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ABSTRACT 

Regular monitoring of marine wildlife is essential for rapid detection of changes in the 

marine ecosystem allowing for adaptive strategies. However, the manual analysis of large volumes 

of underwater images taken by cameras is highly time-consuming. Deep learning techniques have 

been adopted in marine wildlife for the automatic classification of underwater photos to accelerate 

image analysis. However, water quality varies at different locations, depths, and acquisition times 

during data collection. This, along with differences in other acquisition parameters, leads to 

datasets with idiosyncratic footprints and, therefore, limited generalization of the trained deep 

learning model to other sets of images different from the training set. As a result, more work is 

required toward improving the cross-dataset generalization of deep learning models. In our 

research, we started by assessing dataset biases' impact on cross-dataset generalization in the 

classification of beluga whale images from empty underwater image frames. We used three 

underwater image datasets with varying image acquisition profiles: a dataset of good water quality 

photos, moderately bad water quality photos, and a dataset of images with both the horizon and 

water in the same frame. Then, we investigated two frameworks to improve cross-dataset 

generalization. One attempts to unlearn dataset-specific information for explicitly handling the 

dataset bias problem. The other uses a contrastive loss for learning a representation by contrasting 

the images with beluga whales against the images with empty frames regardless of their dataset 

membership. We conducted an exhaustive evaluation of proposed deep learning architectures and 

compared performance using cross-dataset approaches with traditional architectures. The 

supervised contrastive approach outperforms the other architectures. To the best of our knowledge, 

this was the first use of contrastive settings to implicitly address the dataset bias problem. 
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Chapter 1  

1.Introduction 

1.1 General Introduction  

Deep learning is a subset of machine learning and AI techniques that enables computers to 

understand and represent the world as a hierarchy of concepts. As a representation-learning 

method, it allows a machine-learning system to transform the raw data (such as the image pixels) 

into multiple levels of representation (feature vectors), from more low levels to progressively 

higher levels of abstraction (e.g., starting from the presence of edges to more complex local shapes 

and textures). (Lecun, Bengio, and Hinton 2015; I. Goodfellow, Bengio, and Courville 2016). A 

deep learning network is essentially a multi-layer neural network that successively applies 

transformations to extract useful feature representations (each layer accepts, as input, the output 

from the previous layer). Two main types of deep learning techniques are supervised and 

unsupervised learning. In unsupervised learning, we directly learn from the input data without 

knowing about the category of the given input. Thus, we can only group similar data points. While, 

in supervised learning, we have a labelled dataset, and we can learn a function that maps the input 

to the labels (Bishop 2006).  

Classification is one of the most common settings in supervised deep learning. In a 

classification task, we train a model to decide which class label each datapoint comes from. It has 

three subcategories: binary classification, where each sample takes only one label out of two 

classes; multi-class classification, where each sample takes only one label out of multiple classes; 
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multi-labelled classification, in which we can assign multiple labels concurrently out of all the 

existing classes to each sample  (Krizhevsky, Sutskever, and Hinton 2017; Kim et al. 2019). In the 

process of training a model, we try to learn a function (classifier) that can classify the given input 

to several class labels in the best possible way. To learn that function, we need to evaluate the 

model iteratively and change the network’s parameters (weights) accordingly. For this purpose, 

we must define a loss function to evaluate the difference between the predicted output and the 

actual label. Over the iterations, we try to minimize that loss function with respect to the choice of 

the network’s parameter. There are two different optimization approaches for minimizing the loss: 

non-gradient-based (genetic algorithms, simulated annealing, etc.) and gradient-based 

(Ahmadianfar, Bozorg-Haddad, and Chu 2020). Non-gradient-based algorithms usually converge 

to a global optimum, while gradient-based algorithms usually achieve a local optimum. The 

gradient-based methods are the most widely used in deep learning algorithms, especially in tasks 

such as image classification, for which a large amount of data is needed to better generalize the 

model to the visual world. Gradient descent is one of the gradient-based methods. The computation 

of this method is based on the backpropagation learning algorithm. First, we calculate the gradients 

of the loss function with respect to each weight individually, and then we update the network’s 

weights in response to the gradients. This process is done iteratively to minimize the loss function 

to its local minimum (I. Goodfellow, Bengio, and Courville 2016).  

Convolutional Neural Networks (CNN) represent a class of deep neural networks that have 

shown state-of-the-art results for imaging inputs compared to multi-layer perceptron neural 

networks for a number of applications (Krizhevsky, Sutskever, and Hinton 2017). The commonly 

used type of CNN consists of three primary layers: convolutional layer, pooling layer and fully 

connected layer. Convolutional layers are responsible for capturing the important features of the 

images starting from low-level features in the first layers to high-level ones in later layers. 

Therefore, each convolutional layer has a weight matrix kernel (filter) smaller than the given input. 

It applies linear convolutional operations by calculating dot products multiple times between its 

filter and different filter-sized patches of the input. Then, it passes the convolved input through a 

nonlinear activation function before giving it to the next layer. The advantage of having filters 

with smaller sizes is being able to build a deeper network. As a result, we enhance the network’s 

representation powers to implement more nonlinear functions while having less number of 
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parameters for each layer. Pooling layers can help to reduce the dimension of convolved features 

by taking the average or the maximum value from the portion of the image. The advantage of using 

a pooling layer is reducing the computational power to process the given input and suppressing 

the noise by dimensionality reduction, especially for the max pooling. After having a number of 

convolutional layers and pooling layers, we flatten the matrix of the last layer and feed it into a 

traditional multi-layer perceptron called fully connected layers. The output of the last fully 

connected layer has the same number of nodes as the number of classes. The number must be one 

if we have a binary classification. A nonlinear function follows every convolutional layer and fully 

connected layer. The most common one for all the layers is the rectified linear unit (ReLU) except 

for the last layer, for which we usually use the sigmoid or softmax function (Patil and Rane 2021). 

We have various CNN architectures depending on the application, such as U-net 

(Ronneberger, Fischer, and Brox 2015) for image segmentation, or AlexNet (Krizhevsky, 

Sutskever, and Hinton 2017), VGG-16 (Simonyan and Zisserman 2015), ResNet50 (He et al. 

2016), etc. for image classification. AlexNet has the fewest number of layers (five convolutional 

layers and three fully connected layers) compared to the other two architectures, VGG-16 and 

ResNet-50, while it uses larger receptive fields (Figure 1.1). VGG-16 has thirteen convolutional 

layers and three fully connected layers (Figure 1.2). ResNet-50 is the deepest network compared 

to the other two examples with forty-nine convolutional layers and one fully connected layer. This 

network is known as a residual network (Figure 1.3). A deeper network increases the efficiency of 

learning a more complex function; however, as a network goes deeper, performance will 

eventually drop due to vanishing gradient problems. Skip connection has been introduced in 

residual networks to address this.  

 
Figure 1.1. Schematic of the AlexNet convolutional neural network architecture. 
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Figure 1.2. Schematic of a VGG-16 convolutional neural network architecture. 

 

 
Figure 1.3. Schematic of a ResNet-50 architecture with skip connections, adding the input of each convolution block to its output. 

 

Unlike the CNNs that are commonly used for spatial data such as images, recurrent neural 

networks (RNN) are other types of deep neural networks designed to analyze temporal, sequential 

data such as video, audio, text, etc. In sequential data, it is essential to consider the order of the 

data as each part of the data is related to the previous or the next data. For this purpose, special 

types of RNNs were introduced for sequential data, such as LSTM and GRU, that can remember 

the sequences or have control of what information to keep or throw out during the training process 

(Alex Graves 2012; Cho et al. 2014). 

Deep learning models can either be trained for a task from scratch, or a pre-trained model 

on a large publicly available dataset, such as ImageNet, can be utilized to improve new models' 

training accuracy and speed. The latter approach is referred to as transfer learning (Ribani and 

Marengoni 2019), in which the extracted features of the images based on the pre-trained network 

can be transferred to the new task and do not have to be learned again. If the model is not pre-
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trained, more labelled data is necessary for generalization. Though massive computation is 

required, giving more labelled data to these networks will help minimize the overfitting. 

Accordingly, the overall performance of the model for unseen data improves. Nevertheless, 

supposing data acquisition is challenging, data augmentation is suggested as a tool to better 

generalize the model (Krizhevsky, Sutskever, and Hinton 2017).  

In general, access to large and diverse training data sets is a key requirement for training 

deep neural networks. Even though significant efforts are typically made to create a dataset 

representative of the real world, studies show that all datasets end up narrowing the real world to 

their own specific closed worlds to some extent (Torralba and Efros 2011). As a result, different 

datasets bring along their characteristic and idiosyncratic footprints, which prevent models trained 

on one dataset from generalizing to examples from different datasets. These dataset’s footprints 

and their impact on cross-dataset generalization are referred to as the dataset bias problem 

(Torralba and Efros 2011; A. Khosla et al. 2012; Tommasi et al. 2013). Therefore, we need to 

develop methods to improve cross-dataset generalization by either unlearning dataset membership 

information or mitigating the dataset bias’s impact on our classifiers. 

The advances in AI and deep learning have increased our capability to solve problems in a 

variety of applications. One of the domains in which we can apply deep learning techniques is for 

monitoring wildlife. With the rapid improvement of camera and data storage technology, the 

wildlife image datasets have increased in size and quality. Even though these datasets provide 

opportunities to explore research questions and address them, they bring challenges such as 

including empty and non-target images. Manual image processing prevents us from utilizing these 

datasets efficiently. Therefore, deep learning models can be developed to increase data processing 

efficiency using CNNs to sort images containing the object of interest from empty frames. 

Applying deep learning algorithms can significantly reduce the labour and time costs of manual 

data processing, which can eventually allow researchers to focus their resources on more 

challenging tasks. 

The presence of the biases in the image data collection can be due to several sources, such 

as changes in image capturing devices and environment changes, among others. These variations 
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limit the generalizability of trained deep learning models to new and different datasets. Since we 

aim to transfer the learned knowledge from one dataset to the other more efficiently, we can 

alleviate the bias by having the training focus on the related features of the variable of interest 

instead of the dataset-specific factors (Kim et al. 2019; Yamashita et al. 2019). One way to 

investigate the presence of biases within datasets is to train a classifier to predict the dataset 

membership of the images. If the image data collections contain biases, the performance of the 

dataset membership classifier should be better than chance. In other words, if the datapoints carry 

dataset-specific footprints, it should be easy to build a classifier to detect which dataset a datapoint 

comes from. The next step is evaluating the impact of biases in detection and classification tasks. 

If the biases affect the cross-dataset generalization of the classifiers, different frameworks and 

architecture should be investigated for improving the cross-dataset performances. We discuss the 

following techniques in this study to address the mentioned issue of the image data collection in 

training deep neural networks: 

• Following the line of work by Madras et al.(Madras et al. 2018), we developed a model to learn 

a latent representation from the images such that the representation is capable of reconstructing 

the input image if combined with the sensitive attribute (dataset membership). The model 

contains one autoencoder, a classifier and an adversarial network. The encoder maps the input 

image to a latent representation, and the decoder reconstructs the input image from the 

representation and the sensitive variable. The classifier predicts the label from the 

representation, and the adversary predicts the dataset membership from the representation. This 

new representation aims to lose any information that can identify whether the image belongs 

to the specific dataset while retaining as much information as possible needed for the 

classification task. 

 

• We investigate a contrastive approach for implicitly handling the dataset bias problem. 

Contrastive representation learning is a technique for improving the performance of the 

classification tasks by contrasting samples against each other to learn similar and dissimilar 

images. The contrastive paradigm started off with representation learning in a purely self-

supervised fashion with no access to labels (Chen et al. 2020; Henaff et al. 2020; He et al. 

2019; Wu et al. 2018). Recently, supervised contrastive methods have also been proposed, 
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such as the work by (P. Khosla et al. 2020; Kopuklu et al. 2021). In a supervised setting, they 

leverage label information to build a representation in a contrastive setup. In particular, we 

learned an embedding space using a contrastive loss, such that all the samples with the positive 

labels, regardless of their dataset membership, get pulled together and pushed apart from those 

with negative labels. We demonstrate that this approach can address the issue of the dataset 

bias problem by introducing a new loss function that leads to a better margin for testing the 

trained model on different datasets from the training data. The contrastive approach improves 

cross-generalization more in comparison to traditional methods and the work by (Madras et al. 

2018). 

1.2 Background 

The presence of biases in image data collection has become a well-known issue in the 

computer vision community. In 2011, the seminal work by Torralba et al.  (Torralba and Efros 

2011) aimed to raise awareness in the object recognition research community about the critical 

issue of the built-in biases of the datasets and how they adversely affect the performance of the 

detection and classification tasks. To demonstrate the problem, they randomly sampled 1000 

images from the training portion of each of the twelve widely used recognition datasets to train a 

classifier to play a game called "Name That Dataset!". Interestingly, the classifier performed with 

a classification accuracy of 39%, notably better than chance (1/12 = 8%). They also did the same 

experiments with more training data to show that the classification accuracy could be increased 

without immediate saturation. By visualizing the confusion matrix grouped by similarity, they 

demonstrated that each dataset had its distinctive signature (Figure 1.4). To confirm the idea, they 

attempted to alleviate the biases by isolating specific objects of interest from the images of five 

datasets. Surprisingly, the classifier still was able to separate the datasets with an accuracy of 61%, 

better than a 20% chance. Their experiments went on to show that biases inadvertently continue 

to persist in datasets despite efforts to minimize them. The paper suggested that a clear 

understanding of the types and sources of bias could result in developing better datasets while 

minimizing each type of bias. A good-quality dataset can be employed later to build algorithms 

that can perceive the visual world (Torralba and Efros 2011).  
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Figure 1.4. "Name That Dataset" game. Left: classification performance as a function of log scale of dataset size. Right: confusion 
matrix (Torralba and Efros 2011) (permission granted). 

 

Since it is practically difficult to keep datasets entirely unbiased, one does not necessarily 

increase the generalization ability of an algorithm by adding more training data with biased data 

points, as shown in (Torralba and Efros 2011). Experiments in (Torralba and Efros 2011) have 

demonstrated the existence of different types of bias (e.g. selection bias, capture bias, and negative 

set bias) in popular image datasets. Therefore, there is a need for methods which still aim to 

minimize cross-dataset performance drop by still using datasets which are not entirely free of 

biases. One of the first works toward this end was by Khosla et al. (A. Khosla et al. 2012), 

proposing an algorithm for undoing the dataset's bias to mitigate its adverse effects and thus 

evaluating the algorithm with respect to cross-dataset generalization performance. They noted that 

despite various biases in each dataset, images of each dataset are biased samples of a more general 

dataset called the visual world. Hence, they proposed a discriminative framework for learning a 

support vector machine (SVM) classifier (Cortes and Vapnik 1995) using images of multiple 

datasets and decomposing the SVM weight into visual world vector common among all datasets 

and the dataset-specific bias vectors (Figure 1.5). According to their study, models based on the 

learned common weight vector were shown to perform well on a new dataset when the target task 

was the same as the source task. Additionally, they demonstrated that the learned bias vector 

indicated membership of the images to a particular dataset by training a classifier using the bias 

vectors to predict each image belongs to which dataset (A. Khosla et al. 2012). 
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Figure 1.5. Datasets that are sampled from the visual world. One of them is used for a test set and has not been seen by the 
model. The model jointly learns a visual world vector and the bias vector (A. Khosla et al. 2012). 

 

Another study was done by Tommasi et al. (Tommasi et al. 2013), which introduced an 

algorithm called Multi-task Unaligned Shared Knowledge Transfer (MUST), similar in spirit to 

work by  (A. Khosla et al. 2012). They improved the cross-dataset generalization performance by 

learning an image representation that decomposes into two parts, one specific to each dataset and 

the other shared between all the datasets. Unlike the study (A. Khosla et al. 2012), they generalized 

the dataset bias problem to multi-class instead of binary. They mentioned that analyzing one class 

at a time and considering the remaining set of classes as a negative class (in datasets with more 

than one class) implies the task of binary classification, but this definition of "what an object is 

not" is intrinsically biased. They exploited the valuable knowledge of the datasets and 

demonstrated cross-dataset generalization of the MUST algorithm in multi-label classification 

tasks via a one-dataset-out strategy. Additionally, it was noted that common information in the 

shared space could be transferred to assist a new task and learn only the remaining private part of 

the new dataset. This approach is called transfer learning, where the target domain's feature space 

is different from the source feature space. If the source and target domain have the same feature 

space but different distributions, the approach can be referred to as domain adaptation, a 

subcategory of transfer learning (Sun, Shi, and Wu 2015). Domain adaptation can be classified 

into three groups depending on whether the target data have labels or not: unsupervised (set of 

unlabeled target examples), semi-supervised (set of labelled target examples) or supervised (all the 
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examples are labelled) (Saenko et al. 2010). Dataset bias is defined as a particular domain shift 

problem where we have different datasets with common classes (Tommasi et al. 2013). In another 

paper by Tommasi et al. (Tommasi et al. 2017), the authors look deeply at dataset bias as a domain 

shift problem in the CNN-based features field. They demonstrated how dataset bias limits the 

generalization of the trained models across different datasets and how the issues arising from the 

dataset bias can be addressed. 

The study by Zemel et al. (Zemel et al. 2013) introduced an algorithm for fair classification. 

In this paper, fairness is defined as an optimization problem of finding a representation of the input 

with respect to the classification task which has the necessary information as well as possible (i.e., 

information about the individual's attributes) while ignoring any information about membership in 

the protected subgroup (e.g., race or gender). Based on the new representation, they made a fair 

classification. They showed positive results using their algorithm on three datasets. For one of the 

datasets, they classified the bank account holders into credit classes good or bad. They described 

each person by 20 attributes and considered age as the sensitive attribute. For this setup, the 

decision was made based on the individual's attributes except for age. They noted that the degree 

to which the system succeeded in ignoring the age information was evaluated by building a 

classifier that learns the age from the new representation. The other advantage of their approach is 

benefiting the intermediate representation for other classification tasks referred to as transfer 

learning. 

Another work has been done by Ashraf et al. (Ashraf et al. 2018), inspired by the methods 

in the previous work (Zemel et al. 2013). They proposed a method for medical imaging 

classification on multiple datasets that learns a latent representation in which the data points are 

indiscernible in terms of the dataset membership information while allowing classification with 

respect to the variable of interest. Their method to unlearn dataset membership is referred to as 

handling dataset bias for generalizing the trained model well to the other dataset. They extended 

the previous work to multi-class problems instead of binary and modified the objective function 

to deal with any number of datasets.   
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The risk of biases towards certain groups, specifically in sensitive fields such as medical 

diagnosis, has brought attention to fair representation learning to mitigate the impact of biases. In 

this learning technique, the original domain of features is mapped to a latent domain, upon which 

the information about sensitive attributes got forgotten. A paper by Madras et al. (Madras et al. 

2018) is motivated by the idea of fair classification using adversarial learning to learn a fair 

representation that guarantees performance on metrics of group fairness. Furthermore, they 

demonstrated that using their model for fair transfer learning under certain conditions is possible.  

1.3 Underwater Wildlife Datasets 

Three datasets of underwater images were studied for cross-dataset generalization, 

including a dataset of good water quality photos, bad water quality photos, and photos that 

contained images with both the horizon and water in the same frame (henceforth half-in and half-

out (HIHO) dataset). All these underwater images were collected between 2016-2021 to track and 

monitor beluga whales and their marine ecosystem in the Churchill 130 River estuary near 

Churchill, Manitoba, Canada. The Churchill River estuary has a complete freeze-thaw cycle, so 

the water quality in the estuary changes based on the influx of water in the spring melt. In 2017 

there was a large flood in the spring, which brought an influx of water into the estuary. This 

resulted in a dataset with bad water quality images, mostly with the murky background in 2017 

and 2018 due to suspended sediment and silt in the water column. The sediment comes from the 

erosion of the riverbanks and surrounding areas in high flood years. In 2016, 2019 and 2021, it 

was a regular thaw cycle in the spring (without flooding), so the water quality was much clearer 

resulting in higher water quality images. Photos from these years made up the good water quality 

photo dataset. The HIHO dataset was collected in 2020, the first year that Polar Bears International 

(the organization that runs the Beluga Boat) used a different boat for video collection. Because of 

this, the camera was not mounted deep enough in the water resulting in the “half-in and half-out” 

photos as the boat hit swells. In some of these photos, part of the boat is within the picture. These 

three datasets thus represent three very different acquisition profiles, although they aim to capture 

images of more or less the same set of objects (underwater marine life). As such, they provide a 
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very useful testbed for assessing an algorithm’s intrinsic capability of detecting the objects of 

interest rather than aligning to specific acquisition conditions and biases of particular datasets. 

All the images were extracted from an underwater camera that captured video footage 

below the surface. The video was subsampled at a rate of one frame every three seconds (2016-

2020) or one frame per second (2021) to get the images. Then all the images were classified by 

participants on Beluga Bits, a citizen science project hosted by Zooniverse (Zooniverse.org). The 

photos were classified by citizen scientists based on quality, whether a beluga is present, and 

content. Each image was classified by a minimum of 10 participants. The photo datasets were 

created by aggregating the citizen scientist's responses and selecting images from the target years 

with a minimum of 80% agreement on the presence or absence of a beluga. The number of images 

for each dataset was written in Table 1.1. Extracting frames from the video produces a large 

number of images that do not contain species of interest. This lack of beluga images typically 

reduces the level of participation of citizen scientists for further analysis. Developing CNNs to sort 

frames that contain beluga whales from empty (just water) images can increase data processing 

efficiency and maintain participant interest. However, the water quality each year might be 

different. Consequently, the trained classifier on one dataset might not perform well once tested 

on different water quality images. Accordingly, we addressed this issue using the three available 

datasets discussed above. 

Table 1.1. The number of images for each available dataset 

Datasets Good water quality 
photos list 

Moderately bad water 
quality photos list 

HIHO photos list 

Number of photos 6000 3140 3804 
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1.4 Thesis Organization  

The remainder of the thesis is organized as follows: In chapter two, we quantify the 

prevalence of dataset bias in our underwater datasets by attempting to build a three-class dataset 

membership classifier to test if each dataset leaves specific footprints on its images. In chapter 

three, we investigate the potential negative impact of dataset bias by assessing the performance of 

traditional classifiers in a leave-one-dataset-out sense. In chapter four, we proposed an adversarial 

approach to build an unbiased representation that reduces the adverse impact of biases in the 

images. In chapter five, a supervised contrastive learning technique is used to improve the trained 

model's cross-dataset generalization to a different dataset but with the same variable of interest. In 

the last chapter, we conclude our work and discuss possible future work directions. 
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Chapter 2  

2.Dataset Bias Detection 

2.1 Dataset Membership Classification 

If there are no dataset-specific biases, given images from different datasets but having the 

same context and objects, it should be difficult to train a dataset membership classifier. As a result, 

one way of quantifying the presence of dataset biases is to train a classifier to distinguish what 

dataset a date point comes from (Torralba and Efros 2011; Ashraf et al. 2018). We did the 

experiments based on three balanced sets of underwater wildlife datasets; each set contains some 

photos with at least one beluga whale, while some photos do not have beluga whales. The number 

of images with and without beluga is shown in Table 2.1. All the images from three datasets of 𝐷𝐷1, 

𝐷𝐷2 and 𝐷𝐷3 were selected to train and test a three-class classifier telling each image belongs to 

which dataset regardless of whether they include beluga whales. If the classifier performs better 

than chance (1/3 = ~33.3%) on both training folds, we can infer that dataset membership 

information (dataset biases) exists in each frame. We used cross-validation to evaluate the 

generalization of our trained models. Cross-validation involves dividing the dataset into partitions 

(commonly referred to as folds), wherein multiple models are trained and assessed by letting 

different folds assume the role of training and validation sets (Bishop 2006). We carried out the 

two-fold cross-validation (Figure 2.1) by randomly shuffling the images from all three datasets 

into two subsets of equal size, designated as 𝐹𝐹0 (first fold) and 𝐹𝐹1 (second fold). We then trained 

deep learning models on 𝐹𝐹0 and validated it using 𝐹𝐹1, followed by training on 𝐹𝐹1 and validating on 

𝐹𝐹0.  
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Table 2.1. Number of images with and without beluga whales in three datasets of 𝐷𝐷1, 𝐷𝐷2 and 𝐷𝐷3 

Datasets Good water quality 
photos list (𝐷𝐷1) 

Moderately bad water 
quality photos list (𝐷𝐷2) 

HIHO photos list   
(𝐷𝐷3) 

Images with belugas 3,000 1,570 1,902 

Images without belugas 3,000 1,570 1,902 

Total 6,000 3,140 3,804 

 

 
Figure 2.1. Two-fold cross-validation based on the images from all three available datasets. 

 

We employed a convolutional neural network VGG-16 (Simonyan and Zisserman 2015) 

for our three-class dataset membership classifier. Moreover, we incorporated attention 

mechanisms to further improve the performance (Jetley et al. 2018) (Figure 2.2). Attention 

mechanisms in deep neural networks are a class of methods through which the neural network can 

learn to pay attention to certain parts of the image based on the context and the task. We can gain 

insight into where the model focuses when it predicts the class label of the photo frames by looking 

at their attention estimator output.  



Chapter 2 Dataset Bias Detection 
 
 

16 
 

 
Figure 2.2. The architecture of VGG-16 with the attention module. The attention estimator masks shown above demonstrate that 
the neural network learns to pay attention to those regions of the image which are distinguishable in each dataset. 
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2.2 Results and Discussion 

The dataset membership classifier was trained on both fold 𝐹𝐹0 and 𝐹𝐹1 and tested on 𝐹𝐹1 and 

𝐹𝐹0 respectively. The accuracies on each fold are reported in Table 2.2, which are significantly 

better than chance (1/3 = ~33.3%). The confusion matrix of the classifier, when tested on 𝐹𝐹1 is in 

Table 2.3, and the confusion matrix, when tested on 𝐹𝐹0  are in Table 2.4. We noticed a pronounced 

diagonal in confusion matrices, indicating that each dataset possesses a unique, identifiable 

signature which we call dataset membership information. We can gain insight into where the model 

focuses when making predictions by looking at the attention estimator output of the image frames, 

paying particular attention to images the network struggles to identify its membership to a 

particular dataset or images assigned to a dataset with a high probability (Figure 2.3). As such, the 

results of these experiments suggest a strong presence of dataset-specific biases in the images. 

Table 2.2. Results summary for the dataset membership classifier. The dataset is divided into two folds where the training process 
is performed on one of the folds and tested on the other fold. Reported are the class accuracy (%) of all three datasets (𝐷𝐷1, 𝐷𝐷2 and 
𝐷𝐷3) and the overall accuracy (%). 

Architecture Training 
Fold 

Class Accuracy 
of 𝐷𝐷1 (%) 

Class Accuracy 
of 𝐷𝐷2 (%) 

Class Accuracy 
of 𝐷𝐷3 (%) 

Overall Accuracy 
(%) 

VGG-16 𝐹𝐹0 95.16 82.99 96.58 92.62 

VGG-16 𝐹𝐹1 97.66 89.42 97.00 95.47 

 

Table 2.3. Confusion matrix for the dataset membership classifier (trained on 𝐹𝐹0 and tested on 𝐹𝐹1) 

 
Predicted 

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 Total 

Actual 

𝐷𝐷1  2855  57  88  3000 

𝐷𝐷2  231  1303  36  1570  

𝐷𝐷3 49  16  1837  1902  

Total 3135 1376 1961 6472 
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Table 2.4. Confusion matrix for the dataset membership classifier (trained on 𝐹𝐹1 and tested on 𝐹𝐹0) 

 
Predicted 

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 Total 

Actual 

𝐷𝐷1 2930  17  53  3000 

𝐷𝐷2 122  1404  44  1570 

𝐷𝐷3 48  9  1845  1902 

Total 3100  1430  1942  6472 

 

 
Figure 2.3. Panel A-D are the example frames that are correctly assigned to 𝐷𝐷3 dataset with high probability. We can observe that 
part of these images is above sea level. That confirms the fact that 𝐷𝐷3 contains a significant number of images above the sea level 
compared to the other two datasets. Panel E-H are the example frames that are correctly assigned to 𝐷𝐷1 dataset with high probability. 
These are the images under the water. The colour bar defines regions with varying attention values, where the blue and red ends of 
the spectrum signify lower and higher attention values, respectively. 
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Chapter 3  

3.Baseline using Traditional Methods 

3.1 Introduction 

In this chapter, we establish a baseline using a traditional CNN approach and assess both 

within-dataset and across-dataset performance for the task of detecting beluga whales in an image 

frame. As stated before, biases can show up due to a variety of sources, such as changes in cameras, 

acquisition settings, ocean environment, time of the day, time of the year, etc. Those variations 

may limit the generalization of trained deep learning models to other sets of images compared to 

when the same image data collection is used for training and testing. In the previous chapter, we 

demonstrated that each of our three available image data collections does carry dataset-specific 

biases in their image frames. For within-dataset performance, the training and testing subsets come 

from the same data collection. For cross-dataset performance, images from one dataset are held 

back as the testing set while the model is trained on the other two datasets, and this process is 

repeated three times, wherein each time, the held back dataset is changed. This type of strategy is 

referred to as the leave-one-dataset-out (LODO) approach. Throughout the thesis, we follow a 

LODO strategy for quantifying the cross-dataset generalization of our models. The procedure of 

evaluating deep learning models is to fit and assess them on training data, then verify that the 

model has good skills on a test dataset. The training and the test data might not come from the 

same image data collection. Therefore, each may contain biases due to the variations such as 

changes in cameras, ocean environment, time of the day, time of the year, etc. Those variations 

may limit the generalization of trained deep learning models to other sets of images compared to 
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when the same image data collection is used for training and testing. In previous chapters, we 

demonstrated that each of our three available image data collections holds dataset membership 

information (biases) in their image frames. In this chapter, we investigated if these biases affected 

the performance of the trained model on a held-back collection of images.  

3.2 Experiment 

For within-dataset evaluation, we select the training and testing sets from the same dataset 

to observe the performance of our initial classifiers. To this end, we split each of our three datasets 

(𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3) into two sets 𝐷𝐷𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖 with equal size, as shown in Figure 3.1. For each dataset, 

we learned two individual classifiers. One was trained on the first half of the dataset (𝐷𝐷𝑖𝑖𝑖𝑖) and 

tested on the second half (𝐷𝐷𝑖𝑖𝑖𝑖), and the other was done in reverse. 

 
Figure 3.1. Left: two-fold cross-validation with 50:50 ratio. Right: splitting the datasets into a 90:10 ratio to set aside 10% of the 
data for validation purposes. 

 

In cross-dataset evaluation, we considered a validation set for tuning the parameters of the 

classifiers (e.g., optimizer, learning rate, batch size, epochs, etc.). Every dataset is split into a 90:10 

ratio such that 90% of the data (𝐷𝐷𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) reserved for the training process and 10% of the data 

(𝐷𝐷𝑖𝑖_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) set aside for validation purposes. The training and testing data in all the cases are 

demonstrated in Figure 3.1. We followed a LODO approach as follows: for each LODO 

experiment, learning was done on the basis of two datasets, while testing was done on the left-out 

dataset. For testing, we used both halves of the left-out dataset, 𝐷𝐷𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖𝑖𝑖, individually to make 

the result of cross-dataset evaluation comparable to the case of within-dataset evaluation. All 
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possible cases for within-dataset and cross-dataset evaluations are represented in Table 3.1 and 

Table 3.2, respectively. Since our focus in this study was not to work on enhancing the within-

dataset performance, we did not consider a validation set for within-dataset evaluation. 

Table 3.1. Within-dataset evaluation 

Within-dataset (trained on the 1st fold) Within-dataset (trained on the 2nd fold) 

Train Set Test Set 
(Tested on 2nd fold) 

Train Set Test Set 
(Tested on 1st fold) 

𝐷𝐷1𝑎𝑎 𝐷𝐷1𝑏𝑏 𝐷𝐷1𝑏𝑏 𝐷𝐷1𝑎𝑎 

𝐷𝐷2𝑎𝑎 𝐷𝐷2𝑏𝑏 𝐷𝐷2𝑏𝑏 𝐷𝐷2𝑎𝑎 

𝐷𝐷3𝑎𝑎 𝐷𝐷3𝑏𝑏 𝐷𝐷3𝑏𝑏 𝐷𝐷3𝑎𝑎 

 

Table 3.2. Cross-dataset evaluation 

Cross-dataset 

Train Set Validation Set Test Set 
(Tested on 2nd fold) 

Test Set 
(Tested on 1st fold) 

𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷2_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  - 𝐷𝐷3_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  𝐷𝐷1𝑏𝑏 𝐷𝐷1𝑎𝑎 

𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷1_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  - 𝐷𝐷3_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  𝐷𝐷2𝑏𝑏 𝐷𝐷2𝑎𝑎 

𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷1_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  - 𝐷𝐷2_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  𝐷𝐷3𝑏𝑏 𝐷𝐷3𝑎𝑎 

 

We used a VGG-16 network with a binary cross-entropy loss to establish a traditional 

baseline. The VGG models were trained using a stochastic gradient descent (SGD) optimizer 

(Kingma and Ba 2015) with 100 epochs, an initial learning rate of 0.001 and a weight decay of 

1e6. The models are trained on 4 Quadro RTX 8000 GPUs with a batch size of 64 (Bishop 2006). 

We implemented our code in PyTorch for all experiments and used the same hardware 

platform with an Intel Core i9 10th generation processor with 256 GB DDR4 RAM and 48 GB 

NVIDIA Quadro RTX 8000 GPU.  
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3.3 Results and Discussion 

We evaluated the models using two performance metrics:  classification accuracy and 

ROC-AUC (Receiver Operating Characteristic Curve – Area Under the Curve). We used a 

confusion matrix (Table 3.3) for our binary classification to calculate two types of accuracy: 

overall accuracy and per-class accuracies. Overall accuracy measures how many samples, both 

beluga and non-beluga samples, were classified correctly. We can calculate it by dividing the 

number of samples in the test set that were predicted correctly by the total number of the dataset 

(Eq. (1)). Per-class accuracy is measured for both positive (beluga images) and negative (non-

beluga images) classes. We calculated the per-class accuracy of positive class (sensitivity or recall 

or true positive rate) by dividing the number of correct positive predictions by the total number of 

positives (Eq. (2)) and of negative class (specificity or true negative rate) by dividing the number 

of correct negative predictions divided by the total number of negatives (Eq. (3)).  

Table 3.3. Confusion matrix of binary classification. TP and TN are the numbers of beluga and non-beluga images, respectively, 
that are classified correctly. FN and FP are the numbers of beluga and non-beluga images, respectively, that are classified wrongly. 

 Predicted 

A
ct

ua
l  Negative Positive 

Negative TN FP 
Positive FN TP 

 ROC curve, as shown in Figure 3.2, is produced by plotting the TPR (True Positive Rate) 

(Eq. (2)) against the FPR (False Positive Rate) (Eq. (4)) for different thresholds on the binary 

classifier’s output (scores). The scores are the predicted probability of the samples. Typically, we 

consider 0.5 as a threshold to classify a sample as positive if its score is above the threshold and 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=   

𝑇𝑇𝑇𝑇
𝑃𝑃

 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=   

𝑇𝑇𝑇𝑇
𝑁𝑁

 (3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=   

𝐹𝐹𝐹𝐹
𝑁𝑁

 (4) 
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as negative if its score is below the threshold. The accuracy metric can be calculated by classifying 

the samples on that specific threshold. However, the ROC curve is not dependent on the threshold 

and classifies the samples based on any threshold between 0 and 1. The area under the ROC curve 

(AUC) measures how good a classifier performs independently from the threshold. The perfect 

classifier is when all the samples are correctly classified. This way, we have an AUC equal to one.   

 
Figure 3.2. ROC-AUC plot: The blue dotted line represents a classifier that is not better than random guessing. The green dot 

represents a perfect classifier 

We reported the accuracies and the AUCs of the trained classifiers for both within-dataset 

and cross-dataset evaluations on each fold in Tables 3.4 and 3.5. 

Table 3.4. Within-dataset evaluation (For the first three rows, tested on the 2nd fold and for the second three rows, tested on the 1st 
fold) 

 
 

Within-dataset Evaluation 
Train Set Test Set Class Accuracies Overall Accuracy AUC 
𝐷𝐷1𝑎𝑎 𝐷𝐷1𝑏𝑏 [95.73% 92.68%]   94.23% 0.9851 
𝐷𝐷2𝑎𝑎 𝐷𝐷2𝑏𝑏 [79.20% 96.21%]  87.51% 0.9707 
𝐷𝐷3𝑎𝑎 𝐷𝐷3𝑏𝑏 [97.56% 96.87%]   97.21% 0.9957 
𝐷𝐷1𝑏𝑏 𝐷𝐷1𝑎𝑎 [93.50% 93.63%]  93.56% 0.9824 
𝐷𝐷2𝑏𝑏 𝐷𝐷2𝑎𝑎 [91.91% 93.15%]   92.54% 0.9706 
𝐷𝐷3𝑏𝑏 𝐷𝐷3𝑎𝑎 [98.54% 98.83%]   98.68% 0.9972 
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Table 3.5. Cross-dataset evaluation (For the first three rows, tested on the 2nd fold and for the second three rows, tested on the 1st 
fold) 

 

When tested on the left-out dataset, the performance of the classifiers in all LODO 

experiments drops as compared to the within-dataset performance on the corresponding test set. 

This further demonstrates the presence of dataset bias and that it can significantly impact the 

performance when evaluated on a left-out dataset. The degradation in the across-dataset 

performance might be due to changes in the image quality of the datasets or the views and angles 

of the photos taken. We have the same trend on both folds, confirming the obtained results. In the 

third experiment, when the left-out dataset is the HIHO photos list (𝐷𝐷3), the performance degrades 

more noticeably compared to the other two experiments. Poor generalization across datasets might 

be because of the nature of 𝐷𝐷3 as it is most different from the other two datasets. 

The last linear layer's output of our convolutional neural network, known as scores, can be 

provided for all the given images from the testing set. We plotted the bar graph (histogram) of the 

frequency distribution of the scores by splitting them into small equal-sized bins to compare the 

overlap of the scores in within-dataset evaluation against cross-dataset evaluation. Figures 3.3, 3.4 

and 3.5 are the histogram plots for the 2nd fold of different testing sets. Figures 3.6, 3.7 and 3.8 are 

the histogram plot for the 1st fold of the testing sets. The histograms on both folds show that scores 

overlap more in cross-dataset evaluations than when the training and testing samples are from the 

same dataset explaining the incidence of more confusion in classification for cross-dataset 

experiments. 

  

Cross-dataset Evaluation 
Train Set Test Set Class Accuracies Overall Accuracy AUC 
𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷1𝑏𝑏 [93.49% 78.80%]  86.26% 0.9390 
𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷2𝑏𝑏 [73.59% 93.61%]  83.37% 0.9322 
𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷3𝑏𝑏 [21.31% 97.28%]  59.62% 0.7496 
𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷1𝑎𝑎 [94.38% 76.95%]  85.53% 0.9314 
𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷3_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷2𝑎𝑎 [72.35% 94.39%]   83.63% 0.9339 
𝐷𝐷1_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 - 𝐷𝐷2_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷3𝑎𝑎 [20.75% 96.92%]  58.51% 0.7509 
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Figure 3.3. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 2nd fold of good 
water quality photos list (𝐷𝐷1)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 

 
Figure 3.4. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 2nd fold of 
moderately bad water quality photos list (𝐷𝐷2)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 

 
Figure 3.5. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 2nd fold of HIHO 
photos list (𝐷𝐷3)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 
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Figure 3.6. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 1st fold of good 
water quality photos list (𝐷𝐷1)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 

 
Figure 3.7. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 1st fold of 
moderately bad water quality photos list (𝐷𝐷2)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 

 
Figure 3.8. Histogram plot for the frequency distribution of scores provided by the classifier (when tested on the 1st fold of HIHO 
photos list (𝐷𝐷3)). Left: within-dataset evaluation. Right: cross-dataset evaluation. 
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Chapter 4  

4.Learning Adversarially Unbiased Representation 

4.1 Introduction 

In the previous chapter, we demonstrated that dataset membership bias impacts cross-

dataset generalization and can significantly affect the performance of a classifier on a held-back 

image data collection. Therefore, we investigated an approach for cross-dataset generalization to 

overcome the limitations of our baseline model. To do so, we attempted to learn a representation 

that allows making decisions by concentrating on the variable of interest (e.g., whether an image 

contains beluga whales or not) while preventing the algorithm from inferring a dataset 

membership. In recent years there has been a considerable amount of work for learning ‘fair’ 

representations, which make it harder to infer a sensitive variable (e.g., race, age) from the latent 

representation while preserving as much information as possible (Zemel et al. 2013; Madras et al. 

2018). Similar ideas can enable solutions for the database bias problem by letting the database 

membership assume the role of sensitive information and attempting to learn latent representations 

that ‘forget’ dataset membership but maintain information about the variable of interest (Ashraf et 

al. 2018). In this context, we begin by briefly reviewing the work from Madras et al. 2018. They 

motivate the need for learning fair representations from the perspective of a data owner who wants 

to sell representations to a predictor vendor while concerns about unfairness in the predictions. For 

instance, the unfair prediction can be the scenario of an algorithm for selecting a candidate based 

on the resume but ends up selecting a candidate based on race. To prevent the algorithm from 

making such a biased choice, they proposed to learn a latent representation that ignores sensitive 
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variables, such as race, age, gender, etc. while still preserving the rest of the information to the 

extent possible. The same work can be applied to the dataset bias problem by learning a particular 

representation or model that can learn to dismiss dataset membership as a sensitive variable but 

can concentrate on the variables of interest. Inspired by Madras et al.’s work on fair 

representations, in the following we present a formulation for unlearning dataset membership in 

an adversarial setting. 

4.2 Bias Unlearning through Adversarial Framework 

The entire motivation of the bias-unlearning method was to learn a representation from an 

input image to have an accurate prediction based on that space with respect to the variable of 

interest but not biased in favour of the information specific to the datasets. Therefore, we built a 

framework (Figure 4.1), which attempts to learn a data representation 𝑍𝑍 ∈ R𝑚𝑚  capable of 

reconstructing the image input 𝑋𝑋 ∈ R𝑛𝑛 , classifying the target labels (with or without the beluga) 

𝑌𝑌 ∈  {0,  1}, and taking care of the sensitive variable (dataset memberships) 𝐴𝐴 ∈  {0,  1, 2} by an 

adversary. This framework consists of three units: dataset membership unlearning, variable of 

interest classification, and autoencoder, which are explained below. 

 
Figure 4.1. A Model for learning adversarially unbiased representations. The variables are images 𝑋𝑋, latent representations 𝑍𝑍, label 
𝑌𝑌, sensitive attribute 𝐴𝐴. The encoder 𝑓𝑓 maps 𝑋𝑋 (and possibly 𝐴𝐴) to 𝑍𝑍. The decoder ℎ reconstructs 𝑋𝑋 from 𝑍𝑍 and 𝐴𝐴. The classifier 𝑝𝑝 
predicts 𝑌𝑌 from 𝑍𝑍. The adversary 𝑞𝑞 predicts 𝐴𝐴 from 𝑍𝑍 (and possibly 𝑌𝑌).  

 

Dataset-membership Unlearning Unit: The first requirement on the latent representation 

𝑍𝑍 was including an adversary network 𝑞𝑞: R𝑚𝑚 ⟶ {0, 1, 2} that attempts to predict the dataset 

membership 𝐴𝐴 from the representation 𝑍𝑍 (and possibly 𝑌𝑌) but should not be able to do that. 
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Therefore, the responsibility of this unit is to learn the representation 𝑍𝑍 that minimizes the 

performance of the best possible dataset membership classifier such that the dataset membership 

information is unlearnt and forgotten. For this unit, we utilized cross-entropy loss (Eq. (1)) between 

the ground truth for our sensitive variable 𝐴𝐴 and the predicted value 𝐴̂𝐴, where N is the batch size 

and C is the number of classes. Herein, we observed an adversarial relationship that comes from 

the fact that we are trying to minimize the performance of the best possible dataset membership 

classifier. Adversarial learning is a popular neural network technique and is inspired by the paper 

(I. J. Goodfellow, Shlens, and Szegedy 2015). In that paper, they discussed a generative adversarial 

model that consists of two neural networks, the generator 𝐺𝐺 and the discriminator 𝐷𝐷.  The generator 

tries to fool the discriminator by generating the synthetic data, while the discriminator aims to 

better distinguish between real and generated data.  

ℒ𝐴𝐴𝐴𝐴𝐴𝐴�𝐴̂𝐴,𝐴𝐴�     =  
1
𝑁𝑁

 �ℓ𝑛𝑛

𝑁𝑁

𝑛𝑛=1

,       ℓ𝑛𝑛 = −�𝑤𝑤𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙
exp�𝐴̂𝐴𝑛𝑛,𝑐𝑐�

∑ exp�𝐴̂𝐴𝑛𝑛,𝑖𝑖�𝐶𝐶
𝑖𝑖=1

⋅ 𝐴𝐴𝑛𝑛,𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (1) 

 

Variable of Interest Classification Unit: Another requirement on the latent representation 

𝑍𝑍 was including a classifier  𝑝𝑝: R𝑚𝑚 ⟶ {0, 1}  that can predict the variable of interest 𝑌𝑌 (the presence 

of beluga whales). Therefore, this unit enables learning a representation 𝑍𝑍 that maximizes the 

classification performance of variable of interest 𝑌𝑌. In this unit, we utilized a binary cross-entropy 

loss (Eq. (2)) between the ground truth for our variable of interest 𝑌𝑌 and the estimated value 𝑌𝑌�, 

where N is the batch size. 

ℒ𝐶𝐶�𝑌𝑌� ,𝑌𝑌�         =  
1
𝑁𝑁

 �ℓ𝑛𝑛

𝑁𝑁

𝑛𝑛=1

,       ℓ𝑛𝑛 = −𝑤𝑤𝑛𝑛[𝑌𝑌𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑌𝑌�𝑛𝑛 � + (1 − 𝑌𝑌𝑛𝑛) ⋅ log (1 − 𝜎𝜎�𝑌𝑌�𝑛𝑛 �)] (2) 

 

Autoencoder Unit: An autoencoder is a type of neural network which first encodes the 

image into a latent representation with a lower dimension and then decodes the latent 

representation back to an image. In our framework, the encoder 𝑓𝑓: R𝑛𝑛 ⟶ R𝑚𝑚  maps the image input 
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𝑋𝑋 (and possibly 𝐴𝐴) to representation 𝑍𝑍 and the decoder ℎ: R𝑚𝑚 ⨉ {0, 1} ⟶ R𝑛𝑛  reconstructs 𝑋𝑋 from 

𝑍𝑍 and 𝐴𝐴. Based on the previous two constraints on the representation Z, there would be a possibility 

that all the information might be lost if every data point maps to the constant number. This way, 

the adversarial unit’s objective would be satisfied because nothing can be inferred from a constant 

number, either the dataset membership or the variable of interest. In order to prevent this outcome, 

this unit is added as a regularization constraint on the representation 𝑍𝑍 in the form of reconstruction 

error, preventing the representation from losing too much information. The reconstruction loss was 

measured by the mean squared error (squared L2 norm) between each element of the input X and 

the target 𝑋𝑋�, where N is the batch size (Eq. (3)). 

ℒ𝐷𝐷𝐷𝐷𝐷𝐷_ℎ�𝑋𝑋�,𝑋𝑋� =  
1
𝑁𝑁

 �ℓ𝑛𝑛

𝑁𝑁

𝑛𝑛=1

,       ℓ𝑛𝑛 = (𝑋𝑋�𝑛𝑛 − 𝑋𝑋𝑛𝑛)2 (3) 

 

Our framework benefited from a combined loss (Eq. (4)) of reconstruction loss, 

classification loss, and adversarial loss to unlearn the dataset-membership information. The 

encoder, decoder, and classifier jointly seek to minimize the classification loss ℒ𝐶𝐶  �𝑝𝑝�𝑓𝑓(𝑋𝑋,𝐴𝐴)�,𝑌𝑌� 

and the reconstruction error ℒ𝐷𝐷𝐷𝐷𝐷𝐷_ℎ�ℎ�𝑓𝑓(𝑋𝑋,𝐴𝐴)�,𝑋𝑋� and also minimize the objective of the 

adversary's 𝑞𝑞. The adversary’s objective is to maximize 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴�𝑞𝑞�𝑓𝑓(𝑋𝑋,  𝐴𝐴)�,  𝐴𝐴�. For having the 

desired balance between the reconstruction, classification and adversarial losses, we specified the 

hyperparameters 𝛼𝛼, β, ϒ, respectively, for the combined loss.  

ℒ(𝑓𝑓, ℎ,𝑝𝑝, 𝑞𝑞) =  + 𝛼𝛼ℒ𝐷𝐷𝐷𝐷𝐷𝐷_ℎ  �ℎ�𝑓𝑓(𝑋𝑋,𝐴𝐴)�,𝑋𝑋� 

                + β ℒ𝐶𝐶          �𝑝𝑝�𝑓𝑓(𝑋𝑋,𝐴𝐴)�,𝑌𝑌� 

                + ϒ ℒ𝐴𝐴𝐴𝐴𝐴𝐴    �𝑞𝑞�𝑓𝑓(𝑋𝑋,𝐴𝐴)�,𝐴𝐴� 

(4) 
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The evaluations were based on the LODO experiment, the same as the previous chapter 

but only for a different algorithm (learning adversarially unbiased representation). The training 

and test sets all remain consistent for valid comparison. For the learning process, we alternated 

gradient descent and ascent steps to optimize the parameters based on the combined loss (Eq. (4)). 

First, the encoder, decoder and classifier (𝑓𝑓, ℎ, 𝑝𝑝) take a gradient step to minimize ℒ while the 

adversary 𝑞𝑞 is fixed (freezing the adversary model). Then, the adversary takes a step to maximize 

ℒ with fixed (f, g, p). That means we froze the whole network except the adversary part of the 

network. For freezing, we set the requires-grad flags to False for the specific part of the network. 

The classifier 𝑝𝑝 and the adversary 𝑞𝑞 were a feed-forward MLP with three hidden layers 

trained with a learning rate of 0.01, while a learning rate of 0.0001 was used for the autoencoder. 

The whole network was trained using an Adam optimizer (Kingma and Ba 2015) with 60 epochs 

and a batch size of 256. Based on our observation in the process of fine-tuning the model’s 

hyperparameters, the Adam optimizer worked better than stochastic gradient descent (SGD). If the 

data within each batch is not balanced, the cross-entropy adversarial objective potentially leads to 

the bias towards predicting the majority class correctly. We addressed this issue by ensuring that 

each batch has an equal number of images per dataset with an equal number of beluga vs non-

beluga images. Regarding the criterions, we applied MSELoss in PyTorch for the decoder. For the 

adversary, we utilized CrossEntropyLoss in PyTorch, combining the Softmax (normalizing the 

scores for the given classes for multi-class classification) with Cross-Entropy-Loss to calculate the 

loss of model (LogSoftmax + NLLLoss (negative log-likelihood loss)). For the classifier, we 

benefited BCEWithLogitsLoss from PyTorch packages that combines a Sigmoid layer and the 

BSCLoss (binary cross-entropy) for one single class.  

4.3 Results and Discussion 

We compare the results of learning adversarially unbiased representation with the 

traditional baseline established in the previous chapter (Tables 4.1, 4.2, and 4.3). 
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Table 4.1. Comparing the results of learning adversarial representation against our baseline model (trained on 𝐷𝐷2 and 𝐷𝐷3 and tested 
on 𝐷𝐷1) 

Tested on good water quality photos list (𝐷𝐷1) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Traditional Baseline 𝐷𝐷1𝑏𝑏 [93.49% 78.80%]  86.26% 0.9390 

AdvRep 𝐷𝐷1𝑏𝑏 [96.19% 74.40%] 85.46% 0.9220 

Traditional Baseline 𝐷𝐷1𝑎𝑎 [94.38% 76.95%]  85.53% 0.9314 

AdvRep 𝐷𝐷1𝑎𝑎 [95.87% 73.14%] 84.33% 0.9173 

 

Table 4.2. Comparing the results of learning adversarial representation against our baseline model (trained on 𝐷𝐷1 and 𝐷𝐷3 and tested 
on 𝐷𝐷2) 

Tested on moderately bad water quality photos list (𝐷𝐷2) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Traditional Baseline 𝐷𝐷2𝑏𝑏 [73.59% 93.61%]  83.37% 0.9322 

AdvRep 𝐷𝐷2𝑏𝑏 [83.18% 87.74%] 85.41% 0.9279 

Traditional Baseline 𝐷𝐷2𝑎𝑎 [72.35% 94.39%]  83.63% 0.9339 

AdvRep 𝐷𝐷2𝑎𝑎 [82.39% 89.66%] 86.11% 0.9232 

 

Table 4.3. Comparing the results of learning adversarial representation against our baseline model (trained on 𝐷𝐷1 and 𝐷𝐷2 and tested 
on 𝐷𝐷3) 

Tested on HIHO photos list (𝐷𝐷3) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Traditional Baseline 𝐷𝐷3𝑏𝑏 [21.31% 97.28%]  59.62% 0.7496 

AdvRep 𝐷𝐷3𝑏𝑏 [46.23% 98.85%] 72.76% 0.9516 

Traditional Baseline 𝐷𝐷3𝑎𝑎 [20.75% 96.92%]  58.51% 0.7509 

AdvRep 𝐷𝐷3𝑎𝑎 [45.56% 99.68%] 72.39% 0.9510 

 

The cross-dataset performance of the traditional baseline models when evaluated on the 

third dataset 𝐷𝐷3 that contains images with both the horizon and water in the same frame is the 
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worst compared to when evaluated on the 𝐷𝐷1 and 𝐷𝐷2. This result is what we expect since the 

datasets 𝐷𝐷1 and 𝐷𝐷2 are relatively well-structured datasets (only the water quality is different in 

these two datasets), while the dataset 𝐷𝐷3 is the most challenging dataset. When we do dataset-

unlearning on well-structured datasets (𝐷𝐷1 and 𝐷𝐷2) which are not noisy, the model is generalized 

better even for a very different dataset that has a lot of noise, such as 𝐷𝐷3. When we bring a noisy 

dataset 𝐷𝐷3 into the training set, as done in the first two cases (trained on 𝐷𝐷1- 𝐷𝐷3 or 𝐷𝐷2- 𝐷𝐷3), the 

inclusion of data points from 𝐷𝐷3 makes it increasingly difficult to learn a model from noisy 

examples. Since 𝐷𝐷3 is extremely noisy, even when we are attempting to perform dataset-

unlearning, it seems part of the noise persists within the training data representation, and therefore 

there is even a little bit of drop in test data performance. 

𝐷𝐷1 and 𝐷𝐷2 datasets are representative of the most practical situations. These photos had a 

relatively controlled setup, and we might not be able to capture datasets in a very different setting 

like 𝐷𝐷3 with images that are not totally under the water (since the camera was not mounted deep 

enough in the water) and all other kinds of possible variations. As 𝐷𝐷1 and 𝐷𝐷2 included photos with 

normal water quality and murky water but overall camera viewing angles were still standard, 

performing dataset-unlearning on these relatively structured datasets, resulted in dramatic 

improvement even for highly unstructured datasets such as 𝐷𝐷3. Moreover, observing the same 

trend in both test folds increases the confidence of the reported results.  
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Chapter 5  

5.Supervised Contrastive Learning 

5.1 Introduction 

In the previous chapter, we presented an approach that aims to explicitly handle the dataset 

bias problem by learning representations that unlearn dataset membership. In this chapter, we will 

investigate if a contrastive learning paradigm can implicitly address the issues due to dataset bias. 

Following a supervised contrastive approach, we learned representations by contrasting the set of 

all samples from the same class as positives against the negatives from the remainder of a training 

batch (P. Khosla et al. 2020). In fact, the label information is leveraged to bring together the cluster 

of images belonging to the same class while simultaneously moving apart the cluster of images 

from a different class. The supervised contrastive loss was set up to contrast the set of all samples 

from the same class as positives against the negatives from the remainder of the batch, as 

demonstrated in Figure 5.1. 
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Figure 5.1. In supervised contrastive learning, a random training sample is selected (anchor) from a batch of random examples, 
and a representation is learned such that the samples of the same class as the anchor are brought closer. In contrast, the rest of the 
examples are pushed apart. This is repeated over multiple anchors. 

 

5.2 Supervised Contrastive Methodology 

We built a framework to learn a latent representation (or embeddings1) such that the 

similarity between images containing beluga is maximized, and the similarity between beluga 

images and non-beluga images in the latent space is minimized using a contrastive loss (Kopuklu 

et al. 2021). To the best of our knowledge, a supervised contrastive paradigm has not been adapted 

for the dataset bias problem. This framework has three main components as shown in Figure 5.2: 

Architecturally, it consists of two blocks, the base encoder, and a projection head; from the 

perspective of learning, the key component is a contrastive loss which we will describe shortly. 

The base encoder is used to extract latent feature representations of the images. The actual 

architecture of the encoder is a choice. For our experiments, we used a straightforward VGG-16 

architecture(Simonyan and Zisserman 2015) as the encoder to allow a fair comparison with other 

approaches. Since we did not use the encoder for classification purposes, we excluded the last 

layer of the VGG-16 architecture (the output layer with Softmax activation), so we were able to 

transform the input image 𝑋𝑋 into the latent space  𝑓𝑓𝜃𝜃(𝑥𝑥) ∈  ℝ4096. Next, we used a projection 

network to map the output of the encoder to another space 𝑝𝑝 ∈  ℝ128. The projection head is a 

                                                 
1 Embedding is an alternative term used in machine learning literature for latent representations (Mikolov et 

al. 2013)  
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multi-layer perceptron network with a single hidden layer of size 1024 with ReLU activation 

function and outputs a vector of size 128. The encoder and projection head are illustrated in Figure 

5.2. Then, we applied ℓ2 normalization to the output of the projection network before giving it to 

the loss function. 

 
Figure 5.2. Encoder and projection head components in supervised contrastive learning. 

 

The central idea behind the contrastive loss is to enforce the normalized embeddings from 

the positive class (beluga images) to get closer together as compared to the embeddings from the 

negative class (non-beluga images). For this reason, positive pairs in the contrastive loss were 

selected from the beluga images, whereas non-beluga images were used as negative samples. Let 

K and M be the number of beluga and non-beluga images, respectively, within a batch with index 

𝑖𝑖 ∈ {1, … ,𝐾𝐾 + 𝑀𝑀}. Final embedding of the 𝑖𝑖𝑡𝑡ℎ beluga and non-beluga images are denoted as 

𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑛𝑛𝑛𝑛 , respectively. In every batch, we have 𝐾𝐾(𝐾𝐾 − 1) positive and KM negative pairs in 

total. The contrastive loss is shown below: 

 
ℒ =  

1
𝐾𝐾 (𝐾𝐾 − 1)

 ��𝕝𝕝𝑖𝑖≠𝑗𝑗  ℒ𝑖𝑖𝑖𝑖

𝐾𝐾

𝑗𝑗=1

𝐾𝐾

𝑖𝑖=1

 (1) 

where, ℒ𝑖𝑖𝑖𝑖 = − 𝑙𝑙𝑙𝑙𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒 (𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇  𝑝𝑝𝑝𝑝𝑝𝑝/𝜏𝜏)

𝑒𝑒𝑒𝑒𝑒𝑒�𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝/𝜏𝜏� +  ∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 𝑝𝑝𝑛𝑛𝑛𝑛/𝜏𝜏)𝑀𝑀
𝑚𝑚=1  

 (2) 

 

and 𝕝𝕝 ∈ {0,1} is an indicator function that returns 1 if 𝑗𝑗 ≠ 𝑖𝑖 and 0 otherwise, and 𝜏𝜏, a scaler 

temperature parameter, is chosen between 0 and 1 that can amplify the similarity between samples. 
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Because 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑛𝑛  are ℓ2 normalized, the inner product of these feature vectors measures the 

cosine similarity between them. By optimizing Eq. (1) and Eq. (2), the encoder is trained to 

maximize the similarity between the feature vectors of beluga images 𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝𝑝𝑝 while 

minimizing the similarity between the feature vector of beluga images 𝑝𝑝𝑝𝑝𝑝𝑝 and all other feature 

vectors of non-beluga images 𝑝𝑝𝑛𝑛𝑛𝑛  in the same batch. The outcome of the contrastive learning 

process is the latent representations 𝑓𝑓𝜃𝜃(𝑥𝑥) that can be achieved by minimizing the contrastive loss 

(different from our usual classification loss). This representation can be later used for various 

downstream tasks  

To perform the classification on the testing set, we typically freeze the learned encoder 

after learning a latent representation and then build a classifier on top of the frozen encoder. 

However, due to having access to the normalized representation of the images, we can simply use 

the cosine similarity scores for classification that do not require further training or computations 

(Kopuklu et al. 2021). For classification, we used the trained model to encode every positive 

training sample (images with beluga) 𝑋𝑋𝑖𝑖 ∈ {1, . . ,𝑁𝑁} into a set of ℓ2 normalized feature 

representations and built a reference template by averaging them. The normalized feature 

representation could be either the normalized output of the encoder or the projection head. If the 

normalized feature representation of an example, 𝑥𝑥𝑖𝑖, is 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), the similarity score was calculated 

as follows: 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑇𝑇  

𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖)
‖𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖)‖2

 (3) 

where, 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 =  
1
𝑁𝑁

 �
𝑓𝑓𝜃𝜃(𝑥𝑥𝑗𝑗)

�𝑓𝑓𝜃𝜃(𝑥𝑥𝑗𝑗)�
2

𝐾𝐾

𝑗𝑗=1

 (4) 

 

In Eq. (4) above 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 can be considered as a reference template of class 𝑝𝑝 in the embedding space, 

while Eq. (3) computes the cosine similarity between the embedding of a test example and the 

template. Thus, to classify a test image 𝑋𝑋𝑖𝑖, we encode it again into a ℓ2 normalized 4096-

dimensional vector (encoder's output) or 128-dimensional vector (projection head's output) and 

compute the cosine similarity between the encoded image and 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 by Eq. (4). Lastly, any image 

whose similarity score was below a threshold, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 <  𝛾𝛾, was classified as a non-beluga image. 
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As we can see, only a simple vector multiplication is performed for the evaluation of the trained 

model. 

All the evaluations were based on the LODO experiment, the same as the previous two 

chapters, all with the same training and test sets for the purpose of comparison. In this experiment, 

the stochastic gradient descent (SGD) method was used as the optimization method with a 

momentum of 0.9. Our model was trained from scratch for 200 epochs and a learning rate of 

0.0001 and a temperature 𝜏𝜏 = 0.9 . The batch size was 256, and for every batch, 1/8(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

were beluga images, and 7/8(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) were non-beluga images.  

5.3 Results and Discussion 

We evaluated the supervised contrastive learning using AUC and accuracy for the aim of 

cross-dataset generalization. As shown in Tables 5.1, 5.2, and 5.3, we observed that the supervised 

contrastive approach outperformed the baseline model and adversarial representation learning, 

demonstrating that our generalization ability improved by using a contrastive loss, even though we 

have not explicitly set up the model to unlearn the dataset bias information. In Table 5.3, when we 

trained the model on 𝐷𝐷1 and 𝐷𝐷2 and tested on the left-out dataset 𝐷𝐷3, the performance improved 

more than in the other two experiments. This might be due to the fact that datasets 𝐷𝐷1 and 𝐷𝐷2 are 

relatively well-structured datasets, so the positive samples could be easily contrasted against the 

negative samples. The improvement for the second experiment (Table 5.2) is more than the first 

experiment (Table 5.1) because for the first case, the model is trained on 𝐷𝐷2 and 𝐷𝐷3 but not 𝐷𝐷1 

which is the most well-structured dataset. The rows corresponding to the contrastive approach are 

highlighted in both tables. We can conclude that the more a well-structured dataset we have for 

training, the better we can contrast the positive images versus the negative images. Having well-

structured and clean datasets for training set as well as using contrastive representation learning 

results in a classifier with better cross-dataset generalization. Therefore, only having well-

structured training sets is not sufficient based on our experiments, as we observed significant 

degradation in performance of cross-dataset evaluation when we used our baseline architecture. 

We have the same trend on both folds for all three experiments. We plotted the histogram of the 

frequency distribution of the scores for both folds of three testing sets (Figures 5.3, 5.4, and 5.5). 
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The histograms on both folds show that the score values from positive and negative classes are 

moved apart while the values within each class are brought together. The distribution of the scores 

is according to what we expect from supervised contrastive learning. 

Table 5.1. Comparing the results of supervised contrastive learning against learning adversarial representation and our baseline 
model (trained on 𝐷𝐷2 and 𝐷𝐷3 and tested on 𝐷𝐷1) 

Tested on good water quality photos list (𝐷𝐷1) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Baseline 𝐷𝐷1𝑏𝑏 [93.49% 78.80%]  86.26% 0.9390 

AdvRep 𝐷𝐷1𝑏𝑏 [96.19% 74.40%] 85.46% 0.9220 

SupCon 𝐷𝐷1𝑏𝑏 [96.65% 82.66%] 89.76% 0.9669 

Baseline 𝐷𝐷1𝑎𝑎 [94.38% 76.95%]  85.53% 0.9314 

AdvRep 𝐷𝐷1𝑎𝑎 [95.87% 73.14%] 84.33% 0.9173 

SupCon 𝐷𝐷1𝑎𝑎 [96.88% 83.84%] 90.26% 0.9627 

 

 
Figure 5.3. Histogram plot for the frequency distribution of scores provided by the classifier (Left: when tested on the 2nd fold of 
good water quality photos list (𝐷𝐷1b). Right: when tested on the 1st fold of good water quality photos list (𝐷𝐷1a).) 
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Table 5.2. Comparing the results of supervised contrastive learning against learning adversarial representation and our baseline 
model (trained on 𝐷𝐷1 and 𝐷𝐷3 and tested on 𝐷𝐷2) 

Tested on moderately bad water quality photos list (𝐷𝐷2) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Baseline 𝐷𝐷2𝑏𝑏 [73.59% %93.61]  83.37% 0.9322 

AdvRep 𝐷𝐷2𝑏𝑏 [83.18% 87.74%] 85.41% 0.9279 

SupCon 𝐷𝐷2𝑏𝑏 [89.53% 96.61%] 92.99% 0.9832 

Baseline 𝐷𝐷2𝑎𝑎 [72.35% %94.39]  83.63% 0.9339 

AdvRep 𝐷𝐷2𝑎𝑎 [82.39% 89.66%] 86.11% 0.9232 

SupCon 𝐷𝐷2𝑎𝑎 [88.26% 98.00%] 93.24% 0.9823 

 

 
Figure 5.4. Histogram plot for the frequency distribution of scores provided by the classifier (Left: when tested on the 2nd fold of 
moderately bad water quality photos list (𝐷𝐷2b). Right: when tested on the 1st fold of moderately bad water quality photos list (𝐷𝐷2a).) 
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Table 5.3. Comparing the results of supervised contrastive learning against learning adversarial representation and our baseline 
model (trained on 𝐷𝐷1 and 𝐷𝐷2 and tested on 𝐷𝐷3) 

Tested on HIHO photos list (𝐷𝐷3) 

Models Test Set Class Accuracies Overall Accuracy AUC 

Baseline 𝐷𝐷3𝑏𝑏 [21.31% 97.28%]  59.62% 0.7496 

AdvRep 𝐷𝐷3𝑏𝑏 [46.23% 98.85%] 72.76% 0.9516 

SupCon 𝐷𝐷3𝑏𝑏 [95.22% 96.76%] 96.00% 0.9918 

Baseline 𝐷𝐷3𝑎𝑎 [21.31% 97.28%]  59.62% 0.7496 

AdvRep 𝐷𝐷3𝑎𝑎 [46.23% 98.85%] 72.76% 0.9516 

SupCon 𝐷𝐷3𝑎𝑎 [95.22% 96.76%] 96.00% 0.9918 

 

 
Figure 5.5. Histogram plot for the frequency distribution of scores provided by the classifier (Left: when tested on the 2nd fold of 
HIHO photos list (𝐷𝐷3b). Right: when tested on the 1st fold of HIHO photos list (𝐷𝐷3a).) 
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Chapter 6  

6.Conclusion and Future Works 

We demonstrated the challenge of building a generalizable model that we can use across 

different datasets through our cross-dataset evaluations. Our experiments showed that typical 

evaluation of the models on the same dataset's splits is unreliable, and we required more evaluation 

methods to make better judgements regarding a trained model's performance. Data collection for 

a particular problem might be from different sources; therefore, each might contain its 

idiosyncrasies, even if the purpose of collection is the same. These differences were shown to lead 

to the dataset bias issue, negatively affecting the models' generalization. We benefitted from 

successfully applying a contrastive loss function that showed consistently better performance over 

cross-dataset evaluation on other datasets as compared to the traditional approach as well as in 

comparison to an adversarial method that explicitly attempts to unlearn the dataset bias. We 

observed that the AUC values of cross-dataset evaluation in a contrastive setting reached very 

close to the values obtained in the within-dataset evaluation of our baseline model. 

A few limitations and directions in which this work can progress in future are given below. 

In our approach, the availability of at least three datasets played a central role in developing cross-

dataset evaluations and all the comparisons conducted in our experiments. However, having at 

least four datasets (i.e., data collected under four different acquisition profiles, if applicable) will 

help us expand the method by performing internal cross-validation during LODO for better tuning 

of hyperparameters. To see how four datasets can help, currently with three datasets, during LODO 

experiments, training is done on two datasets. With four datasets, the training could be done on 
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three datasets, which means we can have an inner (second level) LODO cross-validation within 

the training set. This will also allow us to investigate how much dataset membership information 

has been forgotten in a learned representation of both proposed approaches, i.e., contrastive 

(Chapter 5) and adversarial (Chapter 4). Building a dataset membership classification on top of 

the built representation can enable us to assess the extent to which the dataset membership has 

been unlearned by quantifying the drop in dataset membership classification as done on learned 

representation in comparison to raw data.   

In closing, we should also note that the focus of this thesis has been exploring cross-dataset 

generalization for binary classification. However, we can extend our work to multi-class 

classification. This type of image classification can either be a single label problem of categorizing 

images into precisely one of more than two classes or a multi-label problem wherein each data 

point could concurrently contain objects from multiple classes. We can investigate cross-dataset 

generalization on a multi-class, multi-label problem if we have at least three datasets. 
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