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ABSTRACT

This thesis presents a new analytical model for the coupled thermome-
chanical analysis of fractured solids subjected to static or dynamic loading
conditions. This model included the thermoelastic, the thermoplastic and
thermofracture coupling effects which were expressed as three separate terms
of the coupled heat conduction equation.

A finite element program for this model was developed. It included these
four characteristics: (1) All nodes possess three degrees of freedom (the two
displacement components and one temperature). (2) Singular elements are
used. (3) Time integration was performed by using optimal collocation meth-
ods. (4) The mixed coupled-uncoupled algorithm was offered.

These coupling effects were demonstrated by measuring and calculating
the temperature changes in the vicinity of crack tip of a double cantilever
beam specimen subjected to an impulsive force.

The numerical and experimental studies indicated that the coupling effect
on a fractured solid subjected to an impulsive force is indeed significant in

comparison to the same effect on unfractured solids.
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Chapter 1
INTRODUCTION

1.1 Background

The mechanical field and thermal field within a solid body in a true sense
are inseparable. The two field analyses therefore must be solved simultane-
ously. Although the concept of this coupling has been realized by researchers
for many years, the relative theory is progressing rather slowly, and is not
in paralle] with the development of other branches of solid mechanics such
as plasticity and fracture mechanics. The topic of coupled thermoelasticity
1s relatively well documented. However, little consistency appears to exist
among the various published theoretical formulations of the subject of cou-
pled thermoplasticity. Effective solution methods for coupled thermofracture
problems are essentially lacking. This situation is due to the facts that: (a)
this coupling effect makes the theoretical treatment of the problem extremely
complicated; (b) such a coupling effect did not appear to be significant and

important in the past when engineers seldom extend their design effort to



involve plasticity and dynamic fracture.

The development of modern computers and numerical methods such as
the finite element method have resulted in problem-solving techniques which
have reached a high level of accuracy and capability. Consequently, solutions
of many stress analysis problems which involve more accurate modeling of
the physical problems are now feasible.

Equally important, the significant shift in design requirements in recent
years for high performance and efficient components in aerospace satellites
and rockets, conventional power plants and engines as well as nuclear power
stations has made thorough component design analysis a necessity. For most
structures, in fact, the high performance requirement normally requires se-
vere thermal and mechanical loads to be carried by lighter or nontraditional
materials with high strength-to-weight ratios. Under these conditions, the
structural integrity of the machine components has become a prime concern
of designers, contractors and the general public, because the failure of a key
component in modern industrial installations such as nuclear power stations
may lead to disastrous consequences. The structural integrity is likely to be
ensured by a sophisticated design which is based on temperature and stress
analysis of the structure when it is in a severe service environment. Hence,
the development of a more accurate method of stress analysis has received
much attention in research activities.

In the field of thermomechanical stress analysis, a number of computer



codes based on the finite element method are now available. These codes
have the capability of handling dynamic or quasi-static conditions. However,
most of the codes require knowledge of the temperature distribution as an
input of the stress analysis, i.e., they use the uncoupled analysis approach.

The coupled analysis approach can improve the mechanical and thermal
analyses in some cases, such as the damping of a stress wave propagation, or
dynamic fracture problems. The current interest in the study of thermome-
chanical coupling effect on fractured solid derives from this concept.

Before proceeding with further discussion, here is a brief review of the
concept of the thermomechanical coupling effect and the relative coupled

approach to thermomechanical stress analysis.

1.1.1 Thermomechanical coupling effect

The thermomechanical coupling effect is generally used to express an interac-
tion between thermal and mechanical deformation fields in a solid. Not only
does the thermal field in a solid affect the mechanical fields such as stress
and strain of the solid, but also the mechanical deformation of a solid gen-
erates heat and hence heat conduction within the solid. In other words, the
induced temperature change can cause the mechanical deformation, and vice
versa. Therefore, these two field analyses should be solved simultaneously in
a coupled manner.

If the mechanical deformation is in the elastic region, then the phe-

nomenon is called the thermoelastic coupling effect. As a result of experi-
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ments, this effect had been known for many years. Also it is well known that
when a solid with a uniform initial temperature is subjected to cycles of elas-
tic deformations in an adiabatic environment, then the solid returns to the
initial temperature due to the cancellation of the coupling effect during the
loading and unloading cycles. Therefore, the thermoelastic coupling effect
behaves in a reversible or conservative way rather than in a dissipative way.

The thermoplastic coupling effect always behaves in a dissipative way.
The experimental results of Tammann and Warrentrup [1] ! proved that a
sharp reversal in the direction of the temperature change was observed at the
onset of plastic deformation of a material. Moreover, when the solid finished
a cycle of plastic deformation, it did not return to its initial temperature,
but always exhibited an increase in temperature. Based on this phenomenon,
some coupled thermoelastic-plastic analysis methods were developed during
recent years. Hsu, Banas and the author had further elaborated on their
method of the coupled thermo-elasto-plastic effect in references (2,3].

It is known that the temperature rise in uncracked metals during plastic
deformation under the conditions of infinitesimal deformation in an adia-
batic environment is only of the order of a tenth of a degree Centigrade, or
slightly more [3,4,36]. It is for this reason that most of commercial codes
on thermal stress analysis employ the uncoupled approach which omits the

thermo-elastic-plastic coupling effect.

!Complete reference listing is contained at the back of the thesis.



1.1.2 Thermomechanical coupling effect relating to
fracture

Experimental results during recent years have proved that the temperature
rise in a cracked solid seems more significant and local than that in uncracked
solids. Thus, within a small region near the crack tip, significant heat gen-
eration and a temperature rise occurs. Indeed, temperatures as high as the
melting point of metals was measured.

Several researchers reported measurement of a localized temperature rise
caused by deformation of fractured solids : Weichert et al (1974, 1978) [5,6] ,
Schonert and Weichert (1969) [7] ,Kobayashi et al (1981) [8] , Fox and Soria-
Ruitz (1970) [14] , Fuller et al (1975) [24] , Loose et al (1983) [9] , and Bryant
et al(1986) [31] all reported a considerable temperature rise near the tip of
cracks during fracture in either ductile or brittle materials. They found that
the localized temperature rises to be in the order of 10 to 100°C, even more
than 1000°C for some brittle materials or even as high as the melting point
of metals such as titanium alloys. This is particularly true during dynamic
fracture.

These facts imply that there is a new kind of thermomechanical coupling
effect. First, such a phenomenon of temperature rise, undoubtedly, should
be considered as a thermomechanical coupling effect. Also, such a rise in
temperature at a crack tip might be large enough to influence: (a) the stress

and strain distribution in the vicinity of crack tip; (b) the properties of



materials, particularly of plastics which are temperature-sensitive; (c) the
fracture behavior due to the changes of (a) and (b). Consequently, there is
speculation that the distributions of temperature and stress as well as strain
obtained by using the uncoupled approach to analysis of fractured solid may
considerably deviate from the true fields. It is logical that a coupled approach
should be applied to the analysis of this phenomenon. None of the reseachers
mentioned above have done this. Indeed, this coupling effect has generally
been omitted in common fracture analyses.

The coupled method enables one to simultaneously obtain the correct
distributions of both temperature and strain fields. It will be possible to reex-
amine some fracture problems and then to improve on the fracture mechanics
analysis based on these distributions. As a result, the role of the coupling
effect in a cracked solid can be well understood. This should contribute to
the thermomechanics theory on the coupling effect and its application to
thermofracture problems. Therefore, a reliable analytical model that enables

researchers and engineers to assess this effect is highly desirable.

1.1.3 The thermofracture coupling effect

A finite element model for assessing the coupling effect in a fractured solid
should be the logical extension of both the in-house developed coupled thermo-
elastic-plastic theory and the results of recent experiments on the tempera-
ture rises within fractured solids. In order to distinguish the coupling effect

in a cracked solid from the foregoing thermo-elastic or thermo-elastic-plastic



coupling effect, it will be refered to it as thermofracture coupling effect (

TFCE ) in the subsequent development.

1.2 Objective

The objective of this research project is to develop a finite element model
for analyzing the thermomechanical coupling effect during the fracture of
engineering materials. This thesis describes the research effort which results
in a coupled analysis methodology designed to treat the TFCE in a two-

dimensional structure with a stationary crack subjected to static or dynamic

load.

1. A coupled heat conduction equation involving TFCE is derived.

2. A finite element model to take account for the TFCE is developed.

This model has the following unique features:

o The coupled thermoelastic-plastic stress analysis under dynamic

loading conditions can be carried out.

¢ The TFCE of a solid with a stable crack under dynamic loading

conditions can be predicted.

3. This work leads to an examination of how the TFCE affects the stress,
strain and temperature distributions in a thin plate containing a line

crack under dynamic loading.



4. An experiment for the measurement of the induced temperature rise
near the crack tip in a thin plate subjected to impact load is carried out
to test the validity of the proposed finite element model. Finally, appli-

cation of the above methodology in engineering analysis is discussed.

1.3 Scope

The first part of this thesis is concerned with the derivations of the coupled
analysis of the temperature and displacement fields in a cracked solid. This
part is covered in the first three chapters.

The second part deals with the description of the finite element model,
algorithm and code construction. This is described in Chapter 4.

The third part describes the experimental apparatus and procedure,
numerical illustration and the comparison between the finite element analysis
and the experimental results gven in Chapter 5 and 6.

The remaining parts include the conclusions and recommendations, com-
puter programs and the appendices showing the detailed derivations of key
mathematical formulas. A list of references is enclosed at the end of the

thesis.



Chapter 2

BASIC COUPLED
THERMOMECHANICAL
ANALYSIS

2.1 Introduction

Thermomechanics, as clearly indicated by the name itself, is concerned with
the effects of heat on the deformation and stresses in solid bodies. In the
field of elasticity, the term refers to thermoelastic mechanics, and in the field
of elasto- plasticity, the term refers to thermo-elastic-plastic mechanics.

It is well known in thermoelastic stress analysis that the stress-strain
law in a general thermal environment is expressed as the general Duhamel-

Neumann form of Hooke’s law as follows [2,21,22]:

0ij = Cyjmen — Bi;(T — To) (2.1)

where o0;; 1s the stress tensor, €4 is the strain tensor, Cjji is the elastic

constant tensor, B;; is the thermal modulus tensor, 7, is the temperature of
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a reference state of the body and (T — T,) is the rise of temperature above
the reference state. Eq. (2.1) states that a change of temperature of a body
will cause the change of stress states within the body.

The usual approach to uncoupled thermomechanics analysis involves two
steps [2,21,,22]:

(1) Solving T'(z,y, z,t) from the Fourier’s heat conduction equation
(kT3)s + Qin = pC,T (2.2)

where k is the thermal conductivity of material, C, the specific heat, p the
mass density, and @;, the internal heat source.

(2) Substituting temperature change into the thermoelastic equation of
motion

1 .
3 ik (kg + wik); — BT + Fy = pi; (2.3)

and then conducting the usual mechanics analysis. In Eq. (2.3), u; is the
displacement vector, u;; is the displacement gradient, @; is the acceleration
vector, and F; is the body force vector. The first step is independent of the
second step. In other words, the deformation of a solid does not generate
heat which changes the temperature field. Therefore, it is called uncoupled
method. However, the effect of the temperature field on the deformation and
stress field is not a one-way phenomenon. It is an experimental fact [2,21,22]

that a deformation of the body produces changes in its temperature.

10



2.2 Coupled Thermoelastic Stress Analysis

It is a familiar fact that an adiabatic expansion of a gas is accompanied
by a drop in its temperature. Similarly, a solid body should change its
temperature when the state of strain of the body is altered adiabatically.
Based on this idea, Lord Kelvin (Sir William Thomson, 1824-1907) derived
the following formula for the change of temperature of an insulated elastic

body due to a uniform strain: [22]
T = —p—o‘;ﬁiﬁz‘j (24)

which 1s the first equation of coupled heat conduction.
Later, the research of thermoelastic theory resulted in the other equation

of coupled heat conduction [21]:

(kT;) ; + Qin — B Tottyj = pC,T (2.5)

Obviously, the above equation suggested that the process of heat conduc-
tion in elastic solids is conditioned not only by the existing differences of
temperature, but also is a compound process in which the deformation field
takes part and interacts with the temperature field. Equation (2.5), in which
this interaction appears, is referred to as the heat conduction equation of
the coupled theory of thermoelastic mechanics, or in short the coupled heat
conduction equation. To solve the temperature and displacement fields, we

require a combination of Eqgs. (2.3) and Eqgs. (2.5).

11



By applying the linear strain-displacement relations, Eqgs. (2.3), results

in the following equations:

Uigj T g Uit ,%Fi -

2(1+v) P
— 2TV o7 = Py (2.6)

1—-2v fou

where v is the Poisson’s ratio, p iss the Lamé elastic constant, and « is the
linear thermal expansion coefficient. Equations (2.5) and (2.6) are taken
together to constitute the central equations of linear coupled thermoelastic
stress analysis.

To solve these equations by using an analytical method is a very diffi-
cult task. Only a few initial boundary-value problems were solved by means
of Laplace transform techniques. One of these initial boundary-value prob-
lems, now named the Sternberg- Chakravorty’s problem, concerned a linear
elastic half space subjected to a uniform sudden temperature change on its
bounding plane. The plane was assumed to be traction-free. Sternberg and
Chakravorty [48] developed the solution for this problem, including both
the displacements and stresses. Numerical investigations into the Sternberg-
Chakravorty’s problem have been made by Nickell and Sackman [49]. These
numerical results will be used to check the computer program developed in
the present work. ( See Section 4.9. )

For synthetic materials such as plastics, the effect of coupling may be
considerable. Thermoelastic coupling also plays a significant role in the phe-
nomenon of elastic wave propagation, where, because of the dissipation of

heat, its presence contributes to the damping of a wave motion.
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However, it should be pointed out here that it is usually permissible in
many common practical applications to disregard the influence of thermoe-
lastic coupling and hence to treat the thermoelastic problems as totally or
partially uncoupled. This is the case because engineers usually deal with
problems that involve elastic stress analyses as in common engineering ap-
plications. But, with the availability of sophisticated analytical tools such
as the finite element method, demands for utilizing a material’s strength
beyond its elastic limit have been increasing steadily in recent years. The
thermomechanical coupling effect has thus become an important factor in
design analyses.

Tammann and Warrentrup [1] observed in their experiments on plastic
deformation that a sharp reversal of the temperature variation begins at
the plastic yield point of a material. Moreover, many examples, such as
fault analysis of nuclear reactors, damping of stress wave propagation,and
the deformation localization after bifurcation, have indicated that a coupling
effect could become more noticeable when the material is loaded beyond its
elastic limit. To analyze this phenomenon, Hsu [2], Dillon [36], Lehmann [50],
for example, separately developed their own coupled thermoelastic-plastic
stress algorithm. Because a unified and systematic approach to this problem
has not been realized, some basic concepts of the analysis will be discussed

in the next section, based on the references [2] and [3].
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2.3 Coupled Thermoelastic-plastic Stress Anal-
ysis

The quasi-static coupled thermoelastic-plastic analysis will be highlighted in

this section.

2.3.1 Theoretical background

The physical system under consideration consists of a structural component
(or its part) made of a polycrystalline material and exposed to a thermal
environment and a mechanical load. Heat and mechanical power fluxes are
considered to be the only possible means of energy exchange with the sur-
rounding. At the outset of the process the component material is in its virgin,
stress- and strain-free state and remains in a thermal equilibrium state. The
macroscopic deformation of the material remains infinitesimal in the sense
that displacements of individual material points and displacement gradients
remain infinitesimal during the evolution process. Under the above assump-
tions the task of modeling is approached from a purely phenomenological
point of view.

In the thermomechanics approach to modelling, the classical irreversible
thermodynamics and isotropic hardening plasticity theory offer the simplest
mathematical model. Such an approach uses the balance principles of mass,
energy, linear momentum, angular momentum and entropy production.

To begin with, an emphasis shall be placed on the dissipation function
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derived from the balance of energy and entropy production in the classical
irreversible thermodynamics. Then the thermoelastic-plastic stress analysis

involved in the coupled approach will be described.

Balance of energy and the entropy production

In reality, the plastic process is irreversible in nature and the internal dissipa-
tion function D may be conveniently employed to account for the irreversible
nature by means of the internal entropy production associated with plastic
deformation.

From this concept Oden [51] arrived at the following relation:
TS = Gii+ Qin+ D (2.7)

in which S is the entropy production rate, T is the absolute temperature and
Qin 1s the energy supplied to the system from internal sources. Further, Hsu

[2] derived the coupled heat conduction equation:
(kT:) i + Qin — BiiToes; + D = pC,T (2.8)

Equation (2.8) is virtually identical to the Fourier heat conduction equation
except for the following two extra terms of equivalent heat source: (1) the
heat source associated with the thermoelastic coupling term Bi;jTot; ; (as in
Eq.(2.5)) and (2) the heat source related to the thermoplastic coupling term
D which is often referred to as the internal dissipation function. Both of these

extra terms are related to the mechanical stresses and strains. (That is why
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Equation (2.8) is referred to as the coupled heat conduction equation.) The
term D reflects the fact that part of the mechanical work done on the system
1s converted into heat within the system. But, the introduction of the D into
Eq.(2.8) implies an assumption that the process of converting the work into
heat is instantaneous. The dissipation function D constitutes an important
part of nonlinear coupled thermomechanical analysis. Quantification of this
function, however, is an extremely difficult task. A simple model is proposed

based on the following experimental observations.

1. Heat is generated when the material undergoes deviatoric deformations

36].

2. Only part of the input plastic deformation power is spent in the change
of the internal structure of the material; the other part is dissipated in

the form of heat [52].

Based on these observations a simple expression for D was proposed as follows
[2,3,71]:
D= (1 - A)O‘ijéfj/ = (1 — A)O’,’jé?j (29)

where €f;/ is the plastic deviatoric strain tensor, and the positive parameter
A is called the dissipation factor. It varies between 0 and 1, and is a measure
of the ratio of energy stored to the plastic energy expended under adiabatic
conditions. It can also be regarded as the ratio of the rates of energy stored

in the microstructure of the material resulting from the conversion of the
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kinetic energy to the internal energy during an adiabatic plastic deformation

process.

Thermoelastic-plastic stress analysis

The effect of thermal input to the stress fields in a solid is considered to con-
tribute in the following three aspects: (1) dilatation-induced thermal stress;
(2) change in material properties such as Young’s modulus; and (3) change in
the yield surface when the solid is loaded beyond its elastic limit. These three
aspects have been demonstrated in detail in references [2,3]. The following
is a brief description of such phenomena.

The constitutive equation for a solid subjected to combined thermal and

mechanical loads can be expressed in a tensorial form as

oij = Cilyén +vi;T (2.10)

1

where the elasto-plasticity matrix can be expressed as:

ikt = Cijm — Chin (2.11)
with the elasticity matrix
iejkl = ijkl(T) (2.12)
the plasticity matrix
ijkl = Ci’}kz(o'ij,T) (2-13)
generalized thermal moduli
Yij = %‘j(‘fij: T, ijkza Czpjkz) (2-14)
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To derive the exact forms of Eqgs.(2.10-14), the following information is re-

quired:
1. A yield criterion to establish a yield surface in the stress space.
2. A flow rule to relate the plastic strain increments to the yield surface.

3. A hardening rule to describe the expanding, shrinking and shifting of

the yield surfaces during the deformation process.

The Von Mises yield criterion is widely regarded as an appropriate repre-
sentation of the initial yield surface due to its good correlation with test data
and its mathematical simplicity. This criterion is derived from the distortion
energy theory which states that plastic deformation occurs when the distor-
tion energy of the material reaches a certain critical value. For an isotropic

material, the yield surface F', defined by the Von Mises criterion, is expressed

as
1
in which
1
Jo = *2-5.,;_7'51'_7' (216)

1s the second deviatoric stress invariant, S;; is the deviatoric stress tensor,
and oy denotes the initial yield strength of the material from a uniaxial
tension test. The function F in Eq.(2.13) represents the yield function ( or

plastic potential function ) which describes plastic yielding at the current
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stress state during plastic deformation. It is obvious that a plastic state is
attained when F' = 0, while the material is in the elastic region if F' < 0.
The Prandtl-Reuss flow rule [2,22] assumes that the plastic strain in-
crement is linearly related to the current stress. It predicts that the plastic
strain increment is normal to the associated yield surface at the stress point.
Mathematically, the plastic flow rule resulting from the Von Mises yield cri-

terion can be expressed as

OF
5o = S (2.17)

D __
de; =

in which def; is the components of the plastic strain increment and d) is
a positive proportionality factor. Most materials retain some stiffness after
the initial yielding. Further plastic deformation by these materials requires
additional loads.

Two types of strain-hardening schemes are commonly used in finite el-
ement analysis. These are isotropic hardening and kinematic hardening.
The isotropic strain-hardening behavior for biaxial stress states can be Tep-
resented by the uniform expansion of the initial yield surface in the stress
space. The kinematic hardening behavior for the multiaxial loading situation

can be modelled by the translation of the yield surface in the stress space.
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2.3.2 Finite element formulation for triangular ele-
ment

Analytical solutions of the coupled equations (2.3) and (2.8) for the interre-
lated temperature and displacement fields are virtually impossible even for
cases involving simple geometries. The nonlinear nature of these equations
makes a numerical technique the only practical method of solution. The
finite element method (FEM) is considered to be a suitable choice for this
purpose. Thus, by using the FEM, Hsu [2] derived the coupled finite element

equations applicable for an assembly of m triangular elements,
;{U}T([Ku}{ﬂ(t)} + [Mr{T(t)} — {L(t)}) = 0 (2.18)
D_ATY(CHT®)} + [M{i(t)} + [Kr{T ()}~ {D} — {Q}) =0 (2.19)
Whe";e [K.] is an element’s mechanical stiffness matrix :
[Ku] = [R)"( / G [Capl(G(r)]dvm)[h] (2.20)

[Mr] is an element’s thermal stiffness matrix :

(Mz) = B[ [G(r)T{1Hb(r)}don) (2.21)

Um

{L} is the mechanical load matrix :

(L} = ([ (RO o+ [ {ROIHMsm)  (222)

[C] is the heat capacity matrix :

C)= [ {(r)}(pC, + FHbr)F du (2:23)
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[K7) is the conductivity matrix :

[Er] = [ {a(r)}{ki{a(r)}"dv (2.24)

[M,] is the thermomechanical coupling matrix :

(M. = ~( [ {b(r)HETHG(r)]dvm) (A (2:25)

{@} is the thermal load matrix :

(@)= [ () Qudvn + [ (B(r)HaH {nddsn  (220)

and {D} is the dissipation matrix:

(D} = / D{b(r)}dv,» (2.27)

in which dvy,, dsm, m and n denote the respective element volumes, element
surfaces, the total number of elements and the total number of boundary
surfaces. Also, the following definitions are used in the finite element for-
mulation in which r denotes the spatial coordinates whereas ¢ is the time
variable.

Element strain components:

{e(r, )} = [G(r)][A}{u(t)} (2.28)

Element temperature gradient:

v T(r,t) = {a(r)}"{T(2)} (2.29)
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-
where V7 1s the gradient operator 7 = { }

Element temperature

Tm(r,8) = {b(r)}'{T(£)} (2.30)

In Eq.(2.18) to (2.30) the matrices {u(t)} and {T'(¢)} are the respective nodal
displacements and temperatures in the discretized solid, and

010000

010001
[G(r)] = (2.31)

&) 0 001 r 2z (2.32)
1] = 1
72k = 2i) + ri(z; — i) + re(2i — 25)
[ 752k — TR2Z; 0 PLZ; — TiZk 0 TiZj — Tz 0
25— 2 0 2 ™ 2 0 2i — 25 0
TR — T; 0 T, — Tk 0 T — T 0
0 TiZk — TrZj 0 PRZ; — TiZk 0 TiZj — T2
0 Z5 — X 0 Zp — Z; 0 2{ — 25
L 0 T — 75 0 T — Tk 0 Ty — T
(2.33)
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and

{a(r)} = [VR][A]

where 7;,7;,7¢ and 2;, z;, z; are the nodal coordinates of a triangular toroidal
element in a global coordinate (r,z).
Because the term f;;T¢;; in Eq.(2.8) can be expressed in terms of the
total strain rates as
BiiTES; = Bijéi; — 45T (2.33)
with
Bij = Bij(o33, T, Cizas China)
Yii = %i5(035, T, Cips Chiwr)
the exact forms of the {y}, {8} matrices in the above equations can be for-

mulated for a solid undergoing a thermoelastic-plastic deformation. As a

result, when using an isotropic hardening scheme, Hsu obtained [2]:

(1} = ~[Callfa} + Lo gop) - [CHABIE 5
BY = 18y T(0[CI (0 (2.35)

where



c,] = [Ce]{dl}éd'}T[Ce}

and also

18} = {7}

7= 4P T(-(CI G} + d (el - o122y (239)

where {0/} and & are the respective deviatoric stress components and the
effective stress in the element. In Eqs.(2.34) to (2.36), the matrix {a} is the
thermal expansion coefficient matrix. The function F is the plastic potential

function expressed as [2] :
F=F{c},K,T,¢&)

in which K is the work-hardening parameter of the material which is related
to the effective strain rate. The internal dissipation rate D in Eq.(2.29) has
already been expressed in Eq.(2.9). The finite element formulation for the
entire solid can thus be achieved by expressing Egs.(2.18) and (2.19) on a

global scale to give
[Ku{a()} + [Mr{T(2)} = {L(¢)} (2.37)

(M)} + [CHT()} = [KE2{T (@)} + {Q(t)} + {D} (2.38)

These nonlinear ordinary differential equations describe the coupled quasi-
static thermoelastic-plastic behavior of a solid. The time t in the displace-

ment functions in the above equations should be treated as a parameter such
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as 1n cases of elastoplastic stress analysis based on incremental approaches.
It is apparent from these sets of equations that the two unknown quantities,
L.e., the time rate of change of the displacement vector % and the rate of
temperature 7' must be solved simultaneously.

There are several approaches that can be used to solve the system of
nonlinear first-order ordinary differential equations. However, incremental
procedures, utilizing recurrence relations, are adopted by most research work-
ers such as Bathe and Wilson [56], Owen and Hinton [57], and Snyder and
Bathe [58]. Solutions are obtained by advancing through time in finite steps.
In references [2, 3] a two-level finite-difference scheme was used in the time

domain, and some numerical illustrations were reported.



Chapter 3

COUPLED
THERMOFRACTURE
STRESS ANALYSIS

Experimental results published in recent years [5-11,14-18,31] have shown
very significant rises in temperature within fractured solids resulting from
mechanical driving forces. Obviously, these temperature rises are due to
the thermomechanical coupling effect. As these significant temperature rises
were all observed in the fracturing of solids, it appears that coupled ther-
mofracture analysis can be considered as a logical application of the coupled
thermoelastic or thermoelastic-plastic analysis in engineering problems.

To establish a common basis of understanding of the phenomenon that
will be studied in this thesis, a brief review of the basic concepts of fracture

mechanics will be done first.
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3.1 Review of Fracture Mechanics Concepts

3.1.1 Introduction

Structural failures under loading conditions well below the yield strength of
the structural material can often be attributed to cracks or cracklike flaws
in the structure. Such failures show that the conventional strength analysis
of structures alone, no matter how accurately conducted, is not sufficient to
guarantee the structural integrity under operational conditions.

The analysis of stresses in a cracked structure, the study of the initiation
of crack growth and the criterion of material failure due to the existence of
cracks can be generally categorized as fracture mechanics. In particular, in
the absence of large plastically yielded regions surrounding cracks or cracklike
flaws, such a study is referred to as linear fracture mechanics. Also, linear
elastic fracture mechanics (LEFM) is concerned with cases where plastic
deformation preceding fracture is sufficiently small to use the assumption of
linear elastic material behavior as a basis for fracture control. Otherwise, the

so-called post-yield or elastic-plastic fracture mechanics should be applied.

3.1.2 Basic principles of LEFM

The linear elastic fracture mechanics approach to evaluating stresses and dis-
placements associated with each fracture mode is constructed on the Griffith-
Irwin theory. In this approach, the general stress field near a crack tip can be

expressed as the superposition of stress fields due to the three basic modes
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of fracture, each mode is associated with a kinematic movement of two crack
surfaces relative to each other. There are three distinct possible modes of
crack extension under external load: opening mode (Mode I), edge sliding
mode (Mode II) and tearing mode (Mode III). In mechanical engineering
practice the importance of the opening mode I far exceeds that of the other
modes [29]. Hence, further discussion throughout the thesis will be limited

to mode I unless specifically stated otherwise.

Energy considerations

A crack extension requires energy, which may be supplied from the work
done by the applied external load and from the strain energy stored in the
structure. The latter supply of energy will increase with the crack extension,
because the resulting increase in compliance (compliance = deformation /unit
load) will reduce the structure’s strain energy storage capacity.

A critical condition arises if the decrease in energy storage capacity per
unit increase of crack area becomes at least equal to the energy absorbed per
unit increase of crack area. Crack propagation can then take place without
the need for additional work to be done by the external load. Denoting
the instantaneous value of the rate of energy supply per unit of crack area

extension by G, then the critical condition may be defined by G = G..
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The elastic crack tip stress field

It was demonstrated [29] that the elastic stress and displacement fields near
the tip of a crack in an infinite sheet could be described for mode I (similar

expressions were subsequently derived for mode II and III) by:

oy = %f;(&)%—--- (3.1)

u; = K\/rgi(8) + -+ (3.2)

where (r,0) is a polar coordinate system in the material with the origin
situated at the crack tip and the plane of § = 0 coincides with the crack
surface. The parameter K depends on: crack size, component dimensions
and applied stress. It is said to be the controlling parameter of a crack tip
field, and it does not depend on the material. This is so because stresses
and displacements are proportiomal to this factor,K. Also, the truncated
terms of (3.1) and (3.2) are the terms with higher order in r, and for a small
radius of r (i. e. very close to the crack tip), only the first term is significant.
Accordingly, K is called stress intensity factor,and fracture is expected to
occur when K reaches a critical value, K.

One may readily observe from Eq.(3.1) that stresses in the fractured solid
reach numerical values of infinity at the crack tip ( » — 0 ). These stress
singularities were the result of the linear elastic stress analysis.Such singu-
larities have also been documented for elasto-plastic materials with nominal

work hardening, both for stationary and steadily growing cracks. It is there-

29



fore necessary to derive alternative solutions to assess the stress ficld near the
crack tip without having to deal with this issue in the analysis. The popular
J-integral was developed as one such solution. It will be described in the
latter part of this chapter. These stress intensity factors and the J-integral
have been applied widely to engineering fracture problems. The concept of
stress singularities were necessary to derive a nonzero stress intensity factor
or J-integral which evaluates the stress field near the crack tip. As a re-
sult,this concept becomes a very useful tool in fracture mechanics,and will
thus be implemented in this thesis.

There exists a unique relationship between K and G as follows:

G = KEi (plane stress)
- Kfz(l —v*) (plane strain)

in which E is the Young’s modulus and v is the Poisson’s ratio.

The discovery of stress intensity factors in the early 1960’s prompted fur-
ther development in the field of fracture mechanics. Thereafter,many static
or quasi-static physical systems have been studied. The effect of inertia in
these cases such as existing in the dynamic loading cases ;however, has been
overlooked. When problems involve such dynamic loading conditions with
rapid crack propagation within a structure, it is generally acknowledged that
the quasi-static results have limited application to the problems. Therefore,
these problems were referred to the topic of linear elastodynamic fracture

mechanics.
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3.1.3 Linear elastodynamic fracture mechanics

In practice, two kinds of dynamic fracture mechanics problems have received
most attention: a) solids with a stationary crack that are subjected to a
rapidly varying applied load, and b) solids under conditions of fixed or slowly
varying loading that contain a rapidly moving crack. In both cases the crack
tip is in an environment of rapidly varying fields of stress and deformation.

Impact and vibration problems fall into the first class. In the analysis
of such problems it is often found that the peak dynamic stress near a flaw is
higher than the stresses computed from the corresponding static equilibrium.
This stress amplification is especially pronounced in the presence of cracks.

The second class of problems is equally important, because there are
several kinds of large engineering structures in which rapid crack growth is
a definite possibility. The literature in this area can be divided into two
categories: steady state problems and transient problems.

Because of the great success which LEFM analysis has enjoyed in the
past, there is adequate justification for extending the above basic concepts to
the analysis of elastodynamic problems. For example, within the framework
of linear fracture mechanics, the near-tip stress and the displacement fields
for elastodynamic problems are often measured by introducing the concept
of the stress intensity factor. Indeed, adopting the same nomenclature from
LEFM, the stress intensity factor can be defined in the same manner as

the static case except that it is time-dependent. Also, this definition means
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that the stresses at a crack tip all exhibit a mathematical singularity. The
nature of singularity does not change. Thirdly, the equivalence between the
stress intensity factor and the strain energy release rate can be extended to
the dynamic situation as well. It was concluded that the dynamic stress
intensity factor at its peak is 1. 2 to 1. 6 times larger than the corresponding

static value. [59,60]

3.1.4 Elastic-plastic fracture mechanics

Due to the singular nature of Eq.(3.1), a plastic zone is always formed at the
crack tip where the stress field exceeds the yield strength of the material.
If yielding is limited to a zone in the immediate vicinity of the crack which
1s notionally of a vanishingly small extent, it is still the LEFM problem.
However, if plastic yielding is extensive, but is small in comparison with
both the crack length and thickness and other dimensions of the cracked
structure, 1t 1s considered beyond the range to which LEFM is applicable.
Then elastic-plastic fracture mechanics should be applied. As noted, elastic-
plastic fracture mechanics also forms a logical extension of LEFM and is
perhaps the condition in which many machine components with cracks and
flaws are likely to operate under normal loading. Currently, much effort is
being devoted to the development of an elastic-plastic fracture mechanics
analysis. As a result, a number of new concepts and techniques have been
developed and the following ones are the most popular: (1) plastic zone

corrections; (2) crack opening displacement; (3) J integral; (4) crack growth
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resistance, the R curve.

plastic zone corrections

The first attempt at extending fracture mechanics beyond the LEFM limits
involved a correction to the crack length to account for the effect of the
plastic zone while continuing to use the LEFM approach. This procedure
concerned extending the crack by a distance r,. The result of this adjustment
1s a notational crack with length 2(c + r,) for a panel with a center crack
of length 2c.Thus, a plasticity-modified stress intensity factor for this case

becomes
K =oyn(c+ry,) (3.4)

Again the other concepts of LEFM outlined above are applicable.
It should be emphasized that the adjustments are approximations lack-
ing a firm theoretical basis and they exclude such effects as work hardening

and large strains at the vicinity of the crack tip.

Crack opening displacement

This method is based on the assumption that, where significant plasticity
occurs, the fracture process will be controlled primarily by the intense de-
formations adjacent to the crack tip. The separation of the crack faces, or
crack opening displacement (COD), will then be a measure of the intense

deformation. Crack extension will begin at some critical value of this COD.
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Because COD measurement can be made when there is considerable plastic
flow around the crack tip, this technique gives useful information for elastic-
plastic fracture analysis.

Burdekin and Stone [61] first showed that the COD can be determined
by the following simple expression:

K2

6= Eo,

(3.5)

where § is the COD value and o, is the yield stress. Further, the energy
required to extend the crack becomes G = 0,6. They also demonstrated
the plausibility of the notion that fracture could be governed by critical &
values determined by experimental results. Where K reaches a critical K.,
the COD value reaches a critical value .. Under plane strain conditions,

unstable fracture will occur when § — §..

J integral

Rice [62] proposed a path-independent contour integral, the J integral, for a
two-dimensional deformation field, evaluated over the contour I' in a counter

clockwise direction. (See Figure 3.1.) The J is given by

aui
J= /F(wdy — 4,5 ds) (3.6)

where w is the strain energy density function,t; is the surface traction vector,

u; is the displacement vector, and ds is an arc length along T'.
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The J integral, derived under the assumption of nonlinear elastic ma-
terial behavior, is defined as the elastic energy release rate (per unit crack
extension) to the crack tip. Rice [62] proved J to be path independent (under
an isothermal condition) so that one may evaluate J remote from the crack
tip, and use this value of J to represent the energy release rate to the crack
tip, since paths adjacent to or remote from the crack tip produce the same
result. This scheme is suitable in the case of small scale yielding, for which
the concept of path independence of energy release rate to the crack tip is
assumed to remain valid.

Just as K was found to describe the elastic crack tip stress field in the
LEFM approach, Hutchinson [63] and Rice and Rosengren [64] have proved

that the stress-strain field at the crack tip may be expressed as

J ('n.-li-l)

oij = (=) fiulbim)+ -
J D)

e =(-)  gi(6,m) +-

(3.7)

where 7 and 6 are cylindrical polar coordinates with origin at the crack tip
and n is the power hardening coefficient in the assumed uniaxial stress-strain
law, which is of the form ¢ o« o™ This is the well-known HRR theory in
fracture mechanics.

Specifically, for plane strain conditions in the opening mode (Mode I),
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it has been shown that

K? = doy (3.8)

E

The standard J-integral as presented in Eq.(3.6) was formulated under
the following main conditions: (1) There is no thermal strain, (b) body forces
and inertia effect are neglected, (c) the solid is subjeted to monotonic and
proportional loading , and (d) the solid is made of homogeneous material.
Hsu and several other researchers as quoted in reference [2] developed a mod-
ified J-integral to accommodate thermal gradients for the fractured solids.
This modified integral consists of an additional term of area integral for the
thermal gradient effect. Their formulation however does not include the ther-
momechanical coupling effect. This modified J-integral was successfully used
to assess the fracture behavior of leaking pipelines by the author [105].

An attempt was made in 1990 by Sheppard and her student [106] in the
development of a path independent integral to account for both the thermal
gradients and thermomechanical coupling effects. This integral, under the
name of S-integral, was formulated under the conditions of quasi-static load-
ing and a thermomechanical coupling with 100% plastic energy dissipation
for stationary cracks. This new development can be extended to accom-
modate the present situation with dynamic loading conditions. It may also
serve as a basis for further extension for the solution of problems involving
dynamic crack propagation. These extensions will require substantially more

research effort, but are highly recommended as future research endeavor.

36



Crack growth resistance R curve

The COD and J integral methods described previously relate their values
at crack initiation to K. under plane strain conditions. These values may
not be applied when determining the fracture toughness under plane stress
conditions.

The concept of the crack growth resistance R curve is based on the
observation that, during the fracture process of most sheet materials, the
unstable fracture is always preceded by a certain amount of stable crack
growth under a monotonically rising load.

It is well known that the fracture process of a cracked thin metal sheet is
not usually comprised of a single sudden explosive-type change from initial
crack length to total failure. With the load increasing, considerable slow
stable crack growth takes place prior to catastrophic failure. Krafft et al [65]
postulated in their paper published in 1961 that, for a given material and
thickness, there is a unique relationship between the amount a crack growth
and the applied stress intensity factor. They illustrated this relationship in
what they called a crack growth resistance curve (R-curve).

The foundational concepts of the R-curve and their use in predicting
critical loads for unstable crack propagation in sheet metals of various ge-
ometries have been described in a special volume of ASTM STP No. 527
[38]. Turner [37] stated that over a modest range of geometric variables

the resulting R-curve was independent of the initial crack length and size.
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Wang and McCabe [66] presented some experimental data showing consistent
R-curves for a Center-cracked Tension (CCT) specimen and a Cracked-line
Wedge-loaded (CLWL) specimen.

As postulated by many workers [37,38,66-70], the crack growth resis-
tance during subcritical crack extension seems to be merely a function of the
crack extension,Ac. Therefore, it should be possible to obtain an expression
for the R-curve by using a relationship R = f(co, Ac), in which R is called
the specific work per unit area of cracked surfaces or the crack growth resis-
tance and ¢ is the initial crack length. Broek [67,68,69] has proposed the
simple power law,

R = A(Ac) (3.9)
in which 4 and p are the constants and 4 = 5.0,p = 0.25 for 7075-T6
aluminum alloy sheet. The Acis expressed in mm and R in kg/mm. Further,

a second order polynomial of the form,
R = Ry + a1Ac + ay(Ac)? (3.10)

to relate K and Ac have been suggested by Wang and McCabe [66]. Further-
more, Mai, Atkins and Caddell [70] determined the following relationships
for a few ductile and tough materials such as 7075-T3 and 1100-0 aluminum

alloys and a low carbon steel:
R = Ry + F(Ac) (3.11)
where Ry, F and p are the constants. The authors published their values for
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several materials, for example Ry = 90(kJ/m?), F = 50(kJ/m?),p = 0.25 for

low carbon steel, (See Figure 3.2).

3.1.5 Thermoelastic-plastic fracture stress analysis

There are three typical environmental effects on the fracture behavior of
solids: excessive hydrogen diffusion (hydrogen embrittlement), corrosion and
thermal factors. Of these three effects, the thermal factor, i. e. tempera-
ture, is one of the prime concerns to engineers. Elaborate discussion of its
effect on the material’s behavior has been well documented, e. g. in Rolfe
and Barsom [70]. The thermoelastic-plastic analysis theory accounts for the
effects of temperature on the constitutive equations only, based on which the
thermoelastic-plastic fracture analysis have been performed. Hsu presented
this analysis in detail in reference [2], including the formula of J integral
with thermal effect for application in the uncoupled elastic-plastic fracture

analyses.

3.2 Coupled Thermofracture Analysis

With the coupled concept and the fracture concept mentioned in the earlier
sections , a new area of investigation can be opened dealing with coupled ther-
mofracture analysis. First, it has been found that the coupled thermofrac-
ture analysis is deemed to be a logical extension of the present coupled con-

cept. Second, diverse experimental observations regarding the considerable
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rise in temperature in cracked solids have suggested that the extensive cou-
pling effect does occur in reality. Therefore, the peculiarities of the coupled
thermofracture analysis are the main concern of this study. The following
discussion will be restricted to the Mode I (in-plane tensile mode) fracture
problem which is defined as a coupled analysis of a two-dimensional solid

with a stationary crack subjected to dynamic (impact) loads.

3.2.1 Coupled thermomechanics theory and fracture
mechanics

As mentioned above, the thermoelastic and thermoplastic coupling effects

represent the primary ingredients of the present coupled thermomechanics

theory. This theory has not been used before for conducting the intended

analysis. This logical extension of the coupled theory thus bears special

importance for the following two reasons.

The first reason is due to the singularity of the stress fields at the crack
tip in fracture problems. The HRR theory indicated that the variation of
stress or strain near the crack tip of an elastic or elastic-plastic solid follows
an inverse power law near the crack tip. In terms of linear theory of fracture
mechanics, in the stress and strain fields there is a singularity at the crack
tip as shown by Eq.(3.7). Also, it has be shown that the plastic dissipation
term D in the coupled heat conduction equation, Eq.(2.9), was taken as
(1 — A)oi;é%;. (See Chapter 2). Therefore, the term, D, should also have a

similar singularity at the crack tip because of its association with the stress
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field. By comparing Eq.(2.8) with the Fourier’s heat conduction equation,
Eq.(2.2), it can be seen that the term D is the source of which has a significant
effect on the temperature field. Accordingly, it is reasonable to expect that
the dissipation term D with a singularity should play an important role in
the temperature distribution.

The second reason is due to the extensibility of the crack. Crack ex-
tension occurs when the applied load exceeds a certain value. It is generally
accepted that work must be done to the fractured solid because energy is
necessary to create new crack surfaces in the solid. This work is a major de-
terrent to crack propagation and plays a vital part in the fracture resistance
of brittle materials.

The crack does not automatically return to its initial length after frac-
turing happened. Thermodynamics indicates that most of this work could
dissipate to generate heat at the crack tip as the growth of a crack is an
irreversible process against healing.

Based on the two aforementioned reasons,one can expect that deforma-
tion fields can result in a significant and localized temperature rise near the
crack tip. Particularly, when involving dynamic fracture, one should expect
a more powerful coupling effect because of a larger stress intensity factor and
thus a higher plastic dissipation rate. Experiments supported this expecta-
tion, as will be described in the next section.

Because temperature at the crack tip plays a vital role in the fracture be-
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havior, a reliable analytical model that enables researchers and engineers to
predict such significant temperature rises is thus highly desirable. This phe-
nomenon will be referred to as the Thermofracture Coupling Effect (TFCE
for short) in order to distinguish it from the conventional thermo-elastic or

thermo-elasto-plastic coupling effect.

3.2.2 Review of some experimental results

"Hence, rupture should be accompanied by phenomena such

as a large rise in temperature indicative of the dissipation of an

amount of energy ...” ( A.A.Griffith, 1920 )

As a familiar example, recall that in a standard tensile test the metallic sam-
ple at the moment of rupture may even be too hot to be touched. In recent
years the phenomena of localized marked temperature rise of fractured solids
were observed and accorded more attention. Several researchers reported
their observations and measurements of these phenomena ; Weichert et al
(1974, 1978) [5,6], Schonert and Weichert (1969) [7], Kobayashi et al (1981)
[8] , Fox and Soria-Ruitz (1970) [14], Fuller et al (1975) [24], Loose et al
(1983) [9] , and Bryant et al(1986) [31) reported on a considerable temper-
ature rise near the tip of moving cracks during fracture in either ductile or
brittle materials. All these authors found the localized temperature rises to
be of the order of 10 to 100°C, or more than 1000°C for some brittle materi-

als. In one case a temperature rise as high as the melting point was observed

42



in titanium alloys. ( See Table 3.1).

The first group of these experiments was involved with brittle materials.
Schonert and Weichert (1974, 1978) [5,6] performed dynamic fracture tests in
glass by applying impact loads on a glass target. The measured temperature
rises were between 2500 and 3000°K during the fracture of the glass target.
The measurements of these high temperatures were carried out by observing
discrete wavelengths of thermal radiation emitted from the specimen.

Fox and Soria-Ruiz (1970) [14] carried out experimental research on the
thermal decomposition produced by the release of elastic strain energy when
a fast cleavage crack runs through a brittle crystalline solid such as calcite.
By relating the amount of decomposition to the fracture velocity and the
kinetics of thermal decomposition, a profile of the crack tip temperature was
deduced. For calcite,this value of temperature rise was 1250°K for a crack
propagation velocity of 3600 m/sec. These two experiments showed that
a large increase in temperature during fracture is observed even for brittle
materials.

The second group of experiments was involved with plastics at room tem-
perature. Fuller, Fox and Field (1974) [24] had determined the temperature
rise at the tip of fast-moving cracks in polymethylmethacrylate (PMMA) by
using thermocouple and temperature sensitive liquid crystal film (TSLCF).
The measured values show a continuous temperature increase with increasing

crack speed. In the speed range of 200 - 600 m/sec, a temperature rise of
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Table 3.1: Summary of measured temperature rises due to the
coupling effect in cracked solids

Author Material Measuring Temperature
(year) technique rise (°C)
Schonert et al. | high purity thermocouple 130.
(1969)[7] iron
Hahn et al. SAE 4340 tempilsticks 45. - 73.
(1974) [104] steel
Fuller et al. PMMA® thermocouple 500.
(1975) [24] and TSLC?
Norris 18Cr8Ni N/As 80.
(1976) [15] steel
Hsieh 2024-T3 N/A 1.
(1977) [11] aluminum
Weichert Glass infra-red ~ 3000.
(1978) [6]
Kobayashi et al. | Carbon-fiber | thermocouple 30.
(1981) [8] composite and TSLC
Loose et al. AISI 4135 thermovision 3.
(1983) [9] steel
Bryant et al. Ti-8 Mn SEM stereopho- ~ 1600.¢
(1986) [31] titanium togrammetry

a PMMA=polymethyl methacrylate

b TSLC=temperature sensitive liquid crystal

c N/A=not available

d melting point of Titanium
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approximately 500°K was observed.

Kobayashi and Suemasu (1981) [8] investigated the generation and sub-
sequent conduction of heat during dynamic crack propagation in carbon-fiber
composites. A TSLCF (temperature sensitive liquid crystal) and a thermo-
couple were employed to measure the total heat and temperature change at
points along the crack passage. The experiment was carried out under the
Mode I crack propagation at room temperature. They reported that a max-
imum temperature change of about 30°C at the thermal boundary front was
measured during the dynamic crack propagation.

The third group of experiments was related to metals. Schonert and We-
ichert (1969) [7] reported a measured temperature rise of 130°C at a distance
of 30 pm from a crack tip in steel, using a minute thermocouple. Norris (1976)
[15] examined crack-tip heating during fatigue fracture in carbon steel. He
observed temperature rise of up to 80°C at the tips of fatigue cracks. Bryant,
Makel and Wilsdorf (1986) [31] observed the effect of temperature rise at frac-
ture 1n two titanium alloys. From metallurgical experimental evidence they
reported that a very small volume at the crack tip was heated to the melting
point (approximate 1600°C for these titanium alloys) at the moment of final
separation. In the mean time, Attermo and Ostberg (1971) [10] , Loose and
Brotzen (1983)[9], and Hsieh (1977)[11] measured temperature rises under
the conditions of cyclic loading on metal specimens.

Attermo and Ostberg observed a temperature rise of 14°C at a crack
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tip by applying cyclic loadings at a frequency of 100 Hz to a steel specimen.
Hsieh reported that temperature rises of about 0.2 to 1.0°C near a crack tip
in aluminum alloy specimen was observed when a cyclic loading frequency
of 10 Hz was used. He did not publish either his measurement technique for
temperature nor the details about the measured temperature data. To the
author’s knowledge, this temperature rise was so small that it could easily to
be confused with the noise inherented in the measuring system, or by foreign
disturbances. The reason why the temperature rise was so small may be
due to the low loading rate of specimen and the high heat conduction of the
aluminum alloy material.

Loose and Brotzen reported an experimental verification of temperature
rises. Crack tip temperatures were measured in AISI 4135 steel specimen
subjected to a cyclic loading at 20 Hz by means of a scanning infrared cam-
era system. On average, the measured temperature rise was about 2.5°C.
This value has fallen into a common region of measuring error. Because the
authors did not published the details such as the loading rate and the resolu-
tion of the infrared camera system, it is hard to make a judgement about the
credibility of the measured temperature rise data. Therefore, the following
discussion will temporarily exclude the data of temperature rises for Hsieh,

Loose and Brotzen.

3.2.3 Discussion on the experimental results

The above mentioned results indicate the following points.
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1. A temperature risein the vicinity of a crack tip is much higher than that
of common, plastically deformed solids without a crack. A temperature
rise as high as the melting point of the material is reached in the case

of titanium alloy.

2. Either a brittle or a ductile material can produce a considerable tem-

perature rise at the vicinity of a crack tip.

3. The zone of significant temperature rise is highly localized in the crack
tip.

4. The temperature of the specimen must be considered to be less than

the temperature at the crack tip.
5. In some reports a small temperature rise was observed.

Points 1 - 4 reveal that the process resulting in a significant temperature
rise at a crack tip should be regarded as a very different phenomenon from
a common plastic dissipation. In other words, the present thermoelastic or
thermoplastic coupling effects have not included these factors. Therefore,
this fact does suggest a new kind of coupled thermo-mechanical phenomenon
during fracture. This phenomenon will be referred to as the Thermo-fracture
Coupling Effect (TFCE) in order to distinguish it from the existing thermo-

elastic or thermo-elastic- plastic coupling effect.
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3.2.4 Review of some reported theoretical works

All published theoretical analyses were carried out without using proper ther-
momechanical coupling formulations. Several researchers have attempted
some theoretical formulation on the phenomenon of temperature rise in the
vicinity of a crack tip from an uncoupled approach. Among them are Rice
and Levy (1969) [19], Schonert (1974) [5], Loose and Brotzen (1983) [9],
Kuang and Atluri (1985) [16], Atluri and Nakagaki et al (1986) [17].
Theoretical formulations concerning the temperature field induced by
the deformation fields in the vicinity of a crack tip were approximated by
two types of analytical models. The first model, used by Loose et al [9] and

Armstrong et al [18], was based on the formula by Rice [19)]

T(z,y,t) = /Ot{/ A1) flen.) Gt e e 77)2] e dn}—

pCy 4a?(t —T) 4ma?(t — 7)

(3.12)

where A(t) is the plastically deforming region at time ¢, f(¢,7,7) denotes
the plastic work, p is the mass density, c is the specific heat, and a is the

thermal diffusivity. In his model, Rice made the following assumptions.

¢ A temperature rise in the vicinity of a crack tip is produced by plastic

dissipation work.

¢ The dissipation work is calculated by using the nonhardening plastic
model and directly integrating the rate of plastic work over the plastic

zone near the crack tip.
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o A thermal stress induced by the rise of temperature was not considered.

Because, however, no closed-form solution of Eq. (3.12) is available for this
model, their attention was focused on an estimation based upon Eq. (3.12).

The second model involved solving the Fourier’s heat conduction equa-
tion with a moving heat source at a known constant speed and energy-rate
density by using an approximate or numerical technique. Moreover,the speed
of the moving heat source is equal to the speed of crack propagation, and
the shape and size of the source were assumed to be those of the plastic zone
near the crack tip (Weichert and Schonert [5], Kuang and Atluri [16]). The
intensity of the source, however, was estimated according to an assumed frac-
tion of the so-called crack resistance (Weichert and Schonert) [5], or strain
energy release rate (Doll) [13], or plastic work rate (Kuang and Atluri) [16].

The above models may lead to the following observations.

o All models are built on an assumption that the mechanical analysis is
independent of the thermal analysis. Thus, all these analyses are, in

fact, uncoupled.

e Energy dissipation caused by the creation of new crack surfaces or crack

growth was not considered.

Therefore, it is necessary to put a coupled approach into a fracture problem
involving the TFCE. The derivation of a modified coupled heat conduction

equation involving the TFCE could be taken as the first step to the coupled
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method. This will lead to an accurate assessment of the localized temper-
ature distribution in the vicinity of an advancing crack tip during fracture.
The assessment of temperature rise and its influence on fracture processes is
of particular value in fracture mechanics, as this will lead to a better under-
standing of fracture mechanics behavior of fractured solids.

The next section will present a description of preliminary theoretical

results obtained by using the coupled approach.

3.2.5 Derivation of the coupled heat conduction equa-
tion

To develop a coupled approach to the TFCE, the present coupled heat con-
duction equation has to be modified first. A general three dimensional for-
mulation is beyond the scope of this thesis. Right here and now, at the early
stage of research on TFCE, the research of this thesis was only able to be
defined as a simpler problem of coupled thermofracture analysis, i.e. a two-
dimensional fracture problem with a stationary crack subjected to an impact
load.

Rice [20] pointed out in 1978 that the conventional, irreversible thermo-
dynamics theories are applicable when the actual, time-dependent non-elastic
process can be modelled suitably as sequences of constrained equilibrium
states. Specifically, he proposed the following equation to calculate the en-

tropy production rate for a cracked solid induced by the quasi-static growth
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of a Griffith crack:!

A= %/C_f_(c; — 9y)edl (3.13)

where A is the entropy production rate, T is the absolute temperature, c is
the crack length and ¢ denotes the local crack speed which is small in com-
parison to the stress wave velocities in the solid. The notation ’c.f.’ denotes
‘crack front’ and the integral with respect to arc length [ is carried out over
all extending portions of a crack front in the solid under consideration. The
quantity G is the Irwin strain energy release rate and 2y is the work required
for reversible separation of the fracture surfaces. In the above formulation,
a crack length is regarded as an internal state variable.

Now, consider the derivation of a modified coupled heat conduction
equation involving TFCE, based on Eq. (3.13). As shown in Figure 3.3,
a cracked plate with unit thickness can be regarded as a thermodynamic sys-
tem. For the system it is assumed that: (a) The crack length ¢, the elastic
strains €f;, the dislocation density w and the absolute temperature T are
regarded as internal state variables. (b) In the interior of this plate a two-
dimensional problem and stable crack growth exists under dynamic loadings.

Hence, the Helmholtz free energy may be expressed as:

F=FE,Tcw)y=u—Ts (3.14)

157

1A *Griffith crack’ is understood to be a crack which moves in an ideally-elastic lattice
without the generation or motion of dislocation, twins, etc.. ’Quasi-static’ growth means
that the body, during crack motion, can be regarded as traversing a sequence of contained
equilibrium states corresponding to the sequence of instantaneous crack lengths. (Rice

[20])
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where v = u(ef;, T, c,w) and s = s(ef;, T, c,w) are the internal energy and
entropy respectively. According to the first law of thermodynamics for a local
unit volume of a continuum, the following equation can be derived (Nowinski,

1978 [21] or Fung, 1965 [22]):
p’ll = O'ijéij — Qi (315)

in which p is the mass density, g is the heat flux, €;; is the strain compo-
nents, oy; is the stress components, u is the internal energy per unit mass.
It is noticeable that the derivation of Eq.(3.15) did not involve any limita-
tions imposed on the speed of thermodynamic process and proceeded without
considering the reversibility or irreversibility of the process. Its validity 1s,
therefore, universal and can be extended, in particular, to dynamic as well
as to quasi-static processes.

Classical thermodynamics deals with equilibrium conditions of a uniform
system. However, problems involving heat conduction, plasticity and fracture
are beyond the scope of classical thermodynamics and belong to the realm
of irreversible thermodynamics. To describe these problems in precise terms
, three new hypotheses must be introduced. The first assumption is that the
entropy is a function of state in irreversible as well as in reversible processes.
The second assumption is that entropy is an extensive quantity, so that it
must be subjected to a conservation law. The third assumption consists of
an extension of the second law of thermodynamics locally to every portion of

a continuum, where the continuum is uniform or nonuniform. Based on these
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basic assumptions of irreversible thermodynamics, the following expression
for computing the entropy production in a system can be derived: (Fung,
[22] or Nowinski, [21])

ps = —(%)i + péin (3.16)

where 5;,, is the entropy production rate per unit mass within the domain A
in Figure 3.3. Because in the domain there are three irreversible processes of
heat conduction, plastic dissipation and crack growth, the §;, should include
the contributions to entropy production rate due to these processes. Eqgs.
(2.7) and (2.9) expressed the contribution due to the plastic dissipation.
From Eq. (3.13) the contribution due to crack growth can be computed.

Thus we have

pTin = 2 Ti+ (G = 29)68(7 — 7.) + (1 — AJoyse,

z P (3.17)

where —ZT; denotes the entropy production rate due to the heat conduction,
the Dirac-delta function §(7 — 7;) = 6(z — z,)8(y — ¥,) is used to simulate
dissipation owing to an infinitesimal crack growth at the crack tip. The
variables with subscript zero denote the current coordinates of the crack tip.

By substituting Eq. (3.17) into Eq. (3.16), one may get:
PT$ = —gii + (G — 27)e8(7 — 7o) + (1 — A)oy;€¥,; (3.18)
By differentiating Eq.(3.14) with respect to time t, one may get:

F=4-Ts—Ts (3.19)
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By substituting u in Eq.(3.15) into the above expression, the following rela-

tionship is obtained:
pF = (O’,’jéij - Qi,i) - pTé - pTS (320)
Replacing the term, pT's, of Eq. (3.20) with Eq. (3.18) will lead to:

pF = 0465 — pT's — (G —27)eb(F—75) — (1 — A)os;e% (3.21)

tJ

According to the definition of the plastic dissipation parameter A, the latent
energy, W, stored in terms of developing dislocation systems should be equal
to the difference between the plastic work rate and the plastic dissipation.
Therefore, the latent energy W, = Aci;ef;, and A can also be regarded as
the ratio of the rates of energy stored in the microstructure of the material
resulting from the conversion of the kinetic energy to the internal energy
during an adiabatic plastic deformation process. In Appendix A it is proved
that the dissipation factor of a metal can be calculated according to the
following equation:

A = (1+v)¢EI/(E — Ei) (3.22)

where Ef is the slope of the stress-strain curve of the metal in the plastic
range, E' the Young’s modulus and £ is a constant that depends upon mate-
rial. ( In references there were many experimental values of ¢ ( See Appendix
A ). For example, ¢ of polycrystalline OFHC ( Oxygen Free High Conduc-
tance ) copper is equal to 1.925 [53]. Several theoretically estimated values
of £ are listed in Appendix A.)
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Further, it has been stated [71] that the W, can be written as W, = Ayw
in which x is the dislocation energy per unit length of a dislocation line. As
a result,

Axw = o€l — (1 — A)oyzel,; (3.23)
By substituting the above expression into Eq. (3.21), the following relation-

ship is obtained:
pF = oy68, — pT's — (G — 27)eb(7 — 7o) — Axw (3.24)

Because

. OF . OF OF .
a e fj—f—ng—r —é;c—}- a:)—w (325)

. d oF
F - EZ(F( z]?T c LU))

oF 1
Oes;
B_F
oT
or, _ 1
Oc
OF . A

oY = ~p-X (3.26)

By differentiating s(e5;, T, ¢,w) with respect to time t, we have

Os . Os 85. Bs }
5 : ” + ETT 6 0w (3.27)

When Eq. (3.22) is substituted into Eq. (3.27), the entropy change in terms

§ =

of the free energy F is obtained as

_ O°F _  8F. F . O&F
P T PesaT T 97 T 3edT T GwdT" (3.28)
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By the definition of specific heat at constant volume of a solid:

0*F

G =Tor

Also, from Eq. (3.26), it is seen that

82F _ 82F . (90’1'_.,'
P 6e,0T ~ PoTes, ~ T

=

where 3;; is referred to as the thermal moduli tensor, and

PF  &F 9
PocoT ~ PoToe ~ 8T

((G = 27)ed(r —75)) = 0

and
8°F  O°F _ 9. Y=
PowdT ~ 8T8w ~ 8T ' pX' =

Equation (3.28) therefore takes the form:

ps = —BiiéS, — ip;a,:/’

Finally, by substituting Eq. (3.18) into (3.33), one obtains:

PC.T = (KT) ; + BisTeS; + (G — 29)eb(7 — 7) + (1 — A)oyé?,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Generally, it is assumed that the increment of temperature 6, as com-

pared with the reference temperature T, is small, i. e.

[T-T.| _|6] __

1
T, T,

Then, Eq.(3.34) becomes:

pC,T = (kT,): + BiiToés; + (G = 29)86(7 — 7,) + (1 — A)oysé?,;
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In the finite element method each time step is always chosen to be so small
that Eq. (3.35) holds. Consequently, Eq. (3.36) can be used in the finite
element analysis.

It is useful to recall the coupled heat conduction equation, Eq. (2.5),
which involves the thermoelastic coupling effect. By comparing Eqs. (3.36)
and (2.5), the presence of the last two terms in Eq.(3.36) is recognized as
evidence of introducing the TFCE.

Obviously, Eq.(3.34) or (3.36) must be coupled with the following equa-

tion of motion of a deforming solid
p?:l:i — 0455 — bz' =0 (337)

for a dynamic problem,or

oi5+bi =0 (3.38)
for a quasi-static problem where b; is the body force per unit volume. Also,
to carry out a thermoelastic-plastic analysis, it is necessary to know the con-
stitutive equation, Eq. (2.11). Further, to perform a coupled thermofracture
analysis of a growing crack (i.e. ¢ > 0 ), the relationship between the crack
growth and the fracture parameters such as G, K, R , J or COD value must
be known. The relationship can be established by experimental observa-
tions. In fact, Eq.(3.10) is a relationship which has been published. Landes
and Begley (1979) [36], Turner (1980) [37], Marandet and Sanz (1980) [38],
Dally, Fourney and Irwin, 1985 [35], and Kanninen, (1985) [29], etc. have

established the relationship for various cases.
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Eqgs. (3.34) to (3.38) form a set of independent equations which must be
solved simultaneously. For the coupled analysis, the finite element method
appears to be the only practical numerical approach. Therefore, the finite

element method for this coupled analysis will be discussed in the next section.



Chapter 4

FINITE ELEMENT MODEL
FOR COUPLED
THERMOFRACTURE
ANALYSIS

4.1 Introduction

The set of simultaneous differential equations (3.36) and (3.37) in Chapter
3 must be solved by using the finite element formulation which includes the

following three characteristics:
1. All nodal points possess three degrees of freedom.
2. Singular elements are used.

3. Time integration is performed using optimal collocation methods.
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4.1.1 Node with three degrees of freedom

In recent years, much attention has been given to the numerical solution
of boundary value problems using the finite element method. In particular,
the displacement-based finite element method has been used successfully for
the solutions of structural mechanics problems. The temperature-based finite
element method has also been widely used for the solution of heat conduction
problems. This chapter presents a finite element model for two-dimensional
coupled thermofracture analysis.

When using a finite element method for a coupled thermomechanical
analysis, the primary unknown variables denote either a displacement or
temperature at a nodal point of the finite element model. Therefore, a
symbol-unified primary variable-based finite element method is required. In
this method , the primary unknown variables are considered to be a gen-
eralized "displacement” with three components involving two displacement
components and one temperature. In other words, a nodal point in the
two-dimensional finite element model for the coupled analysis involves three

degrees of freedom.

4.1.2 Singular elements

When using a finite element method for fracture analysis, the theoretical
singularity of the strain field at crack tip is simulated. The inclusion of such

a singularity in the formulation is a necessary condition to achieve maximal
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accuracy. Generally, it can be done through special elements with singu-
lar properties in the finite element model. Early in the 1970’s, a number
of special crack tip finite elements were developed to satisfy this condi-
tion. These special crack tip elements contain a singularity of the strain
field at the crack tip, equal to the theoretical singularity. But, these spe-
cial elements also result in unsatisfactory convergence in the solution for
lack of the constant strain (first order terms) and rigid body motion (con-
stant terms) modes in their shape functions for the displacements. In late
1970’s, this problem was solved by using eight-node isoparametric singular el-
ements for two-dimensional analyses and 20-node isoparametric elements for
three-dimensional analyses ( called ”singular elements” for short in the fol-
lowing). Besides, the method of using these singular elements have an other
merit. They are simple for program design, because the geometrical conti-
nuity and the continuity of shape functions between the singular elements
and the neighboring normal elements are automatically satisfied. Therefore,
singular elements will be adopted in the present coupled thermofracture anal-

ysis.
4.1.3 Time integration schemes

By using the weighted residual methods [55], a set of semidiscrete equations
for the generalized displacement field can be obtained from the set of si-
multaneous differential equations, (3.35) and (3.36). This set of semidiscrete

equations represents a set of second order differential equations which require

61



an appropriate time integration scheme for solution. One commonly used al-
gorithm in structural dynamics is a collocation scheme which generalizes and
combines aspects of the Newmark method and Wilson-8 method. Also, the
best-behaved collocation schemes were determined and are referred to as op-
timal collocation methods. (Chapter 9 of [72]). Therefore, the subfamily of
collocation methods is used to perform time integration in this finite element
model.

The present finite element method will be based on the above outlined
characteristics. To realize these characteristics, this method adopts isopara-
metric elements which offer a very convenient way of implementing these

characteristics.

4.2 Discrete Method:Weighted Residual Ap-
proach

Posing the problem to be solved in the most general terms, 1t 1s necessary
that we seek an unknown function y such that it satisfies a certain differential

equation set

Ai(y)
Ay) =< Ay) L =0 (4.1)

in a domain 2 together with certain boundary conditions

Bi(y)
B(y)=1{ BAy) } =0 (4.2)
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on the boundaries I' of the domain. In Eq.(4.1) and (4.2) Ai(y), Bi(y),
etc., are the operators defining govering differential equations and boundary

conditions. The integral or weak statement that

/QzTA(y)dQ —i—/rZTB(y)dI‘ =0 (4.3)

1s satisfied for arbitrary functions z and Z ( the superscript denotes the pre-
scribed values on the boundaries ) is equivalent to the satisfaction of the dif-
ferential equations (4.1) and their boundary conditions (4.2). The Weighted
Residul Method involves choices of zj = wj and y = Nja; where wj are a fi-
nite set of prescribed functions and Nj are the shape functions. Then Eq.(4.3)

1s approximated by the expansion (4.4), i. e. ,
/ijTA(Niai)dQ+/P\TVJIB(Niai)dF =0 (,j=1,2---,n) (44)

in which n is the number of unknown parameters a; entering the problem.
Almost any set of independent functions w; could be used for the purpose of
weighting. The common choice is wj; = Nj, i.e. the original shape functions
are used as the weighting function (the Galerkin method). Equations (4.4)
thus yield a set of simultaneous ordinary differential equations from which
parameters a; can be determined. This is a standard discrete approach in a

space domain in the finite element method.
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4.3 Shape Functions

The fundamental concept of the finite element method is to construct a dis-
crete model composed of a set of piece-wise continuous functions defined over
a finite number of closed sub- regions. The sub-regions, “finite elements”,
are connected to each other at their common nodes, and collectively approx-
imate the shape of the domain. The generalized displacement components
of these nodes are the basic unknowns.

An isoparametric quadrilateral element was used in the present finite
element model. The shape function formulation of this element has been
well documented. The basic idea is to map the plane isoparametric element
in global coordinates (x,y) into the normalized square in local coordinates

(7, ) through the following transformations:

=) Nir,s)z;= Nz

i1

y= Ni(r,s)y;= Ny (4.5)
=1

where N;(r,s) are the shape functions corresponding to node i, and N =
{NiNy;N3---N_,}, and for a 2-D element n is the number of nodal points of
an element and n can vary from 4 to 9. An element with n=4 (or 8 ) is called
a four-node (or eight-node) isoparametric element which is commonly used

in finite element models. The shape functions corresponding until nine node
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isoparametric elements can be listed as follows.

M
N,
N3
N,
Ns
Ne
Ny
Ng

Ny

_%(1 L)1+ s)(1—7—s)

—43(1—r)(1+s)(1+r—s)

_2(1 )1+ s)(1—r—s)

—i(l — )1+ ) (147 —s)
S0+ )1 =77)

S = 7)1 )

S = s)(1 )
S )1 - )

(-1 =)

(4.6)

These shape functions were incorporated in the finite element program DCT-

EPSA (Dynamic Coupled Thermo-Elatic-Plastic Stress Analysis), developed

for this research project.

Now, we define the column vector d® to be the generalized displace-

ment at all the nodes of a given element; and the column vector d, as the

state of displacement at any point within the element. In this finite element

formulation the generalized displacement at a nodal point consists of three

components,u;, v; and T;, where u;, v; are the respective displacement com-

ponents in the x and y directions, respectively , and T} is temperature at the

nodes.

Therefore, the generalized displacement field within a given element can
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be expressed in matrix form as:

U N, 0 0 u’
v »=| 0 N, 0 v° (4.7)
T 0 0 NN, Te
or in a simplified form as
d = Nd¢ (4.8)

where the matrix N is the shape function which is a function of special

coordinates and has to be evaluated at each of the nodal points, and

N, ={N, N, -- -Np} (4.9)
and
uc Uy Uy -+ Uy
de = ¢ v° =1{ v vy -+ U, (4.10)
Te n Ty --- T,

Denoting the strain tensor as €, the strain components can be expressed

in terms of the displacement functions through the compatibility condition.
e =B, U (4.11)

where € = (ez0, €4y, €2y) 15 the strain tensor, and By is a partial differential

operator matrix which can be written as:

8
5 O

B,=:¢0 £ (4.12)
8 8
8y Oz

and U = {u,v}T. Also, the stress tensor o can be expressed in terms of the

strain tensor € by the constitutive relations.
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The physical components of the temperature gradient form a 2x 1 matrix

which is related to temperature through the gradient operator Br:

T = T = BrT (4.13)

Note that the shape functions, Eq. (4.6), are expressed in the terms of
local coordinates in the r,s plane. To compute the equations in the x,y plane,

it is necessary to evaluate the Jacobian. This can be done by the following

transformation:
KN 38
r Sz
=J (4.14)
8 g2
Os Sy
where
8z By n o ONi,. n  8N;.
8r Br i=1 gp “1 i=1 gy Yi
J = = (n €[4,9]) (4.15)
8z &y n N, s 8N
8s Os 1=1 g5 “* i=1 g Ji

To solve the cartesian derivatives, we should rewrite Eq.(4.14) as:

8 8
Bz or
=J (4.16)
8 8
By 3s

where the inverse of Jacobian operator exists and has the form [55]:

8y __oz
I - 1 Os 85 (4 17)
- detJ __ By Bz )
8r 8r

Therefore, using Eqs. (4.14),(4.15) and (4.16), we have the following equation
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for the strain components in the element:

(&)

oy o
Ezz Bs Os 0 0 or
Bu
e=1 ey b= — 0 0 - & | % (4.18)
vy detJ or 8r %2
-
_ %y gz 8y _ 0=
Exy or or Os BOs | %
s

4.3.1 Crack tip element - singular elements

In the conventional displacement formulation of finite elements, the displace-
ment field is modelled as a polynomial. This approximation of the displace-
ment field cannot model any singularity of strains at the crack tip as indicated
by the classical linear fracture mechanics theory. Consequently, a conven-
tional “element” may not be used for the analysis of strains and stresses in
the neighborhood of a crack tip where a singularity in strains exits. However,
Tong and Pian [73] have shown that in order to achieve a reasonable conver-
gence rate the appropriate singularity at the crack tip must be modelled. A
great deal of effort has gone into the development of special elements which
incorporate the appropriate singularity in their formulation, as the survey
papers on the topic indicate [74,75,78]. These fundamental ideas in the gen-
eration of special and singular elements with singularities will be explained
as follows.

From Eq.(4.17) it is immediately noticed that the desired form of singu-
larity may be introduced in (8/8z), (8/8y) by letting (a) J-! |, or (b)(8/0r),

(0/8s),0r (c) both (a) and (b) to be singular at the desired point,i.e. the
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crack tip. Thus, three types of such singular elements are considered: (1)
those involving singular geometric transformation (i.e. making detJ = 0 );
(2) those whose shape functions have been modified to reflect the known
singular behavior in the function derivatives, while retaining the linearity of
geometric transformation between (x,y) and (r,s); (3) those combining both
the above.

According to the first approach, Henshell and Shaw [76] and Barsoum
[77] developed an attractive singular element by means of a special placement
of nodal points in a conventional isoparametric element. This special place-
ment results in detJ = 0 or a singular geometric transformation at a given
nodal point. It can be seen from Eq.(4.17) that an appropriate singularity of
the strain at the given nodal point or crack tip is therefore modelled by this
element. Because this type of singular elements involves only the arrange-
ment of finite element mesh, it is easy to implement in a large number of
existing finite element codes.

Quarter point isoparametric elements are the well-known example of
such type of singular elements. For a eight-node quadrilateral element, a
singular geometric transformation can be obtained by placing the mid-side
nodes at the quarter points. As a result, the inverse square root singularity
of the strain field at the crack tip can be achieved. However, Habbitt [79]
and Barsoum [77] have indicated that for this quadrilateral singular quarter-

point element, the strain energy is unbounded and the desired singularity is
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only along the two boundary lines. They recommend the use of triangular
quarter-point singular element which can be realized by collapsing one side
of the quadrilateral with node 1 being the crack tip. (See Figure 4.1.) The
finite element model of the present work adopted this triangular quarter-point

element as crack tip element.

4.4 Finite Element Formulation

Substituting the governing equations (3.35) and (3.36) into the integral state-
ment (4.3), and then following the standard discretization scheme of finite
element method described by Bathe [54] and Zienkiewicz [55], one obtains

the following coupled semidiscrete equations for m isoparametric elements:

> (Muyyil + Kyyu + Ky — Ly) = 0

m

> (Crr6+ Cryi + K118 —D - Q; — Q) = 0 (4.19)

m

where Myy is the element mass matrix for elements with unit thickness:
1,1
My = / 1 | PNTNdetdrds (4.20)
-1J-1
Kuu 1s the element mechanical stiffness matrix:
LIS -
Kuu = / / BT CepBudetIdrds (4.21)
-1J-1

where C, is the elastic-plastic matrix given in reference [2].

Ky is the element thermal coefficient matrix:

1 1
Ky = / /  BYyNdetJdrds (4.22)
-1 J=
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L, is the mechanical load matrix:

1 1 1
T
Ly = /_1 /_1 NTbdetIdrds +/_1N p\/(am/ar)z + (8y/8r)2dr  (4.23)

where b and p are respective the body force and surface fraction matrices.

Crt 1s the heat capacity matrix:
1,1

Crp = / / NT(pC, + 5)NdetJdrds (4.24)
-1/

where C, is the specific heat at constant strain, and ¥ is already expressed
by Eq.(2.38).

K17 is the conductivity matrix:

Kpr = / 11 / 11 BXkBrdetJdrds + / 11 NTAN,/(8z/0r)? + (8y/0r)2dr
(4.25)
where k is the thermal conductivity matrix, and % is the heat transfer coef-
ficient across the thermal convection boundary.

Ky is the thermomechanical coupling matrix:
LS
Ky = — / / BYANdetJdrds (4.26)
~-1J-1

where (3 is already expressed by Eq.(2.37).

D is the plastic dissipation matrix:
LS
D= / / NT DdetJdrds (4.27)
-1J-1

where D is already expressed by Eq.(2.9).

Qs is the fracture dissipation matrix and
1 1
Qr = / 1 / NT(G = 290)é8(r — 7,)8(5 — s,)drds (4.28)
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where (7, 5,) is the local coordinates of the mapped point of the crack tip.

Q is the thermal load matrix:

1,1 1
Q= /_1 /_1 NTQ;.detIdrds —i—/_l NTq\/(am/aT)z + (0y/Or)2dr (4.29)

where @, is the energy supplied to the system from internal sources, and
q is the heat flux matrix across the heat flux boundary. In the above equa-
tions,(4.20) to (4.29), r and s denote local coordinates, and J is the Jacobian
matrix between the global and local coordinates. Matrices, v, 3 and the the
scalars, ¥, D, have already been given in Chapter 2. Also, these equations
can be computed by using Gauss quadrature formula for the two-dimensional
integral, as [1, [}, f(r,s)drds ~ ¥, Ty HiH;f(r;,5;) in which r;(s;)(i =
1,2,---,n) are Gauss sampling points, and H;(H;)(: = 1,2, -++,n) are the
coefficients which are independent of the function f(r,s).

The finite element formulation for the entire solid can be achieved by

expressing Eqs.(4.19) on a global scale to give

Muuﬁ + Kuuu + KuTe - .L

Crr6 + Cruii + K778 = D + Q; + Q (4.30)

This is a set of simultaneous second-order ordinary differential equations with
two unknown quantities, i.e. the displacement vector and the temperature.

In terms of the generalized displacement field mentioned above, Eq.(4.30)
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can be rewritten in the following form:

] AN e et

(4.31)
or in the following standard second-order form:
Ma+Cv+ Kd=f (4.32)
where
M = [M“" 0} (4.33)
o o
1s the generalized mass matrix;
o )
C = 4.34
{ Cr. Crr } (4.34)
is the generalized damping matrix;
_ Kuu KuT r
K = [ o Kopp J (4.35)

1s the generalized stiffness matrix;

a— { ; } (4.36)
v= { s } (4.37)

d= { 'g } (4.38)



is the generalized displacement vector;

F= { 6L2; } (4.39)

is the generalized force vector, and Qr = D + Qs + Q.

4.5 Time Integration Algorithm

Mathematically, Eq.(4.32) represents a system of differential equations of the
second-order and, in principle, the solution to the equations can be obtained
by standard procedures for the solution of differential equations. In practical
finite element analysis, a few effective methods can be considered.

The optimal collocation scheme for performing time integration of Eq.
(4.32) was adopted, because the scheme is unconditionally stable, second-
order accurate and best behaved. ( Hughes, 1987 [72].). In the sense of a
linear multistep method for second- order systems, the collocation method is
a two-step method which generalizes and combines aspects of the Newmark

method and Wilson-6 method. The collocation schemes are defined by:

Man+19 + C'Un.+_~,_9 + Kdn+19 = fn+19 (440)
Aniys = (1 — ’l?)an -+ 190,1+1 (441)
fn+19 = (1 - ﬁ)fn + Il9fn+1 (442)

1
doys = d, +90\tv, + i(ﬂAt)z{(l —2a)a, + 2aa,9}  (4.43)
Vnis = Up+IAH{(l - b)a, + 8ans} (4.44)

74



Table 4.1: Smallest collocation parameter, 9.

@ =
0.25 1
0.24 | 1.021712
0.23 | 1.047364
0.22 | 1.077933
0.21 | 1.1147863
0.20 | 1.159772
0.19 | 1.215798
0.18 | 1.287301
0.17 | 1.381914

¢ | 1.420815
0.16 | 1.514951

where ¥ is called the collocation parameter. If ¥ = 1, the scheme reverts
to the Newmark’s method. If @ = 1/6 and § = 1/2, the Wilson-6 method
is obtained. A necessary and sufficient condition for second-order accuracy
is that § = 1/2. Unconditionally stable, second- order accurate schemes are

defined in [72] to correspond to

1 9 292 — 1
§== 9>1 — > §> - T
2 = 200 +1) T T 4(29% — 1)

The best-behaved collocation schemes have been determined. This amounts
to a one-parameter subfamily of methods with § = 0.5 and ¥ = ¥9~(6) defined
by Table 4.1 [72]. These methods are referred to as optimal collocation meth-
ods and they are the only ones considered henceforth. Based on Eq.(4.42), it
is known that these methods are implicit, unconditionally stable and second-

order accurate.
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For convenience, § = 0.5, = 0.25 and thus ¥~ = 1 will be selected
in the following. Indeed, the optimal collocation method defined by these
values is equivalent to the Newmark method.

Substituting § = 0.5, @ = 0.25 and thus ¢~ = 1 into Eqs.(4.37) to (4.42),
one finds that:

Man+1 + C'Un+1 + .Kdn+1 = f‘n+1 (445)

1
dn+1 = dn + Atv'n -+ ZAtz(an + an+1)

1
Vpt1 = Up -+ 5&2&(0,,1 -+ an+1)
8ny1 = ac(dn+1 - dn) — GV, — Qga,
Unt1 = Un+ Qgln + Qrapyg (4.46)

Substituting Eqs.(4.44) into Eq.(4.43), we get
Kdyi1 = fauis (4.47)
where
K = K+asM-+a;C
for1 = fhi1 + M(aodn + agvy + agap) +
C(a1dn + a4vn + asap) (4.48)

Because the analysis involves thermal stress, plastic deformation, a nonlinear
coupling effect and a crack, it is more convenient to express Eq.(4.45) in an
incremental form as:

KAdpy; = Ay (4.49)
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where

Afn—}-l = Afn-x—l + M(azvn + asan) + C(QQVn + alﬂan)

Adn = dn+1_dn

1
Qo § 2a
1,1 1 1
Aan = ;(—@Adn - Evn——z—an) (450)
In equations (4.46), (4.48) and (4.50), we define
a3:51&—1 a4:§—1 C\’.sz%—t('i——)
(4.51)

aszAt(l—(S) a7:5At aszi
Qg = g am:At(%—l)

4.6 Numerical Integrals over the Singular
Elements

It 1s well known [55] that, for a linear quadrilateral or triangular element, a
single Gauss sampling point integration is adequate. For a parabolic quadri-
lateral (or brick) element 2 x 2 (or 2 x 2 x 2) Gauss point integration is
adequate and, for a parabolic triangle (or tetrahedra) element, three-point
(and four-point) formulae are needed ( [55] p.203). In most cases, Gauss’
quadrature rules with two or three sampling points are used to calculate in-
tegrals such as Eqs. (4.20) to (4.29). Of these equations, however, Eq.(4.27)

represents the integration of the dissipation matrix, D, over elements around
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the crack tip. The integrand, D, in Eq.(4.27), involves the singularity at
a crack tip which may lead to a numerical integration that is difficult to

calculate exactly.

4.6.1 Numerical integration of singular functions

It has been shown after many years of experimentation that Gauss’ and other
quadrature formulas of the highest algebraic degree give excellent precision
in comparison with other types of numerical integration formulas. However,
these quadrature formulas are not universal, and in some practical cases they
are known to give worse results. This usually happens when the integrand
has a low order of differentiability or is an analytical function with singular
points close to the segment of integration. Therefore, there is speculation that
a rough approximate numerical integration of Eq.(4.27) may be acquired by
using Gauss’ or other quadratures of the highest algebraic degree of precision
with two or three sampling points.

For example, I = f§ % = 2y/z[§ = 2.0. But, using the Gaussian

quadrature formula with:
1. two sampling points (i.e. n=2), I ~ 1.65068, and the error = 17.47 %;

2. three sampling points (i.e. n=3), I ~ 1.75086, and the error = 12.46
%3

3. four sampling points (i.e. n=4), ] ~ 1.80634, and the error = 9.68 %;
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4. ten sampling points (i.e. n=10), I ~ 1.91706, and the error = 4.27 %;

5. thirty two sampling points (i.e. n=32), I ~ 1.97321, and the error =
1.34 % .

This is so because the integrand, 1/4/z, has the singular point at z = 0.

Equally importantly, in passing from one dimension to two or more di-
mensions, the diversity of integrals and the difficulty in handling them is
usually increased [80, 81]. Accordingly, when singular elements were intro-
duced into 2-D or 3-D finite element analyses, it becomes a more important
and difficult task to determine how to improve the precision of evaluating a
singular integral which is essentially obtained by using the Gaussian quadra-
ture formula with 2 x 2 (or 2 x 2 x 2) or 3 x 3 (or 3 x 3 x 3) sampling points.
As a general rule, it is impossible to obtain as much accuracy with a multi-
dimensional integral as it is with a one-dimensional integral for reasonable
computing times. Fortunately, in the range of integral having a dimension
2 to about 5 or 6, the dimensional effect is not yet sufficient to rule out the
use of common numerical quadrature rules [81]. Therefore, one-dimensional

quadrature still is the basis of the following discussion.

4.6.2 Increasing the precision of Gauss’ quadrature
formulas

To increase the precision of a singular integral, a number of methods have

been developed for the numerical integration of functions with integrable
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singularities [80-83]. They are illustrated as follows.

The first of these methods is called the series expansions method.This
method converts all or part of the integrand into a series. Numerical quadra-
ture is then applied to each term of the series. This method can provide
adequately fast convergence.

The second method is called the singularity substruction method. It
amounts to splitting the integral into a singular part which can be handled
by classical methods and a nonsingular part to which approximate integration
formulae such as Gauss quadrature rule may be applied without anxiety.

The third method is called the changing argument method. This is one
of the most powerful techniques for numerical analysis. This method can be
used to exchange a difficult singularity for a more cooperative one, or even
to remove the singularity completely./

The fourth method is called the differentiation method relative to a
parameter. It involves imbedding the given integrals in a family of integrals
and then exposing some basic property of the family by differentiation.

The fifth method is called the estimating remainder method. This
method calculates a principal part of the remainder. Then the correction
provided by this new term can improve the accuracy.

The last one is called the ignoring singularity method. It uses a suffi-
ciently large number of sampling points which is estimated from the conver-

gence rate of a series of the quadrature values. This method avoids singular-
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1ties in the integrands.

The singularity and integrability

The present task is to look for an appropriate way from the above methods,
and then to apply it to the calculation of Eq.(4.27). For this purpose, it is
necessary to show, firstly, that Eq.(4.27) indeed does represent the integra-
tion of the function with the integrable singularity. It is generally accepted
that when strain hardening occurs in the material and such behavior is char-
acterized by a power law, then the dominant singularity governing the plastic
behavior at the tip of a line crack can be referred to as the HRR singularity,

i.e.

oii(r,0) = (=) fi;(6,n) + -

ei(r6) = (5) 7 gig(6,m) + - (3.7)

where r and 6 are polar coordinates centered at the crack tip, n is the power
hardening coefficient in the assumed uniaxial stress-strain law, and the J in-
tegral is a path independent value. Ideally, the J integral should incorporate
both the thermal gradients and themomechanical coupling effect. Having es-
tablished the stress and strain distributions, one can evaluate the dissipation,
D defined by Eq.(2.9).

Differentiating e;; in Eq.(3.7) with respect to time t yields:

n

— 1J:53—1j rattgii(6,m) + - - (4.52)

éij(T, 9) =
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The D may be evaluated as

D = (I—A)G'ijégj

< 03
n

.1
= o 77 fii(6,m)gi5(6,m) + - -- (4.53)

where the truncated terms are the terms with r%(g > 0), and, for small radius
r (i.e. very close to the crack tip), only the first term is significant. Therefore,
the integrand of Eq.(4.27), D, is a function which behaves as an inverse first
power law in the vicinity of the crack tip, and thus has a singular point at
the crack tip node.

Consequently, the dissipation matrix

D = //NTD(m,y)dwdy
= //NTD(T,G)T-deH
S //NTG',;jéide’f'dg
T n .1
= [ [NT(" T 58, m)gis (8, m) + - yrdrds
e n+1 r

= / / NT(n—ilj F£:i(6,)gi(6,m) + - - )drdf (4.54)

where the subscript e denotes the elements around a crack tip. It can be
seen from the right sides of the above expression that the singularity of the
integrand has been removed. As a result, this shows that the integrability of
Eq.(4.27) is satisfied. Thus one of the above mentioned methods of increasing

the precision of singular integral can be adopted for computing Eq.(4.27).
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Improvement of Gauss’ quadrature in finite element code

The fifth and the sixth method are further discussed in the following sections,
because they are appropriate for the present finite element code.

Firstly, the estimating remainder method is considered. It is clear that
additional terms from the remainder must be added to the Gauss’ quadrature
formula in order to increase precision. For Gauss’ quadrature formulas, the
remainder R(f) is expressed in the following form given in [80]. Here the
R(f) is defined as the difference between the true integration and the Gauss’

quadrature values. It is given by

- gl

(2n + 1)! ) } [FemI(1) = FCI(-1)) +
1 27(n!)2]? [—n(4n? 4 5n — 2)
(2n + 2)! [ (2n!) J [3(272 - 1)(2n + 3)
[F@r+)(1) — FA+ (1) 4 .. (4.55)

where { is the integrand. To apply the above formula it is necessary to find
the values of the derivative of the integrand at the ends of the segment [-1,
1]. In many cases this may be difficult to do. However,in numerical analysis
the derivatives can be replaced by finite differences of the f, and thus the
additional terms can be calculated. As a result, accuracy can be improved
by the addition of the quantities to the Gauss’ quadrature sum.

Next, consider ignoring the singularity method. From the foregoing

1

example of the singular integral, / = f; %, one may conclude that Gauss’

quadrature formulas can be adopted successfully when many sampling points
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are used. Indeed, Gauss’ quadrature formula can estimate an integral to any
degree of precision with a sufficiently large number of sampling points. To
decide on the number of sampling points to be adopted in the calculation,
the convergence rate derived from the previous quadrature values must be
taken into account. In principle, the convergence rate can be determined
by a relative difference between two quadrature values calculated from two
consecutive sampling points. If the desired convergence rate is not achieved,
then another sampling point is tested and the calculation process 1s repeated.
In order to obtain the desired accuracy at a reasonable computer cost, it is
necessary to decide on an appropriate convergence rate for the integral. This
rate can be estimated from numerical experiments. Some numerical tests
have indicated that a convergence rate of 2 % may be an appropriate value.
The selection of a suitable convergence rate is, however, largely a matter of
experience.

From the point of view of matching the finite element code, the sec-
ond method seems to be easier than the first one. Therefore, the present
DCTEPSA code includes the second method as an improvement of numeri-

cal integration of Eq.(4.27).

4.7 Limits on Time Step

In Section 4.5 consideration is given to the optimal collocation methods of

time stepping schemes which are unconditionally stable with a second-order
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accuracy. Owing to the non-linear nature of the analysis, however, the time
step size s still restricted in the handling of plastic deformation, inertia terms
from the dynamic loading, and coupled terms from the stable crack extension
in the case involving a non-stationary crack. It follows that the selection of
an appropriate time step is of great importance. On one hand, the time step
must be small enough to obtain accuracy in the solution; and on the other
hand, the time step must not be smaller than necessary, because this would
mean that the solution is more costly than actually required. The aim in this
section is to discuss the problem of placing limits on selecting an appropriate

time step for direct integration.

4.7.1 The limit of incremental algorithm for plastic
analysis

The incremental deformation theory is adopted for the dynamic plastic anal-

ysis. Also, the adoption of the Hsu-Bertel’s polynomial constitutive relation

for the material given in the following equation, (4.56), makes the incremen-

tal approach unique by the fact that the thermoelastic-plastic constitutive

equations are valid for the entire range of the flow curve.

. Ee "M
7= Ee/{l i {(1 — El/E)oy + E/é} } (4.56)

where E/ = the slope for plastic range of the flow curve,o= stress level

at the intersection (kink) of the elastic-plastic curve, n = stress power or

shape parameter, £ = 3G, and £/ = 3E1/ [3 - ﬁ%@] (See Figure 4.2 and
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4.3.) The main advantage of this adoption is that no iterative procedure is
necessary as in the case of the initial stress approach. A disadvantage of the
incremental approach is the necessity of using very small load increments
in order to insure the convergence of the solution, which means that a very
small time step size is needed for a dynamic plastic analysis. Let At, denote
the time step size limited by plastic analysis. Obviously, At, depends on the

loading rate and on the material properties.

4.7.2 The limit of dynamic fracture analysis

For an ordinary elasto-dynamic analysis using a step-by-step integration

scheme, accuracy can best be achieved when
le - CwAtz (457)

i.e. the element size [ should roughly equal the distance traveled at a
wavespeed, c,, by a disturbance during the time step At,. Therefore, At,
denotes the second time step size limited by common dynamic analysis.

In fracture mechanics this is a rather undesirable condition because more
elements are usually required around the crack tip to approximate the sin-
gularity. For such a case ,l. can be significantly less than ¢, At,. However,

Bazant, Glazik and Achenbach [84] show that when

e
Aty =~ 0.1 (4.58)

Cw

it is possible to obtain accurate results even with a grid containing vary-

ing element sizes. The conditions described in equations (4.57) and (4.58)
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will be inevitable to some extent in planar motion (Mode I) because there
are two significantly different wavespeeds, namely, the longitudinal and the
shear wavespeeds. Eq.(4.57) or Eq.(4.58) cannot satisfy both of them at the
same time.The numerical experiments by Chan [8] have concluded that, for

a dynamic fracture analysis, the optimal time step should be

Aty <01 (4.59)

Cc

where the c. is the longitudinal wavespeed.

In brief, At, reflects a requirement for a non-linear strain-stress law, and
Atg reflects a requirement for the geometry of the finite element mesh. There-
fore, the time increment for this finite element analysis should be selected by

the minimum of the above two restrictions, i.e.
At = Min(Aty, Aty) (4.60)

Accordingly, the present finite element code includes a function of automatic
time step control based on the above two considerations. It has been shown

from the present numerical analysis that A#; ~ (0.1 ~ 0.05)At; was used.

4.7.3 The limit of handling the coupled term from a
stable crack extension

In the preceding text (Section 3.1.4 and 3.3), mention was made of the phe-
nomenon of stable crack growth. Stable growth is said to occur if an in-

finitesimally small increase in load causes a correspondingly small increase
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in crack length. In plane stress situations the crack growth resistance, R,
with crack extension was expressed as a rising curve or a simple equation
such as shown in Eq.(3.9). Besides that, it is generally accepted [37] that
stable crack growth occurs in at least partly plane strain situations. Hence,
the coupled thermofracture analysis needs the appropriate handling of stable
crack extension.

The coupled heat conduction equation, Eq.(3.35), involves the coupling
effect term due to stable crack extension, (G — 2v)é8(7 — ) ,(See Section
3.3). It is known [47,70] that in either of the plane stress and plane strain
cases there are the relationships known as resistance curves, between the
resistance of the material and the crack extension, and it is the necessary
condition for and during stable crack extension that the resistance equals
the driving force. The curves for some materials such as low carbon steel
have been published. (See Section 3.1.4.) Given this curve, at each step the

G and ¢ of this term can be calculated by the following procedure.

1. Set time step.
2. Solve for the displacement increments by using standard procedure.
3. Compute the strain increment in each element.

4. Compute the stress increment in each element according to the thermo-

elastoplastic constitutive equation.

5. Compute the total element strains and stresses.
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10.

11.

12.

13.

Compute the Jr integral based on the strain, stress and the induced

temperature fields.

Check the criteria of stable crack extension by comparing the Jr with

the critical value, J..

Compute the subcritical crack extension along the original crack axis,
Ac, from the crack growth resistance curve of Jr versus Ac or R versus

Ac or equations such as Eq.(3.11).

Check if Ac/W < 0.005 [86] in order to assure the selection of an
adequate time step, where W is the length along crack line. Otherwise

a smaller time step size is selected.
Compute the crack extension speed based on Ac and the time step.

Compute the coupling term from Eq.(4.28), based on the crack exten-

sion speed.

Readjust the nodal pattern immediately surrounding the crack tip by
moving singular elements [85] which specify the current location of the

crack tip due to the crack growth during this time interval.l

Repeat the above steps until the end criteria (e.g. the total number of

time steps or the end time for the analysis) are met.

1The moving singular element algorithm is not implemented thoroughly in the present
version of the code DCTEPSA, and remains to be done in the next stage of research.
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4.8 Computer Code

A finite element computer code, CTEPSA [2,3], has been employed as the
basic code of this investigation for the numerical modeling of dynamic cou-
pled thermofracture analysis. The CTEPSA code was originally developed
by Hsu and his associates to analyze quasi- static, coupled thermoelastic plas-
tic stress problems for two-dimensional and three-dimensional axisymmetric
structures. Then, equations (4.19) to (4.49) have been incorporated into the
computer code. With these modifications, the CTEPSA code now becomes
the code DCTEPSA (Dynamic Coupled Thermo-Elastic-Plastic Stress Anal-

ysis). In the following, a test problem is presented for the code.

4.9 Test Problem: Sternberg-Charkravoty
Problem

A few analytical solutions of the initial-boundary-value problem of linear dy-
namic coupled thermoelasticity have been obtained. Sternberg and Chakra-
vorty [48] determined one of the solutions for a half space subjected to a
ramp-type heating of the bounding plane, including both displacement and
stress solutions. In the present work, the Sternberg-Charkravoty’s problem
1s selected as the test problem of the finite element code, and its solution is
used to demonstrate the validity and accuracy of the code. By the way, other
test problems for the code which involve quasi-static coupled thermoelastic

analyses have been presented in references [2,3].
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The problem geometry is depicted in Figure 4.4(a). A half space (z > 0)
is subjected to surface heating on its traction-free boundary « = 0, by sudden
exposure to a linear temperature rise during a finite time interval, after which
the temperature is held constant. The finite element mesh is shown in Figure
4.4(Db).

As a special form of Eqs.(3.36) and (3.37), the coupled thermoelastic

differential equations for this problem can be taken to be

Ou,  Ou, oT -1,
(A +2p) 50z P T a(3X + 2;L)——8m—
6T oT 8%u,

k 507 = POy + a(3A +2p)T, 520t (4.61)

where A, are the isothermal Lamé constants,a is the linear coefficient of
thermal expansion, T, is the reference temperature, k is the thermal conduc-
tivity, and ¢, is the specific heat at constant volume. The initial conditions

are taken to be

uz(z,0) = Q—l%?i) =0
T(z,0) =T, (4.62)

The boundary condition for the normal stress is 0,.(0,¢) = 0 and that for

the temperature is

(M =T/t +T, if0<t<t,
T(O’t)‘{ T ift >,

for ramp surface heating. In these equations, ¢, is the boundary temperature

rise time, and T} is the final surface temperature. These boundary conditions
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are to be supplemented by regularity conditions at infinity, i.e.

lim T(z,t)="T,,  ¢>0
t

lim 2E@:1) _ 0, t>0

T—00 m

mlirglo uz(z,t) =0, t>0
t

fim 2@ _ 0, t>0

z=o0 Oz
Introducing the dimensionless variables

¢ = az/k

T = ad’t/k

o = 0u./(BT)

6 = (T-T,)/T

u = a(X+2p)u,/(kBT,) (4.63)

where k = k/pc,; a® = (A4 2u)/p; B = a(3X + 2p), equations (4.61) can be
written as:
o _ w0
agr o2 B¢
oo _ o o
0¢? 0¢0r  Or

(4.64)

The thermomechanical coupling parameter § is defined by the relationship
6 = B°To/pcy(A + 2u). The initial conditions become u(¢,0) = Qu(¢,0) =
6(¢,0) = 0, and the boundary conditions are o(0,7) = 0, for all 7, and

)T/ H0L<T< T,
Q(O’T)_{ 1 ifro <7t
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where 7, = a%,/x The governing equations (4.61) can be solved formally
through the use of the Laplace transform. The ”exact” solutions can be found
in [48,49]. The results obtained through the use of the finite element code,
DCTEPSA, and the "exact” solutions of the Sternberg- Chakravorty problem
for 7, = 0.25 are shown in Figures 4.5 to 4.7. In these figures, the solid lines
represent the "exact” solution. These values of the coupling parameter were
used : 6 = 0 (corresponding to the uncoupled theory), § = 0.36, and § = 1.0.
The value of 7, = 0.25 was used in the study case. In the numerical examples
treated here, a limited region of the half space from ¢ = 0 to & = 30 was
divided into 40 eight-isoparametric elements (203 nodal points). The size of
the elements were 0.2 between ¢ = 0 and ¢ = 3, then increased uniformly in
size between £ = 3 and € = 6, to the maximum size of 0.6. Between E=6
and ¢ = 30, the mesh size was held constant at 0.6. The time increment
used varied from A7 = 0.005 to A7 = 0.01. It is seen, from Figures 4.5 to
4.7, that the finite element solutions compare favorably with exact solutions.
This indicates that the finite element code can yield accurate results in a

dynamic coupled analysis without crack growth.
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Chapter 5

EXPERIMENTAL
INVESTIGATION

5.1 Introduction

The purpose of this experimental investigation was to demonstrate the cou-
pling effect of a specimen with a line crack by measuring its temperature
change when it was subjected to an impulsive force that opened the crack
surfaces. In addition, this investigation measured the temperature change
histories induced by this impulsive force in order to assess the validity of the
finite element model mentioned in Chapter 4. An experiment was conducted
to demonstrate this measurement. It was shown from the experimental study
that the coupling effect was significant if the temperature change induced by
loading is regarded as an indication. Further, the measured force history
applied to the specimen could be used as the input data to the finite element
model developed by this research work. Results of the finite element analysis

will be described in Chapter 6.
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5.2 Experimental Arrangement

The requirements for the test facilities may be briefly stated as follows.

1. Because the dynamic coupling effect of a fractured solid with stable
crack is involved in the present study, a device which generates con-
trollable loading pulses and also a specimen with a highly stable crack

are required.

2. Because the dynamic coupling effect is an instantaneous phenomenon
of transformation from mechanical energy to heat, the temperature
changes induced by this effect take place over a short duration. Sensors

and data acquisition systems with fast response are required.

3. Because the induced temperature change and the deformation are both
of a small magnitude, high sensitivity and accuracy for measuring the

temperature and the deformation are thus required.

The establishment of the experimental set-up takes account of both the afore-

mentioned requirements and the limitation of the laboratory conditions.

5.2.1 General layout

A block diagram of the experimental arrangement is illustrated in F 1gure 5.1.
It can be seen from this sketch that the system involved three parts. One part
was the Split Hopkinson’s Bar (SHB ) system. The second was the wedge-

loaded Double Cantilever Beam (DCB ) test specimen onto which the thin-
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foil thermocouples were spotwelded and the strain gages for measuring the
driving force were mounted.The third was the data sensing and acquisition
system as well as the data processing system. A photograph of the system is
given in Figure 5.2.

The experiment operated as follows.The SHB is used to generate a load-
ing pulse which applies an impact force to the DCB specimen. During the
impact loading, the thin-foil thermocouple mounted on the specimen pro-
duces a signal of electromotive force. Meanwhile, the strain gage fixed on
the DCB specimen also generates a voltage output. These signals are am-
plified and then digitized and recorded by the data acquisition system. The
whole measuring system is triggered by a signal from the strain gages fixed
on the incident bar. Later, the measured data is processed by means of the
Hewlett-Packard (HP) computer in the data processing system. Finally, a
hard copy of temperature or force versus time curves was provided by the

computer.

5.2.2 The Split Hopkinson’s Bar System

For the purpose of generating a dynamic loading , the existing SHB system
was employed to generate a controllable impulsive force on the DCB speci-
men. The SHB system is composed of three bars, a striker bar, an incident
bar and a transmitter bar. In the present experiment, only the striker and
incident bars are used. All bars have a diameter of 38 mm (1-1/2 inch) and

are made of steel. The striker bar is accelerated by a pneumatic gun. The
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desired impact velocity can be reached by controlling the launching pressure
of the gun. As a result, a loading pulse of appropriate strength is initiated
by the impact of the striker bar against the incident bar.The stress wave
induced by the impact force travels through the incident bar. While travel-
ing through the strain gages mounted on the incident bar, the stress wave
induces a signal which triggers the data acquisition system. Very shortly
thereafter, the stress wave applies an impulsive force through the wedge and

pins to the DCB specimen with a crack. ( See Figure 5.1. )

5.2.3 DCB specimen

As mentioned in Chapter 4, the research effort was restricted to a fractured
solid with a stable crack under dynamic loading. The wedge-loaded, double
cantilever beam (DCB) test specimen is a laboratory test specimen used
effectively by many investigators [39]. Figure 5.3 shows the wedge-loaded
DCB specimen made of the low carbon steel , ATST 1018. Its configuration
offers a number of significant advantages over tests conducted using other

specimen types.

1. The cost of machining a DCB specimen is low because of its simple

geometry.

2. The beam-like character of the DCB specimen was effectively exploited
to produce one-dimensional (spatial) analysis models [39]. These sim-

pler analysis models are always useful.
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3. The crack propagation is controllable by the degree of crack tip blunt-
ing. As the blunted initial crack tip is commonly used in this type of
experiment, the stress intensity factor at the onset of crack growth, K Q5
can be made greater than Kj.. Consequently, even though it is under
the condition of an impact, either a stable or a propagating crack within

the DCB specimen is achievable.

4. Because the wedge for loading also induced a compressive load parallel
to the direction of crack propagation and because the two free surfaces
of the specimen are parallel to the crack plane, the need for side grooves
to promote a straight-line crack path was eliminated. Hence, the ar-
rangement of thermocouples and strain gages, and the measurement of

crack speed could be readily accommodated.

5. Because the crack run event proceeds under essentially fixed grip con-
ditions, the arrest of a fast moving crack within a DCB specimen was
possible. This is very useful feature in research on dynamic fracture

with running cracks.

5.2.4 Thin-foil thermocouple

A thermal sensor with a rapid response was required by this experiment. In
order to meet the requirement, two kinds of sensor techniques for temper-
ature measurement are considered to be feasible. One technique is the use

of a special thermocouple with fast response, and the other is based on the
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measurements of the emission of infrared radiation from the solid surface.
The latter technique is much more expensive than the former technique and
1s not suitable for the present case. The thermocouple technique 1s of low
cost, reliable and is suitable for many engineering application. Besides, a
new kind of special thin-foil superfast thermocouple, which has been made
available in recent years, improves the response time even further. The re-
sponse time for this kind of thermocouple is in the range of less than 1 ms.
Consequently, this kind of thermocouple provide a means for measuring the
fast temperature change history. Indeed, many attempts have been made to
measure such temperature histories of shock-loaded solids. (See, e.g., [87].)
In brief, the superfast thin-foil thermocouples supplied by RdF Corporation
are considered as a suitable thermal sensor for measuring the temperature
response of an impacted cracked solid.

The thin-foil thermocouple is 5 um thick,and is fabricated from a butt
welded foil which is rolled and then cut to shape by a photo- etching process.
It has been shown that the conditions at the junction interface between the
two metals are critical to achieving superfast behavior of the thermocouple.
Accordingly, the junction was carefully examined with the aid of a scanning
electron microscope by the manufacturer. The shape and the dimensions of
the thin-foil thermocouples used in the present experiments are illustrated in
Fig. 5.6(a).

The thin-foil thermocouples are made of either chromel and alumel (type
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K) or copper and constantan (type T). The K-type thin-thermocouple was
adopted for this experiment because of its high sensitivity and stability of
emf (electromotive force) as well as its superb resistance to oxidation.

One technical problem to be overcome is rapid heat transfer or thermal
equilibration from the host material to the thermocouple.This requirement
of rapid equilibration puts constraints on the conditions of the interface be-
tween the thermocouple and the host material. One common technique for
improving the condition is simply to drill a clearance hole and then cement
or bury a thermocouple into the hole. But the hole considerably changes
the distribution of stress and temperature near the hole. In our case this
1s a very severe disadvantage. Hence, a spot welding technique for mount-
ing the thermocouple was adopted in the present experiment. By following
this technique, two thin-foil thermocouples were spotwelded onto the DCB
specimen surface. One was close to and the other was far from the crack tip
(See Fg. 5.1). The condition of the interface between the thermocouplé and
the specimen was checked by measuring the contact electric resistance due to
the interface. Based on the author’s previous experience, a contact electric

resistance less than 1 ohm of the interface was considered to be satisfactory.

5.2.5 Data acquisition system

A data acquisition system was used to feed the measured data to the com-
puter. The data acquisition system consisted of a Model 204-A digital mem-

ory oscilloscope and a Model 2310 amplifier which can precisely control the
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gain. The output signals generated by sensors such as thermocouples are
amplified first to increase the accuracy and resolution of the temperature
measurement [88]. Thereafter, the signals were sampled and converted into
a digital form acceptable to the computer. Because real time processing is
unnecessary in this experiment, the signals in the digital form are stored in
the memory of the oscilloscope or on a minidisk before the next processing.

Some main performance indexes of the oscilloscope are listed as follows.
e Maximum digitizing rate, MHz : 20
e Resolution, percent : 0.4
e Accuracy, percent of full scale : 0.5
¢ Maximum sensitivity, full scale range, mv : £100
e Maximum voltage range, volts : +40
e Sample time uncertainty, nsec : 3
e Maximum speed, time per point, usec: 0.05
o Trigger sensitivity, percent of full scale range : 3

e Noise : 100 pv r.m.s. max. (0.1 to 100 Hz)
0.1 % full scale ( > 100 Hz)
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The amplifier used in this system can provide gains of 10, 100 and 1000, and
outputs of low noise level which is equal to 5x v r.m.s. max. from 0.5 Hz to
50 kHz.

The Nyquist Theorem or Sampling Theorem states that ”the original
signal can be recovered without distortion if it is sampled at a rate of at

” According to this theorem, this data acquisition

least twice its frequency.
system can be successfully adapted to sample a signal with a frequency as
high as 10 MHz. It thus meets the requirement for the present experimental

1nvestigation.

5.2.6 Data processing system

The Hewlett-Packard System 45B computer is connected with the foregoing
digital oscilloscope in order to process the measured data during the experi-
ment. The special program developed by our group was used to collect the
data from a minidisk which stored the measured data,and then to compute
the time curve from the measured data such as a curve of time versus tem-
perature. In addition, this program can plot this curve on the CRT display .
with high resolution. Finally, this program can provide a hard copy output
of this curve by controlling the internal printer of the computer.

During this experimental study, temperature and loading versus time

curves were obtained as described in the previous paragraph.
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5.3 Calibration

The errors which arise in an experiment are usually categorized according
to: mistakes or blunders, systematic or fixed errors and accidental or ran-
dom errors. It is generally a recognized fact that of these errors, the system-
atic errors can be eliminated by calibrating the instruments. Therefore, the
calibration of the instruments for temperature and force measurement were

carried out.

5.3.1 Calibration of the temperature measurement
circuit
The thin-foil thermocouple, the digital memory oscilloscope and the oper-
ational amplifier together form the temperature measuring circuit in the
present experimental study. The calibration of the circuit involved the de-
termination of the response time and transfer function ! of the response time
of the whole circuit and the relationship between the voltage output of the
oscilloscope and the temperature of the measuring junction of the thin-foil

thermocouple.

!The ’transfer function’ is the ratio of the Laplace trasform of the output of a time-
varying physical linear system (e.g. temperature measurement circuit) to the Laplace
transform of its input.
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Determination of the response time and transfer function

It is a well known fact that a thermocouple of finite size cannot have an in-
finitely fast response because of the thermal inertia of the measuring junction.
Thus, it is necessary to determine the response time and transfer function of
the thin-foil thermocouple or, at best, for the whole temperature measure-
ment circuit. For this particular test the response time and transfer function
of the whole circuit was estimated.

By using the ruby laser device (the Holobeam Series 810 model) , the
response time and transfer function of the temperature measurement circuit
were determined. Figure 5.4 shows the arrangement for determining the
response time and the transfer function. Such response time and the trans-
fer function were determined by following this procedure. Firstly, connect
the thermocouple from the DCB specimen to the temperature measurement
circuit and by using the aiming device insure that the laser beam hits the
thin-foil thermocouple mounting on the DCB specimen. The firing of the
ruby laser began with the turning on of the switch for the cooling water cir-
culation pump for the laser head. Set a power level of the laser device at 0.85
kv which is equivalent an energy output of 30 Joules. Fire the laser beam
and record both the output of the temperature measurement circuit and the
pulse signal which was used to trigger the laser head. These signals were
recorded by an oscilloscope. The recorded pulse for triggering marked the

starting point of the temperature rise and the output of the circuit had the
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time delay due to the thermal inertia of the thermocouple. A typical output
curve is shown in Figure 5.6(b). It was estimated from Figure 5.6 that the
response time ' was approximately 0.6 ms. More importantly, this output
curve was used to calculate the transfer function of the circuit which can be
served to convert "observed” readings of temperature into ”true” readings of

temperature. (See Section 6.5.2 and Appendix B).

Calibration curve

The output recorded by the circuit for temperature measurement was a volt-
age signal. The task of the calibration was to establish the relationship of
output voltage versus temperature. The principal layout for this calibration
1s shown in Figure 5.7. When the DCB specimen shown in Figure 5.7 was
heated by an infrared light which was used as a controllable heat source, the
temperature reading in region A of the specimen was observed by using a
thermocouple digital thermometer (Model 115 KC by Omega Co.) with two
thermocouples of standard K-type. On the condition that the temperature
reading of the digital thermometer was stable, the temperature of the mea-
suring junction of the thin- foil thermocouple was considered to be the same
as the reading of the digital thermometer. Meanwhile, the output voltage of
the circuit was recorded synchronously. As a result, the temperature reading

of the digital thermometer and the output voltage of the temperature mea-

'Response time is defined as the time required for the sensor output to reach 63.3 per
cent of the total change following a step change in monitored temperature.
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surement circuit formed a point on the calibration curve, and the calibration

curve was thus drawn up.The calibration curve is indicated in Figure 5.8.

5.3.2 Calibration of the circuit for measuring impact
force

This calibration was carried out by means of the same arrangement as the
actual experiment. The circuit for measuring impact consisted of the strain
gage bridge, the amplifier and the digital oscilloscope. Also, the strain gage
fixed on the surface of the DCB specimen formed an arm of the above bridge
of this circuit. When loading was applied to the DCB specimen during either
the actual experiment or the calibration, the signals from the bridge were

amplified and recorded in the same way.Therefore,the calibration procedure

for the circuit is described as follows.
o Connect a standard load cell direct with the DCB specimen.

¢ Gradually apply a static force on the system by using a hydraulic load-

ing device.

e Record both the output voltage of the circuit and the force reading of
the loading cell,every 250 kgf (2.45 kN) until 5000 kgf (49 kN).

Consequently, the calibration curve of the impact versus the output voltage
of the strain gage circuit was plotted. The calibration curve is displayed in

Figure 5.9.
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5.4 Experimental Procedure, Results and Er-
rors

5.4.1 Experimental procedure
Alignment of the split Hopkinson bars and wedge

It is necessary to align the axis of the striker and incident bars of the SHB
system as well as the wedge by means of a horizon and a clearance gauge.

The alignment was carried out as follows:

1. Insure that the pneumatic gun is on a horizontal plane by using a
horizon gauge. At this point the axis of the striker bar within the gun
should be on the same horizontal plane because the striker bar was

co-axial with the axis of the gun.

2. Make the striker bar contact the incident bar, and then measure the
clearances between both the end surfaces on the top and the bottom

positions of the circumference.

3. Turn the incident bar about 180 degree and repeat the measurement

for clearances at the second step.

4. Move the axis of the incident bar by means of the adjusting screws on
the bearings in order to decrease the differences between both groups

of the measured clearances at Step 2 and 3.

107



5. Repeat the above steps until an acceptable difference of clearances (~
0.20mm) is obtained. The alignment of the striker and incident bars

can then be considered acceptable.

6. Align the wedge in a similar manner.

Grounding and shielding of conductors

It should be noted that the reliable grounding and shielding of wires are
very important measures for decreasing noise level. Therefore, only shielded
ground wires were selected,and the grounding was checked by using a digital

multimeter before the firing of the striker bar.

Test procedure

The sequence of the actual performance of the shock test on the DCB spec-
imen was: set the required time scale and the triggering level of the digital
oscilloscope; set the gain of the amplifier; turn on the computer system;
fire the striker bar; store the signals shown on the screen in a minidisk;
and finally get a hard copy of the output from the computer . To check
the triggering level,the firing pressure of the pneumatic gun was first set at
~~ Gpsig(41.4kPa) and then an appropriate triggering level of the data ac-
quisition and record system can be assessed. The firing pressure was then
adjusted before the desirable pressure was switched on. After setting this

pressure, the vacuum pump was turned on and the striker bar was "sucked”
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back to a firing position. The actual firing pressure level was set at 15 psig

(103.4 kPa).

5.4.2 Typical results

Typical experimental records of the impact force and corresponding temper-
ature rise are shown separately in Figure 5.10 to 5.12. The curve shown
in Figure 5.10 represents the dynamic force history at the location of the
strain gage. The high frequency components reflects the pattern of stress
waves passing through that point. From these figures it can be seen that the
maximum impulsive force is approximately 43 kN;the duration of the impact
1s 2.67 ms; and the maximum temperature rise is 12.2°C. The error ranges
in the impact force measurement and the temperature measurement were

estimated at £1.5kN and £2.5°C, respectively.

5.4.3 Discussion of errors

When making surface temperature measurements with thermocouples at-
tached externally, the physical situation permits at least two Interesting
statements. (a) The thermocouple junction may not be at the same tem-
perature as the solid at the location of the thermocouple junction. (b) The
temperature of the solid, at the location of the junction, may be affected
by the presence of the thermocouple. Therefore, it is necessary to discuss
and estimate the approximate analysis of and correction for the errors in the

experiment.
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The errors in the temperature measurements result from the presence of
the thermocouple for the reasons stated above. There are several other causes
for errors but the more significant ones during this temperature measurement

are:
o Thermal inertia of the thermocouple,

o heat loss from the extension lead wires of the thermocouple to the

surroundings,

e imperfect contact between the thermocouple and the surface of the

specimen,

o thermal constriction in the specimen to which the thermocouple is at-

tached.

A number of methods and simplifying assumptions have been utilized in
accounting for these errors. Singh and Dybbs [89] described an analysis
of the error caused by conduction when there is an arbitrary temperature
distribution in the solid along the sensor which is modeled as a cylindrical fin.
Keltner and Beck [90] developed the mathematical models for the response
of surface mounted thermocouples on a thick wall. These models account for
the significant causes of errors in both transient and steady-state responses
to changes in the wall temperature. In principle, using these models can help

to develop an appreciation for the errors in the temperature measurements.
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However, the interactions between the thermocouple, the specimen and
the ambient air are so complex that it is, for all practical purposes, impossible
to calculate the exact error. At best, the error could be estimated to an order
of magnitude or a range by employing assumptions. The ASTM Specification
E230-77 suggests the standard limits of error for K-type thermocouples as
£2.2°C or +0.75% or the special tolerances of +1.1°C or +0.4%, whichever
1s greater, for the temperature range of 0 to 1250°C. As described previously
and in [88], the use of an operational amplifier in the data acquisition system
considerably improved the accuracy and the resolution of the present tem-
perature measurements with the thermocouple, which thus resulted in the
maximum deviation of 0.3°C. In conclusion, the error range 1n the present
temperature measurements may be estimated from +1.4°C to +2.5°C.

When making the impact force measurements with the method men-
tioned in Section 5.3.2, the errors in the measurements result from the fol-
lowing causes for errors. (a) The output voltage of the measurement circuit
may contain a noise component. The accuracy of the data acquisition sys-
tem is estimated as 0.5 percent of full scale. (b) The force reading of the
loading cell during the calibration may include an error of approximate 0.5
percent of full scale. (c) It can be seen from the calibration curve (Figure
5.9) that there exists a stationary drift of the approximate 12 mv or 30 kgf.
Therefore, the resultant error range in the present force measurements may

be estimated from +0.3kN to +0.7kN.
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Chapter 6

NUMERICAL
ILLUSTRATION OF THE
EXPERIMENTAL CASE

6.1 Introduction

Temperature rises in cracked plates due to the coupling effect have been
measured as described in Chapter 5. The finite element computer code
DCTEPSA with the numerical modeling technique presented in Chapter 4
will be employed in the analysis of the foregoing experimental case. This
chapter will discuss these analytical results. The main concern of this study
was the role of the instantaneous coupling effect on a fractured solid, the
DCB specimen, under dynamic loading. Therefore, the force history ap-
plied to the DCB specimen which has been measured in the experimental
case was used as the input force data of the finite element analyses. Two

cases, with coupled and uncoupled considerations, were analyzed by using
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the DCTEPSA code. The influence of the coupling effect on the histories
of the displacements, velocities, accelerations and temperatures at the three
positions along the crack extension line, and on the stress and strain distri-
bution ahead of the crack tip will be discussed by comparing both the results

in the uncoupled and coupled considerations.

6.2 Description of the Problem

The dimensions of DCB specimen is defined in Figure 5.3. The geometry
of the DCB specimen is a two-dimensional thin plate, because the ratio of
the thickness over a characteristic dimension is less than 1/10. Also, the
DCB specimen was subjected to an applied impulsive force, L(t), which was
measured, and this load pulse may be considered to be uniform along the
thickness of the DCB specimen. Consequently, this specimen was assumed
to be in a plane stress condition.

Further, due to this plane stress condition, the plastic zone ahead of the
crack tip and, thus, the plastic dissipation can be considered to be uniform
along the thickness of the DCB specimen. In other words, the distribution of
the dissipation or the coupling term in the coupled heat conduction equation,
Eq.(3.34), is independent of the thickness coordinate. Furthermore, the heat
transfer boundary condition in this case may be considered to be in a plane
heat conduction condition. This is due to the facts that the out-plane heat

transfer of the DCB specimen is mainly caused by free convection heat trans-
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fer at room temperature with a very small heat transfer coefficient, and that
the duration of the whole loading process is of the order of three milliseconds
and thus this out-surface heat loss is negligible. Therefore, the temperature
distribution within the DCB specimen is a two-dimensional field.

At this point, one more question which must be answered is the choice
of either a static or a dynamic analysis (i.e., of including or neglecting
acceleration-dependent inertia forces in the analysis) to be used in the present
case. Generally speaking, such choices are usually made by engineering judg-
ment. However, it should be noted that the assumption of static analysis in
some cases may result in meaningless solutions. For example, in nonlinear
analyses the effect of neglecting the inertia forces may be so severe that a
meaningful solution may be difficult or impossible to obtain [54, pp.499)].
The nonlinear nature of the present case, therefore, was the prime reason for
selecting a dynamic analysis.

Moreover, this choice of dynamic analysis in the present case is sup-
ported by the significant difference between the maximun stresses obtained
from both static and dynamic analyses. This difference can be estimated
by using an example of a simple one-dimensional model. In this model the
magnification factors which are defined as the ratio of the maximum dynamic
stress to that of the static one can be expressed as a function of the value
of the ratio,ty/7;, where the ¢ is the time duration of the applied impulsive

force and the 7y is the fundamental or the first natural period (i.e. the recip-
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rocal of the first natural frequency) of the model [94]. The ratio t4/7; in this
case can be calculated as follows. From Figure 6.2, t4 is equal to 2.57ms. To
calculate 7, we may assume that the DCB specimen can be simplified as a
model of a cantilever beam with constant cross section acted on by a lateral
force. Then the fundamental period of the model can be estimated from the

classical beam theory [93], i.e.

T 4 . 4
or  ml o \/ 0.05403 x 9 — 0.99ms

nE 1.8752V EI - 1.8752 Y 2.06 x 108 x 100 x 9.80 x 11.39
(6.1)

As a result, the ratio t4/m is equal to 11.6. The magnification factors ver-
sus the ratios t4/m have been depicted in Fig. 2-5 of reference [94].Con-
sequently,the magnification factor of 1.9 was obtained from that figure by
using tg/m1 = 11.6. This indicates that in the present case the maximum
stress given by a dynamic analysis may be 1.9 times that given by a static
analysis. Therefore, a dynamic analysis is necessary for the present case.
On the whole, the problem can be defined in terms of coupled dynamic

stress analysis of a two-dimensional fractured solid body.

6.3 Material Properties

The DCB specimen was made of low carbon steel, AIST 1018. The uniaxial
tension, stress-strain curve of this material at room temperature, which was
tested at the metallurgical laboratory in University of Manitoba, is shown in

Figure 6.3. This curve may be approximately described by the Hsu-Bertel’s
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Table 6.1: Elastic-plastic Properties of AISI 1018 Steel

Property Symbol Data | Unit
Young’s modulus E 206,000 | MPa
Plastic tangent modulus Er 5,220 | MPa
Yield strength oy 234 | MPa
Curve shape parameter n 10.0

polynomial constitutive relation, Eq. (4.56). The corresponding elastic- plas-
tic properties taken from this figure are given in Table 6.1. Also, the Pois-
son’s ratio was read as 0.25 from a source book [92]. The thermal properties
were determined from the same book [92]. Table 6.2 summarizes the ther-
mal properties used in the analysis. Also, the temperature dependence of
the mechanical properties for this AIST 1018 steel [92] is listed in Table 6.3.
The relationship between crack growth resistance and crack extension for low
carbon steel has been given in Section 3.1. (See Eq.(3.11)).

The plastic dissipation factor, A in Eq.(3.34), of AISI 1018 steel can
be estimated from Eq.(3.22) by substituting the material properties and ¢

which is equal to f_l(f_/:‘)’ = 3.60. (See Appendix A). Therefore, A = K(IELZLEE—;E)—' =

140.25)x3.60x5220 __ ~
(LE025)x380X5220 — 0.116 = 0.12.
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Table 6.2: Thermal Properties of AISI 1018 Steel

Property Symbol | Temperature (°C) Data Unit
Thermal conductivity k 20 65.2 W/m*K
100 60.2 W /m*K
200 55.0 W /m*K
Specific heat C, 20 0.450 kJ/kg*K
100 0.452 | kJ/kg*K
200 0455 | kJ/kg*K
Thermal diffusivity a 20 1.850 x 107% | m?/sec
100 1.700 x 10-5 | m?/sec
200 1.543 x 107° | m?/sec
Thermal expansion a 20 11.9 x 10~ 1/°C
100 125 x 1076 | 1/°C
200 13.8 x 10°° 1/°C

Table 6.3: Temperature Dependence of Mechanical Properties

Property Symbol | Temp. (°C) Data | Unit
Young’s modulus E 20 206,000 | MPa
100 202,800 | MPa
200 201,200 | MPa
Plastic tangent modulus Er 20 9,220 { MPa
100 5,200 | MPa
200 5,140 | MPa
Yield strength oy 20 234 | MPa
100 208 | MPa
200 156 | MPa
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6.4 Finite Element Model
6.4.1 The mesh

A finite element model of the specimen is shown in Figure 6.1(a), with the
details of the refined mesh surrounding the crack tip given in Figure 6.1(D).
Due to symmetry in the geometry and boundary conditions with respect to
the crack plane, only one half of the plate needed be considered. A total of
124 eight-node isoparametric elements were used together with 476 nodes. In
order to minimize the possible discretization effects, singular elements were

adopted in the vicinity of the crack tip. (See Fig.6.1(b)).

6.4.2 The boundary and initial conditions

The force boundary condition is:

Lx = f(t)sind at the point p

Ly = f(¢)cos? at the point p (6.2)

where the {(t) is the given force history shown in Figure 6.2 and is applied
at the point p (its coordinates are z = 0.016m,y = 0.020m.) with the
inclination ( ¥ = 12.5°) from the y axis. (See Figure 6.1(a)). The curve
f(t) shown in Figure 6.2 was the time average of the measured force history
depicted in Figure 5.10. Since the input force history is close to an impulse
wave with no wave reflections, a time-averaging scheme of F 1gure 5.10 was

thus considered to be a reasonable approximation to the input driving force
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history for the finite element analysis.

In the following, the x- or y-components of the initial displacement,
velocity and acceleration vectors, and the initial temperature are denoted by
Uo, Vo, Uo, Vo, o, Vo,and T, respectively. The initial conditions in this

numerical case are:

u, = 0
vo = 0
. azp if at the point p
uo = -
0 otherwise
. a,, if at the point p
VO juned .
0 otherwise
T, = 20°C (6.3)

where a,, and a,, are the respective x- and y-components of the accelera-
tion vector at point p. These quantities can be solved from the equilibrium
equations, Eq.(4.32), at time ¢ = 0 and the given load applied at the point
p-

The thermal boundary condition is:
q-n=0 (6.4)

on the entire surface , in which n is the outward normal vector. In fact, this

1s an adiabatic boundary condition.
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Finally, the specimen material was assumed to be in a virgin state.

6.4.3 Integration time step

Mathematically speaking, the collocation method, one of the 1mplicit direct
integration schemes, is unconditionally stable with increasing accuracy as the
integration time step decreases. On one hand, large integration time steps
tend to introduce numerical errors and, in the limit, the dynamic analysis
with an infinitely large time step degenerates into a static analysis. But,
on the other hand, small integration time steps mean more computation
and higher truncation and round-off errors. Therefore,the time steps in real
computer analysis must not be too small. In brief, an appropriate time
step should be the size that is necessary to obtain acceptable results. The

following applicable conditions were taken account in the time-step selection.

1. Resolve the Input Force Curve - The integration time step (ITS) must
be small enough to characterize the input force curve. The smaller
the ITS, the more closely the input curve will be followed. If an input
curve 1s to be reasonably followed, it is recommended that at least 7
integration points occur along the shortest ”length” side [91]. In the

present case, 0.3 ms resulted from this guide. (See Figure 6.2)

2. Wave Propagation - In Section 4.7.2 the limit of ITS from this con-
sideration has been discussed in detail. The longitudinal elastic wave

speed in the present case is given by ¢, = VE/p = 5139.1mm/ms.
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The minimum element size in the mesh is 0.2 mm. From Eq. (4.59),
the ITS should be approximately 0.4 us. As a result, a disturbance
traveling at the wavespeed during a time step of 0.4us does not extend

over the region of an element.

. Ensure an accurate integration of the response in the fundamental pe-
riod - The definition of the fundamental period and the value of 0.22m.s
in the present case have been described in detail in Section 6.2. Gener-
ally speaking, the ITS can be taken as one fiftieth or hundredth of the

period [72],i.e. 2 ~ 4pus.

. Ensure an accurate loading increment for the plastic analysis. The limit
of ITS from this consideration has been discussed in Section 4.7.1. In
the present program, the ITS can be automatically varied as needed by
the plastic or elastic analysis. Numerical experiments have indicated
that the plastic analysis imposed the strictest restriction on the ITS at
the peak period of loading. The corresponding ITS decreased to 0.02us

due to yielding in the vicinity of the crack tip.

Obviously, the minimum of the above requirements i.e. 0.02us for the ITS

should be used in the present finite element analysis. However, this very

small time step resulted in an integration of about 20,000 steps which need

a CPU time of approximately 25 hours on the main frame computer at the

University of Manitoba. The Computer Center at the University discourages
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any job more than 10 minutes of CPU time. In order to overcome this
difficulty, the DCTEPSA code provided the function of a "computing pause
and restart” scheme. Accordingly, the entire analysis can be completed by

approximately 150 job submissions.

6.5 Numerical Results

This numerical study is presented to illustrate the significance of the ther-
momechanical coupling on a fractured solid subjected to dynamic loading.
In this study two approaches were used to analyze this experimental case as
described above. One is the uncoupled approach by which the coupling effect
was neglected, and the degree of freedom at a node in the finite element mesh
was taken as two, i.e. the x- and y-components of the displacement. The
other is the coupled approach by which the coupling effect was taken account
and a degree of freedom of three was assigned for each node, i.e. the two
displacement components and the temperature.

Results obtained from both the approaches are compared graphically as

follows.

6.5.1 Crack driving force

The crack driving force is generally referred to as the strain energy release

rate [39]. For dynamic loading conditions, the crack driving force, G, is
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defined as

. AW - AU - AT
O=lm T A (©3)

where the Ac is a crack extension, W and U denote the external work done
on the solid body and its elastic energy, per unit thickness, respectively, while
T denotes the kinetic energy in the solid body per unit thickness.
Exploiting the beam-like character of this DCB specimen, Kanninen and
Popelar [39] derived the following equation for establishing the crack driving

force:

G = 2E(w?/h)oe (6.6)

where w is the vertical displacement of the geometric centerline of the arm
of the DCB specimen during dynamic loading, h is the height of this arm
(h = 50mm in the present case) and c is the crack length. Also, Kanninen
and Popelar stated that the predictions of this equation are in excellent
agreement with more exact approaches [39, pp.243]. Eq.(6.6) was used in
this study, because it is simple and accurate and, thus, decreased the CPU
time for the present analysis.

The numerical results of the crack driving force in the two cases by using
the uncoupled and coupled approaches are shown in Figure 6.4. Based on

this Figure, the following points can be made.

o The maxima in the two cases all are less than the critical value,90kJ /m?
[66]. Therefore, the crack does not grow, i.e. there was no crack exten-

sion during the dynamic loading.
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o The difference of the maxima between the two cases is small,and the
three main peaks of the crack driving force history obtained by using
the coupled approach are always slightly higher than that obtained by

using the uncoupled approach.

® The modes of the crack driving forces in the two cases are almost the

same during this whole process.

6.5.2 Temperature change
At the crack tip

The results of the temperature change at the crack tip are shown in Figure
6.5(a). No temperature change can be obtained by using the uncoupled ap-
proach. This figure revealed a very obvious effect of the thermomechanical
coupling. Also, the maximum temperature rise at the crack tip was approxi-
mately 16°C, i.e. the temperature at the crack tip was 16°C higher than the

bulk temperature of the plate.

Along the crack-line

The temperature distribution along the crack-line ahead of the crack tip is
shown in Figure 6.5(b). It can be seen from this figure that the temperature
rise due to the coupling effect was a local phenomenon, as expected. Physi-
cally, it suggested that the coupling effect mainly occurred in the vicinity of

the crack tip.
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A comment on the temperature rise

The above temperature rise seems to be small. However, whether this local
temperature increase is considered ”small” or "large” depends on its effect
on the fracture behavior. Accordingly, for the moment,consider an example
in which a special situation may result in great significance for fracture be-
havior. Assume that the bulk temperature of a structure, e.g. the hull of an
icebreaker, made of A517-F steel is exposed to a cold environment at —40°C
which just falls into the brittle-ductile transition temperature range of this
steel. Further,its dynamic critical stress-intensity factor is in the neighbor-
hood of 75 MN - m~=%/? from the curve of dynamic K. versus temperature
established in [33] which was obtained by shifting the actual slow-bend K,
curve to an appropriate higher temperature region. (See Figure 6.39). Now,
if a temperature rise of 16°C at the crack tip due to the coupling effect,
such as computed from the foregoing case, would be taken into account, a
significantly higher dynamic critical stress-intensity factor of ‘1 10 MN -m~=3/?
was read from the preceding curve of dynamic K. versus temperature shown
in Figure 6.39. Such a rise in the dynamic K. value would certainly affect
the fracture characteristics of that structure. This problem will be further

discussed in Section 6.6.
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Comparison with measurement

It is a well-known fact that a thermocouple of finite size cannot have an
infinitely fast response, because of the thermal inertia of the measuring junc-
tion. Thus the "observed” readings must be converted into ”true” readings.
To the best of the author’s knowledge, this conversion is a difficult task, and
only a few references [96,102,103] deal with this issue. The authors of these
papers all adopted the Laplace transform technique. The transfer function of

a thermocouple circuit is defined in a transformed variable as Gp(s) = —ZBJ(%.

,;] 3

It is shown analytically in [96] that

Gr(s) = - :‘_TCT (6.7)

where ar and cr are constants, the values of which depend on the particular
thermocouple installation. This simplified transfer function for the thermo-
couple permits the calculation of the actual surface temperatures from the
thermocouple readings. Because, however, the values of ar and ¢r are differ-
ent for each thermocouple circuit, it is necessary to experimentally measure
these values in each case. This is done by the following procedure which re-
quires a special device and technique [96]. Firstly, an electric current with a
step change generated by a special device is applied through a test section on
which the thermocouple is installed. Secondly, the resulting response of the
tested thermocouple is recorded. Thirdly, a developed technique is used to
calculate the theoretical ramp change in temperature produced by the step

change in the current through the test section under an adiabatic condition.
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Fourthly, the theoretical ramp change in temperature and the measured ther-
mocouple change in temperature are together depicted in the same figure.
Then from the figure, the graphical determination is performed to evaluate
the constants of the thermocouple. Finally, the obtained value of Gr(s)
can be used to calculate the true surface temperature from any measured
thermocouple readings by an inversed Laplace transform, i.e. £7! g’;i(%.

In the present experimental conditions the above method for producing a
ramp temperature change has been modified. The theoretical ramp change in
temperature was approximately produced by an existing ruby laser device.
Appendix B gives the details of the calculation by which the ”observed”
temperature readings were converted into "true” temperature history at the
measured point. Generally,the measuring junction of a thermocouple is re-
garded as a point. The output of this thermocouple is considered to describe
the temperature in a position of this measuring junction. The temperature
obtained from the output is probably an average over the area covered by
this measuring junction. The foil-thermocouple used in the present study has
a measuring junction of 0.37 x 0.5mm?. (See Figure 5.6(a)). This junction
was welded on the surface of DCB specimen,and it approximately covered
the nine nodal points in the finite element mesh. (See Figure 6.6). Itisa
well known fact that the Peltier emf (electromotive effect) produced by the
welded seam of thermocouple junction is the main contribution of thermo-

couple output emf. Therefore, temperatures at points in the vicinity of the
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welded seam of the junction would be close to the temperature measured
by the thermocouple. Based on this judgement, the results of finite element
analysis at the four nodal points (i.e. points a,b,c and d shown in Figure
6.6) were compared with the "true” temperature history measured by the
foil-thermocouple. Figure 6.6 shows this comparison. It can be seen from

Figure 6.6 that

® The patterns of these curves are similar: they show a decrease of tem-
perature in the initial stage, and then pass through points of inflection
to be followed by a rapid temperature rise until reaching maxima, and

then gradually slope downwards.

e These curves come for a duration up to 1.6 ms, and then diverge. The

maxima of these curves, however, are of the same order.

o The analytical curves rise more steeply than the measured curve. There-
fore,it may imply that the response of the foil-thermocouple is still not
fast enough. But it may also imply that the conversion of mechan-
ical energy into heat needs time which was not taken account of by
the coupled thermomechanical analysis. This is a worthwhile future

investigation.
6.5.3 Displacement, velocity and acceleration

Figures 6.7 to 6.15 depict the histories of the displacement, velocity and

acceleration at the crack tip, Node #93 (0.4c, apart from the crack tip,
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where the c, denotes the crack length) and #185 (1.5¢, apart from the crack
tip) for the uncoupled and coupled cases, separately. Basically, the small
differences in the displacements and velocities of the uncoupled and coupled
cases were revealed from these figures. However, there were major differences
in the accelerations at the crack tip between both cases. From Figure 6.9 it
can be seen that the difference of acceleration between the uncoupled and
coupled cases after 1.5 ms is very large. The results by using the coupled
approach represent considerable dissipation of energy, and the results by
using the uncoupled approach represent no dissipation of energy. This fact is
reasonable, because the coupling terms are equivalent to energy dissipation
terms and play a damping role, and just at the crack tip the coupling terms

reached 2 maximum.

6.5.4 Effective strains and stresses

There were the four singular elements around the crack tip. (See Figure
6.1(b)). The DCTEPSA code printed out the strains and stresses at all the
sampling points in all elements. The coordinates at some Gauss’ quadrature
sampling points shown in Figures 6.16 to 6.35 are listed in Table 6.4. Note
that the coordinates at the crack tip are z = 90.00mm,y = 0.00. Figures
6.16 to 6.31 illustrate the histories of the effective stresses and strains at the
sampling points No. 3 and 4 in the four singular elements, separately. It can
be seen from these figures that, after 1.5 ms, the effective strains and stresses

in the coupled case are usually greater than that in the uncoupled case.
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Table 6.4: The coordinates at the eight sampling points

Element No. | Sampling Point No. | x (mm) | y (mm)
1 3 90.04 0.03
1 4 90.04 0.008
2 3 90.01 0.04
2 4 90.03 0.04
3 3 89.89 0.04
3 4 89.99 0.04
4 3 89.96 0.008
4 4 89.96 0.03
13 3 93.42 2.70
13 4 93.42 0.72

Compared with the temperature history at the crack tip shown in Figure
6.5, both of the variations coordinated in time. Obviously, the temperature
rises in the vicinity of the crack tip due to the coupling effect exerted a
marked influence on the strains and stresses. Also, the above figures show
that this influence in the elements No. 1 and 2 ahead of the crack tip is rather
larger than that in the elements No. 3 and 4 on the crack surface, as expected.
Furthermore, the output data in the neighboring elements revealed that these
differences between the uncoupled and coupled cases declined considerably
beyond the scope of a distance 5 millimeter from the crack tip, as shown in
Figures 6.32 to 6.35. In other words, the coupling effect is definitely a local

phenomenon.
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6.6 Discussion and Summary

The motivation for this thesis is to illustrate that the coupling effect might be
strong enough to influence the fracture characteristics of structures, partic-
ularly when they are subjected to high loading rates. In conventional cases,
the crack toughness of structural materials, particularly steels, increases with
increasing bulk temperature and decreasing loading rate [33]. These two
general types of behavior are shown schematically in Figures 6.36 and 6.37.
Figure 6.36 shows that K. increases with increasing bulk temperature of the
specimen. Figure 6.37 shows that, at a constant bulk temperature, higher
loading rates generally result in lower values of the fracture toughness of
materials. Also, the trend revealed by Figure 6.37 is that fracture tough-
ness shows a monotonic reduction with loading rate. An explanation for this
phenomenon lies with the elevation of flow stress curve with strain rate.

However, Klepaczko (1982) [95] observed a minimum in the fracture
toughness spectrum of carbon steel (0.45 % carbon) when employing a load-
ing rate scale of parameter K, which is frequently used to characterize how
fast the crack tip region is loaded. (See Figure 6.38). It is, therefore, log-
ical to consider the thermofracture coupling effect as a possible factor in
explaining the above experimental results presented by Klepaczko, because
the coupled effect involves both temperature and loading rate effects.

As described in the preceding section, the measured temperature rise

of 16°C at the tip of a stationary crack under the conditions of dynamic
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loading in the present study may be considered to have a significant influence
on the fracture toughness of the material. Therefore, the coupling effect
would become a very important factor in the case of evaluating the fracture
toughness spectrum of material such as shown in Figure 6.38.

For the moment, let us assume, firstly, that a local heating at the crack
tip to a temperature T will result in a behavior similar to that of a specimen
at a uniform bulk temperature T;. On the one hand, it is generally observed
that increasing the temperature of a notched specimen increases the fracture
toughness for a given loading rate. (See Section 6.5). On the other hand,
as the loading rate is increased, the toughness usually decreases for a given
temperature.

From the coupled heat conduction equation (3.34), it shows that:

o The plastic dissipation term, (1 — A)o;€L;, increases with increasing

strain rate.

 The strain rate increases with increasing crack speed, ¢, so that the

other coupling term, (G — 27)é8(r — ro), also increases.

® The rise in temperature of the crack tip thus becomes more significant
when the above two coupling terms increase because these two terms
are equivalent to internal heat sources involved in the heat conduction

equation.

o The fracture toughness, therefore, increases with increasing tempera-
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ture of the crack tip.

Accordingly, the curve published by Klepaczko [95] can be explained
from the coupled theory in the following way. In a region of lower loading
rate, the increment of toughness due to the temperature rise may be less
than the decrement due to the loading rate, and thus the curve would firstly
slope downward as shown in Figure 6.38. When both effects become equal
In a certain region at certain instants, the curve reached the minimum point
of the curve. Further increasing the loading rate would result in an upward
sloping segment of the curve. In brief, this shapes the curve form measured
by Klepaczko. Moreover, it is expected that Klepaczko’s curve finally slopes
downward, following the above upward sloping segment, because the temper-
ature rise at the tip of the crack in the specimen is close to or has attained
the melting point of the material, as presented in the example of titanium
alloy experiment described in Chapter 3.

In conclusion, if one considers the influence of loading rate and the tem-
perature rise due to the coupling effect at the crack tip,which increases with
loading rate, there will be a pair of opposing effects acting simultaneously
on the fracture toughness. It would be possible to explain a pattern in the
measured curve of fracture toughness versus loading rate as demonstrated
by Klepaczko [95]. This pattern was difficult to explain by conventional

analyses.
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Chapter 7

CONCLUSIONS AND
RECOMMENDATIONS

7.1 Summary and Conclusions

An experimental procedure and corresponding uncoupled and coupled finite
element analyses have been presented. The experimental investigation in-
cludes the following major activities: the preparation of DCB specimens, the
alignment of the experimental set-up, the calibrations of circuits for tem-
perature and force measurements, the determination of response time and
transfer function of the circuit for temperature measurements, the €Xperi-
mental observation of transient changes in temperature and impulsive forces
and the conversion of the observed temperature readings into ”true” read-
ings. All these activities were necessary for the measurement of the coupling
effect on a fractured specimen subjected to impulsive force. Also, this mea-
surement of impulsive force provided the input data for the subsequent un-

coupled and coupled finite element analyses which were carried out by using
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the DCTEPSA program. This code contains the following major elements:
algorithms to account for three degrees of freedom at nodes; the singular
elements for crack tip deformation fields; the constitutive equation for ther-
mal elastic-plastic deformation of solids under dynamic loading; the coupled
heat conduction; the optimal collocation methods for performing time inte-
gration; the temperature dependent properties of materials; the pause and
restart function of the analysis; the automatic control of time step size and,
finally, the mixed coupled-uncoupled algorithm for saving computational ef-
fort which can be performed by assigning the three degrees of freedom to the
nodes in the regions of desired coupled analysis (e.g. in the crack zone), and
assigning the two degrees of freedom (i.e. keeping x- and y-component of
displacement only) to those nodes in the regions of uncoupled analysis (e.g.

away from the crack zone). This program leads to the following features.

o The program has the capacities of performing 2-D ( or 3-D axisym-
metric ) quasi-static or dynamic coupled thermoelastic-plastic stress

analyses for fractured solids.
o The program includes a transient heat conduction analysis.

e The program can conduct analyses of static or dynamic uncoupled

thermoelastic-plastic stress for fractured solids.

e The program can perform a mixed coupled-uncoupled algorithm ,re-

sulting in high computational efficiency.
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o The program can thus predict the coupling effect on 2-D fractured

solids with a stable crack under dynamic loading conditions.

Significant observations were made on the temperature rise and damp-
ing of acceleration change in the vicinity of crack tip through experimental
and analytical case studies performed on a DCB specimen subjected to an
impulsive force. A number of these observations have never been reported
before in the published literature. The role of the coupling effect on fractured
solid was also investigated. The major conclusions which can be drawn from

the present research are as follows.

1. The coupling effect on a fractured solid subjected to an impulsive force

is considerable in comparison to the same effect on unfractured solids.

2. The inherent coupling effect increases the temperature in the vicinity
of a crack tip. This rise in temperature is significant enough to influ-
ence the fracture toughness, especially when the temperature of the

fractured solid is close to the brittle-ductile transition temperature.

3. Neglecting the coupling effect in some dynamic fracture analyses may
lead to under estimations of the crack driving force, the effective stresses
and strains in the vicinity of the crack tip, and over-estimations of the

velocity and acceleration fields in the vicinity of the crack tip.

4. There were no significant differences between entire stress and strain

fields obtained from the coupled and uncoupled analyses under the
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loading and geometric conditions in the present studies.

5. The coupling, in combination with the loading rate effect on the frac-
ture toughness of material, can be used to explain the specific pattern

of fracture toughness versus loading rate measured by Klepaczko [95].

6. The dynamic coupled, thermofracture analysis by the finite element

code is a feasible approach.

Major contributions were made in this thesis research as can be summarized

as follows:
o The extension of thermomechanical coupling theory for fractured solids.

o The derivation of a new coupled heat conduction equation to account

for the Thermofracture Coupling Effect (TFCE).

o The development of DCTEPSA computer code which has the following

unique features
1. It is capable of performing coupled dynamic thermoelastoplastic
analysis of fractured solid.

2. All nodes possess three degrees of freedom (two displacement com-

ponents and temperature).

3. A mixed uncoupled-coupled algorithm was developed.
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e The proposition of an experimental arrangement for measuring tem-

perature rises in fractured specimens subjected to impact load.

e The development of an effective technique for determining the transfer

function of a foil thermocouple by using a ruby laser beam device.

7.2 Recommendations

The present study has extended the coupled thermomechanical approach to
the analysis of fractured solids subjected to impulsive forces. Results obtained
from this study have demonstrated that there is a stronger coupling effect on
a fractured solid than that on an unfractured solid. This approach provides a
good potential for further research in the area of dynamic fracture. With this
experience in hand, the following recommendations with regard to further

work in this area are in order.

¢ More experimental verifications are necessary for various loading rates
and stable crack extensions and, if possible, for unstable crack propa-

gation.

® The conversion techniques of "observed” temperature readings into the
: » n M .

corresponding “true” temperature readings need furthermore improv-

ing,especially for the cases involving rapid temperature variations in-

duced by very high loading rates.
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o The present coupled approach should be used to check the analyti-
cal results of dynamic fracture or thermofracture problems which were
customarily solved by the uncoupled approach. Present case studies
have already indicated the inadequacy of this traditional approach for

certain problems.

o Although it will be a quite complicated and expensive proposition, it
is desirable to implement a moving mesh algorithm given in [23] into
the present finite element code, which would permit more precise com-
putation and general application for the problems involving unstable

crack propagation.

® The energy dissipation mechanism and its time requirement in the frac-
ture process zone is necessary to develop a more precise model. Investi-
gations from a microscopic point of view of the dissipation mechanism

will be much needed.
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Appendix A

The Estimation of Plastic
Dissipation Parameter

The coupled heat conduction equation 3.34 in Chapter 3 contains a plastic
dissipation factor or parameter, A, which was defined as the ratio of the
rates of energy stored in the microstructure of the material resulting from the
conversion of the kinetic energy to the internal energy during an adiabatic
plastic deformation.process. (See Section 3.3). It will be shown in this
Appendix that this plastic dissipation factor for metals can be estimated

according to the following formula:

_ (1 +v)¢E!
A= (E — Er)

where E is the Young’s modulus and E/ is the slope of the plastic range of

(A1)

the stress-strain curve of the metal, and ¢ is a constant to be evaluated by
the dislocation theory.
The derivation of the plastic dissipation factor was based on the stored

energy which can be firstly estimated by using some results of material sci-
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ence. Literature on the topic of the stored energy of metals, either by exper-
imental or theoretical works, are abundant. Bever, Holt and Titchener [98]
summarized the progress of the research work on this topic up to 1973. They
indicated [98] that the basic analytical methods for estimating the stored en-
ergy was to apply the dislocation theory to compute the elastic strain energy
of the dislocations. There is, indeed, an abundance of experimental data
about the stored energy for various metals in the published literature. The
following formulae for the stored energy is given in reference [98]):

2

Es = 6155 (A2)
_ In(R/r,)
& o= (1= (A.3)

where G is the shear modulus, v is Poisson’s ratio, R is the dislocation cell
radius and 7, is the radius of the stress field of the dislocation core which i1s
taken as g with b being the Burgers’ vector.

Seeger and Kronmuler [99] calculated the stored energy from the model
of the dislocation arrangement assumed in Seeger’s theory of work harden-
ing.The formulae proposed by them have the forms:

2

B = tys (A.4)

& = 2m(2 - v)(0.776 + %m(& — 0.1159)) (A.5)

To

where n is the number of dislocations in each dislocation group and R, is

half the distance between dislocation groups of opposite sign.
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Bailey [53] computed the stored energy from the C-B-H ( Cottrel, Basinki

and Hirsch ) theory of dislocation. The formulae derived by him are:

E, = fs@‘ (A.6)
& = %(111(?)—%—1-%—111(%)) (A7)

where R is the radius of the volume over which the stress field of a dislocation
extends.
Kuhlmann - Wilsdorf [100] calculated the stored energy from their model

of the dislocation. The formulae derived by them are

o
E, = 544_5 (A.8)

£ = 4prl? (A.9)

where p is the dislocation density and [ is the average free length of a dislo-
cation.

Besides, some pheﬁomenological formulae for the stored energy were
obtained by experimental observations. For example, Bailey [53] stated that:

2

o
E, =17T— Al
74G (A.10)

for OFHC (oxygen-free high conductance) copper.
In brief, the stored energy can be expressed as E, = f% in which ¢
can be estimated from the foregoing formulae. It is well known that one

common way of describing the effect of the general stress and strain state
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of a material under a combined loading situation is by way of the "effective

stress”, o defined as follows:
o= (gaijlaijl)l/z (All)

Therefore, the formula can be rewritten as the following general form:

£ o
= —— A.
E 1G° (A.12)
and
B = L5 (A.13)
°2G
Because the plastic work rate is
wP = 5&° (A.14)

then A can be calculated by its definition, i.e.

A= E

wP

- L (A.15
- 2G 15)

where H/ = d&/de®, and is called the equivalent plastic modulus. It was

proved in [2] that
1

1

Hr = 3
El E

(A.16)

where E/ is the slope of the stress-strain curve of a metal. Substituting
Equation (A.14) into (A.13), one gets:

(14 v)EEr

e oy (A.17)
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which is Equation 3.22 in Chapter 3. For an ideal plastic metallic material,all
plastic work should be converted into heat, as Bridgeman [101] has pointed
out, i.e. the plastic dissipation factor A = 0. This is in agreement with
the result of the calculation from the above formula with Ef = 0 for this
material. For metals with a linear strain hardening behavior, the factor A
becomes a constant and may be considered as a material property, with E/
being constant in this case. Within small strain regions, most polycrystalline

f.c.c. (face-centered cubic) metals can be treated as this kind of material.
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Appendix B

Transient Surface Temperature
Measurements

A well known fact is that a thermocouple of finite size cannot have an in-
finitely fast response because of the thermal inertia of the measuring junction.
Thus the "observed” readings should be converted into "true” readings. The
present study adopted the method involving the Laplace transform technique
[96]. Therefore, the main task of the method is to experimentally determine
the two unknown constants, ar and cr, of a simplified transfer function of the
foil-thermocouple which was welded on the DCB specimen.This was possible

because this simplified transfer function can be expressed as:

Gr(s) = - j_TCT (B.1)

where s is the parameter of the Laplace transform. (See Section 6.5 and [96]).
This was done by the following procedure.
(1) The procedure for evaluating the transfer function required a theo-

retical ramp temperature change.In [96] this ramp change in temperature is
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Table B.1: The calibration of the ruby laser device

charged voltage | output energy

(volt) (Joule)
700 3.5

750 10.4

800 20.0

850 30.0

900 40.0

950 50.5

999 61.0

produced by imposing a step change in an electric current passing through a
test section under adiabatic conditions. In the present experiment ,however,a
ramp temperature change was approximately produced by using the existing
ruby laser device, the Holobeam Series 810 Ruby Laser System. Ruby is
formed when a small amount of Cr,05 is dissolved in sapphire, Al,05. Thus
a Laser beam of the wavelength 694.3 nm can be emitted by this device at
room temperature. Also, this ruby device is a pulsed energy-emitting source
with typical output energy levels of from less than 1 Joule to over 100 Joules.
The calibration of output energy was carried out by the Thermomechanics
Laboratory at the University of Manitoba. The related data is listed in Table
B.1. In the present experiment the charged voltage was set for 850 v and no
lens was used on the optical path. It was found that the laser beam emitted
by the ruby device had a circular section of radius 12 mm and a duration

of 3 ms. As seen from Eq.(B.2), an approximate ramp temperature change
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occured when the beam hit the test region of the foregoing DCB specimen
with the foil- thermocouple which was at the center of this test region. (See
Figure 5.4).

(2) The resulting response of the tested thermocouple circuit was trig-
gered by the fire trigger output of the ruby laser device and was recorded.

(3) An analytical expression for the temperature in an infinite sheet
subjected to an incident circular laser beam with the a Gaussian intensity
distribution was used to calculate the theoretical temperature change in this
test region under adiabatic conditions. The reference [102] has given this

expression in this case as follows.

el.t el,L 322 —172

=t = 51+t & o
2& (1) n’rixt nwz
;nz::l —~ exp(— 73 Jeos( 7 )] (B.2)

where ¢ is the emissivity, I, is the incident intensity of laser beam and I, =

Wiz in which A is the radius of the beam and P is the output energy, L is the
thickness of the sheet, p is the density, C is the specific heat, & is the thermal
diffusivity, K is the thermal conductivity, and z is the thick coordinate. It
can be seen from Eq.(B.2) that an approximate ramp change in temperature
can be produced on the surface of specimen, because the first term is the
main term and it is a linear function of time, t.

(4) The theoretical ramp change in temperature and the measured ther-

mocouple change in temperature are depicted together in F igure B.1. From

163



this figure the graphical determination is performed to evaluate the two trans-
fer function constants of Eq. (B.1). This depicted theoretical temperature
was based on the following data in the present case: z = L = 0.0lm (the
thickness of the specimen), K = 60.5 w/m°C and & = 18.5 x 107¢ m?2/s
(L, K,x have been given in Section 6.3), and I, = 2.4 x 10° w/cm? (cal-
culated from P = 30.0 Joules and A = 12mm) and € = 0.61 ( determined
based on the wavelength 694.5 nm of the laser beam and the material of the
specimen [102]). The two constants are: ar = 2.611/ms and e = 4.351/ms.
The ar/cr ratio is approximately 0.60. It was known from reference [96] that
the ratios commonly were of 0.47 to 0.65. Therefore, the transfer function is

_ ar _ 2.61
Gr(s) = s+ecr s+4.35 (B-3)

Finally, the Gr(s), Eq.(B.3), can be used to calculate the "true” surface

temperature, 7, from any measured thermocouple readings from

o, TB(S)
T, =L ———GT(S) (B.4)

where L7 denotes the inverse Laplace transfer operator. When solving for
Ti, the measured curve, T, can be approximated by an appropriate mathe-
matical expression which can be obtained by using a curve-fitting technique
such as polynomial regression with least square fit. In the present study the
measured temperature curve shown in Figure 5.9 is described by the following

equation:
Tp(t) = —4.4237¢ + 4.0808¢> — 0.9161¢ + 0.0865¢* — 0.003024t°  (B.5)
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where t is time in millisecond and ¢ < 10ms. The Graphical representation

of this function and the measured curve are shown in Figure B.2. As a result,
Tp(s) = —4.4237/5* + 8.1616/s° — 5.4966/s* + 2.0760/s° — 0.3629/s° (B.6)

and

1 TB(s)

T(t) = L'~

( ) GT(S)
= —1.6807t — 4.2069¢% + 11.3944¢3 — 8.2915¢¢

+3.2916¢° — 0.5995¢° (B.7)

This is the "true” temperature change at the measured junction of the ther-

mocouple which was depicted in Figure 6.6.
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Figure 3.1 Path of integration for J-integral.
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Figure 6.19 Effective strain at the sampling point # 4 of element # 1.
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Figure 6.20 Effective stress at the sampling point # 3 of element # 2.
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Figure 6.22 Effective stress at the sampling point # 4 of element # 2.
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Figure 6.26 Effective stress at the sampling point # 4 of element # 3.
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Figure 6.27 Effective strain at the sampling point # 4 of element # 3.

2.5



offective stress (MPa)

800

400

300

200

100

— uncoup | ed ---- coupled AT THE SAMPLING POINT %3
OF ELEMENT #4
.0 0.5 1.0 I.B 2.0

time (ms)

Figure 6.28 Effective stress at the sampling point # 3 of element # 4.
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Figure 6.29 Effective strain at the sampling point # 3 of element # 4.
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Figure 6.34 Effective stress at the sampling point # 4 of element # 13.



effective strain (%)

0.3
— uncoup |l ed ---- coupled AT THE SAMPLING POINT #4
OF ELEMENT #13
0.2
0.1
0.0 — ' ' =
0.0 0.5 1.0 I.b 2.0

time (ms)

Figure 6.35 Effective strain at the sampling point # 4 of element # 13.



Kie —

slow-bernd Krc

Figure 6.36 Effect of temperature on Kp..

temperature ——s



Ko —=

slow Intarmed!ate dyrnamlo

loadling rate —

Figure 6.37 Effect of loading rate on Kj..



Kre ¢ MPa m)

fracture toughness,

80

for carbon steel (0.45%)

70

60

50

40

30t

20

O { - 1 1 1 1 ! H 1 H

-3 -2 -1 0 I 2 J 4 5 6
loading rate. log Krc (MPa m s )

Figure 6.38 K. - K;. curve by Klespaczko [95].



Kec ( MPam)

160

140

120

100

80

60

40

20

for AS17-F staegl

/

-200 -180 -160 -140 -120 -100 -80 -B0 -40 -20 O
test temperature ( C)

Figure 6.39 K. - T curve of A517-F steel.



1000

—— observed ---- theoretical

T

800

®))

O

(-
T

Tee

T

400
Tes

temperature change (C)

200 [ Tee

1 1

0.0 0.2 g4 T

time (ms)

.6 0.8

Figure B.1 Graphical determination of transfer function constants.



temperature change (C)

20

16

12

— MEARSURED ----FITTING

1

e
‘e
'''''

time (ms)

Figure B.2 Fitting the curve of measured temperature change.



temperature rise (C)

40

30

20

10

-10

OBSERVED

"TRUE”

4

time (ms)

B

Figure B.3 Comparison between the "observed” and ”true” temperature

change histories.

10



