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Abstract

A congruence relation of a lattice L is an equivalence relation
preserving the lattice operations; the set of all congruence relations form a
lattice, Con L. The study of the congruence lattices of lattices is one of the
fundamental problems in the theory of lattices. In this thesis, we study the
relationship between the lattice and its congruence lattice. In Chapter II,
we show that if D is a finite distributive lattice with n dual atoms, then there
is a lattice L of length 5n such that Con L is isomorphic to D. This answers
a problem raised by E. T. Schmidt. We also prove that the bound is best
possible in general. Also, we prove that if L is a sectionally complemented
lattice, then the length of L is at least 212(D)| — n. (Such a lattice was
constructed in [Gr, Sc]. ) If the set of join-irreducibles of L is countable and
every element of L is the join of some join-irreducibles, then we construct a
planar lattice L such that Con L is isomorphic to D and IL1 is of the
magnitude of [J(D)I 2 In Chapter III, we enumerate all the congruence
lattices of lattices of length at most 4. In Chapter IV, we give a simpler
proof that the ideal lattice of a countable distributive semilattice with zero is
the congruence lattice of some lattice. K. Reuter and R. Wille introduced the
notion of complete congruence relation. In Chapter V, we answer a
question raised by them. We show that every finite lattice is the complete
congruence lattice of a complete lattice. The construction for the finite case
can be modified to show that every complete lattice is the complete

congruence lattice of a complete lattice. This result was also proved by G.

Gréatzer [Gr-2].
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Chapter O

Introduction

In this thesis, we study the congruence lattices of lattices. This thesis
is divided into six chapters. In this chapter, we mention some basic results
and give a brief summary of the results which we obtained. A detail survey
on this topic can be found in [Sc-4]. In Chapter I, we introduce the notation
which will be used in the thesis. Our results are presented in detail in

Chapters IT - V.

An equivalence relation © of a lattice L is called a congruence relation
of L if it preserves the lattice operations of L. The lattice of all the
congruence relations of a lattice L is denoted by Con L. The following
theorem [Fu, Na), is fundamental in the studies of the congruence lattice of

lattices: Con L is an algebraic distributive lattice.

The converse of the result of [Fu, Na], that is, whether an algebraic
distributive lattice is a congruence lattice of some lattice, is a long standing
problem in lattice theory. Also, one can investigate the relationship
between the congruence lattices and lattices in terms of some lattice
parameters, e.g., the length or the cardinality of the lattice. Some known

results are:

In the 40's, R. P. Dilworth stated (unpublished) that every finite distributive

lattice is the congruence lattice of some lattice.

S.K.Teo, Ph.D Thesis



In 1962, G. Grétzer and E. T. Schmidt showed that every distributive lattice
D in which every element is the join of join-irreducibles, is a congruence

lattice of some sectionally complemented lattice L. In particular, if the

length of D is n, (in notation £(D) = n), then L can be constructed such that
Ld)<2n-1.

E. T. Schmidt showed in 1974 that every finite distributive lattice is the

congruence lattice of an infinite modular lattice.

J. Berman showed in 1975 that if D is a finite chain, then one can construct
a lattice of length 5 such that Con L = D. This result was later improved by
E. T. Schmidt to a finite distributive lattice D having only one dual atom.

In 1981, E. T. Schmidt showed that the ideal lattice of a distributive lattice

with O is the congruence lattice of some lattice.

In 1985, Pudldk gave a new proof of Schmidt's result of 1981. His proof uses
the concept of representation in category theory, which suggests a new line

of attack to the converse of the theorem of Funayama and Nakayama.
In 1986, motivated by Pudldk's result, A. P. Huhn showed that the ideal
lattice of every countable distributive join-semilattice with zero is the

congruence lattice of some lattice.

In this thesis, we prove the following results:

S.K.Teo, Ph.D Thesis



(i) Let D be a distributive lattice having n dual atoms, then there is a finite
lattice L such that &L) < 5n and Con L = D. Conversely, given any positive

integer n, there exists a finite distributive lattice D_ such that if L is a finite

lattice and Con L =D, then 2(L) > 5n. Hence the bound obtained is best

possible.

(ii) If D has n dual atoms, and L is a finite sectionally complemented lattice
with Con L =D, then &) > 21J(D)| -n.

(iii) Let D be an algebraic distributive lattice such that every element is the
join of some join-irreducibles and J(D) is countable. Then there exists a
planar lattice L such that Con L = D. In particular, if D is finite, then |L! is
of order [ J(D)I? (see also [Gr, La-11).

(iv) We enumerate all congruence lattices of lattices of length at most 4.

(v) By using the approach as proposed in Pudldk's paper [Pul, We show
that the ideal lattice of a distributive join-semilattice with zero is the
congruence lattice of some lattices. The proof is different from that of

A.P. Huhn's.

Results (1), (i1) and (iii) are presented in Chapter II; (iv)is presented

in Chapter III, and (v) is presented in Chapter IV.

In a series of papers, K. Reuter, and R. Wille study the concept

lattices which lead to the notion of complete congruence relation.

5.K.Teo, Ph.D Thesis



Let L be a complete lattice. A congruence relation ® of L is called a

complete congruence relation if and only if %, 0y,1e I, implies that

Vx; ® Vy, and Ax, ® Ay,. The lattice of the complete congruence relations
of L is a complete lattice and is denoted by Com L. K. Reuter and R. Wille
proved the following result: Let D be a complete distributive lattice in which
each element is a supremum of join-irreducible elements. Then there

exists a complete lattice L, such that Com L = D.

In contrast with the congruence lattice, the complete congruence
lattice of a complete lattice L is not neccessary algebraic nor distributive.

Examples can be found in [Re, Wil.

In Chapter V, we answer a question raised in [Re, Wi] in the
affirmative. We show that every finite lattice can be represented as the
complete congruence lattice of a complete lattice. The construction can be
modified to work for the infinite case. The same result was also proved by

G. Gritzer [Gr-2].

Lastly, all the theorems and lemmata are numbered consecutively in
each chapter, e.g. Theorem 2.2 refers to Theorem 2 of Chapter II. Similarly,
Figure 2.1 refers to Figure 1 of Chapter II. The end of a proof is marked
with the symbol O.

S.K.Teo, Ph.D Thesis



Chapter I

Notation and Preliminaries

A lattice, as an algebra, is written as L = (I; v, A), where Vv and A
denote respectively the join and meet operations. In this thesis, a
semilattice will always mean a join-semilattice. A lattice (or semilattice)
can also be considered as a poset (I; <) where x < yifand onlyifx vy =Yy,
and for every two elements x and y, there is a least upper bound and a
largest lower bound (least upper bound). I use both definitions whichever is
convenient. For a subset S of a poset L, the supremum and infimum of S in
L are denoted by VS and AS, respectively. The zero and the unit elements of
a lattice L are denoted by O and I, respectively. A lattice is bounded if it has

both the zero and the unit element.

Let L be a lattice. We use the notation x —< y to mean that y covers x in
L. An element x is called an atom if L has a O and O —< x. A lattice L is
said to be atomistic if every element is the join of some atoms. The interval
{x<z<y !l ze L}isdenoted by [, y]. For x e L, the principal ideal
(principal dual-ideal) generated by x is denoted by (x] ([x) ). The ideal
lattice of L is denoted by (1), and the dual-ideal lattice is denoted by 4.
An interval [x, y] is called prime if x —< y. An ideal (dual-ideal) S of L is
called primeif xAye S(xvye S)impliesthatxe Sorye S. The
cardinality of L is denoted by ILI. The length of a finite chain Cis I1Cl| -1.
The length of a finite lattice L, denoted by &(L), is the length of a chain of
maximum length. We also use the same notation for similar notions in

posets. A lattice is called discrete if every interval has finite length. We use

the notation M, and N; for the standard lattices, the Diamond and the

S.K.Teo, Ph.D Thesis



Pentagon, respectively (Figure 1.1). The symbol = is used for isomorphism

between lattices and between posets.

Figure 1.1

An element x of a lattice L is called compact if x < VS, S c L implies
the existence of a finite set F, F ¢ S such that x £ VF. A lattice L is called
algebraic if and only if it is complete and every element of L is the join of
some compact elements of L. The set of all compact elements of L is a join-
semilattice and is denoted by L°. It is well-known that if L is algebraic, then
L = (L.

The lattice of all the congruence relations of a lattice L is denoted by Con L.
A compact element of Con L is called a compact congruence. The principal
congruence 0(x, y), X, y € L, is the smallest congruence relation © such that
x =y (®). It is a basic fact that every compact congruence is a finite join of
principal congruences. The congruence class of ® containing x is denoted
by [x]®. The homomorphic image of a lattice L under the congruence

relation © is denoted by L/ ©.

S.K.Teo, Ph.D Thesis



One of the basic concepts in the study of congruences of lattices is the
notion of weak-perspectivity and weak-projectivity. We say that [a, b] is
weakly perspective into [¢, d]if G)caAb>dandcvb=a,or(ii)aand =b and
a v d <c. Weak-projectivity is the transitive extension of weak-perspectivity.
The notation [a, b] — [¢, d] means [a, b] is weakly projective into [¢, d]. The
relationship between congruence relation and weak-projectivity is shown in

the following theorem.

Theorem 1.1 [Di] Let L be a lattice, a,b,c,de L,b<a,andd <c¢. Thenc=d
(6(a, b)) iff there is a sequence of intervals : [ey, e,], [e;, &,], ..., [e,, €, ,,] from

¢ to d with ¢ = ey and e, = d such that [e, e,,,] - [a, b] fori =0,1,..., k.

Let L be a discrete lattice and let H; be the set of all the prime
intervals of L. For [a, b], [c, d] H,, we say that [a, b] ~ [c, d] if and only if
[a, b] — [c, d] and [¢, d] — [a, b]. Then ~ is an equivalence relation and —

induces a partial order relation on H, /~.

Let L be a lattice, an element x ( # O) is called a join-irreducible
element of Lif x <y v z implies that x <y or x < z. The set of all the join-
irreducible elements of L is denoted by J(L). (J(L); <) inherits the natural
partial order of L. If L is a finite distributive lattice, then J(L) is non-empty
and L = 9(J(L). However, if L is an infinite distributive lattice, we have the
following [St] analogous result: every dual-ideal I of a distributive lattice is

the intersection of all the prime dual-ideals containing it.

S.K.Teo, Ph.D Thesis



Lemma 1.2 Let L be a discrete lattice. Then J(Con L) = ( H;/~, —).

Proof: Let ® e Con L. Since Lis discrete, ® =V (0(x,y) | x=y (@), x<y)
=V (6(x,y) | x=y(®), [x,y]l € Hy ). Since Con L is distributive,
8(x, y) € J(Con L) if [x, y]l € H;. Hence J(Con L) = (H,/~, —). Q

Let L be a bounded lattice. An element a is a complement of b if
arb=0andavb=1 A lattice is complemented if every elément has a
complement. A Boolean lattice is a complemented distributive lattice and 2"
denotes a Boolean lattice generated by n atoms. A generalized Boolean
lattice is a relatively complemented distributive lattice with zero. A
sectionally complemented lattice is a lattice with O and all intervals [0, a]
are complemented. In a sectionally complemented lattice L, there is a
one to one correspondence between the congruences of L and certain ideals

of L. A finite sectionally complemented lattice is also atomistic.

A context is a triple (G, M, I) where G, M are sets and I c GxM is a
binary relation. For all A € G, B € M, the closure of A and B are the sets:

A*={m Ilme Mand (g m)e , Vge G},

B¥={glge Gand(g m)e , Vme M}.
An ordered pair (A, B) is called a concept if A* = B and B* = A. We define a
partial order relation on the set of all concepts by the rule: (A, B) <(C, D)if
and only if A ¢ C. The set of all concepts of (G, M, I) with the given partial

order is a complete lattice, denoted by I(G, M, D).
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A subcontext (H, N, J) of (G, M, I) is a context such that H c G, N c M and
Jd =In (HXN). The subcontext (H, N, J) is said to be compatible if the
following conditions are satisfied:
() forallhe Handme M, me M \ { h }* implies that there is an
ne N\ {h}* and m* cn*
(ii)forallme N,and ge G, ge G\ {m }* implies that there is an
he N\ {m}*and h* c g*
The subcontext (H, N, J) is also said to be saturated if
@ forallge G, X c H, { g }* = X* implies that ge H, and
(ii)forallme M, Yc N, {m }* = Y* implies that m € N.
The set of all compatible and saturated subcontexts of (G, M, I) is denoted by
I'(G, M, I). Itis given a partial order relation < by (H,, N}, J)) <(H,, N,, d,) if
and only if H, ¢ H, and N; ¢ N,.

It can be shown that a subcontext (H, N, J) is compatible iff the
mapping A : (G, M, I) -» P(H) x P(N) given by (A, B) - (AnH, BnN) is a
complete homomorphism. This gives rise to the definition of complete
congruence relations as mentioned in Chapter O, page 4. Our result of

Chapter V was motivated by the following theorem:

Theorem 1.3 [Re, Wi] Under certain conditions, there is an anti-
isomorphism between Com L(G,M,I) and I'(G,M,I).

S.K.Teo, Ph.D Thesis
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Chapter II

Congruence lattices

In this chapter, for a finite distributive lattice D, we construct lattices
L with Con L = D and L satisfying certain numeric conditions. We prove the

followings:

(1) If D is finite and has n dual atoms, then there is a finite lattice L such
that £(I) < 5n and Con L = D.

(ii) Given any positive integer n, there exists a finite distributive lattice D_
such that if L is a finite lattice and Con L = D_, then &(L) = 5n. Hence the
bound obtained in (i) is best possible.

(iii) If D is finite and has n dual atoms, and L is a finite sectionally
complemented lattice with Con L =D, then &L) = 21J(D)!| - n.

(iv) If J(D) is finite, then there is a finite planar lattice L such that

ConL =D and ILI is of order |J(D)I% The first statement also holds for
countable J(D) in which every element of D is the join of elements of J(D).

Statement (i) is presented as Theorem 2.2. This answers the question raised

in [Sc-2] in the affirmative. Statement (ii) is Theorem 2.6. Statement (iii) is
Theorem 2.8 and Statement (iv) is Theorem 2.9.

1. The Construction of L with £(L) = 5n

The construction of L is given in two parts. We first present a

simplified construction of E. T. Schmidt [Sc-2] when D has only one dual

S.K.Teo, Ph.D Thesis
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atom. Secondly, we extend this to obtain the required lattice for the general

case.
AYDh nly one dual m

Let A be the maximal element of J(D). If (A] = {A}, we take L to be any
simple lattice of length five. Otherwise, let
(A) = J(D) - {A} = { Bl’ B2 yorey Bk}-

Foreachi=1,2, ..k, let
P;={m;n, ¥, [ je 4.}, where fJi={s| 1<s<k,B>—B } U {k+l,k+2}.

The elements of P, are ordered as follows:

I>—-—P,ij>—mi>—ni>—-0.

For each B, >— Bj ,let
Qij = { Uy, Y } and let

Let w,, w, be such that
I>—w,, w,>—0 and let L be the set:

U(P; li=1,2, . 0)000(Q; | B>—B,,i=1,..k) UL 0, w, w,).

Let the covering relation of the elements of L be precisely those given

above, then L is a lattice.

For example, let (A] be the poset as shown in Figure 2.1(a). Then L is
the lattice as shown in Figure 2.1(b).

S.K.Teo, Ph.D Thesis
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Figure 2.1(a)

Figure 2.1(b)

It is easy to check that 6(0, w,) = 8(0, w,) = 6(w,, I) = 8(w,, I) = 6(0, n) =

6(n;, vy = 6(ny, v;)) = G(Bij, D) = 6(m,, Eij) = 6(u;;, m,) = 1. The other prime

ij?

interval congruences are 8(m;, n,) = 6(¢ uij) and 6(u vij) = B(mj, nj) for

ij? ij?

je 9;-{k+1,k+2 }. The congruence classes of 8(m,, n,) are:

{m,n} | B.<BjuU®,u,v,)} | B—<B <B}u

{{uji, vji} I B,— Bj )
It follows that 8(m;, n,) > 6(m,, n)) if and only if B; > B;, and

H,/~ = {60, w,), 6(m,, ) | i=1,2,..,k).

The mapping ¥ : (A] - H;/~ given by ¥(A) = 6(0, w,), and ¥(B,) = 6(m,, n,)
is an isomorphism. Thus J(Con L) = (A] by Lemma 0.4. O

S.K.Teo, Ph.D Thesis
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B)D hasn 1 atom

Let D be a finite distributive lattice, then D has n dual atoms if and

only if J(D) has n maximal elements. Let -

JD)={Ay Ay, A, By, By, ..., By} where A, A, ..., A_| are the

maximal elements.

We can construct lattices Ly, L, ..., L_; as described in (A) such that

J(ConL)=(a] fori=0,1,..,n1.

LetL=L,®L, ®®L_,. Thend(ConL)=U ((A] | i=0,1,..,n1).
We shall label the elements of L by attaching a subscript j to each element of
Lj,j =0,1,..,n-1. For each element B, € J(D), let :I(i) be the set { j I B; e (Aj] }
and let Bi(j) € ﬂ(i) denote the copy of B, in (A,). We shall construct a lattice
L which precisely identifies all the Bi(i) 's,j€ j(i) to B; and preserves the
ordering relations of the B;'s. Without loss of generality, we can assume
that 1§12 2 for eachi. Foreachi=0,1,...,k-1,let C; be the chain of L

consisting of the set of elements:
U0} 1 t=0,1, .01 UL ) uU(my,ny | je 9 ar.

We first prove a lemma which will be useful in our construction. Let
L, and L, be finite lattices, L, "L, = @. Fori =1, 2, let C;be a {0,1}-sublattice
of L. Let ¢:C, - C, be an isomorphism between C, and C,. Let L be the
set obtained from L, U L, by the identification u = ¢(u) for allu e C,.

S.K.Teo, Ph.D Thesis
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For x, y € (L, U L,)/=, we define x < y if and only if one of the following
conditions holds:

Wx<y forx,ye Ly;

() x<,y forx,ye Ly

(i)xgu=ews,y, forx,ue L, ye Ly;

(ivx<u=¢lw) sy, forx,ue L, ye L,

1) (I, £) is a poset.
(i) If C; and C, are chains, then (I, <), also denoted by GIL,,L,, ¢l,is a

lattice.

We first remark that the condition that C, and C, be chains cannot be
replaced by lattices in general. For example, let L, = L, = 2x3, ¢(0, 0) = (0, 0),
o(1,2) =(1, 2), (0, 2) = (1, 0), and ¢(1, 0) = (0, 2); but L, UL,/ =1is not a lattice.

Proof:

(1) It is easy to verify that < is reflexive, anti-symmetric, and transitive on L.

(i) Letx, y e L; UL, and let U be the set of upper bounds of x and y in L. Let
U, =UnL;and U, =UnNL,. Clearly, both U, and U, are non-empty. By
symmetry, we need only consider the join of x and y in the following two

cases. The meet of x and y can be proved dually.

Casel. xe Lyandye L,
Suppose that p, q € U,. Since x <p, q, there exist u, ve L, such that

xu=eSp, x5, v=0W) S, q Thusx < un vEe(w) A, o(V) Sp A, q.

S.K.Teo, Ph.D Thesis
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Similarly y < p A, q. Therefore U, is a dual ideal of L,. By the same
argument, U, is a dual ideal of L. Let [r) = U, and [s) = U,. Suppose that
neitherr<snors<rinL. Sincex<se L,, there exists r' € L, such that

x < r'=0(r') <, 5. Similarly, there exists an s' € L, such that y <, s' = RCY
<, r. Since C, and C, are chains, we have r' < (p'l(s') or (p'l(s') <r. By
symmetry, we may assume that r' < (p'l(s') =s'> ¢@(r"). Since r and s are not
comparable in L, s' # s, we have s > &' A, 82 ¢(r) and §' A, s € U,. This
contradicts the definition of s. Thus r <sor s <r and the join ofx and y

exists in L.

Case 2. xe Lyandye L,
Let z=xv,y. Lets € L, such that s € U,, where U, is as defined in (i). We

show that z<sinL,ie,xvy=12z Letx,y'e Liandx < x' =0(x') < 8,
¥y, =0Fy)<,s. Wehavez < x' v,y =¢&) v, ¢(y") <, sin L. Thus it
remains to show the U, is a dual ideal of L,. This follows from the fact that

if s, and s, are elements of U,, thenx v, y <5, and 8y, 1.8, X V; Y <8, AS,.

From the above proof, we can describe the join and meet of L. Forx e
L,i=1,21et x" L;, j # i, be the least element in C; such that x >2x. Forx,y
e L,UL, /=, by symmetry, we state the join of x and y in following two cases:

@Ifxyelyi=1L2,xvy=xv;y.

MIfxelye Lj,i;ﬁj,a_ndy+2X+,thenxvy=yvj x",

The meet of the elements of L can be obtained dually. Q

S.K.Teo, Ph.D Thesis
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Let g(i) = { ocl(i), %(i)’ vy ocp(i) } where 0 < ocl(i) < 0(2(0 <. < ap(i) <n-1.Let
n be the chain 0 —< 1 —<2—<...—<n-1—<n. Let the interval [i, i+1],

1=0,1,..,n-1 be given the colour A, We define the following two chains:

P,: This is the chain obtained from n by augmenting the interval
o, —< 0, %+1 to the interval 0, —< o0 @ —< ¢ @ —< 0, D41 for each
ocr(i) € ﬂ(i)— { ocl(i) }. The new intervals [ocr(i), arm'], [ocr(i)', (xr(i)’] and

@+

[o, ", ocr(i)+1] are given the colours A, ;), B, and A, (;) respectively.
T T

Q, : This is the chain obtained from n by augmenting the interval
ocl(i) —< ocl(i)+1 to the interval ozl(i) — al(i)_—< ocl(i)+——< al(i)+1. The new
intervals [al(i), al(iﬁ, [ocl(i)', ocl(i)+] and [al(i)+, ocl(i)+1] are given the colours

Aal(i)’ B, and Aal(i) respectively.

Let the elements (., .) of P, x Q, be labelled by x(. ,.). We add a new
element y,(u,v) to each interval [x,(s,t), x,(u,v)] such that s —< u, t—< v,
and [s,u] € P, [t,v] € Q, have the same colour. Let the resulting lattice be
denoted by M,. For example, let n =5 and g(i) = {1, 2, 4}, then M, is depicted

in Figure 2.2.

Let D, c M, be the chain consisting of the following set of elements:

U ({xx, )} l r=0,1,.,n)u {x,(0, D, o, ), x(0, D, &0, D)} L

U ({x(0, 07, 0, @), x,(a O, 0. D)) | a® e g(i)_ (@) ).
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Let ¢,:C,— D, be an isomorphism, fori=0, 1 ,..., k-1; where C, is the chain

of L as stated in (II-1). (see pg.13.)

The equivalence class of a prime interval of M, is determined by the
colour of its projection on P, or Q,. It is not difficult to see that the prime-
interval congruence classes M, /~ form a totally disconnected poset

consisting of the elements A, r =0, 1,..., n-1, and B.

In the following, we give the definition of L* and show that J (Con L* )
is isomorphic to J(D). Let LO = GIL, M,, ¢;], and for each integeri=0, 1, ...,
k-2, we define LV = G[LY, M.

.1 0,11, Then L& is a lattice by Lemma 2.
We define L* = L&D,

Fori=0, 1,..., k-1, let J¥ be the set:
{Ar I r=0,1,.,n-1}uU {Br I r=0,1,.,i}uU {Br(j) l r=i+l,i+2,..., k-1,j e g(r)}.

J9 is an augmented poset of J(D) such that the mapping J9 5 JD) given by
A —-A,B -B, Brﬁ) — B_is order preserving and BIG) < BSG') iff B < B..
Clearly, J(Con L?) = J® and V= J(D). We show inductively that for all
i=0,1,..,%k1, J(Con L® )= J9. For a lattice K, let A (K) denotes the set of all
prime intervals which generate the congruence A_in K. We define

inductively onj, j =0, 1, ..., k-1, (notation: LY = L) the followings:

AL =AW UAM), forr =0, 1,..., n-1;
BLY) =BA), forr=0, 1,..., -1;

B =BM) U U (BOLI) | se 99
BOWY) = BOLID), forr = jt+1, ..., k-1, s € §.
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To show that these form the prime-interval congruence classes of LY
isomorphic to J ® we have to verify that under projectivity, each element of a
class (-) is projected to an interval whose prime intervals are in the ideal
generated by the class (-). By using the join and meet of the elements of
G[L(i'l), M,, ¢,] as described in Lemma 2.1, we summarize the computation
of the equivalence classes of the prime-interval congruences under

projectivity as follows:

Forr=90,...,n-1,
ALY 5 ACHVUBALY) IB<A)u
U (BOW) lse 99,j<t, B <A).
Forr=0,...,]j,
BLY) - BLYHLU(BLY IB <B)U
U(BOWY) lse 99,j<t, B <B).
Forr=j+l1, ... k-1,
BOLY) » BOLI LU (BLY) IB<B)U
U(BOLY) Ise 99,j<t, B, <B).

Therefore H ¢ /~=d9 forj=0,1, .., k-1; and Hj ./~ is isomorphic to J(D).

Hence we have proved:

2.2 Let D be a finite distributive lattice such that J(D) hasn

maximal elements. Then there is a finite lattice L of length 5n such that -

Con L is isomorphic to D.
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2. The Lower Bound of £(L) and its Congruence Lattice

In this section, we show that in general, the bound on the length of L
given by Theorem 1 is best possible. Let A be a partially ordered set, we

define

3(A) = min {&L) | J(Con L) = A}.

a 2.3 Let L be a finite lattice and let J(Con L) = A, UA, U ... UA,

where the A/'s are disjoint posets. Let ©,=v (6 | 6 ¢ A;) and L, = L/®,. Then
L is a subdirect product of L;'s. The mapping n:L — L, x ... X L, given by
x = (%, ..., X, ) is an embedding, where x — X, is the canonical projection

7, : L = L. Furthermore 8(x] = 8(x,] + ... + &(x,].

Proof: Since the A/'s are disjoint, we have ©,=V(® | o g A) =AS°, where
A{ is the ideal generated by the complement of A, Thus A ;=M A =2
and the mapping x — (xy, ..., %) is an embedding. Let [x, y] be a prime
interval of L, then 6(x, y) € Aj for some unique j and x; = y; for all i # j.
Furthermore, [xj, yj] is a prime interval in Lj. To prove the second
statement, we apply induction on the elements of L. If x = O or xis an atom
of L, the second statement is obviously true. Suppose the second statement

has been proved for all x —< y. We have

2] =max (8] +1 | x—<y}
=max {max {&x]+1 | x—<7y,6(x,y) e A) [i=1,..,%)
= Uz )+ .+ (BxI+1)+ .. +8x]
= Uy ]+ ... + &y + ... + &3] a
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As a consequence of Lemma 2.3, we have

emma 2.4 Let L be a discrete lattice and J(ConL)= A, UA, U...UA,

then &(L) 2 9(A ) + A(A,) + ... + A(A)).

5 Let A be the chain Cp—< ¢ —<¢€—<e—<c¢,—<¢sand let L

be a lattice such that J(Con L) = A. Then (L) > 5.

Proof: Suppose that £(L) < 4. There exist prime intervals [a, b] e ¢ and

[c, d] € ¢, such that the sublattice generated by them contains an N,. We
can assume that a = 0 since &(L) < 4. We have £(1/6(a, b)) < 3 and

J(Con L/6(a, b)) is the chain ¢, —< ¢ —< ¢, —< ¢s. By using the same
argument for 1./6(a, b), we obtain a lattice of length two whose congruence
lattice is a chain of length 3, which is absurd. Thus &(L) > 5. Q

em 2,6 For any integer n, there exists a finite distributive lattice D,

such that J(D ) has n maximal elements and any lattice L, whose

congruence lattice is isomorphic to D_ has length at least 5n.

Proof: This is an easy consequence of Lemma 2.3 and Lemma 2.4. Q
Given a finite distributive lattice D, a sectionally complemented lattice L
with Con L = D was constructed in [Gr & Sc]. Such a lattice has length

< 2n-1, where n is the length of D. In Theorem 2.8, we give a lower bound of

the length of L. We first prove a Lemma.
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Lemma 2.7 Let L be a finite lattice and ® € Con L. Let (a] =[0]0, [b) =[11®
and L' = L/© then

(i) ifa <b, then L") < €[a, b] < &(L) - &(a] - &[b).

(ii) if a and b are not comparable, and £(a] > £[b), then &(L") < &[a).

(iii) if @ is isolated in J(Con L), then &) < &(1) - 1.

Proof:

(1) For each congruence class of ®, we can choose a representative x e L
such that a <x <b. Thus &L") < 8[a, b] < &L) - &(a]l - &[b).

(i1) Suppose &(a] = max { &(a], &[b) }. For each congruence class of ®, we
choose a representative x which is the maximal element of the class, then
x 2 a. Thus &L") <8[a) <&L) - Ll

(iii) Let S be any maximal chain of L such that £(S) = £(L). Then S must
contain a prime interval p € p* = ©, for otherwise © < V(@)].l I 0, = ®) which

is impossible by distributivity. Q

L. 2.8 Let D be a finite distributive lattice having n dual atoms, and

L be a finite sectionally complemented lattice such that Con L = D. Then
L) =21J(D)! —n.

Proof: Since the homomorphic image of a sectionally complemented lattice
is also sectionally complemented, we can apply induction on [J(D)I. The
theorem is clearly true if 1J(D)| < 2. So we assume that |J(D)| > 3. We may
further assume that J(D) has no isolated element by Lemma 2.7(iii). Let L
be a finite sectionally complemented lattice such that Con L = D. We can
partition the set of atoms of L into equivalence classes according to the

congruence relations that they represent. Let u be a minimal element of
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J(D) and let the class of atoms represented by ube C,. If | C,! 22, we are
done by Lemma 2.7 and the induction hypothesis on J(D) - {u}. So we
assume that 1C | =1. Let C = {a} and let v be the join of all atoms of L other
than a. Suppose that v > a. The congruence 6(0, a) cannot collapse any
prime interval of (v], for otherwise 6(0, a) collapses some [0, b], b < v which
is not the case. Also, for any two distinct elements ¢, d € (v], we have
avc#avdbythe same reason. Thus L is isomorphic to a direct product of
(v] X [0, al, which is not the case. Hence v> a. Let v' be a maximal element
in (v] such the v' is not greater then a. Then there is an atom b < v such that
bvv =v"=v' va>a. This implies (0, a) = 6(0, b), a contradiction to the
assumption that 1C | =1. Hence |C | > 2 and the proof of the theorem is

complete. Q

Instead of considering the length of a lattice, one can also ask the same
problem about the cardinality of L. The sectionally complemented lattice
constructed in [Gr, Sc] has exponential order. In the following theorem, we

give a planar lattice whose cardinality has polynomial bound.

2.9 Let D be an algebraic distributive lattice such that J(D) is

countable and every element of D is the join of join-irreducibles. Then there
exists a countable planar lattice L such that Con L = D. In particular, if D is
finite, then IL is of order O(1J(D)1?).

Proof: LetJ(D)={a,, a,,...}. Foreachi=1,2,..,let S, be the interval

[( 2G-1), 2G-1) ), ( 2(1), 2() )] of Wx®. For each a,—<a, let ’1‘ij be the interval
[(2G-D), 2G-1)), (2()), 2(1) )]. We extend S; and T}; to S;" and Tij+ as shown in
Figure 2.3(a) and Figure 2.3(b).
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Let L be the resulting lattice as shown in Figure 2.3(c). Then L is
planar and countable. If D is finite, then|L! is of order O(1J(D)12). The
mapping ¥ : (J(D), ) — (H;/~, =), with a, — [( 2(G-1), 2(G-1) ), ( 2(G-1), 2i-1 )I*,

is an isomorphism. Hence Con L =D. Q

(2i,2i) (20,2)

(20, 26-1)) \ /(2G-1),21)

(26-1), 2-1) ) (26-1), 26.1))

Si+ Tij+
Figure 2.3(a) Figure 2.3(b)

Figure 2.3(c)
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Chapter III
Congruence Lattices of Lattices of Length < 4

By applying the results of Chapter II, in particular, Lemma 2.4 and
Lemma 2.7, we enumerate all the congruence lattices of lattices of length at

most 4. The following lemma follows immediately from Lemma 2.4.

a 3.1 Let L be a lattice of length n, n = 2; then

(i) Con L =2" if and only if L is distributive,
(ii) Con L = 2™ implies that L is modular.

For the purpose of the following discussion, we call a prime interval
p = [a, b] exterior if either a = 0, or b = 1; otherwise it is called interior. The
congruence class containing the prime interval p is denoted by p*. A class
p* is called exterior if it contains some exterior prime interval, otherwise it
is called interior. Let f: L — L' be an onto lattice homomorphism, it would
be helpful to note that if p* is interior in L', then its preimages are also
interior. By a cycle C of a lattice (or poset), we mean a sublattice (induced
subposet) C = { a, b, a, bj I a <..<a; bl <..< bm; sup(ai, bj) =b; inf(ai, bj) =a;

fori=1,..,nandj=1,..,m}.

Lemma 3.2 Let L be a lattice and 8(1.) < 4. Suppose that Con L # 2", n < 4.
Then there exists prime intervals p and q such that p* >— q* and a cycle C
(containing N,) containing p and q. Let L' = L/p*. Then

(i) p* is exterior;

(i) 8L < &L) -1 and if ¢(L)) = 8, then 8(LL) = 1;

(iii) J(Con L) = J(Con L) - (p*1.
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Proof: Since Con L # 2, there are prime intervals p and q such that p* >~ q*.
Thus there exists a cycle C ={0,a,b,¢c,dlavb=avec=d,aab=2anc=0}
containing p and q. Clearly C contains N5 as a sublattice and £(C) > 3.
Since &(L) < 4, we can assume that 0 € C and p = [0, al. Thus p* is exterior.
By Lemma 2.7(1), 8(L") < 8(L) - 1. If&(L) = 3, then max { £(a], &[b)} = 2 in
Lemma 2.7(ii), hence &L") = 1. Clearly J(Con L) = J(Con L) - (p*]. Q

Let L be a lattice such that £(1) =3. Then ConL =2" n<3

Proposition 3.3

or J(Con L) is isomorphic to one of the posets as shown below (Figure 3.1).
Further more,
(i) if L has a maximal chain of length 2 and L # N s then

JConlL)= P1 and q, are interior for all q.€ qi*, i=1,...,nifn>2,

Ifn =1, then either q, is interior, or L is the lattice (or its dual)

given by:

{0,1,a,b, Cps s €y In>2 0 <a—<1,0<b—<c,..., cn—<1 1.

1
(i) if J(Con L) = P2 ,thenL = N5 or L2 (and its dual, see Figure 3.2).

Figure 3.1

Proof: If Con L = 2", then n < 3 since £(L) = 3. Suppose that Con L # 2". Let

p € p* and q € qi* be such that p* >~ qi*, i=1,..,n; qi* being minimal in
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J(Con L). Let L' be the lattice as described in Lemma 3.2. Then (") <1 and
1J(Con LI <1.

If J(Con L) = @, then J(Con L) = P1‘ So we assume that J(Con L") = r*.

Suppose that r* > p*. We will show that n = 1. Suppose that n > 2 then by
Lemma 2.7(ii), g.* are interior foralli =1, ..,n. Let ® = V(G(qi) li=1,..,n)
and L" = L/@. Then L" has at least two maximal chains of length 2. This
implies that x* =1 for all exterior x of L" unless L" = 22. But this is not the
case since J(Con L") # 1 U 1. Thus p* is interior in L"; hence it is interior in

L, which is not the case by Lemma 3.2. Thusn=1 and J(ConL)=P "

Suppose that r* and p* are not comparable. By applying Lemma 2.4,
we have that r* > qi* for all i. Now suppose that n > 3, then qi* are interior
for all i and L"(as in the above paragraph) has at least 3 maximal chains of
length 2. This implies that 1 € J(Con L") which is not the case. Thus n <2,
and J(Con L) = P, orP,.

(i) Now we suppose that L has a maximal chain of length 2 and L is not N 5
We can assume that L has at least three atoms. In this case 1 € J(Con L),
hence J(Con L) # P2 or Ps’ Suppose that J(Con L) =P " then L' = L/gq* has at
least two maximal chains, this implies p* is interior in L', hence it is

interior in L. This contradicts Lemma 3.2. Thus J(Con L) = Pl.

Gi) Let L = Ns and J(Con L) = P2. LetC=(0,a,b,c,1} beacycleof L
containing prime intervals p = [0, a] and q = [b, ¢] with p* >~ g*. We can
assume L has no maximal chain of length 2 by (i), thus there exists d e L
such that a <d <1. By Lemma 3.1(ii), L/q* cannot have chain of length 3,

hence we may assume that [b, c]* = [0, e]* = [a, d]* for some e € L. If
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L={0,a,b,c,d,e,1}thenL = L2 (see Figure 3.2). Otherwise let fbe another
atom or co-atom of L. Iffis an atom, then 1 € J(Con L), which is not the
case. So we suppose that L has no new atom and fis a co-atom. Then we

must havef=avbandL = 23, which is also not the case. ThusL = L2.

Finally, we give examples of lattices whose congruences are as stated in the

proposition. (Figure 3.2) Q

Figure 3.2

a 3.4 Let &(L) = 4 and p* >- q*i=1,..n;p¥% q* e J(ConL). Let
L' =L/p*. Then
(1) if &(L") = 8, then L' has at least n maximal chains of length 2.
(ii) if (L") = 2, then L' has at least n-1 maximal chains of length 2.

Proof: For each qi*, i=1, ..., n, there is a cycle Ci as mentioned in Lemma
3.2 such that the congruence class of p* containing the prime interval q, has
length 2 (it cannot be 3 as £(L") > 2). Denote such class by q, it is easy to see
that q N q, = @ ifi=j. IfE(L") =3, then none of the classes qi's can be the 0
or1l of L'. Thus L' has at least n maximal chains of length 2, i.e., 0 —< q-—<1

fori=1,..,n If81') =2, then at most two of q's can be the 0 or 1 of L. If
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only one of the qi's is the 0 or 1 of L, then the rest of the qi's will give rise to
n-1 maximal chains of length 2 in L'. If exactly two of the qi's are
respectively the 0 or 1 of L', then in this case, n = 2 and L\’ still has a
maximal chain of length 2. Q

.5 Let L be a lattice of length 4. Then any induced subposet of

J(Con L) does not contain a cycle.

Proof: It suffices to consider the situation where the cycle of J(Con L) is

{a*, b*, c*, d* | a* < (b* and ¢*) < d*}. By Lemma 3.4, Lb = L/b* is of length
3, and has a maximal chain of length 2. Since ¢* must be exterior in Lb, Lb
contains a sublattice {0, 1, a, c, dl, o dn, In=22, 0<a—<1,0—<c—< d1’ e

dn —~< 1} or its dual by proposition 3.3(1). But this implies that Lc = L/c* would
have two maximal chains of length 2, (one as described in Lemma 3.4, and
one arises from the fact that there is a congruence class of length 2 of ¢*

containing only prime intervals in ¢*). This implies that b* is interior in Lc,

hence in L. This contradicts Lemma 3.2. Q

3 Let L be a lattice such that £(L) = 4. Then Con L = 27,

n <4, or J(Con L) is isomorphic to one of the posets as shown in Figure 3.3.
Proof: Clearly, if Con L = 2", then n <4 by Lemma 2.4. Suppose that

Con L #2". LetL'=L/p* where p*, q*e HL/~, p* >-q.%, and qi*, i=1,...,n

are minimal in J(Con L). We consider four different cases.
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Casel, 1J(Con L) <1 or &LH<1.

In this case, we have either J(Con L) = @ or r*. Hence J(ConL)=Q X

Case 2. J(Con L) has three maximal elements.

Let p*, q*, r* be the maximal elements of J(Con L) and let S be the
poset J(Con L) — { p*, g*, r* }. S is non-empty since Con L # 2". Let L" = L/6(S)
where 8(S) = V(y* | y* e S). Then &(L") > 3.

Suppose that (L") = 4, then L" is modular by Lemma 3.1(ii). Every
maximal chain of L" has length 4. This implies " = L and S = @ which is
not the case by assumption. Hence &(L") = 3 and L" is distributive by
Lemma 3.1(G). If IS| =1, then J(ConL) = Q5 or Q6 by Lemma 2.4. Now
suppose that |S| > 2. We first show that S is totally unordered. Assume
that this is not the case, then there exist u*, v¥ € S such that u* >~ v*. Then
L/u* would have a maximal chain of length 2 by Lemma 3.4, which is a
contradiction. Hence S is totally unordered. By applying Lemma 2.7 and
proposition 3.3, one can see that |S| > 2 implies that for any x* € S, xis
interior. Then |SI< 3 since L" has width 3. Suppose that |S1=2. If
J(Con L) is disjoint, then one component is a singleton. By Lemma 2.7(iii)
and proposition 3.3, J(Con L) = Qg. If J(Con L) is connected, then as a
biparttie graph, it has 4, 5 or 6 edges. There are 4 of them, however, only
three of them are possible and are given as Q7, Qg, and QlO' If ISI=3. Then
J(Con L) must be connected. By using Lemma 3.4 and proposition 3.3, we
have J(Con L/p*) =1 U 1, for any maximal p* of J(Con L). Thus
J(ConL) = Qu'
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Case 3. &L =2,

In this case, Con L'= 2! or 22, The former case is covered in case 1.
For the latter case, we can assume that J(Con L) = { r*, s* } and either
r* > p* or s* > p*. Suppose that both r* > p* and s* > p*. By Lemma 3.4, L.
would have at least 3 maximal chains of length 2 if n > 4. This would
implies that 1 is a join irreducible of L', which is not the case. Thus n < 3.
Therefore J(Con L) is isomorphic to one of the posets: Q12’ Q13 and Q1 4 Now
suppose r* > p* and s* and p* are not comparable. If s*is isolated, then
J(Con L) = Q1 5 Suppose that s* > qi* for some 1 <i<n,andn > 2. Then by
proposition 3.3(3), s* > qi* for alli. Ifn > 2, L* = L/s* has length 3 and
contains at least two maximal chains of length 2. This implies that p* is
interior in L*, hence is interior in L. This is impossible by Lemma 3.2.

Thusn =1 and J(Con L) = le.

Case 4, &1 =3.

The cases that Con L' = 2! or 2° are settled in case 1 and case 2
respectively. We show that Con L' = 22, Suppose that Con L' = 2?, then L'is
modular by Lemma 3.1. Every maximal chain of L' has length 3. By

Lemma 3.4, L' has a maximal chain of length 2 which is a contradiction.

By proposition 3.3(i), J(Con L") = P1 or Pz' For the case that J(Con L)
= P2 = {r* s* t*| r¥ s*>t*}. WehavelL'= N5 by proposition 3.33). This
implies t* is minimal in J(Con L). By Lemma 2.4, proposition 3.3 and

Lemma 3.4, we have r*, s* > p* and n = 1. Thus J(Con L) is isomorphic to
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Q”. Now suppose that J(Con L) = P1 = {r¥*, sj* | r*> sj*,j =1, ..., m}. We

consider four different possibilities:

(1) r* and p* are not comparable and all the qi*s and sj*s are not
comparable. In this case, we must have r* > qi* for all i, for otherwise we
would obtain a lattice L" which is the homomorphic image of L by
collapsing all the congruences q, which are coverved by both r* and p*, and
J(Con L") =2 U 2. This is impossible by Lemma 2.4. Thus J(Con L) = Qs'

(ii) r* and p* are not comparable but sl* > ql*. By Lemma 3.4, we
have n = 1. For otherwise, L' is a lattice having two maximal chains of
length 2 and s* is interior in L' and L, which is not the case by Lemma 3.2.
By applying Lemma 2.4, and Lemma 2.7, we conclude that m =1. Hence
JConL)=Q

(iii) r* >~ p*. By Lemma 3.5, si* and qj* are not comparable for all i, j;

thus J(Con L) = ng.

(Gv) S1* > p*. By Lemma 3.5, sj* and qi* are not comparable for j = 2,
andi=1. By Lemma 3.4 and proposition 3.331), one deduced that m =n =1.

Thus J(Con L) = ng.

Finally, we give lattices Ki with J(Con Ki) = Qi. (Figure 3.4). Fori=4,5
and 8, we can take L1 X2, L2 X 2 and L3 X 2 as their respective lattices. Q
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Chapter IV

Countable Semilattices of Compact Congruences

In this chapter, we show that every countable distributive semilattice
with O is the compact congruence semilattice of some lattice. Our proof
was based on the approach suggested in [Pul. The same result was also
proved by A. P. Huhn in [Hu]. In section 1, we give a brief description of the
concept of representation as proposed in [Pu]. In section 2, we construct a

representation for a countable distributive semilattice with O.

1. The Concept of Representation

Let &, G be two (covariant) functors from a category A to a
category B. A natural equivalence of ¥ in §j is a family £ : £, | A € A} of
isomorphisms, such that given a morphism o : A} —» A, in A, the following

diagram commutes:

Fi)—E  za,)

%i G ?Az

GA) —=2 6y

Definition 4.2 Let ¥ : A - C, § : B — C be functors. A representation of
& in § is a pair (¥, £), where £ : A — B is a functor and £ is a natural

equivalence of & in Go¥£.

If (¥£,, £,) is a representation of  in § and (¥£,, £,) is a representation of §
in U, then (¥£,0 ¥, 320 £,) is a representation of Fin V.
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A finite reflexive directed graph (X, R) is a finite set X with a reflexive
relation R such that a R b represents a directed edge from a to b. A subset U
of X is called a segment, if whenever y € U and there is a finite sequence of
directed edges from x to y, then x € U. Let U c X. The segment generated by
U is the set of all elements y € X such that there is a sequence of directed
edges from y to x, where x is an element of U. A subset V of X is called a
component if it is a maximal subset of X in which each of its elements
generates the same segment. The set of all segments of X forms a
distributive lattice under inclusion. We denote this by Seg X . Let C(X) be
the set of the components of X. We can define a partial order < on C(X) :

V, <V, if and only if the segment generated by V, is contained in the
segment generated by V,. Each segment of X is generated as an element of
the lattice Seg X by a subset of C(X). Indeed, (J(Seg(X)), <) is isomorphic to
(C(X), ).

Let (X, R,) and (X, R,) be finite reflexive directed graphs. Let
F : X, — X, be a partial mapping which satisfies the following conditions
(IV-1):
(i) Fis onto;
(i) For all a, b € Dom(F), a R, b implies that F(a) R, F(b);
(iii) If F(a) R, F(b), then there exists a c € Dom(F), a R, ¢ and
F(b) = F(c). Iv-D

Definition 4,3 We define the following categories:

(i) Lat is the category whose objects are lattices and morphisms are lattice

embeddings which preserves congruences.
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(i1) SD is the category whose objects are distributive 0-semilattices and

morphisms are 0-embeddings.

(iii) GrpD is the category whose objects are reflexive directed graphs and
morphisms are partial mappings as described above, under the usual

composition (. e., Dom(F, o F,) = Dom F, " F,” (Dom F))).

The subscript "fin" will be used to denote the restriction of a category
to its finite objects. The category SD, is the full sub-category of SD whose
objects are distributive lattices (i.e., the meet of two compact elements is also
compact). Let S be an object of SD. The full subcategory of SD whose object-
set consists of all objects in SD which are also subsemilattices of S, is

denoted by SD 1.

Definition 4,4 We define the following functors:

(i) Conf : Lat — SD is the covariant functor such that for a lattice L, Con® L
is its compact congruence semilattice (we abuse the notation Con® L for
Con‘ L). For an embedding ¢ : L, — L,, Con° ¢ is the join homomorphism
from Con® L, to Con® L,, which maps each 6 € Con® L, to the smallest

congruence of L, containing the image of 6.

(i1) Seg : GrpD — SD is the contravariant functor such that for a directed
graph X, Seg X = Seg X, the lattice of segments of X. For a morphism
F:X, - X, SegF is a mapping from Seg X, to Seg X, which sends every
segment U of X, to the smallest segment of X, containing Fi.

(iii) Id : SD — SD is the identity functor.
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3 4.5 Let C be any distributive 0-semilattice, then there is a directed

family { C, e SDy ,iel} such that C is the colimit of { C,,ie I}

Proof: Let A ¢ C be finite. We construct a distributive 0-subsemilattice of C
containing A. Let <A> be the finite 0-sublattice generated by A in the ideal
lattice of C. Let J be the set of the join irreducibles of <A>. If all the
elements of J are in C, we are done. Otherwise, let s € J be a minimal non-
compact element. Thereisans'e Csuchthats>s'>v(t |l t<s,te J)and
(J - {s})) U {s'} generates a distributive 0-subsemilattice of C containing all
the compact elements of <A>. We repeat this process to obtain the required
0-subsemilattice. Finally, the construction of the colimit is standard and is

omitted. a

The following theorems and Lemma 4.5 provide the basic idea for one
to obtain a lattice with a specified congruence lattice by the direct limit

(colimit) construction.

corem 4.¢

Let {C, e SD, , i1} be a directed family of distributive 0-
semilattices having colimit C. Let { L, € Lat,_,icI} be a directed family of
lattices having colimit L. Suppose that the identity functor Id, restricted to
{C, e SDy,, icI}, has a representation in the functor Con®, restricted to

{L, e Lat ,ieI}. Then Con°L=C.

Theorem 4,7
then Id: SD — SD is representable in Con® : Lat » SD .

If Id : SD;,, — SD is representable in Con® : Lat; — SD,
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Let X be a finite set, and let P(X) be the power set of X. A mapping
M: PX) - PX) is called an m-operator if, for every A, B ¢ X, A c B implies
that M(A) c M(B). Every m-operator determines a closure operator where

A is closed iff M(A) c A.

Lemma 4.8

Let Mx, MY be m-operators on X, Y respectively. Let G: X - Y
be a partial onto mapping such that for any A ¢ Y, G'l(My(A)) = MX(G'l(A)).
Then the mapping A — G}(A)is a 0-embedding of the lattice of closed
subsets of Y into the lattice of closed subsets of X.

Proof: Let L(-) denotes the lattice of closed subsets of -. Let A € 1(Y), then
M, (G™(A) = G'(M (A)) € G(A). Thus G''(A) e L(X). The mapping
L(Y) — L(X) is one-one and preserving 0, since G(GA)) = A as Gis onto. Tt
is clear that G preserves meet as it is simply set intersection. As for the
join, we have
G'AVvB) =G (N(CeLVIAUBCC))
=N (G0 e LX) 1 A LGB =GO))
=G'(A) v G'B). 0

Let Z be a finite set and Q(x,y,2z) be a ternary relation on Z. Suppose
further that Q(a,b,c) implies that Q(a,c,b) for all a # b # c# a. Then Q
determines an m- operator MQ(A) ={aec Z I3 b,ce A, Q(ab,c)}. Let L, (Z)

denotes the corresponding closed-set lattice.

a 4.8 L, (Z)is an atomistic lattice and there is a one-one

correspondence, Con°L — { K c Z| Q(a,b,c) and b € K implies thata e K}.
More precisely, for each ® € Con°L, we have © — Kg={acZl{a)JO0}.
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Proof: Clearly, L, (Z) is an atomistic lattice which has the set of atoms:
{{a} | ae Z}. Thus every congruence © of L (Z) is determined by the ideal
generated by the set K, = { {a} | {a} ©0}. It remains to show that K, can

indeed be characterized as stated in the lemma.

Let © be a congruence relation of L, (Z). Then Q(a,b,c) implies that
{a} = {a} A ({b} v {c}). Hence {b} ® 0 implies that {a} ® ({a} A {c}), i.e. {a} ® 0 and

@le K,

Conversely, let K ¢ Z be such that Q(a,b,c) and b € K implies that
ae K. We define a relation ® on L, (Z) by: A®Bifandonlyif AABc K
( where A is the symmetric difference operation of sets ). ® is clearly an
equivalence relation which preserves meet. We thus need only show that ®
preserves join. i.e., for each ® € Con°L, (A v C) A (B v C) ¢ K. Now suppose
thatxe (AvC)-Bv ). Wehave AvC=U (S, | n>0), where Sp=AuC
and, inductively S =S _, UM(S_,) forn21. Now S;- (B v C)is clearly a
subset of K, so we can assume that x ¢ K is chosen such thatxe §,- S,
and p (21 ) is of smallest possible value. Thus we have Q(x,y,z) for some
V,Z€ Sp-l' One of the y and z is not in B v C; for otherwisexe Bv C, a
contradiction to the assumption on x. By the induction hypothesis, we have
y € Korze K. This would imply that x € K, which is a contradiction.
Therefore (Av C)-(B v C) c K. Similarly, wehave BvC)-(AvC)c K.

Hence O is indeed a congruence relation.

Let (X, R) € GprDy,. LetX =Xx3, where 3={0,1,2}. LetQ bea
ternary relation over X' given by: QX( (a,1),(bj)(ck))iff (i#j=k=1),
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(a=bora=c)and(aRbandaRc). Then QX determines an m-operator

MX. Let L(X") denotes the corresponding closed-set lattice of X"

Lemma 4.10, Let (X, R), (Y, R ) € GprDy, andlet F: (X,R) — (Y, R )be a
morphism. Let F* : X" — Y" be the map given by F*((a,i)) = (F(a),i). Then

(i) the mapping A — F*}(A) is an 0-embedding of L(Y") into L(X");

(ii) the mapping iX : Seg (X) = Con’(L(X*)), where ix(U) = the congruence of
L(X*) generated by the segment U, is an isomorphism;

(iii) the family of isomorphisms { i 1 X,R)e GprDy,}is a natural
equivalence of Seg : GprDy,, — SD in Con‘ : Laty, — SD.

Proof:

(i) We need to show that F*'(M_(A)) = M_(F*'(A)) for any A c Y" by
Lemma 4.8. Letx=(a,i) e MX(F*‘I(A)). Then there exist (b,j), (c,k) € F1A)
such that Qx( (a,i),(b,j),(c,k)). Thus(a=bora=c)and(a R, band a R cC ).
Hence ( F(a) = F(b) or F(a) = F(c) ), and (F(a) R_F(b) and F(a) R_F(c) ).
Therefore F(x) e M (A)and x € F*’I(My(A)). Conversely, suppose that

x = (a,i) € F"/(M_(A)). Then there exist (b'J), (' k) € A such that

QY( (F(a),1),(b'j),(c" k) ). Without loss of generality, we assume that F(a) =b'.
Then there exist d € X such that a R dand F(d) = ¢'. Thus, we have

Q ((a),(a)(dk)) and (a,i) € M _(F*(A)).

(i) By Lemma 4.9 and the fact that for each ® e Con°(L(X"), (a,i) ® 0 iff
(a,)) © 0 for all j = 0,1,2. One see that the mapping iX : Seg (X) — Con(1(X*)),

is an isomorphism.
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(iii) We need to show that ix o Seg(F) = Con®(F) o iy. Let U e Seg(Y), then
Seg(F)(U) is the smallest segment of X generated by FL). Conversely, let
iy(U) be the congruence of L(Y") corresponding to U e Seg(Y). Then
Conc(F)(iy(U)) is the congruence of L(X") generated by iy(U) under the
embedding F*'. Now each atom (a,i), ae Uis mapped to the join of all
atoms of the form (b,i), be F(a). Thus Conc(F)(iy(U)) is the congruence of
L(X") corresponding to the segment generated by F}(U). Therefore,

i o Seg(F) = Con‘(F) i. a

The
Con‘: Lat, — SD.

orem 4,11 The functor Seg : GrpD,, — SD is representable in

2. Representing Countable Semilattices as Compact Congruence of

Lattices

The problem of representing a distributive 0-semilattice as the
semilattice of the compact congruences of a lattice is now transformed to
the problem of representation of the identity functor Id : SD,, — SD in the
functor Seg: GrpD,, » SD. However, this problem is still unsolved. It was
shown in [Pu] that Id: SD, — SD is representable in Con‘ : Lat — SD.
Hence the ideal lattice of a distributive lattice with 0 is the congruence
lattice of some lattices. In this section, we use this approach to show that
the ideal lattice of a countable distributive 0-semilattice is the congrﬁence

lattice of some lattices.

Let S be a countable distributive 0-semilattice, and let s, s, ..., s, .... be

an enumeration of the elements of S — {0}. Let S, be a finite distributive
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subsemilattice containing 0 and s,, and inductively let S_be a finite
distributive subsemilattice containing S | and s;,) where s, , is the least
element in the enumeration of S—S_,. Clearly, S;, S,, ..., S, ...isan
increasing chain whose colimit is S. As an application of Theorem 4.6, we
construct a lattice whose semilattice of compact congruences is S by
considering the representation of SD 1S through a chain of finite

subsemilattices.

The Construction of the Graph for Sg, | S

Let S be a distributive semilattice. Let Zs* be the set of all words
generated by the alphabet set SU{A}. Let x = a,a,..a, a,,...,a,€ Shea
word; we call i(x) = a, and ) = a, the first symbol and the last symbol
respectively. The length of the word xis Ix| =k. Letx=a a,...a_ and
y = b;b,...b_ be two words, the product z = xy is the word a,a,...a;b;b,..b . The
symbol A is called the empty word and has the property that x. A=Ax=x
for all x e X ¥. We say that x is a sub-word of y if thereisaze X.* - (A}
such that y = x.z (denoted by xc y). Let X be the set of all words x = a,a,...a,
such that a,<a,<... <a,, a, e J(S), a,, a;, ..., a € S-J(S) where J(S) is the
set of join-irreducibles of S. The set of all words in X with initial symbol a is
called the a-tree of Z.. For a finite distributive semilattice S. We define the
graph H(S) = (X, R,) as follows:

Let X=X u{(xy) | xcyinZ andx,ye X}, we say that xR yiff one
of the following conditions holds
@ x=y.

()x,ye X, xCy.
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(i) x,y € Z, €(x) <i(y).
(ivixe X, ye X-Z, y=(zx),z¢e X,

WxeX-%,yeX, x=(y2), z€ 2.

Under this construction, the components of H(S) are precisely the a-
trees of X where a € J(S). Indeed, conditions (iv) and (v) above were inserted
to guarantee this. Hence there is a natural isomorphism e 1S — Seg(H(S)).

We take these isomorphisms to be the natural equivalence.

Let j: C — D be identical embedding of C into D. We define a partial
mapping F : HD) — H(C) as follows:
(a)if X=a,a,...8, € X, then F(x)is defined if and only if a, € C and thereis a
largest integer 1 <i <k such that a, € J(C), then F(x) is the word obtained
from aa, ,...a, by deleting all the symbols a,i<j<k which are not in C.

1

(b) for x = (y.z) € X - X, F(x) is defined if and only if F(y) and F(z) are
defined and F(y) < F(z), in this case F(x) = (F(y).F(z)).

Claim 1. F is onto.

Ify € X, we can write y = b,b,...b, where b, e J(C), and b,, ..., b,_e
C-J(C)cD-J(D). Ifb; e J(D), theny e X and F(y) = y; otherwise, leta <b,
be such that a € J(D) and y' = a.y € I, then we have F(y') = y.

Now suppose that y = (x,z) € X - X, and x c z. By the above argument,
there is a z' € X such that F(z') = z. We can choose a sub-word x' ¢ z' such

that F(x') = x. Hence (x'z') € X, - X, and F((x'.z")) = (F(x).F(2)) = (x,z) = y.
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Claim 2. F preserves the relations.

Let x, y € X, be such that both F(x), F(y) are defined and x Ry y. The

case that x = y is obvious. We verify the following four cases.

(@)x,ye X andxcy.

Letx =aa,..a, y=a,a,..aa, R If F(x) c F(y), then F(x) R, F(y).
Otherwise, by the definition of F, we have &( F(x) ) = a, and i( F(y) ) > a_,,.
Thus F(x) R, F(y).

M x,ye X and8(x)<ily).
In this case, it is clear that &( F(x) ) < i{ F(y) ). Thus F(x) R. F(y).

(©)xe X, ye X,-%, y=(zX%), zCx.
Since F(y) = (F(z),F(x)) is defined, F(z) c F(x). Thus F(x) R, F(y).

dxeX -X,yel, x=(y2), ycz.
F(x) is defined implies that F(x) = (F(y).F(z)). Thus F(z) R F(y).

Claim 3, F satisfies condition (iii) of (IV-1).
Let F(a) = x, F(b) = y and x R.y. We consider four different cases.

(@)x,ye Z,xcCy.
Let x = b;b,...b, and y = b;b,...b,b,,...b,. Then a R; ¢ where
c=a.b, b ,,..b.e L and F(c) = F(b).

b)x,ye 2, Ux)<ily)
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Lety =b,b,...b,. If b, € J(D), theny e Z. Ifb, ¢ J(D), since
8(x)=8(F(a))=8(a)<i(y)=b,,aye 2, Inthe former case we take c =y

and in the later case, we take ¢ = a.y. Hence a R.c and F(c) =y = F(b).

@xeZ, yeX, -Z, y=(zx), zcx

Since F(a) = x contains z as a sub-word, we can always truncate a to
obtain a sub-word d such that F(d) = z. Clearlyc=(da)e % ,aR,candF(c)
= (F(d).F(a)) = (zx) =y = F(b).

(dxeX.-X, ye X, x=(y2), ycz
In this case, we haveae X - X, Let a =(cd), c =d. Then F(a) =
(F(c).F(d)) implies F(c) = y and F(d) = z. But then a R.c and F(c) =y = F*(b).

Finally, we show that ¢ oj = Seg'(F) oe.. Let x € C, then j(x) =x e D and
e,0j(x) is the segment of H(D) which contains all the a-trees where a € J(D)
and a <x. On the other hand, ¢(x) is the segment of H(C) which contains
all b-trees of H(C) whereb e J(C),b<x. Wehavex=a;va,v..va =b,vb,
V... v b, where a, e J(D), bj <J(C). a, bj <x. Foreacha,i=1,2,..,1; we have
a, < bj for some j. Hence the smallest segment of H(D) containing

Fn_l( bj trees ) contains the a-trees of H(D). Thus the smallest segment

containing Fn—l( V) bj-trees ) is exactly U (a-trees ), Hence e joj = Seg(F) oe.

Now, for the directed system S, —» S, — S; — ..., we have the inverse
directed system ... — H(S;)— H(S,) — H(S,). For n > m+1, we define the
morphism F _+ H(S)) — H(S,) to be the composition F__ o ...oF , where

F, : H(S) — H(S, ;) is the morphism as described in the above construction.
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Hence, we have proved:

eorem 4,12 Every countable distributive semilattice with zero is the

compact congruence semilattice of some lattice.
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Chapter V

Complete Congruence Lattices

In this chapter, we answer the question raised in [Re, Wil. For any
complete lattice D, we construct a complete lattice L such that Com L is

isomorphic to D. We first introduce some additional notation.

Let ybe an ordinal and let { L, | oo <y} be a family of lattices. The
sum X (L, | o <vy)is the lattice with underlying set U ( L, | ao<v)and,
besides the inherited order relations of each L,, wehave x<yforall xe L,
ye LB’ a<B<y. Let L, and L, be lattices such the L, has a unit and L, has
a zero, then L, ® L, is the lattice obtained from L, + L, by setting I, =0,
The dual of a lattice L is denoted by L%, We shall be considering chains
which can be obtained from ® and n by the operations +, ®, (.)°. Thus it is
appropriate for us to define, for a chain C, the support of C to be the set
supp C={[x,y]l | x—<yinC}. Let C, and C, be chains, we define
supp (C,XC,) to be the set { [(x,y), (u,)] | [x,u] € supp C,, [y,v]l e supp C,}. A
valuation of a chain C by a set R is a mapping ¢ : supp C > R. Let ¢bea
valuation of C, the induced valuation ¢x¢ : supp (C,XC,) - RXR is the
mapping ¢x¢ ( [(x,¥), (u,v)] ) = (@[x,ul, ¢[y,v] ). The natural valuation of L¢
obtained from ¢ is denoted by ¢°. Let C, and C, be two chains with
valuations ¢, and ¢, respectively, then we simply use ¢, U ¢, to denote the

valuation of the C,®C, (or C,®C,) with C; U C, as underlying sets.

Let C be a chain and let ¢ be a valuation of C. We construct a lattice

©*C as described below:
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¢*C has underlying set (CXC) U {u, | o e supp (CXC) N (px¢)'A)
where A is the diagonal of RXR and, besides the inherited order relations of

CXC, we define x ~<u, —<y for each o =[x, yl. (see Figure 5.1)

A final word about the notation. The elements of ® will be named by
0, 1, 2, ... in the usual order. The elementx e L, in 2 (L, | a<y)will be
written as x, and the corresponding element of x € L in L will be denoted
as x°. For ease of future reference, we shall reserve the letters x and y for
the labelling of the elements of ¢*C mentioned above in the following
manners: For each (.,.) e CXC, we label it by x(.,.) and for each u, —< x(.,.),
we label it as y(.,.). An appropriate subscript will be added to x and y for

different copies of lattices in our construction. Let D = C?® C be a chain
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with valuation ¢. Then we call the chain A(¢*D) = { x(r,r) | r € D} and the
chain A™(@*D) = {x(r,r) | r e C} the diagonal and upper diagonal of ¢*D

respectively.

Let L be a complete lattice. For a, b e L, let 6%(a, b) be the principal
complete congruence of L collapsing a and b ( 6%(a, b) is well defined as the
intersection of arbitrary complete congruences is still a complete
congruence). For ® e Com L, we have ® = V (6*(a, b) | [a,b] € I) where I
ranges over all the closed interval [a,b] collapsed by ®. We say that L is
O-discrete if for each ® € Com L, the index set I can be restricted to the set
of discrete intervals of L. Thus if C is a chain obtained from ® and n by the
operations +, @, (.)d, then C is ©-discrete. However, the real closed interval

[0, 1]1s not ®-discrete.

The Construction of L

The construction of L is done in two parts. In part (I), we construct L
for the case that K is finite. In part (I), we modify the cohstruction of part
(I) and construct a complete lattice L for arbitrary complete lattice K. For
the infinite case, a similar construction was also given by G. Gritzer [Gr-2].

Let K be a complete lattice with zero @ and unit 1. Let K'=K - {Q }.

(D K s finite
Let the elements of K* be listed in a fixed sequence a,, a,,...,a, =1. Let

KV =K - {1}and K® = { {a,b} | a,be K" and a, b are not comparable }. We

construct the following complete sublattices of L. For each a e KV the
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sublattice L, which reflects the order relation of K, and for each o e K(z), the

sublattice L, which reflects the join operation of K.

(i) sublattice L.

Let C, be the chain ® + 1 and let the valuation ¢ : supp Cy; — Kbe
given by ¢@y[2k-1, 2k] = a fork=1,2,..,n-1, and @Qolk, k+1] =1 otherwise. Let
D, = COdGBCO and let y, = (pod U @, be the natural valuation of Dj. Let
Ly = (yy*Dy) U { 2, } be given additional order relation O\Vo*Do =< zy =< Iy #p,
Then L;is a complete lattice. The elements of Vo *D, will be distinguished

with a subscript 0.
(ii) Forae K(D, sublattice L.

Let the subsequence ay, ay,

the chain ® + 1 and let the valuation ¢, : supp C, — K be given by:

s By be a listing of (a] - { @}. Let C, be

a if[x, yl=[0,1]or[r+1, r+2],
Qalx, yl =12, if[x,yl=I[k, k+1]or [2k+r+1, 2k+r+2], k=1, 2, ..., T,

1 otherwise.

d d .

Let D,=C,@®C, and let y, = 9,” U @, be the natural valuation of D,.

Let L, = (y,*D,) U{w, z,} andlet Oy up —< 2z ~< Ty sp, y(@+1), @+1)H) —<
W, —< y((r+2), (r+2)). Then L, is a complete lattice. The elements of y,*D,

will be written with a subscript a.
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(iii) For o € K?, a = {2, b}, sublattice L.

Let the subsequence a;), 8, 8;, be a listing of {a, b, av b }. Let ®,, w,
be two copies of ® and let C, be the chain ®, + 0, + 1. Let the valuation 9,

be given as below:

avb if[x,yl=[0,1],

a if[x, y] = [(k);, (k+1);] and k is odd,
0ulx, y1=\ b if[x, y]=[(k);, (k+1);] and k is even,
a;, if[x, y] = [(2k-1)y, (2k),] fork=1,2, 3,

1 otherwise.

Let D, =C,'®C, and let v, = ¢," U g, Let L, = (y,*D,) U {w,,z,}
be given additional order relation Oy D, < 2 —< I, *p, and X(Ozd’ Ozd) -<
w, —< x(0,, 0,). Then L_is a complete lattice. The elements of v, *D,, will be

written with a subscript «.

A sketch of the valuation of the chains Cy C,, C, and the lattices Ly,

L, and L are given in Figure 5.2 and Figure 5.3 respectively.

LetL'=LyuuU@, l ac KM ouE, loe K?). We identified all the
zeros of L, L, L, and all the units of Ly, L, L,. Furthermore, we introduce
additional order relations so that the support of each of the Ly, L,, and L,
which have the same value are projective to each other. We accomplish

this by adding the order relations as descibed in (V-1) and (V-2):
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@ ForeachL,ae K", a =a; € @]-{D), k=1,2,..,1,
%5(2j-1, 2j-1) ~< x, (2k+r+1, 2k+r+1)
Xo(2], 2j) —< X, (2k+1+2, 2k+r+2)
Xy(2n-1, 2n-1) —< x,(3r+3, 3r+3)
Xo(2n, 2n) ~< X,(3r+4, 3r+4) V-1)

(i) ForeachL ,a={a,b}e K(z), aj=a € {a,b,avb}l k=123,
Xy(2j-1, 2j-1) —< x,((2k-1),, (2k-1),)
Xo(2], 2) —< x,((2k),, (2k),) (V-2)

Let L be the resulting poset. For a subset S of L, we write S = Sgu U
S, 1ae KU (S, loe K?) whereSyj=Sn 1L, 8, =SNL, and
S, =S N L, By observing that the additional covering relations (V-1) and
(V-2) are given along the upper diagonals of Ly L,and L, and are order
preserving,i.e., a<b and a < ¢, b —< d imply that c < d. We have the

followings:

(i) Foreach S, ie KDy K(Z), there is a largest element p; e A(y,*D,) such
that py < A; S, e L. Hence A S, = A, S,in L. Obviously A So =Ny S
Generally, if x € L, we write po(x) for the largest element of A(y,*D,) such
that py(x) <x. V-3)

(ii) There is a least element q; A+(\yi*Di) such that q, >V, S, € L,. Thus
V 8y=V,S,inL. Clearly V S, = V. S fori e K® UK®, Generally, ifx e L,
we write q,(x) for the least element of A*(y,*D,) such that g,(x) = x. (V-4)
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Claim 1. L is a complete lattice.

Proof: In view of (V-3) and (V-4), we need only verify that any two elements
of L has join and meet. Letr, s € L, up to symmetry, we have the following
possibilities:
() Bothr,se L (ore L,ie KDY UK®).

In this case, the join and meet of r and s are respectively the join and
meet that have already exist in L, (or L).
(reL,seL,ije KPYUK?,izj=o0.

In this case, r Vv s is always the unit of L and by (V-3), we have
r A s =Dpy(r) Ap pyls).
(i) re Ly, s L.

By (V-3) and (V-4), we haver v s = q(r)v;sandr As=rA,pys). O

Claim 2. Com L =K.

Proof: It is not difficult to observe that each of the LyandL,ie KY U K®
are ©-discrete. Indeed, ComL,i=0orie KDy K?, is generated by
A*(y;*D,). Let ® € Com L, if there exist r and s such that r e L,se L,

L, # Lj, andr=s (0),thenr A s=rV s (0). This implies ® must collapse
some interval [x, y] having value (1,1) and © =1. Thus, if ® #1, every
congruence classes of ® must be a congruence classes of L, when @ is
restricted to L,. By using (V-1) and (V-2), we can conclude that every

© € Com L is generated by A"(y,*D,). For each a € K, it is not difficult to
see that there is an ©,(a) € Com L,i=0orie KOy K(z), such that

[x,yle A'(y;*D) and x=y (8,a)), iff y,xy, [x, y] = (b, b), where b <a. Let
Ba)=U(©(a) li=0,ie KD UK?P), then ©(a)e Com L. We have to verify
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the substitution property. Let x and y be the maximal and the minimal
elements of a congruence class of © respectively. Let z be arbitrary element

of L. Then we have the following cases:

@ x,yeL,ze L, 1,je KPUK®P U (0},i=].
In this case, the substitution property is satisfied as ©, is a complete
congruence relation of L.
@) x,ye Lyze L, i,je KPYUKP U{0},0=izjori=j=0.
If'i=0,thenxvz=qj(x)vzsqj(y)vz=yvz(®j), andZAx=p0(z)Ax
=p,(2) Ay =zAy (). If] =0,thenxvz=xvqj(z)§yv qj.(z):yvz(@i), and
X/\Z=Z/\pO(X)Ezva(Z)=Zvy(@O).
(iii) x,ye L,z e Lj,i;tj;tO.
Inthiscase,xvz=I=Il=yvz(0®), andxx\z=p0(x)/\p0(z)s

P,(¥) A py(2) =y Az (@)

Foreach®e Com L. Let n(@) ={al ac K, {x,y} c A'(y,*D,), and
x=y(0), yxy,Ix,yl=(a,a)}. Ifa,be 1(0),thenavb e n(B) by L{&b}. If
b<aandae n(®), thenb € n(®) by L,. Therefore, we have 1(6(a)) = (al.
Thus the mapping ® — n(®) is an isomorphism of Com L to the principal
ideal of K. Hence Com L =K. a

(ID Kis infinite

The construction for the infinite case is similar to the finite case.

However, from the discussion in (I), we note that in order for the proof of
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Claim 1 and Claim 2 to be valid, we need to accomplish the following two
requirements:

() The properties stated in (V-8) and (V-4) must be preserved, i.e. the order
relations given in (V-1) and (V-2) must preserved the upward and the
downward continuity of join and meets. (V-5)
- (i1) Given any infinite subset J of K, we must have O(V.J )=V ©)|ce d)

where the meaning of @(c) is explained in Claim 2. V-6)

We assume the axiom of choice. For a set H, let Yy denotes the least ordinal
well ordering H, ie. H={a, | a< Yy }. Let my denotes the cardinal of H. For
an infinite cardinal m<m, let K™ = {J | J CK, m=m ). For an infinite set
J={r, la<y}e K™, wedefine J°={s, | <, 5,=V (15 | B<o)). The
elements of J° form a chain (multi-chain) of K which is well-ordered by ¥ -

Clearly V (J) =V (J°). The successor of the ordinal o is denoted by o

In the following, we give various complete sublattices of L. They are
similar to those given in (I) with some modifications: The sublattices Ly, L,
L, as described in (i), (ii) and (iii) serve the same purpose as their
counterparts in the finite case. As for the infinite join of elements of K, we
construct, in (iv), sublattices L; for each J € K(”’), m< m,, man infinite

cardinal.

(1) the sublattice L.

Let 1,1y = k and let KD = a, | a<x}. Let A, B, C be the chains 2,
2(2, 1 a<x)and ®+ 1respectively. Let Cj=A @ B + C (note: Cyis a

complete chain) and let the valuation ¢, be given as: ¢, [x, y] = a if
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[x,y]1 =[04, 1], 0 <x, and @,[x, y] =1 otherwise. Let D, = C0d® C, with
valuation y, = (pod U @,. Then Lj has underlying set (y*Dy) U { z, } with

additional order relation Oyy*py —< 29 —< Ly Dy

(i1) the sublattices L, foreachae KD,

Let V(o) = ¥ andlet (a]l - {&) = {a, | o < x}. Let A and B be the
chains X (1, | o< k) and 2 respectively. Let C,=A+B @ Cjand let the

valuation ¢, be given by:

aq if[x, y] =[0q, 04'] (0g* = Op if o = 1),
0ux, yl={a if[x, y]=[O0p, Igl,
¢olx, y] if[x, y] € supp Co.

Let D, = Cad ® C, and let the valuation y, = (pad U ¢@,. Then L, has
underlying set (y,*D,) U { w,, z, } with additional order relations:

OWa*Da —~< z, < IWa*Da and ya(OBd, OBd) —<w, <y, g, Ip).
(iii) the sublattices L, for each {a,b} = a e K@,
Let C, be the chain ® + C;, and let the valuation ¢, be:

[a vb if[x,yl=1[0,1],
¢Qalx, yl ={a (orb) if[x, yl = [k, k+1], kis odd (or even),
1<Po[x, vl if [z, yl € supp Co.
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LetD, = Cmd ® C, and let the valuation y,, = (pad U ¢,. Then L has
underlying set (y,*D_) U { W, 2, } with additional order relations:
O‘Va*Da —< 2, <1 +p, and xa(OCOd, Ocod) —< W, =< %,(Oc,, Oc,)-

(iv) the sublattices L; for each J € K(”’), m< m,, man infinite cardinal.

Denote v, by k and let J° = {s, | o < k}. Let A and B be the chains 2
and X (1, | o< )respectively. Let C; = A® B +Cj and let the valuation P
be given by:

V(J)=V(Jo) if[X,YJ=[OA, IA]’
¢ilx, y1 =\ sa if[x, y]=[0q, 0s'], Oy = Oc, if 0" = %),

oolx, y]l if[x, y] e supp Cy.

Let D; = C,d ® C; and let the valuation y; = (de U ¢;. Then L; has
underlying set (y;*D)) U { w;, z; } with additional order relations:

d d
Oypp; ~< 2; < Iyppy and x{(Oc,’ O¢,) < wy—< x{(Ocy Ocy)-

LetL'=LouU I | ie KYUK) LU I 1T€ K™, m<m). ThenL
is obtained from L' by identifying all the zeros of Ly, L;, Ly and all the units
of Ly, L, L;, with the following additional order relations:

Forallre C,-{ OCO, ICO}, andje KVUKP LU ®™M | m< ),

(r,r) < x(r, 1) V-7
%o j

It is not difficult to see that (V-7) satisfies (V-5). Hence Lis a
complete lattice by a similar argument of Claim 1. As for (V-6), we use
transfinite induction. Let B be an ordinal. Suppose that for all J ¢ K such
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that Yy < B, we have ©(V ) = V (6(r,) | o < Y ). LetJ c K and Yy = B. If
B=a’, then V () = s,v 1, OV ) =05,V 1,)=0(s)V O(r, )=V (O(ry) |
d<a)v O(ry, )=V (B(ry) | § <B). IfBis an limit ordinal, then for each

o< B, we have ®(V J,) =V (B(ry | § <), where dJ is the o-initial segment
of J. Hence O(V J) collapses all interval [x, y] in L;n A+(\;IJ*DJ) which has
value (V J, V J). But then &(V J), being a complete congruence relation,
also collapses an interval in L;n A+(\;/J*DJ) having value (V J, V J). Hence
VI =VONVI)la<B) =V (O(r,) | ao<B) and (V-6) is satisfied.
Thus we have established an isomorphism between Com L and the set of

principal ideals of K, i.e. Com L = K. Thus we have proved:

Theorem 5.1 For every complete lattice D, there is a complete lattice L
such that Com L = D.
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