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ABSTRACT

This thesis studies some of the properties of a class of nonrecursive filters called
discrete Fourier transform (DFT) spectrum filters, and their implementation with
special purpose hardware suitable for very large scale integration (VLSI) implemen-
tation. The DFT spectrum of a real vector of N components can be filtered with an
NXN matrix Gy and the result inverse transformed with the inverse DFT to get the
desired signal vector. Alternatively, a different transform matrix T can be applied to
the signal and the resulting spectrum filtered by a matrix Gt such that the result is
the same as filtering the DFT spectrum of the vector with Gf. This is DFT spectrum
filtering. Some of the properties of G for T = W (discrete Walsh transform), T = H
(discrete Haar transform) and T = Tr (tridiagonal transform - one of the matrix fac-
tors of W and H) are described herein. It is found that DFT spectrum filtering using
T = W or T = H is more efficient than using the DFT and Gf for N= 64, assuming a
sequential processor implementation and assuming that Gf is a linear filter. Ordi-
narily, Gf is complex-diagonal and Gt is real and block-diagonal. The VLSI imple-
mentation of the DFT and the DWT using the radix 2, pipeline and linear systolic
array (LSA) architectures is considered aldng with the LSA implementation of Gt'
It is found that while the asymptotic area and time complexity of both architectures
is essentially the same (to within a constant factor), the radix 2, pipeline structure is
superior to the LSA, especially in terms of area. This assumes that we wish to imple-
ment the DFT or DWT. The Gt matrices cannot be implemented with the cascade
and so require an LSA implementation. Because the LSA needs so much chip area,
it is not recommended in general that DFT spectra be filtered with the use of
transform T and filter Gt in the context of a special purpose hardware implementa-

tion of T or G, using the cascade and LSA, respectively.
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Chapter I

INTRODUCTION

The purpose of this thesis is to study a class of nonrecursive discrete-time filters
and their implementation as digital filters using very large scale integration (VLSI)
tecﬁniques. This class of filters is referred to in this thesis as the discrete Fourier
transform (DFT) spectrum filters. Their purpose is to perform some desired linear
filtering operation on the DFT spectrum of a real sampled signal vector (finite
number of components). This is done by changing (filtering) the spectrum of the sig-
nal vector produced by a transform which is not the DFT, such as the discrete Walsh
transform (DWT), discrete Haar transform (DHT), or a new transform to be intro-
duced in this thesis, the tridiagonal transform. This approach to the problem of
DFT spectrum filtering is proposed since it may lead to hardware implementations

that have certain advantages in the context of VLSI.

The remainder of this chapter provides some cursory background on filtering in
general and the special role played by discrete transforms in nonrecursive filtering.
Chapter II introduces DFT spectrum filters as discrete-time filters. Some of their
properties are examined and three special cases are examined. Chapter I11 considers
the problem of implementing DFT spectrum filters as digital filters using special pur-
pose hardware that is suitable for VLSI implementation. Two competing implemen-
tation techniques are evaluated here and these are the radix 2, pipeline FFT method,
and the linea;' systolic array FFT method. The implementation of the fast Walsh
transform (FWT) using these two methods is also looked at. As well, the linear sys-
tolic array implementation of DFT spectrum filters (the G, matrices of Chapter II) is

considered in this chapter. Chapter IV considers various miscellaneous topics



relating to the DFT spectrum filtering problem and is intended to be a guide to

future research efforts.

1.1 FILTERING DEFINED

The definitions presented in this section are not rigorous. The intent is merely

to help relate the filtering method of Chapter Il to the subject of filtering in general.

Filtering means different things to different people. In its most general sense,
therefore, filtering involves the modification of a signal into a more suitable form
according to some criteria. The signal itself can take many forms. The signal can
vary in time, vary in space, or vary in both time and space, for example. The filter-
ing requirements can be specified in the time (or space) domain, but are usually
specified in some frequency domain. The word "frequency” is intended to be more
general than its common connotation of the frequency of a sinusoid, which implies
that the signal under consideration has been expanded in terms of a basis of

sinusoids. More will be said about this later.

Filtering can be performed in both continuous-time or discrete-time. The
independent variable of a continuous-time signal may be coasidered to take on a
continuous set of values. Discrete-time signals are defined only at discrete instants
of time. When both the amplitude and time variables of a signal are discretized, a

digital signal is the result.

The DFT spectrum filters of Chapter II are, strictly speaking, discrete-time
filters and not digital filters because the transforms , filters and signal vectors take on
values from the set of real or complex numbers. Thus, signal amplitudes are not
discretized , although time is discretized. In Chapter III, hardware structures are
proposed for some of the filters in Chapter II. This implies a finite word length
(FWL) binary implementation, and hence the discretization of signal, transform and

filter values. The resulting structures are then true digital filters.



The field of digital signal processing (DSP) can roughly be divided into the
study of two main classes of filters : recursive and nonrecursive filters. This is
alluded to in Rabiner [1]. Recursive filters are often described by recurrence equa-
tions. Recursive filters typically (though not necessarily) operate or are considered
to operate on infinite length number sequences. The class of recursive filters is enor-
mous and includes the classical infinite impulée response (IIR) and finite impulse
response (FIR) filters, adequately described in Oppenheim and Schafer [2] and Chen
[3]. Also included in this class are the wave digital (WD) filters first described by
Fettweis [4], the lattice filters of Gray and Markel [5] and the adaptive filters of
Widrow et al. [6]. This list is far from exhaustive. On the other hand, nonrecursive
filters operate on finite length sequences only. Nonrecursive filtering usually centers
around the use of discrete transforms such as the DFT or the DWT. A sampled sig-
nal vector is transformed, the resulting spectrum is altered according to some
specification(s), and the altered spectrum is inverse transformed to give the desired
signal vector. It is to be noted that many nonrecursive methods have recursive

implementations and vice versa.

Recursive filtering, unlike nonrecursive filtering, often involves systems wiich
employ feedback. Thus, stability considerations can play a role in recursive filter
design. Nonrecursive filtering systems do not use feedback and so stability is never
discussed in the context of nonrecursive filtering. Thus, the DFT spectrum filters of

Chapter II are inherently stable.

Recursive filters are often used in real-time applications. In real-time DSP sig-
nal values are fed to the signal processor at a rate determined by the application.
The signal processor must complete a given processing operation on the samples it

already has before the next sample(s) become available.
Real-time recursive filters must be causal. Nonrecursive filters need not be

causal as they are often employed in off-line , non-real-time, applications. Since

causality imposes restrictions on the kinds of filtering operations one can perform



upon a signal, non-causal filters can do things that causal filters cannot do. Note,
however, that nonrecursive filters can be used in a real-time environment and satisfy

causality. As well, recursive filters can be used in a non-real-time environment.

Thus, in general, non-causal, nonrecursive filters are inherently stable and more

flexible than causal recursive filters that employ feedback.

1.2 DISCRETE TRANSFORMS

TLis section briefly reviews discrete transforms such as the discrete Fourier
transform (DFT), discrete Walsh transform (DV/T), and the discrete Haar transform
(DHT). Most of what follows is a mere literature review. Additional background
material on these and other transforms is provided as the need arises in the chapters
which follow. The DFT and itc applications are extensively discussed in Oppenheim
and Schafer [2],Chen [3], and Gonzalez and Wintz [7]. The applications of DFT to
one-dimensional DSP is considered in [2] and [3] and the applications to digital image
processing are considered in [7]. The DWT is considered in [7] as well, but more
background on the DWT can be found in Ahmed, Schreiber and Lopresti [8]. The
DHT is considered in [8]. It is worth noting that Alkmed et al. [8] proposes a stan-

dard terminology for the DWT and DHT.

1.2.1 Thke DFT

Chen [3] considers the DFT cf a signal to be the truncated z-transform of that
signal, evaluated on the unit circle in the complex z-plane. Thus, the z-transform of
infinite sequence {h(i)}, where i = 0,1, £2,+3, . and h(i) ¢ R (set of real

numbers), is

HE)= 3 h()z~ . a1

{ =—00

The value of H(z) on the unit circle is



H('% = i h(i)e ™, 12)

fm—cn

where 0 = oT, j=V—1 ,» is the frequency in radians per second, and T is the sample period
in seconds. The DFT according to Chen [3] is the truncated version of (1.2), and its definition

is
2wk

N -1
H (k)= {Eah(i)e N 13)

where N is the number of sample points, or the number of points of the original signal

sequence that have been retained.

The inverse z-transform of (1.1) is, according to Chen [3],
A (-1
h{i) 21rj§ H(z)z!7"dz , (14)

and if it is evaluated on the unit circle,
1 2w
h(i)=——[H(ee""do . 1.5)
21 %

However, for (1.3) H(ej“’T) exists only at ® = 2wk/NT, k = 0,1,..,N-1 so Chen

approximates (1.5) by
N-1 2mik

AG) = %goli(k)ej N (16)

which defines the inverse DFT (IDFT).

Oppenheim and Schafer [2] avoid the approximation problems of Chen’s treat-

ment of the DFT simply by considering the expansion of an N-element vector in
terms of complex exponentials exp{j—z;}nk]=ek(n). This produces what Oppenheim

and Schafer term the discrete Fourier series (DFS). The DFS can be used to

represent discrete-time periodic sequences. Oppenheim and Schafer then show that



the DFS can represent finite duration sequences and this effectively shows that the
DFT is the DFS. In so doing, a finite duration sequence is regarded as one period of

an infinite duration periodic sequence.

In any case, the approach of Chen and that of Oppenheim and Schafer lead to
the transform pair of (1.3) and (1.6), with (1.3) defining the DFT and (1.6) defining
the inverse DFT (IDFT). These two expressions can be restated as matrix-by-vector

operations. Thus,

H =Fh , (1.7a)
which is equivalent to (1.3), and

h=F7'H (1.7b)

which is equivalent to (1.6). Clearly, F,F™ € C¥N (set of complex NXN matrices)
and h = [k (0)h (1),... s (N~ JH = [# (0),5 (1),..H (N ~1)] . The superscript "T” means
transpose. In this thesis & ¢ RN (set of real N-vectors) and A ¢ C¥ (set of complex
N-vectors), although & can be complex as well. F is referred to as the DFT matrix

and F'l is the IDFT matrix.

Because the DFT and the IDFT are of such great importance in DSP, much
effort has been expended over the years in finding fast ways of ccmputing (1.7) on
sequential processors via software and with special purpose hardware. The fast com-
putation of the DFT is referred to in the literature under the general term of fast
Fourier transform (FFT). The implementation of FFT algorithms using special pur-
pose hardware is considered in Chapter IIl. Sofiware methods for speeding up the
computaticn of the DFT and the IDFT typically involve attempts at finding efficient
matrix factorizations of F and F! in (1.7). For example, the Cooley-Tukey methed
[9], a decimation-in-time algorithm [2], effectively factorizes F (and F'l) into log,N
matrices (N is a positive integer power of two) and reduces the amount of computa-

tion from something on the order of N? multiplications and additions to something



on the order of NlogZN multiplications and additions. In this case the multiplica-
tions and additions are complex. This algorithm and many of its variations is
described in Oppenheim and Schafer [2]. It is also described in Chen [3] and Gon-

zalez and Wintz [7], and so will not be covered here.

The unit sample (impulse) function is defined as

8(n) —-»[(1, ’ﬁ; ::% (18)
where n € Z (set of integers) is the discrete-time variable. Only the class of linear
shift-invariant (LSI) discrete- time systems [2,3] is of interest in this thesis. Such a
system is completely described by its unit sample (impulse) response sequence {h(n)}
which is the LSI system’s response to 3(n). Note that the system is assumed not to
have any stored energy, and {h(n)} describes only the input/output behaviour of the
LSI system. If the input sequence to the system is {u{n)} then the output sequence

from such a system is given by

Yy = 3, h(n-kuk), (19)
k m—o
and this becomes
y(n) = ih(n—k)u(k),nz() (1.10)
£ =0

if the system is also causal. The equations in (1.9) and (1.10) are referred to as con-
volution sums in [2]. Equations (1.9) and (1.10) are also referred to as linear convo-

lutions. Note also that {u(k)} is causal as well.

Convolution of the kind in (1.10) may be done using the DFT. To start, periodic
or circular convolution [2,3,7] can be performed by taking the DFT of each of the
two sequences to be circularly convolved and multiplying the resulting DFT spectra
of the two sequences point-by-point. The resulting sequence is then inverse

transformed using the IDFT to prcduce the final result. Naturally, both sequences



that are being convolved must be of the same iength. The linear convolution of
(1.10) can be performed with the DFT in much the same way as circular convolution.
However, if one sequence is of length N and the other is of lengtih M, then both
sequences must be padded with zeros until each is of length N+M-1 at least. We
only consider radix 2 DFT in tbis thesis so N+M-1 must be a power of two. This
naturally allows the Cooley-Tukey FFT to be uscd. The first N+M-1 points of the
result of the IDFT operation will be the linear convolution of the two sequences.
This method is described in [2], [3], and [7] in considerable detail. Note that the
failure to pad with zeros adequately may result in a phenomenon called "wrap-
around” [7]. This causes a problem analogous to aliasing. Also ncte that, compared
with the Cooley-Tukcy FFT, the direct computation of (1.10) is more efficient for

N= 32, or thereabouts.

The fact that time domain convolution is equivalent to freguency domain mu'ti-
plication [2] and the fact that causal LSI digital filters are describeable by (1.1C) is
used in Chapter II to justify a method of selecting suitable prototype Fourier gain

matrices (Gf in Chapter II).

1.2.2 The DWT

The discrete Walsh transform (DWT), though less well known than the DFT,
has a wide range of applications. The DWT has been uscd by Cheng and Liu [10] in
the soluticn of difference equations. The Walsh functions from which the DWT is
derived have been used by Corrington [11] to solve integral and differential egua-
tions approximately, and by Maqusi [12] to expand probabiiity density functions.
Pearl [13] has used linear dyadic-invariant (LDI) systems to model LSi systems. The
DWT plays a role in LDI systems essentially identical to that played by the DFT in
LSI systems. Tadokoro and Higuchi [14,15] have used the DWT to facilitate compu-
tation of the DFT coefficients. Their method is fastes than that of Cooley-Tukey for

transforms of size N<64. This method will be considered in more detail in Chapter



II. Chan and Hsiao [16] have used the Walsh functions in the design of optimal con-
trol systems. More recently, the DWT has been prcposed as a suitable substitute for
the DFT in the spectral analysis of electroencephalograms, in Dzwonczyk, Howie and
McDonald [17]. In most cases, the principle benefit in using the DWT rather than
the DFT is that the DWT is so much easier to compute, since the DWT mazrix con-

sists entirely of +1 and -1 entries. Thus, no multiplicaticas are involved.

The DFT can be considered as originating from the Fourier series. Where
Fourier seri:s are concerned, periodic functions are expanded in terms of the com-
picte set of sinusoids anc cosinusoids. The details of the process of Fourier expand-
ing a function are given extensive treatmeni in Tolsiov {18]. The Walsh functions,
like the complete set of sinusoids and cosinusoids in {18], form a complete set them-
selves. The Walsh functions are defineable in terms of an incomyplete set of func-
tions, called the Rademacher functions. The development of the DWT from the

Rademacher functions is described in Ahmed et al. [8].

The Walsh funciions are rectangular functions which takz on values =* 1
throughout the interval over which they are defined ,such as [0,1). The DWT is
obtained simply by sampling the functions at regular intervals on [0,1;. This will pro-
duce an array of *1 values. The resulting array is nonsingular and so if it is of

dimension NxN, the column vectors making up the array will span the space R™.

Ahmed et al. [8] describe the three main orderings of th= DWT. Different ord-
erings of the DWT arise by rearranging the order of the rows of the DWT matrix.
This reordering cun be specified by a permutation matrix. The three principle order-
ings of the DWT zre : 1) sequency or Walsh order, 2) dyadic or Paley order. 3)
natural or Hadamard order [8]. Other orderings do exist, such as the cal-sal ordering
(sze Rao et al. [19]).

The importance of ordering is not to be underestimated. In this thesis. the
Hadamard ordering is used (see Chapter II). If any of the other two main orderings

were selected, the result would be chaos, although all orderings of any given
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transform are equivalent to each other.

A fast algorithm for computing the DWT exists that is very much like the
Cooley-Tukey FFT algorithm. It is described by Shanks [20]. In fact, this algorithm is
identical to the Cooley-Tukey FFT except that it is much simpler because there is no
complex arithmetic, only real additions/subtractions, in the Cooley-Tukey fast Walsh
transform (FWT). The Cooley-Tukey FWT reduces the number of
additions/subtractions involved in the direct computation of the DWT from on the
order of N2 to exactly NlogzN additions/subtractions. Again, N is a power of two
and is the size of the vector that is to be transformed. A program for the Shanks
FWT may be found in Gonzalez and Wintz [7). Incidentally, a program for Cooley-
Tukey FFT can be found in both Chen [3] and Gonzalez and Wintz [7]. The pro-
grams are in FORTRAN.

1.2.3 The DHT

The discrete Haar transform (DHT) is also covered by Ahmed et al. [8], and
some of its applications are considered by Shore [21]. The DHT, like the DWT , is
obtained by sampling at regular intervals a complete set of functions, in this case
they are the Haar functions. The DHT as described in Ahmed et al. [8] is not as
"nice” as the DWT because the DHT matrix entries consist of numbers like = V3 in

addition to = 1, 0 and * 2. For example, the DHT matrix for the case N = 8 is

1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1
V2 V2 V2 V2 0 0 0 0

0 0 0 0 V2 V2 V3 2
2 -2 0 0 0 0 o 0o
0 0 2 -2 0 0 0 0

0 0 0 0 2 -2 0 0

0 0 O o 0 0 2 =2

(see Ahmed et al. [8]).

Fast algorithms for the DHT, called fast Haar transforms (FHT), have been pro-

posed by Rejchrt [22] and Ahmed, Natarajan and Rao [23]. The most useful
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algorithm from the point of view of the work in Chapter II is that of Ahmed et al.
[23]. This fast algorithm is very miuch like that of the Cooley-Tukey FFT and the
FWT of Shanks [20]. Once again, the computational complexity of the DHT is
reduced from on the order of N2 additions/subtractions to on the order of NlogzN
additions/subtractions. It turns out that the Cooley-Tukey FHT in [23] requires on
the order of N nontrivial multiplications. Multiplications by 0, or integral powers of

two are regarded as trivial, and all other kinds of multiplication are considered non-

trivial.



_]2_

Chapter II

DFT SPECTRUL FILTERING USING TRANSFORMS OTHER
THAN THE DFT

In .this chapter the problem of filtering a discrete Fourier transform (DFT) spec-
trum without computing the DFT coefficients is examined. This is accomplished
with the aid of a transform other than the DFT itself. In particular, the discrete
Walsh [8]discrete Haar [8,21,23] and a new transform, the tridiagonal transform [24],
will be considered. These transforms are used because of their computational simpli-
city and the ease with which they can be implemented using special purpose
hardware. Transforms such as the discrete sine [25] or discrete cosine [26]
transforms are not considered since they are computationally much more complex
than the Walsh, Haar or tridiagonal transforms. The main concern in this chapter is
with the structure of the various filter matrices that arise when transforms other
than the DFT are used to filter DFT spectra. The reader should note that most of
this chapter is caken from Zarowski and Yunik [27] and from Zarowski, Yunik 224

Martens [24].

2.1 PROBLEM FORMULATION

Figures 2.1 and 2.2 depict the systems of interest. The vectors ©,7 ¢RY (sct of
real N-dimensional vectors) , with N = 24 (¢ €N and N is the set of natural numbers)
are the input and output signal vectors, respectively. Vector 5~ is the filtered form of
vector ¥. F is the DFT matrix and F'1 is the inverse DFT (IDFT) matrix, in Fig. 2.1.
In Fig. 22 W is the discrete Walsh transform (DWT) matrix and wlis the inverse
DWT (IDWT) matrix. Figure 2.2 can be generalized by replacing W by T (T

1

transform matrix) and W™ by 11 (inverse T transform matrix). W is used instead of
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MATRIX

Y v !
— F G, e
FFT  FOURER GAIN IFFT
MATRIX
Figure 2.1: Spectral filtering with the FFT.
X Llx
— W G, w'o
FWT WALSH GAIN IFWT

Figure 2.2: Spectral filtering with the FWT.
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T in Fig. 2.2 simply for the sake of specificity. All matrices in Fig. 2.1 and Fig. 2.2
are N xN since ¥ and £~ are N-vectors. On a sequential processor the operations F¥
and W¥ would be carried out using a fast Fourier transform (FFT) [2] and fast Walsh
transform (FWT) [7] algorithm, respectively, as indicated in Figs. 2.1 and 2.2. Simi-
larly, F -5 is computed using an inverse fast Fourier transform (IFFT) aigorithm [2]
and Wt is computed using an inverse fast Walsh transform (IFWT) algorithm [7].
Matrix Gf is the Fourier gain (filter) matrix and GW is the Walsh gain (filter) matrix.

More generally, Gt is the T transform gain (filter) matrix.

It should be obvious that the filtering operations being contemplated here occur
in the frequency domain (br sequency domain [8] if the Walsh transform is being
considered). Thus, FX is the frequency spectrum of ¥, and the elements of vector F¥
are the DFT spectrum coefficients that must be filtered. Similarly, wx is the
sequency spectrum of x, and the elenients of vector Wi contain the DWT spectrum
(sequency spectrum) coefficients. In the paragraphs which follow it will be seen that
DFT spectrum filtering without the computation of the DFT of signal vector ¥ can
be accomplished in a general frequency domain by the suitable choice of a filter
function in that general frequency domain. The sequency domain is an example of
an alternative to the Fourier frequency domain. The Haar and tridiagonal
transforms provide other alternatives. It is worth remembering that time domain
convolution of two signal sequences corresponds to the frequency domain multiplica-

tion of the spectra of the two sequences [2,3,7].

One of the problems dealt with in this chapter is the computation of Gt for

some transform T given some Gf, where
Gy =diag[g0.8 158 1] (2.1)

and g =gy , 1 = 1,2,..,N/2-1, and go.en n€R (set of real numbers). The asterisk (*)
means complex conjugate. The g; are called spectral gain (filter) factors. From Figs.

2.1 and 2.2, respectively,
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¥ =F7IG, Fx, (2.2a)
and

¥ =T71G,Tx. (2.2b)
Clearly, W has been replaced by T, W"1 by T'l, and GW by Gt in Fig. 2.2 in order to

get equation (2.2b). For (2.2a) and (2.2b) to be equal to each other it is necessary

and sufficient that

T7G,T =F7'G,F, (2.3a)
or

G, =TF7G,FT.. (23b)

Thus, it is now clear that the DFT spectrum of the input signal vector can be filtered
by filtering the T transform spectrum of the input signal vector. The special case of

T = W will be considered in a later section of this chapter in some detail.

It is worth stating at this time that the conditions on g in (2.1) are sufficient to
give T°¢RN if T¢RN in (2.2a). This fact follows from the properties of the DFT spec-
tra of real signal sample sequences (see [2] and [3]). In addition, these conditions
give real and block-diagonal GW for T = W. This will be proven explicitly later on.
In any case it should be clear that if, for some G, , as in (2.1), then ¥¢RN when
FERN, and it seems likely as well that G, €RMN (set of NXN real matrices) if (2.2b) is
forced to equal (2.2a) and 7 ¢ RNN,

Let I'7'=FT ! so then I'; =TF ™. It is obvious that, since F and T are nonsingu-

lar, FT is nonsingular. Thus, (2.3b) becomes

G, =I'7'G,I';. (24)

This is clearly a similarity transformation of G, to tie complex diagonal matrix G-

Thus, the columns of FT must be the eigenvectors of Gt and matrix Gf must contain
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the eigenvalues of G,. There is little doubt that an interesting study could be made
of the eigenstructure of F, T, Gf, and Gt but this is beyond the scope of this thesis.

It is therefore a topic for future research.

Now, consider T to be Nth order and let T be unitary (T'1 =1H = (T’)T

(TT)*). Thus,

THT =TT" =1\ , (25)

T

where IN is the Nth order unit matrix. Using the fact that F = F ,F'1 = (l/N)F‘,

& HH = (UN)F, and FH = NF
GH=TF'G;FT . (2.6)
Using (2.6) and (2.3b) yields
G,GI'=G¥G,=TF 11G, *FT !, 2.7
where 1G; 12 = diag{1gy1%,1g11% ..., lgxn-11*[ and lg | is the magnitude of g;- Thus,

IG, 1% is a real diagonal matrix satisfying the conditions in (2.1), and so Gt cannot be
unitary in general. This follows simply because G,Gf'=G/’G, #1 (identity matrix). If
Gt is not unitary in general then it cannot generally be orthogonal. In [24] it is
shown that ,for the tridiagonal transform, G, is not diagonal except in special cases.

Now partition T into four N/2th order sub-blocks Tij where i,j € {1,2} as fol-

lows:

ATu T
Tz Tzz}' (238)

The sub-blocks Tij occupy regions of T referred to as quadrants (see Fig. 2.3). Fig-
ure 2.3(a) shows the desired structure of G,. In this section some of the conditions

on Tij are found that give the desired structure of Fig. 2.3(a).
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In [27] a matrix, called the A-matrix, is defined as
A=F7'G; F =[a,,] (2.9)

where A ¢CVN (set of NXN complex matrices). Matrix A is the sum of N partial A-

matrices A(k), k =0,1,...,N-1. This is t-ecause the typical element of A is

N-1 ,
A =7v1- gogiexp[j%i(n —-m )] , (2.10)

where j =V-1 (see Appendix A). Define

A®=lg0)] (2.11)
so that
[(DI-LEPN %1
Q= exp{j ~ (n m)] (2.12)

From [27] A®)=(g, /N )A®). In Appendix B it is shown that

im=[B C] (2.13)

with C = (-l)kB. It is clear that A i Toeplitz because ¢,%} depends upon n-m.
Because A =3]5'A%) it follows that

G,N<*>=%TA(“T-1 (2.14)

which is the Nth order kth partial T transform gain matrix. Using (2.8) and (2.13) in

(2.14) and the fact that 1= TH, gives
G ® =8 Tu Tpllp C] TH 1%
' N [Tz TxllCc BliTY T4

i
8k (T yuBTY +T nCTH+T yCTH +T BT T BT % +T ,CTH +T \CTH +T BT Y
N T BT { +T CT Y +T 5 CT Y +T 3BT Y T BT Y +T nCT 8 +T 5,CT % +T ,BT S

r
_& My My, '
TN [Mn Mzz]' (215)
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To get the desired block-diagonal structure for Gt it is sufficient that
M21=M 1,=0. (2.16)
The expressions for M12 and M21 in (2.15) yield, respectively, upon using C = (-l)kB,
(D T +T B [(-1' T T +T ] ]=0,
and
(DT 4T ]B[(-1)' T4 +T 5 ]=0.

These imply that

(—1'T 4 +T =0, (2.17a)
or
(-D*T 1 +7 5=0. (2.17b)
It is also required that
M #0,0r Mp#0. (2.18)

The expressions for M;, and M,, in (2.15) yield, respectively,
(D' Tu+T B[~ TH +TE 1% 0,
or
(-1} Ty +T LB~ T +TH]# 0.
These imply that
(-1} Ty +T p#0, (2.19a)

or
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(—l)kT21+Tn¢ 0. (2.19b)

Clearly, (2.19) and (2.17) contradict each other. For example, if either one of (2.17a)

or (2.17b) holds then only one of (2.19a) or (2.19b) holds, for some k. Thus, G,N"‘)

always has three identically zero quadrants for any k. In particular, quadrant-1 and
quadrant-3 are always identically zero. The approach used in this thesis to yield
block-diagonal Gt is to select Tij so that T is orthogonal. The Tij are then made to
satisfy (2.17a) and (2.17b) alternately as k is even or odd. Clearly then (2.19a) and

(2.15b) will never be true simultaneously. Quadrants two and four of G, ®) will alter-

nate at being zero or nonzero as k varies from even to odd (remembering that k =

0,1,..,N-1). Thus, when all N G,N"‘) matrices are added together, Gt may acquire the

structure of Fig. 2.3(a). It is important to note that certain of the possibilities for T
will give a dense 2nd quadrant for Gt‘ The tridiagonal transform is such a T, and
Gt’s 2nd quadrant is as dense as its 4th quadrant when the tridiagonal transform is
used. A quadrant is dense if most of its elements are nonzero. Quadraat-4 is nor-
mally dense for transforms and orderings considered in this thesis. Other transform
orderings may cause Gt to take the form of Fig. 2.3(a) except that the diagonal
blocks of Fig. 2.3(a) are rotated about the secondary diagonal. This causes quadrant-4
to occupy quadrant-2 and thus quadrant-2 will now normally be dense and
quadrant-4 will normally be sparse. Clearly, a simple permutation transformation
can be applied to put such a Gt back into the desired form of Fig. 2.3(a). If
quadrant-2 is not dense then the Nth order Gt will usually contain the N/2th order
Gt' This was proven to be true for T = W in [27] and is true for T = H (Haar
transform matrix) as well [24]. It is not true for T = T, (tridiagonal transform
matrix) [24]. These facts will be demonstrated later in this chapter. Quadrant-2 will
usually not be dense if , for even k, (-l)kT11 + T12 # ¢l (c is a complex scalar con-
stant). Conditions yielding a non-dense 2nd quadrant will be more precisely stated

when the special cases for T are considered. Conditions that cause the N/2th order
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G, to be contained in the 2nd quadrant of the Nth order G, will also be more pre-

cisely specified.

2.2 PREVIOUS AND RELATED WORK

Before proceeding with a study of the structure of Gt for the special cases of T
=W, T=H,and T = T, (tridiagonal transform), it is desirable to briefly review the
contributions of other rescarchers to the problem of DFT spectrum filtering without
using the DFT and the related problem of finding DFT spectrum coefficients with

the aid of transforms other than the DFT.

It turns out that very little work has been done on the problem of filtering DFT
spectra without computing the DFT spectrum coefficients. The only publication on
this subject known to ihe author of this thesis is by Kahveci and Hall [28]. Kahveci
and Hall empirically examined the problem of filtering the DFT spectrum of a real
vector with T = W. They briefly considered the problem of filtering the DFT spec-
trum of a two-dimensional signal as well. However, they made no effort at all to
analyze the structure of Gw (= G2 in [28]) theoretically. This lead to certain errors
on their part in their understanding of Gw’s structure as described in their paper.
Thus, this thesis represents an attempt to correct and extend the work of Kahveci

and Hall.

While very little work has been done to date on the problem of filtering DFT
spectra without computing the DFT, much more has been done on the related prob-
lem of computing DFT spectral coefficients by the use of transforms other than the
DFT. Efforts in this area appear to center around the basic problem of computing
discrete Fourier series (essentially the same as DFT [2]) coefficients using the Walsh

transform. Early efforts are due to Siemens and Kitai [29] and Blachman [30].

More recently, Tadokoro and Higuchi [14-15] developed an improved version of
the method due to Siemens and Kitai [29]. Tadokoro and Higuchi compute a, and

bk in
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W /2)-1
f (i)=ao+ (ak cosk 0‘ +bk sink 9{)+bNﬂSiﬂ(N /2)8‘ (2.20)
k=1

where N = 29 (g €N), £(i) (i=1,2,...,N) are the N samples of the continuous-time signal f(t) (t is

time), a, and b, are Fourier coefficients, and

Equation (220) is actually the inverse DFT. This fact is demonstrated in Appendix C, but
was not shown by Tadokoro and Higuchi [14-15].

The coefficients ay and bk are computed using the Walsh transform as follows.
Let ¥ be the signal vector of N components and let X be the Fourier coefficient vec-

tor, where

f=aob161b2¢12 e b_’i ay bN
2

Let C be a conversion factor matrix with
c=rw! (2.21)

SO

X =CWX. (222)

Thus, X is computed by first determining the DWT of ¥ (using the FWT [7]) and
then applying the conversion matrix C to the resulting vector Wx. Tadokero and
Higuchi derive expressions for the elements of C and they used the Walsh or
sequency ordered W matrix [8] in their derivations. Do not confuse the use of C in

(2.21) and (2.22) with the use of C in (2.13).

The use of the Walsh transform and a conversion matrix to compute the
Fourier coefficients is motivated by the fact that this operation is accompanied by an

. overall reduction in the amount of computation for N=64 [14]. Computation is

reduced with respect to the use of the Cooley-Tukey FFT algorithm (described in "
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[2,3,7]). In particular, the number of multiplications is reduced. This can represent
a dramatic increase in the processing speed on a sequential processor. This is espe-
cially true if the processor does not possess a hardware multiplier. The method of
Tadokoro and Higuchi has the added advantage that not all of the Fourier
coefficients need be calculated. The Cooley- Tukey FFT algorithm, and indeed most

FFT algorithms, require that all DFT coefficients be computed.

It is important to realize that there are other ways of computing the DFT spec-
trum, and therefore of convolving two time sequences. Many are more efficient
computationally than either the method of Cooley- Tukey or of Tadokoro and Higu-
chi. For example, the fastest method of computing the DFT is Winograd’s algorithm
[31]. However, fast algorithms such as Wincgrad’s algorithm tend to be much more
complex in terms of implementation than algorithms such as the Cooley-Tukey algo-
rithm or the Tadokoro and Higuchi algorithm. It is a fact that computationally sub-
optimal but simple algorithms may be more cost-effective than computationally
optimal but complex algorithms. Thus, simple methods such as that of Tadokoro and

Higuchi continue to be of interest.

The more general problem of using the Walsh transform to compute the
coefficienits of transforms other than the DFT has been considered by Jones,Hein
and Knauer [32], VenkatramanKanchan,Rao and Srinivasan [33], and
Kwak ,Srinivasan and Rao [34]. Jones et al. [32] show that any transform in the class
of even-odd transforms (EOT) can be expressed in terms of any other transform in
that class via a conversion factor matrix. The discrete Walsh, sine and cosine
transforms are examples of this class of transforms. Jones et al. mainly considered
the discrete cosine transform. Venkatraman et al. [33] consider a wide variety of
discrete transforms such as the C-matrix transform (CMT), which is an approxima-
tion of the discrete cosine transform (DCT). They also consider the discrete sine
transform (DST), and the discrete Legendre transform (DLT) as well as others.

Their study is short and completely empirical. It deals with transforms of low order
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(N = 32). Computation of the CMT and DCT using the discrete Walsh transform is
given separate consideration in Kwak et al. [34], and again this is an empirical study
of transforms of small order (N = 32). Once again the motivation for using one

transform (here the DWT) for computing another transform is to save on comnputa-

tion.

2.3 SPECIAL CASES FOR TRANSFORM T

It is now appropriate to consider three special cases for transform T. Thesc are
T = W (discrete Walsh transform), T = H (discrete Haar transform) and T = Tr (tri-
diagonal transform). It will be seen that these transforms give rise to filter matrices
with a very regular structure. In some cases, the resulting structures are candidates
for very large scale integration (VLSI) implementation. This subject will be explored

in Chapter III.

2.3.1 Walsh Transform

For T = W equation (2.3b) can be rewritten as

G, =-=WF G, Fw, (2.23)

1
N
where Wl = (UN)W. It is important to note that the Hadamard (natural) ordered

discrete Walsh transform [8] is being used in this thesis. If W = [wnm] then

-1
qZ by (n )by (m)
Wom =(—1)'~° , (224)

where bk(n) is the kth bit of the binary representation of n and modulo-2 arithmetic
is used in the exponent of (2.24). Remember that N=29. This expression for a typi-

cal element of W is taken from Gonzalez and Wintz [7]. Since A = F'leF and

A=3N31AM it is possible to write

N -1 1
G, (2.25)
0

WAW =—w| 3 AWlw=3 —wa®lw=3
N k=0 k=0 N k=

=L
Gu=7%
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where
®=ly ol Ly oy

is the kth partial Walsh gain (filter) matrix. In Appendix D it is shown that the typi-

cal element of 6%, namely %), is given by

q-1
1 N-1N-1 3, [by (), )+, ()b (m)
YR=—=a X I (-1

N r =0 p=0

exp[j 2;" (r-p )]. (2.27)

This expression can be interpreted as the typical element of the two-dimensional
discrete Walsh transform of the kth partial A-matrix (see equation 3.5-32 in [7]).
This fact is significant since a simple and fast algorithm for the computation of two-
dimensional discrete Walsh transforms is available and is fully described in Gonzalez

and Wintz [7]. Rewrite the right most equation in (2.26) as

1

—WA®W = rWrWA(")V)T. 2.28
N Wwa™) ) (2.28)

1
N
From (2.28) it is possible to see that G,*) can be computed in a computationally
efficient manner by taking the FWT of each column of A(k) and saving the resultant
matrix WA(k). Next, the FWT of the rows of the intermediate result WA(k) arc
taken and then tiis result is scaled by factor I/N and transposed. This yields the

final result. From this discussion it should be clear that the Hadamard ordered

DWT is self-inverse and symmetric, except for the scals factor 1/N.

Thus, an efficient method for the computation of GW off-line exists. However,
the method is too slow for on-line signal processing applications. In practice, the
gain matrix G,, would be computed off-line and saved for use in an on-line signal
processing application. This statement is true for Gt generally. The conditions
under which this approach is likely to be worthwhile will be considered in the

sequel. The preceding off-line procedure is taken from Zarowski and Yunik [27).
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It has been stated that the condition g, =gy _, (i = 1,2,...,(M/2)-1) and 808y € R
2

will yield a real Gw and a conjecture was proposed which implies that this is gen-
erally true if 7 ¢ RV, and (2.2b) is forced to equal (2.2a). This will now be proven

explicitly for T = W (originally proven in [27]). From (2.12),

ang:v_k) = &N -k exp[}Zw(N "k)(n_m)]

N N

SNk exp[—- j 2;" (n-m )}. (2.29)

Thus, (2.29) and (2.12) are related as
at=qr @0 (2.30)

provided g, =gy _; for k = 12,..(N/2)-1. This implies that A®)=4"® "5 It is neces-

sary that g and g, be real so that G/ and G,* /2, are real.
2

From (2.26),

G;(N 'k)______lz'_/_WA'(N ‘k)u/‘ (231)

Since G," M =[vpn +ttmj] then Go® P=[v,, —u,nj1=G.& so GH+G ¥ “=2[vum]. Thus,
when the partial Walsh gain matrices, G’ and 6 for k = 12,..,(N/2)-1, are
added together, a real matrix is produced. Adding ¢ and G/ to this matrix
yields a real G, matrix. It is important that G and G/ be real themselves
because of the structure of Gw‘ This will become evident in the remainder of this

subsection.

t is now desirable to prove that GW has the structure depicted in Fig. 2.3(a),
that is, Gw is block-diagonal. This proof is taken from [27]. Once again it is impor-
tant to note that the Hadarard ordered DWT is used here. The use of another ord-

ering will yield a structure different from, but equivalent to, that depicted in Fig.



_27_

2.3(a). Equivalent structures are related by simple permutation transformations.

The Hadamard ordered DWT [7] is generated by the order recursion

- WN WN
Won = [WN -Wy ]s (232)

where WN is the Nth order W ’WZN is the 2Nth order W, and W1 = +1, It is con-

venient to rewrite (2.26) as

G (")=%W2~A{f,,)wm, (2.33)

wan

where Af;) is the 2Nth order kth partial A-matrix. Using (2.13) and the fact that

AB)=(g NIAD),

o)k [B CI_8 ;)
AN =N lc BjT 2NA7N . (2.34)

Substituting (2.32) and (2.34) into (2.33) gives

@ - & Wy Wy l[B Cl{Wx Wy
oy aN2 Wy —Wyllc Bliwy -wy
& 2wy @+o)wW, 0
“uNe 0 2Wy (B ~C )Wy
= 43 r(1+(.—1)k )WN BWN 0 (2 35)
2N2 0 (1_(_1)k)WNBWN ’ =

where C = (-l)kB has been used. From (2.35) it is easy to see that quadrant-1 and

quadrant-3 of G, * are always identically zero. As well, quadrant-2 is identically

zero when k is odd and quadrant-4 is identically zero when k is even (k =

0,1,2,..,2N-1 here).
The set G=[g, !i=0,1,...,N—1} represents samples of some desired filter function

H(e’®) and j=V-1. H(e’®) is sampled at N points corresponding to



_28_

o, =2=t (236)

so g, =H (e“‘). The function H (c’®) is the system function H(z) [2,3], a rational func-
tion of z, evaluated on the unit-circle in the complex z-plane. If we start with N
samples of H (¢’?) and then double the number to 2N, the N new samples will fall in
between the N old samples (as in a perfect shuffle of a deck of cards). The new sam-
ples of g will correspond to odd values of i. Thus, these new samples will affect the

value of G, ® only in quadrant-4. Similarly, the values of g; for even i will only
affect quadrant-2 of G, *). However, g; for i even is one of the N old samples
corresponding :o an Nth order Gf filter matrix and thus quadrant-2 of G.,, must

contain G,, . This naturally leads to the structure of Fig. 2.3(a) for G,

Since quadrant-2 of an Nth order GW contains the N/2th order Gw, and since g
with i odd always affects only the fourth quadrant, it is possible to deduce the diago-
nal block that any particular g will affect. The block structure of G,, for N =32 is
shown in Fig. 2.4 and Table 2.1 contains a list of the diagonal blccks in Fig. 2.4 and
the g; values that affect them. Note that block B4 contains all g with odd i for N =
32, block B3 contains all g with odd i for N = 16, block B2 contains all g with odd i
for N = 8, and so on. From this it may be seen that gq only affects eiement (0,0) of
matrix GW and EN/2 only affects element (1,1) of Gw‘ No other g; affects these two
elements of G_. Thus, G and G/ must be real since, if they were complex,
adding them to the remaining G,*? would not give a real GW because elements (0,0)
and (1,1) would be complex. This implies that gogx 2€R is required. The diagrams

of Fig. 2.4 and Fig. 2.3(a) both illustrate this.
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—.—90 —_
2x2| Bl
B2
4x4
B3
8x8
B4
e x 16
Figure 2.4: The block structure of G, for N = 32
showing diagonal blocks B1, B2, B3 and

B4 (see Table 2.1).
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Block | g that the block is a function of

B1 88824

B2 £ 4,8 12,8 20,8 28

B3 8258 618 10:8 1458 1858 22:8 26>8 30

B4 81:83:85 """ 2813815 " " 827,829,831

Table 2.1: The diagonal blocks of G, for N = 32 showing which g values they

are a function of (see Fig. 2.4).

The method of generating set G described above needs some justification. A
digression to explain this method is therefore in order. To begin, it can be shown
that a linear time-invariant [3] (linear shift-invariant [2]) and causal filter that is

relaxed at discrete-time instant n=0 can be described by

y(n) = i h(n—ms(m), n=0,12,.. (2.37)
m =0

where {y(n)} is the filter output sequence and {u(n)} is the input signal sequence.
The sequence {h(n)} is the impulse response sequence of the filier and may be of
infinite duration. Equation (2.37) is the linear discrete-time convolution of {u(n)}

with {h(n)} to get {y(n)}. Taking the z-transform of (2.37) yields
Y(2)=H (z2)U (2), (2.338)

as shown in [3], where Y(z), H(z) and U(z) are the z-transforms of the sequences
{y(n)}, {b(n)} and {u(n)} , respectively. Clearly, H(2) is the system function of the
filter characterized by the impulse response sequence {h{n)}. Since the filter is causal
and linear time-invariant, H(z) is a proper rational function [3]. A rational function
is said to be proper if the degree of the denominator is equal to or greater than the

degree of the numerator.
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To produce a discrete-time sequence {u(n)}, a continuous-time signal u(t) is
sampled every t seconds (sampling period). If the signal is band-limited and has a
bandwidth of fC then r < 1/(2fc) is required to prevent aliasing [2,3,7]. It is shown
in [3] that the steady-state response of filter H(z) to an appropriately sampled
sinusoidal sequence of frequency o radians per second is fully characterized by
H (¢/*")=A (0)e’*®) where A(w) is the amplitude response of the filter and d(w) is the
phase response. The sinusoid will be attenuated (or amplified) by amount A(w) and
phase-shifted by amount ¢(w). Filters are ordinarily designed according to how they
affect a sinusoidal input sequence. Thus, H (e/“")=H (¢/*) Iy is a suitable definition
for the spectrum of a signal sequence or the characteristics of a filter [3]. It is impor-
tant to note that H(e/%), when sampled according to (2.36), will satisfy the conditions
on g as stated in (2.1). This is clear from reading [2,3,7]. Thus, at least H(z) bears

consideration as a suitable prototype for Gf and hence for Gw (or Gt in general).

There is one more issue surounding the use of H(z) as a prototype filter for Gf.
It is true that H (e/®) produces a continuous but periodic spectrum. The question is:
Is it legitimate to sample H (¢/®) in order to get Gf ? The answer is yes because the
DFT spectrum of ¥ exists only at discrete frequencies and 1 has only a finite number
of harmonics. Vector ¥ is obtained from a discrete- time signal sequence {x(n)},
truncated after N samples, and the discrete-time signal sequence is obtained by sam-
pling a continuous- time signal , x(t), fast enough (1 < 1/(2fc))' Thus, ¥ should be a
suitable approximate representation of both the discrete- time and continuous-time
sequences. If H(e/®) represents the desired filter operation that we wish to perform
on {x(n)} then clearly, to filter ¥, those harmonics possessed by ¥ and affected by
H (e/% are all that is needed in order to filter ¥. It is obvious that these harmonics
occur at 8, in (2.36). Thus, 8;=H (e”"). Therefore, the method described above for
obtaining G; is legitimate.

It is to be noted that W satisfies the requirements associated with (2.17) and

(2.19) described at the end of section 2.1. W is clearly orthogonal, except for a scale
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factor. Equations (2.17a) and (2.17b) alternate at being zero or nonzero as k varies
from even to odd. It has been suggested that a necessary condition for quadrant-2
not to be dense is (-l)kT11+T12 # cl. Clearly, this condition holds for T = W.
Since B is in all quadrants of A®) (see (2.13)), it has essentially the same structure as
A®) except that if A®) is of order 2N then B is effectively of order N since only even

k affect quadrant-2 of G, ®). Thus, W,,BW,, can be expected to possess the same
w NPYWN P

structure as (2.35),assuming even k. This of course has proven to be true from the
preceding discussions. Thus, to avoid a dense second quadrant (in (2.35)), it should
bave a form such as (1 +(-1)k)cWNBWN, or more generally (1+(-1)k)cTNBTNH for
2Nth order T.

In Zarowski, Yunik and Martens [24] it is shown that the diagonal blocks of G,

have the form

x vl (2.39)

Also, the G}) blocks have a structure like that of (2.39). This is an interesting pro-
perty since it is known [35] that an isomorphism exist; between the group of nonzero
matrices of the form

5 4. (.40)

under matrix multiplication (a,b €R, a#0, and b # 0 simultaneously), and the group of
nonzero complex numbers under ordinary complex multiplication. Clearly, X and Y
are square submatrices in (2.39). This structure may have practical significance in
that it may signal the presence of an efficient factorization of matrix Gw, or of
matrix Gt in general. This possibility is under investigation (see Chapter IV). It has
been shown that Gt is not unitary. Good [36] and Andrews and Caspari [37] con-
sidered the factorization of certain kinds of unitary matrices, such as W and F.
Since Gt is not unitary even when T itself is unitary, it is possible to conclude that

the method of Good and of Andrews and Caspari is not useful here.
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Let
P
B = {g Q] : (2.41)
and
_|WNp Wy
Wy = |y -Wm]' (2.42)

This allows the submatrix WNBWN in (2.35) to be written as

_ |WNp(2Q +P +R)Wy Wx n(R—P YWy P
WnBWy = [ ~Wxp(R=PWinp Wy p(2Q—P —R)Wy | (243)
where (2.41) and (2.42) have been used. Comparing (2.43) with (2.39) yields

Y = WN /z(R -P )WN/Z . (244)

It is now necessary to show that R + P = 0 for odd k (k = 0,1,...2N-1). f R+ P =0

for odd k this will give the diagonal blocks the structure of (2.39).

B is Hermitian (see Appendix B) so P = RH Letp = [pnm]’ R = [rnm] $O

Tam =Pmn A0 if prm =0pm +Bomj then ppn = —Bmaj =rpm. It is possible to write B = [5,¢ ]

and b%) is

bn(,f,)=exp[jlrﬁ’f-(n -m )] , (2.45)

(2Nth order Gw(k)). Considering quadrant-1 of B in quadrant-2 of (2.35) gives
® —expl i T (n - - N .
b exp{j r (n—r 5 )] {(2.46)

where m = r + (N/2) and n,r = 0,1,2,...,(N/2)-1. Thus, p,, =cxp{jl;-’£(n —m——g—)] and

n,m = 0,1,2,..,(N/2)-1 (changing the indexing notation somewhat), which yields for

odd k,
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G =COS [—’fﬁ’f—(n —m --g—)]=xin ["—2”—1;:" [%(n —m)l, (2.47a)
Bam =sin [0 (1 =m )] ==sin [ oos (K (s =), (2.47b)
Clearly, Bnm = an and LI . Thus,
R+P = [Fom tPum]
=[Pn +Pam ]
=[Ctpn = BmnJ +0um +Bami ]
=0 (2.48)

We can be more specific about the structure of Wy BWy in (2.43) above. Start by

using the fact that
R—P = [(!m,. _anj O gy —.ﬁ'm‘]]

=_2[am B J ]

ot s

- j[Zexp[j—T;Tk(n —m) } , (2.49)

where the expression for Pom and odd k are used. Thus, the structure of a diagonal

block in G,, *) can be more precisely stated than in (2.39) as

x® o+ ix®

WnBOWy = | S Ty

(2.50)

because Q =[g,,] and q,, =cxp[jINi(n ——m)] and B has been replaced by B(k), and X by

X(k) to emphasize their dependence upon k.
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It has been shown, by running a modification of program GWGEN (see Appen-
dix G), that if g, is real then G.*) is composed of elements which are strictly real or
strictly imaginary (N = 128). Let D; be Hermitian-Toeplitz and D, be skew-

Hermitian-Toeplitz, and both matrices are 2 X 2. It is easily shown that

wowa= [t 1] L%, 0P B 2y

f o o
waws = 1 4] | 2 nt ]

= o P PV (B;‘?z)j}' @22

The proof that the elements of Gw(k) are strictly real or strictly imaginary (gk is real
here) appears to rest on the truth of (2.51) and (2.52). The full proof will not be

presented here.

Figure 2.5 depicts more of the details of the structure of Gw for N=32. The 0’
characters indicate the elements of GW that are zero. Characters "X’ and °Z’ indicate
elements which are generally nonzero. If it is assumed that g € R for all i and
g =8y~ fori =12 .(N/2)-1 then it has been observed that the *Z’ characters of Fig.
2.5 all go to zero and so the *Z’ characters in Fig. 2.5 can be replaced by 0’ charac-
ters. Because a typical element of G is strictly real or strictly imaginary when
g € R, the structure of (2.50) suggests that half of all the elements in the diagonal
blocks of G might be zero. This is because when all Gf®) are added together the
imaginary parts of G,*) must vanish. This disappearance is assured by the fact that
G®=G," %) However, it must still be shown that exactly half of the elements in a
block are real and half are imaginary. Furthermore, to prove that the structure of

Fig. 2.5 holds for all N, it must be shown that the *Z’ characters correspond to
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7;0000000000000000000000000000006-
0X000000000000000000000000000000
00XZ0000000000000000000000000000
00ZX0000000000000000000000000000
0000XZZX000000000000000000000000
0000ZXXZ000000000000000000000000
0000ZXXZ000000000000000000000000
0000XZZX000000000000000000000000
00000000XZZXZXXZ0000000000000000
00000000ZXXZXZZX0000000000000000
00000000ZXXZXZZX0000000000000000
00000000XZZXZXXZ0000000000000000
00000000ZXXZXZZX0000000000000000
00000000XZZXZXXZ0000000000000000
00000000XZZXZXXZ0000000000000000
00000000ZXXZXZZX0000000000000000
0000000000000000XZZXZXXZZXXZXZZX
0000000000000000ZXXZXZZXXZZXZIXXZ
0000000000000000ZXXZXZZXXZZXIXXZ
0000000000000000XZZXZXXZZXXZXZZ X
0000000000000000ZXXZXZZXXZZXZXX2
0000000000000000XZZXZXXZZXXZXZZX
0000000000000000XZZXZXXZZXXZXZZX
0000000000000000ZXXZXZZXXZZIXZXXZ
0000000000000000ZXXZXZZXXZZXZXXZ
0000000000000000XZZXZXXZZXXZXZZX
0000000000000000XZZXZXXZZXXZIXZZX
0000000000000000ZXXZXZZXXZIXZXXZ
0000000000000000XZZXZXXZZXXZXZZX
0000000000000000ZXXZXZZXXZZXZXXZ
0000000000000000ZXXZXZZXXZZXZXXZ
I_SDOOOOOOOOOOOOOOOXZZXZXXZZ)(XZ)(ZZ2(__‘

Figure 2.5: The structure of Gw for N = 32
showing more cf the detail of the

structure of the diagcnal blocks.
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imaginary numbers. These proofs have yet to be worked out.

Because of the structure of Fig. 2.3(a), any T transform in general which yields
this structure will produce a Gt that causes the system of Fig. 22 to require A,
additions/subtractions and Mt multiplications to process vector ¥ into vector x°. This
compares with the A, additions/subtractions and M; multiplications to process vector
X into vector X" using the system of Fig. 2.1 (Cooley-Tukey FFT [2,3,7]). By additions
, subtractions and multiplications are meant real additions, subtractions and multipli-
cations. From [3] it is known that the number of complex additions for the Cooley-
Tukey type FFT algorithm is, to a close approximation, N log2 N and the number of
complex multiplications is %N log2 N. Thus, FFT requires 2N log2 N real additions
and 2N log2 N real multiplications, and IFFT has the same computational require-
ment. There are 4N real multiplications associated with premultiplying the complex
vector Fx by the complex diagonal matrix G,. There are 2N real
additions/subtractions associated with this operation as well. Thus, the amount of
computation involved in the use of the spectral filtering system of Fig. 2.1 is

Ar =4N logoN + 2N (2.53a)
and
My =4N logN + 4N . (2.53b)

The FWT and IFWT both require NlogzN additions/subtractions. Using this fact

and the structure of Gw gives

N|N NIN NIN
A, <2Nlog,N +{2+12+ + 3 [8 1]+ n [4 1+ > 13 1]] , (2.54a)
and
N : N 2 N
M,= 224424+ ?] + —4—J + —Z—]Z]+2 , (2.54b)
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where N=4 and subscript "w” indicates that A= A, and M, = M, . Inequality is
used in (2.54a) and (2.54b) because these expressions provide acceptable bounds on
the computation for both the Haar and Walsh transforms. As well, for g, ¢ R for all
i, the computation associated with operation G,y (y=Wx) appears to be halved Cz

characters go to ’0’ characters in Fig. 2.5). Thus, for g, ¢ R, i=0,1,....N-1,

NIN NI|N NIN
L2412+ - = = - [ = 1
A N 1 L0 I T I A0 R
and
2 2 2
Mws%[22+42+---+[% +{§ +—};-”+2, (2.55b)

which represents a tighter bound for the case g, ¢ R for all i.

Table 2.2 shows the values of A, .M, A, , and M, for N=4 to N=128 using
expressions (2.53) and (2.54). It is therefore evident that the system of Fig. 2.2 is com-
putationally more efficient than that of Fig. 2.1 for N= 64 if 80:8xpn € Rbut gi=¢gv_, (i
=12, ..,N/2-1). Similarly, if g, ¢ R for all i, then the system of Fig. 2.2 is compu-
tationally more efficient than that of Fig. 2.1 for N< 128 (based on comparing (2.55)
with (2.53)). These computational comparisons assume the implementation of the

system of Figs. 2.1 and 2.2 on a sequential processor.
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Fourier Domain | Walsh Domain
N Af Mf Aw MW
4 40 48 18 6
8 112 128 62 22
16 288 320 198 86
32 704 768 630 342
64 1664 1792 2070 1366
128 | 3840 4096 7126 5462

Table 2.2: A comparison of the computational requirements for spectral filter-

ing in the Fourier and Walsh domains.

For examples of partial Walsh gain matrices (case N=8) the reader should con-
sult Appendix E. Appendix F contains an example of Gw for N=16. The prototype

is a first order Butterworth filter.

2.3.2 Haar Transform

1 _ gl (inverse

The use of T = H (discrete Haar transform (DHT)) and T°
discrete Haar transform (IDHT)) will now be considered. This subject was first con-

sidered by Zarowski, Yunik and Martens [24]. In this case Gt becomes G, , the Haar

h’
gain matrix, and G,*) becomes G,#’, the kth partial Haar gain matrix. Equation (2.3b)
can be rewritten as

G,=HF 'G,FH ™ . (256)

In Ahmed et al. [23] the 2Nth order orthonormal Hadamard Haar transform is given

as

Hy Hy
2k2p, 2 Pp 10
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where k = logzN here and Hy is the Nth order orthonormal Hadamard Haar
transform. However, for the purposes of this thesis, an orthogonal Hadamard Haar

transform of 2Nth order is defined as

H2N=[HN ””}. (2.58)

I Iy

It will replace (2.57) in what follows. It is easy to see that

AN=HuwHixy={""3"" o

2HHY 0 J . (2.59)

Matrix A2N is a real and diagonal normalizing factor matrix with elements that are

integer powers of two. Thus,

Ha=HLyAw . (2.60)
By using (2.58) instead of (2.57), the integer powers of V2 in (2.57) may be avoided.
As an example, A8‘1=diag{8,8,4,4,2,2,2,2}. Note that, strictly speaking, (2.59) and (2.60)

only show that HZN has a right inverse (2.60). However, HZN is nonsingular and
therefore invertible. Thus, it possesses a unique inverse, and it is a basic principle of
linear algebra that this inverse is both a right and a left inverse for HZN' Thus,
(2.60) is certainly the inverse of HZN' Using (2.60) in (2.56) yields

G),ZN=H2NF—‘IG/FH£~AZN (261)

and
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There is no "nice” formula such as (2.24) for a typical element of H which can
be used to give an expression for the typical element of G,*) as in (2.27). However,
as a practical matter, this causes no problem. Equation (2.28) defines an off-line
method for computing G,%*’ and hence G,,- Similarly, the first equality of (2.62) can
be rewritten , without the 2N subscripts, as

G=HA®HT A=(AH (HA®YTYT . (2.63)

It has been shown for the special case of T = W, in subsection 2.3.1, that the
conditions on gy given in (2.1) are sufficient to give G, ¢ RN, The reader should
have noticed that the proof was actually independeat of T (assuming T ¢ RMN),
Thus, it is clear tha: the conditions on 8y in (2.1) will give G, € RNN, In effect then,
the conjecture that G, € RNN is true, if the conditions on g in (2.1) hold, and if

(2.2b) is forced to equal (2.2a).

It is now necessary to show that G, has the block-diagonal structure of Fig.

2.3(a). Using (2.58) and (2.13) in (2.62) gives

G, ® = & |Hy Hy |[B C] HY Iy A
hZ‘V ZN IN "IN lC BJ H} _IN w
[
_& [Ev@OME o |,
N | 0 B-C| "
_& |(1+(-1)" )HyBH] 0
=3 0 (1—(—1)")8 Aoy . (2.64)

Thus, since (2.64) is similar to (2.35), by arguments identical to that associated with
(2.35), Gh has the block-diagonal structure of Fig. 2.3(a). Furthermore, Fig. 2.4 and
Table 2.1 accurately specify the structure of Gh for N=32, as gy Wwith k odd once

again only affects quadrant-4 and 8y with k even only affects quadrant-2.

The Haar domain analogue of (2.43) is simply matrix B, since only k odd is of

interest. From (2.41) it is possible to write
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w_o® p(k)]
B R®) Q(k)J ’ (2.65)

to emphasize the k-dependence of B and its submatrices. Thus,
PE = [al)+B 3],
R® = [a®)-pW)]
PN < [a®-p 8],

R K = [q®)4p®)i] | (2.66)

MHJ

where P = RH has been used, Now, &) = %) and &) = —a ) s0

PG®) 4 p@N-k) o 2[01,5,’,(.)] ,
and
R®) + ROYVH) = 9[ 6] = —2[a )] .

Thus, B(k) + B(ZN'k) has the form of (2.39), meaning that each diagonal block of
Gh has this form. However, because typical elements of B(k) (B for short) are as in
(245), its elements are not generally strictly real or strictly imaginary. Hence, G,*)
cannot generally have strictly real or sirictly imaginary components. The coase-
quence of this seems to be that Gh has not got the structure depicted in Fig. 2.5.
That is, when g € R for all k, the *Z’ characters rarely go to 0’ characters. Thus,
suitable bounds on the computation associated with the use of the system of Fig. 2.2
with T=H are obtained using (2.54) but not (2.55). This implies that Table 2.2 holds
for T=H as well as for T=W,

Note that B is Toeplitz. This implies that Gh will be Toeplitz in its diagonal

blocks (block-Toeplitz). Such a property will be seen to have important implications

in a VLSI context. This will be shown in Chapter III (section 3.4).
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For examples of partial Haar gain matrices (case N=8) the reader should consult
Appendix E. Appendix F contains an example of G,, for N=16. The prototype is a

first order Butterworth filter.

2.3.3 Tridiagonal Transform

Now we consider the last special case for transform T, and this is T = Tr’ the
tridiagonal transform, and its corresponding inverse, Tr'l. The gain matrix Gt

becomes G, ( tridiagenal transform gain matrix) and G becomes G, ®) (kth partial
tridiagonal transform gain matrix). The properties of G, and G,'(") were first studied

by Zarowski, Yunik and Martens [24]. Equation (2.3b) can be rewritten as

G, =T ,F7'G,FT,™". 2.67)

The 2Nth order tridiagonal transform T, is defined as

T, Iv Iy } , (2.68)

m=T;§‘[1N —Iy

and it is clearly self-inverse and symmetric. It may be readily seen that Tr is actually
one of the logzN matrix factors making up the fast Walsh transform (Hadamard
order) algorithm. This can be seen in Fig. 2.6 for N=8. In addition, it is one of the
logzN matrix factors of the fast Haar transform (orthonormal or orthogonal
Hadamard Haar transform [23]) algorithm, and of the decimation-in-frequency FFT
[2] algorithm. What follows in this subsection appears to be the first time that this

matrix factor has been censidered as a valid transform in its own right.

To start, equation (2.62) may be rewritten as

G'ryv(k) = T'?JVA&)T'ZN

& i (
=N T, ANT, , . (2.69)
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Figure 2.6: The order N = 8 Hadamard ordered DWT

butterfly diagram.
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The off-line procedure for computing G,'(") and hence G, may be described ,

using (2.69) without the 2N subscripts, by
G, ® = (T, (T, A%)Ty . (2.70)

Once again, the conditions on gy in (2.1) are sufficient to cause G, ¢ RN since
T, is a real matrix and (2.2b) is forced to equal (2.2a).
G, also has a block-diagonal structure, except that quadrant-2 is dense. Substi-

tuting (2.13) and (2.68) into (2.69) gives

w8 |In In |[B Cl|In In
G, ®=2
Ty 4N lIn —Iy|lc BlL, -1y
_&[Bic 0]
Nl 0 B-CJ

[
& (1+(61)* )B 2.71)

0
(1~(-1)* )B} ‘

It is clear that 8y for odd k only affects quadrant-4 and By for even k ornly affects

quadrant-2. Furthermore, G, *) is Hermitian and block-Toeplitz because B is Her-
"N

mitian and Toeplitz. Thus, G, will be Toeplitz in each of its two diagonal blocks.

From arguments associated with G,*) it is true as well that G, does not possess the

structure of Fig. 2.5 (the *Z’ characters do not become ’0’ characters for real gy in

general). It is clear that quadrant-4 of G, will have the form of (2.39), when k is odd
of course. What about quadrant-2, where k is now even ?

Using the expression for Py following (2.46), and with k even, P, becomes
Prm =(—1)k ﬂcxp[j%&(" —m )} s (2.72)

SO



-L46-

& =(—=1)*2cos

ok
— (p—m )] ; (2.73a)
and

Bam =(_ l)k ﬂSin

nk
- m )] : (2.73b)

ThUS, ey =Pox =Cmn —Bmnj =Cnm +Bumj 50 R=P for even k values. Therefore, (2.65) is

now
®) pe)
B(k)=[g(k) Q(k)} , (2.74)

which implies that the 224 quadrant of G, has the form

x o, (2.75)

and not the form of (2.39).
It is obvious that equations (2.54) and (2.55) do not hold for T=Tr' Because of

the structure of G, , (2.54) must be rewritten as

N2
A, =N + > (2.76a)

and

2
M, = ﬁ’z— . (2.765)

r

Use has been made of the fact that Tr requires N/2 additions and N/2 subtracticns in

(2.76a). The V2 scale factor is not counted in (2.76b).

For examples of partial tridiagonal gain matrices (case N=8) the reader should

consult Appendix E. Appendix F contains an example of G, for N=16. The proto-

type is a first order Butterworth filter.
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Finally, Appendix G contains programs, written in PASCAL, for the computa-

tion of the partial gain matrices, G,*> G/*), and G, ®.
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Chapter III

THE VLSI IMPLEMENTATION OF DFT SPECTRUM FILTERS

This chapter looks at the problem of constructing DFT spectrum filters, of the
kind discussed in Chapter II, with special purpose hardware of a kind amenable to
very large scale integration (VLSI) implementation. This is in contrast with Chapter
II where only the sequential processor implementation of DFT spectrum filters was
mentioned. There the comparison was based upon the number of
additions/subtractions and multiplications needed to compute the filtered vector ¥’
from the input vector ¥. The comparison was with respect to the Cooley-Tukey FFT
algorithm [2,3,7]. The two implement:tion methods considered here will be the radix
2, pipeline FFT [38] hardware algorithm, and the linear systolic array [39] hardware
algorithm, which is a general purpose method for postmultiplying a matrix by a vec-
tor. The relative merits of implementing FFT and FWT with botn hardware struc-
tures will be examined. The linear systolic array impiementation of Gt will be con-
sidered as weli, for the special cases of T that were considered in the previous
chapter. Architectures such as the shuffle-exchange (SE) graph [40,41] and the
cube-connected cycles (CCC) [40,42] organization will not be considered because,
although they are fast structures, they require enormous amounts of integrated cir-
cuit (chip) area and so are not very practical, especially when hardware multipliers
are needed. This issue will be discussed somewhat more fully in section 3.5. It is to
be noted that only architectures will be considered here and not the details of imple-
mentation. Thompson’s complexity theory for VLSI [43] is used to make the com-
parison between radix 2, pipeline FFT and the linear systolic array FFT on the basis

of asymptotic area and time complexity. Thus, some review of Thompson’s theosy is
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included in this chapter. It will be seen that the radix 2. pipeline FFT and the linear
systolic array FFT have the same asymptotic arca and time complexity, except that
the radix 2, pipeline FFT is more area efficient by a constant factor than the linear
systolic array FFT. However, the linear systclic array FI'T is more readily cascade-

able and designable than the radix 2, pipeline FFT, though perhaps only marginally.

3.1 THOMPSON’S VLSI COMPLEXITY THEORY

This section contains a brief review of Thompson’s VLSI complexity theory [43].
The purpose of this section is to state some of the results of Thompson’s theory and

some associated terminology.

Thompson’s VLSI complexity theory [43] is concerned with the relationship
between the speed and size of VLSI circuits. Thompson’s VLSI circuit model allows
the determination of upper and lower bounds on the growth rates of chip area (A),
and the time needed to solve a problem (T) versus the problem size (N). Thompson
used the FFT and sorting as examples of the apgiication of his theory. The first step
in the process of determining speed-size relationships is the formation of the VLSI

circuit model.

Thompson’s theory is of a graph theoretic nature. The VLSI circuit is modeled

by a collection of nodes and wires referred to as a communication graph.

There are three different categories of nodes: source nodes, sink nodes and
switching nodes. Inputs to the computation are stored in the source nodes. The out-
put values of a computation are collected at the sink nodes. Switching nodes may
perform computations on information obtained from other switching nodes or from
the source nodes. In turn, this information is passed either to other switching nodes
or to the sink nodes. It is possible for a node to act as a source, sink or switching
node simultaneously, or to act as some other combination of the three possible

categories of nodes.
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In Thompson’s thesis [43] a set of assumptions about the communication graph
and the nodes and wires that it is composed of are stated. There are eight formal
assumptions associated with the lower bound proofs and an additional seven assump-
tions associated with the upper bound proofs. Only the eight lower bound proof
assumptions are of any interest here. Thompson [44] used them to study the asymp-
totic area and time complexity of many of the competing methods of implementing
the FFT in special purpose hardware. This includes the radix 2, pipeline FFT, which
is referred to as the cascade, and the linear systolic array FFT, which is referred to
as the N-cell DFT. The cight lower bound assumptions are summarized in [44] and
so will not be repeated here. However, some of their consequences will be pointed

out as the need arises.

Crucial to the formation of lower bound proofs is the concept that all communi-
cation graphs possess a minimum bisection width. The minimum bisection width of a
communication graph is the smallest number of edges that must be removed in order
to disconnect one half of the nodes from the other half. It is also required in the
definition that half of the source nodes lic on either side of the bisection. Thompson
[43] represents the minimum bisection width symbolically using the Greek letter .
It is intuitively obvious that if o is large then the graph is large, and hence the VLSI
circuit is also large. However, the circuit will be fast as well since the available

bandwidth is larger.

One of the main consequences of the lower bound assumptions and the concept

of minimum bisection width,w, is that
A= “’T , 3.1

and another important consequence is that

T = Q@ logN)/e . (32)

2

These results combine to give the optimal AT metric
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AT =N (N?1log’N) . (33)
More generally, if o = G(N%), then for O0=x=<1,
ATZ = Q (N logP”N) . 34)

N, for example, may be the number of components in the vector that is to be
transformed using DFT or DWT, or the number of values that are to be sorted. The
expressions of the form “6()","S2 ()’ and "O()" are formally defined in Appendix H.
All of (3.1) to (3.4) are proven formally in Thompson [43]. Result (3.1) is completely
general (within the limits imposed by the lower bound assumptions). However,
results (3.2) to (3.4) were proven formally only in the special cases of the DFT and
sorting, although (3.2) to (3.4) are more generally applicable than the special cases of
DFT and sorting would suggest. The significance of the optimal AT2 complexity
metric is that it proves the existence of a fundamental lower limit on the growth in
complexity of a VLSI chip. A limit asymptotically lower than that, say AT? =

Q2 (NlogN), is not physically possible. Equation (3.4) is a more general expression of

this fact than (33).

Equation (3.3) can be rewritten as
AT? = ¢N%og’N ,for N=Ny, (35)

where c is called the technology dependent constant (TDC). N= NO should be inter-
preted to mean "for N sufficiently large” in (3.5). Given two circuits which solve the
same problem and which also possess the same asymptotic area and asymptotic time
complexity taken separately, this implies that they have the same AT2 metric, to
within a constant factor. It is possible to decide which circuit is the best by examin-
ing ¢, the TDC, in the resulting expressions for AT?. The better circuit possesses the
smaller ¢. However, unless c is very different (perhaps even orders of magnitude)
for both circuits it may be necessary to look at the asymptotic area and time com-

plexity , and their respective TDCs, separately in order to decide which circuit is the
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best. Thus, the AT? metric by itself is not usually adequate for choosing the best
circuit. Better measures of performance are obtained by looking at A-versus-N and
T-versus-N separately and by comparing their respective TDCs. This is the problem
faced when comparing the linear systolic array FFT method with the radix 2, pipe-
line FFT method. Thompson [44] has shown that both have the same A metric, T
metric and AT2 metric , to within a constant factor. Thus, only the TDCs of all
three metrics can allow us to choose which method is the best in terms of area and

time complexity.

3.2 THE RADIX 2 PIPELINE FFT (CASCADE)

This section describes the radix 2, pipeline FFT method. Much of the descrip-
tior. is taken from Rabiner and Gold [38]. Thompson [44] referred to this structure
simply as the cascade and tkis is what it will usually be called from now on excepi
where confusion is likely to arise. Thompson [44] compared the A,T, and AT?
metrics of this structure with other parallel and/or pipelined special purpose
hardware structures for the FFT. Thompson’s results for the cascade will be
presented in this section along with estimates of the technology dependent constant
(TDC) values assuming a particular fabrication technology. In addition, the cascace
implementation of FWT and FHT will be treated briefly. The tridiagonal transform
will be seen as merely one stage in the cascade. The only other structure cf interest
is the linear systolic array FFT, to be discussed in the next section. For the A,T, and

2

AT” metrics of structures other than the cascade and linear systolic array FFT, the

reader must consult Thompson [44].

The cascade FFT method is a iechnique for implementing the decimation-in-
frequency (DIF) FFT algorithm (see Oppenheim and Schafer [2]), using logzN pro-
cessing stages. The method is originally due to Groginsky and Works [45].

Figure 3.1 depicts the DIF FFT butterfly diagram for N = 8. In this figure,

W = exp{—j-%"—] in general. Note that there are essentially three (=log28) stages in
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Figure 3.1: The butterfly diagram for the N = 8
point decimation -frequency (DIF) fast
Four nsform (FFT) algorithm {(taken
from Oppenheim and Schafer [ﬂ ).
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the butterfly diagram. In general, there will be logzN stages. In terms of implement-
ing the DIF FFT on a sequential processor, the amount of computation is the same
as that for the Cooley-Tukey FFT. That is, O(NlogN) complex operations are
needed. Also note that DIF FFT produces the DFT spectrum in bit-reversed-order

(BRO) (see [2]). Cooley-Tukey FFT ordinarily gives output in natural order.

Figure 3.2 depicts the cascade architecture for N=8. In other words, the struc-
ture of Fig. 3.2 implements the butterfly diagram shown in Fig. 3.1. Figure 3.3 depicts

the timing diagram associated with the structure of Fig. 3.2.

Notice the basic components of the cascade architecture depicted in Fig. 3.2.
There are switching units (also called commutators in the literature) and these are
labelled SWi. There are delays (a form of memory) which are labelled z'k and there
are butterfly computer units which are labelled BCi, where i € {1,2,...,log2N}. In
addition, there are logzN coefficient memory units associated with each BCi unit.
The coefficient memory units are used to store the complex factors WP. Note that
these factors are trivial in the last stage because p=0 at this stage. Thus, there is no

real need for coefficient storage at BC3.

The integers 0,1,...,7 in the timing diagram of Fig. 3.3 represent the data points
x(0),x(1),...,x(7), respectively. The basic clocking interval of the cascade is the sample
period. The first switching unit, SW1, feeds the points 0,1,2,3 into the four unit

4 when SW1 is high in Fig. 3.3. The remaining input points are switched to

delay z
the lower branch of the circuit when SW1 is low. Clearly, there is a four time unit
delay before BC1 can start computation. Qutput from BC1 appears four time units
after the first data point was entered. The output appears at points B and C in Fig.
3.2. The switching units after SW1 operate somewhat differently. In Fig. 3.3, when
SW2 is low, data flows from points D to G and E to F. When SW2 is high, data
flows from points D to F and E to G. The operation of SW3 is essentially the same.

When SW3 is low, data flows from J to M and K to L, and when SW3 is high the
data flows from J to L and from K to M. The final DFT (DIF) values appear in pairs
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at points N and O in Fig. 3.2. The output is in BRO. Thus, for the last two lines of

Fig. 3.3 concerning the N and O outputs, the following correspondences hold :
0-X(0)2~-X2)4~-XxX(1)6-Xx(3
1- x§4§ 3~ xésg 5+ xésg 7 - X§7§

Therefore, from an inspection of Fig. 3.2 and Fig. 3.3 the operation and proper-

ties of the cascade can be summarized as follows:
1. The delay of a given stage is half as long as the delay in the preceding stage.

2. The system is only 50% efficient in the sense that each BCi is operational only

50% of the time.
3. Each switching unit operates at twice the frequency of its predecessor.
4.  The basic time unit of the cascade is the sampling period.
5. The output data appear in pairs and in BRO.

6. The cascade is a pipelined structure as one N-point vector after another can be

fed into the structure.

A more complete description of the cascade can be fourd in Rabiner and Gold
[38] where an N=16 point cascade is used as an example. In Rabiner and Gold [38] a
scheme for increasing the cascade’s efficiency to 100% , in the sense of point 2 above,
is proposed. This method involves a more sophisticated switching and buffering

scheme.

Many variations on the cascade concept are possible. Rabiner and Gold (38]
describe a radix 4, pipeline FFT hardware algorithm and compare it to the radix 2,
pipeline FFT. The structure is more complex than the cascade just described and
will not be presented in this thesis.

Many of the variations on the cascade of Fig. 32 often center around the

manner in which multiplications are to be performed. The stored-product method of

Peled and Liu [46] has been suggested as a means of implementing the cascade in Liu
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and Peled [47]. Despain [48] suggests using Volder’s [49] CORDIC complex multi-

plier structure to implement radix 2, and higher radix, pipeline FFT circuits.

The cascade of Fig. 3.2 can be used to implement the DFT spectrum filtering
scheme of Fig. 2.1. The first block of Fig. 2.1 (labelled F) is replaced by the cascade
structure. There are two complex multipliers needed to implement the Fourier filter
block (labelled G; in Fig. 2.1). Each of the two outputs from the first cascade goes
to one of these multipliers. A G; filter coefficient store is attached to the remaining
inputs at each multiplier. The multiplier outputs of the Gf block feed to the input
buffer memory of the second cascade, which implements the IFFT (F~1 block in Fig.
2.1). Naturally, allowance is made for the fact that the output of the first cascade is
in BRO, that the output values from this cascade appear in pairs, and that IDFT is
not exactly the same as DFT. The second cascade can take on exactly the sams
structure as the first cascade if both the input values to the second cascade and the
output values from it are conjugated. These conjugation operations effectively
correspond to the IDFT. The implem:atation just described is clearly time-domain
convolution by the multiplication of DFT spectra (see Chapter I). More details on
the use of the cascade in this type of operation (DFT spectrum filtering) can be
found in Rabiner and Gold [38).

Having described the structure and operation of the cascade, it is now worth
considering its area-time complexity. According to Thompson [44], the cascade has

the following asymptotic complexity metrics,

A, =OQ(N logN), {(3.63)
T, =0(N logN), (3.6b)
D, = Q(N log’N), (3.6¢)

and

ATZ=0W l0g’N), (3.68)
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where A, is the area complexity, T, is the processing time complexity, and D, is the
delay complexity. The logN factors arise as a result of Thompson’s assumptions con-
cerning the problem size (N), the number of distinct values that any one of the N
inputs may take cn (P), and the word length (M). Clearly, there are pN distinct
problem instances, which Thompson assumed to occur with equal likelihood.
Thompson also assumed that logP = 8(logN) so M = ¢ logzN bits, since some assump-
tion about the relationship between M and N is needed in order to avoid having A,
T and hence ATZ, depend explicitly upen M. In addition, Thompson [44] assumes
that the multiply-add of a BC takes G(logN) time, and O(logN) area.

A different version of (3.6a)-(3.6¢c) will now be presented. The asymptotic
results will contain no explicit logN factors, though they are present implicitly if
Thompson’s assumptions in [44] are allowed to hold. The time complexity of the cas-

cade is characterized by

log,¥
3 N N

==N-1=1+—+ —_— .
Te=3N -1=i+7 22 1o N=8 (372)
D, =N (3.7b)

Thus, T,.=aMN), D. = Q(N) . The area complexity is approximzated reasonably

well by

A =2(T,~1D)agM +Qa, (M) +a, (M))og ,N +4a,, M +8a,, M (log ;N ~1)

log,N N
+ a,, logN +2a,M -, (3.8)
i=12
and
o (M) =2M-1)a;, + 2a, , (39a)

a,, (M) =M —l)z(a,a +a, ) +2(M —1)(ay, +a,) , (3.9b)
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SO
am(M) = do, (M) + aa(M) . (3.9¢)

The symbols above are defined as follows :
N = number of transform points (a positive integer power of two),
M = number of bits in the real or imaginary part of a number,
ay = 1-bit delay element area,
ag, = 1-bit full adder area,
ap, = 1-bit half adder area,
ag = area of a 2-input nand gate plus an inverter (and gate),
a = area of a 1-bit memory cell (could be RAM or ROM),

atg = area of a transmission gate,

a . = area of control circuitry per stage (logzN stages),

aca(M) = area of a complex adder,

arm(M) = area of a real array multiplier (see Hamacher et al. [50]),
acm(M) = area of a complex multiplier.

In the formula for Ac in (3.8) no allowance has been made for the interconnecting
wire area or the area taken up by power supply and ground lines or I/O pads. This
causes no real problem since it is the lower bound on the true area that we are after.
The expressions for aca(M), arm(M)’ and acm(M) do not allow for the area taken
up by the sign-change circuitry. Such circuitry depends upon M but not N. Clearly,
its omission weakens the lower bound on the true area estimate somewhat. Note
that atg is the area of a transmis;ion gate. This suggests the use of CMOS technol-
ogy. In fact, when estimates of the above constants are made later in this section,
the source of the estimates will be from a particular static CMOS technology. More
will be said on this at the proper time. It is now necessary to describe the terms

making up equation (3.8)



_6]_

above. This description is as follows:
2(Tc - l)adM = delay area term ,
(2aca(M) + acm(M))logzN = butterfly computer (BC) area term,

4at gM = area term for SW1,

8ath(log2N - 1) = area term for SWi (i> 1),
a. ologzN = control area term,
log,N

2a,M 2} -A:— = coefficient memory term.

Figure 3.4 illustrates the structure of some of the subsystems making up the cas-
cade. The areas of these structures give rise to some of the area terms in (3.8) above.
These subsystems are the butterfly computing units (BCi), and the switching units
(SWi). Figure 3.4(a) shows the computational structure of the BCi. There are two
complex adders and there is a single complex multiplier. The structure is simply that
of a typical butterfly from Fig. 3.1. Figure 3.4(b) shows the first switching unit, SW1,
and is composed of 2 = 4M transmission gates. The area due to inverters for
buffering and control is neglected in the area term for SW1 in (3.8). Figure 3.4(c)
shows SWi (i>1). It is composed of 44 = 8M transmission gates. Once again, the
area due to inverters for control and buffering is neglected in the area term for SWi
(i>1) in (3.8). From (3.10) below these omissions have no effect at all on the asymp-

totic behaviour of Al (meaning Alim A is independent of atg)‘

Using the fact that }p;Z"' = 1-277 and using (3.7a) and (3.9) in (3.8) allows (5.8)
=]

to be expanded as,

A. = (Bay + 2a, )MN

+ {4(a,a +a, M? + (8a,, +8a, ~2a;, )M + a.,—2a;,-2a,, —Mg}logzN

- (404 +4arg +2&m )M s (310)
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Figure 3.4: The proposed structure of the BCi and SWi
that make up the N-point, radix 2,
pipeline FFT circuit of Figure 3.2.
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and clearly AC = {}(N). It should be clear that the technology dependent constant
(TDC) associated with T, is 3/2 and the TDC associated with A is (3&d + 2a M.
Thus, in asymptotic terms, the area of the cascade is mainly memory since a4 and a

are constants which specify storage area.

Now it is worth estimating the constants (ad,a etc.) for a particular static

m’
CMOS technology. The fabrication process of interest is Northern Telecom’s
CMOSIB process. This process allows minimum device dimensions of Sum. It is a
p-well CMOS technology (n-devices sit in wells of p-type silicon). There is only a
single layer of metal and a single layer of polysilicon. Table 3.1 below gives estimates
for ad’ag’am’afa’aha’ and atg based on the sizes of actual circuits designed for fabri-
cation with the CMOSIB process here at the University of Manitoba. Complete
descriptions of the cells, from which the data of Table 3.1 was obtained, will eventu-
ally become available in print. The cells were designed by a number of graduate stu-

dents as part of the requirements foi a graduate course on VLSI design presented in

the fall term of 1984 here at the University of Manitoba.
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Parameter | Cell Dimension (um X pm) | Area (um?)
a, | 130 % 120 (est.) 15,600

a, 92 x 152 13,984

ay, 201 x 167 33,567

a, 470 x 199 93,530

a, 53 x 64 3,392

a, 161 x 300 48,300

a,, 118 x 120 14,160

Table 3.1: Values for the area parameters based upon some CMOS standard cell

dimensions.

The entry for ag in Table 3.1 is an estimate based upon the size of an inverter
(59 x 106 pm) and a two-input nand gate (69 x 111 pm). The entry for . is the
area of a six- transistor static RAM cell. This cell is actually much larger than the
best commercially available cells since commercizal cells often use smaller device sizes
and two layers of metal. The overhead associated with buffering, sense amplifiers,

address decoding, etc., is not included in the figure for a__. The entry for ay is

m

based upon the area of a D flip-flop that does not have a prese* cr clear. The figure
for atg in Table 3.1 above does not include the area taken up by the ground line
which must run through the cell in order to ground out the p-well. In what follows,
a., will be assumed to be zero. Parameter a, is the area of a two-input exclusive-or

gate (used in section 3.3).

Using the parameters of Table 3.1 above, it is now possible to write (3.10) as

A, = 173,000MN + [437,000M2+109,000M —317,000]l0g,N —235,000M (um?) . (3.11)

This gives a TDC for A, of the cascade FFT of 173,000M pmz.
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The cascade of Fig. 3.2 can be used to implement the FWT or even the FHT.
The tridiagonal transform requires only oue stage of the cascade for all N and so is
especially simple to implement. Indeed, the tridiagonal transform is probably too
simple to be of any real value in an application. This will be seen more clearly later
on. In implementing the FHT, it must be possible to have the butterfly computers
turned off and data allowed to flow through unaffected in stages 2 to logzN, during
certain time periods defined by the structure of the FHT butterfly diagram. A
butterfly diagram for the Cooley-Tukey type FHT is to be found in [23]. This
butterfly is structurally similar to the DIF FFT butterfly and Hadamard order FWT

butterfly diagrams. No more will be said on this subject in this thesis.

It is possible to evaluate Ac for the FWT cascade. To this end, equation (3.8)

can be rewritten as,
A, = (T.-DagM + 20,,(M)log,N + 2a,,M + 4a M (log,N ~1)+a,,logpN ,  (3.12)

where ura(M) = (M-l)afa +ap, (area of an M-bit real adder). The terms making up

the expression for A in (3.12) are as follows:
(TC - l)adM = delay area term,
2ara(M)logzN = butterfly computer (BC) area term,

Zath = area term for SW1,

4ath(log2N-1) = area term for SWi (i> 1),
acologzN = control area term.

Note that there is no coefficient memory term in (3.12). Thus, the butterfly
computer unit depicted in Fig. 3.4(a) reduces to two real adders and the complex
multiplier becomes redundant since there are no multiplier coefficients in the FWT
butterfly (see Fig. 2.6). The area taken up by switching units is cut in half because
only real numbers are being handled by the cascade, implying M-bit rather than

2M-bit words. The FWT cascade implements the butterfly diagram of Fig. 2.6, as has
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already been suggested, and so the output appears in natural (Hadamard) order in

contrast with the BRO of the DIF FFT cascade output.

Assuming 3.y = 0,(3.12) can be reduced, using (3.7a) and the expression for
a ra(M)’ to

A = %adMN + I(Zafa +4a,, )M +2(ay, —agq))logN —2(a, +ag )M (3.13)

and upon using the values in Table 3.1 above,

A, =72,500MN + [201,000 —120,00C)log N —103,000M (um?) . (3.14)

3.3 LINEAR SYSTOLIC ARRAY FFT (N-CELL DFT)

In the present section the linear systolic array FFT will be discussed in a
manner similar to the discussion of the cascade in the previous section. Much of the
discussion to follow is taken from Mead and Conway [39] and Thompson [44]. The
discussion of linear systolic arrays in Mead and Conway [39] is taken from original
work by Kung and Leiserson [51]. Thompson [44] discusses the A,T, and AT?
metrics for the linear systolic array FFT, or N-cell DFT as it is called in [44]. These
results will be presented here. Bridges et al. [52] discuss the linear systolic array
implementation of the FWT and FHT and their results will be summarized here as
well. A comparison of the N-cell DFT and the cascade of the previous section will

be made in a later section of this chapter.

The linear systolic array (LSA) [39,40] is a parallel-pipelined architecture for
postmultiplying a matrix by a vector. The cascade is similar in this regard except that
it is much more specialized. It can only postmultiply a matrix by a vector if the
matrix has a particular structure. The LSA can handle arbitrary matrices and so is
much more generally applicable than the cascade. However, our concern lies with

using the LSA to implement the FFT, FWT and FHT. The LSA implementation of
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the Gt filters of Chapter II will be treated in the next section.

The LSA consists of a linear array of what are called inner product step proces-
sors (IPSPs). The structure is depicted in Fig. 3.5. In Fig. 3.5 a 3%3 matrix, A = [aij]’

is postmultiplied by vector T=[xyx2x3] in order to give the solution vector

y=[1y293]" . For vectors T=[xy,...,xx|" and y=[y,, ... .n]" the LSA implements the
recurrences,
yl(l) =0 ’

yu = )’i(j) tax;,
y =y®,

where A is an NXN band matrix of band width w. In Fig. 3.5 w=5. Note in Fig. 3.5
that the coefficients along each diagonal of A are fed into one and only one IPSP.
Each IPSP is composed of three registers (Rx’Ra’ and Ry)’ a complex adder and a

complex multiplier.

The Y;» which are initially zero, move to the left while the x; move to the right
and the aij move down. All data movement is synchronized. If the system clock
period is T then the data points x; are clocked in every 27 (this would be the sample
period) time units. IPSPs are active once every 2t time units. The first output value,
¥1> @ppears in wt time units. The time to process all points is (2N+w)r time units.
More details of the operation and timing of the LSA are to be found in Mead and

Conway [39].

The diagram of Fig. 3.5 implies that a coefficient memory is nesded to hold each
aij’ in particular, if FFT is to be performed. In [39] a method of generating the aij
for FFT on-the-fly is proposed. The operation of this LSA FFT circuit is described
in [39]. It is enough to know that each IPSP needs an extra register (called R, in
[39]) and that the middle IPSP must store W (and only W needs to be stored). In

addition, at each even-numbered time step the middle IPSP performs five complex
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mutliplications instead of just the two performed by the other IPSPs. This fact and
the order in which the complex multiplications are performed by the middle IPSP
allows one to assume that four complex multipliers are needed by the middle IPSP.
It is this form of LSA FFT that will be used to obtain an expression for As’ the LSA
FFT area. A structure such as this has a delay of 2N-1 and a processing time of 4N-1
clock cycles.

Bridges et al. [52] developed a method of generating B; on-chip for the FWT
and the FHT, and proposed a method of generating the aij for the FFT on-chip as
well. Each IPSP has a co-processor associated with it {matrix element CO-processor
or MECP) dedicated to the task of producing the appropriate matrix coefficients.
The method is effective only if the matrix coefficients are dependent upon the row
and column indices of the matrix, and this is clearly the case for the DWT, DHT and

DFT matrices. The structure they propose is very cascadeable.
From the preceding discussion and from Mead and Conway [39] the operation
and properties of the LSA FFT can be summarized as follows:
1. The delay of any given stage is one clock cycle.
2. Each IPSP is the same as any other IPSP except for the middle IPSP.
3. The data is clocked in every second clock cycle.

4. The cutput data appear one point at a time every second clock cycle after a
delay determined by the number of IPSPs and are in an order determined by
the ordering of the matrix (for the LSA FFT above the natural order is pro-
duced).

5. The matrix coefficients are generated on alternate clock cycles (every second

cycle).



_70..

6. Each IPSP is operational only 50% of the time and so the LSA FFT is only 50%

efficient.
7. The LSA FFT is a pipelined structure for the same reason that the cascade is.

According to Thompson [44], the N-cell DFT has the following asymptotic com-

plexity metrics,

A, =0 (N logN), (3.15a)
T, =0 (N logN), (3.15b)
D, =Q(N%logN), (3.15¢)
and
ATE=0N3log>N), (3.154)

where As is the area complexity, 'I's is the processing time complexity, and DS is the
delay complexity. Note that the expression for Ds given by Thompson can’t be
correct. A more plausible expression is DS = ) (NlogzN), the same as for the cas-

2

cade, although even the log“N factor is suspect as well (logN seems more likely).

Unfortunately, Thompson [44] does not explain how he arives at his delay complexity
expressions. Once again, the logN factors arise because of Thompson’s assumptions
on multiplier complexity and the relationship between problem size and word length

(see the paragraph containing (3.6) in the preceding section).

It has already been said that
T, =4N -1, (3.16a)
and
D, =2N -1, (3.16b)

and so it is clear that T, = @ (N), and D, = Q(N). The area complexity for the N-
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cell DFT can be approximated by
A; = aew +8agMw + (w —1)(acm (M )+a, (M)
+ (4o (M )+ y (M) + 2Ma,, (3.17)
where the parameters am,ad,aco,M,acm(M), and aca(M) are defined as in section 3.2
and w is the matrix band width. The area terms are defined as follows:

8a ;Mw = delay (register) area term,

(w-l)(acm(M) + aca(M)) = IPSP arithmetic hardware area term (excludes mid-

dle IPSP),

4cxcm(M) + uca(M) = middle IPSP arithmetic hardware area term,
2Mam = area needed to store W in the middle IPSP,

w = control area per IPSP term.

a
co

Again, no allowance is made for interconnecting wire area, the area taken up by
power and ground lines or /O pads. In what follows, a ., for the N-cell DFT is

assumed to be zero.

The expression for (3.17) can be expanded into
A, = [8(as, +a, )M ?+(16a, +16a,, ~8a;,)M —8(a, +a,, )N + 8(ap, +a, )M?
+(16a,m ‘+‘20,| "140/‘, —Sad )AM + (6afa "8(18 "14(2}”) s (313)

using tne definitions from section 3.2. If the values in Table 3.1 are used then (3.18)

becomes
A, = [873,000M 2+562,0000 —393,000]N
+873,000M -1,130,000M —33,600 (pm?), (3.19)

and so A, = o(N).
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Using the structure described in Bridges et al. [52], it is possible to get an

expression for the area of the N-cell DWT. Thus,

A, = A’lrsp + A‘uch ’ (3:20)

where Asr is the area due to the IPSP, and A .cp 18 the area due to the MECP, the

circuit which generates the matrix elements used by the IPSP. Thus,

A =3a;Mw + a,, (M )w

Sipsp

= [(6a,; +2a;,)M +2(a;, ~a;4)IN —(3a; +a;, )M tar, ~ay, , (3.21a)

where 3ade is the IPSP register area term and ara(M)w is the IPSP arithmetic

hardware area term (only a single real adder). As well,
AJMECP = 2adlog2N + wlog,N [40'8 +3a‘ +2(1,] + a.,w
= (8a,, +6a, +4a,)Nlog,N + (2a, ~4a,, —3a, —2a,)log N , (3.21b)

where 3., W is an area term which allows for any extra control logic not included in
the rest of the MECP area expression, and again we have assumed that a. is zero.
The term ZadlogzN is the area due to the two counters (assumed to be ripple
counters) which drive the MECPs and the term wlogZN[4atg+3ag+ Zae] accounts for
the area taken up by the MECPs themselves. A complete description of the MECPs
can be found in [52]. Thus, (3.20) becomes

A, = (8a, +6a, +4a,)Nlog,N + [(6a, +2a;, )M +2(a,, —a; )N
+ (204 ~4a, —3a, ~2a, Mlog,N ~ (3ag+a;, )M + 5o~y (3.22)

and so As = ﬂ(NlogzN). The logZN factor arises because each MECP contains
logzN common function blocks (see [52] for a definition of this term) and there are N

MECPs. Using the parameters of Table 3.1 gives
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A, =177,000Nlog,N + [477,0004 —120,000]N
+ 8,260l0g N — 238,000M + 60,000 (um?). (3.23)

in place of (3.22).

3.4 LINEAR SYSTOLIC ARRAY IMPLEMENTATIONS OF Gt

This section briefly considers some aspects of the implementation of the G,

filters of Chapter II for the special cases of Gw’ Gh’ and Gt . It will be seen that
T

the structure of Gt has a significant influence on the asymptotic area complexity and

hence the implementability of the filcers.

Remember that the cascade is used for postmultiplying a matrix by a vector in
2 (N) time, provided that the matrix has the proper structure. Unfortunately, the G,
matrices do not appear to possess the proper structure. Thus, we are forced to
implement them using the linear systolic array (LSA). The resulting LSA will consist
of w=N-1 IPSPs for any of the Gts of interest, and will have a processing time of
3N-1 clock cycles. In addition, it is important to note that due to the complexity of
(2.3b), the on-chip generation of the Gt matrix coefficients is not feasible or advanta-
geous, at least at present. This rules out the structure of Bridges et al. [52] as a

viable means of implementing the Gt filters.

Matrix GW has O(NZ) distinct elements and therefore the area required to store
these coefficients will grow as Q (Nz). This implies that the LSA implementation of
GW has an asymptotic area complexity of (N2). Thus, Gw cannot be readily imple-

mented with an LSA because of the large coefficient storage requircment.

Matrix Gh has O(N) distinct elements and so it is clear that the asymptotic area
complexity of the LSA implementation of Gh is {} (N). Since the diagonal blocks of
Gh are Toeplitz, at most log,N + 1 distinct nonzero coefficients need to be stored
with each IPSP. Thus, Gh is easier to implement with a linear systolic array than

G

w’
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Matrix Gtr possesses only two distinct diagonal blocks and both are Toeplitz.
Thus, at most two distinct nonzero matrix coefficients need to be stored with each
IPSP. The area due to coefficient storage grows as £ (N) and so the asymptotic area
complexity of the LSA implementation of Gt is {2 (N) as well. Thus, matrix Gt is

r T
more readily implemented than Gh with a linear systolic array.

The linear convolution of sequence {u(n)} with the filter function impulse
response sequence {h(n)} is given in (1.10). If {u(n)} is an N;-point sequence and

{h(n)} is an N,-point sequence then (1.10) can be expressed in matrix form as
2 .

[ 1) 0 0 ]
Jo D AW 0 L
40 R | I

= . I I -, (324)
h(N,=1) A(N;=2) .. 0 .
- . : x(Nl—l)

0 0 ..h(O)J

where it is assumed that N] > N2' To implement this linear convolution with an N-
point DFT it is clear that N = N1+ N2-1 (see Chapter Isection 1.2 subsection 1.2.1).
Similarly, the operation of (3.24) could be carried out with an order N Gt matrix pro-
vided that H(z) for {h(n)} could be found. Note, however, that N, < N and the
matrix in (3.24) is Toeplitz and of band width N,. Thus, the operation in (3.24) is
most efficiently implemented directly with an LSA rather than by using an LSA
implementation of the equivalent Gt matrix. This raises the question of whether or
not DFT spectrum filtering with the use of the G, matrices is worthwhile. This

matter will be treated in the next section.



..75..

3.5 COMPARISONS

In this section the results of the four preceding sections will be evaluated in
order to ascertain the conditions under which it may be worthwhile to implement

DFT spectrum filters using T and Gt rather than F and Gf.

Thompson [43] has shown that the AT2 complexity of the FFT must grow at
least as fast as ) (NzlogzN) (see (3.3)) and so it should be obvious that any algorithm

2 growth should be optimal in some sense.

which achieves this lower bound on AT
Thompson [44] has shown that the FFT network, perfect shuffle (or shuffle exchange
(SE)) network, cube-connected cycles (CCC) and the mesh are all AT? optimal in
the sense of satisfying (3.3). On the other hand, the cascade and the N-cell DFT
have AT? complexities of Q(N3log31\') and so are suboptimal. Why have we chosen
to reject the AT2 optimal designs in favor of the AT? suboptimal designs in the con-

siderations of this thesis? The reasons can be summarized as follows:

1. The AT? optimal designs have a high asymptotic area complexity, which is why
they are fast structures. This high area requirement makes the implementation

of these algorithms difficult in practice, even with the best available technology.

2. In a sense, the AT2 optimal structures are too fast. The fastest is the FFT net-
work with T = () (log N) and the slowest is the mesh with T = ( (VN ). These
time complexities are superior to the  (N) time complexity of the cascade and
N-cell DFT. However, it is usually the case in practice that the data to be
transformed appear only one component at a time (O(N) time). Thus, the
improvement in processing time due to the use of AT? optimal structures is not
going to be fully utilized. It is therefore wasteful to use these structures in
many real-time applications.

3. The AT2 optimal structures expect all of the data points to be available simul-

taneously. If N is of even moderate size this implies a chip with a very large

number of pins. Chips with a large number of pins are simply not practical.
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For the convenience of the reader, equations (3.11),(3.19),(3.14) and (3.23),

respectively, are reproduced here as follows:
Ac(DFT) = 173,000MN + [437,000M +109,000M ~317,000}{0g N —235,000M (pm?) (3.11)
A,(DFT) = [873,000M2 + 562,000M —393,000]N
+873,000M% — 1,130,000M — 33,600 (um?), (3.19)
Ac(DWT) = 72,500MN + [201,000 —120,000}/0g,N — 103,000/ (um?), (3.14)
A (DWT) = 177,000Nlog,N + [477,000M —120,000}
+8,260l0g,N — 238,000M + 60,000 (um?) . (3.23)

Table 3.2 below shows a table of values for (3.11),(3.19),(3.14) and (3.23) versus N for
M = 8,12, and 16 bits.
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M | N | A(DFT) | A(DFT) | A.(ODWT) | A,(OWT)
(mm?) (mm?) (mm?) (mm?)
8 16 130 1000 14 69
8 32 190 2000 25 140
8 64 260 3900 45 300
8 128 370 78060 84 630
8 256 580 15000 160 1330
8 512 960 310C3 310 2700
8 1024 | 1700 61000 610 5600
12 1 16 290 2300 22 98
12 | 32 380 4400 38 200
12 | 64 510 8600 68 420
12 | 128 710 17000 130 870
12 | 256 | 1000 34000 240 1860
12 | 512 1600 68000 460 3700
12 | 1024 | 2800 140000 910 7500
16 | 32 650 7700 51 270
16 | 64 850 150060 61 550
16 | 128 1100 30000 170 1100
16 | 256 1600 60000 320 2300
16 | 512 2400 120000 620 4700
16 | 1024 | 4000 240000 1200 9500

Table 3.2: Cascade and N-cell DFT and DWT areas versus N for M = 8,12, and

16 bits. Areas are in square millimeters.
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The processing time and delay complexities of (3.7) and (3.16) can be restated,

respectively, as follows:

T, = -;-N -1, (3.7a)

D, =N, (3.7b)
T, =4N -1, (3.16a)
D, =2N -1. (3.16b)

From a comparison of the entries in Table 3.2 with the time complexity results of
(3.7) and (3.16) it is obvious that the cascade has a superior area and time perfor-
mance. Strictly speaking, the AT and AT? metrics should be displayed before such a
conclusion is drawn. However, the differences between the cascade and the LSA are
so enormous that this is totally unnecessary. The processing time of the cascade is
less than half that of the LSA and the delay is half that of the LSA. The arca
required by the cascade for a given N and M is substantially less than that required
by the LSA for the same N and M, and this is clearly true for a wide range of N and
M. This is particularly true of the comparison between AC(DFT) and AS(DFT).
The difference in the size of these two numbers is especially great because of the
presence of complex multipliers. The cascade uses O(logzN) of them but the LSA
needs O(N) complex multipliers, an extravagant requirement. Thus, strictly on the
basis of area and time complexity the cascade outperforms the LSA by a very wide

margin. This is true of both DFT and DWT implementations.

Why should the LSA be so inefficient at implementing the DFT and DWT (and
no doubt the DHT as well) ? The reason is simply that the DFT and DWT matrices
have a highly regular structure that can be used to advantage in the design of special
purpose hardware with O(N) time complexity. This fact leads naturally to the cas-

cade. The LSA , on the other hand, can be best applied to matrix-by-vector product
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problems where the matrix has no significant regularity in its structure. Since the
DFT and DWT matrices have a great deal of structure the LSA is fundamentally
inappropriate for implementing such matrix-by-vector operations, strictly on the basis

of area and time efficiency.

Under what conditions, if any, is it desireable to pay the large area penalty
involved in the use of the LSA DFT and DWT ? Given a cascade DFT implementa-
tion and an N-cell DFT implementation for a particular N and M, if both designs fit
onto a single chip, then the N-cell DFT implementation may be preferable to the cas-
cade DFT implementation. The same might be said for the DWT and DHT. This
may be so because the design costs for the N-cell DFT should be lower than that of
the cascade. The N-cell DFT is composed of only a very few distinct standard cell
types, since each stage of the array is essentially the same as any other stage. For
example, there are only two distinct kinds of IPSP cell for the N-cell DFT in Mead
and Conway [39, pp. 289-291]. The cascade, on the other hand, has many different
cell types. A logzN stage cascade needs logzN different cells. However, the cascade
cells are actually quite similar to each other, differing only in the number of delay
elements per cell (stage). The N-cell DFT seems to be somewhat more cascadeable
than the cascade. This is because the N-cell DFT’s IPSPs simply butt together when
the cascading of stages is required. The cascade input switching unit (SW1 in Fig.
3.2) must be disabled and bypassed before extra stages can be added to the front end
of the cascade. Another consideration is that the LSA chip needs four data ports, if
the on-chip coefficient generation scheme in Mead and Coaway [39] is used, since
each IPSP has four /O ports and stages must be added to both ends of the LSA.
The cascade can do with only three ports (two input, one output). Thus, for a large
M, it may be that the cascade is preferable to the LSA since it needs one less I/O
port and so needs fewer pins. For small to moderate M this fact is likely to be of lit-

tle importance.
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Thus, it seems that the N-cell DFT may have a marginal advantage over the cas-
cade in terms of designability and cascadeability, although it seems likely that an N-
cell DFT is feasible in practice only if it can fit onto a single chip. However, from
Table 3.2, this will likely be the case only for small N. The technology on which the
values in Table 3.2 are based is very primitive by today’s standards (for example,
TRW Inc. has a commercial 'lp,m CMOS process) and so in the future it is possible
that the N-cell DFT may be preferable to the cascade DFT as device dimensions

shrink to below Ium and the die size and number of wiring layers increases.

It is probably quite important that the N-cell DFT actually fit onto a single chip.
This is at least due to the fact that the cascade DFT accomodates an increase in N

k+1 more readily than does the LSA. In going from N=2k to 2k+1 only

from 2k to 2
one new stage needs to be added to the cascade but the number of IPSP cells must
double in order to accomodate the increase in N. This is because the number of cas-

cade stages grows as logZN rather than growing as N in the case of the LSA.

Another very important consideration that will almost certainly count against
any suggestion of using the LSA for computing the DFT is the question of yield. If
on a wafer there are 7 fatal flaws per unit of area, the probability that a chip of area

A will work can be characterized qualitatively by an expression such as

Py(nA)=e™™ .

Thus, as A goes up, yield goes down for a given n. For a given N, M and v it is clear
that the yield for an N-cell DFT chip is likely to be lower (perhaps substantially
lower) than for an equivalent cascade DFT chip. This will inevitably increase the
cest of production and so reduce the viability of the N-cell DFT in relation to the
viability of the cascade DFT. Such yield problems could very casily nullify any
benefit that the N-cell DFT has in terms of cascadeability or designability. Clearly,
this problem may not be as severe in the case cf the N-cell DWT since the area

difference between it and the cascade DWT is not as great.
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Testability is a consideration as well. However, it seems that neither structure
has any special advantage over the other in this regard. Clearly though, this issue

should be looked at more closely.

Thus, one can safely conclude from the above discussion that, for the forseeable
future at least, the cascade is much better suited to transform implementation than
the LSA. Furthermore, frorﬁ the preceding sections, the Gt matrix filters can only
be implemented with the LSA and tiis is more complex than implementing the filter
Gf. Thus, the DFT spectral filtering scheme of Fig. 2.1 is better than that of Fig. 2.2

provided F and F"1

are implemented using the cascade DFT. The best way to imple-
ment the system of Fig. 2.2 is to implement W and wl with cascade structures and
Gw with an LSA. Clearly then, the system of Fig. 2.2 will be slower and more area

consuming than that of Fig. 2.1, in general.

The system of Fig. 2.2 is likely to be better than that of Fig. 2.1 only if the DWT
has already been implemented and it is desired to add the capability of doing DFT
spectrum filtering. This assumes a sufficiently small N and M to enable fitting Gw
onto a single chip. Also, some types cf Gf filter give Gw filters of very narrow band
width. Clearly, such narrow band width filter matrices may be very easy to impie-
ment, and so may be effective competition for the system of Fig. 2.1. The resulting
Gw matrix may even be much narrower in band width than that of the matrix in

(3.24).

It may be possible to roundoff the coefficients of a Gw filter (or more generally
a Gt filter) to such an extent the the IPSPs Lave a very simple structure and so a
large N GW filter might fit on a single chip. This would cause the system of Fig. 2.2
to be viewed more favorably. The extent to which filter coefficients may be rounded
off depends largely upon the "tightness” of the filter specifications. Clearly, such a

possibility as this requires much more investigation.

Last of all, it is important to note that if Gt could be factored in such a way

that it could be implemented as a cascade or cascade- like structure, then this would



..82..

likely make the system of Fig. 2.2 competitive with that of Fig. 2.1 for a much wider

range of conditions. The search for an efficient factorization is now of paramount

importance.
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Chapter IV

MISCELLAECUS CONSIDERATIONS

This chapter briefly treats a few topics related to DFT spectrum filtering that
may be of interest to future researchers. Various open questions are presented in
the four sections which follow along with some potential methods for answering
them. The topics presented are believed to be of the most immediate concern. The
first topic is the problem of finding a computationally efficient factorization of Gt'
The second topic concerns the sensitivity of matrix Gt to coefficient rounding and
the roundoff noise properties of the cascade and linear systolic array (LSA) architec-
tures. The third topic concerns the problem of how to do two-dimensional DFT
spectrum filtering. The fourth topic suggests a study of the properties of Gt for
more general T transforms than those considered in this thesis. It is suggested that

the representation theory of groups may be useful in this regard.

4.1 FACTORIZING MATRIX Gt

It is fair to say that finding a computationally efficient way of factorizing matrix
Gt is the most pressing problem at this time. This follows from the considerations of
Chapter III where it is most clearly seen that the existence or otherwise of an
efficient factorization for Cvt will have an enormous impact on the practicality of the
spectral filtering techniques described in this thesis. This is especially true where
special purpose hardware implementations are concerned, but it is also true of

sequential processor implementations.

It would be very surprising, given the results of Chapter II, to find out that G,

has no efficient factorization in general. A “trivial” factorization of G. could simpl
g t ply



-84-

involve a factorization of the matrices in (2.3b), but this is useless since such a factor-
ization would reduce to the direct use of the filtering scheme of Fig. 2.1 which is
described by equation (2.2a). The question is: Is there an alternative to factorizing

the matrices of (2.3b) that is more meaningful and useful ?
In the special case of Gt = Gh the 4x4 diagonal block of Gh has the form

X1 X3 X3 Xg4

X4 X1 X2 X3 (4 1)
X3 —X4 X1 Xx3|° ’
X2 TX3 —X4 X3

It is possible to rearrange the rows and columns of (4.1) to get

X1 X3 Xy Xg

X3 X1 TX4 X3 (42>
—X4 X3 X1 Xx3|° ’
X3 TX4 TX3 X3

Notice that the 2x2 submatrices making up the quadrants of (4.2) can be considered

as rotation operators in the same sense as

[cosd —sin0]
[sin® coso | (4.3)

is a rotaticn operator in the Cartesian xy-plane. Since the 2x2 submatrices are like
rotation operators in the sense of (4.3), a 25% reduction in the number of multiplica-

tions is possible , since Winograd [53] has shown how to do the operation

X1 TX2 WY _
X2 X1 ] ¥2

with only three multiplications and five additions/subtractions. Thus, the number of

Xy1—X2y2
17)’1"’4"0’2} (4.4)

multiplications needed to compute (4.1) can be reduced from 16 to 12. The structure
exemplified by (4.1) and (4.2) appears to hold for diagonal blocks of higher order.
Perhaps even greater reductions in the number of multiplications are possible for

blocks of higher order.
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The structure of the diagonal blecks of Gh is similar in some respects to that of
the matrix in (3.24). Thus, tie fast linear coavolution algorithm of Toom-Cook
described in McClellan and Rader [54] may be helpful. Consider the matrix-by-
vector product

ap a; a| |x,

ag a; ajl {x,
as ayg aj| [xj3

a 0 0] x: 0 az aj 11]
= |ag ay 0 Xx,| + 00 asl (xat . (4.53)
as a; 91 X3 00 0 X3

The first 3x3 matrix in (4.5a) clearly has the same form as a typical diagonal block of
Gh even though it is 3x3. The first term in the second line of (4.5a) is a simple
linear convolution which can certainly be solved with the Toom-Cook algorithm [54].

The second term can be reduced to an equivalent form,

a 0f |*s
[a, azJ [sz (4.5b)

and the resulting vector can be time-reversed to yield the proper ordering of vector
components. Clearly, (4.5b) is also a simple linear convolution. It could be calied
an anticausal convolution. Thus, matrix-by-vector products involving the diagonal
blocks of Gh reduce to an N-point and an N-I-pcint linear convolution. It is known
that the Toom-Cook procedure can perform a N-point linear convolution in as few as
2N-1 nontrivial multiplications. In fact, Winograd [53,54] has provea that this is the
minimum possible number. Thus, postmultiplying an order N block of Gh by an N-
component vector should actually require at least 4(N-1) nontrivial multiplications.
Thus, we would expect that computation should be reduced from N2 multiplications
to as little as 4(N-1) multiplications according to Winograd’s theory [53]. We have
proven that if N=4, at least 12 multiplications are needed. This shows that (4.1) can-

not be reduced in complexity any further than by the method suggested in the
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preceding paragraph.

Therefore, the Toom-Cook algorithm and Winograd’s complexity theory give
some hope of finding a minimal multiplication algorithm. However, the resulting
algorithm may be exceedihgly complex and messy, especially for large N, and there-

fore may be of little use in practice.

4.2 COEFFICIENT SENSITIVITY AND ROUNDOFF EFFECTS

What are the effects of rounding off the coefficients in matrix Gt ? What are
the roundoff noise properties of the cascade and the LSA architectures ? The
answers to these questions are important in any practical implementation of the DFT
spectrum filters described in this thesis.

One of the essential features of a linear spectrum filter matrix in some general
frequency domain is that the matrix is strictly diagonal. This is because a linezar flter
merely scales and phase shifts a particular spectral component. The nondiagonal
nature of Gt for almost any Gf indicates that Gt is really a type of nonlinear filter.
Thus, a linear filter in one kind of frequency domain usually becomes nonlinear in
any other frequency domain.

The effects of rounding off the coefficients of Gt could be studied in terms of
their effects on Gf, as a change in Gt’ called AGt, causes a change in Gf, called AGf,

since
AG; =FT'AG, TF ', (4.6)

Some numerical experiments in this regard show that off-diagonal terms appear in Gf
when Gt is rounded off, especially if the rounding is very coarse. This is a nonlinear
effect.

In the area of roundoff noise properties of the cascade and the LSA architec-
tures, the following noise models are likely to be useful, at least to a first approxima-

tion. Since the cascade implements the DIF FFT butterfly, the butterfly diagram itself
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can constitute a noise model for the cascade. Quantizers can be placed at the nodes
which are multiplier outputs in the butterfly diagram. This model suggests that the
output noise power of the cascade is proportional to logzN, the number of stages in
the butterfly diagram (also the number of cascade stages). The LSA can be thought
of as a transversal filter, with quantizers at the outputs of the multipliers in each
IPSP. The multipliers are like the taps in a transversal filter. There are O(N) taps
and so the noise power at the output of the LSA can be expected to be proportional
to N. Thus, it seems that the LSA has a poorer noise performance than the cascade

for a given N and M (word length).

4.3 TWO-DIMENSIONAL DFT SPECTRUM FILTERING

The spectral filtering scheme of this thesis appears useful only in the case of
one-dimensional DFT spectrum filtering. Can the method be used to filter two-
dimensional signals? The method could be useful in digital image processing applica-

tions.

It has already beesn stated in Chapter II (section 2.2) that Kahveci and Hall [28]
briefly considered the two-dimensional problem. In [28] a two-dimensional signal is
represented as a matrix rather than as a vector. However, ecither the columns or the
rows of an NXN matrix may be stacked in order to give a vector of N2 components.
Thus, the two-dimensional NXN signal is equivalent to an N%x 1 one-dimensional
signal (assuming column vectors) and so the two- dimensional DFT spectrum filtering
problem can be reduced to an equivalent one-dimensional DFT spectrum filtering
problem. However, the vector equivalent of the NXN matrix is N times bigger than
an N-component vector and so N different G4 matrices (NXN) are needed to filter
the N2x1 vector. This implies that there will be N G, matrices in the T transform
domain as well. Clearly, the two-dimensional problem is tougher than the one-

dimensional problem, especially if the G, matrices cannot be efficiently factorized.
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4.4 THE USE OF OTHER TRANSFORMS

This thesis considered only certain special cases for T, one of which was quite
trivial. How can the results of Chapter Il in this thesis be generalized in a meaning-
ful way to other T? The representation theory of groups may be useful in this prob-

lem.

Ihn Apple and Wintz [55] and Cairas [56] the problem of fast transforms on finite
Abelian groups is examined. Such considerations lead to the FFT and FWT. It
turns out that the character tabie of an order N (not necessarily a positive integer
power of two now) cyclic group (cyclic groups are Abelian [35]) can be regarded as
the DFT matrix. The dyadic group (Rosenbloom [57]) has a character table which
can be regarded as the DWT matrix. Karpovsky [58] considered transforms on non-
Abelian groups. Non-Abelian groups have irreducible unitary representation tables
with matrix entries, while the irreducible representation tables of Abelian groups
always contain only scalar entries. This leads to the fact that transforms on non-
Abelian groups give matrix valued spectral components, while transforms on Abelian
groups give rise only to scalar valued spectral components. Transforms on non-
Abelian groups are little known and little used. The only studies of these transforms
known to the author of this thesis are by Karpovsky [58] and Karpovsky and Tra-
chtenberg [59]. In [55],[56], and [S8] it is demonstrated that if a group G can be fac-
tored into a direct product of smaller groups then any transform defined on G will

have a fast computational algorithm very like the FFT and the FWT.

It may be that group theory could be used to construct fairly arbitrary T
transforms and the structure of the resulting Gt matrices could be studied under the
general framework of group theory. This might lead to interesting results, especially

in the case of transforms on non-Abelian groups.
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Chapter V

CONCLUSIONS

This thesis has studied a class of nonrecursive filters that are used to filter DFT

spectra: the DFT spectrum filters. Such filtering operations amount to a form of

periodic convolution. As well, the VLSI implementation of such filters with the 6(N)

time complexity hardware algorithms, known as the radix 2, pipeline and the linear

systolic array, were considered. The principal conclusions of this thesis are:

1.

If the Fourier gain matrix (Gf) is that of a linear filter then the T transform
domain filter (Gt) will be real and block-diagonal in general, provided that T is

a real matrix.

The structure of G, forT =W (DWT matrix) and T = H (DHT matrix) is such
that DFT spectrum filtering using T and Gt is computationally more efficient on
a sequential processor than DFT spectrum filtering using F (DFT matrix) and

Gf for N=< 64, where N is the number of components in the real signal vector.

If the elements on the main diagonal of Gf, called g satisfy g; € R for all i and
8 = BN fori = 1,2,..,N/2-1, then DFT spectrum filtering with T = W and Gt =
Gw is computationally more efficient on a sequential processor than DFT spec-

trum filtering with F and Gf for N=<128.

Linear systolic arrays are generally not suitable for the implementation of
t;ansforms such as the DFT, DWT and DHT, since the radix 2, pipeline can be
used to implement them with O(logzN) processing stages instead of the O(N)
stages needed by the linear systolic array. The radix 2, pipeline is also faster by

a constant factor than the linear systolic array.
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Because Gt has no known computationally efficient factorization (other than
the trivial one of Chapter IV) that can be implemented with a radix 2, pipeline
structure (or something very similar), it must be implemented with a linear sys-

tolic array.

A special purpose hardware implementation of T as a radix 2, pipeline structure
and Gt as a linear systolic array is not as area and time efficient as a cascade
implementation of F and a complex multiplier implementation of Gf. There-
fore, DFT spectrum filters using T and Gt are not as readily implemented with
VLSI methods as are DFT spectrum filters using F and Gf, except in certain
special cases.

DFT spectrum filtering with a linear systolic array implementation of Gt may be
worthwhile if the entire filter can fit onto a single silicon chip, or if the struc-

ture of Gt is particularly simple regardless of how big N is.
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Appendix A

TYPICAL ELEMENT CF THE A-MATRIX

Here it is shown that (2.10) is true. Let

2atnr
N

fon = exp{-j ] g =01,..N-1, (A1)

be a typical element of F and let

_ 1 [,Z'n'rn
fm = yexpli =y

) (A2)

for the same range of r and n values, be the typical element of Fl Thus, Fl N
and F = FY F1 = (F'HT o5 well. Using (A1) and (A2) and the definition of matrix

muitiplication yields

N-1 A
=F7IG/F = ZI,.;g:fm.J- (A3)

i =0

Substitutirg (A1) and (A2) into (A3) clearly yields {2.10).
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Appendix D

PROPERTIES OF MATRIX C

We first show that 4" is IIermitian. Clearly then, B will be Hermitian as well
since it is in quadrants two and four of A{). A typical element of A% is

. 2k

(n—m )J (B1)

from which it is easy to see that 43)=4,) which implies that V=A%), or A is
Hermitian.

It is now necessary to show that C=(C") and that C =exp(jmk)s =(-1)'B in
(2.13). Begin by changing the indexing scheme used to represent typical elements in

each of the four quadrants of A%’ as follows:;

Cuadran: ~1) d,gi) = exp[j Zmk (n- N -r )}

N 2
N N N
=01,y =1, n = 0,1,., %~ ==+
r =0,1,.., > 1, n =0,1 > 1and m > tr (B2)
~

Quadrant =2) &%) = exp [j “;k (n-m )J
= N _ = N _ 52
n =01, > 1, m =0,1,.., 5 1 (£3)

Quadrani =3) &%) = e,p[j%’;—"(%’— +r =m >]

r= 0,1,...,%’-—1, m = 0,1,...,%’-—1, and n = %H (B4)
Quadrant ~4) &%) = exp [,- 2;" r-p )J
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r= 0,1,...,%’-—1, p= 0,1,...,%’-—1, n= —121+r,and m = -12!'+p (BS)

We can write (B4) as
A () : 2mk P
dyn’ = exp(juwk) explj N (r—-m) (B9)

which allows one to write that C = exp(jwk)B since (B6) is merely (B3) multiplied by
exp(jmk). (B4) represents a typical element of C. (B2) represents a typical element of
()T, 1tis possible to write (C)T = exp(-jwk)(B)T = exp(-jmk)B = exp(jrk)B = C

because Ay is Hermitian- Toeplitz.
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Appendix C

THE METHOD OF TADOKORO AND HIGUCH!I

Tadokoro and Higuchi [14,15] have considered the samples of a signal to be f(ei)

and
1‘2’—-1
F(®)=ag+ 2 laxcos kO, + bysin k0,] + by psin (N /2)0, , (Ch)
k=1
_ M _2mi ow s . . . .
where N = 2" and Oi_T_F" =1,2,.,N. This is equation (8) in [14]. Rewrite (C1)
as
LA}
2
f(m)=aq+ E [aycos n0, + b,sin n6,] + by psin (N /2)8,, , (C2)
nel
‘vhere now 0, = 2;—’"— + —;—;- and m=0,1,..,N ~1 (using i = m+1).
Let
N -1
fam)=3 W™ m =01,..N-1, (C3)
n =)

where W = exp(j2n/N). The ¢, are spectral components (the true DFT coefficients)

and they satisfy ¢ég6vp€R and ¢ =éy_, for i=1,2,...,N/2-1. Note that
b psin(N [2)0,, = by psin(mm +12'—) =(=1)"byp . Using (C3) and the fact that ¢ = ¢ép_,

gives

?_1 j21rnm N -1 2unm
fm)y=2¢o+ 3 [ée M |+ 3 e N | +eyel™

n =l
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‘2‘"1 jZ-rrnm _j2~n'n.m
=¢p+ 3 [dae N +ége T N |+ (e, . (C4)
n=] —2—
Now let
> a,—jb ~2 a, +jb
c‘,,:wzaz“saé,, w 22Tl (C5)
Substitute (C5) into (C4) in order to get
X
- R 2 2mrm o onw . | 2anm  am .
f(m)=2¢p+ ?;:1 (ancos[T+TJ + b,,sxn[ N +T” + (—1)"’c£2v_ , (C6)
but this is identical to (C2) if
fo = ag , (C7ﬂ)
C"N/].:bN/Z; (C?b)
e N
én =W > J =12 ., > 1, (C7¢)
O -n =Cn . (C7d)

Thus, (C1) is the inverse DFT "in disguise” and to get the true DFT coefficients one

would use (C7).
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Appendix D

TYPICAL ELEMENT OF Gw(k)

Here it is shown that (2.27) is true. Using (2.24) and (2.12)

[N -1
ABw = 2 a(k)w

r

N -1 Zb,w‘(m) Ik
= —ng( 1)~ eXp[ (n—p)}

p=0

Let AW =[a )] s0

Lwatnw - 1% o)
~ WA Nz.ﬂ

N =N -1 Z[v,(u)b,(r)+b(p)b,(m)] 2

r=0p=0

xp 122k ¢ -p)]J :

(D1)

(D2)

but this is v%) in (2.27). Note that in each of the first lines of (D1) and (D2), the

definition of matrix multiplication has been used.



The

following matrices
8.

EXAMPLES OF PARTIAL GAIN MATRICES

G G#*> and G, ®) for N =

GE = g6 and so the matrices displayed below are 6% matrices.

Appendix E

arc
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examples

of partial
It is assumed that g, =1 for all i. We can define

THE PARTIAL WALSH GAIN MATRICES ARE:

QOO OO OO -

[ =l o R e B oo B = B o B =)

PARTIAL WALSH GAIN MATRIX GW( 0)

REAL PART
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

COoOO0O 0o oo

[ < T o B w0 I e B o Bl o Bl 0 }

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

OO OO0 OO0

SO oo oOC oo

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

OO OO0 QOO OO

OCOoO O O0COoO O OO

.000
.000
.000
.000
.0900
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

C OO0 OO OO0

CO o o0 O OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

gain

CoOoO oo o oC

COoOCcC OO OO

matrices

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

for



(== R i o I o T e B o BN = I

OO0 OO0

PARTIAL WALSH GAIN

REAL PART
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.030
.000
.000
.000
.000
.000

COO0OO0OOO0COO

PART

[ == e B o I o B e B e B e W
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MATRIX GW( 1)

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000-0.
.000 0.

000
000
000
000
427
000
000
177

OO O0COo OO0

000
000
Goo
000
000
177
427
000-0.

(== o= B <o B o T o BN e BN e }

.000
.000
.000
.000
.000
.073
.177
.000

.000
.000
.000
.000
.177
.000
.000

(== i oo JiY wo I <o B o I o I s}

OCCOoOOo OO0

073-0

.000 0.
.000 0.
.000 O.
.000 0.
.000-0.
.177 0.
.427 0.
.000 0.

.000 0.
.000 0.
.000 0.
.000 0.
.427 0.
.000 0.
.000 0.
.177 0.

000
000
000
000
177
000
000
073

000
000
000
000
000
073
177
0090



CcCoOocoo0oooCco0

o ocCoco0co o

PARTIAL WALSH GAIN

REAL PART
.000 0.000 0
.000 0.000 ©
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0

IMAGINARY
.00C 0.000 O.
.000 0.000 0.
.000 0.000 0
.000 0.000-0.
.000 0.000 O.
.000 0.000 0.
.000 0.000 O.
.000 0.000 O.

.000
.000
.500
.000
.000
.000
.000
.000

.000

cC o oo oOoO0OCOoO O

PART

000
000

500
000
000
000
000

Cooco oo 0co o
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MATRIX GW( 2)

.000
.000
.000
.500
.000
.000
.000
.000

.000
.000
.500
.000
.000
.00¢C
.000
.000

SCoooocco0ooO0oCQ

=R R e B 2K = B o B o Ml =

.000
.000
.G00
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

Co o oo o0o0

C o oo o000

.000
.000
.000
.000
.060
.0090
.000
.00

.000
.000
.000
.000
.000
.000
.000
.000

C o oo Ccooo©

CoO oo o000

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.0600

COoO o oo 0co o

oo oo 0o oo

.000
.000
.000
.000
.0006
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



oo QCcoocCocoo

CO OO0 OODO

PARTIAL WALSH GAIN

REAL PART
.000 0.000 O
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY PART

.000
.000
.000
.000
.000
.006
.000
.000

COoO o0 oCcooo oo

.000
.000
.000
.000
.000
.000
.000
.000

CoOoOo0oo0coOoO0C OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

o= = I = T e B e B < T oo I e

CoOoOOo0oooOo00

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000 0
.000-0
.000 0
.000 0
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MATRIX GW( 3)

CoOOococoOoOOoOO0O

[ B e I v B o

.000 0.
.000 0.
.000 0.
.000 0.
.073 0.
.000 0.
.000-0.
177 0.

.060 0.
.0G0 0.
.000 0.
.000 0.
.000 0.
.177 0.
.073 0.
.000 0.

000 0.
000 0.
0060 0.
000 0.
000 0.
427-0.
177 0.
000 0.

000 0.
000 0.
000 0.
000 0.
177-0.
000 0.
000 0.
427-0.

000
000
000
000
000
177
073
000

CoCcocooo0oco o

600
0oo
000
000
073
000-0
000 0
177 0

[== B ves I <o N o I <)

.000
.000
.000
.000
. 177
.000
.000
.427

.000
.000
.000
.000
.000
.427
.177
.000



CooocoOooo0O0

oo o0oco oo

PARTIAL WALSH GAIN

REAL PART
.000 0.000 O
.000 1.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0

IMAGINARY
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

cCoOo0o o ocoo0o oo

OC OO OO OO OO
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MATRIX GW( 4)

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

L= R i e B e B e B e I o I =)

OO O OO O D

.000
.000
.000
.000
.00G
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

== e I e I e B o B e I

COoO OO OoOOOO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

SCoococooco o

C oo O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

oo CQCcooO o

COoO O OCcCoooOoC

.000
.000
.000
.000
.000
.000
.000
.000

.G00
.000
.000
.000
.000
.000
.000
.000



CooQoCcocoo0

(== oo T e BN e B e B e I e Rl e

PARTIAL WALSH GAIN

REAL PART
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 ©

IMAGINARY
.0G0 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

CoOoOOCcCOCDoOoOOoOoO OO

PART

CoOoOo0oOoCcCoOoOOoO0oCC

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000-0.
.000 0.

-102-

MATRIX GW( 5)

CO OO0 OOCQOO

L= = R = I = I o N

.000 O.
.000 0.
.060 0.
.000 0.
.073 0.
.000 0.
.000-0.
.177 0.

.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.177 0.

073 0.
000-0.

G000 o.
000 0.
G0C 0.
000 0.
060 0.
427-0.
177 0.
000 0.

600 0.
c00 0.
000 0©.
000 0.
177 0.
000 0.
0C0 0.
427 0.

000
000
0Co
000
000
177
073
000

S o0 o000 OoO O

000
000
000
000
073
000
000-0.
177 ©.

oo Cc OO

.000
.000
.000
.000
.177
.000
.000
.427

.000
.000
.000
.000
.000
.427

177
000



cCo oo ocooco

oo o oo oo

PARTIAL WALSH GAIN

REAL PART
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

IMAGINARY
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

.000
.000
.500
.000
.000
.000
.000
.000

PART

.000
.000
.000-0
.500
.000
.000
.000
.000

CoOoOoO 0O OO

0.
0.
.500
.000
.000
.000
.000
.000

(== 2 = I = B e }
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MATRIX GW( 6)

.000
.000
.000
.500
.000
.000
.000
.000

000
000

Co oo oo 0Oo0Oo

CoOoO 0o oo O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

OCococooocooo0

(== R i o i o B o I = B - B =]

.000
.G00
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

= = T oo Y e T e I o N o I o

CoocoocoCocCo

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

COoOoCCoo0o0CcCoOo O

oo ocoCco oo

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



o000 QOO0

(== e I o I e Y e B e I s Y
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PARTIAL WALSH GAIN MATRIX GW( 7)

REAL PART
.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.000 0.000 0.000 0.000 0.0600 0.000 0.000 0.000
.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.000 0.000 0.000 0.000 0.427 0.0600 0.000-0.177
.000 0.000 0.000 0.000 0.000 0.073 0.177 0.000
.000 0.000 0.000 0.000 0.000 0.177 0.427 0.000
.00 0.000 0.000 0.000-0.177 0.000 0.00G 0.073

IMAGINARY PART

.0006 06.000 0.000 0.000 0.000 0.000 0.000 0.000
.G6G0 0.000 0.000 0.0060 0.000 0.000 0.0GG0 0.000
.000 0.000 0.000 0.000 0.000 0.000 0.000 G.000
.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000
.000 0.000 0.000 0.000 0.000-0.177-0.427 0.000
.000 0.000 0.000 0.000 0.177 0.000 0.000-0.073
.000 0.000 0.000 0.000 0.427 0.000 0.000-0.177
.000 0.600 0.000 0.000 0.000 0.073 0.177 €.CO00
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THE PARTIAL HAAR GAIN MATRICES ARE:

C OO0 O QOO

OO0 OO OO

PARTIAL HAAR GAIN MATRIX GH( 0)

REAL PART
.000 0.000 0
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0

IMAGINARY
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

CoO o0 o0 oc o

COoOOo0o O oo 0OO0

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

cCooo0coocooo

COoO oo OO0 OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

OCo o000 Cco

(=R e i o I B e B = I = I

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

cC OO oo Cco oo

CO o o000 OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(= i o T s B e B = I == T e T o

oo o o000

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



OO 00O OCOO

OO O OO0 O OO

PARTIAL HAAR GAIN

REAL PART
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.060

CO oo O O

OC O O OO OO
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MATRIX GH( 1)

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.

.000 O.
.000 0.
.000 O.
.000 0.
.000 0.
.000 0.
.000 0.
.000 ©.

000 0.
000 0.
000 O.
000 O.
250 0.
177 0.
000 0.
177 0.

000 0.
000 0.
000 O.
000 O.
000-0.
177 0.
250 0.
177 0.

000
000
000
600
177
250
177
000

oo ocoooOoCC

000
000
000
000
177-0.
000-0.
177 0.
250 0.

[== 20 e B < BN o)

.000 0O
.000 O
.000 0O
.000 0O

.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
177 0
.250 0.
.177 0

250-0.
177-0.
000-0.
177 0

000
000
000
000
177

.000

177

.250

.000
.000
.000
.000

177
250
177

.000



COO0OO0OO0COOO

O o oo oo C

PARTIAL HAAR

REAL PART
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

.000
.000
.500
.000
.000
.000
.000
.000

GAIN

CoOoOOoOCOoOO0OO O

PART

.000 0.
.000 0
.000-0.
.500 0.
.000 O.
.000 0.
.000 0.
.000 0.
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MATRIX GH( 2)

.000
.000
.000
.500
.000
.000
.000
.000

000

.000

500
000
000
000
000
000

(=g R il e N = I = I = I -

[ i T o B o B v B oo B o B e

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(== = Y - I e BN = Y o Y = B e}

OO OO OO O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.060
.000
.000
.0G0
.000
.000
.000

C O OO0 OO O C

[ oo I o N <on I e B e B s Bl

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

COoOooOooCcOoOoOO O

QOO0 OO0 OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



(=R = o o B 2N = I — I - ]

C OO DD OoO0OOO

PARTIAL HAAR GAIN

REAL PART
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 ¢.000 0
.000 0.000 O
.000 0.000 0

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.060 0.000 O
.000 0.000 ©
.000 0.000 O
.000 0.000 O
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

C OO C OO0 O

oo Cco oo oOo
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MATRIX GH( 3)

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 0.
.000 0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 O.

000 0.
000 0.
000 0.
000 0.
250-0.
177 0.
000-0.
177 0.

000 ©.
000 0.
000 0.
000 0.
000-0.
177 0.
250 0.
177-0.

000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.
000-0.

000 0.
000 O.
000 0.
000 0.
177 0.
000-0.
177 0.
250 0.

000 0.
000 0.
000 0.
600 0.
000 0.
177 0.
250-0.
177 0

000 ©
000 0
000 0O
000 0
250-0.
177 0O
000-0.
177 C.

000
000
000
000
177
000
177

.250

.000
.000
.000
.000

177

.250

177
000



20000000

L e I o B e B o B o I o Y )

PARTIAL HAAR GAIN

REAIL. PART
.000 0.000 0
.000 1.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 0
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 0

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

oo o o000

o ocoo0ocoo0o o
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MATRIX GH( 4)

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

oo o000 o

(o= e S e T e B e B o Y s B 0 }

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

CoO oo 0o 0o o

[ wo B o Y e I o B o B e B o

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

OO QOO OO O

(== e I e I s I o B o B s Bl o}

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

CO OO OOOO

SO O oL OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.C00



COoOO0OO0CO0OO0OOO0OO

COODOoO OO0 O

PARTIAL HAAR GAIN

REAL PART
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

IMAGINARY
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

CCc oo o000

SCoO oo o0coo oo

~110-

MATRIX GH( 5)

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 0.
.000 0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 0.
.000-0.

000 0.
000 O.
000 0.
000 O.
250-0.
177 0.
000-0.
177 0.

000 0.
600 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.

000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.
000-0.

000 0.
000 0.
000 0.
000 0.
177-0.
000 0.
177 0.
250-0.

000 0.
000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.

000 0.
000 0.
000 0.
000 O.
250 0.
177-0.
000 ©.
177 0.

000
000
600
000
177
000
177
250

000
000
000
600
177
250
177
000



oo CoCcCooooOoO

oo ococoo0o 0

PARTIAL HAAR GAIN

REAL PART
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O

IMAGINARY
.000 0.000 0.
.000 0.000 O.
.000 0.000 O.
.000 0.000-0.
.000 0.000 O.
.000 0.000 0.
.000 0.000 0.
.000 0.000 0.

.000
.000
.500
.000
.000
.000
.000
.000

PART

600
000
000
500
000
000
000
000

COoOOoOOo0oCcoOoOOoOOoO

[ e i o Y e B e B s B S )
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MATRIX GH( 6)

.000
.000
.000
.500
.000
.000
.000
.060

.000
.000
.500
.000
.000
.000
.000
.000

SO0 OO0 O O

OO o OC OO OO

.000
.000
.000
.000
.000
.000
.000
.000

.¢00
.000
.000
.000
.000
.000
.000
.000

CoocOocCoOoOQooo

(=T o I s I v B e B e B e I )

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

OCococooOooOo0

CoO o oo o000

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

COoOOoOOoOoO QOO

(o= I en I o T e I e BN o B = I )

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.060
.000
.000



Coocoooco0 o

SCoOocoococoo

PARTIAL HAAR GAIN

REAL PART
.000 0.000 ©
.000 0.000 ©
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

.000
.000
.000
.000
.000
.000
.0G0
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

COOCOocoOoOOOOO

CoOooOoooOo oo
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MATRIX GH( 7)

.0006 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.

.000 0.
.000 0.
.0C0 0.
.000 0.
.000 0.
.000-0.
.000-0.
.000-0.

000
000
600
000
250
177
000
177

CoOocCoc o000

060
000
000
000
000
177
250-0.
177-0.

C OO OO O

.000
.000
.000
.000
.177
.250
177
.000

.000
.000
.000
.000
177
.000

CoOoOoccoOoOoOoOO0OO0 O

(== I e T e B o B e I e}

177
250-0

.060 0.
.000 0.
.000 0.
.000 0.
.000-0.
.177 0.
.250 0.
177 0.

.000 O©.
.000 0.
.000 0.
.000 0.
.250 0.
177 0.
.000 0.
.177 0.

000
000
000
000
177
000
177
250

000
000
000
000
177
250
177
000
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THE PARTIAL TRIDIAGONAL GAIN MATRICES ARE:

COoO OO0 OC0COO O

o= R I o B < B - I = I - I

PARTIAL TRIDIAGONAL GAIN MATRIX GT( 0)

REAL PART
.250 0.250 0
.250 0.250 0
.250 0.250 0
.250 0.250 0
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 O

.250
.250
.250
.250
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

COCcCoOoO OO0 OoO O

PART

L= == e I e B e B o B o QN =

.250
.250
.250
.250
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

COoOO0o oo 0O

C OO0 0O C0CO O

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

L= o= B oo B <o B oo B <o I o M 0}

Cooocoo0oO0OO

.000
.000
.000
.000
.C00
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

oo oco0oO0 O

Do o0 o000 o

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

cCoooc oo

oo ocooo0cQ0

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



cCooCco o000 oo

Cooo0ccooc oo
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PARTIAL TRIDIAGONAL GAIN MATRIX GT( 1)

REAL PART
.000 0.000 0
.000 0.000 0
.000 0.000 ©
.000 0.000 0O
.000 0.000 O
.000 0.000 0O
.000 0.000 0O
.000 0.000 0O

IMAGINARY
.000 0.000 0
.000 0.000 ©
.000 0.000 O
.000 0.000 0©
.000 0.000 0
.000 0.000 0
.000 0.000 0O
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

(=== I e B - B = I = I =)

[ R e T o e I e B e Y e I s

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.

000 0.
000 0.
000 0.
000 0.
250 0.
177 0.
000 0.
177 ©.

000 0.
000 0.
000 0.
000 0.
000-0.
177 0.
250 0.
177 0.

000
000
000
000
177
250
177
000

COO0C OO0 O

000
000
000
000
177-0.
000-0.
177 0.
250 0.

O oo o

.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
177 0.
.250 0.
177 0.

.000 0.
.000 0
.000 0O
.000 0O

250-0.
177-0
000-0.
177 0.

000
000
000
0060
177
000
177
250

000

.000
.000
.000

177

.250

177
000



(== R B = = A = Y )

(== e B o I e I o I o B e I )

PARTIAL TRIDIAGONAL GAIN

REAL PART

.250 0.
.000 0.
.250 0.
.000-0.
.000 0.
.000 0.
.000 0.
.000 0.

IMAGINARY

.000-0.
.000-
.250
.000
.000
.000
.000
.000

.250
.000
.250
.000
.000
.000
.000

C oo o0Ccoo0o o

000-

250
000
250
000
000
000
000

250

0

OO0 0O0OO

0.
0.
0.

OO oo

.250 0.000

.000-

.250
.000
.000
.000
.000
.000

PART

000
250

.250
.000
.000
.000
.000

000-

0
0

(== I v I e B o B }

0.
0.
0.

0

OO OO

.250
.000
.250
.000
.000
.000
.000

250
000
250
.000
.000
.000
.000
.000
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L= R e i o B o T B e B o I

C oo o0 oOoOoo

MATRIX GT( 2)

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

CO oo OCcoOo0OC

cCocooocoo0coo

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

L B en T oo I v T e B o B o T )

(= = i o B = B« BN = 2N« I

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(o= i en I o B oo Y BN = I - W )

oo OO0 o

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



OO o Cooco oo

SO0 o TToo0o o
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PARTIAL TRIDIAGONAL GAIN

REAL PART
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 0
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 ©

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.900 0.000 0
.000 0.000 0
.000 0.000 O
000 0.000 0
.000 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

oo oo Ccooo

Cooo o0 OO

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.060-0.
.000 0.
.000 0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 0.

MATRIX GT( 3)

000 0.
000 O.
000 0.
000 0.
250-0.
177 0.
000-0.
177 0.

000 0.
000 0.
000 0.
060 0.
000-0.
177 0.
250 0.
177-0.

000 0.
600 0.
000 O.
000 ©O.
177 0.
250-0.
177 0.
000-0.

000 0.
000 0.
000 0.
000 0.
177 0.
000-0.
177 0.
250 0.

000 0.
000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.

000 0.
000 0.
000 0.
000 0.
250-0.
177 0.
000-0.
177 0.

000
000
000
000
177
000
177
250

000
000
000
000
177
250
177
000



C OO OoO0DOCOO

CoOoOocoCcoooo

PARTIAL TRIDIAGONAL GAIN

REAL PART

.250-0.
.250 0.
.250-0.
.250 0.
.000 0.
.000 0.
.000 0.
.000 0.

250 0.
250-0.
250 0.
250-0
000 0.
000 0.
000 0.
000 0.

IMAGINARY

.000
.000
.000
.000
.000
.000
.000
.000

Coocooo0oo0oo

.000
.000
.000
.000
.000
.000
.000
.000

(== o= T o Bt o B B e B s Y

256-0.250
250 0.250
250-0.250
.250 0.250
000 0.000
000 0.000
000 0.000
000 0.000
PART

.000 0.000
.000 06.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000

cCoocoocoo o

OC OO0 OO0OO
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MATRIX GT( 4)

.000
.G00
.000
.060
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(== i o B o B o Y e B o B e §

(= I o Y o T s I o B < I e

.060
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

C oo oO0Cco O

L= R ==l o B o B e B oo B o B o

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

CoOoO oo O OO O

(=== I o T B o B = I o I e}

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000



oo oCcoooCco

Co oo oOoO0oOoOO
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PARTIAL TRIDIAGONAL GAIN MATRIX GT( 5)

REAL PART
.000 0.000 0O
.000 0.000 O
.000 0.000 O
.000 0.000 0O
.200 0.000 O
.600 0.000 O
.G00 0.000 0O
.000 0.000 0O

IMAGINARY
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 O
.000 0.000 0
.060 0.000 O

.000
.000
.000
.000
.000
.000
.000
.000

PART

.000
.000
.000
.000
.000
.000
.000
.000

(== I < I e I co I o I o= B s}

SO oo oCcoOoOo

.000 0.
.000 0.
.000 0.
.000 0.
.000 O.
.000-0.
.000 0.
.000 0.

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.000 0.
.000-0.

000 0.
000 0.
000 0.
000 0.
250-0.
177 0.
000-0.
177 ©.

000 ©.
000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.

000 0.
000 0.
000 0.
000 0.
177 0.
250-0.
177 0.
000-0.

000 0.
000 0.
000 O.
000 0.
177-0.
000 0.
177 0.
250-0.

000 0.
000 0.
000 0.
000 0.
060 0.
177 0.
250-0.
177 0.

000 o©
000 0
000 0
000 0
250 0.
177-0
000 0.
177 0

000
000
000
000
177
000
177
250

.000
.000
.000
.000

177

.250

177

.000



CCcCoo oo Oo0O

[ o B e e BN = 2 = I o I =

PARTIAL TRIDIAGONAL GAIN

REAL PART
.250 0.000-0.250 0.000
.000 0.250 0.000-0.250
.250 0.000 0.250 0.000
.000-0.250 0.000 0.250
.000 0.000 0.000 0.000
.000 0.000 0.000 0.000C
.000 0.000 0.000 0.000
.000 0.000 0.000 0.000

IMAGINARY PART

.000
.250

.000-

.250
.000
.000
.000
.000

0
0
0
0

(== R on I o B v }

.250 0.
.000 0.
.250 0.
.000-0.
.000 0.
.G00 0.
.000 0.
.000 0.

000 -

250
000
250
000
000
000
000

0

[ T o I e i e B v B o B

.250
.000
.250
.0600
.000

.000

.000
.000
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COoOOo0oCcC O OO0

[on B TN o I e B o B o B o I -

MATRIX GT( 6)

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(e R == i e B B = BN = BN = I =)

C OO0 CcoOoO o0

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

(o= I e B o N o I e B == B o Y o

DO OO0 o0 OO

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.080
.000

oo ocooo0c0©

QOO O o000

.000
.000
.006
.000
.000
.000
.000
.000

.000
.000
.009
.000
.000
.000
.000
.000



Coococooco0c o

CoOocCocooo0ooo
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PARTIAL TRIDIAGONAL GAIN

REAL PART
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

IMAGINARY
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0
.000 0.000 0

.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000

oo oCcooo0o o

PART

CoOoc oo ococo

.000 0.
.000 0.
.000 0.
.000 0.
.000 0.
.000 O.
.000 0.
.000-0.

.000 0.
.000 0.
.000 ©.
.000 0.
.000 0.
.000-0.
.000-0.
.000-0.

MATRIX GT( 7)

000
0600
000
000
250
177
000
177

Coococoooo

060
Goo
000
000
000
177
250-0.
177-0.

(= B e B e B o B e I

.000
.000
.000
.000
.177
.250
177
.600

.000
.000
.000
.000
2177
.000

SCoocoococo o

O oo o

177
250-0

.000 0.
.000 0.
.000 0.
.000 0.
.000-0.
.177 0.
.250 0.
177 0.

.000 0.
.000 0.
.000 0.
.000 0.
.250 0.
.177 0.
.000 0.
.177 0.

000
000
000
000
177
000
177
250

000
000
000
000
177
250
177
006
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Appendix F

EXAMPLES OF GAIN MATRICES

The following three matrices are examples of gain matrices for G, G, and G,' for N = 16. The

prototype filter is a first order low pass Butterworth filter corresponding to a sampling rate of 100 Hz
and a digital cutoff frequency of 62.8 rads/sec (10 Hz). The g; values for the Gy matrix are specified in
the following table. Note that only the g, for i = 0,1,....N/2-1 are shown since g; = gy -; holds for i =

0.1,...,N/2-1.

i & i &

0§ 1.000 5 | 0.045-0207j
1| 0.727-0445; | 6 | 0.018-0.132;

N

0.381-0.486j 0.004-0.064f

W N

0.191-0.393; 0.000

oo

4 [ 0.095-0.294j




THE GV MATRIX 1IS:

1.0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.60
.00
.00
.00
.00

.00 .
.00
.00
.00-.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

00

.00
.10

29

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.29
.10
.00
.00-

.00
.00
.00
.00
.00
.00
.00
.00

.00-.
.00-.

.00
.00

.00.
.00
.33
.22

40
13

.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
22
.07
.13
.04-
.CO
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00

13-
.33
.22
.00
.00
.00
.00
.00
.00
.00
.00

.40 -,

.00
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Appendix G

PARTIAL GAIN MATRIX PROGRAMS

The following three PASCAL programs GWGEN, GHGEN and TRGEN gen-
erate the partial gain matrices G,*» G/*> and G, ®), respectively. The programs assume

that g, = 1 for all i values.

PROGRAM GWGEN( IMAGEIN, IMAGEOUT) ;
(* THIS PROGRAM GENERATES ONE-DIMENSIONAL WALSIH *)
(* GAIN MATRICES. IT IS USED TO FIND THE GAIN *)
(* MATRIX IN THE WALSH DOMAIN, EQUIVALENT TO THAT *j
(* IN THE FOURIER DOMAIN. THIS IS DONE IN THIS *)

(* PROGRAM BY AN IMPLEMENTATION OF THE MATRIX *)
(* EQUATION, )
(* 1 -1 *)
(* GV = -WF GF F W *)
(* N *)
(* WHERE, GW = WALSH GAIN MATRIX (NON-DIAGONAL), *)
(* GF = FOURIER GAIN MATRIX (DIAGONAL), *)
(* W = WALSH MATRIX OF THE TRANSFCRM, & *)
(* F = FOURIER MATRIX OF THE TRANSFORM *)
(* GW MAY BE COGMPLEX IF GF IS PHRYSICALLY NOT )
(* REALIZABLE. NOTE, )
(* GF = DIAG(G(0),G(1),...,G(1),...,G(N-1)) *)

(* SO G(I) IS THE ITH DIAGONAL ELEMiNT OF GF. WE *)
(* IMPLEMENT THE ABOVE FORMULA FOR GW BY A TWO-D *)
(* FAST WALSH TRANSFORM OF COMPLEX EXPONENTIAL )
(* FUNCTIONS SCALED BY G(I)/(N**2). THUS, *)
(* *)
(* GW(I)=TWOD[(G(I)/N®*2)*EXP(2*J*I*PI*(R-P)/N)] *)
(* *)

(* WHERE, T = 0,1,2,....N-1, )
(* J = SORT(-1), *)
(* Pl= 3.14152654, & *)
(* R,P = COMPLEX SPATIAL DCMAIN INDICES. *)

(* THE TOTAL WALSH GAIN MATRIX, GW, IS *)
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(* N-1 )
(* GW = SUM GW(I) *)
(* I=0 *)

CONST
SIZE=64;
PI=3.141592654;
TYPE
DECODED=ARRAY[ 1. .SIZE‘,I ..SIZE} OF INTEGER;
SPECTRUM=ARRAY[1..SIZE,1. .SIZE] OF REAL;
COMPLEX=ARRAY([1..2,1..1024] OF REAL;
COMSPEC=ARRAY[1..2,1..S1ZE,1. .SIZE] OF REAL;
VAR
FLAGY,FLEG, IX, JX,NN,IL: INTEGER;
IMAGE IN, IMAGEOUT : TEXT ;
DECIMG :DECODED ;
FWT : SPECTRUM; FF : COMPLEX ;
GWI :COMSPEC;

PROCEDURE HFWT (VAR F :COMPLEX;LN: INTEGER) ;
(* THIS PROCEDURE FINDS THE FAST WALSH TRANSFORM ,OR *)

(* THE INVERSE, AND PRODUCES THE HADAMARD OR *)
(* NATURAL ORDERING OF SPECTRAL COMPONENTS. THIS *)
(* PROGRAM IS ADAPTED FROM PAGE 95 OF THE BOOK: *)
* DIGITAL IMAGE PROCESS ING “)
(* BY R. C. GONZALES AND P. WINTZ ‘)
(* PUBLISHED BY ADDISON-WESLEY, 1977 *)
(*TYPE DECLARATION, *)
(* TYPE )
(* COMPLEX=ARRAY[1..2,1..1024] OF REAL; *)

(*THE USER’S MAIN ROUTINE PASSES THE BASE-2 LOG OF *)
(*THE SAMPLE SEQUENCE LENGTH AND A 2X1024 REAL ARRAY *)
(*WHICH IS THE SET OF OOMPLEX NUMBER SAMPLES. ROW-1 *)
(*IS THE X-COORDINATE AND ROWV-2 IS THE Y-COORDINATE. *)

(*COLUMN-1 IS THE X-Y VALUE OF THE 1ST SEQUENCE *)
(*SAMPLE. HFWI RETURNS A 2X1024 ARRAY OF FWT )
(*VALUES (COMPLEX), IN HADAMARD ORDER (NATURAL). )
CONST
PI=3.141592654;
VAR

I,J,L,N,LE,LE1,IP:INTEGER;
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T1,T2:REAL;
BEGIN (* HFWT °*)
N:=POWVER(2,LN);
FOR L:=1 TO LN DO
BEGIN
LE:=POWER(2,L);
LE1:=LE DIV 2;
FOR J:=1 TO LE1 DO
BEGIN
I:=3;
WHILE I<=N DO
BEGIN
IP:=I+LE1;
T1:=F[1,IP];T2:=F[2,1IP];
F[1,IP]:=F[1,1]-T1;F[2,IP]:=F[2,1]-T2;
F[1,1]:=F[1,1]4T1;F[2,1]:=F[2,1]+T2;
I:=I+LE;
END;
END;

END; (* END OF IN-PLACE COMPUTATION OF FWT PROCESS *)

END; (* HFWT *)

PROCEDURE PFWT (VAR F :COMPLEX;LN: INTEGER) ;
(* THIS PROCEDURE FINDS THE FAST WALSH TRANSFORM ,OR
(* THE INVERSE, AND PRCDUCZS THE PALEY OR
(* BINARY ORDERING OF SPECTRAL COMPONENTS . THIS
(* PROGRAM IS ADAPTED FROM PAGE 95 OF THE BOCX :

(* DIGITAL IMAGE PROCESS ING
(* BY R. C. GONZALE: AND P. WINTZ

(* PUBLISHED BY ADDISON-WESLEY, 1977
(*TYPE DECLARATION,

(* TYPE

(* COMPLEX=ARRAY[1..2,1..1024] OF REAL;

(*THE USER’S MAIN ROUTINE PASSES THE BASE-2 LOG OF
(°*THE SAMPLE SEQUENCE LENGTH AND A 2X1024 REAL ARRAY
(*WHICH IS THE SET OF COMPLEX NUMBER SAMPLES . ROW-1
(*IS THE X-COORDINATE AND ROW-2 IS THE Y-COORDINATE.
(*COLUMN-1 IS THE X-Y VALUE OF THE 1ST SEQUENCE
(°*SAMPLE. HFWT RETURNS A 2X1024 ARRAY OF FWT
(*VALUES (COMPLEX), IN PALEY ORDER (BINARY) .

VAR

*)
*)
")
")
*)
*)
)
*)
%)
*)
)
*)
*)
*)
*)
*)
)
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I,7,K,L,NV2 , N1t ,N,LE,LE1,FLG, IP: INTEGER;

T1,T2:REAL;
BEGIN (* PFWTI *)
N:=POWVER(2,LN);
NV2:=N DIV 2;
NM1:=N-1;

:=1;

FOR I:=1 TO NM1 DO

BEGIN

IF I>=] THEN

BEGIN
K:=NV2;
END

ELSE

BEGIN

T1:=F[1,J];T2:=F[2,J];

F[1,3]:=F[1,1];F[2,J]:=F[2,1];

F[1,1]):=T1;F[2,1]:=T2;

K:=NV2;
END;
FLG:=1;
WHILE FLG=1 DO
BEGIN
IF K<J THEN
BEGIN
J:=J-K;
K:=K DIV 2;

J:=J4K;

END; (* END OF THE BIT REVERSAL PROCESS

FOR L:=1 TO LN DO
BEGIN
LE:=POWER(2,L);
LE1:=LE DIV 2;

FOR J:=1 TO LE1 DO
BEGIN
1:=73;

*)
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WHILE I<=N DO

BEGIN

IP:=I+LE1;

T1:=F[1,IP];T2:=F[2,1P];
F[1,IP):=F[1,1]-T1;F[2,1IP}:=F[2,1]-T2;
F[1,1}:=F[1,1]4T1;F[2,1]):=F[2,1]+T2;
1:=I+LE;

PROCEDURE TWOD(VAR FWT1:SPECTRUM;VAR COMFWT1 :CQMS PEC;

(.
(‘
(‘
(.
(‘
(.
(‘
(0
(‘
(‘
(‘
(.
(‘
(.
(O
(.
(l
(‘
(.
(‘
(t
(.
(.
(O
(‘
(.
(l

DECIMG2 :DECODED ; NX4 ,NY4 ,FLAGY? ,FLEG1 : INTEGER) ;
THIS PROCEDURE PRODUCES A TWO-D WALSH OR INVERSE WALSH *)

(BOTH ARE THE SAME PROCEDURE). THE FOLLOWING )
TYPE DECLARATIONS, *)
TYPE *)
DECODED=ARRAY[1..SIZE,1..SIZE] OF INTEGER; *)
SPECTRUM=ARRAY|[1..SIZE,1..SIZE] OF REAL; ‘)
OOMSPEC=ARRAY[1..2,1..SIZE,1..SIZE] OF REAL; )

MUST APPEAR UNDER THE MAIN DECLARATIONS. A VARIABLE, *)
CALLED FF, OF TYPE COMPLEX, MUST ALSO APFEAR UNDER THE *)
MAIN DECLARATIONS. WHENEVER THE PROCEDURE TWOD IS )

CALLED THE FWI IS FOUND, EITHER OF THE CONTENTS OF FWT1 *)
OR OF COMFWI'1l, DEPENDING UPON THE VALUE OF A FLAG, CALLED®*)
FLEG1 LOCALLY. THE CALLING ROUTINE WILL GET THE REAL *)

PART OF COMFWI1 VIA FWI1 AND COMFWT1 HAS THE COMPLEX *)
WALSH SPECTRUM. USE OF THIS PROCEDURE CAN BE DESCRIEED *)
AS FOLLOWS : ‘)
*)

FINDING WALSH TRANSFORMS OF COMPLEX INPUT *)

*)

(A) FLEG1=1,FLAGY2=1 - *)
1) TWOD WALSH ON THE CONTENTS CF COMEWTI[.,.,.] )
USING THE HADAMARD ORDER (HFWI PROCEDURE USED) *)

WILL RESULT WHEN THESE FLAGS ARE USED. *)

2) FWI1[.,.] WILL CONTAIN THE REAL PART OF *)
COMFWT1[.,.,.] AFTER TWOD HAS RUN. ‘)

3) COMFWI1[.,.,.] WILL HAVE THE TWO-D WALSH OUTPUT *)

(THE ORIGINAL DATA IN COMFWI1[.,.,.] WILL BE ‘)
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(* DISPLACED OF COURSE).
(* (B) FLEG1=1,FLAGY2=0 -
(* SAME AS CASE (A) EXCEPT WE USE PFWT (PALEY
(* ORDER) .
(‘
(* FINDING WALSH TRANSFORMS OF INTEGER INPUT
(‘
(* (C) FLEG1=0,FLAGY2=1 -
(* 1) TWOD WALSH ON THE CONTENTS OF DECIMGZ].,.]
(* USING THE HADAMARD ORDER (HFWI PROCEDURE USED)
(* WILL RESULT WHEN THESE FLAGS ARE USED.
(* 2) FWI1[.,.] WILL CONTAIN THE REAL PART OF
(* CGMFWTI1[.,.,.] AFTER TWOD HAS RUN.
(* 3) COMFWT1[.,.,.] WILL HAVE THE TWO-D WALSH OUTPUT
(* (REAL PART NONZERO, IMAGINARY PART ZERO).
(* (D) FLEG1=0,FLAGY2=0 -
(* SAME AS CASE (C) EXCEPT WE USE PFWT (BINARY
* ORDER) .
VAR

1,J,LNN: INTEGER;
TEMP : COMSPEC;
BEGIN (* TWOD *)
LNN: =ROUND{LN(NY4°*1.0) /LN(2.0));
IF FLEG1=1 THEN (* DO FAST WALSH OF CGAFWT CONTENTS *)
BEGIN
IF FLAGY2=1 THEN (* USE HADAMARD ORDER (HFWT PROCEDURE) *)
BEGIN
FOR 1:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
FF[1,J]:=COMFWI1[1,1,J]; (* REAL PART INTO FF[1,J] *)
FF[2,7]:=COMFWT1[2,1,J]; (* IMAG. PART INTO FF[2,]] *)
END;
HFWT(FF,LNN); (* ONE-D FWI OF ROW I )
FOR J:=1 TO NY4 DO
BEGIN
TEMP[1,1,)]:=FF[1,)];
TEMP[2,1,J}:=FF[2,]];
END;
END; (* END OF ROW TRANSFORMATIONS *)
FOR J:=1 TO NY4 DO

*)
*)
*)
*)
)
*)
*)
)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
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BEGIN
FOR I:=1 TO NX4 DO
BEGIN
FF[1,I]):=TEMP[1,1,J];
FF[2,1]:=TEMP[2,1,J];
END; '
HFWT (FF ,LNN); (* ONE-D FWI OF COLUMN J *)
FOR 1:=1 TO NX4 DO
BEGIN
 COMFWT1[1,1,J]:=FF{1,1];
COMFWT1(2,1,J}:=FF[2,1];
END;
END; (* END OF FINDING FWI OF COLUMNS *)
FOR I:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
COMFWT1[1,1,J]:=COMFWI1{1,1,J]/NX4;
COMFWT1[2,1,J]:=COMFWT1{2,1,J]/NX4;
WFI[I,J]:=COMPWI'1[1,I,J];
END;
END;
END
ELSE (* USE PALEY ORDER (PFWI' PROCEDURE) *)
BEGIN
FOR T:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
FF[1,J]:=COMFWT1[1,1,J}; (* REAL PART INTO FF[1,J] %)
FF[2,J]:=COMFWT1[2,1,J]; (* IMAG. PART INTO FF[2,]] *)
END;
PFWT(FF,LNN); (* ONE-D FWI OF ROW 1 *)
FOR J:=1 TO NY4 O
BEGIN
TEMP[1,1,J]:=FF[1,J];
TEMP|[2,1,J]:=FF[2,J];
END;
END; (* END OF ROW TRANSFORMAT IONS *)
FOR J:.:=1 TO NY4 DO
BEGIN
FOR I:=1 TO NX4 DO
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BEGIN
FF{1,1):=TEMP[1,1,J];
FF[2,1]:=TBMP[2,1,7J];
END;
PFWT (FF,LNN); (* ONE-D FWT OF COLUMN J *)
FOR I:=1 TO NX4 DO
BEGIN
OOMFWTI1[1,1,J]:=FF[1,1];
CQWI’I[Z,I,J]:=FF[2,I];
. END;
END; (* END OF FINDING FWT OF COLUVNS *)
FOR 1:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
COMFWT1[1,1,J]:=COMFWT1[1,1,J]/NX4;
COMFWI1[2,1,J]:=COMFWT1[2,1,J]/NX4;
FWI1{I,J]:=COMFWT1[1,1,J];
END;
END;
END;
END
ELSE (* DO FAST WALSH COF DECIMG CONTENTS *)
BEGIN
IF FLAGY2=1 THEN (* USE HADAMARD ORDER (HFWT PROCEDURE) *)
BEGIN
FOR I:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
FF[1,1]:=DECIMG2[1.J];
FF[2,J}:=0.0;
END;
HFWI'(FF,LNN); (* ONE-D FWT OF ROW I *)
FOR J:=1 TO NY4 DO
BEGIN
TEMP[1,1,J]:=FF[1,J];
TEMP[2,1,J]:=0.0;
END;
END; (* END OF ROW TRANSFORMATIONS *)
FOR J:=1 TO NY4 DO
BEGIN
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FOR I:=1 TO NX4 DO
BEGIN
FF[1,1}:=TEMP[1,1,J];
FF[2,1]:=TEMP[2,1,7];
END;
HFWT'(FF,LNN); (* ONE-D FWI OF COLUMN J *)
FOR 1:=1 TO NX4 DO
BEGIN ,
COMFWT1[1,1,J]:=FF[1,1];
COMFWT1[2,1,)]:=FF[2,1];
END;
END; (* END OF FINDING FWI OF COLUMNS *)
FOR 1:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
REGIN
COMFWI1[1,1,J]:=CQMFWI1[1,1,J]/NX4;
COMFWT1([2,1,J]:=COMFWT1([2,1,J]/NX4;
FWI1[I,J]:=COMFWT1[1,1,J];
END;
END;
END
ELSE (* USE PALEY ORDER (PFWI PROCEDURZ) *)
BEGIN
FOR I:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
FF[1,J]:=DECIMG2[I,J);
FF[2,7]:=0.0;
END;
PFWT(FF,LNN); (* ONE-D FWT OF ROW 1 *)
FOR J:=1 TO NY4 DO
BEGIN
TEMP[1,1,J]:=FF[1,]];
TEMP[2,1,7]:=0.0;
END;
END; (* END OF RON TRANSFORMATIONS *)
FOR J:=1 TO NY4 DO
BEGIN
FOR I:=1 TO NX4 DO
BEGIN
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FF[1,1]:=TEMP[1,1,J];
FF[2,1]:=TEMP[2,1,J];
END;
PFWI'(FF,LNN); (* ONE-D FWF OF COLUMN J *)
FOR 1:=1 TO NX4 DO
BEGIN '
COMFWT1[1,1,J]:=FF[1,1];
COMFWT1[2,1,J]:=FF[2,1];
END;
END; (* END OF FINDING FWI OF COLUMNS *)
FOR I:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN
COMFWI1[1,1,J]:=COMFWT1[1,1,J]/NX4;
CQMFWT1[2,1,J]:=COMFWT1[2,1,J)/NX4;
FWI1[I,J]:=COMFWT1[1,1,J];

PROCEDURE EXPFGEN(VAR EXPF1 :COMSPEC; INDEX ,N: INTEGER) ;
(* THIS PROCEDURE COMPUTES THE MATRIX OF CQMPLEX *)
(* EXPONENTIALS FOR A PARTICULAR VALUE OF INDEX *)

(* (=0,1,2,...,N-1) & OF A PARTICULAR ORDER (N = *)

(* POWER-OF-2). *)
VAR

SCA:REAL;

R,P:INTEGER;
BEGIN (* EXPFGEN *)
SCA:=1.0/N;
FOR R:=1 TO N DO
BEGIN
FOR P:=R TO N DO
BEGIN
EXPF1[1,R,P]:=SCA*COS(2.0°*PI*INDEX®(R-P)/N);
EXPF1([1,P,R]:=EXPF1[1.R,P];
EXPF1[2,R,P]:=SCA*SIN(2.0*PI*INDEX*(R-P)/N);
EXPF1[2,P,R]:=-EXPF1[2,R,P];
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END;
END;
END; (* EXPFGEN *)

PROCEDURE GWIGEN(VAR GWI 1 :COMS PEC ; INDEX1,NN1, FLEGA , FLAGYA : INTEGER )3
(* THIS PROCEDURE USES TWOD AND EXPFGEN TO PRODUCE THE *)
(* PARTIAL WALSH GAIN MATRIX GW(I) (= GLOBAL VARIABLE *)
(* GWI), FOR A PARTICULAR INDEX1, I.E., WE GET *)
(* GW(INDEX1), & A PARTICULAR ORDER NN1 (NN1=POWER-OF *)
(* -2). ")

BEGIN (* GWIGEN *)

EXPFGEN(GWI1,INDEX1,NN1); (* GET EXPF-MATRIX OF COMPLEX

EXPONENTIALS *)

TWOD (FWT ,GWI 1 ,DECIMG,NN1,NN1,FLAGYA,FLEGA) ;

(* GET TWO-D WALSH OF COMPLEX
EXPONENTIALS *)
END; (* GWIGEN *)

(* MAINLINE PROGRAM *)

BEGIN (* GWGEN *)
RESET (IMAGEIN, 'GWINPUT ) ;
REWR ITE ( IMAGEOUT, *GWOUT ’ ) ;
READ( IMAGEIN ,NN,FLEG, FLAGY) ;
FOR IL:=0 TO NN-1 DO
BEGIN
GWIGEN(GWI,IL,NN,FLEG,FLAGY) ; (* GENERATE GW(1) *)
WRITELN ( IMAGEOUT ) ;WRITELN ( IMAGEOUT ) ;WRITELN ( IMAGECTT) ;
WRITELN( IMAGEOUT,*® PARTIAL WALSH GAIN MATRIX GW({*',IL,")");
WRITELN( IMAGEQOUT, * FEAL PART’);
WRITELN ( IMAGEOUT) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE ( IMAGEOUT ,GWI [1,1X,JX]:6:3);
END;
WRITELN( IMAGEOUT) ;
END;
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WRITELN ( IMAGEOUT) ;
WRITELN ( IMAGEOUT, * IMAGINARY PART’);
WRITELN ( IMAGEOUT) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE ( IMAGEOUT ,GWI [2,1X,JX]:6:3);
END;
WRITELN( IMAGEOUT) ;
END;
END;
END. (* GWGEN *)

PROGRAM GHGEN( IMAGEIN, IMAGEOUT) ;
(* THIS PROGRAM GENERATES ONE-DIMENSIONAL HAAR *)
(* GAIN MATRICES. IT IS USED TO FIND THE GAIN *)
(* MATRIX IN THE HAAR DOMAIN, EQUIVALENT TO THAT *)
(* IN THE FOURIER DOMAIN. THIS IS DONE IN THIS *)

(* PROGRAM BY AN IMPLEMENTATION OF THE MATRIX °)
(* EQUATION, *)
(* 1 -1 T *)
(* GH= -HF GFFH C )

(* N *)
(* WHERE, GH = HAAR GAIN MATRIX (NON-DIAGONAL), *)

(* GF = FOURIER GAIN MATRIX (DIAGONAL), *)
(* H = WALSH MATRIX CF THE TRANSFCRM, & *)
(* F = FOURIER MATRIX OF THE TRANSFORM *)
(* C = DIAGONAL CORRECTION MATRIX )
(* T -1 *)
(* = ((1/N) HH ) )
(* GH MAY BE COMPLEX IF GF IS PHYSICALLY NOT )
(* REALIZABLE. NOTE, *)
(* GF = DIAG(G(0),G(1),...,G(I),...,G(N-1)) )
(* SO G(I) IS THE ITH DIAGONAL ELEMENT OF GF. *)

(®* THE TOTAL HAAR GAIN MATRIX, GH, 1IS§ *)
(* N-1 *)
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(* GH = SUM GH(I) )
(* 1=0 *)
(* THE ORTHOGONAL HADAMARD ORDERED HAAR TRANSFORM *)
(* , ACCORDING TO )
(* AHMED ,NATARAJAN,RAO, "COOLEY - TUKEY - TYPE *)
(* ALGORITHM FOR THE HAAR TRANSFORM, " *)
(* ELECTRONICS LETTERS, JUNE 1973, PP.276-278 *)
(* , IS USED HERE (SEE HFHAART PROCEDURE). )
CONST
PI=3.141592654;
SIZE=64;
TYPE

CMLEX=ARRAY[1..2,1..1024] OF REAL;
CQV!SPEC=ARRAY[1..2,1..SIZE,1..SIZE] OF REAL;

VAR

IX,JX,NN, IL: INTEGER
IMAGEIN, IMAGEOUT : TEXT;

FF

:COMPLEX ;

GHI : COMSPEC;

PROCEDURE HFHAART (VAR F :COMPLEX ;LN : INTEGER) ;
(* THIS PROCEDURE CALCULATES THE ORTHOGONAL (NOT ORTHONORMAL )
(* HADAMARD ORDERED DISCRETE HAAR TRANSFORM ACCORDING TO

"COOLEY-TUKEY-TYPE ALGORITHM FOR THE HAAR TRANSFORM"

(‘
(.
(‘
(.
(.
(.
(‘
(l
(0
(‘
(‘
(‘
(‘
(‘
(‘
(‘
(.

BY N

- ABMED,T. NATARAJAN, AND K. R. RAO,

ELECTRONICS LETTERS, JUNE 1973, PP. 276-278.
THE ORDLERING PRODUCED BY THIS PROCEDURE IS RECURS IVELY
GENERATED USING H = 1 AND

WHERE 1|
N
H
N

1

2N | |

IS THE NTH ORDER UNIT MATRIX,

IS THE NTH ORDER ORTHOGONAL HADAMARD-HAAR MATRIX,

)
*)
*)
%)
*)
)
%)
)
*)
*)
)
*)
)
)
*)
*)
%)
")
*)
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(* H 1S THE 2NTH ORDER ORTHCGONAL HADAMARD-HAAR MATRIX. *)

(* 2N *)
VAR

1,J,L,N,LE,LE1: INTEGER;

T1,T2:REAL;

BEGIN (* HFHAART *)
N := POWNER(2,LN);
FOR L:=1 TO LN DO
BEGIN
LE := PONVER(2,LN-L+1);
LE1 := LE DIV 2;
FOR J:=1 TO LE1 DO
BEGIN
I :=7J + LE1;
T1 := F[1,J]; T2 := Fl2,]};

F[1,J] := F{1,7] + F[1,1];
F[2,J] := F[2,J] + F[2,1];
F[1,1] :=T1 - F[1,1];
F[2,1I]) :=T2 - F[2,1];
END;

END;

END; (* HFHAART *)

PROCEDURE IHFHAART (VAR F:OOMPLEX;LN: INTEGER) ;
(* PROCEDURE HFHAART DETERMINES H TIMES F WITH H THE ORTRHOGONNAL
(* HADAMARD ORDERED HAAR AND F THE INPUT VECTOR. THIS PROCEDURE
(* T
(* COMPUTES (1/N) H F, THE INVERSE HAAR TRANSFORM CF THE F
(* INPUT VECTOR. THIS IS NOT THE TRUE INVERSE, HOWEVER.
VAR
I,J,N,L,LE,LE1: INTEGER;
T1,T2:RZAL;
BEGIN (* IHFHAART *)
N := POWER(2,LN);
FOR L:=1 TO LN LO
BEGIN
LE := POWER(2,L);
LE1:= LE DIV 2;
FOR J:=1 TO LE1 DO
BEGIN
I :=J 4+ LE1;

)
*)
)
*)
)
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T1 := F[1,J]; T2 := F[2,]];

F[1,J] := F[1,J] + F[1,1);
F[2,J] := F[2,]] + F[2,1];
F[1,1] :=T1 - F[1,1];
F[2,1] := T2 - F[2,1];
END;

END;

FOR I:=1 TO N DO

BEGIN

F[1,1] := F[1,I]/N;

F[2.1] := F[2,1]/N;

END;

END; (* IHFHAART *)

PROCELXURE TWOD (VAR COMFHT 1 :COMSPEC ;NX4 ,NY4 : INTEGER) ;
(* THIS PROCEDURE PRODUCES A PSEUDO 2D HAAR TRANSFORM (AS *)

(* REQUIRED BY FORMULA FOR GH) . *)
(* THE A-MATRIX 1§ )
(* -1 *)
* A=F GFF )
(* AND WE DO A PSEUDO 2D HAAR OF A TO GET GH, ACCORDING TO *)
(* 1 T *)
* GH = - H A H C )
(* N *)
VAR

1,J,K,OFFSET,LNN: INTEGER ,
TEMP : COMS PEC ;
CMAT : ARRAY|[1..SIZE] OF REAL ;
BEGIN (* TWOD *)
LNN: =ROUND(LN(NY4*1.0) /LN(2.0)) ;

(* TAKE THE HAAR TRANSFORM, COLUMN BY COLUMN, *)
(* OF COMFET1[.,.,.] (A-MATRIX) *)

FOR J:=1 TO NY4 DO

BEGIN
FOR I:=1 TO NX4 DO

BEGIN

FF[1,1] := COMFHT1[1,1,J];
FF[2,1] := COMFHT1[2,1,J];

END;
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HFHAART (FF ,LNN) ;
FOR I:=1 TO NX4 DO

BEGIN
TEMP[1,J,1] := FF[1,1];
TEMP[2,J,1] := FF[2,1];
END; .

END;

(* TAKE THE HAAR TRANSFORM, COLUMN BY COLUMN, *)
- (* OF TEMP[.,.,.] (TRANSPOSE OF PRODUCT H A). *)
(* "SIMULTANEGUSLY" TAKE THE TRANSPOSE OF THE *)
(* RESULT AND DIVIDE BY N. )

FOR J:=1 TO NY4 DO

BEGIN

FOR I:=1 TO NX4 DO
BEGIN
FF[1,1] := TEMP[1,1,J];
FF[2,1] := TEMP[2,1,7];
END;

HFHAART (FF ,LNN) ;

FOR 1:=1 TO NX4 DO
BEGIN
COMFHT1([1,71,1]
COMFHT1([2,7J,1]
END;

END;

FF[1,1]/NX4;
FF[2,1]/NX4;

(* NOW FACTOR IN THE C-MATRIX CORRECTION FACTOR. *)

(* QMAT[.]) IS THE INVERSE C-MATRIX. *)
OFFSET := 3;
MAT[1] := 1.0;
VMAT[2] := 1.0;
FOR J:=1 TO (LNN-1) DO
BEGIN

K := POWER(2,7J);

FOR I:=OFFSET TO (OFFSET+K-1) DO
BEGIN
CMAT[1] := POWER(2,LNN-J)/NX4;
END;

OFFSET := OFFSET + K;
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END;

FOR I:=1 TO NX4 DO
BEGIN
FOR J:=1 TO NY4 DO
BEGIN '
COMFHT1[1,1,7J]
COMFHT1[2,1,7]
END;
END;
END; (* TWOD *)

COMFHT1[1,1,J]/CMAT[]];
COMFHT1{2,1,J]/CMAT[J];

PROCEDURE EXPFGEN(VAR EXPF1 :CCNISPEC;INDEX,N:INTEGER);
(* THIS PROCEDURE COMPUTES THE MATRIX OF COMPLEX *)
(* EXPONENTIALS FOR A PARTICULAR VALUE OF INDEX *)
(* (=0,1,2,...,N-1) & OF A PARTICULAR ORDER (N = *)
(* POWER-OF-2). *)

VAR
SCA:REAL ;

R, P: INTEGER;

BEGIN (* EXPFGEN *)

SCA:=1.0/N;

FOR R:=1 TO N DO
BEGIN
FOR P:=R TO N DO

BEGIN
FXPFI[I,R,P]:=SCA‘COS(2.0‘PI‘INDEX‘(R-P_)/N);
EXPFI[I,P,R]:=EXPF1[1,R,P];
EXPFI[Z,R,P]:=SCA‘SIN(2.0‘PI‘INDEX‘(R-P)/N);
EXPFI[Z,P,R]:=-EXPF1[2,R,P];
END;
END;
END; (* EXPFGEN *)

PROCEDURE GHIGEN(VAR GHI1:COMSPEC; INDEX1,NN1 : INTEGER) ;
(* THIS PROCEDURE USES TWOD AND EXPFGEN TO PRODUCE THE *)
(* PARTIAL HAAR GAIN MATRIX GH(I) (= GLOBAL VARIABLE °)
(* GHI), FOR A PARTICULAR INDEXl, I.E., WE GET )
(* GH(INDEX1), & A PARTICULAR ORDER NN1 (NN1=POWER-OF *)
(* -2). *)
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BEGIN (* GHIGEN *)
EXPFGEN(GHI 1, INDEX1,NN1); (* GET EXPF-MATRIX OF COMPLEX

EXPONENTIALS *)
TWOD (GHI 1,NN1,NN1) ;
(* GET PSEUDO TWO-D HAAR OF COMPLEX
EXPONENTIALS *)
END; (* GHIGEN *)

(* MAINLINE PROGRAM *)

BEGIN (* GHGEN *)
RESET ( IMAGEIN, 'GHINPUT );
REWRITE ( IMAGEOUT, ’ GHOUT * );
READ( IMAGEIN,NK) ;
FOR IL:=0 TO NN-1 DO
BEGIN
GHIGEN(GHT,IL,NN); (* GENERATE GH(I) *)
WRITELN(IMAGEOUT ) ;WRITELN ( IMAGEOUT ) ;WRITELN( IMAGEOUT );
WRITELN(IMAGEOUT, * PARTIAL HAAR GAIN MATRIX GH(’,IL, 'Y )
WRITELN( IMAGEOUT, °’ REAIL PART’);
WRITELN ( IMAGEOUT) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE( IMAGEOUT ,GHI [1,IX,JX]:6:3);
END;
WRITELN( IMAGECUT) ;
END;
WRITELN ( IMAGEOUT ) ;
WRITELN ( IMAGEOUT, °* IMAGINARY PART’ )
WRITELN( IMAGEOUT ) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE(IMAGEOUT,GHI[Z,IX,JX] :6:3);
END;
WRITELN( IMAGEOUT) ;
END;
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(* GHGEN *)

PROGRAM TRGEN( IMAGEIN, IMAGEOUT) ;

(.
(‘
(‘

THIS PROGRAM GENERATES ONE-DIMENSIONAL TRIDIAGONAL
GAIN MATRICES. IT IS USED TO FIND THE GAIN
MATRIX IN THE TRIDIADONWAL DOMAIN, EQUIVALENT TO THAT

(* IN THE FOURIER DOMAIN. THIS IS DONE IN THIS
(* PROGRAM BY AN IMPLEMENTATION OF THE MATRIX
(* EQUATION,
(* 1 -1
* GT = -TF GFFT
(* 2
(* WHERE, GT = TRIDIAGONAL MATRIX (NON-DIAGONAL),
(* GF = FOURIER GAIN MATRIX (DiAGONAL),
(* T = MATRIX OF THE TRANSFORM, &
(* F = FOURIER MATRIX OF THE TRANSFORM
(* GT MAY BE COMPLEX IF GF IS PHYSICALLY NOT
(* REALIZABLE. NOTE,
(* GF = DIAG(G(0),G(1),...,G(1),...,G(N-1))
(* SO G(I) IS THE ITH DIAGONAL ELEMENT OF GF.
(* THE TOTAL TRIDIAGONAL GAIN MATRIX, GT, IS
(* N-1
(* GT = SUM GT(I)
(* 1=0

CONST
PI=3.141592654;
SIZE=64;

TYPE

CMLEX=ARRAY[1..2,1..1024] OF REAL;
CG\ASPEC=ARRAY[1..2,1..SIZE,1..SIZE] OF REAL;

VAR

IX,JX,NN, IL: INTEGER;
IMAGEIN, IMAGEOUT : TEXT ;
FF :COMPLEX;
GT1:COMSPEC;

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
")
)
*)
*)
)
*)
*)
*)
*)
*)
*)
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PROCEDURE TRIDIAG(VAR F:COMPLEX;LN:INTEGER) ;
(* THIS PROCEDURE COMPUTES THE TRIDIAGONAL TRANSFORM OF AN

THE TRIDIAGONAL TRANSFORM IS

(* GENERATED USING T = 1 AND

(* INPUT VECTOR.

(O
(‘
(‘

& T -

(* 2N
(*
(*
(*

1

(* WHERE 1 IS THE NTH ORDER UNIT MATRIX,

(* N

(* T 1S THE NTH ORDER TRIDIAGONAL TRANSFORM MATRIX,

(* N

(* T IS THE 2NTH ORDER TRIDIAGONAL TRANSFORM MATRIX.

(* 2N
VAR

I,J,N,LE,LE1:INTEGER;

T1,T2:REAL;
BEGIN (* TRIDIAG *)
N := POWER(2,LN);
LE := POWER(2.LN);

LE1 := LE DIV 2;
FOR J:=1 TO LEl1 DO
BEGIN
I :=J + LE1;
T1 := F[1,1}; T2
F[1,J] :=

= F[2,7];
F[1,J] + F[1,1];

F[2,J] := F[2,]] + F{2,1};
F[1,I] :=T1 - F[1,1);
F[2,1I] := T2 - F[2,1];
END;

END; (* TRIDIAG *)

PROCEDURE TWOD (VAR COMFHT1 : COMS PEC ;NX4 ,NY4 : INTEGER) ;
(* THIS PROCEDURE PRODUCES A PSEUDO 2D TRIDIAGONAL TRANSFORM *)
(* REQUIRED BY FORMULA FOR GT) .

(* THE A-MATRIX IS

(‘

-1

*)
*)
*)
*)
*)
*)
)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
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(* A=F GOFF )

(* AND WE DO A PSEUDO 2D TRIDIAGONAL. TRANSFORM OF A TO GET, *)

(* 1 *)

(" GT = - T A T *)

(* 2 *)
VAR ‘

1,J,K,OFFSET,LNN: INTEGER ;
TEMP : COMSPEC;

BEGIN (* TWOD *)

LNN: =ROUND(LN(NY4*1.0)/LN(2.0));

(* TAKE THE TRID. TRANSFORM, COLUMN BY COLUMN, *)
(* OF COMFHT![.,.,.] (A-MATRIX) *)

FOR J:=1 TO NY4 DO

BEGIN

FOR I:=1 TO NX4 DO

BEGIN

FF[1,1] := COMFHT1[1,1,J);
FF[2,1] := COMFHT1[2,1,]];
END;

TRIDIAG(FF,LNN} ;
FOR I:=1 TO NX4 DO

BEGIN
TEMP{1,J,1] := FF[1,1];
TEMP[2,J,1] := FF[2,1];
END;

END;

(* TAKE THE TRID. TRANSFORM, COLUMN BY COLUMN, *)

(* OF TEMP[.,.,.] (TRANSPOSE OF PRODUCT T A). *)
(* "SIMULTANEOUSLY" TAKE THE TRANSPOSE OF THE *)
(* RESULT AND DIVIDE BY 2. )

FOR J:=1 TO NY4 DO

BEGIN

FOR I:=1 TO NX4 DO
BEGIN

FF[1,1] := TEMP[1,1,J];
FF[2,1] := TEMP[2,1,]);
END;

TRIDIAG(FF ,LNN) ;
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FOR I:=1 TO NX4 DO
BEGIN

COMFHT1([1,J,1] := FF[1,1]/2;
COMFHT1[2,J,1] := FF[2,1]/2;
END;

END;

END; (* TWOD *)

PROCEDURE EXPFGEN(VAR EXPF1 :COMSPEC ; INDEX,N: INTEGER) ;
(* THIS PROCEDURE COMPUTES THE MATRIX OF COMPLEX *)
( * EXPONENTIALS FOR A PARTICULAR VALUE OF INDEX *)
(* (=0,1,2,...,N-1) & OF A PARTICULAR ORDER (N = *)
(* PONER-OF-2). )
VAR
SCA:REAL;
R,P: INTEGER;
BEGIN (* EXPFGEN *)
SCA:=1.0/N;
FOR R:=1 TO N DO
BEGIN
FOR P:=R TO N DO
BEGIN
F.XPFI[I,R,P]:=SCA‘COS(2.0‘PI‘INDEX‘(R-P)/N);
EXPF1[1,P,R]:=EXPF1[1,R,P};
F.XPFI[Z.R,P]:=SCA'SIN(2.0‘PI‘INDEX‘(R-P)/N);
EXPF1[2,P,R]:=-EXPF1[2,R,P];
END;
END;
END; (* EXPFGEN *)

PROCEDURE TRIGEN(VAR GTI1:COMSPEC; INDEX1,NN1 : INTEGER) ;
(* THIS PROCEDURE USES TWOD AND EXPFGEN TO PRODUCE THE *)
(" PARTIAL TRID. GAIN MATRIX GT(I) (= GLOBAL VARIABLE *)
(* GTT), FOR A PARTICULAR INDEX1, I.E., WE GET *)
(" GT(INDEX1), & A PARTICULAR ORDER NN1 (NN1=POWER-OF *)
(* -2). *)

BEGIN (* TRIGEN *)

EXPFGEN(GTI1, INDEX1,NN1); (* GET EXPF-MATRIX OF COMPLEX

EXPONENTIALS *)

TWOD(GTI1,NN1,NN1);
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(* GET PSEUDO TWO-D TRID. OF COMPLEX
EXPONENTIALS *)
END; (* TRIGEN °*)

(* MAINLINE PROGRAM *)

BEGIN (* TRGEN *)
RESET ( IMAGEIN, 'TRINPUT' ) ;
REWRITE ( IMAGEOUT, ' TROUT ' ) ;
READ( IMAGEIN,NN) ;
FOR IL:=0 TO NN-1 DO
BEGIN
TRIGEN(GTI,IL,NN); (* GENERATE GT(1) *)
WRITELN ( IMAGEOUT ) ;WRITELN ( IMAGEOUT ) ;WRITELN( IMAGEOUT )
WRITELN( IMAGEOUT, * PARTIAL TRIDIAGONAL GAIN MATRIX GT(’,IL,’)’);
WRITELN( IMAGEOUT, °’ REAL PARY ') ;
7 ITELN( IMAGEOUT) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE(IMAGEOUT ,GTI[1,IX,JX]:6:3);
END,
WRITELN( IMAGEOUT) ;
END;
WRITELN( IMAGEOUT) ;
WRITELN( IMAGEOUT, °* IMAGINARY PART');
WRITELN ( IMAGEOUT ) ;
FOR IX:=1 TO NN DO
BEGIN
FOR JX:=1 TO NN DO
BEGIN
WRITE( IMAGEOUT,GT1 [2,IX,JX]}:6:3);
END;
WRITELN( IMAGEOUT ) ;
END;
END;
END. (* TRGEN *)
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Appendix H

- DEFINITIONS OF BOUNDS

From Ullman [40], f(N) is O(g(N)) (or f(N) = O(g(N))) if there are positive con-
stants ¢ and N, such that for all N= Ng» f(N) = cg(N). Also from Ullman [40], £(N)
is () (g(N)) (or £(N) = Q (g(N))) if there are positive constants ¢ and N0 such that for
all N=N,, f(N) = cg(N). From Thompson [43], f(N) is 8(g(N)) (or £(N) = o(g(N\))) if
there exist positive constants ¢4 and cy for which clg(N) = f(N) = czg(N) for all

sufficiently large N.
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