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ABSTRACT

This thesis studies some of tbe properties of a class of nonrecursive filters called

discrete Fourier transform (DI.f) spectrum filters, and their implementation with

special purpose hardware suitable for very large scale integration (VLSI) implemen-

tation. The DFT spectrum of a real vector of N components can be filtered with an

NxN matrix G, and the result inverse transformed with the inverse DFT to get the

desired signal vector. Alternatively, a different transform matrix T can be applied to

the signal and the resulting spectrum filtered by a matrix G, such that the result is

the same as filtering the DFT spectrum of the vector with Gt. This is DFT spectrum

filtering. Some of the properties of G, for T : W (discrete \ilalsh transform), T : H

(discrete Haar transform) and T : T, (tridiagonal transform - one of the matrix fac-

tors of W and H) are described herein. It is found that DFT spectrum frltering using

T : Vy' or T : H is more efficient than using the DFT and Gt for Ns 64, assuming a

sequential processor implementation and assuming that Gt is a linea¡ filter. Ordi-

narily, G, is complex-diagonal and G, is real and block-diagonal. The VLSI imple-

mentation of the DFT and tbe DWT using the radix 2, pipeline and linear systolic

array (LSA) architectures is considered along with the LSA implementation of G,.

It is found that while the asymptotic area and time complexity of both architectures

is essentially the same (to within a constant factor), the radix 2, pipeline structure is

superior to the LSA, especially in terms of area. This assumes that we wish to imple-

ment the DFT or DWT. The G, matrices cannot be implemented witb the cascade

ancl so require an LSA implementation. Because the LSA needs so much chip area,

it is not recommended in general that DFT spectra be ûltered with the use of

transform T and filter G, in the context of a special Purpose ha¡dware implementa-

tion of T or G, using the cascade and LSA, respectively.
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Chnpter I

TFTTROÐUCTXON

The purpose of tbis thesis is to study a class of nonrecursive discrete-time filters

and their implementation as digital filters using very large scale integration (VLSI)

techniques. This class of filters is referred to in tbis thesis as the discrete Fourier

transform (DFT) spectrum ñlters. Their purpose is to perform some desired linear

filtering operation on the DFT spectrum of a real sampled signal vector (ûnite

number of components). This is done by changlng (ûltering) the spectrum of the sig'

nal vector produced by a transform which is not the DFT, such as the discrete Walsh

transform (DWT), discrete Haar transforna (DHT), or a new transform to be intro-

duced in this thesis, the tridiagonal transform. This approach to the problem of

DFT spectrum ûltering is proposed since it may lead to hardware implementations

that have certain advantages in the context of VLSI'

The remainder of this chapter provides some cursory background on frltering in

general and the special role played by discrete transforms in nonrecursive filtering.

Chapter II introduces DFT spectrum filters as discrete-time filters. So¡ce of their

properties a¡e examined and three special cases are examined. Chapter III considers

the problem of implementing DFT spectrum Êlters as digital filters using special pur'

pose hardware that is suitable for VLSI implementation. Two competing implemen-

tation techniques a¡e evah¡ated here and these are the tadix2, pipeline FFI rnethod,

and the linear systolic array FFT method. The implementation of the fast Walsh

transform (FWT) using these trvo methods is also looked at. As well, the linear sys-

tolic array implementation of DFT spectrum filters (the Gt matrices of Chapter II) is

considered in this chapter. Chapter IV considerg various miscellaneous topics
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relating to the DFT spcctrum filtering problem and is intended to be a guide to

future research efforts.

1.I FII,TBITING DEFTNED

The definitions presented in this sectioü Íue not rigorous. The intent is merely

to help relate the filtering method of Chapter II to the subject of ûltering in general.

Filtering means different things to different people. In its most general sense,

therefore, filtering involves the modification of a signal into a more suitable form

according to some criteria. The signal itself can take many forms. The signal can

vary in time, vary in space, or vary in both time and sPace, for example. The filter'

ing requirements can be specified in the time (or space) domain, but are usually

specified in some frequency domain. The word 'frequencyn is intended to be more

general than its common connotation of the frequency of a sinusoid, which implies

that the signal under consideration has been expanded in terms of a basis of

sinusoids. More will be said about this later.

Filtering can be performed in both continuous-time or discrete-time. The

independent variable of a continuous-time signal may be coasidered to take on a

continuous set of values. Discrete-time signals are defined only at discrete instants

of tirne. rffhen both the amplitude and time variables of a signal are discretrzed, a

digital signal is the result.

The DFT spectrum filters of Chapter II are, strictly speaking, discrete-time

filters and not digital filters because the transforms , filters and signal vectors take on

values from the set of real or complex numbers. Thus, signal amplitudes are not

discretized , although time is discretized. In Chapter III, hardware structures are

proposed for some of the filters in Chapter II. This implies a finite word length

(FWL) binary implementation, and hence the discretization of signal, transform and

ñlter values. The resulting structures a¡e then true digital filters.
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The field of digital signal processing (DSP) can rougbly be divided into the

study of two main classes of filters : recursive and nonrecursive 6lters. This is

alluded to in Rabiner [1]. Recursive filters a¡e often described by recurrence equa-

tions. Recursive ûlters t)?ically (though not necessarily) operate or are considered

to oPerate on infinite lengtb number sequences. Tbe class of recursive filters is enor-

mous and includes the classical infinite impulse response (IIR) and finite impulse

response (FIR) ûlters, adequately described in Oppenheim and Schafer [2] and Chen

t3]. Also included in this class are the wave digitat (WD) filters ñrst described by

Fettweis [4], the lattice ûlters of Gray and Ma¡kel [5] and the adaptive filters of

Widrow et al. [6]. This list is far from exhaustive, On the other hancl, nonrecursive

ûlters oPerate on ûnite length sequences only. Nonrecursive filtering usually centers

around the use of discrete transforms such as the DFT or the DWT. A sampled sig-

nal vector is transformed, the resulting spectrum is altered according to some

specification(s), and the altered spectrum is inverse transformed to give the desired

signal vector. It is to be noted that many nonrecursive metbods have recursive

implementations and vice versa.

Recursive filtering, unlike nonrecursive ûltering, often involves systems whicb

employ feedback. Thus, stability considerations can play a role in recursive filte¡

design. Nonrecursive filtering systems do not use feedbach and so stability is nevcr

discussed in the context of nonrecursive filtering. Thus, the DFT spectrum filters of

Chapter II are inherently stable.

Recursive filters are often used in real-time applications. In real.time DSP ,sig.

nal values are fed to the signal processor at a rate determined by the application,

Tbe signal processor must complete a given processing operation on the samples it

already bas before the next sample(s) become available.

Real-time recursive filters must be causal. Nonrecursive filters need not be

causal as they are often employed in off-line , non-real-time, applícations. Since

causality imposes restrictions on the kinds of ûltering operations cne can perform
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upon a signal, non-causal ûlters can do things that causal ñlters cannot do. Note,

however, that nonrecursive ûlters can be used in a real-time envi¡onment and satisfy

causality. As well, recursive filters can be used in a non-real-time environment.

Thus, in general, non-causal, nonrecursive ûlters are inherently stable and more

ßexible than causal recursive filters that employ feedback.

1.2 DISCRETE TRANSFOR.MS

This section briefly reviews discrete hansforms such as the discrete Fourier

transform (DFT), discrete Walsh transform (D\:iT), and the discrete Haar transform

(DHT). Most of what follon's is a mere litelature review. Additional backgrouncl

material on these and other transforms ís provided as tbe need arises in tbe cbapters

which follow. The DFT and its applications are extensively discussed in Oppenheim

and Schafer [2],Chen [3], and Gonzalez and Wintz [7]. The applications of DFT to

one-dimensional DSP is considered in [2] and [3] and the applications to digital image

processing are considered in [7]. The DWT is considered in [7] as well, but more

background on the DWT can be found in Ahmed, S:hreiber and Lopresti [8]. Tbe

DIIT is considered in [8]. It is worth noting that Ahmed et al. [B] proposes a stan-

dard terminology for the DWT and DHT.

1.2.1 The DFT

Chen [3] consitiers the DFT cf a signal to be the truncated z-transfcrm of that

signal, evaluated on the unit circle in the complex z-plane. Tbus, the z-transform of

infinite sequence {h(i)}, where i : 0,t 1, !2,* 3,..., and å(i) ( R (set of real

numbers), is

H(z)= å,f,)r-, (1.1)
I --@

The value of H(z) on tbe unit circle is
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wherc 0 = coT" i ={1 ,o is the frequency in radians pcr second, and T is the sample pcriod

in seconds. The DFT according to Chen [3] is the truncated version of (12)' and its dcfinition

is

/v -r -,Zt{LH(å)= I¿(iÞ-" (13)
l-0

whcre N is the number of sample points, or the number of points of the original signal

sequence that havc bccn retained.

The inverse z-transform of (1.1) is, according to Chen [3],

and if it is evaluated on the unit circle,

H (et\ = I r (¡ >r'r' ,

,¡(i) : fiç H (z) zt-t dz ,

2t
å(¡) = *Irþt\"uo ou

iV -l

I¡r(tÞe.{

(12)

(1.4)

However, for (1.3) I{(ejoT) exists only at a : Z¡klNT, t : 0,1,...,1'{-1 so Chen

approximates (1.5) by

,r(i) = Å
.2tll
JN-

(15)

(1.6)

which defines the inverse DF-f (IDFT).

Oppenheim and Schafer [2] avoid the approximation problems of Chen's treat-

ment of the DFT simply by considering the expansion of an N-element vector in

terms of complex exponentiats "tpf$t*' '[ ¡v
=cr(¡). This produces what Oppenheim

and Schafer term the discrete Fourier series (DFS). The DFS can be used to

represent discrete-time periodic sequences. Oppenheim and Schafer then show that
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the DFS can rePresent finite duration sequences and this effectively shows that the

DFT is the DFS. In so doing, a ûnite duration sequence is regarded as one period of

an infinite duration periodic sequence.

In any case, the approach of Chen and that of Oppenheim and Schafer lead to

the transform pair of (1.3) and (1.6), with (1.3) defining tbe DFT and (1.6) defining

the inverse DFT (IDFT). These two expressions can be restatecl as matrix-by-vector

operations. Thus,

H :Fh, (1.7a)

which is equivalent to (1.3), and

I =F-|F, (1.7b)

wbich is equivalent to (1.6). Clearly, F f -r ( CN'N (set of complex NxN marrices)

and ¿- = [å (o),tr (1),...¡ (N -1)]t jl = ÍH (0),¡.' (1),...,¡t (¡J -1)lr. The superscript "T" means

transpose. In this thesis ¡- e nN (set of real N-vectors) and ã- e CN (set of complex

N-vectors), although ã can be complex as well. F is referred to as the DFT matrix

and F-l is the IDFT marix.

Because the DFT and the IDFT are of such great importance in DSP, much

effort has been expended over the years in finding fast ways of ccmputing (1.2) on

sequential Processors via software and with special purpose hardrvare. The fast con.

Putation of the DFT is referred to in the literature under the generat term of fast

Fourier transform (FFT). The implementation of FFT algorithms using special pur-

pose hardware is considered in Chapter IiI. Sofrware methods for speeding up tbe

computation of the DFT and the IDFT t¡pically involve attempts at finding efficient

matrix factorÞations of F and E-l in 1t.Z¡. For example, tbe Cooley-Tukey methcr!

[9], a decimation-in-time algoritbm [2], effectively factorizes F (and f'1) into logrN

matrices (N is a positive integer power of two) and reduces the amount of computa-

tion from something on tbe order of N2 multiplications and additions to something
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on the order of NlogrN multiplications and additions. In this case the multiplica-

tions and additions are complex. This algorithm and many of its variations is

described in Oppenheim and Schafer [2]. It is also described in Chen [3] and Gon-

zalez and Wintz [7], and so will not be covered bere'

Tbe unit sample (impulse) function is defined as

8(n) =

where n ( Z (set of integers) is the discrete-time variable. Only the class of linear

shift-invariant (LSI) discrete- time systems [23] is of interest in this thesis. Such a

system is completely described by its unit sample (impulse) response sequence {h(n)}

which is the LSI system's response to õ(n). Note tbat the system is assumed not to

have any stored energy, and {h(n)} describes only the input/output behaviour of the

LSI system. If the input sequence to the system is {u(n)} then the output sequence

from such a system is given by

y(n): I ¿("-k)l(t), (1.e)
t --ø

and this becomes

7 jf n=O
O ,if n*O (1.8)

(1.10)
;

y(n) = I¿(n-t)u(t),n>0
È-0

if the system is also causal. The equations in (1.9) and (1.10) are referred to as con-

volution sums in [2]. Equations (1.9) and (1.10) are also referred to as linea¡ convo-

lutions. Note also that {u(k)} is causal as well.

Convolution of the kind in (1.10) may be done using the DFT. To start, periodic

or circular convolution [23,71can be performed by taking the DFT of each of the

t$ro sequences to be circularly convolved and nrultiplying the resulting DFT spectra

of the two sequences point-by-point. The resulting sequence is then inverse

transformed using tbe IDFT to produce the final result. Naturally, both sequences
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that are being convolved must be of the same length. The linear convolution of

(1.10) can be performed with the DFT in much tbe same way as circular convolurion.

Horvever, if one sequence is of length N and the other is of lengtit M, then both

sequences must be padded with zeros until each is of length N+l,l-1 at least. We

only consider radix 2 DFT in tbís thesis so N+ld-l must be a power cf two. This

naturally allows the Cooley-Tukey FFT to be used. The first N+M-1 points of the

result of the IDFT operation will be the linear convolutíon of the two sequences.

This method is described in [2], [3], and [7] in conside¡able detail. Note that the

failure to pad with zeros adequately may rcsult in a phenomenon called "wrap-

around" [7]. This causes a problem analogous to aliasing. /ilso ncte rhÍrt, concpared

with the Cooley-Tukcy FFT, the direct computation of (1.10) is more efficient for

N= 32, or thereatrouts.

The fact that time dornain convolution is equivalent to frequency domain nculli-

plication [2] and tbe fact that causal LSI digital 6lters are clescribeable by (1.1t) is

used in Chapter II to justify a method of selecting suitable protor)?e Fourier gr;n

matrices (G, in Chapter II)

1.2.2 The D\!r'T

The discrete Walsh t¡ansform (DWT), thougÌr less rvell knov, n than the DFT ,

has a u'ide range of applications. The DWT has been uscd by Cheng and Liu [10j in

the solution of difference equations. Tbe \l'alsh functions from whrch the D\',''I ls

derived have been used by Corrington [i1] to solve integral and <tifferential equa-

tions approximately, and by Maqus.i [12] to expand probabilrty density funcrrons.

Pearl [13] has used linear dyadic-invariant (LDI) systems to model LSi systems. The

DWT plays a :ole in Lf)I systems essentially identical to that played by the DF'T in

LSI systems. Tadokoro and Higuch¡ [14,15] have used the DWT to facilitate compu-

tation of the DFT coefficients. Their method is faste¡ than that of Cooley"Tukey for

transforms of size N<64. This method will be considered in more detail in Chapter
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II. Chan and Hsiao [1ó¡ bave used the Walsh functions in the design of optimal con-

trol systems, More recently, the DWT has been proposed as a suitable substitute for

the DFT in the spectra! analysis of electroencephalograms, in Dzrvonczyi:, Howie and

NfcDonald [17]. In most cases, the principle benefit in using the DWT rather thân

the DFT is that the D\YT is so much easier to compute, since tbe DWT maîrix con-

sists entirely of +1 and -1 entries, Thus, no multiplicatioas are involvecl.

The DFT can be considered as originating frorn the Fourier series. Where

Fourier seri:s are concerned, periodic functions are expanded in terms of the com-

plcte set of sinusoids anc! cosinusoids The details of the process of Fourier expand-

ing a functíon are gi'ren extensive treatmeni in Tolstov [18j. ]'he Walsh funcrions,

like the complete set of sinusoids and cosinusoids in [18], form a complete set them-

selves. The Walsh functions are defineable in terms of an incomplete set of func-

tions, called tbe Raden¡acher functions. Tbe development of the D\ryT from the

Rademacber functions is de;cribed in Ahmed et al, [8].

The Walsh functions are reciangular functions which tale on values + 1

thr':ughout the interval over whicìr tbev are defined,such as [0,1). The DVvT is

obtained simply by sanpling the functíons at regular intervals on [0,1). Tbis rvill pro-

duce an array of + 1 values. Tbe resulting array is nonsingular and sc if it i-r of

dimension l'ixN, the column vectors making up the array wíll span tbe space R5.

Ahmed et al. [3] describe the tbree main orderings of rhe D\ïT. Different orcj-

erings of the DWT arise by rearranging the order of the rows of the D\YT m<Ìrn.\,

This reordering c:.n be specifìed by a p3rmutation matrix. The three principle orJer-

ings of the DWT are:1) sequency or walsh order,2) dyadic or paley order..l)

natural or Hadamard order [8]" Other orderings do exist, such ¿l,s the cal-sal ori-lcrrng

(see Rao et al. [19]).

The importance of ordering is not to be underestimated. In this thesís. ihe

Hadamard ordering is used (see Chapter II). If any of tt¡e other trvo main orcìeríngs

\ilere selected, the result would be chaos, although all orderings of an¡'grven
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transform are equivalent to each other.

A fast algorithm for computing the DWT exists that is very much like the

Cooley'Tukey FFT algorithm. It is described by Shanks [20J. In fact, tbis algorithm is

identical to the Cooley-Tukey FFT except that it is much simpler because there is no

complex arithmetic, only real additions/subtractions, in the Cooley-Tukey fast Walsb

transform (Fwr). The Cooley-Tukey Fwr reduces the number of

additions/subtractions involved in the direct cornputation of the DWT from on the

o¡der of N2 to exactly NlogrN additions/subtractions. Again, N is a pcwer of two

and is the size of the vector that is to be transformed. A program for the Shanks

FWT may be found in Gonzalez and Wintz [7]. Incidentally, a program for Cooley-

Tukey FFT can be found in both Chen [3] and Gonzalez and Wintz [7]. The pro-

grams are in FORTRAN.

1.2.3 The DHT

The discrete Haar transform (DHT) is also covered by Ahmed et al. [8], and

some of its applications are considered by shore [21]. The DHT, Iike the DWT , is

obtained by sampling at regular intervals a complete set of functions, in this case

tbey are tbe Haar functions. The DHT as described in Ahmed et al. [8] is not as

"nicen as the DWT because the DFIT matrix entries consist of numbers like + rã in
adcjition to -.- 1, 0 and + 2. Fot example, the DHT matrix for the case N : g is

11
11

\ã. \n
00
2-2
00
00
00

111
1 -l -1-\n 0 00 \n\n
000
-z 0 00 2-2000

1

I
\r2
0
0
1

0
0

1

-1
0

-\ñ,
0
0
0

a
1

-1
0

-\n
0
0
0
-2

(see Abmed et al. [8]).

Fast algorithms for tbe DHT, called fast Haar transforms (FHT), have been pro-

posed by Rejchrt 122) and Ahmed, Nararajan and Rao Í231. The most useful
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algorithm from the point of view of the work in Chapter II is that of Ahmed et al.

Í231' This fast algorithm is very n¡uch like that of the Cootey-Tukey FFT and tbe

FWT of Shanks [20]. Once again, the computational complexity of the DHT is

reduced from on the order of N2 additions/subtractions to on the order of NlogrN

additions/subtractions. It turns out that the Cooley-Tukey FHT in [23] requires on

the order of N nontrivial multiplications. Multiplications by 0, or integral powers of

trvo are regarded as trivial, and all other kinds of multiplication are considered non-

trivial.
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Chapter II

DFT SPECTRI,II;Í FTLTERING USING TRANSFOR¡IÍS OTHER
THAN TIIE DFT

In this chapter the problem of ûltering a discrete Fourier transform (DFT) spec-

trum withcut computing the DFT coefficients is examined. This is accomplished

with the aid of a transform other than the DFT itself. In particular, tbe discrete

Walsh [B],discrete Haar [8,21,23] and a new transform, the tridiagonal transforr: [24],

will be considered. 'fhese transforms are used because of their computational simpli-

city and the ease with wbich they can be implemented using special pu{pose

hardware. Transforms such as the discrete sine [25] or discrete cosine l?,5)

transforms are not considered since they are computationally mucl¡ more complex

than the Walsh, Haar or tridiagonal transforms. The main concern in tbis chapter is

with the structure of the various ûlter matrices that a¡ise when transforms otber

than the DFT a¡e used to ûlter DFT spectra. The reader should note that most of

this chapter is taken f¡om Zarowski and Yunik [27] and fuorrt Zarcv.'ski, yunik aaC

Martens [24].

2.I FROBLEITÍ FORIYIULATION

Figures 2.7 and 2.2 depict the systems of interest. The vecrors ij'e nN (set of

real N-dimensional vectors) , with N : 29 (q(N and tg is the set of natural numbers)

are the input and output signal vectors, respectively. Vector .r'is the 6ltered form of

vector ¡-. F is the DFT matrix and F'1 is the inverse DFT (IDF-I) matrix, in Fig.2.1.

In Fig. 2.2 W is tbe discrete Walsh transform (DWT) matrix and W'1 is the inverse

Dwr (IDwr) matrix. Figure 2.2 can be generalized by replaeing w by T (T
transform matrix) and W-l by T'1 (inverse T transform matrix). ìù is used instead of
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T in Fig. 2.2 simply for the sake of speciûcity. All matrices in Fig. 2.1 and Fig. Z.Z

are Iv xJV since i and l' úe N-vectors. On a sequentiat processor the operations Fi
and w; would be carried out using a fast Fourier transform (FFT) [2] and fast Walsh

transform (FWT) [7] algoritbm, respectively, as indicated in Figs. Z.l and Z.Z. Simi-

larly, F-tf is computed using an inverse fast Fourier transform (IFFT) algorithm [2]
and w-F is computed using an inverse fast Walsh transform (IFWT) algorithm [Z].

Matrix Gt is the Fourier gaiu (filter) matrix and Gr" is the Walsb gain (filter) matrix.

More generally, G, is tbe T transfo¡m gain (filter) mairix.

It should be obvious that the filtering operations being contemplated here occur

in the frequency domain (or sequency domain [B] if the Walsh transform is being

considered). Thus, F.r is the frequency spectrum of r-, and the elements of vector FF

are the DFT spectrum coefficients that must be 6ltered. Simila¡ly, wÍ is the

sequency spectrum of r-, and the elen'¡ents of vector W"f contain the DWT spectrum

(sequency spectrum) coefficients. In the paragraphs which follow it will be seen that

DFT spectrum ûltering witbout the computation of the DFT of signal vector .F can

be accomplished in a general frequency clomain by the suitable choice of a filter

function in that general frequency domain. Tbe sequency domain is an exampte of

an alternative to the Fourier frequency domain. The Haar and tridiagcnal

transforms provide other alternatives. It is worth remembering that time domain

convolution of two signal sequences corresponds tc the frequency dcmain multiplica-

tion of the spectra of the two seguences f2,3,7f.

One of the problems dealt with in this chapter is the computation of G, for

some transform T given some G¡, where

G¡ =diag [80,g ¡,...,g,n -lJ (2.1)

and g, =gít , i = 7,2,...,N/2-1, and g6g¡p(R (set of real numbers). The asterisk (')
means complex conjugate. The g, are called spectral gain (filter) factors. From Figs.

2.1 and 2.2, respectively,
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f'= F-1G, FÍ, (2.2a)

and

î' = T -rG,Tî, (2.2b)

clearly, w has been replaced by T, w'l by T'1, and G* by Gt in Fig. 2.2 inorder ro
get equation (2.2b). For (2.2a) and (22b) to be equal to eacb other it is necessary

and sufficient that

T-tc,T =F-torF, (2ja¡

or

G, = TF-lctFT-r (23b)

Thus, it is now clear that the DFT spectrum of tbe input signal vector can be ûltered

by filtering the T transform spectrum of the input signat vector. The special case of

T : W will be considered in a later section of this chapter in some detail.

It is wortb stating at tbis time that the conditions on g¡ in (2.1) are sufficíent to

give r-'(RN if r-(RN in (2.2a). This fact follows from the properties of tbe DFT spcc-

tra of real signal sample sequences (see [2] and [3]). In addition, rhese conditions

give real and block-diagonal Grn for T = W. This will be proven explicitly later on.

In any case it sbould be clear that if, for some G, , as in (2.1), then i,(RN when

-r(RN, and it seems likely as well that G, (RN'N (set of NxN real matrices) if (2.2b) is

forced to equal (2.2a) and r € RN*N.

Let f;t=¡T-t so then f, =TF-1. It is obvious that, since F and T are nonsingu-

lar, f, is nonsingular. Thus, (23b) becomes

G, =l;tc,r.r. (2.4)

This is clearly a similarity transformation of G, to t!:e complex diagonal matrix G,

Thus, the columns of ft must be the eigenvectors of G, and matrix G, must contain
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the eigenvalues of G,. There is little doubt that an interesting study could be made

of the eigenstructure of F, T, G¡, and G, but this is beyond the scope of this thesis.

It is therefore a topic for future research.

Now, consider T to be Nth order and let T be unitary (T-1 : TH : 1T'¡T :

(rT)').Thus,

THT:TTH:I¡n , (25)

rvhere I* is the Nth order unit matrix. Using tbe fact that F : FT ,F-1 : (UN)F',

(f'l¡U : (l/N)F, and FH : NF-l

Gl =Tr -rCì rr -t (2.6)

Using (2.6) and (2.3b) yields

G,GII =6n6t =TF -r lçl PFT -r, (2.7)

where l}t 12 = dìag lg612,lg¡12,, . ., lgn -tlz and lg¡ I is the magnitude of gi. Thus,

tCf t2 is a real diagonal matrix satisfying the conditions in (2.1), and so G, cannot be

unitary in general. This follows simply because G,G!:çnç,+/ (identity matrix). If

G, is not unitary in general then it cannot generally be orthogonal. In [24] it is

shown that ,for the tridiagonal transform, G, is not diagonal except in special cases.

Now partition T into four N/2th order sub-blocks Tt, where i,j ( {1,2} as fol-

lows:

T_ t:r
u
2l i:l (2.8)

The sub-blocks T¡¡ occupy regions of T referred to as quadrants (see Fig. 23). Fig-

ure 23(a) shows the desired structure of G,. In this section some of the conditions

on T¡¡ are found that give the desired structure of Fig. 2.3(a).
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ln l27J a matrix, called the A-matrix, is defined as

A =F -rGî F =[o*l (2.e)

where Á(cN'N (set of NxN complex matrices). Matrix A is the sum of N partial A-

matrices A(k), k = 0,1,...,N-1. This is i.ecause the typical element of A is

r /Y -lldø^n=fi ùoB,""0{i#(^-^r} (2.10)

(2.11)

wbere j :Çi (see Appendix A). Define

,r'r= þgiJ

so that

afi (2.12)

From l27f t{tt=fut/n¡fttt. In Appendix B it is shown that

Ãu'=lLZ'r1J Q'13)

with C = (-l)kB. It is clear that A(k) is Toeplitz because a$) depends upon n-m.

Because ,q =Il=01Á(t) it follows tlrat

c,"(À)=ffr ÃG>r -t eJ4)

which is the Nth order kth partial T transform gain matrix. Using (2.8) and (2.13) in

(2.14) and the fact that T-1 = TH, gives

r8t
¡J "*{r#r,-'l)

G
rf, rl,l
r'[ rb)

- r-
8L lt

= 
-l,v [r

(r
,N

e, lu
:_I

NLM

- l_ -rn r ullD CII
,t r oJtc aJ 

I

_s* lr ttfrlr+T ncrlt+T tçTlz+T,;BTlz T t4Tlt+T ncryt+T tçTy2+T \¿BTLI
N Lr 2FT fi +T z2cr 

I,Ä +T ztcr lz +T nBT 12 T ztET \ +T 22cr fi +T zç T L +r zÐr %.1

t Mn
zt Mzz (2.15)
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To get the desired block-diagonal structure for G, it is sufficient that

M ¡=M p:0. (2.16)

The expressions for M' and þ, in (2.15) yield, respectively, upon using ç = q-l)kB,

t(-lf r^+rzzl} t(-lf rh+rfi!=s,

and

t(-lrr ,t+r nlÙ t(-lr r!1+r!r1=s

These imply that

(-!)kT t+T o=9, (2.17a)

or

(-!)È T ,r+T o=g (2.17b)

It is also required that

Mfl+O,or M¿*0 (2.18)

Tbe expressions for M' andMr, in (2.15) yield, respectivcly,

t(-1f r t+r nlB t(-11r!,+rfrl+ o,

ot

These imply tbat

t(-lf T 
^+rzzB[(-r)'r']t+Tyzl+ 

o.

or

(-1f T n+T þ+ o, (2.Iea)
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(-t)t r rr+r o+ o (2.reb)

Clearly, (2.19) md (2.17) contradict each other. For example, if eitber one of (Z.l7a)

or (2.17b) holds then only one of (2.19a) or (2.19b) holds, for some k. Thus, c,,"(È)

always has three identically zero quadrants for any k. In particular, quadrant-l and

quadrant'3 are always identically zero. The approach used in this thesis to yield

block-diagonal G, is to select Ti¡ to that T is orthogonal. The T,, are then made ro

satisfy (2.17a) and (2.17b) alternately as k is even or odd. Clearly then (2.19a) and

(2.19b) will never be true simultaneously. Quadrants two and four of c,n(r)will alter-

nat3 at being zero 01 nonzero as k varies from even to odd (remembering that k :
0,1,.",N'1). Thus, when all N G,nG) matrices are added together, G, may acquire the

structure of Fig. 2.3(a). It is important to note that certain of the possibilities for T
will give a dense 2nd quadrant for G,, The tridiagonal transform is such a T, and

G,'s 2nd quadrant is as dense as its 4th quadrant when the tridiagonat transform is

used' A quadrant is dense if most of its elements are nonzero. Quadrant-4 is nor-

mally dense for transfo¡ms and orderings considered in this tl¡esis. Other transform

orderings may cause G, to take the form of trig. 2.3(a) excepr that the diagonal

blocks of Fig.2.3(a) are rotated about the secondary diagonal. This causes quadrant-4

to occupy quadrant-2 and thus quadrant-2 will no\¡/ normally be dense and

quadrant'4 will normally be sparse" Clearly, a simple permutation transformation

can be applied to put such a G, back into the desired form of Fig. 23(a). If
quadrant'2 is not dense tben the Ntb order G, will usually contain the N/2th order

Gt. This was proven to be true for T : \il ín [27] and is true fol T : H (Haar

transform matrix) as well [24]. It is not true for T : T, (tridiagonal rransfornr

matrix) [24]. These facs will be demonstrated later in this chaprer. euadrant-2 will

usually not be dense if , for even k, (-t)kTtt * Tl,z* cI (c is a complex scalar con-

stant). Conditions yielding a non-dense ànd quadrant will be more precisely state,l

when tbe special cases for T are considered. Conditions that cause the N/2th order
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G, to be contained in the 2nd quadrant of the Nth orde¡ G, will also be more pre-

cisely specified.

2.2 PREVIOUS AND RELATED IryORK

Before proceeding with a study of the structure of G, for the special cases of T
: W, T = H, and T = T, (tridiagonal transform), it is desirable to briefly review the

contributions of other resea¡chers to the problem of DFT spectrum filtering without

using the DFT and the related problem of ûnding DFT spectrum coeff:cients witlr

the aid of transforms other than the DFT.

It turns out that very little work has been done on the problem of ûltering DFT

spectra without computing the DFT spectrum coefficients, The only publication on

this subject known to ihe autbor of this thcsis is by Kahveci and Hall [28]. Kahveci

and Hall empirically examined tbe problem of ûltering the DFT spectrum of a real

vector with T - W. They briefly considered the problem of filtering the DFT spec-

trum of a two-dimensional signal as well, However, they made no effort at all to
analyze the structure of G* (: GZ in [28]) theoretically. This lead to certain errors

on their part in their understanding of G,r's structure as described in their paper.

Thus, this thesis represents an attempt to correct and extend the work of Kahveci

and Hall.

While very little work has been done to date on the problem of filtering DFT

sPectra without comPuting the DFT, much more has been done on the related prob.

lem of computing DFT spectral coefficients by the use of transforms other than tbe

DFT. Efforts in this Íuea appear to center around the basic problem of computing

discrete Fourier series (essentially the same as DFT [2]) coefficients using rbe Walsh

transform. Early efforts are due to siemens and Kitai [29] and Blachman [30].

More recently, Tadokoro and Higuchi U4-15] developed an improved version of

the method due to Siemens and Kitai [29]. Tadokoro and Higucbi compute a* and

b* in
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(N l2)-l
/ (i)=46+ I (a¡cosk 0¡ *å¡sin.t0¡)+å¡vpsin(N Ï2)ø, (220)

r-l

ìrhcre N :2q (c€N), f(i) (i=1,2,...,N) arc thc N samplcs of the continuous-timc signal f(t) (t is

time), a¡ and b¡ are Fouricr coefficients, and

s' =b!-',/V¡/

Equation (220) is actually the inverse DFT. This fact is demonstrated in Appendix C, but

was not showrr by Tadokoro and Higuchi [14-15].

The coefficients ak and b* are computed using the Walsh transform as follows.

Let f be the signal vector of N components and let x- be the Fourie¡ coefficient vec-

tor, whete

t- as b1 (]1 b2 a2

Let C be a conversion factor matrix viith

C =FW-r (2.21)

SO

Í:CWI. (222)

Thus, i is computed by first determining the DWT of F (using the F"WT [7]) and

then applying the conversion matr¡x C to the resulting vector W.f. Tadokoro and

Higuchi derive expressions for the elements of C and they used the Walsh or

sequency ordered \il matrix [8] in their derivations. Do not confuse the use of C in

(2.21) and (222) with tbe us€ ef C in (2.13).

The use of the Walsh transform and a conversion matrix to compute the

Fourier coefficients is motivated by the fact that this operation is accompanied by an

overall reduction in the amount of computation for Ns 64 [14]. Computation is

reduced with respect to the use of the Cooley-Tukey FFT algorithm (described in -

o+-ro+-r'+J
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12,3,71). In particular, the number of multiplications is reduced. This can represenr

a dramatic increase in the processing speed on a sequential processor. This is espe-

cially true if the processor does not possess a ha¡dware multiplier. The method of

Tadokoro and Higuchi has the added advantage that not all of the Fourier

coefficients need be calculated. The Cooley- Tukey FFT algorithm, and indeed most

FFT algorithms, require that all DFT coefficients be computed.

It is important to rcalize that there are other ways of computing the DFT spec-

trum, and therefore of convolving two time sequences. Many are more efficient

computationally than either the method of Cooley- Tukey or of Tadokoro and Higu-

chi. For example, the fastest method of computing the DFT is Winograd's algorithm

[31]. However, fast algorithms such as Wincgrad's algorithm tend to be much more

complex in terms of implementation than algorithms such as the Cooley-Tukey algo-

rithm or the Tadokoro and Higuchi algorithm. It is a fact that computationalty sub-

optimal but simple algorithms may be more cost-effective than computationally

optimal but complex algorithms. Thus, simple methods such as that of Tadokoro and

Higuchi continue to be of interest.

The more general problem of using tbe Walsh transform to compute the

coefficierrts of transforms other than the DFT has been considered by Jones,Hein

and Knauer [32), Venkatraman,Kanchan,Rao and Srinivasan [33], and

Kwak,Srinivasan and Rao [34]. Jones et al.l32l show that any transform in the class

of even-odd transforms (EOT) can be expressed in terms of any other transform in

that class via a conversion factor matrix. The discrete Walsh, sine and cosine

transforms are examples of this class of transforms. Jones et al. mainly considered

the discrete cosine transform. Venkatraman et al. [33] consider a wide variety of

discrete transforms such as the C-matrix transform (CMT), which is an approxime-

tion of tbe discrete cosine transform (DCT), They also consider the discrete sine

transform (DST), and tbe discrete Legendre transform (DLT) as well as others.

Their study is short and completely empirical. It deals with transforms of low order
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(N s 32). Computation of the CMT and DCT using the discrete Walsh transform is

given separate consideration in Kwak et al. [34], and again this is an empirical study

of transforms of small order (N < 32). Once again tbe motivation for using one

transform (here the DWT) for computing another transfo¡m is to save on computa-

tion.

2.3 SPECIAL CASES FOR TRANSFORM T

It is rtow appropriate to consider three special cases for transform T. These are

T : w (discrete walsh transform), T : H (discrete Haar transform) and r : T, (tri-

diagonal transform). It will be see:r that these transforms give rise to filter matrices

with a very regular structure. In some cases, tbe resulting structures are candidates

for very large scale integration (VLSI) implementation. This subject will be explored

in Chapter III.

2.3.1 Walsh Transform

For T = W equation (2.3b) can be rewritten as

c*=jwr-1G, Fvt , (2.?3)

where W'l = (UN)W. It is important to note that the Hadamard (natural) orderecl

discrete walsh transform [8] is being used in this thesis. If !v : [woo.,] tben

g-l
s-w- =(-1)¡a

å^(nÞ¡(n)

(2.24)

wbe¡e bk(n) is the kth bit of the binary representation of n and moctulo-2 arithmetíc

is used in tbe exponent of (2.2$. Remember that N:2Q. This expression for a typi-

cal etement of w is taken from Gon zalez and wintz [7]. since A : F'lGrF and

¿ =If-it¿(À) it is possible to write

c*=þwtw=#-[i:i ru,J* =ii; **n 
(r)1v =n¡¿{ 6**), e.zs)
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where

cJ-)=[^/fål =]wet\v (2.26)

is the kth partial Walsh gain (ûlter) matrix. In Appendix D it is shown that tbe typi-

cal element of Gjt), namely rg), is given by

rv-l N-1

r:0 p=O
(2.2t)

This expression can be interpreted as tbe typical element of the two-dimensional

discrete Walsh transform of the kth partial A-matrix (see equation 3.5-32 in [7])^

This fact is significant since a simple and fast algorithm for tbe computarion of two-

dimensional discrete Walsh transforms is available and is fully described in Gonzalez

and Wintz [7]. Rewrite the right most equation in (2.26) as

L:w¡Øw=#þ{wnt*r)'t' (2,28)

From (2.28) it is possible to see that G*(t) can be computed in a computationally

efficient manner by taking the FWT of each column of ,A(k) and saving the resulranr

matrix wA(k). Next, the FWT of the rows of the intermediate resulr we(k) or.

taken and then tiris result is scaled by factor l/N and transposed. This yields the

final result, F¡om this discussion it should be clear that the Hadamard orderecl

DWT is self-inverse and symmetric, except for the scale factor 1/N.

Thus, an efficient method for the computation of G* off-line exisrs. Flo*,ever,

the method is too slow for on-hne signal processing applications. ln practice, the

gain matri* G* would be computed off-line and saved for use in an on-line signal

processing application. This statement is true for G, generally. The conditions

under which this approach is likely to be worthwhite will be considered in the

sequel. The preceding off-line procedure is taken LromZarowski and Yunik [27].

r$)=;!r.
q-l
s

)'*
Ib¡(nÞ¡(rl+tt(pþttu\ í.Znlr. .ìexr)f lñ-(r 

_p 

I
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It has been stated that the condition g, =gì¿ (i : 1,2,...,(I.v2)-1) and g6gn ( R

will yield a real G* and a conjecture was proposed which implies tbat this is gen-

erally true if r ( R¡¡"N, and (2.2b) is forced to equal (2.2a). This will now be proven

explicitly for T : W (originally proven in [27]). From (2.12),

o#-L',=s-"*{, 2n(N -ål
À¡

(o -^)

(2.2e)

Thus, (2.29) and (2.12) are related as

",#^l
(À'-À ) (2.30)

provided Br=B,i-¡ for k:7,2,...,(i.I/2)-1. This implies that AG!=A'(À-,t). It is neces-

sary that g6 and g¡v be real so that Cjo) and GJNA, are real.
2

From (2.26),

C; (,v -t )- 1 
WÁ '(N -À \y (2.31)

Since 6(n-t)=[r- +u^il then Cj(N-À)=[y-, -u^j]=GJk) so CjÀ)+CJr -L):Z[v^^¡. Thus,

when the partial Walsh gain matrices, C*(À) and C"(w-n) for k = 1,2,...,(l,I/2)"1, are

added together, a real matrix is produced, Aclding c*(0) and G{m to this matrix

yields a teal G* matrix. It is important that G*(0) and cjx nl be real themselves

because of the structure of Go. This will become evident in the remaínder of this

subsection.

It is now desirable to prove that G,,n has the structure depicted in Fig. 2.3(a),

that is, G* is block-diagonal. This proof is taken ftom 1271. Once again it is impor-

tant to note that the Hadan;ard ordered DWT is used here. The use of another ord-

ering will yield a structure different from, but equivalenr to, that depicted in Fig.

=s*o{ -iffø-^>}
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23(a). Equivalent structures are related by simple permutation transformarions

The Hadamard ordered DWT [7] is generated by the order ¡ecursíon

* * =ly,: wN

-wN (2.32)

where W* is the Nth order W ,WZN is the 2Nth order W, and W, : *1. It is con-

venient to re$,rite (2.26) as

G**( r=**^Ali)w^, (2.33)

where ,{S) is the 2Nth order kth partial A-matrix. Using (2.13) and the fact rhat

.4 ß )=(sr /N )Ã$r,

olh'=#tÊ'rl=*Ã*' es4)

Substitutin g (2.32) and (23a) into (2.33) gives

G t¿) = i!-
4N2

wN wÀ'

wN -wN
lln ci ltu
)Lc nJlw

¡W¡
,v -17,r

w2N

st fxvnln+c)wN=æ[ o
0

zWN(B -ClWn

=_gL_[fr*f -rf )wNBwN o I
-t[' 

'ó (r-(-r¡tiwn3w,]' (2'35)

where ç = 1-t)kB has been used. From (2.g5) it is easy to see that quadrant-l anci

quadrant-3 of G**(k) are always idelrtically zero. As well, quadrant-2 is identicaliy

zero when k is odd and quadrant-4 is identically zero when k is even (k

0,1,2,...,2N-1 here).

lì
The set G={g, li=0,1,...,N-1[ represents samples of some desired ñlter function(J

H Qiø¡ and ; =tf!--1. H þto¡ is sampled at N points corresponding to
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ør=T, (236)

so g¡=H(""'). The function r(eie) is the system function H(z)lz,3l,a rational func-

tion of z, evaluated on the unit-circle in the complex z-plane. If we start with N

samples of n þi0\ and then double the number to 2N, the N new samples will fall in

between the N old samples (as in a perfect shuffle of a deck of cards). The new sam-

ples of 8¡ will correspond to odd values of i. Thus, these new samples will affect the

value of G*nt¡) only in quadrant-4. Similarly, the vatues of g, for even i will only

affect quadrant-2 of c**(t). However, B¡ for i even is one of the N old samples

corresponding :o an Ntb order G, filter matrix and tbus quadrant-2 of G*r, must

contain G*". This naturally leads to the structure of Fig,2.3(a) for G*.

Since quadrant-2 of an Nth order G* contains the N/2th order G*, and since g,

with i odd always affects only the fourth quadrant, it is possible to deduce the cliago-

nal block that any particular B¡ will affect. The block structure of G* for N : 32 is

sbown in Fig, 2.4 and Table 2,1 contains a list of the diagonal blccks in Fig. 2.4 and

the g, values that affect tbem. Note that block 84 contains all g, with odd i for N :
32, block 83 contains all g, rvith odd i for N = 16, block 82 contains all g, with odd i

for N = 8, and so on. F¡om tl¡is it may be seen that gg only affects eiement (0,0) of

mat¡ix Gr" and g¡¡2 only affects element (1,1) of G,". No other g¡ affects these two

elements of G*. Thus, G*(0) and GJr ø must be real since, if they were compl:x,

adding them to the remaining cjt) would not give a real G* because etements (0,0)

and (1,1) would be complex. Tbis implies that sosrp(R is required. The diagiams

of Fig. 2.4 and Fig. 2.3(a) both illustrate this.
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The block structure of G

showing ci iagonal bìoeks
84 (see Tabìe 2.1).
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Block g, that tbe block is a function of

B1

82

B3

B4

8s"8zt

I +8 nSnezt

8 zß o8 toß tc8 tsß zz8 N8 n

8lf¡f s' ' ' 'f r¡'8 ls' " ' ßn8zcßtt

Table 2.1: The diagonal blocks of. G* for N : 32 showing which g¡ values they

are a function of (see Fig. 2.4).

The method of generatiDg set G described above needs some justification. A

digression to explain this method is the¡efore in order. To begin, it can be shown

that a linear time-invariant [3] (linear shift-invariant [2]) and causal ûlter tbat is

relaxed at discrete-time instant n:0 can be described by

y(n) = 2nø-m)u(m), n=C,L,Z,..
ã

a=0
(2.37)

where {V(n)} is the filter output sequence and {u(n)} is the input signal sequence.

The sequence {h(n)} is the impulse response sequence of the filter and may be of

infinite duration. Equation (2.37) is the linear discrete-time convolution of {u(n)i

with {h(n)} to get {y(n)}. Taking tbe z-transfo¡m of (2.37> yields

Y (z)=¡1 (z\U (z\, (2.38)

as shown in [3], where Y(z), H(z) and U(z) are the z-transforms of the sequences

{V(n)}, {h(n)} and {u(n)} , respectively. Clearly, H(z) is the system function of the

filter characterized by the impulse response sequence th(n)). Since the filter is causal

and linear time-invariant, H(z) is a proper rational function [3]. A rational function

is said to be proper if the degree of the denominator is equal to or gleater than the

degree of the numerator.



-31-

To produce a discrete-time sequence {u(n)}, a continuous-time signal u(t) is

sampled every t seconds (sampling period). If the signal is band-limited and has a

bandwidth of f. then r < 1/(21") is required to prevent aliasing 12,9,71. It is shown

in [3] that the steady-state response of 6lter H(z) to an appropriately sampled

sinusoidal sequence of frequency or radians per second is fully characterized by

H (et-¡=6(<oþió(') where A(or) is the amptitude response of the filter and S(o) is the

phase response. The sinusoid will be attenuated (or amplified) by amount A(<o) and

phase'shifted by amount 0(r). Filters are ordina.rily designed acco¡ding to bow they

affect a sinusoidal input sequence. Thus, H(ei-¡=¡¡ (rrt)tr*,, is a suitable definition

for the sPectrum of a signal sequence or the characteristics of a filter [3]. It is impor-

tant to note that H(r¡'), when sampled according to (236), will satisfy the conditions

on gi as stated in (2.1). This is clear from reading [2,3,7f. Thus, at leasr H(z) bears

consideration as a suitable prototype for G, and hence for G* (or G, irr general).

The'¡e is one more issue surounding the use of H(z) as a prototype ñlter for Gr.

It is true that ¡t (ei0) produces a continuous but periodic spectrum. The question is:

Is it legitimate to sample n ki\ in order to get Gf ? The answer is yes because rbe

DFT spectrum of f exists only at discrete frequencies and 'r has oniy a finite number

of harmonics. Vector ¡- is obtained from a discrete- time signal sequence {x(n)},

truncated after N samples, and the discrete-time signal sequence is obtained by sam-

pling a continuous- time signal , x(r), fast enough (" < ll(zf )>. Thus, .r should Lre a

suitable approximate representation of both the discrete- time and continuous-time

sequences. lf n çie¡ represents the desired frlter operation tbat we wish to perform

on {x(n)} then clearly, to filter .i, those harmonics possessed by .r and affected by

H Qiø¡ are all that is needed in order to fitter F. It is obvious that these harmonics

occur at 0, in (2.36). Thus, g i=H (ri''). Therefore, the method described above for

obtaining G, is legitimate.

It is to be noted that W satisfies the requirements associated with (2.17) and

(2'19) described at the end of section 2.1. \ry is clearly orthogonal, except for a scale
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factor. Equations (2.17a) and (2.17b) alternate at being zeto ot nonzero as k varies

from even to odd. It has been suggested that a necessary condition for quadrant-2

not to be dense is (-t)kTrr*Tlz * cI. clearly, this condition holds for T - w.
Since B is in all quadrants of ¡(t) (see (2.13)), it has essentially tbe same structure as

Í(t) except that if i(Ì) is of order 2N then B is effectively of order N since only even

k affect quadrant-2 of c*-(r). Thus, WNB\¡/N can be expected to possess the same

structure as (2.35),assuming even k. This of course bas proven to be true from the

preceding discussions. Thus, to avoid a dense second quadrant (in (2.35)), it should

have a form sucb as (l+(-l)kþwNBwN, or more generally 1t+(-t)k)cr*BT*H for

2Nth order T.

In Zarowski, Yunik and Martens [24] it is shown that the cliagonal blocks ot' G*
have the fornr

lx vl
I:v xi. Q.se)

Also, tbe cjt) blocks bave a structure like that of. (2.39). This is an interesring pro-

perty since it is known [35] that an isomarphism exist; between the group of nonzero

matrices of the form

(2,4C)

under matrix multiplication (a,å(R, a#o,and å#0 simultaneously), and the group of

nonzero complex numbers under ordinary complex multiplication. Clearly, X and y
are square submatrices in (239). This structure may have practical significance in

that it may signal the presence of an efficient factorization of matrix G*, or of

matrix G, in general. This possibility is under investigation (see Chapter IV). It has

been shown that G, is not unitary. Good [36] and Andrews and Caspari [3?] ccn-

sidered the factorþation of certain kinds of unitary matrices, such as W and F.

Since G, is not unitary even when T itself is unitary, it is possibte to conclude that

the method of Good and of Andrews anel caspari is not usefu! here.

a b1
oJ'b
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Let

t =ß'nl,

and

wy =[yr:r :;:r]

This allows the submatrix W*BW* in (2.35) ro be writren as

(2.41)

(2.42)

(2.4())

til¡¡BW¡¡ = (2.43)

where (2.41) and (2.42) bave been used. Comparing (2.43> with (2.39) yields

Y = Wn n(R-P)WN n (2.44)

It is now necessary to show that R + P : 0 for odd k (k = 0,I,...,2N-1). If R * p : 0

for odd k this will give the diagonal blocks the srructure of (2.39),

B is Hermitian (see Appendix B) so P = RH" Let P = þoo,], R : [rno,l so

rn^=pl* and if pn=e^+þ^ j then pi=d^ -þ^, j =r^ . It is possible to vrrite g = [¡^f1)]

and afi) ¡t

,#'=.-o{r#,"-.)} , (2.4s)

(2Nth order Gw(k)). Considering quadrant-1 of B in quadran t-2 of (2.35) gives

J

wn n(ZQ+P +R)WÌr n Wn n(R -P)W¡t n
-w n ¡z(R -P )W n n W N /2(2Q -P -R)W N n

t,
t' /v

ä#)="xp ¡k
(n -, Àr

a
ì
I

)

where m : r + (N/2) and n,r:0,1,2....,(N/2).1. Thus, p¡a=exp (n
{,

/v
L

-m
¡k
N ) and

r,ñ = 0,1,2,...,(N/2!1 (changing the indexing notation somewhat), wbich yields for

odd k,
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..M:cost#,'-. -f )l=, in¡\yi^tf r'-.lt, (2.47a)

pn. =sin f#f, -^ -+\:-,i,[]þo,f f t, -.lt (2.47b)

Clearlv-B -B andc =-o' Thus-,-'nm 'mn nm mn

.R *P : frr^*pnnl

=[pL+p^)

=ld^^-þ^^j la^+þ-j]

-0 (2.48)

We can be more specific about the structure of lVnBw,, in (2.43) above. Start by

using the fact that

R-P = fd^ -|^nj -o--P*jI

=-2Íq^ +p* j ]

:-þ*{-,+ilþ-{,+.--t]

== ¡þ*'þ ,, -,,r)] ,
rk
il (2.4e)

where the expression for po. uod odd k are used. Thus, the structure of a diagonal

block in c,-(r) can be more precisely stated than in (2.39) as

wn.G\wn: 
[;*f¿, ?äiJ (250)

because e=Iq^l and q-:*o{i#( r-^r|and B has been replaced by g(k), and X by

x(k) to emphasize their dependence upon k.
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It has been shown, by running a modification of program GWGEN (see Appen-

dix G), that if g¡ is real then c*(r) is composed of elements which are strictly real or

strictly imaginary (N = 128). Let D1 be Hermitian-Toeplitz and D2 be skew-

Hermitian-Toeplitz, and both matrices are 2 x 2. It is easily shown that

l't 1l I c1 "z+Þll tt 1 ]w zD tw 2 = ii jrj þ,-iu ' ,'," I li jrj

: , [o,*o, -Pt I"l þri ar-czj (251)

(zs2)

w2D2tr2: ti fr] [
"'J5"] tl l,lþJ

-Crz+þzj

-a
[(p,*prD
["'

-d2
(Êr-Êz)i

The proof that the elements of C*(k) are strictly real or strictly imaginary (g¡ is real

lrere) appears to rest on the truth of (2.51) and (252). The full proof will not be

presented here.

Figure 2.5 depicts more of the details of the structure of G* for N:32. The '0'

characters indicate the elements of G," that are zero. Characterc 'X'and 'Z' indicate

elements which are generally nonzero. If it is assumed that 8r¡ € R for all i and

Et=gx-, for i:7,2,...,(N/2)-1 then it has been observed that the'Z'chatacters of Fig.

2.5 all go to zero and so the 'Z' chtracters in Fig.2.5 can be replaced by '0' charac-

ters. Because a typical element of cit) is strictly real or strictly imaginary when

B¡ ( R, the structure of (2.50) suggests that half of all the elements in the diagonal

blocks of Goo might be zero. Tbis is because when all G,(t) are added together the

imaginary parts of c*G) must vanish. This disappearance is assu¡ed by tb'e fact that

6jr)=6'('v-r). However, it must still be shown that exactly half of the elements in a

block are real and half are imaginary" Furthermore, to prove that the structure of

Fig.2.5 holds for all N, it must be shown that the'Z'characters correspond to
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x00000000000000000000000000000
0x000000000000000000000000000000
00x20000000000000000000000000000
o0z x0000000000000000000000000000
0000xzz x000000000000000000000000
00002 x x2000000000000000000000000
00002x x2000000000000000000000000
0000 xzz x000000000000000000000000
00000000 x zzxzxxzooo000000000 00 0 0
000000002xx2x22x0000000000000000
000000002 x x z xzz x 0000000000000000
00000000 x zzxzxxzo9oo00000 000 0 000
000000002 x x z x zz x0000000000000000
000000 00 x zzxzxxzo}o0000000 00 0000
0 000 000 0 x zzxzxxzooo00000 0 0 00 0 000
000000002 x xz xzz x0000000000000000
000000000000 0000 x z zxzxxzzxxzxzzx
0000000 0000000002 x xzxzzxxz zxzxxz
o00000000000000 0 z x xzxzzxxzzxzxxz
000000000000 0000 x z zxzxxzzxxzxzzx
00000000000 00 00 0 z x xzxzz xxz zxzxxz
0000000000 000000 x z zxzxxzz xxzxzzx
000000 0000000000 xz zxzxxzz xxz xzzx
o00 000 000000 0 00 0 z x xzxzzxxzzxzxxz
000000 0000000000 z x xzxzzxxzzxzxxz
000000000000 00 00 x z zxzxxzzxxzxzzx
0000000000000 000 x z zxzxxzzxxzxzzx
00 0000 000000 0000 z x xzxzzxxzzxzxxz
0000000000000000 x z zxzxxzzxxzxzzx
000000 000000000 0 z x xzxzzxxzzxzxxz
000 000000000 0000 z x xzxzzxxzzxzxxz
000000 00 000000 00 x z zxzxxzzxxzxzzx

Figure 2.5 The structure of
showi ng more of
structure of tlre

G for N

the detaiì
d iagona I

=32
of the

b locks.
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imaginary nurnbers. These proofs bave yet to be worked out.

Because of the structure of Fig. 23(a), any T transform in general which yields

this structure will produce a G, that causes the system of Fig. 22 to require A,

additions/subtractions and M, multiplications to process vector .r into vector t'. This

compares with the A, additions/subtractions and M, multiplications to process vector

.i into vector .l'using the system of Fig. 2.1 (Cooley-Tukey FFT 12,3,7]). gV additions

, subtractions and multiplications are meant real additions, subtractions and multipli-

cations. From [3J it is known that the number of complex additions for the Cooley-

Tukey type FFT algorithm is, to a close approximation, N log, N and the number of

complex multiplications is táN log, N. Thus, FFT requires 2N log, N real additions

and 2N log, N real multiplications, and IFFT has the same computational require-

ment. There are 4N real multiplications associated with premultiplying the complex

vector F7 by the complex diagonal matrix GÍ . There are 2N real

additions/subtractions associated with this operation as well. Thus, the amount of

computation involved in the use of the spectral filtering system of Fig. 2.1 is

A¡ =4N Iog2N * 2t{ , (253a)

and

M ¡ =4N logì/ + 4N (2.s3b)

The FWT and IFWT both require NIog2N additions/subtractions. Using this fact

and the structure of G* gives

A*<2Nlog'fl * l,*,,* .+[+-'J*+[+-'J.+[+-'J], Qsaa)

and

,.=þ,*0,. .[+J'.[îl'.[+JJ.,, (2.s4b)
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where N>4 and subscript'w'indicates that At : Ao,, anC M, = Mr". Inequality is

used in (2.saa) and (2.54b) because these expressions provide acceptable bounds on

the computation for both the Haar and Walsh transforms. As well, for g, ( R for a¡

i, the computation associated with operation G*Í ()-=Wt) appears to be halved ('Z'
characters go to'0'characters in Fig.25). Thus, for g, ( R, i=0,1,...,N-1,

A*sn t
vtogÌ,t ++f+tz+ .+[+-'J.+[+-'J .+[+ 'J] (zssa)

and

M*3Uz +42+ .[+J'.[+J'.[+JJ., ,þ'
(2.ssb)

which represents a tighter bound for the case sr ( R for all i.

Table 2.2 shows the values of l¡ ,lvt¡ A* , and M* fot N:4 to N:12g using

expressions (253) and (2.54). It is therefore evident that rhe system of Fig. 2.2 is com-

putationally more efficient than that of Fig. 2.1 lor N< 64 if go,gr n ( R but g, =sì _, (i
: 7,2,... , N/2 ' 1). similarly, if g¡ ( R fo¡ all i, then the system of Fig. 2.2 is compu-

tationally more efficient than that of Fig. 2.1 for N< 128 (based on conÍparing (2.55)

with (2.53)). These computational comparisons assume the implementation of the

system of Figs. 2.7 and 2.2 on a sequential processor.
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Fourier Domain 'Walsh Domain

N Ai Ml An M

4

8

16

32

64

728

40

712

288

744

1664

3840

48

728

320

768

7792

4096

18

62

198

630

2070

7726

6

aa
L/.

86

y2

1366

5462

'îable 22: A comparison of the computational requirements for spectral ûlter-

ing in the Fourier and \ù/alsh domains.

For examples of partial \ilalsh gain nnatrices (case N:8) the reader should con-

sult Appendix E. Appendix F contains an example of Gr" for N:16. The prototype

is a Êrst order Butterworth filter.

2.3.2 Hasr Transfornn

The use of T : H (discrete Étraar transform (DHT) and T-1 : H-l (inverse

discrete Haar transform (IDHT)) will now be considered. This subject was first con-

sidered by Zarowski, Yunik and Martens [24]. In this case G, becomes GO, the Haar

gain matrix, and G,(t) 6""o.es c¡(À), the kth partial Haar gain matrix. Equation (23b)

can be rewritten as

c¡:HF -tG¡ FH -t . (256)

In Ahmed et al. [23] the 2Nth order orthonormal Hadamard Haar transform is given

, 
^ 

=fr!Ë,,
HN

as

-zkDIn
(2s7)
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where k = logrN here and H* is the Nth order orthonormal I{adamarcl Haar

transform. However, for the purposes of this thesis, an orthogonal Hadamard Haar

transfo¡m of 2Nth order is defined as

, 
^ 

=Vi !i- (2.58)

It will replace (2.57) in what follows. It is easy to see rhat

(2se)

I\{atrix Âr* is a real and diagonal normalizing factor matrix with elements that are

integer powefs of two. Thus,

Harl=HInLzx. (2.60)

By using (2.58) instead of, (2.57), the inreger powers or w2 in (2.s7) may be avoided.

Âf.l=¡¡ n Hîn =?' r'r ri,l

As an exannple, Itll=diag 8,8,4,4,2,2,2,2 . Note that, strictly speaking, (259) and (?..60)

only show that Hr* has a right inverse (2.60). However, Hr* is nonsingular and

therefore invertible. Tbus, it possesses a unique iûverse, and it is a basic principle of

linear algebra tbat this inverse is both a right and a left inverse for Hr*. Thus,

(2.60) is certainly the inverse of Hr*. Using (2.60) in (2.56) I'ields

Gn*=H zn F -'Gt FHLN Lar (2.61)

and

G^^$t = H.^Alh\nTn¡^

=#, 
^^li,)nîo.¡^

(2 62)
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There is no 'nice" formula such as (224) for a typical element of H which can

be used to give an exp¡ession for the typical element of GoQ,) as in (2.27). However,

as a practical matter, this causes no problem. Equation (2.28) defines an off-line

method for computing Cjt) and hence G,.". Similarly, the first equality of (2.62) can

be rewritten , without the 2N subscripts, as

Glk)=¡¡¡(È)¡tr^=(^H(nrt{t)¡ry e.63)

It bas been shown for tbe special case of T = \'y', in subsection 23.1, that the

conditions on gk given in (2.1) are sufficient to give c, ( RN*N. The reader shoulcl

have noticed that the proof was actually independent of T (assuming I ( R*'n).

Thus, it is clear that the conditions on gk in (2.1) will give c,, ( RN'N. In effect then,

the conjecture that G, € RN'N is true, if the conditions on Br in (2.1) hold, and if
(2.2b) is forced to equal (2.2a).

It is now necessary to sbow that cÀ has the block-diagonal sîructure of Fig"

2.3(a). Using (2.s8) and (2.13) in (2.62) gives

G^*(o'= #'[i^: :;]f gf1i ji,]n-

8r
N

8r
N

r 0
_C

(1+(-1)i )H NBHtr

N (B +c YrI
0 B Lz,l

0
0

(1-(-1r ¡,] n* (2.64)

Thus, since (2.64) is similar to (2.35), by arguments identical to that associated with

(2.35), GO has tbe block-diagonal structure of Fig. 2.3(a). Furtherniore, Fig. 2.4 and

Table 2.7 accurately specify the structure of GO for N:32, as gk with k odcl once

again only affects quadrant-4 and g* with k even only affects quadrant-2.

The Haar domain analogue of Q.a\ is simply marrix B, since only k odd is of

interest" From (2.41) it is possible to write
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P
a

to emphasize the k-dependence of B and its submatrices

B(t)=
(r
(r (2.6s)

Thus,

p(t) = ["$)+pjpjl ,

¡(r) = ["#,)-p#]l ,

p@t -r) = ["s)_pjl] I ,

¡(za' -r) = [ajår+Êjå)¡' l, (2.66)

where P = RH has been used. Now, Þil) = Ê,$,) an¿ c$,) = -oÍi) so

¡(t) a PQN -k) = 2[ojå)] ,

and

¡(t) 1¡(z:r'-t) = 2["*)] = _Z["!A)] .

Thus, B(k) + B(zN-k) has tbe form of (2.gg>,meaning that each diagonal block of

GO has this form. However, because typical elements of F(k) (B for short) are as in

(2.45), its elements are not generally strictly real or strictly imaginary. Hence, cr(r)

cânnot generally have strictly real or strictly imaginary components. The corse-

quence of tbis seems to be that GO has not got the structure dspicted in Fig. 2.5,

That is, when g¡ € R for all k, the'z'chatacters rarely go to'0'characters. Tbus,

suitable bounds on the computation associated with the use of the system of Fig.2.2

with T=H are obtained using (2.54) but not (255). This implies thar Table 2.2 bolcJs

for T:FI as well as fo¡ T:W.

Note that B is Toeplitz. This implies that GO will be Toeplitz in its diagonat

blocks (block-Toeplitz). Sucb a property will be seen to have important implicarions

in a VLSI context. This will be shown in Chapter III (section 3.4).

Io
In

)l
.i,l

)

)

(r
(Ì
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For examples of partial Haar gain mat¡ices (case N:8) tbe reader should consult

Appendix E. Appendix F contains an example of GO for N=16. The prototype is a

first order Butterworth filter.

2.3.3 Trldlagonal Transform

Now we consider the last special case for transform T, and this is T: Tr, the

tridiagonal transform, and its corresponding inverse, Tr-1. Tbe gaín matrix G,

becomes c,, ( triCiagcnal transform gain matrix) and G,(r) 6".ores c,,(r) (kth partial

tridiagonal transform gain matrix). The properties of G,, and c,,(t) were ûrst studied

by Zarowski, Yunik and Martens [24]. Equation (2.3b) can be rewritten as

Gr,=T rF -rG, FTr-[ ' (2.67)

The 2Ntb order tridiagonal transform T, is defined as

,r*=+lr: IN

-IN
(2.68)

and it is clearly self-inverse and symmetric. It may be readily seen that T, is actually

one of the logrl'{ matrix factors making up the fast Walsh transform (Hadamard

order) algorithm. This can be seen in Fig.2.6 for N:8. In additron, it is one of tl¡e

logrN matrix factors of the fast Haar transf orm (orrhonormal or orthogonal

Hadamard Haar transform [23]) algorithm, and of the decimation-in-frequency FFT

[2] algorithm. What follows in this subsection appears to be the ûrst time that this

matrix factor has been considered as a valid transform in its own right.

To start, equation (2.62) may be rewritten as

o,,*'r' = Tr*Ali>îr*

=*r,^olj,)rrzn (2.6e)
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Stage 1 Stage 2 Stage 3
o

---.4>-

+l

Figure 2.6: The order N = I Hadamard ordered DU/T

butterf ly diagram.

o

2
?

3

4

5

6

7
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7
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The off-line procedure for computing cr,(t) and hence G,, may be described ,

using (2.69) without the 2N subscripts, by

Gt,ç,) - (r,1r,e$5r ¡r e.7o>

Once again, the conditions on C¡ in (2.1) are sufficient to cause c,, ( RN*N since

1, is a real matrix and (2.2b) is forced to equal (Z.Za).

G,, also has a block-diagonal structure, except that quadrant-2 is dense. Substi-

tuting (2.13) and (2.68) into (2.69) gives

o,,*'*'= #[í; :1,]r ;ì[í; jT,,J

l
JBt'

[,'

8*

2.lrl

8t
AI

0
_C

+c
0

+1-r¡À¡r
0

0
(1-(-1)r )B

It is clear that g* for odd k only affects quadrant-4 and gO for even k only affects

quadrant-2. Furthermore, a,,*(k) is Hermitian and block-Toeplitz because B is Her-

mitian and Toeplitz. Thus, G,, will be Toeplitz in each of its two diagonal blocks.

Fronl arguments associated with Go(tl it is true as well that G,, does not possess the

structure of Fig. 2.5 (tbe 'Z' characters do not become '0' characters for real g* in
general). It is clear that quadrant-4 of G,, will have the form of (2.39), when k is odd

of course. rilhat about quadrant-2, wbere k is now even ?

Using the expression for pno, following(2.46), and with k even,pnm becomes

(2.71)

(2.72>
tk

,n^=1-l)r nexp (n -^)
{,

so

N
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c- =(-1)È2cos
¡k (" -^)N

(2;t3a)

(2.73b)

(2.7b\o)

and

B", =(-l)t 2sin ¡k
(n -^)N

Thus, t*,=pl^=dnn-9^j =snn*þ-, j so R:P for even k values. Therefore, (2.65) is

no\v

(2.t4)

which implies that the 2id quadrant of G,, has the form

(2.7s\

and not the form of (2.39).

It is obvious that equations (2.54) and (2.55) do not hold for T:Tr. Because of

the structure of G,,, (2.54) must be rewritten as

¡,,= .+ e.76a)

and

Pc)l
aØl'u'= þ'.ì

[x v1
l'v xJ'

luÍ
N2<_tt- z

Use has been made of the fact that T, requires N/2 additions and Ni2 subt;acticns i¡r

(2.76a). The v2 scale factor is not counted in (2.76b).

For examples of partial tridiagonal gain matrices (case N:g) the reader should

consult Appendix E. Appendix F contains an example of G,, for N:16. The proto-

tlpe is a first order Butterworth filter.
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Finally, Appendix G contains programs, written in PASCAL, for the computa-

tion of the partial gain matrices, cy(t)' c^(r), and o,,,'r.
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Chapter III

THE VLSI IMPLEMENTAÎION OF DFT SPECTRUM FILTERS

This chapter looks at the problem of constructing DFT spectrum 6lters, of the

kind discussed in Chapter II, with special pulpose hardware of a kind amenable to

very large scale integration (VLSI) implementation. Tbis is in contrast with Chapter

II wbere only the sequential processor implementation of DFT spectrum ûtters rvas

mentioned. There the comparison \ras based upon the number of

additions/subhactions and multiplications needed to compute the filtered vector t'
from the input vector.?. The compa;ison was with respecr to the Cootey-Tukey FFT

algorithm [2,3,7J. The two implementition methods considered here will be the radix

2, pipeline FFT [38] hardware algoritbm, and the linear systolic array [39] hardrvare

algoritbm, which is a general purpose method for postmultiplying a matrix by a vec-

tor. The relative merits of implementing FFT and FWT with botb hardware struc-

tures will be examined^ The linear systolic array implementation of G, will be con-

sidered as weli, for the special cases of T that were considerecl in the previous

chapter. Architectures sucb as the shuffle-exchange (sE) graph [40,41] and the

cube-connected cycles (CCC) Í40,421 organization will not be considered because,

although they are fast sructures, they require enormous amounts of íntegrated cir-

cuit (chip) area and so are not very practical, especially wheu hardware multipliers

are needed. This issue will be discussed somewhat moÍe fully in section 3.5. It is to

be noted that only arcbitectures will be considered here and not the details of imple-

mentation. Thompson's complexity theory for VLSI [a3] is used to make the com-

parison between radix 2, pipeline FFT and the linear systolic array FFT on the basis

of asymptotic area and time complexity. Thus, some review of Thompson's theoiy is
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included in this chapter. It will be seen that the ¡ad:u. 2. pipeline FFT and the linear

systolic array FFT have the same asymptotic area and time complexity, except that

the radix 2, pipeline FFT is more area efficient by a constant factor than the linear

systolic array FFT. However, the linear systclic array FFT is more readily cascaCe-

able and designable than the radix 2, pipeline FFT, though perhaps only marginally.

3.I THOMPSON'S VLSI COMPLE}IITY THEORY

This section contains a brief review of Thompson's VLSI complexity tbeory [43].

The purpose of this section is to state some of the results of Thompson's theory and

some associated terminology.

Thompson's VLSI complexity theory [a3] is concerned with the relationship

between the speed and size of VLSI circuits. Thompson's VLSI circuit model allows

the determination of upper and lower bounds on the growth rates of chip area (A),

and the time needed to solve a problem (T) versus tbe problem size (N). Thompson

used the FFT and sorting as examples of the appiication of bis theory. The 6rst step

in the process of determining speed-size relationsbips is the formation of tbe VLSI

circuit model,

Thompson's theory is of a graph theoretic nature. Tbe VLSI circuit is modeled

by a collection of nodes and wires referred to as a comnaunication graph.

There are three different categories of nodes: source nodes, sink nodes and

switching nodes. Inputs to the computation are stored in the source nodes, The out-

put values of a computation are collected at the sink nodes. Switching nodes may

perform computations on information obtained from other switching nodes or from

the source nodes. In turn, this information is passed either to other switching nodes

or to the sink nodes. It is possible for a node to act as a source, sink or sr'¿itching

node simultaneously, or to act as some other combination of the three possible

categcries of nodes.
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In Thompson's thesis [a3] a set of assumptions about the communication graph

and the nodes and wires that it is composed of are stated. There are eight formal

assumptions associated with the lower bound proofs and an additional s€ven assump-

tions associated with the upper bound proofs. Only the eight lower bound proof

assumptions are of any interest here. Thompson [44] used them to study the asymp-

totic areû and time complexity of many of the competing methods of implementing

the FFT in special purpose hardware. This includes the tadix 2, pipeline FFT, rvhich

is referred to as the cascade, and the linear systolic array FFT, which is referred to

as the N-cell DFT. The eight lorver bound assumptions Íue summarløed in [44] and

so will not be repeated here. However, some of their consequences will be pointed

out as the need a¡ises.

Crucial to the formation of lower bound proofs is the concept that all communi-

cation graphs possess a minimum bisection width. The minimum bisection width of a

communication graph is the smallest number of edges that must be removed in order

to disconnect one half of the nodes from the other half. It is also required in the

definition that half of the source nodes lie on either side of the bisection. Thonrpson

[43] represents the minimum bisection width symbolically using the G¡eek letter or.

It is intuitively obvious that if o is large then the graph is large, and hence the VLSI

circuit is also large. However, the circuit will be fast as well since the available

bandwidtb is larger.

One of the main consequences of the lower bound assumptions and the concept

of minimum bisection width,or, is that

.^2¡l:>- 4'

and another important consequence is that

T = $ (rY Iog/V)/ú, .

l1 r\

These results combine to give the optimal AT2 metric

(32)
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AT2=n(N2tog3ru¡ (33)

More generally, if or : 0(N'á), then for 0< x< 1,

ATb : o(Nl+'loglrv). (3.4)

N, for example, may be the number of components in the vector that is to be

transformed using DFT or DWT, or the number of values that are to be sorted. The

expressions of the form '00",'f,10' and 'O0' are formally deûned in Appendix H.

All of (3.1) to (3.4) are proven formally in Thompson [43]. Result (3.1) is completely

general (within the limits imposed by the lower bound assumPtions). Howevel,

results (3.2) to (3.4) were proven formally only in tbe special cases of the DFT and

sorting, althougb (3.2) to (3.4) are more generally applicable than the special cases of

DFT and sorting would suggest. The significance of the optimal AT2 complexity

metric is that it proves the existence of a fundamental lower limit on the growth in

complexity of a VLSI chip. A limit asymptotically lower than that, say AT2 :

O (NlogN), is not physically possible. Equation (3.a) is a more general expression of

this fact than (33).

Equation (3.3) can be rewritten as

AT2: cN?lo*N , forlv=Ìtlo, (35)

wlrere c is called the technology dependent constant (TDC). N>l.l' should be inter-

preted to mean 'for N sufficiently large" in (35). Given two circuits which solve the

same problem and which also possess the same asymptotic area and asymptotic time

complexity taken separately, this implies that they have the same AT2 metric, to

within a constant factor. It is possible to decide which circuit is the best by examin-

ing c, the TDC, in tbe resulting expressions for AT2. The bette¡ circuit poss€sses the

smaller c. However, unless c is very different (perhaps even orders of magnitude)

for both circuits it may be necessary to look at the asymptotic area and time com-

plexity , and their respective TDCs, separately in order to decide which circuit is the
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best. Thus, the AT2 metric by itself is not usually adequate for choosing the best

circuit. Better measures of performance are obtained by looking at A-versus-N and

T-versus-N separately and by comparing their respective TDCs. Tbis is the problem

faced when comparing the linear systolic array FFT method with the radix 2, pipe-

line FFT method. Thompson [4a] has shown that both have the same A metric, T

metric and AT2 metric , to within a constant factor. Thus, only the TDCs of all

three metrics can allow us to cboose whicb method is tbe best in terms of area and

time complexity.

3.2 THE RADIX 2 PIPELINE FFT (CASCADE)

Tbis section describes the radix 2, pipeline FFT method. N{uch of the dcscrip-

tior^ is taken from Rabiner and Gold [38]. Thompson [44f ref.erred to this structrre

simply as the cascade and this is what it will usually be called from now on except

where confusion is likely to arise. Thompson [44] compared the A,T, and AT2

metrics of this structure with other parallel and/or pipelined special purpose

hardware structures for the FFT. Thompson's results for the cascade will be

presented in this section along with estimates of the technology dependent constant

(TDC) values assuming a particular fabrication technology. In addition, the cascaie

implementation of FWT and FHT will be treated briefly. The tridiagonal transform

will be seen as merely one stage in the cascade, The only other suucture of interest

is the linear systolic arr"-y FFT, to be discussed in the next section. For the A,T, and

AT2 metrics of structures other than the cascade and iinear systolic array FFT, the

reader must consult Thompson [aa].

The cascade FFT method is a technique for implementing tbe decimation-ín-

frequency (DIF) FFT algorithm (see Oppenheim and Scbafer [2]), using logrN pro-

cessing stages. Tbe method is originally due to Groginsky and Works [45].

Figure 3.1 depicts the DIF FFT butterfly diagram for N = 8. In this figure,

-j 2¡

^/

W =erp in general. Note that there are essentially tbree (:logr8) stages in
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the butterfly diagram. In general, there will be logrN stages. In terms of implement-

ing the DIF FFT on a sequential processor, the amount of computation is the same

as that for tbe Cooley-Tukey FFT, That is, O(NlogN) complex operations are

needed. Also note that DIF FFT produces the DFT spectrum in bit-reversed-order

(BRO) (see [2]). Cooley-Tukey FFT ordinarily gives outpur, in natural order.

Figure 3,2 depicts the cascade a¡chitecture for N:8. In other words, the struc-

tu¡e of Fig.3.2 implements the butterfly diagram shown in Fig, 3.1. Figure 33 depicts

tbe timing diagram associated witb the structure of Fig. 3.2.

Notice tbe basic components of the cascade architecture depicted in Fig. 3.2.

There are switching units (also called commutators in tbe literature) and these are

labelled SWi. There are delays (a form of memory) whicb are labelled z-k and there

are butterfly computer units which are labelled BCi, where i € {1,2,...,1ogrN}. In

addition, there are logrN coefficient memory units associated with each BCi unit.

Tbe coefficient memory units are used to store the complex factors WP. Note that

these factors are trivial in tbe last stage because p:0 at this stage. Thus, there is no

real need for coefficient storage at BC3.

The integers 0,1,...,7 in the timing diagram of Fig,3.3 represent the data points

x(0)¡(1),...¡(7), respectively. The basic clocking interval of the cascade is the sample

period. The first switching unit, SW1, feecÌs the points 0,1.,2,3 into the four unit

delay z-4 *hen SlVi is high in Fig. 3.3. The remaining input points are switched to

the lower branch of the circuit when SWI is low. Clearly, there is a four tinne unit

delay before BCI can start computation. Output from BCl appeers four time units

after the first data point was entered. The output appears at points B and C in Fig.

3.2. Tbe switching units after SW1 operate somewhat differently. In Fig. 3.3, when

SW2 is low, data flows from points D to G and E to F. When SW2 is high, data

flows from points D to F and E to G. The operation of SW3 is essentially the same.

\r¡/hen SW3 is lorv, data flows from J to M and K to L, and when Srù/3 is high the

data flows from J to L and from K tc M. The final DFT (DIF) values appear in pairs
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at Points N and O in Fi8.3.2. The output is in BRO. Thus, for the last tw<¡ lines of

Fig. 3.3 concerning the N and O outputs, the following correspondences hold :

0- x(0) 2- x(2) 4- x(1) 6* x(3)7- x(4) 3- x(6) s- x(s) 7- x(7'

Therefore, from an inspection of Fig. 3.2 and Fig. 3.3 the operation and proper-

ties of the cascade can be summarized as follows:

1. Tbe delay of a given stage is half as long as the delay in rhe preceding srage.

2' The system is only 50Vo efficient in the sense that each BCi is operational only

50Vo of. the time.

3- Eacb switching unit operates at trvice the frequency of its predecessor.

4. The basic time unit of the cascade is the sampling period,

5. The output data appear in pairs and in BRO.

6. The cascade is a pipelined structure as one N-point vector after anothe¡ can be

fed into the structure.

A more complete description of tbe cascade can be found in Rabiner and Gold

[3E] where an N=16 point cascade is used as ân example. In R.abiner and Goid [3g] a

scheme for increasing the cascade's efficiency ¡o 700Vo, in tlre sense of point 2 above,

is proposed' This method involves a more sophisticated srvitching and buffering

scheme.

Many variations on tbe cascade concept are possiblc. Rabiner and Golcl [-3S]

describe a radix 4, pipeline FFT hardrvare algorithm and cornpare it to tbe radix 2,

pipeline FFT' The structure is more complex tban t!¡e cascade just clesciibe<J and

will not be presented in this thesis.

Many of the variations on the cascade of Fig. 3.2 often center around the

manner in which multiplications are to be performed. The stored-product method of

Peled and Liu [46] has been suggested as a means of implemenring the cascade in Liu
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and Peled [47]' Despain [48] suggests using Volder's [49] CORDIC complex multi-

plier structure to implement radix 2, and higher radix, pipeline FFT circuits.

Tbe cascade of Fig. 3.2 can be used to implement tbe DFT spectrum filtering

scheme of Fig. 2.1. The first block of Fig. 2.1 (labelled F) is replaced by the cascade

structure. There are two complex multipliers needed to implement the Fourier ñlter

block (labelled Gt in Fig. 2.1). Each of the two outputs from the firsr cascade goes

to one of these multipliers. A Gf ûlter coefficient store is attached to tbe remaining

inputs at each multiplier. Tbe multiplier outputs of the G, block feed to the input

buffer memory of the second cascade, which implements the IFFT (f-l Utoct in Fig.

2.1). Naturally, allowance is made for the fact thar the output of the first cascade is

in BRO, that the output values from this cascade appear in pairs, and that IDFT is

not exactly the same as DFT. The second cascade can take on exactly the same

structure as the ûrst cascade if both the input values to the second cascade and the

output values from it are conjugated. These conjugation operations effectively

correspond to tbe IDFT. The impler,.intation just described is clearly time-domain

convolution by the multiplication of DFT spectra (see Chaprer I). More detaits on

tbe use of the cascade in this type of oper:ition (DFT spectrum ûltering) can be

found in Rabiner and Gold [38].

Having described tbe structure and operation of the cascade, it is norv worth

considering its area-time complexity. According to Thompson [44], the cascade has

the following asymptotic complexity metrics,

A" =O(N logN), (3.6a)

T, = dl (N log lJ) , (3,6b)

D. =O(ru log2lt), (3.6c)

and

A"T: = O (lf 3 log3ll) , (3.6d)
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where A" is the area complexity, T. is the processing time complexity, and D" is the

delay complexity. The logN factors arise as a result of Thompson's assumptions con-

cerning the problem size (N), the number of distinct values that any one of the N
inputs may take cn (P), and tbe word length (M). Clearly, there are pN distinct

problem instances, which Thompson assumed to occur with equal likelíhood.

Thompson also assumed that logp : 0(logN) so M : c logrN bits, since some assump-

tion about the relationship between lrl and N is needed in order to avoid having A,
T and hence AT2, depend explicitly upcn M. In addition, Thompson [aa] assumes

tbat tbe multiply-add of a BC takes o(logN) rime, and o(logN) area.

A different version of (3^6a|(3.6c) v;ill now be presented. The asymptotic

results will contain no explicit logN factors, though they are preserrt implicitly if
Thompson's assumptions in 144)arc allowed to hold. The time complexity of the cas-

cade is characterÞed by

N>8 (3.7a)

D" =N (3.7b)

Thus, T. : o (N) , D" = o (N) . The area complexity is approximated reasonably

well by

A" = 2 (T,-l)a¿M +(h,o(M)*a"^(M))log2N *4a,rM +Ba,rM (Iogy' -1)

,, : ** - 1 = I * I *tlr#., ,

rop 
N* arolag2N +Za^M > ;¡

I-l L

and

(3.8)

(3.ea)q,o(M) =2(U -l)a¡o * tu,. ,

d,^(M) = (M -l)2(a¡o+arl+2(M -I)(o**as\ , (3,eb)
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so

s" (M ) = k,. (M) + e"o(M) . (3.ec)

The symbols above are clefined as follows :

N : number of transform points (a positive integer po\rer of two),

M : number of bits in the real or imaginary part of a number,

aO : 1-bit delay element area,

"f" 
: 1-bit full adder area,

"h^ 
: l-bit half adder area,

a^ : area of a 2-input nand gate plus an inverter (and gate),
8

âm : area of a 1-bit memory cell (could be RAM or ROM),

a.- : area of a transmission gate,
rg

u"o : area of control circuitry per stage (logrN stages),

c""(M) : area of a complex adder,

c--(M): area of a real array multiplier (see Hamacher et al. [50]),rrn.

a^-(M) : area of a complex multiplier.cm'

In the formula for A" in (3.8) no allowance has been made for the interconnecting

wire area or the area taken up by power supply and ground lines or I/O pads. This

causes no real problem since it is the lower bound on the true area that we are after.

The expressions for a"u(M), or.(M), and o."*(M) do not allow for the area taken

up by the sign-change circuitry. Such circuitry depends upon M but not N. Clearly,

its omission weakens the lower bound on the true ârea estimate somewhat. Note

that a.^ is the a¡ea of a transmis*ìon g",". This suggests the use of CMOS technol-rg

ogy. In fact, when estimates of the above constants are made later in this section,

the source of the estimates will be from a particular static CMOS technology. More
ttl L- --!l ^- :L?- -r ^L- -,^--- ^:-^ 

t^:-wtl¡ r.)c saru ()u r.rrrs a[ rüs PruPg¡ rrurç. lr. rs ¡luw ussçtt$a[y [o oescrtDe tne terms

making up equation (3.8)
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above. Tbis description is as follows:

2(T c - l)aOM : delay area term ,

(2cr.(M) + c"r(M))logrN = butterfly computer (BC) area term,

4.tgM = area term for SWl,

SarrM(logrN - 1) : area term for SWi (i> 1),

a"ologrN : control area term,

,t^u 
t 

lrl: coefficient memory rerm.

Figure 3.4 illustrates the structure of some of the subsystems making up tbe cas-

cade. The areas of these structures give rise to some of the area terms in (3.8) above.

These subsystems are the butterfly computing units (BCi), and the switching units

(SWi). Figure 3.a(a) shows the computational structure of the BCi" There aie two

complex adders and there is a single complex multiplier. The structu¡e is símply that

of a typical butterfly from Fig.3.1, Figure 3.4(b) shows the ûrst switching unir, SW1,

and is composed of 2u : 4M transmission gates. The area due to inverters for

buffering and control is neglected in tbe area term for SWl in (3.8). Figure 3.a(c)

shows SWi (i> 1). It is composed of 4À? : 8M transmission gates. Once again, the

area due to inverters for control and buffering is neglected in the area term for SWi

(i> 1) in (3.8). From (3.10) below these omissions bave no eÍfect at all on the asymp-

totic behaviour of A. (meaning 
nli-To. 

is independent of arr).

using the fact that É z-t = !-2-p and using (3.7a) and (3.9) in (3.8) ailows (i.B)
i-l

to be expanded as,

A, =(3a¿ +Za^)MN

* 
þ{or. +ar)M2 + (8a¡" *8a,, -Za¡ a'¡M + a,o -2a¡ o -2ano -+ar)tog,}r

- (4o¿ *4a,, *Za^)M , (r..ru)
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and clearly A. : O (l'{). It should be clear that the technology dependent constant

(TDC) associated with T. is 3/2 and the TDC associated with A. is (3aO + 2ao,)M.

Thus, in asymptotic terms, the area of the cascade is mainly memory since aO and a,
are constants which specify storage area.

Now it is worth estimating the constants (a.,aon, etc.) for a particular static

CMOS technology. The fabrication process of interest is Northern Telecom's

CMOS1B process. This process allows minimum device dimensions of 5¡r,m. It is a

p-well CMOS technology (n-devices sit in wells of p-type silicon). There is only a

single layer of metal and a single layer of polysilicon. Table 3.1 below gives estimates

for a6,ar,ar,a¡.,a¡o, and a,, based on the sizes of actual circuits designed for fabri-

cation with the CMOS1B process here at the University of Manitoba. Complete

descriptions of the cells, from which the data of Table 3.1 was obtaine¿, will eventu-

ally become available in print, Tbe cells were designed by a number of graduate stu-

clents as part of the requirements foi a graduate course on VLSI design presentecl in

the fall term of 1984 here at the University of Manítoba.
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Parameter Cell Dimension (pm x pm) Area (pmz)

at

4c

4¡n

a[o

art

A¿

a;

15,600

13,994

33,567

93,530

3,392

49,300

14,160

130 x 120 (est.)

92 x 752

201 x 767

470 x 199

53x64

161 x 300

118 x 120

Table 3.1: Values for the area parameters based upon some CMOS standard cell

dimensions.

The entry for a, in Table 3.1 is an estimate based upon the size of an inverter

(59 x 106 pm) and a two-input nand gate (69 x 111 pm). The enrry for a* is the

area of a six- transistor static RAM ce!I. This cell is actually much larger than the

best commercially available cells since commercial cells often use smaller clevice sizcs

and two layers of metal. The overhead associated with buffering, sense amplifìers,

address decoding, etc., is not included in the figure for ar. The errtry for aO ís

based upon the area of a D ffip-flop that does not have a prese'or clear, Tbe figure

tor atg in Table 3"1 above does not include the area taken up b)' the ground line

which must run through the cell in order to ground out the p-well. In what follows,

a"o will be assumed to be zero. Parameter a" is the area of a t\,vc-inFut exclusive-cr

gate (used in section 3.3).

Using the parameters of Table 3.1 above, it is now possible to write (3.10) as

A" = L73,0/¡,OMN + 1437,O\OMz+h09,0OAM -317,000J/og zN -235,0WM (¡"^2) . (3.11)

This gives a TDC for A. of the cascade FFT of 173,000M pmz
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The cascade of Fig. 3.2 can be used to implement the FWT or even the FHT.

The tridiagonal transform requires only one stage of the cascade for all N and so is

especially simple to implement. Indeed, the tridiagonal transform is probably too

simple to be of any real value in an application. This will be seen more clearly later

on' In implementing the FHT, it must be possible to bave the butterfly computers

turned off and data allowed to flow th¡ough unaffected in stages 2 to logrN, during

certain time periods defined by the structure of the FHT burterfly diagram. A
butterfly diagram for the cooley-Tukey type FIIT is to be found in [23]. This

butterfly is structurally similar to the DIF FFT butterfly and Hadamard order FWT
butterfly diagrams. No more will be said on this subject in tbis thesis.

It is possible to evaluate A. for the FWT cascade. To this end, equation (3.8)

can be rewritten as

A" = (T"-l)a¿M ¡ )o,o(M)log2N * Za,eM * 4a,rM (tog2V -L)*arolog2N , (3.I2)

wbere oru(M) = (M'l)aru * ub" (area of an M-bit real adder). The terms making up

the expression for A" in (3.12) are as foilows:

(T. - l)aOM : delay area term,

2cr.(M)log2N : butterfly compurer (BC) area term,

2"tgM = area ternr for S\ry1,

4arrM(logrN-i) : area term for SWi (i> 1),

a"ologrN : control area term.

Note that there is no coefficient memor)/ term in (3,12)" Thus, the butterfli,

computer unit rlepicted in Fig. 3"a(a) reduces to two real adders and the comirlex

multiplier becomes redundant since there are no muttiplier coefficients in the FV/T

butterfly (see Fig. 2.6). Tbe area taken up by switching units is cut in half because

only real numbers are being handled by the cascade, implying M-bit rather rhan
?Àrl-hir ."a.'lo ¡nL^ Dut'¡ ^-^^^-'^ :--t^-.^-¿- :r- - r-LL'L-v7. wv¡L¡s' ¡i¡É ¡'w ¡ casca{ie imPiemenîs ¡i¡e ÞutferÍiy diagram of Fig.2.6, as has
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already been suggested, and so the output appeÍus in natural (Hadamard) order in

contrast with the BRO of tbe DIF FFT cascade output.

Assuming âco : 0,(3.12) can be reduced, using (3.7a) and the expression for

cr"(M), to

4 = |oauN + l(2a¡.*4a,r)M +2(a¡o-a¡)ltos2N -Z(o,e*a¿)it , (3.13)

and upon using the values in Table 3.1 above,

A, : 72,500MN + [201,000M -120,0æltog2N -103,000M (*^r) (3.14)

3.3 LINEAR SYSTOLIC ARtrAy FFT (N-CELL DFT)

In the present section the linear systolic array FFT will be discussed in a

manner similar to the discussion of the cascade in the previous section. Much of the

discussion to follow is taken from Mead and Conway [39] and Thompson [44]. The

discussion of linear systolic arrays in Mead and Conway [39] is taken from original

work by Kung and Leiserson t51]. Thompson [44] discusses the A,T, and AT2

metrics for the linear systolic arre^y FFT, or N-cell DFT as it is called in [aa]. These

results will be presented here. Bridges et al. [52] discuss the línear sysiolic atray

implementation of the FWT and FHT and tbeir results will be summarÞed here as

well. A comparison of tbe N-cell DFT and the cascade of the previous section will

be made in a later section of this chapter.

The linear systolic array (LSA) [39,40] is a parallel'pipelined architecture for

postmultiplying a matrix by a veetor. The cascade is si¡nilar in this regard excepr th3t

it is much more specialized. It can only postmultiply a matrix by a vector if the

matrix has a particular structure. The LSA can handle arbitrary matrices and so is

much more generally applicable than the cascade. However, our concern lies with
..^:-- .L^ Y C A .^ :--l^---^ ^L ^ FñD tîttr -- I rlYFsùrrrË r¡rç l-ùfr lu ¡u¡P¡çu¡9¡lt tl¡tr fr¡r rW I AUL| f fll. f ne LJr9' lmplementatlOn Ol
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the G, filters of chapter II will bc treatcd in the next section.

Tbe LSA consists of a linear afiay of what are called inner product step proces-

sors (IPSPs). The structure is depicted in Fig. 3.5. In Fig. 3.5 a 3x3 matrix, A = [a¡¡J,

is postmultiPlied by vector l=ftvrz,rtlr in order to give the solution vecror

f=íJ¡yz,ytlr. For vectors¡-=[¡r, ...,rN]r and î=bt,...,],v]r the LSA imprements the

fecufrences,

Yf) = 0,

y-u+l) - y,u) + atjxj ,

Y, - ),(t *l) ,

where A is an NxN band matrix of band width w. In Fig. 3.5 w=5. Note in Fig. 3.5

that the coefficients along each cliagonal of A are fed into one and only one IpSp.

Each IPSP is composed of three registers (R*,R", and Rr), a complex adder and a
connplex multÍplier.

The y,, which are initially zero, mcve to the left while the x, move to the right
and the aij rnove down. All data movement is synchronized. If the systen clock

period is t then the data points xi are clocked in every 2r (this woullt be tbe sample

period) time units. IPSPs are active once every 2r time units. The ûrst output value,

Y1, appears in wt time units. The time to process atl points is (2N+w)r time units.

More details of the oPeration and timing of the LSA are to be found in Mecd anct

Conway [39].

The diagram of Fig. 35 implies that a coefficient memory is needed to hold each

ai¡, in Particular, if FFT is to be performed. In [39] a merhod of generating rhe a,,

for FFT on'the-fly is proposed. The operation of tbis LSA FFT circuit is described

in [39]. It is enough to know that each IPSP needs an extra register (calied R, in
[39]) and that tbe middle IPSP must store \ry (and only W needs to be stored). In
addition, at each even-numbered time step the middle IPSP performs five comptcx
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mutliplications instead of just the two performed by the other lpSps. This fact anct

the order in which the complex multiplications are performed by the middle IpSp

allows one to assume that four complex multipliers are needed by the middle IpSp.

It is this form of LSA FFT that will be used to obtain an expression for Ar, the LSA

FFT area. A structure such as this has a delay of 2N-1 and a processing time of 4N-1

clock cycles.

Bridges et al. [52] developed a method of generating a,, on-chip for the FWT

and the FHT, and proposed a method of generating the a' for the FFT on-chip as

well. Each IPSP has a co-processor associated with it (matrix element co-processor

or MECP) dedicated to the task of producing the appropriate matrix coefficients.

The method is effective only if the matrix coefficients are dependent upon the row

and column indices of tbe matrix, and this is clearly the case for the DWT, DHT and

DFT matrices. The structure they propose is very cascadeable.

From the preceding discussion and from l¿fead and Conrvay [39] the operation

and properties of the LSA FFT can be summarized as foilows:

1. Tbe delay of any given stage is one clock cycle.

2. Each IPSP is the same as any other lpsp except for the middle lpsp.

3. The data is clocked in every second clock cycle,

4. The output clata appear one point at a time every second clcck cycle aftei a

delay determined by the numher of IPSPs and are in an order deternnineC by

the ordering of tbe matrix (for the LSA FFT above the narural order is pro-

duced).

5. The matrix coefficients are generated on alternate clock cycles (every second

cycle).
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6. Each IPSP is operational only 50Vo of. the time and so the LSA FFT is only S¡Vo

efficient.

7. The LSA FFT is a pipelined structure for the same reason that the cascade is.

According to ThomPson [44], the N-cell DFT has the following asymptotic com-

plexity metrics,

Á, =O(N logN), (3.1sa)

T,=lL(Nlogil), (3.1sb)

D, = o (l/2 log lv) , (3.1sc)

and

A,T: = n (N'log 3 N) , (3.lsd)

where A, is the area complexity, T, is tbe processing time complexity, and D, is the

delay complexity. Note that the expression for D, given by Thompson can't be

correct. A more plausible expression is D, = O (NlogzN), the same as fo¡ the cas-

cade, although even the log2N factor is suspect as well (logN seems more likely).

Unfortunately, Thompson [44] does not explain how he arives ar his delay complexity

expressions. Once again, the logN factors arise because of Thompson's assumptions

on multiplier complexity and the relationship between problenr size and word length

(see the paragraph containing (3.6) in the preceding section).

It has already been said that

1, =4N-1 , (3.16a)

and

D, = 2.1,1 -l , (3.16b)

and so it is clear tbat T, = o (N), and D, : o (N). The area complexity for the N-
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cell DFT can be approximated by

A, = a,orv * &a¿Mw + (w -1)(c"^(M)+o",(M)\

* (4c",(M)+d,o(M)) + 2Ma^, (3.17>

where the parameters am,a6,a"6,M,cçm(À{), and c."(},{) are deûned as in section 3.2

and w is the matrix band width. The area terms are defined as follows:

SaOMw : delay (register) area term,

(w-l)(c"r(M) + 4""(M)) = IPSP arithmetic hardware area term (excludes mid-

dle IPSP),

4c"r(It{) + c.u(M) = middle IPSP arithmetic hardware area rerm,

2Ma, = area needed to store W in tbe middle IpSp,

â.o* : control area per IPSP term.

Again, no allowance is made for interconnecting wire area, the area taken up by

Power and ground lines or VO pads. In wbat follorvs, a"o for the N-cell DFT is

assumed to be zero.

The expression for (3.17) can be expanded into

A, = lï(a ¡ o + a r)ìl 2 + (l6a¿ *l6a¡o -Ba¡ )M -B(a, + a ¡-)þ{ + B(a ¡ o + ar)M 2

+ (l6e ¡o *?a^ -14a I o -Ba¿)M + (6a ¡ o -Ba. -I4c ¡.), (3.13)

using tire definitions from section 3.2.lf. the values in Table 3.1 are used then (3.1g)

becomes

Á" = [873,000M2 +%z,æ{tM -393,000J¡g

+873,m0M 2-1,130,000M -33,600 Q"^r),

and so A, = or(N).

(3.1e)
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Using the structure described in Bridges et al. [52], it is possible to ger an

expression for the area of the ll-cell DìryT. Thus,

A, = Arrrr, * Ar"rr, , (3.20)

where árr"r" it the area due to the IPSp, îtd Aru"r, is the area due to the MECp, the

circuit which generates tbe matrix elements used by the IpSp. Thus,

Ar,"rr=3a¿Mw *aro(M)w

= [(6a¿+2a¡"lM +Z(a¡o-a¡")Vy -(3ø¿*a¡o)M *a¡a-dt, , (321a)

where 3aOMw is the IPSP register area term and or"(M)w is the IpSp arithmetic
hardware area term (only a single real adder). As well,

Arrrr, =2a¿log2l,l * wlog2Nl4a,r*kr+2a,1 * a,ow

= (k,e*6ar*4ar)NlogÌf + (Za¿ -4a,r-kr-Za,)logfl , (3.21b)

where a.ow is an area term whicb allorvs for any extra control logic not includcd in

the rest of the MECP area expression, and again v¿e bave assumed tbat aco is zero.

The term 2a6logrN is the area due to tbe two counters (assumed to be ripple

counters) which drive the l'{ECPs and the term wlogrN[4a,o+3a 
r+ Za"J accounts for

the area taken up by the MECPs themselves. A complete description of the ME,Cps

can be found in [52]. Thus, (3.?0) becomes

A, = (8a,r*6ar*4a,)Ntog2N + [(6a¿+b¡")M +Z(a¡"_ar"]W

+ (2a¿-4a,r-3ar-2ar)log2N - (3oa*a¡o)M r a¡a-aru , (3.22)

and so A, : O (NlogtN). Tbe logrN factor arises because eacb MECp contains

logtN common function blocks (see [52] for a definition of this term) and there are N

MECPs. Using tbe parameters of Table 3"1 gives
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A, = t77,000Mlog2V + Í477,ÙWM -120,000]N

I 8,?Á0log2N - ?,38,000M + 60,000 (*^r) . (3.23)

in place of, (3.22)

3.4 LINEAR. SYSTOLIC ARRAY IMPI,EMETTTAIIONS OF Gt

This section briefly considers some aspects of the implementation of the G,
filters of chapter II for the special cases of G*, Gh,and Grr. It will be seen tbat

the structure of G, has a significant influence on the asi'mptotic area complexity and

hence the implementability of the frlters.

Remember that the cascade is used for postmultiplying a matrix by a vector in

O (N) time, provided that the matrix bas the proper structure. Unfonunately, the G,

matrices do not aPpear to possess tbe proper structure. Thus, we are forcecl to

implement tbem using the linear systolic array (LSA). The resulting LSA rvill consist

of w:N'l IPSPs for any of the G,s of interest, and will have a processing time of
3N-1 clock cycles. In addition, it is important to note that due to the complexity of
(23b)' the on-chip generation of the G, matrix coefficients is not fe¿isible or advanta-

geous, at least at present. This rules out the structure of Bridges et al. [52] as a

viable means of implementing tbe G, fitters.

Matrix G,n has O(NZ) distinct elements and therefore the area required to store

these coefficients will grow as O (N2). This implies that the LSA irnplementation of
G,, has an asymPtotic area comptexity or O $2). Thus, G* cannot be readily inrple-

mented with an LSA because of the large coefficient storage requirement.

Matrix GO has O(N) distinct elements and so it is clear that the asymptotic area

complexity of the LSA implementation of GO is O (N). Since the diagonal blocks of

GO are Toeplitz, at most logrN + 1 distinct nonzero coefficients need to be stored

with each IPSP. Thus, GO is easier to implement with a linear systolic array than

G
\ry
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Matrix G, Possesses only two distinct diagonal blocks and both are Toeplitz.
r

Thus, at most two distinct nonzero matrix coefficients need to be stored with each

IPSP. The area due to coefficient storage g¡ows as O (N) and so the asymptotic area

complexity of the LSA implemenration of or, is o (N) as well. Tbus, matrix o,, t,
more readily implemented than GO with a linear systolic 

^rray.
The linear convolution of sequence {u(n)} with the 6lter function impulse

resPonse sequence {h(n)} is given in (1.10). If {u(n)} is an N1-point sequence and

{h(n)} is an N2'Point sequence then (1.10) can be ex_pressed in matrix form as

t (0)

'l,tl,

0
(0)
(1)

h
h

0
0
0

v (o)
v (1)

r (0)

' (1)

(3.24)
å(N2-1) h(N2-2).. 0

(N r-1)

0 ó ..¿(o)

where it is assumed tbat Nl t NZ. To implement this linear convolution with an N-

point DFT it is clear that N = N1* Nr-l (see Chapter l,section l.2,subsectíon 1.2.1).

Similarly, the operation of (3.24) could be carried out with an order N G, matrix pro-

vided that H(z) for {h(n)} could be found. Note, however, that N, < N and the

matrix in Q.2$ is Toeplitz and of band width Nz. Thus, rhe operation in e.ze is

most efficiently implemented directly with an LSA rather than by using an LSA

implementation of the equivalent G, matrix. This raises tbe question of whether o¡

not DFT spectrum filtering witir the use of the G, matrices is worthwhile. This

matter will be treated in the next section.

(N r- 1)
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3.5 COMPARISONS

In this section the results of the four preceding sections will be evaluated in

order to ascertain the conditions under which it may be worthwhile to implement

DFT spectrum filters using T and G, rather than F and Gr.

Thompson [a3] bas shown that the AT2 complexity of the FFT must grow at

least as fast as O lN2togh) (see (33)) and so it should be obvious that any algorithm

which achieves this lower bound on AT2 growth should be optimal in some sense.

Thompson [4a] has shown that the FFT network, perfect shuffle (or shuffle exchange

(SE)) network, cube-connected cycles (CCC) and the mesh are all ATZ optimal in

the sense of satisfying (3.3). On the other hand, the cascade and the N-cell DFT

have AT2 complexities of O lN3toglS¡ and so are suboptimal. Why have we chosen

to reject the AT2 optimal designs in favor of the AT2 suboptimal designs in the con-

siderations of this tbesis? The reasons can be summarÞed as follows:

1. The AT2 optimal designs have a high asymptotic area complexity, which is why

they are fast structures. This high area requirennent makes the implementation

of these algorithms difficult in practice, even rvith tbe best available technotogy.

2. In a sense, the AT2 optimal structures are too fast, The fastest is the FFT ner-

work with T = fl (log N) and the slowest is the mesh wrth T = fl (vñi) These

time complexities are superior to the O (N) time complexity of the cascade and

N-cell DFT. However, it is usually the case in practice that the data to be

transformed appear only one componenr at a time (O(N) time). Thus, the

improvement in processing time due to tbe use of AT2 optimal structures is not

going to be fully utilÞed. It is therefore wastefu! to use these structures in

many real-time applications.

g. The AT2 optimal structures expect all of the data points to be available simul-

taneously. If N is of even moderate size this implies a chip with a very large

number of pins. Chips with a large nunrber of pins are simply not practical.
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For the convenience of the reader, equations (3.11),(3.19),(3.14) and (3.23),

respectively,^re reproduced here as follows:

A"(DFT) = L73,cp,0MN + [437,0wM2+109,000M -3fi,a}oyogzN -z3s,\wM (rr^r),(3.11)

A,(DFT ) = [873,000M2 + X2,000M -393,000jN

+873,0@M2 - 1,130,000M - 33,600 (*^r) , (3.1e)

A|(DWT) =72,5ffiMN + [201,000M -7ZO,O0O]tog2N - 103,000Àí (p^r), (3.14)

A,(DWT ) = 177,0001f logÌ,1 + Í477,W}M -120,000I,V

*8,2601og2N - 1ß,OWl'l + 60,000 (*^,) (3.23)

Table 3'2 below shows a table of values for (3,11),(3.19),(3.14) and (3.23) versus N for

M : 8,12, and 16 bits
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M N A"(DFT)

(*^')
A"(DFT )

(^')
A,(DWT)

(^^')

A,(DlttT)

(* ')

8

I
I
8

I
I
I

16

32

64

128

256

572

1024

130

190

260

37C

580

960

1700

1000

2000

3900

7800

1s000

310C0

61OCC

14

25

45

84

160

310

610

69

140

300

630

13û0

2700

5600

12

72

72

72

12

12

17

16

32

64

128

256

512

1024

290

380

5r0

710

1000

1600

2800

naj
4400

8600

17000

34000

680C0

140000

22

38

68

13C

240

460

910

98

240

420

870

18C0

3700

7500

16

16

76

16

16

16

32

64

128

256

512

1024

650

850

1100

1600

2400

4000

77AC

15û00

300û0

60000

120000

240000

51

91

170

320

620

1200

270

ss0

1100

2300

4700

9s00

Table 3.2: cascade and N-cell DFT and Dwr areas versus N for M : g,12, and

16 bits. Areas are in square millimeters.
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The processing time and delay complexities of (3.7) and (3.16) can be restated,

respectively, as follows:

T"=1N -1, (3.7a)

D" =N , (3.7b)

1"=4N-1, (3.16a)

D, =21'l -t (3.16b)

From a comparison of the entries in Table 3.2 with the tinre comptexit.v results of

(3.7) and (3.16) it is obvious that the cascacle has a superior area and tíme perfor-

mance. Strictly speaking, the AT and AT2 met¡ics should be displayed before such a

conclusion is drawn. However, the differences between the cascade and the LSA are

so enormous tbat this is totally unnecessary. The processing time of the cascade is

less than half that of the LSA and the delay is half thar of the LSA. The area

required by the cascade for a given N and M is substantially less than that required

by tbe LSA for the same N and M, and this is clearly true for a wide range of N and

M. This is Particularly true of the comparison between A.(DFT) and A'(DFT).

The difference in the size of these two numbers is especially great because of tbe

presence of complex multipliers. The cascade uses O(logrN) of them but the LSA

needs O(N) complex multipiiers, an extravagarit requirement. Thus, strictly on the

basis of area and time complexity the cascade outperforms the LSA by a very wide

margin. This is true of both DFT and DWT implementarions.

Why should the LSA be so inefficient at implementing the DFT and DV;T (and

no doubt the DHT as well) ? The reason is simply that the DFT and DWT matrices

have a highly regular structure that can be used to advantage in the design of special

purPose hardware with O(N) time complexity. This fact teads naturally to tbe cas-

^^.¡^ TL- I C   ^- ^L - -^L -- r-, - L Icac¡e. ine Lsl{ , otr trl€ oîheÍ baRci, càR Íie best appiied io matrix-by-vector product
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Problems tvhere the matrix has no signifrcant regularity in its sructure. Since the

DFT and DWT matrices bave a great deal of structure the LSA is fundamentally

inappropriate for implementing such matrix-by-vector operations, strictly on the basis

of area and time efficiency.

Under what conditions, if any, is it desireable to pay the large area penalty

involved in the use of the LSA DFT and DWT ? Given a cascade DFT implementa-

tion and an N-cell DFT implementation for a particular N and I\1, if both designs fit

onto a single chip, then the N-cell DFT implementation may be preferable to the cas-

cade DFT implementation. The same might be said for the DV/T and DHT. This

may be so because the design costs for the N-cell DFT should be lower than that of

the cascade. The N-cell DFT is composed of only a very few distinct standard cell

t)Pes, since each stage of the array is essentially the same as any other stage, For

example, tbere are only two distinct kinds of IPSP cell for the N-cell DFT in Mead

and Conway [39, pp. 289-291]. The cascade, on the other hand, has many different

cell types. A logrN stage cascade needs logrN different cetls. However, the cascade

cells are actually quite similar to each other, differing only in the number of delay

elements per cell (stage). The N-cell DFT seems to be somewhar more cascadeable

than tbe cascade. This is because the N-cell DFT's IPSPs simply burr rogether when

the cascading of stages is required. The cascade input swirching unit (S\[ 1 in Fig.

3.2) must be disablcd and bypassed before extra stages can be addect to the front end

of the cascade. Another consideration is that the LSA chip needs four data ports, if
tbe on-chip coefficient generation scheme in Mead and Conrvay [39] is used, since

each IPSP has four VO ports and stages must be added to b;th ends of the LSA.

The cascade cân do with only three ports (two inpu?, one output). Thus, for a large

M, it may be that the cascade is preferable to the LSA since it needs one less VO

port and so needs fewer pins. For small to moderate M this fact is likely to be of lit-

tle importance.
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Thus, it seems that the N-cell DFT may have a marginal advantage over the cas-

cade in terms of designability and cascadeability, atthough it seems likely that an N-

cell DFT is feasible in practice only if it can fit onto a single chip. However, from

Table 3.2, this will likeiy be the case only for small N. The technology on which the

values in Table 3.2 are based is very primitive by today's standa¡ds (for example,

TRW Inc. has a comrnercial lpm CMOS process) and so in the future it is possible

that the N-cell DFT may be preferable to tbe cascade DFT as device dimensions

sl¡rink to below lpm and the die sÞe and number of wiring layers inc¡eases.

It is probably quite important that the N-cell DFT actually fit onto a single chip.

This is at least due to the fact that the cascade DFT accomodates an increase in N
from 2k to 2k+1 more readily than does the LSA. In going from N=2k to 2k+1 only

one new stage needs to be added to the cascade but the number of IpSp cells must

double in order to accottodate the increase in N. This is because the number of cas-

cade stages gro\+,s as logrN rather than growing as N in the case of the LSA.

Another very important consideration that will almost certainly count against

any suggestion of using the LSA for computing the DFT is the quesrion of yield. If
on a wafer there are r¡ fatal flaws per unit of area, the probability that a chip of area

A will work can be characte¡ízed qualitatively by an expression such as

Po("rr{): ¿-rá

Thus, as A goes up, yield goes down for a given q. For a given N, M and r¡ it is clear

that the yield for an N'cell DFT chip is likely to be lower (perhaps subsrantially

lower) than for an equivalent cascade DFT chip. This will inevitably increase the

ccst of production and so reduce the viability of the N-cell DFT in relation to the

viability of tbe cascade DFT. Such yield pioblems could very easily nullify any

benefit that the N-cell DFT has in terms of cascadeability or designability. Clearly,

this problem may not be as severe in the case cf the N-cell DWT since the area

difference between it and the cascade DWT is not as great.
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Testability is a consideration as well. However, it seems that neither structure

has any special advantage over the other in this regarcl. Clearly though, this issue

should be looked at more closely.

Tbus, one can safely conclude from the above discussion that, for the forseeabte

future at least, the cascade is much better suited to transform implementation than

the LSA. Furthermore, from the preceding sections, the G, matrix 6lters can only

be implemented with the LSA and tiir is more complex than implementing the filter
Gf ' Thus, tbe DFT spectral filtering scheme of Fig. 2.1 is better than that of Fig. Z.Z

provided F and F-l are implemented using the cascade DFT. The best way ro imple-

ment the system of Fig. 2.2 is to implement W and W'l with cascade structures and

G* with an LSA, Clearly then, the system of Fig. 2.2will be slower and more area

consuming than that of Fig.2.1, in genera!.

The system of Fig. 2.2 is likely to be bette¡ than that of Fig. 2.1 only if the DWT

has already beer^ implemented ancl it is desired to add the capability of doing DFT

spectrum filtering. This assumes a sufficiently small N and M to enable fitting Go

onto a single chip' Also, some t)pes cf G, filter give G* filters of very narrow bancl

width' Clearly, such narrow band rvidth filter matrices may be very easy to impie-

ment, and so may be effective competition for tbe system of Fig. 2.1. The resulting

G* matrix may even be much narrower in band width than that of the naatrix in

(3.24).

It may be possible to roundoff the coefficients of a Gr" frlter (or more generall¡'

a G, filter) to such an extent the the IPSi's have a very simple structure and so a

large N G* filter might fit on a single chip. This would cause the system of Fíg. Z.Z

to be viewed more favorably. The extent to which filter coefficients may be rouncled

off depends largely upon tbe "tightness" of the filter specifications. Clearly, such a

possibility as this requires much more investigation.

Last of all, it is important to note that if G, could be faetored in such a way

that it could be implemented as a cascade or cascade- like srructure, then this woulcJ
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likely make the system of Fig.2.2competitive with that of Fíg.2.l for a much wider

range of conditions. The search for an efficient factorþation is now of paramount

importance.
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Chaptcr IV

MISCELLA:,IEOT.]S CONSIDER ATIONS

This chapter briefly treats a few topics related to DFT spectrum frltering that

may be of interest to future researchers. Various open questions are presented in

tht: four sections which follow along rvith some potential methocls for answering

them' The topics presented are belie,'ed to be of the most immediate concern. The

first topic is the problem of ûnding a computationally efficient factorization of G,.

The second topic concerns the sensitivity of matrix G, to coefficient rounding and

the roundoff noise Properties of the cascade and linear sysrolic 
^rÍay 

(LSA) architec-

tures. The third topic concerns the problem of how to do two-dimensionat DFT

spectrum ûltering, The fourth topic suggests a study of the properties of G, for

more general T transforms tban those considered in this thesis. It is suggested that

the representation theory of groups n:ay be useful in this regard.

4.I FACTORÍZING È,!.A,TRIX GT

It is fair to say that finding a computationally efficient way of factorÞing rnatrix

G, is the most pressing problem at this time. This follows from the consicleraiions of

Chapter III where it is most clearly seen that the existence or otherwise of an

efficient factorization for G, will have an enormous impact on the practicality of the

sPectral filtering techniques described in tbis thesis. This is especially rrue where

special purPose hardware implementations are concerned, but it is also true of

sequential pfocessof implementations.

It would be very surprising, given the results of Chapter II, to find out that G,

has no efficient factorization in general. A'trivial" factorization of G, could simply
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involve a factorization of the matrices in (23b), but this is useless since such a factor-

ization would reduce to the direct use of the filtering scheme of Fig. 2.1 which is

described by equation (2.2a). Tbe question is: Is tl¡ere an alternative to factorizing

the matrices of (2.3b) that is more meaningful and useful ?

In the special case of Gt : Gh the 4x4 diagonal block of Go has the form

Itt x2

l-r¿ x1

l-tr -tn
I-,, -,,

xg
x2
r1
-X4 il (4.1)

(4.2)

(4 4)

It is possible to rearrange the rows and columns of (a.1) to get

lrr x3 x2 roì
l-¡r ,T1 -x+ xZl
l-*o x2 xt "¡ll-t, -ro -¡¡ ¡lJ

Notice that the 2x2 submatrices making up the quadrants of. (.2) can be considered

as rotation operators in the same sense as

htl ,liJuoj (4 3)

is a rotation oPerator in the Cartesian xy-plane. Since the ZxZ subncatrices are like

rotation operators in the sense of (4.3), a 25% reducticn in the number of multiplica-

tions is possible , since winograd [53] has shown how to do the operation

[, o r-rurf
Lxù 

.*xù'zlÍiJ 
=

with only three multiplications and five additions/subtractions. Thus, the number of

multiplications needed to compute (4.1) can be reduced from 16 to 12. The srructure

exemplified by (a.1) and (4.2) appears to bold for diagonal blocks of higher order.

Perhaps even greater reductions in the number of multiplications are possible for

blocks of higher order.
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The structure of the diagonal blocks of Gr, is similar in some respects to that of
the matrix in (3.2a). Tbus, tle fast linea¡ convolution algorithm of Toom-Cook

described in McClellan and Rader [54] may be helpful. Consider the matrix-by-

vector product

h,::;il Fil

b,:,ål Fil 
.[i r r] F;l

The first 3x3 matrix in (45a) clearly has the same form as a typical diagonal block of
GO even though it is 3x3. The first term in the second line of (a.5a) is a simple

linear convolution which can certainly be solved with the Toom-Cook algorithm [54]^

The second term can be reduced to an equivalent form,

(asa)

(1.sb)[:::,]ll
and the resulting vector can be time-reversed to yield the proper orCering of vector

components' Clearly, (45b) is also a sinnple linear convolution, It coulcl be called

an anticausal convolution. Thus, matrix-by-vector products ínvolving the diagonal

blocks of GO reduce to an N-point and an N-i-point linear convoh¡tion. It is knov¿n

tbat the Toom'Cook procedure can perform a N-point linea¡ convolution in as fei,¡ as

2N-1 nontrivial multiplications. In fact, \Vinogracl [53,54] has proven that tl¡is is thc

minimum possible number. Thus, postmultiplying an o¡de¡ N block of GO by an l,i-

component vector should actually require at least 4(N-l) nontriviat multiplications.

Thus, we woulcl expect tbat computation should be reduced from N2 multiplications

to as little as 4(N-1) multiplications according to Winograd's theory [53]. We have

Proven that if N=4, at least 12 multiplications are neected. This shows that (4.1) can-

not be reduced in complexity any further than by the me;lrod suggested in the



-86-

preceding paragaph.

Therefore, the Toom-Cook algorithm and Winograd's complexity theory give

some bope of ñnding a minimal multiplication algorithm. However, the resulting

algorithm may be exceedingly complex and messy, especiatly for large N, and there-

fore may be of little use in practice.

4.2 COEFFICIENT SENSIÎIVITY AND ROUNDOFF EFFECTS

What are the effects of rounding off the coefficients in matrix G, ? Whar are

the roundoff noise properties of the cascade and the LSA architectures ? The

answers to these questions are important in any practical implementation of the DFT

spectrum filters described in this tbesis.

One of the essential features of a linear spectrum ûlter mat¡ix in some general

frequency domain is that the matrix is strictly diagonal. This is because a linee,r filter
merely scales and pbase sbifts a particular spectral co¡nponent. The nondiagonal

nature of G, for almost any G, indicates that Gt is really a type of nonlinea¡ filter.

Thus, a linear filter in one kind of frequency domain usually beconnes nonlinear in
any other frequency domain.

The effects of rounding off the coefficíents of G, could be studied in terms of

their effects on G¡, as a change in G,, called aG,, causes a change in Gr, called ^åGr,
since

AGÍ = FT-t 
^G, 

TF-t . (4.6)

Sorne nume¡ical experiments in this regard show that off-diagonal te¡ms appear in G,

when G, is rounded off, especially if the rounding is very coarse. This is a nonlinear

effect

In the area of roundoff noise properties of the cascade and the LSA architec-

tures, the following noise models are likely to be useful, at least to a 6rst approxinna-

tion' Since the cascade implements the DIF FFT butterfly, the burterfly diagram itself
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can constitute a noise model for the cascade. Quantizers can be placed at the nodes

which are multiplier outputs in the butterfly diagram. This model suggests that the

output noise power of the cascade is proportional to logrN, the number of stages in

the butterfly diagram (also the number of cascade stages). The LSA can be thought

of as a transversal filter, with quantizers at the outputs of the multipliers in each

IPSP. The multipliers are like the taps in a transversal ûlter. There are O(N) taps

and so the noise power at the output of the LSA can be expected to be proportional

to N. Thus, it seems that the LSA has a poorer noise performance than the cascade

for a given N and M (word length).

4.3 TIVO.DTMENSIONAL DFT SFECTRUM FILTERING

The spectral filtering scheme of this thesis appears useful only in the case of

one-dinrensional DFT spectrum filtering. Can the method be used to filter two-

dimensional signals? The method could be useful in digital image processing applica-

tions.

It has already beel stated in Chapter II (section 22) that Kahveci and Hall [28]

briefiy considered the two-dimensional problem. In [æ] a two-dimensional signal is

represented as a matrix rather than as a vector. However, either the columns or the

rows of an NxN matrix may be stacked in order to give a vector of N2 components.

Thus, the two-dimensional NxN signal is equivalent to an N2x 1 one-dimensional

signal (assuming column vectors) and so the two- dimensional DFT spectrum filtering

problem can be reduced to an equivalent one-dimensional DFT spectrum filtering

problem. However, the vector equivalent of the NxN matrlr is N times bigger than

an N-component vector and so N different G, matrices (NxN) a¡e needed to filter

the N2x1 vector. This implies that there will be N G, matrices in the T transform

domain as well. Clearly, the two-dimensional problem is tougher than the one-

dimensional problem, especially if the G, matrices cannot be efficiently factorized.
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4.4 THE USE OF OTHER, TRANSFORMS

This thesis considered only certain special cases for T, one of which was quite

trivial. FIow can the results of Chapter II in this thesis be generalized in a meaning-

ful way to other T? The representation theory of groups may be useful in this prob-

lem.

in Apple and Wintz [55] and Cairns [56] the problem of fast transforms on 6nite

Abelian gronps is examined. Such considerations lead to tl¡e FFT and FWT. It

turns out that the character tabie of an order N (not necessarily a positive integer

power of two now) cyclic group (cyclic groups a¡e Abelian [35]) can be regarded as

the DFT matrix. The dyadic group (Rosenbloom [57]) has a character table which

can be regarded as the DWT matrix. Karpovsky [58] considered transforms on non-

Abelian groups. Non-Abelian groups have irreducible unitary representation tables

with matrix entries, while the irreducible representation tables of Abelian groups

always contain only scalar entries. This leads to the fact that transforms on non-

Abelian groups give matrix valued spectral components, while transforms on Abelian

grouPs give rise only to scalar valued spectral components. Transforms on non-

Abelian groups are little known and little used. The only studies of these transforms

known to the author of this thesis are by Karpovsky [58] and Karpovsky and Tra-

chtenberg [59]. In [55],[56], and [58] it is demonstrated that if a group G can be fac-

tored into a direct product of smaller groups then any transform defined on G will

have a fast computational algorithm very like the FFT and the FWT.

It may be that group theory could be used to construct fairly arbitrary T

transforms and the structure of the resulting G, matrices could be studied under the

general framework of group theory. This might lead to interesting results, especially

in the case of transforms on non-Abelian groups.
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Chapter V

CONCLUSIONS

This thesis has studied a class of nonrecursive filters that are used to ñlter DFT

spectra: the DFT spectrum filters. Such filtering operations amount to a form of

periodic convolution. As well, the VLSI implementation of such filters with the 0(N)

time complexity hardware algorithms, known as the radix 2, pipeline and the linea¡

systolic array, were considered. Tbe principal conclusions of this thesis are:

7. If the Fourier gain matrix (G¡) is that of a linear filter then the T transform

domain filter (Gr) will be real and block'diagonal in general, provided that T is

a real matrix.

2. The structure of G, for T : W (DWT matrix) and T : H (DHT matrix) is such

that DFT spectrum filtering using T and G, is computationally more efficient on

a sequential processor than DFT spectrum filtering using F (DFT matrix) and

Gt for N< 64, where N is the number of components in the real signal vector.

3. If the elements on the main diagonal of Gr, called g¡, satisfy g¡ ( n for all i and

Bi : gN-i for i : 7,2,...,N12-1, then DFT spectrum filtering with T : W and G, :
G* is computationally more efficient on a sequential processor than DFT spec-

trum filtering with F and G, for N< 128.

4. Linear systolic arrays are generally not suitable for the implementation of

transforms such as the DFT, D\ryT and DHT, since the radix 2, pipeline can be

used to implement tbem with O(logrN) processing stages instead of the O(N)

stages needed by the linear systolic array. The radix 2, pipeline is also faster by

â 
^^ñelâñl 

lqrla¡ thqn thp linpqr crrctnlin arr¡rrs.¡ uJ.



5

6

-90-

Because G, has no known computationally efficient factorization (other than

the trivial one of Chapter IV) that can be implemented with a radix 2, pipeline

structure (or something very similar), it must be implemented with a linear sys-

tolic array.

A special purpose hardware implementation of T as a radix 2, pipelíne structure

and G, as a linear systolic array is not as area and time efficient as a cascade

implementation of F and a complex multiplier implementation of Gr. There-

íore, DFT spectrum filters using T and G, are not as readily implemented with

VLSI methods as are DFT spectrum filters using F and Gr, except in certain

special cases.

DFT spectrum ûltering with a linear systolic array implementation of G, may be

worthwhile if the entire filter can fit onto a single silicon chip, or if the srruc-

ture of G, is particularly simple regardless of how big N is.

7
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Appendix A

TYPICAL ELEMENT GF TI{E A.MATRIX

Here it is shown that (2,10) is true. Let

frn=trXP

be a typícal element of F and let

f

2¡r nr_J '{ ,4 = 0,1r^.."1V -1 ,N
(A1)

(A3)

(A2)

for the same range of r and n vatues, be the t¡çical elernent of F'1. Tbus. F'1 :F*/¡ì

and F : FT,F-I : (F-l)T as wett. Using (41) and (,A2) anct the definitíon of marrix

muitiplication yields

exp
I
N

1,"ry\
[rv )

f n¡9t-f ¡^

Substitr¡ting (41) and (42) into (43) clearly yields i2.10)

f¡ -l
A =F -IG.F = ISt la

Ii =o
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/rpptndix D

PROPEII.Ï'TES OF I'TATRIX C

from rvhich it is easy to see that ajp=a)lrt which implies that ájt)=6;À)')r, or Á^(ti t,
Hermitian

ìWe first show that riJo) ir IÌermitian. Clearly then, B will be Hermitian as well

since it is in quadrants two and four of inlÄ). A typical element of ,ijt) ¡,

oS, =".pþ#r,-.lJ (81)

It is now necessary to sirow that c=(c"¡z' and that c =expurk)Ð=(-l)ÀB in

(2.13). Begin by changing the indexing scheme usecJ to represent typical elemcnts in

eacl¡ of the four quadrants of iJt) as follows;

euadranr -l) õ,"' ( zn l /v . ì;'= "ry[/ ¡u \n- T -r))

r = 0,1,...,f -1, n = r,r,...,+-1 and ^ = [*, (82)

ettadranr -2) ã::) ="'oþ#i^ -^tj

n = 0,1,^..,f -1, m = 0,t,...,f -t (Jr3)

euadrant -3) on*\ =.'r[r#(i*,' -.rJ

r =0,1,...,1-1, m =0,r,...,+-1,and n = {*,

Quadrant -4) all, ="*þ#,, -l]

(84)
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r =0,1,'.,+-!, p =0,r,...,+-!, n =l*r,andm =Tno (85)

We can write (84) as

(85)

wbich allows one to write that C : exp(jrrk)B since (86) is merely (83) multíplied by

exp(jnk). (84) represents a typical element of C. (82) represenrs a t¡pical element of
(c')T. It is possible to rvrite (c')T : exp(-jrr¡XB")T = exp(-jrrk)B = e>rp(jnk)B : C

because iJ') ir Hermitian- Toeplitz.

o*t = exp Ç ttk, "* þ#(, -'l
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Appendix C

TIIE METHOD OF TADOI(ORO AHD ITIGUCHI

Tadokoro and Híguchi [14,15] have considered ¡¡s samples of a signal to be f(0¡)

/v -r2'

and

as

,f (0,) = 40 * ! [o.cos É0, + å.sin &0rl + by¡2sin (N p)Ot ,
À-l

(c1)

(c3)

where N:2M and 0¡ =#-fr,i=\,Z,...JV. This is equation (g) in [la]. Rewrite (c1)

f (m) = d0 * I lo"cos n0. # ånsin n0.J * å¡epsin (N /Z)a^ , (cz)

/v -r2'

r -l

.2¡ am,-T-

vhere now 0^ = + + f, and rn =0,1,...,N -1 (using i = m+l)

Let

-f zþr) = E ¿" W^ Jn = 0,1,...,1V -1 ,

iv -1

r=0

where W : exp(j2rlN). The 6" are spectral conrponents (the true DFT coefficients)

and they satisfy ô6,ó¡yp( R and ê, = êå. for i:1,2,...,N/2-1. Note that

b¡¡¡2sin(N P)0^ = bv¡2rìn(Tm+i) = (-r)nb,vrz . using (c3) and the fact rher ¿i -- ¿i,-,

gives

/v -r2'
s
-¿s-l

¡(^)=óo* I:
/v -1s

n -jl+1
2

[u" " ì * u,,,"'"'J1

.22øtN
,e +



=ôo+ I

-95-

soc w

/Y

2^ | .2r^^ .zn-1

L;,^rto + r"'"-'TJ + I( c)r-l

^ =Wî
s^ - jþ^

2

-| an+jb^

2

(c4)

(cs)

(c7a)

(c7b)

itl

Now let

c
^

Substitute (C5) into (Ca) in order ro get

^'.---la

f (^) =óo+ I þ..*[ff-iJ * ånsin lry-iJ] + (-1)'ón, (c6)
n -l

but this is identical to (C2) if

rig = ttg ,

ônn=bxn,

1 (c7c)

^ ^tcN-n = c, (c7d)

Thus, (Cl) is the inverse DFT "in disguise" and to get the true DFT coefficients one

would use (C7).

Â -tt,in^-ib^ -. _,r ¡{Ls - w Z ,n = Lr¿,..rT-
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Appendix D

TYPICAL ELEMENT OF G (K)
w

Here it is shown that (2.?7) is true. Using (2.24) and (Z.lZ),

¡G',)s¡ = l¿t o^,;r*,^]
þ{ J

I
N

g*I
p'0 þ+'-,ù]
¡V -1

9-l

(-1)'*
b¡(tÞ¡@l

"ll

exp (D1)

(D2)

Let t (r\y = [cjl)] so

þwe<,\v = [+,i
q-l
), [i', {n Þ, {. ) + t,to\b¡(n))

(-1)'*

t917

[ ., /v-LY-l
= 

[*'-åå [,+.-',J]exp

but this is 1i¡) in Q.27). Note that in each of the first lines of (Dl) and (D2), the

definition of matrix multiplication has been used.
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Appendix E

EXAMPLES OF PARTIAL GAIN MATR,ICES

The following matrices are examples of pattial gain
6&)' 6]r>' and G,,(t) for N : 8. It is assumed that gt = 7 for all i.
c*(r) - g*d*(t) and so the matrices displayed below are ö$'t matrices.

THE PARTIAL \ryALSH GAIN il4ATRICES ÂRE

PARTIAL WALSH GAIN N4ATRIX Gil( O )
REAL PART

matrices for
We can define

1 .000
0 .000
0.000
0 .000
0 .000
0 .000
0 .000
0 .000

0 .000
0 .000
0 .000
0.000
0.000
0 .000
0 .000
0 .000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0 .000
0.000
0 .000
0 .000
0 .000
0 .000
0 .000
0.000

0 .000
0 .000
0 .000
0 .000
0 .000
0 .000
0 .000
0 .000

0 .000
0 .000
0 .000
0 .000
0 .0c0
0 .000
0.000
0.000

0 .000
û .000
0.000
0.000
0.000
0.000
0 .000
0 .000

0 .000
0 .000
0 .000
0 .000
0.000
0 .000
0.000
0.000

I}4AGIN,ARY PAR'|

0 .000
0.000
0 .000
0.000
0.000
0.000
0 .000
0.000

0 .000
0 .000
0.000
0.000
0.000
0.000
0 .000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0 .000
0 .000
0.000
0 .000
0 .000

0 .000
0 .000
0 .000
0 .000
0.000
0 .000
0.000
0 .000

0 .000 0

0 .000 0

0.000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

0.000 0

0 .000
0 .000
0.000
0 .000
0.000
0 .000
0 .000
0.000

000
000
000
000
000
000
000
000
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PARTTAL WALSH cArN N{ATRTX Gil( 1)
REAL PART

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.000 0.000 0.00

.000 0.000 0.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.42

.00

.00

.17

0 .000 0 .000
0 .000 0.000
0 .000 0 .000
0 .000 0 .000
0 .000 0 .000
0.000-0.777
0.000-0.427
0.000 0.000-

0

0

0

0

0

0

0

0

00
00
00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
3 0.1
7 0.4
0 0.0

00
00
00
00
70
00
00
70

00
00
00
00
00
00
00
0-0

00
00
00

.00

.00

.00

.00

.00

.07

.17

.00

0 .42
0 .00
0 .00
0 .17

00
00
00
00

.177

.000

.000

.07 3

.000

.000

.47 3

.177

.000

00 0.0
00 0 .0
00 0 .0

000 0

00 - 0
77 0

.000

.000
0

0

27
00

.000

.000

.000

.000

.000

.000

.000

.000

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.000 0 .00

000
.000

.000 0 .000 0.000

.000 0 .000 0.000
.0û0
.000
000

.000
000

.000

IMAGII.IARY PART

0 .000 0

0.000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0.000 0.000
0 .000 0 .000 0 .000
0.000 0.000 0.000

.000 0 .000

0

0

0

0

00
7A
00
00
70

177
000
000
073



000 0.000 0

000 0 .000 0

000 0 .000 0

0 .000
0 .000
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PARTTAL \ryALSH GAIN IúATRTX GV( 2)
REAL PART

0 .000 0 00 0 .000
.000 0.

.000

.000

.000

.000

.000

.000

.000

.000

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

00
00
00
00
00
00
00
00

000

0

0

0

0

0

0

0

00
00
00
00
00
00
00

IÀ,IAGI}{ARY PART

0

0

5

0

0

0

0

0

0.
0.
0.
0.
0.
0.

.000

.000

.000

.000

.000

.000

0

0

0

0

0

0

0

0.000
0.000
0.000
0 .000
0.000
0.000

0 0.000 0

0 0.000 0
0 0.000 0

0 0.000 0

0 0.000 0

0 0.000 0.000 0

0 0.000 0.000 0

0 0.000 0.000 0

0 0.000 0.000 0

0 0.000 0.000 0
0 0.000 0.000 0

0.500
0 .000
0 .000
0 .000
0 .000

0 .00c 0 .000 0.000 0 .000 0
0 .000 0 .000 0 . 000 0 .000 0
0.000 0.000 0.000 0.500 0
0.000 0.000-0.s00 0.000 0
0.000 0.000 0.000 0.000 0
0.000 0.000 0.000 0.00û 0
0.000 0.000 0.000 0.000 0
0 .000 0 .000 0.000 0 .000 c

0.000
0.000

.000

.000

.000

.000

.000

.000

.000
,000

.00

.00

.00

000 0.000 0.000 0
000 0.000 0.000 0

.00

.00

.00
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PARTIAL WALSH GAIN À4ATRrX Cw( 3 )
REAL PART

0.000 0

0.000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

0.000 0

0.000 0

.000 0 .000
0 .000
0 .000
0 .000
0.000
0 .000
0.000
0 .000

.00

.00

.00

.00

.00

.00

00
00
00
00
00
7 -0
70
00

.000

.000

.07 3

.000

.000-

.177

0

0

0

0

0

0

0

0

.000

.000

.000

.000

.000

.000

.000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

000
073
000 -

000
177

00
00
00
00
7 -0
00
00
7 -0

0.0
0.0
0.0
0.0
0.0
0.0

000
000

0.00
0 .00
0.00
0.00
0 .00
0 .42
0 .17
0.00

.000

.000

.000

.000

.000

.177

.07 3

.000

0.000
0 .000
0.000
0.000
0.177
0.000
0 .000
0 .427

IlvlAGIl.{ARY PART

.000 0.000 0 .000

.000 0.000 0 .000
00
00
00
00
00
00
00
00

000

0

0

0

0

0

0

0

.00

.00

.00
,00
.00
.00
.00

.000 0

.000 0

.000 0

.000 0

000 0

000 0

.000

.000

.000

.000

.000

.000

00
00
00
00 -
00
0û

0 .000
0.000
0.000
0.000
0 .000
0 .777
0.073
0 .000

0 .00
0 .00
0 .00
0 .00
0 .17
0.00
0.00
0 .42

.000

.000

.000

0,000
0 .000
0 .000
0 .000
0 .000
0 .427
0.177
0.000
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PARTIAL WALSI{ GAIN }vTATRIX Cfü( 4)
REAL PART

.000 0 .000 0.000 000

0

0

0

0

0

0

0

.000 1 .000 0

000 0 .000 0

000 0 .000 0

.000 0 .000 0

000 0 .000 0

.000 0 .000 0

.000 0 .000 0

.000

.000

.000

.000

.000

.000

.000

IÀ4AGINARY PART

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

.00

.00

.00

000

0

0

0

0

0

0

0

.000

.000

.000

.000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

00
00
00
00
00
00
00
00

00
00
00
00

.000 0 .000

.000 0 .000

.000 0 .000

.000 0 .000

.00û 0

.000 0

.000 0

.000 0

.000 0 .000 0

.000 0 .000 0

0 .000
0 .000
0 .000
0 .000
0.000
0 .0û0

0 0 .000
0 0 .000
0 0.000
0 0 .000
0 0 .000
0 0 .000
0 0 .000
0 0 .000

.00

.00

.00

.00

.00

.00

.00
00
00

00
00

00
00
00

0

0

0

0

0

0

0

0

00
00
00
00
00

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00 0.000
00 0 .000

00
00
00
00
00
00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

00
00
00
00
00

.000

0

0

0

0

0

0

00 0 .0
00 0.0
00 0 .0
00 0.0
00 0 .0
00 0.0
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PARTIAL WALSH GArN À4ATr,rX cù/( s )
REAL PART

00
00
00
00
00
70
30
00

00
00
00
00
30
00
0-0
70

00
07

0

0

0

0

0

0

0

0

.000

.000

.000

.000

.000

0

0

0

0

0

0

0

0

0

0

0

3

0

0-
7

.000 0.000 0.000 0.000

.000 0.000 0.000 0.000

.000 0.000 0.000 0.000

.000 0 .000 0. 000 0

.000 0 .000 0 .000 0

.000 0.000 0.000 0

.000 0 .000 0 .000 0

.000 0.000 0.000 0

IÀ4AGI}.IARY PART

.00

.00

.00

.00

.00

.77

. c00 0 .00

.000 0 .00

.000 0 .00

.000 0 .00

.000 0 .00

.427 -0.17

.177 0.07

.000 0 .00

.000

.000

.000

.000

.177

.000

.000

.427

0 .000
0 .000
0.000
0 .000
0.000
0.000
0 .000
0 .000

00
00
00
00
00
00
00
00

000

0

0

0

0

0

0

0

.00

.00

.00

.00

.00

.00

.00

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0 .000

.000 0.c00

.000 0.000

.000 0.000

.000-0.777

.177

.07 3

.000-

0 .000
0 .000
0 .000
0 .000
0 .000
0 .427
0 .177
0 .000

000
.000
.000
000

0

0

0

0

0

0

0

0

0 .000
.00

.07

.00

.00

.77

0

0

0

0

0

0

0

00
00

.000
,000
.000-
.000

0.000
CI.000
0 .427
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PARTIAL \ryALSH GAIN túAt3,IX GV( 6 )
RE,AL PART

0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0.00
0 .00

.000

.000

.000

.000

.000

.000

.000

.000

.500

.000
0 .000
0 . s00
0 .000
0 .000
0.000
0 .000

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

0 .000 0

0.000 0

00
00
00
00
00
00
00
00

0.000 0 .000
.000 0 .000

000 0.000 0.000
. c00 0 .000

0

0

0

0

0

0

.00

.00

.00

.00

.00

.00

0 0.00
0 0 .00
0 0 .00
0 0 .00

00
00
00
00
00
00
00

.000

.000

.000

.000

.000

.000

.000

000
000
000
000

0 0 .00
0 0.00

IN4AGII\IARY PART

0 .000
0 .000
0 .000
0.000
0.000
0 .000
0.000
0 .000

0 .000
0.000
0 .000
0 .000
0 .000
0 .000
0 .000
0 .000

0.000 0 .00
0.000 0 .00
0.000-0.s0
0.50
0.00
0.00
0.00
0.00

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

00
00
00
00
00
00

00
00
00
00
00
00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

00
00
00
00
00
00

00
00
00
00
00
00
00

0 .000

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

0

0

0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

00 0.000 0,000
00 0.000 0.000

0.000
0 .000
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PARTIAL WALSH GAIN rvfAlT.IX Cr&'( 7 )
REAL PART

.000 0.000 0.000

.000 0.000 0.000

.000 0.000 0.000

.00

.00

.00

.00

.00
0 .000 0 .000 0 . 000 0

000 00 .000 0 .000 0

000 0

0 .000 0 .000 0

0 .000 0 .000 0

0 .000 0 .000 0

0 .0û0 0 .000 0

0 .000 0 .000 0

0 .000 0 .000 0

0.0
0.0

000.0
0.0

0

0

0

00.0
0.0
0.0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00

0

0

0

0

0

0

0

.000

.000

.000

.000

.000-

.000

.427

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .0c0 0

0.073 a

0.177 0

0 .0t0 0

0 0 .000
0 0 .000
0 0 .000
0 0 .000
0-0.777
7 0.0c0
7 0 .000
0 0.073

000 0

000 0

000
000
777

.77

.42

.00

IN4AGI}.{ARY PART

000
0(r0
000

0

0

0

0 .000
0 .000
0 .000

00
00
00

.000

.000

0.000
0.000
0.000
0.000
0.000
0.000
0 .000
0.000

0 .000
.00
.00
.00
.00

.000 0.000 0.00

.000 0.000 0,0û
,000 0.000 0.00

00
00
00
00
70
0-0
0-0
,\J'

.000

.000

.000

.000

.000

.07 3

.177

.000

00
00
00
00

.000 0.000 0.00
000- 0 .177 -0.42
177 0.000 0 .00
427 0.000 0.00

.000 0.073 0.77
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THE PARTIAL IIAAR GAIN I4ATRICES ARE:

PARTIAL IIAAR
RE.AL PART

GAIN I\4ATRIX G{( 0 )

00
00
00
00
00

00
00
00
00
00
00
00
00

.0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00

1

0

0

0

0

0

0

0

.00

.00

.00

0.000
0.000
0.000
0 .000
0 .000
0 .000
0.000
0 .000

0 .000 0

0.000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

0 .000 0

0.000
0 .000
0 .000
0 .000
0 .000
0.000
0 .000
0.000

0 .000
0 .000
0 .000
0.000
0 .000
0.000
0 .000
0 .000

0 .000
0 .000
0 .0c0
0 .000
0 .000
0 .000
0.000
0.000

0 .000 0.000 0 .000
.000 0.000 0.000

0 .000
0.000
0 .000
0.000
0 .000
0 .000

0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00

.000

.000

.000

.000

.000

.000

.000

.000

0 .00
0 .00
0 .00
0 .00
0 .00

.000

.000

.000

.000

.000

0 .000 0 .000
0 .000 0 .000
0 .000 0 .00000 0.000

00 0.000
00 0.000
00 0.000
00 0.000
00 0.000

IIVIAGII.IARY PART

00 0

0

0

0

0

0

0

0

0 .000 0 .000
0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

,00
.00
.00
.00
.00
.00

00 0

0

0

0

0

0

0

.00

.00

.00
00
00
0000



PARTIAL IIAAR
REAL PART
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GAIN N{ATRTX cr{( 1)

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

0 .000 0

0 .000 0

.00

.00

.00

.00

.00

.00

.00

IN4AGII.{ARY PART

.00

.00

.17

.25
000 0.77
177 0.000 0.

.000 0 .000

.000 0 .000
.00
.00
.00

.000 0 .000

.000 0 .000

,000
.000
.000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000
000
000

0 .00
0.00
0 .00

.000 0.000 0.00

.000 0.000 0.2s
0 .000 0

0 .000 0

0.000-0

.77

0 0.000 0

0 0.000 0

0 0.000 0

0 .000
0.000
0.000
0 .000
0.177
0 .000
0.777
0.250

00
00
70

0

0

0-
7

0

7

77
25
l7

00
00
70
00
70

0 .000
0 .000

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00

0

0

0

0

0

0

0

0

.00

.00

.00
,00
.00
.00
.00
,00
.00
.00

00
00
00
00
00
00
00
00

00
00

.000 0

.000 0

.000 0

.000 0

.000-0

.777 0

.250 0

.777 0

.000

.000

.250 -

.177-

.000 -

.777

0 .000
0.000
0 .000
0 .000
o.177
0.2s0
0.777
0 .000

0 .000
0.000
0 .000
0 .000

.00

.00

.00

.00

.00

.00

.00

.00

.77

.00

.77

.25

00
00
7 -0
0-0
70
00

0 .000
0 .000



PARTIAL IIAAR
RE.AL PART
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GArN MATRTX cr{( 2)

.000

.000
.00
.00

.00

.000 0.000
0 .000
0 .000
0 .000
0 .000
0 .000
0.000
0 .000

.000

.000

.000

.000

.000

.000

.000

.000

000
000
000
000
000
000
000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00
00
00

000 0

000 0

000 0

000 0

000 0

000 0

000 0

000 0

0.000
0 .000

.0000.0000 .000

.0000. s00

0000.000
.0000 .000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

.00

.00

.00

.00

.00

.00

.50

II4AGII.IARY PART

.00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 .000
0 .000

0.000
0 .000
0 .000

.000

.000
0 .000
0 .000

00
00
00
00
00

0 .000
0 .000

0 .000 0

0 .000 0

.00

.00

.50

0 .000 0

0 .000 0

0.000
0.000

ú

0

0

0

0

0

0

0

0.000
0.000
0.000 -

0.500
0.000
0.000

0

0

0

0

0

0

0

0

00
00

.00

.00

.00

.00
00
00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

.00

.00

.00

.00

.00

00
00
00
00
00



.2s0 -

.177

0 .000
0.000
0 .000
0.000
0.177
0 .000
0.177
0.250

0 .000 0 .000
0 .000 0 .000
0 .000 0 .000
0 .000 0 .000
0 .2s0 -0 .177
0.177 0.250
0.000-0.177
0.1?7 C.000

000
000
000
000
000
177

000 0

000 0

00

-r08-

GArN N4ATRTX cH( 3 )PARTIAL TIAAR
REAL PART

.00

.00

.00

.00

00
00
00
00
0-0
70
0-0
70

0000
00
00
00
00
0-0
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.000
0.000
0.000

0.000

0.000
0.000

000
000
000
000
000
000
000
000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00

0

0

0

0

0

0

0

0

00
00
00
00
00

000
000
000
000
000
000
000
000

000 0

000 00.000
177 0

250-00.000

.00

.00

.00

.00

.00

.00

.00

.25

.17

.00

.77
177 0

000-0

00
00
00

000 0 .000
000 0.000
000 0 .000
000 0 .000

00
00
00
00
00
00

INI/\GII.{ARY PART

.00

.00

.00

0

0

0

0

0

0

0

0

0 .000
0 .000
0 .000
0 .0ú0

0 .000
0 .000
0 .000

.17 7

.000 -

.17 7

.250

000-00.000
177 0

250 0

177 -0
00 -
00
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GAIN IvÍATRIX cH( 4)

0 0.000
0 0 .000
0 0 .000
0 0.000
0 0 .000
0 0 .000
0 0 .000
0 0 .000

0 .000
0 .000
0.000
0 .000
0.000
0 .000
0 .000
0 . c00

00
00

0.000
0 .000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00

0

0

0

0

0

0

0

0

000
000
000
000
000
000
000
000

0

0

0

0

0

0

0

0

000
000
000
000
0û0
000
000
000

0

0

0

0

0

0

0

0

.00

.00

.00

000
000
000
000
000
000
000
000

0

0

0

0

0

0

0

0

0.000

0.0000.000
0.0000.000
0.0000.000

PARTIAL I{AAR
RE.AL PART

0 .000 0 .000
00
00
00
00
00
00
00

.00

.00

.00

.00

.00

0.000
0 .000
0.000
0 .000

0.000
0.000

I .000
0.000

0.000
0.000

0 .000
0 .000

0.0
0.0
0.0
0.0
0.0
0.0
0.0 00

0 .000
0 .000

000
000

IÌÌ{AGIÌ.{ARY PART

.000 0.000 0

.000 0.000 0

.000

.000

.000

.000

.000

.000

.000 0.000 0.000

. 000 0 .000 0 .000

0

0

000
000

.00
,00

0

0

0

0

0

0

0

0

.000
000
000

.000

0

0

0

0

000
000
000
000

0

0

0

0

0

0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

00
00
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PARTIAL TIAAR
RE.AL PART

GAIN Ìì,ÍATRIX GH( 5 )

.000 0.000 0 .000 0 .000 0 .000

00
00

0

0

0

0

0

0

0

0

00
00
00
00
00
70
0-0
70

00
00
00

00
00
00
00
00
't -0
00
70

00
00
00
00

00
00
00
00
7 -0
00
70
0-025

0

0

0

0

0

0

-0
0

0

0

0

0

0

0

0

00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

.00

.00

.00

.00

.000

.000

.000

.000

.000

.000

.000 0

.000 0

.000 0

.000 0

.000 0

,000 0

.000 0

.000

.000

.000

.00

.00

.00

0 .000
0.000
0 .000
0 .000
0.000-
0.000
0.000-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.000 0.000 0.000 0.000
0

0

.00

.00

.77

.25

.17

.000

.000

.000

.000

.177

.000

.177

.2 s0

0

0

0

0

0

0

.000 0 .000 0

.000 0 .00

.250-0.17
.000-0.777 0.25
.000 0.000-0.1?
.000 0.177 0.00

00
00
00

00
70
0-0
70
0-0

.000
000
000

IN4AGII.{ARY PART

000 0.000 0.000 0.000
.000 0 .000 0.00

0 .000
0 .000
0 .000
0 .000
0 .000
0 .000

.00

.00

.00

.00

0 .000
0 .000
0.000
0.000
0 .000
0.777
0.2s0
0 .177

.00

.00

.00

.00

.77

.00

.77

.2s

.17

.00

.77

.000

.000

.000

.000

.777

.250

.777

.000



PARTIAL I{AAR
RI]AL PART
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GArN I\4ATRrX GH( 6 )

0 .000
0..000
0 .000
0 .000
0 .000
0 .000
0 .000
0.000

0 .00
0.00
0 .00
0.00
0.00
0.00
0 .00
0 .00

.00

.50

.00

.00

.00

.00

.00

0.000
0 .000
0 .000
0 .000
0.000
0.000
0.000
0 .000

0 .000
0.000
0.000
0 .000
0.000
0 .000
0 .000
0 .000

00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

.000 0.000 0.000
.000
.000
. s00
^ 000
.000
.000
.0c0

0 .000
0 .000
0 .000
0 .000
0 .000
0 .000
0 .000

0 .000
0.000
0 .000
0.000
0 .000
0 .000
0 .000
0 .000

0.000
0 .000
0 .000
0 .000

.000 0.000 0.000
0 .000 0 .000
0 .000 0 .000
0 .000 0 .000

IMAGI}{ARY PART

0 .000 0 .000
0 .000 0 .000

.000 0 .

.000 0 .

.000 0 .

.500 0 .

.000 0

.000 0

.000 0

.000 0

0

0

0

0

0

0

0

0

00
00
00
00
00
00

000
000
500
000

000
000
000

0 .000
0 .000

0 .00
0.00

0 0.000
0 0.000
0 0 .000
0 0 .000
0 0 ,000
0 0.000
0 0 .000
0 0.000

0 .00
0 .00
0 .00
0 .00
0 .00
0 .00

.000

.000-

.000

.000

.000

.000

0 .000
0.000

0.00
0 .00
0 .00
0.00
0.00
0 .00



PART IAL I{AAII
REAL PART
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GAIN MATRIX GIJ( 7 )

0 .000
0.000
0 .000
0 .000
0.000
0 .000
0.000
0.000

0 .000
0.000
0.000
0.000
0 .000
0 .000
0.000
0 .000

0.000 0

0.000 0

0.000 0

0.000 0

0.000 0

0 .000 0

0.000 0

0.000 0

.000

.17 7

.250

.17 7

.000

.000

.000

.000

.000

.0c0 -

0 .000
0.000
0 .000
0.000
0.177
0.000
0.177
0 .2s0

.177

.250

.777

0

0

0

0

0

0

0

0

00
00
70
00
70

00
00
00
00
0-0

00
00
00
00
00
70
00
70

0000
00
00
00
70
00
70
0-0

00
00
70
0-0
7 -0

00
00
00
00
00
00
00
00

.000 0.000 0.000

.000 0.000 0.000

.000 0.000 0.000

.00

.0c

.00

.00

.00

.00

.25

.17

.00

.t7

IN4AGII.{ARY PART

0 .000
0 .000
0 .000
0.000
0 .000
0.000
0 .000
0.000

0 .000
0 .000
0.000
0.000
0 .000
0 .000
0 .000
0 .000

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

.000 0

.000 0

.0c0 0

000 0 .00
000 0 .00
000 0 .00

.000 0 .00

.000 0 .00

.000-0.17

.000 -0.25

.000-0.77

.00

.77

.00

.17

.25

.00

.00

.00

.25

.77

.00

.77

.000

.000

.000

.000

.777

.250

.1,77

.000
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THE PARTIAL TRIDIAC'ONIAL GAIN NÍATRICES ARE:

PARTIAL TRIDIACOTIAL GAIN I\4ATRIX GT( O)
REAL PART

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.25

.25

.25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00

00
00
00
00
00
00
00
00

00
00
00
00
00

0

0

0

0

0

0

0

0

250
.250
.250
250

0.2s0
0.2s0
0.250
0.250
0.000
0.000
0.000
0.000

0.250
0 .2s0
0.250
0.250
0 .000
0 .000
0 .000
0 .000

.00

.00

.00

.00

.00

.00

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0

.000 0 .000

.000 0 .000
00
00
00
00
00
00

00
00
00
00
00
00

0

0

0

0

0

0

0

0

00
00
00
00
00
00
00
00

00
00
00
00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00
00
00
00

0

0

0

0

0

0

0

0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

.25

.00

.00

.00

.00

.000

.000

.000

.000

.00

.00

.00

.00

.00

.00

.000

.000

.000

.000

.000

.000

IMAGI}IARY PART

.00

.00

.00

.00

.00

.00

000 0

000 0

000 0

000 0

000 0

000 0

000 0

000 0

.000

.000

.000

.000

.000

.000

.000

.000

0 .000
00
00
00
00
00
00
00

.00

.00
.000
.000
.000
.000
.000
.000
.000
.000

.00

.00

.00

.00

.00

.00
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PARTIAL TRIDIACONAL GAIN þTATRIX GT( 1)
REAL PART

000
.000
.000
.000
000

0

0

0

0

0

0

0

0

.000

.000

.000

0

0

0

0

0

0

0

0

00
00
00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.000 0 .000

.000 0.000

.000 0.000

.000 0 .00

.000 0 .00

.000 0 .00

.000 0

.000 0

.000 0

.000 0

.000-0

.00

.00

.00

.77

.25

.77

0 .000 0 .00
0 .000 0 .00
0 .000 0 .00

.77

.25

.77

0

0

0

0

00
00
00

70
00
70

00
70
00

.000

.000

.000

.000

.777

.250

IIIIAGII'IARY PART

.00

.00

.00

.00

.00

.000 0 .00

.000 0 .00

.00

.00

.00

.00

.00

.00

0 .000 0 .000 0 .000
0.177 0.000-0.777
0.25
0 .77
0 .00

000 0.000 0.000
000 0.000 0.000

.00

.00

.17

.00

.77

.2s

.00

.00

.00

.00

.00

.000

.000

.000

.000

.000

00
.250
.177
.000
.777

0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0.00

0 0 .000
0 0.000

.00

.00
0

0

0

0

0

0

0

0

0 0.0
0 0.0
7 -0 .2
0-0.1
7 0.0
0 0.1

00
00
00
00
0-0
70
00
70

00
00
00
00
00
00

0 0 .000
0 0 .000
0 0 .000
0 0.000
0 0 .000
0 0 .000

0 0.0
0 0.0
0-0.1
7 -0 .2

0

0

5

7

0

7

00
00
77
50
77
00

0-0.1
7 0.000
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PARTIAL TRIDIAGONAL GAIN MATRIX GT( 2)
RE,AL PART

0 .2s0 0.0
0.000 0 .2
0 .2s0 0.0
0.000-0

00- 0 .250 0.000
0.2s0
0 .000
0 .2s0
0.000
0 .000
0 .000
0 .000

0 .000
0 .000
0 .000
0 .000
0.000
0.000
0.000
0 .000

0.000
0 .000
0 .000
0 .000
0 .000
0.000
0 .000
0 .000

0.000
0.000
0 .000
0 .000
0 .000
0 .000
0.000
0 .000

0 .000
0.000
0 .000
0 .000
0.000
0.000
0 .000
0 .000

00
00
00
00
00
00
00

00000

0

0

0

0

0

0

0

0

0

0

0

250
000 -

250
000
000
000
000

.250
,000
.250
.000
.000
,000
,000

0

0

0

0

0

0

0

0

.25

.00

.00

.00

.00

.000 -

.2s0

.000

.000

.000

.000

.000

5

0

.000 0

.000 0

.000 0

IN4AGII..IARY PART

.000-0.250 .000
0.000-
0.250
0 .000
0 .000
0 .000
0.000
0 .000

0

0

0

0

0

0

0

0

.25

.00

.25

.00

.00
,00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
"00
.00

.000

.000

.000

.000

.000

.000

.000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00

00
00 000
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PARTIAL TRIDIACCIIIIAL GAIN tvfATRIX GT( 3)
REAL PART

0.000
0.000
0 .000
0 .000
0.000
0 .000
0.000
0.000

.00

.00
.00
.00
.00
.00
.00
.00
.00.00

.00

IìIAGII.IARY PART

0 .000 0.000 0 .000
0 .000 0.000 0 .000

.000 0.000 0.000 0.000 0.000

.000 0.000 0.000 0.000 0.000

.000 0.000 0.000 0.00

.000 0.000 0.000 0.00

.000 0.250-0.777 0.00

.000-0.777 0.250-0.17

.000 0.000-0.177 0.2s

.000 0.777 0.000-0.17

00
00
00
70
0-0
70

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

.00

.00

0

0

0

0

0

0

0

0

00
00
00
00
70
0-0
70
00

0

0

0

0

-0
0

0

-0

0 .000
0 .000
0 .000
0 .000
0.000-
0 .00c

0 .000
0 .000
0 .000
0 .000
0 .000
0.177
0 .250
0.177

.000

.000

.177

.000

.177

.2s0

.000 0.000

.000 0 .000

.000 0 .000

.000 0.000

.250 - 0 .7?7

.177 0.250

.000-0.777

.777 0.000

000
c00
000
000
000
000

0

0

0

0

0

0

0

0

000
000

.00
,00
.00
.00
"17
.00
.17
.25

0

0

0

0

0

0

000
000
000
000
000
000

0.000
0.000

0.000
0.000

0.000
0.000
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PARTIAL TRIDIACÐNAL GAIN ÌT4ATRIX cT( 4 )
REAL PART

0.2s0-0.2s0 .254-0.250 0.000
-0.2s
0.25

-0.25

0

0

0

0

0

0

0

0

00
0-0
00
00
00
00
00

00
00
00
00

.250 -

.250

.2s0-

.000

.000

.000

.000

IT4AGIT.{ARY PART

00 0.000 0.000
00 0.000 0.000
00 0.00
00 0 .00
00 0 .00
00 0 .00
00 0.00
00 0 .00

.250 0.250 0.000
250-0

.250 0

.000 0

.000 0

000 0

000 0

00
00
00
00
00
00
00
00

000

0

0

0

0

0

0

0

000
000
000
000
000

0

0

0

0

0

0

0

0

00
00
00
00
00
00
00
00

00
00
00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.00

.00

.00

0

0

0

0

0

0

0

0

000
000
000
000
000
000
000
000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

.25

.25

.00

.00

.00

.00

.000

.000

.000

.000

.000

.000

00
00
00
00
00
00

.000

.000

.000
.00
.00
.00
.00
.00
.00
,00

.000

.000

.000

.000

.000

.000

.000

.000

0.
0.
0.
0.

0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

00
00
00
00
00
00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.000

.000

.000

.000

.000

.000

.000

.000



-tl8-

PARTIAL TRIDIAGOI.{AL GAIN tr4ATRrX GT( 5)
R.EAL PART

0 .000
0 .000

0 .000
0 .000
0 .000
0 .000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000 0.000 0.00
0 .000 0 .000 0 .00
0 .000 0 .000 0 .00
0 .000 0 .000 0 .00
0 .000 0 . 250 -0 .77
û.000-0.777 0.25
0.000 0.000-0.17
0.000 0.177 0.00

.000 0 .000
0 .000
0 .000
0 .000
0.777
0.000

-0.777
0 .250

.000

.000

.000

.00c

.777

.250

.1?7

00
00
00
00
70
0-0
70
0-0

.000

.000

.000

.000

.2 50.000

0 .000
0 .0c0
0. û00
0 . û00
0 . û00
0 .000

IÀ{AGINIARY PART

00
00
0-0
00
0-0

00
00
00
00
00
00
00
00

00
00
00

00
00
00
00
00
00
00
00

00
00
00
00

0

0

0

0

0

n

0

0

.00

.00

.00

.00

0 0.00
0 0 .00
0 0 .00
0 0 .00
0 0 .00
0 0 .00
0 0 .00
0 0 .00

.000 0.000 0.000 0

.000 0 .000 0 .000 0

.000 0.000 0.000 0

177 -

0 .000
0 .000
0 .000
0 .000
0 .777
0.2s0
0 .777
0 .000

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

000 0 .000 0

0.177-0
0 .000 0

-0.177 0

0.2s0-0

.777
250
777

000
777
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PARTIAL TRIDIAGONAL GAIN NTATRIX GT( 6)
RE,AL PART

0.25
0 .00
0.25
0 .00
0 .00
0.00
0 .00
0 .00

.000 0

.2s0 0

.000 0

.000 0

.000 0

.000 0

0 .000
0.000
0 .000
0 .000
0 .000
0.000

0.000
0.000
0 .000
0 .000
0 .000

.25

.00

.00

00
00
00
0-0
00
00
00
00

25
00
25
00

0

0

0

0

0

0

0

0

.00

.25

.00

.000 -o .zso 0.000 0 .000

.250 0.000-0.250 0.000
.000 0.000 0.000
.000 0.000 0.000
.000 0.000 0.000

0.0
0.0
0.0
0.0
0.0

000
000
000
000
000

0

0

0

0

0

0

0

0

.000

.000

.000

.0t0

.000

0

0

0

0

0

0

0

0

.000

.000

.000

.000

.000

0

0

0

0

0

0

0 .000
0.250
0 .000
0 .000

00
00
00
00
00

.00

.00

.00
0 .000
0 .000

IN{AGI }{,ARY PART

0

0

0

0

0

0

0

0

.000

.250

.000-

.250

.000

0.250 0

0.000 0

0.250 0

0.000-0
0 .000 0

0 .000 0

0 .000 0

0 .000 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00

0

0

0

0

0

0

0

0

000 0.000
000 .000

.000

0 .000
0 .000
0.000
0 .000
0 .000
0.0û0
0 .000
0 .000

.000

.000

.000

.000

.000

.25

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00000
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PARTIAL TRIDIACONAL GAIN MATRIX GT( 7)
RE.AL PART

0.000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0 .000 0

0.000 0

0 .000 0

.00

.00

.00

.00

.000 0.00

.000 0 .00

0 .000 0 .000
0 .000 0 .000
0 .000 0 .000
0 .000 0 .000
0.000-0.177
0.177 0.000
0 .250 0 .177
0.777 0.250

00
00
00
00
00
0-0

00
00
00
00
00
00

00

00
00
00
00
00
00
00
00

0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.00000

00
00
00
00
00
00
00
00

00
.00
.00
.00
.00
.00
.00

.00

.00

.00

.00

.00

.000

.000

.250

.777

.000

.177

.000 0 .000

.000 0.000

.00

.00

.00

.00

0.000
0.000
0.000
0 .000
0.777
o .2so
0.177
0 .00000

0

0

0

0

0

0

0

0

.00

.00

.00

IMAGIT{ARY PAIIT

.000 0.000

.00

.00

.00

.00

.00

.00

0.000
0,000
0 .000
0 .000
0 .000
0.000-
0.000-
0.000-

.000

.000

.000

.000

.2 50

.177

.000

.177

0 .000
0.000
0 .000
0.000
0 .177
0.250
0 .177
0 .000

0.0t)0 0.000 0

0.000 0.000 0

00

0.000 0.000 0

0.000 0.000 0

0.000 0.177 0
0.177 0.000 0

0 .250 -0 .177 0

0.177-0.2s0-0
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Á,ppendix F

EXAMPLES OF GAIN },I.ATTTICES

The following three måtrices are examples of gain matrices for G,r, G¡, and Gr, for N = 16. The

PrototyPe filter is a ûrst order low pass Butterworth ûlter correspoading to a sampling rate of 100 Iîz
and a digital cutoff frequency of 62'8 radvsec (10 Hz). The g¡ vatues fo¡ the G¡ m,arrix are specirìed in
the following table. Note that onty the g¡ for i = 0,1,....N/2-1 are shown since g¡ = gí ¡ bolds for i =
0,1,...,N/2-1.

t 8¡ ¡ 8¡

0

I

2

3

4

1.000

0.7274.44si

0.381-0.48ój

0.191-03e3j

0.095-0.294j

5

6

7

I

0.04s-02a7 j

0.018-0.132j

0.00.1-0.064j

0.000
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THE CIV IATRIX I S :

1.0

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

. t¡0

.00

,00

00

00

.00 .00

.00 .00

.00 . 10

.00 - .29

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.29 .00

.10 .00

.00 .33

.00- .22

.00-.40

.00-,13

.00 . 00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 . 00

.00 .00

.00 .00

.00 .00

.22 - .07

.07 - .02

.23 .25

.25 .08

.20 - .06

.06-.02-

.12-.04-

.04-.01-

.00 .00 .00

.00 .00 .00

.00 .00 .00

.00 .00 .00

.00 .00 .00

.00 .00 .00

.00 .00 .00

.00 .00 .00

.33-.11-.20

.11- .04 - .06

.20 - .06- .72

.06-.02-.04

.62.12.22-

.t2 .04 .07 -

.22.07.23

.07 .02-.25

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.22.40-,13 .00

.07 .13-.04 .00

.t3 .33 .22 .00

.04 - .22 .A7 .00

.c0 .00 .00 .62

.00 .00 .00-.12

.00 .00 .00 - .22

.00 .00 .c0-.07

.00 .00 .00 - .33

.00 .00 .00-.11

.00 .00 .00-.20
,00 .00 .00-.06

.00

.00

.00

.00

.00

.00

.00

.00

.t2

.04

.07

.02 -

.11

.04

.0ú

.02

.00

.00

.00

.00

.00

.00

.00

.00

.0ó

.02

.04

.01

.07

.02

.25

.08
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1.0

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
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.00

.00

.00

.00

.00

.00

.00

.00

.24 -

?7

.19

.10

.05

.02

.01

,01

.00

.00

.00

.00

.00

.00

.00

.00

.37

.19

.10

.05

,02

01

01

24

.00 .00

.00 .00

.10 - .29

.29 .10

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00

.00 .00 .00 .00

. 00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.20-.09-.18-.35

.35 .20-.09-.18

.18 .35 .20-.09

.09 .18 .35 .20

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

.00 .00 .00 .00

,00 .00 .0û .00

,00 .00 .00 .00

.0c .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 ,00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

.01 - .01- .02 - .05 - . 10 - . 19 -

.24- .01- .0t- .02- .05- .10-

.37 .24- .01- .01- .02 - .05_

,19 .37 .24-.01-.0t_.02_
.10 .19 .37 .24- .01_.01_

,05 .10 .t9 .37 .24- .0L_

.02 .0s .10 .19 .37 .24-
01 .o2 .05 .10 .19 .37
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TI{E GI' }|/\TRIX I S

.2s

.37

.19

.10

.c5

.03

.01

.û r

.00

.00

.00

.00

.00

. c0

,00

.00

.01

.25

.37

.19

.10

.05

.03

.01

.00

.00

.00

.00

.00

.00

.00

.00

.01

.01

.25

.37

.19

.10

.05

.03

.00

.00

.00

.00

.00

.00

.00

.00

.03

.01

.01

.25

.37

.19

.10

.05

.00

.00

.00

.00

.00

.00

.00

.00

.05

.03

.01

.01

.25

.37

.19

.10

.00

.00

.00

.00

.00

.00

.00

.00

.10

.05

.03

.01

.01

.25

.37

.19

.00

.00

.00

.00

.00

.00

.00

.00

.19

.10

.05

.03

.01

.0i

.25

.37

.00

.00

.00

.00

.00

.00

.00

.00

.37

.19

.10

.05

.03

.01

.01

.25

.00

.00

,00

,00

00

00

00

00

.00

.00

.00

.00

.00

.00

.00

.00

.24 -

.37

.19

.10

.05

.02

.01

,01

.00

.00

.00

.00

.00

.00

.00

.00

.01-

.24 -

,37

19

10

05

02

01

.00

.00

.00

.00

.00

.00

.00

.00

.5t

.L9

,10

,05

,02

01

0l

24

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00

.00 .00 .00 .00 .00

,00 .00 .00 .00 .00

,00 .00 .00 .00 .00

01-.a2-.05-.10-.19-
01-.01-.02- "05-.10_
24-.01-.01-.02-.05-
37 .24-.01-.0t-.02_
19 .37 .24-.01..01_
10 .19 .37 ,24-.01,_

05 .10 .19 .37 .24-
02 .05 .10 .19 .37
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Appendix G

PARTIAL GAIN È{/TTRTX PROGRAMS

Tbe following three PASCAL programs GWGEN, GHGEN and rRGEN gen-
erate the partial gain matrices c,(t)' cå(¡)' and Gr.(*), respectivety, The programs assume
that g, = I for all i values.

PRæR.AIú O¡¡GEN( IMAGEIN, IÌvAGEOUT) ;

(' THIS PRocRAlvf GENERATES ONIE-DINÍENSIO{AL v/ALsI-I
(' GAIN I\,IATRICES . IT IS USED TO FIND TI{E GAIN
( ' MATRIX IN TÍIE v/ALsH Doil1r.\IN, EeuIvÂLENT To rrIAT
(. IN THE FCI.]RIER D$Á\IN. T]IIS IS mNE IN THIS
(' PRæR/{[{ BY A}I IÌVI?LEMENTATIO¡¡ OF TIiE }íATRIX
( ' EQIIATION,
(' 1 -1
(' (tril= -ìVF GFFW
(' N
(' WIIERE, Gil : WALSH G{IN M,ITRIX (NCh¡-DIACONIAL),
(' GF = FOURIER GAIN MATRIX (DIACOI{/aL) ,

(' lV : \4?\LSH IUATRIX OF Tr{E TRANSFORT\{, &
(' F : FOLIRIER MATRIX OF TI{E TFáNSFORÀ{
(' Gil ¡tAy BE C6,fpLE)( IF cF IS pHySICALLy NOT
( . REALITÀBLE. NOIE.
(' GF : DIAG(G(0),c(1),...,c(r),...,c(l{-t))
(' so c(I) IS TIIE ITII DI/IGO.JAL ELEI1JNT OF GF. rVE
(. IMPLEMENT TIIE ABOI/E FORÀ,IILA FOR Gr By A 1\r¡C_D
(. FAST IVALSH TRANSFOIìI,Í OF CO,ÍPLEX EXPO¡{ENTIAL
( . FLTNCTIO¡¡S SCÂLED By c( I ) / (N. .2 ) . TTIUS ,

('
(' Clt¡/( I )=TltrOD[ (c(I) /t.I..2).EXp (2.!.I.pI.(R-p) /N) ]
('
('IÍIIERE, I = 0,1,2,.,.,N-1,
(' J = SQRT(-l),
(' PI= 3.14152654, &
lJ D br K.r = uUûtrLËJ( sp^A¡'t.Al- DñL\IN IFÐICES.
(' THE TCTIAIìWALSH GAIN N.IATRIX, Gil, IS

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
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N-1
Gñr = StI\{ 6il( I )

I=0

cct\rsT
SIZE=64;
PI-3.141592654;

lYPE
DECODED=ARRAYI 1 . .S lZE,t. . S IZE] OF INTEGER;
SPECTRTM=ARRAYI1. .SIZE,t. .SIZE] OF REAL;
CCI{PIEX:ARRAYII . .2, 1 . . 1024 ] OF REAL;
ClllvlSPEC:ARRAY[| . .2,1. .StZ,E,L. .SIZE] OF REa,L;

VAR

FLAGY, FLEG, IX, JX,NN, IL : INTEGER ;

IlvlAGE IN, IM\GEOUT : TÐ(T ;

DEC ltvl3 : DECODED ;

F\ilT : SPECTRTM; FF : CCMPLÞ( ;

GilI : CCtvISPEC ;

PROCEDL,RE HFIVT (VAR F : CCtvfpLD\ ; LN : INTEGER ) ;

(' THIS PROCEDIIRE FINDS rrIE FAsr \¡/ALsi{ Trì.A,i\sFoNrf ,oR ')
( . TIIE IÌWERSE, AÌ{D PRODUCES TIIE HADÁ¡úARD OR. n 

)
(. NATLTRAT ORDERING OF SPECTRAL CCT\,ÍP6IA{TS. 1TIIS ')
( ' PRæRAh{ I S ADAPTED FRCIú pAcE 9 5 OF THE B@K: . 

)
( . DIOIT.AL IhÁAGE PRæES S INC . 

)
(' ByR.C.COÌVZ-ALES.AbIDp.V/INTZ .)
( . PUBLISHED By ADDISC|{-\ìæSLEY, rs77 . 

)
('TYPE DECLARATION, ')
(' TYPE .)
(' CCMPLÞ(=ARRAYIL..Z,t..t0}4l OF REAI; .)
('TIfr USER'S À/[AIN ROUTINE PASSES TIE BASE_2 LOc OF .)
(.THE SAMPLE SEQUEI'¡CE LENGTH A¡¡D A 2XIO24 REAL ARRAY ')
('IM{ICH IS TITE SET OF CCÀ{PLEX IfIMBER SÆ,ÎPLES. ROT'.I ')
(.IS TT{E X.CæRDIITÅTE AI.ID ROil.2 IS TI{E Y-COORDII.IATE. ')
(.col-rtÂ{-l IS TIIE X-y VALUE OF THE lST SEQUENCE .)
('SAIúPLE. HFlilT RETURNS A 2X1024 ARRAY OF Flñ/r .)
('VALIJES (CC[úPLÐ(), IN HADAtvtARD æDER (NATURAL). .)

CChIST

PI=3.141592654l;
VAR

| , I ,L,N, LE ,LEl ,I P : INTEGER ;

')
')
')

('
('
('
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Tl ,T2:REAL ;

BEGIN (. HFWT .)
N: =P(}VER( 2 , LN) ;

Ffr, L: =1 TO LN DO

BEGIN

LE:=POI/ER(2.L);
LEl:=LE DIV 2;
FOR J:=1 TO LE1 DO

BEGIN

I:=J;
ÞIllLE I<=N DO

BEGIN

lP::I+LEl ;

Tl :=F[ 1, IP] ;TZ :=F[2, Ip] ;

F[1,IP] :=F[1,I ] -Tl;FíZ,IpJ :=F[ 2,t]_T2;
F[ 1, I] :=F[ 1, IJ+T1 ;FÍZ,I J :=FIZ,l]+TZ i
I:=I+LE;
END;

END;

END; (. END OF

END; (' HFWT ')
IN-PLACE CCMPUTATIChT OF F1VT PROCESS

PROCEDIJRE PFIVT(VAR F :CCtfpLEX ;LÌ.I : INTEGER) ;
(. TT{IS PROCED{.IRE FINDS THE FASI-\ryALSH TRAI.JSFORM ,OR
(r TIIE IÌ.¡\/ERSE, A¡tD pp.cDUcES TIiE pALf,ry OR
(. BINARY ORDERING OF SPECTR.AL CCI\¿PO.IENTS. TFrrs
(. pRæRAÀt IS ADAPTED FRCt\,t PAGE 9s oF TlrE BOOK;
(. DIGITAL IMAGE PROCESSING
(. BY R. C. CI)I{ZAIES AIID P. WINTZ
(' PLTBLISI{ED By ADDISCN.¡-\\æSLE-Y, tg77
(.TYPE DECLARATION,
(' 1YPE
(' CCtvlPLÞ(=ARRAyIt. .2, 1. .10241 OF RE{L;
(.THE USER'S NIAIN ROUTINE PASSES THE BASE-2 LOC OF
('THE sA[,fPLE SEQIJENCE LENGTH AÌ.JD A 2xr0z4 REAL ARRAy
(NVÍIICH IS THE SET OF CCI\{PLEX NTMBER S.AÀ4PLES. Rqil-l
('Is 1ÏIE x-cooi{DIt{ATE AhrD Roil-2 Is r}IE y-cooRDItIATE.
(.COLTI\/N-l IS TIIE X.Y VALI.'E OF TIIE lST SEQT.]ENCE
(.sAN{pLE. HF1VT RETURNS A 2XL024 ARR.AY OF FlilT
I 'VALUES l(fl/lpt F'f ì rN D^r ra'\v-..s u8 j, ¡¡i rroc¡ ORDER (BINARY).

I

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')

VAR
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I , J ,K,L,}¡\y'2,NIl ,N, LE,LEl ,FLG,IP: INTEGER;
Tl ,T2:REAL;

BEGIN (' PF'.WT .)
N:=POilER(2,LN);
lW2:=N DIV 2;
l{\{1 :=N-1;
J ::1 ;

FOR I:=1 TO l.&11 DO

EECIN
IF I>=J THEN

BEGTN

K::lW2 ;

El'¡D

ELSE

BEGIN

T1 ::F[1, J] ;T2 ::F[2,J] ;

F[ 1,J] :=F[ 1,I];FIz,t I ::F[ 2,tl;
F[ 1,I ] ::T1 iFIZ,I I ::T2;
K::lW2 ;

ENfr;

FLG:=t;
lvI{ILE FLc:1 DO

BEGIN

IF K<J THEN

BEOIN

J:=J-K;
K:=K DIV 2;
END

ELSE

BEGII.¡

FLG: =0 ;

END;

END;

J:=J+K;
END; ( ' END OF Ti{E BIT REVERSAL IììOCESS ¡

FOR L::1 TO LN DO

BEGIN

LE:=POilER(2,L);
LEI::LE DIV 2;
Fm, J:=1 TO LEl DO

BEGIN

I;=J;
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UiI{ILE I<=N DO

BEGIN

IP: =I+LE1 ;

T1 ::F[ 1, IPI ;TZ t=F[2, IP] ;

l'[ 1,IP] ::F[ 1,I ] -T1 ;F[2,IP] ::FIZ,rl-TZ;
F[ 1 , I ] :=FI I , I ]+Tl ;F[ 2,t ] ::F 12,Il+TZ;
I::I+LE;
END;

END;

END;

END; ('PFï¡I'')

PROCEDLJRE TtlÐD(vAR Fril'f 1 : spEcTRtI\,t;vAR cctitFtwt :cctltspEC;
DEC IIr/ß2 : DECODED ; lù(4, lrly4, FLAOIZ, FLEG 1 : I NTEGER ) ;

(' THIS PROCEDT.TRE PRODTJCES A T\I,lf,-D }VAI,SH OR II.TVERSE }'/ALSH ')
(' (BOTH ARE TIIE SA[4E PROCEDLTRE). TIIE FOLLOTVING .)
(' ffPE DECLARATION.TS, .)
(' TYPE *)
(' DECODED=AIIRTAY[I..S[Z,E,L..SIZE] OF INTEGER; ')
(' SPECTRTNFARPáYIl..SIZE,l..SIZE] OF REAL; .)
(. cctlíspEc-^RlL\y[t..2,1..SIZE,|..SIZE] OF RELL; ,)
(. ÌúJST APPEAR LnÐER TTIE T4{IN DECL¡.RATIOI.IS. A VARIADLE, .)
(. CÁILED FF, OF 1YPE COilfPLÐ(, [[IST ALSO APTEAR U}ìDER Tiil] .)
(. N4AIN DECLARATIONS. \4{.IENEVER TTIE PROCEDURE T\ryÐD IS ")
(. CåILED TTIE F'I/-T IS FOUND, EITIiER OF TTIE CONTENTS OF FWT1 ')
(. OR OF CCMF1VT1 , DEPENDING UPû\ T[iE VALIJE OF A FLAG, (}¿LED')
(' FLFÆI LocArLY. THE CALLINTG RourINE V/ILL GET TrË P.EAL ')
(' PART oF ccl\4r.lr,Tl vIA Ftrvrl .AI.{D ccMF\TTl IrAs rIE coMpLD( .)
(. }VALSH SPECTRUM. USE OF THIS PR.OCEDTJRE CÂT-¡ DE DESCIìIEED ')
(' AS FOLLOilS, ')
\ .)
(' FINDING lvALsH Tr{.4}{sFoRrvrs oF ccMpLEi INpiJ,-T .)
t ')
(' (A) FLEC1:1 ,FLAGY2=! - .)
(. 1) T!¡,Ð1VALSH Ot{ TFIE CCFTTETITS CF CctllFlilTl[.,.,.] .)
( . US II$G THE HADAIi,IARD G,DER (}I}.\vT PROCEDIJRE USED) . 

)
(. WILL RESULT }ITIEN TTIESE FLAGS ARE USED. .)
(' 2) FlpTl[.,.] ]VILL CCt¡TAIN T]IE REAL PART OF .)
(' cct\4FwT1[.,.,.JAFTERT$.ÐHASRUN, .)
ta(. 3) CCEdF{ilTi[.,.,.] WILL HA.fE TrM T$D-DU/ALSH OIJTPUT ')
(' (TIiE ORIGIÌIAL DATA IN CChIF\¡/rl[.,.,.J V/ILL BE .)



('
('
('
('
('
('
('
('
('
('
('
('
('
('
('
fj
t

('
('

-130-

DISPLACED OF COT.JRSE) .

(B) FLEC1=1 ,FLAGY2=O
S/qil4E AS c¿,SE (A) EXCEPT \ilE UsE pFtvT ( pALEy
oRDER).

FINDII.¡G }VALSI{ TRAIVSFOT.I.¡,{S OF INTEGER INPLTT

(C) FLEGI=O,FL{GY2=l
l) TttÐ wAI"sH oN THE COI¡TENTS OF DECIh4GII..,.l

us Ilrc TI{E HADA¡ì4ARD ORDER (rmilT pRccEDURE usED)
WILL RESI.ILT WTTEN THESE FI.AGS ARE USED.

2 ) FlVT1[ . , . ] WILL CCI\¡TAIN THE REAL PART OF
CCvfFllTl[.,.,.] AFTER T$JI}D flAS RUN.

3) CCl/FlilTl [.,.,.J WILL HAVE THE T!\O_D V|/ÂLSH OUTPUT
(REAI PART I¡OI{ZERO,IIVÍ,{GINARY PART ZERO) .

(D) FLEG1:0,FI AcY2:0
SA¡vlE As Cá,SE (C) EXcEpT ltE USE pFflT (BIt{ARy
oRDER).

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')

VAR

I,J,LNN:INTEGER;
TEMP:CCMSPEC;

BEGIN (. Tr¡/Ð .)
LNN: =ROUND

IF FLEG1=1

BEGIN

(LN(¡IY4.1 . o) /LN(2 . 0) ) ;

THEÌ{ (. Ð() FAST WALSFI OF CC¡,{F*T CONTENTS

IF FLAGY2=1 TIIEN (' usE H¿,DANÍARD opJ)ER (Ha'JT pRocEDLrÀE)
BEGIN

FOR I::1 TO l.Ð(4 DO

BEGIN

FOR J::1 TO l{Y4 DO

BEGIN

FF I I, J J :={(IVF\rTl [ 1, I, J ]
[2, I I : {Ctr,!F\{Tl [ 2, I, J ]

(. REAL PÂRT INTO FF[ 1 , J ]
(. II\4AC. PART INTO FFI2,J]FF

')
')

END;

HfrilT(FF,LNN); (. Oì{E-D FWr OF Roù/ I .)
FOR J::1 TO t{Y4 DO

BEGIN

TEI{PI 1, I, J] :=FF[ 1, J ] ;

TEUP[ 2,1, I J ::FF12, J I ;

END;

END; (' END OF RGp TR.Ah¡SFORI\,IATIOF¡S " )
FOR J:=1 TO lfY4 DO
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BEGIN

FOR I:=1 TO lù(4 DO

BEGIN

FFI 1, I] :=TEMp[1, I,J] ;

FF[2, I ] :=TEMpfZ,t, J | ;

END;

HFWT(FF,LNN); (. ONE-D FIVT OF COLLI¿¡¡ J

Fm, I ¡=1 TO tù(4 DO

BEGTN

. CCt\4FrilTl [ 1, I, J ] ::FF[ t, I ] ;

CO\,lFlVTl 12 ,I , J I : =FF IZ ,l I ;

END;

END; (' END OF FINDING I\VT OF COLIÀ/NS r
FOR I::1 TO lS(4 DO

BEGIN

Fm, J::1 TO ¡¡Y4 DO

BEGIN

CCt\,|FlilTl [ 1, I, J ] ::CCfrdF\ilT1 [ 1, I, J ] /M(4 ;

CCMF1VT1 12, l,J I : -COMFIVT I LZ, t, J I /tS(4 ;

FIVT1 [ I, J] : ={OvtFtvTt [ 1, I, J ] ;

END;

END;

END

ELSE (. USE pALEy ORDER (PFWT PROCEDT.IRE) .)
BEGIN

Fæ, I : =1 TO N}(4 DO

BEGIN

Fm, J:=1 TO Mf4 DO

BECIN

FF[1,J]:=CC{\tF\ilTl [1,I,JJ; (. RE^L PART
FF[2, J] :={OtúF\e'TL[2,t,Jl ; (. IMAG. PART
END;

PIryT(FF,LNN); (. O.IE-D FwT OF ROil I .)
FOR J::1 TO l.fY4 fO

BEGIN

TEIúP[ 1, I, J] :=FF[ t, J ] ;

TE\.ÍP[ 2,I, I ] :=FF 12, J I ;

END;

END; (' END OF ROil TR.A¡¡SFORIVíATIO\¡S .)
FOR J::1 TO ¡IY4 DO

DDnrrtUlU¡ I!

FOR I:=1 TO lS(4 DO

a
)

INTO tìF[1,J]
Itrlo FF [2 , J )

')
')
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BEOIN

FFI I, I J ::TEMp[1, I,J] ;

FF[2, I ] :=TEMp[2, I,J] ;

END;

PFIïT(FF,LNN); (. ONE-D FWT OF COLLM.{ J .)
Ffr, I:=1 TO tS(4 DO

BECIN
CCIúF1VT1 [ 1, I, J ] ;=FF[ 1, I ] ;

CCMFIilTl [.2,] , J J :=FF IZ ,t];
END;

END; (. END OF FINDING FW-f OF COLLI\|NS .)
FOR I:=1 TO lù(4 DO

BECIN
Fm, J : =1 TO l{Y4 DO

BEGIN

CCñáFlryTl [ 1, I, J ] :=CCtnfF*Tl [ 1, I, J ] /tü(4 ;

CC[\,|FWT1ï2,I , J I ::CCMñVTtIZ,t, J J i NX4 ;

FlnTl I I, J] :-€CtrtF\ilTl I l, I, J ] ;

END;

END;

END;

END

ELSE (' DO FAST 1VALSH OF DECIÀ6 CCÎ\¡TEÌü.S . 
)

BEOI¡;
IF FLAGY2:1 THEN (' usE IIADA¡\4AIìD ORDER (HFlvr PRæEDURE)

BECIN
FOR I:=1 TO ÌU(4 DO

BEGIN

FOR J:=1 TO Mt4 DO

BEGIN

FF[ 1, J ] ::DECIIv!3?[1, J ] ;

FF[2,J]:=0.0;
END;

HI.WI(FF,LNN); (. ONE-D FrilT OF RGv I .)
FOR J : =1 TO t{Y4 DO

EEGIN

TEMP[ 1, I, J] ::FF[ 1, J] ;

TE\{P[2,t,J ]::0.0;
END;

END; (' E¡{D OF ROV TR.AhTSFORI\{A.TIONS .)
çrE r.-t r^ rv¡ M¡ v¡\ , .-¡ ¡v ltll ru

BEGIN

a
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FOR I : -1 -rO lÙ(4 DO

BEGIN

FFI 1, I ] :=TEMp[ 1, I,J] ;

FF[2, I ] :=TEMp [2,I, J | ;

END;

HFIIT(FF,LNN); (. CIÌE-D f.rwT OF COLI]S{ J .)
FOR I : =1 TO lù(4 DO

BEGIN

CCMFïT1 [ 1, I, J ] :=FF[ 1, I ] ;

CU\,ÍF\VTl[2 ,l , J ] ::FF 12 ,I I ;

END;

END; (. END OF FINDING F\ilT OF COLI},Î{S .)
FOR I : =1 TO lù(4 DO

BEGIN

FOR J : -1 TO t{Y4 DO

BEGIN

COvlFlilTl [ 1, I, J ] ; ={CtltFWTl [ 1, I, J ] /M(4 ;

CCMFlilTl 12 ,I , J I : ={Ctr4FWT tIZ ,1, J I /M(a ;

FlilTl I I, J J :=COMFIVTI I l, I, J ] ;

END;

END;

END

ELSE (. USE pALEy ORDER (pFtpT PROCEDITRE) .)
BEGIN

FOR I ; =1 TO lS(4 DO

BEGIN

FOR J:=1 TO l{Y4 DO

BEGIN

FFI I, J ] : =DECItv!3Z II, J ) ;

FF[2,J]:=0.0;
END;

PFVT(FF,L¡IN); (. ONE-D FTVT OF Rgry I r)
FOR J::1 TO ìry4 DO

BEGIN

TEMP[ 1, I, J] :=FF[ 1, J] ;

TEvfP[2,1 ,l]::0.0;
END;

END; (' END OF ROil TRAI.¡SFORMTTIONS .)
FoR J:=1 TO l{Y4 DO

BEGIN
Ff'ìtr¡ l.:t 'rñ ì.rt¿/ rrrì¡v rt^t ¡Æ

BEGIN
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FFI I, I] :=TEMp[], I,J] ;

FF[2, I ] :=TEMp[2, t, J] ;

END;

PFIVT(FF,LNN); (. OhtE-D FtryT OF COLLI\4{ J .
FOR I : =1 TO lù(4 DO

BEGIN

CCMF'WTI [ 1, I, J] ::FF[ 1, I ] ;

CCI\{FWTI 12,l,J I ::FF[ 2 . I ] ;

END;

END; (. END OF FINDINC FWT OF @LIM.ÌS ')
FOR I:=l TO NX4 DO

BECIN
FOR J : =1 TO l{y4 DO

BÞGIN

CCntIäTl I t, I, J ] :{CMF\\,Tl [ 1, I, J ] /blr(4 ;

CCf,4flilT1 IZ, l,J I : =CCt{FrilT I IZ, I, J I /lù(4 ;

FlilTl I I, J] :=COvtF\Ã/rt I l, I, J ] ;

END;

END;

END,

END;

END; (' TI4llD .)

PRocEDLtRE E(PFGEN(VAR E(pF1 : cctvtspEC ; INDÞ(,N : IlrirEGER) ;
( ' THI s PROCED{JRE ccrvfpurEs THE MATRIX oF cCtvrplE (

Ð(PChJENTIALS FOR. A PARTICI.IAR VALT]E OF I}TDEX
(=0,1,2,...,N-1) & OF A PARTICULAR ORDER (N =
POilER-OF-2).

VAR

SCA:REAL ;

R, P: INTEGER;
BEGIN (. Ð(PFGEN .)
SCA:=1 .0/N;
FOR R:=1 TO N DO

BEGIN

FOR P::R TO N DO

BEGIN

EXPFl [ 1,R,P] ::SCA.COS (2 .0rpI ¡INDEX. (R-p) /N) ;

EXPFl [1,P,RJ :=Ð(pFl[1 .R,pJ ;

EXPFI [2,R,PJ :=SCA.SIN(2 . 0.pI. INDEX.(R-p) /N) ;

EXPFl 12,P,Rl :=-Ð(pF1[2,R,p] ;

)

')
')
')
')

('
('
('



-135-

END;

END;

EI,ID; (' Þ(PFGEN .)

PROCEDURE GilIcEN(vAR GgvI l :cctvl,SpEC; INDÐ(1,NNl ,FLEGA,FLAGyA: INTEGER) ;
( ' THIS PROCENRE usEs rt4rf,D Æ.¡D Ð(pFcEN To pRoD{rcE THE

PARTIAL IVALSH GAIN À,ATRIX (tv(I) (= GLOBru VARIAIILE
(IilI), FOR A PARTICUL.¡.R IN'DÐ(I , I.E., \ì/E cET
GV(IìrDÐ(l), & A PARTICULAR æ,DER NNl (M{t=pOr\tER-OF
-2).

BEGIN (. GVIGEN . )
Ð(PFGEN(GVI1 ,INDExl ,NNl) ; ( ' cET ExpF-ryfATRIX oF ccMpLEX

Þ(PCbTENTIALS . 
)

T\IlcD ( FlilT, GilI 1, DEC It t3, NN 1, NN1, FLAcyA, FLEGA ) ;

(. cET Ttto-D tvALSH OF CCMPLÞ(
EXPONENTIATS . 

)
END; (' GilIcEN .)

(. MAINLINE PRæR.A,V .)

BEGIN (. (ì¡rcEN .)
RESET( II|AGEIN. 'GilINPUT' ) ;

RElilRITE( II{AGEOIJT, 'GñilUT' ) ;

READ( Ilvt{GE Il{, NN, FLEG, FLAGy) ;

Fm IL:=0 TO NN-l DO

BEGIN

GilIcEN(Gl\ ,lL,NN,FLEG,FLAGY) ; (. ÇENER^TE (}["( I ) . 
)

l¡rR. I TELN ( ItúAGEorJT ) ;vR I TELN ( IM4^cEcur ) ;lltR I TELÌ ü ( IÞ1AGEC:JT ) ;

IÀ/RITELN( IlvllcEour,' PARTIAL v¿rLSIr GAIN M{TRIX Gil(', IL,
YIRITELN( IÌúAGEOUT, ' REÂL pART') 

;

\4¿R II'ELN( II4AGEOLT ) ;

Fm. IX::1 TO NN DO

BECIN

FOR JX:=l TO M,¡ DO

BEGIN

\I8'ITE( Ilvlr\cÞOtn-,CIVI [1 ,IX, JX] :6 :3) ;

END;

\liR I TELN( IIi{AGEOUT ) ;

END;

')');

')
')
')
')
')

('
('
('
('
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ÌliR I TELN ( ItvtAGEdJT ) ;

U/RITELN( IMAGECÜT, ' II4AGINARY PART' ) ;

\VR ITELN( IIv|AGEOUT) ;

Fm. lX:=1 TO NN DO

BEGIN

Fm, JX:=l TO NN DO

BEGIN

\VRITE( IMAGEOUT,GilI [ 2, tX,JX] : 6 : 3 ) ;

END;

\l/R I TELN( IIv|AGEOUT ) ;

END;

END;

END. (. GilcEN .)

PRæR/{¡\,Í cIreEN( IMAGEIN, IÌT|AGEOUT) ;

(' THIS PRocR/cNt GENERATES CÀIE-DIMENSI0{AL IIAAR
(. GAIN IATRICES , IT IS USED TO FIND TIIE cArN
(. MATRIX IN TIIE TIAAR DOÀ/ÍAIN, EQUIVALENT To TTTAT
(. IN TI{E FOLTRIER DOMATN. THIS IS DONE IN THrS
(' PRmR.Alvf BY AN IMPLEMENTATIChI OF THE MATRIX
(. EqJATIOIV,

(' 1 -1 T
(' GÍI = - H F cF F H C
(' N
('M{ERE, cI{ = HAAR GAIN iltATRIX (NCN-DIaG0ì.IAL),
(' GF : FOURIER GAIN tvfATRIX (DIAGONAL),
(' I-I = TilALSH MATRIX CF THE TR./\NSFOIì¡\.í, &
(' F = FOLIRIER I{ATRIX OF TIü TF/.Ì{SFORM
(' C = DIAGONAI CORRECTICN MATRIX
(' T -1
(' = ((r/N) rrrr )
(' G{ lvlAY BE COMPLE( IF cF IS pHySICALLy Ngl
(. REALIZABLE. ÌWTE,
(' GF : DIAG(G(0),G(t),...,c(I),...,c(N-t))
(' so c(I) IS TIIE ITH DrAcONAr. ELEMENT OF cF.
(' TTtrE TCITAL HAAR GAIN À,[ITRIX, GIt, IS
(' N-1

')
')

)

)

)

)

)

)

)

a

a

a

a

a

a

')
')
')
')
')
')
')
')
')
')
')
')
')
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(' GH = stl\t cH( I ) .
(' I-o r
(. THE ORT}rcGOI\AL TIADA}4ARD ORDERED IIAAR TR.A¡¡SFORM '(' , ACCOPÐIÌùG To r
(. AII\4ED,ttATARAJAt¡,RAO,'COOLEY_T1JKEy_TypE .
(. ALCORITIì\| FOR TIIE tt{Alt TR.A}¡SFORM, t .
(. ELECTROT{ICS LETTERS, JUNE 1973, pp.276_278 .
(' , IS USED HERE (SEE ÌIFIIAAITT pRocEDuRE). .

cch¡sT

PI=3.14159 2654;
SIZE:64;

TYPE

CCMPLIÐ(=ARRAY|L . .2, 1 . . 1024 I OF REAL ;

CCMSPEC-¡\RI|¡\YI| . .2, 1 . . S tZlE, t. . SIZE] OF REÂL ;

VAR

IX,JX,NN,IL: INTEGER;
IMAGE IN , IMAGEOTIT : TEXT ;

FF :CCT\{PLÞ(;

GIII :CTMSPEC;

PROCEDIIRE IIFIIAART (VAR F : CCtr¡lpLEX ; LN ; INTEGER ) ;

(' THIS PROCEDIJRE CÂICULATES TIIE ORTLIæOI{AL (ñ*Crr ORTHOIvORIVAL)
(' Ii{DA¡\IARD ORDERED DISCRETE IIAAR TRAI\¡sFoRÈd AccoRDINc To
(' 'CæLEY-TUKEY-TYPE ALcoRITT{\,t FoR THE }IAAR TR.ANsFoR¡vf"
(' BY N. A$l\,fED,T. I.¡ATARAJAbJ, Al.tD K. R. RAO,
(. ELECTRCI\¡ICS LET,I'ERS, JLINE 1973, pp. 276-278.
(' TIIE oRDDr'ì.INc PRODUCED By TIIIS pRocEDuRE Is RECLIRSIVELY
( ' GENERA'TED US INc II = 1 AÌJD
(' I
('
(' I H H I

(' H = I N l,{ I

(' 2N I r

(' I I -I I

(' I N N I

('
(û WHERE I IS THE NTH ORDER INIT M{TRIX,
(" N
(. H IS TÉIE NTH ORDER OR,TT{OGûü\L TIADANIARD-}I&E,R MATRIX,
(' N

)

)

)

)

)

)

)

)

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
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('
('

VAR

H

2N

IS THE 2NTH ORDER ORTHCCONAL TIADÁ¡úARD.ITAAR MA'IRIX.')

I, J,L,N,LE, LEl : INTEGER;
Tl,T2:REAL;

BEGIN (' ltrtnnRl' '¡
N := POilER(2,LN);
FOR L:=1 TO LN DO

BEGIN

LE :: PClilER(2,LN-L+l);
LE1 := LE DIV 2;
FOR J:=l TO LE1 DO

BEGIN

I :: J + LE1;
T1 := F[1,JJ; T2 := F[2,1];
F[1,J] :: F[1,J] + F[1,I];
F[2,J] := F12,Jl + F[2,I];
F[1,I] := T1 - F[1,I];
F[2 ,I] := T2 - F[2 ,I ] ;

END;

END;

El,lD; (' HFIIAART .)

PROCEDURE IHFFIAART(VAR F :CO,fLEX ; LN : IÌfI-EGER) ;

(' PROCEDIIRE HFHA¡r<-r DETEFT,VINES H TIMES F \'r'ITH H T1IE ORTHOcCI¡AI
( T HÁDÁIYI¡\RD ORDERED TL\AR Ah¡D F T}IE INPUT VECTOR. T}II S PROCEDLIRE
(' T
(. CCMPIJTES (1/I.¡) II F, T}iE IIWERSE I{A¡.R TT{AI.¡SFORIU CiI TÍIE F
(. INPTN VECTOR, THIS IS }ICrI T}IE TRT'E IIWERSE, rigñE{ER.

VAR

I , J ,N ,L,LE, LE1 : INTEGER;
Tl ,T2:Rl¡\L;

BEGIN (. IIIFIIAART .)
N := PC!ilER(2,LN);
FOR L::1 TO LN DO

BEGIN

LE ;= PG\|ER(2,L);
LEl:: LE DIV 2;
Fm, J:=1 TO LEl DO

BEGIN

I :: J + LEt;

a

")
')
')
')
')
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:= F[1,J]; Tz
1,JJ := F[1,J]
2,ll :: F[2,J]
1,IJ := T1 - F[
2,ll := T2 - F[

END;

END;

FOR I:=1 TO N DO

BEGIN

F[1,I] := F[t,I]/N;
F[2.I] :: F[2,t]/N;
END;

END; (' IHffn¡nT .)

PRocEDltlRE T\l'Ð(vAR cq\4FHTl : cctvis pEC ;rs(4,rrly4 : INTEGER) ;(t THIS PROCEDI.'RE PRODUCES A PSEUDO 2D IIAAR TRAIVSFORM (AS
(. REQTJIRED BY FORMILA FOR cn) .

(. THE A-MATRIX IS
\ -1
(' A = F cF F
(T Ah¡D }VE DO A PSEIJDO 2D TIAAR OF A TO GET GTI, ACCORDING TO
(17
(' GI - H A H c
(* N

VAR

I , J,K,OFFSET,LNN: INTEGER;
TEMP :CCMSPEC;

OvfAT:ARtlAY[ 1..SIZE] OF REAL;
BEGIN (. TWOD .)
LNN: =RoLJND(LN(¡IY4. 1 . 0 ) /LN( 2 . 0 ) ) ;

+ Fl
+Fl
1,II
2,ll

T1

Fl
Fl
Fl
Fl

F[2,J]
1,Il;
2,1);
;

')
')
')
')
')
')
')
')
')

(. TAI(E THE IIAA,R TRA¡ISFORM, COL[.[!Î\I By COLutôJ,
(. oF CCMFIITI[.,.,.] (A-MATRIX)

a
)

a

FOR J:=1 TO l.IY4 DO

BEGIN

FOR I::1 TO t{D(4 DO

BEGIN

FFI 1,IJ := COvFItTt [1, I,J]
FF[ 2, I ] :: CCI\¿IFFITTïZ,I,t I
END;
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IIFIIAART(FF, LNN) ;

Fffi. I:=1 TO lÙ(4 DO

BEGIN

TEMP[1,J,I] := FF[1,I] ;

TEMP[2,J,1] := FFÍZ,t!;
END;

END;

( TAKË THE HAAR TRAhTSFOP.Iví, COLtI\l¡r Dy COLU/IJ, .)
oF TEMP[ ., ., . ] (TRÁ¡rSposE oF PRODUCI H A) .

"SIIVÍILTAÌ{EOUSLY" TAKE THE TRA¡ISPOSE OF TI,IE
RESI.'LT AÀID DIVIDE BY N.

FOR J : =1 TO l.IY4 DO

BEGIN

FOR I:=1 TO Ìü(4 DO

BEGIN

FFI1,IJ := TEMp[1,I,J] ;

FF[2,I] := TEMp[2,I,J] ;

END;

HFTTAART(FF , LNN) ;

FOR I:=1 TO lù(4 DO

BEGIN

ccMFHTt[1,J,I]
CCt\4FIil1fZ,J,tl
END;

END;

('
('
('

')
')
')

:= FFI1,I]/lù(4;
:: FF12,rl /lù(4;

(' NOil FACTOR IN TI{E C-tvtATRIX CORRECTION FAgr.OR
(. ovrAT[ . J IS TIIE IT.I\¡ERSE C-I[4ATRIX.

3

a

OFFSET :- 3;
CIUATI 1] :: 1 .0 ;

O\4êJ'[2J ;:1.0;
FOR J:=1 TO (LNhI-t) DO

BEGIN

K := PGIfER(Z,l);
FOIì I:=OFFSET TO (OFFSET+K-t) DO

BEG]N

O\4AT[ I ] := p(}llER(2,LNN- J) /t$(4 ;

END;

OFFSET :: OFFSET + K;
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PROCEDIIRE Ð(PFGEN(VAR Þ(pFt :CÆì,tSpEC; I¡JDÞ(,N: INTEGER) ;(' THIS PROCEDURE coMprJTEs rI{E tvArRIx oF c0nlplÐ(

E¡ID

FOR I:=1 TO ls(4 DO

BEGIN

FOR J:=1 TO l{y4 DO

BECIN
c(I\{F}ill[1,I,J]
CCtvfFIITI [ 2 , I , J ]
END;

END;

END; (' Tf\Ð .)

:= CCÌvIFIITI [ 1, I, J ] /AvßT[ J ] ;

=SC.A'COS ( 2 . 0.PI . IN'DEX. (R- p) /N) ;
:Þ(PF1[1,R,P];
:SCA'S IN( 2 . 0.PI . INDEX. (R- p) lN) ;

=-Þ(PFl[2,R,P];

EXPCh¡ENTIALS FOR A PARTICI.]LAR VALI-IE OF II{DÐ(
(=0,t,2,...,N-1) & OF A P.ARTICULAR ORDER (N :
PGTIER-OF-2).

VAR

SC.A:REAL;

R, P : IÌ{!'EGER;
BEGIN (. Þ(PFGA{ .)
SCA:=1 .0/N;
FOR R::1 TO N DO

BEGII'¡

Fffi. P ::R TO N DO

BECIN
EXPFl [ 1,R,P]
EXPFl [1,P,R]
Ð(PF1[2,R,PJ
EXPFl[2,P,RJ
END;

END;

END; (' EXPFGEN .)

PRocEDtIRE cIlIoEN(vAR GHI r :ccMspEc; INDEXl ,NNl : INTEGER) ;
TIII S PRæEDI.JRE USES T$lcD AhID Ð(PFGEN TO PRODT.]CE THE
PARTIAL IIAAR GAIN LTATRIX c[r(r) (: GLoBar VARTABLE
GII). FOR A PARTICULAR INDEXI, I.E., \rrE GET
d/ tlñì*r \
'|.-E¡( ¡iìL,r,r¡Lt ) , õL A rÂ'"'r IL-ì.JLÁR ORDER NNl (NNl=poAER-oF
-2).

('
('
('

')
')
')
')

')
')
')
')
')

('
('
('
('
('



BEGIN (. GHICB¡¡ .¡
EXPFCEN(G{I1 ,INDE(1 ,NNl) ;

TIåÀCD(GI{I1 ,NNl ,NNl) ;

END; (. GHIGEN

-1/12-

(. cET EXPF-MATRIX OF COil4PLF)(

EXPG.¡ENTIALS')

GET PSEI]DO TTIÐ-D II{AR OF CCMPLÐ(
D(PCr.¡ENTIALS ')

a
)

( ' MAINLINE PROGR.Atvt .)

BEGIN (. GItrGEN .)
P€SET( II4AGEIN, 'GHINPUT') ;

RE\4'RITE( IMAGEOIJT, 'GIIOUT') ;

READ ( Ilt{AGE IN, Ni.J ) ;

FOR IL::O TO NN-t DO

BEGIN

cI{IcEN(cI{I ,IL,NN); (. GENERATE GH(I) .)
\4¿R I TELN ( tN{AcEour ) ;\rR I TELN ( ItúAcEour ) ;\vR I TELN ( rM{GEouT ) ;
\4TRITELN( IÌ\tAcEour,' PARTIAL }IAAR GAIN MATRIX GI(', IL,, ), ) ;
UIRITELN( II\4AGEOLT, ' REAL pART,, ) ;

\ilR ITELN ( ItvtAGEOUT ) ;

FOR IX:=l TO NN DO

BEGIN

FOR JX::1 TO NN DO

BEGIN

t¡R ITE( IIUAGEOUT,GJI [ 1, IX, JX] ; ó : 3) ;

END;

WRITELN( IIvíAGEOUT) ;

END;

\vR ITELN ( IIvIAGEOUT ) ;

Ï/RITELN( IMAGEOUT, ' ItvltcINARy pART');
\4rR ITELN ( IÞrAcEouT ) ;

FOR IX:-l TO NN DO

BEGIN

FOR JX:=l TO NN DO

BECiIN

t¡TRITE( IMAGEOUT,cHI [ 2,ÍX,JX] : ó :3) ;

END;

\\Il I TELN( IITIAGEOUT ) ;

END;
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END;

E¡¡D. (. GHGEN ¡

PROGRA¡\,í TRGEN( IMAGE IN, IÌvAGEC{JT ) ;

( . THI S PRæR.A¡ú GENERATESì CbTE-DITúENS TCS{AL TRIDIAGON{L
( ' c{IN MATRICES . IT IS USED TO FIND T}IE CIAIN
(' tvlATRIx IN TIIE TRIDIADI)Ì'.¡AL DctúAIN, EeuIvALENT ro TH,¿\T
(' IN TIIE FOIJRIER DC|vAIN. THIS IS DONE IN THIS
(. PROGRÁ¡VÍ BY AN IMPLEMENTATICñ¡ oF THE ¡¿{TRIX
( ' EQIIATIOI{,
(' 1 -1
(' GT: -TF GFFT(' z

(' lvIrERE, cT : TRIDIACÐi.IAL M{TRIX (NGr-DIAcor.rAL),
(' GF = FOURIER GAIN MATRIX (DtACCIt{AL),
(' T = ÌvIATRIX OF TIIE TRA¡ùSFORÌú, &
(' F = FOIjRIER MATRIX OF THE TRAÌISFORITÍ
(. Gr I.tAy BE CC[4PLÞ( IF cF IS pHyslcÂLty NOT
( . REAL lzABLE. NCrrE,
(' GF : DIAG(G(0),c(1) c(I),...,G(i{_1))
(' SO G(I) IS Tm ITH DIACïOÐ{AI ELtr\.ilNT OF cF.
(. TIIE Tgt'AL TRIDIACOIIAL GAIN h4{TRIX, cT, IS
(' N-l
(' GT = SUMGT(r)
(' I:o

ccb¡sT
PI:3.141592654;
SIZE=64;

TYPE

CCMPLÐ(=ARRAYI t . .2,1 . . lo24 J oF REI\L;
CCt\,fSPEC-ÂRrùty[ 1 . . 2,! . .StZE, 1 . .SIZE] Or REAL;

VAR

IX, JX,NN, IL : IMI.EGER;
IIUAGE IN, IlìtAcEOIJT : TEXT ;

FF:CCMPLEX;

GTI:CCtvISPEC;

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
*)

')
')
')
')
')
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PROCEDIJRE TR I DI AG (VAR F : CCITÍPLEX ; LN : INTEGER ) ;

( . THI S PROCEDURE CO\,fPUTES TIIE TRIDIACOI.{AL TIIA¡¡SFORM OF A¡.¡
(' INPUT VECTOR. THE TRIDIAGOIAL TR.AI\¡SFORIyÍ IS
(' GENERATED USING T = 1 AÌJD
(' 1

('
(' I I I I

(' T = I N N I

(' 2N I I

(' I I -I I

(' r N N I

('
(. vtHERE I IS THE t{TH ORDER LNIT MATRIX,
(' N
(. T IS TTIE NTH ORDER TRIDIAGCN¡AL TR.ANSFOR}I MATRIX,
(' N
(' T Is TIIE zNTH oRDER TRIDIAC'${AL TR.A¡IsFoRM ÌVIATRIX
(' 2N

V.A'R,

I , J ,N, LE, LE1 : INTEGER;
Tl ,T2:REAL;

BEGIN (. TRIDIAG . 
)

N :: PO*ER( 2 , LN) ;

LE := PG+ì/ER(2.LN);
LEl :: LE DIV 2;
FOR J:=1 TO LEl DO

BEGIN

I := J + LEl;
Tl := F[1,JJ; 'î2 ::
F[1,J] := F[1,J] + F

F[2,1 ] := FIz,Il + F
F[1,I] := T1 - F[1,I
F[2,I) := T2 - FIz,I
END;

El{D; (' TRIDI.{G .)

PRocEDtIRE TllÐ(vAR ccruFHr'1 :cctvfspEC;tü(4 ,Ny4 : INÏEGER) ;

(. THIS PROCEDIJRE PRODIJCES A PSEI.JDO 2D TRIDIAGCò{AL TRA}¡SFORM
(. REQIJIRED BY FORI,IJLA FOR cr) . .
(' TIn A-MATRIX IS .
(' -1 ú

')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')
')

F[2
[1,
12,
J;
l;

J

1

1
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(' A - F cF F
( ' Al'¡D wE Do A psEIrDo 2D TRIDIAC$IAI" TR.AÌ,ISFORM oF A To cET(' 

1

(' GT : - T A T(' z
VAR

I, J,K, OFFSET, LNN : INTEGER ;

TEMP:CCIvISPEC;

BEGIN (. T!4DD .)
LNN: =ROllND(LN(NY4. 1 . 0 ) /LN( 2 . 0) ) ;

')
')
')
')
')

(' TAKE THE TRID. TRAÌ¡SFORM, COLL¡4N By COLIJtv^r,
(. oF ccÀ4FlITl[.,.,.] (A-MATRIX)

¡

a
)

FOR J::1 TO l{Y4 DO

DEGIN

FOR I:=l TO \D(4 DO

BEGII.I

FFI1,IJ := CevFHTl[1, I,J] ;

FFI2, I] := CCtvtFHTl [2, I,J] ;

END;

TRIDIAG(FF,LNN) ;

FOR I:=1 TO lù(4 rÐ
BEGIN

TEMI¡I1,J,I] :: FFIl,IJ ;

TEMP[2,J,I] := FFIZ,tl;
EtiD;

END;

Fæ, J:=1 TO l{Y4 DO

BEGIN

Fæ. I : =1 TO tS(4 DO

BEGIN

FFI1,IJ := TEMp[1,I,J] ;

FF[2, I] :: TEMp12,I,Jl ;

END;

TRIDIAG(FF,LNN) ;

( ' TAKE TIïE TRID. TR.AÌISFORM, COLUvÍ¡J Ey COLutvN, .)
(' oF TElr{P[ ] (TR/nJSpoSE oF PRODUCT T A) .

(' 'SIÌVI.JLTAì{EOUSLY'T'AI(E THE TR.A¡ISPOSE OF TFIE
(. RESULT AND DMDE BY 2.

")
')
')



-146-

FOR I:=1 TO tù(4 DO

BEGIN

CCI\{FIITI[1, J,I] :: FF[t,tlt2
CCMFIill 12,I,tl := FF[2,I] t 2 ;

END;

END;

END; (' Tt¡.Ð ¡)

PROCEDI.JRE Þ(PFGEN(VAR Þ(pFr : ccMSpEC ; INDEX,N: INTEGER ) ;(. THIS PROCEDURE COMPUTES TI{E MATRIX OF CqUPLE(
ç. EXPOT.ÍENTIALS FOR A PARTICULAR VALIJE OF INDÞ(
(" (=0,1,2,...,N-1) A OF A 

'ARTICULAI{ 
ORDER (N =(. P0I1ER_OF-2).

VAR

SCA:REAL;

R, P: INTEÆER;

BEGIN (. Ð(PFCEN .)
SCA::1 .0/N;
FOR R:=1 TO N DO

BEGIN

FoR, P: =R TO N DO

BEGIN

Ð(PF1[1 ,R, P] :-SCA.COS (2 .0.pI.INDEX. (R-p) /N) ;
EXPFl [1,P,R] ;=Ð(pFlIt ,R,p] ;

Ð(PF 1 [ 2 , R, P] I =SCA.S IN( 2 .0.pI .INDÐ(. (R_ p ) /N) ;
EXPFl 12,P,Rl ::-Ð(pF1 [2,R, p] 

;

END;

END;

END; (' E(PFGEN .)

PROCEDURE TRIGEN(VAR GTI l :covlspEC; INDÐ(1,NNl : INTEGER) ;
( ' THI s PROCEDIIRE usEs ï¡voD AIJD Ð(pFcE\¡ To pRoDUcE THE

PARTIAL TRID^ GAIN MATRIX Gr(I) (= Gr_OBat VARIAIILE
6rI), FOR A PARTICLJLAR IÀtDEXl , L8., \ilE cET
GT(I¡IDÞ(I), & A PARTICULAR æDER NNl (NNt=poñ1ER_OF
-2).

BECIN (. TRIGEN .)
EXPFGEN(cTI l ,INDÞ(1 ,NNl) ; (. GET EXPF-MA,TRIX OF CCh{PLÞ(

EXPCT¡ENTIALS . 
)

')
')
')
')

')
')
')
')
')

('
('
('
('

Tr¡ÐD(cTI l ,NNl ,NNl) ;
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GET PSETJDO TII.|)-D TRID. OF COMPLEX
Ð(Pq.¡ENTIALS . 

)
END; (. TRIGEN a

(' MAINLINE PRæR/q¡ú .)

BEGIN (. TRGEN .)
RESET( TMAGEIN, 'TRINPUT' ) ;

REWRITE ( IMAGEOUT,' TROUT' ) ;

READ( II\,IAGEIN,NN) ;

FOR IL::0 TO N¡i- 1 DO

BEGIN

TRIGEN(GTI ,IL,NN); (. GENERATE Cr(I) .)
lvR I TELN ( IIVÍAGEOUT ) ;rIiR I TELN ( tI4AcEoUT ) ;$rR I TELN ( [v1AGEOUT ) ;
UIRITELN(IMAGEOUT,' PARTIAL TRIDIÁ,GONAL GAIN IúATRIX Gf (,,IL,
\ryRI't-ELN( IMAGEOUT, ' REAL pARl.' ) ;

\[r:. ITELN ( IÌvIAGEOUT ) ;

f'1,R. IX::l TO NN DO

BEGIN

FOR JX:=l TO NN DO

BEGIN

\TRITE( IÀ4AGEOUT,cTI [1,IX, JXJ :ó;3) ;

END;

1\1R I TELN( ItvtAcEdJT ) ;

END;

UrR ITELN ( IIvIAGEOUT ) ;

\ryRITELN( IMAGEOLIT, ' IMAGTNARY pART');
\liR I TELN ( II/AGEOTJT ) ;

FOR IX:=l TO NN DO

BEGIN

FOR JX:=l TO t{N DO

BEGIN

CRITE( ItvtAcEOtIr,cTI IZ,tX,JX] :6 :3) ;

END;

\IR rTELN( IIAGEOUT) ;

END;

END;

END. (. TRGEN .)

')');
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Appendix H

DEFINITIONS OF BOUNDS

From Ullman [40], f(N) is O(g(N)) (or f(N) : O(g(N))) if there are positive con-
stants c and NO such thar for all N> N0, f(N) = cg(N). Also from Ullman [40], f(N)
is o (g(N)) (or f(N) : o (e(N))) if there are positive constants c and No such that for
all N> N0, fN) > cg(N). From Thompson [43], f(N) is 0(g(N)) (or f(N) : o(g(N))) if
there exist positive constants cl and c, fo¡ which clg(N) s f(N) - c2g(N) for all
sufficiently large N.
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