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Abstract

A congruence relation ofa lattice L is an equivalence relation

preserving the lattice operations; the set of all congruence relations form a

lattice, Con L. The study of the congruence lattices of lattices is one of the

fundamental problems in the theory of lattices. In this thesis, we study the

relationship between the lattice and its congruence lattice. In Chapter II,

we show that if D is a finit€ distributive lattice with n dual atoms, then there

is a lattice L of length 5n such that Con L is isomorphic to D. This answers

a problem raised by E. T. Schmidt. We also prove that the bound is best

possible in general. Also, we prove that if L is a sectionally complemented

lattice, then the length of L is at least 2lt(D) I - n. (Such a lattice was

constructed in [Gr, Sc]. ) If the set ofjoin-irreducibles of L is countable and

every element of L is the join of some join-irreducibles, then we construct a

planar lattice L such that Con L is isomorphic to D and lL I is of the

magnitude of lJ(D) 12. In Chapter III, we enumerate all the congruence

lattices of lattices of length at most 4. In Chapter fV, we give a simpler

proof that the ideal lattice of a countable distributive semilattice with zero is

the congruence lattice of some lattice. K. Reuter and R. Wille introduced the

notion of complete congruence relation. In Chapter V, we answer a

question raised by them. We show that every finite lattice is the complete

congruence lattice of a complete lattice. The construction for the finite case

can be modified to show that every complete lattice is the complete

congruence lattice of a complete lattice. This result was also proved by G.

Grätzer [Gr-2].
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Chap&er @

ExaÉrodsåcúåoxa

In this thesis, we study the congruence lattices of lattices. This thesis

is divided into six chapters. In this chapter, we mention some basic results

and give a brief sunmary of the results which we obtained. A detail survey

on this topic can be found in [Sc-4]. In Chapter f, we introduce the notation

which will be used in the thesis. Our results are presented in detail in

Chapters II - V.

An equivalence relation @ of a lattice L is called a congruence relation

of L if it preserves the lattice operations of L. The lattice of all the

congruence relations of a lattice L is denoted by Con L. The following

theorem [Fu, Na], is fundamental in the studies of the congruence lattice of

lattices: Con L is an algebraic distributive lattice.

The converse of the result of [Fu, Na], that is, whether an algebraic

distributive lattice is a congruence lattice of some lattice, is a long standing

problem in lattice theory. Also, one can investigate the relationship

between the congruence lattices and lattices in terms of some lattice

parameters, e.9., the length or the cardinality of the lattice. Some known

results are:

In the 40's, R. P. Dilworth stated (unpublished) that every finite distributive

lattice is the congruence lattice of some lattice.

S.K.Teo, Ph.Ð Thesis
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In L962, G. Grätzer and E. T. Schmidt showed that every distributive lattice

D in which every element is the join of join-irreducibles, is a congruence

lattice of some sectionally complemented lattice L. In particular, if the

length of D is n, (in notation 0(n) = n), then L can be constructed such that

¿(L) < 2n-r.

E. T. Schmidt showed trr1-974 that every finite distributive lattice is the

congruence lattice of an infinite modular lattice.

J. Berman showed in'J,975 that if D is a finite chain, then one can construct

a lattice of length 5 such that Con L = D. This result was later improved by

E. T. Schmidt to a finite distributive lattice D having only one dual atom.

In 1981, E. T. Schmidt showed that the ideal lattice of a distributive lattice

with O is the congruence lattice of some lattice.

In 1985, Pudlák gave a new proof of Schmidt's result of 1981. His proof uses

the concept of representation in category theory, which suggests a new line

of attack to the converse of the theorem of Funayama and Nakayama.

In 1986, motivated by Pudlák's result, A. P. Huhn showed that the ideal

lattice of every countable distributive join-semilattice with zero is the

congruence lattice of some lattice.

Tn *Lrio *Loo'io r¡rô ñf^r'ô *üro f^ll^.t"i-c -octrl*c.¡¡¡ U¡uù U¡IçÞ¡Èt lÌ9 PrvYv Vr¡v IvI¡vVY¡¡¡5 lvgqvD.

S.K.Teo, Ph.D Thesis



(i) Let D be a distributive lattice having n dual atoms, then there is a finite

lattice L such t]nat L(L) < 5n and Con L = D. Conversely, given any positive

integer n, there exists a finite distributive lattice D' such that if L is a finite

lattice and Con L = D,., then ¿(L) > 5n. Hence the bound obtained is best

possible.

(ii) If D has n dual atoms, and L is a finite sectionally complemented lattice

with con L = D, then ¿(L) > 2lJ(D) | - n.

(iii) Let D be an algebraic distributive lattice such that every element is the

join of some join-irreducibles and J(D) is countable. Then there exists a

planar lattice L such that Con L = D. Iir particular, if D is finite, then lL I is

of order I J(D) | 
2. (see also [Gr, La-l]).

(iv) We enumerate all congruence lattices of lattices of length at most 4.

(v) By using the approach as proposed in Pudlfü's paper [Pu], We show

that the ideal lattice of a distributive join-semilattice with zero is the

congruence lattice of some lattices. The proof is different from that of

A. P. Huhn's.

Results 1i¡, (ii) and (iii) are presented in Chapter II; (iv) is presented

in Chapter III, and (v) is presented in Chapbr fV.

Tn a eorioc nf nnncr"ç, K R.errfer enr{ R- Willp sfirr-lvf.he ennnentur q ùvr¡vp v¡ l/sl/v¡pt ^\. 
¡uvsw¡t E¡s vwqsJ

lattices which lead to the notion of complete congruence relation.

S.K.Teo, Ph.D Thesis
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Let L be a complete lattice. A congruence relation @ of L is called a

complete congruence relation if and only if x, @ y¡, i e I, implies that

Vxr @ Vyr and z\x, @ z\y,. The lattice of the complete congruence relations

of L is a complete lattice and is denoted by Com L. K. Reuter and R. Wille

proved the following result: Let D be a complete distributive lattice in which

each element is a supremum of join-irreducible elements. Then there

exists a complete lattice L, such that Com L = D.

In contrast with the congruence lattice, the complete congruence

lattice of a complete lattice L is not neccessary algebraic nor distributive.

Examples can be found in [Re, Wi].

In Chapter V, we answer a question raised in [Re, Wi] in the

affirmative. We show that every finit€ lattice can be represented as the

complete congruence lattice of a complete lattice. The construction can be

modified to work for the infinite case. The same result was also proved by

G. Grätzer [Gr-2].

Lastly, all the theorems and lemm ata are numbered consecutively in

each chapter, e.g. Theorem 2.2 refers to Theorem 2 of Chapter II. Similarly,

Figure 2.1 refers to Figure 1 of Chapter II. The end of a proof is marked

v¡ith the symbol D.

S.K.Teo, Ph.D Thesis



Chapter ã

NotaÉåoxe a¡ad Prelåm.åxearåes

Alattice, as an algebra, is written as L = (L; v, n), where v and n

denote respectively the join and meet operations. In this thesis, a

semíIattice will always mean a join-semilattice. A lattice (or semilattice)

can also be considered as a poset (L; <) where x < yifand only ifx V y = y,

and for every two elements x and y, there is a least upper bound and a

largest lower bound (least upper bound). I use both definitions whichever is

convenient. For a subset S of a poset L, the supremurn and infirnunt. of S in
L are denoted by VS and z\S, respectively. The zero andtlne unit elements of

a lattice L are denoted by O and I, respectively. A lattice is bounded if it has

both the zero and the unit element.

Let L be a lattice. We use the notation x -< y to mean that y covers x in

L. Anelementxis called anatom ifl,has aOandO-<x. AlatticeLis

said to be øtomistic if every element is the join of some atoms. The interval

[x<z<y I ze L]isdenotedby[x,y]. Forxe L, t}reprincipalí.d,eal

(princípal duo.l-ideal) generated by x is denoted by (xl ( [x) ). The ideal

lattice of L is denoted by J(L), and the dual-ideal lattice is denoted by ld{1,).

An interval [x, y] is called prime if x -< y. An ideal (dual-ideal) S of L is

calledprimeif xnye S(xvye S)impliesthatxe Sorye S. The

cardinality ofl, is denoted by lLl. The lengthofa finite chain C is I C I - 1.

The length of a finite lattice L, denoted by 0(1,), is the length of a chain of

maximum length. We also use the sâme notation for similar notions in

posets. A lattice is called díscrete if every interval has finite length. We use

the notation M, and N, for the standard lattices, the Diamond and the

S.K.Teo, Ph.D Thesis



Pentagon, respectively (Figure 1.1). The symbol = is used for isomorphism

between lattices and between posets.

Figure 1.L

An element x of a lattice L is called contpøctifx < VS, S e L implies

the existence of afinite setF, Fe S suchthatx < VF. Alattice Lis called

algebrøíc if and only if it is complete and every element of L is the join of

some compact elements of L. The set of all compact elements of L is a join-

semilattice and is denoted by L'. It is well-known that if L is algebraic, then

L = 9(L").

The lattice of all the congruence relations of a lattice L is denoted by Con L.

A compact element of Con L is called a compøct congruence. T}re principal

congruence 0(x, y), x, y € L, is the smallest congruence relation @ such that

x = y (O). It is a basic fact that every compact congruence is a finite join of

principal congruences. The congruence class of @ containing x is denoted

by [x]O. The homomorphic image of a lattice L under the congruence

relation @ is denoted by L / @.

Þ13ïqs

S.K.Teo, Ph.D Thesis



One of the basic concepts in the study of congruences of lattices is the

notion of weak-perspectíuity and weøk-projectíuíty. We say that [a, b] is

weakly perspective into [c, d] if(i) c n b > d and c v b = a, or (ü) a n d = b and

a v d < c. Weak-projectivity is the transitive extension of weak-perspectivity.

The notation [a, b] + [c, d] means [a, b] is weakly projective into [c, d]. The

relationship between congruence relation and weak-projectivity is shown in

the following theorem.

The.orem n,n [Di] LetLbe a lattice, a, b, c, d e L, b ( a, and d <c. Thenc =d
(0(a, b)) iffthere is a sequence of intervals : les, erJ, ler, ê2J, ..., [e¡, en*rJ from

c to d with c = €o âDd êk*l = d such that [e,, e,*rJ + [a, b] for i = 0,1,..., k.

Let L be a discrete lattice and let H, be the set of all the prime

intervals of L. For [a, b], [c, d] e H¡, wê say that [a, b] - [c, d] if and only if
[a, b] -+ [c, d] and [c, d] -+ [a, b]. Then - is an equivalence relation and -+

induces a partial order relation on Hrl-.

Let L be a lattice, an element x ( + O) is called a joín-iteducible

element ofl, ifx I y v z implies that x < y or x 1 z. The set of all the join-

irreducible elements of L is denoted by J(L). (J(L); <) inherits the natural

partial order of L. If L is a finite distributive lattice, then J(L) is non-empty

and L = J(J(L). However, if L is an infinite distributive lattice, \¡re have the

following [St] analogous result: every dual-ideal I of a distributive lattice is

the intersection of all the prime dual-ideals containing it.

S.K.Teo, Ph.D Thesis



&e¡ïlnla 1-,?- Let L be a discrete lattice. Then J(Con L) = 
( H/-, -r ).

Proofl Let@ e conL. since Lis discrete, @ = V (0(x, y) I x=y (@), x <y)

- V (0(x, y) I x =y (@), [x, y] = Hl ). Since Con L is distributive,

0(x, y) e J(Con L) if [x, y] e Hl. Hence J(Con L) 
= 

( HJ-, n ). A

Let L be a bounded lattice. An element a is a complement of b if
anb = O and a vb - I. Alattice is complementedif everyelementhas a

complement. A Boolean lattice is a complemented distributive lattice and 2n

denotes a Boolean lattice generated by n atoms. A generalized Boolean

lattice is a relatively complemented distributive lattice \Mith zero. A

sectionøIly complemented lattíce is a lattice with O and all intervals [O, a]

are complemented. In a sectionally complemented lattice L, there is a

one to one correspondence between the congruences of L and certain ideals

of L. A finite sectionally complemented lattice is also atomistic.

A context is a triple (G, M, I) where G, M are sets and I E GxM is a

binary relation. For all A e G, B e M, the closure of A and B are the sets:

A*={m lme Mand(g,m)e I,Vg€ G},

B* = { g I ge Gand(g,m)e I,Vme M}.

An ordered pair (A,, B) is called a concept if A* = B and B* = A. lVe define a

partial order relation on the set of all concepts by the rule: (4, B) < (C, D) if
and only if A c C. The set of all concepts of (G, M, I) \¡rith the given partial

-,-.'- -:- - ^^-^^-l^a^ l-aa-:-- l---r--l L-- T /^ 'A'f T\oruel'Is a uullrljreLe raLÜrce, ueiluLeu uy !\\r, LvL, L).

S.K.Teo, Ph.D Thesis



A subcontext (H, N, J) of (G, M, I) is a context such that H G G, N E M and

J = I n (HxN). The subcontext (H, N, J) is said to be compatible if the

following conditions are satisfied:

(i)forallhe H,andme M, me M \ {h}*impliesthatthereisan

ne N\ 1n1*andm*cn*.
(ü)forallme N,andg€ G, g€ G\ {m}*impliesthatthereisan
he N\ {m}*andh*Gg*.

The subcontext (H, N, J) is also said to be saturated if
(i)forallge G,Xe H, {g}*=X*impliesthatge H, and

(ü) for allm € M, Yç N, { m}* = Y* implies thatme N.

The set of all compatible and saturated subcontexts of (G, M, I) is denoted by

f(G, M, I). It is given a partial order relation < by (Hr, Ni, Jl) < (rL, N2, J2) if
and only if H, c H" and N. c N^..¿r

It can be shown that a subcontext (H, N, J) is compatible iff the

mapping A : L(G, M, I) -+ P(H) x P(N) glven by (4, B) -+ (AnH, BnN) is a

complete homomorphism. This gives rise to the definition of complete

congruence relations as mentioned in Chapter O, page 4. Our result of

Chapter V was motivated by the following theorem:

Theçne¡n LS- [Re, Wi] Under certain conditions, there is an anti-

isomorphism between Com L(G,M,I) and |(G,M,I).

S.K.Teo, Ph.D Thesis
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Claapter lE

CoxagraN.exeee 3.atÉåces

In this chapter, for a finite distributive lattice D, we construct lattices

L with Con L = D and L satisfuing certain numeric conditions. We prove the

followings:

(i) If D is finite and has n dual atoms, then there is a finite lattice L such

that ¿(L) < 5n and Con L = D.

(ii) Given any positive integer n, there exists a finite distributive lattice D,,

such that if L is a finite lattice and Con L = D,,, then ¿(L) > 5n. Hence the

bound obtained in (i) is best possible.

(iii) If D is finite and has n dual atoms, and L is a finite sectionally

complemented lattice with Con L = D, then ¿(L) > 2 lJ(D) | - n.

(iv) If J(D) is finite, then there is a finite planar lattice L such that

Con L = D and. lL I is of order I J(D)l 2. The fi.rst statement also holds for

countable J(D) in which every element of D is the join of elements of J(D).

Statement (i) is presented as Theorem 2.2. This answers the question raised

in [Sc-2] in the affirmative. Statement (ii) is Theorem2.6. Statement (iii) is

Theorem 2.8 and Statement (iv) is Theorem 2.9.

L. T'he Co¡estructio¡a of F, wíth 00,) = 5¡l

The construction of L is given in two parts. We first present a

simplified construction of E. T. Schmidt [Sc-2] when D has only one dual

S.K.Teo, Ph.D Thesis
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atom. Secondly, we extend this to obtain the required lattice for the general

case.

(A) D has only one dual atom.

Let A be the maximal element of J(D). If (Al = {A}, we take L to be any

simple lattice of length five. Otherwise, let

(A) = J(D) - {A} = ( 81, 82,..., Bn}.

For each i = 1,2,..., k, let

Pi= {Di, Di,g,¡ | j e J¡}, where ii= {, I I <s<k,8,>-Br} u {k+1, k+21.

The elements of P, are ordered as follows:

J>-0,j-mi>ni>-O.

For each Bi > B, , let

Q¡ = {t,j,o,j } and let

uij >- oü, 0,j 
- 

rü 
- 

*j and vu )- n¡, rr.¡.

Let w1, w, be such that

I > \M1r rtr2 >- O and let L be the set:

u(Pt I i= 1, 2,...,k)uu (Qtj I B,>-8.¡, i= 1,...,k )u {I, O,w' w2}.

Let the covering relation of the elements of L be precisely those given

above, then L is a lattice.

For example, let (Al be the poset as shown in Figure Z.L(a). Then L is

the lattice as shown in Figure 2.1(b).

S.K.Teo, Ph.D Thesis
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Figure 2.1(a)

It is easy to check that 0(O, wr) = 0(O, wr) = O(wp I) = O(wz, I) = 0(O, n.) =

0(n,, v,r) - 0(nr, vij) = e(¿ü, I) = O(mi,0,j) = 0(uu, m,) = r. The other prime

j . Ji - { k+1, k+2 }. The congruence classes of 0(mi, n,) are:

{{q, n,} I u.=8,} u ({0,r, ur,, v,.} I B,--8, <8,} tr

{{u¡;, v¡i } I n,-B: }.

It follows that 0(m,, n,) 2 0(m,, n ) if and only tr8,2 8,, and

HJ-= { e(O, wr), 0(m¡, tr,) I i =1,2,...,k}.

The mapping Y : (Al -+ HJ- given by Y(A) = 0(O, w,), and Y(Bi) - 0(m,, n,)

is an isomorphism. Thus J(Con L) 
= 

(Al by Lemrna}. . tr

interval congruences are 0(m¡, n,) = 0(0¡¡, uU) and O(uU, v¡¡) = O(mj,nr) for

Figure 2.1(b)

S.K.Teo, Ph.Ð Thesis
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(B) D has n dual atomç

Let D be a finite distributive lattice, then D has n dual atoms if and

only if J(D) has n maximal elements. Let

J(D) = { ^\, Ar, ..., q_r, Bs, 81, ... , Br_r } where ,\, Al, ..., 4,-, are the

maximal elements.

We can construct lattices L6, L1, ..., Lr,_t as described in (A) such that

J(Con \) = 
(aJ for i = 0, 1, ..., n-1.

LetL =Lo@L, @...OI+-,. ThenJ(ConL) = \J ( (41 I i=0, 1,...,n-1 ).

We shall label the elements of L by attaching a subscript j to each element of

Lj, j = 0, 1, ..., n-1. For each element B, e J(D),let 3{i) be the set { j I n,. t4t t

and let BiO , j e !{i) denote the copy of B, in (A¡1. We shatl construct a lattice

L* which precisely identifies alt the 8,0)'., j e !{i) to B, and preserves the

ordering relations of the B,'s. Without loss of generality, we can assume

that I !(Ð I > 2 for each i. For each i = 0, 1, ..., k-1, let C, be the chain of L

consisting of the set of elements:

u({o,} lr=0, 1,...,n-1 )u{\-1 }u\J({m¡,\¡} lj. ltu) (ffi-t).

We first prove a lemma which will be useful in our construction. Let

L, and Lrbe finite lattices, L, aLr= Ø. For i = 1, 2,let Ctbe a {0,1)-sublattice

of L,. Let g : C, + C, be an isomorphism between C, and Cr. Let L be the

set obtained from LrvLrby the identification u = g(u) for all u e Cr.

S.K.Teo, Ph.D Thesis
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For x, y € (Ll vLrY=, we define x < y if and only if one of the following

conditions holds:

(i)x<ry forx,ye Lr;

(ii)xqy forx,yeL2l

(iü) x Sl ü = g(u) <, y, forx, u e Lf y e L2i

(iv) x qu=g-i(u) s1 I, forx, u € L2,y e Lr.

&eruroa-Z.1

(i) (L,<) isaposet.

(ii) If C, and Crarc chains, then (L, < ), also denoted by G[Ll L2, gi, is a

lattice.

We first remark that the condition that C, and C, be chains cannot be

replaced by lattices in general. For example, let L, =Lr= 2x3, g(0, 0) = (0, 0),

(Á1,2) = (L,2), q{0, 2) - (1, 0), and r{1, 0) = (0, 2); but LrvLr/: is not a lattice.

Proofl

(i) It is easy to verifii that S is reflexive, anti-s¡mmetric, and transitive on L.

(ii) Let x, y € LrvLrand let U be the set of upper bounds of x and y in L. Let

Ur = U n Lt and Uz = U 
^Lz. 

Clearly, both U, and U, are non-empty. By

symmetry, we need only consider the join of x and y in the following two

cases. The meet of x and y can be proved dually.

Case1. xe L. andve L^

Suppose that p, e e Uz. Since x S p, q, there exist u, v G L, such that

xs, u:g(u)1p,*s, v=g(v)<rq. Thusx (r ü^1 v=e(u) nrg(v)<p^ze.

S.K.Teo, Ph.D Thesis
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Similarly y < p n2 q. Therefore U, is a dual ideal of Lr. By the same

argument, U, is a dual ideal of Lr. Let [r) = Ur and [s) = Uz. Suppose that

neither r ( s nor s < r in L. Since x ( s e Lr, there exists r' e L, such that

x S, r'= rp(r') E s. Simitarty, there exists an s' € L, such that y A r'= g-t{r')

Ir r. Since C, and C, are chains, we have ,' . g-t{r') o" g-1{r') o "'. By

symmetry, \Me may assume that r' o .p-t{r') = s'> q(r'). Since r and s are not

comparable in L, s' É s, we have s > s' 
^z 

s ) q(r') and s' Â, s . Uz, This

contradicts the definition of s. Thus r ( s or s (r and the join of x and y

exists in L.

Case 2. xe L. andve L.

Letz =xV1 y. Letse Lrsuchthatse Il2,whereUrisasdefinedin(i). We

show thLatz< s inL, i.e, x v y = z. Letx', y' € L, and x 3, x' = <p(x') <, s,

y sr y' = <p(y') <, s. IVe have z 3, x' v, y' = g(x') v, g(y') E s in L. Thus it
remains to show the U, is a dual ideal of Lr. This follows from the fact that

ifs, and s2 are elements ofU2, then x v, y I s, and sr, i.e., x v1 y ( s, n sr.

From the above proof, we can describe the join and meet of L. For x e

L,, i = 1,2,let x* e L¡, j * i, be the least element in C, such that x+) x. For x, y

e L, u Lr/=, by symmetry, we state the join of x and y in following two cases:

(a) If x, y € L1, i = 7,2,xvy=x viy.

ft) If x e Li, y€ Lj, i *j, andy*2**, thenx v y=y rrj **.

The meet of the elements of L can be obtained dually.
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Iæt!{i)=1o,(i),%('),...,oo.',}where0<o,(i)oob(')<...<

¡a be the chain 0 ---< 1----< 2--<... ---< n-1 ----< n. Let the interval [i, i+1],

i = 0, 1, ..., n-L be given the colour 4. W. define the following two chains:

P, : This is the chain obtained from n by augmenting the interval

or(t)----< %(t)*t to the interval or(t)--_< o.(tts-.-< crr(i)+---= %(t)*1 for each

or(t) = !tt'- { or(t) }. The new intervals [or(t),%(t\,[or(tF,or(t)l urrd

lcr 
(i)*, 

%(t)*t] are given the colours Aor(i), B, and Aør(i) respectively.

Q' : This is the chain obtained from n by augmenting the interval

crr(i) - ar(i)+l to the interval or(t).---< crr(i)-*--< ç¡r(i)+---< ar(i)+I. The new

intervals [or(t),or(t\, [or(tF,or(t)l and ¡ar(i)*, ar(i)+1] are given the colours

Aar(i), Bt and Aar(i) respectively.

Let the elements (. , .) of P, x Q,be labelled by x,(. , .). We add a new

element y¡(u,v) to each interval [x,(s,t), x,(u,v)] such that s < u, t---< v,

and [s,u] e P,, [t,vJ e Q, have the same colour. Let the resulting lattice be

denoted by Mi. For example, let n = 5 and !(i) - l.1,2,4), then M, ir depicted

in Figure 2.2.

Let D, c Mi be the chain consisting of the following set of elements:

\J ( {x,(r, r)} l, = 0, 1,..., tr ) u {x,(ar(i), ør(i)-¡, x,(ør(i), ør(i)+¡,

U ( {xlcrr(i)-, %(i)), x,(ør(i)+, ø,(i)¡1 I cr (i) e !{i)- {ø,(i)} ).
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x. (4,0)

x. (2+,0) xi (0,2)

xi (2,0)

xi(0,11

)

x. (1,0)

xi (0,0)

Fige 2.2
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Let g, : C, -+ D, be an isomorphism, for i = 0, 1 ,..., k-l; where C, is the chain

of L as stated in (II-1). (see pg. 13.)

The equivalence class of a prime interval of M, is determined by the

colour of its projection on P, or Qi. It is not difficult to see that the prime-

interval congrlrence classes Mr/- forrr a totally disconnected poset

consisting of the elements 4, " = 0, 1,..., n-l, and 8,.

In the following, we give the definition of L* and show that J(Con Lo )

is isomorphic to J(D). Let L(0) = G[L, Mo, gsl, and for each integer i = 0, 1, ...,

k-2, we define ¡(i+1) = Ç¡¡(i), M,*r,gi*rl. Then ¡(i+1) is a lattice by Lemma 2.

we d'efine L* = ¡(t-t)'

For i = 0, 1,..., k-1, let JG) be the set:

(4 | r=0, 1,...,n-l ) u {8. I r=0, 1,...,i} v {80 I r=i+1, í+2,...,k-1,j. r(t)}.

J(i) is an augmented poset of J(D) such that the mapping li) -+ J(D) given by

{ + 4, B, -) Br, Brt' * B, is order preserving and gr0 
= 

Br0') iffB, < Br.

Clearly, J(Con ¡{o) ¡ =;(0) and Jß-1)= J(D). We show inductively that for alt

i = 0, 1,..., k-1, J(Con L(i) ) = 
li). Fo" a lattice K, let Ay(K) denotes the set of a]l

prime intervals which generate the congruence 4 ir K. S/e define

inductively on j, j = 0, 1, ..., k-1, (notation: L(-1) = L ) the followings:

n {lol = {G(-1)¡ u Ar($), for r = 0, 1,..., n-1;

prrû)r -Þfi û-t)r r^---rr r : r..lJr\¡J I - n'.\u ,11 LVL t - Vr rr...r J-rt

Bj(Lq = Bj(Mj) u \J ( þ.{Ðç¡0-t)) I s. !o);
BlÐGo) =3('\¡0-t)), forr - j+l,...,k-1, r. 3(').
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To show that these form the prime-interval congruence classes of L0)

isomorphic to Jt), we have to verify that, under projectivity, each element of a

class (-) is projected to an interval whose prime intervals are in the ideal

generated by the class (-). By using the join and meet of the elements of

G¡¡(it), Mi, glJ as described in Lemma 2.L, we sunmarize the computation

of the equivalence classes of the prime-interval congruences under

projectivity as follows:

For r = 0, ..., D-1,

Ar(La)) -+ 4(Lt)) u \J ( n,{ltD¡ I 
", = 4) t

u 1 e,G){1,6)) l r. J(t),j < t, B,<4).

For r = 0, ..., j,

B.(Lo) -+ B.(Lo)) u \J ( n¡l(j)) I 
", = 

B.) u

u { n,('){r,0) l r. r('),i < t, Br <8,).

Forr-j+l,...,k-1,

B,(')1¡c)¡ * gls\¡(i-t)¡ u \J ( B,(LO) I n, 
= 

B,) u

u t n,('\l,ti)¡ I s. !('), j < t, Bt< B,).

Therefore iF,-ro/- 
= JÛ), for j = 0, 1, ..., k-1; and HL*l- is isomorphic to J(D).

Hence we have proved:

T}niesÍemå,ß Let D be a finite distributive lattice such that J(D) has n

maximal elements. Then there is a finite lattice L of length 5n such that

Con L is isomorphic to D.
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2. T-he l,ower Bou¡ad of 8(E ) a¡ed åts Congrrze¡ace f,aútice

In this section, we show that in general, the bound on the length of L

given by Theorem 1 is best possible. Let A be a partially ordered set, we

defrne

A(A) = min { 0(L) I .f(Con L) = A}.

Lemma-2,S Let L be a finite lattice and let J(Con L) 
= 

Ar u .\ u ... u An

where the A,'s are disjoint posets. Let @, - v (0 I 0 e A, ) and Li=Ll@¡. Then

L is a subdirect product of L,'s. The mapping æ : L -+ L, x ... x Lu given by

x + ( x1r ..., xu ) is an embeddirg, where x -+ xi is the canonical projection

zr,: L + Li. Furthermore O(xl = 0(xrl + ... + 0(x¡J.

Proof: Since the A,'s are disjoint, we have O¡ = V (S I g ø A¡) = A¡", where

4," is the ideal generated by the complement of 4,. Thus A @i = (\ Ar" = Ø

and the mapping x -+ (xr, ..., xr) is an embedding. Let [x, y] be a prime

interval of L, then 0(x, y) e A, for some unique j and xi = yi for all i * j.

Furthermore, [x¡, y/ is a prime interval in Lr. To prove the second

statement, we apply induction on the elements of L. If x = O or x is an atom

of L, the second statement is obviously true. Suppose the second statement

has been proved for all x ---< y. We have

0(yl =max{0(xl+t lx<y}
=max {max {['(xl + i I *.--<y,0(x,y)e Ai} I i=1,...,k}

- 0(*rl + ... + (0(xJ + 1 ) + ... +0(xul

= ¿grl + ... + ¿0J o ... + ogr,l tr
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As a consequence of Lemma 2.3, we have

&eryl¡ma l*4 Let L be a discrete lattice and J(Con L) 
= Ar u,\ u... u Ak,

rhen t(L)> a(41) + a(A2) +... + a(Ak).

ã¿emmal*5- Let A be the chain c0---< cr { ezl c: * eq4 c, and let L

be a lattice such that J(Con L) 
= 

A. Then ¿(L) > 5.

Proof; Suppose that 0(L) < 4. There exist prime intervals [a, b] e c, and

[c, d] e co such that the sublattice generated by them contains an \. We

can assume that a = 0 since ¿(L) < 4. We have l,(1,/g@, b)) < 3 and

J(Con IJo(a, b)) is the chain ez1% < cq4 cs. By using the same

argument for L/0(a, b), we obtain a lattice of length two whose congruence

lattice is a chain of length 3, which is absurd. Thus 00,) > S. A

Sbeore¡æ-?,6 For any integer n, there exists a finite distributive lattice D,,

such that J(Dn) has n maximal elements and any lattice L whose

congruence lattice is isomorphic to D,, has length at least 5n.

Proof; This is an easy consequence of Lemma 2.3 and Lemma 2.4. tr

Given a finite distributive lattice D, a sectionally complemented lattice L

with Con L 
= 

D was constructed in [Gr & Sc]. Such a lattice has length

< 2n-1, where n is the length of D. In Theorem 2.8, we give a lower bound of

the length of L. We first prove a Lemma.
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Lemmaå,-Z Let L be a finite lattice and @ e Con L. Let, (al = [0]@, [b) = [1]@

and L' - t /ø then

(i) if a < b, then 0(L') < 8[a, b] < ¿(L) - ¿(al - ¿lb).

(ii) if a and b are not comparable, and 0(al > ¿[b), then ¿(L') < 0ta).

(üi) if @ is isolated in J(Con L), then 0(1,') < 0tl,i - f .

Proof:

(i) For each congruence class of @, we can choose a representative x e L

suchthata (x (b. Thus¿(L') <0[a,b] <¿(L)-¿(al -¿tb).

(ii) Suppose 8(al = max { 0(al, ¿lb) }. For each congruence class of o, we

choose a representative x which is the maximal element of the class, then

x ) a. Thus ¿(L') < 0[a) < 0(L) - 8(a].

(iü) Let S be any maximal chain of L such that ¿(S) = ¿(L). Then S must

contain aprime interval p € p* = @, forotherwise O <V(O. I @. +@) which

Thegrem-2,$ Let D be a finite distributive lattice having n dual atoms, and

L be a finite sectionally complemented lattice such that Con L = D. Then

¿G)>2lJ(D)l-n.

Proof: Since the homomorphic image of a sectionally complemented lattice

is also sectionally complemented, lrye can apply induction on lJ(D) | . The

theorem is clearly true if lJ(D) I < 2. So we assume that I J(D) | > 3. We may

further assume that J(D) has no isolated element by Lemma2.7(rtÐ. Let L

be a finite sectionally complemented lattice such that Con L = D. We can

partition the set of atoms of L into equivalence classes according to the

congruence relations that they represent. Let u be a minimal element of

tr
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J(D) and let, the class of atoms represented by u be C,r. If I Cu I > Z, we are

done by Lemma2.7 and the induction hypothesis on J(D) - {u}. So we

assume that lCul = 1. Let Cu = {a} and letvbe the join of all atoms of L other

than a. Suppose that v > a. The congruence 0(O, a) cannot collapse any

prime interval of (vl, for otherwise 0(O, a) collapses some [O, b], b < v which

is not the case. AIso, for any two distinct elements c, d e (vl, we have

a v c *av dbythe same reason. Thus Lis isomorphicto a directproduct of

(vl x [O, a], which is not the case. Hence v > a. Let v'be a maximal element

in (vl such the v'is not greater then a. Then there is an atom b < v such that

b vv'=v" =v'v a > a. Thisimplies 0(O, a) = 0(O,b), acontradictionto the

assumption that lCu I - l-. Hence lCu I > 2 and the proof of the theorem is

complete. n

Instead of considering the length of a lattice, one can also ask the sâme

problem about the cardinality of L. The sectionally complemented lattice

constructed in [Gr, Sc] has exponential order. In the following theorem, we

give a planar lattice whose card,inality has polynomial bound.

ffiesns@J,9 Let D be an algebraic distributive lattice such that J(D) is

countable and every element of D is the join ofjoin-irreducibles. Then there

exists a countable planar lattice L such that Con L = D. In parüicular, if D is

finite, then I L I is of order O( lJ(D) | 
2).

Proof: LetJ(D) = { â1, \, ...}. For each i =I,2,..., letS, be the interval

t( 2(i-1), 2(i-1) ), ( 2(i), 2(i) )l of clxto. For each aj -< ai , let Tu be the interval

t( 2(i-1), z(i-L) ), ( 2(i), 2(i) )1. We extend S, and T¡ b S,* and T,,'as shown in

Figure 2.3(a) and Figure 2.3(b).
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Let L be the resulting lattice as shov¿n in Figure 2.3(c). Then L is

planar and countable. If D is finite, then lL I is of order O( lJ(D) l2). Th.

mappingV: (J(D), <) -+ (H/-, r), with a, -+ [( 2(i-1),2(i-1) ), ( 2(i-L),2i-1 )l*,

is an isomorphism. Hence Con L = D. El

( 2j, 2(i-l) ) 2(i-1), 2i )

( 2(i-1), 2(i-l) )

s,*

( 20-r), 2(i-1) )

+
t;j

(2i,2i ) (2j,2i)

Figure 2.3(a)
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Chapter ãTl

Comgraaexice ã,aÉtiees of E aÉüåces of ï-,emg'th < 4

By applying the results of Chapter II, in particular, Lemma 2.4 and

Lemma 2.7 , we enumerate all the congruence lattices of lattices of length at

most 4. The following lemma follows immediately from Lernrna 2.4.

Ee-æma_S*L Let L be a lattice of length n, n 2 2; then

(i) Con L=2n if and onlyif L is distributive,

(ii) Con L = 2n-r implies that L is modular.

For the purpose of the following discussion, we call a prime interval

p = [a, bJ exterínr if either a = 0, or b = 1; otherwise it is called interipr. The

congruence class containing the prime interval p is denoted by p*. A class

p* is called exterior if it contains some exterior prime interval, otherwise it
is called interior. Let f : L -+ L'be an onto lattice homomorphism, it would

be helpful to note that if p* is interior in L', then its preimages are also

interior. By a cycle C of a lattice (or poset), we mean a sublattice (induced

subposet)C = {a,b, a,, b, I "r..... unib, o...ob*i sup(ai,br) =b;ffia., b)=ai

fori = 1, ..., n andj = 1, ..., m].

Then there exists prime intervals p and q such that p* >- q* and a cycle C

(containing N,) containing p and q. Let L' =IJp*. Then

(i) po is exterior;

(ä) ¿(L') < ¿(L) - 1 and if ¿(L) = 3, then l,(L') = 1;

(iii) J(Con L') = J(Con L) - (p*1.
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Proof: Since Con L r gn, there are prime intervals p and q such that p* >- q*.

Thus there exists a cycle C = { 0, a, b, c, df a vb =av c = d, an b = a n c = 0}

containing p and q. clearly c contains \ as a sublattice and ¿(c) > B.

Since ¿(L) < 4, we can assume that 0 e C and. p - [0, a]. Thus p* is exterior.

ByLemma2.T(ä),0(L') <¿(L)-1. If¿(L) = B, thenmax {0(al,0lb) } = 2in
Lemma 2.7(ä), hence 8{L'¡ = 1. Clearly J(Con L') 

= J(Con L) - (p*1. A

Pganosí$iee$.fi LetLbe a lattice suchthat¿(L) = 3. Then ConL =2n, n < B

or J(Con L) is isomorphic to one of the posets as shown below (Figure 3.1).

Further more,

(i) if L has a maximal chain of length 2 and L * Nr, then

J(Con L) 
= 

Pr and q are interior for dl q = 1o, i = 1, ..., nifn > 2.

If n = 1, then either e, is interior, or L is the lattice (or its dual)

given by:

( 0, 1, a,b, cr, ..., cn, I n22, 0<a-<1,0--<b-<crr ..., cn-<1 ).

(ii) if J(Con L) = Pz, then L = N, or L, (and its dual, see Figure 8.2).

P2

Figure 3.1

Proof; If Con L=2n, thenn<3 since L(1,)= 3. SupposethatConL +2". Let

p c pt urrd q . q,* be such that p* t- to, i = 1, ..., Di q* being minimal in

Pr

K
P3 P4
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J(Con L). Let L' be the lattice as described in Lemma 3.2. Then 0(L') < l- and

lJ(ConL')l<1.

If J(Con L') = Ø, then J(Con L) = Pr. So we assume that J(Con L') = y*.

Suppose that r* > p*. We will show that n = 1. Suppose that n> 2 then by

Lemma 2.7(ä), q* *.interiorforalli =1,...,n. Let@ = V(O(qi) I i =1,..., n)

and L" =IJ@. Then L" has at least two maximal chains of length 2. This

implies that x* = t for all exterior x of L" unless L" = 22. But this is not the

case since J(Con L") * tr u tr. Thus p* is interior in L"; hence it is interior in

L, which is not the case by Lemma 3.2. Thus n = l- and J(Con L) = Po.

Suppose that r* and p* are not comparable. By applying Lemma 2.4,

we have that r* t qn fu" all i. Now suppose that n > 3, then q* are interior

for all i and L"(as in the above paragraph) has at least 3 maximal chains of

length 2. This implies that I e J(Con L") which is not the case. Thus tt 12,

and J(Con L) =Pz or Pr.

(i) Now we suppose that L has a maximal chain of length 2 and L is not Nr.

We can assume that L has at least three atoms. In this case t e J(Con L),

hence J(Con L) +Pror Pr. Suppose that J(Con L) = Po, then L' = I/q* has at

least two maximal chains, this implies p* is interior in L', hence it is

interior in L. This contradicts Lemma 3.2. Thus J(Con L) 
= 

Pl.

(ii)LetL*\andJ(ConL)=Pz. LetC = (0, a,b, c, 1) be acycle of L

containing prime intervals p = [0, a] and e = [b, c] with p* >- q*. We can

assume L has no maximal chain of length 2 by (i), thus there exists d e L

such that a < d < 1. By Lemma 3.1(ii), L/q* cannot have chain of length 3,

hence we may assume that [b, c]* = [0, e]* = [a, d]* for some e e L. If
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L = {0, a, b, c, d, e, L} then L = L, (see Figure 3.2). Otfrerwise let f be another

atom or co-atom of L. If f is an atom, then t e J(Con L), which is not the

case. So we suppose that L has no new atom and f is a co-atom. Then we

must have f = â v b and L=23,whichis also not,the case. Thus L=Lr.

Finally, we give examples of lattices whose congruences are as stated in the

proposition. (Figure 3.2)

Figure 3.2

[æuoma.?-a Let 0(L) = 4 and p* >- to,i - 1, ..., Di p*, q* e J(Con L). Let

L' = IJp*. Then

(i) if ¿(L') = 3, then L' has at least n maximal chains of length 2.

(ii) if ¿(L') = 2, then L' has at least n-l maximal chains of tength 2.

Proof: For each to, i - 1, ..., n, there is a cycle C. as mentioned in Lemma

3.2 such that the congruence class of p* containing the prime interval q has

length 2 (it cannot be 3 as 0(L') > 2). Denote such class by %, it is easy to see

that q, ,''t qj = Ø if i * j. If tÚ') = 3, then none of the classes e,'s can be the 0

or 1 of L'. Thus L' has at least n maximal chains of length 2, i.e.,0 -< q, -< 1

for i = 1, ..., n. If ¿(L') = 2, then at most two of q's can be the 0 or 1 of L'. If
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only one of the e,'s is the 0 or 1- of L', then the rest of the e,'s will give rise to

n-1 maximal chains of length 2 in L'. If exactly two of the q,'s are

respectively the 0 or 1 of L', then in this case, n = 2 and L' still has a

maximal chain of length 2. U

Lereme_S-õ Let L be a lattice of length 4. Then any induced subposet of

J(Con L) does not contain a cycle.

Proof: It suffices to consider the situation where the cycle of J(Con L) is

{ a*, bo, ct, d* I a* --< (b* and c*) --< d* }. By Lemma 3.4, Lb = L/b* is of length

3, and has a maximal chain of length 2. Since c* must be exterior in Lo, Lo

contains asublattice {0,1, a, c, dr,..., d,r, I n>2, 0 -< a< 1,0-< c-{ dr,...,

d,, * 1 ) or its dual by proposition 3.3(i). But this implies that L" =IJc* would

have two maximal chains of length 2, (ott" as described in Lemma 3.4, and

one arises from the fact that there is a congruence class of length 2 of c*

containing only prime intervals in c*). This implies that b* is interior in L",

hence in L. This contradicts Lemma 3.2. n

trronosíSlg¡¡r S,_6 Let L be a lattice such that ¿(L) = 4. Then Con L z?n,

n ( 4, or J(Con L) is isomorphic to one of the posets as shown in Figure 3.3.

Proof: Clearly, if Con L = 2n, then n <4by Lemma 2.4. Suppose that

Con L *2n. LetL' = I/p* where p*, 1* . HJ-, p* >- $*, and t*, i = 1, ..., n

are minimal in J(Con L). We consider four different cases.
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Figure 3.3
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Çaçe 1- lJ(Con L') I < l- or 0(L') < f .

In this case, we have either J(Con L') = Ø or r*. Hence J(Con L) 
= er,

Qr, Q, o" Qo.

Case 2. J(Con L) has three maximal elements.

Let p*, e*, r* be the maximal elements of J(Con L) and let S be the

poset J(Con L) - {p*, e*, r* }. S is non-empty since Con L *2". LetL" = L/e(S)

where 0(S) = V(y* I y* e S). Then 0(L") > B.

Suppose that ¿(L") = 4, then L" is modular by Lemma 3.1(ü). Every

maximal chain of L" has length 4. This implies L" = L and S = Ø which is

not the case by assumption. Hence ¿(L") = 3 and L" is distributive by

Lemma 3.1(i). If lS I = 1, then J(Con L) = Q, or Qu by Lemma 2.4. Now

suppose that lS I > 2. We first show that S is totally unordered. Assume

that this is not the case, then there exist ü*, v* e S such that u* >- v*. Then

L/u* would have a maximal chain of length 2 by Lemma 3.4, which is a

contradiction. Hence S is totally unordered. By applying Lemma 2.7 and

proposition 3.3, one can see that lS I > 2 implies that for any x* e S, x is

interior. Then lS l< 3 since L" has width 3. Suppose that lS l= 2. y

J(Con L) is disjoint, then one component is a singleton. By Lemma 2.7(tri)

and proposition 3.3, J(Con L) = Qs. If J(Con L) is connected, then as a

biparttie graph, it has 4,5 or 6 edges. There are 4 of them, however, only

three of them are possible and are given as Qr, Qn, and Qro. If lS l= 3. Then

J(Con L) must be connected. By using Lemma 3.4 and proposition 3,3, we

have J(Con I/p*) = L u X., for any maximal p* of J(Con L). Thus

J(Con L) = Qrr.
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Çase 3, ?ÁL') =2.

In this case, Con L' = 21 or 22. The former case is covered in case 1.

For the latter case, we can assume that J(Con L') = { r*, s* } and either

r* > p* or s* > p*. Suppose that both r* > p* and s* > p*. By Lemm a 8.4,L,

would have at least 3 maximal chains of length 2 if n > 4. This would

implies that t is a join irreducible of L', which is not the case. Thus n < B.

Therefore J(Con L) is isomorphic to one of the posets: Qrr,e* and ero. Now

suppose r* > p* and s* and p* are not comparable. If s* is isolated, then

J(ConL)=Qrs. Supposethats* > q*forsomel <i <n, andn>2. Thenby

proposition 3.3(i), r* o q* for all i. If n ) 2,L* = L/s* has length 3 and

contains at least two maximal chains of length 2. This implies that p* is

interior in L*, hence is interior in L. This is impossible by Lemma 8.2.

Thus rr = 1 and J(Con L) = ere.

Case 4. 0(L') = 3.

The cases that Con L' = 2r or 23 are settled in case 1 and case 2

respectively. We show that Con L'+22. Suppose that Con L'=22, then L'is

modular by Lemma 3.1. Every maximal chain of L'has length 3. By

Lemma 3.4, L' has a maximal chain of length 2 which is a contradiction.

By proposition 3.3(i), J(Con L') = Pl or Pr. For the case that J(Con L')

- Pz { r*, s*, t* I r*, s* > t* }. We have L' 
= \ by proposition 3.3(i). This

implies t* is minimal in J(Con L). By Lemma 2.4, proposition 3.3 and

Lemma 3.4, we have r*, s* > p* and n = 1. Thus J(Con L) is isomorphic to
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Qrr. Now suppose that J(Con L') = F, = {r*, sr* I r* t rj*, j =1, ...., m}. We

consider four different possibilities:

(i) r* and p* are not comparable and all the q*s and s-*s are not

comparable. In this case, we must have to o q* for all i, for otherwise we

would obtain a lattice L" which is the homomorphic image of L by

collapsing all the congruences qi which are coverved by both r* and p*, and

J(Con L") 
= 

2 v 2. This is impossible by Lemma2.4. Thus J(Con L) 
= Qg.

(ü) r* and p* are not comparable but rro t ero. By Lemma 3.4, we

have n = 1. For otherwise, L'is a lattice having two maximal chains of

length 2 and s* is interior in L' and L, which is not the case by Lemrrra 3.2.

By applying Lernma2.4, and Lemma2.7, we conclude that m = 1. Hence

J(Con L) = Qre.

(üi) r* >- p*. By Lemma 3.5, s.* and q.t are not comparable for all i, j;

thus J(Con L) 
= Qra.

(iv) sr* > p*. By Lemma 3.5, s.* and q* are not comparable for j > 2,

and i > 1. By Lemma 3.4 and proposition 3.3(i), one deduced that m = r = 1.

Thus J(Con L) 
= Qrs.

Finally, we give lattices K with J(Con K,) = Q,. (Fieure 3.4). For i = 4,5

and 8, we can take L, Xã,LzX 2 and L3XZ as their respective lattices. D
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C3aapúew W
Ðo¡.axaÉahle Se¡målaÉÉåces of C ouaapact Coxagrr.r.erÌ.ces

In this chapter, we show that every countable distributive semilattice

\Miih O is the compact congruence semilattice of some lattice. Our proof

was based on the approach suggested in [Pu]. The same result was also

proved by A. P. Huhn in [Hu]. Lr section 1, we give a brief description of the

concept of representation as proposed in [Pu]. In section 2, we construct a

representation for a countable distributive semilattice with O.

X.. The Concept of Represesetation

category ts. A natural equivalence of g ir.g is a family ?. : {P,olA e .4,} of

isomorphisms, such that given a morphism a : A, -+ \in A, the following

diagram commutes:

1)

r)

9@)

Ð-efinitíoa 4å Let I :A -+ C, 9 : B -+ C be functors. A representation of

fr in $ isa pal¡ (5A,0), where ï9:A-+Eis afunctorand 0is anatural

equivalence of Ø in$oïï.

gØ2)

lu,
9øs

g(A

Uorl

9te
9(",)

rc (ffit,0r) is a representation of Ø in $ and (ïAz,l,r) is a representation of $

in ¿tl', then (&9ro ffi1, ?,ro?,) is a representation of Ø ¡ \f .
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A finite refl.exive directed graph (X, R) is a finite set X with a reflexive

relationR such that aRb represents a directed edge froma tob. A subsetU

of X is called a segment, if whenever y e U and there is a finite sequence of

directed edges from x to y, then x e U. Let U c X. The segment generated by

U is the set of all elements y e X such that there is a sequence of directed

edges from y to x, where x is an element of U. A subset V of X is called a

component if it is a maximal subset of X in which each of its elements

generates the same segment. The set of all segments of X forms a

distributive lattice under inclusion. We denote this by Seg X . Let C(X) be

the set of the components of X. We can define a partial order < on C(X) :

V, . V, if and only if the segment generated by V, is contained in the

segment generated by Vz. Each segment of X is generated as an element of

the lattice Seg X by a subset of C(X). Indeed, (J(SedX)), <) is isomorphic to

(c(x), <).

Let (X' Rr) and (Xr, nr) be finite reflexive directed graphs. Let

F : X, -+ X, be a partial mapping which satisfies the following conditions

(rv-1):

(i) F is onto;

(ü) For all a, b e Dom(F), a R, b implies that F(a) n, F(b);

(iü) If F(a) n, F(b), then there exists a c e Dom(F), a R, c and

F6) = F(c). (rv-l)

ÐefinÍtion4*? We define the following categories:

(i) f,aú is the category whose objects are lattices and morphisms are lattice

embeddings which preserves congruences.
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(ii) SÞ is t'he category whose objects are distributive O-semilattices and

morphisms are O-embeddings.

(iü) GapÐ is the category whose objects are reflexive directed graphs and

morphisms are partial mappings as described above, under the usual

composition (i. e., Dom(F, o F2) = Dom F, n Fr-l(Dom Fr)).

The subscript "fin" will be used to denote the restriction of a category

to its finite objects. The category SÐ^ is the full sub-category of SI) whose

objects are distributive lattices (i.e., the meet of two compact elements is also

compact). Let S be an object of SÐ. The futl subcategory of SÐ whose object-

set consists of all objects in SÐ which are also subsemilattices of S, is

denoted by SÐ I s.

Ð.efi-qttise-4,4 We define the following functors:

(i) Con' : Laû -+ SÐ is the covariant functor such that for a lattice L, Con" L

is its compact congruence semilattice (we abuse the notation Cont L for

Con" L). For an embedding g : L, -+ Lr, Con" g is the join homomorphism

from Con" L, b Con" Lr, which maps each 0 e Con" L, to the smallest

congruence of L, containing the image of 0.

(ii¡ 5n" : GrpD + SI) is the contravariant firnctor such that for a directed

graph X, Seg X = Seg X, the lattice of segments of X. For a morphism

F : X, -+ X, Seg F is a mapping from Seg & tn Seg X, which sends every

segment U of X, to the smallest segment of X, containing n-l{U).

(ni) Id: SÐ -+ $Ð is the identity functor.
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fuçwma*4-ä Let C be any distributive O-semilattice, then there is a directed

family {C, e SÐno, ieI } such that Cis the colimit of ICi,i e I].

Proof; Let A c C be finite. We construct a distributive O-subsemilattice of C

containing A. Let <A> be the finite 0-sublattice generated by A in the ideal

lattice of C. Let J be the set of the join irreducibles of <A>. If all the

elements of J are in C, we are done. Otherwise, let s e J be a minimal non-

compact element. There is an s' e C such that s > s' > v (t I t < s, t e J) and

(J - {s}) u {s'} generates a distributive 0-subsemilattice of C containing all

the compact elements of <A>. We repeat this process to obtain the required

0-subsemilattice. Finally, the construction of the colimit is standard and is

omitted.

The following theorems and Lemma 4.5 provide the basic idea for one

to obtain a lattice with a specified congruence lattice by the direct limit

(colimit) construction.

Theorcs-4.S Let { C, e SDno, iel } be a directæd family of distributive 0-

semilattices having colimit C. Let { L, e LaÉno, ie I } be a directed family of

lattices having colimit L. Suppose that the identity functor Id, restrtcted to

{ Ct e SD¡o, ie I }, has a representation in the functor Con', restricted to

{ Li G l,atr' ie I }. Then Con" L = C.

T-'he r @-4,? If Id: SÐno -+ SÐ is representable in Con' : S,at* -+ SI),

then Id: SÐ -+ SI) is reoresentable in Con' ;E at + $D .

tr
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Let X be a finite set, and let 9(X) be the power set of X. A mapping

M : P(X) + PCX) is called an m-operator if for every A, B c X, A ç B implies

that M(A) e M(B). Every m-operator determines a closure operator where

A is closed iff M(A) E ,{.

LEmmaé.S- Let M*, M" be m-operators on X, Y respectively. Let G : X -+ Y

be a partial onto mapping such that for any A ç Y, G-1(M'(A)) = Mx(G-t(e)).

Then the mapping A -+ G-l(A) is a 0-embedding of the lattice of closed

subsets of Y into the lattice of closed subsets of X.

Proof: Let L(-) denotes the lattice of closed subsets of -. Let A e L(Ð, then

Mx(G-i(A)) = G-l(u"(A)) . G-t(A). Thus G-t(A) e L(x). The mapping

L(Y) -+ L(X) is one-one and preseroing 0, since G(G-I(A)) = A as G is onto. It
is clear that G-l preserves meet as it is simply set intersection. As for the

join, we have

G-l(Avg) =G-l (n(Ce L(Ð tAvBe C))

= ô ( G-t(c) e L(x) I G-l(A) u G-l(g) e G-t(c) )

= G r(A) v G-l(B). B

LetZ be a finite set and Q(x,y,z) be a ternary relation onZ. Suppose

further that Q(a,b,c) implies that Q(a,c,b) for all a * b + c * a. Then Q

determines an m- operator Mo(A) = { a e Zl eb, c e A, Q(a,b,c) }. Let LM(Z)

denotes the corresponding closed-set lattice.

F a.*o*a ,{ G T (V\ io on ofn"-ic*i^ lo*fiaa an¡l ilrara lc â 
^ñÃ-^nô..rcU¡lUC 7õV U,.\4J LÐ g¡r qUV-¡'üDUIW ¡4uÛrvv 4lU vr¡vrv ¡u q v¡¡v v¡¡v

ltll'

correspondence, Con"L + { K cZl Q@,b,c) and b e Kimplies that a € K}.

Moreprecisely, foreachOe Con"L, wehave @ -IÇ = {a e Z I {al @0 }.
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Proof: Clearly, LM(Z) is an atomistic lattice which has the set of atoms:

{ {a} I a e Z }. Thus every congruence @ of L"(Z) is determined by the ideal

generated by the set IÇ = { {a} | tu} O 0 }. It remains to show that K. can

indeed be characterized as stated in the lemma.

Let @ be a congruence relation of L.(Z). Then Q(a,b,c) implies that

{a} = {a} n([b]v {c}). Hence {b} O0impliesthat{a} @({a}n {c}),i.e. {a} @0and

{a} e IÇ.

Conversely, let KcZ be such that Q(a,b,c) and b e K implies that

a e IL We define a relation @ on Lr(Z) by: A @ B ifand onlyifA Â B E K
( where Â is the symmetric difference operation of sets ). @ is cleaíly an

equivalence relation which preserves meet. We thus need only show that @

preserves join. i.e., for each @ e Con"L, (A v C) 
^ 

(B v C) E K. Now suppose

that x e (A v C) - (B v C). We have A v C - U ( S,, I n > 0 ), where So = A u C

and, inductivelySn= Sn_r uM(S,,_1) forn>1. Now S0-G v C)is clearlya

subset of K, so we can assume that x e K is chosen such that x e So - Sn-r,

and p ( > 1 ) is of smallest possible value. Thus we have Q(x,y,z) for some

y,ze So-1. One of the y and zis notin B v C; for otherwise x e B v C, a

contradiction to the assumption on x. By the induction hypothesis, we have

y e K ot z e K. This would imply that x e K, which is a contradiction.

Therefore (Av C) -(B v C) c K. Similarly, we have (B v C) -(A v C) e K.

Hence @ is indeed a congruence relation.

Let CX, n) e GprÐno. Let X* = X x 3, where 3 - {0,1,2}. Let Q* be a

ferrrnrvrplafinn.rverXnøivenhv: ã ( (ei)lhillnk) lifÊl i*i*k*i ),w^^¡s^J ¡vrqu¡vl¡ v v v¡ ¿! 6^f vL' úJ . 5x\ \st^/t\vult\vr¡¡/ / ^¡¿ \ ¿
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( a=b ora = c) and( anb and anc ). ThenQ* determines anm.-operator

M*. Let UX-l denotes the corresponding closed-set lattice of Xn.

Ägroma4*l$* Let (X, Rx), (Y, R") e GprÐno and let F : (X, R*) -+ (Y, n") be a

morphism. Let F* : X* + f be the map given by F*((a,i)) = (F(a),i). Then

(i) the mapping A -+ Fo-l(A) is an 0-embedding of L(t') into L(Xo);

(ii) the mapping i* : Seg (X) + Con"ll,ç¡*)), where ix(U) = the congruerìce of

L(X*) generated by the segment U, is an isomorphism;

(iii) the family of isomorphisms { ix I (X, R*) e GprÐno } is a natural

equivalence of Seg : GprDno + SÐ in Con" : f,,aúno -+ SÐ.

Proof:

(i) We need to show that F*-1(My(A)) = M (F*-r(A)) for any A E f by

Lemma 4.8. Let x = (a,i) e \(F*-l(A)). Then there exist (bj), (c,k) e F*-l(A)

suchthatQ*( (a,i),(bj),(c,k) ). Thus ( a =b ora = c ) and ( aR*b andaR* c ).

Hence ( F(a) = F(b) or F(a) = F(c) ), and ( F(a) R* F(b) and F(a) n* F(c) ).

Therefore F*(x) e M"(A) and x e F--1{M'{A)). Conversely, suppose that

x - (a,i) e F*-l{M"(A)). Then there exist (b'j), (c',k) e A such that

Q"( (F(a),i),(b'j),(c',k) ). Without loss of generality, we assume that F(a) = b'.

Then there exist d e X such that a R* d and F(d) = c'. Thus, \rye have

Q*( (a,i¡,1¿j),(d,k) ) and (a,i) e M*(F*1(A)).

(ü) By Lemma 4.9 and the fact that for each @ e Con"(L(Xo)), (a,i) O 0 itr

(aj) O 0 for all j = 0,1,2. One see that the mapping i* : Seg (X) -+ Con"(LCX*)),

is an isomorphism.
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(äi) We need to show that i*" Seg(F) = Con"(F) o iv. Let U e Seg(Ð, then

Seg(FXU) is the smallest segment of X generated by f'-t(U). Conversely, let

iy(U) be the congïuence of L(y) corresponding to U e Seg(Ð. Then

Con"(FXiyru)) is the congïuence of LCX*) generated by i"(U) under the

embedding F*-1. Now each atom (a,i), a e U is mapped to the join of all

atoms of the form (b,i), b e F-l(a). Thus Con"(F)(i"(U)) is the congruence of

L(X.) corresponding to the segment generated by F'-l(U). Therefore,

i*" Srg(tr') = Col¿c(F) o iy. n

esscséJt The functor Seg: GrpÐno-+ Sl) is representable in

Con": Latno -+ SÐ.

2. Representing Cou¡ltable SemíIattíees as Com.paet Congruence of

T,atûåces

The problem of representing a distributive 0-semilattice as the

semilattice of the compact congruences of a lattice is now transformed to

the problem of representation of the identity functor /d : SI)* -+ SI) in the

functor Seg: GnpÐno * SD. However, this problem is still unsolved. It was

shown in [Pu] that Id: SÐ^ + SD is represent¿ble in Con" : l,aü + Sl].

Hence the ideal lattice of a distributive lattice with 0 is the congruence

lattice of some lattices. In this section, \¡¡e use this approach to show that

the ideal lattice of a countable distributive O-semilattice is the congruence

lattice of some lattices.

Let S be a countable distributive 0-semilattice, and let s1, s2, ..., sn, .... be

an enumeration of the elements of S - {0}. Let S, be a finite distributive
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subsemilattice containing 0 and sr, and inductively let Sn be a finite

distributive subsemilattice containing Sn_r and sr,,r, where rr(r,) ir the least

element in the enumeration of S - Sr,_i. Clearly, 51, 52, ..., Sr, ... is an

increasing chain whose colimit is S. As an application of Theorem 4.6, we

construct a lattice whose semilattice of compact congruences is S by

considering the representation of SÐ I s through a chain of finite

subsemilattices.

T'he Co¡estruaûi.o¡a of Éhe Graph fon S¡¡,u I S

Let S be a distributive semilattice. Let 4* b" the set of all words

generatedbythe alphabet set S u {Å }. Let x = âr%...â¡r â1,...,â¡e Sbe a

word; we call i,(x) = a, and 0(x) = an the first symbol and the last symbol

respectively. The length of the word x is lx I = k. Let x = araz...ar and

y = brbz...b- be two words, the product z = xy is the word ar%...arbrbr...b*. The

symbol ,{ is called the empty word and has the properby that x..¿\ = À.x = x

for all ro. 4o. We say thatx is a sub-word ofyifthere is az. 4* - { 
^ 

}

such that y = x.z (denoted by xc y). Let E, be the set of all words x = ata2...ak

such that a, < a2<... ( â¡, a, e J(S), ã2, ã3,..., âk e S - J(S) where J(S) is the

set ofjoin-irreducibles of S. The set of all words in X, with initial symbol a is

called the a-tree of 4. For a finite distributirrs ssmilattice S. We define the

graph H(S) = (\, n,) as follows:

Let\= 4 u { (x,y) I x cyin4 andx, y€ 4 }, we saythat x\Viffone

of the following conditions holds

(i) x=Y'

(ii)x,y€ 4, xcy.
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(iü) x, y e 4, 0(x) < ¿(y).

(iv)x 
= 4, ye \-4, y - (z,x),ze Ð,.

(v)xe 4-4, ye 4, x=(y,z), zeÐ,.

Under this construction, the components of H(S) are precisely the a-

trees of E, where a € J(S). Indeed, conditions (iv) and (v) above were inserted

to guarantee this. Hence there is a natural isomorphism ø, : S + Seg(H(S)).

We take these isomorphisms to be the natural equivalence.

Let, j: c -+ D be identical embedding of c into D. we define a parbial

mapping F : H(D) -+ H(C) as follows:

(a) if x=araz...av€ %, then F(x) is defined if and only if ane C and there is a

largest integer 1 < i < k such that a, e J(C), then F(x) is the word obtained

from aiai+t...ak by deleting all the symbols aj, i < j < k which are not in C.

(b) for x = (y,z) e \ - 4, F(x) is defined if and only if F(v) arrd F(z) are

defined and F(y) c F(z), in this case F(x) = (F(y),F(z)).

Claim 1. F is onto.

If y e I", we can write y = brbz...\ where b, e J(C), and b2, ...,h=

C-J(C)ED-J(D). Ifb,e J(D), thenye \arrdF(y)=y; otherwise, leta<br

be such that a E J(D) and y' = a.y e \, then we have F(y') = y.

Now suppose that y = (x,z) e \ - E" and x cz. By the above argument,

there is a z' e Eo such thatF(z') = z. We ean choose a sub-word x'c z' such

thatF(x') = x. Hence (x',2') e \-% *dF((x',2'))= (F(x),F(z))=(x,z) =y.
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Claim 2, F preserves the relations.

Let x, y € Xo be such that both F(x), F(y) are defined and x \y. The

case that x = y is obvious. We verify the following four cases.

(a)x,y€ X¡andxcy.

Let x = ãtã2...àr, y = ala2...asas+i...âp. If F(x) c F(y), then F(x) n" F(V).

Otherwise, by the definition of F, we have 0( F(x) ) = â, and i,( F(V) ) ) â,+1.

Thus F(x) n"F(y).

(b) x, y € xo and0( x ) <r( y ).

In this case, it is clear that 8( F(x) ) < ¿( F (y) ). Thus F (x) n" F (v).

(c)xe à, ye \-% y= (z,x), zcx.

Since F(y) = (F(z),F(x)) is defined, F(z) c F(x). Thus F(x) Rc F(v).

(d)xe Xo-ä, ye 4, x=(y,z), ycz.

F(x) is defined implies that F(x) = (F(y),F(z)). Thus F(x) RcF(v).

Çlaim 3, F satisfies condition (iii) of (IV-1).

Let F(a) = x, F(b) - y and x R" y. \Me consider four different cases.

(a)x,ye I",xcy.
Let x = brbz...br and y = brbz...brbr+r...br. Then a Ro c where

c = a.h*rbr+z...bre \ and F(c) = F(b).

(b)x,yeE,0(x)<ú,v).
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Let y = brbz...br. If ble J(D), then y e \. If b, É J(D), since

8( x ) =9( F(a) ¡ =0( a) <+(y) =b1, a.ye xo. I¡nthe formercasewe take c = y

andinthe later case, we take c = â.y. Hence aR"c andF(c) = y = F(b).

(c)xe I.c, y e \-Lc, V=(z,x), zcx.

Since F(a) = x contains z as a sub-word, we can always truncate a to

obtain a sub-word d such that F(d) = z. Clearly c - (d,a) e Ðo, a R" c and F(c)

= (F(d),F(a)) = (z,x) = y = F(b).

(d)xe X"-I", ye I", x=(y,z), ycz.

Inthiscase,wehave a€ Xo-\. Leta=(c,d),ccd. ThenF(a) =

(F(c),F(d)) implies F(c) = y and F(d) = z. Butthen a R"c and F(c) = y = F'(b).

Finally, we show that øooj = Seg'(F) oø". Letx e C, thenj(x) = x € D and

øooj(x) is the segment of H(D) which contains all the a-trees where a e J(D)

and a < x. On the other hand, ø"(x) is the segment of H(C) which contains

allb-treesof H(C) whereb e J(C),b<x.Wehavex=âr v a2v...Vâ.=brvbz

v ... v b, where a, e J(D), bj < J(C). ai, bj < x. For each a¡, i = 1,2,..., r; we have

a, S b, for some j. Hence the smallest segment of H(D) containing

F" t( b, trees ) contains the a,-trees of H(D). Thus the smallest segment

containing F" t( u br-trees ) is exactly u ( a,-trees ), Hence Øooj = Seg(F) oø".

Now, for the directed system S, -+ S, + S¡ -+ ..., we have the inverse

directed system ... -+ H(S3) -+ H(S2) -+ H(Sr). For n > m+1, we define the

morphism F*n,!H(Sr) -+ H(S-) to be the composition F.*t o ... oFn, where

F* : H(Su) -+ H(S*_1) is the morphism as described in the above construction.
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Hence, we have proved:

Thegregr-4Jå Every countable distributive semilattice with zero is the

compact congruenss ssmilattice of some lattice.
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Chap&er V
Ðomp3.eÉe Coxagr!.ã.@ffice K,attåaes

In this chapter, we ansr#er the question raised in [Re, Wi]. For any

complete lattice D, we construct a complete lattice L such that Com L is

isomorphic to D. We first introduce some additional notation.

Letybe anordinal andlet ILo I a<y ] be afamily of lattices. The

sum X ( Lc, I a. y)is the lattice with underlying set \J ( Lo I a < y) and,

besides the inherited order relations of each Lo, we have x < y for all x e Lo,

y e LB, o < B < y. Let L, and Lrbe lattices such the L, has a unit and L, has

a zero, then L, O L, is the lattice obtained from L, +Lrby setting Ir, = Orn.

The dual of a lattice L is denoted by Ld. We shalt be considering chains

which can be obtained from o and n by the operations +, O, (.)d. Thus it is

appropriate for us to define, for a chain C, the support of C to be the set

supp C = { [x, y] I x-< yin C ]. Let C, and Crbe chains, we defi.ne

supp (C1XC2) to be the set { [(x,y), (u,v)] I [x,u] c supp Cr, [y,vJ € supp C2]. A

valuationof achainCbyasetRis amappingq: supp C +R. Let gbe a

valuation of C, the induced valuation gxg : supp (ClxC2) + RxR is the

mapping gxg ( ¡(x,y), (u,v)J ) = ( g[x,u], g[y,v] ). The natural valuation of Ld

obtained from rp is denoted by qd. Let C, and C, be two chains with

valuations g, and p2 respectively, then we simply use el u <p, to denote the

valuation of the C1OC2 (or Cr@Cr) witn Cr u C, as underlying sets.

Let C be a chain and let g be a valuation of C. We construct a lattice

<p*C as described below:
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<p*C has underlying set (CxC) u { uo I cr e supp (CxC) n (gxg)-lÂ }

where Â is the diagonal of RxR and, besides the inherited order relations of

CxC, we define x -( üo -< y for each cr = [x, y]. (see Figure 5.1")

Figure 5.1

A final word about the notation. The elements of co will be named by

0, 1,2,... in the usual order. The elementx e Loin I ( Lo I c¿ <T) will be

written as xo and the coïnesponding element of x e L in Ld will be denoted

u, *0. For ease of future reference, we shall reserve the letters x and y for

the labelling of the elements of rp*C mentioned above in the following

manners: For each (.,.) e CxC, we label it by x(.,.) and for each uo -< x(.,.),

we label it as y(.,.). An appropriate subscript will be added to x and y for

different copies of lattices in our construction. Let D = Cd @ C be a chain
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50

withvaluation <p.Thenwe call the chain^(çoD) - {x(r,r) I re D }andthe
chain¡*(g*D)= {x(r,r) I re C } the diagonal andupperd.iagonal of g*D

respectively.

Let L be a complete lattice. For a, b e L, let 0*(a, b) be the principal

complete congruence of L collapsing a and b ( 0*(a, b) is well defined as the

intersection of arbitrary complete congruences is still a complete

congruence). For @ e ComL, we have @ = Y (0*(a, b) I [a,b] e I) where I
ranges over all the closed interval [a,b] collapsed by @. We say that L is

@-discrete if for each @ e Com L, the index set I can be restricted to the set

of discrete intervals of L. Thus if C is a chain obtained from CI and n by the

operations +, @, (.)d, then C is @-discrete. However, the real closed interval

[0, 1] is not @-discrete.

The Co¡lstnu.cúio¡l of l,

The construction of L is done in two parts. In part (I), we construct L

for the case that K is finite. In part (II), we modify the construction of part

(I) and construct a complete lattice L for arbitrary complete lattice K. For

the inñnite case, a similar construction was also given by G. Grätzer [Gr-2].

Let Kbe a complete lattice with zero Ø and unit t. Let It' = K - {Ø}.

(I) K is finite

Let the elements of K* be listed in a fixed sequence ã1t \t..., ân = t . Let

dtl - It' - {r) mdK(2) = { {a,b} I a, b e K and a, b arenotcomparable }. We

construct the following complete sublattices of L. For each a e K(1), the
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sublattice Lu which reflects the order relation of K, and for each a e lKQ), the

sublattice Lo which reflects the join operation of K.

(i) sublattice Lo.

Let Co be the chain co + L and let the valuation g : supp Co -+ K be

gtven by go[2k-1,Zkf = ao for k = 1, 2, ..., n-L, and go[k, k+l] = r otherwise. Let

Do = CodOCo and let yo = gou u go be the natural valuation of Do. Let

Lo = (ryo*D/ u { zol be given additional order relation Oroooo-o zo-1lvouDo.

Then Lo is a complete lattice. The elements of ryo*D' will be distinguished

with a subscript 0.

(ü) For.. ICl), sublattice L".

Let the subsequencê âir, ãirt ..., aç be a listing of (al - {Ø }. Let C" be

the chain co + X. and let the valuation gu : supp Cu + Kbe given by:

(a if [x, y] = [0, 1] or [r+1 ,t+zf,
gu[x, y] = { ",, if [x, y] = [k, k+1] or [2k+r+]. ,2k+r+21,k = 1, Z, ..., r,

ll, otherwise.

Let Du= CudOCu and let V" = gud u ga be the natural valuation of D".

Let Lu = (yu*Du) v { w", z" } and let O*uo¡u - tu* frr*o., y((r+i)d, (r+l)d) -<

w" -( y((r+Z), (r+2)). Then Lu is a complete lattice. The elements of ryu*D"

will be written with a subscript a.
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(iii) For ø = Id2), ü = { a, b }, sublattice Lo.

Let the subsequeûcê âirr 42,ã¡zbe a listing of { a, b, av b } . Let ú)1, ú)2

be two copies of ol and let Co be the chain clll + ol2 + L. Let the valuation rpo

be given as below:

Qo[x,, = 

{

avb if[x,y]-[0,1],

a if [x, y] = [(k)r, (k+l)fl and k is odd,

b if [x, y] = [(k)r, &+1)r] and k is even,

a¡, if [x, y] = [(2k-1h.,Qk>ù fork = 7,2,3,

t otherwise.

Let Do - Coue Co and let Vo = god u gcr. Let Lo = (ryo*Do) r.-.r { wo, zo }

be given additional order relation O*o*¡o-( za-1f*o*oo and x(Ord, 0rd) -<
îtrG -< x(Or, 02). Then Lo is a complete lattice. The elements of ryo*Do will be

written with a subscript cr.

A sketch of the valuation of the chains C0, C", Co and the lattices Lo,

L" and Lo are given in Figure 5.2 and Figure 5.3 respectively.

LetL' = Lo u U (L" I a e K(1)) u U (Lo lcr = K@)). We identified all the

zeros of L9, Lu, Lo and all the u¡rits of Lg, Lu, Lo. Furthermore, we introduce

additional order relations so that the support of each of the L0, Lu, and Lo

which have the same value are projective to each other. We accomplish

this by adding the order relations as descibed in (V-1) and CV-2):
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(i)ForeachLu,u. K(t), aj=ere (al- {Ø1, t<=I,2,...,r,

xo(2j-I, 2i-1) -< xu(2k+r+ 1, 2k+r+1 )

xs(2j, 2i) -< x u(2k+r+2, 2k+r+2)

xo(2n-1, 2n-1) -< xu(3r+3, 3r+3)

xo(2n, 2n) -< x 
^(3r+4, 

3r+4)

(ii) ForeachLo, ü={ a,b} e K(2), aj = 4r€ [a,b, a vb ], k = 1,2,3,

xo(2j- 1, 2i-1) -< xo((Zk-I)2, (2k-l)2)

xo(2j, 2i) -< xo((2k)2, Qk)z) (v-2)

Let L be the resulting poset. For a subset S of L, we write S = So u U
(Su I a= t<(t))r¡r(So la. K(2)) whereSo=SnLs,Su=SnLuand.

So = S ô Lo. By observing that the additional covering relations (V-1) and

(V-2) are given along the upper diagonals of Ls, L" and Lo, and are order

preserving, i.ê., a < b and a { c, b -< d imply that c < d. We have the

followings:

(i) For each S,, i e K(1) u K(2), there is a largest element po € Â(Vo*Do) such

that po. Ai S, e L,. Hence A S, = Ai S; in L. Obviously Â So = z\o So.

Generally, if x e L, we write ps(x) for the largest element of A(ryo*De) such

that po(x) < x. (v-s)

(ii) There is a least element e¡ e A+(rpr.*D,) such that q, 2 Vo So e Lo. Thus

V So= Vo SoinL. Clearly V S, = V, S,fori = K(1) uK(2). Generally, if xe L,

we write qi(x) for the least element of l+(ry,*D¡) such that q,(x) > x. (V-4)

(v-x)
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Claim 1-, L is a complete lattice.

Proof: In view of (V-g) and ff-a), we need only verify that any two elements

of L has join and meet. Let r, s e L, up to symmetry, we have the following

possibilities:

(i) Both r, s € Lo (or e L,, i . K(1) ., X(') ).

In this case, the join and meet of r and s are respectively the join and

meet that have already exist in Lo (or L,).

(ii) r e L,, s e Lj, i, j . Idt)', K('), i*j *0.

In this case, r v s is always the unit of L and by CV-B), we have

r^s=po(r)nopo(s).

(iii)re Le,se L,.

By(V-3) and (V-4), we haverv s = gi(r)v,s andr zr s =rA0ns(s). tr

Claim 2, Com L = K.

Proof: It is not difficult to observe that each of the Lo and L¡, i e K(l) u K(2)

are @-discrete. Indeed, Com L,, i = 0 or i = K(1) .., K(t), is generated by

^+(Vi*Di). 
Let @ e Com L, ifthere exist r and s such that r e L,, s e L¡,

Lt*L' andr=s (O), thenrA s=rv s (@). This implies @must collapse

some interval [x, y] having value (r, r) and @ = t. Thus, if @ * r, every

congruence classes of @ must be a congruence classes of L, when @ is

restricted b L,. By using CV-l) and CV-2), we can conclude that every

@ e Com L is generated by À+(ryotDo). For each a € K*, it is not difficult to

see that there is an @,(a) e Com Li, i = 0 or i e K(l) r., K(2), such that

[x, y] e Å+1y.*D¡)andx=y (@,(a)),iffr¡r¡xVi[x,y] - (b, b), whereb <a. Let

O(a) = u (@,(a) li = 0, i e K(1) rIl')), then O(a) e Com L. We have to verify
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the substitution property. Let x and y be the maximal and the minimal

elements of a congruence class of @ respectively. Let z be arbitrary element

of L. Then we have the following cases:

(i) x,ye L¡, zeLu i,je ldr)vIC2)u{0},i=j.
In this case, the substitution property is satisfied as @, is a complete

congruence relation of Lr.

(ä) x, y€ Li, ze L, i,j e ICl) uK(2) u { 0 }, 0 =i*j ori*j = Q.

If i = 0, then xv z= Or(x) v z=Ar(V) v z =yv z (O¡), and z 
^ 

x = po(z) n x

=Po(z)^y= zAy (Od. Ifj =0,then xv z=xv erb)=yvOr(z) =yvz(@,), and

x A z = z 
^po(x) = z v po@) = z v y (@o).

(äi) x,ye L', zeLri*j*0.
Inthis case, xv z = f = I = y v z(@), andx Az= no(x) ^ 

po(z) =

no(f)^Po(z)=Y^z(@d.

Foreach@e ComL.Let æ(@)={a lae K, {x,y}cÂ+(ryo*De),and

x =y(@), yoxtyo[x, y] = (a, a) ). lfa, b e æ(@), then av b e æ(@)byL{qb}. If
b < a and a € î(O), then b e æ(@) by Lu. Therefore, we have æ(@(a)) = (al.

Thus the mapping @ + æ(@) is an isomorphism of Com L to the principal

ideal of K Hence Com L 
= 

IC

(II) K is infinite

The construction for the in-finite case is similar to the finite case.

However, from the discussion in (I), we note that in order for the proof of
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Claim I and Claim 2 tobe valid, we need to accomplish the following two

requirements:

(i) The properties stated in CV-S) and (V-4) must be preserved, i.e. the order

relations given in (V-1) and (V-2) must preserved the upward and the

downward continuity ofjoin and meets. fi¡"5)
(ii) Given any infinite subset J of K, we must have @(VJ ) = V (O(c) lc e J )

where the meaning of @(c) is explained in Claim 2. ff-6)

TVe assume the axiom of choice. For a set H, let y" denotes the least ordinal

well ordering H, i.e. H = { âo I o < T" }. Let rç denotes the cardinal of H. For

an infinite cardinal n3 mo, let K(d = { J I J c K, *= *J }. For an infinite set

J = {r., I acTr} e K(t), we defineJ" = {so I o.ïJ, ro = V(rp I p< a) }. The

elements of Jo form a chain (mutti-chain) of K which is well-ordered by T¡ .

clearly v (J) = v (J"). The successor of the ordinal ct is denoted by a*.

In the following, we give various complete sublattices of L. They are

similar to those given in (I) with some modifications: The sublattices L0, Lu,

Lo as described in (i), (ii) and (iii) serve the same purpose as their

counterparts in the finite case. As for the infinite join of elements of K, we

construct, in (iv), sublattices L, for each J e K('), n1m*, rn an infinite

cardinal.

(i) the sublattice Lo.

Lety*11¡ = K andletlCl) = {âo I c< r}. LetA, B, C be the chains2,

2(2o I cr < r ) and o: + L respectively. Let Co = A @ B + C (note: Co is a

complete chain) and let the valuation go be given as: g0 [x, y] = ao if
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[x' y] = [Ocr, loJ, ø< n, andg¡lx,y] =r otherwise. LetDo = CodOC0with

valuation vo = god u go. Then Lo has underrying set (ryo*Do) v { zo} wittr

additional order relation OvouDo -< zo-o l*ouoo.

(ü) the sublattices Lu for each a . K(1).

L"tyrr_r., =K ândlet(al -{Øl = {âo I ct< r}. LetAandBbethe

chains X( 1o I cr< r) and2 respectively. LetCu=A+B @ Co andletthe

valuation gu be given by:

Let Du = Cuu@ C" and let the valuation V" = g"d U ga. Then L" has

underlying set (y"*D") u { w", zu } with additional order relations:

O*u*o" 1zu- f*^oDu and y"(Ogd, OBd) { wu -< yu(I", Is).

(iii) the sublattices Lo for each { a, b } = ç¡ E 1ç(2).

Let Co be the chain ol + Co and let the valuation qo be:

f a., if [x, y] = [0o,0o.] (0.r- = Os if ø+ = K),
I

gu[x, y] = {a if [x, y] = [Os, Is],
I

lgo[*, y] if [x, y] e supp Cs.

/a v b if [x, y] - [0, 1],
I

go[x, y] = {a (or b) if [x, y] = [k, k+1], k is odd (or even),

t*ot*, yl if [x, y] e supp Cs.
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Let Do - cou @ co and let the valuation ryo = goo U ga. Then Lo has

underlying set (ryo*Do) Lr { wo, zo } with additional order relations:

Oroooo 4 zo* f*ooDo and xo(Oaoo, O"oo) { wo -< xo(Osr, O"o).

(iv) the sublattices L, for each J = K(t), m3 mo, n an infinite cardinal.

Denoteyrby randletJo = { so I o< r}. LetA andBbe the chains Z

and X ( Xo I cr < K ) respectively. Let C, = A OB + Co and let thevaluation <p,

be given by:

v (J) = v (J') if [x, y] - [Oa, Ia],

g¡[x, y] = \ ." if [x, y] = [0o, 0cr*], (0o* - Oç" if cr+ = r),

eo[x, y] if [x, y] e supp C¡.

Let D, - Cro @ C, and let the valuation V¡ = g¡d u gl. Then L, has

underlying set (ryr*Dr) v { w¡, z, } with additional order relations:

O*r*o, 4 zI{ Iv¡oD¡ and xr(O"oo, O"oo) { w¡ -< x¡(Oç', O"o).

LetL'=Louu(Li I ie K(l),rx(Ð)uu(Lr lJe K('), *<k).ThenL
is obtained from L'by identifying atl the zeros of Ls, Li, LJ and all the units

of Ls, L¡, L¡, with the following additional order relations:

Forallre Co-{Oco, Ico},andje K(l)uK(2)vur16(') I n3m*),

xo(r, r) --< xr(r, r) (\¡-?)

It is not difficult to see that (V-7) satisfies (V-5). Hence L is a

complete lattice by a similar argument of Claim 1. As for CV'-6), \rye use

transfinite induction. Let B be an ordinal. Suppose that for all J E K such
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thatyr< F, we have @(V J) = V (0(ro) I cr <T, ). LetJ cKundyr = p. If
Ê = o*, then V (J) = sov ro, @(V J) = @( sqv ro ) = @( so)v @(ro ) = V (@(16) |

ô <cr )v @(ro ) = v(@(16) I ôoP ). If pis an limitordinal, thenfor each

oo B, wehave @(v Jü) = V (@(r¡) I ô< ø), whereJoisthe c-initial segment

of J. Hence @(V J) collapses all interval [x, y] in L, n Â+qryr*Dr) which has

value (v J,,, v J.,). But then @(v J), being a complete congïuence relation,

also collapses an interval in Lrn Å+qyr*D¡) having value (v J, v J). Hence

O(V J) = V (O(VJ,r) I ø< Ê ) = V (@(ro) I cr< Ê ) and(V-G)is satisfied.

Thus we have established an isomorphism between Com L and the set of

principal ideals of K, i.e. Com L = K. Thus we have proved:

Theg-rem õ"1 For every çemplete lattice D, there is a complete lattice L

such that Com L = D.
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