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Structural reliability analysis requires that the rela-
tionship between the probability distribution of member
resistance and the probability distribution of load effects
be known so that realistic member understrength and overload
factors can be computed for design purposes.

In this study, the probability distribution of the ratio
of theoretical to nominal (design code) strength for compos-
ite steel-concrete beam-columns was establishea and the
major variables affecting the probability distribution
identified. The beam-columns studied were comprised of a
structural steel wide flange shape surrounded by a reinfor-
cing bar cage and completely encased in concrete.

A computer program was used to calculate the theoretical
and nominal strengths. The accuracy of the theoretical
model was established by comparisons to test specimens docu-
mented in the literature.

Probability distributions of the geometric and mechani-
cal properties of the variables which determine the
resistance of the beam-column were established by reviewing
existing literature.

The Monte Carlo technique was used to simulate the
resistance of typical beam-columns in order to determine
both the probability distribution of the member resistance
and the variables having the most effect on the lower tail

of the probability distribution.
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For short composite beam-columns, the variables that
affected the probability distributions of the strength were
the specified concrete strength, ratio of structural steel
area to gross area of cross-section, slenderness ratio and
end eccentricity ratio.

The same variables were found to affect the strength
probability distributions of slender composite beam-columns
except that the effect of specified concrete strength became
negligible for beam-columns with very large slenderness
ratios and the effect of end eccentricity ratio became neg-

ligible for large eccentricity ratios.
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1 INTRODUCTION

The probability-based limit states designs are based on
limiting the probability of failure to an acceptable level.
The actual strength of a structural member differs from the
nominal strength calculated by the designer due to varia-
tions in the material strength, variations in dimensions and
geometry of the member, and Variations in the accuracy of
equations used to compute the nominal strength. Similarly,
the load effects upon a member differ from assumed values
due to the variation in loadings over the lifetime of the
structure. To compute the probability of failure due to
load effects being higher than anticipated and/or member
strength being lower than anticipated, the statistical
descriptions of variations of both the load effects and the
member resistance must be known. The statistical combina-
tion of these two variations allows the probability of fail-
ure to be calculated. This procedure is referred to as
reliability analysis.

This study reports the strength statistics required for
use in the reliability analysis of composite beam-columns in
which steel shapes are encased in concrete. The factors
contributing to the variation of the ratio of actual (theo-
retical) strength to nominal (design code) strength of com-
posite beam-columns are identified. The importance of each

factor to the overall strength variation and the conditions



under which it applies are analyzed. This Wofk will facili-
tate the reliability analysis of representative composite
steel-concrete beam-columns currently underway at Lakehead
University.

The composite beam-columns investigated consist of a
rolled structural steel wide flange section surrounded by a
cage of reinforcing bars and entirely encased in concrete.
The column cross-section is rectangular and meets the rein-
forcement requirements of ACI (American Concrete Institute)
318-83 (1983) and CSA (Canadian Standards Association)
CAN3-A23.3-M84 (1984) design codes. Assumptions regarding
the theoretical behavior of the cross-section and the member
(beam-column) are discussed in Chapter 2. Assumptions
regarding the behavior of the cross-section and the column
with respect to the design codes are discussed in Chapter 3.
1.1 OVERVIEW OF STUDY

The design procedure for composite beam-columns speci-
fied in ACI Standard 318-83 accounts for the probability of
understrength by the use of capacity reduction factors of
less than 1.0. Similarly, CSA Standard CAN3-A23.3-M84 con-
siders the probability of understrength by assigning mate-
rial understrength factors of less than 1.0. To account for
the probability of load effects being greater than the

nominal design values, specified loads are multiplied by a



factor greater than 1.0 in both cases. To satisfy the
‘strength requirements of these standards Equation 1.1 must

be satisfied.

Factored Resistance 2 Effects of Factored Loads (1.1)

Consider a large number of columns, each designed to
have the same resistance to load effects and each assumed to
be subjected to the same specified loading. Due to varia-
tions in geometry and constituents material. strengths of the
column, the actual resistance of each column will vary. The
distribution of column resistance (R) is represented by the
horizontal axis of Figure 1.1(a). The live and dead loads
are also variable and, therefore, each column will be sub-
jected to different maximum load effects during its life-
time. The distribution of maximum load effects (U) is
represented by the vertical axis in Figure 1.1(a). The
45-degree line represents the condition where the load
effect U equals the resistance R. Combinations of U and R
that fall above the 45-degree line represent the failure
condition where R < U (Mirza 1985a).

A function, Y =R/U, is used to simplify the reliability

analysis (Mirza 1985a). The distribution of the value of Y

is represented in Figure 1.1(b). The function has a mean



(b) )

Frequency

/ 1.0 2 Y =R/U
Probability [ (R/U) < 1]

or probability of failure ’

Figure 1.1 - Definition of failure, probability of failure,
and safety index ﬁ (Mirza 1985a)



value ¥, and a standard deviation of o, A particular col-
umn will fail if its value of Y is less than 1.0. Hence,
the shaded area in Figure 1.1(b) represents the failure
condition. The ratio of the shaded area to the entire area
under the curve of Y is the probability of failure. The
safety index, B, is a multiple of standard deviation of Y by
which the mean value of Y exceeds the failure level. If
the type of probability distribution of Y is known, the
probability of failure can be calculated from 3. An
increase in B due to an increase in ?, or a decrease in 0.,
or both, increases the margin of safety and vice versa. The
value B is therefore a measure of structural reliability
(Mirza 1985a).

To compute the value of the strength reduction (or mate-
rial understrength) and load factors, the statistical prop-
erties of both the column strength and the load effects must
be considered concurrently. This can be accomplished by use
of a step-wise reliability analysis technique as presented
by Mirza (1985a) and reproduced as follows:

(a) derivation of statistical models for material strengths
and geometric properties;

(b) selection of equations to predict theoretical strengths;

(c) derivation of the probability distribution of the
strength of representative structural members;

(d) description of load and load effect statistics:



(e) selection of a target safety index B based on code cali-

bration studies;

(f) selection of design code format and load factors; and

(g) calculation of resistance (or material understrength)
factors based on representative structural members and
relative occurrences of different types of loading in
buildings where these members occur.

In this study, items (a), (b) and (c) have been com-
pleted for composite steel-concrete beam-columns subject to
the limitations discussed below. Items (d) through (9)
describe the work that is currently in progress as part of
another study at Lakehead University.

The composite beam-columns studied meet the following
assumptions regarding loading and support conditions as
shown in Figure 1.2:

(a) the columns are pin-ended and the effective length is
equal to the actual length:;

(b) bending is in single curvature about the major axis;
(c) end moments are equal and opposite producing a uniform
primary moment distribution along the length of the

beam-column;

(d) no lateral load is applied between the ends of the col-

umn; and
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(e) loading is progressive to failure and is of short dura-
tion such that creep and shrinkage effects of concrete
are not considered.

The loading configuration described by (a) to (d) above
provides for maximum secondary moments due to deflection at
the mid-height of the beam-column and is an extreme case for
beam-columns in non-sway frames designed in accordance with
ACI 318f83 and CSA A23.3-M84. Shrinkage of concrete, corro-
sion of steel components and increase of concrete strength
due to maturation are ignored; It was assumed that the
beneficial effects due to increase in concrete strength with
time would compensate for any decrease in strength due to
creep and shrinkage of concrete and corrosion of structural
and reinforcing steel.

1.2 OUTLINE OF RESEARCH PROGRAM
A computer program was used to calculate the theoretical

resistance of composite steel-concrete beam-columns. The

program is based on equations and assumptions considered to
be of greater accuracy than design code equations. The
accuracy (model error) of the theoretical strength program
was established by comparisons with existing test data of
the ultimate strength of composite beam-columns. The theo-
retical computer program is discussed in detail in Chapter

2.



A computer program designed to calculate the nominal
capacity of composite steel-concrete beam-columns was used
to compare the theoretical member strength to that allowed
by the design codes. The nominal capacity is based on the
specified mechanical and geometric properties of the column
components and on the equations given by design codes. The
nominal program subroutine is discussed in Chapter 3.

Probability distributions of the mechanical and geomet-
ric properties of column components were taken or derived
from data available in the literature. The probability
distributions are discussed in Chapter 4.

A Monte Carlo technique (Chapter 5) was used to estab-
lish the statistical properties of the member strength.
This method consists of repeated simulations of a chosen
sample column using random selections of the magnitudes of
variables based on the probability distributions mentioned
previously. The theoretical strength of each simulated col-
umn is calculated by the program subroutine described in
Chapter 2.

The ratio of theoretical to nominal strength was calcu-
lated for each configuration of composite beam-column stu-
died. The resulting ratios were then analyzed statistically
to determine the shape of the probability distribution and
its properties for each beam-column studied. The probabil-
ity distributions so generated were used to investigate the

effects of different variables studied. The contribution of
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variability of the properties of structural steel, concrete,
and model error to the overall strength variations of a few
individual columns was also examined. The computed data is
discussed separately for short and for slender beam-columns
in Chapter 5. A summary of the study and conclusions drawn
from it are presented in Chapter 6.

The methodology of the research program is similar to,:
although more refined than two earlier studies for rein-
forced cohcrete beam-columns. Grant et al. (1978) studied
the strength variation of short reinforced concrete columns.
Mirza and MacGregor (1989) studied the strength variation of
slender reinforced concrete columns. The major difference
between this report and the above-noted studies are the
effects of the structural steel core and of concrete con-
finement due to minimum ties specified in ACI Standard
318-83 (and CSA Standard CAN3-A23.3-M84) on the strength

variation of beam-columns.
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2 THEORETICAIL BEAM=COLUMN STRENGTH

To analyze the theoretical strength of a composite beam-
column, a computer program previously developed at Lakehead
University (Mirza 1989) was tested and revised as required
for use in this study. The changes implemented into the
program for use in this study included more efficient tech-
niques to allow for full strain hardening of steel, general-
ized interpolation techniques (Lagrangian), definition of
maximum allowable interpolation errors, accounting for
numerical discrepancies due to column behavior at extreme
values, reduction of computing time required and addition of
Monte Carlo simulations. A brief flow chart of the comput-
ing procedure used is shown in Figure 2.1.

The entire program consists of a main driver program,
COMPOSIT, and two major subroutines. The main driver reads
input, initiates Monte Carlo variations of input data if
required, calls the major subroutines and statistically ana-
lyzes the output data. One of the two major subroutine
programs, RTHEO, analyzes for the theoretical strength of
the composite column and the other, RNOM, calculates the
nominal strength of the column following the design require-
ments of ACI 318-83 or CSA A23.3-M84. The theoretical model
and related subroutines are discussed in this chapter. The
nominal strength model and subroutine are discussed in Chap-

ter 3.
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2.1 REVIEW O¥ PREVIOUS WORK

In order to describe the theoretical model used in this
study, it was considered useful to see what techniques and
assumptions have been used by others in previous studies of
composite beam-columns. A review of the published work on
the theoretical analysis of composite columns is briefly
summarized below.

Bondale (1966 a,b,c) tested composite beam-columns and
attempted to duplicate his test results by analyzing the
columns with theoretical models. Strain compatibility
assumptions were used to establish the cross-section rela-
tionships between axial load, bending moment and curvature.
The tangent modulus theory was used to analyze the
concentric load case. Slender, eccentrically loaded columns
were assumed to deflect in the form of a cosine curve.
Graphically solving for the equilibrium relationship between
load end eccentricity and mid~height deflection established
maximum eccentricities at the failure section for given
axial loads. The assumptions made by Bondale are the same
as described in Section 2.2 with the following exceptions;
(a) tensile strength of concrete was neglected; and (b)
residual stresses in the structural steel were neglected.
Analysis of the test specimens showed that the tested load
capacities were from 1.15 to 1.23 times the theoretical

capacities.
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Basu (1967) presented a computer method to approximate
the capacity of pin;ended composite beam~columns subjected
to equal and opposite end eccentricities and uniaxial bend-
ing. The method made efficient use of computer time since
equilibrium needed to be satisfied only at the ends and at
the mid-height of the beam-column. . The method was similar
to that of Bondale except that interpolations were made
mathematically by the computer rather than graphically.
Comparisons made by Basu with the test results of Bondale
(1966 a,b,c) predicted the ratio of actual to predicted
strength to be 1.21 to 1.33 when the maximum concrete stress
was assumed to be two thirds of the cube strength. The
results improved to 1.09 to 1.20 when a value of eighty
percent of the cube strength was used. This shows that the
stress-strain curve assumed for concrete significantly
affects the results. The assumptions Basu used in his anal-
ysis are similar to those made by Bondale. Two exceptions
are notable. An initial deflection of the column in the
form of a cosine curve is assumed to account for some ini-
tiai camber of the column. Subsequent deflections due to
secondary moments are assumed to be in the form of a part
cosine wave.

Basu and Hill (1968) confirmed the accuracy of Basu
(1967) by developing a more precise numerical integration
method of analysis. Equilibrium is satisfied at a number of

points (nodes) between the mid-height and the ends of the
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beam-column giving a more precise evaluation of the
deflected shape of the column. Comparing runs made by the
approximate method (Basu 1967) and the numerical integration
method showed that the maximum error for the approximate
method was five percent on the conservative side. The
approximate method analysis was completed in only seven per-
cent of the computer time required for the numerical inte-
gration analysis.

Virdi and Dowling (1973) extended the work of Basu and
Hill (1968) by applying the numerical integration technique
to biaxially loaded composite columns. The columns were
pin-ended with equal end eccentricities. The column was
assumed to be initially deflected along both axis in the
form of a cosine wave, with additional second-order deflec-
tions forming a part cosine wave. Initial deflections were
assumed to be less than those assumed by Basu and Hill
(1968). 1In contrast to previous studies by others, Virdi
and Dowling included the effect of residual stresses in the
structural steel section. They reported that, in some
cases, residual stresses enhanced the strength of long beam-
columns. The column load capacities calculated by their
analysis technique was compared to eight physical test
specimens. A mean ratio of tested to calculated strength of
1.04 and a coefficient of variation of 10.4 percent resulted
when residual stresses and an initial out-of-straightness of

0.001 times the column length were assumed.
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Virdi and Dowling (1982) present a revision of their
earlier work. The revised method used Gauss quadrature to
integrate axial force in an element of the cross-section
rather than assuming the strain at the center of gravity of
an element applicable to the entire element. Residual
stresses are not reported to be used in the analysis. An
initial out-of-straightness of 0.001 times the length was
assumed for each axis. The authors compared the revised
technique against the physical tests of columns and the
analysis reported earlier (Virdi and Dowling 1973). The
ratio of tested to predicted strength decreased to 0.962
with a coefficient of variation of 9.7 percent. These val-
ues indicate a small overestimation of the ultimate strength
although the coefficient of variation is slightly improved.

Wakabayashi (1976) proposed a superposition method of
independent concrete, reinforcing bar and structural steel
columns as a solution to the composite column. The summa-
tion of the tangent modulus capacity of the independent col-
umns was proposed for use in the concentric loading case.
Wakabayashi suggested that although the steel section may be
initially cambered, the reinforced concrete encasement can
be constructed nearly straight thereby reducing the effect
of the initial camber of the steel section to the overall
capacity of the composite member. This suggests that assum-
ing the entire composite cross-section tc be initially out

of plumb is not required. Wakabayashi also noted that the
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stress-strain relationship of concrete inside and outside
the flanges of the steel section may differ due to the con-
fining influence of the flanges.

May and Johnson (1978) reported a numerical technique
designed to analyze biaxially loaded composite columns for
both pin-ended and restrained end cases. The method is sim-
ilar to that of Virdi and Dowling (1973) except that May and
Johnson used a finite difference technique while Virdi and
Dowling used a Newton-Raphson iteration scheme to converge
to the equilibrium deflected shape. A comparison of their
axial load - midheight deflection computations with those of
Basu and Hill (1968) and Virdi and Dowling (1973) indicate
very minimal differences. Assumptions used by May and John-
son are consistent with those previously mentioned for Basu
and Hill (1968) and for Virdi and Dowling (1973). Residual
stresses were assumed to have negligible effect. No mention
is made of what was assumed for initial out-of-straightness
of the beam-column.

LaChance and Hays (1980) studied the errors to be
expected by making or neglecting various assumptions in the
calculation of the M-¢-P (moment - curvature - axial load)
relationship for composite beam-column cross-sections. A
strain compatibility technique was used with assumptions
similar to those used by previous authors noted above.

Since only the cross-section was considered, the results are

applicable only to short beam-columns. Ignoring the bending
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stiffness of reinforcing bars was found to underestimate the
moment capacity by only 0.05 percent. Ignoring the tensile
strength of concrete caused an underestimation of moment
capacitonf only 0.01 percent. Neglecting to disregard the
concrete area displaced by reinforcing bars and the steel
I-section caused overestimations of the bending moment
capacity by up to 25 percent. Using different stress-strain
curves for concrete caused differences in the calculated
moment capacities of up.to 9 percent when bending about the
major axis was considered. A stress-strain curve with a
descending branch beyond the point of maximum stress yielded
higher moment capacities than a curve which terminated at
the peak stress. Residual stresses in the steel section did
not influence the ultimate strength of the cross section.
However, the authors pointed out that residual stresses may
influence the strength and behavior of long beam-columns.
2.2 ASSUMPTIONS USED IN THEORETICAL STRENGTH MODEL

The theoretical strength calculations presented in this
study are similar to the work of Basu (1967). A strain
compatibility solution was used to compute the M-¢-P rela-
tionship of the cross-section and is discussed in Section
2.4. The capacity of the member (beam-column) was
calculated by solving for the maximum eccentricity for which
equilibrium could be maintained between the ends and mid-
height of the beam-column. The procedure used to calculate

the beam-column strength is discussed in Section 2.5.
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The assumptions regarding the loading and the end condi-

tions of the beam-columns were discussed in Section 1.1.

The assumptions peculiar to the theoretical analysis are

discussed here. These are:

(a)

(b)

(c)

(d)

(e)
(£)

(9)

(h)

(1)

(3)

strains are compatible between concrete and steel such
that no slip occurs;

strain is linearly proportional to the distance from the
neutral axis;

deflections are small such that curvatures can be calcu-
lated as the second derivative of the deflection;

shear stresses are small and their effect on strength
can be neglected;

effects of axial shortening are negligible;

the rolled steel section is assumed to be made up of
rectangular plates;

residual stresses in the rolled steel section exist;

the column is perfectly straight before loading;

the column cross-section is symmetric about the major
and minor axis; and

the failure takes place due to material failure and not
by local or torsional buckling;

Assumptions (a) and (b) were required for the strain

compatibility solution of the cross-section M-¢-P rela-

tionship. Assumption (c) was needed for the calculation of

length effects due to secondary moments. Assumptions (d)

and (e) were used to simplify the calculations. Assumption
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(f) simplified the discretization of the cross-section into
elements and is discussed in Section 2.3. Assumption (g)
acknowledges the existence of residual stresses in the
rolled steel section and is discussed in Section 2.8.
Assumption (h) was based on Wakabayashi's (1976) observation
that the encasement of the steel section in concrete will
negate any detrimental effects of initial camber of the
steel section. Assumption (i) simplified the cross-section
M~-¢-P calculations since discretization of only one-
quarter of the cross-section was required to model the
entire cross-section. Assumption (j) was valid since a
review of test data in the literature did not indicate any
failure by local or torsional buckling. This assumption was
also made by Bondale (1966 a,b,c) and would seem to be par-
ticularly valid where rectangular hoops along with surround-
ing concrete stiffen the compression flange of the steel
section. Further assumptions directly related to the
stress-strain curve for individual materials are discussed
in Sections 2.6 and 2.7.
2.3 CROSS-SECTION DISCRETIZATION

The cross-section of a composite column consists of
three materials (concrete, structural steel and reinforcing
steel) each possessing a unique stress-strain relationship.
Concrete was subdivided into three distinct types, uncon-
fined, partially confined and highly confined as described

below. Each of these concrete types had different
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stress-strain characteristics. The rolled steel section was
sebarated into the web and the flanges to model differences
in their stress-strain characteristics. Hence, the cross-
section was comprised of materials with six different
stress-strain curves. The six distinct areas of the
cross-section are shown in Figure 2.2.

. The cover concrete (i.e. concrete outside of the lateral
ties) was unconfined. The concrete inside the periphery of
the ties but outside the flanges of the steel section was
assumed to be partially confined. The concrete within an
assumed parabola and between the flanges of the steel sec-
tion (Fig. 2.2) was assumed to be highly confined. The
assumed parabola had a vertex intersecting the edge of the
web at the mid-depth of the steel section when the flange
overhang was less than one-quarter of the section depth
between the flanges. The vertex of the parabola was taken
to be at the mid-height of the section and a distance from
the web d, .. dependant on the flange width b, flange thick-
ness {, depth of steel section d, and web thickness w as

shown in Figure 2.3 and in Equation 2.1.

d = - 2.1
vertex 2 4 ( )

d

vertex
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The distance, parallel to the major axis, from the edge of
the web to the parabola w,. (Figure 2.3) for an elemental

slice is computed by Equation 2.2

b - w 2
( 2 - duertex) dpc
Wy = duertex * (d -~ 2,)2
2

(2.2)

in which d,. is measured perpendicular to the major axis

from the plastic centroid of the cross-section to the cen-
troid of the element.

The discretization between the three areas of concrete
recognizes the beneficial effects of increased confinement
on concrete strength and ductility. Park, Priestley and
Gill (1982) used distinct boundaries between the unconfined
and partially confined concrete areas in their analysis of
reinforced concrete beam-columns. Potential differences in
stress-strain characteristics between the partially and
highly confined concrete areas were noted by Wakayabashi
(1976) and Mirza (1989). This distinction is logical due to
the high confining effect of the steel section as opposed to
that provided by rectangular ties. The rest of the litera-
ture described in Section 2.1 made no mention of any attempt
to distinguish between these concrete areas. The individual
stress-strain characteristics of these three areas of con-

crete are discussed in Section 2.6.
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The steel section was subdivided into two areas, the web
and the flanges. This accounted for differences in yield
strengths of the two components of the steel section as
noted by Galambos and Ravindra (1978) and Kennedy and Gad
Aly (1980).

In order to calculate the M-¢-P relationship the

cross-section must be divided into elements small enough to
allow the computer to numerically integrate the forces in
each element accurately. To accomplish this the program
discretizes the cross-section into finite strips parallel to
the major axis. Within each strip the cross section is
further discretized into the various material categories as
discussed above. The width of the strip perpendicular to
the major axis is determined by the number of strips
requested and input to the program. The width of strips are
automatically adjusted so that strip boundaries occur at the
interface between two materials. Fifty elemental strips for
the entire cross-section thickness were specified for the
computer simulations described in Chapter 5.

To account for varying stresses along the width of the
flange due to residual stresses, the flange is discretized
into 20 equal width elements perpendicular to the major
axis. The initial strain in each element due to residual

stresses is calculated with subsequent strains being added
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algebraically to each element. Figure 2.3 shows the discre-
tization for a typical 1/2-section of a composite cross-
section.
2.4 CROSS-SECTION STRENGTH MODEL

The cross-section strength model determines the rela-
tionship between bending moment, curvature and axial load
(M—-¢-P). This information is required for establishing
the cross-section axial load - bending moment (P-M) inter-
action diagram. Figure 2.4 shows typical M-¢-P relation-
ships for several axial loads with key points marked on the
diagram. In this figure, the bending moment is shown on the
vertical axis with curvature shown on the horizontal axis.
The peak moment on the curve for the level of axial load
considered represents one point on the cross-section P- M
interaction diagram. Computation of these points for a suf-
ficient number of axial load levels yields the cross-section
P~ M interaction diagram (Figure 2.5).

The first step required in determining the M-¢-P rela-

tionships is defining the range of axial load to be
examined. The maximum axial load which can be applied on
the cross-section occurs when that locad is applied concen-
tric to the plastic centroid of the cross section (pure com-
pression axial load capacity). This loading arrangement

forces all elements to strain equally. Since the
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cross-section is doubly symmetric, the plastic centroid is
coincident with the intersection of the major and minor
axis.

The following procedure was used to calculate the con-
centric axial load corresponding to a given strain:

(a) Determine the stress in each element from the stress-
strain relations corresponding to the given strain;

(b) determine the force in each element by multiplying the
stress by the area of the element; and

(c) sum the forces from each element to obtain the total
axial load.

An iterative technique was used to solve for the pure
compression axial load capacity. The axial load was calcu-
lated at a strain that corresponded to the material with the
lowest strain at peak stress from the stress-strain
relationships (Sections 2.6 and 2.7). For structural and
reinforcing steel, the strain corresponding to the yield
point was used. The strain is incremented and the axial
load level calculated until the strain corresponded to the
material with the highest strain at peak stress. Since the
maximum axial force lies between these two strain limits,
the maximum axial load calculated during these iterations
was taken as the cross-section concentric axial lecad capac-
ity. This established a point on the P- M interaction
curve that corresponded to the axial load capacity at zero

bending moment.



30

To determine other points on the P- M interaction curve,

the bending moment capacities corresponding to axial load
levels between zero and the pure compression axial load
capacity were calculated. The subroutine determines the
N1—¢-P relationship for axial loads of 0, 2, 4, 6, 8, 10,
12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 70,
76, 82 and 86 percent of the concentric axial load capacity.
The bending moment calculated for each axial load level was
plotted on the P-M interaction diagram.

To determine an M-¢-P relationship one additional term

must also be known. This is the distance DN A between the
neutral axis and the major axis as shown in Figure 2.6. For
a given value of axial load, there are a number of corre-
sponding moments possible depending on the location of the
neutral axis and the value of the curvature. This is shown
in Figure 2.4. A unique relationship exists between the
axial load P, the bending moment M, the curvature ¢ and the
location of the neutral axis DNA. Fixing a value for
either DNA or ¢ defines the value of the other term since
only a unique pair of values for DNA and ¢ will satisfy
equilibrium of forces for the given axial load. Once the
axial load, the curvature and the location of the neutral

axis are known, the bending moment can be calculated. By
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calculating a number of these unique relationships for each
axial load level, the maximum bending moment for each axial
load level can be found.

To reduce computing time, the M-¢—-P relationships for

all axial load levels were calculated and analyzed simulta-
neously. A starting curvature value was assumed. Holding
this value constant, the distance from the plastic centroid
to the neutral axis (DNA) was varied and the corresponding
axial force was calculated at each DN A value selected. The
DNA was varied in such a way that all calculated values of
the axial force were within the required range. This

creates a matrix of P versus DN A values.
A linear interpolation of values from the P versus DN A

matrix provided an approximate DN A value for each given
level of P. Using the approximate DN A value, the Extended
Newton-Raphson Technique (Kikuchi, Mirza and MacGregor 1978)
was then used to converge to the correct DN A value for the
given level of axial force. Since both the starting curva-
ture and the position of the neutral axis corresponding to
the required axial load were now known, the bending moment
could be calculated easily. This procedure was then
repeated for all given values of P.

With bending moments for the starting curvature known,
the curvature was incremented, a new P versus DN A curve was

plotted and new bending moments were calculated.
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This procedure created the required M-¢-P relation-

ships. An outline of the method by which the M-¢—-P rela-
tionships were calculated for the composite cross-section is
shown in Figure 2.7. The data, when plotted, is similar to
the data plotted in Figure 2.4.

The maximum bending moment for a given level of axial
force calculated by this method yields one point on the
P—-M interaction curve (Figure 2.5). To ensure that the
maximum bending moment for a given axial force was calcu-
lated, the curvature was incremented until the concrete
cover on the compressive side of the cross-section had
spalled off. Review of M-¢ curves showed that the maximum
bending moment occurred prior to spalling off of the con-
crete cover except for low axial load levels when strain-
hardening of steel was considered. When the concrete cover
has spalled off at a particular axial load level, the
program ceases to calculate any further points on the moment
versus curvature graph for that axial load level except when
strain-hardening of steel is considered as described below.

When strain hardening of the steel is considered, at low
levels of axial load (less than 20 percent of the pure com-
pression axial force capacity), the maximum moment may not
be reached until several hundred curvature increments have

been completed. To save computing time, the curvature
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increment was increased to 10 and then to 100 times the
original increment for only the cases in which strain-
hardening of steel at low axial forces was considered.

At very high curvature values, it is theoretically pos-
sible that the tension flange of the rolled steel section
may fracture. The strain in the tension flange of the steel
section is monitored at each curvature increment. If rup-
ture of the tension flange is imminent, no further points
are calculated for that axial load level.

When the moment versus curvature diagrams have been com-
pleted for all axial load values to be considered, the maxi-
mum bending moment for each axial load level is stored.
These bending moments paired with the corresponding axial
loads form the P-M interaction diagram. If the column has
an input length greater than zero, the program proceeds to
the slender column subroutine. If a cross-sectional study
is all that is required, an input length equal to zero will
make the computer return to the main program without execut-
ing the slender column subroutine.

2.5 SLENDER BEAM-COLUMN STRENGTH MODEL

A beam-column, due to its length, has less strength than
its cross-sectional strength. When an eccentric axial load
is applied to the beam-column, the transverse deflection of
the column increases the effective eccentricity of the load
at all points along the length. Therefore, the maximum end

moment is controlled by the transverse deflection of the
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column and the effective eccentricity at the point of maxi-
mum deflection. The purpose of the slender beam-column
strength model is to calculate the maximum end moment
corresponding to a particular axial load in order to con-
struct the slender beam-column P- M interaction diagram.

In this study, the maximum deflection occurs at the mid-
height of the beam-column due to the assumption of equal end
moments and single curvature as shown in Figure 2.8. For a
beam-column to be stable, the internal and external forces
acting on it must be in equilibrium at every section along
its length. This condition yields an equilibrium deflected
shape for a given combination of axial load and end eccen-
tricity. Increasing the end eccentricity causes greater
deflections and thus greater effective eccentricities until
failure of the material at mid-height causes the collapse of
the column. The maximum bending moment acting at the ends
prior to collapse of the column subjected to a given axial
load is the long column bending moment capacity.

Two methods to calculate the maximum end eccentricity
and, hence, maximum end moment have been developed by Basu
(1967) and Basu and Hill (1968) as previously discussed in
Section 2.1 for the type of beam-column studied in this the-
sis. The numerical integration method (Basu and Hill 1968)
requires that the column length be divided into a number of
nodes or stations. Equilibrium must be satisfied at each

node. This is achieved by iterating the deflection at each
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station until all stations are in equilibrium, yielding an
equilibrium deflected shape. Increasing the number of sta-
tions improves the accuracy of the solution but also
increases computing time required. For the approximate
method (Basu 1967), the equilibrium deflected shape is
assumed to follow the shape of a part cosine curve. The
deflection at the mid-height of the column can then be esti-
mated quickly by simply solving a single equation. In both
methods, an end eccentricity ié assumed, a deflected shape
is found and the cross-section is checked at the point of
maximum deflection to check whether failure has taken place.
If failure has not occurred, then the end eccentricity is
increased and the process is repeated. The largest end
eccentricity before failure at the point of maximum deflec-
tion ié used to calculate the maximum end bending moment for
the beam-column at that axial load level. The approximate
method was found to calculate column capacities up to 5 per-
cent more conservative than the numerical integration method
(Basu and Hill 1968). Basu's approximate method (1967) with
some modifications was used in this study. These modifica-
tions are discussed in detail in this section.

As for the case of the cross-sectional study (Section
2.4), the first requirement for creating the slender beam-
column P- M interaction diagram is calculation of the con-
centric axial load capacity. The tangent modulus theory was

used to calculate this load.. The tangent modulus method has
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been used by Wakayabashi (1976) for his composite design
propoéals and is also recommended by Basu (1967) for ini-
tially straight columns.

Previous analytical studies of composite columns (Basu
1967, Basu and Hill 1968, Virdi and Dowling 1973) assumed an
initial out-of-straightness of the composite column. Basu
and Hill (1968) showed concentric axial load reductions of 3
to 30 percent for length to overall depth ratios of 10 to
40, respectively, when initial out-of-straightness was con-
sidered. Basu assumed an initial out-of-straightness at
mid-height of the column equal to 0.00006!%2/d, where [ is the
length of the column and d is the depth of the steel sec-
tion, which was meant to estimate both the effect of initial
out-of-straightness and the effect of residual stresses in
the steel section on the column strength. This method
assumes initial mid-height deflections of the steel section
greatly in excess of allowable tolerances in North America.

Virdi and Dowling (1973) compared the effect of assuming
no imperfections, residual stresses only, out-of-
straightness of [/1000, residual stresses plus an assumed
out of straightness of (/1000, and the use of only an
assumed out-of-straightness of 0.00006!%°/d as assumed by
Basu. Assuming no imperfections showed the highest
strengths and the use of Basu's assumptions the lowest
strengths, especially for long columns. The differences

between an assumption of residual stresses only and residual
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stresses with an initial out-of-straightness of /1000 were
very slight. The residual stress only assumption averaged a
2.6 percent greater capacity than that when residual
stresses were combined with the initial deflection of (/1000
for the 9 columns tested by Virdi and Dowling (1973) over a
number of biaxial eccentricities. These results show that
assuming an initially straight column will not be in serious
error, as long as residual stresses are accounted for.

The assumption of initial out-of-straightness made by
the authors mentioned above considered the entire composite
cross-section to have an initial out-of-straightness.
Wakayabashi (1976) recognized that while the steel shape may
be assumed to have initial camber, the concrete encasement
is likely to be constructed straight. Since the concrete
encasement gives lateral support to the steel section, he
argued that the effect of the initial camber of the steel
section would be negligible.

To exactly account for the geometry of the beam-column
as described by Wakayabashi (1976), the program would have
had to be able to be capable of calculating the strength of
cross-sections symmetric about the minor axis only, since
the cross-section geometry with respect to the major axis
would change at every point along the length of the beam-
column. This would greatly increase the complexity and com-
puting time as M-¢-P relations would have to be calculated

for a number of different sections along the column height.
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Due to the small effect reported by Virdi and Dowling (1973)
of initial out-of-straightness of (/1000 for the entire com-
posite cross-section and the fact that the concrete encase-
ment is not likely to be subjected to significant initial
out-of-straightness, it was decided not to assume any
initial camber of the steel section for this study. This
assumption also allows the use of the tangent modulus
theory, which cannot be correctly applied to columns that
are not perfectly straight.

The concentric axial capacity of a long column is depen-
dant on the buckling strength of the column and not the
material strength as is the case for the cross-section.

This means the column fails by buckling before the material
strength is exceeded. The ultimate buckling stress for a
column of homogeneous material is given by the tangent

buckling formula:

n’E,

=(kl/r)2 (2:3)

fcr

Substituting the value of 1.0 for the effective length
factor k£ and recalling that the radius of gyration, r, can
be calculated as the square root of the moment of inertia
divided by the area (J77Z), Equation 2.3 can be rewritten

as:
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foA==El (2.4)

The column buckling load, P., is equal to either side of

Equation 2.4 and may be calculated directly.

Since a composite column is made up of materials with 6
independent stress-strain curves, Equation 2.4 is not
directly applicable. Instead, Equation 2.4 was applied
independently to each individual material and the sum of the
tangent buckling strength for all materials gave the column
tangent buckling load. This procedure is comparable to that
proposed by Wakayabayshi (1976). Hence, Equation 2.4 can

be modified to account for the six independent materials:

i=6

n2
Z (fcriAi) Y

=6
3 l Z(E,JJ (2.5)

The buckling load, P., which simultaneously satisfies

both sides of Equation 2.5 is the composite column buckling
load capacity (maximum concentric axial load). Equation 2.5
cannot be solved directly since the tangent elastic modulus
of an element is a function of the stress in the element.
Therefore, an iterative solution was used. The axial strain
of the column was adjusted until the difference in buckling

load calculated by each side of Equation 2.5 is less than 1
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pound (4.45 N). This established the point on the slender
column P- M interaction curve corresponding to maximum con-
centric load and zero bending moment.

To establish the points of the beam column P- M interac-

tion curve due to eccentric loading, a modified version of

the approximate method of Basu (1967) was used. For each

axial load level investigated less than the slender column
concentric axial load capacity for which the cross-section

M-¢-P relationship was previously calculated (Section

2.4), a maximum end eccentricity was sought. The method for

calculating the maximum end eccentricity (and, hence, maxi-

mum end bending moment) can be described as follows:

(a) assume a mid-height deflection of the column;

(b) find the end curvature which corresponds to the desired
deflected shape:;

(c) find the bending moment corresponding to the end curva-
ture from the cross-section M-¢-P relationships and
calculate the end eccentricity:

(d) add the end eccentricity to the assumed mid-height
deflection and calculate a new bending moment at the
mid-height of the column; and

(e) if the bending moment calculated in (d) is less than the
maximum bending moment from the cross-section M-¢-P

relationship, increase the mid-height deflection and
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repeat the process starting from item (a). If the bend-

ing moment calculated in (d) is greater than the maximum

bending moment from the cross-section M-¢-P
relationship, the previous end eccentricity calculated
in item (d) is used to compute the maximum end bending
moment.

Basu (1967) and Basu and Hill (1968) used a part cosine
curve for the assumed deflécted shape of the composite col-
umn and showed this method was only slightly more conserva-
tive than the numerical integration method with a maximum
difference of only 5 percent. Quast (1970) studied the
deflected shape of pin-ended reinforced concrete columns
uniaxially loaded in single curvature. After comparing a
number of theoretical deflected shapes, including a part
cosine curve, against more elaborate and time consuming
numerical integration techniques he concluded that the best
approximation of the deflected shape was a 4th order parab-

ola with the mid-height deflection given by Equation 2.6.

ACE S
e, = — &, + = (2.6)
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where ¢, and ¢, are the curvatures at mid-height and the

column ends, respectively; ! is the length of the column;
and e, is the mid-height deflection of the column as shown
in Figure 2.8. |

Quast found that this deflected shape produced a maximum
unconservative error of 2 percent and a maximum conservative
error of 6 percent. The reinforced concrete columns he sim-
ulated had eccentricity ratios of between 0.1 and 1.0 with
[/h ratios of 0 to 60.

Mirza and MacGregor (1989) used Quast's method of
approximating the deflected shape to study the strength
variability of reinforced concrete columns. Bolin (1985)
tested an earlier version of the present analytical program
with both approximations and found that in general both
assumptions returned similar results, with Basu's assumption
being slightly more conservative. In consideration of the
above, Quast's approximation to the deflected shape of the

beam-column was used in this study.

The total mid-~height eccentricity e, is the sum of the

assumed mid-height deflection e, from Equation 2.6 and the

end eccentricity e as shown in Equation 2.7.

e, = e + e, (2.7)
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Substitution of Equation 2.6 into 2.7 and rearranging to

solve for the end eccentricity yields Equation 2.8.

“e (1) (00 - %) @8)
e = ") (% 7 7 '

The mid-height eccentricity e, can be calculated by

dividing the mid-height bending moment by the axial load as

shown in Equation 2.9.

> (2.9)

Substitution of Equation 2.9 into 2.8 gives the simple
relationship between the end eccentricity (e¢), mid-height

moment (M,) , the mid-height curvature (¢,) and the end cur-

vature (¢,) shown in Equation 2.10.

_ (M) (0P . % :
(%) () (-8 e

The program uses Equation 2.10 and the cross-section
M-¢-P relations previously calculated to solve for a

combination of end eccentricity, mid-height deflection and

mid-height curvature in equilibrium. Figure 2.9 outlines
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the procedure. Values for the mid-height curvature are
incremented -from a minimum value until a maximum end bending
moment is calculated. For each mid-height curvature value
assumed, values of the end curvature are tested and increm-
ented from a minimum until an equilibrium combination is
found. The largest curvature that can be attained at
mid-height is the one that corresponds to the maximum moment
from the M-¢-P diagram for the axial load. Once all pos-
sible mid-height curvatures have been investigated, the
largest end bending moment calculated becomes oné point on
the slender beam-column P- M interaction curve. The pro-
cess is then repeated to complete the entire slender beam-
column P - M interaction curve.
2.6 STRESS=STRAIN CURVES FOR CONCRETE

As outlined in Section 2.3, three distinct concrete
areas have been assumed in the discretization of the compos-
ite column cross-section. These distinctions are meant to
account for dissimilarities in the stress-strain
relationship of the concrete due to confining action of the
vertical reinforcing bars, the rectangular lateral ties and
the rolled steel section. Confinement of concrete increases
the compressive strength and ductility of concrete in rein-
forced concrete columns and methods to compute its effect on
the stress-strain relationship have been developed by Park,
Priestly and Gill (1982), Sheikh and Uzumeri (1982), Sheikh

and Yeh (1986), Mander et al. (1988). Confinement effects
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on the compressive strength of concrete in composite columns
were not considered by any of the previous studies on com-
posite columns reviewed in Section 2.1. Compressive stress-
strain curve characteristics for different degrees of
concrete confinement are given in Sections 2.6.1, 2.6.2, and
2.6.3. The effect of confinement on the tensile stress-
strain relationship of concrete is not available in the 1lit-
erature searched. It was, therefore, decided to assume
identical tensile stress-strain relations for all types of
concrete confinements. A discussion of the tensile strength
of concrete is given in Section 2.6.4. Finally, all stress-
strain curves used for concrete are summarized in Seetion
2.6.5. It should be noted that the stress~strain relations
presented in this chapter are based on static loading condi-
tions.

2.6.1 Unconfined Concrete

The two curves considered of interest for describing the
stress-strain characteristics of the compressive strength of
unconfined concrete are those of Hognestad (1951) and Kent
and Park (1971).

The Hognestad curve (Figure 2.10) consists of a second
order parabola from the origin to the peak stress. The
strain at peak stress is a function of the initial tangent
modulus and the concrete strength. Beyond the peak stress
the curve descends linearly to a stress of 85 percent of the

peak stress at a strain of 0.0038. The equations describing
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the portion of the curve between the origin and the peak
stress and between the peak stress and the stress corre-
sponding to the ultimate strain are given in Equations 2.11

and 2.12, respectively.

2
fe = f7. [260 - (E—>J (2.11)
€o €o

- — €o ,
fe fe [0'0038 — EJ 0.157", (2.12)

2f7
E.

where €y =
The Kent and Park curve (Figure 2.11) is similar to the
Hognestad curve except that the strain at peak stress is set
at a value of 0.002. The descending branch is linear and
assumed to fall from the peak stress to a value of 20 per-
cent of the peak stress. The slope of the descending branch
is a function of the concrete strength with lower strength
concrete modelled to be less brittle. The equations
describing the portion of the curve between the origin and
the peak stress and between the peak stress and the stress
corresponding to the ultimate strain are given in Equations

2.13 and 2.14, respectively.
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2¢ € 2
= ’ < - d 2.13
fo = 1 [o.ooz (o.ooz)} (219)

fe = Ff. 1 - Z2 (¢, = 0.002)] (2.14)

h 7 =
where €oon - 0.002

3 + 0.002f°,
F'. - 1000

and €504

For SI conversion replace 3 by 0.0207 MPa and 1000 by 6.895
MPa.

Llewellyn (1986) compared results of using the stress-
strain curves by Hognestad and Kent and Park. Essentially,
no difference was found in the results obtained from the two
stress-strain curves. However, the Hognestad curve occa-
sionally produced higher strength for unconfined concrete
than that obtained for confined concrete based on modified
Kent and Park confined concrete stress-strain curve (Section
2.6.2). The Kent and Park curve for unconfined concrete
presented no such conflict for obvious reasons.

The Kent and Park curve for unconfined concrete was used
for the stress-strain curve adopted in this study. Two mod-

ifications were made. First, the strain at peak stress was
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allowed to vary as a function of the concrete strength,
similar to the method of the Hognestad curve as shown in

Equation 2.15.

€y = (2.15)

The second modification was to assume that the concrete
loses all strength at a strain of 0.004. This assumption
has previously been used by Park, Priestly and Gill (1982)
to model the spalling off of the concrete cover. The
stress-strain curve used in the theoretical analysis of this
study for the unconfined compressive strength of concrete is
shown in Figure 2.12.
2.6.2 Partially Confined Concrete

Confinement enhances the strength and ductility of con-
crete. Past efforts to model the behavior of the confined
concrete core of reinforced concrete columns reinforced with
rectangular hoops are summarized by Sheikh (1982) and Mander
(1983). 1In a reinforced concrete column, the concrete core
strains both axially and transversely under loading. As
loading progresses, the transverse strains cause hoop ten-
sion in the horizontal ties. The horizontal ties thus con-

tribute passive confinement to the core. The vertical
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reinforcing similarly confines the core since the vertical
bars are prevented from bowing out by the horizontal ties
(Park and Paulay 1975).

Confinement of the core concrete in a composite steel-
concrete column is expected to occur in a similar fashion.
In addition, the component plates of the structural steel
shape inside the core provide additional confinement.
Wakayabashi (1976) recognized that stress-strain relations
of concrete may differ depending on its location in the com-
posite section. He did not, however, try to incorporate
these differences into his proposed design procedure.

To account for enhancement of strength and ductility of
the concrete core, two stress-strain relations were consid-
ered. The Modified Kent and Park Curve (Park, Priestly and
Gill 1982) and the Sheikh - Uzumeri Curve (1982) were both
developed for the confined cores of reinforced concrete col-
umns. Since no model directly applicable to composite col-
umns was found in the literature searched, these two curves
.were investigated for their compatibility and accuracy to
the composite column. A third method proposed by Mander et
al. (1988) was briefly reviewed but not considered for adop-
tion since a significant amount of work for this thesis had
been completed by the time the Mander paper was published.

The Modified Kent and Park Curve is a modification of an
earlier Kent and Park Curve for concrete confined by rectan-

gular hoops (Kent Park 1971). The original version of the
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curve allowed an increase in the ductility of the confined
concrete but not an increase in strength. Later tests on
column specimens by Park, Priestley and Gill (1982) quanti-
fied the increase in concrete strength which was included
into the stress-strain relationship. The degree of
confinement is a function of the vertical spacing of hori-
zontal ties, the ratio of volume of horizontal ties to vol-
ume of concrete core and the yield strength of the
horizontal ties. Increasing the confinement increases both
the concrete strength and the ductility. The Modified Kent
and Park stress-strain curve for concrete confined by rect-
angular hoops is shown in Figure 2.13. Equation 2.16
describes the portion of the curve between the origin and
the peak stress. Equation 2.17 describes the descending

branch of the curve.

2¢ € 2
L= Kf, | =S [ & 2.16
f f [0.00ZK (0.00ZK):, ( )

where K =1 =+
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Fo = Kf . [l - Z(e, - 0.002K)] 2 0.2Kf", (2.17)

0.5
+ ESOh - 0.00ZK

where zZ =
eSOu

3 + 0.002f°,
F'. - 1000

and €504

3
and €s0n = Zps —_—

In the above Equations f’, is the concrete cylinder

strength, p; is the ratio of volume of lateral ties to vol-
ume of concrete contained within the lateral ties, f,, is
the yield stress of the lateral hoops, h’° is the out to out
width of the lateral hoops and s, is the spacing of the
lateral hoops. For SI conversion replace 3 and 1000 by
0.0207 MPa and 6.895 MPa respectively, for computing es,,.
Further tests by Scott, Park and Priestley (1982) showed
that at high strain rates the enhancement of the core
strength by the confinement was further increased. They
conservatively chose a factor of 1.25 to account for the
gainuin strength in a confined core due to high strain
rates. The tests also demonstrated an increase in the slope
of the descending branch of the stress-strain curve. An
increase of 1.25 in the slope of the descending branch was
attributed to the high strain rate. This may result in a
slight reduction in total ductility. The study described in

this thesis involves short term loading, but the rate of
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loading is assumed to be slow enough that dynamic effects
are negligible (i.e. quasi-static). This will lead to con-
servative description of strength if the results of this
study are used for dynamic loads. The tests by Scott et al.
(1982) also indicated that presence of a strain gradient
increased the ductility of the confined core, but the effect
was not quantified.

The Sheikh - Uzumeri curve (1982) was developed from
their earlier experimental tests of reinforced concrete cbl~
umns (1980). The development of their analytical model rec-
ognized the importance of tie spacing, volumetric ratio of
tie steel to concrete core, and tie yield strength to the
degree of confinement of the core. They also found that the
configuration of the vertical bars in the cross-section and
the way they were tied to the horizontal hoops was also a
factor. The Sheikh - Uzumeri (1982) curve describing the
stress-strain relation of concrete confined by rectangular
hoops is shown in Figure 2.14. Equation 2.18 describes the
portion of the curve between the origin and the peak stress

and Equation 2.19 describes the descending branch.

2 2 2
where K, = 1.0 + 25;15— [(1 S )(1 - g%) Jdpsfs'
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fc = stc’ [1 - Z(Ec - EOO)] (2'19)

0.5

p.VB/s

where 4

The Sheikh and Uzumeri (1982) curve partly accounts for
the increase in ductility by assuming a horizontal plateau
in ﬁhe curve from the strain at peak stress to the start of
the descending branch as shown in Figure 2.14. The minimum
strain corresponding to the maximum stress €,;, and the maxi-
mum strain cbrfesponding to the maximum stress €,, are given

by Equations 2.20 and 2.21, respectively.

€,, = 0.55K,f  ,x107° 2.20

s1

0.81 2\psf s
€, = eoo(l+ 5 (1—5.0(%)) = ) 2.21

In Equations 2.18 to 2.21 €4 = strain in plain concrete at

maximum compressive stress; B = core concrete width measured
to the center line of the lateral tie; C = the clear dis-
tance between laterally supported longitudinal reinforcing
bars; P,. = the area of core concrete multiplied the

compressive strength of plain concrete; n = number of later-

ally supported longitudinal reinforcing bars; s = spacing of
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lateral ties; p_ = ratio of volume of lateral ties to volume
of core concrete and, f'; = stress in lateral ties. Linear
dimensions are in inches and stresses are in ksi.

Sheikh and Yeh (1986) confirmed an earlier finding by
Park, Priestley and Gill (1982) that ductility of the con-
fined concrete core increased when a strain gradient (i.e. a
bending moment) was present. The strain gradient did not
increase the maximum strength of the core concrete. For
simplicity, the effect of strain gradient on the stress-
strain relationship of partially coﬁfined concrete was
neglected.

In order to decide which of the stress-strain curves
best suited the theoretical analysis of composite columns
reported in this study, three criteria were examined. These
are:

1. Suzuki et al. (1983) provided the results from a series
of tests conducted on composite column specimens similar to
those chosen for this thesis. The ratio of structural steel
section to gross column section was 3 percent for the LH
series and 6 percent for the RH series. The volumetric
ratio of lateral ties to concrete core varied from 0.6 to 3
percent. All specimens were concentrically loaded. By
applying the stress-strain curve assumptions for the steel
portion of the cross-section, as described in this thesis,
the stress-strain curves for the concrete portions were com-

puted. The method of determining the column strength
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attributable to the core and to that of the cover was based
on the work of Moehle and Cavanagh (1985). The core
strength curves were compared to predictions made by both
the Modified Kent and Park and the Sheikh - Uzumeri curves.
Thé Modified Kent and Park curve better predicted the peak
strength of the RH series while the Sheikh and Uzumeri curve
was found to better predict the strength of the IH series.
Strain at peak stress was estimated better by the Sheikh -
Uzumeri curve. Both curves estimated greater ductility than
the data indicated in most instances, although the shape of
the descending branch was basically accurate. Since the
results were inconclusive, further investigation was done to
establish which of the stress-strain curves would be better
suited for composite columns.

2. Calibration of the computer model against physical test
results is described in Section 2.9. Before final calibra-
tion, the two confined concrete stress-strain curves were
compared with some of the experimental data to investigate
which one gave the more accurate predictions. Only the
specimens with length to overall depth ratio less than 6.6
were used for this purpose. Both stress-strain curves pro-
duced about the same results. The results are shown in
Table 2.1.

3. In Section 2.6.1, it was stated that the Kent and Park
model (1971) was used to describe the stress-strain charac-

teristics of the unconfined concrete. Since the Modified
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Table 2.1 - Comparison of Strength Ratios¥®
Calculated using Modified Kent and Park and Sheikh and Uzumeri
Stress-Strain Relations for Concrete Confined by
Rectangular Lateral Ties

Stress-strain Mean Value Coefficient of

|
|
| Curve Used
l
|

| (1982)

l

| | |

l I |

] | Variation |

(1) } (2) { (3) {

[Modified Kent | 1.026 | 0.0763 |

|and Park = %% o l : l

l l I |
| Sheikh-Uzumeri | 1.029 | 0.0767

1 I .

l

*Based on all columns with %/h € 6.6 in Table 2.3

kK (Park et al.A 1982)
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Kent and Park curve uses the Kent and Park (1971) model as a
starting point, there is apparently no possibility of an
overlap between the two models. The Sheikh - Uzumeri
(1982) model for partially confined concrete was compared to
the Kent and Park (1971) model for unconfined concrete for
some of the test specimens discussed in Section 2.9. It was
found that in some cases, the Sheikh - Uzumeri model for

- partially confined concrete predicted a lower initial tan-
gent elastic modulus (Figure 2.15) than the Kent and Park
model for unconfined concrete. It was also found that, in
some cases, the slope of the descending branch of the Sheikh
- Uzumeri curve for partially confined concrete was so steep
that its strength was less than that of the unconfined con-
crete, with a strain at peak stress signifiéantly less than
that of the unconfined concrete. This behavior has been
neither documented nor expected.

In order to maintain compatibility between the stress-
strain curves of the unconfined and confined portions of the
concrete, it was decided to use the Modified Kent and Park
curve (Park, Priestley and Gill 1982) to model the partially
confined portion of the concrete in the composite cross-
section. As discussed in Section 2.6.1, the strain at peak
stress was allowed to vary as a function of the initial

elastic modulus of the concrete (Equation 2.15). The
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Figure 2.15 = Comparison of Unconfined and Partially Confined
Concrete Campressive Stress—Strain Relationships
for Colum IH-100-B (Table 2.3)
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stress-strain curve used in the theoretical analysis for the
compressive strength of partially confined concrete is shown
in Figure 2.16.
2.6.3 Heavily cConfined Concrete

In the previous discussion of partially confined con-
crete it was noted that an increase in the amount of con-
finement provided to the core is accompanied by an increase
in concrete strength and ductility. Both the Sheikh -
Uzumeri and the Modified Kent and Park models increase both
concrete strength and ductility when confinement is
increased. 1In this study, a portion of the concrete between
the flanges of the structural steel section has been assumed
to be heavily confined as indicated in Figure 2.2. This
area is confined by the rolled steel section on three sides
and by the partially confined concrete and lateral ties on
the fourth side. It is reasonable to assume that the con-
crete in this area is under a higher degree of confinement
than the concrete outside the influence of the flanges. To
account for this higher confinement, the concrete in this
-area has been assumed to follow the same stress-strain rela-
tionship as the partially confined concrete (Modified Kent
and Park model in Figure 2.16), but does not have a
descending branch. The concrete stress is assumed to remain
at the peak stress throughout all strains past the strain at
which the peak stress was first attained. Since the peak

stress is predicted from a model for concrete confined by
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rectangular hoops, the prediction for the heavily confined
concrete peak stress is expected to be on the conservative
side. The assumed stress-strain curve for heavily confined
concrete is shown in Figure 2.17.

2.6.4 Tensile Stress-Strain Relationship Of Concrete

Park and Paulay (1975) state that the tensile stress-
strain relationship of concrete may be assumed to be linear
up to the tensile strength (i.e. modulus of rupture) with a
modulus of elasticity equal to the modulus of elasticity in
compression. The tensile stress beyond the peak stress is
assumed to be zero. The assumption of equal initial modulus
of elasticity for tension and compression was also suggested
by Mirza et al. (1979c). This stress-strain relationship
was used by Mirza and MacGregor (1989) for reinforced con-
crete columns.

Recent work on this subject has focused on the shape of
the stress-strain curve after the peak tensile stress is
reached. Hwang and Rizkalla (1983), Carreira and Chu (1986)
and Zhen-hai and Xiu-gin (1987) all report a descending
branch to the tensile stress-strain curve after the peak
stress. 1In all cases the stress drops sharply at strains
beyond the strain at peak stress, retaining only a small
percentage of the peak strength at larger strains.

LaChance and Hays (1980) assumed that the relationship
between concrete tensile stress and strain was a continu-

ation of a polynomial curve describing the entire stress-
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Figure 2.17 - Heavily Confined Concrete
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strain relationship both in tension and compression. The
peak tensile stress was assumed to be 10 percent of the
specified concrete cylinder strength and the ultimate ten-
sile strain was set at 0.000125 for 5000 psi (34.5 MPa)
concrete. The’peak stress and the ultimate strain were
assumed to occur at the same point. They found that this
assumption added only 0.01 percent to the strength of a com-
posite column cross-section as opposed to ignoring it all
together.

For simplicity, it was assumed in this study that the
tensile portion of the concrete stress-strain curve is as
suggested by Park and Paulay (1975) and by Mirza and MacGre-
gor (1989). The work of LaChance and Hays (1980) suggests
that the contfibution of concrete tensile strength to the
overall column strength is so small that it could be consid-
ered negligible and, therefore, a simple model was consid-
ered to be sufficient. The assumed stress-strain curve for
the tensile strength of concrete is shown in Figure 2.18.
2.6.5 a Of Stress-Strai elationshi For Concrete

In this study, the stress-strain relationship for uncon-
fined concrete was based on the Kent and Park (1971) curve
with slight modifications, the major difference being that
the strain at peak stress was assumed to be a function of
the modulus of elasticity and the strength of the concrete
(Equation 2.15) instead of being a constant value. The por-

tion of the composite section considered unconfined is the
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Figure 2.18 - Concrete Tensile Stress-Strain
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Theoretical. Strength Subroutine
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concrete outside the perimeter of the lateral ties. The
Modified Kent and Park curve (Park, Priestley and Gill 1982)
was used to model the partially confined concrete. However,
the strain at the peak stress was calculated as noted above.
Partially confined concrete is considered to be within the
lateral ties but outside the confining influence of the
steel section flanges. The Modified Kent and Park curve was
also used to model the heavily confined concrete between the
flanges except that the peak stress was assumed to be main-
tained at all strains beyond the strain at which the peak
stress was first attained. The concrete areas of the
composite cross-section assumed to be unconfined, partially
confined and heavily confined are shown in Figure 2.2. The
assumed stress-strain curves for unconfined, partially con-
fined and heavily confined concrete are shown in Figures
2.12, 2.16 and 2.17, respectively.

The stress-strain curve of the tensile strength of con-
crete is shown in Figure 2.18. The stress-strain relation-
ship Qas assumed to be linear from the origin to the modulus
of rupture. The modulus of elasticity for tension is
assumed to be equal to the compressive modulus of elastic-
ity.

2.7 STRESS~-STRAIN CURVES FOR STEEL

Two types of steel are used in the composite cross-

section. These are the rolled structural steel shape and

the reinforcing bars. The assumptions regarding the shape
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of the stress-strain curve are similar for both materials.
The differences occur because different variables are used
to define the stréss—strain curve for each type of steel.
It was assumed that the stress-strain curves for all steel
components were identical in tension and compression. This
assumption is consistent with previous works reviewed in
Section 2.1. The variables for which the data were avail-
able to define the stress-strain curves for the rolled steel
section and for the reinforcing steel are given in Section
2.7.1 and 2.7.2, respectively.
2.7.1 Structural Steel

The stress-strain curve used for structural steel was
assumed to be bilinear to the onset of strain-hardening.
From the origin to the attainment of the yield stress,
stress was assumed proportional to strain according to Hook-
e's law. Between the attainment of the yield stress and the
onset of strain hardening the stress was assumed to be
constant at the yield stress level. The strain-hardening
portion of the curve is assumed to be a second order parab-
ola. The slope of the strain-hardening portion of the
stress-strain curve at the ultimate strain was assumed to be
equal to zero. The variables used to define the entire
stress-strain curve are the elastic modulus £,, the yield
stress f,,, the strain at onset of strain hardening €_,,,, the
initial tangent slope of the strain hardening curve £, and

the ultimate stress f,.. The yield strain €,, and ultimate
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strain ¢, are calculated by the program. The schematic
stress—-strain curve for structural steel is shown in Figure
2.19.

The curve used is similar to what has been assumed in
previous studies. Basu (1967) and Wakayabashi (1976)
assumed a slight curvature at the transition from the elas-
tic to the plastic condition. Only LaChance and Hays (1980)
and Virdi and Dowling (1982) considered the strain-hardening
portion of the curve. LaChance and Hays (1980) used a non-
linear curve similar to a parabola. Virdi and Dowling
(1982) assumed a linear strain-hardening portion to the
stress-strain curve.

2.7.2 Reinforcing Steel

The shape of the stress-strain curve used for reinfor-
cing steel is virtually identical to that used for struc-
tural steel. The difference is in the variables which must
be specifiedvto establish the stress-strain curve. The
modulus of elasticity £,., the yield stress f,, the strain at
onset of strain hardening €,4,,, the ultimate stress f, and
the ultimate strain €, must all be specified. The slope of
the initial tangent to the strain hardening curve E ..., is
calculated by the program, as is the yield strain €,. The
schematic stress-strain curve for reinforcing bars is shown

in Figure 2.20.
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Figure 2.19 - Structural Steel Stress-Strain
Relationship in Tension or Compression
used in Theoretical Strength Subroutine
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Figure 2.20 - Reinforcing Steel Stress-Strain
Relationship in Tension or Compression
used in Theoretical Strength Subroutine
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The differences in the specified variables required for
structural steel and reinforcing steel is due solely to the
information available in the literature for these steels.
Hardly any useful data was found on the ultimate strain of
structural steel. However, some data was available for
reinforcing steel ultimate strain (Allan 1972). Galambos
and Ravindra (1978) published data on the initial strain-
hardening modulus for structural steel. No similar data was
available for reinforcing steel. Thus, the structural steel
stress-strain curve required that the initial strain-
hardening modulus be specified in order to calculate the
ultimate strain. For reinforcing bars, the ultimate strain
is specified in order to calculate the initial strain-
hardening modulus.

2.8 RESIDUAL STRESSES IN ROLLED STRUCTURAL STEEL

Residual stresses form in rolled structural steel mem-
bers due to uneven cooling of their component parts during
the manufacturing process. Parts cooling first resist
contraction and become stressed in compression. Parts cool-
ing last become stressed in tension in order to maintain
equilibrium. Heat treating can reduce the magnitude of the
stresses but is usually not done. Residual stresses in com-
posite columns, the various theories for predicting their
magnitude and distribution and how they were accounted for

in this study are discussed in this section.
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LaChance and Hays (1980) stated that residual stresses
in the structural steel had no effect on the ultimate
strength of composite cross-sections. Virdi and Dowling
(1973) reported that, in some cases, residual stresses may
enhance the strength of beam-columns. Mirza (1989) found
that residual stresses were detrimental to the composite
beam-column strength at end eccentricity ratios less than
1.0 but could have a beneficial effect for larger end eccen-
tricity ratios. Beedle and Tall (1960) reported that resid-
ual stresses reduced the strength of concentrically loaded
bare steel columns.

It is evident that the effect of residual stresses on
the strength of a composite beam-column can vary signifi-
cantly and, therefore, was accounted for in this study.

Alpsten (1968) used a time—stepped finite difference
technique to simulate the cooling of a rolled structural
steel shape as it is manufactured. By modelling the rate of
cooling of the component parts of the rolled shape he was
able to accurately duplicate measured values. To do this,
the cooling and manufacturing history of the shape had to be
known. Alpsten demonstrated how factors such as restric-
tions to heat flow affected the residual stresses and their
distribution. Alpsten stated that, in general, the flange
tips and mid-depth of the web will have a compressive resid-
ual stress and that the juncture of the flange and web will

have a tensile residual stress. If the rolled shapes are
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placed on the cooling table in such a manner that the webs
are prevented from cooling quickly, the mid-depth of the web
will be in tension instead of compression.

Measured values of residual stresses have a high varia-
tion especially at the mid-depth of the web (Alpsten 1968).
These variations are due to different cooling rates and
manufacturing processes. After a rolled shape has cooled,
it often hés to be straightened by rollers or by "gagging"
(mechanical bending). This process usually reduces the
residual stresses at a cross-section but since all cross-
sections are not treated in the same manner, this should not
be considered to increase the overall strength of the steel
section (Alpsten 1968). Alpsten also found that the resid-
ual stresses varied considerably across the depth of very
thick flanges [ 3 inch (75 mm) thick]. Thinner flanges
showed little variation.

The flange thicknesses used in this study were less than
1.5 inch (38 mm). Therefore, residual stresses across the
depth of the flange were assumed constant. The residual
stresses were assumed identical at every section along the
length of the beam-column with no allowance for reductions
due to mechanical straightening. Alpsten's method of calcu-
lating the residual stresses requires knowledge of the spe-

cific manufacturing process a structural shape is subjected
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to and, therefore, is not applicable to a general study
where the structural shapes are drawn from several manufac-
turers.

Several schemes have been proposed in the literature to
model the distribution and magnitude of residual stresses in
rolled I-shapes. Of these, two models are of interest.
Both models assume compressive residual stresses at the
flange tips and tensile stresses at the juncture of the
flange and web. One model assumes compressive stresses at
the mid-depth of the web [Figure 2.21(a)] while the other
model assumes tensile stresses [Figure 2.21(b)]. The dis-
tribution of the residual stresses between these points is
assumed either linear or parabolic, as indicated on Figures
2.21(a) and 2.21(b).

LaChance and Hays (1980) tried both models described
above but gave no details of the assumed distribution or
magnitude of the residual stresses. Trahair and Kitiporn-
chai (1972) studied inelastic buckling of steel I-shaped
beams and used a distribution similar to Figure 2.21(a). A
magnitude of 50 percent of the steel yield stress for the
residual stress at the flange tips (compression), 30 percent
at the juncture of the flange and the web (tension) and 30
percent at the mid-depth of the web (compression) was
assumed. Nethercot (1974) also studied lateral buckling of
steel I-shaped beams. He examined how the different assump-

tions of residual stress magnitude and distribution affected
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the ratio of experimental to calculated bending moment
capacity. He compared the distributions of Galambos (1963),
Massey (1964), and Young (1971). Poorest correlation was
found with the distribution by Massey. This was expected
since Massey's distribution, which was based on test results
of Australian rolled joist sections, assumed that the
flanges were entirely in uniform tension and the web in uni-
form compression with a short linear transition assumed at
each end of the web. Because of this very different
residual stress distribution and the results reported by
Nethercot (1974), Massey's model was not investigated any
further. The models from Galambos (1963), Young (1971) and
Trahair and Kitipornchai (1972) were examined further and
are discussed below.

Galambos (1963) proposed a residual stress distribution
based on measurements of American I-shapes, mostly used as
columns. The distribution he proposed is shown in Figure
2.21(b). The magnitude of the residual stress at the flange
tip was assumed to be 30 percent of the yield strength for
mild steel. The residual stress at the juncture of the
flange and web was assumed equal to the stress at the mid-
depth of the web. The residual stress at the mid-depth of
the web was calculated as a function of the residual stress
at the flange tip and the geometry of the section. The

residual stress in the web (0,) is given by Equation 2.22.
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bt
_ 2.22
Tro = O [bt v+ w (d - 2z)J (2.22)

In Equation 2.22 0,4, is the residual stress at the tip of

the flanges, b is the flange width, ¢ is the flange thick-
ness, w is the web thickness and d is the depth of the
structural steel shape.

Nethercot (1974) found that use of the Galambos' (1963)
distribution (also known as Lehigh distribution) consis-
tently gave conservative results in his analysis of I-beams.

Young (1971) collected previously published data on
residual stress measurements and measured residual stresses
in British beam and column shapes manufactured from mild
steel. His proposed distribution is shown in Figure
2.21(a). The residual stresses at the flange tip, at the
flange-web juncture and at the mid-depth of the web are all
calculated as functions of the geometry of the section. The
distribution of stress between these points is described by
a polynomial. Young's equations for the residual stresses
at the flange tip, at the juncture of the flange and web;
and at the mid-depth of the flange are given by Equations

2.23, 2.24 and 2.25 respectively.

1 - A
6., = -165 | —2¥] MP 2.
f ( 1.24, ) 2 (2.23)
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Ay
O, = 100 (0.7 + -131-;) MPa (2.24)
100 | 1.5 a2 MP (2.25)
= - ot a .
Oru 124,

In the above Equations 0,; is the residual stress at the

flange tips, 0,, is the residual stress at the juncture of
the flange and web, 0,, is the residual stress at the mid-
depth of the web, A, is the area of the web and A, is the
area of one flange of the steel section.

Young (1971) also suggested that since his proposals were
based on geometric considerations, they would be applicable
to various grades of steel and not limited to mild steel.

Nethercot (1974) concluded that the use of Young's model
provided a reasonably accurate method of incorporating
residual stresses into the analysis of the moment capacity
of beams failing by lateral buckling. He also found that
thé predictions of bending moment capacity were accurate and
nearly identical when the Young's model and the Alpsten's
(1968) finite difference technique were used to predict the
residual stresses. Nethercot further concluded that correct

prediction of the magnitude of the residual stresses at the
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flange tips and the juncture of the flange and web was more
important than the actual stress distribution assumed (i.e.
linear or non-linear distribution).

Beedle and Tall (1960) reported measurements of residual
stresses in various American mild steel sections. Stresses
were found to vary significantly at each cross-section
tested along the length of a member. Distributions similar
to both those in Figures 2.21(a) and 2.21(b) were found.
Attempts to correlate the dimensions of the test section
sizes and the residual stresses were unsuccessful. However,
it was found that the residual stresses in the flange
influenced column strength to a greater degree than the
residual stresses in the web.

Average magnitudes of measured residual stress at the
flange tip and at the juncture of the flange and web were
estimated from Figure 1 of Beedle and Tall (1960) for the
nine steel section sizes included in that figure. These
measured averages were compared against estimates made using
the models of Trahair and Kitipornchai (1972), Galambos
(1963) and Young (1971). The resulting comparison is shown
in Table 2.2. Young's (1971) model predicts greater resid-
ual stresses at the tip of the flange as the ratio of flange
to web area increases as indicated by Table 2.2. The
section sizes in Table 2.2 are, therefore, arranged in
ascending order of flange to web area for simplicity of com-

parisons.
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The Trahair and Kitipornchai (1972) model is entirely
based on the yield strength of the steel and therefore no
variation of residual stresses for different shapes is cal-
culated. This results in generally conservative predictions
of the residual stresses at the flange tips. The prediction
of the residual stress at the flange tip by the Galambos'
(1963) model is also based on the yield strength of the
steel. In this case the predicted value is often less than
the measured value. The Galambos' estimates at the flange-
web juncture are not significantly different from the mea-
sured data in most cases.

The predictions made using Young's (1971) model provided
the best comparison to the flange tip residual stress data
reported by Beedle and Tall. A trend of larger flange tip
residual stresses as the ratio of flange to web area
increases is seen in both the measured (Beedle and Tall
1960) and estimated (Young 1971) values. A trend towards
lower tensile stresses at the juncture of the flange and web
as the flange to web area increases may be hypothesized by
examining the measured data. This trend is followed by the
values generated from Young's model as indicated in Table
2.2. However, the Young's estimates for the residual stress
at the flange-web juncture are significantly greater than

the measured values in most cases.
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The yield strength of the steel is not believed to be a
major variable in determining the magnitude of residual
stresses (Alpsten 1972). The model by Trahair and Kitiporn-
chai (1972) and the flange tip stress prediction of Galambos
(1963) are based solely on the yield stress of the material
and, therefor, were not considered useful. On the other
hand, Young's (1971) model predicts residual stresses based
on the dimensional properties of the I-sections as does the
flange-web juncture model of Galambos (1963). At the same
time, the combination of the Young's model for predicting
the residual stress at the flange tip (Equation 2.23) and
the Galambos' model for predicting the residual stress at
the flange-web juncture (Equation 2.22) provided the best
overall prediction to the measured values reported by Beedle
and Tall (1960). This combination is defined as the pro-
posed model in Table 2.2 where it is compared with other
procedures of computing residual stresses. It was decided
to use the combination of the Young and Galambos models
(proposed model) to estimate the residual stresses in the
rolled steel section of the composite beam-columns investi-
gated in this study. The distribution of residual stresses
was assumed to be linear.

The proposed model described above gave the residual
stress at the flange tip (Equation 2.23) and at the flange-

web juncture (Equation 2.22). The program calculates the
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required residual stress at the mid-depth of the web to

maintain force equilibrium of the steel section by a trial

and error method. The following steps were made:

(a)

(b)

(c)

()

(e)

determine the net force in the flanges due to residual
stresses;

determine whether the mid-depth of the web is in tension
or compression in order to achieve equilibrium;
calculate the mid-depth residual stress assuming a
triangular stress distribution in the web (Figure
2.22(a) (i) or 2.22(b) (i));

if the residual stress computed in (c¢) exceeds 50 per-
cent of the web yield stress, try a trapezoidal distri-
bution (Figure 2.22(a) (ii) or 2.22(b)(ii)) assuming a
value of 50 percent of the web yield stress as the
mid-depth stress, incrementing the zone of mid-depth
stress to a maximum of 90 percent of the web depth (Fig-
ure 2.22(a) (iii) or 2.22(b)(iii)) or until equilibrium
is achieved;

if equilibrium is not reached in (d) increase the mid-
depth stress by 5 percent of the web yield stress and
repeat the trapezoidal distribution.

Item (e) is repeated until equilibrium is achieved.

This procedure balanced the residual stresses in the steel

shape cross-section before the residual stress in the web

reached the yield stress level. The theoretical program can
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be used with or without the above-noted residual stresses in
the rolled steel section depending on the specified input
option.

2.9 COMPARISON OF EXPERIMENTAL RESULTS TO THEORETICAL MODEL
To check the accuracy of the theoretical model, the
ultimate strengths of column physical tests published in the
literature were compared to the ultimate strengths predicted

by the theoretical subroutine. No new physical tests were
conducted for this study. Load cases examined consisted of
concentric loads, eccentric loads creating bending moment
about the major axis, and pure bending about the major axis.
Length to overall depth (I{/h) ratios varied from 2.2 to
30.0. The sources of the physical tests and a brief
description of the specimen configurations are given in this
section. Finally, the comparisons of measured and calcu-
lated beam-column strengths are discussed.

Bondale (1966 a, b, c) tested 16 composite column speci-
mens with various configurations. Four of the sixteen tests
(RS120.0, RS100.1, RS80.2 and RS60.3) were applicable to
this study. Of these, the data for RS120.0 was rejected due
to premature failure which was attributed by Bondale to
improper placement in the testing apparatus. The specimens
consisted of a 4-inch (101.6 mm) deep British RSJ shape,
four 0.21-inch (5.3 mm) diameter rods and 0.125-inch (3 mm)
diameter rectangular ties spaced at 2 inches (50.8 mm) cen-

ter to center. Concrete encased the section and provided a
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cover of one inch around the steel section for an overall
cross-section of 6 inches (152.4 mm) deep by 3.75 inches (95
mm) wide. Length to overall depth ratios were between 10.0
and 16.7 with end eccentricity ratios between 0.17 and 0.5.

Procter (1967) tested concrete encased British RSJ sec-
tions. The overall dimensions of the composite cross-
sections were 11 inches by 8 inches (280 mm by 200 mm) and
12 inches by 8 inches (305 mm by 200 mm). The RSJ sizes
were 7 inches by 4 inches (178 by 100 mm) (depth by flange
width) and 8 inches by 4 inches (200 by 100 mm). No verti-
cal reinforcing bars or lateral ties were used. Twelve
specimens (numbered 1 to 12) had length to depth ratios of
11 to 12. Four specimens (S1, S2, S3 and S4) had length to
depth ratios of 2.0 to 2.2. The end eccentricity ratio for
the 12 longer columns ranged from zero (concentric) to 0.8.
All four shorter columns were concentrically loaded. To
account for the lack of reinforcing, all concrete was con-
sidered to be unconfined in the computer analysis used in
this report.

May and Johnson (1978) tested 8 composite beam-column
specimens with restrained ends. Of the specimens tested,
only 3 (RCl, RC2 and RC4) were applicable to this study.
May and Johnson calculated an effective length (equivalent
length of a pin-ended column) which was used as an input to
the theoretical subroutine. The overall dimension of the

cross-section was 8 inches by 8 inches (200 mm by 200 mm).
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The structural steel section was a 6 inch by 6 inch (150 mm
by 150 mm) British UC section. The vertical reinforcing
consisted of four 0.25-inch (6 mm) diameter rods with
0.16-inch (4 mm) diameter rectangular hoops spaced at 6
inches (150 mm). The time of testing was noted to be
approximately 4 hours. The effective length to depth ratios
ranged from 8.1 to 14.8. The end eccentricity ratios were
0.11, 0.14 and 0.2.

Suzuki et al. (1983) tested 16 beam-column specimens in
each of concentric and pure bending loading conditions with
an additional 2 columns loaded eccentrically causing bending
‘about the major axis. The concentric and pure bending spec-
imens had a length to depth ratio of 2.9. The eccentrically
loaded columns had a length to depth ratio of 3.8 and end
eccentricity ratios of 0.87 and 1.06. The overall dimen-
sions of the cross-section were 8.3 inches by 8.3 inches
(210 mm by 210 mm). The steel sections were 6 inches (150
mm) deep with a flange width of 4 inches (100 mm) and vari-
ous flange and web thicknesses. Four grades of steel were
tested. Vertical reinforcing consisted of four 0.25 inch (6
mn) diameter wires. The wires were greased. Hence, the
vertical reinforcement did not contribute to the strength of
the column but provided support to the rectangular hoops.
The hoops were also 0.25 inch (6 mm) diameter and were

spaced at 0.8, 1.6 and 4 inches (20, 40 and 100 mm) center
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to center. Columns without hoops were also tested. The
vertical reinforcing was modelled in the computer analysis
of this study by specifying a yield strength of zero.

Morino et al. (1984) tested 8 composite beam—-column
specimens applicable to this study. The data from one of
these tests was not included because it had an unreasonably
high strength which was not consistent with the rest of the
data reported by Morino et al. All columns were of identi-
cal geometry. The overall dimensions of the cross~section
were 6.3 inches by 6.3 inches (160 mm by 160 mm). The steel
section was 4 inches by 4 inches (100 mm by 100 mm) with a
flange thickness of 0.3 inches (8 mm) and a web thickness of
0.25 inches (6mm). Four 0.25 inch (6 mm) diameter bars were
used as vertical reinforcing. Rectangular hoops were made
of 0.15 inch (4 mm) diameter wire and spaced at 6 inches
(150 mm) center to center. Length to overall depth ratios
ranged from 6.0 to 30.0. End eccentricity ratios ranged
from 0.25 to 0.47.

The physical tests noted above provided ultimate
strengths of 63 beam-columns specimens which were used to
measure the accuracy of the theoretical model. The dimen-
sions, material properties and other pertinent data supplied
by the authors noted above was used as input wherever

applicable. Strain-hardening of both structural and rein-

h

orcing steels and residual stresses in the structural steel

section were also included in the analysis. 1In some cases,
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estimates were made regarding certain geometric or material
properties not provided in the source literature. These
estimates were, however, believed to be of sufficient accu-
racy for the purposes of this study. Time-to-failure is a
required input to the program to estimate concrete
properties as indicated in Section 4.1. The loading period
of the test specimens was assumed to be 2 hours, except for
the May and Johnson (1978) specimens where the authors noted
a loading time of 4 hours. Table 2.3 shows the ratios of
test to calculated ultimate strengths (strength ratios) for
all 63 beam-column specimens.

The mean, standard deviation and coefficient of varia-
tion were calculated for the strength ratios listed in Table
2.3. For the purposes of this study, the test specimens
were sub-divided into two categories with respect to (/h
ratio. Short columns are assumed to be those with [/h less
than 6.6 and long columns have [/h greater than or equal to
6.6. The data was further categorized into 3 ranges of end
eccentricity ratio (e/h): (a) e/h of 0.0 to 0.2 inclusive;
(b) e/h greater than 0.2 but less than infinity; and (c)
e/h equal to infinity (pure bending case). The mean, stan-
dard deviation and coefficient of variation calculated for
each of these categories and for the overall sample are

shown in Table 2.4.
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The ratio of test to calculated ultimate strength was
1.04 with a coefficient of variation of 10.69 percent when
all 63 specimens were considered (Table 2.4 - Column 3).
This is comparable with the mean value of 1.042 and coeffi-
cient of variation of 10.4 percent obtained by Virdi and
Dowling (1973) for their analysis of 8 biaxially loaded
composite columns. The differences in statistics for short
and long columns drawn from the overall sample was consid-
ered negligible as indicated by Column 3 in Table 2.4.

There were significant differences in the statistics for
different ranges of end eccentricity ratio (Table 2.4 Col-
umns 4,5, and 6). The mean strength ratio was very close to
1.0 and no effect due to slenderness was noticed on mean
strength ratios of columns in the low eccéntricity range
(Table 2.4 - Column 4). In the second eccentricity range
(Table 2.4 - Column 5), the mean value of the strength ratio
was significantly greater than 1.0. Hence, the theoretical
model seems to be conservative in this range of end eccen-
tricity. Again, no length effect on the mean value was
noticed. For the pure bending condition (Table 2.4 - Column
6), the mean strength ratio was slightly lower than 1.0.
This was probably due to the strain-hardening assumptions
used for the theoretical strength model.

In summary, the mean strength ratios in Table 2.4 are
consistent for short and long column specimens and for the

combined sample. The coefficients of variation, however,
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show some differences between short and long column speci-
mens although a definite trend to lower coefficients of
variation as the end eccentricity ratio increases is
apparent in Table 2.4 (Columns 4, 5, and 6). Considering
the wide range of column sizes, configurations, loadings and
sources, and the small sample sizes for some categories, the
accuracy of the theoretical strength model seems acceptable.

To examine the probability distribution of the strength
ratios calculated above, the data for each range of end
eccentricity ratio was plotted on normal probability paper.
A normal distribution was calculated from each set of data
using the statistics of overall sample given in Table 2.4
(Columns 4, 5, and 6). Figures 2.23, 2.24 and 2.25 plot the
probability distributions for the ranges of end eccentricity
ratio noted in Columns 4, 5 and 6 of Table 2.4, respec-
tively. It can be reasonably assumed that the data follows a
normal probability distribution for all three ranges of end
eccentricity ratio.
2.10 CALCULATION OF MODEL ERROR

The strength ratios calculated in Section 2.9 represent
the overall variation between the test specimen strength and
the strength predicted by the theoretical model. The coef-
ficient of variation of the ratio of tested to calculated
strength, V.., is attributed to three sources: V .e, V test
and Vinpatehe Vmoder 18 the coefficient of variation repre-

senting the variability of the theoretical model. V... is
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the coefficient of variation representing uncertainties in

recording the correct failure load during physical tests due
to inaccuracies in measuring equipment, recording procedures
and different definitions of failure. Vii-paren represents the
coefficient of variation that accounts for the variability

of laboratory material properties as well as differences in
strength between laboratory.control samples and the materi-
als in the test specimens. Mirza and MacGregor (1982) have

related these four variabilities as shown in Equation 2.26.

Vf/c = Vz

model

+ erst + vizn-batch (226)

To calculate V., Equation 2.26 was rearranged to Equation

2.27.

Vmodel = \/Vflc - erst - vfn-batch (227)

V. was found to be significantly affected by eccentric-
ity ratio in Section 2.9. Hence, V. also depends on the
eccentricity ratio of the beam-column as described below.

Vit Wwas assumed to be 0.04 for end eccentricity ratios
between 0.0 and 0.2 inclusive. This value was used by Mirza

and MacGregor (1989) for a similar study of reinforced con-

crete beam-columns. V... was assumed to equal 0.02 at pure
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bending (e/h=w), and was arbitrarily assumed to vary
linearly at end eccentricity ratios between 0.2 and infinity

as shown in Equation 2.28.

Vi = 0.02 + 0.004h/e for e/h>0.2 (2.28)

The higher value for V... at low end eccentricity ratios

is justified due to the involvement of a compression fail-
ure, the resulting loss of measuring accuracy, and the dif-
ficulty in defining a point of failure. V.. used in this

study is graphically represented in Figure 2.26(a).

Vin-baten Was calculated using the Monte Carlo technique

described in Chapter 5. Four beam-columns were chosen to
calculate the in-batch variability. These beam-columns were
selected from the test specimens listed in Table 2.3. Vari-
ous e/h and [/h ratios were represented. The beam-columns
selected for computing Vi,.p..cn are shown in Table 2.5. The
theoretical strength of each column shown in Table 2.5 was
simulated 200 times. Each time the values of the basic
variables were randomly generated by the computer according
to predefined in-batch probability distributions of each
variable affecting the strength (Table 4.1). For simplic-
ity, the material strengths and dimensions reported for each
test specimen were taken as the mean values of the variables

for computing the Vi,_p..cy for that specimen. The theoretical



107

fest = 0.02+(0.004 h/e)

M

T v

test = 0.02

(a)

b
Vmodel = 0.115
v
5°
=z
hes
o\
Vmodel = 0.025+(0.018 h/e)
M
Vmodel = 0.025
(b)
Figure 2.26 - Vtest and Vmodel used
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strength samples so simulated were used to compute v, _, ...
for the beam-columns listed in Table 2.5. The computed val-
ues of Vi paten and V.. are shown in the same table. The
values of V.. given in Table 2.5 were taken from Table 2.4.
V medet Was then calculated using Equation 2.27 for each of
the beam-columns listed in Table 2.5. The resulting values
are shown in Column 7 of Table 2.5. These values provided a
basis for estimating the coefficient of variation associated

with the theoretical strength model.

Vmedel Was chosen to be constant at 0.115 for end eccen-

tricity ratios between 0.0 and 0.2 inclusive. A value of
Vimeder €qual to 0.025 was assumed for the pure bending
condition. V4. for end eccentricity ratios greater than
0.2 and less than infinity was assumed to vary inversely
with respect to the end eccentricity ratio as shown in Equa-

tion 2.29.

\

model 0.025 + 0.018h/e for 0.2<e/h<w (2.29)
The coefficient of variation of the theoretical strength

model used in this study is shown graphically in Figure

2.26(b). The values of V.. based on this Figure for four

typical beam-column specimens are given in Column 8 of Table
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2.5. A comparison of these values with the calculated val-
ues of V . in Column 7 of the same Table indicates a rea-
sonable agreement between calculated and used values of

V model «

A random normal variable with a mean of 1.0 and a coef-
ficient of variation as described above was used to vary the
strength ratios calculated in the Monte Carlo simulations
described in Chapter 5. The mean value of 1.0 was chosen
since it is a conservative estimate of the strength ratios
of test to calculated strengths described in Section 2.9 and
summarized in Table 2.4. At the pure bending condition,
this assumption for the mean value appears slightly uncon-
servative when strain-hardening of steel is used (Table
2.4). However, it is expected to be conservative when
strain-hardening of steel is not allowed. A normal proba-
bility distribution of the strength ratios was assumed based

on Figures 2.23, 2.24 and 2.25.
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3 NOMINAL BEAM=-COLU STRENGTH

A computer subroutine was used to calculate the design
code strength (referred to as nominal strength) of a compos-
ite beam-column. This strength was then compared to the
corresponding theoretical strength of the beam-column. The
subroutine calculates the design code strength according to
the assumptions and methods of ACI Standard 318-83 or CSA
Standard CAN3-A23.3-M84. 1In this study, the comparisons of
the theoretical strengths were done primarily with the
strengths computed according to ACI Standard 318-83.

This chapter describes how the nominal strength of the
composite beam~column is caiculated. The assumptions made
by the design codes regarding material strength and strength
analysis of the beam-column are discussed first. The nomi-
nal strength program, RNOM, is then described. The differ-
ences between ACI 318-83 and CSA CAN3-A23.3-M84 are
discussed in the final section of this chapter.

3.1 ASSUMPTIONS

The North American design standards make certain assump-
tions regarding the characteristics of the materials used
and the behavior of the composite beam-columns in order to
simplify the design. The assumptions discussed here are
common to both ACI 318-83 and CSA CAN3-A23.3-M84 and have
been incorporated into the nominal strength subroutine.

Assumptions regarding the behavior of the composite

beam-column are:



(a)

(b)

(c)

(a)

(o)

(c)

(d)

112

perfect bond exists between steel and concrete, i.e. no
slip;

strain in the composite cross-section is proportional
to the distance from the neutral axis;

composite columns with a slenderness ratio, kl/r, less

than ([34 - 12 M/Mp) where M; is the lesser and M; is
the greater column end bending moment, were considered

short columns and length effects were neglected.

Assumptions regarding the behavior of the materials are:

the maximum useable concrete strain at the extreme com-
pression fibre is 0.003;

the tensile strength of concrete was neglected;

the shape of the concrete stress-strain curve was
assumed to be an equivalent rectangular stress block
with a maximum stress equal to 85 percent of the speci-
fied 28-day cylinder strength;

the uniformly distributed compressive stress in the
concrete is bounded by the limits of the section and at
a line parallel to the neutral axis and a distance B,c
from the extreme compression fibre (Figure 3.1) where c
is the distance from the neutral axis to the extreme
compression fibre and B, has a value of 0.85 for speci-
fied concrete strengths up to 4000 psi (30 MPa) and
decreases linearly by 0.05 for each 1000 psi (0.08 for

each 10 MPa) to a minimum value of 0.65;
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the stress-strain relation of steel (structural shapes
and reinforcing bars) was assumed to be elastic-plastic
with the maximum stress equal to the specified yield
stress (see Figure 3.2);

the stress-strain relation of steel is identical in
compression and tension; and |

residual stresses in the steel section are neglected.

The above assumptions were applied to all composite

beam-columns. In addition several assumptions were made

which were applicable only to the beam-columns investigated

in this study. These assumptions are:

(a)

(b)

(c)
(d)

the beam-columns were pin-ended so that the effective
length was equal to the actual length:

the column ends were prevented from translation (sides-
way prevented) ;

no transverse loads were applied to the columns;

end moments were equal and opposite such that the béam—
column bent in single curvature and that the ratio of
the end moments was equal.to 1; and

the loading time to failure was short so that the
effect of creep were neglected (3, = 0).

The ACI and CSA design codes specify limitations on the

maximum material strengths as well as on ratios of struc-

tural steel and reinforcing bars to the total cross sec-
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tional area. These limitation were observed when designing
the beam-columns used in this study and described in Chapter
5.

Another requirement of the design codes is that all load
assigned to the concrete portion of the composite section
must be transferred to the concrete by members or brackets
attached to the steel core and in direct bearing with the
concrete. Although not specifically addressed in the
strength calculations, this requirement ensures the validity
of the assumption of no slip between steel and concrete.

To calibrate the nominal strength model and to provide
data in a form that is easily useable for future probabilis-
tic assessment of understrength factors, all understrength
factors in this study were assigned a value of 1.0.

3.2 NOMINAL STRENGTH PROGRAM

Calculation of the nominal beam-column strength requires
the following procedures:

(a) input of nominal dimensions, nominal material
~strengths, selection of design code (ACI Standard

318-83 or CSA Standard CAN3-A23.3-M84);

(b) discretization of the structural steel section:

(c) calculation of the cross-section axial load - bending
moment (P - M) interaction diagram;

(d) calculation of the composite slenderness ratio to
determine whether the beam-column is considered short

or long; and, if needed,
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(e) calculate the long column P- M interaction diagram by

evaluating the concentric capacity and the bending
moment modifier for long column effect.

All specified dimensions, areas and geometric properties
of the column as well as the components are read into the
program. The specified concrete 28-day cylinder strength
and the specified yield strength of the structural and rein-
forcing steel are required inputs. The modulus of elastic-
ity of the concrete is calculated by the design code

expression shown in Equationr3.l.

E, =57,000.f". psi (3.1)

=5000./f°, MPa

The modulus of elasticity for steel was assumed to be
29,000,000 psi (200,000 MPa). The program is designed to
include the specified values of the understrength (¢) fac-
tors and the sustained load factor (B, . As stated earlier,
the understrength factors were all assigned a value of 1.0
and B, was assigned a value of 0.0 for this study.

All concrete areas were assumed to behave in a similar
fashion, with no distinction made between unconfined and
confined concrete. Discretization of the concrete in the
cross-section was not required because the stress in all

stressed parts of the concrete was assumed to be uniform
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(rectangular stress block). The stress in vertical reinfor-
cing bars was determined by multiplying the strain calcu-
lated at the centroid of the bar by the modulus of
elasticity of the reinforcing bar. Discretization of the
structural steel section was done since the stress varied
significantly along the depth of the section. The steel
section was discretized into 20 elements with boundaries
parallel to the neutral axis. The stress in each element
was calculated by multiplying the strain at the centroid of
each element by the modulus of elasticity of steel. The
stresses so calculated were reduced by 0.85f°, for reinfor-
cing bars and parts of the steel section that fell within
the concrete stress block. Residual stresses in the

structural steel were neglected.

The development of the nominal cross-section P- M inter-

action diagram is much simpler than that used for the theo-
retical analysis. The strain at the compression face of the
concrete was set at the maximum value allowed by the code
(0.003). The location of the neutral axis was fixed at a
distance from the compression face and the corresponding
axial load and bending moment capacities calculated. This
locates one point on the cross-section P- M interaction
curve (Figure 3.3).

The location of the neutral axis was varied between the

pure bending and the pure compression conditions and the
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corresponding axial load and bending moment capacities were
calculated, creating sufficient points to accurately define
the entire P- M diagram. These points were then used to
interpolate the axial load and bending moment capacities for

the specified end eccentricity ratios.
After the completion of the cross-section P- M interac-

tion diagram, the program determines whether slenderness
effects are required to be accounted for. If the
slenderness effects are to be included, the radius of gyra-
tion 7 of the composite section is estimated using the code
expression shown in Equation 3.2 in which EF. is the modulus
of elasticity of concrete (Equation 3.1), A, and /, are the
area and moment of inertia of the gross cross-section,
respectively, £, is the modulus of elasticity of the struc-
tural steel section and, A; and /, are the area and moment

of inertia of the structural steel section, respectively.

E.l,/5)+E,l,
r=\/( a/5) (3.2)

(E.A,/S)+E A,

The slenderness ratio of the beam-column is then calculated

using Equation 3.3.

slenderness ratio=kl/r (3.3)



121

In this study, the effective length factor £ in Equation

3.3 had a value of 1.0 due to the assumption of pinned ends.
ACI 318-83 and CAN3-A23.3-M84 specify that the slenderness
effects may be neglected if the slenderness ratio calculated
by Equation 3.3 has a value less than that calculated by

Equation 3.4.

kl/r<34-12(M,/M,) (3.4)

In this study, the ratio of the end moments (M,/M,) is

equal to 1.0. Therefore, beam-columns with a slenderness
ratio of 22 or less were classified as short columns and the
slenderness effects were neglected, i.e. the member strength
was considered to be the same as the cross-section strength.
Slenderness effects must be considered for columns for
which kl/r exceeds 22. For such cases, the critical
strength of the slender beam-column P, must be calculated by

Equation 3.5.

_nPE]
©o(kD?

=

P

(3.5)

To determine the critical strength by Equation 3.5, the
flexural stiffness (£/) of the beam-column was first calcu-

lated by Equation 3.6.
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E.1,/5
=£...g—)+E I

El s
1+B,

(3.6)

s

In this study the value of B, in Equation 3.6 was taken

equal to 0.0 as stated earlier. It is interesting to note
that the design codes allow the stiffness of the vertical
reinforcing bars to be considered for reinforced concrete
columns, but not for composite columns even though the
requirements for percentage of vertical reinforcing bars are
identical for both cases.

Slenderness effects reduce the bending moment capacity
of a beam-column associated with a particular axial load.
Hence, for axial loads lower than the long column concentric
capacity, these effects were accounted for through a bending
moment modifier 8, (Equation 3.7) applied to the cross-
section bending moment capacity obtained at the same load

level of axial load.

5, = (3.7)

The modifier has a value of 1.0 for the pure bending case
and increases until the long column concentric capacity is

reached. The ¢ factor in Equation 3.7 was taken equal to
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1.0 as explained earlier and the (¢, factor is defined as
the equivalent uniform bending moment diagram factor and was

calculated from Equation 3.8.

C —06+O4M‘ (3.8)
m~ M . M2 .

20.4

In this study, C, had a value of 1.0 due to the uniform
primary bending moment diagram resulting from the assumption
of equal and opposing end moments.

Dividing the cross-section bending moment capacity at a
given axial load by 8, yielded the slender column bending
moment capacity at the same axial load as shown in Equation
3.9.

M =Mshort/6b (39}

slendar

This yielded one point on the slender beam-column P - M

interaction diagram (Figure 3.3). Calculating the slender
beam-column bending moment capacities for several levels of
axial load provided the data points required to construct

the entire slender beam-column P- M interaction diagram.
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These points were then used for interpolating the long col-
umn moment and axial load capacities for specified end
eccentricity ratios.
3.3 COMPARISON OF DESIGN CODES

ACTI 318-83 and CSA CAN3-A23.3-M84 both impose limits on
the geometry, material behavior, strength assumptions and
the nominal strength of structural members designed in
accordance with these codes. Generally, the two design
codes are similar in their limitations. The limitations and
the differences between the two codes are discussed below.

The most obvious difference in the ACI and CSA codes is
with respect to the application of understrength factors.
The ACI code calculates the nominal design strength of a
composite beam-column using all specified material strengths
and cross-section dimensions. An overall understrength fac-
tor (¢ < 1.0) is applied to the nominal axial and moment
capacities. The magnitude of the understrength factor
depends on the failure mode of the beam-column which is
defined by the strain state relative to the balanced strain
condition (balance point). ACI 318-83 defines the balanced
strain condition as the point on the cross-section P- M
interaction diagram corresponding to the strain condition in
which the strain at the compressive face of concrete reacheé
0.003 as the tensile stress in the vertical reinforcing

reaches its yield point. Failures at axial loads greater
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than the balance point load are compression failures. Fail-
ures at axial loads less than the balance point load are
tension failures. Tension failures can be predicted
accurately and, therefore, the understrength factor for ten-
sion failures is greater than that for compression failures.
The definition of the balance strain condition as it applies
to composite beam-columns is discussed in detail in Section
5.3.1. The nominal strength program assumes the point cor-
responding to maximum moment on the cross-section P-M
interaction curve as the transition point between the
tension and compression failures and the related under-
strength factors. In this study, the definition of the bal-
ance point does not affect the results since all
understrength factors were set to 1.0.

CSA Standard CAN3-A23.3-M84 applies material under-
strength factors directly to the specified strengths of the
constituent materials. Different values are applied to each
material. No difference between compression or tension
failure is‘made. This method has been used by the CSA code
since the 1984 edition. Prior to this, the method used by
ACTI was also used by the CSA code.

Both design codes restrict the cross-section axial load
capacity by imposing a ceiling on the axial load level. 1In
the preceding section it was stated that the nominal
strength subroutine calculates the cross-section concentric

capacity on the basis of strain compatibility. The design
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codes calculate the concentric axial load capacity by assum-
ing that each material in the cross-section contributes to
strength in proportion to its area and its maximum
permissible stress (Note this assumes all materials reach
their maximum permissible stress at the same strain). ACI
318-83 assumes that the concrete maximum stress is 85 per-
cent of the specified 28-day cylinder strength and the steel
stress is the specified yield stress of the material. The
strength from each component is summed and multiplied by the
compression failure understrength factor. The strength is
reduced further by multiplying it by 0.85 as shown in Equa-

tion 3.10.

0P ,=0.85¢0[0.85f" (Ag=A )+ fysAy] (3.10)

CSA CAN3-~A23.3-M84 uses a similar technique by reducing the
factored concentric axial load by 20 percent for composite
columns with rectangular horizontal ties as shown in Equa-

tion 3.11.

£,=0.80[0.85¢.f (Ag=A,~A )+ ¢, f, A+, f, A1 (3.11)

The ceilings on axial load described herein were not consid-

ered in the Monte Carlo study described in Chapter 5. How-
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ever, the maximum axial load given by Equation 3.10
(Equation. 3.11 for CSA) is recorded in the output of the
program for the reader's information.

Both codes apply an understrength factor to the calcu-
lated long column critical strength as shown in Equation
3.7. The value for the understrength factor is different
for the two codes. However, for this study, the ¢ factor in
Equation 3.7 was taken equal to 1.0.

Limitations on material strengths are similar in both
codes. The minimum specified concrete strength is 2500 psi
(17.2 MPa) for ACI 318-83 and 2900 psi (20 MPa) for CSA
CAN3-A23.3-M84. The maximum structural steel yield strength
permitted is 50,000 psi (345 MPa) for ACI 318-83 and 50,750
psi (350 MPa) for CSA CAN3-A23.3-M84. These criteria were
taken into consideration when designing the beam-columns
studied in Chapter 5.

Geometric limitations refer to percentage of steel area
and to placement of vertical reinforcing bars and spacing of
horizontal, rectangular ties. The ACI code limits the
amount of vertical reinforcing bars to a minimum of 1.0 and
a maximum of 8.0 percent of the net concrete area. No limit
is indicated for the structural steel core. The CSA code
requires that 1.0 to 8.0 percent of the gross area be verti-
cal reinforcing bars. The maximum percentage of all steel
(structural and reinforcing) is limited to 20 percent of the

gross area for the CSA code. These limitations were also
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included in the Monte Carlo analysis described in Chapter 5.
Requirements for spacing of vertical reinforcing bars and
lateral hoops is similar for both codes and will not be

discussed further here.
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4 PROBABILITY MODELS OF BAS VARIABLES

The strength variation of a composite beam-column is due
to the individual variations of strength and size of all
elements of the beam-column. The statistics (probability
models) of the basic variables were compiled and used in the
Monte Carlo simulations (Chapter 5). Probability distrib-
utions of all variables were derived as part of this study
from data available in the literature or were taken from
previous studies. No new testing of materials was per-
formed.

Two distinct probability distributions were used for
each basic variable. One probability distribution described
the in-batch variation of the variable and the other one
described the global variation. In-batch variations repre-
sent expected variations within one production run of a man-
ufacturer. Hence, in-batch probability distributions were
used to calculate the in-batch variation (V' ;,_paicn) ©f the
strength of laboratory specimens as discussed in Section
2.10. Global probability distributions represent expected
variations in material strength and dimensions due to dif-
ferences in manufacturing practices between manufacturers of
an item. They also represent variations in construction
practice between different contractors. The global proba-
bility distributions were used in Monte Carlo simulations to

calculate the strength variation of the composite
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beam-column on an industry wide scale (Chapter 5). The
global variations derived were based on North American data
where possible.

Twenty-four basic variables affecting the strength of a
composite beam-column were accounted for. The variables
describe material stress-strain relations, size and geometry
of individual components of the column cross-section, and
overall column dimensions and geometry. The basic variables
specific to concrete, structural steel, reinforcing bars and
column dimensions are discussed in this chapter. Table 4.1
summarizes the in-batch probability distributions used in
Section 2.10. Table 4.2 summarizes the global probability
distributions used for the study described in Chapter 5.

4.1 CONCRETE

Three mechanical properties of concrete most affecting
the strength of composite beam-columns are compressive
strength, tensile strength (modulus of rupture) and modulus
of elasticity. Descriptions of the probability distrib-
‘utions of these properties have been presented by Mirza et
al. (1979c) and were used in this study. Summaries of these
probability distributions are presented in this section.
These probability models have been used by Mirza and MacGre-
gor (1982 and 1989) for strength variation studies of rein-

forced concrete members.
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Table 4.1 —~ In-batch Variations of Basic Variables¥

Standard
Property Mean Deviation

Concrete in Structure (loaded to failure in 2 hr.)

Coefficient
of Variation

Compfessive Strength (psi) 3320 166 0.05
Modulus of Rupture (psi) 462 23 0.05
Modulus of Elasticity (ksi) 3084 108 0.035
Structural Steel
Modulus of Elasticity (ksi) 29000 290 0.01
Static Yield Strength of Web (psi) 53360 1067 0.02
Initial Tangent Modulus

of Strain Hardening Gurve (ksi) 600 150 0.25
Reinforcing Steel
Modulus of Elasticity (ksi) 29200 292 0.01
Static Yield Strength (psi) 56115 1403 0.025
Strain at Start of

Strain-hardening 0.015 0.0015 0.10
Ultimate Strain 0.15 0.015 .10

Deviation of Overall Dimensions from Specified Values

Cross Section depth and width
Concrete Cover to Lateral Hoops

*Notes: (1) Data for in-batch variations of basic variable
only for Column D8-90 taken from Table 2.3. O
used in determination of in-batch variations [
LH~100-C, LH-100-B, and RC1 (Table 2.3)] used
coefficients of variation as shown for concret

s shown are
ther columns
Columns

the same

e, structural

steel and reinforcing steel and the same standard deviation
for deviation of dimensions from specified values. Mean

values for the basic variables of those column

S were

determined from the test data and were different from those

shown in this table.

(2) All probability distributions were assumed to
except for static yield strength of structural
reinforcing steel where modified lognormal pro
distributions were used with lower boundaries
the static yield strength.

(3) 1000 psi = 1 ksi = 6.895 MPa; 1 in. = 25.4 mm.

be normal
steel and
bability

of 0.75 times
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Table 4.2 - Overall Variations of Basic Variables

Standard Coefficient
Mean Deviation of Variation

Concrete in Structure (Loaded to Failure in 1 hr.)

Compressive Strength (psi)
—Average Quality Control

£! = 4000 psi 3388 596 0.176
fg = 6000 psi 4640 817 0.176
—-ExXcellent Quality Control
f' = 6000 psi 4640 631 0.136
Modulus of Rupture (psi)
—Average Quality Control
£l = 4000 psi 445 97 0.218
fé = 6000 psi 523 114 0.218
—-Excellent Quality Control ,
£' = 6000 psi 523 111 0.211
Modulus of Elasticity (ksi)
—-Average Quality Control
f; - 4000 psi 3260 388 0.119
fg -~ 6000 psi 3800 452 0.119
-Excellent Quality Control
fé = 6000 psi 3800 396 0.105
Structural Steel
Modulus of Elasticity (ksi) 29000 580 0.02
Static Yield Strength
of Web £ (psi)
f = 36800 psi 39240 3375 0.086
£9 = 44000 psi 47960 4125 0.086
£7 = 50000 psi 54500 4687 0.086
Statid yield strength
of flange - f ¢ 0.95 £ n/a%* n/a%*
Static ultimateysgrength yus
of web - fuws 1.5 f ws n/a¥ n/a%
Static ultimate strength y
of flange ~ f 1.5 £ n/a* n/a%*
Strain at Startug§ yts
Strain-Hardening 0.017 0.004 0.24
Initial Tangent Modulus
of Strain Hardening Curve (ksi) 600 150 0.25
Residual Stresses (psi)
- W10 x 54 (W250 x 80)
at flange tip -18576%* 2786 0.15
at flange-web juncture 12089 8825 0.73
- W10 x 112 (W250 x 167)
at flange tip ~19311%% 2897 0.15
at flange-web juncture 16240 11855 0.73
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Table 4.2 (continued)

Ratio of Actual to Nominal Dimensions

- section depth 1.0 0.0 0.0

- flange width 1.005 0.0136 0.0135
~ flange thickness 0.976 0.0407 0.0417
- web thickness 1.0167 0.039 0.038

Reinforcing Steel

Modulus of Elasticity (ksi) 29000 957 0.033
Static Yield Strength - f s
f = 60,000 psi y 66800 5520 0.083

Static Ultimate Strength - fu 1.55 fyrs n/a% n/a¥*

) rs
Strain at Start of
Strain~hardening 0.015 0.004 0.267
Ultimate Strain 0.15 0.03 0.2

Deviation of Overall Column Dimensions from Specified Values

Length (in.) 0.0 0.67 -
Cross Section depth (in.) +0.0625 0.25
Cross Section width (in.) +0.0625 0.25
Concrete Cover to lateral hoops (in.) +0.33 0.166
Spacing of lateral hoops (in.) 0.0 0.53 -

Value of this variable is assumed dependent on the value of another
variable.

%% (-) indicates compressive stress.

Notes:(1) All columns had nominal cross-section of 20 x 20 in. with 1.5
in. clear concrete cover to lateral hoops. Lateral hoop
nominal spacing was 10 in.

(2) Yield strength of reinforcing bars was assumed to follow a
beta probability distribution, whereas the yield strength of
structural steel, the ratio of actual to specified flange
width, and the ratio of actual to nominal web thickness were
represented by modified lognormal probability distributions
with lower limits of 0.75 times the specified yield stress,
0.884, and 0.813, respectively. All other variables were
assumed to follow normal probability distributions.

(3) 1000 psi = 1 ksi = 6.895 MPa; 1 in. = 25.4 mm.
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4.1.1 Compressive Strength

The in-situ compressive strength of concrete differs
from the specified strength due to factors including varia-
tions in materials, mixing, placing and curing techniques,
quality control and rate of loading (Mirza et al. 1979c).

- The mean value of compressive strength of in-situ concrete
is lower than that indicated by standard cylinder tests.
This is recognized in both ACI 318-83 and CSA CAN3-A23.3-M84
as only 85 percent of the specified 28-day cylinder strength
is allowed for design use. To relate the specified 28-day
cylinder strength to the mean 28-day in-situ strength loaded
at a similar rate (35 psi or 0.241 MPa per second), Mirza et

al. (1979c) proposed the expression given in Equation 4.1.

Fowss = 0.675f.7 + 1,100 < 1.15f, psi (4.1)

0.675f,” + 7.058 < 1.1Sf,"MPa

Rate of loading affects the strength of concrete. Mirza
et al. (1979c) studied experimental tests by others in order
to relate the compressive strength of concrete in a struc-
ture at a given rate of loading to concrete in a structure
loaded at the standard cylinder test rate. This relation is

given in Equation 4.2.
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Fesrr = Fesras[0.89(1 + 0.08log (R)] psi (4.2)

Feras[0.89(1 + 0.08log,,145R)] MPa

The loading rate R was calculated by dividing the mean con-

crete strength calculated by Equation 4.1 by the loading
time to failure.

The coefficient of variation of the in-situ compressive
strength, V.., was calculated by Equation 4.3 (Mirza et al.

1979c) .

2
Vin-situ

csirR creal V% (43)

V ereat Tepresents the variation in the relation between real

cylinder strength and the specified design strength. V..
represents the variation in the relation between in-situ
strength and real cylinder strength. V; represents the
variation in the relation between concrete loaded at R
psi/sec and concrete loaded at 35 psi/sec (0.241 Mpa/sec).
Jones and Richart (1935) found only a small dispersion in
concrete strength due to rate of loading effects. Allen
(1970) suggested that dispersion of concrete strength is
unaffected by the speed of testing. Therefore, V; can be
considered negligible (Mirza et al. 1979¢c). V,,.4. has been

assumed to equal 10 percent by Mirza et al. (1979c) based on
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the work by Davis (1976) and was used in this study as well.
The strength of concrete in test cylinders varies due to
the real variations, V.., and in-batch variations, V. pawh-
This relation is shown in Equation 4.4.
2 2
v V creal

ceyl

V iebate (4.4)
Vin-barch Was estimated as 4 percent by Mirza et al. (1979c¢)

and was used in this study. This roughly corresponds to the
suggestions of American Concrete Institute Committee 214
(ACI 1965) which recommend V,_,q:cn Values of 4-5 percent for
good quality control, 5-6 percent for average quality and
above 6 percent for poor quality control.

By combining equations 4.3 and 4.4 the variation of the
in-situ compressive strength is given by Equation 4.5.
2

in-situ

VZ — VZ _ V2

cstrik cecyl in-batch

Ve (4.5)

Substituting a value of 4 percent for V,, ,acn 10 percent for

Vin-suur @and zero for V,, as discussed above, into Equation

4.5 yields Equation 4.6:

V2 = V2, - 0.04°> + 0.10° (4.6)

esirk ceyl
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The variation in the strength of test cylinders V eyt

was found to be dependant on the degree of quality control
for a particular job. Combining data from a variety of
sources, Mirza et al. (1979c), found that for specified con-
crete strengths up to 4000 psi (27.6 MPa), the average V.,
was roughly constant with values of 10, 15 and 20 percent
for excellent, average and poor quality control, respec-
tively. For specified compressive strengths greater than
4000 psi, V., decreases due to the higher degree of care
used in the manufacture of higher strength concrete (Mirza
et al. 1979c). 1In the Monte Carlo simulations described in
Chapter 5, quality control of concrete was assumed to be
average for specified design strengths of 4000 psi (V. =
15 percent) and excellent (except where noted) for 6000 psi
concrete (V.,, = 10 percent). Data studied by Mirza et al.
(1979c) suggested a normal distribution for the compressive
strength of in-situ concrete which was also assumed for this
study.
4.1.2 Tensile Strength

Mirza et al. (1979c) studied data from the literature to
establish the relationship between compressive cylinder
strength and tensile strength (modulus of rupture). The
relationship given by Equation 4.7 was found to most closely
fit the regression line calculated from the data (Mirza et

al. 1979c).
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8.3 /f. psi (4.7)

Sy
5
Il

0.689/f. MPa

This value is only slightly larger than the value suggested

by ACI 318-83 for modulus of rupture shown in Equation 4.8.

F. = 75JF. psi (4.8)

0.623f. MPa

The in-situ tensile strength of concrete may differ from
control specimens due to effects of volume, rate of loading
and effect of concrete being cast-in-situ and not into a
specified control test form. Bolotin (1969) found that the
volume of the test specimen did not significantly effect the
minimum tensile strength of the concrete, although mean
strengths were. Since the minimum values are unaffected,
the volume effect can be neglected for understrength studies
(Mirza et al. 1979c). Wright (1952) showed that the tensile
strength of concrete increased with increasing rate of load-
ing. McNeely and Lash (1963) suggested a logarithmic rela-
tion between the tensile strength and the rate of stress
application. Data on the effect of in-situ casting as
opposed to control specimen casting was not found by Mirza
et al. (1979c) and they chose to assume the effect as negli-

gible. Using the results of their analysis of data and the
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relation sugéested by McNeely and Lash, Mirza et al. (1979c)
proposed that the relation given in Equation 4.9 be used to
calculate the mean value of the modulus of rupture for a

given loading rate.

~-=1/2

8.3F onas[0.96(1 + 0.11log o R)] psi  (4.9)

f rstr®

—-=1/2

8.3F n3s[0.96(1 + 0.11log,,145R)] MPa

Calculating tensile strength from a relation based on
a calculation of compressive strength results in consider-
ably larger dispersions than for compressive strength alone.
The total variation of the tensile strength calculated from
Equation 4.9 combines the variations due to the calculation
of the compressive strength as discussed in the previous
section and the variability of the ratio of observed to cal-
culated (Equation 4.7) tensile strength. Mirza et al.
(1979¢c) calculated the coefficient of variation of the ratio
of modulus of rupture calculated by Equation 4.7 to actual
tested modulus of rupture calculated to be 20 percent. The
total variation may, therefore, be expressed as shown in

Equation 4.10.

— 2 2
rstrk — 4 + 0.2 ZVcstrR

(4.10)
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Vesirss was taken equal to V.4 and calculated from Equa-

tion 4.6 since the effect of loading rate on the coefficient
of variation was assumed negligible. Substituting Equation

4.6 into Equation 4.10 yields Equation 4.11.

Ve,
2 = =2 4 0.0421 >=V?2

rstrR 4 csirk

(4.11)

The probability distribution of the tensile strength was
assumed to be normal although some deviation from normality

may be expected (Mirza et al. 1979c).

4.1.3 Modulus Of Elasticity

Mirza et al. (1979c) studied data from 139 standard cyl-
inder tests of normal weight concrete from the University of
Tllinois. This data provided measurements of cylinder
strength and initial tangent modulus of elasticity in com-
pression. The relationship of compressive cylinder sﬁrength
to initial tangent modulus was found to have a high degree
of correlation. The relationship given in Equation 4.12 was
proposed for the mean value of elastic modulus at a loading

rate of 35 psi/sec (0.241 Mpa/sec).

E.ss = 60,400f,  psi (4.12)

= 5,016f. MPa
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This relationship yields slightly higher values for the tan-
gent elastic modulus than the ACI 318-83 recommendation

shown in Equation 4.13.

E, = 57,000.f, psi - (4.13)

= 4,734 f. Mpa

The ratio of modulus of elasticity calculated by Equa-
tion 4.12 and the observed elastic modulus from the test
data was found to have a mean value of 1.0 and a coefficient
of variation of 8 percent. A normal probability distribu-
tion was found to adequately approximate the above-noted
ratios (Mirza et al. 1979c).

The effect of the rate of loading on the elastic modulus
was studied by Allen (1970). Equation 4.14 was proposed to
relate the elastic modulus at any loading rate to the stan-

dard cylinder test rate of 35 psi/sec (0.241 Mpa/sec).

E,p =(1.16 = 0.08log,,t)E 5 (4.14)

where ¢ = loading duration in seconds.

As Equation 4.14 indicates, an increase in the loading time
results in a softening of the concrete to the peak stress.

Combining the results of the Illinois test data and Allen,
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Mirza et al. (1979c) proposed the following equation for the
mean value of initial tangent modulus of elasticity of con-

crete in structure.

—1/2

E 60,400 f crss(1.16 - 0.08log,,t) psi (4.15)

i

cistrR

—-1/2

5,016 f 4r35(1.16 = 0.08log o) Mpa

il

The coefficient of variation of the modulus of elastic-
ity calculated by Equation 4.15 must include all of the
variations associated with the compressive strength as well
as the variations inherent to Equation 4.12. Combining
these factors, the coefficient of variation of the initial
tangent modulus of in-situ normal weight concrete can be

calculated by Equation 4.16 (Mirza et al. 1979c).

2

VCSI'
2 = %L 0.08°2 (4.16)

cisirR
4

Substituting the value of V%, ;s from Equation 4.6 into

Equation 4.16 related the in-situ coefficient of variation
of initial tangent modulus in compression to the coefficient

of variation of test cylinders as shown in Equation 4.17.

2 I/gcyl
1 = = 0.0085 (4.17)

cistrR
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In this study, Equation 4.15 and 4.17 were used to com-
pute the mean value and the coefficient of variation of the
modulus of elasticity of in-situ concrete. The probability
distribution of the modulus of elasticity was assumed to
follow a normal distribution after Miréa et al. (1979c).

Mirza et al. (1979c) found little data on the modulus of
elasticity of concrete in tension, but what was found showed
little difference between compressive and tensile elastic
moduli. They concluded that the tensile and compressive
elastic moduli may be assumed to have equal magnitude.

4.2 STRUCTURAL STEEL

Variations in the mechanical and geometric properties of
the rolled steel section effect the variation of the over-
all strength of the composite beam-column. The mechanical
properties that define the stress-strain curve of structural
steel described in Section 2.7.1 are the modulus of elastic-
ity, the yield stress, the strain at the start of strain
hardening, the initial tangent slope of the strain hardening
curve and the ultimate stress. The yield strain and the
ultimate strain can be calculated from the above properties
and the assumptions described in Section 2.7.1. Variations
in residual stresses in the rolled steel section also influ-
ence the overall strength variation of the beam-column.
Variation of the dimensions of the depth, flange width,
flange thickness and web thickness affect the cross sec-

tional area and the stiffness (moment of inertia) of the
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steel section. To properly model the basic variables noted
above for use in the theoretical program (Chapter 2) and for
the Monte Carlo analysis (Chapter 5), the mean value, coef-
ficient of variation (or standard deviation) and the type of
probability distribution were defined for each basic
variable. These definitions were taken from the literature
or derived from data existing in the literature. No new
test data was generated in this study. A description of the
statistical distributions used for each variable is given
below.
4.2.1 Modulus of Elasticity

Galambos and Ravindra (1978) studied existing experimen-
tal data of mechanical properties of rolled structural steel
sections to determine the statistical properties. They
recommended that a wvalue of 29,000,000 psi (200,000 MPa) be
used as the mean value for the modulus of elasticity for
structural steel shapes and the coefficient of variation be
taken as 6 percent. Kennedy and Gad Aly (1980) considered
only the data from North American sources compiled earlier
by Galambos and Ravindra and recommended that a value of 1.9
percent be used for the coefficient of variation. Bjorhovde
(1972) found very small variations of the modulus of elas-
ticity in the data he studied (0.1 to 0.5 percent) and he,
therefore, considered the modulus of elasticity to be

constant.
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The mean values and the coefficients of variation of the
data collected by Galambos and Ravindra (1978) is shown in
Table 4.3 (Rows 1 to 6). The data in Rows 1 to 5 in the
same table was collected from North American sources and in
Row 6 from a European source. The weighted means and coef-
ficients of variation were calculated and are presented for
all of the data (Row 7) and for the data from only the North
American sources (row 8).

Based on above-noted discussions and Table 4.3 (Row 8),
it was decided to use a value of 29,000,000 psi (200,000
MPa) as the mean value for the modulus of elasticity with a
coefficient of variation of 2 percent. None of the authors
referenced above commented on the shape of the probability
distribution curve for modulus of elasticity of structural
steel. Mirza et al. (1979b) assumed a normal distribution
for the modulus of elasticity of reinforcing steel. Since
no other data was found, a normal probability distribution
was used for the modulus of elasticity of structural steel.
4.2.2 Yield Strength

The yield strength of a rolled structural steel shape is
dependant on the rate of loading, the location of the spe-
cific element on the cross-section and the thickness of the
material. The influence of each of these three factors is

discussed below.
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Table 4.3 - Elastic Modulus of Structural Steel

| | [ No. of | Mean [Coefficient |
| Row l Reference | Test | Value | of |
| No .| |Specimens | (ksi) | Variation |
I (1) ] (2) | (3) ! (4) | (5) I
| | | | l I
l | I | | |
| 1 | Lyse & Keyser (1934) | 7 29360 | 0.010

| 2 | Rao et al. (1964) | 56 | 29437 |  0.014 [
| 3 | Julian (1957) : 67 | 29540 | 0.010 l
| 4 | Julian (1957) | 67 | 29550 | 0.010 ]
| 5 | Johnston and Opila (1941) | 50 | 29774 | 0.038

| 6 | Tall and Alpsten (1969) | 94 | 31200 | 0.060 |
7 | * | 341 | 30013 |  0.044 |
| 8 | 247 | 29562 |  0.020 |
l

Row 7 combines all data from Rows 1 to 6 inclusive.
** Row 8 combines data from North American sources only (Rows 1-5).
Notes: (1) All data from tension tests except Row 4 which is for

compression tests.
(2) 1 ksi = 6.895 MPa.
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Generally, the strength reported by steel mills is
either the upper (f,.) or lower (f,) yield strength as shown
on Figure 4.1. The strain rates (about 1,000 micro in. per
in. per second) used for mill tests are significantly higher
than those expected under normal loading conditions (Beedle
and Tall 1960). Under normal loading applications, the load
may be applied at a very low rate. Therefore, the "static"
yield stress, defined as the yield stress at a zero rate of
strain f,,, is the yield stress of interest (Figure 4.1).

The static yield stress f,; is measured by halting the plas-
tic strain until the stress drops from the dynamic yield
stress (f,4s) to stabilize at the static yield stress as
shown in Figure 4.1. Rao et al. (1964) proposed that the

static yield stress may be calculated from the relationship:

fye = Ffya — (3.2 + 0.001¢) ksi (4.18)

= Fy,a - (22.07 + 0.00l¢) MPa

where € is measured in micro in. per in. per sec. or micro

mm per mm per sec.

Kennedy and Gad Aly (1980) used Equation 4.18 to calcu-
late the difference between the dynamic and static yield
stress for the CSA Standard G40.20-1974 maximum test strain
rate of 1/16 in. per in. per minute (1040 micro

in./in./sec.). The dynamic yield stress was calculated to
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o
T start of
strain hardening-———w\\N
—
““““““ - = Pz o
fyl fya ys

L > 6
fyu = upper yield stress
fyl = lower yield stress
fyd = dynamic yield stress
fys = static yield stress
Figure 4.1 - Definitions of vyield stress of steel
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be 4.2 ksi (29 Mpa) greater than the static yield stress.

As shown in Figure 4.1, the lower yield stress (f,) lies
between the dynamic and static yield stress levels. Kennedy
and Gad Aly (1980) assumed that the static yield stress was
2 ksi (13.8 MPa) less than the lower yield point.

Beedle and Tall (1960) found that the original location
of the test coupon on the rolled wide flange shape affected
the yield strength of the specimen. Coupons cut from the
web were found to have yield strengths greater than coupons
cut from the flange. Generally, mill tests are performed on
web specimens (Beedle and Tall 1960). Kennedy and Gad Aly
(1980) attributed the higher strength of the web to
increased work hardening during the rolling process due to
the smaller thickness of webs.

Alpsten (1972) found a tendency for thicker plates to
have lower yield strengths. He attributed this to a coarser
grain structure due to a longer cooling period. He also
commented that during the manufacture of thick plates, steel
producers may alter the chemical composition to account for
lower strengths. It should be noted that the plate sizes
investigated by Alpsten exceeded one inch (25.4 mm) in
thickness. Kennedy and Gad Aly (1980) neglected any varia-
tion in yield strength directly due to component plate
thickness since the data they analyzed included this

variation. The same assumption was made in this study.
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Mill test data is based only on tensile tests. However,
it has been found that there is no difference in static
yield stress level for tension or compression tests (Galam-
bos and Ravindra 1978). Hence, the properties derived from
tensile tests have been assumed to apply to the compressive
loading case as well in this study.
4.2.2.1 Web yield strength - Tension tests on web coupons
from North American rolled shapes were summarized by Lay
(1965), American Iron and Steel Institute (1972) and Kennedy
and Gad Aly (1980). The mean values and coefficients of
variation of mill tests tabulated by Lay and American Iron
and Steel Institute for steel with a specified yield
strengths of 33 ksi (228 MPa) are shown in Columns 2 and 3
of Table 4.4, respectively. These mill tests report dynamic
yield stress and were also used by Galambos and Ravindra
(1978) for statistical analysis.of web yield strength. Ken-
nedy and Gad Aly reported mill test measurements of lower
yield point stress for Canadian steel grade CSA G40.21-44W.
The mean value and coefficient of variation of this data are
given in Column 4 of Table 4.4.

To determine the mean value and coefficient of variation
of the ratio of web static yield stress to specified yield
stress, the data reported by Lay (1965), American Iron and
Steel Institute (1972) and Kennedy and Gad Aly (1980) were
statistically pulled together. First, the mean value, stan-

dard deviation and coefficient of variation of the reported
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I I Lay | American Iron and | Kennedy and I
| Property | (1965) | Steel Institute | Gad Aly
| | I (1972) I (1980) |
I (1) | (2) | (3) | (4) |
I | I | |
| I | I I
[No. of Tests | 3794 | 3124 | 4507
I I I | |
|Specified yield stress] 33 I 33 I 44 I
| £ (ksi) | | | |
| I | I |
|Measured Values I I I I
I | I I |
I—Mpan yield stress | 40.0 I 39.4 I 50.6
| £, (ksi) l I l |
I | I | |
| v | 0.09 | 0.08 | 0.064 I
I | | | I
| o (ksi) | 3.6 | 3.15 I 3.24 I
| I I | |
| -Mean static yield | 36.0 | 35.4 | 48.6 |
| stress fyws (ksi) I | I |
I | I | |
| v | o.10 | 0.089 | 0.067 |
| I I I I
} o (ksi) | 3.6 I 3.15 | 3.24 l
| | I I
[-Mean static yield I 1.091 | 1.073 | 1.105
| stress ratio f ws/f | | | I
| YRS | I I
| v | 0.10 | 0.089 | 0.067 ]
| P I | I
| o | 0.109 | 0.095 | 0.074 |
Note: 1 ksi = 6.895 MPa.
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mill strengths were calculated for the three sets of data as
shown in Columns 2, 3 and 4 of Table 4.4. The mean static
yield stress (fyg was then computed from Equation 4.18
assuming a strain rate € of 800 micro in./in./sec. (800
micro mm/mm/sec.) for the data given in Columns 2 and 3 of
Table 4.4. The strain rate assumed was previously used by
Galambos and Ravindra (1978) when they studied the same data
and was, therefore, considered applicable in this study.
For the data shown in Column 4 of the same table, ?yswas
taken as 2 ksi (13.8 MPa) lower than the mill test mean
lower yield stress as previously assumed by Kennedy and Gad
Aly (1980). The new coefficients of variation were calcu-
lated based on fyy The mean value of the ratio of static
to specified yield stress (mean stress ratio) was then
calculated by dividing the mean static yield stress value
for each data set by the specified yield stress for that
data set. Multiplying the mean stress ratios by the coeffi-
cients of variation gave the standard deviation of the mean
stress ratio for each data set.

The weighted mean stress ratio was calculated by combin-
ing the data from all three data sets using Equation 4.19

and was calculated to be 1.092.
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k —
Nx,;
X = S (4.19)
N,
=1

1

The weighted standard deviation of the stress ratio was cal-

culated by Equation 4.20 to be 0.094.

k
N2 + ) Ni(x,-X)?
jm}
k
=1

k
i=]

(4.20)
N,

H

The ratio of this weighted standard deviation and the mean
stress ratio gave the coefficient of variation of the ratio
of web static yield stress to specified yield stress and was
calculated to be 0.086. In the Monte Carlo analysis
described in Chapter 5, the mean web static yield stress was
assumed as 1.09 times the specified yield stress with a
coefficient of variation of 8.6 percent. Galambos and
Ravindra recommended that the mean value be taken as 1.10
times the specified value with a coefficient of variation of
11 percent, while ZKennedy and Gad Aly proposed that the
mean strength of the web was 1.11 times the specified value
with a coefficient of variation of 6.5 percent. These val-

ues are somewhat different from those used for this study.
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4.2.2.2 Flange yvield strength - Beedle and Tall (1960)
reported that flange static yield stress was 4 to 7 percent
lower than that for the web. Galambos and Ravindra (1978)
recommended that the mean value for the static yield
strength of the flange be taken as 1.05 times the specified
yield stress with a coefficient of variation of 10 percent.
Kennedy and Gad Aly (1980), based on the report of Beedle
and Tall (1960), assumed that the flange static yield stress
was 95 percent of the web static yield stress. The assump-
tions made by Kennedy and Gad Aly were also used in this
study. The flange strength was assumed to be directly in
proportion with the web strength and no further variation
was applied.
4.2.2.3 Probability distribution of yield strength - Fre-
quency histograms of the yield strength of test specimens
were reported as positively skewed (Alpsten 1972). This is
reasonable since any heat (manufacturing run) of steel not
meeting the minimum specified criteria will be rejected,
truncating the lower end of the strength probability distri-
bution. Since the frequency distribution is not symmetri-
cal, a normal distribution is not valid. Alpsten (1972)
recommended a modified lognormal distribution for yield
strength of structural steel.

To define a distribution for the yield strength, a modi-
fied lognormal distribution was fitted to the web data pro-

vided by Kennedy and Gad Aly (1980) for CSA G40.21 Grade 44W
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steel.

data are given in Figure 4.2.

The histogram and statistical parameters for the

A modified lognormal distri-

bution was derived using the mean value and standard devi-

ation of the data and Equations 4.21, 4.22 and 4.23.

(x-X,)°
X = ZIOgml: )_C."Xo)z'*'OiJ (4.21)
2 - 2
B 0+ (x—-X,)
0,, = 0.4342945, /log,, — > (4.22)
(x-X.)
0.4342945

PDF e
(x=X,)00Vy20

Xp<_l':1°9'xo(x‘xo)"§m}2} (4.23)
2 U0

Equations 4.21, 4.22 and 4.23 give respectively the mean

value, standard deviation and cumulative frequency of a

modified lognormal distribution.

Lower boundary values (X,)

of 36, 38 and 40 ksi (248.3, 262, and 275.9 MPa) were tested

for the data reported by Kennedy and Gad Aly.

The best fit

to the data was with a lower boundary of 36 ksi as shown in

Figure 4.3.
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Class % of
Interval Measurements
0.40 - 42 - 44 0.00
44 - 46 9.56
46 — 48 15.73
48 - 50 21.19
50 - 52 20.59
0.30 1 52 - 54 16.04
54 - 56 9.25
56 - 58 4.53
58 - 60 2.06
60 - 62 0.80
0.20 1 62 - 64 0.16
64 - 66 0.09
CSA G40.21 Grade 44W
0.10 4 . _ .
Nominal Fy = 44 ksi (303.4 MPa)
Total No. of Measurements = 4507

I 1 1
44 46 48 50 52 54 56 58 60 62 64 66

Lower Yield Strength (Fyl) of Web (ksi)

F . = 50.61 ksi = 348.9 MPa
vl

V. = 0.064

Fyl

Fioure 4.2 - Variation of Web Lower Yield Strencth (F l)
(Kennedy and Gad Aly 1980) Y
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To adjust the web data in Figure 4.2 from mill yield
stress to static yield stress the mean values and the lower
boundary were reduced by 2 ksi (13.8 MPa) as noted pre-
viously. Thus, a lower boundary value (X, of 34 ksi (234.5
MPa) was calculated for the web static yield stress or 77
percent of the specified yield strength. For simplicity,
however, a value of 75 percent of the specified yield
strength was taken as the lower boundary for the web. The
cumulative frequency of the web static yield strength was,
therefore, computed from Equation 4.23 with X, taken as 0.75
times the specified yield stress. The static yield strength
of the flange was assumed as 95 percent of the web static
yield strength at any point along the cumulative frequency
curve.

4.2.3 Ultimate Stength

Little data was found on the ultimate strength of a
rolled structural steel shape. Alpsteh (1972) presented
data indicating the ratio of ultimate strength to yield
strength ranged from 1.36 to 1.89 with an average value of
1.59 for 41 samples taken from a single rolled section.
Specifications for structural steel indicate minimum ulti-
mate tensile strength requirements ranging from 1.28 times
the specified yield strength for CSA G40.21-M 350W steel to

1.61 for ASTM A36 steel. For this study, the static ulti-
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mate stress was arbitrarily chosen to be 1.5 times the

static yield stress. No further variation was defined for

this parameter.

Alpsten (1972) reported values for the strain at the end
of the plastic plateau (initiation of strain-hardening) for
various grades of structural steel. These values range from
1.1 percent for ASTM A572 steel to 2.0 percent for ASTM A36
steel. The average value recommended by Alpsten for ASTM
steels was 1.72 percent. No information on the variability
of this strain was found. For this study, a mean value of
0.017 was chosen with a coefficient of variation of 26 per-
cent for the strain at initiation of strain-hardening for
structural steel. Note the coefficient of variation used
for structural steel is the same as that measured for rein-
forcing steel (Section 4.3.4).

4.2.5 Strain Hardening Modulus

The strain hardening modulus defines the initial tangent
slope of the strain-hardening portion of the structural
steel stress-strain relationship. Alpsten (1972) reported
values of 450 to 720 ksi (3,103 to 4,965 MPa) for tension
and 700 to 820 ksi (4,828 to 5,655 MPa) for compression
strain-hardening modulus of ASTM steels. Alpsten noted that
there was very little information on the strain hardening
properties of steels and that various definitions of the

strain hardening modulus could result in large discrepancies
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in reported values. Galambos and Ravindra (1978) studied
work by Doane at the University of Texas at Austin (1969).
Doane measured the strain hardening modulus for ASTM A7, A36
and A441 steels. The tensile strain hardening modulus was
found to have a mean of 570 ksi (3,931 MPa) and the corre-
sponding compressive value was 670 ksi (4,621 MPa). Galanm-
bos and Ravindra recommended a mean value of 600 ksi (4138
MPa) and a coefficient of variation of 25 percent.

In this study it was assumed that the mean value of the
initial tangent strain-hardening modulus was 600 ksi and the
coefficient of variation was 25 percent. The same value was
used for both compressive and tensile loading conditions.
4.2.6 Dimensional Variations

Variations in the dimensions of the rolled steel shape
are discussed here to distinguish them from overall column
dimensional variations. Alpsten (1972) reported that mea-
surements of approximately 5000 rolled shapes from European
mills showed very little variation in section depth and
flange width. More variation was noticed in the flange and
web thicknesses. A tendency for flanges to be thinner and
webs to be thicker than the nominal dimensions was noted.

Kennedy and Gad Aly (1980) reported measurements of
flange width, flange thickness and web thickness of wide

flange sections manufactured at Canadian mills. They used
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these measurements along with assumptions based on code tol-
erance limits to evaluate the mean values and coefficients
of variation of the steel section geometric properties.

In the Monte Carlo simulations (Chapter 5), the dimen-
sions of the rolled steel section were varied according to
statistics of the data reported by Kennedy and Gad Aly
(1980) . The remaining geometric properties of the steel
section were calculated using the simulated dimensions.
4.2.6.1 Section depth - Kennedy and Gad Aly (1980) estimated
the statistical parameters of the ratio of actual to nominal
section depth by using the tolerance limits of CSA Standard
S16.1 for Steel Structures for Buildings. This code allows
the section depth to vary 0.2 inch (4 mm) maximum from the
nominal value. Kennedy and Gad Aly assumed that the mean
ratio of actual to nominal depth was equal to 1.0. The
extreme values of the ratio of actual to nominal depth were
then calculated considering the upper and lower permitted
tolerances. Six standard deviations were assumed to occur
between the upper and lower values. The coefficient of
variation was calculated by dividing the standard deviation
by the mean value. When this method was applied to a nomi-
nal 10 inch (254 mm) deep section, the coefficient of varia-
tion was computed to be less than 1 percent. Since this
coefficient of variation was so small, it was assumed that
the actual depth of the rolled section was equal to the

nominal depth and that there was no variation.
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4.2.6.2 Flange width - Data regarding the ratio of actual to
nominal flange width for 1248 samples was presented by Ken-
nedy and Gad Aly (1980). A histogram of the frequency dis-
tribution of the data from their report is reproduced in
Figure 4.4. The mean value of the ratio is 1.005 with a
coefficient of variation of 1.35 percent. The measured data
was plotted on a normal probability paper (Figure 4.5).
Normal and modified lognormal probability distributions were
plotted using the calculated mean and coefficient of varia-
tion. The best fit to the data, especially at the lower
tail, was found to be a modified lognormal distribution with
lower boundary of 0.88 as shown in Figure 4.5.

Based on Figure 4.5, a modified lognormal distribution
was assumed for the ratio of actual to nominal flange
width. The lower boundary of the ratio was set at 0.88.

The mean value was taken to be 1.005 with a coefficient of
variation 1.35 percent as calculated by Kennedy and Gad Aly
(1980) .

4.2.6.3 Flange thickness - Kennedy and Gad Aly (1980)
reported data on 2768 measurements of the ratio of actual
to nominal flange thickness. A histogram of the frequency
distribution is shown in Figure 4.6. The mean value of the
ratio was 0.976 with a coefficient of variation of 4.17 per-
cent. The data was also plotted on a normal probability
paper along with a normal distribution using the reported

statistical parameters (Figure 4.7). Figure 4.7 indicates
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Class % of
Interval Measurements
0.40 - 0.95 - 0.96 0.00
0.96 - 0.97 0.24
0.97 - 0.98 1.65
» 0.98 = 0.99 8.47
- 0.99 - 1.00 32.93
0.30 1.00 - 1.01  25.32
1.01 - 1.02 12.47
1.02 - 1.03 10.00
1.03 - 1.04 4.59
B 1.04 - 1.05 1.88
0.20 1.05 - 1.06 1.29
1.06 = 1.07 1.18
Total No. of Measurements = 1248
0.10
0.96 0.98 1.00 1.02 1.04 1.06

Ratio of Measured / Nominal Flance Width

Mean value of ratio = 1.005

Coefficient of Variation of ratio = 0.0135

Figure 4.4 - Variation of Ratioc of Measured / Nominal
Flancge Width of W Sections
(Kennedy and Gad Aly 1980)
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0.84
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0.92
0.94
0.96
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.04
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Ratio of Measured / Nominal Flange Thickness

Mean value of ratio = 0.976

Coefficient of Variation of ratio = 0.0417

Figure 4.6 - Variation of Ratio of Measured / Nominal

Flange Thickness of W Sections
(Kennedy and Gad Aly 1980)

= 2768
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that a normal probability distribution provides a reasonable
estimate of the actual probability distribution. A normal
distribution with the mean value and coefficient of varia-
tion as reported by Kennedy and Gad Aly was used in this
study for the ratio of actual to nominal flange thickness.
4.2.6.4 Web thickness - Kennedy and Gad Aly (1980) reported
measurements of the ratio of actual to nominal web thick-
ness. Based on a total of 352 measurements, a mean value of
1.0167 and a coefficient of variation of 3.84 percent was
calculated. A histogram of the frequency distribution of
the web thickness data is shown in Figure 4.8. The data was
also plotted on a normal probability paper (Figure 4.9).
Normal and modified lognormal probability distributions
using the reported mean and standard deviation were compared
to the data. A modified lognormal distribution with a lower
boundary set at 0.8 was found to provide the best fit to the
data as indicated by Figure 4.9.

A modified lognormal distribution was, therefore, used
in this study for the ratio of actual to nominal flange
width. The lower boundary of the ratio was set at 0.8. The
mean and coefficient of variation were set at the values
calculated by Kennedy and Gad Aly (1980).

4.2.7 Residual Stresses

Residual stresses in steel sections have a large varia-

tion associated with them (Beedle and Tall 1960, Alpsten

1972) . Sources of variation are from different cooling
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Mean value of ratio = 1.0167
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Figure 4.8 - Variation of Ratio of Measured / Nominal

Web Thickness of W Sections
{Kennedy and Gad Aly 1980)
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rates, different manufacturing processes (Alpsten 1968), and
dimensional variations of the cross section. Further varia-
tions result from straightening of the steel section through
rollers or by gagging (bending about a point) (Alpsten
1968). The combined effect of these sources of variation
makes it difficult to accurately predict the variability of
the residual stresses in a structural steel shape.

Beedle and Tall (1960).réported the results of residual
stress measurements on a large number of American steel wide
flange shapes. The maximum, minimum and average values for
the residual stress at the flange tip and at the flange-web
juncture for beam and column shapes were reported. The data
for column shapes is summarized in Table 4.5. This data was
used to estimate the coefficients of variation of residual
stresses which were then used for the Monte Carlo simu-
lations (Chapter 5). Six standard deviations were assumed
to occur between the méximum and minimum values. The
coefficient of variation was calculated by dividing the
standard deviation by the reported average value given in
Table 4.5. The coefficient of variation of the residual
stress at the flange tip so calculated was 14.3 percent.

For simplicity, a value of 15 percent was used in this
study. Using the same procedure, the coefficient of varia-
tion of the residual stress at the flange-web juncture was

calculated to be 73 percent and was used in this study. The
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Table 4.5 - Measured Residual Stress in Wide Flange Column Shapes
(Beedle and Tall (1960))

Residual Stress
at Flange-Web Juncture

Residual Stress
at Flange Tip

(ksi) (ksi)
Minimum | Mean | Maximum Minimum | Mean | Maximum
' | | I |
-7.7 | -12.8 | -18.7 16.5 I 4.7 I ~4.1

I I
I I
I |
I I
| I
! |
I I
| I
I |
| I

Note: 1 ksi = 6.895 MPa; (-) indicates compressive stress.
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higher coefficient of variation of the stress at the flange-
web juncture is reasonable since this location is more
likely to have its cooling rate affected by external
influences. The mean values used for the residual stresses
were calculated from Equations 2.20 and 2.21 given in Sec-
tion 2.8. A normal probability distribution was arbitrarily
assumed for all residual stresses.
4,3 REINFORCING STEEL

Variations in the mechanical and geometric properties of
the vertical and transverse reinforcing bars affect the
variation of the overall strength of the composite beam-
columns. This is because the variations in the properties
of vertical reinforcing bars affect the overall strength of
a beam-column directly in terms of stiffness and in thé
development of the M -¢-P relationships. Similarly, the
variations in the properties of the transverse ties affect
the degree of confinement of concrete and, therefore, indi-
rectly affect the overall strength of the beam-column. The
mechanical properties that define the stress-strain
relations of the reinforcing bars (described in Section
2.7.2) are the modulus of elasticity, yield stress, strain
at initiation of strain hardening, ultimate stress, and
ultimate strain. The only geometric variation of concern to
this study is the ratio of actual to nominal cross-sectional
area. Strength variations due to variation in placement of

reinforcing bars is discussed in Section 4.4. To properly
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model the basic variables noted above for use in the theo-
retical subroutine (Chapter 2) and for the Monte Carlo anal-
ysis (Chapter 5), the mean value, coefficient of variation
(or standard deviation) and the type of probability
distribution were defined for each basic variable. These
definitions were either taken directly from the literature
or derived from the data available in the literature. No
new test data was generated for this study. A description
of the statistical distributions used for each variable is
given below.
4.3.1 Modulus Of Elasticity

The elastic modulus for steel in reinforcing bars has
been found to have a small dispersion and is relatively
unaffected by rate of loading (Mirza et al. 1979b). Allen
(1972) found that the variability of elastic modulus was
about the same for in-batch and overall variations. Varia-
tions resulting from the ratio of actual to nominal area of
bar were also incorporated into the overall variation.
Allen (1972) suggested a mean value of 28,500 ksi (196,550
MPa) and a coefficient of variation of 2 percent. Mirza et
al. (1979b) studied Allen's data as well as data from oth-
ers. They suggested that the probability distribution of
elastic modulus can be considered normal with a mean value
of 29,200 ksi (201,380 MPa) and a coefficient of variation

of 3.3 percent.
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In this study it was assumed that the elastic modulus of
reinforcing steel followed -a normal distribution with a mean
of 29,000 ksi (200,000 MPa) and a coefficient of variation
of 3.3 percent.

4.3.2 Yield Strength

Factors contributing to the variability of yield
strength of reinforcing steel are the variation in the com-
position of the steel, variation in the actual cross-
sectional area of the bar and the effect of rate of loading
(Mirza et al. 1979b). As outlined for structural steel
(Section 4.2.2), the static yield strength rather than the
dynamic yield strength provides a better estimate of the
yield strength of the bars under normal loading conditions
in a building. Static loading reduces the magnitude of the
yield strength and is, therefore, of more interest for reli-
ability analysis.

Yield strengths reported from mill tests are based on
strain rates of approximately 1040 micro in. per in. per
sec (Mirza et al. 1979b) which is the same as that reported
for mill tests of structural steel (Kennedy and Gad Aly
1980). Rao et al.'s equation (1964) presented earlier
(Equation 4.18) was found to correlate well with the yield
strength data at various strain rates (Mirza et al. 1979b).
A value of 4 ksi (27.6 MPa) was suggested as a reasonable
assumption to describe the difference between the mill test

(dynamic) and the static yield strengths. By combining the
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collected test data and accounting for the differences
between the mill test and the static yield strength, Mirza
et al. (1979b) calculated the mean static yield strength of
66.8 ksi (460.7 MPa) and a coefficient of variation of 8.3
percent for Grade 60 reinforcing bars.

The probability distribution of the static yield
strength was studied by Mirza et al. (1979b) and was found
to be positively skewed. This is reasonable since quality
control practices limit the probability of the yield
strength being less than specified. A probability density
function of a beta distribution was found to provide the
best fit to the static yield strength data. The probability
density function suggested by Mirza and MacGregor for Grade

60 reinforcing steel is shown in Equation 4.24:

- 54\2%2/102 - 6.95
PDF = 7.587(fL-—.-_) (——’-[-Z-> (4.24)
48 48

in which 5S4 ksi = f o £ 102 Kksi.

For SI conversion, multiply the terms 48, 54, and 102 in
Equation 4.24 by 6.895.

The probability density for static yield strength of
Grade 60 reinforcing bar described by Equation 4.24 is
plotted in Figure 4.10 while the cumulative frequency is

plotted in Figure 4.11. These curves were used for the
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Monte Carlo simulations reported in this study (Chapter 5).
It should be noted that the data used to derive Equation
4.24 was based on nominal areas of bar cross-section.
Therefore, the effect of variation in ratio of actual to
nominal bar cross-sectional area is already included in
Equation 4.24.
4.3.3 Ultimate Strength

Factors affecting the variation of ultimate strength are
the same as those affecting the yield strength. Mirza et
al. (1979b) reported that the ratio of ultimate to yield
strength had a mean value of 1.55. The coefficient of vari-
ation was essentially unchanged from the values obtained for
vield strength data (8.3 percent). Since it is reasonable
to assume that reinforcing steel with a higher yield
strength will also have a higher ultimate strength, the
static ultimate strength of reinforcing steel was simply
taken as 1.55 times the static yield strength for use in the
Monte Carlo simulations (Chapter 5).
4.3.4 Strain At Initiation Of Strain Hardening

Allen (1972) performed controlled tensile tests on vari-
ous sizes of reinforcing bars and determined the strain at
the initiation of strain hardening. The strain value was
found to vary significantly depending on the bar diameter
and ranged from a minimum of 0.7 percent for No. 14 (44.5 mm
diameter) bars to a maximum of 2.2 percent for No. 5 (15 mm

diameter) bars. Allen calculated a strain value of 1.49
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percent with a coefficient of variation of 26.6 percent for
the strain at the commencement of strain hardening when all
bar sizes were considered.

In this study, the mean value of the strain at the ini-
tiation of strain hardening was taken as 1.5 percent and the
coefficient of variation was assumed to be 26.6 percent.
Allen (1972) made no analysis of the probability distribu-
tion. A normal probability distribution was arbitrarily
assumed for this study.

4.3.5 Ultimate Strain

Allen (1972) measured the ultimate strain of reinforcing
bars ranging in size from No. 3 to No. 14 (9.5 mm to 44.5 mm
diameter). The mean ultimate strain reported by Allen was
15.5 percent and the coefficient of variation was 20.3 per-
cent.

In this study the ultimate strain of reinforcing bars
was assumed to have a mean value of 15.5 percent. For sim-
plicity, the coefficient of variation was taken as 20 per-
cent. A normal probability distribution was arbitrarily
assumed for ultimate strain of reinforcing bars.

4.4 COLUMN GEOMETRY

A composite column is a combination of factory made and
site casted components. In this section the variations in
field fabrications affecting the strength of beam-columns
are discussed. The field fabrications for the construction

of a composite column are similar to those for a reinforced
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concrete column. Mirza et al. (1979a) studied published
data to determine the statistics of the geometric variables
of reinforced concrete columns. For this study, these sta-
tistics were assumed applicable to composite columns as
well. The variables described are the column length, the
overall column width and depth, the concrete cover to the
hoop reinforcing, the spacing of rectangular hoops and the
distance from the geometric centroid of the column to inte-
rior reinforcing bar layers.

To Keep the theoretical strength subroutine (RTHEO) as
efficient as possible, the cross-section of the composite
beam-column was assumed to be symmetric about each axis
(Chapter 2). This assumption reduces the number of vari-
ables allowed from the maximum number possible that affect
the strength of a composite column. Unsymmetric variations
about the minor axis do not affect the strength of the col-
umns analyzed in this study since major axis bending, with-
out twisting, was assumed. Unsymmetric variations about the
major axis could affect the strength slightly but were
neglected. A discussion of each of the variables considéred
is given in the following subsections.

4,4.1 Column Length

No data for variations of column length was found in the
literature available. To accommodate this variable, the
statistical description of beam span suggested by Mirza et

al. (1979a) was assumed to be applicable to the column
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length. The deviation from the specified column length used
had a mean value of 0.0 and a standard deviation of 0.67
inch (17 mm). A normal probability distribution was assumed
for this variable. For cross-section studies, the specified
length of the column was input as 0.0.

4.4.2 Column Width And Depth

The overall column width and depth may vary due to inac-
curate forminé. Mirza et al. (1979a) studiéd data recorded
by others on overall dimensions of cast-in-place columns.
They recommended that for rectangular columns with face
dimensions ranging from 11 to 30 inches (280 to 762 mm),
mean deviation of the face dimension was 1/16 inch (1.6 mm)
greater than the specified value with a standard deviation
of 1/4 inch (6 mm). A normal probability distribution was
recommended by Mirza et al. (1979a).

In this study, the above-noted statistical properties
were used. The width and depth of the column were varied
independently.

4.4.3 Concrete Cover

The concrete cover is measured from the face of the col~-
umn to the exterior edge of the lateral hoops. This dimen-
sion may vary due to inaccurate fabrication of the hoop,
inaccurate forming of the column, or both. Measurements of
the concrete cover do not distinguish these sources. Since
the variation of column face dimension is calculated sepa-

rately, this variable can be considered to be a measurement



182

of the placement of extreme bar layers (Mirza et al. 1979a).
Grant (1976) studied data of others and suggested that the
deviation of the concrete cover from the specified value
(Csp) could be described by a normal distribution with a
mean value (Ea) given by Equation 4.25 and a standard devi-

ation of 0.166 inches (4.2 mm):

Ol

= C + 0.25 + 0.004h in. (4.25)

sp

C + 635 + 0.102h mm

sp

The cover concrete is a function of the face dimension of
the column (h). These values were used to vary indepen-
dently the amount of concrete cover parallel to the minor
and major axis.

4.4.4 Placement Of Lavers Of Vertical Bars

The dimension from the major axis to the center line of
the extreme bar layers was defined by the concrete cover.
It was assumed that these bars were tied to the lateral
hoops and, therefore, were not independently varied.

The dimension from the major axis to interior bar layers
was described by a normal probability distribution with a
mean value deviation from the specified dimension of +0.04
inch (1 mm) and a standard deviation given by Equation 4.26

(Mirza et al. 1979a):
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0.20 + 0.033h in. (4.26)

a
Il

ca

il

5.08 + 0.838h mm

where 0, is the standard deviation of the dimension from

the major axis to the bar layer and h is the overall depth
of the column. This statistical description was assumed in
the Monte Carlo simulations. It should be noted that due to
the double symmetry of the cross-section assumed by the
theoretical strength model (Chapter 2), an interior bar
layer located at the major axis was assumed to have no devi-
ation from the specified location.
4.4.5 Spacing Of Rectangular Hoops

Spacing of the rectangular hoops affects the degree of
confinement of the core concrete and, therefore, the
strength of the composite beam-column (Section 2.6.2). No
data on the variation of rectangular hoop spacing was found.
Mirza and MacGregor (1982) assumed that the spacing of ties
in concrete beams followed a normal probability distribution
with a mean value equal to the specified value and standard
deviation equal to 0.53 in. (13.5 mm). These values were
assumed to be valid for the spacing of ties in columns as

well and were used for this study.
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5 SIMULATION AND ANALYSIS OF COMPOSITE BEAM-=COLUMN STRENGTHS

The theoretical ultimate strengths (R,) of a composite

beam-column were simulated 500 times by a Monte Carlo tech-
nique and were based on the theoretical strength model and
probability distributions of the variables affecting the
strength. These strengths were divided by the nominal ulti-
mate strength (R,) of the beam-column which was computed
using the Code procedures and the nominal properties of
variables affecting the strength. This provided the simu-
lated sample of the non-dimensionalized strength ratios
(R:/R,) for the beam-column. A statistical analysis of the
simulated sample provided the coefficient of variation and
other probability distribution properties of the strength
ratios for the beam-column under consideration. The beam-
colunns studied were of various cross-section configurations
and lengths. A general description of the Monte Carlo
technique is given first followed by descriptions of the
beam-column configurations studied. The results of the
study are then discussed with the effect of different vari-
ables on the overall strength variations examined. The dis-
cussions are given separately for short and for slender
columns.
5.1 MONTE CARLO TECHNIQUE

The premise of the Monte Carlo technique is that the

overall variability of the performance of a system can be
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synthetically derived if a deterministic relationship
between the system performance and each variable affecting
the performance exists and the probability distributions of
all variables affecting the performance are known (Mirza
1985b). Repeated random choosing of the value of each vari-
able according to its individual probability distribution,
calculating the performance of the system based on each set
of randomly generated values of variables, and statistically
analyzing the simulated sample of system performance will
provide the overall variation of the performance of the sys-
tem. A flowchart of the technique is given in Figure 5.1.

As the number of simulations is increased, the syntheti-
cally created probability distribution of the system per-
formance will tend to.its true distributiop (Mirza 1985b).
Mirza (1985b) compared sample sizes of 200, 500 and 1000
simulations in a variability analysis of reinforced concrete
beam-columns. It was found that there was no significant
difference in the statistical properties of the strength
samples obtained for 500 and 1000 simulations. Therefore, a
sample size of 500 simulations was used for all beam-columns
analyzed in this study.
5.2 DESCRIPTIONS OF BEAM~COLUMNS STUDIED

The specified material properties and dimensions of the
beam-columns studied were chosen to give a reasonable repre-
sentation of the range of variables expected in actual con-

struction. Figure 5.2 shows the nominal dimensions of the
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Figure 5.1 — The Monte Carlo Technique
(Mirza 1985hb)
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cross-section used. These dimensions conform to the
requirements of ACI 318-83 and CAN3-A23.3-M84. The vari-
ables selected for study were the specified concrete
strength, specified structural steel yield strength, ratio
of structural steel area to gross area of cross-section,
slenderness ratio, and end eccentricity ratio. The speci-
fied yield strength of the reinforcing bars was chosen to be
60 ksi (414 MPa) for all columns studied. The ratio of
vertical reinforcing bar steel area to gross cross-section
(p,s) area was 1.2 percent. The study was divided into two
parts: (a) basic study and (b) supplemental study for the
short as well as for the slender beam-columns. The speci-
fied values of the variables used for these studies are dis-
cussed in the following two sections.
5.2.1 Basic Study

The basic study investigated the effects of the speci-
fied concrete strength, ratio of area of structural steel to
gross area of cross-section, end eccentricity ratio, and
slenderness ratio on the ratio of theoretical to nominal
strength of composite beam-columns. Specified concrete
strengths of 4000 and 6000 psi (27.6 and 41.4 MPa) were
studied. These values were chosen to represent the commonly
specified values for columns. The quality control of 4000
psi (27.6 MPa) concrete was assumed to be average (coeffi-
cient of variation of test cylinder strength = 15 percent).

The quality control of 6000 psi (41.4 MPa) concrete was
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assumed to be excellent, reflecting the extra care taken to
mix higher strength concretes (coefficient of variation of
test cylinder strength = 10 percent).

Ratios of structural steel area to gross cross-sectional
area (p,) of 4 and 8 percent were studied. The smaller
ratio was obtained by assuming a W10 x 54 (W250 x 80) rolled
steel section and the larger one by using a W10 x 112 (W250
X 167) rolled steel shape. It was felt that the structural
steel ratios less than 4 percent would not be practical for
composite columns. Structural steel ratios larger than 8
percent are difficult to obtain without the use of built-up
steel sections. The specified yield strength of the struc-
tural steel was chosen as 50 ksi (345 MPa) for the basic
study. This represents the maximum allowable specified
yield strength of structural steel by ACI 318-83 and CAN3-

A23.3-M84 Codes.

Slenderness ratios (kl/r) of 0 and 22 were examined for

the short columns. A slenderness ratio of 0 represents the
cross-section. A slenderness ratio of 22 represents the
upper limit for beam-columns designed without length effects
by both ACI 318-83 and CAN3-A23.3-M84 Codes for the type of
beam-columns studied. Slenderness ratios of 22.1, 33, 66
and 100 were chosen for the slender columns. A slenderness
ratio of 22.1 nearly represents the lower limit for which

the length effects must be included in design for the type
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of columns studied. A slenderness ratio of 100 is the maxi-
mum slenderness ratio allowed for the evaluation of stabil-

ity effects by the moment magnifier method of ACI 318-83 and
CAN3-A23.3-M84.

Eccentricity ratios (e/h) of 0, 0.05, 0.1, 0.15, 0.2,

0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0, 4.0 and
infinity (pure bending) were studied for all columns. Note,
for the basic study, the theoretical strength included the
effects of residual stresses in structural steel and con-
crete confinement due to lateral ties but did not include
the effect of strain-hardening of structural and reinforcing
steels.

Table 5.1 lists the short columns, whereas Table 5.2
lists the slender columns used for the baéic study. The
column designations in these tables are made up of four ele-
ments separated by hyphens: The first element represents
the specified concrete strength in kips per square inch, the
second element identifies the specified structural steel
yield strength in kips per square inch, the third element
represents the approximate ratio of structural steel area to
gross area of cross-section and the fourth element identi-
fies the slenderness ratio.

5.2.2 Supplemental Study
Three additional variables were investigated to study

their effect on the probability distribution properties of
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Table 5.1 - Specified Properties of Short Beam-Columns
Used for Basic Study®

| I I | I ! |
|  Run | Column | £' ] f | ko/r | o o

| Number | Designation | (ps%) | (pgi) | | |
| (1) | (2) | 3 | (&) | () | (&)

| | I | | I |
I I | | | | |
| BO1 | 4-50-4-0 | 4000 | 50000 | O | 0.040 |
| | I | | I I
| BO2 | 4-50-4-22 | 4000 | 50000 | 22 | 0.040 |
I | | | I I |
| BO7 [ 6-50-4-0 | 6000 | 50000 | 0 | 0.040 |
I | | I | I |
|  BO8 |  6-50-4-~22 | 6000 | 50000 | 22 | 0.040 |
| | I | | | I
[ B13 | 4-50-8-0 | 4000 | 50000 | O | 0.082

| | | | I I |
| B14 | 4-50-8-22 | 4000 | 50000 | 22 | 0.082 |
I | | | | | |
| B19 | 6-50~8-0 | 6000 | 50000 | 0 | 0.082 |
I | | | | | I
| B20 |  6-50-8-22 | 6000 | 50000 | 22 | 0.082

I |

*Each beam-column listed above was studied for nominal e/h values of 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0, 4.0,
and . All columns had cross—section size of 20 x 20 in., Grade 60 (414 MPa)
reinforcing bars, and ¢ = 0.012. Lateral ties conformed to the minimum
requirements of ACI 318583 and CAN3-A23.3-M84. The quality control of 4000
psi (27.6 MPa) concrete was assumed to be average, whereas that for 6000 psi
(41.4 MPa) concrete was taken to be excellent.

Note: 1000 psi = 6.895 MPa; 1 in. = 25.4 mm.
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Table 5.2 - Specified Properties of Slender Beam-Columns
Used for Basic Study*

I T T N
| Number | Designation | (pSi) | (pgi) | ] sS

| (1) | (2) I G | @ | )y | (&) |
| I | | | | I
| l | I ! ! |
| BO3 | 4-50-4-22.1 | 4000 | 50000 | 22.1 | 0.040 |
} BO4 ; 4-50-4-33 { 4000 ’ 50000 { 33 { 0.040 {
’ BOS } 4-50-4-66 } 4000 { 50000 } 66 { 0.040 {
’ BO6 { 4-50-4-100 l 4000 { 50000 ,100 I 0.040 {
} BO9 } 6-50-4-22.1 { 6000 { 50000 I 22.1 } 0.040 ;
} B10 { 6-50-4-33 } 6000 { 50000 { 33 I 0.040 ;
; B11 { 6~50-4—66 { 6000 ; 50000 } 66 { 0.040 }
; B12 } 6—50-4~100 { 6000 l 50000 }100 { 0.040 }
, B15 } 4-50-8-22.1 { 4000 ; 50000 } 22.1 { 0.082 ;
{ B16 ; 4-50-8-33 { 4000 ; 50000 { 33 { 0.082 ;
{ B17 = 4-50-8-66 } 4000 ’ 50000 { 66 { 0.082 {
i B18 } 4-50-8-100 } 4000 } 50000 }100 I 0.082 ;
} B21 ; 6-50-8-22.1 } 6000 } 50000 { 22.1 } 0.082 :
= B22 ; 6-50-8-33 } 6000 { 50000 ; 33 } 0.082 {
g B23 ; 6-50-8-66 { 6000 { 50000 } 66 % 0.082 }
s B24 f 6~50-8-100 } 6000 { 50000 ;100 I 0.082 E

*Each beam-column listed above was studied for nominal e/h values of 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0, 4.0,
and <. All columns had cross—section size of 20 x 20 in., Grade 60 (414 MPa)
reinforcing bars, and »p = 0.012. Lateral ties conformed to the minimum
requirements of ACI 318283 and CAN3-A23.3-M84. The quality control of 4000
psi (27.6 MPa) concrete was assumed to be average, whereas that for 6000 psi
(41.4 MPa) concrete was taken to be excellent.

Note: 1000 psi = 6.895 MPa; 1 in. = 25.4 mm.
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the ratio of theoretical to nominal strength of beam-
columns. The three variables were the specified yield
strength of structural steel, the strain-hardening of
structural and reinforcing steels, and the effect of con-
crete quality control.

Specified structural steel yield strengths of 36 ksi
(ASTM A36) (f,=248 MPa) and 44 ksi (CSA G40.21-M 44W)
(fy=303 MPa) are common in the United States and Canada,
respectively. To study the influence of specified struc-
tural steel yield strength on the theoretical to nominal
strength ratios of beam-columns, the results of two short
and two slender beam-columns selected from the basic study
were compared to the results of identical columns having the
specified structural steel yield strength of 36 and 44 ksi
(248 and 303 MPa).

Strain-hardening provides an enhancement of the steel
strength. However, the use of this enhanced strength of
steel is not allowed by the ACI or CSA code. To examine the
effect of strain-hardening on the ratios of theoretical to
nominal strengths, the results of two short and two slender
columns selected from the basic study were compared to the
results of identical columns in which the strain-hardening
of both structural and reinforcing steel beyond the plastic
plateau was permitted for computing the theoretical

strengths.
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To examine the influence of concrete quality control on
the variation of theoretical to nominal strength ratios, two
short and two slender columns from the basic study with spe-
cified concrete strengths of 6000 psi (41.4 MPa) and excel-
lent concrete quality control were compared to identical
columns having average concrete quality control. Note the
excellent quality control assumes a coefficient of variation
of 10 percent for test cylinders, whereas average quality
control had a test cylinder coefficient of variation of 15
percent.

The short beam-columns of the supplemental study are
shown in Table 5.3, whereas the slender columns of the
supplemental study are given in Table 5.4. The fifth ele-
ment appearing in some column designations in these tables
represents the inclusion of strain-hardening of both steels
(STH) or the use of average quality control for 6000 psi
(41.4 MPa) concrete (A). The first four elements of the
column designation in Tables 5.3 and 5.4 are identical to
those described for Tables 5.1 and 5.2 of the basic study.
Note the effects of concrete confinement due to lateral ties
and residual stresses in structural steel were also included
in computing the theoretical strengths for the supplemental
study.

5.3 SHORT COMPOSITE BEAM-COLUMNS
This section examines the overall strength variations of

short composite columns. The effects of individual vari-
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Table 5.3 - Specified Properties of Short Beam-Columns
Used for Supplemental Study®

| | | I | | | Strain |[Concrete |
| Run | Column | £ | £ | ke/r | oo |Hardening | Quality |
|Number |Designation |(psi) | (pgi) | | | Included | Control |
| (1) | (2) | 3) | (@ | (5 |6 | (1) | (&) |
l | | | l | | | |
l | | l I | | l |
| SG1 | 4-36-4-22 | 4000 | 36000 | 22 | 0.040] No | Average |
| | | | | | | | |
| SG3 | 4-44-4-22 | 4000 | 44000 | 22 |0.040]| No | Average |
| | | ! I | | | |
| SG5 | 6-36-4-22 | 6000 | 36000 | 22 [0.040] No |Excellent|
| | ! | | | | | |
| sG7 | 6-44-4-22 | 6000 | 44000 | 22  |0.040| No |Excellent]
I | | | | | | | |
| STH1 |4-50-4-0-STH| 4000 | 50000 | 0 |0.040|  Yes | Average |
| | | | | | | | l
| STH3 |6-50-4-0-STH| 6000 | 50000 | 0 |0.040]  Yes |Excellent|
| l l | | | I | |
| CQl |6-50-4-22-A | 6000 | 50000 | 22 ]0.040]| No | Average |
l | l | | | | | I
| €Q3 |6-50-8-22-A | 6000 | 50000 | 22 |0.082]| No | Average |
| |

*Each beam-column listed above was studied for nominal e/h values of 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0,
4.0, and ». All columns had cross—section size of 20 x 20 in., Grade 60
(414 MPa) reinforcing bars, and ¢__ = 0.012. Lateral ties conformed to
the minimum requirements of ACI 318-83 and CAN3-A23.3-M84.

Note: 1000 psi = 6.895 MPa; 1 in. = 25.4 mm.
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Table 5.4 — Specified Properties of Slender Beam-Columns

Used for Supplemental Study*

| I l | ] ] | Strain |Concrete |
| Run | Column | £+ | £ | ke/r | o o |Hardening | Quality |
| Number |Designation |(pgi)l (pgi) | [ | Included | Control |
I ) | (2) | 3y | ) | ) ]| (7 [ ) |
I | I | | I I | |
I I | | | I | I I
| sG2 | 4-36-4-33 |4000 | 36000 | 33  ]0.040]| No | Average |
I I I | I I | I I
| 8G4 |  4-44-4-33 |4000 | 44000 | 33 |0.040] No | Average |
I I I | I | | I |
| sG6 | 6-36-4-33 |6000 | 36000 | 33 [0.040]| No |Excellent |
| | | | I | I I I
| SG8 | 6-44-4-33 |6000 | 44000 | 33 |0.040] No |Excellent |
| | | I I I I | |
| STH2 |4-50-4-66-STH| 4000 | 50000 | 66  10.040]  Yes | Average |
I I I I I | I | I
| STH4 |6-50-4-66-STH|6000 | 50000 | 66  |0.040]  Yes [Excellent |
I | I | | I | I I
| €cQ2 | 6-50-4-33-A [6000 | 50000 | 33  |0.040] No | Average |
I | | | | I | I I
| cQ4 | 6-50-8-33-A |6000 | 50000 | 33 |0.082] No | Average |
I I

*Each beam-column listed above was studied for nominal e/h values of 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0,
4.0, and ». All columns had cross-section size of 20 x 20 in., Grade 60
(414 MPa) reinforcing bars, and P = 0.012. Lateral ties conformed to
the minimum requirements of ACI 318-83 and CAN3-A23.3-M84.

Note: 1000 psi = 6.895 MPa; 1 in. = 25.4 mm.
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ables on the strength ratios are discussed here and the
major variables that affect the variability of short
composite columns are identified as well. The specified
properties of short composite beam-columns studied are given
in Tables 5.1 and 5.3.
5.3.1 Ove trength Varijiations

Figures 5.3 and 5.4 are the plots of the simulated axial
load-bending moment interaction diagrams for Columns
6-50~-4-22 and 4-50-8-22 taken from Table 5.1. These columns
represent the extremes of the structural steel index
(p”fy/f;=(L33 and 1.03) for the columns studied. The theo-
retical maximum, mean, one-percentile and minimum strength
curves, obtained from 500 simulations are plotted. Also
plotted is the ACI 318-83 ultimate strength curve which was
calculated assuming a value of 1.0 for understrength fac-
tors.

The factored ACI strength curve shown in Figures 5.3 and
5.4 was obtained by dividing the ACI ultimate strengths by a
safety factor that varied from 1.55/0.7=2.21 to
1.5570.9=1.72. The safety factor of 1.55/0.7 was used for
axial loads that exceeded the load corresponding to the max-
imum bending moment on the ACI ultimate strength interaction
curve. Below this axial load, the safety factor was assumed
to vary linearly with the axial load from 1.55/0.7 to
1.5570.9 at the pure bending condition. The value 1.55 used

above represents the average of the ACI load factors for
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dead load (1.4) and for live load (1.7). The values 0.7 and
0.9 are the ACI 318-83 understrength factors for compression
and tension failure conditions, respectively. The axial
load level below which ACI 318-83 allows an increase in the
understrength factor greater than 0.7 is further discussed
at the end of this section.

A comparison of the ACI ultimate strength and the theo-
retical mean strength interaction curves shown in Figures
5.3 and 5.4 indicates that the ACI procedure overestimates
the mean ultimate strength for e/h ratios less than or equal
to around 1.5. However, these differences between the ACI
ultimate strength and the mean theoretical strength (for
e/h<1.5) appear to decrease as the structural steel index
»(pmfy/f;)increases. This can be seen by comparing Figures
5.3 and 5.4. For e/h>1.5, the ACI prediction is nearly the
same as the mean theoretical strength when p“fy/f;=(133
(Figure 5.3). When pf,/f.=1.03 (Figure 5.4), the ACI Code
underestimates the mean theoretical strength for e/h greater
than 1.5.

Comparison of the one-percentile and factored ACI inter-
action curves show that the factored ACI curve is well below
the one-percentile strength curve. It should be noted that
the factored ACI curve shown in Figures 5.3 and 5.4 is only
an approximation and may rise or fall depending on loading

combinations and variations.
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Histograms of theoretical beam-column strength at eccen-
tricity ratios of 0.0 (pure compression), 0.2, and infinity
(pure bending) are also plotted on Figures 5.3 and 5.4. 1In
Figure 5.3 (P fy/f<=0.33), the histograms appear symmetric
at all three eccentricity ratios. In Figure 5.4
(Peefy/fe=1.03), the histograms are slightly positively
skewed, indicating the influence of the larger structural
steel area. Note the probability distribution of structural
steel strength was assumed to be positively skewed. A
smaller coefficient of variation at higher e/h ratios is
apparent in both figures.

The balance point is defined by ACI 318-83 as the strain
condition which produces yielding in the tensile steel as
the compressive face of the concrete reaches its maximum
useable strain. 1In a reinforced concrete cross-section, the
balance point defines the transition from compression to
tension failure and occurs at the maximum bending moment on
the axial load - bending moment interaction curve. ACI
318-83 specifies the lower of the axial locad at the balance
point or the axial load calculated by Equation 5.1 as the
transition point for defining the value of understrength

factors.

P=0.1f.A, (5.1)

in whichA;=gross area of cross-section.
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Four composite beam-column cross-sections were analyzed in
order to see how the definition of balance point given above
applies to composite columns. The axial load corresponding
to the yielding of the tension reinforcing bars, incipient
yielding of the tension flange of the steel section and full
yielding of the tension flange was calculated for all four
cross-sections ({/h=0.0) shown in Table 5.1. Figure 5.5
plots the ACI ultimate strength interaction curve for a
cross-section (Column 4-50-4-0 in Table 5.1) with axial load
levels corresponding to the above-noted yielding conditions
identified in the Figure. The maximum bending moment capac-
ity occurs at an axial load level between those correspond-
ing to incipient and full yielding of the tension flange.
Furthermore, the axial load level at yielding of the tension
reinforcing bars is significantly greater than the axial
load corresponding to the maximum bending moment capacity.
Thus, the definition of balance point used for reinforced
concrete beam-columns does not seem to be applicable to the
composite cross-section shown in Figure 5.5. Similar con-
clusions were drawn for the remaining three cross-sections
given in Table 5.1. Hence, defining the balance point for
composite column cross-sections as the strain condition at
which full yielding of the tension flange occurs as the com-
pression face of concrete reaches its maximum useable strain

(0.003) will be both appropriate and conservative for
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assigning understrength factors. This definition of the
balance point has been used in this study and for Figures
5.3 and 5.4.

The axial load level corresponding to Equation 5.1 was
significantly less than the axial loads discussed in the
previous paragraph and is also marked in Figure 5.5. There-
fore, the second ACI 318-83 condition on axial load level as
given by Equation 5.1 seems to be overly conservative,
particularly when applied to composite beam-columns.

5.3.2 Effects Of Variables Used For Basic Study

The eight short columns in the basic study (Table 5.1)
were used to examine the effects of four variables on the
probability distribution properties of the ratio of theoret-
ical to nominal strength (strength ratio). These variables
are the slenderness ratio (kl/r), specified concrete
strength (fprimey), ratio of structural steel area to gross
area of cross-section (p,) and end eccentricity ratio (e/h).
The comparisons for each of these variables are made at the
one-percentile and five-percentile levels and at the mean
value. The one-percentile level is of most concern since it
pertains to the lower tail of the strength probability dis-
tribution.
5.3.2.1 Effect of slenderness ratio - Four direct compari-
sons of the effect of slenderness ratio (k!/r) on the proba-
bility distribution properties of the strength ratio were

made. Each comparison contained two short columns having
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kl/r values of 0 and 22 with all other properties being
identical. The results from two of the comparisons are
shown in Figures 5.6 and 5.7.

At one-percentile level, 3 out of 4 comparisons clearly
showed lower strength ratios for columns with kI/r of 22
over all end eccentricity ratios. The most significant dif-
ferences in one-percentile strength ratios were obtained for
the column set with combination of f’', = 4000 psi (27.6 MPa)
and pg;, = 0.040 as shown in Figure 5.6(a). Exception to this
behavior was the column set having f’, = 6000 psi (41.4 MPa)
and p,, = 0.082 for which the one-percentile strength ratios
for the column with ki{/r = 0 were lower in regions of e/h
less than 0.25. This is indicated in Figure 5.7(a). How-
ever, the differences in one-percentile strength ratios for
e/h<0.25 in Figure 5.7(a) seem to be small.

At the 5-percentile level and at the mean value, the
column with kI/r of 22 yielded lower strength ratios than
the columns having k!/r of 0.0 for all e/h ratios as shown
in Figures 5.6(b) and (c) and Figures 5.7(b) and (c). From
this it is reasonable to conclude that the columns with
slenderness ratio of 22 are more critical for reliability
analysis of short composite beam-columns.
5.3.2.2 Effect of specified concrete strength = Four column
sets were used to investigate the effect of specified con-
crete strength (f°.) on the probability distribution proper-

ties of the strength ratio. Each set had one column with
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f°. of 4000 psi (27.6 MPa) and one column with f’ = 6000 psi
(41.4 MPa) with all other properties being identical. As
noted in Chapter 4, the coefficient of variation of the
strength of test cylinders was taken as 15 percent (average
quality) for 4000 psi (27.6 MPa) concrete and 10 percent
(excellent quality) for 6000 psi (41.4 MPa) concrete. This
difference in the test cylinder coefficients of variation
reflects the extra care taken in the manufacture of higher
strength concrete. The results from two of the comparisons
are shown in Figures 5.8 and 5.9.

At the l-percentile level, 3 out of 4 comparisons showed
significantly lower strength ratios for the column with 6000
psi (41.4 MPa) concrete. These differences were especially
apparent for low eccentricity ratios when p,, was 0.040 as
shown in Figure 5.8(a). The trend appeared less significant
as the structural steel ratio increased to 0.082 as shown in
Figure 5.9(a) where there was no difference between the
strength ratios of columns with f’, = 4000 and 6000 psi
(27.6 and 41.4 MPa) at e/h of 0.2 or less. The columns with
the higher structural steel percentage have the overall
strength less influenced by the concrete strength and,
therefore, less difference is expected between the one-
percentile strength ratios for columns with 4000 and 6000

psi (27.6 and 41.4 MPa) specified concrete strength.
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At the 5-percentile and mean value levels [Figures
5.8(b) and (c) and 5.9(b) and (c)] the columns having 6000
psi (41.4 MPa) concrete yielded lower values of strength
ratios at all e/h ratios. Again, the trend was more signif-
icant for the columns with the lower percentage of struc-
tural steel.

The columns with 6000 psi (41.4 MPa) concrete produced
lower strength ratios due to the lower value of the ratio of
the mean in-situ strength to specified strength of concrete
used for these columns than for those having 4000 psi (27.6
MPa) concrete. The in-situ strength is given by Equation
4.2. The ratio of mean in-situ strength to specified
strength is 0.847 for 4000 psi (27.6 MPa) concrete and 0.773
for 6000 psi (41.4 MPa) concrete when it is loaded to fail-
ure in 1 hour.

From the above-noted discussions, it is concluded that
the specified concrete strength significantly affects the
strength ratios, especially for low structural steel per-
centages and, therefore, should be included in studies of
reliability analysis.
5.3.2.3 Effect of structural steel ratio - Four direct com-
parisons were made to examine the effect of the ratio of the
area of structural steel to gross area of the cross-section
(pss) on the probability distribution properties of the

strength ratios. Each comparison included two columns, one
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with p = 0.040 and one with p = 0.082 with all other prop-
erties being identical. The results from two of the compar-
isons are shown in Figures 5.10 and 5.11.

Three out of four sets showed lower one-percentile
strength ratios for columns with 4 percent structural steel
than those obtained for columns with 8 percent structural
steel. The only exception was the column set with F7, =
4000 psi (27.6 MPa) and kl/r = 0.0 where this trend was
reversed. For 4000 psi (27.6 MPa) concrete, the column with
Pss = 0.040 had strength ratios significantly lower than
those for the column with p,, = 0.082 when e/h ratio fell
between 0.25 and 1.0 as shown in Figure 5.10(a). For e/h
greater than 1.0 and less than 0.25, there seem to be minor
differences in the one-percentile strength ratios calculated
for the two columns shown in the figure. For 6000 psi (41.4
MPa) concrete [Figure 5.11(a)], the column with 4'percent
structural steel produced significantly lower one-percentile
strength ratios than those obtained for the column having 8
percent structural steel when ¢/h<0.6. For e/h>1.0, the
trend reversed and lower one-percentile strength ratios were
obtained for the columns with 8 percent steel, as indicated
in Figure 5.11(a).

The l-percentile strength ratios plotted in the above-
noted figures may be explained by examination of the rela-
tive contributions of structural steel and concrete to the

overall strength of the column. The concrete contributes
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more to the overall strength of the column at low g/x values
than at high e/h values. Hence, at low e/h larger varia-
tions take place in the overall strength of the beam-column
since the concrete strength has a higher variability than
the structural steel strength. Hence, lower one-percentile
strength ratios are expected for smaller p,, in regions of
low e/h. At high e/h values, the contribution of the struc-
tural steel becomes predominant and the variability of steel
strength is the primary cause of overall beam-column
strength variations. This produces smaller overall strength
variations and, hence, less spread in one-percentile values
for different p,, ratios. These results concur with earlier
findings by Grant et al. (1978) where reinforced concrete
columns with low steel ratios were found to have larger
variations than the columns with high steel ratios.

Minor differences between the strength ratios for col-
umns having 4 percent and for columns having 8 percent
structural steel were noticed at the 5-percentile and mean
value levels, as indicated by Figures 5.10(b) and (c) and
5.11(b) and (c). This seems to be particularly valid for
f’'c = 6000 psi (41.4 MPa) [Figures 5.11(b) and (c¢)]. Since
the l-percentile level is more critical for reliability
analysis, it is recommended that p,, be included as a vari-

able for such analyses.
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5.3.2.4 ect of end eccentricit atio - Each column from
the basic study (Table 5.1) was investigated for 17 end
eccentricity ratios (e/h = 0.0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0, 4.0 and «).
Figures 5.6 through 5.11 indicate that the strength ratios
drop sharply as e/h increases from 0.0 to 0.2. The strength
ratios tend to increase then at a declining rate as e/h
increases from 0.2 to infinity (pure bending condition).

The dip in strength ratios at e/h of 0.2 is the most signif-
icant at l-percentile level and becomes less significant at
5-percentile and mean value levels. For l-percentile and
5-percentile strength ratios, the maximum values were
obtained at e/h = ® (pure bending condition). For mean
strength ratios, however, the maximum values occurred at e/h
= 0.0 and ® (pure compression and pure bending conditions),
as indicated by Figures 5.6 - 5.11.

For further analysis, data from the eight columns of the
basic study (Table 5.1) were grouped into two sets according
to the specified concrete strength. For each concrete
strehgth, the range of one-percentile, 5-percentile, and
mean strength ratios at all e/h values studied is plotted in
Figure 5.12 (a), (b), and (c), respectively. The trends for
the effect of e/h ratio stated in the preceding paragraph
are also valid for the plots shown in Figure 5.12. Addi-
tionally, it is apparent from Figure 5.12 that the upper

boundary of the range of strength ratios is defined by the
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columns having 4000 psi (27.6 MPa) concrete and the lower
boundary is defined by the columns with 6000 psi (41.4 MPa)
concrete. The maximum spread in one-percentile, 5-percen-
tile and mean strength ratios occurs at e/h of 0 and 0.2,
whereas the minimum spread in these values takes place at
e/h = © (pure bending), as indicated by Figure 5.12.

The range of the strength coefficients of variation for
the two sets of columns discussed above is plotted on Figure
5.13. The coefficients of variation are the greatest at e/h
of 0.0 and decrease only slightly between e/h of 0.0 and
0.2. The coefficients of variation then decline sharply at
a declining rate as e/h increases from 0.2 to infinity. The
largest spread between the minimum and maximum values of the
coefficient of variation occurs for columns having 4000 psi

(27.6 MPa) concrete when e/h lies between 0 and 0.2.
At e/h < 0.7, the range of coefficients of variation for

columns having 6000 psi (41.4 MPa) concrete fall within the
range of coefficiénts of variation for columns with 4000 psi
(27.6 MPa) concrete. This is expected because the 6000 psi
(41.4 MPa) concrete was assumed to have excellent quality
control as opposed to average quality control for 4000 psi
(27.6 MPa) concrete and because the concrete quality has an
influence on variability of beam-concrete strength when e/h

is not high. As expected for values of e¢/h higher than 0.7,
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the range of the beam-column strength coefficients of varia-
tion remained practically unaffected by the specified con-
crete strength. This was particularly valid for pure
bending condition (e/h=®), as indicated by Figure 5.13.

From the above discussions, it is obvious to conclude
that the end eccentricity ratio is a variable which needs to
be considered in reliability studies. End eccentricity
ratio effects both the beam-column strength ratios and the
coefficients of variation to a significant extent. The end
eccentricity ratios below 0.55 are especially critical since
these e/h ratios produce one-percentile strength ratios that
fall below 0.7, as indicated by Fiqure 5.12(a).
5.3.2.5 Sensitivity analysis - The portions of the overall
variability of the beam-column strength attributable to the
variations in the mechanical properties of concrete, the
mechanical and geometric properties of structural steel, and
the theoretical strength model error were determined for a
typical beam-column cross-section. Column 4-50-4-0 (Table
5.1) was chosen for this analysis. To determine the beam-
column strength variability due to each of the three sets of
variables noted above, three separate computer runs of 500
simulations each were made. For each computer run, only the
variables from one of the above-noted sets were allowed to
vary while the remaining variables were kept constant at

their mean value. The portions of the overall variability



(1°G @19p]) 0—¥—0G—+ UONVIS—SS04) uwnje)—woag Jo AjgoupA Yibuens
[IDISAQ U0 S|DLIFIDW JUaMIIsuU0) Jo sa1uadoid JO SaRIlIqDLDA 4O 109))3 — +1°G aunbiy

(4/@) onoy A}dLUSI03 pu3

235

{

o'l

g0
1

90

1

L

L
N
>

u O -

[0
0

]

g

wng

[(z's) uononbz] ™ A
epouy
g N\

U020

g A\

88|00

g A

10

L
'

2

i

O

/]

18

1]

¥00°0

800°0

2100

9100

0700

paionbg UONDIIDA JO JUBIDILR0Y

- ¥20°0

8200



236

of the beam-column strength so determined were respectively
designated as V .icones Veotssy and V.4, for the three sets of

variables noted above.

The squares of the coefficients of variation VZ,,..,

Vs and V2 .., computed for column 4-50-4-0 at e/h values
ranging from 0.05 to infinity are plotted on Figure 5.14.
These plots indicate that the overall variability of the
strength of the above-noted column cross-section is mostly
influenced by the variations in the theoretical strength
model and the concrete mechanical properties for e/h< 1.0,
and by the variations in the structural steel section prop-
erties for e/h = ®, For 1.0 <e/h<®, all three variations
(V cotconcr Vcotssy and V ,.q.) seem to contribute to the overall
strength variability of column cross-section 4-50-4-0. Note
the effects of the variability of the theoretical strength
model and of the concrete properties decrease signifiéantly
as the end eccentricity ratio increases. The effect of the
variability of the structural steel properties increases

somewhat as e/h increases from 1.0 to higher values.
The values of V¢, plotted in Figure 5.14 represent the
sum of the squares of the coefficients of variation of Col-

umn 4-50-4-0 strength obtained from individual variabilities

of the three sets of variabilities, i.e.
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2 2
V colss 4 model

VZ — V2

sum coleonc

(5.2)

Also plotted in Figure 5.14 are the values of V% which is

the square of the coefficient of variation of the beam-
column cross-section strength obtained when variabilities
from all sources were included simultaneously in
computations. A comparison of V2, and V3 plotted in Figure
5.14 indicates a very good correlation of these values up to
e/h of 0.3. V%, only slightly underestimates V% for e/h
greater than 0.3. This underestimation by VV%,, at e/h val-
ues higher than 0.3 is likely caused by the variations in
the properties of the reinforcing steel and perhaps by the
variations in cross-section geometry which were not included
in V2, [Equation (5.2)]. This confirms an earlier finding
by Mirza (1989) that the cross-section dimensions have neg-
ligible effect on composite column strength variability.
Grant et al. (1978) reported similar conclusions for
reinforced concrete columns. The effects of variations in
properties of reinforcing bars were insignificant in this
study because the reinforcing steel ratio (p,, = 0.012) was
much smaller than the structural steel ratio (p,, = 0.040 and

0.082) used for the composite cross-section.
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5.3.2.6 Summary of effects of variables used for basic study

= The following summarizes the effects of variables used for

the basic study of short composite beam-columns:

(a) Slenderness ratio of 22 is critical for the type of
short columns studied;

(b) the specified concrete strength is a major variable;

(c) the ratio of structural steel area to gross cross-
sectional area is a significant variable;

(d) the end eccentricity ratio has a very significant effect
on the strength ratios and is especially critical in the
range from 0.0 to 0.55; and

(e) the overall variations of the beam-column theoretical
strength are primarily due to the variations in the
mechanical properties of the concrete, the geometric and
mechanical properties of the structural steel, and the
theoretical model.

5.3.3 Effects Of Variables Used For Supplemental Studyvy

From the short columns used for the supplemental study
(Table 5.3), the effects of the specified yield strength of
structural steel, the strain-hardening of structural steel
section and reinforcing bars, and the quality control of
concrete on the beam-column strength ratios were studied.
Plots of the one-percentile, five-percentile and mean
strength ratios at various values of e/h were made for each

variable studied.
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5.3.3.1 Effect of specified yield strength of structural

steel - To study the effect of the specified yield strength
of structural steel on the strength ratios, two short col-
umns from the basic study (Columns 4-50-4-22 and 6-50-4-22
in Table 5.1) were compared to four columns from the
supplemental study (Columns 4-44-4-22, 4-36-4~22, 6-44-4-22,
and 6-36-4-22 in Table 5.3). This provided two sets of
three columns, each column with structural steel f, of 50,
44, or 36 ksi (345, 303, or 248 MPa). All other properties
of the three columns in a set were identical. Figures 5.15
(a), (b), and (c) respectively plot the one-percentile,
five-percentile and mean strength ratio data for one of the
sets noted above.

At the 1-pércentile level, the lowest strength ratios
were found for the columns having 50 ksi (345 MPa) and 36
ksi (248 MPa) structural steel which plot almost identically
at e/h values below 0.4. The one-percentile strength ratios
for the columns with 44 ksi (303 MPa) structural steel plot
somewhat higher in this range of e/h. Between e¢/h of 0.4
and 0.8, the one-percentile strength ratio data for the col-
umn with 50 ksi (345 MPa) structurél steel rises slightly
higher than the data for the columns with 36 ksi (248 MPa)
structural steel. At the pure bending condition, all three
beam-columns have similar one-percentile strength ratios, as

indicated by Figure 5.15(a).
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At the 5-percentile and mean value levels, the data for
columns with all three grades of structural steel plot close
to each other [Figures 5.15 (b) and (c)]. The only noted
differences were at e/h values between 0.3 and 1.0. How-
ever, these differences were not considered significant.

Similar conclusions were obtained from the strength
ratio data of the remaining set of beam-columns used to
investigate the effect of the specified yield strength of
structural steel. Since differences between strength ratios
for columns with three different grades of steel are minimal
at the one-percentile level, it is recommended that 50 ksi
(345 MPa) structural steel be used in future reliability
analysis of composite cross-sections. The 50 ksi (345 MPa)
structural steel is the highest steel grade presently
allowed by the design codes (ACI 318-83 and CAN3-A23.3-M84)
for composite columns and will ensure relevancy as common
steel grades increase above the present values.
5.3.3.2 Effect of strain hardening of steel - To examine the
effects of strain-hardening of the structural steel and of
the vertical reinforcing bars on the strength ratios of com-
posite cross-sections, the data from two columns taken from
the basic study (Columns 4-50-4-0 and 6-50-4-0 in Table 5.1)
were compared to the data from the corresponding columns of
the supplemental study (Columns 4-50-4-0-STH and

6-50-4~-0-STH in Table 5.3). Note the strain-hardening of
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both steels was included in theoretical strength computa-
tions of Columns 4-50-4-0-STH and 6-50-4-0-STH, while the
strain-hardening of steel was neglected for Columns 4-50-4-0
and 6-50-4-0. This provided two sets of columns, each set
having one column in which strain-hardening was included and
one column in which strain-hardening was not permitted. All
other properties were identical for both columns in a set.
The strength ratios for columns from one of these sets are
shown in Figure 5.16.

The plots in Figures 5.16 (a), (b), and (c) show no
effect of strain-hardening of steel on ohe—percentile, five-
percentile and mean strength ratios at e/h values less than
or equal to around 0.6. Between e/h of 0.6 and 1.5, there
is some increase in strength ratios of the column in which
strain-hardening was included in theoretical strength compu-
tations. At pure bending, however, the strain-hardening of
steel produced significantly higher strength ratios (roughly
in the order of 15 percent) at one-percentile, five-
percentile and mean value level, as indicated by Figure
5.16.

A similar behavior was observed from the remaining set
of composite cross-sections used to investigate the effect
of strain-hardening of both steels. The data clearly showed
that an improvement in the strength ratios for cross-
sections occurred only at or near the pure bending condition

when strain-hardening of steel was used. This is expected
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since the steel must plastically strain to a level approxi-
mately ten times the yield strain before the beneficial
effect of strain-hardening can be obtained which can only
occur at high load eccentricities. It is, therefore, recom-
mended that strain-hardening not be accounted for in future
reliability analysis of short composite beam-columns.
5.3.3.3 Effect of guality of concrete - In the basic study
(Table 5.1), the concrete quality for four columns with f°,
= 6000 psi (41.4 MPa) was assumed to be excellent. This
corresponds to the control cylinder strength coefficient of
variation of 10 percent. The average quality control of
concrete assumes a coefficient of variation of 15 percent
for the control cylinder strength. To study the effect of
average quality control on strength of short composite beam-
columns having 6000 psi (41.4 MPa) concrete, the strength
ratios for Column 6-50-4-22 (Table 5.1) were compared to
those for Column 6~50-4-22-A (Table 5.3). Similar compari-
sons were also made for the strength ratio data obtained for
Columns 6-50-8-22 (Table 5.1) and 6-50-8-22-A (Table 5.3).
Note Columns 6-50-4-22 and 6-50-8-22 had excellent quality
concrete while Columns 6-50-4-22-A and 6-50-8-22-A employed
average quality concrete. This produced two sets of col-
umns, each set had one column with excellent and one column
with average quality concrete. All other properties were

identical for both columns in a set. The one-percentile,
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five-percentile and mean strength ratios for columns in one
of the above-noted sets are plotted in Figures 5.17 (a),
(b), and (c), respectively.

Figures 5.17 (a) and (b) show that the average concrete
quality control produces significantly lower one-percentile
and five-percentile strength ratios over the entire range of
load eccentricities than does the excellent concrete quality
control. The lower one-percentile and five-percentile
strength ratios can be attributed directly to the larger
coefficient of variation associated with average quality
concrete. The effect is significant for end eccentricity
ratios up to roughly 1.5 and is negligible at the pure bend-
ing condition. This is expected since the concrete contrib-
utes little to the overall strength of the column under pure
bending. At the mean value level, there is virtually no
difference between the strength ratios obtained for columns
with excellent and average concrete quality controls. This
is expected since the mean values of the concrete strength
are not affected by the quality control. Similar results
were obtained from the analysis of strength ratio data for
the columns in the other set used to investigate the quality
control of concrete.

The comparisons of the strength ratios in Figure 5.17
show that the concrete quality control significantly affects

the lower tail of the strength probability distribution and,
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hence, it is important that the future reliability analysis
considers the concrete quality control as one of the vari-

ables.

5.3.3.4 summary of effects of variables used for supplemen-

tal study - The following summarizes the effects of vari-

ables used for the supplemental study of short composite
beam-columns:

(a) The use of 50 ksi (345 MPa) structural steel produces
strength ratios not significantly different from those
obtained for lesser grades of steel;

(b) the strain-hardening of steel enhances the strength
ratios of the beam-columns only at very high e/h values
and is not recommended for inclusion in the reliability
analysis; and

(c) the quality control of concrete significantly affects
the lower tail of the strength probability distribution
and should be included in the reliability analysis.

5.4 SLENDER COMPOSITE BEAM-COLUMNS
This section examines the overall strength variations of

slender composite beam—columns. The effects of individual
variables on the strength ratios are discussed here and the
major variables that affect the variability of slender com-
posite columns are identified as well. The specified prop-
erties of slender beam-columns studied are given in Tables

5.2 and 5.4.
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5.4.1 Overall Strength Variations

Axial load-bending moment interaction diagrams simulated
for two slender beam-columns (Column 6-50-4-66 and Column
4-50-8-33) taken from Table 5.2 are plotted in Figures 5.18
and 5.19. These columns represent the upper and lower lim-
its of the structural steel index studied (pyf,/f .= 0.33
and 1.03). Plots included are of the maximum, mean,
one-percentile, and minimum theoretical strengths as well as
the ACI 318-83 ultimate and factored strengths computed for
the slender columns. The ACI ultimate strengths were based
on all understrength factors being equal to 1.0. The ACI
factored strengths were calculated as outlined in Section
5.3.1. Also included in these figures are the theoretical
mean cross-sectional strength curves which are plotted only
for comparison to the mean strength of the slender beam-
columns.

Figure 5.18 (plotted for Column 6-50-4-66 having
Pssfy/f’c = 0.33 and kl/r = 66) shows the ACI ultimate
strength significantly underestimating the mean theoretical
strength for e/h between 0.0 and 0.3. For e/h greater than
0.3, the ACI ultimate strength predicts strengths slightly
higher than the mean theoretical strength. At the pure
bending condition, the ACI ultimate strength prediction is
nearly identical to the mean theoretical strength. The fac-

tored ACI strength curve plotted is very significantly less
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than the l-percentile strength for all values of o/h.
However, the load combinations and variations may decrease
the apparent conservativeness of the ACI factored strength.

In Figure 5.19, (plotted for Column 4-50-8-33 having
Pesfy/f’c=1.03 and kl/r = 33), the ACI ultimate strength
prediction somewhat overestimates the mean strength for e/h
of 0.0 to 2.0. For e/h between 2.0 and infinity, the mean
strength is somewhat underestimated by the ACI ultimate
strength. The differences between the ACI ultimate strength
and the mean theoretical strength are much less in Figure
5.19 than those displayed in Figure 5.18 and, perhaps,
reflect the effect of lower slenderness ratio associated
with the column data plotted in Figure 5.19. The factored
ACI strength is léss than the l-percentile strength at all
values of e/h as indicated in Figure 5.19.

Probability distribution histograms of the simulated
theoretical strengths for e/h of 0.1, 0.2 and 1.0 are also
plotted in Figures 5.18 and 5.19. The histograms are sym-
metric. This indicates that the positively skewed shape of
the structural steel strength probabi;ity distribution does
not influence the overall slender beam-column strength as
much as it does for short columns. This can be seen by
comparing Figures 5.4 and 5.19.

5.4.2 Effects Of Variables Used For Basic Study
The 16 slender columns in the basic study (Table 5.2)

were chosen to investigate the effect of four variables on
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the probability distribution properties of the ratio of
theoretical to nominal strength (strength ratio). These
variables are the slenderness ratio (kl/r), specified con-
crete strength (f°.), ratio of structural steel area to
gross area of cross-section (p,), and end eccentricity ratio
(e/h). The strength ratios are plotted for e¢/h values in
the range of 0.05 to ©. The strength ratios at e/h of 0.0
(concentric loading) are not shown since the concentric
capacity predicfion of the theoretical étrength model was
based on the tangent modulus approach and the results were
believed overly conservative.

5.4.2.1 Effect of slenderness ratio - The slender beam-
columns shown in Table 5.2 were divided into 4 sets of 4
columns each to investigate the effect of slenderness ratio
(kl/r) on the strength ratio. Each set had one column with
slenderness ratio of 22.1, 33, 66 of 100. All other proper-
ties in each set of columns were identical. A kl/r of just
greater than 22 is the minimum slenderness ratio requiring
the inclusion of length effects by ACI 318-83 and by CAN3-
A23.3-M84 for the types of columns studied. A kil/r of 100
is the maximum slenderness ratio allowed by the two design
codes for evaluating the stability effects by the moment
magnifier approach. Figures 5.20 and 5.21 plot the one-
percentile, five-percentile and mean strength ratios for two

of the column sets studied.
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In most cases, 6ne~percentile strength ratios for col-
umns with kl/r of 33 were the lowest, followed by those with
kl/r of 22.1 and 66. The highest one-percentile strength
ratios were obtained for columns with kI/r = 100. 1In all
cases, the differences in strength ratios of columns with
different kl/r decreased as e/h increased from 0.05 to 1.2.
For e/h values greater than 1.2, there were no significant
differences in the strength ratios of beam-columns with dif-
ferent kl/r ratio regardless of e/h value. The effect of
slenderness ratio described here was typical for all four
sets of beam-columns and is evident from Figures 5.20(a) and
5.21(a).

Figure 5.20(a) shows that one-percentile strength ratios
for the beam-column with kl/r of 33 are significantly lower
than those for the beam-column with k{/r of 22.1 when e/h is
less than 0.3. However, for higher values of e/h, the dif-
ferences in one-percentile strength ratios for these two
columns (k{/r = 22.1 and 33) are small [Figure 5.20(a)].
This behavior is different from the one observed from Figure
5.21(a) in which one-percentile strength ratios for columns
with k{/r = 22.1 and 33 show small differences over the
entire range of e/h studied. This difference in behavior of
the two sets of beam-columns is, perhaps, due to different
structural steel ratios used [p,, = 0.040 for columns in Fig-

ure 5.20(a) and 0.082 for columns in Figure 5.21(a)].



266

The trends noted in the preceding paragraphs were found
to be consistent with the 5-percentile and mean values of
the strength ratios for all four sets of columns studied.
This is indicated by Figures 5.20(b) and (c) and Figures
5.21(b) and (c¢).

From the foregoing discussions, it is concluded that the
strength ratios for columns with k{/r = 22.1 to 33 are more
critical than those for columns with kl/r = 66 to 100. In
most cases, however, the lowest strength ratios were
obtained for columns having kl/r = 33. Slenderness ratio
is, therefore, an important variable for reliability analy-
sis.
5.4.2.2 Effect of specified concrete strength - The slender
columns listed in Table 5.2 provided 8 sets for investigat-
ing the effect of specified concrete strength on the
strength ratio. Each set contained one column having f°, =
4000 psi (27.6 MPa) and one column having\fg = 6000 psi
(41.4 MPa) with all other properties of both columns in the
set being identical. Figures 5.22 and 5.23 plot the
strength ratio data for two of the eight sets.

The strength ratios obtained for slender columns with
the lowest slenderness ratios (kl/r = 22.1) were expected to
be similar to those obtained for the short columns. In
fact, the two sets of slender columns with k!/r = 22.1 used
to study the effect of f’, on strength ratios gave results

nearly identical to those obtained for the short columns.
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This can be seen by comparing the strength ratio data in
Figure 5.22 for one of the slender column sets to the plots
in Figure 5.8 presented earlier for short columns.

Figure 5.22(a) plotted for slender columns having kl/r =

22.1 and p,, = 0.040 shows that the 6000 psi (41.4 MPa) con-
crete gave lower one-percentile strength ratios than did the
4000 psi (27.6 MPa) concrete over almost the entire range of
e/h. A similar behavior was observed for one-percentile
strength ratios of slender columns having the same slender-
ness ratio but a higher structural steel ratio (p,, = 0.082),
except that the 4000 psi and 6000 psi (27.6 and 41.4 MPa)
concretes produced identical one-percentile strength ratios
for e/h = 0.25. At 5-percentile and mean value levels, the
columns with higher strength concrete gave lower strength
ratios for all e/h values, although the effect was more sig-
nificant for columns with lower structural steel ratio as
indicated by Figures 5.22(b) and (c).

As the slenderness ratio was increased to 33, the effect
of specified concrete strength on the one-percentile and
five-percentile strength ratios tended to disappear as indi-
cated by Figures 5.23(a) and (b). However, the higher
strength concrete produced lower mean strength ratios for
columns with k{/r = 33 [Figure 5.23(c)].

For beam-columns having slenderness ratios of 66 and

100, the effect of the specified concrete strength on
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strength ratios was noticeable only at o/h of less than
0.15. In this range of e/h, the lower concrete strength
provided slightly lower strength ratios. This effect dissi-
pated rapidly with increasing e/h due to the failure mode
changing from compression to tension caused by increasing
secondary bending moments acting on the beam-column.

From the data and discussions presented in this Section,
it is concluded that for columns having slenderness ratios
greater than or equal to 33, the specified concrete strength
does not significantly affect the strength ratio. For slen-
der columns with kl/r less than 33, the effect of specified
concrete strength seems to be significant.
5.4.2.3 Effect of structural steel ratio - Eight comparisons
were made to investigate the effect of ratio of structural
steel area to gross area of concrete cross-section on the
probability distribution properties of the strength ratios
of the beam-columns listed in Table 5.2. Each comparison
involved two beam-columns, one having p,, = 0.040 and the
other one having p,, = 0.082 with all other properties being
identical. Strength ratios from two typical comparisons are
plotted in Figures 5.24 and 5.25. The data plotted involves
columns with specified concrete strength‘of 4000 psi (27.6
MPa) and slenderness ratios of 33 (Figure 5.24) and 66 (Fig-

ure 5.25).
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The data for slender beam-columns with kI/r of 22.1 was

similar to that presented earlier for short columns (Figures
5.10 and 5.11). These beam~columns with smaller structural
steel ratio (p,; = 0.040) produced lower one-percentile
strength ratios than did the beam-columns with larger struc-
tural steel ratio (p,; = 0.082). At 5-percentile and mean
value levels, the columns with higher structural steel ratio
provided slightly lower strength ratios but the differences
in strength ratios were insignificant.

The trends noted above for columns having kl/r = 22.1 are

similar to those for columns with kl/r = 33. Figure 5.24(a)
shows that the beam-column with p,, = 0.040 gives signifi-
cantly lower one-percentile strength ratios than the beam-
column having p,, = 0.082 at ¢/h< 0.8. For e/h higher than
0.8, the differences in one-percentile strength ratios in
Figure 5.24(a) seem to be negligible. The effect of p,, is
less significant for 5-percentile and mean strength ratios
plotted in Figure 5.24(b) and (c), regardless of the end
eccentricity ratio. For columns with kI/r = 33 and f’, =
6000 psi (41.4 MPa), however; the effect of p,, was negli-
gible on all strength ratios (l-percentile, 5-percentile and
mean values) at all e/h values studied.

When the slenderness ratio increased to 66, the columns
with p,; = 0.082 demonstrated significantly lower one-

percentile, five-percentile and mean strength ratios than
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those for columns with p = 0.040; the differences in
strength ratios being very significant for e/h< 0.4 as
indicated by Figure 5.25. The effect of p,, on strength
ratios became even more significant when the slenderness
ratio was increased to 100. This is probably because a very
slender column must withstand high second-order bending
moments and, therefore, depends on the structural steel to
provide stiffness after the concrete has cracked.

In summary, the columns with low structural steel ratios
(pss = 0.040) produced lower l-percentile strength ratios
when kl/r was 33 or less. This behavior is similar to that
described earlier for short composite columns. Columns with
slenderness ratios equal to and greater than 66, on the
other hand, produced lower l-percentile, 5-percentile, and
mean strength ratios when the structural steel ratio was
high (p,s = 0.082). Hence, the structural steel ratio must
be considered as a required parameter for reliability analy-
sis.

5.4.2.4 Effect of end eccentricity ratio - To investigate

the effect of e/h on the strength ratio, all columns from
Table 5.2 were studied for e/h ratios ranging from 0.05 to
infinity. An examination of Figures 5.20 to 5.25 shows that
the strength ratios of slender columns vary with e/h. For
further study, the data from the sixteen columns in Table
5.2 were grouped into three sets according to the slender-

ness ratio. Columns with kl/r of 22.1 and 33 were grouped
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together because of the similar values of strength ratios
obtained for these columns, as shown in Figure 5.20. The
second set contained beam-columns with kl/r = 66, while the
third set included column with kl/r = 100. For each set,
the range of l-percentile, 5-percentile, and mean strength
ratios are plotted against e/h in Figures 5.26(a), (b), and
(c), respectively.

Figure 5.26(a) shows that the widest range of one-
percentile strength ratios occurs for e/h less than 0.2 with
the highest strength ratios corresponding to k{/r of 100 and
the lowest to kl/r of 22.1 and 33. The one-percentile
strength ratios for columns with kl/r of 100 drop very sig-
nificantly as e/h increases from 0.05 to 0.2. The beam-
columns with slenderness ratios of 22.1 and 33 are least
affected as e/h increases from 0.05 to 0.2 [Figure 5.26(a)].
Between e/h of 0.2 and 1.2, the ranges of one-percentile
strength ratios decrease significantly for all three sets of
columns with the differences among the three ranges also
decreasing as e/h increases. For e¢/h values greater than
1.2,‘a11 three ranges overlap and remain nearly constant as
indicated by Figure 5.26(a). It is worth noting that the
one-percentile strength ratios significantly lower than 0.7

were obtained at e/h< 0.3 for columns in the set with kl/r =

22.1 and 33 and much higher than 0.7 for columns with kl/r

100.
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Figures 5.26(b) and (c) show that the above-noted trends
for one-percentile strength ratios are also followed by the
S5-percentile and mean values of the strength ratios. The
only difference is that the five-percentile and mean
strength ratios drop more sharply for columns with kl/r
ratios of 100 and increase more slowly for columns in the
set with kl/r of 22.1 and 33 as e/h increases from 0.05 to
0.2.

From the foregoing discussions, it is concluded that the
end eccentricity ratio has the greatest effect on the
strength ratio of very slender columns (k{/r = 100) at e/h
values below 0.2. In this range of end eccentricity ratio,
the least effect of e/h is experienced by columns with kI/r
of 22.1 and 33. For end eccentricity ratios of 1.2 and
higher, there is negligible effect of e/h on the strength
ratios, regardless of the slenderness ratio used. There-
fore, the future reliability analysis of slender columns
should concentrate on data for e/h of 1.2 and less. The end
eccentricity ratios below 0.45 are particularly critical
because these e¢/h values produced some one-percentile
strength ratios that fell below 0.7, as indicated by Figure
5.26(a). The effect of e/h on the strength ratio for end
eccentricity ratios greater than 1.2 can be neglected.

Figure 5.27 shows the coefficient of variation of

strength of composite beam-columns varying significantly
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with respect to end eccentricity ratio. Furthermore, col-
umns with lower slenderness ratios correspond to higher
coefficients of variaﬁion of strength and vice versa. This
is especially apparent at e/h values greater than 0.2. For
e/h< 0.2, the coefficients of variation of strength for all
three sets of column seem to overlap. The strength coeffi-
cient of variation initially decreases rapidly and then at a
reduced rate as e/h increases from 0.2 to ®, as indicated by
Figure 5.27.

The behavior of the strength coefficient of wvariation
explained in the preceding paragraph can be at least par-
tially attributed to the coefficient of variation of the
theoretical strength model itself. As discussed in Chapter
2, the theoretical strength model error had a coefficient of
variation that remained constant at its maximum value for
e/h< 0.2. The model error coefficient of variation then
decreased linearly with increasing e/h until it reached its
minimum value at the pure bending condition. This partly
explains the shape of the coefficient of variation curves in
Figure 5.27. The decrease in strength coefficient of varia-
tion with increasing slenderness ratio of the column is
likely caused by the increase in dependance on the
structural steel to provide resistance against the increased
probability of tension failure due to secondary moment
effects. Since the coefficients of variation associated

with the steel properties are less than those for concrete,
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the columns deriving more of their streength capacity from
the structural steel will be subjected to lower strength
variations.

5.4.2.5 Sensitivity analysis - The portions of the overall
variability of the column strength attributable to the vari-
ation in the mechanical properties of concrete, the mechani-
cal and geometric properties of structural steel, and the
theoretical strength model were determined for a typical
slender beam-column. Column 4-50-4-66 (Table 5.2) was cho-
sen for this analysis. To determine the beam-column
strength variability due to each of the three sets of
variables noted above, three separate computer runs of 500
simulations each were made. For each computer run, only the
variables from oﬁe of the above-noted sets were allowed to
vary while the remaining variables were kept constant at
their mean value. The portions of the overall variability
of the beam-column strength so determined were respectively
designated as V .iconcy Veotssy @and Vooge: £Or the three sets of

variables noted above.

The squares of the coefficients of variation V32 ,,..,

Vs and V2 ., computed for the strength of Column
4-50-4-66 at e/h values ranging from 0.05 to « are plotted
on Figure 5.28. These plots indicate that the overall vari-
ability of the strength of the above-noted column is mostly

influenced by the variations in the theoretical strength
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model and the concrete mechanical properties for o/A< 1.0.
For 1.0 <e/h< ®, all three variations (V .woncsr V corss, and

V modet) Seem to contribute to the overall strength variabil-
ity of Column 4-50-4-66. At pure bending condition, the
strength variability of Column 4-50-4-66 is identical to
that of the cross-section and the variations in the struc-
tural steel properties mostly influence the Oﬁerall vari-
ability of the column strength. Hence, the behavior of
Column 4-50-4-66 at e/h=® in Figure 5.28 is identical to
thatbshown in Figure 5.14. Note the effects of the vari-
ability of the theoretical strength model and of the con-
crete properties decrease significantly as the end
eccentricity ratio increases from e/h = 0.2. The effect of
the variability of the structural steel properties increases

somewhat as e/h increases from 1.0 to higher values.

The values of V3%,, plotted in Figure 5.28 represent the

sum of the squares of the coefficients of variation of Col-
umn 4-50-4-66 strength obtained from individual variabili-
ties of the three sets of variables as indicated in Equation
(5.2). Also plotted in Figure 5.28 are the values of I3
which is the square of the coefficient of variation of the
beam~column strength obtained when variabilities from all
sources were included simultaneously in computations. A .
comparison of values of VZ,, and '3 plotted in Figure 5.28

indicates a good correlation of these values, especially in
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the range of o/hA = 0.2 to 0.6, with Viim only slightly
underestimating V3 on either side of this range of e/h.

The underestimation of V% by VZ,, at e/h< 0.2 is likely due
to variations in the cross-section dimensions. The underes-
timation by V2,, at e/h> 0.6 is likely due to variations in
the properties of the reinforcing steel and the bar
placements. Note the variations in the cross-section dimen-
sions and reinforcing stéel properties were not included for
computing VV2,,.,, as indicated by Equation (5.2).

The effects of variations in properties of reinforcing
bars were insignificant in this study because p,, was small
compared to p,, used for the composite columns studied. An
earlier study (Mirza 1989) found that the cross-section
dimensions had insignificant effect on composite column
strength variability. Similarly, Mirza and MacGregor (1989)
noted that the strength variability of slender reinforced
concrete columns was sensitive to dimensional variations
only at low e/h. From the discussions presented here and
Figure 5.28, it is apparent that the relation proposed in
" Equation (5.2) is valid for the type of slender composite
columns studied.

5.4.2.6 Summars f effec f riables used for basic study

= The following summarizes the effects of variables used for
the basic study of slender composite beam-columns:
(a) Slenderness ratios of 22.1 and 33 are more critical than

66 and 100 for the type of slender columns studied;
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(b) the specified concrete strength is a significant vari-
able for columns with slenderness ratios less than 33
but is insignificant for k!/r greater than or equal to
33;

(c) the ratio of structural steel area to gross area of
cross-section is a major variable;

(d) the end eccentricity ratio has the greatest effect on
very slender columns (kIl/r = 100) and the least effect
on less slender columns studied (k{/r = 22.1 and 33);:

(e) the overall variability of the theoretical strength is
primarily due to the variations in the mechanical prop-
erties of the concrete, the mechanical and geometric
properties of the structural steel, and of the
theoretical strength model.

5.4.3

From the slender columns used for the supplemental study
(Table 5.4), the effects of the specified yield strength of
structural steel, the strain-hardening of structural steel
section and reinforcing bars and the quality control of con-
crete on the beam-column strength ratios were studied.

Plots of the one-percentile, five-percentile and mean
strength ratios at various values of e¢/h were made for each
variable studied.

5.4.3.1 Effect of specified yield strength of structural

steel - To study the effect of the specified yield strength
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of structural steel on the strength ratios, two slender col-
umns from the basic study (Columns 4-50-4-33 and 6-50-4-33
in Table 5.2) were compared to four columns from the
supplemental study (Columns 4-44-4-33, 4-36-4-33, 6-44-4-33,
and 6-36-4-33 in Table 5.4). This provided two sets of
three column each. Each set had a column with structural
steel f, = 50 ksi (345 MPa), a column with structural steel
fy = 44 ksi (303 MPa), and a column with structural steel f,
= 36 ksi (248 MPa). All other properties of the three col-
umns in a set were identical. Figure 5.29(a), (b), and (c)
respectively plot the one~percentile, five-percentile, and
mean strength ratio data for one of the above-noted sets.
The specified strength of concrete equal to 4000 psi (27.6
MPa) was used for the beam-columns shown in Figure 5.29.

At the l-percentile level [Figure 5.29(a)], the lowest
strength ratios were found for the column having 50 ksi (345
MPa) structural steel over almost the entire range of e/h.
The one-percentile strength ratios for the column with 50
ksi (345 MPa) structural steel plotted significantly less
than those for the column with 36 ksi and 44 ksi (248 MPa
and 303 MPa) structural steel at e/h< 0.5. Between e¢/h of
1.2 and infinity, the data for the columns with 50 ksi and
36 ksi (345 MPa and 248 MPa) structural steel plot almost
identically. The highest values of one-percentile strength

ratios were obtained over almost the entire range of e/h
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studied for the beam-column in which 44 ksi (303 MPa) struc-
tural steel was used, as indicated by Figure 5.29(a). A
similar trend is observed from the 5-percentile strength
ratios shown in Figure 5.29(b), but the differences among
the 5-percentile strength ratios for columns with different
grades of structural steel are significantly reduced.

The effect of structural steel grade on mean strength
ratios seems to be negligible [Figure 5.29(c)]. Only
between e/h of 0.4 and 0.8 does the mean strength ratio data
show some spread. In this range of e/h, the lowest mean
strength ratios were given by the column having 36 ksi (248
MPa) structural steel and the highest mean strength ratios
by the column having 50 ksi (345 MPa) structural steel, as

indicated by Figure 5.29(c).

Results from the other set of columns employing f. =

6000 psi (41.4 MPa) and used to investigate the effect of
structural steel grade (Columns 6-50-4-33, 6-44-4-33, and
6-36-4-33) indicated negligible effects of structural steel
fy on mean, five-percentile, and one-percentile stréngth
ratios. This was valid over the entire range of e/h stu-
died.

Since the l-percentile strength ratios are more impor-
tant for safety considerations and the lowest values for
these strength ratios were obtained in Figure 5.29(a) for

columns with structural steel f, = 50 ksi (345 MPa), it is
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recommended that 50 ksi (345 MPa) structural steel be used
in future reliability analysis of slender composite columns.
The 50 ksi (345 MPa) structural steel is the highest grade
of steel presently allowed by the North American design
codes for composite columns and will ensure relevancy as
commonly used steel grades increase above the present val-
ues.

5.4.3.2 Effect of strain hardening of steel - To examine the
effects of strain-hardening of the structural steel section
and of the vertical reinforcing bars on the stfength ratios
of slender composite columns, the data from two columns of
the basic study (Columns 4-50-4-66 and 6-50-4-66 in Table
5.2) were compared to the data from the corresponding col-
umns of the supplemental study (Columns 4-50-4-66-STH and
6-50-4-66-STH in Table 5.4). Note the strain-hardening of
both steels was included in theoretical strength computa-
tions of Columns 4-50-4-66-STH and 6-50-4-66-STH and it was
neglected for columns 4-50-4-66 and 6-50-4-66. This
provided two sets of columns, each set having one column in
which strain-hardening was included and one column in which
strain-hardening was not permitted. All other properties
were identical for both columns in a set. The strength
ratios for columns from one of these sets are shown in Fig-

ure 5.30.
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Figure 5.30 shows that the effects of strain-hardening
of steel on one-percentile, five-percentile, and mean
strength ratios are insignificant over almost the entire
range of e/h. Exceptions are the strength ratios close to
pure bending region. The most significant effect of strain-
hardening of steel was found on strength ratios at pure
bending. Here, the strength ratios of a slender column are
identical to those of the cross-section since there is no
additional bending moment due to eccentric axial loads.
Hence, the effect of strain-hardening on the cross-section
strength in pure bending discussed in Section 5.3.3.2 is
also valid for Figure 5.30. The conclusibns derived from
the second set of columns used to study the effect of
strain-hardening of steel on slender composite columns were
very similar to those stated for Figure 5.30.

. Examination of moment - curvature data for columns at
subject to axial loads less than 20 percent of their concen-
tric axial load cross-section capacity showed that the sec-
ondary moments caused by deflection of the column were
greater than any gain in strength due to strain-hardening of
the steel components. Therefore, the highest bending moment
capacities calculated for the columns where strain-hardening
was allowed was identical to the bending moment capacity
calculated for an identical column in which strain-hardening

was not permitted.
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Since significant effects of strain-hardening on
strength ratios of slender columns occur only near and at
pure bending condition, it is concluded that the strain-
hardening of steel be neglected for reliability analysis of
slender composite beam-columns.

5.4.3.3 = To study the effect

of concrete quality control on the strength variations of
slender composite beam-columns having f'. = 6000 psi (41.4
MPa), the data for two columns from the basic study (Columns
6-50-4-33 and 6-50-8-33 with excellent concrete quality in
Table 5.2) were compared to the data for the corresponding
columns from the supplemental study (Columns 6-50-4-33-A and
6-50-8-33-A with average concrete quality in Table 5.4).
This produced two sets of beam-columns, each set had one
column with excellent quality concrete and one column with
average quality concrete. All other properties were identi-
cal for both columns in a set. The strength ratios for
beam-columns from one of these sets are given in Figure 5.31
and represent the typical behaviour.

At the l-percentile level [Figure 5.31(a)], the beam-
column having average quality concrete produced signifi-
cantly lower strength ratios over the entire range of e/h.
This can be attributed directly to the larger coefficient of
variation associated with concrete of average quality. At
the 5-percentile level, the effect of concrete quality on

strength ratios reduces significantly as indicated by Figure
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5.31(b). The mean strength ratios for columns with differ-
ent concrete quality tend to be of the same magnitude [Fi-
gure 5.31(c)]. This behavior is expected and is very
similar to the effect of concrete quality on strength
variations of short composite columns.

Since the concrete quality has a significant effect on
the lower tail of the strength probability distributions, it
is important that the future reliability analysis considers
the concrete quality as one of the variables.
5.4.3.4 Summary of effects of variables used for supplemen-
tal study - The following summarizes the effects of vari-
ables used for supplemental study of slender composite
beam-columns:

(a) The beam-columns having structural steel of specified
yield strength of 50 ksi (345 MPa) produced lower l-per-
centile strength ratios than did the columns with lower
grades of structural steel;

(b) the strain-hardening of steel only enhances the strength
of the beam-column at and near the pure bending condi-
tion and, therefore, can be neglected for practical col-
umns; and

(c) the quality control of concrete significantly affects

the strength ratios at the l-percentile level.
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6 SUMMARY AND CONCLUSTIONS

6.1 SUMMARY

The purpose of the study reported herein was to simulate
the probability distributions of ultimate strength of com-
posite columns in which steel shapes are encased in concrete
and to define the major variables that affect the strength.
The descriptions of the strength probability distributions
developed in this study will be used in a reliability analy-
sis currently underway at Lakehead University for developing
limit states design criteria for composite columns in
building structures.

The Monte Carlo technique was employed to simulate the
statistical properties of the strength of composite beam-
columns. Probability distributions of the geometric and
mechanical properties of column components required for
Monte Carlo simulation were either taken from the literature
or were derived from available statistical data. An exis-
ting computer program to calculate the theoretical
resistance of composite columns was extensively tested for
numeric and logical accuracy and revised wherever required.
The accuracy of the theoretical strength program was estab-
lished by comparisons with existing test data of the ulti-
mate strength of composite beam-columns. Repeated

simulations of the strength of several column configurations
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using the probability distributions of variables that affect
the strength resulted in the definition of the strength
probability distribution for each beam-column configuration.

An existing computer program to calculate the nominal
capacity of composite beam-columns was tested extensively
and modified wherever required. The nominal capacity was
based on the specified geometric and mechanical properties
of the column components and on the equations given in the
North American building codes. The same column configura-
tions that were used to define the theoretical strength
probability distributions were also checked for their
nominal capacities. By comparing the ratio of theoretical
to nominal strength between various column configurations,
the component variables having significant effects on the
strength were defined.

6.2 CONCLUSIONS

The strength variability of composite columns is primar-
ily due to the variability in concrete mechanical properties
for compression failures and the variability of the steel
section mechanical and geometric properties for tension

failures.

6.2.1 Short Columns

The ratio of theoretical strength to nominal strength
(strength ratio) of short composite columns (kl/r <22) was

influenced most significantly by the specified concrete
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strength, the ratio of area of structural steel to gross
area of the cross-section and the end eccentricity ratio.
Beam-columns with slenderness ratios at the code limit of
kl/r =22 produced lower strength ratios than the correspond-
ing cross-sections. The magnitude of the specified yield
strength (f,) of structural steel did not significantly
affect the strength ratios for beam-columns with common
grades of steel having f,<50ksi (34SMPa). Strain-
hardening of the reinforcing and structural steel in a com-
posite column enhanced its strength only at and near the
pure bending condition. Quality control of the concrete
significantly influenced the lower tail of the strength

probability distributions of the beam-columns studied.

6.2.2 Slender Columns

The ratio of theoretical to nominal strength of slender
composite columns (k{/r>22) was influenced most signifi-
cantly by the slenderness ratio, the ratio of area of struc-
tural steel to gross area of the cross-section and the end
eccentricity ratio. Both the slenderness ratio and the end
eccentricity ratio have little effect on the strength ratios
of columns with end eccentricity ratios greater than 1.2.
The specified strength of concrete influenced the strength
ratio only for columns with a slenderness ratio (ki/r) of
less than or equal to 33. The lowest strength ratios were

obtained for columns with slenderness ratios less than or
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equal to 33 and the highest ratios were found for columns
with a slenderness ratio of 100. Beam-columns with struc-
tural steel yield strength of 50 ksi (345 MPa) produced
lower strength ratios than those produced by beam-columns
having lower yield strength of structural steel. Strain-
hardening enhances the strength only at and near the pure
bending condition. The quality control of the concrete
significantly affected the lower tail of the strength proba-

bility distribution of the column.
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LIST OF SYMBOLS

flange width of structural steel section.

.depth of neutral axis measured from compression face

(Figure 3.1)
depth of structural steel section.
eccentricity of axial load at column ends

eccentricity ratio
deflection of slender column at mid-height

total eccentricity of axial load at mid-height of slen-
der column

specified yield strength of reinforcing bars
stress in concrete

specified strength of concrete

mean 28-day in-structure compressive strength of con-
crete loaded at a rate of R.

mean 28-day in-structure compressive strength of con-
crete loaded at a rate of 35 psi (0.241 MPa) per second.

modulus of rupture of concrete

mean value of modulus of rupture of concrete in struc-
ture.

specified yield strength of structural steel.
critical column buckling stress.

static yield strength of structural steel.
dynamic yield strength of structural steel.
upper yield strength of steel.

lower yield strength of steel.

static ultimate strength of structural steel.

overall depth of composite section.
slenderness ratio of column.

effective column length factor (equal to 1.0 in this
study) . -
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column length.

radius of gyration.

flange thickness of structural steel section.
web thickness of structural steel section.
area of one flange of structural shape (bi).
area of web of structual shape(w(d-2t)).
gross area of cross-section.

area of structural steel section.

factor to relate actual bending moment diagram to an

equivalent uniform bending moment diagram (taken equal
to 1.0 in this study).

perpendicular distance from plastic centroid of column
to neutral axis (see Figure 2.6).

initial tangent modulus of elasticity of concrete.

mean value of initial tangent modulus of elasticity of
concrete test cylinders loaded at rate R.

mean value of initial tangent modulus of elasticity of
in-situ concrete loaded at rate R.

mean value of initial tangent modulus of elasticity of

concrete test cylinders loaded at a rate of 35 psi/sec
(0.241 MPa/sec).

modulus of elasticity of structural steel.
tangent modulus of elasticity of element.

initial tangent modulus of strain-hardening curve of
reinforcing bars.

initial tangent modulus of strain-hardening curve of
structural steel.

modulus of elasticity of reinforcing steel.

moment of inertia.

gross moment of inertia of cross-section.
moment of inertia of structural steel section.

bending moment.

bending moment at mid-~height of slender column.

axial load.
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nominal slender column buckling load capacity.
nominal column cross-section axial load capacity.

probability density function.

theoretical resistance of structural member.
nominal resistance of structural member.

coefficient of variation of ratio of tested to calcu-
lated member strength.

coefficient of variation of laboratory control specimens

due to in-batch variations of material strength and
dimensions.

coefficient of variation of test procedures.
coefficient of variation of theoretical strength model.

coefficient of variation of in-situ compressive strength
of concrete.

coefficient of variation of the relation between cylin-
der strength and specified design strength of concrete.

coefficient of variation in the relation between con-
crete loaded at 35 psi/sec (0.241 MPa) and concrete
loaded at a rate of R.

coefficient of variation of strength of concrete test
cylinders.

‘coefficient of variation of in-situ compressive strength

of concrete loaded at a rate of 35 psi/sec (0.241
MPa/sec) .

coefficient of variation of the initial tangent modulus
of in-situ normal weight concrete.

safety index as defined in Chapter 1 and Figure 1.1.

ratio of depth of rectangular compression block to depth
of neutral axis (Figure 3.1).

absolute value of the ratio of maximum factored dead

load moment to the maximum factored total load moment
(taken equal to 0.0 in this study).

moment magnification factor to reflect the effects of
member curvature between ends of compression members.

strain in concrete.

strain in unconfined concrete at peak compressive
stress.



323

€ e ultimate strain of concrete in compression.

€ sstrn strain at start of strain-hardening curve of structural
steel.

€us ultimate strain of structural steel.

€ys yield strain of structural steel.

€ rstrn strain at start of strain-hardening curve of reinforcing
bars.

€y ultimate strain of reinforcing bars.

€ry yield strain of reinforcing bars.

¢ curvature (inclination of strain gradient) or design
code understrength factor.

O, curvature at mid-height of slender column.

0, curvature at column ends.

P, ratio of area of vertical reinforcing bars to gross
cross-section area.

P ss ratio of area of structural steel to gross cross-section
area.

O rw residual stress at centroid of structural steel section.

Orpt residual stress at flange tip of structural steel sec-
tion.

0t residual stress at juncture of flange and web of struc-

tural steel section.



