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ABSTRACT

The main contribution of this thesis is the
presentation of the theory of electrons in metals leading
to the theory of superconductivity in a lucid form. The
generalvform of the Hamiltonian of a metal is derived in
the second quantized formalism, The Frohlich transformation
which describes électron—electron_1nteractions via the
lattice is discussed in detail and account is taken of
electron screening by introduction of plasma modes, The
BCS criterion for the occurence of superconductivity 1s
discussed and the BCS reduced Hamiltonian is obﬁained.
Finally, a dritical summary of the various approximations

| nade in the thedry is given,
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CHAPTER I
IN TRODUCTION

The aim of this thesis is mainly pedagogical. The
theory of electrons in metals leading up to the modern theorj
of suberconductiviﬁy, as it is presented In the current
literature, presents a formidable barrier to a graduate
student beginning work in this field. Unfamiliar concepts,
obscure approximations and lack of detail in calculations
present difficulties which require a considerable amount of
effort to overcome, It is hoﬁed that this thesis will provide
ecasier entry to the subject than has heretofore been possible.
The second purpose of this work is to provide a critical sumary
of the numerous approximations which have been made throughout

the theory.

It at first appears that superconductivity is a
purely electronic phenomenon and is independent of the lattice.
There is no appreciable change in the structure or other
properties of the lattice in the transition to the supercon-
ducting state. In addition to the disappearance of all d.c.
resistance below a critical temperature T,, certain thermo-
dynamic quantities behave discontinuously at the transition
temperature, These indicate that a phase transition involving
the conduction electrons occurs between the normal and super-

conducting states. F. and H. London(l) in 1935 developed a

(1) H.London and F,London, Proc. Roy. Soc.(London) AlL9, 71(1935);
Physica 2, 341 (1935).
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satisfactory macroscopic theory of superconductivity which
adequately described the electrodynamical properties of

superconductors,

‘Early attempts to construct a microscopic theory
based on the electrons in a metal met with little success,
It was felt that due to the large mass of the ions in the
metal relative to the mass of the electrons, the moblility of
the ions would be too small to contribute at all to superconQ
duetivity. It was generally felt, that some purelytelectronic.
éffect had hitherto been neglected in the theory of metals,
end that consideration of this effect would satisfactorily
explain superconductivity. However, in 1950, Frohlich(l)
proposed a theory based on the interaction of electrons with
lattice vibrations. He predicted an "isotope effect", in
which the critical temperature T, was dependent on the mass

(2)

of the lons composing the metal., In the same year, Maxwell

(3) et. al. independently discovered this isotope

end Reynolds
effect experimentaliy, thus confirming Frohlich's hypothesis
that superconductivity is related to the interaction of
electrons with the lattice. Frohlich's 1950 theory of super-
- conductivity was based on the electronic self energy, arising

from the electron-phonon Interaction, using perturbation

(1) H. Frohlich, Phys. Rev., 79, 845, (1950).
(2) E. Maxwell, Phys. Rev., 78, 477 (1950).

(3) Reynolds; Serin, Wright, and Nesbitt, Phys. Rev,,
18, 487, (1950).
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. theory and failed to account for superconductivity. In the

same year, Bardeen(l) independently performed a similar

calculation using a variational method.

(2)

In 1952, Frohlich described a canonical trans-
formation of the Hamiltonian of a metal, neglecting the
electronic coulomb interaction, in which the electron-phonon
interaction led to an effective interaétion between electrons,
He showed that an attractive interaction was possible between '
electrons due to interactions vié the vibrating lattice., This

(3)

method was later extended by Naka jima to‘take account of
the coulomb interaction. In 1952, Bohm and Pines(u) using
cléssical methods had shown that a dense gas of electrons
contained collective (plasma) modes which tended to screen the
field of individual electrons and that for long wavelengths,
this collective motion was predominant, while for short wave=-
lengths the individual particle aspects were important. These
authors developed a quantum mechanical description of this

(5)

phenomenon in 1953,”’ which was extended by Bardeen and Pines(é)
in 1955 to take account of the coupled system of moving
electrons and ions, They found that the long range coulomb

interaction no longer appeared in the Hamiltonlan but was

(1) Bardeen J., Phys.Rev., 79,167,(1950); Phys.Rev.,80,567,(1950)
(2) H, Frohlich, Proc. Roy. Soc.{London) A 215, 291,(1952)

(3) Nakajima 3. Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, September 1953,

(4) D. Bohm and D. Pines, Phys. Rev., 85, 338, (1952)
(5) D. Bolm and D. Pines, Phys. Rev., 92, 609, (1953)
(6) J. Bardeen and D, Pines, Phys. Rev., 99, 1140, (1955).
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described by high frequency plasma oscillations. Only a short

range coulomb term remained.

In 1957, Bardeen, Cooper and Schrieffer(l)(hereafter
- referred to as BCS) presented a theory of superconductivity
based on the off-diagonal parts of the electron Hamiltonlan

~ derived by Bardeen and Pines. This theory assumes correlations
between pairs of electrons of opposite momentum and spin.

(2)

Cooper had earlier shown that two electrons interacting above

a filled Fermli sphere by means of negative matrix elements could
férm a bound state, The BCS thebry was found to explain nearly
all the phenomena exhibited by supercbnductors.- The theory has

" been criticized because bf the sweeping simplifibations used in

. the calculation, and the difficulty of giving more than vague
justification for these simplifications. A more serious weakness
is that the effective electron Hamiltonian is not gauge invariant
and hence cannot adequately describe the electromagnetic proper-
ties displayed by superconductors. Later work, notably by

(3) (4)

Anderson and Rickayzen has partially answered the question

of lack of gauge Iinvariance.

Chapter II of this thesis begins with a discussion of
the adiabatic approximation and its range of validity. The

adiabatic approximation assumes that the electrons follow the

(1) J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev.,
108, 1175, (1957).

(2) LN, Cooper, Phys. Rev. 104, 1189, (1956).

(3) Anderson P.W., Phys., Rev., 110, 827, (1958);
Phys. Rev., 110, 985, (19587.

(4) Rickayzen, G., Phys. Rev., lli; 817, (1958).
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motion of the ions at all frequencies and hence any interaction
between them is velocity independent. The general form of the
Hamiltonian of a metal is derived making use of this approxl-
mation and based on a model in which we consider 1onsuosc111ating
about equilibrium positions and conductlon electrons free to
move throughout the solid without being concentrated at lon
sites, but nevertheless subject to a periodic potential with

the periodicity of the lattice. Use is made of the second
quantized formalism in dealing with both electrons and phonons,
Chapter III deals with the renormalization of the métal Hamil-
‘tonian. We require a model in which we can consider electrons
~largely moving independently of the lattice. Th;s is obtained

| by means of the Frohlich transformation which in effect
reorganizes the terms of the Hamiltonlan by describing those
electrons which contribute to the phonon part of the Hamliltonian
4n terms of lattice variables and those phonons which contribute
to the electronic part of the Hamiltonian in terms of electron
variables. We introduce plasma variables into the Hamiltonian
to take proper account of the long range electronic Coulomb
interaction., Chapter IV deals with the BCS theory of super-
conductivity. Here we have only attempted to show the physical
reasoning for considering pair correlations and we discuss the
BCS criterion' for the occurrence of superconductivity. Chapter
V is a summary of the approximations which are made in deriving

the BCS reduced Hamiltonian.

The bulk of the material of this thesis is embodied

in Chapters II and III, which is the quantum theory of
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intevaction
electronicnin metals in a fairly general form., The purpose of

the thesis has not been to give a review of the theory of
superconductivity since there has been a tremendous amount
of work done on the theory since the original idea of BCS.
Rather, the purpose of this thesis has been to review the
theory of electrons in metals and indicate how the results are

used in a theory of superconductivity.
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CHAPTER II
QUAN TUM THEORY OF ELECTRONS IN METALS

2.1 Basic Model of a Metal

It was first suggested by Drude that the electrical
and thermal properties of metals might be correlated by
assuming that metals contain free electrons in thermal
equilibrium with the atoms of the solld. This hypothesis has
led, after passing through several stages of development, to
the present picture of a metal. The picture is as follows:
the free neutral atoms out of which we construct a metal consist
of nuclei surrounded by closed shells of électrons, which
together constitute the lon ccres, with additioﬁal valence
electrons outside the closed shells. When the atoms are brought
together to form a crystalline lattlice, the ion cores occupy
the regular array of sites which we associate with the crystal
structure of a particular solid., The ion cores will oscillate
about their equilibrium positions and will interact with the
valence electrons which are no longer bound to individual ion
cores but are free to move throughout the solid. These free
electrons, with their wave functions extending throughout the
lattice instead of being concentrated at individual lattice
sites, form a background gas inside which the lon cores move,
This gas 1s a plasma, capable of collective motlion which tends
to cancel the variations in electrostatic potential caused by
the ionic motion. ' The individual electrons can also be
scattered by the motion of the ion cores. One expects also that
the free electrons will tend to screen thelr coulomb inter-

actions with the vibrating ions. We shall now Investigate the
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criterion for considering the valence electrons and the ion

cores as essentially decoupled from one another,

1
The Adiabatic Approximation (1)

From ehergy considerations, 1t appears plausible
that the valence electrons tend to follow the motion of the
ion cores so as to keep the system locally electrically

neutral. If the electrons can effectively follow the motion

“of the ions at all frequencies, the motion of the electrons

will be essentially adiabatic. In other words, we can assume
that the electronic states depend only on the lattice config-
uration at a given Instant and not on lattice d&namics. The
criterion for the validity of this point of view can be
determined by assuming that only small perturbative corrections

arlse from solutions based on the adiabatic,approximation,
The exact Hamiltonian for a metal may be written

where HéL includes the kinetlc energy of the electrons and the

interaction of the electrons wilth the ions. If we consider

the ions to be Instanteneously iIn fixed positions, we have

(1) The argument presented here is from a review article by
G.V. Chester (1961): Advances in Physics, 10, 357 and
is repeated for the sake of completeness,
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for the Schrodinger equation satisfied by the electrons

Hog (B) Y (2/R) = Emtf,, (2/R) (2.2)

where pr represents the set of electron coordinates and R
refers to the.instantaneous positions of the ions., The wave
function Y, (r/R) indicates that the electronic state is
dependent on the instantaneous positions of the ions, The
exact Schrodinger equation for the complete system cén be

written A .
1D, 8. P.. | | (2.3)

where(izw\is expanded in terms of the complete set of

functions an as follows:

k<£ln= Z;:}LW“NJB)LHM-(E/B) | (2

If we substitute this expression into (2.3) and make use of

(2.1) we obtain

(Fort Hion )3 Lmd EYAE/R) =&, 2 YomdRIPal/R)  (2.5)

We now allow for motion of the ions, We have H&na= Tiom + WO“

where Tion , the kinetic energy operator for the ions is

given as

it

X ‘
T, -t 5 U
b o %‘ & (2.6)
We have assumed a monatomic crystal so that all the ions have

the same mass., We multiply (2.5) on the left by Lku?(g[g)

and Integrate over the electronic coordinates to obtain
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R R R

In obtaining this result we have made use of (2.6). If we

now let

Apw = -%%qum % ng. LP%' dr. \7@3
and | | (2.8)
we have

(Tigm * Viom *+ Enp * B""M)xwm+%,cmwy-mw= S Ln (2.9

where we have let C,nw = A0 + Bawe

Equation (2.9) 1s a matrix operator equation of the

formﬂ ]2,,,\ g",w\ '_)LAM where %Mstands for the column vector
C ')stq ) XM-.-'" X/»ww\, R ] and ﬁ/ has matrix elements
d= (Tgop + Von + En+ B%W)(Smm; + Chn'e If we set
Cond= O our matrix operator is diagonal. Each )?_,M which is a
solution has therefors just one non-zero component. The
expanded wave fuﬁction (2.4) has therefore just one component
for each value of wy, @M-JX;MM%. From the discussion
preceeding (2.2) 1t can bé seen that for this case the elect-
ronic motion is completely adiabatic, since the wave function
for the electronic system ls the same electronic wave function
which we wrote when we considered the ions instantaneously at

rest. The C,,W; are the terms which lead to non-adiabatic
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motion. We shall now obtain an estimate of the importence

of the non-adiabatic terms by employing perturbation techniques.

If we treat the C,, . as small, then to first order

of perturbation theory

v (o) :
S}LM = 4247 %fv%%ﬁ - (2.10)

where S,Y—M\Mis the non-adiabatic distortion of the wave
function )(,fmﬂ and )(,,MM: is a solution of (2.9) with C”\Mf :34,\/
set equal to zero., If SX,,MM is small compared tojb,mm, the
adiabatic approximation is valid. 5 x,w.,,\ will be small 1if

CMM,Y’,‘;%, is small compared to a typical energy denominator.

We shall now estimate the order of magnitude of

wal/,::)w. We consider AMWXM\M' which equals

Z‘ <// dr.Vﬂ,' co) ;o We can replace - %VE}

by the velocity operator _\_r_} of the jth ion. In order to
obtain a reasonable estimate we shall replace y_} )L::?M: by v,
the mean value of the velocity of the ions in the lattice.

We therefore have

EAMM,] éﬂ?,z[. %-.V% . dr | (2.11)
)

We consider now the Schrodinger equation

Hef, L")”b/ = E.Ml

which on writing He..Q, explicitly becomes
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{”%V;““ Vint (E/B)}' P (2/R) = Euy Yo (2/R) (2.12)

Viwr 1s the electron-ion interaction and enters this expression
since H,y contalns this interactionvas well as the electronic
kinetic energy. If we operate on this equation with Z;VE§

and then multiply on the left with Y/ % and integrate éover

the electron coordinates we obtain

7 [y v ar = T L Vgl (2.23)
3

As the ions in the lattice move about, the potential energy of
the lattice is changed by a small amount., Thls extra
potential will introduce a distortion of the electronic wave

functions., We can expand the electron ion interaction term as

%Vm (z/R;) = %Vm <y5§) + %‘(B‘é - B—f )-ngvm (z/_f_z,;) P

where E'? are ‘the ion equilibrium positions. We assume we
need only consider the first order termé as contributing to
the extra potential., For a reasonable estimate of the effect
of this term, we replace (R, - R.) by A, the average dis-
placement’of the ions from equilibrium. Using this value,

the distortion of the electronic function ‘kk» becomes

S, = }Z,Z_. ZV" Vi Jonod )y (2.14)

M""EM
from standard first order perturbation theory,

For an appreciable distortion of the electronic

wave function we require that
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w7 EM

If we combine this with (2.13) we find

Zf V&J -~ 3 (2.16)

wherelﬂ i1s the average distance the lons have to move to
produce an appreciable distortion in q{“. If we were to follow

a similar procedure we would find that B, . 1s small in

magnitude compared to A e We have therefore’ that. .G, ,:34
‘E T ()]
T -

We now consider the energy denominators of (2.10),
The matrix elements C, . connect states that differ by single
electron excitations, The Pauli Exclusion Principle forbids
all transitions except those from an occupied to an unoccupled
state., The majority of such states have an energy separation
of the order of 7t, the Fermi energy. For most transitlions,
E v - Ep will therfore be of the order of?l'. This is not
true of transitions from just below to just above the Ferml
surface, but the number of occupled states just below the Fermi
surface is small, For the case where the denominators are of
the order of the Ferml energy we have

Cor ! h¥
Al 4 Wi 4

Eg=En - ]T7i

We lmow that Vv v~ 105 cm/sec,71 «~ 5 ev, and { cannot be

much less than Zl.O'8 cm. Using these values, we find that
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1’4..

Smaal o~ 2 x 10'3,
U
If this estimate is correct, then the non-adiabatic correction

to the wave function is very smail and the adilabatic

approximation is valid.

We 'mow wish to estimate where the adliabatic
approximation. breaks down. Non-adiabatic terms have to be
considered if the distortion Sx/mis of the same order of-

magnitude as](ijlx; 1f Cmaw « 1l. TUsing the above

By = Eum

values for ¥V and { we find that this occurs when

\Ew - EM‘ & 10~k ergs 7 R Wamon

where (Wmay 1s the maximum lattice frequency. We therefore
define a "danger zone" of electrons that lle with1n130)~w*$
of the Fermi surface. Since the adiabatic approximation
loses validity in this "dénger zone", any property of.the
s0lid which depends on these electrons must be calculated by
taking into consideration the non-adiabatic terms in the

equations of motlon.

Derivation of the Hamiltonian

(&) Preliminary Discussion

If we assume that spin-orblt and spin-spin |
interactions of the electrons can be neglected, we can

write for the Hamiltonian describing a metal
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2
BT 7 e 5 B * et Goa.2)

The subscript i1 labels the valence electrons and j refers to
the ions. In this model, we are assuming that the valence
electrons are completely separated from the closed shells of
bound electrons which make up the ion cores so that there is
no exchange between these two groups of electrons. If we
consider N ions in our metal, for electric neutrality we
require zN valence electrons where zvis the valence of the
atoms forming the metal. The first term of (3.a.l) 1s the
kinetic energy of the valence electrons and the second term
represents the interaction between these electrons and the
jon cores., We are assuming that this interaction energy is
independent of ion velocities by consideriné an interaction
which depends only on the instantaneous positions of the 1lons.
We are thus in effect using the adiabatic approximation which

was discussed in the preceeding section. includes

Hipn-tow
the kinetic energy as well as the coulomb and exchange
repulsion of the ion cores. Hc&uQ represents the coulomb

interaction of the valence electrons.

In order to eliminate infinities in the separate
terms of.eq. (3.8.1), since we shall be considering an Infinite
crystal, we suppose that there ls subtracted from the electron=-
jon interaction the interaction of a uniform negative charge

with a uniform positive charge, from the electron-electron
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interaction the self energy of a uniform negative charge, and
from the ion-ion interaction the self energy of a uniform

positive charge. The positive charge density can be written as

Copn @) = Qi + Piow ()

where e%;; is constant and represents a uniform positive charge

density. Also we can write for the negative charge density

_ o o
e‘ﬂ (r) = GQQ + fd (x)
Since the system is electrically neutral, edf = -(JQ:A s

The total energy which we are subtracting i1s given by
plavar! (Pun)’ + 3| avar (Pa )" + [ av azxi( ?gg"g,';a )
[z EEE ERR

It can be seen that the total energy subtracfed from the

separate terms of (3.a.1l) exactly equals zero. In the Hamiltonian
(3.2.1) therefore, He,.p iIs actually the coulomb energy of the
valence electrons measured relative to the self energy of a
uniform distribution of negative charge and Higya-isin contalns

the coulomb energy of the ions measured relative to the self

energy of a uniform distribution of positive charge.

Tattice Vibrations

We‘consider a set of identical, charged, small
ionic cores interacting through repulsive forces, largely
Coulomb, We shall assume that we have an infinite lattlice

made up of these cores so that surface effects may be
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neglected, and we shall impose periodic boundary condltions
on our systeh. We shall assume further that the minimum of
potential energy of a lattice of ion cores devoid of valence
and conduction electrons corresponds to a lattice configuration
jdentical to that of the real crystal, If this 1s not true,
then small oscillations of the "empty" lattice about the

real crystal equilibrium sites cannot be defined. Since we
wish to describe these oscillations in terms of normal modes
we must assume the existence of this minimum of potential |
energy. In deriving the Hamiltonlan which describes the
lattice vibrations,or the phonon Hamiltonian, we shall employ

a method similar to that of Peierls.(a)

We let u. be the displacement of an atom from
its equilibrium position 5; . §f> is the equilibrium

1

position of the jfth lon relative to the origin. Then
= S R. =R.: = B.'o (3.b.1)
°f f S
If we let U, be the potential energy of our system at
equilibrium including the self energy of a uniform positive
charge, we may expand the potential energy U in a Taylor

serles:

P_ ll_' + ] ) ° ® [ (30b02)

]

U-Uo Z_iz /u u %ﬂ T"“k

(2) Peierls R.E., (1955): Quantum Theory of Sollds.
(0Oxford: University Press).
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where A and % are tensors o& second and third rank respec-
tively connecting the components of the vectors which follow,
The subscripts in this equation refer to the positions of

the ions and not to the coordinate axes, The ratio of A to

B has dimensions of length. For reasonable forces we assume
that this ratio is of the order of the ionic spacing. If

the ionic displacements are small compared to this distance,
we need only consider quadratic terms in the expansion for
the potential energy. There are no linear terms in the
expansion since the first derivative must vanish attequili-
brium. Since the tensor Aif is related to the force constant
between the ilons at positions j and j', 1f we assume that

the forces between the ions depend only on the relative
~distances between the ions and not on directions of displace-
ment, the tensors A are symmetric in their indices. Consid=-

ering only quadratic terms in the above expansion we have

U -1 L§ Ay (3.b.3)
° o A et
from which, employing Hamilton's classical equations of
motion, we obtain the equations of motion for our system
L X} ‘
Mu, = = A eu, ' , oDo
H& ;};— -::d—l*' -Jl (3 LL)

where M 1s the mass of each of the identical 1lons.

We now wish to determine the normal modes of our
system, that is vibrations in which all ions oscillate with

the same angular frequency, 2 radians/second. These normal
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frequencies, which are determined solely from ion-ion
interactions, will not be those of the real crystal which
contains many conduction electrons, The presence of the
electrons in the real crystal alters the lon-ion interaction
and leads to a renormalization of the normal frequencles.
This point will be discussed in greater detail at a later
stage. We vevipy that the ions all have the same amplitude

of oscillation but differ in phase, We therefore write

EJ" S 1-1?3}0 U, Eo B (3.b.5)
where k is some vector to be determined from periodlec

boundary conditions, _13_; is again a vector from}the origin

to the ion at the lattice site specified by j, Eo1s a wnit
polarization vector and u, 1is the amplitude of the displace=-
ment of the ion occupying the site j = 0 at t = 0, On

substituting this expression for u. into (3.b.L) we obtain

T
the equation
’ o

M.0* €o= %"ém" & ei}f.'(.B_g - E; ) (3.0.6)

In order to obtain the correct values:.for k, we apply our
periodic boundary conditions, If we consider a cube of

volume V and length L, the components of k must satisfy the

ik,L
s e:i.k,z,L - eikgL

relations e = = 1, The components of X are

therefore real and are given by 2Tin, , 2Wn, , and 2T ny
L L L

where n,, n,, and n, are integers. It can be seen that the
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vectors k and k' refer to the same normal mode of vibration

if (k - E')°5f° is a multiple of 2T for any J. If we
] 19-R

©
introduce reciprocal lattice vectors g such that e f =1

for any j, any two vectors k and k' are equiValent in defining
normal modes if they differ by a lattice vector of the reciprocal

lattice,

Since there are N independent values of k in the
fipst Brillouin zone we have 3N independent modes ofv
vibration, There are three different modes of vibration
for each value of k which are solutions of (3.b.6), since
this is a vector equation and the A are tensors of second
rank, In general, these solutions have different frequencies
. We label these solutions g.(k,qd ) and 2 (k,q ) where
g~ takes on values 1, 2 or 3. We can express the most
general displacement as a linear superposition of particular

solutions with arbitrary coefficients.
- k + ikeR’
u. = ZCJ’Q\G‘ e i_Q_(__,G")t 1x s ..‘.lo(_lin‘l‘)go(.ls,r)
¢ ko - )
For the sake of convenience we write this as
_ - ikeR?° ‘
u. = (M) gqm.m o' E°2 £, (k,7T) (30b.7)
& ke
where qy - (8) = ag (0) e HHETIE on substituting
(3.b.7) into (3.b.L) and making use of (3.b.6) we find

that qkq,(t) satisfies the equation .

e O ] gye= o0 (3.5.8)

>

which agrees with the time dependence above. If we assume
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that () (-k) =) (kx), we find that g£,*(k,07) = E.(-k,s)
by taking the complex conjugate of (3.b.6) since Aj’}l is
necessarily a real quantity. Also, since the lonic displace-

ments are real, from (3.b.7) we have

Ak = qu,r (3.0.9)

We now wish to show that

ZFM§ & (}5,0") 315-3;} . {ﬁo(}z',c") ei-’f"ﬁi} =0 (3.b.,10)
unless k = k' and ¢ = g-'. We consider first the sum

S = Zei(lﬁ' - -}5)'5; . Suppose each lattice point {of the
crystja;l to be disp.laced by a particular lattice vector 3_’.

This changes every lattice point into another lattice point,
since we are corisidering an infinite crystal, and hence merely
relabels the terms of the sum while the value of the sum

doesn't change. However, each term of the sum is multiplied

[+
i(k' - k)R and hence the entire sum is

1(k' - k)R

by the factor e

multiplied by this amount. We have that S = S e

Either S = 0 or k' - k is a vector of the reciprocal lattice.

For the sum not to vanish, k and k' must be equivalent. There-
- 1(k' - k)R _ xS '

fore S = Ze = ='"=p = Nog g for a lattice composed of N

ions, We r(ow consider M £%(k, 7). gc(_lg_,q"’). We multiply

(3.b.6) on the left by £X*(k,T) to obtain
MOk, ) EX(k, )+ Eolk, @) = Zgo**(lc_,ﬁ‘)-éﬁ-é’,(_k_,a-')ei}?(ﬁ;- B.}?
¢

‘I‘akihg the complex conjugate of this expression and inter-

changing ¢~ and g’ we have

MO, £k, o E.(k, ) = 5 E£0%, ) <Ay e &k, o-1ke (R~ R)
& e d’,’ Co :3-3 & d/ ¢
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Since é&j‘ Depends only on the relative positions of the
ions we have that é&ﬂ = %ﬁj . Also since 59? 1s symmetric

in its unwritten spatial indices we have that

ol @ ) ehy €a (B @) = Lol )by Eu*(k, )

——

Since we are considering an infinite crystal, we can
consider the ions as symmetric about any ion j. Therefore

on subtraction of the above two expressions we have -
2 < .
M [_O. (k,') =00 (_15,0‘)] Eoull,T)e E,(k, ') = 0

We see that (3.b.10) is true provided (17(k,o ) #L1*(x,o').
If more than one normel vibration for a given k-have the

same frequency, the g (k,d7) are not uniquely determined
since the set of linesr homogeneous equations (3.b.6) has
more than one independent solution. In this case, we choose
our basic set of solutions such that (3.b.10) is true if

kx# k' and o # ¢'. We have therefore the result

1keR. ] % ' i1kt +R? N g . v
ZM{_&o(g,a-)e =2 el Eokr, 0 Vet S = NMoy pr ogggr (3.De11)
&

We wish now to relabel our equations by letting
2 stand for j and the three space directions and ¢ stand

for k and o . ,5v( 50) is then one of the components of

[~}
_cc_,‘_‘“(.g,q")ei-]fE B} . Instead of (3.b.ll) we write for the

orthogonality relation

M Ex(@)E (P =S (3.b.12)
% &y §0£z/§0 B opyr
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and the most general form for a component of dlsplacement

for a given ion may be written in analogy with (3.b.7) as

o

u, = (NM) -

T o) EAP) (3.b.13)

If we multiply this expression by M &,(¢’) and sum over 3/

we obtain

a5 = 2 / /
ZH grlpuy = 5 EHP) Toaldh &9

which with the ald of (3.b.12) gives )

1
%;M fyee(y) uy, = q(gﬁ)(l\fn\r)B (3.b.1h)
or alyp) = ’(%&T% z;_gy-:e(y) u, : (3.5.15)

Substituting this into (3.b.13) and simplifying we obtain.

w, = %%‘, ENPIZ EFP) v

and since this must be true for arbltrary displacements we

have the completeness relation

4;;5,,(50) Exg) =85, (3.b.16)

We now wish to investigate the energy of the system
of ions, From classical mechanics we can write for the

kinetic energy of the ions

3
i
-

ZMEF = S E(P) dlg) £,(¢) g
? 224

Since gy(-sﬁ) = g}j-::-(f) and q(-SD) = q-::—(sa) we have with
the aid of (3.b.12) that



2)4-.

T

i

3 % Gl @) al @) (3.5.17)

If we revert to our former explicit notation we have

Tz—;—Z_&

—

T | (3.5.18)

If we substitute for 3} from (3.b.7) into (3.b.3) and make
use of (3.b.l.) we obtain

U-T, =

o

Wi

Z'{’Q(Ev C’“)}L | qg@tz | (3_.5.19)

Ra

The total energy of our system is fherefore

e 3 2 {4 o e } apel} (3.5.20)

This expression for the energy resembles the energy of a
set of decoupled harmonic oscillators, We shall make use
of this resemblance to quantize the system. For quantization

of & harmonic oscillator we require the conditions

[{lg(so ), ‘uy/(‘f,)] = %Sﬁyl S?‘q)l (3.b.21)
(5,090, B, (p] = [5,(9), 1, (9] =0

If we make use ofl(3.b.15) we obtain
(@), ()| =2 S E ) E () b,,u
[#().a(90] = § ZE+40 49 [Bmsr]

‘which with (3.b.21) and (3.b,12) becomes
[aee(so),q(@z)] = - thg p (3.b.22)

We therefore see that q(¢) and q( ¢) are canonically
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conjugate variables. We label é*(ff) = p(g) and
. 1
q(?) = p*(y).( ) If we revert again to our former

explicit notation we have

: Ep&g_, q/@',v"l = - i'ﬁg,fj'é& Sq-.oﬂ (3.5.23)

Equation (3.b.18) becomes

=3 Z—p]i:‘r P o . - (3.p.24)
g 0T |
and (3.b.19) is now
2, t
v-vy = g;{fz_ )] a4y (3..25)
”,G

The total Hamiltonian for the system of ions or the phonon

Hamiltonian, is therefore

Hu= % s L
r -

i

s
2@' L '*‘{-(-L(E’ v )} a. q&.v‘] (3.b.26)

We have shown that for each value of X which describes
normél modes, the three different modes of oscillation are
orthogonal., We assume that two of these components are
transverse and that one is longitudinal, If we examine only
the longitudinal component, the phonon Hamiltonian becomes

- 2 an, 2 s
H(,L = 3 ég—(pxé‘ g_@ + ﬂéqg qu) (3.9.27)

P8

Since we have shown that two different k' are equivalent in
defining normal modes of vibration if they differ by a vector
of the reciprocal lattice, in the expression above whenever

k runs out of the first Brillouin zone the 9y refers to the

(1) We introduce these variables in order to establish a con-
nection with the phonon Hamiltonian of Bardeen J. and
Pines D., Phys. Rev. 99, 1140 (1955).
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corresponding k in the first zone. In subsequent work we

shall assume that electrons interact only with the longl-~
tudinal component of the lattice waves. The two transverse
frequencies are in this approximation determined entirely
from ion-ion interactions. Calculation of the longitudinal
frequencies of the real crystal, however, requires considera- |

tion of the electron lattice interaction.,

We now wish to introduce creation and annihilation
operators for the lattice waves. These are required for
facilitating later calculations. If we substitute -k for k

in (3.b.27), since the summation over k 1s symmetric and

since qé = q_{s and pé" = E&_’
= L 3% A 4t
Since HH" is real
= 3 (0¥ p, + (P 0 4 ) (3..29)

, 2 -
We have therefore that ﬂ,k = ,(2._@ = (_Q_‘jﬁ)z; The frequencies
will be real so we take ()g= ﬂ_g= SCli. We define an operator

by and its hermitian conjugate bY as

1 .
by = === (p}" = 1 L1l 9y )
& ‘{2?15133 L At

(3+0430)
. 1 an
bf = —=—— (p, + 1 (L pa¥ )
Solving for py , pﬁ“ , q$ and qf, we obtain the results
(%508 . .
p/g = ‘g > (bg + b—-é)
" h{lk 2
pg - 1/ 2 (b_é' + b& ) | (30b031)
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B y
1A= (b, = b &
q'fS 2.(215('& __&)

il

3% h 3%

Q¥ = 14— (b, - Bf)

p 208 7 %

Making use of the commutation relations for the qg and Pg
we obtailn

o b/_ggfx:] = Si i

and  (3.0.32)

(b&, b‘j = {éf , pﬁ,J = 0

Tf we substitute (3.b.31) into (3.b.27) and note that the

summation over k in this Hamiltonian is symmetric we have
Hoh = Z;—-J‘EQ (bg bE + by b ) | ’ (3.b.33)
Making use of (3.b.32) this becomes

) (3.b.34)

i

H5¢t= ii;#l.fqﬂg( b¥ by
*

We recognize the commutation relations (3.b.22) as those

used to describe Bose-Einstein type particles., The quanta of
energy of the system described by (3.b.34) are called phonons.
bz and by are respectively creétion and annihilation
operators for phonons of wave number k and bz'bﬁ is the

occupation number of the phonon state.

(¢c) Electron - Lattice Interaction

If we consider the electron-ion interaction term

?;y(gi - E})’ which we wrote in (3.a.l), we may following

"/
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(1)

the example of Bardeen and Pines expand this term in
powers of (3} - 5;) about the fon equilibrium sites and

obtain to first order

sz, -R) = Zvlz- R(}) - Z,,(B_j- B,;)‘VR'V(_I_‘,;- RY) (3.c.1)

< j’ =4 s <7 o Ry =~}

| , L L From (3.b.1l) we see that
R, - 3f’¥ u.. If we substitute from (3.b.7) Into (3.c.l) we
hgve / | |

v ( z,- R.) = v(r - R?) -(NM) -3 v(r.- ) e kR
f}‘ = g‘ W Zg& i % 1(3.0.2)

In obtaininglthis expression we have assumed that the
elect}ons interact only with the longitudinal component of
the lattice waves., This assuﬁption neglects anisotropic
effects and is not really valid particularly for short wave-
lengths. The resulting equations, however, are less complex,
We shall call the second term of (3.¢.2) the electron-phonon
interaction Hamiltonian and write

A

Bag= 0075 Eevlz,- B qp o5 (3ue3)
4’3"‘ / -

The valence electrons see a potential V(£) due to

the lons where

(2)

V(E) = Z_V(_?_ = B_'a) (3000,4-)

7 ¢

(1) Bardeen J. and Pines D., (1955) Phys. Rev., 29, 11L4O.

(2} This potentisl is different from that written by Bardeen
and Pines. They consider in addition the subtraction of
the potential due to a uniform positive charge.
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We shall combine V(g) with the kinetic energy of the valence
electrons and write for the electronic part of the Hamiltonian

neglecting the electronic coulomb interaction

nt |
et = Z-[Zm * V(Ei)] (3.¢.5)
A
" In configuration space, the coulomb interaction between

electrons is given as

Ve, -z =37 o — (3.0.6)
¢ aFplzi- g ‘

We shall require if(g) expressed in terms of wave vectors

k. We therefore expand Tf(g) in a Fourler series

Z. R f
Li/)(r) == e_ = 7 Vk/ elE‘ 5‘ (3.6.7)
- r }?‘ o
where we have normalized in a box of unit volume, If we

multiply this expression through on the left by'-/;-ig'g dr

we obtain

Z wike - .
f?._ei-lfr-drz ngei(g' -L-{)-x;dr

r Y3
_ =

= TV bu, 4
%l
2 _

or v, = .(%~ o KL g (3.c.8)

This integral does not converge., In order to evaluate the

Ar into the

integral we introduce a convergence factor e
integral where A 1s a positive real constant. This conver-
gence factor effectively screens the coulomb field of each
electron so that the range of the field is no longer infinite.

We have therefore
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L' *jeﬁ' 1 [oe 4} N e-irkw-/\r
Vi = lewi © dp dwrTdr
£ o J-1]0 | d

- Ao

e LTre* ik |
Lo ¥y | oo -x’v] (3.0.9)

If we now let x go to zero we have

| i |
v, = =52 (3.¢.10)

P

Substituting this into (3.c.7) we have
Yiw = ;%ﬁ’— olker | (3.c.11)

If we collect terms from (3.¢.5), (3.¢.3) and (3.c.1ll)
naking use of (3.c.6) we have for the total electronic part

of the Hamiltonian

i 4 L B
. Ter ik (r.- r:)
+ ’2‘2—, i | (3.c.12)
“apk |
We wish now to introduce the second quantized formalism in

. ¢ 1
which the electrons are described by occupation numbers.( ) We

¥
first introduce field operators g)(g) and ¢(r) which obey the

commutation rules for fermions

B,O?_rj), 90(3')1; Sz - r")

and (3.¢013)

[P, ),

H
SR
s

—~%
3
<
~%
I
s
"
o

(1) Fukuda N., (1960): Brandeis Unlversity 1960 Institute in
» ' Theoretical Physics. (Branéel&,mbc)
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The anticommutation relation is based on the fact that
fermions require antisymmetric wave vectors for their descrip-
tion. In the second quantized formalism, the Hamiltonian

(3.c.12) is written

+fdrdrt Sg*zg)(]g*(zy)z;Z;;ez ei}}_-(E - F_')‘?(Et)sp<£)
* o

- dr{f(b_g) -2'1—?-;9"?(5)
£ .
We label the terms in the first, second, and third and fourth
lines of thils expression as Hpy, Hyt , and Ham4 respectively.
Since Hcguﬁ can be written in configuration space as
the second quantized formalism leads to the third and fourth
lines of (3.c.ll).

We shall choose as a basis for the field operators
the complete orthonormal set of Bloch states related to.the
Hamiltonian (3.c.12). The Bloch functions are a set of one
particle functions Q%E(g) for the electrons which apply to a
crystal with the ions fixed in equilibrium positions., The

Bloch equation for the one particle functions 1s given as
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[I%mf + V(g_)]‘-}/,ﬁ(g) = Eg “V,ﬁ(_r_‘) (3.¢.15)

where V(r) is defined in (3.c.l) and V(z +1) = V(r) where

L is any lattice vector. The Bloch theorem states that
iK' B B
%(2 + L) = e 4 ‘H_A_r;) | (3.c.16)

The electrons are described-in an extended zone scheme so
that the wave vector K is not neceséarily in the first
Brillouin zone. For free electrons the Bloch functions are’
normalizéd plane waves, However, for electrons in A periodic
lattice

‘H_s(g) = oKL u(r) .' (3.c.17)

where u,(r) is a function having the periodicity of the
lattice such that u, (r + L) = u (r). The functions LH<(£)

are orthogonal in the sense that

ft{)&*(_r_) S{{E,(g)dr = SK”S; . "(3.c.18)

-

In these expressions we have assumed the Bloch functions to

be normalized in a box of unit volume.

We now expand the field operators g)(g) and q7%(£)

in terms of the complete set of singie particle Bloch functions

O2) = 7 oy Ylz)
%k Tk
il (3.¢.19)

()0*(3) = 5 okt Yx(r)
- T

Making use of (3.c.13) and (3.c.18) we find
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[1-2’-’ cﬁi = S'S.Lé'

and (3.¢.20)
[F&, c;l+ —\“cz, ciﬁl+ =0

c, and cg are respectively annihilation and creation operators

—

for electrons in the state K. The product ci ¢, is the

occupation number of the electronic state K.

If we make use of (3.c.lly) and (3.¢.19) we find

that (
1 Z
= | Sexn 3
nem [Sop o0 (B ] o) o

which with the aid of (3.c.1l5) and (3.c¢.18) becomes
Hyg = Z_E. °f o (3.c.21)
ol
We also have
iy = -0 [ ox o Vi[5 £07v(e - BNa, e EE |Har (3.c.22)
M by - ZCE’ E [SI‘ %" Et - __} qu ] J‘ K OCO
&&, H= ¢ -

If we change the origin of the j'th term to 3; we have,

making use of the Bloch theorem (3.c.ll), that

. — . - t)e ?
i = =(00 [ 5o o 7 Gzt | %?euz e o
S KK - “-' Q - f
. € % . (303023)
This last sum vanishes unless
k+K-K'=g (3.c.24)

where g is a vector of the reciprocal lattice including zero.
Since we are considering our Bloch functions in the extended

zone scheme, k assumes all values. We therefore have that
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= 5 an
HM"‘ L_Cﬁﬁg GK q/& V"‘IE

where v,;,/k is defined as

vd, = -7 “h{zi g Gviz - B 75 }LP ar

%

RBardeen and Pines assume this coefficient to be independent
of K. In other words, the electron-phonon interaction is

independent of the electronic state. They write therefore

ca= S v ( ‘
| HM—' C k (jgf-é, GE' q/é V& d (3.0.25)
here
. L
vh = -(NM) 2-((/?*-:5( Epe Vﬂv(_xj_ - R’ e” kR, }‘-{J dr (3.c.26)
- cT ok ~d s
With the aid of (3:.0.111,) and (3.c¢.19) we obtain the coulomb
term » _
, ,
- L g‘-:‘-Ti-— S ar S 2, 1-]£{-.£ '
Hoq = z; % dr'dx"‘é{_'_:_K ?ﬁ» °F c&ch{%& (r) e t{{s“‘(z‘_)
= LISy %
R (3.c.27)
, -ik‘I" 1 Tez
EYa ] . - ] - S
x L!?;(_lz ) e 4/&’(_1; )} = E'ZEQ'————-W o o

If we shift the origin of eack of these integrals by a lattice

vector and again make use of the Bloch theorem as above we

obtain
He, = %[;_A'fﬁ‘-;_—e— drdp? .g__hc_ —::- 51+&CE‘_&{L{J&‘%(E)eil&_oﬁqérg(g)
r Qrene BTG o] -1 T 4Rl G
= % Z__Mé’ CF CF CyekCuk ~ §-L,M e o (3,6.28)
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[R
Lwe -
For free electrons Mg is equal to ~yz  and is the Fourler

coefficient for the expansion of the coulomb energy. If we

make use of the commutation relation (3.¢.20) we have

Heoop = 17 M,};’ e ¢ ZM cit ¢ (3.¢.29)

Kok K
J,{S'.Ki)EZ EZ s

The second term on the right hand side of this expression can
be combined with (3.c.2l) to give a constant, additive

(infinite) term to the Bloch energies E .

Tn configuration space the density of par%icles is
given by f>(£) ZL_S(P - r;), where N is the number of
particles per unit volume. In the second quantized formalism
it can be shown that the density operator is equivalent to
{D(_r_) = LP*(E'_) 30(;:). We define the density fluctuation

operator as the Fourier transform of 6 (r)

'@i:ff () e;iE.E ar | (3.c430)

In the second gquantized formalism, making use of (3.c.19)

‘this becomes

-iker '
?‘g& = Zf'-cZ(:-l CK LPKI.::‘(..I:.) e - ‘H( (£) dr (300031)
k& - -

Employing the same argument used to obtain (3.,c.28) we obtain

= oo oo @ ) TR (2) ar

O= 2 o o (3.0.32)
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The term in k = O corresponds to a uniform background of
particles since(f%>= N, the average particle density for a
vox of unit volume. We note that €,4&= PJ.S* = 2;%«- Cy b °
For electrons in a periodic potential, (3.c.32) does not
represent the density fluctuation operator. However, we shall
employ this notation keeping in mind that qu is not an actual
density fluctuation operator unless we are considering free
electrons, Making use of (3.¢.32) in (3.c¢.25) and (3.0.29)4
we get ' | |

H. = S "" - - ’V eVe
ot = £V f-k . © (3.¢.33)

and

i

Hepg = %M;(D_@ P _ © (3.ce34)

Making use of the expression for qp in (3.b.31) we have

Hut = %i{?ﬂ@(b& =) v Pk

H
(%Y
N
ol
m-,_\
ms,. .
g
Y
1
\
-
7?6‘
1"

Ht‘mi- = i Z;(Dé b& Pg(‘ - D)S'X' bﬁ' ?,k) (300.35)

where the elements Dy are glven as.

Dg =lz}§%k Vg (300036)

() Summary

The final Hamiltonian of the system can be written
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as in Bardeen and Pines

H= M, + Hy, + Hep (3.4.1)

.
where from equations (3.5,27), (3.c.21), (3.c.33) and (3.c.34)

B= 27 (5 B ¥ A )+ T_E.oF o (3.d.2)

The first term on the right hand side of this expression, or'
the longiltudinal phonon Hamiltonian, was derived by considering
only ion-ion interactions. This expression will be renormal-
ized when we deal further with the electrons in interaction
with the iattice vibrations, Ht& 1n'(3.d.1) represents the
transverse lattice vibrations and is uniquely determined from

ion-ion interactions since we have assumed that electrons .

interact only with the longitudinal component. H ., . o
represents the interaction energy of the ions at thelr
equilibrium sites., In subsequent work we shall be only con=

cerned with H,. If we write H; in terms of phonon creation

and annihilation operators we have that

. & ", < e,
E 2 .
(3.4.3)

1 77;4%; by - D vppw + B2 M flu e
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CHAPTER III
RENORMALIZATION OF THE ELECTRON-LATTICE INTERACTION

3.1 Motivation for Renormalization

In Chapter II we derived the phonon Hamiltonlan
by considering only ion-ion interactions. We mentioned,
however, that the presence of the valence electrons in the
lattice will affect the ion-ion forces and lead to different
phonon frequencies. The vibrating lattice affects éhe
electronic states as well, so that the valence electrons
cannot be treated‘éimply as a frée electron gas, We now wish
to reorganize our Hamiltonian in such a way that part of the
phonons contribute to the electronic pabt of the Hamiltonlan
and part of the electrons contribute to the phonoh Hamiltonian.
Mathematically this can be done by means of a unlitary trans-
formation which effectively introduces néw lattice variables
in terms of original lattice and electron variables and new
electron variables in terms of original lattice and electron
variables. In this way we can obtain a description of the
system in which the electrons and the ions are to some extent
decoupled from one another and the-electron lattice interaction
is as small as possible, If we consider a new phonon variable
b% where

4

where U depends on original lattice and electron variables
then bj‘e contains contributions from the originalglectvon

-

= Ubyu™
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variables as well as the original dattice) variables.
Similarly, the new electron variables include contributions
from the phonons. If we express the transformed Hamiltonian

in terms of original variables, the requirement that the
electrons and phonons be decoupled will lead to renormalized
phonon frequencies and the electron-phonon interaction will
contribute to an effective electron-electron interaction.
Frohlich(l) first performed a unitary transformation‘of this
form in which, however, he did not take account of the electron

(2)

coulomb interaction; Nakajima introduced a method by means
of which the coulomb interaction could be accounted for as
well. In section 3.2 we shall perform a transformation using

the methods of Frohlich and of Nakajima,

3,2 Frohlich's Canonical Transformation

The starting point of this section is the Hamil-

tonian which was derived in Chapter II, equation (3.4.3)

n e Tt o 470 b0 B
e = - = Rk
- (2.1)
' ‘ R 2
+ iZé_(D‘éb/geé:' -Dé‘wb:ﬁ;‘cﬁ) + %Z;M& ?_&6&

We wish to transform this Hamiltonlan so that our system will

(1) Frohlich H, (1952), Proc. Roy. Soc., &, 215, 291,

(2) Nakajima S. Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, September 1953,
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be described by electrons and phonons which are essentially
decoupled from one another, If S 1s an operator satisfying
S# = =3 then eS is a unitary operator.and we can perform &

unitary transformation of the form

H = 3t .8 . =8 S (2.2)

{
o
o
@
o
o
u 3]
o

H is the transformed Hamiltonlian and describes the same system
as H', If we expand the exponentials in power series we have

t

2 2
=(1’S+%...)H'(1+S+%+ooo)

which on gathering terms becomes

}-[S',H'—_l +. %[S,[S,H']l + e e e | (2.3)

where the brackets represent the usual commutators,

Frohlich considers a form for S which is relatively
simple and well suited for the calculation (2.3) using the

form for H! given in (2.1). He considers

%;s& where Sy, = -\f&b& +Yl_«*b1§ = -5 (2.4) ;

]

and Y/&

%Cp(ﬁ,_}_{) % kg

Y+

P-4

TPHEL oy e @

qb(K k) is a c number which is assumed small, of the same

; making S small also,
order of magnitude as the D&aA and will be determined in such
a way as to approximate the model which was discussed in

section 3.1 as closely as poséible.
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If our transformed Hamiltonian is to give &
physically reasonable picture of the metal, the terms in
b} by in the phonon variables will describe normal modes,

We thus assume that any reasonable transformed wave function
which describés the system will give neglligible expectation
values for other quadratic terms such as bZ, ngg, pg bg,
etc., where k # k'. If we follow this hypothesls then we can
neglect terms with S&Sg if k # k'. From (2.3) and'(é.u) we

have therefore .

new s 3 (] - 3 (spnl]fs - - - @

This calculation can be performed using the Hamiltonian H!

as it is written in (2.1). The éalculationlis more amenable

to direct physical interpretétion, however, if we modify H!

as wasAdone by both Frohlich and Nakajima by introducing
renormalized phonon frequencies and.new interaction parameters,

We write
H' = H, + H, + Hy (2.7)

where H_,, H, and H; are respectively zeroth, first and second

order quantities, Writing these out explicitly we have

= Z‘EKCE' C‘S + fk‘:ﬁw b‘i’i + Z:’-E.Qk (208)
E "~ g

pa-

ZHW- 1 ;(D&b&@s D g ﬁe

+ B2 My 2 f
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4

H, = %Hz& = ié[(Dj; - D&_)b& E"* - (D&-:z- - Dé-)b%’e @_‘J

+ ;_ﬁ( ﬂé- w&)béi' 7% . ' (2.10)

where c‘)& is the renormalized lattice frequency and DE are
new electron-phonon interaction matrix‘elements. We have
" assumed here that the renormalization of the phonon energles
leads to a second order small quantity. Since Dé and Dé_; are
first order small quantities, their difference will be of at

t

least second order.,

We shall evaluate (2.6) by collecting terms in
order of magnitude and shall neglect terms of order greater

than the second. We therefore rewrite (2.6) making use of (2,7)

H=H, + H, - Z;_[S}},HJ

+ H, - Z‘LS/&,H‘&J + % Z;_Ls&,[sg,ncﬂ (2.11)
&R £
The calculation of the required commutation relations 1is

carried out explicitly in Appendix I. The results are merely

stated here. From equation (6) of this appendix we have

< & = ( P m o

where h.c. stands for hermitien conjugate and from equation (8)

LS@, ;h Ly bis'] = - Z‘;'E Wy {¢ (l(_,g)b&c-;é- Cop * h.c.}

Combining these two expressions we have
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- Z[S&,H;k = ‘;’;(EE%— E, + Huwy) {¢(5,g)b&c?c&_&+ h.Q.} (2.12):.
{ L

From equation (15) of this appendix we obtain

‘g \‘S&,[Sk,Ho]] Z—T_ W Eg + Bygbp ‘qS(K k)l (8,4 = By)

+ %EJ;(E“"&- E, + hwp_t)'{ClD(K )ﬁ_ Y3 + h.c } (2.13)
where we have written n, for CF Cge From equation (23)
;-LS'&’H'*J (n“gs- nK)LiDAci) (E,k) + h.c ]bge b,
+:i§%{D&i%*Yfe-D§}Q;E@§
%Z:}_e g (-0 )(b“b(K k)% “t c)- (2.14)

In obtaining this last expression, non-dlagonal terms in
[SJS’(?&] and [S,(s’(‘)g*] have been neglected. This neglect 1is
equivalent to the random phase approximation which is discussed
in more detail in section 3.3. We are in effect neglecting
terms in %c; Cyr relative to ‘Z"g__céz- ¢, where X! # K. Since
%-cé'. cy is equivalent to gJa , the average particle density,
we are considering only average values in the summation.

If we substitute (2.12), (2.13) and (2.1l4) into (2.11) we.

can write

+ a4 @ | - (2.15)

5% = g | (2.16)



g = w - %;_[S&,Ho]

1

2:{[(3:,(_8s -E, + Ew&)qﬁ(g,}_&;) +1Dk]b&ch-§ h.c.}
L‘t‘& - ' -

end | g H,_-Zz_{sgsﬁ.g]*' %Z—;[S&"[SB’H"]:}

= 1 g_ {Dg @* \KE‘. - D \Q. ?&} » ‘

+ %gs(E&J&—E &l+huﬂg) {C‘D (K, k) f&*{&*"" h.c.}

+i:_{[:L(D1< -D*) -5 ;2—;43 (K,k) (nw& -n,ﬁ)]b&{?&-x- + h.c.}
E‘

+ %bg b%{h(né- Wy - Z{‘[(E@'@ -E+ h wg):_ld)(g’.ls)r-

+ LDER(EK) - BppUek))| (ngy - n&)} (2.18)

We caﬁ obtain a value for ¢(1€_,g) by eliminating terms linear
in by, in H(l). This eliminates the electron-phonon interaction
as completely as possible, ‘We must take into account the
possibility of vanishing denominators which would give a
di.vergeht series, Therefore following Frohlich (1952) op.cit.

we write
__5D1z(l-A(Kk)
<§>(Kk) | H,*E Segd) (2.19)
-7 %
1 2 (‘-‘S
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The function /\ is introduced here to prevent qb(ghg) from
becoming infinite., The energy fzé is chosen large enough to
make the series in qb(g,g) converge. We notice that we are
consistent with our former assumption that d)(ghg)'be of the
same order of magnitude as D&. We can solve for Dj& by

2 .
eliminating the terms linear in by in H( ). We therefore set

2 s e
Dy = Dy = - % My 7 47(_1.(.,.15) (B, = D)
X & £ K

where we have replaced the operators n,.g and nﬁ_by'their

expecbation valuesﬁﬁgw@ and'ﬁé. Hence the electron~lattice

(1)

interaction depends on the electronic state of the system.

With the aid of (2.19) we have

iop o= - wts (Beg- BIDE(1 - D(KK))
R S Zé‘ By~ Eg+ By

-

or

e 27 e* Z(ﬁg-g 'ﬁg) (1 - A(K.’.l.{.)) (2.20)

We can solve for Wy, by eliminating terms quadratic in by

in H(Z). We set v

(- ) = E;{(EE’%"Eﬁ + Rog) l(f)(_lg,_ls)\z |

+ 1(Dy P#(K, k) - %ecp(g_,g)} (B - ) (2.21)

where we have again replaced the quantum mechanical operators

(1) In Chapter II we had assumed that this matrix element is
independent of K. This assumption is probably still valid
if we restrict our calculations to a narrow band of
electrons.
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n, 5 and n, by thelr expectation values. Making use of

(2.19) we have

t~
—.-

B(Q- ww) =T g | (2 'A (£ k) (B - Tpn)  (2.22)

We see that the phonon frequencies will depend on the
electronic state of the system since the values'ﬁ}.and'ﬁgr&
depend on the state.

If we consider (2.19) we are left with

(1)

= i %(D}éb& 8’5'* - 3&:‘ %(‘ E.&) A(.K.’.l.{.)
= . (2.23)

+ T My P
Making use of (2.20) and (2.21) we have
(2 = Z,{[%(EE_%e B, + B BB + 10,] frisr + hc}

which with the aid of (2.19) and (2.5) becomes

Z-J“]Dk( (1 E A (K .kzil)s(l = D(KK)) (e Oty CFPrt h.c.)
h (2.24)
If we substitute (2.24), (2,23) and (2.8) into (2,15) we

have for our transformed Hamiltonian o second order

Z;/Elscts ¢+ %ﬁw&b@e by, + Z*;,%ﬁﬂ&

+ 1 é{(D&'b&@;e - Dy by (3&) A(K,k) + %Z;,M[ f_}& Cue

IDel*(1 + A(X,Kk)) (L - A(K',k)) (o o

K Cc. ¢ + hoCo)
‘k EK&-EK'+Ewk Kl Tk

(2.25)
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We wish to express H completely In terms of (i and in this

way eliminate the term in (0 ,, the unrenormalized phonon
frequency. If we consider (2.22), this can be rewritten

following the example of Frohlich, op. cit. as

(1 +D (K,5) (1 - D(E LK) ¢ ‘
.ﬁLJ ""-'—"'———ch CI‘L‘- ,c’

. 2 T - o |
Since N =\ and \—Cé'c Cy e 2%k cy:.‘l = g‘q(,(n,i -Nyg). We

- rewrite this in the form

we B - Bgt By

et °5:.1

3 Z{{D&\zz(l A0 = AELED o o h(ﬂg%}

— 1 K,k))(1 -A(K',k

P Egl_& - Egj + -ﬁl,\),{&

oo [ o5 L AU 0) (A ) on o op o
SV TR - B, + Bwe | ¥ stk TERTE
) he e . (2.26)
Making use of this relation we can write
2
D (L + A - .
Ly Ao ARV I (ool o s )
Lok bk T By k' TER ek e
2
= 15 (R( - (De” (1 +A(K,K))(L - A(K',K))
2%{ ( ,k' u) .+ KZLZ’[ Egyg - Egp+ s
“[Daf* (L + A (K=K, =1)) (L =AE K,k ] v o on o
' Ets’-& - By =Ry = Y sf
= “%%{h(ﬂk‘@k) Z%wkt% % °“"‘°“‘*‘°‘~§ (2.27)

(Eyiy - Bg)?= (hep®
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If we substitute this expression into (2.25), the transformed

Hamiltonian becomes

= e ¥ % i
H = %bﬁc& c, * é_"ﬁ@&(b@ oy, * 2)

0 : 3 ¥ | l
TR0y O - OF Y PUALSK) < ST Hlp, Pe

'h.wé"’;Djvlz * "
+ ? . o = - ~ CK' L C.Eoc de C“
e f Ba 7 Bgege o (Ragg )t T E TE -k T8 (2.28)

The first term in this Hamiltonian refers to the energy of

frée Bloch particles whose states are described by occupation
numbers cé’ Cg+ The second term describes the phonon energy.

The frequencchg however depends oh the electronic state X as
was shown earlier (equation (2.22)). The third term of (2.28)
refers to absorption or emission of vibrational quanta by the
electrons and vanishes unless energy is conserved within a range
f; - The fourth term is the coulomb interaction energy of the
electrons and the laSt’term is an effective interaction between

electrons due to the lattice vibrations, or phonons. This

from the electronic coulombd energy term. However, his expressions
for (3, and Dj; were supposed to include the effect of sCreening

by the electrons, so that QJ&-Sl@} could reasonably be considered

second order. Our expressions for unrengrmalized phonon freg-
uenciesjlgeumiinteraction parameters Dé do not include electron
screening, and the coulomb term in (2.28) does not adequately
describe the electrostatic interaction in a many-electron system.
This point is diséussed in detail in the next section, in which the
‘phonon renormalization is further elucidated. We have treated the
electrons as exhibiting only individual particle motion, whereas

in fact the electrons in a metal are capable of collective motion

as well. This collective motion tends
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to screen the coulomb interactions between electrons. This

point 1s discussed in detail in the next section.

3,3 Plasma Variables for the Electrons

(a) Theoretical Background

Tt was shown by Bohm and Pines (1952)51) that a
dense gas of electrons, Interacting via coulomb forces,
displays aspects of both collective and individual particle -
motion., The analysis was performed classically%by '
considering the equations of motion of the Fourler
coefficients of the density fluctuation operator, The
collective behaviour is describable in terms of generalized
coordinates which involve all of the electron coordinates.
These coordinates refer‘to a normal mode of oscillation,

called the "plasma" oscillation. The electron density is

found to oscillate with a frequency

— 1 |
Dy (ﬁiglﬂﬁik (3.8.1)

called the plasma frequency, where n is the total number

of electrons. In their equation of motion, Bohm and

Pines also have a term which 1s present even in the absence
of ihteractions and is due to the random thermal motion of
the individual particles. These authors found that the

organized collective behaviour 1s predominant in phenomena

(1) Bohm D. and Pines D,, (1952), Phys. Rev., 85, 338,



50.

connected Qith distances greater than }%)where )xois the
classical Debye length, while for distances less than this
length, the individual particle aspects are the most important.
Therefore, there is a maximum wave vector k above which
organized behaviour is not possible and where the individual

particle aspect need only be considered.

In a subsequent paper, Bohm and Pines (1953)(1)

have given a quantum mechanical description of the behaviour
of a dense electron gas based on the long range coulomb
interactions of the electrons., They consider the electron

Hamiltonian In the form:

e oK (.& - x) 1
‘7 EL-+ 2w e Z e t' o 2ime* ; el (3.8.2)

where the last term refers to the self-energy of the n

electron system, An equivalent Hamiltonian is introduced In
terms of the longitudinal vector potential of the electro-

magnetic field A(x) where A(x) is Fourler analyzed in the form
A(x,t) = (mel) 7:_Q/,@Q -5—:@ kx| - (3.2.3)
. The electric-field intenslity is therefore

E(x,t) = - (4b77)3 74 £, ME

i}

LW)E S Tex
) é‘&gge (3.a.h4)

(1) Bohm D. and Pines D., (1953), Phys. Rev., 92, 609.
The argument 1s repeated here for the sake of completeness.



S1.

In terms of these variables, the equivalent Hamiltonlian

becomes
2z 1
BH=3 5+ 203 £, (2 )m{)Q,,h "2

i Lk 7
2 K+ &)

+ 2100 Zg& £, Q&Qxe Lk + L)ex; ZEP,QPN@L
L&,L

- 2wnd L, - (B.a.5)

This Hamiltonian expresses the correct equation of motion
when used in conjunction with a set of subsldiary conditions

acting on the wave function of the system

fu¥=0 | | (3.2.6)

A L
where §&= Py - 1( Wz,e ) 2 o~1EZ, (3.8.7)
= = i

§1gis proportional to the k'th Fourier'COmponent of
ngjﬁ) - h"'e(ﬁ) and hence the subsidiary condition insures
that Maxwell's equations will be satisfied. Equation (3.8.7)
serves to provide a relationship between the Fourier components
of the electronic density ek ‘fle’xz'éL and a set of fileld
'variables 3&' In order to decouple the electron variables
from the new fleld quantities, Bohm and Pines relate the
field variables to the plasma modes by performing a canonical
transformation which relates the RB to the ﬁk , since for
long wavelengths, the density fluctuations are almost entirely

collective motion., As a generator for the transformation, the

authors use
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.11
s =15 (BE2F g ol

IALANS
Le? &
= -1 5 (h)® (¥ (3.2.8)
e ibee| T :

The summation is limited to terms in |k|< | K| since from
classical theory these are the only values of k for which
collective behaviour can occur. Using this generator of a
unitary transformation, the transformed Hamiltonian is found
to consist of the kinetlc energy of the electrons, a simple
interaction between the electrons and the collectivé field,
a Hamiltonian appropriate to a set of decoupled harmonic

oscillators representing a collective field

(=

B = -

e (BuBy + L3 %y (3.2.9)

z
Vi<
with a frequency Q)P which is just the plasma frequency
(3.a.,1), and the short range part of the electron coulomb
interaction. This method has been extended by Bardeen and
Pines(l) to treat the coupled system of moving electrons and

jons. The method of Bardeen and Pines 1is discussed in (b).

The Method of Bardeen and Pines

In their quantum mechanical treatment of the dense
electron gas, Bolm and Pines effectively added new degrees of
freedom to their original Hamiltonian by introducing a set of

new field variables. In order to insure that the energy of

(1) Bardeen J. and Pines D.,. (1955), Phys. Rev., 99, 1140.
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the system was unchanged and that the number of degrees of
freedom was kept constant, a set of subsidiary conditions
were required to operate on the wave function of the system,
The new field variables were related to the collective
oscillations of the electron gas by means of a unitary trans-
formation. Following the example of Bardeen and Plnes we
shall employ this sort of procedure to treat the collective
description of coupled electron-ion motion. We hope in thig
way to obtain the effective coulomb interaction between
electrons and account for the effect of electron screening

on the electron-phonon interaction and on the phonon frequencies.

We begin with the total Hamiltonlan for the metal

which we derived in Chapter II, (3.4.2)

wj

*
= E ci + 3 + s
ZE; L CF O }'Eﬁ(g_{; B, + (U %)

+ zz_quk {7 Kot %—2@, Mé’ ?_9:. Pﬂg (3.b.1)

Following Bohm and Pines, a field energy term is added to
£his initial Hamiltonian. The new field variables will be
related to the normal modes of collective motion of the
electrons by means of a canonical transformation., We assume
that in the presence of ilonic motion there still exists a
maximum wa&e vector gc'above.whicb collective motion cannot
occur. We have therefore for our new Hamiltonian

H, +l% B B - (3.0.2)
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P, are variables as yet undefined which commute with all
variables in H, . We impose a set of subsldiary conditions

on the combined system wave function
BY =0 for ([k|<]|k]) (3.b.3)

We now seek a canonical transformation which will transform

H to include a set of independent plasma modes., In the case
of the free electron gas, the transformation related the

field variables to the electron density fluctuations ?& .
Since we are now considering electrons In interaction with
phonons, we are led to belleve that a plasma mode will contain
both electronic density fluctuations and phonon coordinates.
We therefore require a transformation which relates the 2& tp

both (2& and the phonon coordinate Qy o

In analogy with the electron gas problem, Bardeen
and Pines consider a transformation generated by

S = Z_ (iM& “ + u q_&) Q& ' (3ob0,4-)
Hel< el e fe B -

where Q@»is taken to be a coordinate conjugate to the fileld

momentum 3& such that

(2 ’Qis'] = - 1hoyy | | (3.5.5)
. LT e

Mé‘ oceurring in (3.b.1l) is just equal to xz and Uy is a-
real constant which will be determined later in a self
consistent manner., If we use the above generator for our

transformation, the subsidiary condition (3.b.3) becomes
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A YA,
o Py © Pr=o0 k| < |k (3.0.6)

where (' 1s the transformed wave function. On expanding

this In a power series and collecting terms we have

B + &bl 'ﬁ"[[P&’ cfge0 el

(3.0.7)
Since P& commutes with all variables in H,, we have
[P S] Z (:11"113 P&l + ung)[P ,Q,&} (3.b.8)
(Ri<k. ‘
which with the aid of (3.b.5) becomes
(P&_,s] = = 1H(1M Ly + uuay) ., (3.0.9)

Since [f& ] = 0 and {gk,‘sk = 0, the subsidiary condition

becomes

[P& + ML+ way] Pro= 0 || < { k| (3.b.10)

In analogy with (3.b.7), the transformed Hamiltonian takes

the form

c4(ns] - el g - o SRS
The explicit calculations required in (3.b.l1l) are done in
Appendix II. We merely state the results of these calculations
here. We have for the transformed Hamiltonian, neglecting
higher order terms, as:@in the Frohlkich trangformation using

(3ebol) and (3.0.2)
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' = i;‘Ebc% = 'Z_gpc 1‘){‘5 + (,_O_&- u,& )qk q@:l

Y A z a0y
+ 37 [Rre vy %)
l&“({{c'

+ z. %ﬂ&QgQ]L(EK - 2E5 ,&"’ Eg i - g.) e&':':_g

+ Z_(v - iMpug)ag P+ 1 WBLQ
Ikl<ikd A & F ‘IéhMle'g B

(} T m g

B ik
K .

S (g, +Llgag q) Z/v* qkfg
l&l?l_&_c\ B /M?I-

+ 37 M{;P,%P,p} o | © (3.0.12)

To simplify this expression we wish to make use of the random

-+
.1

phase approximation in the third line of this expression,

Wo have from Chapter IT that () j = 7;_ 1k + k') ery ppe |
mean value of this expression 1is zero except for the case
where k + k' = O. In this case the value 1is independent of
Z) the particle. coordinates and is given by n if we consider
n electrons per unit volume, The mean deviation iIn thils case
is just 1{5(1) or V-%- times smaller than the mean value itself,
The i in our summation corresponds ﬁo Tomanaga's n and our

12
@S * to his F. In a metal there are about 10 electrons/cm3
1212

and hence the mean deviation is negligible relative to the

(1) A proof of this is given by
Tomonaga S., (1955), Prog. of Th. Phys., 13, No. Se
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mean value. We are therefore safe in assuming thatfi+§,= 0
wnless k = - k'. This is called the random phase approximation.
It is based on the fact that for a system of n particles
distributed randomly in a unit volume, the random phases

ilL'Eé produce a mean value n for f&.‘ In expressions like
(3.0.12) containing other variables QAQ§ , 1t 1s convenient

to approximate l%jé’ by its mean value. Making use of this
approximation, the term in the third line becomes

e 2 M0 B - Ben) © (3.p.13)

since we have n electrons per unit volume, If we introduce

the effective mass approximation

2 -2
B, = L& - (3.b.14)

this reduces to

277mezn 5 Q9 | (3.b.15)
Hel¢ 1]

which with the aid of (3.a.l) becomes

Z .
L2 o5 (3.5.16)
'&‘déc) - -
where LJr is the plasma frequency. We see that the field

energy term introduced in (3.b.2) and the introduction of
generalized coordinates in (3.b.L) leads to oscillator

like terms in collective variables, This formalism is a
convenient form for expressing the collective motion. Making

use of the effective mass approximation in the fifth line of
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(3.b.,12), we find that this expression reduces to

- <Z:E‘|n4,ﬁ;;nh ke (K - 30 op o, O  (3.ba7)
I&lf‘l-

If we rewrite (3.b.12) making use of (3.b.16) and (3.b.17),
the collective Hamiltonian becomes

. .
EEPAT TR YL SR LSl I
k - - Heletked = = i : .

+ 3 Z—.;f& B, + (CX+ ug)Q Q&] |

iflel
+ ¥ (vt - iMeug)a, Pu + WP Ql
I&Lﬂ&g(‘g c kf)' I kléJﬁ -
[l el
L
+35 (orp +Q0Faraq) +7_ v qp
telolke| & & 4 e iivifed] ‘D‘s
P37 Pk e (3-0.18)

The term in the second line of thisvexﬁression is a

Hamiltonlan appropriate tb a set of decoupléd harmonic
oscillators, oscillating with a‘frequencyﬂa%?+ ué'o This

1term describes the plasma field in terms of normal modes

which is what we desired. The first two terms in the above
Hamiltonian contain the one electron Bloch energies and the
phonon energy respectively. We note that the phonon frequencies.
have been renormalized by the introduction of collective

electron coordinates.  The first term in the third line

describes the electron-phonon interaction which likewise
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has been modified for long wavelengths by the consideration
6f the collective motion of the electrons. The next term 1s
& weak phonon-plasma interaction which 1s customarily
neglected., The term in the fourth line is an interaction
between the individual electrons and the plasma., Since there
1s a great disparity between the frequencies of the individual
electrons and the frequency of oscillation of the plasma,
this interaction will be small. The remaining terms in the
Hamiltonian describe the short wave phonon field, the short
range eiectron-phonon interaction, and the short range
coulomb interaction of the electrons. None of these terms
are modified by the conslderation of plasma variables. We
note that we no longer have a long range coulomb interaction

between electrons; This is because the collective motion of
the electrons screens out the field of any given electron
within a range given by Ec’ We now wish to transform this
Hamiltonian in order to eliminate the electron-phonon
interaction as completely as possible és was done in 3.2.

We shall also determine'u& 1h & self-consistent way. We
shail do this by means of the Frohlich transformation

introduced in section 3(a).
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(¢) Frohlich's Transformation Reconsidered

In order to treat‘the electrons and phonons as
decoupled from one another as was done in 3.2, we shall
perform the Frohlich transformation on our collective
Hamiltonian (3..18). This will be done by considering
separately the long range and short range parts of the
Hemiltonian. Since the short range terms are wmaffected by
the introduction of plasma variables, this part of the
Hamiltonian is transformed exactly the same way as In 3.2,
except as a generator of the transformation we take S =“§;£§.
instead of (2.4). We need therefore consider only the long

~ range part of the collective Hamiltonlan,

From (3.b.18), we write for the long range part of
the Hamiltonian

= A ,1. YA 1'- 2 13 g
Bonm Bt % * ﬁé,%lf% By *(Lli= wlag %

+ 37 l}k B * (w,,zfu;)Q]; Q&]

l&,}<l&cl
+ 2:;_(v;‘- iﬂguﬁ)q&61@'+ Z:~ uAR&Q&
Rletee) 1< |
12! 1
- M, = ke(K - 2k) c¥ ¢, Q (3.c.1)
iletbec)i " L

‘The subsidiary condition acting on the wave function of the

system is from (3.b.10)

EP&, * M Pyt “fsq-&.]q/' =0 || < |k (3.c.2)
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We now introduce phonon creation and annihllation operators

as in Chapter II. From (3.b.31) of that chapter we have

Ne|
F
i
e
I:1
*'O"
t
o

H

n'.
o

and p’k >

+ b&) (3.c.3)

Making use of thls expression we have

12 [P +*O‘qu25 q*] Z_Tl.ﬂk(b b, + %) (3.c.l)

J&)elke) - el &l el
and :
1 gol e 1
-3 7_uwpapa =-7 07,0 (OF Bt E) (3.¢.5)
Malelke| = = Peelbed ™ % T 7 .

where in the latter expression we have neglected terms in
b&b_k and their hermitian conjugate since we expect that the
screening effect will not couple phonon modes and for the
| actual ground state wave function the expectation value of

quantities like these will vanish. We also have
Z(Vé - m,&u,&)qzkﬁ& = i Vlkbk@«%‘ Y}A"%‘ (%t)
et el o)

where we have defined Vbi’ to be

Ni = T2, U - M) (3.c.7)

If we substitute (3.c.lh), (3.c.5) and (3.c.6) into (3.c.l),
and make use of (3.c.3) we have for the long range

Hamiltonian
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Hp,= 2 B0 o * 7 hlubr b + %)
K 1ai el

sl ) ,
Vb{ ()». -7’(& 9( & ) +‘M<uv E(bé.f + }gk)Q&

lHIk\ L2

-7 1\%h ke (K - 3k) o o, Qy (3.¢.8)
e lelel i ) '

We now transform this part of the Hamiltonian in the same
way we transformed the Hamiltonian in 3.2. Howéver; since
there is no coulomb term in (3.c.8), there 1s no need to
introduce new electron-phonon interaction matrix’elements

into the Hamilténian. We employ as a generator for the

transformation(l)
S= 7 _ Sk where Sy = =Yg by + ‘(;_.,_-:‘gs | (3.¢.9)
elelhel ~
an‘d Y& = 2‘2—_ ¢ (K,k) cg_i- -k

(3.¢.10)

The transformation of the plasma-phonon interaction term

gives
ukq—""" Z(4>(K k C\ C k + h.c. )Q,k
I{skll«l

This term is much smaller than the electron-plasma interaction

term since here the coefficient is of at least second order
where u, 1s assumed first order small,

in small quantities, We thérefore neglect this relative to

the electron-plasma interaction. We also neglect the

(1) Again QD(ELE) is assumed to be a first order small quantity.
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transformation of the electron-plasma interaction since this
will lead to second order small quantities linear in b, which

is small relative to the electron-phonon interaction term. As

in 3.2 we obtain therefore

CP(.I.{.LIS) - - .i’y].g(l - A (5,;5)) lkl < \_k.c\ (3.¢.11)
E&_&— E, + Tde

accurate to first order, and

2
h(QL, - B -0 17’1@,((1— (K,k)) = _ =
87 20, &) Z &m‘" +hwk(n_,‘_ n, _g )
B (3.c.12)
where (), is the renormalized phonon frequency. Comparing
(3.c.12) with (2.22), neglecting huWy, in the denominator on the
right hand side in each case, we can see the effect of screening
embodied in Uy in (3.c.12) on the long range phonon frequencies.
Ve again note that the long range phonon frequencies depend also

.on the electronic state of the system. The transformed long

range Hamiltonian (3.c.8) becomes

1
=Z_}.uc: c&+§_‘_ o, by b&*zz A

Helelde (mdkc(
ct oy
?Z; © ,k kT Tk &k K,k
lklak‘ n F 77’ /0
z [P o (uf r w0l Q&]
éhl((kc\ '11
-~ 6
nwkl & o ¥ %
—E )% 3 Cinde O Cx-k G
Muakal (Eg = Egog) (B Ly
K, s<’
N qu{ / (b}q + b—l«.) Qe
: l&lclkc -
By (K - Zk)e?® Q (2.c.13)
- em & ° ]S o CL‘ C&_/‘S 2 2eCe 3
lé“”ﬁ'd K

We now wish to determine the value of the constant

u, - This is done in a self consistent way by eliminating terms
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to the same order of accuracy in the subsidiary condition
as in the Hamiltonian. On substituting f{f? (3.c.3) into.

(3.c.2), the subsidiary conditlion becomes

[P& + M P+ 1{%&%(% - bg-ﬂ«y '=0 (3.c.1h)

for [g\<<\54 . We now transform the subsidiary condition

with the aid of (3.c.9). Considering only diagonal terms

in the commutator {sk’flég’ we have
(SJS’P—&] =Z: #(K,X)bg (N pe = ng) (3.¢.15)

Eliminating terms linear in by in the transformed subsidiary

condition, we have therefore

(K k) (ngfe = ng)
Pk

‘ o)
u&= "M)SZK_ '

which on making use of (3.c.1ll) becomes

- :ng_Z }E:Vf;: - iMgug) (1 -4 (KK)) (Bede = Do) (3,¢,16)

uk"‘
gk = Bg + Dk

—

K

If we neglect all higher order t?rTs in S then from (3.c.16)
1

the subsidiary condition becomes

[P+ myPa@rr=0  xle|xd (3.0.17)

Finally, we note that the transformed short range

Hamiltonian is from (2.27)

(1) q{'ges’-y?'“ S @ , where ¢, %! and Whccur in (3.D.3), (3.coll),
and (3.c.17), and where S, the generator of the Bohm~Pines
transformation is given in (3.0.L) andS, , the generator of the
Frohlich transformation is given in (3.C.9)e
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+ % Mﬂl»_; e © (3.0.18)

3.l The Effective Electron Hamiltonian

Making use of (3.c.l3) and (3.c.18), the complete

| transformed Hamiltonian in terms of plasma variables is

= ?;_E\&c& c, + ;Ew&(% b, + %)

+17 (mﬁbkﬁo. - ""b)},' u ) B(K, k)

AP AN
+1 7 D,Kb&{},u - D g P ) B (K, k)
l&l‘?u‘c‘
L L (u‘i "% QJ"] (% +b,)Q
He)<ls o
uZM %E _I_(, _l_i_)‘;‘ LsY&QJg:
Tleikd & .
Z "ﬁ&)k_l’}’\k{
i u_,h \c "~ e, Cu
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where we omit the second order electron-plasma term which arises

from transformation with &, of the plasma-phonon term in (3.c.8).

If we write the purely electronic part of this Hamiltonian,

we have

7 ?EQ&J]M;P Cit , C4C%, C
Bl = Bgg)o= (o)t Bk Bk 7K

Hg = ?Z-Egﬂf o, *
& ]&k”j(,c‘)l@ng

(4he2)
B Wk ’D&(z . . 1 2
+ e% e 0k, 0 + 57 M,PkPs
T B = Beta)® - (AL e TR T | L fref

The second and third terms of this expressioh represent an
effective electron~-electron 1nteraction produced by the
exchange of virtual phonons. This is the part of the tot#l
Hamiltonian for a metal which Bardeen, Cooper and Schrieffer
use as a starting point in their theory of supe;conductivitysx)
In spite of the fact that the phonon frequencieé were shown

to be dependent on.the eiectronic state of the éystem, the
authors neglect the phonon Hamiltonlan in their theory. The
assumption here is that the phonon frequencies are not

altered appreciably by the transition to the superconducting
state so that the frequency change can be accounted for by
means of perturbation thebry once the electronic wave funétion
for the superconducting state has been obtained. BCS neglect
also the plasma part of the Hamiltonian since the plasma
energles are very high and_will not be significantly excited
at low temperatures and hence will play no direct role in |

superconductivity. The electron-plasmé interaction is also

(1) Bardeen J., Cooper L.N,, and Schrieffer J.R.,
Phys. Rev., (1957), 108, 1175,
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neglected since this inteéaction is very weak, The ratio of

' ™
ion to electron plasma frequencies is of the order{%gwhere

m is the electron mass and M the jonic mass., We therefore

expect these waves of different frequencies to interact

(1)

weakly and we hence neglect the phonon-plasma term also.
From (3.c.7) we have

Mk amk(\"u{ +M4;“f;) - | (4.3)

Making use of (3.c.16) this becomes

. +H . - - *

ilt= 2, i e 1§
or _ ‘Y).
cl&_ 21

mil"= > K,5)) (Ngs - Be) 1 (bl

"
i 1-M(
& i: - Eg + B

r _Is
'—‘ L."

From (2.20) with the aid of (3.c.36) from Chapter II we have

Ny - D) (1 = A(K,K))

| Dif= zi, il (1.5)
1 -Mk[z:_ ST

BCS replace kﬂqz 2 [D@lL, assuming that for small

values of k, the difference is not too great. Making use. of

this approximation, they write for the effective electron

Hamiltonian of the system

(1) See Note at end of Chapter.
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R Oy, [DMZ “ .
+ 2 c¥H , C.,C3%. C
Iy (E,&n - Eéuy&)l' (n U&)z Kk K %45 K
2,
+F 7 M P fa - (4.6)
IRlikd , '

:This Hamiitonian can be shown to commute with the total
number operator N = ?;.Cf e and hence the total number of .
particles is conservea. The total number of e}ectrons in the
system and the energy will thus be simultaneous eigénvalues
of the wave function describing this system. However, Hal

in (4.6) is not gauge invariant, and thus cannot be easily
used to describe electromagnetic properties.

- Note:

We wish to make an estimate of the coupling between
the electrons and the plasma, From (4.l) the interaction

coefficient is given by

h
MJan'E'(-IS- -

ol

k)

We replace the vectors by their absolute values and since

— L
& I e
M& = LLF—-' obtain

wi=

(Lwe)® B (x - 3n)

In order to obtain a most liberéi estimate of this coupling,
we let k = 0 and feplace K by K. where K. 1s the value of K
at the Fermi surface. We have that KF = (BTﬁhﬁg where n is
the electron density. The coupling constant 1s therefore

‘glven by



69.

eh  (3n) s
Jivam

which approximately equals L x 10-5. We see therefore that the

interaction is very weak.

If we consider the bare phonon frequency, since the
b's refer to unrenormalized phonons, we treat the ions as a
plasma and obtain

TTsz“e2

<% M

Tl

where N 1s the number of ions per'unit volume and z is the
valence, From (3.a.l)
Dt = gj*nel
£ m
W . M
where n = zN. The ratio-zai; is therefore given by Zm.

Therefore the ratio of ionic to plasma frequencies 1s of the

order of‘“ % as was stated above.
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CHAPTER 1V
THE BCS THEORY OF SUPERCONDUCTIVITY

.1 Introduction

In 1957, Bardeen, Cooper and Schrieffer(l) pre-

sented a theory of superconductivity based on electronic

pair correlations which was able to account for nearly alll
of the experimental phenomena which a superconductor exhibits.
The theory is based on the effective Interaction beéween
}electrons due to the exchange of virtual phonons which we
derived in Chapter III. As was mentioned in the last chapter,
these authors do not take account of the phonon part of the
total Hamiltonian of the metal in the formulation of theilr
ﬁheory. Since the phonons are assumed to be effectivély
decoupled from the eléctrons as a result of the Frohlich
transformation, they should not affect a theory based on the
electrons, However, we did show that the phonon frequenciles
are dependent on the electronic state and hence the phondn
frequencies will be changed upon the transition of the metal
to the supercdnducting state, BCS assune that this change

can be'accounted for by means of perturbation theory once the
electronic state function has been obtained., The plasma part
of the total Hamiltonian is also neglected since, as we have
shown, the plasma frequencies are too high to be easily

excitable and hence the plasma modes will not be expected to

(1) J. Bardeen,.L.N. Cooper and J.R. Schrieffer, Phys. Rev,,
108, 1175, (1957). | .
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have much effect on the transition to the superconducting

state.

In this chapter we are going to 1llustrate how
the BCS reduced Hamiltonian 1is obtained from the effective
electron Hamiltonian which was derived in Chapter III. BCS
choose a simple trial wave function to describe the super-
conducting state in terms of their reduced Hamiltonian. We

shall merely indicate the form of the wave functlon chosen

but we shall not perform any explicit calculations,

The Reduced BCS Hamiltonian

From Chapter III, equation (4.6) we have the

simplified effective electron Hamiltonian for a metal

H

-ﬁb‘)&lD"&i 30 a
ZEne+ Hop* 7 By - By, 07~ (Bog)* de ek °%-2 5

= KLk
BCS have neglected the effect of the scréening by the
plasma oscillations on the "phonon" interaction. We call
the last term of (2.1) the phonon interaction since it
arises due to exchange pf virtual phonons between electrons,
As we saw in Chapter III, BCS replace {?1érz(equation (Lely))
by 1Délz (equation (L.5)) in the effective electron Hamiltonian

for long wavelengths, The Hamiltonian (2,1) can be written
(2.2)

where H, 1is the sum of the last two terms of (2.1) and can

be written as



Hy = ’Z—-Vl‘.:' kR C:‘;-J:e_ Cut Cuu-te Cy (2.3)
ik ‘
since He, 4= "Z_ Mk Fk PA and E""i {)’& - Z- clf-_fds Cpt Cig-ke Cy
&'?l&d KK -
2
where Vy, = = B | Dl L1 ok
® [(EE: - By )c - (Twglr 2 w & (lekee )

If we consider the self energy terms of Ho these
are — o ‘
Z—- Vo G S Cg Z Vg o D Z— Dyt No"
¢ L 7 (2.5)
These terms can be absorbed into the Bloch energies and lead to

a renormalization of the Bloch energies of the electrons. Since

from (2.4) kao is a constant we can write

2
H = E/n, + H + ﬁ‘&@lDﬂl e eacr, ¢, (2.6)
. Z—;— K TR | comd ’5%7 (EK‘ _ EE'.}.k) _ (‘Hwﬁ)z lafe ~ V-8 Vi
where kyo -
E, = By - N Vg, (2.7)

sincezi_ng = N, the total number of particles. The theory of
Bardee§: Cooper and Schrieffer is based only on the off
diagonal terms of the above interactionj; the terms in the
ttphonon'' interaction for which k # O. This is because the
self energy terms lead to too iarge a difference between the
normal and superconducting state energies. They assume that
the self energy is essentially the same in the two states. Ve

not let €K = Eé -(:.g where g’ is the Fermi energy g B’ K‘
& 2m

We also introduce spin indices into the Hamiltonian (2.6) since
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these are necessary for further development. Spin intil'c-'e.s'
could have been carried through all the previous development
but would have made no difference to the present result, We
write therefore-for the Hamiltonian apart from a constant
energy term with ¢ denoting spin

H = Z—gg N et ilgﬁ\ (1 - n&r) + Heoll

K|> Ke k) < Ke

Tk (Dl

¢ Eg™ Erlg)®= (Mg ) c‘ﬁ"‘itﬁ”c‘é'ﬂ” Gi-l{sw’c&‘ﬂ (2.8)

SpRal
Since NVp, 1s a constant we have that E} - Ef&,%‘ is equal to

Eg=Egk and hence we can replace E, = Eq g 0Y gﬁ.- Exirk
in the denominator of the last term. In the second term of
(2.8) we have Z lgkt(l- ng o) since ¢, ¥ 1s the occupation

lel<Kg (l)
number of & hole below the Fermi surface with momentum -Ke

The last term in the Hamiltonian (2.8) 1s called
the "phonon" interaction as mentioned previously since 1t
arises from virtual exchange of phonons between electrons.
This "phonon'" interaction will be attractive when the energy
difference AL Dbetween the electronic states involved 1s
less than the phonon energy Hw ; when ,85- 65*-‘!1( Ry .
BCS take as their criterion for the occurence of supercon-
ductivity the condition that this attractive "phonon" inter-

action dominate the repulsive coulomb inte'raction for those

(1) Fukuda N., (1960): Brandeis Unlversity 1960 Institute
in Theoretical Physics. (8vandeis, 1960)
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matrix elemenﬁs which are of importance in the superconducting

wave function., This criterion can therefore be expressed as

-2|D LW e*
< 'ﬁjwfgl = Zv <0 (2.9)

In order to describe the ground state of a
superconductor, we require a low energy state. Cooper(l)
considered the problem of a pair of electroné interacting
above a quiescent Fermi sphere through negative matrix
elements. He found that the pair of electrons was able tob
form a quasi-bound state; the lowest energy elgenvalue of
the system was separated from the continuum by a volume

(i.e. number) independent binding energy. If the matrix
elements of our interaction were negative in sign, we could
therefore form a low energy state by forming a linear combin-
ation of basis functions with expansion coefficients of the
same sign. The Interaction energy would then be given by

the number of configurations connected to some given config-

uration times an average matrix slement,

However, for a general configuration of Ferml-Dirac
particles, the sign of the matrix elements depends on the
occupation of the states which are unaffected by the inter-

(2)

action. In the interaction, we are considering a pair of

(1) L.N. Cooper, Phys. Rev., 104, 1189, (1956).

(2) This argument is implied by BCS in theirkpaper but not
actually presented,
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particles taken from the state (K,,K,) to the state (5;,52}

by means of the operator
ci(Ky) e (X,) c#(K!) c(X,) (2.10)

We require that a system of Fermi-Dirac particles be

described by an antisymmetric wave function. This means

that the sign of the state function changes for each Iinter-
change of particle coordinates or momenta. Therefore the

sign of a relative matrix element connecting two states by
means of (2,10) apart from the coefficienﬁ is given by (—l)N+N'
where N and N' are the total number of occupied states between
Ky and K, in the initial state and K} and Kl in the final
state respectively. In general, N+N' is equally likely to

be even or'odd, so that matrix elements will alternate in

sign and we cannot therefore obtain a coherent low energy state.
In order to form such a low energy state, we require a subset
~of configurations between which matrix elements are predom-
inantly negative. This can be done by assoclating the electrons
in pairs, such that if any member of a pair is occupled, the
other is also, N and N' will therefore always be even as will
N+N* and hence the matrix elementiis always negative since

from (2.9) we are considering a negative coefficient. Since

the interaction conserves momentum

+K,= K|+ Ky (2.12)

v

there will be a maximum number of pair-wise interactions
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and therefore the largest interaction energy if the total
momentum of all the pairs is the same, In considering the
interaction of Fermi-Dirac particles, there is a further
interaction, which occurs only between particles of parallel
spin, called the exchange energy, which tends toaweaken the
total energy of interaction. Since we desire as largé an
interaction as possible, we consider pairs in which the
electrons have opposite spin, For describing the ground

state, we consider pairs whose total momentum is zero,

We shall now consider the reduced problem in which
we think about configurations In which the electron states
are occupied in pairs such that if k,q¢ 1is occupled, -k,-q
is occupiled., We define, therefore, annihilation and creation

operators for pairs as follows:

d = of, oy, (2.13)

If we make use of the commutation rules for the ¢'s from

Chapter II, equation (3.c.20)

c 3¢ =
[E.r ’°&'.r‘] " S&.&‘ Sv’.r'

{:clS,Q‘ ’cﬁ'.ﬂ'] + = [_é(:w ,O;(;‘[r]-'- =0 (2.14)



7.

we can show the following relations for the dgz

{d&,déj

-
%l&’ dy 0

-

(1 =g = 0y, )Sss,&'

{1

Elﬁ,d‘s,: =g - Se) (2.15)

From the second of these relations and from algebraic consid-
erations 1t would appear that the third relatlion shéuld be
[%E,ds] + = 24,40 However)consideration of the commutatlion
relations for the c's shows that the above is the correct
expression. The second of these relations is a relation
satisfied by bosons. The other two relations are not, however,
Therefore, the superconducting transition is not a Bose-
Einstein condensation, with the ground state contalning %
Bose-like electron pairs (each with spin zero) all In the same
zero-momentum state as had been conjectured by Schafrothgl)
Schafroth's contribution of focussing attention on the palr
correlations, as the basic mechanism in superconductivity was

one of the major steps toward the present theory although it

is rarely acknowledged.

We can write our electron Hamiltonien (2,8) as

(1) Sehafroth, M.R., Phys. Rev., 96, 1LL2, (1954).
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H= Zggs n‘é\r"'z lgﬁl (1 -ng¢)

K\>Ke [kl Ke
- z Uk S Cr © PR AL R (2.16)
E K‘)‘k,ﬂ—fl R

where Vj i 1s defined in equation (2.4t). Since we wish to
consider only pair configurations in which the members of the
pair have opposite spin and momentum, the operators nyg and
 .dﬁ‘dE will have the same expéctation value,for any wave

" function which adequately describes the system. We can there-
fore rewrite the first two terms of (2.16) in terms(of pair
operators as

27 E.83a,+27 (€ o| dgdy " (2.17)

1Kl K (KlekeE

The factor of 2 enters since for each value of K there are
two. electrons, each of energy 8’&, forming the pair., The

interaction term can be written

vk;.glciél;%'r(gk‘ ey~ G- k,cr'cis',r)cas\q“

ZyRINHN

Ve, Sk etk G

+ VJ_!_ | Cif (2.18)

‘K.+2a.‘<r K»—k r‘cKT‘ TaX

The first term on the right hand side cannot be expressed in
terms of pairs and so we neglect it in our reduced Hamlltonian,
If we consider only pairs whose total momentum 1s zero, we

can write for the last term

L X

(2.19)
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where we have substitubted X''for K' + k. BCS assume that the
terms containing pairs whose total momentum 1s not zero and
which are neglected in reduced Hamiltonian will not contribute
to the ground state appreciably and can be treated by
perturbation theory. Making use of (2,17) and (2.19) we

write for the reduced Hamiltonlan |

HIWO—-' 2Z_g,<d + 22__ lgnk

\&ivKe _' €l Ke

_..

ds 4a., (2.20)

It is this part of the total interaction that BCS-COnsider

to be the most important in describing the properties of
superconductors. The reduced Hamiltonian (2,20) is found

to commute with the total number operator N = Z:”c Curm>
and hence a wave function can be found to describe the system
such that the energy and the total number of particles are

simultaneous eigenvalues of the wave function,

. The most general wave function of the system which
we are consldering is

q?'"‘z AQS.\ﬂKQ_! e o < K

K-~ %

) ag ag 0 ¢ - dg, |0
(2.21)

5

where the summation extends over all distinct pair config-
urations. BCS relax the requirement that the total number
of electrons be an eigenvalue of the wave function and

construct a wave function by making a Hartree-like approximation.
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This means that the probability of finding two pair states
occupied in the ground state of the many electron system is
equal to the product of the probabilities of finding each
pair state occupied., The wave function having this property

which BCS write is

%"T(O{gﬁ ésd\&\ o> | (2.22)

A 2
with «, and ﬁ.s real and & + &5 = 1 for all K, /g,‘ is the

probablility that the pair state is occupied and 0(2118 the
probability that it is not occupied. BCS calculate the

ground state energy variationally using ﬁhis wave function and
the reduced Hamiltonian (2.20) subject to the constraint that

the total number of particles be conserved
N =
| <CEO‘ Z}cé“" c‘s“rlq‘)n/ N (2.23)

In order to treat excited states, BCS decompose the
total state Into states in which they consider single particle
excltations and states in which they'consider>excited pairs,
They write a wave function in the form |

Bore= T (it g U (R e =B [ e, [0y (2.2
k() K'(P) gy 7
where G, P and S specify the states occupiled by ground pairs,
excited pairs and single particles respectively. The energy
of the excilted states is evaluated by using the reduced

Hamiltonlian as well as the Bloch energles for single particles.
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(1) and Bogolubov(z) independently found that the

Valatin
ground state vector of BCS is reléted to new collective
fermion variables, in terms of which one.obtains a simple
classification of the excited states and which greatly
simplify the calculation. The new variables are given as

%)K% = 0(,5_ e - ¢ (@) @‘s Cog,-

\y

and o= i cem E()Bren ( (2.25)
where the o, and /5,5_ are the same as used above and

1 o=
| €(¢) = N for T=\b
The operatofs %" and g are Fermion operators and satisfy
the commutation relations for such operators. These operators
lead to a "quasi particle" concept since glﬁr may be thought
of as creating a quasi-particle satisfying Fermi statistics,

Valatin showed that the products

¥ Q* LK -
\¥ >=< ¢ ST B (2u28)
Euﬁi fl.ﬂ,') e EM,T .’Su“'\ 5205'1 5~h¢«.

form a complete orthonormal set of state vectors and are just

the BCS excited states. 1In particular, the states g"»::_lkP°>

and g"-::- g’—x- "y\) represent. a "single particle" and a "real
sA‘ "'“_"'? i

(1) Valatin, J.G., Nuovo Cimento, 7, 843, (1958).
(2) Bogolubov, N.N., Nuovo Cimento 7, 794, (1958).
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pair" excited state respectively.

-

Criticism of the Theory

The main criticism originally put forth against
the BCS theory wgs'the.lack of detailed justification of
approxiﬁatioﬁs'made in the derivation, Since the original
publication of this theory, independent work by Bogolubov(l)
et, al. who solved the éléctron-phonon Interaction problem"
dif?erentiy agrees with the final BCS formulae for %he

gbound state and one fermion excited states to first order

approximation,

The most serious objection to the BCS theory is
the lack of gauge invariance in the effective electron

Hamiltonian, BCS chose a special gauge for the vector

(2)

potential and deriveda Meissner effect from this. Schafroth
has argued that this choice of a gauge is an independent
assumption of the theory and is equivalent to assuming a
Meissner effect itself. Anderson(B) has attempted to justify
the BCS approach by showing that the reduced Hamiltbnian~is
approximately gauge invériant and that consideration of the

plasma oscillations should favour the choice of gauge.

(1) Bogolubov, N.N., Zubarev, D.N., and Tserkovnikov, Yu.A.,
Doklady' Akad, Nauk. S.S.S.R. 117, 788, (1957).

(2) Schafroth, M.R., Solid State Physies, (1960), volume 10,
pp. U471, ed: Seitz and Turnbull,

' (3) Anderson, P.W., Phys. Rev., 110, 827, (1958).
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Schafroth does not consider this argument to be valid since
.the,relation of the BCS reduced Hamiltonlan to the rigorous
many electron Hamiltonian is not well defined. The me thod
of Anderson has been extended by Rickayzen(l) to give a
Agauge invariant calculation of the Meissner effect by
stressing the collective aspects of the theory of Bardeen,

Cooper and Schrieffer.

Since the BCS theory has had such widespread
success in describing the experimental situation, ohe must
conclude that the type of pailr correlations which their
trial wave function singles out from the effective electron
interaction is the basic mechanism of superconductivity.

The major difficulty remaining is to aaequately derive a
meny electron Hamiltonian (if this is possible) for various
superconducting systems which will not‘lose‘g&wge invariance
in the apprbximating processes. Once g&nge ihvariance has
been lost, predictions concernihg electromagnetic phenomena

are impossible or at best uncertain,

(1) Rickayzen, G., Phys. Rev., 111, 817, (1958).
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CHAPTER V
SUMMARY

In this chapter we shall attempt to summarize the
physical assumptions corresponding to the approximation made
in the foregoing theory, apart from the more straightforward
approximations such as neglect of second order small
quantities in series expansions. We shall discuss the
approximations made in obtaining the general Hamiltonlan for
a metal, in renormalizing the Hamiltonilan and in obtaining

the reduced BCS Hamiltonian.

The first epproximation which we made was in
assuming that the valence electrons in a metal are completely
separated from the closed shells of bound electrons and that
the adiasbatic approximation could be used to write down the
Hamiltonian for a metal., We showed in Chapter II that the
adiabatic approximation was valid except fbr the electrons
which lie within a distance h twmecof the Fermi surface where
aQMMLis the maximum lattice frequency. For electrons lying
within this zone,‘non-adiabatic terms must be taken into
account in the equation of motion, According to the BCS
theory 1t is the electrons within this zone which are
(1)

responsible for superconductivity. Chester argues that

in order to give a mathematically consistent description

(1) Chester, G.V., Advances in Physies, 10, 357, (1961),.
page 363.
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of elecérons for the purpose of a theory of superconductivity,
non-adiabatic terms should be accounted for. We assumed

in obtaining the phonon Hamiltonian that anharmonic terms in
the lattice potential energy could be neglected., There was
no justification for this assumption, but rather the theory
was constructed to be consistent with it since no new
anharmonic terms were introduced by the Frohlich transform-
' at;on. In obtaining a general form for the Hamiltoﬁian of
a metal we also assumed that the vglence electrons Interact
only with the longitudinal lattice vibrations. This assump-
- tion neglects anisotropic effects and is not rigorous parti-
cularly for short wavelengths.. This approximation 1is not
really necessary for developing the theory bubt it does help

to reduce the complexity of the resulting equations.

In performing the Frohlich transformation in
Chapter III, we assumed the quadratic terms in b&bg, bg by »
bf ete. could be neglected for k # k'. We argued that if
the transformation and the model is adequate, the wave func-
tion describing the system would give zero expectation value
for these quantities., In renormalizing the metal Hamiltonlan
use has been made of the random phase approximation., This
procedure has been widely used, but proof of 1its validity
usually depends on the specific system under consideration
and is not straightforward, We have also made use of the

effective mass approximation assuming the effective mass to
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be constant whereas, in fact, It depends on the wave number.,
This approximation, however, does not affect the BCS theory
since expliclt use is not made of the term iIn which this
approximation arises. 1In obtaining the transformed Hamil-
tonian we have not been consistent in considering terms to
second order since we neglected the second order'contr;butions
from electron-plasma énd phonon-plasma interactions, but we

attempted to justify the neglect by energy considerations.

BCS have neglected a considerable portion of the
metal Hamiltonian in obtaining thelir effective electron
Hamiltonian. As was mentioned in Chapter III, they neglect
the phonon energies, the plasma energles, the electron-plasma
interaction, the phonon-plasma interaction and the résidual
electron-phonon interaction. The model which they conslder
enables them to neglect the phonon and electron-phonon
energies, while energy considerations allow them to neglect
the remaining terms., The most serious effect of neglecting
these terms is the resulting lack of gauge Invariance in
the remaining Hamiltonian. BCS also neglect the effect of
plasma screening on the effective electron interaction via
the lattice., They assume a coefficienf of the same form
for both long wavelengths and short wavelengths whereas, 1In
fact, we showed that the coefficients were different. These
‘authors claim that the difference is small at long wavelengths

and that the approximation is justified. BCS also neglect a
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ﬁumber of terms in obtaining their reduced Hamiltonian from
the effective electron Hamiltonian. In particular, they
neglect the terms which do not lead to palrwise interactions
‘between electrons. This procedure is best characterlzed as
a cholce of simble trial wave function rather than as a
physical approximation in the Hamiltbnian. This simplicity
may in some cases be expressed in terms of physical approxi-
mations, BCS also neglect pairs of electrons for which the
total momentum is not equgl to zero in obtaining the reduced
Hamiltonian., They assume that terms of this sort have 1little
offect on the ground state and can be treated as é pertur-~

bation,

The approximations made in the theory lead to a
model of a metal in which the electrons and lattice are
conslidered to be distinctly separated. Since there are a
number of superconductors which do not satisfy the rigid
restrictions which have been imposed in obtaining the theory,
put still satisfy the predictions which the theory makes, we
anticipate that the electron-lattice interaction problem
might be treated in a different way which, however, would
lead to essentlally the same results. The main theoretical
polints which led to the development of the theory of super-
conductivity and which have been discussed here are the
Frohlich transformation which indicated how to accurately
describe the interaction between electrons due to the lattice
and the BCS idea that superconductiVity was due to Cooper

pair correlations between the interacting electrons,
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APPENDIX I
COMMUTATION RELATIONS REQUIRED FOR FROHLICH TRANSFORMATION

From Chapter III, equation (2.11l) we have

H=H, +H - %[sﬁ,ﬁo

Cen g lende g ld] @

where from (2.8) X

H, = ZK_Eﬁc!S c, + %ﬁw&béc- bp + & %ﬁﬂ,& | | (2)
and from (2.9) | |

Hy = 1(D&b&()g_<-:ek- Dge by fjf) + %MX;@%,_ @S . (_3)
Prom {2.4) we have |

S&=-K b + Yt o

with  Ni = 2- QERep oy

e

(4)

]
o=
~¥
=
=
Q
x‘ 0
o

We wish now'_ to derive the relations required in (1). From

Chapter II, equations (3.c¢.20) we obtain the relation

c cxc::%:-_ ¢, = c%:- c}lcé— ¢y =k§£'%ceé Cp = S&‘ c-»% ¢ (5)

We consider first
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B 7__{( Ygﬁbk +X*’bg: JE.c%, e
K’

- E’c- c&( ka + Xyt )
which with the aid of (l1) can be written

ELFE— b&#ﬂ&,ﬁ){-cze Cooe O Cp * CF C.C% C\ . ?K
[

< 2% a . 3% %

L G T O cﬁ,ct_&c&}‘
Using equation (5) this reduces to

[s,k, Z_Bgo ;& = 7;{(13,s - E i) b PIE, k) o c

7
P

+ Z‘:(E\E - B, )b qSe:-(_}g_,g)cg'i& c

€ E'-s—.&){ba's ¢(§-’E) % -

(E

n
IK‘\\/\

We consider now

*

+ hoco b (6)
j 5

[s&, ;/’h L o bé]

=T PO oy (bt by * 1 v
¥,k

! e 2% Y 3% - 3% e
+ By P=(K, K)oy, o (of by by by B )
Making use of the commutation relations (3.b.32) from
. Chapter II, this becomes

";E w,_g{(f; (K, k) c‘s C 1 b& + p#(K,k)es

& °asb7"§,} (7
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Therefore we have

[S&, Zé:‘.ﬁ&)ébég b/&,i= - Z;“hw,g{\¢(£,£)b&cz cl_é"k-" b,c.}
) ) (8)

Combining (6) and (8) we have therefore

—Z;_‘{Sé’}q = é(E"L‘" EE‘+ Ry ){(;S(K,E)bgc;'c cE—&+ h.c.} (9)

Making use of (9) and (4) we have

sk[sk, 1 = (Ygby - Y, ){bk -

=T

(E L - BF wa&)qb(_lg,g_)cf c

=M

g T (B - B+ BRI HELIo o

If we neglect terms in bZ , etc. this can be written

- 27 bée bé(ng,'s_ -E ¥ Bw@)(f)ee(g{_' , k) qb(l_{.,g_) c-:'r,& .C% S

+ b (B = By * Kw&)CP(E',l&.)gb*(l{.,l{.)cgi cg,_&ct*&c‘&} (10)

In the same way we can show that

+ bé‘ B (B = B * Ew@gb*(x«: k)qb(K' klek, o °L<. Lo k} (1)

_II‘ we make use of the fact that

[& J=1 | (12)
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we have on subtracting the first lines of (10) and (11)

;#Es—& - B, + hen) PE B HE ’3‘-){(‘32* ® ot S5l T

5 3 3 + cit %
ok c.ok c y )b& b& c; ck_hcé,_kcm.}

which with the aid of (5) becomes

7 (B, -~E + Ew@)q)(g,g)cfy*(gu ,_}5){ (et ¢ O,

K,k

- %% SedOF B %-L«""é'.@%'}
a" .

+ Z’(E’f'k - B+ Ewg)(i)(_}_g,_l_{_)c? i Y&* (13)

Taking the difference of the second lines of (10 and (11)

we obtain

-7 (B _, -E_+ le,cs_){cﬁ(ﬁ,}_{)\l (n g - 0B by

Ix
)

—

+ (B - By + B GHER Y of 0, (1)

In these last two expressions we have written n  for S e ¢ e
K [TCT E' l_d

If we combine (13) and (1ll) we have that

B [se[somd] = - 7 ey me s Bowiy o | BB (ayy - ny)

-

+ %Z.Q(Eg-k' E + 'Eu);_l){qs (_I_{.,_lg_)f)&% P h.c.} (15)
K2
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We now wish to evaluate the remaining commutator required
in (1). We consider first

[S&, (3151 = 7:,“{(- \(& by * \(Le""kfé )c-::-,&c ¢

LR K

-—

- °(ff,g 05'(.'\(&‘2& + Y Y )}

-

3% bt ) e, ¢ et - c% %, C
('I'{"-LS)Js { it S G G »5‘—25°5'°'§-ls i

which with the aid of (5) becomes

Z {-cl)(K,k)bé(c\;:e e, SE‘E;- c*ﬁ,kc.s.x_sgg..')

KK -

+ d:) *(ﬁ,k{_)b/é‘ (c_'é'_k_ OE' SL‘\EL& - c?‘—k cégk',ic-&)] (16)
If we consider only diagonal terms in thls expansion we have

(3400 | = ARC[CAOLACHIEE o an

In the same way we find that

-

(5% (’—k} = ff(pes(g_,g)bé'r (Bg=m) - (18)

We consider also

[ 302 = X o - Vo

which becomes on making use of (12)

Esk,b)él = <Y . S 9
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In the same way we show that

-

[Sk’bé"i = -Ye | (20)

We consider now

[anpre- ¥
= 1D,g{(ES£3P¥S*1bIS ?(Dg [Sk)‘&@]}

- mglop [ swp] + (50 [

Making use of (17), (18), (19) and (20) this becomes

woy ¥ L % 3
[S&’ 1(Dy"0 by D b f’ls)]
= bj{ b& Zk‘(ng_& - ny) [i D/&CIJ%(_Y_(_,E) + h.c.]
- 1D, &-x-\(ge + 1 Dj&.‘\(& P”@ (21)
If we:.consider

[3&’%“‘3?—%?&] = { (310 pe] pu * (’-&@&»F@H |

+his becomes with the aid of (17) and (18)

%Méz__ (n.ﬁ“&- nE)(b%ciﬁ(ZC_,_l_{_)(Jlg% + h.ce) (22)

Combining (21) and (22) we have

- %[S&,HH’;I = - Z_;_s(ng\_g - nﬁ)EiD{gqj%(K’l{.) + h, OJ b[;: b{g

(23)

+ i%{D{Q E@*\@" - Dé‘c\{is @5} - %ZMz(nK‘k- nE)(bﬁs({)(l{_,E)&*‘*h.c;

K,k
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APPENDIX II
CALCULATION OF THE COLLECTIVE HAMILTONIAN

From Chapter iII, equation (3.b.ll), we have that

the collective Hamiltonian can be written
i N
=n+glus) - gllsls v @
where from (3.b.l) and (3.b.2)

= Z:,_EE Cé(‘ ¢, + z Z(Q&_ p& '*'%q& qk) + Pie

- lkldkjf'
. . .
A N 3 (2)
and from (3.b.k)
Z‘(iM)& gk_"‘ u«fzq—k) Q‘h (3)
lf_i < 1’3,; oo -

The first line of (2) contains zeroth order terms and the
second line contains first order terms, We assume that S 1s
a first order small quantity. We consider first

[E sj( 7 1My Dj‘*’ 4

¥l W&l
since (?_& commutes with Upe This equals

ZiMQ <Z:,(c Coo OF Co ™ O c,k,c-,.c_&)

18] < Hee| cE = T
=ZiM'Qk(C<‘ C%Sl k—c»’c f )
-~ ﬁ-& E)E—g
Ko TR e Bres K
= 7_myQulep o gy - o Ogul ) =0 (W)

AP AN'
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In the same way we show that [(DR,S] = 0., Therefore we have

[%— émzf_& fie ,s} =0 | | | (5)
and - A [é_vé U P s] =0 (6)
since . [é&,q‘&]= 0

We consider now

= i ; 3, !
.n[ZE&, 5 Cgls ] x5 Z;_ 4(1M&Qk)(c Cy cg- k-l = CF Cp OF c_)
K

since P“S= ZEG*‘- c,j and the c's commute with Qe Making

)/\ M.

use of (L) of‘,Appendix I, this becomes

1
‘%{ [Z;EE‘Cé Cy ’SJ =-F [ (By = Egp)MpQpof o p (7)

We consider now

[ Z_Ek,c‘g cﬁ,,S‘l,S}

= ‘é"ﬁ” LT I:{&(E‘- By-g ) (1M)QQu (e oy of Oy = o Oy 410F Oy )
k,v. K!

l
Z MyM Q; Qk(E - 2B, p*t Eoppd) O ' (8)
/tzh‘l(”_eJ i LR £oRoE (1;%435

We now look at the relation
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Sm 0 _wQulpy pyar - (pf g + 1B ) py)
h’lklclk.( WL T S

ZE ["%:‘&ul‘Q'(- 1513 Sk'u 4+ p,k) H‘ q - c (pé' ‘k + 1'534—"_# ))

We therefore have

%[%— %.(p%;' B +OLL % qjsr),S] = 7 wpQy (9)
: - - B B ‘é—l‘”ﬁcl

We have from (9) that

1
25*[[ Z( H *Qxé 4G ) } S] = Eﬁ[ 7 uAQkpu"S]

Z_qukule’fQ’( ih)g}g K

lk h‘l&“@c\
= 3 Zﬁu{@q_‘Q;&Q,g
Hgk[_\
=39 ulQQu (10)
b -
\etdlec|
since Q/E = Qpand u,= - Uy o
We now have
103 7w 8]
B Melalled = 7

Z_(mk?k"' uiq &){ EPk ,Qk] .,.[P& ,Q,J';] P&§

'k kl&.\rfzc
From Chapter III, (3.b.5) we have

(P}} ,Q@l] = -1h Sp}‘g_ (11)

Hence

Z(iM D+ UpQ ) B (12)
(:/&14 ] el el &E" AR
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We also have with the aid of (12)

) ﬁz[[ l&lchl& PLZ ] ]

l LiRe

which becomes

1 L s = 1 z
- 55—{[%1&5: _P&,S] ,S} = 3 Zim“ 0. s

el ke|
+17 Mewafy +E 7 wior (13)
kleiled — 0 T T |m4m4 * -
From Chapter III, (3.b.10) we have for the subsidiar}y
.condition
e @' o= (i - wa )P | (14)

If we substitute the right hand side of this expression for

P:# into (1l2) we have

A
-‘gi[ 7__Pj B, s} = Z,ng,kp -217 M}‘u/&qkf

w«mkc\- “ W | ec| AV

-Z_uéq‘-;g qg (15)

(16)

Ay

(Y3

- ) Mk Pk ‘P,k 7 P{I,ﬁu_qk R = - % Z, g Q3

]fél 4“&:.\ & évﬁc

If we neglect all terms of order higher than second, we obtain
for our collective Hamiltonian making use of equations (5),

(6), (7), (8), (9), (10), (16) and (2)



98.

1 P
e -2-%- Zk‘ T MkQ 'Qk( - 2E[$~.& + E&‘"'&"g) F&"‘ig
|2

r (v - imkug)qk@@ 7 wR QL
ik - )< ed

P“

E - By )M Qe e, g
3 ¥k OE Ce-k

pk pl,‘ +_Qka qk) + Z-———-v‘k q'kfjk
H’c)?\.—b\

MZJ WA (17)





