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ABSTRACT

This thesis presents a new analytical model for the coupled the¡mome-

chanical anal5'sis of fractured solids subjected to static or dynamic loading

conditions. This model included the thermoelastic, the the¡moplastic and

the¡mofracture coupling effects which u'ere expressed as three separate terms

of the coupled heat conduction equation.

A finite element program for this model was developed. It included these

four characteristics: (1) All nodes possess three degrees of f¡eedom (the two

displacement components and one temperature). (2) Singular elements are

used. (3) Time integration was performed by using optimal collocation meth-

ods. (a) The mixed coupled-uncoupled algorithm was offered.

These coupling efects were demonstrated by measuring and calcuiating

the temperatu¡e changes in the vicinity of crack tip of a double cantilever

beam specimen subjected to an impulsive force.

The numerical and experimental studies indicated that the coupling effect

on a fractured solid subjected to an impulsive force is indeed significant in

comparison to the same effect on unfractured solids.
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Chapter 1

II\TRODUCTION

l. L Background

The mechanical field and therrnal field within a solid bod5' in a true sense

are inseparable. The two field analyses therefore rnust be solved simultane-

ously. Although the concept of this coupling has been realized by researchers

for many ]rears, the relative th.eorf is progressing rather slou'ly, and is not

in parallel with the development of other branches of solid mechanics such

as plasticity and fracture rnechanics. The topic of coupled thermoelasticity

is relatively weil documented. However, little consistency appears to exist

among the various published theoretical formulations of the subject of cou-

pled thermoplasticity. Effective solution methods for coupled thermofracture

problems are essentially lacking. This situation is due to the facts that: (a)

this coupling effect makes the theoretical treatment of the problem extremely

complicated; (b) such a coupling effect did not appear to be significant and

important in the past wiren engineers seldom extend their design efort to



involve piasiicity and dynamic fracture.

The development of modern computers and numerical methods such as

the finite element method have resulted in probiern-solving techniques which

have reached a high level of accuracy and capabiiity. Consequently, solutions

of many stress analysis problems rvhich involve more accurate rnod.eling of

the physical problems are nol\' feasible.

Equally important, the significant shift in design requirements in recent

years for high performauce and efficient components in aerospace satellites

and rockets, conventional pou'er piants and engines as rvell as nuclear power

stations has made thorough componerìt design analysis a necessit5,. For most

structures, in fact, the high performance requirement normally requires se-

vere tirermal and mechanical loads to be carried b], lighter or nontraditional

materials u'ith high strength-to-weight ¡atios. Under these conditions, the

structural integrity of the machine cornponents has become a prime concerrl

of designers, contractors and the general public, because the failure of a ke¡,

component in modern industrial installations such as nuclear poïser stations

may lead to disastrous consequences. The structural integrity is likely to be

ensured by a sophisticated design which is based on temperature and stress

analysis of the structure rvhen it is in a severe service environment. Hence,

the development of a more accurate method of stress analysis has receiyed

much attention in research activities.

In the field of thermomechanical stress analysis, a number of computer



codes based on the finite element method are now available. These codes

have the capability of handling dynamic or quasi-static conditions. However,

most of the codes require knowledge of the temperature distribution as an

input of the stress anal¡'sis, i.e., they use the uncoupled analysis approach.

The coupled analysis approach can improve the mechanical and thermal

analyses in some cases, such as the damping of a stress \r¡ave propagation, or

dynamic fracture problems. The current interest in the study of thermome-

chanical coupling effect on fractured solid derives from this concept.

Before proceeding with further discussion, here is a brief review of the

concept of the thermomechanical coupling effect and the relative coupled

approach to thermomechanical stress analysis.

1.1.1 Thermomechanical coupling effect

The thermomechanical coupling efect is generally used to express an interac-

tion between thermal and mechanical deformation fields in a solid. Not onlS'

does the therrnal field in a solid affect the mechanical fields such as stress

and strain of the solid, but also the mechanical deformation of a solid gen-

erates heat and hence heat conduction within the solid. In other words, the

induced temperature change can cause the mechanical deformation, and vice

\¡ersa. Therefore, these two field analyses should be solved simultaneously in

a coupled manner.

If the mechanical deformation is in the elastic region, then the phe-

nomenon is called the thermoelastic coupling efect. As a result of experi-



ments, this effect had been known for man¡' years. Also it is well known that

when a solid u'ith a uniform initial temperature is subjected to cycles of elas-

tic deformations in an adiabatic environment, then the solid returns to the

initial temperature due to the cancellation of the coupling effect during the

loading and unloading cycles. Therefore, the thermoelastic coupling effect

behaves in a revelsible or consett'ative way rather than in a dissipative way.

The tirermoplastic coupling efect always behaves in a dissipative way.

The experimental results of Tammann and \Alarrentrup [1] 
t proved that a

sirarp reversal in the direction of the temperature change was observed at the

onset of piastic deformation of a material. X,loreover, when the solid finished

a cycle of plastic deformation, it did not return to its initial temperature,

but alrvays exhibited an increase in temperature. Based on this phenornenon,

some coupled thermoelastic-plastic analysis methods u,ere developed during

recent )¡ears. Hsu. Banas and the author had further elaborated on their

method of the coupled thermo-elasto-plastic effect in references [2,8].

It is known that the temperature rise in uncracked metals during piastic

deformation under the conditions of infinitesimal deformation in an adia-

batic environment is only of the order of a tenth of a degree Centigrade, or

slightl¡'more [3,4,36]. It is for this reason that most of commercial codes

on thermal stress analysis employ the uncoupled approach rvhich omits the

thermo-elastic-plastic coupiing effect.

lComplete reference listing is contained at the back of the thesis.



L.L.z Thermomechanical coupling effect relating to
fracture

Experimental results during recent years have proved that the temperature

rise in a cracked solid seems more significant and local than that in uncracked

solids. Thus, rvithin a small region near the crack tip, significant heat gen-

eration and a temperature rise occurs. Indeed, temperatures as high as the

melting point of metals was measured.

Several researchers reported measurement of a localized temperature rise

caused by deformation of fractured solids : Weichert et al(rg74, 1gZ8) [b,6] ,

Scironert and \\reichert (1969) [7] ,Kobayashi et al (1g81) [8] , Fox and Soria-

Ruitz (1970) [14] , Fulleret al (1975) [24] , Loose ei at (i983) [9] , and Bryanr

et al(1986) [31] all reported a considerable temperature rise near the tip of

cracks during fracture in either ductile or brittle materials. The5, found that

tlre Iocalized temperature rises to be in tire order of 10 to I00"C, e\¡en more

than 1000" C f.or some brittle materials or even as high as the melting point

of metals such as titauium alioys. This is particulariy true during dynamic

fracture.

These facis imply that there is a new kind of thermomechanical coupling

effect. First, such a phenomenon of temperature rise, undoubtedly, should

be considered as a thermomechanical coupling effect. Also, such a rise in

temperature at a crack tip might be large enough to influence: (a) the stress

and strain distribution in the vicinity of crack tip; (b) the properties of



materials, particulariy of plastics which are temperature-sensitii'e; (c) the

fracture behavior due to the changes of (a) and (b). Consequently, there is

speculation that tiie distributions of temperature and stress as well as strain

obtained by using tlie uncoupled approach to analysis of fractured solid may

considerably der.iate from the true fields. It is logical that a coupled approach

should be appiied to the analysis of this phenomenon. None of ihe reseachers

mentioned above have done this. Indeed, this coupling effect has generally

been omitted in common fracture analyses.

The coupled method enables one to simultaneously obtain the correct

distributions of both temperature and strain fields. It wili be possible to reex-

amine some fracture problems and then to improve on the fracture mechanics

analysis based on these distributions. As a result, the role of the coupling

effect in a cracked solid can be rvell understood. This should contribute to

the thermomechanics theory on the coupling effect and its application to

thermofracture problems. Therefore, a reliable analytical model that enables

researchers and engineers to assess this effect is highly desirable.

1.1.3 The thermofracture coupling effect

A finite element model for assessing the coupling effect in a fractured solid

should be the iogical extension of both the in-house developed coupled thermo-

elastic-plastic theory and the results of recent experiments on the tempera-

ture rises within fractu¡ed solids. In order to distinguish the coupling effect

in a cracked solid from the foregoing thermo-elastic or thermo-elastic-plastic



coupling effect, it will be refered to it as thermofracture coupling effect (

TFCE ) in the subsequent development.

L.2 Objective

The objective of th.is research project is to develop a finite element model

for analyzing the thermomechanical coupling effect during the fracture of

engineering materials. This thesis describes the research efort which results

in a coupled analysis methodology designed to treat the TFCE in a trvo-

dimensional structure 'rvith a stationary crack subjected to static or dynamic

load.

1. A coupled heat conduction equation invoh.ing TFCE is deri'ed.

2. A finite element model to take account for the TFCE is developed.

This model has the following unique features:

¡ Tire coupled thermoelastic-plastic stress analysis under dynamic

loading conditions can be car¡ied out.

¡ The TFCE of a solid with a stable crack under dynamic loading

conditions can be predicted.

3. Tliis rvork leads to an examination of how tlie TFCE affects the stress,

strain and temperature distributions in a thin plate containing a line

crack under dynamic loading.



4. An experiment for the measurement of the induced temperature rise

near the crack tip in a thin plate subjected to impact load is carried out

to test the validit)' of the proposed finite element model Finaily, appii-

cation of the above methodology in engineering analysis is discussed.

1-.3 Scope

The first part of this thesis is concerned u'ith the derivations of the coupled

analysis of the temperature and dispiacement fields in a c¡acked solid. This

part is covered in the first three chapters.

The second part deals with the description of the finite element model,

algorithm and code construction. This is described in Chapter 4.

The third part describes the experimental apparatus and procedure,

numerical illustration and the comparison betv'een the finite element analysis

and the experirnental results gven in Chapter 5 and 6.

The remaining parts include the conclusions and recommendations, com-

puter prograrns and the appendices showing tlie detailed derivations of key

mathematical formulas. A list of references is enclosed at the end of the

tiresi s.



Chapter 2

BASIC COUPTED
THERMOMECHANICAL
A1\[ALYSIS

2.L Introduction

Thermomechanics, as clearlS'indicated b¡'the name itself, is concerned .rvith

the effects of heat on the deformation and stresses in solid bodies. In the

field of elasticity, the term refers to thermoelastic mechanics, and in the fietd

of eiasto- plasticity, the term refers to thermo-elastic-plastic mechanics.

It is well known in thermoelastic stress analysis that the stress-strain

law in a general thermal environment is expressed as the general Duhamel-

Neumann form of Hooke's larv as foliou's 12,2I,22]:

a¿j : C;in¿eu - 0;¡(T - T") (2-r)

where o¿¡ is the stress tensor, e¡¿ is the strain tensor, C;¡¡¡ is the elastic

constant tensor, 0;¡ is the thermal modulus tensor, I is the temperature of

I



a reference state of the body and (7 - T") is the rise of temperature above

the reference state. Eq. (2.1) states that a change of temperature of a body

will cause the change of stress states within the bod5'.

The usual approach to uncoupled thermomechanics analysis involves two

steps [2,2I.,,22]:

(1) Solving T(*,g,2, ú) from the Fourier's heat co'duction equation

(kT,¿),,1 Q¿^ - pCoT (2.2)

where k is the thermal conductivity of material, Cu the specific h.eat, p the

mass density, and Q¿n the internal heat source.

(2) Substituting temperature change into the thermoelastic equation of

motion

|c,,*(ux,t + u¿,k),i - Þ;¡T,, I F¿: pü; (2 3)

and then conducting the usual mechanics analysis. In Eq. (2.9), z¿ is the

displacement vector, u¿,¡ is the displacement gradient, ü; is the acceleration

vector, and 4 is the body force vector. The first step is independent of the

second step. h. other words, the deformation of a solid does not generate

heat which changes the temperature field. Therefore, it is called uncoupled

method. However, the effect of the temperature field on the deformation and

stress field is not a one-way phenomenon. It is an experimental faú lz,zrpzl

that a deform¿tion of the body produces changes in its temperature.

10



2.2 Coupled Thermoelastic Stress Analysis

It is a familiar fact tirat an adiabatic expansion of a gas is accompanied

by a drop in its temperature. Similarly, a solid body should change its

temperature when the state of strain of the body is altered adiabatically.

Based on this idea, Lord Kelvin (Sir Witliam Thomson, 1824-1g02) derived

the follorving formula for the change of temperature of an insulated elastic

body due to a uniform strain: [22]

.;T^tr : - oc,lJ'¡"'
(2-4)

u'hich is the first equation of coupled heat conduction.

Later, the research of thermoelastic theor5' resulted in the other equation

of coupled heat conduction [21]:

(kT,r),r* Q;. - Ê;¡T",it¿,, - pC,T (2.5 )

Obviously, the above equation suggested that the process of heat conduc-

tion in elastic soiids is conditioned not only by the existing differences of

temperature, but also is a compound process in which the deformation field

takes part and interacts with the temperature field. Equation (2.5), in which

this interaction appeats, is referred to as the heat conduction equation of

the coupled theory of thermoelastic mechanics, or in short the coupled heat

conduction equation. To solve the temperature and displacement field.s, we

require a combination of Eqs. (2.3) and Eqs. (2.b)

11



By applying the linear strain-displacement relations, Eqs. (2.3), results

in the following equations:

(2 6)

where z is the Poisson's ratio, p iss the Lamé elastic constant, and a is the

Iinear thermai expansion coefficient. Equations (2.5) and (2.6) are taken

together to constitute the central equations of linear coupled thermoelastic

stress analysis.

To solve these equations by using an anal5'flcal method is a very diffi-

cult task. Only a few initial boundary-t'al.ue problems rvere solved b¡, means

of Laplace transform techniques. One of these initial boundary-.i,alue prob-

lems, no\ry named the Sternberg- Chakravort¡"s problem, concerned a linear

elastic half space subjected to a uniform sudden temperature change on its

bounding plane. The plane was assumed to be traction-free. Sternberg and

Chakravorty [a8] developed the solution for this problem, inciuding both

the displacements and stresses. Numericai investigations into the Sternberg-

Chakravorty's problem have been made by Nickell and Sackrnan [49]. These

numerical results will be used to check the computer program developed in

the present work. ( See Section 4.9. )

For synthetic materials such as plastics, the effect of coupling may be

considerable. Thermoelastic coupling aJso plays a significant role in the phe-

nomenon of elastic wa\¡e propagation, where, because of the dissipation of

heat, its presence contributes to the damping of a wave motion.

L2



Howevet, it should be pointed out here that it is usually permissible in

many common practical applications to disregard the influence of thermoe-

lastic coupling and hence to treat the thermoelastic problems as totally or

partially uncoupled. This is the case because engineers usually deal wittr

problems tirat involve elastic stress analyses as in common engineering ap-

plications. But, with the availability of sophisticated analytical tools such

as the finite element method, demands for utilizing a material's strength

beyond its elastic limit have been increasing steadily in recent years. The

thermomechanical coupling effect has thus become an important factor in

design analyses.

Tammann and Warrentrup [1] observed in their experiments on plastic

deformation that a sharp reversal of the temperature variation begins at

the plastic yield point of a material. Moreover, many examples, such as

fault analysis of nuclear reactors, damping of stress wa\¡e propagation,and

the deformation localization after bifurcation, have indicated that a coupling

effect could become more noticeable when the material is loaded beyond its

elastic limit. To analyze this phenornenon, Hsu [2], Dillon 186], Lehmann [50],

for example, separately developed their own coupled thermoelastic-plastic

stress algorithm. Because a unified and systematic approach to this problem

has not been realized, some basic concepts of the analysis will be discussed

in the next section, based on tlie references [2j and [B].
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2.3 Coupled Thermoelastic-plastic Stress Anal-
ysrs

The quasi-static coupled thermoeiastic-plastic analysis will be highlighted in

this section.

2.3.L Theoretical background

The physical system under consideration consists of a structural component

(or its part) made of a polycrystalline material and exposed to a thermal

environment and a mechanical load. Ileat and mechanical power fluxes are

considered to be the only possible means of energy exchange with the sur-

rounding. At the outset of the process the component material is in its virgin,

stress- and strain-free state and remains in a thermal equilibrium state. The

macroscopic deformation of the material remains infinitesimal in the sense

that displacements of individual material points and displacement gradients

remain infinitesimal during the evolution process. Under the above assump-

tions the task of modeling is approached from a purely phenomenological

point of view.

In the thermomechanics approach to modeliing, the classical irreversibie

thermodynamics and isotropic hardening plasticity theory offer the sirnplest

mathematical model. Such an approach uses the balance principles of mass,

energy, linear momentum, angular momentum and entropy production.

To begin with, an emphasis shall be placed on the dissipation functiol
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derived from the balance of energy and entropy production in the classical

i¡reversible thermodynamics. Then the thermoelastic-plastic stress analysis

involved in the coupled approach wili be described.

Balance of energy and the entropy production

In reality, the plastic process is irreversible in nature and the internal dissipa-

tion function D may be conveniently employed to account for the irreversible

nature by means of the internal entropy production associated with plastic

deformation.

From this concept oden [51] arrived at the following reiation:

TS:e;,¿lQ¿.*D (2.7)

in wlrich ^9 i. th" entropy production rate.,T is the absolute temperature a¡d

Q;,-is the energy supplied to the system from internal sources. Further, Hsu

[2] derived the coupled ireat conduction equation:

(kT,r),, 4- Qr- - Ê;¡T"ei, * D : pc,'j. (2 8)

Equation (2.8) is virtually identical to the Fourier heat conduction equation

except for the follorving two extra terms of equivalent heat source: (1) the

heat source associated with the thermoelastic coupling term B;¡T"ú;,¡ (as in

Eq.(Z'5)) and (2) the heat source related to the thermoplastic coupling term

D which is often referred to as the internal dissipation function. Both of these

extra terms are related to th.e mechanical stresses and strains. (Tirat is why
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Equation (2.8) is referred to as the coupled heat conduction equaiion.) The

term D reflects the fact that part of the mechanical work done on the system

is converted into heat within the system. But, the introduction of the I into

Eq.(2.8) implies an assumption that the process of converting the s'ork ilto
heat is instantaneous. The dissipation function D constitutes an important

part of nonlinear coupled thermomechanical analysis. Quantification of this

function, however, is an extremely difficult task. A simple model is proposed

based on the following experimental observations.

1. Heat is generated when the material undergoes deviatoric deformations

[36]

2. Only part of the inpui plastic deformation poweïis spent in the change

of the internal structure of the material; the other part is dissipated in

the form of heat [52].

Based on these observations a simple expression f.or D v/as proposed as follo,¡,s

12,3,771:

D : (I - L)o;¡èr¿¡t: (1 - ly)";¡èl¡ (2.e)

u'here elrt is the plastic deviatoric strain tensor, and the positive parameter

Â is called the dissipation factor. It varies between 0 and 1, and. is a measure

of the ratio of energy stored to the plastic energy expended under adiabatic

conditions. It can aiso be regarded as the ratio of the rates of energy stored

in the microstructure of the materiai resulting from the conversion of the
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kinetic energy to the internal energy during an adiabatic plastic deformation

process.

Thermoelastic-plastic stress analysis

The effect of thermal input to the stress fields in a solid is considered to con-

tribute in the following three aspects: (1) dilatation-induced thermal stress;

(2) cirange in material properties such as Young's modulus; and (B) change in

tire yield surface when the solid is loaded beyond its elastic limit. These three

aspects have been demonst¡ated in detail in references [2,3]. The follorn'ing

is a brief description of such phenomena.

The constitutive equation for a solid subjected to combined thermal and

mechanical loads can be expressed in a tensorial form as

or¡ : Ciln,rxt l ''t;¡'i (2.10)

where the elasto-plasticity matrix can be expressed as:

FeP _ /.1e npv;jkt-vijkt-w¿jkt (2.11)

with the elasticity matrix

CT¡*t: CT¡or(T) (2.12)

the plasticity matrix

Cl¡t"t: Cfou,þ;¡,7) (2.13 )

generalized thermal moduli

1;¡ : 1;¡(o¿i,7, CÍjn¿, Cl¡,,)

77
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To derive the exact forms of Eqs.(2.10-14), tire following information is re-

quired:

1. A yieid criterion to establish a yield surface in the stress space.

2. A flow rule to relate the plastic strain increments to the yield surface.

3. A hardening rule to describe tÌre expanding, shrinking and shifting of

the yield surfaces during the deformation process.

The Von Mises yield criterion is lridely regarded as an appropriate repre-

sentation of the initial yield surface due to its good correlation u'ith test data

and its mathematical simplicitS'. This criterion is derived from the distortion

energy theory rvhich states that plastic deformation occurs when the distor-

tion energy of tire material reaches a certain critical value. For an isotropic

material, the yield surface F, defined by the \ion Mises criterion, is expressed

AS

in rvhich

F : Jz -'¡"+

J, : 
TS,,S,,

is the second deviatoric stress invariant, fi¡ is the deviatoric stress tensor,

and øy denotes the initial yield strength of the material from a uniaxial

tension test. The function F in Eq.(2.13) represents the yield function ( or

piastic potential function ) which describes plastic yielding at the cu¡rent

(2 i5)

(2.16)
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stress state during plastic deformation. It is obvious that a plastic state is

attained r¡'hen .F : 0, while the material is in the elastic region if F < 0.

The Prandtl-Reuss flow rule [2,22] assttmes that the plastic strain in-

crement is linearly ¡elated to the current stress. It predicts that the plastic

strain increment is normal to the associated yieid surface at the stress point.

Mathematically, the plastic flow rule resulting from the Von Mises yield cri-

terion can be expressed as

(2.r7)

in u'hicll de!¡ is the components of the plastic strain increment a1d dÀ is

a positive proportionality factor. Most materials retain some stifness after

the initial yielding. Further plastic deformation by these materials requires

additional loads.

Two types of strain-hardening schemes are commonly used in finite el-

ement analysis. These are isotropic hardening and kinematic hardeling.

The isotropic strain-hardening behavior for biaxial stress states can be rep-

resented by the uniform expansion of the initial yield surface in the stress

space. The kinematic hardening behavior for the multiaxial loading situation

can be modelled by the translation of the yield surface in the stress space.
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2.3.2 Finite element formulation for triangular ele-
ment

Analytical solutions of the coupled equations (2.3) and (2.8) for the interre-

Iated temperature and displacement fields are virtually impossible even for

cases involving simple geometries. The nonlinear nature of these equations

makes a numerical technique the only practical method of solution. The

finite element method (FEM) is considered to be a suitable choice for this

purpose. Thus, by using the FEx{, Hsu [2] derived the coupled finite element

equations applicable for an assembly of m triangular elements,

Ii"Ì'([r"]{¿(ú)} + [^rr]{r(¿)} - {¿(¿)}) : 0 (2 18)

(2 1e)Ð{:r}"1c){rØ} + lrr"l{ù(t)} + I¡rrl{?(ú)i - {D) - {g}) : 0

*lI. [K,] is an element's mechanical stiffness matrix :

lK.l : lhl, ( l,*lG(r))r lC"ollc(r))d.a^)lhl

[A[7] is an e]ement's thermal stiffriess matrix ;

[tvrr] : lhl'( I"^[c(')]"{,y} {b(r)}d,u*)

{I} is the mechanical load matrix :

{¿} : Ihl, ( l,*{R(r)}{j} au + l"^{R(,)}{p}d"_)

[C] is the heat capacity matrix :

lcl : l,*{ut Dtpc, + l{b(r)}r du^

(2.20)

(2.2r)

(2.22)
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[K7] is the conductivity matrix :

[Krl : l,^{"{r)}lk]{a(r)\r da^ (2.24)

[llrI.] is the thermomechanical coupling matrix :

ltur.): -(1,*{u{r)}{B'}tc( r)ld.u^)lh.) (2.2s)

{8} i. the thermal load matrix :

{Q} : l,^{u{r)}e;ndu^ + l"*{b(r)}{q}r {n)d*^ (2.26)

and {D} is the dissipation matrix:

{r} : |",,r{ut )}ou^ (2.27)

in rn'hiclr du^, dsn", r¿ and n denote the respective element volumes, element

surfaces, the total number of elements and the total number of boundary

surfaces. Also, the following definitions are used in the finite element fo¡-

mulation in which r denotes the spatial coordinates rvhereas ú is the time

variable.

Element strain components:

{e(r,t)} : [c(r)][/z]{7r(ú)i (2.28)

Element temperature gradient:

V T (r,t) : {a(r)it{?(¿)}

2I
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where y is the gradient operator y :

Element temperature

T^(r,t) : ió(r)i'{rþ)} (2.30)

In Eq.(2.18) to (2.30) the mat¡ices {z(ú)} and {"(r)} are the respective nodal

displacements and temperatures in the discretized solid, and

010000

{å}

0

1
I

0

10001
Ic(')] :

[Ã] :

00

10

(2.31)

(2.32)

z0î

10

7r2000

0001r2

[å] : ,¡("* - z;) * r¿(z¡ - z¡) + r¡(z¡ - z¡)
r jzk - rkzj 0 r¡z; - T,¿zk 0 r¿zj - r jz; 0

zj-z* 0 zk-z; 0 z¿-zj 0
rk-rj 0 r;-rk 0 rj-r; 0

0 r¡z*-r"t"zj 0 r¡zá-T,izk 0 r;zj-rjzi
0 zj-zk 0 zk-zi 0 z;-zj
0 r*-rj 0 r;_ rk 0 rj-r;
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and

{¿(')} : [A][å]

{"(')}: [vA][å]

where r;¡rjtr¡ and z;¡ zj¡ zh are the nodal coordinates of a triangular toroidal

element in a global coordinate (r,z).

Because the term 0;iTe\o in Eq.(2.8) can be expressed in terms of the

total strain rates as

Ê;¡Tèi, : 0;¡e;¡ - 7r¡T (2.33)

with

þr¡ : gr¡(or¡, T, Ci¡t"t, Cl¡o,)

7¿¡ : 7;¡(o;¡, T , Clr*,, Cl¡*,)

the exact forms of the h\,{0} matrices in the above equations can be for-

muiated for a solid undergoing a thermoelastic-plastic deformation. As a

result, when using an isotropic hardening scheme, Hsu obtained [2]:

where

{r}:-[c""]({,} +fftû}) - gy# 
e34)

{þ}, : {p}r r u)[c")-' [c ",]
(2.35)

lc"ol:lc"l-lco)

s:f{rc +Ht)cz
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rn 1 _ lC.l{ar}{ot}'[C"]
Lv).ç

and aJ.so

{É} : {r}
7: {0}rr(-[c"]-'[c"]({,} *ffto}) - u,l!ffi1 (2.36)

u'here {øt} and o are the respective deviatoric stress components and the

effective stress in the element. In Eqs.(2.3a) to (2.86), the matrix {a} is the

tirermal expansion coefficient matrix. The function F is the plastic potential

function expressed as [2] :

F : F({a}, K,T,e)

in ivhich K is the work-hardening parameter of the material which is related

to the effective strain rate. The internal dissipation rate D in Eq.(2.2g) has

already been expressed in Eq.(2.9). The finite element formulation for the

entire solid can thus be achieved b¡'expressing Eqs.(2.18) and (2.1g) on a

global scale to give

[K"){i'(t)} + lMr]{i' (¿)} : {L(Ð} (2.37)

(2.38)lM"l{i,(t)} + [c]i"(¿)] : [K"]{"(¿)} + {a(t)}+ ir}
These nonlinear ordinary differential equations describe the coupled quasi-

static thermoelastic-plastic behavior of a solid. The time t in the displace-

ment functions in the above equations should be treated as a parameter such
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as in cases of elastoplastic stress analysis based on incremental approaches.

It is apparent from these sets of equations that the two unknovvn quantities,

i'e', the time rate of change of the displacement vector z and the rate of

temperature ? must be solved simultaneously.

There are several approaches that can be used to solve the system of

nonlinear first-o¡der ordinary differential equations. Horvever, incremental

procedures, utilizing recurrence relations, are adopted by most research work-

ers such as Bathe and Wilson [56], Owen and Hinton [bz], and Snyder and

Bathe [58]. Solutions are obtained by advancing through timein finite steps.

In references [2, 3] a two-level finite-difference scheme rvas used in the time

domain, and some numerical illustrations .were reported.
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Chapter 3

COUPTED
THER,MOFR,ACTURT
STRESS A]\ALYSIS

Experimental results published in recent years [5-11,14-18,31] have shown

very significant rises in temperature u'ithin fractured solids resulting from

mechanical driving forces. Obviousll', these temperature rises are due to

the thermomechanical coupling effect. As these significant temperature ríses

were all observed in the fracturing of solids, it appears tirat coupled tlier-

mofracture analysis can be considered as a logical application of the coupled

thermoelastic or thermoelastic-plastic analysis in engineering problems.

To establish a common basis of understanding of the phenomenon that

will be studied in this thesis, a brief review of the basic concepts of fracture

mechanics will be done first.
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3.1

3.1.1 Introduction

Structural failures under loading conditions weli below the yield strength of

the structural material can often be attributed to cracks or cracklike flaws

in the structure. Such failures show that the conventional strength analysis

of structures alone, no matter how accurately conducted, is not suficient to

guarantee the structural integrity under operational conditions.

The analysis of stresses in a cracked structure, the study of the initiation

of c¡ack grov'th and the criterion of material failure due to the existence of

cracks can be generally categorized as fracture mechanics. In particular, in

the absence oflarge plastically yielded regions surrounding cracks or cracklike

flatl's, such a study is referred to as linear fracture mechanics. Also, linear

elastic fracture mechanics (LEFN{) is concerned with cases where plastic

deformation preceding fracture is sufficiently small to use the assumption of

linear elastic mate¡ial behavior as a basis for fracture control. Otherwise, the

so-called post-yield or elastic-plastic fracture mechanics should be applied.

3.L.2 Basic principles of LEFM

The linear elastic fracture mechanics approach to evaluating stresses a¡d dis-

placements associated ivith each fractu¡e mode is constructed on the Grifrth-

Irwin theory. In this approach, the general stress field near a crack tip can be

expiessed as the superposition of stress fields due to the three basic modes

Review of Fracture Mechanics Concepts
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of fracture, each mode is associated with a kinematic movemerÌt of two crack

surfaces relative to each other. There are three distinct possible modes of

crack extension under external load: opening mode (Mode I), edge sliding

mode (Mode II) and tearing mode (Mode III). In mechanical engineering

practice the importance of the opening mode I far exceeds that of the other

modes [29]. Hence, further discussion throughout the thesis will be limited

to mode I unless specifically stated otherwise.

Energy considerations

A crack extension requires energy, which may be supplied from the work

done by the applied external ioad and from the strain energy stored in the

structure. The latter suppl5' of energy will increase u'ith the crack extension,

because the resulting increase in compliance (compliance : deformation/unit

load) will reduce the structure's strain energy storage capacity.

A critical condition arises if the decrease in energy storage capacity per

unit increase of crack area becomes at least equal to the energ)/ absorbed per

unit increase of crack area. Crack propagation can then take place without

the need for additional work to be done by the external load. Denoting

the instantaneous value of the ¡ate of energy supply per unit of crack area

extension by G, then the c¡itical condition may be defined by G : G".
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The elastic crack tip stress field

It rvas demonstrated [29] that the eiastic stress and displacement fields near

the tip of a crack in an infinite sheet could be described for mode I (similar

expressions v¡ere subsequently derived for mode II and III) by:

K
a¿¡ : ]f¿j(0) + .. .

\/r

u;: K\,frg{O) +...

(3 1)

(3 2)

where (r, á) is a polar coordinate system in the material with the origin

situated at the crack tip and the plane of. 0 : 0 coincides u'itli the crack

surface. The parameter K depends on: crack size, component dimensions

and applied stress. It is said to be the controlling parameter of a crack tip

field, and it does not depend on the material. This is so because stresses

and displacements are proportional to this factor,K. Also, the truncated

terms of (3.1) and (3.2) are the terms u'ith higher o¡der in r, and for a smail

radius of r (i. e. \'ery close to the crack tip), onty tÌre first term is significant.

Accordingly, K is caJled stress intensit5' factor,and fracture is expected to

occur when K reaches a critical value, K".

One may readily observefrom Eq.(3.1) that stresses in tlie fractured solid

reach numerical values of infinity at the crack tip ( r -- 0 ). These stress

singularities were the result of the linear elastic stress analysis.Such singu-

larities have also been documented for elasto-plastic materials with nominal

work hardening, both for stationary and steadily growing cracks. It is there-
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fore necessary to derive alternative solutions to assess the stress fieid near the

crack tip without having to deal wittr this issue in the analysis. The popular

J-integral rvas developed as one such solution. It will be described in the

latter part of this chapter. These stress intensity factors and the J-integral

have been applied rvidely to engineering fracture problems. The concept of

stress singularities \vere necessary to derive a nonzero stress intensity factor

or J-integral wliich evaluates the stress field near the crack tip. As a re-

sult,this concept becomes a very useful tool in fracture mechanics,and will

thus be implemented in this tliesis.

There exists a u'ique relationship between K and G as follorvs:

(K,
e_) E (planestress)t : 

1 *G - rr) (ptor'" strai') (3'3)

in u'hich E is tlie You'g's modulus and v is the poisso''s ratio.

The discovery of stress intensity factors in the early 1960's prompted fur-

ther development in the field of fracture mechanics. Thereafter,man)¡ static

or quasi-static physical systems have been studied. The effect of inertia in

these cases such as existing in the dynamic loading cases ,however, has been

overlooked. Wiren problems involve such dynamic loading conditions with

rapid crack propagation within a structure, it is generally acknowledged that

the quasi-static results have lirnited application to the problems. Therefore,

these problems were referred to the topic of linear elastodynamic f¡acture

mechanics.
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3.1.3 Linear elastodynamic fracture mechanics

In practice, two kinds of dynamic fracture mechanics problems have received

most attention: a) solids rvith a stationary crack that are subjected to a

rapidly varying applied load, and b) solids under conditions of fixed or siowly

varying loading that contain a rapidly moving crack. In both cases the crack

tip is in an ent'itonment of rapidiy varying fields of stress and defo¡mation.

Impact and vibration problems fali into the first class. In the analysis

of such problems it is often found that the peak dynamic stress near a flaw is

higher than the stresses computed from the corresponding static equilibrium.

This stress amplification is especi¿]l1r pronounced in the presence of cracks.

The second class of problems is equally important, because there are

several kinds of large engineering structures in which rapid crack grou'th is

a definite possibilit¡'. The literature in this area can be divided into tr¡,o

categories: stead¡' state probiems and transient problems.

Because of the great success whicll LEFM analysis has enjoyed in the

past, there is adequatejustification for extending the above basic colcepts to

the analysis of elastodynamic problems. For example, within the framework

of linear fracture mechanics, the near-tip stress and the displacement fields

for elastodynamic problems are often measured by introducing the concept

of the stress intensity factor. Indeed, adopting the same nomenclature from

LEFI{, the stress intensity factor can be defined in the same manner as

the static case except that it is time-dependent. Also, this definition means
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that the stresses at a crack tip all exhibit a mathematicai singularity. The

nature of singularity does not change. Thirdly, the equivaience between the

stress intensity factor and the strain energy release rate can be extended to

the dynamic situation as rvell. It was concluded that the dynamic stress

intensity factor at its peak is 1. 2 to 1. 6 times larger than the corresponding

static value. [59,60]

3.L.4 Elastic-plastic fracture mechanics

Due to the singular natute of Eq.(3.1), a plastic zone is always formed at the

crack tip wliere the stress field exceeds the yield strength of the material.

If yielding is limited to a zone in the immediate vicinity of the crack which

is notionally of a vanishingly small extent, it is still ttre LEFI\{ problem.

Howet'er, if plastic yielding is extensive, but is srnall in comparison rvith

both the crack length and tirickness and otirer dimensions of the cracked

structure, it is considered beyond the range to u'irich LEFI\{ is applicable.

Then elastic-plastic fracture mechanics should be applied. As noted, elastic-

plastic fracture mechanics also forms a logical extension of LEFM and is

perhaps the condition in which many machine components with cracks and

flau's are likely to operate under normal loading. Currently, much effort is

being devoted to the development of an elastic-plastic fracture mechanics

analysis. As a result, a number of new concepts and techniques have been

developed and the following ones are the most popular: (1) plastic zone

corrections; (2) crack opening displacement; (3) .I integral; (4) crack growth
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resistance, the Ã curve.

plastic zone conections

The first attempt at extending fracture mechanics beyond the LEFM limits

involved a correction to the c¡ack length to account for the effect of the

plastic zone while continuing to use the LEFN{ approach. This procedure

concerned extending the crack by a distan ce rs. The result of this adjustment

is a notational crack with length 2(c -f ,ò for a panel with a center crack

of length 2c.Thus, a plasticity-modified stress intensity factor for this case

becomes

(3 4)

Again the other co'cepts of LEFM outlined above are applicable.

It should be emphasized that tire adjustments are approximations lack-

ing a firm theoretical basis and they exclude such effects as work hardening

and large strains at the vicinity of the crack tip.

Crack opening displacement

This method is based on the assumption that, u,here significant plasticity

occurs, the fracture process will be controlled primarilS, bl, the intense de-

formations adjacent to the crack tip. The separation of tire crack faces, or

crack opening displacement (COD), will then be a measure of the iltelse

deformation. Crack extension will begin at some critical value of this COD.

r(c -l rs)
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Because COD measurement can be made vrhen there is considerable plastic

flow around the crack tip, this technique gives useful information for elastic-

plastic fracture analysis.

Burdekin and Stone [6i] first showed that the COD can be determined

by the foilowing simple expression:

-K2A-_
Eoo

t: [_{-aE -t,*¿,)Jt. ox,

(3 5)

u'here á is the COD value and a, is the yield stress. Further, the energy

required to extend the crack becomes G : ay6. They also demonstrated

the plausibiiity of the notion that fracture could be governed by critical 6

values deterrnined by experimental results. Where K reaches a critical K",

the COD value reaches a critical value ó". Under plane strain conditions,

unstable fracture rvill occur when 6 --- 6..

J integral

Rice [62] proposed a path-independent contour integral, the J integral, for a

two-dimensional deformation field, evaluated over the contour f in a counter

ciockwise direction. (See Figure 3.i.) The J is given by

(3 6)

where u is the strain energy density function,ú; is the surface traction vector,

z¿ is the displacement vector, and ds is an a¡c length along f .
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The J integral, derived under the assumption of nonlinear elastic ma-

terial behavior, is defined as the elastic energy release rate (per unit crack

extension) to the crack tip. Rice [62] proved -/ to be patli independent (under

an isothermal condition) so that one may evaluate ,/ remote from the crack

tip, and use this value of J to represent the energy release rate to the crack

tip, since paths adjacent to or remote from the c¡ack tip produce the same

result. This scheme is suitable in the case of small scale yielding, for which

the concept of path independence of energy release rate to the crack tip is

assumed to remain valid.

Just as K was found to describe the elastic crack tip stress field in the

LEFN{ approach, Hutc}rinson [63] and Rice and Rosengren [64] have proved.

that the stress-strain field at the crack tip ma5, be expressed as

r ñ+rl
oij:(") 'l;¡(0,n)+...

' 'T

' J' c+te;j: (;) e;¡(0,n) + '..

(3 7)

where r and d are cylind¡ical polar coordinates with origin at the crack tip

and z is the power hardening coefficient in the assumed uniaxial stress-strain

law, rvhich is of the form e x. on. This is the well-knol{¡n HRR theory in

fracture mechanics.

specificaliy, for plane strain conditions in the opening mode (Mode I),

ÐrùrJ



it has been shown that

(3 8)

The standard J-integral as presented in Eq.(3.6) was formulated under

the follorving main conditions: (1) There is no thermal strain, (b) body forces

and inertia effect are neglected, (c) the solid is subjeted to monotonic and

proportional loading , and (d) the solid is made of homogeneous material.

Hsu and several other researchers as quoted in reference [2] developed a mod-

ified J-integral to accommodate thermal gradients for the fractured solids.

This modified integral consists of an additional term of area integral for the

thermal gradient effect. Tireir formulation however does not include the ther-

momechanical coupling effect. This modified J-integral u,as successfully used

to assess the fracture behavior of leaking pipelines by the author [105].

An attempt rn'as made in 1990 by Sheppard and her student [106] in the

development of a path independent integral to account for both the thermal

gradients and thermomechanical coupling efrects. This integrai, under the

name of S-integral, was formulated under the conditions of quasi-static load-

ing and a thermomechanical coupling with 100% plastic energy dissipation

for stationary cracks. This new development can be extended to accom-

modate the present situation with dynam.ic loading conditions. It may also

serve as a basis for further extension fo¡ the solution of problems involving

dynamic crack propagation. These extensions wiil require substantially more

research effort, but are highly recommended as future research endeayor.

G: J:t#*'- 6ro
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Crack growth resistance R curve

Tlie COD and J integral methods described previously relate their values

at crack initiation lo K7. under plane strain conditions. These values may

not be applied when determining the fracture toughness under plane stress

conditions.

The concept of the crack growth resistance ,R curve is based on the

observation that, during the fracture process of most sheet materials, the

unstable fracture is always preceded b5' a certain amount of stable crack

grorn'th under a monotonically rising load.

It is well known that the fracture process of a cracked thin metal sheet is

not usually comprised of a single sudden explosive-type change from initial

crack length to total failure. With the load increasing, considerable slov,

stable crack growth takes place prior to catastrophic failure. Krafft et al [651

postulated in their paper published in 1961 that, for a given material and

thickness, there is a unique relationship between the amount a crack growth

and the applied stress intensit¡' factor. They illustrated this relationship in

what they called a crack growth resistance curve (R-curve).

The foundational concepts of the R-curve and their use in predicting

critical loads for unstable crack propagation in sheet metals of various ge-

ometries have been described in a speciai volume of ASTM STp No. 527

[38] Turner [37] stated that over a modest range of geometric variables

the resulting R-curve was independent of the initial crack length and size.
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Wang and McCabe [66] presented some experimental data showing consistent

R-curves for a Center-cracked Tension (CCT) specimen and a Cracked-line

Wedge-loaded (CL\,VL) specimen.

As postulated by many workers [37,38,66-20], the crack grorvth resis-

tance during subcritical crack extension seeÍÌs to be merely a function of the

crack extension,Ac. Therefore, it should be possible to obtain an expression

for the R-curve by using a relationship A : Í(co,Ac), in whicli Â is called

the specific u'ork per unit area of cracked surfaces or the crack growth resis-

tance and c6 is the initial crack length. Broek [62,68,69] has proposed the

simple power law,

" - +çL"¡o (B e)

in which A and p are the constants and -4 : 5.0, p : 0.25 for Z0Z5-T6

aluminum alloy sheet. The Ac is expressed in rnrn and B"in kg lrnm. Further,

a second order polynomial of the form,

R:Ro*arAc*a2(,L,c)2 (3. 10 )

to relate .R and Ac have been suggested by Wang and McCabe [66]. Further-

more, Mai, Atkins and Caddell [70] determined the following relationships

for a few ductile and tough materials such as 7075-T3 and 1100-0 aluminum

allo5's and a low carbon steel:

R:Ão+F(Ac)P (3.11)

their values forrvhere Ã0, F and p are the constants. The authors published
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several materials, for exampie .R6 : 90(kJ lrnz), F : 50(k J l*\,p : 0.25 for

low carbon steel, (See Figure 3.2).

3.1.5 Thermoelastic-plastic fracture stress analysis

There are three typical envitonmental effects on the fracture behayior of

solids: excessive hydrogen diffusion (hydrogen embrittiement), corrosion and

thermal factors. Of these three effects, the thermal factor, i. e. tempera-

ture, is one of the prime concerns to engineers. Elaborate discussiol of its

effect on the material's behavior has been well documented, e. g. in Rolfe

and Barsom [70]. The thermoelastic-plastic analysis theory accounts for the

effects of temperature on the constitutive equations onlS', based on which the

therrnoelastic-plastic fracture analysis have been performed. Hsu presented

this analysis in detail in reference [2], including the formula of .I integral

with thermal effect for application in the uncoupled elastic-plastic fracture

analyses.

3.2 Coupled Therrnofracture Analysis

With the coupled concept and the fracture concept mentioned in the earlier

sections , a new area ofinvestigation can be opened dealing with coupled ther-

mofracture analysis. First, it has been found that the coupled thermofrac-

ture analysis is deemed to be a logical extension of the present coupled con-

cept. Second, diverse experimentai observations regarding the considerable

39



rise in temperature in cracked solids have suggested that the extensive cou-

pling effect does occur in reality. Therefore, the peculiarities of the coupled

thermofracture analysis are the main concern of this study. The following

discussion will be restricted to the Mode I (in-plane tensile mode) fracture

problem ri'hich is defined as a coupled analysis of a two-dimensional solid

with a stationary crack subjected to dynamic (impact) loads.

3.2.L Coupled thermomechanics theory and fracture
mechanics

As mentioned above, the thermoelastic and thermoplastic coupling effects

represent the primar¡' ingredients of the present coupled thermomechanics

theory. This theory has not been used before for conducting the intended

analysis. This logical extension of the coupled theory thus bears special

importance for the follou'ing trvo reasons.

The first reason is due to the singularit¡' of the stress fields at the crack

tip in fracture problems. The HRR theory indicated that the variation of

stress or strain near the crack tip of an elastic or elastic-plastic solid follows

an int'erse po\¡/er law near the crack tip. In terms of iinear theory of fracture

mechanics, in the stress and strain fields there is a singularity at the crack

tip as shown b5' Eq.(3.7). Also, it has be shown that the plastic dissipation

term D in the coupled Ìreat conduction equation, Eq.(2.g), was taken as

(1 - lt)o;¡ee;¡. (See Cirapter 2). Therefore, the term, D, should also have a

similar singularity at the crack tip because of its association rvith the stress
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field. By comparing Eq.(2.8) u'ith the Fourier's heat conduction equation,

Eq.(2.2), it can be seen that ihe term D is the source of rvhich has a significant

effect on the temperature field. Accordingly, it is reasonable to expect that

the dissipation term D with a singularity should play an important ¡ole in

the temperature distribution.

The second reason is due to the extensibility of the crack. C¡ack ex-

tension occurs when the applied load exceeds a certain value. It is generally

accepted that rvork must be done to the fractured solid because energy is

necessary to create new crack surfaces in the solid. This rvork is a major de-

terre:rt to crack propagation and plays a vital part in the fracture resistance

of brittle materiais.

The crack does not automatically return to its initial length after frac-

turing happened. Thermodynamics indicates that most of this rvork could

dissipate to generate heat at the crack tip as the growth of a crack is an

irreversible process against healing.

Based on the trvo aforementioned reasons,one can expect that deforma-

tion fields can result in a signifrcant and localized temperature rise near the

crack tip. Particularly, when involving dynamic fracture, one should expect

a more povrerful coupling effect because of a larger stress inte¡sity factor and

thus a higher plastic dissipation rate. Experiments supported this expecta-

tion, as will be described in the next section.

Because temperature at the crack tip plays a vitai role in the fractu¡e be-
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havior, a reliable analytical model that enables researchers and engineers to

predict such significant temperature rises is thus highly desirable. This phe-

nomenon rvill be referred to as the Thermofracture Coupling Efect (TFCE

for short) in order to distinguish it from the conventional thermo-elastic or

thermo-elasto-plastic coupling effect.

3.2.2 Review of some experimental results

"Hence, rupture should be accompanied by phenomena such

as a large rise in temperature indicative of tire dissipation of an

amount of energ¡' . . ." ( A.A.Grffith, 1920 )

As a familiar example, recall that in a standard tensile test the metallic sam-

ple at the moment of rupture may even be too hot to be touched. I1 recent

years the phenomena of localized rnarked temperature rise of fractured solids

were observed and accorded more attention. Several researchers reported

their observations and measurements of these phenomena ; \Veichert et al

(7974,197s) [5,6], schonert and weichert (1969) [z], Kobayashi et al (19g1)

[8] , Fox and Soria-Ruitz (1970) [14], Fuller et al (i925) [24], Loose et al

(1983) 19] , and Bryant et at(1986) [31] reported on a considerable temper-

ature rise near the tip of moving cracks during fracture in either ductile or

brittle materiais. All tirese authors found the localized temperature rises to

be of the order of 10 to 700"C, or more than 1000"C for some brittle materi-

als. In one case a temperature rise as high as the melting point vras observed
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in titanium alloys. ( See Table 3.1).

The first group of these experiments was involved with brittle materiais.

Schonert and Weicheú (1974,1978) [5,6] performed dynamic fracture tests in

glass by applying impact ioads on a glass target. The measured temperature

¡ises rx'ete between 2500 and 3000"K during the fracture of the glass target.

The measurements of these Ìrigh temperatures were car¡ied out by observing

discrete wavelengtÌrs of thermal radiation emitted from the specimen.

Fox and So¡ia-Ruiz (1970) [14] carried out experimental research o¡ the

the¡mal decomposition produced by the release of elastic strain energy whe¡

a fast cleavage crack runs through a brittle crystalline solid such as calcite.

By relating the amount of decomposition to the fracture velocity and the

kinetics of thermal decomposition, a profile of the crack tip temperature was

deduced. For calcite.this value of temperature rise was 1250"K for a crack

propagation velocity of 3600 m/sec. These two experiments sirowed that

a large increase in temperature during fracture is observed even for brittle

materials.

The second group of experiments was involved with plastics at room tem-

perature. Fuller, Fox and Field (1974) [24] had deterrnined the temperature

rise at the tip of fast-moving cracks in polymethylmethacrylate (pMMA) by

using thermocouple and temperature sensitive liquid crystal film (TSLCF).

The measured values shou' a continuous temperature increase with increasing

crack speed. In tlie speed range of 200 - 600 m/sec, a temperature rise of
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Table 3.1: Summary of measured temperature rises due to the
coupling effect in c¡acked solids

b TSlC:temperature sensitive liquid crystal
c N/A:not available
d melting point of Titanium

Author
(year)

Material Measuring
technique

Temperature
rise ("C)

Schonert et al.
(1e6e )f 7l

high purity
iron

thermocouple 130.

Hahn et al.
(1e74) [1041

SAE 4340
steel

tempiisticks 45. È,,
f .).

Fulle¡ et al.
(1e75) l24l

PM]\{A' thermocouple
and TSLCö

500.

Norris
(1e76) [15

18C18Ni
steel

N/A" 80.

Hsieh
(1e77) l11l

2024-T3
aluminum

N/A 1.

\4leichert
(1e78) [6

Glass inf¡a-red - 3000.

Kobayashi et al.
(1e81) f8l

Carbon-fiber
composite

thermocouple
and TSLC

30.

Loose et al.
( 1e83 ) [e]

AISI 4135
steel

thermovision Ðù.

Bryant et al.
(1e86) [311

Ti-8 Mn
titanium

SEM stereopho-
togrammetry

- 1600.d

a PMffid:polymethyl metlãcrylãG
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approximately 500"K r¡'as obse¡ved.

Kobayashi and Suemasu (1981) [8] investigated the generation and sub-

sequent conduction of heat during dynamic crack propagation in carbon-fiber

composites. A TSLCF (temperature sensitive liquid crystal) and a thermo-

couple were employed to measure the total heat and temperature change at

points along the crack passage. The experiment was carried out under the

Mode I crack propagation at room temperature. They reported that a max-

imum temperature change of about 30oC at the thermal boundary front was

measured during the dynamic crack propagation.

The tirird group of experiments was related to meta.ls. Schonert and We-

ichert (1969) 17] reported a measured temperature rise of 130'C at a distalce

o130 p.m from a crack tip in steel, using a minute thermocouple. Norris (1926)

[15] examined crack-tip heating during fatigue fracture in carbon steel. IIe

observed temperature rise of up to 80oC at the tips of fatigue cracks. Bryant,

lUakel and \4¡ilsdorf ( 1986 ) [3 1] observed the effect of temperature rise at frac-

ture in tu'o titanium ailoys. From metallurgical experimental evidence they

reported that a very small volume at the crack tip was heated to tÌre melting

point (approximate 1600"C for these titanium alloys) at the moment of final

separation. In the mean time, Attermo and Ostberg (1g21) [10] , Loose and

Brotzen (1983)[9], and Hsieh (1972)[11] measured temperature rises und.er

the conditions of cyclic loading on metal specimens.

Attermo and ostberg observed a temperature rise of r4oC at a crack

45



tip by applying c]'clic loadings at a frequency of 100 Hz to a steel specimen.

Hsieh reported that temperature rises of about 0.2 to !.0"C near a crack tip

in aluminum alloy specimen rvas observed when a cyclic loading frequency

of 10 Hz was used. He did not publish either his measurement technique for

temperature nor the details about the measured temperature data. To the

author's knowledge, this temperature rise was so small that it couid easily to

be confused u'ith the noise inherented in the measuring system, or by foreign

disturbances. The reason why ihe temperature rise rvas so small ma¡, be

due to the lorv loading rate of specimen and the high heat conduction of the

aluminum alloy material.

Loose and Brotzen reported an experimental verification of temperature

rises. Crack tip temperatures were measured in AISI 4135 steel specimen

subjected to a cyclic loading at 20 Hz by means of a scanning infrared cam-

era system. On average, the measured temperature rise was about 2.5"C.

This value has fallen into a commorì region of measuring error. Because the

authors did not published the details such as the loading rate and the resolu-

tion of the infrared came¡a system, it is hard to make a judgement about the

credibility of the measured temperature rise data. Therefore, the following

discussion rvill temporarilS' exclude tlie data of temperature rises for Hsieh,

Loose and Brotzen.

3.2.3 Discussion on the experimental results

The above mentioned results indicate the following points.



A temperature rise in the vicinity of a crack tip is much higirer than that

of common, plastically deformed solids without a crack. A temperature

rise as high as the melting point of the material is reacired in the case

of titanium alloy.

Either a brittle or a ductile material can produce a considerable tem-

perature rise at the vicinity of a crack tip.

The zone of significant temperature rise is lúghty localized in the crack

tip.

4. The temperature of tlie specimen must be considered to be less than

the temperature at the crack tip.

5. In some reports a small temperature rise was observed.

Points 1 - 4 reveal that the process resulting in a significant temperature

rise at a crack tip sirould be regarded as a very diferent phenomenon from

a conrmon plastic dissipation. In other words, the present thermoelastic or

thermoplastic coupling effects have not included these factors. Therefore,

this fact does suggest a new kind of coupled thermo-mechanical phenomenon

during fracture. This phenomenon wili be referred to as the Thermo-fracture

Coupling Effect (TFCE) in order to distinguish it from the existing thermo-

elastic or thermo-elastic- plastic coupling effect.

1.

2.

Ðù,
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3"2.4 Review of some reported theoretical works

All published theoretical analyses were carried out without using proper ther-

momechanical coupling formulations. Several researchers have attempted

some theoretical formulation on the phenomenon of temperature rise in the

vicinity of a crack tip from an uncoupled approach. Among them are Rice

and Levy (1969) [19], schonert (1974) [b], Loose and Brotzen (1983) [9],

Kuang and Atluri (1985) [16], Atluri and Nakagaki et al (1986) [12].

Theoretical formulations concerning the temperature field induced by

the deformation fields in the vicinit¡' of a crack tip were approximated by

two types of analytical models. The first model, used by Loose et al [9] and

Armstrong et al [18], u'as based on the formula by Rice [1g]

r(*'a'q : 
l"' t I l^,,,ry!e*l-Wl ¿t ¿'ù G# -,)

(3.12)

wlrere ,a(t) is the plastically deforming region at time t, f (€,7, r) denotes

tire plastic work, p is the mass density, c is the specific heat, and ¿ is the

thermal diffusivity. In his model, Rice nade the following assumptions.

r A temperature rise in the vicinity of a crack tip is produced by plastic

dissipation work.

r The dissipation work is calculated by using the nonhardening plastic

model and directly integrating the rate of plastic work over the plastic

zotìe near the crack tip.
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r A thermal stress induced by the rise of temperature lvas not considered.

Because, however, no closed-form solution of Eq. (8.L2) is availabie for this

model, their attention was focused on an estimation based upon Eq. (g.12).

The second model involved solving the Fourier's heat conduction equa-

tion with a moving heat source at a known constant speed and energy-rate

density by using an approximate or numerical technique. Moreover,the speed

of the moving heat source is equal to the speed of crack propagation, and

the shape and size of the source were assumed to be those of the plastic zone

near the crack tip (\4reichert and Schonert [5], Kuang and Atluri [16]). The

intensity of the source, hou'ever, was estimated according to an assumed frac-

tion of the so-called crack resistance (\Veichert and Schonert) [b], or strain

erìergy release rate (Doll) [t3], or plastic work rate (Kuang and Atluri) I16]

Tire above models may lead to the followi'g observatio's.

r AII models are built oD. an assumption that the mechanical analysis is

independent of the thermal analysis. Thus, all these analyses are, in

fact, uncoupled.

r Energy dissipation caused by the creation of new crack surfaces or crack

growth was not considered.

Therefore, it is necessary to put a coupled approach into a fractu¡e problem

involving the TFCE. The derivation of a modified coupled heat conduction

equation involving the TFCE could be taken as the first step to the coupled
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method. This will lead to an acculate assessment of the localized temper-

ature distribution in the vicinity of an advancing crack tip during fracture.

The assessment of temperature rise and its influence on fracture processes is

of particular va"lue in fracture mechanics, as this will lead to a better under-

standing of fracture mechanics behavior of fractured solids.

The next section will present a description of preliminary theoretical

results obtained by using the coupled approach.

3.2.5 Derivation of the coupled heat conduction equa-
tion

To develop a coupied approach to the TFCE, the present coupled heat con-

duction equation has to be modified first. A general three dimensional for-

mulation is beyond the scope of ttris thesis. Right Ìrere and nolr,, at the earl5,

stage of research on TFCE, the research of this thesis lvas olly able to be

defined as a simpler problem of coupled thermofracture analysis, i.e. a two-

dimensional fracture problem with a stationarv crack subjected to an impact

load.

Rice [20] pointed out in 1978 that the conventional, irreversible thermo-

dynamics theories are applicable when the actual, time-dependent non-elastic

process can be modelled suitably as sequences of constrained equilibrium

states. Specifically, he proposed the follor¡'ing equation to calculate the en-

tropy production rate for a cracked solid induced by the quasi-static growth
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of a Griffith crack:l

(3.13)

where A is the entropy production rale, T is the absolute temperature, c is

the crack iengih and c denotes the local crack speed which is small in com-

parison to the stress wave velocities in the solid. The notation 'c.f.' d.enotes

'crack front' and the integral with respect to arc length / is carried out over

all extending portions of a crack front in the solid under consideration. The

quantity G is the Irwin st¡ain energy release rate and 27 is the work required

for reversible separation of the fracture surfaces. In the above formulation,

a crack length is regarded as an internal state variable.

Now, consider the derivation of a modified coupled heat conductiol

eguation involving TFCE, based on Eq. (3.i8). As shown in Figure B.B,

a cracked plate u'ith unit thickness can be regarded as a thermodynamic sys-

tem. For the system it is assumed that: (a) The crack iength c, the elastic

strains ef¡, the dislocation densit¡' ø and the absolute temperature T are

regarded as internal state variables. (b) In the interior of this plate a two-

dimensional problem and stable crack growth exists under dynamic loadings.

Hence, the Helmholtz free energy may be expressed as:

F:F(ei¡,,T,c,u):u-Ts

^:+ 1",!"-zflèd,r

(3 14)

1A 'Grifith crack' is understood to be a crack which moves in an ideally-elastic lattice
without the generation or motion of dislocation, twins, etc.. 'Quasi-statici growth means
that the body, during crack motion, can be regarded as traversing a sequence of contained
equilibrium states corresponding to the sequence of instantaneous crack lengths. (Rice
[20])
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where u : u(el¡,T,c,u) and s : s(el¡,T,c,u) are the internal energy and

entropy respectively. According to the first larv of thermodynamics for a local

unit volume of a continuum, the following equation can be derived (Nowinski,

1978 [2i] or Fung, L965 l22l):

p'[t,:o¿¡e;¡-q¿,; (3.15)

in whicli p is the mass density, q is the heat flux, e;¡ is the strain compo-

nents, ø;¡ is the stress components, z is the internal energy per unit mass.

It is noticeable that the derivation of Eq.(3.15) did not involve any limita-

tions imposed on the speed of therrnodynamic process and proceeded without

considering the reversibility or irreversibility of the process. Its validit¡, is,

therefore, universal and can be extended, in particular, to dynamic as well

as to quasi-static processes.

Ciassical thermodynamics deals rvith equilibrium conditions of a uniform

system. However, problems involving heat conduction, plasticity and fracture

are beyond the scope of classical thermodynamics and belong to the ¡ealm

of irreversible thermodynamics. To describe these problems in precise terms

, three new hypotheses must be introduced. The first assumption is that the

entropy is a function of state in irreversible as well as in reversible processes.

The second assurnption is that entropy is an extensive quantity, so that it
must be subjected to a conservation law. The third assumption consists of

an extension of the second larv of thermodynamics locally to every portion of

a continuum, where the continuum is uniform or nonuniform. Based on these
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basic assumptions of irreversibie thermodynamics, the follor,r'ing expression

for computing the entropy production in a system can be derived: (Fung,

[22] or Nowinski, [21])

where s¿. is the entropy production rate per unit mass rvithin the domain A

in Figure 3.3. Because in the domain there are three irreversible processes of

heat conduction, plastic dissipation and crack growth, the s;,, should include

the contributions to entropy production rate due to these processes. Eq..

(2.7) and (2.9) expressed the contribution due to the plastic dissipation.

From Eq. (3.13) the contribution due to crack growth can be computed.

Thus we have

pTÉ¿.: -1r,,+ (G - 2lè6(r- - ¿) + (1 - tv)o;¡è?,¡ (3.12)

wlrere -17¡ denotes the entrop¡'production rate due to the heat conduction,

the Dirac-delta function 6(/ - ú) : 6(" - *")6(g - !") is used to simulare

dissipation owing to an infinitesimal crack growth at the crack tip. The

variables with subscript zero denote the current coordinates of the crack tip.

By substituting Eq. (3.17) into Eq. (9.16), one may get:

pTÉ : -e¿,; i (G - z:y)¿6(r- - F") + (1 - /t)o¿¡ee;¡ (3.18)

By differentiating Eq.(3.1a) with respect to time t, one may get:

F :'ít, - Ts - Ts

(3.16 )

É.D
r-, d

(3.1e)



BJ' substituting z in Eq.(3.15) into the above expression,

tionship is obtained:

the following rela-

pi. : (or¡èr¡ - e;,;) - pTit - pTt (3.20)

Replacing the term, pTi, of. Eq. (3.20) with Eq. (3.13) will lead to:

pF: cíieij - p'i'" - (G -21)è6(r'-i") - (1 - /t)o;¡e!¡ (3.21)

According to the definition of the plastic dissipation parameter r\, the latent

energy, L4i, stored in terms of developing dislocation systems should be equal

to the difference between the plastic work rate and the plastic dissipation.

Tlrerefore, tlie latent energy ù, : lto¿¡eP;¡, and il, can also be regarded as

the ratio of the rates of energy stored in the microstructure of the material

resulting from the conversion of the kinetic energy to the internal energy

during an adiabatic plastic deformation process. In Appendix A it is proved

that the dissipation factor of a metal can be calculated according to the

following equation:

Â : (1 + u){Er l@ - Et) (3.22)

where El is the slope of the stress-strain curve of the metal in the plastic

range, E the Young's modulus and { is a constant tliat depends upon mate-

rial. ( In references there \Mere many experimental values of { ( See Appendix

A ). For exarnple, { of polS'crystalline OFHC ( oxygen Free High conduc-

tance ) copper is equal to 1.925 [53]. Several theoretically estimated values

of { are listed in Appendix A.)
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Further, it has been stated [71] that the IU, ,un be written u" w" : lyxu

in which X is the dislocation energy per unit lengtir of a dislocation line. As

a result,

Irya: o;¡èI¡-Q- lt)a¿¡eP;¡ (8.23)

By substituting the above expression into Eq. (3.21), the follorving relation-

ship is obtained:

pF : o¿¡èi¡ - p'i'" - (G - Z1)c6(í- í") - lyx,

Because

r : ftfrf¿li,r,c,u)): #rr,* #, * #u* #o
the following relationship can be derived b5'comparing Eqs. (8.21) and (3.25):

aF1
: 

-fr..oei¡ p" "t

AF
ôT

aF 1.. è : --(G-21)è6(r--r'")oc p'

{, : Â,.
öu p'"

By differentiating s(eir,T,c,ar) with respect to time t, we have

. - 
ô" ,. - 

Ôt,i , ð!, , Ôt... lq ^.": Ar.u'='* afl'+ ô""* arO (3.27)

\\¡hen Eq. (3.22) is substituted into Eq. (3.22), the entropy change in terms

of the free energy F is obtained as

^; _ azF :e 7rF; AzF A2FPs:-oe.p7eíi arr't - ô"aT"- ôraT'

(3 24)

(3.25 )

(3.26 )
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By the definition of specific heat at constant volume of a solid:

cu: ^ô2F-L' urz (3.29)

Also, from Eq. (3.26), it is seen that

ô2F AzF 0a,,
P aripr : P aTôee;j: 67 

: 0;i (3'30)

u'here B;¡ is referred to as the thermal moduli tensor, and

ô2F A2F A
p a"ar: e Ar'c: ar(G -21)è6(r-- '-,)) 

:0 (8.31)

and

nôrF : arF A .L
P arar 

: 
ôTar: ôTljx) : o

Equation (3.28) therefore takes the form:

pÀ:-p¡¡c:,-La".'i-zr T-u- (3.33)

Finally, by substituting Eq. (3.18) into (3.83), one obtains:

pc,'i' : (kT,;),;-f g;¡Tei¡+ (G - 2lè6(r--i") + (1 - ty)o;¡el¡ (8.34)

Generally, it is assumed that the increment of temperature d, as com-

pared with the ¡eference temperature To, is small, i. e.

lT -T"l :10 | ..,To = ?: "t 
(3'35)

Then, Eq.(3.3a) becomes:

p1,'i : (kT,;),¿ -l þ;¡T"èï¡ + (G - 2lc6(r- - r'") + (r - lr)o;¡e!¡ (g.36)

( 3.32)
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In the finite elernent metliod each time step is always chosen to be so small

that Eq. (3.35) holds. Consequently, Eq. (8.86) can be used in the finite

element analysis.

It is useful to recall the coupled heat conduction equation, Eq. (2.5),

which involves the thermoelastic coupiing effect. 85, comparing Eqs. (J.36)

and (2.5), the presence of the last two terms in Eq.(3.36) is recognized as

evidence of introducing the TFCE.

obviously, Eq.(3.3a) or (3.36) must be coupled with the followi.g equa-

tion of motion of a deforming solid

pti¿-oij,j-b;:0 (3.37)

for a d5'p¿mic problem,or

a¿¡,j*b¿:0 (3.38)

for a quasi-static problem where ó¿ is the body force per unit volume. Also,

to carry out a thermoelastic-plastic analysis, it is necessary to knor¡, the con-

stitutive equation, Eq. (2.tt). Further, to perform a coupled the¡mofracture

analysis of a grou'ing crack ( i.e. c > 0 ), the relationship betlveen the crack

growth and the fracture parameters such as G, K , R , J or CoD value must

be known. The relationship can be established by experimentai observa-

tions. In fact, Eq.(3.10) is a relationship which has been published. Landes

and Begley (1979) [36], Turner (1980) [BZ], Marandet and sanz (19g0) [BB],

DaJly, Fourney and lrwin, 1985 [35], and Kanninen, (1gg5) [29], etc. have

established the relationship for various cases.
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Eqs. (3.3a) to (3.3S) form a set of independent equations which must be

solved simultaneously. For the coupled analysis, the finite eiement method

appears to be the only practical numerical approach.. Therefore, the finite

element method for this coupled analysis rvill be discussed in the next section.

58



Chapter 4

F'Ï]\ITE ELEMENT MODEL
FOR, COT]PLED
THER,MOFRACTURE
A]\ALYSIS

4.t Introduction

The set of sirnultaneous differential equations (J.36) and (3.32) in chapter

3 must be solved by using the fi.nite element formulation which includes the

following three characteristics:

1. All nodal points possess three degrees of freedom.

2. Singular elements are used.

3. Time integration is performed using optimal collocation methods.
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A.L.L Node with three degrees of freedom

In recent years, much attention has been given to the numerical solution

of boundary value problems using the finite element method. In particular,

the displacement-based finite element method has been used successfully for

the solutions of structural mechanics problems. The temperature-based finite

element method has also been widely used for the solution of heat conduction

problems- This chapter presents a fi.nite element model for two-dimensional

coupled thermofracture analysis.

When using a finite element method for a coupled thermomechanical

analysis, the primary unknown variables denote either a displacement or

temperature at a nodal point of the finite element model. Therefore, a

symboi-unified primary variable-based finite eiement method is required. In

this method , the primary unknown variables are considered to be a gen-

eralized "displacement" with three components involving two displacemelt

components and one temperature. In other words, a nodal point in the

two-dimensional finite element model for the coupled analysis involves three

degrees of freedom.

4.L.2 Singular elements

\\¡hen using a finite element metliod for fracture analysis, the theoretical

singularity of the strain field at crack tip is simulated. The inclusion of such

a singularity in the formulation is a necessary condition to achieve maximal
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accuracy. Generally, it can be done through special elements with singu-

lar properties in the finite element model. Early in the 1g70's, a number

of special crack tip finite elements were developed to satisfy this condi-

tion. These special crack tip elements contain a singularity of the strain

field at the c¡ack tip, equal to the theoretical singularit5,. But, these spe-

cial elements also result in unsatisfactory convergence in the solution for

lack of the constant strain (first order terms) and rigid body motion (con-

stant terms) modes in their shape functions for the displacements. In late

1970's, this problem was solved by using eight-node isoparametric singular el-

ements for two-dimensional analyses and 20-node isoparametric elements for

three-dimensional analyses ( called "singular elements" for short in the fol-

lorving). Besides, the method of using these singular elements have an other

merit. They are simple for program design, because the geometrical conti-

nuity and the continuit¡' of shape functions between the singular elemelts

and the neighboring normal elements are automatically satisfied. Therefore,

singular elements rvill be adopted in the present coupled thermofracture anal-

ysis.

4.t.3 Time integration schemes

By using the rveiglited residual methods [55], a set of semidiscrete equations

for the generalized displacement field can be obtained from the set of si-

multaneous differential equations, (3.35) and (3.36). This set of semidiscrete

equations represents a set of second orde¡ diferential equations which require
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an appropriate time integration scheme for solution. One commonly used al-

gorithm in structural dynamics is a collocation scheme which generalizes and

combines aspects of the Newmark method and Wilson-d method. Also, the

best-behaved collocation schemes 14'ere determined and are refer¡ed to as op-

timai collocation methods. (Chapter g of [22]). Therefore, the subfamily of

collocation methods is used to perform time integration in this finite element

model.

The present finite element method u'ill be based on the above outlined

characteristics. To realize these characteristics, this method adopts isopara-

metric elements rvhich offer a very convenient way of implementing these

characteristics.

4.2 Discrete Method:Weighted Residuat Ap-
proach

Posing the problem to be solved in the most general terms, it is necessar¡.

that we seek an unknou'n function y such that it satisfies a certain differential

equation set

d(s):{i:Íi\
[,)

together with certain boundar

n@)= 
{ 

;;[;ì 
]

-0

J' conditions

-0

(4.1)

in a domain ll

(4.2)
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on the boundaries I of the domain. In Eq.(4.1) and @.2) fu(y),Br(g),
etc., ate the operators defining govering differential equations and boundary

conditions. The integral or weak statement that

In,' o(")dr-¿ + lrrr u(")dr : o (4 3)

is satisfied for arbitrary functions z and z ( ihe superscript denotes the pre-

scribed values on the boundaries ) is equivalent to the satisfaction of the d.if-

ferential equations (4.1) and their boundary conditions (4.2). The \4¡eighted

Residul lUethod involves choices of z¡: w¡ and y: N¡ai v,here w¡ are a fi-

nite set of prescribed functions and N¡ are the shape functions. Then Eq.(4.8)

is approximated by the expansion (4.4), i. 
". ,

f *;a1u;a¡)dCI + f wfe(N¡a¡)dr:0 (i, j:1,2,...,n) (4.4)

in rvhich n is the number of unknou.n parameters ai entering the probiem.

Almost any set of independent functions w¡ could be used for the purpose of

weighting. The common choice is w.¡ - N¡, i.e. the original shape functiols

are used as the weighting function (the Galerkin method). Equations (4.4)

thus yield a set of simultaneous ordinary differential equations from which

parameters ai can be determined. This is a standard discrete approach in a

space domain in the fi.nite element method.
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4.8 Shape Functions

The fundamental concept of the finite element method is to construct a dis-

crete model composed of a set of piece-wise continuous functions defined over

a finite number of closed sub- regions. The sub-regions, "finite elements",

are connected to each other at their common nodes, and collectively approx-

imate the shape of the domain. The generalized displacement components

of these nodes are the basic unknowns.

An isopararnetric quadrilateral element n,as used in the present finite

element model. The shape function formulation of this element has been

well documented. The basic idea is to map the plane isoparametric element

in global coordinates (x,y) into tlie normalized square in local coordinates

(r, s) through the follorving transformations:

æ:ÐN¿(r,s)æ;:.Aræ
2=I

u:ÐN;(r,s)y¿:Ng
i=7

where &(r, s) are the shape functio's corresponding to node i, and N :

{¡rt¡/r¡rr "'¡/.}, and for a 2-D elernent z is the number of nodal points of

an element and rL carr varl'from 4 to g. An element rvith n:4 (or 8 ) is called

a four-node (or eight-node) isoparamet¡ic element which is commonly used

in finite element models. The shape functions corresponding until nine node

(4 5)
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isoparametric elements can be listed as follows.

¡/, : -i,t+r)(i+s)(r -r-.s)
Nz : -å,t -'X1+s)(1*r -s)
¡/, : -i,t+r)(r+s)(1 -r-s)

1.N4: -¿(1 -'X1 +s)(t*r-s)
¡rs : ]tt*s)(1-r,)
¡t : 'ra -r)(1 - s2)

Nr: å,t-s)(1 -r'z)

¡/8 : ]rt*r)(1-s,)
¡{, : (1-r2)(1-s'z) (4 6)

These shape functions were incorporated in the finite element program DCT-

EP SA (Dynamic Coupled Thermo-Elatic-Plastic Stress Anal¡,sis), developed

for this research project.

Nou', we define the column vector de to be the generalized displace-

ment at all the nodes of a given element; and the column vector d, as the

state of displacement at any point u'ithin the element. In this finite element

formulation the generalized displacement at a nodal point consists of three

components,u¿,u¿ and fr, where u¿,a; â,tê the respective displacement com-

ponents in the x and y directions, respectively , and fr is temperature at the

nodes.

Therefore, the generalized displacement field within a given element can
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be expressed in matrix form as:

or in a simplified form as

d.: Nd.'

rvhere the matrix N is the shape function which is a

coordinates and has to be evaluated at each of the nodal

^r" 
- {¡\/, ¡/, .../\t}

o":{ï. }:l;l ï:: i1lr') La rz r.)

{i}:ii + ål{ï; }
(4 7)

(4 8)

function of speciaJ

points, and

(4 e)

and

(4.10)

Denoting the strain tensor as e, the strain components can be expressed

in terms of the displacement functions through the compatibility condition.

e:BuU (4.11)

where e = (e*,,€ou,€,a) is the strain tensor, and Br. is a partial differential

operator matrix which can be written as:

":{l}} (4.12)

and u : {u,u}î. Also, the st¡ess tenso¡ o can be expressed in terms of the

strain tensor e by the constitutive relations.
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The physical components of the temperature gradient form a 2 x 1 matrix

which is related to temperature through the gradient operator Ba:

/ô\lâ'l
V?:{ lT:BrTlal\aa)

(4 13)

Note that the shape functions, Eq. (a.6), are expressed in the terms of

Iocal coordinates in the r,s plane. To compute the equations in the x,y plane,

it is necessary to evaluate the Jacobian. This can be done by the following

transformation:

(4.t4)
{;}:'{;}

where

I # '#1 [ rL, #u ÐT=,#s,]J:l l:l l(',.[4,e]) (4.15)

t# *J LlL,#uÐT=,#soJ
To solve the cartesian derivatives) we should rewrite Eq.(4.14) as:

r*ì f.tìr t J-,¿ ! 1+.ro¡lu lu I\ag)\a")

u'here the inverse of Jacobian operator exists and has the form [55]:

, [ * -#l
r-a - î"i I ða ôc I r+'tzl

L -ðr ô" I

Therefore, using Eqs. (4.14),(4.15) and (4.16), we have the following equation
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for the strain components in the element:

t:{

çæ¿

"!!

"æa

I l* -æ 0

l:#l , o -*
) l-* # *

0

ðt
ã¡

_ðæ
ðs {ä

(4.18)

4.3.1 Crack tip element - singular elements

In the conventional displacement formulation of finite elements, the dispiace-

ment field is modelled as a polynomial. This approximation of the displace-

ment field cannot model any singularity of strains at the crack tip as indicated

b¡' the classical linear fracture mechanics theory. Consequently, a convep-

tional "elemettt" ma5' not be used for the analysis of strains and stresses in

the neighborhood of a crack tip where a singularity in strains exits. However,

Tong and Pian [73] have sltolvn that in order to achieve a reasonable conyer-

gence rate the appropriate singuiarity at the crack tip must be modelled. A

great deal of effort has gone into the developrnent of special elements rryhich

incorporate the appropriate singularity in their formulation, as the survey

papers on the topic indicate 174,75,78]. These fundamental ideas in the gen-

eration of special and singular elements with singuiarities will be explained

as follows.

F¡om Eq.(a.17) it is immediately noticed that the desired form of singu-

Iaritv mav be introduced in (ôlôæ),(alaù by letring (a) ¡-t , or (b)(01ðr),

(ôlôs),or (c) both (a) and (b) to be si'gular at the desired poinr,i.e. the
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crack tip. Thus, three t5'pes of such singular elements are considered: (1)

tlrose involving singular geometric transformation (i.e. making detJ : 0 );
(2) those u'hose shape functions have been modified to reflect the known

singular behavior in the function derivatives, while retaining the linearity of

geometric transformation between (x,y) and (r,s); (3) those combining both

the above.

According to the first approach, Henshell and shaw [76] and Barsoum

[77] developed an attractive singular element by means of a special placement

of nodal points in a conventional isoparametric element. This special place-

ment results in detJ : 0 or a singular geometric transformation at a given

nodai point. It can be seen frorn Eq.(4.17) that an appropriate singularity of

the strain at the given nodal point or crack tip is therefore modelled by this

element. Because this type of si'gular elements involves onl5, 1h" arïange-

ment of finite element mesh, it is easS' to implement in a large number of

existing finite element codes.

Quarter point isoparametric elements a¡e the well-known example of

such type of singular elements. For a eight-node quadrilateral element, a

singular geometric transformation can be obtained by placing the mid-side

nodes at tire quarter points. As a result, the inverse square root singularity

of the strain field at the crack tip can be achieved. However, Habbitt [Zg]

and Barsoum [77] have indicated that for this quadrilateral singular quarter-

point element, the strain energy is unbounded and the desired singularity is
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only along the two boundary lines. They recommend the use of triangular

quarter-point singular element which can be ¡ealized by collapsing one side

of the quadrilateral with node 1 being the crack tip. (See Figure a.1.) The

finite element model of the present rvork adopted this triangular quarter-point

element as crack tip element.

4.4 Finite Elernent Forrnulation

Substituting tlie governing equations (3.35) and (3.36) into the integral state-

ment (4.3), and then follou'ing the standard discretization scheme of finite

element method described by Bathe [5a] and Zienkieu,icz 155], one obtains

the folloiving coupled semidiscrete equations for m isoparametric elements:

Ð (M""ü * K,r,ru * K'aá - L,r) : o

Ð(cttei """0 
* Kry9 - D - er - e) : o

n'here *"" ; the element mass matrix for elements with unit thickness:

(4. ie)

M,,u - ll, Ilro*rNd."trd,d,,

Krr,, is the element mechanical stiffness matrix:

¡l ¡1
Kuu : 

J_, J_rB$c"oB' detJd.rd.s

where C", is the elastic-plastic matrix given in reference [2].

K¡a is the element thermal coefficient matrix:

Kur : l:, l:,g[1Nd'etrd'rd's

(4.20)

(4.2r)
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L¡ is the mechanical load matrix:

¡l ¡1 "LLu : l'- l-- Nrbde¿Jdrd,s * l- wrpr[a*¡ar¡a faøa+¿r (a.n)- J-tJ-t J_t

where b and p are respective the body force and su¡face fraction matrices.

Ca1 is the heat capacity matrix:

crr: l:rl:rNt(pc, *J)Nd.etrd.rd,s (4.24)

where C" is the specific heat at constant strain, and 1 is already expressed.

by Eq.(2.38).

Kaa is the conductivity matrix:

¡1 ¡l .1Krr : 
J_, J_rn$tnaaetJd,rd.s - J_-rxrn,nr,/1 ar¡ar¡, -, çaslðr)ra,

(4.25)

where k is tire thermal conductivit¡'matrix, and å is the heat transfer coef-

ficient across the thermal convection boundarS,.

Ka,, is the tirermomechanical coupling matrix:

¡l ¡7Kr' : - J ,/-l ulø* d'etJd'rd's (4.26)

u'here B is already expressed by Eq.(2.J2).

D is the plastic dissipation matrix:

, : Itrrlt rvraa etJd'rd's (4.27)

u'here D is already expressed by Eq.(2.g).

Q¡ is the fracture dissipation matrix and

Qr : l:,IrNr(c - 21.)è6(r- r,)á(s - so)d.rd,s (4.28)
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where (r",so) is the local coordinates of the mapped point of the crack tip.

Q is the thermal load matrix:

^1 '1 .1
Q: J_'r/_l *tq'"d,etJd,rd,s+ I'twrq@¿, e.2s)

wlrere Q¿^ is the energy supplied to the system from internal sources, and

q is the heat flux matrix across the heat flux boundary. In the above equa-

tions,(4.20) to (4.29), r and s denote iocal coordinates, and J is the Jacobian

matrix between the global and local coordinates. Matrices, -,1, p and the the

scalars, J, D, have aiready been given in Chapter 2. AIso, these equations

can be computed by using Gauss quadrature fo¡mula for the two-dimensional

integral, as ,Ér t, f ?,s)drds = Ðl=r Ði=, H;H¡Í(rr,"¡) in u,hich r;(s¿)(i:
7,2,.. ',n) are Gauss sampli'g points. and H;(H¿)(i : I,2,...,n) are the

coefficients which are independent of the function f (r,t).

The finite element formulation for the entire solid can be achieved by

expressing Eqs.(a.19) on a global scale to give

M,r'ü*Kuuu*K,,aá

Crrg*Ca,rù*Kaag:D*Qr (4.30)

This is a set of simultaneous second-order ordinary differential equations rn ith

trvo unknou'n quantities, i.e. the displacement vector and tiie temperature.

In terms of the generalized displacement fieid mentioned above, Eq.(a.30)

-L

+Q
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can be rewdtten in the following form:

lT"Sl{ å}-'
o o lf I l_-,|- K,,., x"r ll " ì_f r," ìcr' cmllpJ L o Kmild/-lat/

(4.31)

or in the following standard second-order form:

Ma*CaïI{d:f (4.32)

where

M:l *" o I
¡ "" "l (4'33)

is the generalized mass matrix;

^-l o o I,:L",r, crr) (4.34)

is the generalized damping matrix;

r{:|r{" x"l
¡ "" *;',) (435)

is the generalized stiffness matrix;

":{å} (486)

is the generalized acceleration vector;

,:fllfaI G37)

is the generalized velocity vector;

¿:['\- tol (438)
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is the generalized displacement vector;

"-lL.'-lq'
is the generalized force vector, and Qr :

I
I

D+Q¡ +Q.

(4 3e)

(4.40)

(4.4r)

(4.42)

(4.43)

(4.44)

dn+29

f n+o

dn+3

4.5 Time Integration Algorithm

Mathematically, Eq.(+.32) represents a system of differential equations of the

second-order and, in principle, the soiution to the equations can be obtained

by standard procedures for the solution of differential equations. In practical

finite element analysis, a fer¡' effective methods can be considered.

The optimal collocation scheme for performing time integratio¡ of Eq.

(4.32) u'as adopted. because the sch.eme is unconditionally stable, second-

order accurate and best behaved. ( Hughes, 198? [22].). In the sense of a

linear multistep method for second- order systems, the collocatiol method is

a two-step metliod u'hich generalizes and combines aspects of the Newmark

method and \4/ilson-d method. The collocation schemes are defined by:

Nf an¡6 * Can+o + I<d^+ð : f n+,e

(I - tï)a.l úan+t

G - rf)1.*,9f 
^+t

1

d. + ú Atu^ + 
r(t9 

At)'{(1 - 2a)a- * 2o,ø,,,*¿}

u- ¡ ú At{(L - 6)a_ * 6a^*o}Un*û =

t4



Table 4.1: Smallest coliocation parameter, rg*

where rJ is called the collocation parameter. If rJ : 1, the scheme reverts

to the Nervmark's method. If a : 1/6 and 6 : r12, the wilson-d method

is obtained. A necessary and sufficient condition for second-order accuracy

is tlrat 6:712. Unconditionail¡, s1u61e, second- order accurate schemes are

defined in [72] to correspond to

d û-
0.25
0.24
0.23
0.22
0.2r
0.20
0.19

0.18
0.17

1.
6

0.16

1

L.02L772
1.047364
1.077933
7.7L4763
r.159772
1.215798
1.287301
1.381914
1.420815
1.514951

á:1
2

The best-behaved collocation schemes have been determined. This amounts

to a one-parameter subfamily of methods with á : 0.5 and ,rg : ?t-(á) defined

by Table 4.I [72]. These methods are referred to as optimal collocation meth-

ods and they are tire only ones considered henceforth. Based on Eq.(4.42), it
is known that these methods are implicit, unconditionally stable and second-

order accurate.
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For convenience, 6 : 0.5, a = 0.25 and thus rg- - 1 will be selected

in the following. Indeed, the optimal collocation method defined by these

values is equivalent to the Newmark method.

substituti'g 6 :0.5, a : 0.25 and thus rJ- : 1 into Eqs.(4.37) to (4.42),

one finds that:

Man¡1i Can+t + I{dn+l : f n*, (4.45)

dn+t : d.n + Atvn + f,nt'çc-.* ø.+r )

tn*l : o^+*N(ania'+t)

ân*1 : a"(d.+l-d.) -ozyn- o,sãn

ün*t : 7sn ! a'an i azan+t (4.46)

Substituting Eqs.(4.44) into Eq.(4.a8), we get

Kdo+r : fn+l (4.47)

where

K : K+aoM*arC
îIn*r : frr+r * M(aodn * azvn -|- a3arr) -¡

C(a1d¡ * a4v., * a5arr) (4.48)

Because the analysis involves thermal stress, plastic deformation, a nonlinear

coupiing efect and a crack, it is more convenient to express Eq.(a.a5) in an

i¡rcremental form as:

Rado*, : air,+r (4.4g)
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where

Air,+r : Afn+r *M(a2vr' *a6ao) *C(aevrr*a16ao)

Ad" : dr,+r-d'

Avo : Aúa., + 61t(!t ' al 1-

'oo \do - ît" - 
-"")

aao : ]r¡þ"0" - *,,-å"., (4.b0)

In equations (4.46), (4.48) and (a.50), we define

__1 6 ^ _ 1uo - ãEF crr : ãA¿ az: ãñ

a":];-I o"a-L-1 os:T(*-zl
(4.51)

ao : Aú(1 - á) az: 6At o, = *
on:* û10:A¿(*-1)

4.6 frtumerical
Elernents

Integrals over the Singular

It is rvell known [SS] that, for a linear quadrilateral or triangular element, a

single Gauss sampling point integration is adequate. For a parabolic quadri-

lateral (or brick) element 2 x 2 (or 2 x 2 x 2) Gauss point integration is

adequate and, for a parabolic triangle (or tetrahedra) element, three-point

(and four-point) formulae are needed ( 155] p.203). In most cases, Gauss,

quadrature rules with two or three sampling points are used to ca-lculate in-

tegrals such as Eqs. (4.20) to (4.29). of these equations, however, Eq.(a.zl)

represents the integration of the dissipation matrix, D, over elements around
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the crack tip. The integrand, D, in Eq.(4.22), involves the singularity

a crack tip u'hich may lead to a numerical integration that is difficult

calculate exactly.

4.6.L Numerical integration of singular functions

It has been shown after many years of experimentation that Gauss' and other

quadrature formulas of the highest algebraic degree give excellent precision

in comparison u'ith other types of numerical integration formulas. However,

these quadrature formulas are not universal, and in some practical cases they

are known to give tvorse results. This usually happens when tlie integrand

has a lou' order of differentiability or is an analytical function with singular

points close to the segment of integration. Therefore, there is speculation that

a rouglr approximate numerical integration of Eq.G.zT) may be acquired b5,

using Gauss' or other quadratures of the highest algebraic degree of precision

u'ith two or three sampling points.

For example, 1 : ,f¡ # : ZJill : 2.0. But, usi'g the Gaussian

quadrature formula rvith:

1. two sampling points (i.e. n:2), 1= 1.65068, and the error : rT.4T %;

2. tirree sampling points (i.e. n:3), / = 1.25086, and the error : 12.46

%;

3. four sampling points (i.e. n=4), / r 1.80634, and the error : g.6g %;

at

to
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4. ten sampling points (i.e. n:iO), I = l.gIT06, and the error : 4.2T yo;

5. thirty trvo sampling points (i.e. n:82), I = L.gTJ2r, and the error:
7.34 % .

This is so because the integrand,rlJæ, has the singular point at æ:0.
Equally importantly, in passing from one dimension to two or more di-

mensions, the diversit¡' of integrals and the difficulty in handling them is

usually increased [80, 81]. Accordingly, u'hen singular elements were intro-

duced into 2-D or 3-D finite element analyses, it becomes a mole important

and difficult task to determine how to improve the precision of evaluating a

singular integral which is essentially obtained by using the Gaussian quad.ra-

tu¡e formula rvith 2 x2 (or 2 x2 x2) or 3 x B (or 3 x 3 x 3) sampling points.

As a general rule, it is impossible to obtain as much accuracy rvith a multi-

dimensional integral as it is with a one-dimensional integral for reasonable

computing times. Fortunately, in the range of integral Ìraving a dimension

2 to about 5 or 6, the dimensional efect is not 5'et sufficient to rule out the

use of common numerical quadrature rules [81]. Therefore, one-dimensional

quadrature still is the basis of the following discussion.

4.6.2 rncreasing the precision of Gauss, quadrature
formulas

To increase the precision of a singular integral, a number of methods have

been developed for the numerical integration of functions with integrøble
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si.ngulari,ties [80-83]. They are illustrated as follows.

The first of these methods is called the series expansions method.This

method converts all or part of the integrand into a series. Numerical quadra-

ture is then applied to each term of the series. This metliod can provide

adequately fast convergerl.ce.

The second method is called the singularity substruction method. It
amounts to splitting the integral into a singular part whicir can be handled

by classical methods and a nonsingular part to which approximate integration

formulae such as Gauss quadrature rule rnay be applied without anxiety.

The third method is called the changing argument method. This is one

of the most powerful techniques for numerical analysis. This method ca¡ be

used to exchange a difrcult singularity for a more cooperative one, or e\¡en

to remove the singularity completel;,.

Tire fourth method is called the diferentiation method relative to a

parameter. It involves imbedding the given integrals in a family of integrals

and then exposing some basic property of the famiiy by differentiation.

The fifth method is called the estimating remainder method. This

method calculates a principal part of the remainder. Then the correction

provided by this nerv term can improve the accuracy.

The iast one is called the ignoring singularity method. It uses a suffi-

ciently iarge number of sampling points which is estimated f¡om the conver-

Sence ¡ate of a se¡ies of tire quadrature values. This method avoids singular-
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ities in the integrands.

The singularity and integrability

The present task is to look for an appropriate v¡ay from the above methods,

and tiren to apply it to the calculation orEq.(4.27). For this purpose, it is

necessary to shorv, firstly, that Eq.(4.27) indeed does represent the integra-

tion of the function with the integrable singularity. It is generally accepted

that rvhen strain hardening occurs in the material and such behavio¡ is char-

acterized by a porver law, then tire dominant singularity governing the plastic

behavior at the tip of a line crack can be referred to as the HRR singularity,

i.e.

I GTÐa;¡(r,0) : (;)' f;¡(0,n) +...
t6n

e¿¡(r,0) : (;) 9;¡(0,n) +... (3.7)

I'i'ltere r and d are polar coordinates centered at the crack tip, n is the po\l¡er

hardening coefficient in the assumed uniaxial stress-strain law, and the J in-

tegral is a path independent value. Ideally, the J integral should incorporate

both the thermal gradients and themomechanical coupling effect. Having es-

tablished the stress and strain distributions, one can evaluate the dissipation,

D defined by Eq.(2.9).

Differentiatíng e¿¡ in Eq.(3.7) with respect to time t yields:

e¿¡(r,O): -!-¡fiti r#tgrrçL,n)+... (4.52), n*L
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The D may be evaluated as

(4.53)

whe¡e the truncated terms are the terms with rq(q ) 0), and, for small ¡adius

r (i.e. very close to the crack tip), only the first termis significant. Therefore,

tlre integrand of Eq.@.27), D, is a function u'hich behaves as an inverse first

power larv in the vicinity of the crack tip, and thus has a singular point at

the crack tip node.

Consequently, the dissipation matrix

D: 
Il.*rr(æ,y)d,æd.y

: I l"*, o(r,o)rd.rd.o

: / /*tf =i=iT- t,¡Q,n)s;¡(a,n) + ...)rd,rd.o
J Je 'n *1 T

I l"*'f,||*i f,¡(0,n)g;¡(o,n) + . . .)d,rd,o (4.54)

where the subscript e denotes tire elements around a crack tip. It can be

seen from the right sides of the above expression that the singularity of the

integrand has been removed. As a result, this shows that the integrability of

Eq-e.27) is satisfied. Thus one of the above mentioned method.s of increasing

ihe precisio' of singular integral can be adopted for computing Eq.(a.22).
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Improvement of Gausst quadrature in finite element code

The fifth and the sixth method are further discussed in the following sections,

because they are appropriate for the present finite element code.

Firstly, the estimating remainder method is considered. It is clear that

additional terms from the remainder must be added to the Gauss' quadrature

formula in order to increase precision. For Gauss' quadrature formulas, the

rema.inder E(/) is expressed in the following form given in [80]. Ilere the

E(/) is defined as the difference between the true integration and the Gauss'

quadrature values. It is given by

R0 : t lz-1nllztzø-ri¡tlilil ¡¡{z'-l)(t) - /
t lz-(n!)r'l' | -n(4n2 + sn

(r" + r)t f lr"r)-j be" - L)(r"

(zn-t)

-2)

(-t)l +

l+3)
[.f("+')(t) - ¡(zn+t)1-r)] + . . . (4.55)

vt'here f is the integrand. To apply the above formula it is necessary to find

the values of the derivative of the integrand at the ends of the segment [-1,

1]. In many cases this may be difficuit to do. However,in numerical analysis

the derivatives can be replaced by finite differences of the f, and thus the

additional terms can be calculated. As a result, accuracy can be improved

by the addition of the quantities to the Gauss' quadrature sum.

Next, consider ignoring the singularity method. From the foregoing

example of the singular integral, I : Iå ft, or,. may conclude that Gauss,

quadrature formulas can be adopted successfully when many sampling points
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are used. Indeed, Gauss' quadrature formula can estimate an integrai to any

degree of precision with a sufi.ciently large number of sampling points. To

decide on the number of sampling points to be adopted in the calculation,

the convergence rate derived from the previous quadrature values must be

taken into account. In principle, the convergence rate can be determined

by a relative difference between two quadrature values calculated from two

consecutive sampling points. If the desired convergence rate is not achieyed,

then another sampling point is tested and the calculation process is repeated.

In order to obtain the desired accuracy at a reasonable computer cost, it is
necessarJ¡ to decide on an appropriate convergence rate for the integral. Tþis

rate can be estimated from numerical experiments. Some numerical tests

lrave indicated that a con\¡ergence rate of 2 % may be an appropriate value.

The selection of a suitable convergerlce rate is, however, largel5, a matter of

experience.

Frorn the point of view of matching the finite element cod.e, the sec-

ond metirod seems to be easier than the fi.rst one. Therefore, the present

DCTEPSA code includes the second method as an improvement of numeri-

cal integration of Eq.(a.27).

4.7 Limits on Time Step

In Section 4.5 consideration is given to the optimal collocation methods of

time stepping schemes which are unconditionally stable with a second-order
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accuracy. Owing to the non-linear nature of the analysis, however, the time

step size is still restricted in the handling of plastic deformation, inertia terms

from the dynamic loading, and coupled terms from the stable crack extension

in the case involving a non-stationary c¡ack. It foliows that the selection of

an appropriate time step is of great importance. On one hand, the time step

must be smali enough to obtain accuracy in the solution; and on the other

hand, the time step must not be smaller than necessary, because this would

mearì that the solution is more costly than actually required. The aim in this

section is to discuss the problem of placing limits on selecting an appropriate

time step for direct integration.

4.7.L The limit of incremental algorithm for plastic
analysis

The incrernental deformation theory is adopted for the dynamic plastic anal-

ysis. Also, the adoption of the Hsu-Bertel's polynomial constitutive relation

for the material given in the following equation, (4.56), makes the incremel-

tal approach unique by the fact that the therrnoelastic-plastic constitutive

equations are valid for the entire range of the flow curve.

(4.56)

where Et - the slope for plastic range of the flow curve,dÈ: stless level

at the intersection (kink) of the elastic-plastic curve, n : stress po\ryer or

slrape parameter , E :3G, and fu : gg¡ ¡lz - Q-utø'] . (s.. Figure 4.2 and

a:E¿t[l+lål'1""'t L(1 -ErlÛ)a¡+EtEl )
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4'3.) The main advantage of this adoption is that no iterative procedure is

necessary as in the case of the initial stress approach. A disadvantage of the

incremental approach is the necessity of using very small load increments

in order to insure the convergence of the solution, whicir means tirat a very

small time step size is needed for a dynamic plastic analysis. Let Aú1 denote

the time step size limited by plastic analysis. Obviously, Aú1 depends on the

loading rate and on the material properties.

4.7.2 The limit of dynamic fracture analysis

For an ordinary elasto-dynamic analysis using a step-by-step integration

scheme, accuracy can best be achieved li'hen

l" : c-A^t2 (4.57)

i.e. the element size /u should roughl¡, equal the distance traveled at a

wavespeed, c-, b! a disturbance during the time step aú2. Therefore, aú2

denotes the second time step size limited by common d5r¡¿¡o¡c analysis.

In fracture mechanics this is a ratirer undesirabie condition because nore

elements are usually required around the c¡ack tip to approximate the sin-

gularity. For such a case ,1" can be sig'ificantly 1ess than c-L.t2. However,

Bazant, Glazik and Achenbach [8a] show that when

Ltz = O.tl:
Cu

it is possible to obtain accurate results even u,ith a grid containing var¡,-

ing element sizes. The conditions described in equations (4.57) and (4.bg)

(4.58)
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u'ill be inevitable to some extent in planar motion (Mode I) because there

are two significantly diferent wavespeeds, namely, the iongitudinal and the

shear rvavespeeds. Eq.(4.57) or Eq.(4.58) cannot satisf5, both of them at the

same time.The numerical experiments by Chan [8] have concluded that, for

a dynamic fracture analysis, the optimal time step should be

nr, < g.11"
Cc

(4.5e)

u'here the c. is the longitudinal wavespeed.

In brief, Aú1 reflects a requirement for a non-linear strain-stress law, ald

Aú3 reflects a requirement for the geornetry of tire finite element mesh. There-

fore, the time increment for this finite element analSrsi5 should be selected by

the minimum of the above two restrictions, i.e.

Lt : A,Ii,n(Aú1, A¿3) (4 60)

Accordingly, the present finite element code includes a function of automatic

time step control based on the above two considerations. It has been shown

from the present numerical analysis that aú1 = (0.1 - 0.05)A¿3 was used..

4.7.3 The limit of handling the coupred term from a
stable crack extension

In the preceding text (Section 8.1.4 and 3.3), mention was made of the phe-

nomenon of stable crack growth. Stabte grou,tli is said to occur if an in-

finitesimally small increase in load causes a correspondingly srnall increase
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in crack length. In plane stress situations the crack growth resistance, R,

witir crack extension was expressed as a rising curve or a simple equation

such as shown in Eq.(3.9). Besides that, it is generally accepted [BZ] ttrat

stable crack growth occurs in at least partly plane strain situations. Ilence,

the coupled thermofracture analysis needs the appropriate handling of stable

crack extension.

The coupled heat conduction equation, Eq.(8.85), involves the coupling

effect term due to stable crack extension, (G - 2lè6(r'- rl) ,(See Section

3.3). It is known la7,70l that in either of the plane stress and plane strain

cases there are the relationships known as resistance curves, between the

resistance of the material and the crack extension, and it is the necessary

condition for and during stable crack extension that the resistance equals

the driving force. The curves for some materials such as lou, carbon steel

have been published. (See Section 8.1.4.) Given this curve, at each step the

G a'd c of this term ca' be calculated by the followi'g procedure.

1. Set time step.

2. Solve for the displacement increments by using standard procedure.

3. Compute the strain increment in each element.

4. Compute the stress increment in each element according to the thermo-

elastoplastic constitutive equation.

5. Compute the total element strains and stresses.
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6. Compute the ft integral based on the strain, stress and the induced

temperature fields.

7. Check the criteria of stable crack extension by comparing the ft with

the critical value, ,/".

8. Compute the subcritical crack extension along the original crack axis,

ac, from the crack growth resistance curve of ft versus ac or R versus

Ac or equations such as Eq.(3.1t).

9. Check if a'clw < 0.005 [86] in orde¡ to assure the selection of an

adequate time step, 'where I4l is the tength along crack line. Otherwise

a smaller time step size is selected.

10. Compute the crack extension speed based on ac and the time step.

11. Compute the coupling term from Eq.(a.28), based on tire crack exten-

sion speed.

12. Readjust the nodal pattern immediately surrounding the crack tip by

moving singular elements [85] which specify the current location of the

crack tip due to the crack growth during this time interva"l.i

13. Repeat the above steps until the end criterio (".g. the total number of

time steps or the end time for the analysis) are met.

lThe moving singular element algorithm is not implemented thoroughly in the present
version of the code DCTEPSA, and remains to be done in the next stage of resea¡ch.
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4.8 Computer Code

A finite element computer code, CTEPSA [2,4], has been employed as the

basic code of this investigation for the numerical modeling of dynamic cou-

pled thermofracture analysis. The CTEPSA code was originaily developed

by Hsu and his associates to analyze quasi- static, coupled thermoelastic plas-

tic stress problems for two-dimensional and three-dimensional axisymmetric

structures. Then, equations (4.19) to (a.ag) have been incorporated into the

computer code. With these modifications, the CTEPSA code now becomes

the code DCTEPSA (Dynamic Coupled Thermo-Elastic-Plastic Stress Anal-

ysis)' In the following, a test problem is presented for the code.

4.9 Test Problern:
Problern

S t ernb erg- C harkravoty

A few analytical solutions of the initiai-boundary-value problem of linear d5,-

namic coupled thermoelasticity have been obtained. Sternberg and Chakra-

vortl' [48] determined one of the solutions for a half space subjected to a

ramp-type heating of the bounding plane, including both displacement and

stress solutions. In the present rvork, the Sternberg-Charkravoty's problem

is selected as the test problem of the finite element code, and its solution is

used to demonstrate the validity and accuracy of the code. By the way, other

test problems for the code which involve quasi-static coupled thermoelastic

analyses have been presented in references [2,3].



The probiem geometry is depicted in Figure a.a@). A half space ( , > 0)

is subjected to surface heating on its traction-free boundal! t, :0, by sudden

exposure to a linear temperature rise during a finite time interval, after u,hich

the temperatu¡e is held constant. The finite element mesh is shown in Figure

4 4(b).

As a special form of Eqs.(3.36) and (3.87), the coupled thermoelastic

differential equations for this problem can be taken to be

1t, + zu¡þ : o#+ c(BÀ * rrlffi
*#: PC.K -a(3r + ztùr.k

where À, ¡.1 are the isothermal Lamé constants,a is the linear coefficient of

thermal expansion, I is the reference temperature, k is the therma] colduc-

tivity, and c, is the specific heat at constant volume. The initial conditions

are taken to be

ôu,(*_,0)- : nu,\æ,0): - At

T(æ,0): f" (4.62)

The boundary condition for the normal stress is ø,,(0, ú) : 0 and that for

the temperature is

7(0,ú) : { ç' -T")tft"+7" if o < t lto''"/ 
t 7t if.t>t"

for ramp surface heating. In these equations, ú, is the boundary temperature

rise time, and fi is ihe final surface temperature. These boundary conditions

(4.61)
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are to be supplemented by regularity conditions at infinity, i.e.

lim T(æ,t\: To, ú > 0
c+æ\t/

_ti*9I$ú):s, ¿>oc+æ Oæ

,litå r"(r, ú) : 0, ¿ > 0

-ti- &fO: s, ú > oæ+oo Oæ

Introducing tire dimensionless variables

€ : aæfn

T : a2tfn

c: o,,l(þT")

0 - (T-7")lT"

u : a(À + 2¡1,)u"l@BT") (4.68)

where o: I+lpc,; o': (À+zp)lp; þ: a(3À+2p), equations (4.61) can be

written as:

02u ð2u A0
: __L_

A( ôr2' A€

ô20 ^ 02u ôe

Atr: uU¿*+Ar (4'64)

The thermomechanical coupling parameter 6 is defined by the relationship

6 : þ'T"lpc,(À + 2p). The initial conditions become "({,0) 
: #(€,0) :

á(f ,0) = 0, and the boundary conditions are ø(0, r) : 0, for all z, and

0(0,r) : {î,, ilo,"=:,= "
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where ro : o,2toln The governing equations (4.61) can be solved formally

through the use of the Laplace transform. The "exact" solutions can be found

in [48,49]. The results obtained through the use of the fi.nite eleme¡t code,

DCTEPSA, and the "exact" solutions of the Sternberg- Chakravorty problem

for ro:0.25 are shown in Figures 4.5 to 4.T.In these figures, the solid lines

represent the "exact" solution. These values of the coupling parameter were

used : á: 0 (corresponding to the uncoupled theory),6:0.86, and ó: 1.0.

The value of. ro - 0.25 was used in the study case. fn the numerical examples

treated here, a limited region of the half space from { : 0 to € : B0 rvas

divided into 40 eight-isoparametric elements (203 nodat points). The size of

the elements were 0.2 between { : 0 and € : 3, then increased uniforml5, i¡
size between€ - 3 and €:6, to themaximumsizeof 0.6. Between( - 6

and ( - 30, the mesh size u'as held constant at 0.6. The time increment

used varied from A.r :0.005 to Ar : 0.01. It is seen, from Figures 4.b to

4'7, that the frnite element soiutions compare favorably rvith exact solutions.

This indicates that the finite element code can yield accurate results in a

dynamic coupled anaiysis without crack growth.
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Chapter 5

EXPERIMEl\TAt
INVESTIGATIO}[

5. 1- Introduction

The purpose of this experimental investigation was to demonst¡ate the cou-

pling effect of a specimen u'ith a line crack by measuring its temperature

change when it was subjected to an impulsive force that opened the crack

surfaces' In addition, this investigation measured the temperature change

histories induced by this impulsive force iir order to assess the validity of the

finite element model mentioned in Chapter 4. An experiment was cond.ucted

to demonstrate this measurement. It was shown from the experimental study

that the coupling efect was significant if the temperature change induced by

loading is regarded as an indication. Further, the measured force þistory

applied to the specimen could be used as the input data to the finite element

model developed by this research work. Results of the finite element analysis

will be described in Cirapter 6.



5.2 Experirnental Arrangement

The requirements for the test facilities may be briefly stated as follows.

1. Because the dynamic coupling effect of a fractured solid with stable

crack is involved in the present study, a device which generates con-

trollable loading pulses and also a specimen with a highly stable crack

are required.

2. Because the dynamic coupling effect is an instantaneous phenomenon

of transformation from mechanical energy to heat, the temperature

changes induced by this effect take place over a short duration. Sensors

a'd data acquisition systems with fast response are required.

3. Because the induced temperature change and the deforrnation are both

of a small magnitude, liigli sensitivitJ' and accuracy for measuri¡g the

temperature and the deformation are thus required.

The establishment of the experimental set-up takes account of both the afore-

mentioned requirements and the limitation of the laboratory conditio¡s.

5.2.L General layout

A block diagram of the experimental arrangement is iilustrated in Figure 5.1.

It can be seen from this sketch that the system involved three parts. One part

was the Split Ilopkinson's Bar (SHB ) system. The second was the wedge-

loaded Double cantiiever Beam (DCB ) test specimen onto which the thin-
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foil thermocouples were spotwelded and the strain gages for measuring the

driving force were mounted.The third was the data sensing and acquisition

system as u'ell as the data processilg system. A photograph of the system is

given in Figure 5.2.

The experiment operated as follows.The SHB is used to generate a load-

ing puise which applies an impact force to the DCB specimen. During the

impact loading, the thin-foil thermocouple mounted on the specimen pro-

duces a signal of electromotive force. Meanwhile, the st¡ain gage fixed on

tire DCB specimen also generates a voltage output. These signals are am-

plified and then digitized and recorded by the data acquisition system. The

whoie measuring system is triggered b5' ¿ signal from the strain gages fixed

on the incident bar. Later, the measured data is processed by means of the

Hewlett-Packard (HP) computer in the data processing system. Finally, a

hard copl' of temperature or force versus time curves u,as provid.ed by ttre

computer.

5.2.2 The Split Hopkinson's Bar System

For the purpose of generating a dynamic loading , the existing SHB system

was employed to generate a controllable impulsive force on the DCB speci-

men. The SHB system is composed of three bars, a striker bar, an incident

bar and a transmitter bar. In the present experiment, onJy the striker ald

incident bars are used. AlÌ bars have a diameter of 38 mm (l-rlz inch) and

a¡e made of steei. The striker bar is accelerated by a pneumatic gun. The
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desired impact velocity can be reached by controlling the launching pressure

of the gun. As a result, a loading pulse of appropriate strength is initiated

b5' the impact of the striker bar against the incident bar.The stless wave

induced by the impact force travels through the incident bar. White travel-

ing through the strain gages mounted on the incident bar, the stress wave

induces a signal u'hich triggers the data acquisition system. Very shortly

thereafter, the stress wave applies an impulsive force through the wedge and

pins to tiie DCB specimen with a crack. ( See Figure b.1. )

6.2.3 DCB specimen

As mentioned in Chapter 4, the research effort was restricted to a fractured

solid ivith a stable crack under dynamic loading. The wedge-loaded, double

cantilever beam (DCB) test specimen is a laboratory test specimen used

effectively by manS'investigators [39]. Figure 5.8 shorvs tlie wedge-loaded

DCB specimen made of the lou' carbon steel , AISI 1018. Its configuration

offers a number of significant advantages over tests conducted using other

specimen types.

1. The cost of machining a DCB specimen is lorv because of its simple

geometry.

2. The beam-like character of the DCB specimen was effecti'elJ,exploited

to produce one-dimensional (spatial) analysis models [Bg]. These sim-

pler analysis models are always useful.
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The crack propagation is controllable by the degree of crack tip blunt-

ing. As the blunted initial crack tip is commonly used in this type of

experiment, the stress intensity factor at the onset of crack growth,Kç,

can be made greater than K¡". Consequentiy, even though it is under

the condition of an impact, either a stable or a propagating crack within

the DCB specimen is achievable.

Because the wedge for loading also induced a compressive load parallel

to tire direction of crack propagation and because the two free surfaces

of tire specimen are parallei to the crack plane, the need for side groor¡es

to promote a straight-line crack path was eliminated. Hence, the ar-

rangement of thermocouples and strain gages, and the measurement of

crack speed could be readily accomrnodated.

5. Because the crack run event proceeds under essentialiy fixed grip con-

ditions, the arrest of a fast moving crack within a DCB specimen n,as

possible. This is very useful feature in research on dvnamic fracture

with running cracks.

5.2.4 Thin-foil thermocouple

A thermal sensor with a rapid response u,as required by this experiment. In

order to meet the requirement, two kinds of sensor techniques for temper-

ature measurement are considered to be feasible. One technique is the use

of a special thermocouple with fast response, and the other is based on the

t
J.
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measurements of the emission of infrared radiation from the solid surface.

The latter technique is much more expensive than the former technique and

is not suitable for the present case. The ihermocouple technique is of low

cost, reliabie and is suitable for many engineering application. Besides, a

new kind of special thin-foil superfast thermocouple, which has been made

available in recent years, improves the response time even further. The re-

sponse time for this kind of thermocouple is in the range of less than 1 n¿s.

Consequently, this kind of thermocouple provide a means for measuring tlie

fast temperature change history. Indeed, man)¡ attempts have been made to

measure such temperature histories of sirock-loaded solids. (See, e.g., [gZ].)

In brief, the superfast thin-foil thermocouples supplied by RdF corporation

are considered as a suitable thermal sensor for rneasuring the temperature

response of an impacted cracked solid.

The thin-foil thermocoupie is 5 p.m thick,and is fabricated from a butt

u'elded foil which is rolled and then cut to shape b5, a piroto- etching process.

It has been shown that the conditions at the junction interface between the

two metais are critical to achieving superfast behavior of the thermocouple.

Accordingly, the junction lras carefully examined rvith the aid of a scanning

electron microscope by the manufacturer. The shape and the dimensions of

tire thin-foil thermocouples used in the present experiments are illustrated in

Fig. 5.6(a).

The thin-foil thermocouples are made of either chromel and alumel (type
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K) or copper and constantan (type T). The K-type thin-thermocouple was

adopted for this experiment because of its high sensitivity and stability of

emf (electromotive force) as well as its superb resistance to oxidation.

One technical problem to be overcome is rapid heat transfer or thermal

equilibration from the host material to the thermocouple.This requirement

of rapid equilibration puts constraints on the conditions of the interface be-

tween the thermocouple and tire host material. One common technique for

improving the condition is simply to drill a clearance hole and then cement

or bur¡' a therrnocouple into tire hole. But the hole considerably changes

the distribution of stress and temperature near the hole. In our case this

is a ver¡' severe disadvantage. Hence, a spot welding technique for mount-

ing the thermocouple was adopted in the present experiment. By following

this technique, two thin-foil thermocouples were spotrvelded onto tlie DCB

specimen surface. One was close to and the otirer was far from the crack tip

(See Fg. 5.1). The condition of ihe interface between the thermocouple and

the specimen was checked by measuring the contact electric resistance due to

t]re interface. Based on the author's previous experience, a contact electric

resistance less than 1 ohm of the interface was considered to be satisfactory.

5.2.5 Data acquisition system

A data acquisition svstem was used to feed the measured data to the com-

puter. The data acquisition system consisted of a l\{odel 204-A digital mem-

ory osciiloscope and a Model 2310 amplifier which can precisely controi the
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gain. The output signals generated by sensors such as thermocouples are

amplified first to increase the accuracy and resolution of the temperature

measurement [88]. Thereafter, the signals were sampled and converted into

a digital form acceptable to the computer. Because real time processing is

unnecessary in this experiment, the signals in the digitai form are stored in

the memory of the oscilloscope or on a minidisk before the next processing.

Some main performance indexes of the oscilloscope are listed as follows.

¡ Maximum digitizing rate, MHz : 20

r Resolution, percent : 0.4

¡ AccuracS', percent of full scale : 0.5

¡ Nlaximum sensitivity, full scale range, m1¡ : +100

¡ l\,Iaximum voltage range, volts : i40

r Sample time uncertainty, nsec : 3

¡ Maximum speed, time per point, psec: 0.05

r Trigger sensitivity, percent of futl scale range : 3

r Noise : 100 pv r.m.s. max. (0.1 to 100 IIz)

0J % full scale ( > 100 Hz)
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The amplifier used in this system can provide gains of 10, 100 and 1000, and

outputs of lou'noise level which is equal to sp. \¡ r.m.s. max. f¡om 0.b Hz to

50 kHz.

The Nyquist Theorem or Sampling Theorem states that ',the original

signal can be recovered without distortion if it is sampled at a rate of at

least twice its frequency." According to this theorem, this data acquisition

system can be successfully adapted to sample a signal with a, frequency as

high as 10 MHz. It thus meets the requirement for the present experimental

investigation.

5.2.6 Data processing system

The Hewlett-Packard System 458 computer is connected rvith the foregoing

digital oscilloscope in order to process the measured data during the experi-

ment. The special program developed by our group lras used to collect the

data from a minidisk which stored the measured data,and then to compute

the time curve from the measured data such as a curve of time versus tem-

perature. In addition, this program can plot this curve on the CRT disptay

with high resolution. Finally, this program can provide a hard copy output

of this cur\¡e by controlling tire internal printer of the computer.

During this experimental study, temperature and loadi¡g yersus time

curves were obtained as described in the previous paragraph.
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5.3 Calibration

The errors which arise in an experiment are usually categorized according

to: mistakes or blunders, systematic or fixed errors and accidental or ran-

dom errors' It is generally a recognized fact that of these errors, the system-

atic errors can be eliminated by caiibrating the instruments. Therefore, the

calibration of the instruments for temperature and force measurement were

carried out.

5.3. L calibration of the temperature measurement
circuit

The thin-foil thermocouple, the digital m.emory oscilloscope and the oper-

ational amplifier together form the temperature measuring circuit in the

present experimental study. The calibration of the circuit involved the de-

termination of tÌre response time and transfer function 1 of the respo¡se time

of the u'hole circuit and the relationship between the voltage output of the

oscilloscope and the temperature of the measuring junctio¡ of the thin-foil

thermocouple.

lThe 'transfer function' is the ratio of the Laplace trasform of the output of a time-
varying physical linear system (e.g. temperaüure measurement circuit) tã the Laplace
t¡ansform of its input.
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Determination of the response time and transfer function

It is a well known fact that a thermocouple of finite size cannot have an i1-

finitely fast response because of the thermal inertia of the measuring junction.

Thus, it is necessary to determine the response time and transfer function of

the thin-foil thermocouple or, at best, for the whole ternperature measure-

ment circuit. For this particular test the response time and transfer function

of the rvhole ci¡cuit was estimated.

By using the ruby laser device (the Holobeam Series g10 model) , the

response time and t¡ansfer function of the temperature measurement circuit

vi'ere determined. Figure 5.4 shou's the arrangement for determining the

response time and the transfer function. Such response time and the trans-

fer function were determined b1' follorving this procedure. Firstly, connect

the thermocouple from the DCB specimen to the temperature measurement

circuit and by using the aiming device insure that the laser beam hits the

thin-foil thermocouple mounting on ttre DCB specimen. The firilg of the

ruby laser began with the turning on of the switch for the cooling water ci¡-

culation pump for the laser head. Set a power level of the laser device at 0.85

kv which is equivaient an energv output of 30 Joules. Fi¡e the iaser beam

and record both the output of the temperature measurement circuit and the

puise signal which was used to trigger the laser head. These signals were

recorded by an oscilloscope. The recorded pulse for triggering marked the

starting point of the temperature rise and the output of the circuit had the
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time delay due to the thermal inertia of the thermocouple. A typical output

curve is shown in Figure 5.6(b). It was estimated from Figure 5.6 that the

response time i was approximately 0.6 ms. More importantly, this output

cur\¡e was used to calculate the transfer function of the circuit which can be

served to convert "observed" readings of temperature into t'true" readings of

temperature. (See Section 6.5.2 and Appendix B).

Calibration curve

The output recorded by the circuit for temperature measurement was a volt-

age signal. The task of the calibration was to establisli the relatio¡ship of

output voltage \¡ersus temperature. TIie principal layout for this calibration

is shou'n in Figure 5.7. When the DCB specimen shown in Figure 5.2 rvas

heated by an infrared light rvhich was used as a controllabie heat source, the

temperature readi*g in region A of the specimen u'as observed b5' using a

thermocouple digital thermometer (Model 11b KC by Omega Co.) with two

thermocouples of standard K-type. On tire condition that the temperature

reading of the digital thermometer was stable, the temperature of the mea-

suring junction of the thin- foil thermocouple was considered to be the same

as the reading of the digital thermomete¡. Meanwhile, the output voltage of

the circuit was recorded synchronously. As a result, the temperature reading

of the digital thermometer and the output voltage of the temperature mea-
lResponse time is defined as the time required for the sensor output to reach 63.3 per

cent of the total change following a step change in monitored temperature.
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surement circuit formed a point on the caiibration curve, and the calibration

curve was thus drawn up.The calibration curve is indicated in Figure 5.8.

5.3.2 calibration of the circuit for measuring impact
force

This calibration rvas car¡ied out by means of the same arrangement as the

actuai experiment. Tlie circuit for rneasuring impact consisted of the strain

gage bridge, the amplifier and tlie digital oscilloscope. Also, the strain gage

fixed on the surface of the DCB specimen formed an arm of the above bridge

of this circuit. \\¡hen loading rvas applied to the DCB specimen during either

the actual experiment or the calibration, the signals from the bridge were

amplified and recorded in the same way.Therefore,the calib¡ation proced.ure

for tire circuit is described as follor','s.

¡ co'nect a standard load cell direct rvith the DCB specimen.

¡ Graduaily applS' a static force on the system by using a hydraulic load-

ing device.

¡ Record both the output voltage of the circuit and the force reading of

the loading cell,everv 2b0 kgf (2.45 kN) unril b000 kgf (a9 kN).

Consequetitly, the calibration curve of the impact versus the output voltage

of the strain gage circuit was plotted. The calibration curve is displayed in

Figure 5.9.
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5.4 Experimental Procedure, Results and Er-
rors

5.4.L Experimental procedure

Alignment of the split Hopkinson bars and wedge

It is necessary to align the axis of the striker and incident bars of the SHB

system as well as the wedge by means of a horizon and a clearance gauge.

The alignment rvas carried out as follorvs:

1. Insure that the pneumatic gun is on a horizontal plane by using a

horizon garige. At tliis point the axis of the striker bar withil the gun

should be on the same horizontal plane because the striker ba¡ was

co-axial u'ith the axis of the gun.

2. Make the striker bar contact the incident bar, and then measure the

clearances between both the end surfaces on tlie top and the bottom

positions of the circumference.

3. Turn the incident bar about 180 degree and repeat the measurement

for clearances at the second step.

4. I\{ove tire axis of the incident bar by means of the adjusting scre.ws on

the bearings in order to decrease the differences between both groups

of the measured clearances at Step 2 and 3.
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5. Repeat the above steps until an acceptable diffe¡ence of ciearances (=

0'20m'rn) is obtained. The alignment of the striker and incident bars

can then be considered acceptable.

6. Align the wedge in a similar manner.

Grounding and shielding of conductors

It should be noted that the reliable grounding and shielding of wires are

very important measures for decreasing noise level. Therefore, only shielded

ground wires were selected,and the grounding was checked by using a digital

multimeter before the firing of the striker bar.

Test procedure

The sequence of the actual performance of the shock test on the DCB spec-

imen was: set the required time scale and the triggering level of the digital

oscilloscope; set the gain of the amplifier; turn on the computer system;

fire the striker bar; store the signals shown on the screen in a minidisk;

and finally get a hard copy of the output from the computer To check

the triggering level,the firing pressure of the pneumatic gun \¡¡as first set at

=' 6psig(4l.4kPa) and then an appropriate triggering level of the data ac-

quisition and record s¡'stem can be assessed. The firing pressure was then

adjusted before the desirable pressure \¡¡as switched on. After setting this

pressure, the vacuum pump was turned on and the st¡iker bar was ,,sucked,'
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back to a firing position. The actual firing pressure level was set at 15 psig

(103.4 kPa).

5.4.2 Typical results

Typical experimental records of the impact force and correspond.ing temper-

ature rise are shon'n separately in Figure 5.10 to 5.12. The cu¡ve shown

in Figure 5.10 represents the dynamic force history at the location of the

strain gage. The high frequency components reflects the pattern of stress

u'aves passing through that point. From these figures it can be seen that the

maximum impulsive force is approximately 43 kN;the duration of tÌre irnpact

is 2.67 ms; and the maximum temperature rise is rz.2"C. The error ranges

in the impact force measurement and the temperatuïe rneasurement rvere

estimated ai *1.5È1ú and i2.5"C, respectivel5,.

5.4.3 Discussion of errors

When making surface temperature measurements with tlie¡mocouples at-

tached externally, the physical situation permits at least two i¡teresting

statements. (a) The thermocouple junction may not be at the same tem-

perature as the solid at the location of the thermocouple junction. (b) The

temperature of the solid, at the location of the junction, may be affected

by the presence of the thermocouple. Therefore, it is necessary to discuss

and estimate the approximate analysis of and correction for the errors in the

experiment.
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The errors in the temperature m.easurements result from the presence of

the thermocouple for the reasons stated above. There are several other causes

for errors but the more significant ones during this temperature measurement

are:

¡ Thermal inertia of the thermocouple,

r heat loss from the extension lead wires of the thermocouple to the

surroundings,

imperfect contact between the thermocouple and the su¡face of the

specimen,

o thermal constriction in tÌre specimen to which the thermocouple is at-

taclled.

A number of methods and simplifying assumptions have been utiiized in

accounting for these errors. Singh and D¡,bbs [8g] described an analysis

of the error caused by conduction when there is an arbitrarv temperature

distribution in the solid along the sensor which is modeled as a cylindrical fin.

Keltner and Beck [90] developed tire mathematical models for the response

of surface mounted thermocouples on a thick rvall. These models account for

the significant causes of errors in both transient and steady-state responses

to changes in the wali temperature. In principle, using these models can help

to develop an appreciation for the e¡rors in the temperature measurements.
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However, the interactions between the thermocouple, the specimen and

the ambient air are so complex that it is, for all practical purposes, impossible

to calculate the exact error. At best, the error could be estimated to an order

of magnitude or a range by employing assumptions. The ASTM Specification

8230-77 suggests the standard limits of error for K-type thermocouples as

+2-2C ot Jc0.75% or the special tolerances of *1.1"C or I0.4To, whichever

is greater, for the temperature range of 0 to L250"C. As described previously

and in [88], the use of an operational amplifier in the data acquisition system

considerabl¡' improved the accuracy and the resolution of the present tem-

perature measurements u'ith the thermocouple, which thus resuited in the

maximum deviation of 0.3"C. In conclusion, the error range in the present

temperature measurements may be estimated from *1.4oC to +2.5"C.

!\rhen making the impact force measurements with the method men-

tioned in Section 5.3.2, the er¡ors in the measurements result from the fol-

lowing causes for errors. (a) Tlie output voltage of the measuremelt circuit

may contain a noise component. The accuracy of the data acquisitiol sys-

tem is estimated as 0.5 percent of full scale. (b) The force reading of the

loading ceIl during the calibration may include an error of approximate 0.5

percent of full scale. (c) It can be seen from the calibration curve (Figure

5.9) that there exists a stationary drift of the approximate 12 mv or B0 kgf.

Therefore, the resultant error range in the present force measurements may

be estimated from +0.3fr¡/ to *0.2fr1l.
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Chapter 6

NUMERICAT
ILUSTRATIOI\ OF'THE
EXPER,IMENTAI, CASE

6. L Introduction

Temperature rises in cracked plates due to the coupling effect have been

measured as described in Chapter 5. Tlie finite element computer code

DCTEPSA rvith the numerical. modeling technique presented in Chapter 4

will be employed in the analysis of the foregoing experimental case. This

chapter rvill discuss these analytical results. The main concern of this study

was the role of the instantaneous coupling effect on a fractured solid, the

DCB specimen, under dynamic loading. Therefore, the force history ap-

plied to the DCB specirnen rvhich has been measured in the experimentaJ

case was used as the input force data of the finite element analyses. Two

cases, rvith coupled and uncoupled considerations, were analyzed by using
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the DCTEPSA code. The influence of the coupling effect on the histories

of tire displacements, velocities, accelerations and temperatures at the three

positions along the crack extension line, and on the stress and strain distri-

bution ahead of the crack tip will be discussed b¡. comparing both the results

in the uncoupled and coupled considerations.

6.2 Description of the Problern

The dimensions of DCB specimen is defined in Figure b.3. The geometry

of the DCB specimen is a two-dimensional tirin piate, because the ratio of

the thickness over a characteristic dimension is less than 1/10. Also, the

DCB specimen was subjected to an applied impulsive force, L(t), which was

measured, and this load pulse may be considered to be uniform along the

thickness of the DCB specimen. Consequently, this specimen was assumed

to be in a plane stress condition.

Further, due to this plane stress condition, the plastic zone ahead of the

crack tip and, thus, the plastic dissipation can be considered to be unifo¡m

along the thickness of the DCB specimen. In other words, the distribution of

the dissipation or the coupling term in the coupled heat conduction equation,

Eq.(3.3a), is independent of the thickness coordinate. Furthermore, the heat

transfer boundary condition in this case may be considered to be in a plane

heat conduction condition. This is due to the facts that the out-plane heat

transfe¡ of the DCB specimen is mainly caused by free convection heat trans-
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fer at room temperature with a very small heat transfer coefficient, and that

the duration of the rvhole loading process is of the order of three milliseconds

and thus this out-surface heat loss is negligible. Therefore, the temperature

distribution rvithin the DCB specimen is a two-dimensional field.

At this point, one more question which must be answered is the choice

of either a static or a dynamic analysis (i.e., of including or neglecting

acceleration-dependent inertia forces in the analysis) to be used in the present

case. Generally speaking, such choices are usually made by engineering judg-

ment. However, it should be noted that the assumption of static analysis in

some cases may result in meaningless solutions. For example, in nonlinear

analyses the effect of neglecting the inertia forces may be so severe that a

meaningful solutiolL may be difficult or impossible to obtain [54, pp.4gg].

The nonlineat nature of the present case, therefore, was the prime reason for

selecting a dynamic anaiysis.

Moreover, this choice of dynamic analysis in the present case is sup-

ported by the significant difference betrveen the maximun stresses obtained

from both static and dynamic analyses. This difference can be estimated

by using an example of a simple one-dimensional model. In this model the

magnification factors which are defined as the ratio of the maximum dynamic

stress to that of the static one can be expressed as a function of the value

of the ratio,t¿f q, where the ú¿ is the time duration of the appiied impulsive

force and the ri is the fundamental or the fi¡st natural period (i.e. the recip-
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rocal of the first natural frequency) of the model [ga]. The ruiio t¿f rl in this

case can be calculated as follows. From Figure 6.2, t¿ is equai to 2.|Trns. To

calculate 11, w€ may assume that the DCB specimen can be simplified as a

model of a cantilever beam with constant cross section acted on by a lateral

force. Then the fundamental period of the model can be estimated from the

classical beam theory [93], i.e.

:0.22ms

(6 1)

As a result, the ratio t¿fr1is equal to 11.6. The magnification factors ver-

sus tlre ratios t¿f 11 have been depicted in Fig. 2-5 of reference [ga].Con-

sequentll',the magnification factor of 1.g was obtained f¡om that figure by

using t¿fr1 :11.6. This indicates that in the present case the maximum

stress gi'er b¡' a dy'amic analysis may be 1.g times that given bv a static

analysis. Therefore, a dynamic analysis is necessary for tÌre present case.

on ihe whole, the problem can be defined in terms of coupled dy¡amic

stress analysis of a two-dimensional fractured solid body.

6.3 Material Properties

The DCB specimen was made of lou' carbon steer, AISI 101g. The uniaxial

tension, stress-strain curve of this material at ¡oom temperature, which was

tested at the metallurgical laboratory in University of Manitoba, is shown in

Figure 6.3. This curve may be approximately described by the Hsu-Bertel's

0.05403 x 9a

2.06 x 106 x 100 x 9.80 x 11.39
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Tabie 6.1: Elastic-plastic Properties of AISI 1018 Steel

Property Symbol Data Unit
Young's modulus
Plastic tangent modulus
Yield strength
Curve shape parameter

E
Et
CY

n

206,000

5,220
234

10.0

MPa
MPa
MPa

polynornial constitutive relation, Eq. (4.56). The corresponding elastic- plas-

tic properties taken from this figure are given in Table 6.1. Also, the Pois-

son's ratio was read as 0.25 from a source book [92]. The thermal properties

were determined f¡om the same book [92]. Table 6.2 summarizes the ther-

rnal properties used in the analysis. Also, the temperature dependence of

the mechanical properties for this AISI 1018 steel [92] is listed in Table 6.3.

The relationship betrveen crack grorn'th resistance and crack extension for ]ow

carbon steel has been given in Section 3.1. (See Eq.(3.tt)).

TÌre plastic dissipation factor, .4, in Eq.(3.34), of AISI 1018 steel can

be estimated from Eq.(3.22) by substituting the material properties and {
which is equal t. ffi : 3.60. (See Appendix A). Therefore, L : ffiff :
(tt9._Ð_{s.oqxs¿zo : 0.116 = 0.I2.(206000-5220) -
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Table 6.2: Thermal Properties of AISI 10i8 Steel

Table 6.3: Temperature Dependence of Mechanical properties

Property Symbol Temperature ("C) Data Unit
Thermal conductivity

Specific heat

Tirermai diffusivity

Thermal expansion

k

cu

a

(a

20

100

200

20

100

200

2A

100

200

20

100

200

65.2

60.2

55.0
0.450
0.452
0.455

1.850 x 10-5
1.700 x 10-5
1.543 x 10-5
11.9 x 10-6
12.5 x 10-6
13.8 x 10-6

W/mxK
W/m*K
W/m+K
kJ/kgxK
kJ/kgxK
kJlkg"K
m,2 f sec
m2 f sec
m2 f sec
7l'c
7l"c
1l"c

Property Symbol Temp. ("C) Data Unit
Young's m.odulus

Plastic tangent modulus

Yield strength

E

Et

C,,

20

100

200

20

100

200

20

100

200

206,000
202,900
20r,200

5,220
5,200

5,140
234
208

156

MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
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6.4 Finite Elernent Model
6.4.L The mesh

A finite element model of the specimen is shown in Figure 6.1(a), with the

details of the refined mesh surrounding the crack tip given in Figure 6.1(b).

Due to symmetry in the geometry and boundary conditions with respect to

the crack plane, only one half of the plate needed be considered. A total of

124 eight-node isoparametric elements u'ere used together u'ith 476 nodes. In

order to minimize the possible discretization effects, singular elements were

adopted in the vicinity of the crack tip. (See Fig.6.t(b)).

6.4.2 The boundary and initial conditions

The force bounda¡r' condition is:

L*: f (t)si,ntl

L, : f (t)cosú

at the point p

at the point p (6.2)

where the f(t) is the given force history shown in Figure 6.2 and is applied

at the point p (its coordinates aïe æ : 0.0l6rn)g :0.020nt.) u,ith the

inclination ( d : r2.5") from the y axis. (See Figure 6.1(a)). The curve

f(t) shown in Figure 6.2 was tire time average of the measured. force history

depicted in Figure 5.10. Since the input force history is close to an impulse

wave with no l\,ave reflections, a time-averaging scheme of Figure 5.10 was

thus considered to be a reasonable approximation to the input driving force
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history for the finite element analysis.

In the following, the x- or y-components of the initial displacement,

velocity and acceleration vectors, and the initial temperature are denoted by

tro¡vor úo, üo, ü.o, üo,and To, respectively. The initial conditions in this

numerical case are;

uo:

vo:

ùo:

üo:

üo:

üo:

To: (6 3)

0

0

0

0

I o,o

\o
I ooo

\o
20"c

if at the point p
otherrvise

if at the point p
otherwise

rvlrere a,, and o,sp are the respective x- and y-components of the accelera-

tion vector at point p. These quantities can be solved from the equilibrium

equations, Eq.(a.32), at time ú: 0 and the given load applied at the point

p.

The thermal boundary condition is:

q'n:0 (6 4)

on the entire surface , in which n is the outnard normal vector. In fact, this

is an adiabatic boundary condition.
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Finally, the specimen materia.l was assumed to be in a virgin state.

6.4.3 fntegration time step

Mathematically speaking, the collocation method, one of the implicit direct

integration schemes, is unconditionally stable with increasing accuracy as the

integration time step decreases. On one hand, large integration time steps

tend to introduce numerical errors and, in the limit, the dynamic analysis

witir an infinitely large time step degenerates into a static analysis. But,

on the other hand, small integration time steps mean more computation

and higher truncation and round-off errors. Therefore,the time steps in real

computer analysis must not be too small. In brief, an appropriate time

step should be the size that is necessary to obtain acceptable results. The

follorving applicable conditions were taken account in the tirne-step selection.

1. Resolve the Input Force Curve - The integration time step (ITS) must

be smali enough to characterize the input force curve. The snaller

the ITS, the more closely the input cuïr¡e u'ill be follorved. If a¡ input

curve is to be reasonably followed, it is recommended that at least Z

integration points occur along the shortest "iength,, side [g1]. In the

present case, 0.3 ms resuLted from this guide. (see Figure 6.2)

2. Wave Propagation - In Section 4.7.2 the limit of ITS from this con-

sideration has been discussed in detail. The longitud.inal elastic wave

speed in the present case is given by ." : \M : Srìg.rmmf ms.
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The minimum eleme't size i' the mesh is 0.2 mm. From Eq. (4.5g),

the ITS should be approximately 0.4 p,s. As a result, a disturbance

traveling at the wavespeed during a time step of 0.4p,s does not extend

over the region of an element.

3. Ensure an accurate integration of the response in the fundamental pe-

riod - The definition of the fundamental period and the value or 0.22¡ns

in the present case have been described in detail in Section 6.2. Gener-

ally speaking, the ITS can be taken as one fifiieth or hundredth of the

period 1721, i.e. 2 - 4p.s.

4. Ensure an accurate loading increment for the plastic analysis. Ttre limit

of ITS from this consideration has been discussed in Section 4.7.I. In

the present program, the ITS can be automaticall¡, varied as needed by

the plastic or elastic analysis. Numerical experiments have indicated

that the plastic anal¡'sis irnposed the strictest restriction on the ITS at

the peak period of loading. The corresponding ITS decreased to 0.02¡L.s

due to yielding in the vicinity of the crack tip.

obviously, the minimum of the above requirements i.e. 0.02p.s for the ITS

should be used in the present finite element analysis. Hou,eveï, this very

small time step resulted in an integration of about 20,000 steps which need

a CPU time of approximatei5, !5 hours on the main frame computer at the

University of Manitoba. The Computer Center at the University discourages

L21



any job more than 10 minutes of CPU time. In order to overcome this

dificulty, the DCTEPSA code provided the function of a "computing pause

and restart" scheme. Accordingly, the entire analysis can be completed by

approximately 150 job submissions.

6.5 Numerical Results

This numerical study is presented to illustrate the significance of the ther-

momechanical coupling on a fractured solid subjected to dynamic loadilg.

In this stud¡' two approaches were used to anal5r2s this experimental case as

described above. One is the uncoupled approach b5, rvhich the coupling efect

was neglected, and the degree of freedom at a node in the finite element mesh

was taken as two, i.e. the x- and y-components of the displacement. The

other is the coupled approach b¡'ri'hich the coupiing effect was taken account

and a degree of freedom of three rnas assigned for each. node, i.e. the two

displacement components and the temperature.

Results obtained from both the approaches a¡e compared graphically as

follorvs.

6.5.1- Crack driving force

The crack driving force is generally ¡eferred to as the strain energy release

rate [39]. Fo¡ dynamic loading conditions, the crack driving force, G, is
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defined as

Lt/-LU-LTL-: -[rm
Ac+Q A,c

(6 5)

where the Ac is a crack extension, W and LT denote the external rvo¡k done

on the solid body and its elastic energy, per unit thickness, respectively, while

T denotes the kinetic energy in the solid body per unit thickness.

Exploiting the beam-like character of this DCB specimen, Kanninen and

Popelar [39] derived the following equation for establishing the crack driving

force:

G :28(u2 lh\---
\ / /ú-w (6 6)

r¡'here tu is the vertical displacement of the geometric centerline of the arm

of the DCB specimen during d¡'narnic loading, h is the height of this arm

(h : 50rnm in the present case) and c is the crack length. Also. Kanlinen

and Popelar stated that the predictions of this equation are in excellent

agreement with more exact approaches [Bg, pp.2a3]. Eq.(6.6) was used in

this study, because it is simple and accurate and, thus, decreased the CpU

time for the present anaiysis.

The numerical results of the c¡ack driving force in the two cases by using

the uncoupled and coupled approaches are shown in Figure 6.4. Based on

this Figure, the follou'ing points can be made.

¡ The maxima in the two cases all are less than the critical value,gOk J l*,
[66]. Therefore, the crack does not groril, i.e. the¡e \l¡as no crack exten-

sion during the dynamic loading.
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The difference of the maxima between the two cases is small,and tire

three main peaks of the crack driving force history obtained by using

the coupled approach are always slightly higher than that obtained by

using the uncoupled approach.

¡ The modes of the crack driving forces in the two cases are almost the

same during this rvhole process.

6.5.2 Temperature change

At the crack tip

The results of the temperature change at the crack tip are shou,n i¡ Figure

6.5(a). No temperature change can be obtained by using the uncoupled ap-

proach. This figure revealed a verJ¡ obvious effect of the thermomechanical

coupling. Also, the maximum temperature rise at the crack tip was approxi-

mately 16"C, i.e. the temperature at the crack tip rvas 16'C higher than the

bulk temperature of the plate.

Along the crack-line

The temperature distributiou along the crack-line ahead of the crack tip is

shown in Figure 6.5(b). It can be seen from this figure that the temperature

rise due to the coupling effect was a local phenomenon, as expected. physi-

cally, it suggested that the coupling effect mainly occurred. in the vicinity of

the crack tip.
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A comment on the temperature rise

The above temperature rise seems to be smali. However, w'hether this local

temperatuie increase is considered "small" or "large" depends on its effect

on the fracture behavior. Accordingly, for the moment,consider an example

in which a special situation may result in great significance for fracture be-

havior. Assume that the bulk temperature of a structure) e.g. the hull of an

icebreaker, made of 4517-F steel is exposed to a cold environment at -40"C
which just falls into the brittle-ductile transition temperature range of this

steel. Further,its dynamic critical stress-intensity factor is in the neighbor-

hood of 75 I,IN .rn-slz from the curve of dynamic Kt" versus temperature

established in [33] rvhich was obtained by shifting the actual slow-bend K¡"

curve to an appropriate higher temperature region. (See Figure 6.3g). Now,

if a temperature rise of r6"C at the crack tip due to the coupiing effect,

such as computed from the foregoing case, would be taken into account, a

significantly higher dynamic critical stress-intensity factor of 110 I,I N .rn-Blz

lvas read frorn the preceding curve of dynamic K¡. versus temperature shou,n

in Figure 6.39. Such a rise in the dynamic K¡. value would certainly affect

the fracture ch.aracteristics of that structure. This problem will be further

discussed in Section 6.6.
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Comparison with measurement

It is a well-known fact that a thermocouple of finite size cannot have an

infinitely fast response, because of the thermal inertia of tlie measuring junc-

tion. Thus the "observed" readings must be converted into ,,true', readings.

To the best of the author's knowledge, this conversion is a difrcult task, and

only a few references [96,102,103] deal rvith this issue. The authors of these

papers all adopted the Laplace transform technique. The transfer function of

a thermocouple circuit is defrned in a t¡ansformed variable as G7(s) : #E
It is shou'n analytically in [96] that

Gr("): -:!-s+cT
where ¿? and cT'are constants, the values of which depend on the particular

thermocoupie installation. This simplified transfer function for tlie thermo-

couple permits the calculation of tÌre actual surface temperatures from the

tlrermocoupie readings. Because, however, the values of ø7 and cr are differ-

ent for each thermocouple circuit, it is necessary to experimentally measure

these values in each case. This is done by the follorving procedure which re-

quires a special device and technique [96]. Firstly, an electric current with a

step change generated by a special device is applied through a test section on

which the thermocouple is instailed. Secondly, the resulting response of the

tested thermocouple is recorded. Thirdiy, a developed technique is used to

calculate the theoretical ramp change in temperature produced by the step

change in the current through the test section under an adiabatic condition.

(6 7)
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Fourthly, the theoretical ramp change in temperature and the measured the¡-

mocouple change in temperature are together depicted in the same figure.

Then from the figure, the graphical determination is performed to evaluate

the constants of the thermocouple. Finally, the obtained value of G7(s)

cau be used to calculate the true surface temperature from any measured.

thermocouple readings by an inversed Laplace transform, i.e. L-räE
In the present experimental conditions the above method for producing a

ramp temperature change has been modified. The theoretical ramp change in

temperature was approximatel¡' produced by an existing ruby laser device.

Appendix B gives the details of the calculation b5, u,hich the "obse¡r,ed."

temperature readings lrrere converted into "t¡ue" temperature history at the

measured point. Generallv,the measuring junction of a thermocouple is re-

garded as a point. The output of this thermocouple is considered to describe

the tenperature in a position of this measuring junction. The temperature

obtained from the output is probablJ¡ an aveïage over the area covered by

this measuring junction. The foil-thermocouple used in the present study has

a nreasuring junction of 0.37 x 0.5m.m2. (See Figure b.6(a)). This junction

was welded on the surface of DCB specimen,and it approimately covered

the nine nodal points in the finite element mesh. (See Figure 6.6). It is a

well known fact that tire Peitier emf (electromotive effect) produced by the

welded seam of thermocouple junction is the main contribution of thermo-

couple output emf. Therefore, temperatures at points in the vicinity of the
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welded seam of the junction would be close to the temperature measured

by the thermocouple. Based on this judgement, the results of finite element

analysis at the fou¡ nodal points (i.e. points a,b,c and d shown in Figure

6.6) were compared with the "true" temperature history measured by the

foil-thermocouple. Figure 6.6 shows this comparison. It can be seen from

Figure 6.6 that

r The patterns of these curves are similar: they show a decrease of tem-

perature in the initial stage, and then pass through points of inflection

to be followed by a rapid temperature rise until reaciring maxima, and

then gradually slope dorvnwards.

o These cur\¡es come for a duration up to 1.6 ms, and then diverge. The

maxima of these cur\¡es) however, are of the same order.

The analyticaL curves rise more steeply than the measured curve. There-

fore,it may impl¡' that the response of the foil-thermocoupie is still not

fast enough. But it may also imply that the co'version of mechan-

ical energ5. into heat needs time which was not taken account of by

the coupled thermomechanical analysis. This is a worthu,hile futu¡e

investigation.

6.5.3 Displacement, velocity and acceleration

Figures 6.7 to 6.15 depict the histories of the displacement, velocity and

acceieration at the crack tip, Node ff93 Q.aco apart from the crack tip,
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ï\¡here the co denotes the cracklength) and f185 (1.5c" apart from the crack

tip) for the uncoupled and coupled cases, separately. Basically, the small

differences in the displacements and velocities of the uncoupled and coupled

cases were revealed from these figures. However, there were major differences

in the accelerations at the crack tip between both cases. From Figure 6.g it

can be seen that the difference of acceleration between the uncoupled and

coupled cases after 1.5 ms is very large. The results by using the coupled

approach represent considerable dissipation of energy, and the results by

using the uncoupled approach represent no dissipation of energy. This fact is

reasonable, because the coupling terms are equivalent to energy dissipatioü

terms and play a damping role, and just at the crack tip the coupling terms

reached a maxirnum.

6.5.4 Effective strains and stresses

Tirere u'ere the four singula¡ elements around the crack tip. (See Figure

6.1(b)). The DCTEPSA code printed out the strains and stresses at all the

sampling points in all elements. The coordinates at some Gauss' quadrature

sampling points shown in Figures 6.16 to 6.35 are listed in Table 6.4. Note

that the coordinates at the crack tip are ø : 90.00ffitu,U: 0.00. Figures

6'16 to 6.31 illustrate the histories of the effective stresses and st¡ains at the

sampling points No. 3 and 4 in the four singular elements, separately. It can

be seen from these figures that, after 1.5 ms, the efective strains and stresses

iü the coupled case are usually greater than that in the uncoupled case.
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Table 6.4: The coordinates at the eigirt sampling points

Element No. Sampling Point No. x (mm) v (mm)
I
1

2

2
Ðù
Ð
t)

4

4

13

13

3

4
Ð
tJ

4
Ð

4
r)
d

4
t
Ð

4

90.04

90.04
90.01

90.03
89.89
89.99

89.96
89.96
93.42

93.42

0.03

0.008
0.04
0.04
0.04
0.04

0.008
0.03
2.70
0.72

Compared with the temperature history at the crack tip shown in Figure

6.5, both of the variations coordinated in time. Obviously, the temperature

rises in the vicinity of the c¡ack tip due to the coupling effect exerted a

marked influence on the strains and stresses. Also, the above figures shovr

tlrat this infl.uence in the elements No. 1 and 2 ahead of the crack tip is rather

larger than ihat in the elements No. 3 and 4 on the crack surface, as expected.

Furthermore, the output data in the neighboring elements revealed that these

differences betrveen the uncoupled and coupled cases declined considerably

beyond the scope of a distance 5 millirneter from the crack tip, as showl in

Figures 6'32 to 6.35. In othe¡ rvords, the coupling effect is definitely a local

phenomenon.
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6.6 Discussion and Summary

The motivation for this thesis is to illustrate that the coupling effect might be

strong enough to influence the fracture characteristics of structures, partic-

ularly rvhen they are subjected to high loading rates. In conventional cases,

the crack toughness of structural materials, particularly steels, increases with

increasing bulk temperature and decreasing loading rate [83]. These two

general types of behavior are shorvn schematically in Figures 6.36 and 6.82.

Figure 6.36 shows tltat K¡" increases rvith increasing bulk temperature of the

specimen. Figure 6.37 shorvs that, at a constant bulk temperature, higher

Ioading rates generally result in lower values of the fracture toughness of

materials. AIso, the trend revealed by Figure 6.37 is that fracture tough-

ness shou's a monotonic reduction with loading rate. An expianation for this

phenomenon lies rvith the elevation of flow stress cur\¡e witir strain rate.

Ho'ever, Klepaczko (1982) [g5] observed a minimum i¡ the fracture

toughness spectrum of carbon steel (0.4b % carbon) v,hen emplo¡,ing a load-

ing ra.te scale of parameter K¡, which is frequentiy used to characterize how

fast the crack tip region is loaded. (See Figure 6.3g). It is, therefore, log-

ical to consider the thermofracture coupling effect as a possible factor in

explaining the above experimental results presented by Klepaczko, because

the coupled effect invoh'es both iemperature and loading rate effects.

As desc¡ibed in the preceding section, the measured temperature rise

of.76'C at the tip of a stationary crack under the conditions of dynamic
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ioading in the present study may be considered to have a significant influence

on the fracture toughness of the material. Therefore, the coupiing effec+,

would become a very important factor in the case of evaluating the fracture

toughness spectrum of material such as sho'i,n in Figure 6.8g.

For the moment, let us assume, firstly, that a local heating at the crack

tip to a temperature 7¿ will result in a behavior similar to that of a specimen

at a uniform bulk temperature T¿. On the one hand, it is generally obseryed

that increasing the temperature of a notched specimen increases the fracture

toughness for a given loading rate. (See Seciion 6.5). on the other hand,

as the loading rate is increased, the tougirness usually d.ecreases for a givel

temperature.

From the coupled heat conduction equation (8.g4), it shows that:

¡ Tlre plastic dissipation term, (1 - Â)o;¡e!¡, increases with increasing

strain rate.

¡ The strain rate increases u'ith increasing crack speed., c, so that the

other coupling term, (G - 2lè6(" - ,o), aLso increases.

¡ The rise in temperature of the crack tip thus becomes more significant

when the above two coupling terms increase because these two terms

are equivalent to internal heat sources involved in the heat conduction

equation.

r The fracture toughness, therefore, increases with increasing tempera-
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ture of the crack tip.

Accordingly, the curve published bv Klepaczko [gb] can be explained

from the coupled theory in the following way. In a region of lower loading

rate. the increment of toughness due to the temperature rise may be less

than the decrement due to the loading rate, and thus the curve would firstly

slope dorvnwa¡d as shown in Figure 6.88. When both effects become equal

in a certain region at certain instants, the curve reached the minimum point

of the curve. Further increasing the loading rate would result in an upu,ard

sloping segment of the curve. In brief, this shapes the curve form measured

bv Klepaczko. Moreover, it is expected that Klepaczko's curve finally slopes

downrvard, follorving the above upward sloping segment, because the temper-

ature rise at the tip of the crack in the specimen is close to or has attained

the melting point of tire material, as presented in the exarnple of titanium

alloy experiment described in Chapter B.

In conclusion, if one considers the influence of loading rate and the tem-

perature rise due to the coupling effect at the crack tip,wirich increases witþ

Ioading rate, there will be a pair of opposing effects acting simultaneously

on the fracture toughness. It would be possible to explain a pattern in the

measured cur\¡e of fracture toughness versus loading rate as demonstrated

by Klepaczko [95]. This pattern was dificult to explain by conventional

analyses.
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Chapter 7

CONCTUSIOI\{S AIND
R,ECOMME]\IDATIONS

7.L Surnmary and Conclusions

An experimental procedure and corresponding uncoupled and coupled finite

element analyses have been presented. The experimental investigation in-

cludes the follorving major activities: the preparation of DCB specimens, the

alignment of the experimental set-up, the calibrations of circuits for tem-

perature and force measurements, the determination of response time and

transfer function of tlie circuit for temperature measurements, the experi-

mental observation of transient changes in temperature and impulsive forces

and the conversion of the observed temperature readings into "tlue', read.-

ings. All these activities \ryere necessar¡r f6, the measurement of the coupling

effect on a fractured specimen subjected to impulsive force. Also, this mea-

surement of impulsive force provided the input data for the subsequent un-

coupled and coupled finite element analyses which were carried out by using
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the DCTEPSA program. This code contains the follorving major elements:

algorithms to account for three degrees of freedom at nodes; the singular

elements for crack tip deformation fields; the constitutive equation for ther-

mal elastic-plastic deformation of solids under dynamic loading; the coupled

heat conduction; the optimal collocation methods for performing time inte-

gration; the temperature dependent properties of materials; the pause and.

restart function of the analysis; the automatic control of time step size a¡d,

finally, the mixed coupled-uncoupied algorithm fo¡ saving computational ef-

fort u'hich can be performed by assigning the three degrees of freedom to the

'odes 
in the regions of desired coupled analysis (e.g. i'the crack zone), and

assigning the two degrees of freedom (i.e. keeping x- and Jr_component of

displacement only) to those nodes in the regions of uncoupled alalysi, (e.g.

away from the crack zone). This program leads to the following features.

¡ The program has tlie capacities of performing 2-D ( or 3-D axisym-

metric ) quasi-static o¡ d¡'namic coupled thermoelastic-plastic stress

analyses for fractured solids.

r The program includes a transient heat conduction analysis.

r The program can conduct anaiyses of static or dynamic uncoupled

thermoelastic-plastic stress for fractured solids.

r The program can perform a mixed coupled-uncoupled aigorithm ,re-

sulting in high computational efficiency.
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¡ The program can thus predict the coupling effect on 2-D fractured

soiids with a stable crack under dynamic loading conditions.

Significant observations weïe rnade on the temperature rise and damp-

ing of acceleration change in the vicinit¡' of crack tip through experimental

and analytical case studies performed on a DCB specimen subjected to an

impulsive force. A number of these observations have never been reported

before in the published literature. The role of the coupling effect on fractured

solid was also investigated. The major conclusions rvhich can be drawn from

the present research are as follou's.

1. The coupling effect on a fractured solid subjected to an impulsive force

is considerable in comparison to the same effect on unfractured solids.

2' The inherent coupling effect increases the temperature in the vicinit¡.

of a crack tip. This rise in temperature is significant enough to influ-

ence the fracture toughness, especiall¡ rvhen the temperature of the

fractured solid is close to the brittle-ductile transition temperature.

3. Negiecting the coupling efect in some dynamic fracture analyses may

lead to under estimations of the crack driving force, the effective stresses

and strains in the vicinity of the crack tip, and over-estimations of the

velocity and acceleration fields in the vicinitS, of the crack tip.

4. There were no significant differences betrveen entire stress and strain

fields obtained from the coupled and uncoupled analyses u'der the
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loading and geometric conditions in the present studies.

5. Tlie coupling, in combination u'ith the loading rate effect on the frac-

ture tougirness of material, can be used to explain the specific pattern

of fracture toughness versus loading rate rneasured by Klepaczko [g5].

6. The dynamic coupled, thermofracture analysis by the finite element

code is a feasible approach.

Major contributions were made in this thesis research as can be summarized

as follows:

r Tlie extension of thermomechanical coupling theorl' for fractured solids.

¡ The derivation of a neu' coupled heat conduction equation to account

for the Thermofracture Coupling Effect (TFCE).

¡ The development of DCTEPSA computer code which has the follorving

unique features

1. It is capable of performing coupled dynamic thermoelastoplastic

analysis of fractured solid.

2. All nodes possess three degrees of freedom (trvo displacement com-

ponents and temperature).

3. A mixed uncoupled-coupled algorithm was developed.
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The proposition of an experimental arrangement for measuring tern-

perature rises i' fractured specimens subjected to impact load.

¡ The development of an efective technique for determining the transfer

function of a foil thermocouple by using a ruby laser beam device.

7.2 Recommendations

The present study lias extended tlie coupled thermomechanical approach to

the analysis of fractured solids subjected to impulsive forces.Results obtained

from this study have demonst¡ated that there is a stronger coupling effect o1

a fractured solid tiran that on an unfractured solid. This approach provides a

good potential for further research. in the area of dynamic f¡acture. With this

experience in hand, tire following recommendations rryith regard to further

r¡'ork in this area are in o¡der.

¡ More experimental r'erifications are ltecessarJr for various loading rates

and stable crack extensions and, if possible, for unstable crack propa-

gation.

r The conversion techniques of "observed" temperature readings into the

correspondittg "ttue" temperature readings need furthermore improv-

ing,especially for the cases involving rapid temperature variations in-

duced by very high loading rates.
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The present coupled approach should be used to check the analyti-

cal results of dynamic fracture or thermofracture problems which were

customarilv solved by the uncoupled approach. present case studies

have already indicated the inadequacy of this traditional approach for

certain problems.

Although it will be a quite complicated and expensive proposition, it
is desirable to implement a moving mesh algorithm given in [28] into

the present finite element code, rvhicir u'ould permit more precise com-

putation and general application for the problems involving unstable

crack propagation.

The energ¡' dissipation mechanism and its time requirement in the frac-

ture process zone is necessarl' to develop a more precise rnodel. Investi-

gations from a microscopic point of view of tlie dissipation mechanism

rvill be much needed.
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Appendix A

The Estimation of Plastic
D issipation Pararneter

The coupled heat conduction equation 3.34 in Chapter 3 contains a plastic

dissipation factor or parameter, Â, which was defined as tlie ratio of the

rates of energy stored in the microstructure of the material resulting from the

conversiotL of the kinetic energy to the internai energy during an ad.iabatic

plastic deformatioil. process. (See Seciion 3.8). It r¡¡ill be shown in this

Appendix that this plastic dissipation factor for metals can be estimated

according to the following formula:

(A 1)

where E is the Young's modulus and El is the slope of the plastic range of

the stress-strain curve of the metal, and { is a constant to be evaluated by

the dislocation theory.

The de¡ivation of the plastic dissipation factor was based on the stored

energy which can be firstly estimated by using some ¡esults of material sci-
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ence. Literature on the topic of the stored energy of metals, either by exper-

imental or theoretical works, are abundant. Bever, Holt and Titchener [g8]

summarized the progress of the research vi'ork on this topic up to 1g78. They

indicated [98] that the basic anaiyticai methods for estimating the stored en-

ergy I ¡as to apply the dislocation theory to compute the elastic strain energy

of the dislocations. There is, indeed, an abundance of experimental data

about the stored energy for various metals in the published literature. The

following formulae for the stored energy is gi'en in reference [gg]:

tr Ê-o2us tt 4G
. ln(Rlr")
a1 :5r 4rQ - u)

(A 2)

(A.3)

where G is the shear modulus, v is Poisson's ratio, R is the dislocation cell

radius and ro is the radius of the stress fieid of the dislocation core whicir is

taken as I with b being the Burgers' r,ector.

Seeger and Kronmuler [99] calculated the sto¡ed energy from the model

of the dislocation arrangement assumed in Seeger's theory of work harden-

ing.The formulae proposed by them have the forms:

,rr-E" : €rnC

€, : 2tr(2 - u)(0.776 +

(A 4)

(A.5)*^*-oi15e))
where n is the 

'umber of dislocations in each dislocation group and. -R" is

half the distance between dislocation groups of opposite sign.
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Bailey [53] computed the stored energy from the C-B-H ( Cottrel, Basinki

and Hirsch ) theor¡' of dislocation. The formuiae derived by him are:

,o'
ç3 4G

!o'(1, *r + rn(4))

c2: €nnc

:  ptrP

E.=7.7t-4G

(A 6)

(A 7)

where R is the radius of the volume over which the stress field of a dislocation

extends.

Kuhlmann - \A¡ilsdorf [100] calculated the stored energy from their model

of the dislocatiol. Tlie formulae derived by them are

E"

t^

(A 8)

(A e)

average free length of a dislo-

(A 1o)

u'here p is the dislocation densitS' and / is the

cation.

Besides, some phenomenological formulae for the stored €rerg5, 1ys¡"

obtained by experimental observations. For example, Bailey [53] stated that:

for OFIIC (oxygeri-free high conductance) copper.

In brief, the stored energy ca' be expressed as E" : t# in which {
can be estimated from the foregoing formulae. It is iveli known that one

common way of describing the effect of the general stress and strain state
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of a material under a combined loading situation is by way of the ',effective

stress", ø defined as follows:

o : (|c¿¡ro;¡r)I/, (A.11)

Therefore, the formula can be rewritten as the following generai form:

nr: fto'
and

Because *"he plastic rvork rate is

u)' : a€,'

then Â can be calculated by its definition, i.e.

n,. Us

7þn
/a: *Ht

¿Lr

s'here Ht - dof den, and

proved in [2] that

is called the equivalent plastic modulus.

where El is the slope of the stress-strain curve

Equation (4.14) into (Á..13), one gers:

(E - Er)
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¡ca

(A.12)

(A.13)

(A.14)

(A.15)

It lt'as

1

ff ¡ - -------
Et-E

(A.i6)

of a metal. Substituting

(A.17)



wlrich is Equation 3.22 in Chapter 3. For an ideal plastic metallic material,all

plastic work should be converted into heat, as Bridgeman [101] has pointed

out, i.e. the piastic dissipation factor ¡\ : 0. This is in agreement with

the result of the calculation from the above formula with El : 0 for this

material. For metals with a linear strain hardening behavior, the factor Â

becomes a constant and may be considered as a material property, with El

being constant in this case. \4¡ithin small strain regions, most polycrystalline

f.c'c. (face-centered cubic) metals can be treated as this kind of material.
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Appendix B

Transient Surface Temperature
Measurements

A well knorvn fact is that a thermocouple of finite size cannot have an in-

finitely fast response because of the thermal inertia of the measuring junction.

Thus the "observed" readings should be converted into "truet' readings. The

present study adopted the method involving the Laplace transform technique

[96]. Therefore, the main task of the method is to experimentally determine

the two unknou'n constants, @7 and c7, of. a simplified transfer function of the

foil-thermocouple rvhich was welded on the DCB specimen.This was possible

because this simplified transfer function can be expressed as:

Gr(") : o'
s*cr

where s is the parameter of the Lapiace transform.

This rryas done by the following procedure.

(1) The procedure for evaluating the transfer function required a theo-

retical ranlp temperature change.hi [96] this ramp change in temperature is

(B 1)

(See Section 6.5 and [96]).
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Table 8.1: The calibration of the ruby laser device

charged voltage
(volt)

output energy
(Joule)

700

750

800

850

900

950
ooo

t).rJ

10.4

20.0

30.0
40.0

50.5

61.0

produced by imposing a step change in an electric current passilg through a

test section under adiabatic conditions. In the present experiment ,however,a

ramp temperature change u'as approximately produced by using the existing

rubl' laser device, the Holobeam Series 810 Ruby Laser System. Rub¡, is

formed rn'hen a small amount or Cr2Os is dissolved in sapphire, á1203. Thus

a Laser beam of the wavelength 694.3 nm can be enitted b5' this device at

room temperature. AIso, this ruby device is a pulsed energy-ernitting source

with typical output energ)¡ levels of from less than 1 Joule to over 100 Joules.

The calibration of output energy was carried out by the Thermomechanics

Laboratory at tlie University of À4anitoba. The related data is listed in Table

8.1. In the present experiment t,he charged voltage was set for g50 r, and no

lens was used on the optical path. It r¡,as found that the laser beam emitted

by the ruby device had a circular section of radius 12 mm and a duration

of 3 ms. As seen from Eq.(8.2), an approximate ramp temperature change
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occured rn'hen the beam hit the test region of the foregoing DCB specimen

v'ith the foil- thermocouple rvhich was at the center of this test region. (See

Figure 5.4).

(2) The resulting response of the tested thermocouple circuit was trig-

gered b3'the fire trigger output of the ruby laser device and u'as recorded.

(3) An analyticai expression for the temperature in an infinite sheet

subjected to an incident circular laser beam with the a Gaussian intensity

distributiotl was used to calculate the theoretical temperature change in this

test region under adiabatic conditions. The reference [tOZ] has given this

expression in this case as follows.

r-t _ +\ elot , eloL,Tz2 - L2\)/ PcL' K'6Lz
2å(-1)' , rt2r2nt
:Ð-|feæP(-'ï)"o'tffn (B 2)

r¡'here e is the emissivity, 1" is the incident intensity of laser beam and 1, -
# i" lvhich A is the radius of the bearn and P is the output energ),, L is the

thickness of the sheet, p is the density, C is the specific heat, n is the thermal

diffusivity, K is the thermal conductivity, and z is tire thick coordinate. It
can be seen from Eq.(8.2) that an approximate ramp change in temperature

can be produced on the surface of specimen, because the first term is the

main term and it is a linear function of time, t.

(a) The theoretical ramp change in temperatu¡e and the measured ther-

mocoupie change in temperature are depicted together in Figure 8.1. From
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this figure the graphical deterrnination is performed to evaluate the t1i,o trans-

fe¡ function constants of Eq. (B 1). This depicted theo¡etical temperature

was based on the follou'ing data in the present case: z : L : 0.01m (the

thickness of the specimen), K : 60.5 u:frn"C and rc : 18.5 x 10-o ^rl,
(L,K,rc have been given in Section 6.3), and Io:2.4 x 103 uf cm2 (cal-

culated from P : 30.0 Joules and ,4 : L2rnrn) and e : 0.61 ( determined

based on the wavelength 694.5 nm of the laser beam and the material of the

specimen [102]). The twoconstants are: cLT:2.617lrns and cr:4.J5Llrns.

The ayf c7 ratio is approximatel¡'0.60. It rvas known from reference [g6] that

tlre ratios commonly rvere of 0.47 to 0.65. Therefore, the transfer function is

G7(s) : AT, 2.61

s*cr s+4.35 (B 3)

Finali5', the Ga(s), Eq.(8.3), can be used to calculate the "true" su¡face

temperature, T¡, from an¡' measured thermocouple readi'gs from

m .-rTe(t)rt: L. 
Gr(") (8 4)

where f -1 denotes the inverse Laplace transfer operator. When solving for

T¿, the measured curve, Ti¡ , ca:n be approximated by an appropriate mathe-

matical expression u'hich can be obtained by using a curve-fitting technique

such as polynomial regression with least square fit. In the present study the

measured temperature cur\¡e shown in Figure 5.9 is described by the following

equation:

rnu) : -4.4237¿ + 4.0808¿2 - 0.9r6t¿3 + 0.0865t4 - 0.003024t5 (B 5)
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where t is time in miilisecond and t 1 l}ms. The Graphical representation

of this function and the measured curve are shown in Figure B.2. As a result,

Tn(t): -4.4237I" + 8.16i6/s3 -5.49661sn +Z.orao¡s5 _0.3629/s6 (n.o)

and

rþ) 
: 

t-r'r#? 
4.206s*.r- 11.8e44ú z - B.2sr.tn

+3.2916¿5 - 0.5995ú6 (B 7)

This is the "true" temperature change at the measured. junction of the ther-

mocouple which was depicted in Figure 6.6.
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Figure 3.1 Path of integration for J-integral.
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Figure 5.4 Principle layout for determining transfer function of the circuit

of temperature measurement.
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