route called (14-117-118-41) will be interpreted as a visit originated from the work station number 14 to the destination point number 41 passing by the points 117 and 118.

A plan of the area considered was prepared to a reasonable scale $\left(1 / 4^{\prime \prime}=1^{\prime \prime} 0^{\prime \prime}\right.$, and all the previous preparatory stages were located on it (Figure (7)).

2.2.2 Motion recording technique

In dealing with activities where the patterns of movements for different members of the activity are identical, it is practical to record the movements of one person as a representative for each group, and multiply the number of visits made to different destinations by the total number of persons in the group. Considering the Cregistrar's office it was found rather difficult to determine such a representative for each group, and because the number of
persons involved was relatively small, it was found more feasible to record the movements of each individual. This was accomplished by observing each person during different times of the day and over a number of days to insure that the movement pattern is not influenced by some personal reasons or arbitrary coincidences. The movements were recorded using the number of destination points, and change of direction points to locate the flow of movements within the area considered. Table (3) represents a sample of motion study recorded for person number (1) during four working hours. A complete set of tables recording the motion pattern of the other personnel is presented at Appendix C. Using these tables a string diagram was prepared to present physically the movement pattern of each individual during a typical working day. The number of strings connecting the original work station to any destination point represents the number of visits made to, and the number of returns from this destination point. This is illustrated in Figure (8). The easy preparation of the string diagram and the advantage of having a visual illustration of interactions within and without each activity, make it an efficient tool in the manual decision making process concerning the relations between activities. However, even if these relations would be determined through computations, the string diagram may be retained and compared later with a string diagram prepared for the final

TABLE (3) TIME AND MOTION STUDY OF PERSONNEL

Activity:	1	Activity:	Continue
Person:	1	Person:	Same
Category:	2	Category:	Same
Destinatior Point	Change of Direction Points	Destination Point	Change of Direction Points
Date: October 22, 1970 Starting Time: 11:15a.m		Date: SameStarting Time: 1:00 p.	
*	(own working station) $103-107-128$	$*$ 46	(own working station) 103-102
*	115-128-104	*	102-103
14	102-136-126	46	103-102
*	126-136-102	*	102-103
46	103-102	46	103-102
*	101-102	*	102-103
46	103-102	46	103-102
*	101-102	*	102-103
6	104-107-127	46	103-102
*	128-106-104	*	102-103
46$*$	103-102	46	103-102
	102-103	*	102-103
$*$		46	103-102
		*	102-103
		46	103-102
End at: 12 Time record	00 noon ded: . 45 minutes	End at: continue Time recorded: incomplete	

TABLE (3) (continued)

Activity:	1	Activity:	continue
Person:	same	Person:	same
Category: same	Category:	same	

Destination Point	Change of Direction Points	Destination point	Change of Direction Points
Date: Same Starting Time: $1: 00 \quad \mathrm{p} . \mathrm{m}$		Date: sameStarting Time:	
*	Continue 102-i03	4	Continue 103-107-128
6	104-107-127	*	115-116-128
*	128-106-104	46	103-102
46 $*$	$\left\lvert\, \begin{gathered} 103-102 \\ 102-103 \end{gathered}\right.$	\cdots	
46	103-102		
*	102-103		
46	103-102		
*	102-103		
46	103-102		
*	102-103		
4	103-107-128		\ldots
*	115-116-128		
46	103-102		
*	102-103		
End at: continue Time recorded: incomplete		End at: 3:15 p.m. Time recorded: 2.15 Hr .	

TABLE (3) (Continued)

Activity:	1	Activity: continue	
Person:	same	Person: same	
Category: same		Category: same	
Destination Point	Change of Direction Points	$\begin{gathered} \text { Destination } \\ \text { Point } \end{gathered}$	Change of Direction Points
Date: November 2, 1970 Starting Time: 1:10 p.m。		Date: Starting Time:	
*	$\begin{aligned} & \text { (own working } \\ & \text { station) } \\ & 103-102 \end{aligned}$	$*$ 46	102-103
*	102-103	*	$\begin{aligned} & 103-102 \\ & 102-103 \end{aligned}$
4	103-107-128		$102-103$
*	128-107-103		
4	103-107-128		
*	128-107-103		
46	103-102		
*	102-103		
46	103-102		
*	102-103		
46	103-102		
*	102-103		
4$*$	103-107-128		
	$128-107-103$		
46	$103-102$		
End at: continue Fime recorded: incomplete		End at: $2.10 \mathrm{p} . \mathrm{m}$. Time recorded: 1.00	

MOTION STUDY

MOVEMENT PATTERN OF THE PERSON no. 19 IN FOUR HOURS

design. The total length of the string when unfolded would represent the total distance in feet, covered by the individuals concerned. A comparison between the total distances covered in the existing plan and that for the proposed design would make it possible to measure to a reasonable degree of accuracy the amount of time saved during the physical communications between activities.

The sum of visits received by various destination points within an activity will represent the total number of visits paid to this activity. Table (4) illustrates the summation process of visits received by different destination points from an individual during a specific time. This process is meant to find the interactions between all activities in terms of these visits. A complete set of tables of exchanged visits by all individuals appears in Appendix D.

The sum of visits paid to each activity has to be checked to insure that it represents a normal pattern of interactions, and that inconsistent reasons, such as the absence of some staff members or a particular equipment being out of order do not influence the output of the survey.

Other special factors have to be considered, as in case of intexactions between the stairhall (activity 15) and other activities.. It had been noticed that visits made to the stairhall were often part of longer visits paid to

TABLE (4) INTERACTIONS BETWEEN ACTIVITIES
Visiting Activity: 1
Visiting Person: 1
Category: 2

activities located in other parts of the building. This means that the number of such visits have to be modified to express the fact that the time consumed in communication is more than that spent to reach the stairhall.

Other special considerations were made for the interactions between activity \# 2 and \# 14. Visits made to the general files by members of other activities, in many cases were extended to the vault. This represents an essential proximity between the vault and the files although these visits are made by members of other activities. The final modified pattern of the present interactions is shown in Table (4)。
2.3 Establishment of the Criteria of Design

The data collected from the previous analysis of activities, and time and motion study of personnel within the existing building will serve as a guide for establishing the criteria of the required building. Necessary modifications have to be made to the present pattern of interactions and space allocations to correspond with the new requirements. The procedure of establishing this criteria is illustrated in the following stages:

2.3.1 Space allocations

The space to be allocated to each activity must provide the minimum requirements for optimum performance. This
will be determined according to the number and size of work stations, and the pattern of internal interactions within the activity.

It has been noticed that some activities, such as those concerning senior executives are usually allocated larger spaces than is actually required for performance. It was also noticed that the arrangement of work stations within a certain space may be largely affected by ethical factors rather than efficiency of performance. Figures 9 and 10 illustrate an example of the impact of such ethical aspects. However such impacts have to be scrutinized as to the initial and running costs of the building.

Activities involving repetative procedures, or special equipment with high running cost, have to be given special attention to insure that the space allocated is of the proper size.
2.3.2 Modular presentation

The modular space element chosen for this particular example is 100 square feet. This is an appropriate size in office buildings, as it may accommodate an administrative work station with a reasonable space for circulation and accessories. Figure (11) illustrates the space analysis for an activity to determine its actual needs. According to this analysis, the area required for each activity was determined, and presented by a number of modular elements.

SPABE ALLOCATHOHS

THE DOMINATING LOCATION OF THE WORK-STATION(A) NECESSITATE A relatively long time to reach station (D)

WHLE ACCEPTING \triangle LESS DOMINATING LOCATION FOR THE WORK STATION (A), WOULD INCREASE THE EFFICIENCY OF PERFORMANCE AND MINIMZE THE COMMUNICATIONS TIME.

FIGURE 10

SPACE ANALYSIS

EXTENDED GIRCULATION PATTERN
\square WORK STATION

終䀠 CIRCULATION

COMPACTED CIRCUQATION PATTERN ALLOWS WORE SPACE FOR ACCESSORIES AND WORK马TATIONS AND MINIMIZES COMMUNICATION TIME．
2.3.3 Final pattern of interactions

The data collected from the existing building will have to be modified to suit any anticipated growth or change of existing activities. These changes will be presented by a corresponding number of interactions within the activities involved. If more personnel will be accommodated in the new building, their pattern of movements will be based on the existing patterns of interactions of those activities they will be involved in. Table (5) illustrates the final pattern of interactions expected to take place in the new building.

TABLE 5

Daily Visits by Different Individuals

Visiting			Receiving Activities														
$\begin{aligned} & \text { Acti- } \\ & \text { vity } \end{aligned}$	Person	Category															
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	2	0	0	10	4	0	0	0.	2	0	0.	0	0	46	0	0
2	2	3	0	0	0	6	2	0	2	2	2	0	0	0	12	26	8
	3	3	0	0	2	2	0	2	4	8	8	4	2	0	12	14	16
3	4	1	2	1	0	4	0	1	1	0	1	1	3	0	3	0	11
	5	3	3	5	0	4	1	0	1	0	0	0	3	0	3	0	12
4	6	2	0	12	10	0	2	0	0	0	0	0	2	0	6	0	18
	7	3	0	34	6	0	2	0	8	4	0	6	0	0	16	4	4
5	8	2	0	6	6	0	0	0	1	0	0	1	2	0	8	0	22
	9	3	0	32	4	6	0	0	0	0	0	0	0	0	8	1	2
6	10	3	0	2	2	0	4	0	0	0	0	4	0	0	0	0	14
7	11	2	0	5	1	2	1	0	0	0	0	0	0	0	25	0	21
	12	3	- 0	8	0	0	0	0	0	0	10	2	0	0	35	0	6
	13	3	0	2	0	4	0	0	0	2	6	0	0	0	6	6	8
8	14	3	0	14	0	0	0	0	3	0	2	10	0	0	10	5	11
	15	3	0	12	0	0	0	0	0	0	2	0	0	0	14	2	9
9	16	3	0	12	0	2	0	0	28	26	0	8	2.	0	16	16	0
	17	3	0	10	2	0	2	0	8	16	0	0	0	0	8	14	6

TABLE 5 (Continued)

Visiting			Receiving Activities														
Acti-		Cate-															
vity	Person	gory	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	18	2	0	8	1	0	5	0	8	8	6	0	0	0	10	0	9
10	19	3	0	20	0	2	12	0	24	4	0	0	0	0	30	0	16
	20	3	0	8	2	0	0	0	0	4	0	0	0	0	6	0	6
	21	1	2	0	4	0	2	0	0	0	2	0	0	0	0	0	18
11	22	3	2	0	4	0	2	0	0	0	4	2	0	2	6	0	12
12	23	2	0	2	0	0	0	0	0	0	0	0	4	0	2	0	4
13	24	3	0	0	2	0	2	0	4	2	0	0	0	0	0	0	2
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	1	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0

CHAPTER III

THE PLANNING PROCESS

3.1 Definitions

It may be helpful at this stage to make a brief summary of terms used in this chapter to eliminate misinterpretations

1. Standard visit: a visit made by a staff member of category three to any point of destination beyond the boundaries of his own activity.
2. Relative cost of communications (RCC): the number of standard visits exchanged between two activities.
3. Cost of an activity: the sum of its relative costs of communications with all other activities.
4. Elemental force of attraction (EFA): obtained by dividing the relative cost of communication between two activities by the product of the numbers of their modular elements. 5. Cost of relative locations of two elements: the force of attraction multiplied by the number of modular sides separating them.
5. Cost of communications of an activity: the sum of costs of relative locations of its modular elements with respect to the elements of all other activities.
6. Cost of communications of plan: the sum of costs of communications of all activities.

This brief summary of terms will be explained in detail during the consecutive stages of the planning process. In order to use the data derived from the previous analysis of activities in preparing the plan, a linear methodology will be adopted. A computer master programme and eleven subxoutine programmes were developed to compute the given interactions and generate the required plan.

Different stages of computations will be explained in the following sections.
3.2 Standardization of Interactions

The speculated number of daily visits, to be made by different individuals, illustrated in Table (5) will serve to determine the pattern of interactions between different activities.

3.2.1 The multiplier

Evaluation of these interactions will be based upon the time spent in movements between considered locations, and the salaries of the persons involved. It is assumed that all personnel move with the same walking speed, and thus the time spent on movements between any two locations would be the same for all categories of personnel. This means that the relative evaluation of two trips of equal length made by two individuals will be based solely upon the ratio between their salaries. Thus if we consider a
visit made by a certain category of individuals as unity, then a multiplier is used to represent visits by other categories.

As the majority of personnel, were of category (3), i.e., of $\$ 4,000$ average annual salary, the visits made by them were considered as a unit i.e., a 'standard visit'. A visit made by an individual of category (2), i.e., of $\$ 7,400$ average annual salary, would equal to $\frac{7400}{4000}=1.8$ standard visit.

In the same way a visit made by an individual of category (I) would equal to $\frac{13300}{4000}=3.3$ standard visit. Expressing the daily visits made by different categories of personnel in terms of standard visits facilitates the measurement of interactions between activities and makes it possible to establish a consistent proximity pattern for all activities.
3.2.2 The logic of computer subprogramme 'STNVST'',
A. computer subroutine programme was developed, using the number of visits made by persons of different categories to prepare a matrix of predicted standard visits from each activity to all other individual activities. Figure (12) illustrates the multiplier action, while Figure (13) demonstrates the sequence of computing the sum of standard visits for an activity. Figure (14) illustrates the procedure of preparing the matrix of speculated standard visits

FIGURE 12. The multiplier

FIGURE 13 Sequence of standardization

$\triangle L L$ STANDARD VISITS MADE FROM ACTIVITY H 5 WILL BE LOCATED IN THE MATKX OF STANDARD VISITS IN ROW茾 5

$\triangle L L$ STANDARD VISITS RECEIVED
BY ACTIVITY $\ddagger 5$ WILL BE LOCATED: IN THE MATRIX OF STANDARD VISITS IN COLUMN并 5

FIGURE 14 Matrix of standard visits
betwieen all activities.
The computer programme was developed in a flexible way to standardize the movements of any number of persons from different categories using any range of multiplier.
3.3 Evaluation of Relative Cost of Communications

In order to find the final pattern of interactions between any pair of activities, the number of standard visits originated from any particular activity to another activity will be added to the number of standard visits received by this activity from the same other activity. The sum of these exchanged visits will be considered as the relative cost of communications between the two activities.
$\frac{3.3 .1 \text { The logic of computer subprogrammes 'ACCOST' }}{\text { and 'SMCOST' }}$
The computer subroutine programme 'ACCOST' (for activity cost) was developed using the matrix of estimated standard visits to prepare a matrix of relative cost of communications between activities. This matrix represents the actual pattern of interactions between activities and therefore will be considered as the main generator of the planning process. The final arrangement of locations of activities will be based upon their proximity values, as a function of the relative cost of communications. The subroutine programme 'SMCOST' (for sum of cost), was developed to compute the cost of each activity. This cost is considered
as the sum of relative cost of communications between the activity considered and all other activities. Figure (15) illustrates graphically the evaluation of cost of communications.
3.3.2 The logic of computer subprogramme 'SMSORT' (for sum of sorted activities)

The cost of activities will be sorted in a descending order starting with the most expensive activity. Sorting activities with respect to their cost will give an insight to their involvements and should be of interest in.considering reassignment of space or personnel. Expensive activities have to be reexamined carefully to insure that their interactions are rational in compliance with the applied assumptions.
3.4 An Outline of the Linear Planning Sequence

The planning process objective is to optimize the locations of activities by minimizing the distance between activities of highest relative cost of communications. This can be expressed as

Minimize $\quad \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} R_{i j} D_{i j}$
where
$R_{i j}: \quad$ relative cost of communication between
activity i and activity j
$\mathrm{D}_{i j}:$ distance between the center of location
of activity i and that of activity j.

$$
\begin{gathered}
\text { RELATIVE COST OF COMMUNICATION BETWEEN ACTIVITY H5 \& \# } 2 \\
\text { RCC }=42+2=\dot{4} 4 \text { UNIT }
\end{gathered}
$$

$$
\begin{aligned}
& \text { COST OF ACTIVITY \# } 5 \text { IS EQUAL TO THE } \\
& \text { SUM OF REUATIVE COST OF COMMUNICATIONS } \\
& \text { WITH ALL OTHER } \triangle C T I V I T I E S . ~
\end{aligned}
$$

FIGURE 15 Cost of activity

A linear process will be applied in locating the space elements of each activity to fulfill this objective. The main difference between this approach and the trial and error method*, is that space elements will be located one at a time according to previously determined priorities. The precise location of each element should insure minimum overall cost of communications of plan.
$\frac{3.4 .1 \text { The logic of computer subprogramme 'PRIORT', }}{\text { (for priority of location) }}$
The sequence of locating the space elements will be determined according to the relative cost of communications between activities. The first activity to be located in plan should be the most expensive one. The priority given to this activity is justified by the substantial cost involved in its interactions. The second activity will be located next to the most expensive one, and therefore it has to be the one with the highest relative cost of communications with it. The next activity will have the chance to occupy the closest location to both the first and second activity. Therefore the third activity to be chosen will be of the highest sum of relative cost of communications with both. In the same way, the fourth activity in the queue of priority will have a highest sum of R.C.C. with all previously located activities. A numerical example illustrated in

[^0]SDA 3391.

HAS THE HIGHEST RCC WITH ACTIVITY \# 2
蝎 THIRD DRIORITY: ACTIVITY 9
HAS THE HIGHEST SUM OF RCC WITH $2 \& 5$
FIGURE 16 Priority of locations

Figure (16) demonstrates the order in which activities will be located in plan. The computer subroutine programme 'PRIORT' was developed to apply this method.
3.4.2 The logic of computer subprograme 'AKTLMN'

The process of locating different activities in a matrix representing the site is the main part of the planning procedure. Some processing is required before this process can start. As the space elements will be located, one at a time, according to the previously determined priorities of their activities, they have to be assigned serial numbers to determine the sequence of locating them in plan. The computer subroutine programme 'AKILMN' (for activity elements) was developed to assign these numbers.

Considering the same example illustrated in Figure (16), where the priority of locating activities are: 2-5-9-7, and assuming that the number of elements allocated to those activities are 6, 3, 1 \& 2 respectively, then the serial number assigned to each element to determine its locating priority will be as illustrated in Table (6).

Elemental locating priority	1	2	3	4	5	6	7	8	9	10	11	12
Activity number												

3.4.3 The Iogic of computer subprogramme 'ELMTRK' (for elements attractions)

The next step is to establish a pattern of relations between the modular elements according to which theix relative locations in plan will be determined. The relative cost of communication between activities will be manipulated to present this pattern. We may assume that the RCC between two activities generates forces of attraction between their modular elements and the higher this RCC is, the closer they should be. Figure 17 illustrates that the Elemental Forces of Attraction (EFA) between elements from two activities is determined by dividing the RCC by the product of their numbers of modular elements. As the relative cost of communication between an activity and itself is considered to be zero, then a computed force of attraction between its elements would equal to zero. To overcome this irrational result and to insure that the elements representing any activity will be located next to each other; a very high force of attraction between the elements of the same activity is assigned.

A computer subroutine programme was developed to assign these high forces to the elements within any activity and to compute the EFA between elements from different activities, and finally prepare a matrix representing the forces of attraction between all the modular elements of the project.

RELATIVE COST OF COMmUNICATION BETWEEN ACTIVITY $2 \&$ \&

ELEMENTAL FORCE OF ATTRACTION (EOFOA.) $=\frac{R C C}{N_{2} \times N_{7}}=\frac{25}{6 \times 2}=2$ WHERE: $N_{2}=$ NUMBER OF MODULAR ELEMENTS IN ACTIVITY 2
$\mathrm{N}_{7}=$ Number af moduse enements in activity 7
FIGURE 17 Elemental force of attraction
3.5 Optimum Arrangement of Modular Elements

Now the space modular elements are ready to be taken one at a time, and located in a matrix representing the site. The size of this matrix will be determined according to the total number of modular elements, and the expected shape of plan as whether it is rectangular or of almost equal proportions. An over estimated size of matrix may add millions of unnecessary operations to the computation process, while an under sized matrix may restrict the planning process by forcing the activities arrangement within a relatively small matrix. The established criteria and particulars of the site will switch the planning process at this stage, to either the free or restricted planning procedures.
3.5.1 The free plaming process

Free planning means that no conditions of any kind will be imposed on the process. It is assumed that the site is spacious enough to accommodate any plan regardless of its shape. It is also assumed that no activity is required to occupy any pre-determined location, and that the location of every activity will be determined solely through computations. The procedure starts by placing the first element in a central location within the matrix representing the site. The second element will be placed at the upper left corner of this matrix, as illustrated in Figure (18). The cost of

FIGURE 19 Cost of relative locations
the relative locations of these two elements according to this configuration is equal to the EFA between them multiplied by the number of modular sides separating their centers. Measuring the distance between the two elements in directions parallel to the modular sides rather than a short cut diagonal is meant to represent the actual routes of communication. These routes, because of the system of partitions or the arrangements of furniture and equipment, usually take this parallel pattern. If these two elements were of the same activity, then the assumed high elemental force of attraction between them, when multiplied by the separating distance, will result in a considerably expensive cost of these relative locations. Then element \# 2 will be shifted downwards to the next location and a new cost of these new relative locations will be computed. This procedure will be repeated until all the vacant locations are tested and the cost of each location with respect to the first element is evaluated. Obviously the location with the cheapest cost will be the closest to the first element, and therefore such a location will be selected to accommodate the second element. The same procedure will be applied to the third element. The cost of each vacant location will be computed with respect to both the first and second elements as illustrated in Figure (19). The selected location will be that of a minimum sum of costs. The rest of the elements will be located, one at a time, applying
the same procedure by testing all the vacant locations before placing the element in the one with minimum cost.

As the cost of any chosen location is minimum, then this will result in a minimum over-all cost of the plan.
3.5.2 The restricted planning process

Actually in practical problems it is often necessary to impose some restrictions on the planning process. The following are a number of reasons that may call for such restrictions:
A. The site limitations: In the free planning process the borders of the computed plan will be determined after arranging the space elements in an optimum configuration. In some cases the site available for the project may not be spacious enough to accommodate the freely computed layout. The dimensions of the site or the code requirements may confine the computed plan to certain proportions, or restrict the allowable length of any side.
B. Orientation and landscape: The surrounding landscape or adjacent buildings may have their effect on the computed plan. A gracious landscape could be appreciated by certain activities more than by others. Those activities should be given priority to occupy locations enjoying such landscape. On the other hand activities that cannot tolerate the nuisance caused by the surrounding buildings or environment, such as smoke, noise, odors or ugly shapes, should not be
placed in exposed locations.
C. Fire regulations: The code requirements may fix the locations of certain activities such as those of vertical circulation or emergency exits, regardless of their actual pattern of interactions with other activities.
D. Availability of natural lighting: In certain projects, natural lighting may be required for more activities than could be located next to the outer walls. In such cases, internal courts would be provided, or the width of the building would be restricted.
E. Ethical and practical aspects: In many cases the interactions between related activities may be surpassed by their interactions with other activities. For example the communication between an executive and his secretary may not be frequent enough to insure adjacent locations in the computed plan, or, a rest room annexed to a president's office which might be visited only once a day.
F. Alteration of an existing building: In common practice, it is always noticed that the functions taking place in a building usually change. from time to time. A building would be considered obsolete if its plan would not allow an efficient performance of the activities taking place in it. The alternative of having to move to a new building is to redistribute the developed activities within the existing premises after making the necessary alterations. In such cases the planning process would be restricted within the
contour of the existing plan. Certain activities such as those for vertical circulations or mechanical installations would be pre-located in plan before starting the computation process.

After this brief review of the factors that may necessitate imposing various restrictions upon the planning process, we shall. go through the procedure adopted for such restricted planning.
3.5.3 The logic of computer subprogramme 'RSTRCT:

First, the various reasons for imposing restrictions would be interpreted in one of two ways:
A. Restriction of space
B. Pre-determined locations of activities.

The following is an outline of the procedure applied in each case.
A. Restriction of space: A restricted space means that the modular elements would not be allowed to occupy certain locations in the matrix. Such locations would be filled with dummy elements. During the linear operation of arranging elements, only the vacant locations would be considered. This procedure is applied when computed plan is required to retain specific borders, such as the case of redistributing activities within an existing building, or planning within a restricted site. In such cases the desired outline of plan will be surrounded by a number of dummy elements. The
vacant locations available for placing the modular elements as illustrated in Figure (20) will be confined to the area surrounded by these dummy elements.
B. Pre-determined locations of activities: There are cases where some activities are required to occupy specific locations in plan regardless of a computed decision. The reason could be physical, as in case of retaining the location of a staircase when relocating activities within an existing building, or ethical, as the case of locating a president's office in a corner enjoying a gracious view. In such cases, the modular elements of those activities will be placed in the desired locations as illustrated in Figure (21). The cost of these reserved locations will be computed before starting arrangement of the remaining modular elements. This arrangement will follow the same sequence adopted in the free planning process. Starting with the element of highest priority of location, all vacant locations will be tested, and it will be placed in the one with minimum cost with respect to all previously located elements. The total cost of plan will be the sum of costs of the predetermined and the computed locations.
3.5.4 The graphical output

A computer subroutine programme 'PLOTER' was
developed to express the final configuration of modular elements in a graphical form. The scale of the drawings is determined

FIGURE 20 Restricted outline

PRELOCATED ACTIVITY

FIGURE 21 Predetermined locations
automatically according to the size of the generated plan. A flow chart of this program illustrating the stages of graphical formation is presented in Appendix A.
3.6 The Actual Cost of Communications

So far our use of the term cost was not expressed in terms of dollars. The previously determined cost of plan is represented by a number of modular sides covered daily by an individual of $\$ 4,000$ annual salary. Multiplying this number by the length of the modular side, i.e. 10 feet, gives the total distance covered daily. Applying an average walking speed of 5 feet/second it is possible to find the total time spent in the daily movements between different locations. The total time spent annually may be calculated by multiplying by the number of working days per year. The actual cost of communications of a plan can be obtained by multiplying the total time consumed in communications by the rate of pay of the standard individual. This cost when divided by the square footage of a plan yields the annual cost of communications per square foot of plan. This will be utilized as the bases of comparison between different plan forms.

The computer master programme and subroutine programmes explained in the previous sections appear in Appendix B.

CHAPTER IV

ANALOGY BETWEEN EXISTING AND COMPUTED PLANS

The previous procedures were applied in planning the registrars general office according to both the restricted and free planning techniques. Actually, it was found necessary to evaluate the performance of the existing plan, in terms of cost of communications, before starting the planning process.
4.1 Evaluation of Existing Plan

Evaluation of cost of communications according to the present plan is meant to establish some point of reference with which modified or new plans may be compared. The existing pattern of interactions and space allocations were used for evaluating this cost in the same way applied for restricted planning with the following modifications: A. All the forms of space allocated to different activities are already determined.
B. The locations of 'all' activities are fixed.

A moulding process was applied to adjust the existing
locations into forms that can be represented by a number of modular elements, as illustrated in Figure (22). These elements were located in a matrix representing the site in a configuration identical to the existing one. Then the cost of communication was computed as explained in the

MOULOHNG OR SPACE

previous chapter.
The output of computations illustrated in Figure (23) shows that the annual cost of communications according to the present arrangement is equal to $\$ 3,736$. It also shows that the annual cost per square foot of plan is $\$ 1,03$. These figures will be referred to when evaluating the relative advantages of different computed plans.
$\frac{4.2 \quad \text { Re-allocation of Facilities within the Existing }}{\text { Building }}$
As activities taking place in a building are often subjected to cycles of growth and change that may not be long enough to justify moving to a new building, it is necessary to periodically update the existing layout by reallocation of facilities within the existing space. In some cases the cost of alterations may surpass the expected savings of running the modified layout. In such cases, a comparison has to be made between alternatives of modified plans. The second factor to be considered is space allocations. As the overall size of plan will remain the same, the extra space required for the growing activities will have to be provided internally i.e., from activities with little or non-expected growth, or activities allocated larger space than their actual need.

A study was carried out to re-allocate activities in the registrar's office within the present space. The first step was to re-allocate space to different activities according to their expected growth. This was accomplished by providing

ANNUAL COST OF COMMUNICATION DUE TO PRE LOCATED ACTIVITIES $=3736$ DOLLAR annual cost due to computed activities
$=0$ DOLLAR
avnual total cost of communication of plan
$=-3736$ DOLLAR
ANNUAL: COST PER SQUARE FGOT OF AREA CONSIDERED
$=103 \mathrm{CENT}$
N.b. : these figures do not include cost of movements within each activity

FIGURE 23: COMPUTER OUTPUT, EXISTING PLAN
the activities \# 8, 9 and 10 with 100 square feet each, taken from activities \# 3, 4 and 5. The second step was to determine the fixed locations. The reception area and the stair hall (activities 13 and 15) were kept in their present locations. The locations of the general files and the vault were retained to eliminate the high cost of alterations because of their special construction for security and protection against fire.

Interactions between the remaining activities were computed and their locations determined as illustrated in Figure (24). The computed output was interpreted architecturally in Figure (25). From this output we notice that the new arrangement did not cause substantial reduction in the cost of communication. This may be for two reasons:
A. The present arrangement is efficient with respect to the existing form of space provided.
B. A number of activities were assigned the present locations before computations. This reduced substantially the number of space elements that were located through computations.

Another computer run was made on the assumption that more physical alterations can be made. This allowed the locations of the vault and general files to be determined through computations. The only two activities that were prelocated are the reception and the stairhall. Figure (26) illustrates that a considerable improvement was achieved when the number of computed locations was increased. An architectural

ANNUAL COST DF COMMUNICATION DUE TO PRE LOCATED ACTIVITIES = 3652 DOLLAR
ANNUAL COST DUE TO CGMPUTED ACTIVITIES
$=0$ Dollar
ANNUAL TOTAL COST UF COMMUNICATION OF PLAN
$=-\frac{-3}{3652}$ dOLLAR
ANNUAL COST PER SQUARE FOOT OF AREA CQNSIUERED $=101$ CENT
N.B. : THESE FIGURES DO NOT INCLUDE COST OF MOVEMENTS WITHIN EACH ACTIVITY

FIGURE 25

ANMUAL CIST OF GOMMUNICATION DUE TO PRE LOCATED ACTIVITIES $=3618$ DOLLAR
ANUUL COST DUE TO COMPUTED ACTIVITIES $=0$ DOLLAR
ANNUAL TOTAL COST DF COMMUNICATION OF PLAN $=3618$ DOLLAR
ANNUAL GIST PER SQUARE FODT OF AREA CONSIDERED $=100$ CENT N.B. : THESE figures no not include cost of movements within each activity

COMPUTED LAY OUT
alterations of
EXISTING PREMISES

interpretation of this output is illustrated in Figure (27).
4.3 Planning in a Non-restricted Site

The interactions between different activities were used to compute a free plan. The only modification made is with respect to the stairhall.。 Previous figures were originally modified to express the particular circumstances of the present layout, where different personnel pass through the stairhall on their way to related activities located outside the area. In planning a new building in a non-restricted site, it is assumed that all related activities are located in the same floor, and thus, visits to the stairhall are not treated as visits to a more distant activity.

The present space allocations were used to form a rational base for comparison.

The computed output illustrated in Figure (28) shows an impressive reduction in the annual cost of communications. The present annual cost of communications was brought from $\$ 1,03$ down to $\$ 44$ per each square foot of plan. The final architectural treatment illustrated in Figure (29) shows that activities were grouped in three zones: Zone A, for the administrative activities, which usually have larger interactions between themselves rather than with the public activities located in Zone B. Accessibility to the area is provided through its core (zone C), expressing the fact that the registrar's office is serving the campus

at large and its physical interactions with outside activities are vital for an efficient performance.
4.4 Analogy between free and Restricted plans

From the previous illustration of free and restricted planning, we find that the free planning process has a considerable advantage with respect to cost of communication. The locations of different activities are determined solely through minimizing cost of communications. No restrictions that might have interfered with the selection of such locations are imposed. On the other hand, the restricted planning, while giving a higher cost of communications, has the advantage of controlling the output of computations. This facility is indispensible in planing within a specific given space. However, the two procedures can be used to help in the decision whether to move to a new building or simply rearrange activities within the same premises. The cost of necessary alterations and the resulting savings in annual cost of communications would be compared to the cost of a new building and its annual communication cost. The life of the building would be taken into account with other factors (i.e., mortgage rates, taxation, budget, etc.).

In the particular case considered we find that the annual cost of communication was brought from the present $\$ 1,03$ per square foot, down to $\$ 44$. This means an annual saving of about $\$, 59$ per square foot.

This cost of communication is based upon the present pattern of salaries. So, if we may consider that the annual increase in salaries is almost equal to the mortgage interest rate, then, we can hypothetically consider that the discounted present value of the cost of communication per square foot would be the same over the building life (mortgage length).

An annual saving of $\$ 59$ over a life span of 60 years, using this assumption, would amount to $\$ 36$ per square foot. This does not mean that activities will remain unchanged throughout such a long span of time, rather, emphasizes the fact that cost of communication may be a dominant factor affecting the economical components of the project.

CONCLUSIONS

The present role of the architect requires him to make functional decisions, discover visual relationships and express both in formal terms. It can be enhanced by using the computer for simultaneous analysis of many functional variables. Economic gains of such an approach may be surpassed by the convenience of optimum performance of the building.

However, these advantages may be largely expanded if future work overcomes the limitations of the present programme.

Limitations and Points of Interest for Future Investigation The planning process optimizes the locations of different activities within any given area. The two dimensional arrangement does not take into account the impact of activities located in other floors. In the present procedure a manual decision has to be made as to which activities would be grouped on the same floor beforeoptimizing their relative locations within this floor. Computing the interactions between different activities in three dimensions will distribute activities to various levels, determine various floor areas, and, consequently, the mass plan of the project.
B. Imposing restrictions on the planning process reduces the chances of attaining an optimum arrangement. In some cases, pre-located activities distort the computation process by attracting the elements of high priority of location regardless to a possible week pattern of interactions that would not justify such proximity.

Future work may investigate the possibility of introducing modification factors that can neutralize the distorting effect of pre-located activities to insure that locations next to them would be occupied by highly related activities.
C. Interactions between different activities are computed according to the assumption that the boundaries of any activity may be crossed at any side. In many cases, walls, furniture or equipment may interfere with this assumption, and divert the movements between two adjacent locations to longer routes. More realistic results would be obtained if locations of doors, dividing partitions etc., were introduced.
D. The present programme may handle a complex problem in two or more stages.

At the first stage activities of similar nature will be clustered in groups. The collective interactions between these groups will be computed to determine their relative locations. The second stage is to optimize the locations of activities within the space allocated to each group. As we
see, a considerable amount of manual decisions are involved, increasing the chances for inaccurate representation and sub-optimum results.

Such drawbacks can be overcome in a master programme that could make decisions, such as grouping of activities and the collective interactions between groups.

A multi-stage approach could greatly reduce the computation time, and provide a facility that could handle efficiently practical problems of substantial size.

BIBLIOGRAPHY

1. "Architecture and The Computer", Proceedings/First Boston Architectural Center Conference, Boston Architectural Center, Mass., December 1964.
2. ARMOUR, G. C. and E. S. Buffa. "A Heuristic Algorithm and Computer Simulation Approach to the Relative Location of Facilities", Management Science, Volume 9-1, p. 294, Jan. 1963.
3. BAREITHER, H. and J. I. Schillinger. University Space Planning. University of Illinois Press, Urbana, 1968.
4. BARNES, R. M. Motion and Time Study: Design and Measurement of Work. John Wiley \& Sons Inc., New York, 1968.
5. BUFFA, E. S., G. C. Armour and T. E. Vollmann. "Allocating Facilities with CRAFT", Harvard Business Review, p. 136, March 1964.
6. BUFFA, E. S. Modern Production Management. John Wiley \& Sons Inc., New York, 1969.
7. CURRIE, R. M. Work Study. Pitman, London, 1967.
8. CAMPION, David. Computers in Architectural Design. Elsevier Publishing Co., New York, 1968.
9. LEE, R. C. and J. M. Moore. "CORELAP, Computerised Relationship Layout Planning," Journal of Industrial Engineering, Vol. XVIII-3, p. 195, March 1967.
10. MOORE, J. M. Plant Layout and Design. MacMillan, New York, 1962.
11. MOSELEY, D. L. "A Rational Design Theory for Planning Buildings Based on the Analysis and Solution of Circulation Problems," Architects' Journal, p. 525, 1963.
12. "Performance Design", Progressive Architecture, p. 104, August 1967.
13. PILE, J. "Buroland Schaft," Canadian Architect, June 1969.
14. PLANAS, R. E. and Quickborner Team. "Office Landscape Layout," The Office Magazine, July 1969.
15. TEICHOLZ, E. D. "Architecture and the Computer," Architectural Forum, p. 58, Sept. 1968.
16. VOLLMANN, T. E. and E. S. Buffa. "The Facilities Layout Problem in Perspective," Management Science, XII (10), p. 450, June 1966.
17. WHITEHEAD, B. and M. Z. Eldars. "The Planning of Single Storey Layouts," Building Science, Vol. I, p. 127, Sept. 1965.

APPENDIXES

APPENDIX A

The sequence of computations illustrated in the previous chapters is applied to optimize the location of activities with respect to the cost of movements of persons involved. If the plan is required to be otpimized with respect to any other given form of relations, the matrix of these relations would be provided, and all the preparatory computations of cost of movements would be omitted. Evaluation of different computed outputs will be in terms of the given relations. A chart illustrating the various stages of the computation process is shown in Figure (30).

A flow chart of subroutine programme 'PLOTER' shown in Figure (31) illustrates the stages of graphical formation of the required plan.

END

SUBPROGRAM PLOTER
flow chart

APPENDIX B

THE COMPUTER PROGRAMME

A copy of the complete computer programme is presented in the following pages. It should be noticed that the function of the master programme was confined to reservation of more than adequate memory for storing different arrays. The exact number of bites required for each array is determined through the subroutine programme 'MAINSB', after reading the particulars of activities considered. This makes the programme quite flexible and capable of handing problems of various sizes.

```
    $JOB WATFIV TANFIK,KP=29,TIME=120,PAGES=30
C A PRESION APPROACH TO ARHITECTURAL PLANNING (P A T A P)
    THIS prOGRAMME GEvERATES THE REQUIRED PLAN ACCGRDING TO EITHER THE COST OF
    COMMUNICATION OR ANY GIVEN PATTERN OF INTERACTIONS BETWEEN ACTIVITIES.
    THE FOLLJWING TERMS ARE USED:
            CRYT : CRITERIA OF PLANNING
            NACT : TOTAL VUMBER OF ACTIVITIES
            -spAM : AREA OF spACE mODULAR ELEmENT IN SQUARE fEET
            AREA(I) : AREA OF ACTIVITY (I) IN SQUARE FEET
            NCTG : tOTAL NUMBER OF CATEGORIES
            FACT(I) : THE MULTIPLIER OR FACTOR OF STANDARDIZATION
            SLRY : STANDARD ANNUAL SALARY
            HLOY : AVERAGE ANNUAL HDLIDAY IN WEEKS
            WKHR : AVERAGE WORKING HOURS PER WEEK
            ACTV : ACTIVITY'S NUMBER
            PRSN : PERSON:S NUMBER
            CATG : CATEGORY
            VIST(I) : NUMBER OF VISITS MADE BY CONSIDERED PERSON TJ ACTIVITY (I)
            COST(I,J) : MATRIX OF INTERACTIGNS BETWEEN ACTIVITIES
            RSTR : RESTRICTIONS IMPOSED ON THE PLANNING PROCESS
            NPRL : TOTAL NJYBER OF ACTIVITIES TO BE PRE LOCATED
            NDMY : NUMBER OF DUMMY ELEMENTS
            XRDV(I),YRDN(I) : HORIZONTAL ANO VERTICAL OROINATES OF DUMMY ELEMENT (I)
            PRLE(I) : PRE LJCATED ACTIVITY (I)
            ACSZ(I) : NUMBER OF MODULAR ELEMENTS ASSIGNED TO A PRE LOCATED ACTIVITY
the sequence of data read is as follow:
            1- GRYT' ICRYT=1, IF COST IS COMPUTED ACCORDING TO MOVEMENTS AND SALARIES,
                    ICRYT=0 ,IF OTHER MATRIX OF RELATIONS IS PROVIDED WITHOUT COMPUT.
        2-1NACT,SPMD,(AREA(J), J=1,NACT) ;
THEN 3 , 4 ARE PROVIDED ONLY IF 'CRYT' = 1
        3-1NCTG,(FACT(I),I=1,NCTG),SLRY,HLDY,WKHR:
        4-'ACTV,PRSN,CATG,(VIST(I),I=1,NACT) '
            (THE CARD # 4 IS REPEATED ACCORDING TO THE NUMBER OF PERSONS)
THEN 5 WILL BE PRJVIDED ONLY IF 'CRYT' = 0
        5-((COST(I,J), J=1,NACT),I=1,NACT)
            (THIS MATRIX REPRESENTS ANY DESIRED RELATIONS BETWEEN ACTIVITIES)
        G-'RSTR,NPRL,NDYY'
            ('RSTR = l IF ANY DUMY OR ACTUAL ACTIVITIES ARE PRE LOCATEO,OTHERWISE =0)
            ('NPRL' IS VUY3ER OF ACTUAL ACTIVITIES TO BE PRE LOCATED)
            ('NDMY'IS NUMBER OF DUMMY ELEMENTS TD BE PRE LOCATED)
    THEN }7\mathrm{ IS PROVIDED ONLY IF 'RSTR' = 1 AND 'NDMY' GREATER THAN O
        7-(X2DN(I),YRDV(I),I=1,NDMY)
            these are the ordinates in the matrix 'arNg' where dumy elements are pre
        LOCATED.
    THEN 8 , 9 ARE PROVIDED ONLY IF 'NPRL' IS GREATER THAN O
        8-PRLC(1),ACSZ(1)
            (PRLC(1) IS THE NUMBER OF ACTIVITY TO BE PRE LOCATED FIRST)
            (ACSZ(1) IS THE NUMBER OF ELEMENTS REPRESENTING THIS AGTIVITY)
        9-XRDN((I) , YRDN(I) , I=I,ACSZ(1)
THEN 8,9 ARE REPFATED ACCORDING TO THE NUMBER OF PRE LOCATED ACTIVITIES PNPRL
            INTEGER ACTV , PRSN, CATG, STND(5,20)/100*0/, SUM(20,20), K/1/
        1,ACST(20) /20*0/,COST(20,20), SMCS(2,20)/40*0/,
        1SIZE(20),AREA(20),SPMD,AKEL(2,100),A(25),PREV,P,R,OLDI,OLDJ,
        1ATRK(100,100),SMSI,SIASJ,PLAN/0/,PRIR(20),SMPR(20),
        IARNG(33,33)/1)89*C/,SITE(35,35)/1225*0/, WALL(35,35)/1225*0/
        REAL FACT(5), VIST(20)
        REAJ,CRYT
        READ,NACT,SPMD,(AREA(J),J= 1,NACT)
        IF(こRYT.EQ.0)GJ TO 9
        READ,NCTG,(FACT(I),I=1,NCTG),SLRY,HLDY,WKHR
```

9

10
DO I $=1$, NACT
PLAN = PLAN + AREA (I)
CONTINUE
NELM = PLAN / SPYO
IFINELM.LT. 211 GO TO 12
$N E L=N E L M / 3$
GO ro 1.5
12 IF(NEL:I.LT.10) SOTO 13
NEL $=$ NELM/2
GO TO 15
NEL $=$ NELM-1
13 NEL $=$ NEL $=N E L+1$
NEL? $=$ NEL +2
CALL MAINSB (STND, SUM, ACST, COST, SMCS, FACT, VIST 1, NACT, NCTG, ACTV , PRSN, CATG, K,
IAREA,SPMD,SIZE,AKEL,A,PREV,NELM,M,L,P,R,OLDI, OLDJ,ATRK, IN,PLAN,SMSI, SMSJ, NROW,PRIR,SMPR,LARG,NEL,ARNG,SITE,WALL, INEL1, NEL 2, CRYT, SLRY, HLDY, WKHR)
PRINT 1000
1000 FORYAT ('1')
STOP
END
SUBROUTINE MAINSB (STND, SUM,ACST,COST,SMCS,FACT,VIST
1, NACT, NCTG; ACTV , PRSN, CATG , K ,
IAREA, SPMD,SIZE, AKEL,A,PREV,NELM,M,L,P,R,OLDI,OLDJ,ATRK, IN, PLAN,SMSI, SMSJ, NROW,PRIR,SMPR,LARG,NEL,ARNG,SITE,WALL, 1NEL1, NEL 2, CRYT, SLRY, HLDY, WKHR)
INTESER STND(VETG,NACT), SUM(NACT,NACT), ACST(NACT), PRCS, 1 COST(NACT, VACT) , SMCS(2,NACT) , ACTV , PRSN , CATG, ISIZE(NACT),AREA(NACT),SPMO,PLAN,AKEL(2,NEL 1), A(25), PREV,P,R, 1OLDI, OLDJ,ATRKIVELM,NELM),SMSI,SMSJ,PRIR(NACT),SMPR(NACT), 1RST2,PRLC(20), ARNG(NEL,NEL), TOTV,SITE(NEL2,NEL2),WALL(NEL2,NEL2), 1WRTV(20)/20*0/, NMBR(22)/22*0/,STCL, ENCL, STRW, ENRW, FCAD
INTEGER XRDV(90), YRDN(90), XPNS , PRXP , PRCE , FTPR
INTEGER*2 HRZN(22,2)/44*' $1 /$, PRTN(22)/22**'/, DUMY/'X'/
REAL FACT(NCTG), VIST(NACT)
PRIVT 2,NACT, SPMD, NELM, PLAN
2 FORYAT('1',///20X,'NUMBER OF ACTIVITIES = ', I $6, / / 20 \mathrm{X}, \mathrm{I}$ SPACE MODULE
1 =, I6,' SQUARE FEET',//20X,'NUMBER OF ELEMENTS $=1,16,1 /$
120X,'TOTAL AREA DF PLAN = ', I6,' SQUARE FEET'////
IF(こRYT.EQ.O) GO TO 276
PRINT,NCTG, (FACT (I) , I=1, NCTG)
PRINT, (AREA(J), J=1,NACT)
3 READ, ACTV, PRSN, CATG, (VIST(I), I= I,NACT)
PRIVT, ACTV, PRSN, CATG, AREA(AGTV)
PRINT, (VIST(I) , $I=1$, NACT)
CALL STNVST (VACT, ACTV, NCTG, CATG, K, SUM, VIST, STND,
1ACST, FACT)
IF (ACTV.EQ.NACT) GO TO 15
GO TO 3
15 DO $16 \mathrm{~J}=1$, VACT
$\operatorname{SUM}(N A C T, J)=\operatorname{ACST}(J)$
16 CONTINUE
PRIVT201
201 FORMAT('1',///30X,'SUM OF VISITS FROM EACH ACTIVITY TO ANY OTHER

$15 x, 191,4 x, 1101,4 x, 111,4 x, 121,4 x, 131,4 x$,

i		
		14x, $20 \cdot 1 / 1$
46		DO $250 \mathrm{I}=1$, NACT
47		PRIVT $240, \mathrm{I},(\mathrm{SJM}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NACT})$
48	240	FORMAT('0', 'VISITOR', 13, (20I6, 110 X)
49	250	continue
50	,	CALL ACCOST(COST, SUM, NACT)
51		PRINT 270
52	270	FORYAT('1',///35x, RELATIVE COST OF COMMUNICATION BETWEEN ACTIVITI
		les '/'0', $30 \times$, REPRESENTED BY THE SUM OF VISITS MADE FROM AND RECEI
		IVED EY'/'0',37X. 'EACH ACTIVITY TO AND FROM ANY OTHER ACTIVITY:
		1//50X,
53		D) $275 \mathrm{I}=1, \mathrm{NACT}$
54		PRIVT274, I, (COST (I, J), J=1, NACT)
55	274	FORYAT('O', 'ACTIVITY', I2, (2016, 10 O))
56	275	Continue
57		GO TO 277
58	276	READ, ((COST $(I, J), J=1, N A C T), I=1, N A C T)$
59	277	CALL SMCOST(COST, SMCS,NACT)
60		PRIVT 280
61.	280	FORMAT('1',///20x, 'total sum of relative cost of commuyication fo
		IR EACH ACTIVITY PRESENTED BY:/O', 15 X , 'THE SUM OF VISITS MADE FRC
		$1 M$ AVD RECEIVED BY ANY ACTIVITY TO AND FROM ALL OTHER ACTIVITIES:
62		PRINT 285, ($\operatorname{SMCS}(1, \mathrm{~J})$, $\mathrm{J}=1$, NACT)
63	285	FORYAT ('0', 'ACTIVITY ', (2016,110x))
64		PRINT286, (SMCS $2, \mathrm{~J}), \mathrm{J}=1, \mathrm{NACT})$
65	286	FORYAT('0', 'COST SUM ',(20I6,110X))
66		CALL SMSORT (SMCS , NACT)
67		PRIVT 290
68	290	FORYAT '0', ////////35x, ACTIVITIES ARRANGED IN A DESCENDING ORDER
		1'/25X;'ACCORDIVG TO THE SUM OF THEIR RELATIVE COST OF COMMUNICATIO
69		PRIVT 295,(SMCS(1, J), J=1,NACT)
70	295	FORMAT('0', ${ }^{\text {P A TIVITY ', (20I6, /10x) }}$
71		PRIVT 296 , (SMCS $2, \mathrm{~J}), \mathrm{J}=1$, NACT)
72	296	FORMAT ('0', 'COST SUM ', (2016, /10x)
73		CALL PRIORT(NACT, NROW,PRIR,SMPR, LARG, COST, SMCS)
74		PRIVT 300 (
75	300	FORYAT/'1',///30x, 'ARRANGEMENT OF ACTIVITIES ACCORDING TO PRIORITY
76		PRIVT310, (PRIR (J), J=1, NACT)
77	310	FORMAT('O', 20IS/////)
78		CALL AKTLMN (SIZE, AREA,PRIR,SPMD, PREV,P,R,NACT, AKEL, NELM)
79		PRIVT 425 (${ }^{\text {a }}$
80	425	FORYAT''0', /////,30X,'ARRANGEMENT OF SPACE ELEMENTS ACCORDING TO P
11		PRIVT 426, (AKEL (1,J), J=1,NELM)
32	426	FORYAT('0', 'ELEMENT', 4 X ($(4013,16 \mathrm{X})$)
83		PRIVT427, (AKEL (2,J), J=1, NELH)
34	427	FORYAT('0', 'ACTIVITY', 3 X, (40I3, 6 CX)
85		CALL ELMTRK $I P, R, O L D I, O L D J, N A C T, S I Z E, ~ A T R K, C O S T, N E L M, S M S I, S M S J$ 1, PRIR)
86		PRINT 550
7	550	FORYAT/////'1', $10 X$,'MATRIX OF FORCE OF ATTRACTION BETWEEN ELEMENTS

```
                !
    1, ARRANGED ACCORDING TO THE TDTAL COST OF ACTIVITIES')
        DO 570 I = 1,NELA
    PRIVT 555,I,(ATRK(I,J),J=1,NELM)
    FORMAT('O', 'ELMNT',T 3,4X,(40I3,/7X))
    CONTINUE
        PRCS = 0
        ME = 0
        REAJ, RSTR,NPRL,NDMY
        IF(2STR.GT.O) CALL RSTFCT(NPRL,PRLC,ME,NELM,AKEL,ARNG,NEL,
    1ATRK, PRCS,DUMY,MDMY,XRDN,YRDN)
        PRINT 575, RSTR,NPRL;NDMY
        FORMAT('0',////2OX,'RESTRICTIONS',23X,'=',I5,//20X,
        1'NUMEER OF PRELOCATED ACTIVITIES *,3X,'=',I5,//20X,
        I'NUMBER OF DUMYY FLEMENTS',11X;'=',I5,//2OX,
        1'PRELOCATED ACTIVITIES', 14 X,'='`
        IF(VPRL.EQ.O) GO TO 581
        PRIVT 580,(PRLC(I),I=1,NPRL)
        580 FORMAT('+',56X,20I3/)
        GO TO 590
        PRIVT 585
        FORYAT('+1,59X,'0'1
        IF(ME.EQ.1000) GO TO 710
        PRIVT 700
        FDRVAT('O',20X,: THE COMPUTED PLAN IS BASED UPON THE FOLLOWING ASSU
        IMPTIGNS:'//30X,'1- NO SITE LIMITATIONS:/30X,'2- NO ACTIVITIES AR
        IE REQUIRED TO DGCUPY SPECIFIC LOCATIONS://2OX, 'PLEASE ADVISE IF AN
        IY NEW RESTRICTIONS ARE TO BE CONSIDERED'/////////
        CALL ARANGE TTJTV,NEL %,RSTR,NPRL,PRLC,AKEL,NEL,ARNG,ATRK,
        INEL1,NEL2,SITE,STRW,ENRW,STCL,ENCE,LSRW,LNRW,LSCL,LNCL,FCAD,DUMY)
        PRINT 715
            715 FORMAT''1',2OX,'ARRANGEMENT OF MDDUL AR ELEMENTS THAT REPRESENTS TH
        IE MINIMUM COST OF COMMUNICATION BETWEEN ACTIVITIES'//)
        PRIVT716,(J,J=1,NEL)
            716 FORYAT('O',10X,40I3///)
        DO 720 I = 1,NEL
        PRIVT717,I,(ARVG(I,J),J=1,NEL)
        FORMAT(10',5X,I2,3X,(40I3,/11X))
        CONTINUE
        RATE = SLRY/((52-HLDY)*WKHR*3600)
        TIME = . 2*SQRT(FLDAT(SPMD))
        XPNS = TOTV*TIME*RATE*255
        PRXP=PRCS*TIME*RATE*255
        PRCE = XPNS+PRXP
        FTPR = (PRCE*100)/(NELY*SPMD)
            730 CALL PLOTER\STマN,STCL,LVRW,LNCL,SITE,WALL,HRZN,FCAD,SPMD,
        1NEL1,NEL2,PRTV,NACT,WRTN,NMER,DUMY,PRLC,NPRL)
        IF(CPYT.GT.O) G3 TO 734
        PRINT738,PRCS,TOTV,PRCS+TOTV
    OTHER COMPILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS
        FORYAT('O', /21X,'PREREQUISITE VALUE DUE TO PRELDCATED ACTIVITIES'
        1,12X,'=:I10,' UNIT'//21X,'VALUE OF COMPUTEDLOCATISNS OF NON RES
        ITRICTEO ACTIVITIES', 3X,'=1,I1O,' UNIT:/84X;'
            1//21X
        1'TOTAL VALUE OF PLAN ACCORDING TO THIS ARRANGEMENT','IOX,'=',I10,
        1: UNIT:I
        RETURN
            734 PRIVT 735,PRXP,XPNS,PRCE,FTPR
            735 FORMAT('O',//21X,'ANNUAL COST OF COMMUNICATION DUE TO PRE LOCATED
        IACTIVITIES =',I8,' DOLLAF'//2IX,'ANNUAL COST DUE TO COMPUTED ACTI
        IVITIES ',20X,'=',I8,' DOLLAR'/
        183x,'_____'/21X,'ANNUAL TOTAL COST OF COMMUNICATION OF PLAN'
```

```
        %
        1,17X,'=',I8,' DOLLAR'//21X;'*
        I'ANVUAL COST PER SQUARE FOOT OF AREA CONSIDERED',13X,'=',I8,
        1' CENT'//21X.
        1'N.3. : THESE FIGURES DO NOT INCIUDE COST OF MOVEMENTS WITHIN EACH
        l ACTIVITY')
        RETJRN
        END
    SUBROUTINE ST:NVST (NACT,ACTV,NCTG,CATG,K,SUM,VIST,STND,ACST,FACT)
    INTEGER SUM(VACT,NACT),STND(VCTG,NACT), ACST(NACT) , ACTV , CATG
    REAL FACT (NCTG), VIST(NACT)
    IF (ACTV .EQ.< ) GO TO 7
    DO 30 J = 1,NACT
    SUM(K,J) = ACST(J)
    CONTINUF:
    K = ACTV
    DO 40 I = 1,NGTG
    DO 40 J=1, NACT
    ACST(J)=0
    STNJ (I,J)=0
    CONTINUE
40}0l:NO 20 J = NACT
        STN) (CATG , J)=FACT(CATG)*VIST(J)
        ACST (J)=ACST (J) + STND (CATG, J)
    20 CONTINUE
    RETURV
    END
    SUBZDUTINE ACCOST(COST,SUM,NACT)
    INTEGER COST ( VACT, NACT ), SUM(NACT,NACT)
    DO 20 I = 1 , NACT
    DO 20 J = 1 , NACT
    COST (I,J)=SJM(I,J)+\operatorname{SUM}(J,I)
    cosT(J,I)= CosT(I,J)
    20 . CONTINUE
    RETJRN
    END
    SUBRDUTINE SMCJST(COST, SMCS,NACT)
    INTEGER COST (NACT,NACT),SMCS(2,NACT)
    DO 30 J = 1,NACT
    OO 30 I = 1,NACT
    SMCS}(2,J)=\operatorname{SMCS}(2,J)+\operatorname{CosT}(I,J
    CONTINUE
    DO 40 J = 1,NACT
    SMCS(1,J)=J
    CONTINUE
    RETJRN
    END
    SUBROUTINE SMSJRT (SMCS , NACTI
    INTEGER SMCS (2, NACT )
    J = NACT - 1
    IF (J LT. l ) RETURN
    DO 10 K=1, J
    IF (SMCS(2,K) , GT. SMCS(2,K+1))GO TO 10
    L = SMCS (1,K)
    M=SMCS (2,K)
    SMCS(1,K)=SMCS(1, K+1)
    SMCS(2,K)=SMCS(2,K+1)
```

```
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
```

 i
    ```
    SMCS(1,k+1)=1
```

 SMCS(1,k+1)=1
 SMCS(2,K+1)=4
 SMCS(2,K+1)=4
 10 cmNTINUE
 10 cmNTINUE
 J= J-1
 J= J-1
 GO TO ?
 GO TO ?
 END
 END
 SUBROUTINE PRIJRT (NACT,NROW,PRIR,SMPR,LARG,COST,SMCS)
 SUBROUTINE PRIJRT (NACT,NROW,PRIR,SMPR,LARG,COST,SMCS)
 INTEGER PRIR(NACT),SMPR(NACT),COST(NACT,NACT),SMCS(2,NACT)
 INTEGER PRIR(NACT),SMPR(NACT),COST(NACT,NACT),SMCS(2,NACT)
 DO 350 J = 1,NACT
 DO 350 J = 1,NACT
 PRIR(J)=0
 PRIR(J)=0
 SMPR(J)=0
 SMPR(J)=0
 350 CONTINUE
350 CONTINUE
PRIR(1) = SMCS(1,1)
PRIR(1) = SMCS(1,1)
DO 35D J = 1,NACT
DO 35D J = 1,NACT
LARS = 0
LARS = 0
DO 370 I = 1,NACT
DO 370 I = 1,NACT
SMP2(I) = SMPR(I) + COST(I,PRIR(J))
SMP2(I) = SMPR(I) + COST(I,PRIR(J))
IF(LARG .GT.SMPR(I)) GO TO 370
IF(LARG .GT.SMPR(I)) GO TO 370
DO 380 L = 1,J
DO 380 L = 1,J
IF(I .EQ. PRIR(L)) GO TO 370
IF(I .EQ. PRIR(L)) GO TO 370
380 CONTINUF
380 CONTINUF
LARG = SMPRII)
LARG = SMPRII)
NROW = I
NROW = I
370 CONTINUE
370 CONTINUE
IF(J.EQ. NACT) RETURN
IF(J.EQ. NACT) RETURN
PRIR(J+1)=NROW
PRIR(J+1)=NROW
360 CONTINUE
360 CONTINUE
RETJRN
RETJRN
ENDD
ENDD
SUBZJJTINE AKTLYN (SIZE,AREA,PRIR,SPMD,PREV,P,R,NACT,AKEL,NELM)
SUBZJJTINE AKTLYN (SIZE,AREA,PRIR,SPMD,PREV,P,R,NACT,AKEL,NELM)
INTEGFR SIZE(NACT),AREA(NACT), PRIR(NACT),SPMD,PREV,P,R,
INTEGFR SIZE(NACT),AREA(NACT), PRIR(NACT),SPMD,PREV,P,R,
lAKEL(2,NELM),A(25)
lAKEL(2,NELM),A(25)
DO 400 J = 1,NACT
DO 400 J = 1,NACT
SIZE(J) = AREA(PRIR(J))/SPMD
SIZE(J) = AREA(PRIR(J))/SPMD
400 CONTINUE
400 CONTINUE
PREV = 0
PREV = 0
P = 1
P = 1
R=1
R=1
DO 410 J = 1,NACT
DO 410 J = 1,NACT
N=SIZE (J)
N=SIZE (J)
DO 420 L = 1,N
DO 420 L = 1,N
A(L)=PRIR(J)
A(L)=PRIR(J)
M = PREV +L
M = PREV +L
AKEL(1,M) = M
AKEL(1,M) = M
AKEL(2,M) = A(L)
AKEL(2,M) = A(L)
420 CONTINUE
420 CONTINUE
PREV = M
PREV = M
410 CONTINUE
410 CONTINUE
RETJRN
RETJRN
END
END
SUBROUTINE. FLMTRK(P,R,DLDI,OLDJ,NACT,SIZE,
SUBROUTINE. FLMTRK(P,R,DLDI,OLDJ,NACT,SIZE,
IATRK,COST,NELM,SUSI,SMSJ,PRIR)
IATRK,COST,NELM,SUSI,SMSJ,PRIR)
INTEGER P,R,OLDI,OLDJ,SIZE(NACT),SMSI,SMSJ, ATRK(NELM,NELM)
INTEGER P,R,OLDI,OLDJ,SIZE(NACT),SMSI,SMSJ, ATRK(NELM,NELM)
1,COST(NACT,NACT),PRIR(NACT)
1,COST(NACT,NACT),PRIR(NACT)
OLDJ = 0
OLDJ = 0
DO 500 J = 1,NACT.
DO 500 J = 1,NACT.
P = 1

```
    P = 1
```

```
            OLDI = 0
            SMSJ = OLDJ + SIZE(J)
            OO 530 I = 1,NAGT
            SMSI = OLDI + SIZE(I)
            DO 510K=P,SMSI
            DO 510L=R R,SMSJ
            IF (P.EQ. R ) GJ TO 515
            ATRK(K,L)=COST(PRIR(I),PRIR(J))/(SIZE(I)*SIZE(J))
            GO TJ 510
                    515 ATRK(K,L)=997
510 CONTINUE
            P SMSI + + 
            OLDI = SMSI
5 3 0 ~ C O N T I N U E ~
            R=SMSJ + 1
            OLDJ = SMSJ
500 CONTINUE
            RETJRN
            END
            SUBROUTINE RSTRCTINPRL,PRLC,ME,NELM,AKEL,ARNG,NEL,ATRK,PRCS,
        IDUMY, NDMY, XRDN,YRDN)
            INTEGER PRLC(20),ACSZ(90),AKEL(2,NELM), XRDN(90),YRDN(90),ARNG(NEL,
            1NEL),PRCS,ATRK(NELM,NELM)
            INTEGER*2 DUMY
            IF(VDMY.EQ.O) 30 TO 651
            READ,(XRDN(I),YRDN(I),I=1,NDMY)
            DD 549 I = 1,NDMY
            ARNS(XRDN(I),YRDN(I)) = DUMY
649 CONTINUE
651 IF(VPRL.EQ.O) GO TO 696
            PRINT 650
650 FORYAT('1',12X,'ACTIVITIES TO BE PRE LOCATED IN PLAN TO COMPLY WIT
            IH SITE LIMITATIONS ANO CLIFNT REQUIREMENTS://2OX,'PRE LOCATED ACTI
            IVITY',20X, 'NUMBER OF ELEMENTS',20X,'RESERVED LOCATION')
            DO 580 L = 1,NPRL
            READ,PRIC(L),ACSZ(L)
            PRIVT 655,PRLC(L),ACSZ(L)
655 FORMAT('0',20X,I1O,27X,I1O)
            DO 670 J = L,NELM
            IF(PRLC(L).NE.AKEL(2,J))GO TO }67
            N=ACSZ(L)
            READ,(XRDN(I), YRDN(I),I=1,N)
            DO 561 I = 1.N
            PRIVT 660,XRDN(I),YRDN(I)
660 FORMAT(' , 100X,'ARNG(',I3,',',I3,'1')
661 CONTINUE
        DO 665 I =1,N
        ARNS(XRDN(I),YマJN(I))=AKEL(1,(J-1+I))
6 6 5 ~ C O N T I N U E ~
        GO TO 680
6 7 0 ~ C O N T I N U E ~
680 CONTINUE
C THEN IT WILL COMPUTE THE COST OF COMMUNICATIONS BETKEEN PRE LOCATED ACTIVITIES
        OO 595 L=1,NEL
        DO 695 K=1,NEL
        IF((ARNG(K,L).EQ.O).OR.(ARNG(K,L).EQ.DUMY)) GO TO 695
        DO 585 J = 1,NELM
        IF(ARNG(K,L).EQ.AKFL(1,J)) GO TO 686
685 CONTINUE
```

```
        GO TO 687
        636 NAK = AKEL(2.,J)
        687 DO 590 N = 1,VEL
        DO 570 M = 1,NEL
        IF((IRNG(M,N).EQ.O).OR.(ARNG(M,N).EQ.DUMY)) GO TO 690
        IF{AKEL(2,ARNG(M,N)).EQ.NAK) GO TO 690
        PRCS=PRCS + ATRK{ARNG(K,L),ARNG(M,N))*IFIX(ABS(FLOAT(K-M))+
    1ABS(FLJAT(L-N)))
    690 CONTINUE
    695 CONTINUE
        PRCS = PRCS/2
        ME = 1000
        RETURN
        END
        SUBROUTINE ARAVGE(TOTV,NELN,RSTR,NPRL,PRLC,AKEL,NEL,ARNG,ATRK,
        INELI,NEL 2,SITE,STRW,ENRW,STCL,ENCL,LSRW,LNRW,LSCL,LNCL,FCAD,DUMY)
        INTEGER VALU,TOTV,RSTR,PRLC(20 ), AKEL(2,NELM),ARNG(NEL,NEL),
        IATRK(NELM,NFLM),ROW,COL,CNTR,SITE(NEL2,NEL2),STCL,ENCL,STRW,ENRW,
        INTEGER%2 DUMY
        TOTV = O
        IF(VEL.LT.12) 30 TO 752
        CNTR = (NEL/2) - 2
        GO TO 753
        752 CNTR = NEL/2
    753 DO 790 J= 1,NELY
        MNVL = 1000000
        IF\VPRL.EQ.O) ST TO 757
        DO 755 N = 1,NPRL
        IF(AKEL(2,J).EQ.PRLC(N)) GO TO 790
        CONTINUE
        GO TO 760
757 IF(J.NE.1) GO TO 760
        ARNG(CNTR,CNTR)=AKEL(1,J)
        GO TO 790
760 DO 780 L = 1,NEL
        DO 780 K = 1,NEL
        IF(ARNS(K,L) .NE. 0) GO TO 780
        ARNS(K,L) = AKEL(1,J)
        NAK = AKEL (2,J)
        VALU = 0
        NTVL = 0
        DO }770\mathrm{ N=1,NEL
        DO 770 M=1,NEL
        IF(IARNG(M,V)。EQ.O).OR。(ARNG(M,N).EQ.DUMY)) GO TO 770
        VALU= VALU + ATRK(ARNG(K,L), ARNG(M,N))*IFIX(ABS(FLDAT(K-M))+
    IABS(FLOAT(L-N)))
        IF(AKEL(2,ARNG(M,N)).EQ.NAK) GO TO 770
        NTVL=NTVL+ATRK(ARNG(K,L),ARNG(M,N))*IFIX(ABS(FLOAT(K-M))+
        IABS(TLOAT(L-N)))
    CONTINUE
    IF(VALU .GT. MNVL) GO TO 775
    MNVL = VALU
    ROW = K
    COL =L
    NET = NTVL
775 ARNS (K,L)=0
780 CONTINUE
    ARINS(RON,COL)= AKEL(1,J)
```

 \(i\)
 TOTV = TOTV + VET
 79 C CONTINUF
 C THEV IT WILL LOGATE ACTIVItIES NUMEERS IN THE LARGER MATRIX "SITE"
 DO \(3 \mathrm{I}=1\), NEL
 DO \(9 \mathrm{~J}=1, N E L\)
 IF(ARNG \((I, J) . E Q .0)\) GO TO 8
 IF(ARNG(I,J).NE.DUMY) GO TO 3
 SITE(\((I+1),(J+1))=\) DUMY
 GOTO 8
 DO \(4 K=1\), NELM
 IF(ARNG(I,J).FQ.AKEL(I,K)) GO TO 6
 4 CONTINUE
SITE $((1+1),(J+1))=$ AKEL(2,K)
CONTINUE
C THEN IT WILL TRIM THE MATRIX "SITE" ACCORDING TO CONTOUR OF LOCATED ELEMENJS
DO $10 \mathrm{~J}=2$, NELI
DO $10 \mathrm{I}=2, \mathrm{NELI}$
IF((SITE(I,J).EQ.0).OR.(SITE(I,J).EQ.DUMY)) GO TO 10
STC $=\mathrm{J}$
GO TO 15
CONTINUE
DO $20 \mathrm{~J}=2, \mathrm{NELI}$
DJ 20 I = 2,NELI
IF((SITF(I,(NEL?-J+1)).EQ.0).OR.(SITE(I,(NEL2-J+1)).EQ.DUMY)) GO
$1 T 020$
ENCL $=$ NEL2 $-\mathrm{J}+1$
GO TO 25
continue
DO 30 I $=2$ 2,NELI
DO $30 \mathrm{~J}=2$, NELI
IF((SITE(I,J).EQ.O).OR.(SITE(I,J).EQ.DUMY)) GO TO 30
STRU = I
GO TO 35
continue
DO 40 I $=2$,NELI
DO $40 \mathrm{~J}=2$, NELI
IF((SITE((NELZ-I+1), J).EQ.O).OR.(SITE((NEL2-I+1),J).EQ.DUMY)) GO
1 TO 40
ENRW $=$ NEL2 $-I+1$
GO TJ 41
CONTINUE
LSCL $=$ STCL -1
LNCL = ENCL+1
LSRA $=$ STRW-1
LNRN = ENRW+1
FCAD $=$ LNCL - STCL +1
$0042 \mathrm{~J}=1$, NEL
DO $42 \mathrm{I}=1$, NEL
$\operatorname{IF}(A R N G(I, J) . E Q . D U M Y)$ ARNG(I,J) $=0$
42 continue
RETURN
ENO
SUBROUTINE PLOTER(STRW,STCL, LNRW, LNCL, SITE,NALL, HRZN,FCAD, SPMD,
1NELI, NEL 2,PRTN, NACT, WRTN,NMRR, OUMY, PRLC,NPRL)
INTEGER STRN, STCL, SITE(NEL2,NEL2), WALL(NEL2,NEL2), FCAD, SCLE,
1DEMI/'HALF'/, JN/'ONEI/,SIDE,WRTN(NACT), NMBR(FCAD),SPND,PRLC(20)

1PRTV(FCAD), DUMY
PRIVT 50

```
    50 FORYAT('1')
        KEPT = 1
        DO 2COOI= STRN, LNRW
        N=1
        DO 10OO J = STCL, LNCL
        IF((SITE(I,J).NE.O).AND.(SITE(I,J).NE.DUMY)) GO TO 110
        IF((SITE(I;(J-L)).NE.O).AND.(SITE(I,(J-I)).NE.DUMY)) GO TO 75
        IF((SITE((I-1),J).EQ.O).OR.(SITE((I-1),J).EQ.DUMY)) GO TO 65
        IF(NALL((I-1),J).GT.0) GO TO 95
        HRZV(N,I)= DASH
        HRZV(N,2)= DASH
        N=N+1
        GO TO 1000
65 IF(NALL.((I-1),J).GT.0) GOTO 80
    HRZV(N,1)= BLANK
        HRZV(N,2)=BLANK
    70 N = N+1
        GO TO 1000
.75 IF((SITE((I-1),J).EQ.O).OR.(SITE((I-I),J).EQ.DUMY)) GO TO 114
        GO TO 95
77 IF(SITE(I,(J-1)).EQ.SITE((I-1),(J-1))) GOTO 88
80 HRZV(N,I)= PLUS
        HRZN(N:2)= BLA:NK
        N=N+1
    85 IF(SITE(I,J).EQ.SITE(I,(J-1))) GO TO 1000
        IF(((SITE(I,(J-I)).EO.O) .OR.(SITE(I,(J-I)).EQ.DUMY)).AND.
        1((SITE(I,J).EQ.O).OR.(SITE(I,J).EQ.DUMY))) GO TO 1000
        NALL(I,J)=1
        GO TO 1000
88 HRZV(N,I)=EYE
        HRZV(N,2)= BLANK
        N=N+1
        WALL(I,J)=1
        GO TO 1000
95 HRZV(N,1)= PLUS
        HRZV(N,2)= OASH
        N=N+1
        GO TO 85
105 IF(SITE(I,J).EQ.SITE((I-1),J)) GO TO 70
        GO TO 60
110 IF((WALL((I-1),J).EQ.0).AND.(SITE(I,J).EQ.SITE(I,(J-1)))) GO TO
    1105
        IF(SITE(I,J).EQ.SITF(I,(J-1))) GO TO 111
        IF(SITE(I,J).EQ.SITE((I-1),J)) GO TO 112
        G0 TJ.95
111 IF(SITE\I,J).EQ.SITE((I-1),J)) GO TO 65
        GO TO 55
112 IF(SITE(I,(J-1)).EQ.SITEI(I-1),(J-1))) GO TO }8
        IF((SITE(I, (J-1)).EQ.O).OP.(SITE(Ig(J-1)).EQ.DUMY)) GO TO 113
        GO TO 80
113 IF((SITE((I-1),(J-1)).EQ.O).OR.(SITE((I-1),(J-1)).EQ.DUMY)) GO
    1TO 88
        GO TO 80
114 IF(ISITE((I-1),(J-1)).NE.O).AND.(SITE((I-1),(J-1)).NE.DUMY)) GO
    1TO 77
        GO TO 8O
100J CONTIVJF
        IF(=CAD.LE.11) GO TO 120
        SCLE = DEMI
        SIOE=5
```

```
                    i.
        449 GOTO'125
        120. SELE = UN
        SIDE=10
        125 PRIVT130,( HRZN(K,1),(HRZN(K,2),L=2,SIDE) ,K=1,FCAD)
        130 FORYAT(' ',20X,110A1)
        DO 135 K = 1,FCAD
        DO 135 L = 1,2
        HRZV(K,L) = BLANK
        135 CONTINUE
        N=1
        DO 151 J = STCL, LNCL
        IF'(MALL(I,J).EQ.0) GO TO 150
        PRTV(N) = EYE
        IF((SITE(I,J).EQ.O).OR.(SITEAI,J).FQ.DUMY)) GO TO 150
        DO 140 L = 1,KEPT
        IF(WRTN(L).EQ.SITE(I,J)) GO TO 150
        140 CONTINUE
        NMBR(N) = SITE (I,J)
        WRTV(KEPT) = SITE(I,J)
        KEPT = KEPT +1
    150 N=N+1
    151 CONTINUE
        IF(SCLE.EQ.DEVI) GO TO 180
        PRIVT160,(PRTN(N),N=1,FCAD)
        160 FORMAT('',12X,11A10)
        PRINT170, (NMBR(N),N=1,FCAD)
        170 FORYAT('+:,14X,11I10)
        DO 176 K = 1,4
        PRIVT175,(PRTN(N),N=1,FCAD)
    175 FORMAT(' ',12X,11A10)
    176 CONTINUE
        GO TO 205
    180 PRIVT181,(PRTV(N),N=1,FCAD)
    181 FORYAT(' ',17X,22A5)
        PRIVT190,(NMBR(N),N=1,FCAD)
    190 FORMAT('+',19X,22[5)
        PRIVT200,(PRTN(N),N=1,FCAD)
        FORMAT(' ',17X,22A5)
        DO 206 K = 1,FCAD
        PRTV(K) = BLANK
        NMBZ(K) = O
    206 CONTINUE
        PRIVT 210, SCLE,IFIX(SQRT{FLOAT(SPMD)))
    OTHER CCMPILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS
        FORMAT('O',20X,'SCALE',18X,':',AG,'INNCH=:,I5,' FEET:
        RETJRN TNCH =:,I5,' FEET:)
        END
```

\$ENTRY
NUMRER OF ACTIVITIES $=15$
SPACE MODULE $=100$ SQUARE FEET
NUMPER OF ELEMENTS $=36$
TOTAL AREA OF PLAN $=3600$ SQUARE FEET

0.3300000 E 01
600
100
1
0.1800000 E 01
300
400
300.1000000 E 01 300
400
2
0.0000000 O 20
0.0000000 E OO

| O000000E 00 | | |
| :---: | :---: | :---: |
| | | |
| | | |

$0.0000000 E 00$ 0.200000 E 01 0.0000000600 0.0000000 E OO
0.6000000 E 01 0.0000000 E 00 0.0000000 E JO
.0000000E 00 0.1200000 E 02
0.0000902500
$0.000050 J E ~$
0.8000001
0.4^{4}
$\begin{array}{ll}0.1000000 E & 01 \\ 0.1000000 \mathrm{~F} & 01\end{array}$
5
$5000000 E 01$
$0.5000000 E 01$
$0.0000000 E 00$
0.1200000 E 02
$\begin{array}{ll}0.1200000 E & 02 \\ 0.0000000 E & 0 O\end{array}$
$0.344^{7}, 30000 \mathrm{E} 02$
$0.34,30000 E ~$
0.0202000
8
0.6000000 E 01
0.6000000 E 01
0.0000000 E OO
0.3200000 e 02
0.0000000 E OD

10
.2000
0.2000009 E 01
$0.000000 J E 00$
\qquad
$0.500000 J E 01$
0.0000000 O
. 20.30000600 0.4000000 E OL
0.2000000 E
0.0000000 E 0 0.0000000 E 0
0.2000000 E Ol 0.1200000E O2
0.1000000 E 01 0.3000000 E 01
$0.00000 J 0 E O O$ 0.3000000 E 01
$0.0000000 E 00$ 0.6000000 e Ol
$0.0000000 E \quad 00$
$0.1600000 E \quad 02$
$0.0000000 E 00$ 0.8000000 E O1
0.0000000 E 00 0.8000000 E 01
0.0000000 E 00 0.0000000 E 00
0.0000000 E 00
0.2500000 E 02

| 00 | $30000000^{\circ} 0$ | EO | 7000000 $\underbrace{\circ} 0$ | 00 | $73000000 \cdot 0$ | | 70000000＊0 | | | | | 00 | $30000000^{\circ} 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | $30000000^{\circ} 0$ | | | | | 0 | － 0000000 | 00 | $30000000 \cdot 0$ | 00 | $30000000^{\circ} 0$ | 00 | 30000000° |
| | | | | 00 | $30000000 \cdot 0$ | 00 | $30000000{ }^{\circ}$ | －00 | $30000000^{\circ} 0$ | 00 | $\begin{gathered} 30000000 \cdot 0 \\ 0 \end{gathered}$ | 00 | $30600000^{\circ} 0$ |
| | | | | | | | | | | | | 00 | 30000000＊0 |
| 00 | $30000000^{\circ} 0$ | 00 | $70000000 \cdot 0$ | OC | $70000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | 30000000•0 |
| 00 | $30000000 \cdot 0$ | 00 | 30000000° | 00 | $30000000^{\circ} 0$ | 00 | 70000000° | 00 | $30000000 \cdot 0$ | 00 | $3 \operatorname{cosecog} 0^{\circ}$ | 00 | 30000000° |
| | | | | | | | | 002 | I | | 0 | | $\rightarrow 1$ |
| | | | | | | | | | | | | 10 | $30000002 \cdot 0$ |
| 00 | $30000000 \cdot 0$ | 00 | 70000000＊0 | 00 | 30000000＊0 | 00 | $30000000{ }^{\circ}$ | 00 | $30000000^{\circ} 0$ | 00 | $30000000 \cdot \mathrm{C}$ | 10 | 30000002＊0 |
| 10 | 7000000ヶ＊＊ | 00 | 30000000° | 10 | $3000000{ }^{\circ}$ | 00 | 30000000° | 10 | $30000002 \cdot 0$ | 00 | 30000000 | 00 | $30000000 \cdot 0$ |
| | | | | | | | | 00% | ε | | $\downarrow 2$ | | E I |
| | | | | | | | | | | | | 20 | $30000027 \cdot 0$ |
| 00 | $70000000^{\circ} 0$ | 10 | $30000002 * 0$ | 00 | 30000000＊0 | 10 | 3000000 ± 90 | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | 30000000° |
| 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 00 | 30000000＊0 | 00 | 30000000° | 00 | $30000000 \cdot 0$ | 10 | $70000002 * 0$ | 00 | $30000000 \cdot 0$ |
| | | | | | | | | 001 | Z | | $\varepsilon 乙$ | | $2 I$ |
| | | | | | | | | | | | | 20 | 3000009を・0 |
| 00 | $30000000 \cdot 0$ | 10 | 70000009 0 | 10 | $30000002 \cdot 0$ | 00 | $30000000^{\circ} 0$ | 10 | $30000002 \cdot 0$ | 10 | コ100000ヶ・0 | 00 | $30000000 \cdot 0$ |
| 00 | $30000000{ }^{*}$ | 00 | $\exists 0000000 \cdot 0$ | 10 | $30000002 * 0$ | 00 | 30000000° | 10 | $3000000 \pm 0^{\circ}$ | 00 | 30000000° | 10 | $30000002 \cdot 0$ |
| | | | | | | | | 00ε | \＆ | | 22 | | 11 |
| | | | | | | | | | | | | 20 | $300000+5 \cdot 0$ |
| 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 00 | $30000000{ }^{\circ}$ | 00 | $30000000^{\circ} 0$ | 00 | 300000000 | 10 | $30000002 \cdot 0$ | 00 | $30000000 \cdot 0$ |
| 00 | $30000000{ }^{\circ}$ | 00 | $30000000^{\circ} 0$ | 10 | 70000002＊0 | 00 | $30000000^{\circ} 0$ | 10 | $3000000 \pm 0^{\circ}$ | 00 | 30000000° | 10 | 100000022．0 |
| | | | | | | | | 008 | － 1 | | I2 | | Ir |
| | | | | | | | | | | | | 20 | 30000081•0 |
| 00 | $30000000 \cdot 0$ | 10 | 70000009 0 | 00 | $30000000 \cdot 0$ | 00 | $30000000^{*} 0$ | 00 | $30000000 \cdot 0$ | 00 | 30000000＊0 | 10 | $3000000+0$ |
| 00 | $70000000^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | $\exists 0000000^{\circ}$ | 10 | $3000000{ }^{\circ} 0$ | 10 | $3 \operatorname{coc} 000{ }^{\circ} 0$ | 00 | 90000000－0 |
| | | | | | | | | 001 | ε | | 02 | | 01 |
| | | | | | | | | | | | | 20 | F000008ヵ－0 |
| 00 | $70000000^{\circ} 0$ | 20 | ヨ000000\＆ 0 | 00 | $30000000{ }^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 10 | $3000000 \% 0^{\circ}$ |
| 20 | ヨ00000ャて・0 | 00 | ヨ0000000＊0 | 20 | $30000021 \cdot 0$ | 10 | 30000002^{*} | 00 | 36000000° | 20 | $30000002 \cdot 0$ | 00 | $30000000 \cdot 0$ |
| | | | | | | | | 001 | ε | | 61 | | 01 |
| | | | | | | | | | | | | 20 | 90000022－0 |
| 00 | $30000000^{\circ} 0$ | 20 | $30000001 \cdot 0$ | 0 C | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000^{\circ} 0$ | 10 | 30000000° | 10 | 30000008．0 |
| 10 | $3000000{ }^{\circ} 0$ | 00 | $30000000{ }^{\circ}$ | 10 | $30000005^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 10 | 30000001．0 | 10 | $3 \operatorname{cococos}{ }^{\circ} 0$ | 00 | 56000000．0 |
| | | | | | | | | 001 | z | | 81 | | |
| 20 | $700000+1 \cdot 0$ | | | | | | | | | | | 20 | 30000681－0 |
| | | | | 00 | $30000000^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | 30000000° | 00 | $3 \operatorname{coc} 00000$ | 20 | $30000091{ }^{\circ}$ |
| 10 | $3000000{ }^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 10 | $3000000{ }^{\circ} 0$ | 00 | 30000000° | 10 | $30000002 \cdot 0$ | 20 | $\exists \operatorname{cuc} 000 \mathrm{I} \cdot 0$ | 00 | 30000000•0 |
| | | | | | | | | | | | | 00 | $30000000 \cdot 0$ |
| 20 | $30000099^{\circ} 0$ | 20 | $30000091 \cdot 0$ | 00 | $30000000 \cdot 0$ | 10 | $30000002 \cdot 0$ | 10 | $30000008 * 0$ | 10 | 30000000•0 | 20 | $30000092 \cdot 0$ |
| 20 | $30000082^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000^{\circ} 0$ | 10 | $30000002 \cdot 0$ | 00 | 30000000° | 20 | 3 COOOORT －0 | 00 | jocrooov－0 |
| | | | | | | | | 001 | ε | | 91 | | |
| | | | | | | | | | | | | 20 | － $0000028{ }^{\circ}$ |
| 10 | $30000002 \cdot 0$ | 20 | 300000ヶ1•0 | 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 00 | 300000000 | 10 | $30000002 \cdot 0$ | 00 | $30000 c 00$ |
| 00 | $\exists 0000000^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | 30000000° | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 20 | ヨC00002I＊0 | 00 | ナ0000000＊0 |
| | | | | | | | | 001 | ε | | ¢ I | | 8 |
| | | | | | | | | | | | | 20 | こС00つこをを・0 |
| 10 | ヨ000000 S 0 | 20 | 30000001.0 | 00 | $30000000 * 0$ | 00 | $30000000 \cdot 0$ | 20 | 70000001．0 | 10 | $30000002 \cdot 0$ | 00 | 30000000° |
| 10 | $\exists 000000{ }^{\circ}$ | 00 | 30000000° | 00 | $30000000^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000^{\circ} 0$ | 20 | $300000 力 1{ }^{\circ}$ | 00 | $30000000 \cdot 0$ |
| | | | | | | | | 001 | ε | | $\dagger 1$ | | |
| | | | | | | | | | | | | 20 | 300000ヶて・0 |
| 10 | $30000000^{\circ} 0$ | 70 | $30000009^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 00 | $\exists 0000000 \cdot 0$ | 00 | $3 \mathrm{C000000.0}$ | 10 | $30000000^{\circ} 0$ | 10 | $\ddagger 0000002^{\circ} 0$ |
| 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 10 | $3000000 \boldsymbol{*}^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 10 | $3 \mathrm{cocou} 2^{\circ}$ | 00 | 30000000° |
| | | | | | | | | 002 | ε | | £ I | | 2 |
| | | | | | | | | | | | | 20 | $30000081^{\circ} 0$ |
| 00 | $\exists 00000: 00^{\circ} 0$ | 20 | 30000058•0 | 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 10 | $30000000^{\circ} 0$ | 20 | $3 \operatorname{coccogt} \cdot 0$ | CO | $\exists 00000000^{\circ}$ |
| 00 | $30000000^{\circ} 0$ | 00 | $30000000^{\circ} 0$ | 0 C | $30000000^{\circ} 0$ | 00 | $30000000 \cdot 0$ | 00 | $30000000 \cdot 0$ | 10 | 30000000° | 00 | 30000000° |
| | | | | | | | | 002 | ε | | てl | | |

SUM OF VISITS FRDM EACH ACTIVITY TO ANY OTHER ACTIVITY

| - | | | | | | - | | VIS | | IVIT | | | | | | | | | | | |
| :---: |
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| VISITOR | 1 | 0 | 0 | 18 | 7 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 82 | 0 | 0 | | | | | |
| VISITOR | 2 | 0 | 0 | 2 | 8 | 2 | 2 | 6 | 10 | 10 | 4 | 2 | 0 | 24 | 40 | 72 | | | | | |
| VISITOR | 3 | 9 | 8 | 0 | 17 | 1 | 3 | 4 | 0 | 3 | 3 | 12 | 0 | 12 | 0 | 144 | | | | | |
| VISITOR | 4 | 0 | 55 | 24 | 0 | 5 | 0 | 8 | 4 | 0 | 6 | 3 | 0 | 26 | 4 | 109 | | | | | |
| VISITOR | 5 | 0 | 42 | 14 | 6 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 22 | 1 | 124 | | | | | |
| VISITOR | 6 | 0 | 2 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 42 | | | | | |
| VISITOR | 7 | 0 | 19 | 1 | 7 | 1 | 0 | 0 | 2 | 16 | 2 | 0 | 0 | 86 | 6 | 155 | | | | | |
| VISITOR | 8 | 0 | 26 | 0 | 0 | 0 | 0 | 3 | 0 | 4 | 10 | 0 | 0 | 24 | 7 | 60 | | | | | |
| VISITOR | 9 | 0 | 22 | $?$ | 2 | 2 | 0 | 36 | 42 | 0 | 8 | 2 | 0 | 24 | 30 | 18 | | | | | |
| VISITOR | 10 | 0 | 42 | 3 | 2 | 21 | 0 | 38 | 22 | 10 | 0 | 0 | 0 | 54 | 0 | 114 | | | | | |
| VISITOR | 11 | 8 | 0 | 17 | 0 | 8 | 0 | 0 | 0 | 10 | 2 | 0 | 2 | 6 | 0 | 214 | | | | | |
| VISITOR | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 3 | 0 | 21 | | | | | |
| VISITOR | 13 | 0 | 0 | 2 | 0 | 2 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | | | | | |
| visitor | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | |
| VISITOR | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 | 0 | 0 | 0 | 990 | 0 | 0 | | | | | |

relative cost of communication between activities
REPRESENTED bY the sum of Visits made from and received by
EACH ACTIVITY TO AND FROM ANY OTHER ACTIVITY

NUMBER OF ACTIVITY

| ACTIVITY 1 | 0 | 0 | 27 | 7 | 0 | 0 | 0 | 3 | 0 | 0 | 8 | 0 | 82 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACIIVITY 2 | 0 | 0 | 10 | 63 | 44 | 4 | 25 | 36 | 32 | 46 | 2 | 3 | 24 | 40 | 72 |
| ACtivity 3 | 27 | 10 | 0 | 41 | 15 | 5 | 5 | 0 | 5 | 6 | 29 | 0 | 14 | 0 | 144 |
| ACTIVITY 4 | 7 | 63 | 41 | 0 | 11 | 0 | 15 | 4 | 2 | 8 | 3 | 0 | 26 | 4 | 109 |
| ACtivity 5 | . 0 | 4.4 | 15 | 11 | 0 | 4 | 2 | 0 | 2 | 22 | 11 | 0 | 24 | 1 | 124 |
| ACTIVITY 6 | 0 | 4 | 5 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 42 |
| ACTIVITY 7 | 0 | 25 | 5 | 15 | 2 | 0 | 0 | 5 | 52 | 40 | 0 | 0 | 90 | 6 | 155 |
| ACTIVITY 8 | 3 | 36 | 0 | 4 | 0 | 0 | 5 | 0 | 46 | 32 | 0 | 0 | 26 | 7 | 60 |
| ACTIVITY 9 | 0 | 32 | 5 | 2 | 2 | 0 | 52 | 46 | 0 | 18 | 12 | 0 | 24 | 30 | 18 |
| ACTIVITY10 | 0 | 46 | 6 | 8 | 22 | 4 | 40 | 32 | 18 | 0 | 2 | 0 | 54 | 0 | 114 |
| ACTIVITYII | 8 | 2 | 29 | 3 | 11 | 0 | 0 | 0 | 12 | 2 | 0 | 9 | 6 | 0 | 214 |
| ACTIVITY12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 3 | 0 | 21 |
| ACTIVITYI3 | 82 | 24 | 14 | 26 | 24 | 0 | 90 | 26 | 24 | 54 | 6 | 3 | 0 | 0 | 992 |
| ACTIVITY14 | 0 | 40 | 0 | 4 | 1 | 0 | 6 | 7 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
| ACTIVITY15 | 0 | 72 | 144 | 109 | 124 | 42 | 155 | 60 | 18 | 114 | 214 | 21 | 992 | . 0 | 0 |

TDTAL SUY JF RELATIVE COST OF COMMUNICATION FOR EACH ACTIVITY PRESENTED BY THE SUM OF VISITS MADE FROM AND RECEIVEU BY ANY ACTIVITY TO AND FROM ALL OTHER ACTIVITIES

| | | | | | | | \#**** | | \%\% | *** | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACTIVITY | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| cost sum | 127 | 401 | 301 | 293 | 260 | 59 | 395 | 219 | 241 | 346 | 296 | 36 | 1365 | 88 | 2065 |

ACT IVITIES ARRANGED IN A DESCENOING DRDER
according to the sum of their relative cost of conmunication

| ACTIVITY | 15 | 13 | 2 | 7 | 10 | 3 | 11 | 4 | 5 | 9 | 8 | 1 | 14 | 6 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IOST SUA | 2065 | 1365 | 401 | 395 | 346 | 301 | 296 | 293 | 260 | 241 | 219 | 127 | 88 | 59 | 36 |

ARRANGENENT OF ACTIVITIES ACCORDING TO PRIORITY OF CONTACT

ARRANGEMENT OF SPACE ELEMENTS ACCORDING TO PRIORITY OF CONTACT

MATRIX OF FORCE OF ATTRACTION BETWEEN ELEMENTS , ARRANGED ACCORDING TO THE TOTAL COST OF ACTIVITIES

ELMNT ELMNT ELMNT ELMNT ELMAT ELMNT 6 ELMNT ELMNT ELMNT FLMNT 10 ELMNT 1 ELMNT 12 ELMNT 13 ELMNT 14 ELMNT 15 ELMNT 16 ELYNT 17 ELMNT 18 ELMNT 19 ElvNT 20 ELANT 21 ELMNT 22 ELMNT 23 ELMNT 24 ELMNT 25 ELMNT 26 ELMNT 27

FLMNT 28
ELMNT 29

 $\begin{array}{ll}4 & 4 & 4 & 1 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999909999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$ $\begin{array}{lll}4 & 4 & 4 & 1 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999999999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$ $\begin{array}{lll}4 & 4 & 4 & 1 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999999999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$ $4 \begin{array}{ll}4 & 4 & 4 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999999999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$ $\begin{array}{ll}4 & 4 & 4 & 1 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999999999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$ $\begin{array}{ll}4 & 4 & 4 & 1 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 3 & 3 & 3999999999999999999 & 2 & 2 & 2 & 5 & 6 & 0 & 0 & 3 & 3 & 0 & 0\end{array}$

| ELYNT | 30 | 20 | 20 | 20 | 6 | 6 | 6 | 6 | 2 | 2 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | | | | | 1 | 3 | 3 | 0 | 0 |
| :---: |
| ELMNT | 31 | 0 | 0 | 0 | 10 | 10 | 10 | 10 | 0 | 0 | 1 | 1 | 1 | 0 | 4 | 4 | 4 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 99 | 99 | | 0 | 0 | | 0 |
| Elmint | 32 | 0 | 0 | 0 | 10 | 10 | 10 | 10 | 0 | 0 | 1 | 1 | 1 | 0 | 4 | 4 | 4 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 99 | 999 | | 0 | 0 | | 0 |
| ELMNT | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 15 | 3 | 0 | | | 99 | | 0 | 0 |
| EL MNT | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 15 | 3 | 0 | | | 99 | | 0 | 0 |
| ELMNT | 35 | 14 | 14 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | 0 | 0 | | | O |
| ELMNT | 36 | 7 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | |

ACtivities to be pre located in plan to comply with site limitations and client reguirements

ARNG (11,5
ARNG(12, 5)

ARNG (8, 1)
ARNG (9, 1 l ARNG (10 , 11

RESTRICTIOVS $=1$
NUNBER OF prelocated activities
NUMBER DF DUMMY ELEMENTS
prflocateo activities
$=15$
$=82$
$\begin{array}{lllllllllllllllll}= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 10 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 1 | 36 | 12 | 35 | 8 | 14 | 15 | 16 | 0 | 0 | 0 | 0 |
| 9 | 2 | 4 | 5 | 30 | 9 | 17 | 18 | 19 | 0 | 0 | 0 | 0 |
| 10 | 3 | 6 | 7 | 13 | 29 | 26 | 27 | 28 | 0 | 0 | 0 | 0 |
| 11 | 0 | 0 | 0 | 31 | 33 | 20 | 21 | 22 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 32 | 34 | 23 | 24 | 25 | 0 | 0 | 0 | 0 |

anNual cost of communication due to pre located activities =
3736 DOLLAR
annual cost due to computed activities
annual tutal cost of communication of plan
$=-3736$ DOLLAR
ANNUAL COST PER SOUARE FOOT OF AREA CONSIDERED
$=103$ CENT
N.E. : thise figures do nat include cost of mnvements within each activity

APPENDIX C

A complete set of tables of the movement pattern of each person are shown in the following tables. The sign (*) indicates the working station of the person involved.

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: | 2 | ACTIVITY: | SAME |
| :--- | :--- | :--- | :--- |
| PERSON: | 2 | PERSON: | SAME |
| CATEGORY: 3 | CATEGORY: | SAME | |

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Oct. 27. 70
 Staxting Time:10.30 AM | |
| * | |
| 46 | 128-122-126 |
| 7 | 126-122 |
| 46 | 122-126 |
| 30 | 126-122-106 |
| * | 107 |
| 46 | 128-122-126 |
| 49 | 136 |
| * | 126-122-128 |
| 36 | 111-108-110 |
| * | 110-1)8-111 |
| 31 35 33 | $\begin{aligned} & 107-109 \\ & 109-108 \end{aligned}$ |
| * | |
| 33 28 | 106-105 |
| \% | 105-106 |
| 43 | 1060128 |
| 28 | $10 \quad 6-105$ |
| 9 | 106-128 |
| * | 128-106 |
| | - |
| End at: 12.00 Noon | |
| Time Recorded: 1.30 Hour | |

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAM EStarting Time: $\mathbb{L}_{0} 20 \mathrm{PM}$ | |
| $\begin{aligned} & * \\ & 49 \end{aligned}$ | 128-122-126 |
| * | 126-122-128 |
| 28 | $106-105$ $105-106-111$ |
| 29 | 111-105 |
| 7 | 106-128-122 |
| \% | 122-128 |
| 28 | 106-105 |
| 49 | 106-122-126 |
| * | 126-122-106 |
| 7 | 106-128-122 |
| 3 | 122-128 |
| 15 | 128-123 |
| 12 | 124-117 |
| * | 124-122-178 |
| 46 | 128-122-126 |
| | - |
| End at: 3.00 PM | |
| Time Recorded: 1.40 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY: | 2 |
| :--- | :--- | :--- | :--- |
| PERSON: SAME | PERSON: | 3 |
| -CATEGORY: SAME | CATEGORY: | 3 |

| Destination Point | Change of Direction Points | Destination point | Change of Direction Points |
| :---: | :---: | :---: | :---: |
| Date: Nov. 2. 70Starting Time: 2.00 PM | | Date: 0ct. 27.70
 Starting Time: 10.30 AM | |
| * | $\begin{aligned} & 106 \\ & 107-109 \\ & 109-107-105 \\ & 105 \end{aligned}$ | 31 | |
| 3 35 | | | |
| 28 | | 30 | |
| * | | 31 | |
| | 105 105 | | |
| | $\begin{aligned} & 105 \\ & 105-128-136 \end{aligned}$ | 17 | $107 \cdots 128-122$ |
| 28 | $\begin{aligned} & 105-128-136 \\ & 136-128-105 \\ & 105 \end{aligned}$ | 35 | $\begin{aligned} & 122-128-107 \\ & 109-107 \end{aligned}$ |
| | | 30 | |
| 46 | $\begin{aligned} & 102-122-136 \\ & 136-122-102 \end{aligned}$ | * | |
| | | 31 | 109 |
| | | * | |
| | | 33 | 107-108 |
| | | 31 | $\begin{aligned} & 128-122-124 \\ & 124-122-128 \end{aligned}$ |
| | - | . | |
| End at: 2.50 PM | | End at: 12.00 Noon | |
| Time Recorded: | ded: 50 Minute | Time Recor | ed: 1.30 Hour |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY: | SANE | |
| :--- | :--- | :--- | :--- |
| PERSON: | SAME | PERSON: | SAME |
| -CATEGORY: SAME | CATEGORY: | SAME | |

TIME AND MOTION STUDY OF PERSONNEL
ACTIVITY: SAME
PERGON: SAME
CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Nov. 2, 70Starting Time: 1.20 PM | |
| \% | |
| 33 | 107-108 |
| 34 | 108-109 |
| 46 | 107-122-136 |
| \% | 136-122-106 |
| 46 | 128-122-126 |
| * | 136-122-106 |
| 49 | 106-122-136 |
| * | 136-122-106 |
| 32 | 107-108 |
| \% | 108-107 |
| 31 | |
| 28 | 105 |
| * | 105 |
| 46 | 128-122-126 |
| * | 126-122-128* |
| 28 | 105 |
| 46 | 106-122-136 |
| * | 136-122-106 |
| 49 | 106-122-136 |
| 46 | 136 |
| 49 | 136 |
| \% | 128-122-126 |
| 28 | 105 |
| * | 105 |
| 16 | 106-128 |
| * | 128-106 |
| End at: 2.20PM | |
| Time Recorc | d: 1.00 Hour! |

ACTIVITY: 3
PERSON: 4
CATEGORY: I

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | |
| :--- | :--- |
| PPERSON: | SAME |
| CATEGORY: SAME | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAM E

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY:3 |
| :--- | :--- | :--- |
| PERSON: SAME | PERSON: 5 |
| CATEGORY: SAME | CATEGORY:3 |

TIME AND MOTION STUDY OF PERSONNEL

```
ACTIVI'TY: SAME
PERSON: SAME
-CATEGORY: SAME
```

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAMEStarting Time: 1.15 PM | |
| * | |
| 49 | 116-122-136 |
| \% | 136-122-116 |
| 49 | 116-122-136 |
| \cdots | 136-122-116 |
| $\begin{aligned} & 4 \\ & * \end{aligned}$ | |
| 8 | 116-122-128 |
| 22 | 128-124-136 |
| \% | 126-122-116 |
| 6 | 115-120 |
| \% | 120-115 |
| 4 | |
| 46 | 116-122-136 |
| * | 136-122-116 |
| 49 | 116-122-136. |
| 1 | 136-101-102 |
| $*$ | 101-126-122 |
| 4 | |
| * | |
| 4 | |
| H | |
| 22 | 116-122-136 |
| \% | 136-122-116 |
| 6 | 115-120- |
| 3 | 120-122-128 |
| 49 | 128-122-136 |
| * | 136-122-116 |
| 4 | |
| 49 | 116-122-136 |
| End at: 3.00 PM | |
| Time Recor | ed: 1.45 Hour |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 4
PERSON: 6
CATEGORY: 2

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME

- PERSON: SAME
-CATEGORY: SAME

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination point | Change of Direction Points |
| :---: | :---: |
| Date: Nov.2.70Starting Time: 1.40 PM | |
| $\begin{aligned} & * \\ & 49 \end{aligned}$ | 120-122-136 |
| 3 | 136-122-128 |
| \% | 128-120 |
| 36 | 120-128-106 |
| * | 106-128-120 |
| 5 | 120-115 |
| | 115-120 |
| 8 | 120-122-127 |
| \% | 127-122-120 |
| 46 | 120-122-136 |
| * | 136-122-120 |
| 49 | 120-122-136 |
| $\%$ | 136-122-120 |
| 7 | 113-120 |
| 22 | 120-122-136 |
| 7 | 136-122-120 |
| 9 | 122 |
| * | 122 |
| 49 | 120-122-136 |
| * | 136-122-120 |
| 46 | 120-122-136 |
| * | 136-122-120 |
| 7 | 113-120 |
| \% | 120-113- |
| 49 | 120-122-136 |
| * | 136-122-120 |
| 5 | 120-115 |
| 35 | 116-122-128 |
| | 106-122-120 |
| End at: 3.30 PM | |
| Time Recor | ded: 1.50 Hour |

TIME AND MOTION STUDY OF PERSONNEL

```
ACTIVITY: 4
PERSON: 7
.CATEGORY: }
```

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 27.70Starting Time: 10.20 AM | |
| 46 | $122-126$ $126-122$ |
| 33 | $122-128$ $128-122$ |
| 3 | 122-128 |
| 46 | 122-126 |
| * | 126m122 |
| 6 | |
| 6 | |
| 5 | $\begin{aligned} & 120-115 \\ & 115-120 \end{aligned}$ |
| 35 | $\begin{aligned} & 122-128-107 \\ & 107-128-122 \end{aligned}$ |
| 35 | 122-128-107 |
| * | 107-128-122 |
| 33 | 122-128-111 |
| 4 | 111-128-122 |
| $\begin{aligned} & 5 \\ & 37 \\ & * \end{aligned}$ | $\begin{aligned} & 120-115 \\ & 122-128-111 \\ & 111-128-122 \end{aligned}$ |
| End at: 12.00 NoonTime Recorded: 1.40 Hour | |
| | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination Point | Change of
 Direction Points |
| :---: | :---: |
| Date: SAME Starting Time: 1.20 PM | |
| $\begin{aligned} & \% \\ & 6 \\ & * \\ & 6 \\ & \% \end{aligned}$ | 120 120 |
| 6 | 120 |
| ${ }_{4}^{5}$ | $\begin{aligned} & 120-115 \\ & 122-124 \\ & 124-122 \end{aligned}$ |
| 32 28 | $122-128$ $111-105$ |
| 33 | $\begin{aligned} & 105-111 \\ & 106-128-122 \end{aligned}$ |
| 15 | 122-124 |
| 33 | 124-128-111 |
| 15 | 111-128-124 |
| 33 | 124-128-111 |
| \% | 106-128-122 |
| 33 | 122-128-111 |
| 28 | 111-105 |
| \because | 106-128-122 |
| 35 | 122-128-107 |
| 18 | 107-128-122 |
| 35 | 122-128-107 |
| 28 | 107-105- |
| 18 | 106-128-124 |
| * | 124-122 |
| 28 | $\begin{aligned} & 122-128-105 \\ & 105 \end{aligned}$ |
| End at: Cont. Time Recorded: Cont. | |

TTME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date:
 Starting | SAME
 Time: SAME |
| $\begin{aligned} & 28 \\ & * \\ & 35 \\ & * \\ & 46 \\ & * \\ & 49 \\ & * \end{aligned}$ | $\begin{aligned} & 105 \\ & 106-128-122 \\ & 122-128-107 \\ & 107-128-122 \\ & 122-126 \\ & 126-122 \\ & 122-126-136 \\ & 136-126-122 \end{aligned}$ |
| | |
| End at: 3.00 PM
 Time Recorded: 1.40 Hour | |

ACTIVITY: SAME
 PERSON: SAME
 CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Nove 2.70
 Starting Time:1. 25 PM | |
| $\begin{aligned} & 4 \\ & 46 \end{aligned}$ | 122-126 |
| 13 | 121 |
| 46 | 122-126 |
| 6 | 126-122-120 |
| 46 | 120-122-126 |
| $\stackrel{3}{*}$ | 126-122 |
| 28 | 122-128-106 |
| 3 | 105 |
| * | 106-128-122 |
| 6 | 120 |
| * | 120 |
| 6 | 120 |
| * | 120 |
| 8 | 122-128-127 |
| * | 127-128-12\% |
| 3 | 122-128-106 |
| 28 | 105 |
| 3 | 105 |
| * | 10 6-128-122 |
| 46 | 122-126 |
| 12 | 136-124-117 |
| 11 | 125 |
| * | 124-122 |
| 11 | 122-123 |
| * | 123-122 |
| 6 | 120 |
| 46 | 122-136 |
| | 136-122 |
| * | 120 |
| 46 | 122-126 |
| End at: 1.55 PM | |
| Time Recor | ded: 40 Minute |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 5
.PERSON: 8
-CATEGORY: 2

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| $\left\lvert\, \begin{gathered} \text { Destination } \\ \text { Point } \end{gathered}\right.$ | Change of Direction Points |
| :---: | :---: |
| Date: Nov. 2.70Starting Time: 1.00 PM | |
| * | |
| 4.5 | $128-121$ $122-136$ |
| \% | 136-122-127 |
| 46 | 128-122-136 |
| * | 136-122-128 |
| 46 | 128-122-136 |
| 49 | 136 |
| * | 13600122-128 |
| 5 | 128-121 |
| 9 | 116-122 |
| \% | 127 |
| 9 | 127 |
| - | 127 |
| 22 | 128-122-136 |
| | 136-122-128 |
| 49 | 128-122-136 |
| $*$ | 136-122-128 |
| 2 | 128-106 |
| * | 106-128 |
| 49 | 128-122-136 |
| * | 136-122-128 |
| 49 | 128-122-136 |
| * | 136-122-128 |
| 49. | 128-122-136 |
| * | 136-122-128 |
| 5 | 128-121 |
| * | 121-128 |
| End at: 4.10 PM | |
| Time Recorded: 3.10 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

ACIIVITY: 5
PERSON: 9
CATEGORY: 3

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAMEStarting Time: $I_{0} 15 \mathrm{PM}$ | |
| $*$ 6 $\%$ | 120 120 |
| 5 34 $\%$ | $\begin{aligned} & 120-115 \\ & 120-122 \mathrm{c} 128 \\ & 107=128 \end{aligned}$ |
| 37 | $\begin{aligned} & 128-106-111 \\ & 106-128 \end{aligned}$ |
| 28 | $\begin{aligned} & 128-106 \times 105 \\ & 106=128 \end{aligned}$ |
| 36 38 4 | $\begin{aligned} & 128-107 \\ & 107-128 \end{aligned}$ |
| 35 | $\begin{aligned} & 128-107 \\ & 107-128 \end{aligned}$ |
| 2 | |
| 36 | $\begin{aligned} & 128-107-110 \\ & 110-107-128 \end{aligned}$ |
| 35 | $\begin{aligned} & 128-107-109 \\ & 109 m 107=128 \end{aligned}$ |
| 36 | $\begin{aligned} & 128-107-110 \\ & 110-107-128 \end{aligned}$ |
| \checkmark | |
| End at: 3.00 PM
 Time Recorded: 1.45 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: | SAME | ACTIVITY: | 6 |
| :--- | :--- | :--- | :--- |
| -PERSON: | SAME | PERSON: | 10 |
| CATEGORY: | SAME | CATEGORY: | 3 |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAME
 Starting Time: 1. 20 PM | |
| | $\begin{aligned} & 118-126-136 \\ & 136-126-118 \\ & 118-126-136 \\ & 136-126-118 \\ & 118-126 \\ & 122-127 \\ & 122-124-117 \\ & 117-124-128 \\ & 128-124-117 \\ & 118-126-136 \\ & 136=126 * 118 \\ & 118-126-136 \\ & 136-136-118 \\ & 126-118 \end{aligned}$ |
| | |
| End at: 3.40 PM
 Time Recorded: 2. 20 Hour | |

ACTIVITY: 7
PERSON: 11
CATEGORY: 2

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: oct. 2670Starting Time: 10.45 AM | |
| \% | |
| 12 | 121-116 |
| 46 | 122-126-136 |
| * | 1360123 |
| 46 | 123-136 |
| $\%$ | 1.36-123 |
| 49 | 123-136 |
| 12 | 136-124-117 |
| 49 | 117-124 - 136 |
| \% | 136-123 |
| . 46 | 123-136 |
| * | 136-123 |
| 13 | |
| 49 | 123-136 |
| * | 136-123 |
| 2 | 136-122-128 |
| 49 | 128-122-1.36 |
| 12 | 136-124-117 |
| 46 | 117-124-136 |
| * | 136-123 |
| . | |
| End at: 12.00 Noon | |
| Time Recor | ded: 1.15 Hour |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY: SAME | |
| :--- | :--- | :--- | :--- |
| PERSON: SAME | PERSON: | SAME |
| -CATEGORY: SAME | CATEGORY: SAME | |

| Destination point | Change of
 Direction Points |
| :---: | :---: |
| Date: SAME
 Starting Time: l. 20 PM | |
| \% | |
| 46 | 123-136 |
| * | 136-123 |
| 46 | 123-136 |
| 12 | 136-124-117 |
| 46 | 11700124 cos 36 |
| 4 | 136-123. |
| 46 | 123-136 |
| \% | 136-123 |
| 3 | 136-122-128 |
| 46 | 123-136 |
| * | 136-123 |
| 46 | $123-136$ |
| * | 136-123 |
| 13 | |
| 12 | 116 |
| 46 4 | $\begin{aligned} & 117-124-136 \\ & 136=123 \end{aligned}$ |
| 13 | |
| 13 | |
| 12 | 116 |
| 46 | 117-124-136 |
| * | 136-123 |
| 46 | 123-136 |
| * | 136-123 |
| 46 | 123-136 |
| * | 136-123 |
| 12 | 121-116 |
| * | 116-121 |
| End at: | 3.00 PM |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAMEStarting Time: 1.20 PM | |
| \% | |
| 46 4 | $123-136$ $136-123$ |
| 49 | 123-136 |
| * | 1360123 |
| 12 | 121-116 |
| * | 116.121 |
| 12 | 121-116 |
| \% | 1160121 |
| 3 | 136-122-128 |
| * | 128-122 |
| 46 | 123 cos 36 |
| * | 136 m 123 |
| 49 | 123-136 |
| \% | 1360123 |
| 46 | 1230136 |
| * | 136-123 |
| 49 | 123-136 |
| * | 136-123 |
| 46 | 123-1.36 |
| \% | 136-123 |
| 49 | 123-136 |
| $\stackrel{\pi}{6}$ | 136-123 |
| 46 | 123 -136 |
| * | 136-123 |
| 49 | 123-136 |
| * | 136-123 |
| 3 | 136-122-128 |
| 49 | 128-122-136 |
| \% | 136-122-128 |
| End at: 3.00 P M
 Time Recorded: 1.40 Hour | |

ACTIVITY: 7
PERSON: 12
CATEGORY: 3

| Destination Point | Change of
 Direction Points |
| :---: | :---: |
| Date: 0ct.20.70Starting Time: 2.00 P M | |
| * | |
| 46 | 117-124-136 |
| * | 136-124-117 |
| 4.6 | 117-124-136 |
| \because | 1360.124mos 117 |
| 46 | 117-124-136 |
| \% | 136-124-117 |
| 46 | 117-124-136 |
| 13 | 1360124 |
| 46 | 121-122-136 |
| 49 | 136 |
| 46 | 136 |
| $\%$ | 136-124-117 |
| 45 | 116-122-128 |
| 46 | 128-122-136 |
| * | 117-124-136 |
| 19 | 11901240126 |
| 46 | 126-136- |
| * | 117-124-136 |
| 46 | 136-124-136 |
| * | 117-124-136 |
| 49 | 117-124-136 |
| $*$ | 136-124-117 |
| 11 | 116.121 |
| * | 121-116 |
| 46 | 117-124-136 |
| * | 136-124-117 |
| 11 | 116-121 |
| * | 121-116 |
| End at: 3.00 PM | |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Nov. 2,70Starting Time: 1.00 PM | |
| * | |
| 17 | $\begin{aligned} & 1160121 \\ & 121-116 \end{aligned}$ |
| 46 | 117-124-136 |
| \% | $136 \mathrm{co} 124-117$ |
| 3 | 116 $1220-128$ |
| \% | $128 \mathrm{cos} 122 \mathrm{col16}$ |
| 46 | 117-124-136 |
| * | 1360-124-117 |
| 11 | 1160121* |
| * | 121-116 |
| 13 | 116 |
| 4 | 116 |
| 46 | 1170. $124 \cos 136$ |
| \% | 136-124-117 |
| 46 | 117-124-136 |
| 43 | 136-122-128 |
| 46 | 128-122-136 |
| \% | $136-124 \mathrm{~m} 117$ |
| 46 | 117-124-136 |
| $\%$ | 136-124-117 |
| 11. | 116-121 |
| 49 | 123-136 |
| 43 | 136-122-128 |
| * | 128-122-116 |
| 46 | 117-124-136 |
| * | 136-124-117 |
| 46 | 117-124-136 |
| * | 136-124-117 |
| 46 | $117-124-136$ |
| End at: Con Time Recor | ded: Cont. |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 7

-AERSON: 13
-CATEGORY: 3

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Oct. 26,70Starting Time: 10,00AM | |
| $\begin{array}{r} * \\ 49 \\ 4 \end{array}$ | $\begin{aligned} & 1220136 \\ & 1360122 \end{aligned}$ |
| 12 | $\begin{aligned} & 116 \\ & 116 \end{aligned}$ |
| 49 | $\begin{aligned} & 122.136 \\ & 1360122 \end{aligned}$ |
| 34 | $\begin{aligned} & 122-128-107 \\ & 107-128-122 \end{aligned}$ |
| 12 | $\begin{aligned} & 116 \\ & 116 \end{aligned}$ |
| 12 | $\begin{aligned} & 116 \\ & 116 \end{aligned}$ |
| 28 | $\begin{aligned} & 122-128-105 \\ & 105-128-122 \end{aligned}$ |
| 12 | $\begin{aligned} & 116 \\ & 116 \end{aligned}$ |
| 14 $*$ | $\begin{aligned} & 116-117 \\ & 117-116 \end{aligned}$ |
| 46 $\times 1$ | $\begin{aligned} & 122-136 \\ & 136-122 \end{aligned}$ |
| 12 | $\begin{aligned} & 116 \\ & 116 \end{aligned}$ |
| 12 | 116 |
| 12 | 116 |
| * | 116 |
| 17 | $\begin{aligned} & 122-124 \\ & 124=122 \end{aligned}$ |
| End at: 12.00 Noon Time Recorded: 2.00 Hour | |

ACTIVITY: SAME
PERSON: SAME:
CATEGORY: SAME

| $\begin{gathered} \text { Destination } \\ \text { Point } \end{gathered}$ | Change of Direction Points |
| :---: | :---: |
| Date: Nov. 2,70Staxting Time: 1.15 PM | |
| * | |
| 16 | 122-123 |
| \% | $123-122$ |
| 16 | 122-123 |
| 46 | 124×136 |
| \% | 136 c 124 |
| 40 | 116-117 |
| 棠 | 117 ml 16 |
| 49 | $124-136$ |
| * | 136-124 |
| 46 | 122 cos 36 |
| \% | 136 ml 122 |
| 49 | 122-136 |
| \% | 136 ml 122 |
| 28 | 122-12800106 |
| 劳 | 106-128-122 |
| 12 | 116 |
| * | 116 |
| 7 | 121 |
| * | 121 |
| 6 | 121-120 |
| \% | 120 cos 21 |
| 28 | 122-128-106 |
| * | 106-128-122 |
| ' | |
| End at: 3.15 PM
 Time Recorded: 2.00 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 8
PERSON: 14
-CATEGORY: 3

| Destination point | Change of Direction Points |
| :---: | :---: |
| Date: $00 t_{0} 22.70$Starting Time: 10.45 AM | |
| * | |
| 49 | 124-136 |
| 8 | 136-124 |
| 2 | 124-122-128 |
| * | 128-122-124 |
| 3 | $124-12200.128$ |
| \% | 128m222-124 |
| 15 | |
| 2 | $\begin{aligned} & 124-122-128 \\ & 128-122-124 \end{aligned}$ |
| 18 | 125-124 |
| | 124-125 |
| 15 | |
| 49 | 124-136 |
| $\%$ | 136-124 |
| 46 | 124×136 |
| \% | 136-124 |
| 46 | 124.136 |
| * | 136-124 |
| 46 | 124 cos 136 |
| * | 136-124 |
| 3 | 124-122-128 |
| \% | 128-122-124 |
| 49 | $124-136$ |
| * | 136-124 |
| End at: 12.00 Noon Time Recorded: 1. 15 Hour | |
| | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| $\left\|\begin{array}{c} \text { Destination } \\ \text { Point } \end{array}\right\|$ | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 27.70Starting Time: 1.20 PM | |
| $*$ | |
| 3 | $\begin{aligned} & 124-122-128 \\ & 128-122-124 \end{aligned}$ |
| 46 | 124×0.136 |
| \% | 136-124 |
| 18 | 125-124 |
| * | 1246.125 |
| 18 | 1250124 |
| * | 1240125 |
| 41 | 117-0.118 |
| - | 1180117 |
| 28 | 124-128-105 |
| \% | 105-128-124 |
| 49 | 124 mm 136 |
| * | 136-124 |
| 28 | $124-128-105$ |
| \% | 105-128-124 |
| 18 | 125-124 |
| 49 | 126-136 |
| * | 136-124 |
| 49 | 124 - 136 |
| * | 136-124 |
| 33 | 124-122-128 |
| * | 128-122-124 |
| 41 | 117-118 |
| * | 118-117 |
| End at: 3.30 PM | |
| Time Record | ded: 2.10 Hour |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

ACTIVITY: 8
PERSON: 15
CATEGORY: 3

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Oct. 22.70Starting Time: 10 AM | |
| 4% | 124 cos 136 |
| 14 | $136-124 \mathrm{~cm} 125$ |
| 4 | |
| 46 | 12460136 |
| \% | 136-124 |
| 46 | 124-136 |
| \% | 136-124 |
| 34 | 124-122-128 |
| * | 128-122-124 |
| 28 | 124-122-10 6 |
| 16 | 10600122-123 |
| \% | 124 |
| 46 | 1246136 |
| \% | $1.360=124$ |
| 14 | |
| 46 | $124-136$ |
| * | 136-124 |
| 14 | |
| 3 | 124-122-128 |
| 36 | 107×110 |
| 34 | 110-109 |
| * | 106-128-122 |
| 14 | |
| 35 | 124-122-128 |
| * | 128-122-124 |
| 49 | $124-136$ |
| \because | 136-124 |
| End at: 12.00 Noon
 Time Recorded: 2.00 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME
PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Nov.2. 70Starting Time: 1.20 pm | |
| \% | |
| 49 | 124 cos 136 |
| * | 136 me 24 |
| 34 | $124 \times 122 \mathrm{col} 28$ |
| \% | 128-222-124 |
| 49 | 124 em 136 |
| 总 | 136-124 |
| 14 | |
| 49 | 124-136 |
| \% | 136am 124 |
| 33 | 124-122-128 |
| \% | 128*122m124 |
| 42 | 124 |
| \% | 124 |
| 42 | 124 |
| * | 124 |
| 46 | 124×136 |
| \% | 136-124 |
| 46 | $124-136$ |
| * | 136.124 |
| 46 | 1240136 |
| * | 1360124 |
| | |
| End at: 3.20 PM | |
| Time Recorded: 2.00 Hour | |

ACTIVITY: 9
PERSON: 16
CATEGORY: 3

| Destination Point | Change of
 Direction Points |
| :---: | :---: |
| $\begin{aligned} & \text { Date: oct. } 20.70 \\ & \text { Starting Time:11.00 AM } \end{aligned}$ | |
| $*$ 46 4 | $124 \cos 126$ |
| 28 | 128. 106×105 |
| 46 | 106-128-126 |
| 40 | 126m05 |
| 41 | 118 . |
| 20 | 1250124 |
| 41 | 118 |
| 20 | 126 |
| 28 | 122-128 |
| 45 | 106 |
| * | 128 |
| 40 | 1240117 |
| 47 | 124 m 117 ml 18 |
| 41 | 124-117-118 |
| 40 $*$ | 124 m 17 |
| 28 | 128-107 |
| 14. | 124-125 |
| 43 44 | |
| 17 43 | 123 |
| 29 | 106 |
| End at: Cont.
 Time Recorded: Cont. | |

TIME AND MOTION STUDY OF PERSONNEL
ACTIVITY: SAME
-PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAME
 Starting Time: SAME | |
| 44 | 106-128 |
| 45 | 124×136 |
| 41 | 126 |
| 18 | 126 |
| 40 | 124 col 117 |
| 41 | 128-125 |
| 40 | |
| 47 | 126-124 |
| 43 | |
| 43 | |
| 22 | $124 \cos 136$ |
| 40 | 124-117 |
| 41 | |
| 28 | 126-122-106 |
| 45 | 106 |
| 40 | 124.117 |
| 41 | |
| 28 | 128-106 |
| 40 | 124.117 |
| 43 | 117-124-122 |
| End at: 12.00 Noon | |
| Time Recorces | ded: 1.00 Hour |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 20.70Starting Time: 1.00 PM | |
| $\begin{array}{r} * \\ 43 \\ * \end{array}$ | |
| 43 | |
| 14 | 1240125 |
| 14 | 124m125 |
| 18 | 124 |
| 45 | 122 |
| 40 | 124 mol 17 |
| 28 | 128-106 |
| 3 | $\begin{aligned} & 128-106 \\ & 106-128 \end{aligned}$ |
| 4.4 | |
| 46 | 1240126 |
| * | 126-124 |
| 14 | 124-125 |
| * | 125-124 |
| 46 | $124-126$ |
| \% | 126-124 |
| 33 | 122-128 |
| 43 | 107-128 |
| 44 4 | |
| 46 | $124-126$ |
| End at: 3.00 PM
 Time Recorded: 2.00 Hour | |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | |
| :--- | :--- |
| -PEREON: | SAME |
| -CATEGORY: SAME: | |

| Destination | Change of Direction Points |
| :---: | :---: |
| Date: Nov. 2,70Starting Time: 1.15 PM | |
| \% | |
| 44 | 123 |
| 43 | 128 |
| 44 | 123 |
| 46 | 122-126 |
| 7 | 126-122 |
| $\%$ | 122-123 |
| 28 | 128.106 |
| 45 | 106 m 128 |
| 13 | 128-122-121 |
| * | 121×122 |
| 45 | 123-122-128 |
| \% | 128-122-123 |
| 13 | 123-122-121 |
| | 121 -122-123 |
| 13 | 123-122-121. |
| * | 121-122-123 |
| 43 | |
| 35 | 122-128 |
| 15 | 106-128-124 |
| 45 | 124-122-128 |
| 43 | 128 |
| 13 | 1220121 |
| \% | 121-122 |
| 35 | 122-128 |
| 43 | 1060128 |
| 3 | 128-106 |
| * | 106-128-122 |
| 35 | 122-128 |
| End at: 2.15 PM | |

ACTIVITY: 9
PERSON: 17
CATEGORY: 3

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 00 c. 20,70Starting rime: 11.00 AM | |
| $\%$ 4 4 | 124-121 |
| 49 | 124.126 |
| 46 | 124.126 |
| 28 | 122-206 |
| 39 | 1220107 |
| 41 | 12409127 |
| 29 | 125-122-0106 |
| 42 | |
| 40 | |
| 47 | |
| * | 117-124 |
| 47 | 126 |
| 41 | 126 |
| 40 | |
| 41 | |
| 49 | 126 |
| 41 | |
| 40 | |
| 16 | 117-125 |
| 45 | 122-128 |
| 16 | |
| 3 | 128×107 |
| End at: 12.00 Noon
 Time Recorded: 1.00 Hour | |
| | |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: SAME

-PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAME
 Starting Time: I。OO PM | |
| $\begin{array}{r} * \\ 45 \\ \% \end{array}$ | 124-122 |
| 49 | 124×336 |
| 45 | 124-122 |
| 46 4 | 126 |
| 41 | 126 |
| 40 | 12400117 |
| 46 | 124 cr 126 |
| 16 | 126-124 |
| * | 129 |
| 33 | 124m-122-128. |
| 45 | 106m. 228 |
| 43 | 128 |
| 38 | 12800107 |
| * | 128-122-124 |
| 16 | 129-124 |
| 45 | $122=128$ |
| 43 | 124-123- |
| 45 | 128 |
| 43 | 128 |
| * | 123-124 |
| 28 | $124-128-106$ |
| End at: 3.00 PM
 Time Recorded: 2.00 Hour | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 10
PERSON: 18
-CATEGORY: 2

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: Oot. 26,70Starting Time: 10.45 AM | |
| * | |
| 9 | 124-122 |
| 49 | 122-136 |
| 12 | 124me17 |
| \% | 117-124 |
| 49 | 126 cos 36 |
| \% | 136-126 |
| 12 | 124-117 |
| 46 | 117-124 136 |
| * | 136-126 |
| 19 | |
| 46 | 1260136 |
| 3 | 136-122-128 |
| * | 128-122-124 |
| 43 | 122-128 |
| 4 | 128-122 |
| 8 | 128-122-128 |
| 12 | 128-122-116 |
| * | 116-122m. 124 |
| 49 | 126-136 |
| * | 136-126 |
| 9 | 1246122 |
| 49 | 122-136 |
| * | $136-126$ |
| 12 | 124 -177 |
| * | 117-124 |
| 14 | $124-125$ |
| * | 125-124 |
| 46 | 126-136 |
| | 136-126 |
| End at: 12.00 Noon
 Time Recorded: 1.15 Hour | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| $\begin{gathered} \text { Destination } \\ \text { Point } \end{gathered}$ | Change of Direction Points |
| :---: | :---: |
| Date: SAMEStarting Time: I. 20 PM | |
| \% | |
| 42 | 126 |
| \% | 126 |
| 34 | 122-128-106 |
| \% | 106-128-122 |
| 42 | 126 |
| 40 | 178 |
| * | 118-126 |
| 4.5 | 124-122-128 |
| 43 | 128 |
| 45 | 128 |
| $\%$ | 128-122-124 |
| 46 | 126-136 |
| 34 | 136-122-106 |
| 43 | 106-128 |
| \% | 128-122 |
| 46 | 1260136 |
| * | 1360126 |
| 14 | 1240125 |
| * | $125-124$ |
| 46 | 126 m 136 |
| * | 13600126 |
| 49 | 126 ml 136 |
| \cdots | $136-126$ |
| 4 | 124-122-116 |
| * | 116-122-124 |
| End at: 3.20 PM Time Recorded: 2.00 Hour | |
| | |

TIME AND MO'TION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY: | 10 |
| :--- | :--- | :--- | :--- |
| -PERSON: SAME | PERSON: | 19 |
| -CATEGORY: SAME | CATEGORY: | 3 |

| $\begin{aligned} & \text { Destination } \\ & \text { Point } \end{aligned}$ | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 27.70Starting Time: 10.15 AM | |
| \% | |
| 4.9 | $\begin{aligned} & 126 \operatorname{co} 136 \\ & 136 \cdots 126 \end{aligned}$ |
| 8 | 124-122-128 |
| * | 128-122-124 |
| 14 | 124 cm 125 |
| * | 125-124 |
| 49 | 126 m .136 |
| \% | 136-126 |
| 38 | 122-128m-106 |
| 46 | 106-122-136 |
| * | 1360.126 |
| 49 | 126-136 |
| 46 | 136 |
| * | 136-126 |
| 12 | $124 \mathrm{cos17}$ |
| \% | 1170124 |
| 33 | 122-128-106 |
| 20 | 106-122124 |
| \% | 126 |
| | |
| End at: 11.00 AM | |
| Time Recorded: 45 Minute | |

| Destination point | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 20,70Starting Time: 11.00 AN | |
| * | |
| 9 | 126-122 |
| * | 122-126 |
| 49 | 126×136 |
| 12 | 136-124-117 |
| \cdots | 124×12.6 |
| 33 | 126-122-106 |
| | 106-122-126 |
| 46 | 1260136 |
| 34 | 126-122-106 |
| 46 | 106-122-126 |
| \% | 136 m 126 |
| 35 | 126-122-106 |
| * | 106-122-126 |
| 18 | |
| 49 | 126-136 |
| * | 136-126 |
| 2 | 126-122-128 |
| * | 128-122-126 |
| 49 | 126-136 |
| * | 136-126 |
| 12 | 126-124 |
| * | 124-126 |
| 46 | 126-136 |
| 12 | 126-124-117 |
| * | $124-126$ |
| 12 | 126-124 |
| * | 124-126 |
| End at: 12.00 Noon | |

TIME AND MOTION STUDY OF pERSONNEL

ACTIVITY: SAME
PERSON: SAME
-CATEGORY: SAME

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: SAMEStarting Time: 1.10 PM | |
| \% | |
| 13 | $\begin{aligned} & 126-124-125 \\ & 125-124-126 \end{aligned}$ |
| 13 | $126=124-125$ |
| 13 | $125-124 \times 126$ |
| 31 | 124mel22-106 |
| \% | 106-122-126 |
| 20 | 126 |
| * | 126 |
| 49 | 126-136 |
| \cdots | 136-126 |
| 9 | 126 m 122 |
| * | 122-126 |
| 20 | 162 |
| 8 | 124-122-128 |
| | 128-122-124 |
| 8 | 126-122-128 |
| \% | 128-122-126 |
| 8 | 126-122-128 |
| * | 128-122-126 |
| 12 | 126m0124-117 |
| * | 117-124-126 |
| 31 | 126-122-106 |
| 35 | 107-109 |
| 36 | 109-110 |
| 49 | 107-122-136 |
| \% | 136-126 |
| 46 | $126-136$ |
| * | 136-126 |
| Find at: 2.40 PM | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

| Destination point | Change of Direction Points |
| :---: | :---: |
| Date: Nove 2,70Starting Time: $I_{\text {_ }} 20 \mathrm{pM}$ | |
| * 49 | 126-136 |
| 46 | 136 |
| * | 1360126 |
| 3 | 126-122-128 |
| 4 | 128-122-126 |
| 46 4 | 126-136 |
| * | 136 m 126 |
| 46 | 126 m 136 |
| \% | 136-126 |
| 46 | 126-136 |
| , | 136-126 |
| 46 | 1260.136 |
| * | 136-126 |
| 14 | 126001240-125 |
| 9 | 124-122 |
| 14 | 122-124 |
| 35 | 124-128-106 |
| 49 | 107-122-136 |
| \% | 136-126 |
| 46 | 126-136 |
| 4 | 136-126 |
| 13 | 126-124-125 |
| \% | 125-124-126 |
| 34. | 126-122-106 |
| * | 106-122-126 |
| 33 | 126-122-106 |
| 49 | 106--122-136 |
| * | 136-126 |
| 46 | 126-136 |
| * | 136-126 |
| Enci at: 2 Time Recor | $\begin{aligned} & .50 \mathrm{PM} \\ & \text { ded: } 1.30 \text { Hour } \end{aligned}$ |

TIME AND MOTION STUDY OF PERSONNEL

ACTIVITY: 10
PERSON: 20
-CATEGORY: 3

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 00t. 20,70Starting Time: 11.00 AM | |
| \% | |
| 41 | $\begin{aligned} & 126 \\ & 126 \end{aligned}$ |
| 18 | 124 |
| * | 124 |
| 49 | 124×126 |
| 18 | 126 |
| 46 | 126.136 |
| 18 | 1260 |
| 47 | $\begin{aligned} & 126 \\ & 126-124 \end{aligned}$ |
| 46 | 124-126 |
| \% | 126-124 |
| 33 | 124×128 |
| 19 | 106-12200126 |
| \% | 126-124 |
| 3 | 124-122-128 |
| * | 128-122-124 |
| 46 | 124-126 |
| * | 126-124 |
| 31 | $\begin{aligned} & 124-128-106 \\ & 106-128-124 \end{aligned}$ |
| | |
| End at: 12.00 Noon | |
| Time Recor | ded: 1.00 Hour |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

TIME AND MOTION STUDY OF PERSONNEL

: ACTIVITY: 11
PERSON: 21
-CATEGORY: 1

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 0ct. 22.70Starting Time: 10.45 AM | |
| * | |
| 22 | 132 |
| 22 | 132 |
| 9 5 16 | $\begin{aligned} & 133-136-124 \\ & 121-116 \\ & 121-123 \end{aligned}$ |
| 22 | 126 |
| 49 | 1330136 |
| 22 | |
| 4 | 136-123-116 |
| 49 | 1160123 cos 136 |
| 49 | 1330136 |
| 9 | 136-124 |
| 49 | 124×136 |
| * | 136 |
| 49 | |
| 22 | 132 |
| $\begin{array}{r} 22 \\ \vdots \end{array}$ | |
| End at: 12.00 Noon | |
| Time Recorded: 1.15 Hour | |

ACTIVITY: SAME
PERSON: SAME
CATEGORY: SAME

TIME AND MOXIONV STUDY OF PERSONNEL

| ACTIVTIY | 8 | 11 | ACTIVITY | 8 | SAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PERSON: | \% | 22 | PERSON | \% | SAME |
| CATEGORY | 8 | 3 | CATEGORY | 8 | SAME |

TIME AND MOTJON STUDY OF PERSONNEL

ACTIVITY: 12
-PERGON: 23
-CATEGORY: 2

| Destination point | Change of Direction Points |
| :---: | :---: |
| Date: Nov.2.70
 Staxting Time: l. 15 PM | |
| $\begin{gathered} * \\ 46 \\ \# \end{gathered}$ | 136 |
| 49 | |
| 49 | 136 |
| 21 | |
| $\begin{aligned} & 30 \\ & 4 \end{aligned}$ | $\begin{aligned} & 136-128 \\ & 128=136 \end{aligned}$ |
| 22 | $\begin{aligned} & 134 \\ & 134 \end{aligned}$ |
| . | |
| End at: 5.00 PM Time Recorded: 3.45 Hour | |

ACTIVITY: 13

PERSON: 24
CATEGORY: 3

| Destination Point | Change of Direction Points |
| :---: | :---: |
| Date: 0CT. 20.70Starting Time: 10.45 AM | |
| 14 | $\begin{aligned} & 136-126 \\ & 126 \operatorname{mol} 136 \end{aligned}$ |
| | |
| 46 | |
| 46 | |
| 46 | |
| 46 | |
| 46 | |
| $\frac{9}{8}$ | $\begin{aligned} & 136-124=122 \\ & 122-124=136 \end{aligned}$ |
| 46
 $*$ | |
| $\begin{array}{r} 46 \\ \% \end{array}$ | |
| 464 | |
| 46\cdots | |
| End at: 12.00 Noon | |
| Time Recor | ded: 1.15 Hour |

TIME AND MOTION STUDY OF PERSONNEL

| ACTIVITY: SAME | ACTIVITY: |
| :--- | :--- | :--- |
| -PERSON: SAME | PERSON: |
| CATEGORY: SAME | CATEGORY: |

| Destination
 Point | Change of
 Direction Points |
| :---: | :---: |
| Date:
 Starting Time: | |
| | |

APPENDIX D

Interactions between any pair of activities were obtained by summing up the number of exchanged visits between different destination points located within their boundaries. A complete set of tables showing the interactions between different activities are shown in the following pages.

INTERACTIONS BETWEEN ACTIVITIES
VISITING ACTIVITY: 2
VISITING PERSON: 2

```
CATEGORY:
3
```

RECEIVING ACTIVITIES

INTERACTIONS BETWEEN ACTIVITIES

VISITING ACTIVITY: 2
VISITING PERSON: 3
CATEGORY: 3

INTERACTIONS BETWEEN ACTIVITIES

VISITING ACTIVITY: 3

| VISIIING PERSON: | 4 |
| :--- | :--- |
| CATEGORY: | 1 |

VISITING ACTIVITY: 3
VISITING PERSON: 5
CATEGORY:
3


```
VISITING ACTIVITY: 4
VISITING PERSON: 6
CATEGORY:
2
```


INTERACTIONS BETWEEN ACTIVITIES

VISITING ACTIVITY: 5
'VISITING PERSON: 8
CATEGORY: 2

VISITING ACTIVITY: 5
VISITING PERSON: 9
CATEGORY: 3

| | RECEIVING ACTIVITIES | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1112 | 137 | | 15 | ALI |
| NUMBER OF VISITS TO EACH ACTIVITY | | $\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & w \end{aligned}$ | $\begin{aligned} & * \\ & * \end{aligned}$ | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ | | | | | | | | $\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$ | $*$ | * | |
| Total visits in 4.00 hours | | 0 \sim \sim | N | m | | | | | | | | \pm | \cdots | \rightarrow | -1 |
| Total visits/day | | $\stackrel{\sim}{m}$ | \pm | \bigcirc | | | | | | | | ∞ | - | \sim | ${ }_{\sim}^{N}$ |
| Modified final interactions | | $\stackrel{\sim}{m}$ | \rightarrow | \bigcirc | | | | | | | | ∞ | - | \sim | \cdots |

VISITING ACTIVITY: 6
VISITING PERSON: 10
CATEGORY:
3

VISITING ACTIVITY: 7
VISITING PERSON: 11
CATEGORY:
2


```
VISITING ACTIVITY: 7
VISITING PERSON: 12
CATEGORY:
    3
```



```
VISITING ACTIVITY: 7
VISITING PERSON: 13
CATEGORY: 3
```

| | RECEIVING ACTIVITIES | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 111 | 12 | 137 | 14 | 15 | ALI |
| NUMBER OF VISITS TO EACH ACTIVITY | | * | | | | | | * | 葛 | | | | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ | | $*$ $*$ $*$ $*$ $*$ | |
| Total visits in 4.00 hours | | \cdots | | \sim | | | | - | m | | | | \cdots | m | \Rightarrow | $\underset{\sim}{\square}$ |
| Total visits/day | | N | | \pm | | | | N | 6 | | | | \bigcirc | \bigcirc | ∞ | \vec{m} |
| Modified final interactions | | N | | \pm | | | | N | 0 | | | | \cdots | \bigcirc | ∞ | \vec{m} |

INTERACTIONS BETWEEN ACTIVITIES
$\begin{array}{lr}\text { VISITING ACTIVITY: } & 8 \\ \text { VISITING PERSON: } & 14 \\ \text { CATEGORY: } & 3\end{array}$

VISITING ACTIVITY: 8
VISITING PERSON: 15
CATEGORY: 3

INTERACTIONS BETWEEN ACIIVITIES

VISITING ACTIVITY: 9

VISITING PERSON: 16
CATEGORY: 3

materactions between Activities

VISITING ACTIVITY: 10
VISITING PERSON: 18
CATEGORY:
2

VISITING ACTIVITY: 10

VISIMING PERSON: 19

CATEGORY:
 3


```
VISITING ACTIVITY: 10
VISITING PERSON: 20
CATEGORY: 3
```


VISITING ACTIVITY: 11
VISITTNG PERSON: 21
CATEGORY: 1

VISITING ACIIVITY: 11

VISIIING PERSON: 22
CATEGORY:
3

INTERACTIONS BETWEEN ACTIVITIES

VISITING ACTIVITY: 13

'VISITING PERSON: 24
CATEGORY:
3

APPENDIX E

The cost figures on the University of Manitoba Administration Building, as obtained from the accounting department, are shown in the next pages, together with a letter addressed to the personnel of the Registrar's office to notify them of the particulars of the work study to take place in the office.

THE UNIVERSITY OF MANITOBA

 Inter- Deparimental Conresponderce

 Inter- Deparimental Conresponderce}

DATE_October 8, 1970
то _ Mr. A. Grant, Registrar's Office \qquad from G. E. Phillips, Senior Accountant sUbJect: COST FIGURES OM ADMINISTRATION BUILDING

The following are the cost figures you requested in your memo dated October 5, 1970, (except nos. 2 and 3 which we discussed on the telephone).

1. Original Cost of Administration Building (1914) $\$ 271,400$
2. Operating and Maintenance Costs \$ 43,4.43
3. Total annual salary costs of employees in the $\$ 1,458,615$ Administration Building

I hope this information is sufficient for your requirements.
I would appreciate it very much if you could send us a copy of the results of the study.

GEP/ji

TO ALL MBMBERS OP TIE REGTSTRAR'S STAFF

SUBSECT: OPRICE LAYOUT STUDY

Periodically during the next month Mo. Husscin Tawfik will be conducting a study in the Registram's General office and the Admissions Office. Mor Tawfik is a Masters of Architecture student and is attempting to develop a method of designing an office building so that it will provide pleasant surroundings for the employees and at the same time be arranged to minimize the number of times personnel must get up from their desks and also minimize the lengths of these trips when they find they must move around.
M. Tawfil will be observing the movements of persons in these two offices and will be plotting these on a board. It is hoped that the resulits of this study will allor us to do a better job when we lay out the office under the proposed space expansion The objective of this layout will be to make everyone's job as enjoyable as possible. Please be assured that w. Tawfik's obseavations will in no way be used in the evaluation of your job performance. It would be uncealistic to believe that any assessment of an office worker's performance could be based on a study of his movenents in the office. Therefore, we ask your cooperation in this study.

Should you like more information regarding this study please feel free to ask Mr. Wavfik or Mr。AIlan Grant, who will be helping him with this project.

Thanle you in advance for your cooperation.
$/ b c$

[^0]: *Adopted in CRAFT program, IBM SHARE LIBRARY No.

