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Abstract

The reconstruction of past fi.orv events is of great interest to the water resources engineer.
\4/ater resources planning requires the best possible estimates of extreme florv conditions for
investment, decision making and design. Unfortunately streamflow ¡ecords in North America
tend to be very short. The multi-year nature of drought events reduces the available sample
size making estimates of extreme droughts very dificult.

Tbee ring data offer a unique way of addressing this problem. The pattern of a tree,s
growth rings reflect the environmental conditions experienced during each year. In addition,
trees are relatively long lived (up to 500 years) and well distributed in North America. Tlee
rings are produced annually and can be precisely and reiiably linked to climatic variations.
This makes them unique and ideal for correlation with annual climatic record.s.

The purpose of this thesis is to shorv the utility of using the methods of dend.roclimatology,
the study of climate through tree rings, to extend streamflow record.s. These method.s use the
principle that during drought periods moisture stress proportionally limits tree growth. This
limitation is reflected in the width variation of annual growth rings. The ciimatic information
inherently present in ring widths can then be used to extend historical records of low flow back
the entire lifetime of the tree.

Three case studies were completed, one in the Macl{enzie River Basin and two in the
South Saskatchewan River Basin' Two of the case studies verified very well using split sample
techniques, on'e was cluestionable. The reconstructions extend.ed streamfl.orv records from 5g

to 190 years, from 60 to 420 years and from 65 to 352 years.

The results of a comparison between extreme droughts estimated from the gauged data
and the reconstructed data showed. a decrease in drought severity at all return periods. This
was a result of the reconstruction models not being able to reproduce the amount of variance
found in the gauged data. The magnitude of streamflow recorcls are smoothed as they are
filtered through the tree ring data. The data reconstructed in this study cannot be used in
quantitative frequency analysis of extreme drought. F\rrther study is required to determine
if it is possible to produce a reconstruction with sufficient expiained variance to perform
quantitative frequency analysis
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Chapter 1

fntroduction

1-.1 Purpose

The purpose of this research is to show the utility of using the methods of dendroclimatology,
the study of climate through tree rings, to extencl streamflorv records. These methods use

the principle that during drought, or lorv fl.ow, periods moisture stress proportionally limits
tree growth. This limitation is reflected in the width variation of annual growth rings. The
climatic infoumation inherently present in ring wiclths can then be used to extend historical
records of low flow back the entire lifetime of the tree.

The objective of this project is to use existing tree ring data, that has been collected from
various researchers and deposited in the International TYee Ring Data Bank, to extend stream-
flow records in and around the Churchill-Nelson River basin. If successfui, the techniques used

here could heip provide better understanding of past drought, assist in the operation of current
hydropower projects and assist in the design and planning of future hydropower p.ojects.

I.2 Background

The reconstruction of past flow events is of great interest to the water ¡:esources engineer.

Water resources planning requires the best possible estimates of extreme florv conditions for
investment, decision rnaking and. design. For this leason, period.s of iow florv are of pa.ticular
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interest for hydropower developers and operators.

Lorv florv estimates govern the estimate of horv much firm porver can be developecl at a

hydro site' Poor estimates of firm clischarge can lead to over-clevelopment, und.er-development

or no development of a potential hydro site.

The problem that each water resources planner in North America has to deal with is that
streamflow records are generally very short (usually less than 50 years). Compounding this is
the fact that periods of low flow, or drought, usually take place over several years. A single

'event' may take up multiple years of the record (a multiyear event) further reducing the size

of the available sample data.

With such small data sets, probability distributions used to perform frequency analysis
may provide misleading or erroneous results. This is particularly true if the period of record
coincides with a period of anomalous rainfall or runoff.

There are several techniques that have been used. to address the problem of short records
in drought estimation. Two broad categories of streamflow generation models are used to fi.ll
in missing data and extend records: deterministic and stochastic.

Deterministic models are based on the physical characteristics of a drainage basin and
hydrologic relationships to translate meteorological records into streamflow. These methods
are particularly useful since in most areas the rainfall record is significantly longer than the
streamflow record' Some examples of deterministic models in common use are SSARR. HEC-1
and SLURP.

Stochastic models are statistically based and rely on the statistical properties of the avail-
able streamflorv record or cross-correlation with other, Ionger, streamfl.ow r-ecords. Stochastic
techniques include regional regression analysis and synthetic streamfi.ow generation.

One popular technique that falls outside of these two categories is the use of the so-called

'drought of record'. In this technique, project capacity is designed according to the worst

drought of recorded history. This does not attempt to address short streamflow records but
selects only the low observation from it.

Tbee ring data offers a possible method of addressing the problem of short streamflow

records' The pattern of a tree's growth rings reflect the environmental conditions experienced
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during each year of growth. In addition, trees ale relatively long lived (up to 500 years)

and well distributed in North America. T}ee rings are only one source of paleoclimatic d.ata.

However, they have the advantage of being annually based, precisely and reliably linked to
climatic variations. This makes them a unique source of paleoclimatic data for correlation with
annual ciimatic records. They have been used to augment numerous climatic and hydrologic
measurements including temperature, precipitation, Palmer Drought Severity Index (pDSI),
streamflow, lake levels and atmospheric circulation (Duvick and Blasing, 1gB1).

The use of tree rings as a tool for extending ciimate record.s is mad.e possible through the
'principle of limiting factors' which governs the tree's annual growth. This principle states that
a biological process may not proceed any faster than allowed by the most limiting factor. For
tree rings this could be either temperature, moisture, nutrient availability, insect infestation,
eic. (Stahle and Cleaveland, 19gg).

The amount of growth experienced by an individual tree is affected by many environmental
and biological factors' The most significant of these are climatic forcings of temperature and
moisture' How strongly trees are affected by these is dependent upon tree species and location.
In dry years, where moisture levels limit tree growth, narrower rings are formed. The width
of these are proportional to the amount of moisture present during that year. fn wet years,

where moisture does not limit growth, wid.er rings are formed, limiied in widih by some other
factor' Hence, the use of tree ring data is most effective for reconstruction of drought related
streamflow events because they produce the best correlation with tree growth.

taditional streamflow ¡ecord augmentation is often accomplished by exploiting the cross

correlation with nearby flow recording gauges. The period of common record between the
gauges is used to form a relationship and this is used to extend the shorter record to the length
of the longer record. In streamflow reconstruction using tree rings the same general procedure

is used except the nearby 'gauges' are tree ring sites (Brockway and Bradley 1gg5). The
statistical procedures, however, tend to be much more involved than a simple cross correlation
analysis.



1. fntroduction

1.3 Objectives

The scope of this study invoives:

Exploring an approach for using the pareoclimatic information to

events. chapters 2 and 3 will discuss the statistical techniques and

methods used in reconstructing streamflow using tree rings.

characterize drought

rationale behind the

Determining the availability of tree ring data within ancl near the study area. Chapter
4 will discuss the available sources of paleoclimatic d.ata.

Automating the tasks involved in reconstructing streamflow from tree rings. Chapter
5 will discuss several computer applications developed to expedite the reconstruction
process.

Employing the approaches in case studies to demonstrate the feasibility of using tree
ring data to reconstruct drought. Chapter 6 will discuss several case studies where the
techniques described in the previous chapters are employed.

Drawing conclusions about the utility of the approaches used. Chapier Z discusses the
outcomes of the case studies and implications for future work.



Chapter 2

Literature Review

This thesis builds upon literature found in the flelds of general dendroclimatology, stream-

fl'ow dendroclimatology and statistical drought anaiysis. General denclroclimatology presents

the basic tools needed to relate climatic parameters to tree rings. It presents the means to
choose the tree ring data sets and process them for climate reconstruction. It aiso presents

the multivariate methods that have been successful in climate reconstructions. Streamflow

dendroclimatology shows that it is possible to successfully reconstruct streamfl.ow records us-

ing tree rings. Staiistical drought analysis provides the reason for wanting to reconstruct past

streamflow and the means to gauge the success of the reconstructions.

2.I Tree Ring Data Analysis

Tlee ring data have been used for the past 30 years to extend climatic records. Fyitts (1g21)

was a leader in this area and defined the principles by which climate reconstructions could

be made' Fbitts et al. (1971) were the first to d.iscuss the use of multivariate statistics in
tree ring - climate reconstructions. LaMarche (1974) explained some of the inferences that
can be made from long tree ring records. Flitts (1976) wrote Tlee Rings and Climate the
defrnitive book on relating tree ring data to climate. This is one of the most comprehensive

books ever published on the subject. More recently Cook and Kairiukstis (1gg9) wrote the
book Mefåods of Dendrochronology that updates and expands on several of the techniques
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presented by Fritts.

Fritis (1971 , 1976) discusses the principles that make tree ring reconstruction of climatic
variabies possible. The term dendrochronology is defined as the science of dating the annual
growth layers in woody plants and the exploitation of the information they contain on the
environment. Dendroclimatology is restricted to dendrochonological studies that use climatic
information from dated growth layers to study variability in present and past climate. The
principles of site selection, sensitivity and cross dating that make tree ring climate relationships
possible are discussed below.

The principle of site selection involves using information from a large sample of trees where
growth has been limited by the climatic factor in question. The principle of sensitivity is where
the person sampling chooses trees that exhibit the most var-iability in width from one ring to
the next. These provide the best indicators of climatic stress.

Cross dating is a procedure that allows the identification of the year in which individual
rings are formed. It involves taking a tree of known cutting or coring d.ate and comparing the
ring width patterns with those of unknown or known cutting dates to locate them precisely in
time or verify the dates of the rings.

Fbitts (1976) also discusses that as trees grow the annual rings systematically become thin-
ner with increasing trunk diameter-. In order to remove this trend ring widths are standardized

into index vaiues. This is accomplished by fitting either an exponential or straight line to the
systematic non-climactic effects. Individual ring width values are then divided by the corre-

sponding value of the fitted curve forming what is referred to as a standardized ring width
index. Many index series from trees in a localized area are then added together and averaged

to form what is called a tree ring chronology.

tr\itts et al. (1971) and Flitts (1976) discuss how multivariate techniques provide a way of
objectively defining horv the ring width growth relates to climatic facto¡s at different periods

during the growing season. Multivariate statistics also provide a means of handling and relating
data sets consisting of correlated variabies. They discuss the use of orthogonal eigenvectors,

derived from groups of tlee ring and climatic preclictors, for dealing with correlated variabies

and for reducing the nurnbe¡ of variables. These concepts are discussecl in Chapter 3.
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LaMarche (I974) discusses how tree rings are an important source of paleoclimatic clata be-

cause they are long lived, can be acculately dated and can vary in response to climate changes.

He also discusses horv cross correlation can be enhanced, when lower frequencies are removed

by prewhitening, using the methods presented in Chapter 3. He also reinforces horv the best
climatic lesponse occurs in trees near climatically determined limits of the distribution, such

as near tree lines on mountains and in northern regions.

Cook and l{airiukstis (1989) expand on the concepts presented above and emphasize proce-

dures that can be used in reconstructing climate series. Particular attention is paid to proper
cross validation of regression models and the use of verifi.cation statistics to gauge the validity
of the models.

2.2 Reconstruction of streamflow using Tree Rings

TYee ring chronologies are particularly well suited to reconstruct runoff records. They tend

to be much longer than instrumental records, they are precisely annual in resolution and

they integrate the effects of temperature, precipitation and evapotransporation, the main
components that influence streamflow.

Many studies have been done over the last 30 yeals using tree rings to reconstruct stream-

flow' The earliest studies by Stockton (1975) were done to gauge the viability of relating
streamflow to tree ring chronologies as well as to investigate the various statistical procedures

that could be used. Most of the subsequent stud.ies (Phipps, 1g83; Cook and Jacoby, 1gg3;

Meko and Graybill, 1995; Meko et al., 2001; Woodhouse, 2001) were done in arid locations to
assist in water supply allocation to populated areas. In these locations lorv fl.ow allocation is
a major concern for water resource planners. Longer streamflow records are helpful to bet-
ter quantify low frequency drought events and make informed policy decisions. Some studies

(Smith and Stockton, 1981; Cleaveland and Stahle, 1989) were d.one in order to assess long

term' lorv probability high florvs in addition to low flow events. These were done to better
assess low probabiLity fl.ood potential and surplus water allocation. These studies use various

statistical approaches to tree ring reconstruction and verification. The follorving summarizes

the approaches used in each study, their purpose, results and conclusions.
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Stockton (1975) presented one of the earliest studies. In this study he investigated the
use of various statistical procedures in reconstructing streamflorv and precipitation as well as

the applicability of reconstructing runoff series. Stockton investigatecl the used of cor¡eiation

analysis, spectral analysis, analysis of variance, principal components analysis and multiple
linear regression. He reconstructed annual streamfl.ow and precipitation on the Bright Angel
Creek and Upper Colorado River basins in Arizona and New Mexico from 1b64 io 1g60.

Phipps (1983) reconstructecl monthly summer streamflow on the Occoquan River in Vir-
ginia between 1841 and 1975. The pulpose of this project was to quantify lorv flow events to
assist in planning of water supplies to populated areas in the region. A monthly streamflorv

record was available for calibration between 1928 and 1976. Stepwise regression was used to
relate lagged tree ring chronologies to monthly streamflow. This study showed .R2 vaiues of be-

tween 0'33 and 0.47 with no independent verification. It found that most significant droughts

in this area occurred within the gauged record..

Cook and Jacoby (1983) reconstructed streamflow on the Potomac River between 1730

and 1976. The purpose of this project was to provide insight into water supply problems ancl

solutions for Washington, D.C. The goal was to see if the gauged records were representative

of long term streamflow in the area. Monthly streamflow records were available between

1907 and 7977. July, Augr-rst and September streamflow were reconstructed using Stepwise

Canonical Regression techniques on prewhitened and lagged streamflow chronologies. The
results showed Ã2 that varied between 0.28 and 0.48 with a pooled lR2 adjusted for degrees

of freedom of 0.36. This reconstruction was verified using independent data and the product

rnoment correlation coefficient and reduction of error verification statistics. This study shorved

a much better reconstruction from the use of the verification statistics than was implied by
the R2. It showed the d.anger of using Æ2 as the only method of determining calibration
reliability. The study identified several periods of persistent low florv prior to the gauged

records and showed the potential utility of such stud.ies for planners.

Meko and Graybill (1995) reconstlucted streamflow on the Upper Gila River Basin in
Arizona and Nerv Mexico between 1663 and 1985. The pru'pose of this project was to extend

the short gauged record to assist in water planning and allocation. The gauged streamfl.orv
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records extended from 1915-1985. Eight chronologies were plervhitenecl using a low order
autoregressive moving aveÌage process and the skewness was removed. These were then laggecl

forward and back in time and related to streamflow using stepwise regression. The stepwise

regression model yielded an '82 of 0.66. Split sample veriflcation was used to gauge the validity
of the model. -R2 values between 0.58 and 0.69 were found for the verification models. The
split sample model coefficients were compared for time stability ancì residuals were analvzed
to investigate regression quality. The product moment correlation coefficient and reduction of
error statistic were rrsed to validate the split sample models. The conclusion of this study was
that the 20th century had an unusually large number of instances of clustered high flow years

and high severity muitiyear droughts.

Meko et al. (2001) reconstructed streamfl.ow on the Sacramento River in California between
869 and 1999' The puïpose of this study was to gain a long term perspective of drought for
water allocation planning' The gauged record from 1906-1ggg was too short to represent
lorv frequency persistent climate fluctuations. The gauged streamflow record was created

by summing the records of four tributaries. Tlee ring chronologies were obtained from the
International Tbee Ring Data Bank. The chronologies were prewhitenecl using a low order
autoregressive process and principal component analysis was used to d.eal with intercorrelations
between tree ring data sets. Stepwise regression rvas used to relate the principal components
of the tree ring chronologies to log streamfl.ow. ,R2 values ranged from 0.64 to 0.g1. Cross
validation was accomplished using the PRESS, RSME and ¡eduction of error statistics. The
conclusion to this study was that the use ofthe 1930s as a design drought isjustifled. Although
there were several mote extleme droughts in the past, they were of shorter d.uration.

woodhouse (2001) ¡econstructed streamflorv for the Middle Boulder creek basin in col-
orado between 1703 and 1980. The purpose of this study was to gauge the uniqueness of the
20th century low florv events' The gauged record from 1912-1980 was inadequate to assess the
low frequency variability in flow fluctuations and allow effective water policy decisions. Tþee

ring data were prewhitened with a low order autoregressive process but were not orthogonal-
ized using principal component analysis due to the tendency of that procedure to mask some

climate signal. Stepwise regression was used to pick a final model with an -R2 value of 0.T.
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Split sample verification was used to validate the model using the reduction of error and sign
test verification statistics. The conciusion of this study was that the extended record expancls

the perspective of streamflorv variability and provid.es a tool for water planning and allocation.

Smith and Stockton (1981) reconstructecl streamflow on the Salt and Verde Rivers in
Arizona between 1580 and 1990. The goal of this project was to confi.rm long term floocl
potential and the statistics used in water allocation to populated areas and for hydropower
production. Gauged records were available for the Salt and Verd.e River Basins from 1g14 to
1979 and 1895 to 1979 respectively. The tree ring chronologies were prewhitened using ARMA
models and tranformed to orthogonal variables using principal components analysis. Stepwise

regression against log tranformed streamflow was used. to choose a finai mod.el. The final model
had an -R2 value of 0.73' No discussion of model verification was made. The study found that
gauged records contained a large number of high fl.ow events compared to the extended record..

Also several extreme and persistent lorv flow events were found prior to the ga¡ged records.

Cleaveiand and Stahle (19s9) reconstructed streamfi.ow on the White River in Arkansas

between 1700 and 1980. The puïpose of this study was to investigate the viability of inter-
basin diversion of surplus water. This area is one of the most variable runoff regions in the
United States. Gauged data were available from 1931 to 1980. Correlation analysis was used.

to detelmine the best season to reconstruct. Annual streamflow was found to yield the highest

correlation rvith tree ring data. The tree ring chronologies were regionalized using a simple av-

eraging' They were prewhitened using a low ord.er autoregressive plocess. Regression analysis
yielded an R2 value of 0.5. The regression was validated using a standard split sample pro-

cedure and the reduction of error verification statistic. fn addition, coefficients and moments
\¡r'ere compared between the split sample models and the futl modet to assess time stability.
The conclusion of this study showed that tree ring reconstruction could be an important tool
in assessing the probability forecasts for the basin.

2.3 Characterizing Drought

Drought, or low flow, events are much more diffi.cult to characterize and analyze than floods.
This is due in part to the 'multiyeat' nature of clrought events where a single event can span

10
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many years' The effects of dtoughts are also much more difficult to quantify. The d.ramatic
effects experienced during floods in the form of property damage ancl lives lost are not present

for droughts (Jarrett, 1991). Dlought effects are largely measured in terms of distributecl
economic loss to an industry or environmental losses, both of which are difficult to quantify.

Much research had been done to properly analyze drought events in a way similar to flood
events' Dracup et al. (1980a, 1980b) defined a \¡/ay in which droughts can be statistically
characterized. Joseph (1970) defined a simple method of determining frequency of d.esign

drought for water resources projects. Burn and DeWit (1996) expand on this methodology to
take into account the multiyear nature of droughts.

Dracup et al' (1980a, 19S0b) present a method of statistically characterizing drought
events' In their method, four decisions must be made to clearly define a drought event (Dracup
ei al., 1980b).

The nature of the water deficit must be characterized as either hydrologic (streamflow),

meteorological (precipitation) or agricultural (soil moisture) (Dracup et al., 1ggga). The pa-

rameter of interest is decided by the purpose of the analysis. If the causes of drought are of
interest, meteorological drought needs to be evaluated. If drought impactsare to be quantified.,

then either hydrologic or agricultural drought is investigated, based on the type of impacts of
interest.

The basic time unit must be established as either annual, seasonal or monthly (Dracup
et al', 1980a). For hydrologic drought the usual time units are water years. For agricultural
drought the basic time unit is the growing season. For meteorological dror-rght the basic time
unit can be daily, monthly, seasonal or annual.

The truncation level at which a drought is said to be occurring must be defined (Dracup
et al', 1980a). This can be defined as the long term historical mean or some percentage of
one standard deviation frorrr the mean for more extreme events. Ttuncation level can vary
gleatly depending on the researcher and the effects being researched. In the case ofhydropower
applications' truncation level can even change temporally based upon the demand for water.
This is an area of much contention but for simplicity in this thesis the long term mean is used.

to define lorv florv or drought events.

11
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A regionalization or standardization approach must be chosen to allow the drought to be

transposed to different areas of the watershed (Dracup et al., 1g80a). There are three choices

of regionalization:

o Do not legionalize.

Standardize data and define the region according to similar climate, geomorphology and

geography.

' Standardize data and define the regions with similar hydrologic statistics.

Drought events are formulated by first dividing the historical record according to the trun-
cation level (Dracup et al', 1980a). Alt adjacent time periods which are below the truncation
level are then combined into individual drought events.

Drought events are characterized by three attributes (Dracup et al., 1g30b). These are:

o Duration, the number of successive time period.s the drought persists.

¡ Severity, the cumulative deflcit over the entire d.rought.

o Magnitude, the average deficit over the drought period.

Magnitude is derived from Severity and Duration, both of which depend on streamflow values

as follows:

Magni,tude(M) : Seueri.ty(S)
(2.1)Duration(D)

The impacts of drought are best measured in streamflow records even though precipitation
Ïecor*ds often cover a longer period of time and are more complete (Dracup et al., 19g0a).

Hydrologic (streamflow) drought is characterized as lorv streamflow lasting an integer number

of years (Dracup et aI., 1980b). The truncation level is usually selected as the mean annual

runoff of the watershed or some percentage of one standard deviation from the mean for more

seveÌe drought (Dracup et aI., 1980b). Using the mean simplifies the comparison of drought
severity because both high and low events have the same scale (Dracup et al., 1gg0b).

Joseph (1970) discusses the problems associate with hydrologic drought frequency anaiysis

and proposes solutions based on probability theory. The persistent nature of drought is ignored

T2
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in favor of simplicity. By considering low florvs on an annual basis, ciroughts can be evaluated

using traditional probabilistic techniques. For design purposes, since the probability of drought
is more important than the cause and effect relationship, this simplification is adequate though
not ideal.

A prerequisite to computing drought probabilities is the establishment of a probability
distribution to describe the data (Joseph, 1970). The main difficulty is that frequently one or

more values in a streamflow sample are zero. This poses a problem with log transformation

of the data. Joseph (1970) proposes a two step pr-ocedure to solve this problem. The samples

are first separated into zero and non-zero drought events and probability density functions are

assigned to each. The probability density functions are combined 'a posteriori'. The following
equation is used to combine the probabilities ofzero and. non-zero droughts (Joseph, 1gZ0).

F(æ) :1 - (1 - po)(I - p") (2.2)

Where:

F(r): probability that a drought will be equal or more severe than magnitude x

p0 : plobability of a zero vaiue drought event

p, : probability of a non-zero value drought event

The recurrence interval can then be defined as forlows (Joseph, 1g70):

13

.- 7-'- p(*) (2.3)

Where:

7, : recurrence interval (years)

Using binomial theory the probability of nonoccurrence of a drought that is equal or more

sevele than the T year drought is estimated as follorvs (Joseph, 1gz0):

p : (t- 11"\ r) (2.4)
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Flom this' assurance is defined as the probability of nonoccurrence of d.roughts more severe

than the design drought of a project during the life of the project (Joseph, 1gz0).

L4

¿,: (r- 11"
\ T) (2 5)

A_
T-
¡/-

Where:

Assurance (probability)

Return period of design drought (years)

Estimated useful life of the water ïesources project (years)

This last ecluation can be used to ascertain the risk involved. of drought related impacts during
the lifetime of a project.

Burn and DeWit (1996) expand on Joseph's methodology of frequency analysis, taking into
account the multiyear nature of drought events. In their methodology, each period of drought,
regardless of length, is considered a single event. The implication of this is that the basic time
unit varies instead of being static as it was in the other methods. The severity of each drought
event is used in a standard frequency analysis as if the time units were equal (Burn and DeWit,
1996). Droughi severities are then determined for different probabilities of exceedance. The
return period is then determined from the probability of exceedance ancl the variable time
unit is taken into account by multiplying by the average drought d.uration as follows (Burn
and DeWit, 1996):

!= 1

= pot AD

\Mhere:

7: Return Period (years)

POE: Probability of Exceedance (fraction)

AD : Average duration of all recorded drought events (years)

(2 6)

This allows a return period to be established without ignoring the fact that droughts occ¡r
over rnultiple years and the effects of drought also span many yea.rs.



Chapter 3

A Technique of Reconstruction

3.1 fntroduction

The goal of this study is to effectively build a statistical regression model between standardized

tree Ïing chronologies and annual streamflow data and to use the resulting reconstruction to
analyze low probability droughi. In ord.er to accomplish this goal a combination of statistical
tests, time series analysis, multivariate statistics and regression analysis are used to process

the available data. Most of these procedures were programmed. into two applications discussed

in Chapter 5. This chapter discusses the methodologies used for this research, the reason they
were used, their application and their advantages and disadvantages.

The first step in forming a statistical model relating tree ring data to climate is to presup-
pose a cause and effect relationship. In the case of hydrological drought the relationship that
is assumed is that water stress is limiting to tree growth during drought years. Other possible

suppositions are that temperature is limiting to growth or that pollutants are limiting.
The biological process involved in this limitation can be of many forms. The sampling of

the trees is especially important for the hypothesis to be born out. T}ees taken in areas not
limited by moisture will shorv poor correlation. In most câses, however, tree growth is at least
partially limited by a combination of moisture and temperature.

These hypotheses are then investigated by:

1. Preprocessing the data to confirm statistical assumptions.

15
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2' Predetermining possible predictors using physical criteria ancl correlation analysis.

3. using orthogonal best subsets regression to d.etermine the best model.

4' Performing final rnodel analysis and regression diagnostics if a satisfactory moclel is
found.

5' Verifying the model using split sample techniques with stand.ard verification statistics.

6. Investigating and removing outliers based on regression diagnostics.

7' Applying the final model to the tree ring data to produce a full reconstruction substi-

tuting gauged data where applicable.

8. Analyzing drought using the methods presented in section 2.3.

All streamflow data in this study are first annualized based on monthly flow record.s. 12

annualizations are formed for each streamflorv d.ata set based on starting month. This is done

because there is some uncertainty in how the growing seâson corresponds to the water year.

These are each analyzed as separate streamflorv series up until the point at which the best
model is chosen.

3.2 Preprocessing

Each standardized tree ring chronology and annuaiized. streamflorv data series requires a certain
amount of preprocessing before the reconstruction procedure can take place. This is done

to avoid ploblems with data quality, and violations of the fundamental assumptions with
multivariate analysis and linear regression to be performecl d.uling reconstruction. The three
conditions that are ofconcern are those ofnon-normality, non-stationarity and. autocorrelation.
The procedures used to deal with each of these are discussed in the following sections.

3.2.1 Testing and Correcting for Non-Normality

Normally clistributed time series and resicluals are a requilement for most of the analysis in tree
ring reconstructions. Norrnally distributed error terms are required for both Autoregressive

16
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Moving Average (ARMA) modelling (Box and Jenkins, 1970) and linear regression (Neter
et al., 1990). The most fundamental assumption of all rnultivariate analysis (such as principal
cotnponent analysis) is normality (Hair et aI., 1998). In addition normality is a requirement

for t and F statistics (Hair et al., 1g98).

The most widely used test for normality is the normal probability plot. This is a graphical
method which compares the cumulative distribution of the data values with a cumulative
distribution of the normal distribution. A scatter plot of the data pairs is inspected to see if
there is any significant deviation from a 45" diagonal line.

A more formal and rigorous test of normality that incorporates this proced.ure is the
probability plot corlelation coefficient test presented in Maidment (1gg3), chapter 13. This test
uses the Pearson correlation coefficient between the orderecl d.ata and corresponding normal
values to satisfy the hypothesis of normality at different confidence limits. The correlation
coefficient is calculated as follows:

D(r¿ - ø)(w¿ -ø)
(3 1)

[D(',; - *)zD(.¿ -trl)']o'u
Where:

r¿ : observation

æ : average value of all observations

ui : frtted quantile of the normal distribution

?ll : average of fitted quantiles of the normal distribution

The correlation coefficient is then compared to critical values reproduced in Table 3.1. If the
value of r falls below the critical value for the 5% confid.ence level then a tr-ansformation is
required to normaiize the data.

A widely used normaiization method is the Box-Cox transformation (Maidment, 1gg3, ch.

18)' This combines a logarithmic transformation and power transformation into a parameter

that can be used in a search algorithm. The equation used for this transformation is as follows:

77

f .*Ð irÀlo
Yt: \

Itn(r) ifÀ:o
Where:

(3 2)
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À : Box-Cox coefficient

,r¿ : Untransformed data points

g¿ : Tbansformed data points

Using this equation, to transform all of the original data, À is r,aried using a search algorithm
so that the skewness of the transformed data is minimized. The probabitity plot cor-relation

test is then reapplied to the transformed data to make sure ihat the assumption of normality
is achieved.

Table 3.1: Lower Critical Values of the Probability Plot Correlation Test Statistic for the
Normal Distribution Using p¿ : (i - tlS) l@ + Il4)

Significance Level
0.10 0.05 0.01

18

10

15

20

30

40

50

60

75

100

300

1000

0.9347 0.9180 0.8804
0.9506 0.9383 0.9110
0.9600 0.9503 0.9290
0.9707 0.9639 0.9490
0.9767 0.9715 0.9597
0.9807 0.9764 0.9664
0.9835 0.9799 0.9710
0.9865 0.9835 0.9757
0.9893 0.9870 0.9812
0.99602 0.99525 0.99354
0.99854 0.99824 0.99755

Source: Maidment, 1993

3.2.2 Testing and Correcting for Non-Stationarity

A hydrologic time series is stationary if it is free of trends, shifts in the mean or period.ic-

iiy (Maidment, 1993' ch. 19). Generaily speaking an annual streamflow series will be station-
ary unless some natural or man-made disruption has occurred.. Examples of occurr-ences that
will produce non-stationarity are commencement of river regulation, changes in a gauging

location or instrumentation, or climate change.

TYencls, shifts and periodicity can cause problems in both principal component analysis

and linear regression. These occur because of the fundamental assurnption that each data
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series represents a single population. The presence of any non-stationarity inclicates that more

than one population may be represented. The consequences are poor results in a regression

analysis and artificially significant principal components.

No discussion is made, in this thesis, of techniques to remove non-stationarity but tests

are pr-esented that identify the presence of trends and shifts in the rnean. Periodicity should
not be a concern for annual series.

tends are tested using the standa¡d Mann-Kendall test for trend (lVlaidment, 1gg3,ch.

19) ' This is a non-parametric test for an upward or downward trencì in a time series. It is not
sensitive to whether the trend is linear or non-linear. For this test â, new series is generated

by comparing each value in the time series with all the subsequent values. The new series z¡
is generated by the foilowing rules:

if y¡ > y1,

if. y¿ -- y¡,

if y¿ : y¿,

(3 3)

\Mhere:

zÀ : Mann-Kendall series

g¿ : Time series value for current time period.

gt : A7l time series values subsequent to time period t

The Mann-Kendall statistic is then computed by the sum of the points in the zÀ series.

jV_1 ¡/s: Ð D. "ott=1 t=tt*I

The test statistic for N > 10 is as follows:

(3 4)

19

,-: 
{ i,

S+m
*" - vF($

1n
V(S) : 

18 [¡i 
(¡/ - 1)(2N + 5) - D"o("0 - 1)(2e¿ + b)]

i=I

(3 5)

(3.6)

Where:
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m:7 if S < 0

m: -I if S > 0

n : number of tied groups

€¿ : number of data in the ith tied group

The hypothesis of an upwarcl or clownward trend cannot be rejected at an a significance level if
l'"1 ) q-o/2, where ut-a¡z is the 1 - af 2 quantile of the standard normal distribution (Nlaid-

ment, 1993, ch. 19).

The tests for shifts in the mean require the data to be split at the point where the shift
is assumed to occur. Although there are rigorous statistical tests for this, it is simplest to
observe a plot of the time series and qualitatively determine if a shift has occurred..

seasonality should not be a problem in annual series, so it is not tested.

3.2.3 Testing and Correcting for Autocorrelation

Autocorrelation is defrned as the correlation between successive values in a time series (Flitts,
1976)' This occuls when the value of a time series in a given year impacts the values of the
follorving year or years (called lags). The assumption of uncorrelated. errors is crucial in linear
regression to produce the best possible model. Also, serial correlation reduces the degrees of
freedom of a time series effectively reducing sample size. This is especiaily a problem when

dealing with very small sample sizes.

Serial correlation in tree ring time series has been shown to arise primarily from biological
factors (e.g. food, storage, crown area and root mass) but some persistence may also be due

to climatic forcing (Cleaveland and Stahle, 19Bg). Usually natural streamflow series do not
exhibit significant autocorrelation at an annual scale. For these reasons and the complica-

tions caused by autocorrelated series many authors reconstructing streamflorv have chosen to
remove this persistence and take the risk of losing a minimal amount of climatic signal (Cleave-

land and Stahle, 1989; Brinkmanrì, 1987; Cook and Jacoby, 1983). The method of remo'ing
autocorrelation, also called prewhitening, used by these authors is also adopted for this study.

In the case of streamflow series, autocorrelation may be due to storage in lakes and marshes

along the stream or some other natural phenomena. For this study significant correlation in

20
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streamflow series was not removed. Streamflolv records with significant autocorrelation were

not reconstructed because the correlation structure betrveen the streamflow ancì prewhitened

tree ring series could not be effectively matched. Although it is possible to remove the autocor-

relation structure from the streamflow records to match the prewhitened tree ring chronologies

it was decided that too much information could be lost if the streamflow series was too heavily
processed. The final streamflow series reconstructed in this way may not resemble the original
enough to be useful in planning.

First orde¡ autocorrelation is fir'st testecl by taking a time series (z¿) and its first order lag

@r+t) and calculating the Pearson correlation coefficient between them.

r-/L \rt - ?t)(x+t - Ít+t)
t=l

(r - 1)Sr,S¿*r (3.7)

Where:

n : the number of data points in the time series minus the lag order (1)

itt : data points of the unlaggecl time series

ãú : mean of the unlagged time series

ït+r : data points in lag 1 time series

Ít+r : mean of the lag 1 time series

S¿ : Standard deviation of the unlagged time series

S¿+r : Standard deviation of the lag 1 time series

The first order autocorrelation coefficient is then tested for significance with a simple t-test.

,:'ñ- (3 s)
v/T -æ

where the null hypothesis is that the two series are independent. The null hypothesis is rejected

if l¿l > t",¿¿whetet¿,¿¿is from the Student's t distribution with n-2 d.egrees of freed.om and

exceedence probability of al2 (Niaidment, 1gg3, ch. 1g).

If the autocorrelation is found to be significant at the g5% confid.ence level then an Au-
toregressive Moving Average (ARMA) model is estimated for the time series and the non-
autocorrelated residuals are used in the orthogonal regression analysis. Given the availability

27
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of computer programs io fit the ARMA model a full discussion of ARN4A mocìelling is beyond

the scope of this thesis. Fu¡ther explanation can be found in Maidment (1gg3), chapter 1g

and Box and Jenkins (1920).

In order to identify the stochastic process that would best flt the data the autocorrelation
function (ACF) and partial autocorrelation function (PACF) are plotted for several ìags along
with 95% confidence timits. The patterns found here are comparecl to those found in data of a
known stochastic process (Box and Jenkins, 1970). For example if the ACF declines steadily
with lag but the PACF becomes essentially 0 after 1 lag then an AR(1) MA(g) process is

assumed.

It has been shorvn that a low order ARMA process (order 1 or 2) is usually sufficient to
I'emove autocorrelation from a tree ring series (Cleaveland ancl Stahle, lg8g). For the tree ring
series the fitted model is used to remove the persistence and the serially random residuals are

used for further analysis.

3.3 Predetermination of Predictors

One of the problems faced in dendroclimatic studies is that of the tendency to overfit models

by adding spuriously significant predictors. When one blindly adds predictors into a model the
probability of including chance features in the data that are interpreted as essential features

is high (Booy, 1996; Cook et al., 1994). A model built in this fashion will calibrate well on
dependent data but will be less useful in preclicting independent data. This also reinforces the
need for independent verification of the final regression model. The chance of including spuri-
ously correlated variables in the predictor set can be rninimized by only including preclictors

that are likely to be significant, based on physical and statistical characteristics. This has the
added benefit of reducing the number of predictors for better computational ease later on.

In this study several criteria were used to choose candidate predictors ,a prioTi, from the
pool available from the International Tl'ee Ring Data Bank (ITRDB). Judgement also played

a critical role in selecting candidate predictors so these criteria were only used as guidelines.

The criteria used to select the candidate tree ring chronologies are as follows:

,,
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1. They should be less than b00 km from the gauge to be reconstructed.

2. They should be within the ga,ge sub-basin or an acljacent clrainage basin.

3. The length of time overlap bet.rveen the tree

greater than 25 years.

set and the gauged data should be

4. The statistical quality of the tree ring d.ata set should be high.

5' There should be statistically significant correlations between tree ring series and monthly
streamflow.

6' There should be statistically significant correlations between tree ring series and annual
streamflow.

Cook (1995) suggests that a limiting distance of 500 km be used as a guideline for climate
predictors in order to maximize common signal. This was used as a first screening to form a
list of possible candidate predictors.

Predictors that were directly within the gauge sub-basin anci adjoining basins were chosen

out of this set. Adjoining basins were included because common weather patterns could
produce a common ciimate signal reproduced in each basin. This principle was not upheld
in the case of mountain langes which separate basins. Olographic effects would preclud.e the
existence of a common signal between these basins.

If the tree ring data did not have sufficient length of overlap with the gauged data it was
excluded' Any overlap smaller than 25 years causes problems with statistical significance in
regression, verifrcation and statistical tests.

All remaining tree ring data sets were inspected for quality, significant non-normality that
could not be corrected, non-stationarity and questionable sampling. Any of these conditions
would exclude a tree ring series.

A correlation anaiysis betrveen the tree ring series and monthly streamflow fo¡ t a¡d t*1
lags was used to further reduce the number of candidate predictors. This technique has been

used in many tree ring climate reconstruction studies to gauge the season to be reconstructed.

rrng
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In this case, if a tree ring series was not significantly correlated with monthly streamfl.orv or

its first order lag, it was discarded.

As a final check, a cor-relation analysis between the tree ring series and annualizecl stream-

flow for t and t+1 lags was used to make sure no significantly correlated data sets were missed

by the monthly correlation analysis. This did not exclucle any series but if a series with sig-

nificant correlation to annualized streamflow was found that was excluded by the monthly
correlation analysis it was included in the candidate predictor set.

3.4 Orthogonal Regression Analysis

3.4.7 Principal Cornponent Analysis

The most common problems faced in dendroclimatic reconstruction are those of multicollinear-

ity of the predictor-s and an intractable nurnber of predictors. Both of these can be dealt with
effectively using a method in multivariate statistics called principai component analysis (pCA).

Multicoilinearity occurs when the independent variables are significantly correlated with
each other. This occurs with tree ring data because the trees in an area react to the same

macroclimatic signal. This being the case the tree ring records appear very similar with
differences occuring due to microclimatic and biorogical ,noise'.

Multicollinearity of the predictors causes many d.iffculties with linear regression. It tend.s

to inflate the sampling variability of estimated coeffi.cients (Neter et al., 1g90), meaning that
the coefficient values cannot be estimated with any degree of certainty and tend to predict
poorly. Also the tendency to overfit is increased because the same signal is accounted for
multiple times in several predictors. This causes havoc with stepwise regression procedures

which hold one coefficient constant while varying the others. A key assumption in stepwise

regression is that each predictor is independent. When there is significant correlation between
pÌedictors this is no longer true and varying one coefficient while holding constant another one

that is related through intercorrelations no longer makes sense.

Dealing v¡ith an intractable nulnber of predictors is also a problem. When looking at t¡ee

ring clata it is not unusual to have upwards of 50 possible tree ring data sets of interest. Taking
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into account biological carryover effects by including forward and backwarcl lags muttiplies this
number' Even the best algorithms for stepwise or best subsets regression ìrave dificulty in
dealing with this many predictors.

Principal component analysis is a statistical technique where a new set of variables is

derived from the original predictors to be orthogonal to each other while preserving as much
of the original information as possible. Each of these new variables are a linear combination
of the originals but are independent of each other'. This is accomplished using a complex
procedure called eigenmode anaiysis the specifics of which are d.etailed in Draper and Smith
(1981) and Press et al. (1988).

Principal components are the eigenvectors of the correlation matrix of the tree ring d.ata

sets. The standard matrix representation of this procedure is as follows.

T_F,F E: C E: EL
n (3.e )

Where:

n : number of years of data

-F - predictor matrix

.F/ : transpose of predictor matrix

.Ð : eigenvector matrix

C : correlation matrix of predictors

-L : diagonal matrix of eigenvalues

Each eigenvector has a corlesponding eigenvalue which is proportional to the amount of vari-
ance lepresented by the eigenvector. Standard procedure is to present the eigenvectors in
order of decreasing variance represented.

Together the set of principal components (eigenvectors) are a more efficient representation

of the original data' The most common information or signal is concentratecl into the fir-st ferv

components. This means that a smail subset of principal components is capable of representing

most of the valiance found in the original data. Cook (1995) showed how tree ring chronologies

that tend to correlate well with climate tend to correlate well amongst themselves and are

heavily loaded into the fi.r'st several principal components. This property can be exploited by
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3. A Technique of Reconstruction

making the assumption that important climatic signal is representecl in the most important
eigenvalues and that smaller eigenvalues represent localized biological 'noise, or microclimatic

signal.

Several criteria have been used to choose the Principal Components (eigenvectors) to retain
for regression modelling (Cook and l{airiukstis, 1989). The criterion used in this stldy is the
Kaiser-Guttman eigenvalue 1 criterion (Cook et al., 1994). This criterion states that, since

an eigenvalue of 1 represents the expected value of an eigenvector in a correlation matrix of
random data, an eigenvector must have an eigenvalue of at least 1 to be retained (Cook et al.,
L994)' Thus the only Principal Components that are kept for regression modelling are those

that perform at least as well as random data.

By using this method the problem of multicollinearity in the predictors is averted and the
number of predictors is reduced substantially.

3.4.2 Best Subsets Regression

Multiple linear regression is a statistical technique used to analyze the relationship between

a single dependent (predictand) variable and several independent (predictor) variables. In
this application it is used to form an equation between annualized gauged streamflorv and
a set of significant principal components derived from standardized preprocessed tree ring
chronologies. The basic statistical equation for linear regression is as follows:

Ût : bo I b1n1 * bzrz+ .. . + b*r* I e (3.10)

\Mhere:

y¿ : Estimate of predictand (annualized streamflow)

m : Number of predictor variables

&t . . .tm: Predictor variables (principal components)

bt--.b*: Regression coefficients corresponding to each pred.ictor variable

ðo : Intercept coefficient which scales the regression equation to the mean of the prediciand

e : Random error term.
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The calculation of regression coefûcients is performed using the statistical method of least

squales' There are many softrvare packages that perform this analysis, a discussion of the
method of least squales is beyond the scope of this thesis. For further information please refer

to Neter et al. (1990) or any basic statistics text.

Ai this stage in the analysis it is known that the significant principal components represent

information that is largely common to all of the tree ring chronologies. It is surmised that at
least some of this signal is climatic in nature, unfortunately it is not known which combina-

tion of principal components represents climate in the form of precipitation, temperature or
evapotransporation and theil carry-over effects. It is also very likely that some of the princi-
pal components represent non-climatic regional information such as pollutant load or insect

infestation' For this reason as well as to avoid overfitting the regression model, it is necessary

to use statistical techniques to separate out only the important principal components thai will
help reconstruct streamflow.

Several methods are available to accomplish this goal. Tladitionally an automated method
lçnown as Stepwise regression is used to choose the best predictors for a model. Stepwise

regression is a method of selecting variables for inclusion in the regression model by alternately
entering and deleting candidate predictors from the model based on their cumulative predictive
power (Hair et al., 1998). This allows the researcher to examine the effect of each predictor

on the regression model without having to rook at all combinations.

There are two problems with Stepwise procedures. The first is that muìticollinearity has a

significant negative impact. This has been dealt witli by using principal components instead of
actual tree ring chronologies. The second is that a threshold significance level must be specified

for entering and deleting variables. This means that if a threshold is set too liberally overfi.tting

can occur causing the model to perform poorly on independent data. Ifthe ihreshold is set too
conservatively the best possible model is not found. For this reason thç Stepwise regression

pr-ocedure was discarded for this study. A more robust all-possible-subsets or best-subsets

procedure was adopted

Best subsets regression procedures are methods used to select the smallest possible subset

of predictor var-iabies that provide a model rvith the maximum amount of explained variance. It
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3. A Technique of Reconstructìon

is diffelent from Stepwise regression in that all combinations and subsets of variables are eval-

uated' This means that for n possible candidate variables 22 regression models are evaluated.

This is a computationally intense procedure that increases exponentially in computation time
and space for each added predictor. This is one leason why reduction of candidate precìictors

'a priori' was emphasized in previous sections.

The output of this method is a 'best' model for each number of predictor variables basecl

on the coefficient of determination (J?2), and the coefficient of determiniation adjusted for
a reduction in degrees of freedom (RZoì. Calculation of the coeffi.cient of deterrnination is
accomplished as follows:

R2: ^9^9Ã
SSTO (3. 1 1)

\Mhere:

Ã2 : Coefficient of multiple determination

,SS-R : Regression sum of squares

SSTO: Total sum of squares

-R2 represents the percent of the total variance explained by the regression model. Unfor-
tunately models with diffelent numbers of predictors are not directly comparable using this
statistic. À2 will generally increase with an increase in the number of predictors due to chance

alone' It is not possible for this statistic to decrease with an increasing number of predictors

because the corresponding decrease in degrees of freedom is not taken into account. A statis-
tic used to choose between models with different numbers of predictors is the Ãlrr. T'his is
the same as -R2 except it is adjusted for the loss in degrees of freed.om due to the number of
predictors. It is calculated as follows:
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Where:

-R2 : Coeffi.cient of multiple d.etermination

n : Number of data points

m : Number of predictors
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Finding a model with maximtm Rf;¿, is equivalent to finding a moclel with a minimum Nlean

Square Error(MSE) (tuIinitab Inc., 1996).

3.4.3 Model Determination

At this point there are 12 best subsets analysis performed, one for each annualization of
streamflow (January-December to December-November). In addition there is a mocìel with
highest explained variance for each number of preclictors. This 1eaves 12 times the number

of predictors models to choose from. A formal procedure is required to sort through this
large number of competing models to choose the best possible annualization and number of
predictors for reconstruction of streamflow. The procedure that was used is as follows:

1' Separate the candidaie models into groups with the same number of predictor.s (12

models for each number of predictors).

2. choose the model with the highest Rf,o, for each number of predictors.

3. Ptot the .R2 and Rf;¿, values on a chart versus the number of predictors.

4. At a certain point on this chart adcring additional predictors d.oes not increase ad.justed

explained variance @3o)

5' The model with the highest R?"f for the lowest number of pred.ictors is chosen as the
model to be used in reconstruction.

3.4.4 Identifying and Removing Outliers

The model that has been identifiecl as the best candidate for reconstruction can norv be in-
vestigated for influential observations and outliers. Great care must be exercised in removing

outliers and influential points as it is very difficult to tell the cause of anomalous points from
this iype of data' In addition, the nature of the principal of limiting factors makes it likely
that at least one high florv year wilì shorv up as anomalous) even though it is part of the natural
record.
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Outliers and influential observations were investigated using Leverage, Stud.entized Resicl-

uais, Cook's Distance and Dfits (Neter ei al., 1990). They were evaluated based on guidelines

given for these statistics, potential improvement to the regression model and judgement. Only
points which showed anomalous results in several of these tests were considered. for removal.

In addition removal of anomalous observations was oniy done if their removal significantly
improved the regression model.

3.4.5 Final Model Determination

30

The final model is built using the predictors identified

data remaining from the investigation of outliers. This

a split sample technique.

3.5 Verification

from the best subsets analysis and the

model is norv ready to be verified using

The most important, yet often ignored, step in building a regression model is verification ancl

validation of the ability of the model to be appliecl to independ.ent data. This is necessary

to confirm that the regression relationship has not been overfit and maintains some degree of
universal applicabiliiy to independent data.

Verification is usually accomplished using a split sample technique. This is where a portion
of the calibration data is withheld from the mod.el building exercise in ord.er to determine horv

the model performs on independent data. Understandably, many model builders are reluctant
to withhold any portion of the available data for this purpose. This is especially true in the
case of streamflow since the records are generally very short to begin with.

Techniques have been developed in order to overcome this objection but still provide rig-
orous verification. One of these consists of splitting the sample into two equal parts and using

each as a model building data set. These 'partial' models are then verified using the inde-
pendent data and statistical tests as well as qualitatively compared to each other in terms

of coefficients and staiistical properties. Provided that the models validate well and aïe rea-

sonably simiiar in folm the data sets are combined and the 'full' model is developecl using

the same form. This 'full' model cannot be validated against independent data but the split
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sample validation has proven a certain amount of model stability. It has also established the
minimum amount of utility that can be expected from the full model, the truth being that a
model from the full data set should perform better than the two partial models.

In order to verify the partial data models several standarcl statistics are usecl to measure

the degree of similarity between the modelled and independent data. There are many statistics
used for this purpose by different researchers. Four of these were chosen for this study that
have relatively universat applicability in dendrochronology. These are the product moment

correlation coefficient test, sign test, product means test ancl red.uction of error statistic.

The product moment correlation coefficient test is the most cornmon test used. for statistical
verification. It is a basic statistical test that measures the similarity between the shapes of
paired time series. ft measures the relative variation (or covariance) in common between the
two data sets (Cook and Kairiukstis, 1989). This test of significance implies that the variance

of the two data sets is linearly related. It does not imply that the values are close to each

other or similar in scale. In this respect it is not very robust. The t-test is performecl as

follorvs (Maidment, 1993,ch. 1Z):

31

,_rJn-2

where r is the procÌuct moment correlation coefficient calculated as follows:
n

Ð(r¿-r,)(ûi-û")
i=Ir:

n

- ûu)2 D@¿ - t,)2
i=7

Where:

n : Number of related data pairs (actual and estimated data)

íD¿ : Actual data point

uo : Mean of actual data

á¿ : Estimated data point

ã, : Mean of estimated data

The 'ull hypothesis is that the correlation coeffi.cient(r) is equal

calculated using student's t didtribution with 1 - a/2 probability

dom (iVlaidment, 1993,ch. 1Z).

(3.13 )

(3.14)

to 0. The significance is

andn-2degreesoffree-
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The sign test is a non-parametric test of similarity between series basecì on the number

of agreements and disagreements in the sign of the first differences (Cook and Kairiukstis,
1989)' If the number of agreements exceeds the number of disagreements by greater than
that expected by chance the hypothesis of a reiationship existing passes. This test is ¡ot
sensitive to extremely anomalous data and is simple to apply. It is not very rigorous however

as the magnitude of correspondence between variables is not taken into account(Fritts, 19Z6).

Critical values for this test are calculated using the rounded values of a binomial distribution
with j n degrees of freedom.

The product means test is not a standard statistical test but is usecl extensively in d.en-

droclimatology. This test attempts to make up for the shortfalls of the sign test by testing
the signs and magnitudes of the mean deviations of paired time series. In this test the de-

partures from the mean of each paired data point are multiplied together and gathered into
two groups based on sign. The absolute values of the positive and negative data sets are then

averaged' The difference between the positive and negative product means is then tested for
significance. A positive average which is significantly larger than a negative average indicates

that a significant correspondence exists in both direction and magnitude between the two data
sets. This test is very rigorous and is a powerful indicator of a relationship when it passes.

Unfortunately it has a tendency to underestimate the vaiue of a relationship and fails more

often than it should (Cook and Kairiul<siis, 1989). When it faits one cannot be positive that
no relationship exists because it is very sensitive to anomalous data points. The test statistic
is calculated as follows:

,_ ff7¡-'tfL_

/ s: s-

Vü +;
Where:

'trl¡ : the mean of the positive products

m- : the mean of the negative products

sI : the sample variance of the positive products

n+ : the number of positive products

s2 : the sample variance of the negative products
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n- : the number of negative products

This tesi statistic is compared to critical values fol the Student's t distribution with n-2 degrees

of freedom and 1 - af 2 probabiiity (Cook ei al., 1994).

The reduction of error statistic is the most important and powerful verification tool used in

dendroclimatology. It is similar but not equivalent to the explainecl variance statistic (R2). ft
is exactly the same as -R2 when applied only to dependent data. It is expressed. as follows (Cook

and l{airiukstis, 1989):

SSRRE:7 - (3. 16 )SSM
Where:

S,S-R : Regression sum of squares, sum of the squared deviations between actual and

modeiled independent data

SSM : Mean sum of squares, sum of the squarecl deviations between the actual independent

data and the mean of the dependent data

ù¿)

This can be calculated as follows (Cook et al., 1gg4):

lÉi', -i'o)'lRE:l_ lo=r I

LÀ('' -,à'l
Where:

(3.17)

n : the number of independent data points

0¿ : the actual independent data

â¿ : the estimated independent data

o" : is the mean of the actual data in the calibration period

The values of RÐ can range fi-om *1 to -oo. *1 indicates perfect agreement and a value belorv

0.0 indicates the regression model does not predict as well as using the calibration mean. Cook

and Jacoby (1983) determined that the g5% confidence level for this test is approximately equal

io 0.0. This test is very rigorous and sensitive to poor estimates so any positive RE is a goocl

indicator of skill in the model.
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3.6 Final Reconstruction

The final reconstruction involves forming a time series made up of the original gauged data
extended and completed with the reconstructed data.

A final reconstruction is only made if the final model is determined to have verified well
enough to proceed. A positive verifrcation is indicated by a series of positive verification

statistics' -R2 values and observed correspondence of the gauged ancl reconstructed time series.

Judgement is used to determine if a final model is of high enough quality for final reconstruction

and drought analysis.
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Chapter 4

Data Availability

4.L Streamflow Data

Surface water quantity data have been collected and archived in Canada for over 1b0 years.

Since 1908 streamflow data have been published in a variety of forms. Tod.ay, data are col-

lected from a variety of governmental and private agencies and are compilecl regionally by

Environment Canada and stored by the Meteorological Service of Canada. The Meteorologic

Service of Canada stores streamflow, water level, sediment data and gauge d.ata in their Hy-
DEX database. Since 1991 these data have been available in a CD-rom format, called Hydat,

which has replaced printed publications (Environment canada, 2002).

All streamflow data for this study were obtained using the year 2000 version of the Hydat

CD which contains data up to 1gg8 (Environment Canada, 2001).

4.2 Tree Ring Data

Tlee Ring data are available from the International Tlee Ring Data Bank (ITRDB). This

is a centlal repository administered by the United States National Oceanic and Atmospheric

Administration (NOAA). This data bank is part of the World Data Centre for paleoclimatalogy

at the National Geophysical Data Center (NGDC) in Boulder, Colorado, USA. This data

centre also houses other types of paleoclimatic data such as ice cores, sediments, pollen, and
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anecdotal data (Grissino-Vlayer, 2002).

The ITRDB provides a permanent location for the storage of well dated high quality

dendrochonological data from around the world. It prevents loss of d.ata clue to mishandüng,

laboratory and scientist relocation and demise (Grissino-Mayer, 2002).

Information submitted to the ITRDB is scrutinized for quality and length to ensure high
quality error free data. The ITRDB contains more than 6000 data sets representing more than
1500 sites around the world. The data are made freely available to all researchers.

The data are readily available over the World Wide Web at:

http : f f www. ngdc. noaa. g ov f p ateo f treering. htm

by downloading the ITRDB display softrvare (National Oceanic and Atmospheric Administra-
tion, 2002), a DOS progl'am which allows geographic searches of the data. An example of the

display softwa¡e interface can be observed in Figure 4.1 which shows a picture of available tree

ring data in North America.
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Figure 4.1: Example of ITRDB Display software user Inte¡face

Chronologies subrnitted to the ITRDB are processed using standard methods as discussed

in Flitts (1976). These methods consist of taking trvo cores per tree, each tree in a¡ open stand,

with a minimum of 10-20 trees per chronology. Biological growth trend is then systematicaily
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removed. Biological growth trend is the tendency of the tree rings to become narrower as the

tree ages' This is produced because, although on average the same volume of woocl is procluced

every year' the diameter of the t¡ee trunk is becoming lalger. This trencl decreases as the tree

matures and ages because the changes in diameter become less pronounced. Growth trend is

removed by fitting a clrrve form of limited flexibility, to minimize lost climate signal, to the
tree ring widths and dividing each ring width by its corresponding value of the frtted line. A
curve forrn of limited flexibility is used for this, usually a reverse exponential or a straight

line. This is referred to as standardization of the tree ring d.ata and prod.uces tree ring indices

with mean approximately equal to 1 and variance that is constant over the entire tree ring
record. The indices for all the trees in the stand are then averaged to reduce the local noise

in the signal produced by tree specific factors. The ITRDB has over B2Zb chronologies that
were processed in this way.

All data for this study were obtained from the ITRDB. Although other data in the study

area are lçnown to exist, because several researchers have pubiished papers using new data, it
is highly unlikely that they would be willing to pass on this data until they have completed

their own projects with it. Collecting of tree ring data is highly labour intensive and costly so

a researcher will normally publish all of the work commissioned by the funding agency before

submitting the data to the central data bank. This can typically cause a lag of five to ten
years betrveen data being sampled and submitted.
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Chapter 5

Computer Applications for Tree

Ring Reconstruction

Chapter 3 presented the statistical procedures in a tree ring reconstruction of streamflow.

Early in this study it was discovered that cluality control and consistency would be difficult
to preserve with so many techniques and options available. For this reason it was decided to
automate the process as much as possible in order to speed and simplify the analysis and make

sure each step was rigorously followed.

Three applications r¡/ere programmed using Visual Basic 5 Professional (Microsoft Corp.,

1997). This language offers advantages in that it provides a quaiity presentation, is easy to
program and interfaces well with other applications. The disadvantage is that it is not an

efficient platform for performing mathematics, especially matrix operations. Severaì options
were investigated to address this problem from programming in C++ or Fortran to interfacing

with an external program. It was decided that there was no Ìeason to reprogram statistical
routines that are readily available in commercial statistical software packages. Minitab Release

11 was chosen to serve as the staiistical 'engine' for the main Visual Basic programs. Minitab
offers the advantage that it is a proven industrial statistical package and it has what was

referred io as OLE or ActiveX connectivity. The trvo terms mean that the pÌogram exposes

part of it's code to be taken over by a host program. This allows it to exchange information
with the host program and allows the host to take control of the 'slave' program's internal
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routines.

Three programs were written during the course of this thesis. The frrst is a program to
pl'eprocess the raw streamflow data or tree ring chronologies. The preprocessing consists of
statistical tests and corrections for non-normality, non-stationariy and autocorrelation. The
second program takes the preprocessed streamflorv and tree ring data and performs a correla-

tion analysis on it. It identifres tree ring chronologies that are significantly correlated with the
chosen streamflorv record. The last program uses that preprocessed data to perform orthogonal

best subsets regression. This program takes preprocessed tree ring chronologies, extracts the
principal components from them, chooses the significant principal cornponents and performs

best subsets analysis on these components and all annualizations of a streamflow data set. The
fi'nal reconstruction and verification is handled with a spreadsheet as there is too much judge-

ment involved for this process to be effectively automated. Drought analysis was done using

the Hyfran Software Package (Chair in statistical hydrolog¡ 2002). Program methodologies

are presented in the following sections.

5.1 Data Preprocessor

The preprocessor application has three main purposes:

1. To test and correct for non-normality in the data.

2. To test for non-stationaritv.

3. To test and correct for significant autocorrelation.

In addition this processor manipulates the data into a form that makes the subsequent analysis

easier. It outputs a text frle containing the preprocessed data and a Microsoft Word d.ocument

that shows a description of the data, all of the operations performed and their results. The
pÌogram is presented as a series of screens which prompt the user wiih choices based on the
information about the data and tests performed.

The first screen is an introduction that allows the user to choose the type of file to be

processed. This can be either a tree ring chronology or a streamflorv record..
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The next screen is a file browser which allows the user to choose the text file to be processed.

Data in the text file must be in a certain format. Streamflorv data must be in the form of
ihe 1995 Hydat monthly average streamfi.ow print-out. Tlee ring chronologies must be in the
standard output format from the iTRDB retrieval progranl.

Once the fi.le is chosen, if it is a streamflow file it is first annualized. This means that
the monthly average flows are summed into yearly volumes based on the starting month. For

example a March annualization will be made up of summed. monthly data from March of the
starting year to February of the next year. This is done because the exact corresponclence

between tree ring chronologies and the streamfl.ow water year is not known at this stage in the
analysis. If a tree ring file is chosen it is simply read into memory.

Descriptive statistics are calculated regardless of the data type and tabulated. for use later.

These statistics are the number of data, mean) variance, standarcl deviation, standard error,

coeficient of variation, skewness and kurtosis. All of this information is printed to the output
Word file.

The next screen presents the test and correction for non-normality of the data. Each

annualization of streamflow or tree ring chronology is checked for normality using the proba-

bility plot correlation coefficient test. This is accomplished using the normal scores calculation

available in Minitab. The correlation between the data and the corresponding normal scores

is tested. If the data fails this test a Box-Cox transformation is applied to the d.ata as de-

scribed in Section 3.2.7 . The probability ploi correlation coefficient test is then performed a

second time to confirm that normality has been achieved. The results of these tests and the
coefficients used for Box Cox transformation are record.ed in the output file. If normality is

not achieved this is also recorded.

The next screen presents the tests for non-stationarity of the data series. First each

annualization of streamflorv or tree ring chronology is checked for trends using the Mann

I{endall test for tr-end presented in Section 3.2. If a trend is detected in a series no action is

taken' The program notifies the user and a note is written inio the output log but it is up to
the user to address the trend by hand in post processing.

40



5. Computer Applications for Tbee Ri Reconstruction

After the Mann l(endall test is completed the data is presented to the user in the form of
a time series plot. One plot is shorvn for a tree ring chronology and 12 for annualizations of
streamflow, each on a different screen with prompts to continue. The pulpose of this is so the

user can determine if ihere are any shifts in the mean that neecl to be addressed. Again no

actio'is taken but the graphs are written to the output worcl frle.

The next screen presents the test and corrections for autocorrelation. The test is performed

for each annualization of streamflorv or tree ring chronology. The program interfaces with
Minitab and it is used to extract autocorrelation and. partial autocorrelation functions from
the data. It then tests for significant first order autocorrelation in the data using the correlation

coefficient t-test presented in Section 3.2. If significant first order autocorrelation is found in a
streamflow annualization it is noted and the pïogram proceeds to the final screen. No remedial

action is taken because the cause of the autocorrelation structure of the gauged data is not

known. If significant first order autocorrelation is found in a tree ring series it is noted and

the program proceeds to an ARMA modelling screen.

The ARMA modelling screen only appears for tree ring chronologies. It presents graphs

of the ACF and PACF and prompts the user to enter a model order for an Autoregressive

and/or Moving Average plocess to be fitted to the data. An understanding of the different
possible processes and their effects on the plots of the ACF and PACF is required to make this
judgement. TYee ring data usually displays a low order autocorrelation strlcture. Examples of
this type of structure can be found in Box and Jenkins (1970). After the form is chosen, Minitab
is again used to perform ihe ARMA modeliing. The prewhitened residuals are extracted and

tested again for significant autocorrelation. Ifthere is still signifi.cant first order autocorrelation

this is noted and the program proceeds to the final screen. If the user wishes to investigate

another ARMA the program must be re-initialized.

The final screen simply shows the user that the program has completed its anaiysis and

prompts the user to end the program. On exit all of the processed data are saved in files

with the same prefi.x as the original. Streamflorv files they are saved in a prefx.str file for the
processed annualized data andprefix.raw file for the unprocessed monthly data. Processed t¡ee

ring data is saved in a pleilx.trg file. The output \Mord document sholving all the procedures
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and results is saved in a prefix.doc file. AII files are savecl in the same d.irectory as the original

data file' Examples of the output produced by these analyses are presented in Appendix A.

5.2 Correlation Analyzer

The correlation analyzer application performs a correlation analysis between a prep¡ocessecl

streamflow record and several preprocessed tree ring chlonologies. The programmed appli-
cation is only capable of performing a correlation analysis between uninterruptecl monthly
streamflow data and uninterrupted tree ring data sets. Annual correlation analysis and

monthly correlation analysis on interrupted data sets was accomplished using the same tech-

niques in an Excel spreadsheet. The program is presented as a series of screens which p¡ompt
the user with choices based on the information about the data and analysis performed.

The first screen prompts the user whether he/she wants to perform a correlation anaiysis

or orthogonal best subset regression analysis. In this case the user would choose a correlation

analysis.

The user is then prompted in a file browser screen to choose from preprocessed tree ring
chronology files denoted by a'.trg' file extension. As the files are chosen they are listed on the
scÌeen' files chosen accidentally can be removed from this lisi by a click of the mouse. The
number of frles that can be chosen or removed is unlimited.

After choosing the tree ring files the user is prompted to choose a monthly streamflow

record denoted by a '.raw' fiIe extension. All fiies are read into memory and the dates that
overlap are noted. The user is then prompted to start the correlation analysis.

The correlation analysis proceeds using the methodology presented. in Section 3.J and a

plot is presented to the user for each tree ring d.ata set that was chosen. An example of the
plot produced can be seen in Figure 5.1. As can be observed the correlation coefficient is

presented for each month and t-1 lag of each month along with thegS% significance band.s.

Annual correlation analysis is completed using the same methods except it is done on

annualized streamflorv data in a spreadsheet environment. An example of the output from

this analysis is presented in Figure 5.2.

Examples of the output files produced by the correlation analysis software are shorvn in
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Appendix B.

5.3 Orthogonal Best Subsets Application

The Orthogonal Best Subsets application is invoked after the user has chosen

best candidate predictors to be investigated for reconstruction. It automates

activities:

which are the

the following

Finding overlapping time periods between preprocessed tree ring chronologies

Lagging the preprocessed tree ring chronologies forward and backward. in time

Extracting principal components from multiple preprocessed tree ring chronologies

Identifying the significant principal components using the Kaiser-Guttman eigenvalue 1

criterion.

Finding the overlapping time period between principal components and the preprocessed

annualized streamfl.ow data set.

Performing orthogonal best subsets analysis on the 12 annualizations of the streamfl.ow

data sets

7. Presenting the results of these best subsets analysis

The application is only capable of handling uninterrupted data sets. Where there was missing

data in a data set the same activities were performed using an Excel spreadsheet and Minitab
in tandem. The program is plesented as a series of screens which prompt the user with choices

based on the information about the data and analysis performed..

The first screen presented prompts the user whether he/she wants to perform a correlation

analysis or orthogonal best subset regression analysis. In this case the user would choose an

orthogonal best subsets regression analysis.

The user is then prompted in a file browser screen to choose from preprocessed tree ring
chronology files denoted by a '.trg' file extension. As the files are chosen they are listed on the

1.

2.

.t.

4.

I

6.
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screen' files chosen accidentally can be removed from this list by a click of the mouse. The
number of files that can be chosen or removed is unlimited.

After choosing the tree ring files the user is prompted into a screen to perform the principal
components analysis. This subroutine takes the overlapping period between tree ring d.ata sets

and lags them forward and backward one year. This forms a data set where the t-1, t and

t*1 lags of each tree ring data set are represented. These are then read into Minitab which
plocesses them extracting the eigenvectors, eigenvalues and transformation coeficients.

The user is then prompted into a screen which d.etermines the significant principal com-

ponents using the Kaiser-Guttman eigenvalue 1 criterion presented in Section 3.4.1.

After the significant principal components are determined the user is prompted to choose

a preprocessed streamflow record denoted by a '.str' file extension. This streamflow data set

is overlapped with the principal components.

The user is then prompted to start the best subsets analysis. As the best subsets analysis
proceeds graphs are shown for each annualization of streamflow. On this graph each number

of predictors is shown on one axis with the corresponding maximum .R2 and Rf;¿¡ values shown

on the other. These are written to a Word output file as this process continues.

A final plot is made using the output from this analysis consisting of the models with the
highesi Rlr for each number of predictors regarclless of annualization. An example of this plot
is given in Figure 5.3. Flom this final plot the model that gives the maximu* RZo¡ is chosen.

This model then goes through the process of removing outliers, final model determination,

verification and final model reconstruction.

The flnal drought analysis is accomplished using the methods d.escribed in Section 2.3.

The statistical frequency analysis is performed using the software package Hyfran (Chair in
statistical hydrology, 2002). This package allows many probability distributions to be inves-

tigated. The probability distribution that fits the data best is chosen for the final frequency

anaìysis.
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Chapter 6

Case Studies

6.1 fntroduction

Three streamfl'ow gauge records were reconstructed using the principles presented in the previ-

ous chapters in order to demonstrate their use and potential benefits. The streamflow gauges

were chosen based on several factors:

1. Lack of regulation

2. Proximity to available tree ring data sets

3. Length of record overlapping with available tree ring data

4. Proximity to the Nelson-Churchill River Basin

The case study gauges were chosen by first extracting all of the unregulated streamflow gauging

stations in Manitoba, Saskatchewan and Alberta from the Hydai a¡chive. These d.ata sets were

sorted for length ofrecord and only the ones with greater than 30 years ofrecord u,ere retained.

The retained gauge locations were then compared. with available tree ring data sets within a

500 km radius. Only those with a greater than 30 year overlap with several tree ring data

sets were retained. At this stage only a ferv gauging stations remained and the three gauging

stations with the highest number of tree ring data sets within b00 km were retained. The
three gauging station chosen are as follows:
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1. 078E001 Athabasca River at Athabasca

2. 0544023 Oldman River Near Waldron's Corner

3. 054A.022 Castle River at Beaver Mine Station

Of these data sets one is on the Athabasca River in the Mackenzie River Basin

are tributaries of the Oldman River in the South Saskatchewan River Basin. The

reconstruction of each of these records are presented in the following Sections.

and two

tree ring

6.2 Athabasca River at Athabasca

6.2.1 Background Information

The Athabasca River forms the southern most part of the Mackenzie River Basin. This river
is shown in Figure 6.1.

The Athabasca River is the longest river in Alberta at 1538 km and runs from Jasper to
Lake Athabasca. Originating in the Columbia Ice Field, a325 km2 glacier along the continental

divide, it flows across three major physiographic regions; the Rocky Mountains, the Interior
Plains and the canadian shield. The total drainage area is 1.JJ 000 kmz.

Today the economic use of this river is mainly tourism and five pulp and paper mills. There
are 13 potential hydropower sites along this river but most are of low head and would probably

not be economic for development. Grand Rapid is the most noteworthy with a maximum head

of approximately 15 m (Denis and Challis, 1916). This site will probably not be d.eveloped

due to environmental impact.

The gauge that was reconstructed is the Water Survey of Canada gauge 0ZBE001 de-

scribed as Athabasca River at Athabasca. This gauge is located at the Town of Athabasca

approximately 580 km downstream of the headwaters and 130 km North of Edmonton. The
drainage area covered by the gauge is 74 600 knz2. This gauge has been operated since 1g14

with discontinuities occurring between 1931 and 1952. Mean annual florv at this location is
429 m3ls.
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6.2.2 Available Data

Streamflow data for gauge 078E001 were obtained from the Water Survey of Canada Hydat

CD' The monthly average data were convertecl to 12 series of yearly streamflow volumes basecì

on starting months from January to December. These were then preprocessed by using tech-

niques described in Section 3.2. Eight of the flow series (Jan-Dec, Feb-Jan, Mar-Feb, Apr-Mar,
May-Apr' Oct-Sep, Nov-Oct, Dec-Nov) had to be normalized using Box-Cox transformation.

No trends or autocorrelation were found.

6.2.3 Predetermination of Predictors

The number of tree ring data sets was narrowed from a possible 140 candidates to 1g based

on the criterion suggested by Cook (1995) that they should be less than 500 l<m from the
gauge to be reconstrucied. The tree ring data sets to be entered into the best subsets analysis

were further selected 'a priori' based on judgement and the other frve criteria discussed in

Section 3.3.

Only two of the data sets were within the gauging station's sub-basin. These were

CANA028 at Pyramid Lake, Alberta and CANA026 at Pyramid and Patricia Lake, Alberta.

Of the remaining sets, eight were in the Mackenzie River Basin downstream of the gauge.

The final eight were in sub-basins of the Saskatchewan River which abuts the Athabasca River
Basin and is of similar geographic characteristics. AII of these tree ring series were investigated

further.

All tree ring data had more than 25 years of overlap when compared to the two periods

of continuous streamflow records from 1914*1929 and 1952-1995. The shortest overlap period

was 28 years.

All of the tree ring data sets could be mad.e normal by Box-Cox transformation. They all
displayed little ol no trend, shifts in the mean or periodicity. Significant autocorrelation ,¡¡as

removed with low order ARMA modelling (AR1 or AR1 MAl).
A correlation analysis betrveen tree ring series and. monthly streamflow yielded 12 tree

ring series with significant correlations. These are presented in Table 6.1.

Eight of these are within the Mackenzie River Basin so they could conceivably respond
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Table 6.1: Tlee Ring Data Signiflcantly Correlatecl With Monthly Record of 0ZBE001

Identifier Description Minor Basin Ma.ior Basin
CANAO2l Tunnel Mountain, Banff,ãlbe*a .Bow River Saskatchewan River
CANAO22 h)xshau', Tunnel and Banff, Alberta Bow River Saskatchewan River
CANAO26 Pyramid Lake and Pat¡icia Lake, Alberta Athabasca River IVIacI(enzie River
CANAO2S Pyramid Lake, Alberta Athabasca River lVlacKenzie River
CANAO96 Sunwapta Pass, Alberta North Brazeau River Saskatchewan River
CANAO9T Peyto Lake, Älberta North Clearwater River Saskatchewan River
CANAO99 Sarrail Glacier, Alberta Highwood River Saskatchewan River
UANAlO2 Revillon Coupe, Alberta Slave River Macl(enzie River
CANAl03 Peace River, Alberta Slave River IVlacKenzie River
CANAl04 Peace River, Alberta Slave River Macl{enzie River
CANAlOS Athabasca River, Albertá Athabasca River MacKenzie River
CANA135 Torvers Ridge, Alberta ljow River Saskatchewan River

to the same flow characteristics present in the gauged record. The others are all within the

Saskatchewan River Basin so they coulcl be lesponding to weather patterns common to both
basins. Plots of the correlation analysis against monthly flow are shown in Appendix C. In each

case the tree ring record is significantly correlated with at least one monthly streamflow recor.d.

This indicates at least some useful information within the tree ring series for reconstruction

of the streamflow series.

A correlation analysis between tree ring series and annual streamflow yieldecl only four
tree ring series with significant correlations. These are presented in Table 6.2.

Table 6.2: Tlee Ring Data Significantly Correlated With Annual Record of 0788001

Identifier Description Minor Basin Ma.ior Basin
CANAO26 Pyramicl Lake and Patricia Lake, Alberta Athabasca River Macl{enzie River
CANAO23 Pyramid Lake, Alberta Athabasca River Macl{enzie River
CANAiOS Athabasca River, Alberta Athabasca River Macl(enzie River
CANA135 Towers Ridge, Alberta Bow River Saskatchewan River

All of these were identified in the monthly correlation analysis. Plots of the correlation

analysis against annualized streamflow can be found in Appendix c.
The correlation analysis against monthly streamflorv yielded 12 possible data sets to be

investigated for model building. The correlation analysis against annual streamflow reaffirmed
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that four of these data sets have significant common information with the gauged streamflorv

data. The reduction to 12 data sets basecl on correlation with monthly streamflorv sufficiently

simplifles the regression procedure to proceed. The principal components analysis will help

further reduce the number of distinct signals and the number of significant predictors available

to be entered into a model.

6.2.4 Principal Components Analysis

The overlapping period for all 72 t¡ee ring series was founcl to be from 1805 to 1g65. The tree

ring sets were lagged forrvarcÌ and backward one year to account for growth and storage effects

forming 36 possible predictors for the reconstruction. This matrix was then orthogonalized

and the eigenvectors and eigenvalues tabulated,. 72 Eigenvectors had eigenvalues in excess of
the Kaiser-Guttman eigenvalue-l criterion. These components represent 75.6% of the total
variance contained in the 36 predictors with the largest single vector representing g.6% and

the smallest 2S%. These were retained for use in the best subsets model building exercise.

6.2.5 Best Subsets Analysis

The periods of overlap between the tree ring series and the streamflow series from IgI4 to lg2g
and 1952 to 1965 were used in this analysis. Each monthly annualization was regressecl against

all possible combinations of the 12 orthogonalized tree ring vectors. For each number (1 to
72) of predictors and each annualization of streamflow the best model was chosen based. on .R2

and RZaju"t"o. The best mod.el for each number of predictors was then separated out based on

RZa¡urt"a and plotted in Figure 6.2. The moclel that produced the highest RZa¡u,t.awith the

least number of predictors was a regression using the 2nd, 4th and 7th highesi eigenvalues on

the January streamflow annualization. This regression produced an R2 of 49.S% and RZ¿,jurt"¿

of.43.7%.

6.2.6 Investigation of Outliers

Outliers and influential observations were investigatecl using Leverage, Studentized Residuals,

Cook's Distance and Dfits. They were evaluated based on guidelines given for these statistics,
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Figure 6.2: Results of Best Subset Analysis of 0ZBE001

potential improvement to the regression model and judgement. It was found that the data for
1959 had high Studentized Residuals and Dfits. Removal of this point did not significantly

improve the legression model. This data point was therefore left in the regression data set.

6.2.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.

The verification was done using a standard split sample procedure. The data from 1g14 to
1929 was first used to build a regression equation (the 'early' model) and this was tested

against the independent data from 1952 to 1965. fn turn the data from 1g52 to 1g65 was used

to build a regression model (the 'late' model) and verifi.ed with the indepenclent data from

1974 to 7929.

The final regression equation takes the following form:

streamflow : öo * btPCt * bzPCz+ ... + b^pc* (6.1)

Where:

streamf low: Estimate of annualized streamflow

rn : Number of predictor variables
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PCt . . . PC*: Principal components of tree ring data

bt'..b*: Regression coefficients corresponding to each principal component

öo : Intercept coefficient which scales the regression equation to the mean of the predictand

The regression coeffi.cients can be observed in Table 6.3 as well as the pz, RZø and gauged

velsus modelled means and standard deviations. Some qualitative observations from the model

building portion of this exercise are as follows. The highest Rf;o, was 48.2% for the calibration

on the'early'data and the lowest was39.7To for the calibration on the'late'data. All three

of the Rf;f fot the mod.els were within reasonable limits for past streamflow studies in the
literature.

Table 6.3: Calibration Statistics

Parameter Early
Calibration
(1e14-1e2e)

Late
Calibration
(1e52-1e65)

F.ull
Calibration
(tsL4-L929
and
1e52-r.965)

Rz 0.585 0.536 0.481
Rlâ¿¡ 0.482 0.397 0.42r
Bs 1.40036 1.40038 1.40033
-81
( x 10-5)

4.223 4.104

Bz
( x to-s

-6.668 -6.507 -7.628

B3
(x 10-5)

4.874 6.000 , eoq

Gauged Mean L4034 13032 13500
Reconstructed
Mean

14038 12458 13255

Gauged
Standard
Deviation

3758 2tI0 2982

lìeconstructed
Standard
Deviation

ÔÕr9 1288 t709

The regression coeffi.cients for all models are of the same order and sign. This is a good

indicator of model siability for predicting independent data. The means for each of the
|egression models on the independent data are close to the gauged means. This also indicates
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a good reconstruction of statistical parameters.

Verifi.cation statistics for each of the split models and the full model are shown in Table

6.4.

Table 6.4: Verifrcation Statistics

Parameter Calibration
Period
(LeL4-Le2e)
Verification
Period
(1e52-1e65)

Calibration
Period
(1e52-1e65)
Verification
Period
(LeL4-Le2e)

.tIrll
Calibration
(1et4-L92s
and
1e52-L965)

Sign Test
Right T2 11 26
Wrong 2 (

4
Status
(Confidence)

Pass(95%) Fail(90%) Pass(95%)

Product Means Test
tvalue 1.600 1.190 r.540
mlnlmum
vâlue

1.761 1.746 7.707

Status
(Confidence)

Fail(90%) Fail(90%) F'ail(90%)

Producl Moment Coäèlalioñ Coefficie nt Test
tvalue 3.656 2.189 5.095
minimum
value

2.977 2.r20 2.750

Status
(Confidence)

Pass(99%) Pass(95%) Pass(99%)

Reduction o Error Test
tvalue 0.546 0.327 0.460
minimum
value

0 0 0

Status Pass Pass Pass

The sign test shows that the 'early' model passes at 95% confidence when applied to inde-

pendent data as does the'full'model. The'iate'model however fails at theg0% confi.dence.

This does not conclusively invalidate the model but indicates that the signs of ihe first differ-

ences do trot agree between the gauged and modelled data as often as would be expected at

random.

None of the product means test results passed at the 90% confidence interval. This test is
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a very powerful vaiidation tool when the result is positive but is very sensitive to iudividual
deviations, so a negative result cannot invalidate the results.

All models passed the product mo¡nent correlation coefficient test at better than gSTo

confidence. This implies that the variance between the gaugecl and reconstructed data is
linearly related. This is a powerful indicator of association between two variables provided the

actual and estimated means are essentially the same.

The reduction of error statistic was passed in all cases. This is the most rigorous and

sensitive verification statistic used in tree ring stud.ies. Any positive result is a good indicator

that the model is better than using the mean.

Figures 6'3 and 6'4 show how the 'early' regression model performs on independent data.

FI-om Figule 6.3 it can be seen qualitatively that the calibrated model does a good job of
reconstructing low flow events. As would be expected. the high flow events are not as well

represented in magnitude. This is true for both the d.ependent and independ.ent periods.

The scatter diagram in Figure 6.4 shows relatively tight correlation between the gauged and

modelled data for both the calibration and verification periods. The variance d.oes not appear

to change significantly between the calibration and. verification data except at higher flow
regimes as is expected. This is a good indication that the early model is reconstructing the
independent data adequately and provides confidence that a regression model built upon this
data will represent past ungauged droughts relatively well provided ihey are within the realm

of the known data.

Figures 6.5 and 6.6 show how the 'late' regression model performs on independent d.ata.

Figure 6.5 shows qualitatively that the calibrated model reproduces low flow events well during

both the model building period and ind.ependent periods. High flows however are not as well

represented. The scatter diagram in Figure 6.6 confirms this by showing relatively tight
cor¡elation between the gauged and modelled data for lorv flow events but a greater spread

for higher flow events. The variance does not change significantly between the calibration

and verification data. This indicates that the late model reconstructs the independent data

adequately which was also confi.rmed by the verification statistics.

Figures 6'7 and 6'8 shorv the performance of the final reconstruction model using all avail-
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able data with respect to the gauged data. No inclependent time periocl is avaiiable for veri-

fi.cation in this case. Figure 6.7 shows a good corlespondence between gauged low flows and

modelled lorv flows as '¡¡ell as a good correspondence with above average florvs although mag-

nitude is not represented well for high flows. Figure 6.8 confirms this by showing relatively

tight correiation between the gauged and modelled data especially below 15000 Mm3.

The split sample verification shows that the 'early' model and'late' model perform similarly
well. The sign and order of the regression coeffi.cients are the same for all mod.els and all
passed both the product moment correlation coefficient test and the reduction of error test.

This gives confidence in the performance of the full model and indicates a satisfactory result

for the reconstruction.
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6.2.8 Final Reconstruction

Figure 6.9 shows the frnal reconstruction with gauged d.ata incorporated. Tables of the gauged

61

24AOO I
I

22aAO 
ì

I

- 

Recotlstucted Oala' " Gauged Dôtã
'' Ave¡äge Ycâriv Skoâtrìfìo?

--_ :-194.9ii:."9lDtgltqhl,. .

É.
E

E

E

à

20cc0

14000

16000

J {000

12AÒO

r0ooo

8000

6000

Ë3;3as ð
YeâÉ

Figure 6.9: Time series of Reconstructed 0zBE001 Florv Record

and reconstructed data may be found in Appendix F.

As can be observed in this plot, there is a distinct reduction in the amount of variance from

the gauged to the reconstructed record. In the 59 year gauged record streamflow drops below

70000 IVImsf year on 4 separate occasions. During the 131 year reconstructed. record however

streamflow never drops below this level. This indicates that even though the verification

results were positive the reconstruction is not reproducing the full variance of the streamflorv

record. This being said the reconstruction can still be used qualitatively to illustrate the time
of occurrence of past severe droughts and long duration drought periods.

6.2.9 Drought Analysis

An analysis was performed on the reconstlucted data using the procedure described in Sec-

tion 2.3' A tluncation level of the mean annual runoff volume was used to separate ]orv florv

from high florv years. Distinct multiyear droughts were formed. by grouping adjacent years of
lower than average flow. These are presented in Table 6.5 sortecl by Sevelity (the water deficit

over the drought period with respect to mean annual runoff). Several observations can be
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made about this nerv drought record:

o The reconstruction identified a record of 49 distinct clrought events including 101 lorv

florv years compared to a record of 15 distinct drought events including 33 low flow years

from the gauged record.

o Although the highest severity drought identified was from the gauged record, four droughts

v¡ere identified in the reconstructed record that were at least as severe as the six most

severe droughts recorded.

o Three droughts lasting four years or more were identified in the reconstructed record in
addition io the three droughts identifred in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged and recon-

structed data using methods described in Section 2.3. In this analysis the severities for the

reconstructed and gauged drought events were fit to multiple distributions using hyfran (Chair

in statistical hydrology, 2002). A probability distribution was chosen by qualitatively compar-

ing the different distributions on a single plot. In the case of the reconstructed data shown in

Figule 6.10 none of the probability distributions fit the data particularly well. The Weibull

was chosen however because it preserves the shape of the data and the values are slightly
conservative when compared to the data. With the gauged data shown in Figure 6.11 the

\Meibuil distribution fits the data the best out of the five distributions.

The best fit line was then plotted with 95% confid.ence limits as well as the original data.

The plots for the gauged and reconstructed data can be observed in Figures 6.12 and 6.13.

These plots show that the drought analysis using the reconstructed data underpred.icts the

severity of droughts at ail return periods. Table 6.6 also illustrates this quantitatively. This
is due to the reduction of variance in the reconstruction and illustrates that the reconstructed

record is indeed unsuitable for frequency analysis.

6,2.LO fmportant Observations

This case study has shorvn that it is possible to

accuracy using tree ring data previously collected

reconstruct low florv data with reasonable

within the general area. The data analysis
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Table 6.5: Historical Drought Periods for 0ZBE001

Starting
Year

End tng
Year

Severity

(M*")

Magnitude

(M*")

Duration

(years)

Gauged
Data
(Y/N)

1955 1961 11387.6 1626.8 Yes
7967 1970 8994.8 2248.7 4 Yes
1 916 I 919 8055.1 2013.8 4 Yes
L9g2 r994 7485.7 2495.0 ð Yes
1987 1988 7316.3 3658.1 2 Yes
1 839 1843 7013.0 1402.6 5 No
181 1 1813 6687.9 2229.3 No
1829 1831 6664.9 222t.6 t No
1866 i869 5761.2 1440.3 4 1\o
1922 r924 5391.1 1797.0 Yes
1835 1837 5008.8 1669.6 3 No
1886 1888 4981.3 1660.4 3 No
i933 1936 4577.8 t744.5 4 No
1850 1851 4520.3 2260.2 2 No
i938 1939 4267.6 2133.8 2 No
1983 1985 4101.3 1367.1 fes
1880 1882 3463.5 11"54.5 J .t\ o
1904 r904 3315.4 3315.4 1 No
1857 7857 3128.6 3128.6 No
1845 1846 29i8.1 1459.1 2 No
1 890 1892 2861.5 953.8 J No
7529 1929 2593.1 2593.1 1 Yes
186i 1861 2417.6 2471.6 1 1\o
1806 1807 233 I .5 1165.8 2 No
1981 1981 2314.0 2374.0 Yes
i908 1910 2278.6 759.5 No
1894 1895 2270.2 1135.1 2 No
1848 1848 22t7.0 2271,.0 i No
1863 1863 2105.6 2705.6 1 t\o
7975 t976 2035.1 1017.6 2 Yes
1815 181 5 1939.5 1939.5 1 1\o
7823 1823 i894.6 1894.6 I No
7820 7821 r893.0 946.5 2 No
1855 1855 r598.7 1598.7 I No
1859 1859 1378.9 1378.9 1 No
1943 1943 1332.8 1332.8 1 -L\ o
1948 1948 7207.8 1207.8 1 1\o
7926 t926 1066.5 1066.5 1 Yes
r952 1952 789.4 785.4 Yes
1876 1876 /bJ.U 753.0 No
1912 7974 727.9 242.6 ó Yes
1 931 i931 654.6 ob4.ti 1 No
1963 1 963 484.7 484.7 1 Yes
1833 833 355.3 qÉÉ t I No
1 853 853 296.5 296.5 I No
1901 901 777.7 77.7 I No
1950 950 77.7 r.( I No
18i 8 818 3t.2 7.2 I No
1973 973 6.3 a I Yes
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Table 6.6: Comparison of Drought Flequency Analysis at Various Return periods for 078E001

Return Period Gauged Data Reconstructed
Data

(Years) Wate¡ Defic (Mmr /11r)
2 t.3 0.5
10 6130.8 4947
20 8644.7 6976.4
50 77973.2 9469.6
100 142t8.5 1i 5 78.3
1000 21042.8 77172.2
10000 28335.5 23474.4

63si9
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presented has shorvn a tripling of the number of observed multiyear drought events and low

flow years in the record. It also illustrates that the recLuction in variance that is a result of the

lorv explained variance (l?2) in the reconstruction model makes the data unsuitable for use in
a highly quantitative analysis.
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6.3 Oldman River Near Waldron's Corner

6.3.1 Background Information

The Oldman River forms the western most part of the South Saskatchewan River Basin. This

river is shown in Figure 6.14.
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The Oldman River runs from the Rocky Mountains through Lethbridge until it links up

with the Bow River to form the South Saskatchewan River. The terrain of the river ranges

from mountainous to prairie. The total drainage area is 24 4I0 km2.

The Oldman River is very important to Southern Alberta. The Oldman River and the

Bow River provide more than 98% of all the irrigation water in Southern Aiberta. In 1g92, the
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Oldman Dam rvas built to store the water from Oldman River to augment irrigation in low florv

years' It was constructed as a multipurpose reselvoir for irrigation, industrial consumption,

recreation and the potential to install 34 MW of hydro capacity. This hydro instailation is

currently being approved. It remains the largest reservoir in Southern Alberta.

The gauge reconstructed is the Water Survey of Canad.a gauge 0544023 described as

Oldman River Near Waldron's Corner.

6.3.2 Available Data

Streamflow data for gauge 05,{,{023 were obtained from the Water Survey of Canada Hydat
CD. Data at this location are available between 1950 and 1990. This did not provide enough

overlap with tree ring data sets, in close proximity to 0544023, for an acceptable regression

analysis and verification. It was, therefore, decided. to use a gauge downstream on the same

river to supplement this record.

The gauge 0544001, Oldman River Near Cowley, is approximately 20km downstream of
0544023' Its record extends between 1911 and 1930. There is no overlapping period between

the two gauged record.s. It is surmised that 0544001 was operated until ,The Dirty Thirties,

when funding was cut for most flow monitoring. Operation was then resumed after World

War II at a new gauge location with a new gauge number. No major tributaries enter the

river between the two gauge locations, therefore a straight pro-ration of monthly data based

on the ratio of drainage areaÆ was deemed appropriate. To this end the monthly average data

in 05.A4001 was multipliecl by a factor of ffi, the drainage area of 0544023 over the

drainage area of 0544001. These data were then combined wiih 0544023 to form a complete

record at \Maldron's Corner from 1911-1930 and 1950-1990 with a potential minimum overlap

of 35 years with tree ring data in the area.

The monthly data were converted to 12 series of year-ly streamflow volumes based. on start-
ing months between January and December. These were then preprocessed by techniques

discussed in Section 3.2. None of the florv data had to be normalized using Box-Cox transfor-

mation and no trends or autocorrelation were found.
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6.3.3 Predetermination of Predictors

The number of tree ring data sets was narrowecl f¡om a possible 140 candidates to b1 based

on the criterion suggested by Cook (1995) that they should be within a racìius of 500 km from
the gauge to be reconstructed. The tree ring data sets to be entered into the best subsets

analysis were further reduced 'a priori' based on judgement ancl the five criteria discussecl in

Section 3.3 as follows.

Only one of the data sets, CANA136 Crowsnest Pass was within the gauging station's

sub-basin. Of the remaining sets, seven were in the Borv River Basin which is also part of
the South Saskatchewan River Basin and adjacent to the Oldman River Basin. Four were in
sub-basins of the Mackenzie River Basin in areas of similar- geography as the Oldman River
Basin. The other 39 potential data sets were located on the West side of the Rocky Mountains

and, therefore, could not have responded to the same weather patterns as those located East

of the Rocky Mountains due to orographic effects. All 12 tree ring data sets identified were

investigated further.

All tree ring data had more than 25 years of overlap when compared to the two periods of
continuous streamflow records from 1911-1929 and 1950-1995. The shortest overlap was 3b

years.

All of the tree ring data sets could be made normal by Box-Cox transformation. They all
displayed littie or no trend, shifts in the mean or periodicity. Significant autocorrelation was

removed with low order ARMA modelling (AR1 or AR1 MA1).

A correlation analysis between tree ring series and monthly streamflow yielded eight tree

ring series with significant correlations. These are presented in Table 6.2

Seven ofthese are rvithin the South Saskatchewan River Basin so they could have responded

to the same florv characteristics present in the gauged record. One is within the Macl(enzie

River Basin so it could have responded to weather patterns common to both basins. plots

of the correlation analysis against monthly flows are shorvn in Appendix D. In each case the

tree ring record is significantly correlated with at least one monthly streamflow record. This
indicates at least some useful information within the tree ring series for reconstruction of the

streamflow series.
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Table 6.7: Tl'ee Ring Data Signifrcantly Correlated With Monthly Record of 0544023

Identifier Description Minor Basin Major Basin
CANA02O Porverhouse, Alberta Bow River Saskatchervan R ver
CANAO2i Tunnel lVlountain, Banff, Alberta- Bow R ver Saskatchewan R VEI
CANAO22 Exshaw, Tunnel and Banff, Alberta Bow R ver Saskatchervan R ver
CANAO24 Exsharv, Alberta .Bow River Saskatchervan R ver
CANAO26 Pyramid Lake and Patricia Lake, Alberta Athabasca River iVlacl(enzie River
CANAO99 Sarrail Glacier, Alberta Bow River Saskatchervan River
CANA135 Towers Ridge, Alberta Bow River Saskatchervan River
CANA136 Urowsnest Pass, Alberta Oldman River Saskatchewan River

A correlation analysis between tree ring series and annual streamflow yielded five tree ring
series with significant correlations. These aÌe plesented in Table 6.8. AII of these were iden-

Table 6.8: Tlee Ring Daia Signifrcantly Correlated With Annual Record of 0544023

Identifier Description Minor Basin Ma.ior Basin
OANAO2O Powerhouse, Alberta Bow River Saskatchervan River
CANAO2i Tunnel lVlountain, Banff, Alberta Bow River Saskatchervan River
CANAO22 -bxsharv, Tunnel and Banff, Alberta Bow River Sasl<atchervan River
CANAO24 Exshaw, Alberta Bow River Saskatchervan River
CANA136 Crowsnest Pass, Alberta Oldman River Saskatchervan River

tifred in the monthly correlation analysis. Plots of the correlation analysis against annualized

streamfl.ow are shorvn in Appendix D.

The correlation analysis against monthly streamflow data yielded eight possible d.ata sets

to be investigated for rnodel building. The correlation analysis against annual streamfl.ow

reaffirmed that five of these data sets contain significant common information with the gauged

streamflow data. The reduction to eight data sets based on correlation with monthly stream-

flow simplifres the regression procedure.

6.3.4 Principal Components Analysis

The overlapping period for all eight tree ring series rvas found to be fi'om 1521 to 1g6b. The tree

ring sets were lagged forward and backward one year to account for growth and storage effects

forming 24 possible predictors for the reconstruction. This matrix was then orthogonalized in
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space and the eigenvectors and eigenvalues tabulated. Seven eigenvectors had eigenvalues in

excess of the I{aiser-Guttman eigenvalue-l criterion. These seven components repres ent T2.IVo

of the total variance contained in the 24 predictors with the largest single vector representing

79.5% and the smallest 4.4%. These weïe ¡etained for use in the best subsets model building
exercise.

6.3.5 Best Subsets Analysis

The period of overlap between the tree ring series and the streamflow series from 1g1l-1g2g

and 1950-1965 was used in this analysis. Each monthly annualization was regressed against

all possible combinations of the seven orthogonalized tree ring vectors. For each number of
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plotted in Figure 6.15. The model that produced the highest RZ*ju,t"¿with the least number of
predictors was a regression using the 1st to 6th eigenvectors on the December Annualization

This regression produced an R2 of.46.J% and RZ¿ju"t"o of J4.7%.
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6.3.6 Investigation of Outliers

Outliers and influential observations were investigated using Leverage, Studentized Residuals,

Cook's Distance and Dfrts. It was found that the data points for 1950 ancl 1g55 had high

Studentized Residuals, Cook's Distance ancl Dfits and that removal of these points significantly

improvecl the regression model. These data points were therefore removed from the regression

data set.

6.3.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.

The verifi.cation was handled by a standard split sample procedure. The data from 1g11-1g2g

was first used to brrild a regression equation (the 'early' modet) and this was tested against

the independent data from 1950-1965. In turn the data from 1950-1965 was used to build a
regression model (the 'late' model) and verified with the independent data from 1gi1-ig2g.

The final regression equation takes the following form:

streamflow : åo * hPCr -l bzPCz+ . . . + b*PC* (6 2)

Where:

streamf loto: Estimate of annualized streamflow

m : Number of predictor variables

PCt . . . PC*: Principal components of tree ring data

h . . .b^: Regression coeffi.cients corresponding to each principal component

öo : Intercept coefficient which scales the regression equation to the mean of the predictand

The regression coefficients can be observed in Table 6.9 as well as the R2 , RZ¿¡ and gauged

verslls modelled means and standard deviations. Some qualitative observations from the model

building portion of this exercise are as follows. The highest Rf,f wasS4.J% for the regression

model built on the 'Iate' data and the lowest was 50.0% for the regression model on the ,early'

daia. Atl three of the R?"¿, for the models were within reasonabl.e limits for past streamflow

studies in the literature.
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Table 6.9: Calibration Statistics

.Harameter Early
Calibration
(1e1 1-1e2e)

Late
Calibration
(1e50-1e65)

-Btrll
Calibration
(1e11-1e29
and
1950-1e65)

R2 0.667 0.754 0.596
Ri¿¡ 0.500 0.543 U.bUJ
B6 515.19 569.91 527 19
B1 _r7 0,) -40.67 -26. i61
B2 49.34 -29.24 42.58
B3 32.62 44.54 36.058
Ba -8.76 76.30 -0.2r
B5 12.86 32.47 20.10
B6 24.38 -64.88 20.25
Gauged Mean 567.r37 496.477 526.454
Reconstructed
Mean

556.036 564.1 16 526.455

Gauged
Standard
Deviation

109.640 L43.tt7 132.901

Keconstructed
Standard
Deviation

74.446 '202.880 r02.620
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The regression coefficients for the 'full' and 'early' regression moclels are of the same order

and sign. This is a good indicator of model stability for predicting inclependent data. The

'Iate' regression model differs from the other two in sign for the Bz, Bq and 86 coeff.cients.

This raises some concerns about model stability which will be born out in the verification.

Verification statistics for each of the split models and the full model are shown in Table 6.10.

The sign test shows that the 'fuil' model passes at g5% when applied to the calibration d.ata.

Table 6.10: Verification Statistics

Parameter Calibration
Period
(1e11-1e2e)
Verification
Period
(1e50-1e65)

Calibration
Period
(1e50-1e65)
Verification
Period
(1 e1 1-1e2e)

F\Ill
Calibration
(1e 1 1-1e29
and
1e50-1 965)

Sign Test
Rieht 1t 74 25
Wrong J 5 r

Status
(Confidence)

Pass(90%) Pass(90%) Pass(99%)

Product Means Test
tvalue 0.570 1.510 3.820
minimum
value

r.767 L729 2.730

Stat us
(Confidence)

Faii(90%) ¡'ail(90%) Pass(99%)

Producl Mornent Correlatiõn eõãfficient Test
tvalue 2.L7 1.45 6.77
mtnlmum
value

2.t4 I.73 qnD

Status
(Confidence)

Pass(95%) Fail(90%) Pass(99%)

Reduction o Error Test
value 0.482 -0.835 0.596
mtntmum
value

0 0 0

Stâtus Pass Fail Pass

The 'early' and 'late' models, both pass only at the 90% confidence interval. This does not

conclusively validate the model but indicates that the signs of the first differences agree between

the gauged and modelled data more often than would be expected at random with not more
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than 90% confi.dence.

Tlre product means test for both the 'early' and 'late' models failed at the g0% confidence

level while the 'fuil' model passed at greater than ggTo on the calibration data. Again one

cannot be sure that no relationship exists by a failure of this test as it is very sensitive to large

deviations from the mean.

The 'early' model passed the product moment correlation coefficient test at g0% confi-

dence while the 'late' model failed at this level. The 'full' model passed the product moment

correlation coefficient test at greater than gSTo confi.dence. A pass implies that the variance

between the gauged and reconstructed data is linearly related. It is a powerful inclicator of

association between two variables provided the actual and estimated means are essentially the

same.

The reduction of error statistic was passed for the 'early' and 'full' models. Results for the

'Iate' model indicate that the regression does not perform as well as the mean of the calibration

data. The RE statistic is the same as -l?2 for the 'full' model. This is an extremely rigorous

and sensitive veriflcation statistic because it has no lower bound (trYitts, 19Z6). A few bad

estimates result in a negative RE statistic. It is used extensively within the literature as the

most important indicator of reconstruction reliability.

Figures 6.16 and 6.17 show how the 'early' regression model performs on independent d.ata.

Flom Figure 6.16 it can be seen qualitatively that the caliblated model does a reasonably good.

job of reconstructing both low and high flow events although during the verifi.cation period the

low flow events are somewhat better represented. The scatter diagram in Figure 6.17 shows

relatively tight correlation between the gauged and modelled data for both the calibration and

verification periods. The variance does not appear to change signifrcantly between the cali-

bration and verification data. This is a good. indication that the early model is reconstructing

the independent data adequately and provides confidence that a regression model built upon

this data will represent past ungauged droughts relatively well provided they are within the

realm of known data.

Figures 6'18 and 6.19 shorv how the 'ìate' regression model performs on independent data.

F\'om Figure 6'18 it can be seen qualitatively that the calibrated model d.oes a reasonably
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good job of reconstructing both lorv and high florv events during the calibration period but

does not reproduce the verification data ver)¡ well at all. The scatter cliagram in Figure 6.1g

confi.rms this by showing relatively tight correlation between the gauged and modelled data

for the calibration period but a much greater spread for the verification period. The variance

changes significantly between the calibration and verification data. This inclicates that the

late model does not reconstruct the independent data adequately which was also confirmed

by the verifi.cation statistics.

Figure 6.20 and Figure 6.21 show the performance of the the fi.nal reconstruction model

using all available data with respect to the gauged data. Figure 6.20 shows a good correspon-

dence between gauged low fl.ows and modelled low flows as well as a poorer representation of

above average flows. Figure 6.21 confirms this by showing relatively tight correlation between

the gauged and modelled data especiaily below 600 Mm3.

The split sample verification shows that the 'early' model and 'full' model perform similarly

well while the 'late' model does not. The sign and order of the regression coeffcients are the

same for the 'early' and 'full' models and both passecl all of the verification statistics. This

gives some confidence in the performance of the full model.

The poor performance of the late model could be due to several factors. The combination

of the two data sets could have introduced inhomogeneities into the streamflorv data. Also

the period between 1950 and 1-965 had a large number of high flow years which are not well

represented by tree rings.
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6.3.8 Final Reconstruction

Figure 6.22 shorvs the final reconstruction with gauged data incorporated. Tables ofthe gaugecl

- 

Reconsl.ucted Data

81

1000 .:

soo:

B0o i

_ 700i
Ei

;600ì

Ë 500:
Ei
> 400:ri
t sooì

2OO i

roo ¡

. -.'.GaugedData
'- '. _.. Average Yearly Streâmf¡ow

- 

Pedods of Drouqht

Figure 6.22: Time Series of Reconstructed 0bAA023 Flow Record

and reconstructed data may be found in Appendix G.

Unlike the previous case study, the change in variance is not as pronounced. The standard

deviation of the reconstruction in this case is 77% of. that of the gauged d.ata alone. It
was only 47% in the previous case study. This moderate reduction in variance still makes

accurate quantitative analysis of drought very difficult as one can never be sure if the quantities

reconstructed are indeed representative. The potential for applying this data in a verification

role or qualitative analysis still exists, however.

6.3.9 Drought Analysis

An analysis was performed on the reconstructed data based on the procedure d.escribed in

Section 2.3. A' truncation level of the mean annual runoff volume was used to separate lorv

flow from high flow years. Distinct multiyear droughts were then formed by grouping adjacent

years of lower than average flow. These are presented in Table 6.11 sorted by Severity. Several

observations can be made about this new drought record.
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o The reconstruction identified a record of 103 distinct drought events including 1g9 low

flow years compared to a record of 14 distinct drought events incìuding 32 low florv years

from the gauged lecord.

The highest severity drought identified was from the reconstructed. record, three droughts

were identifi.ed in the reconst¡ucted record that were at least as severe as the three most

severe droughts recorded.

Seven droughts lasting four years or more were identified in the reconstructed record in

addition to the two droughts identified in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged an{ recon-

structed data using methods described in Section 2.3. In this analysis the severities for the

reconstructed and gauged drought events were fit to multiple distributions using hyfran (Chair

in statistical hydrology, 2002). A probability distribution was chosen by qualitatively compar-

ing the different distributions on å, single plot. In the case of the reconstructed data shown in

Figure 6.23 the Weibull distribution fits the data the best out of the five distributions. \Mith

the gauged data shown in Figure 6.24 f,he Weibutl distribution fits the data the best out of

the five distributions.

The best fit line was plotted with 95% confidence limits as well as the data. The plots for

the gauged and reconstructed data can be observed in Figures 6.25 and 6.26. These plots show

that the drought analysis using the reconstructed data underpredicts the severity of droughts

at all return periods. Table 6.12 illustrates this quantitativly. This is due to the reduction

of variance in the reconstruction and illustrates that even with only a moderate reduction in

variance the reconstructed record is stiÌl unsuitable for frequency analysis.

6.3.10 Important Observations

The split sample verifi.cation showed that a model built on the data between 1gb0 and 1g6b

produced poor results. The cause of this could be the combination of two data sets. Even

though they are on the same river, the florv provided by the additional drainage area may not

have been entirely compensated for by a simple pro-rating of areas. A cross correlation would
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Table 6.11: Historical Drought Periods for 0544023

ò[ar-
ting
Year

.|;nd-
i.g
Year

Seve-
rity

(M^3)

Mag-
nitude

(Mm3)

.Lur-
ation

(yea¡s)

Gaug-
ed
Data
IYlN)

Star-
ting
Year

End-
rng
Year

ùeve-
rity

(Mms

lvJ.ag-

nitude

(Mm3'

lJ ur-
ation

(years)

Gaug-
ed
Data
(YiN)

674 Lti22 901.3 100.1 I No 46 7747 782.4 I1.2 2 No
1981 1984 /5E.U 1E9.5 Yes 1628 L6',29 179.4 89.7 2 No
9t7 I927 744.6 148.9 5 Yes 1891 1891 174.7 t74.7 I No
774 7717 bzð.ð r57.2 4 .l\ o t575 7577 162.7 54.2 3 No
866 7870 559.7 5 1\o 1750 I750 I57.9 L57.9 1 No
9E6 1988 556.0 185.3 3 Yes 7662 1663 ID I.ð 78.9 2 No
754 1758 õ¿l 105.5 5 l\o I 669 I669 156.3 r56.3 No
840 1843 514.0 L¿ó.3 4 No t972 I972 156.0 156.0 1 res
792 t793 504.6 252.3 2 No 7740 1740 153.9 153.9 1 No
860 1862 494.4 164.9 J No Ìtt94 1695 149.3 2 1\o
813 814 476.7 ¿óó.4 2 No 1851 1E51 146.8 146.8 No
789 I 790 442.5 22t.3 2 No 1858 1858 146.4 r4rJ.q No

1 601 1606 440.3 73.4 6 No t67tt t676 r32.7 t32.L No
171 I t720 474.2 ¿ut 2 No 1864 IEI'4 131.3 131.3 No
L7U4 705 409.6 204.8 No t743 1743 L ¿O. t'¿6.7 No
1807 1808 óó(-z 93.6 2 No t647 1647 126.0 726.0 No
163 1634 365.5 ó2. I 2 No 1702 1702 ttg.2 1L9.2 -t\ o
I654 1656 360.9 20.3 l\o 1775 1776 I4.E 5t No
1881 1 EE3 48.4 6.1 J l\o t724 1724 114.5 t 4.5 1\o
1935 1936 34 173.8 2 No r943 1943 113.2 t73.2 l\o
1830 1830 342.1 342.L No 1599 1599 108.2 I08.2 No
't-777 L772 336.7 168.4 2 No I572 1572 101.2 LU I.¿ No
7624 7626 334.8 111.6 J No 1E21 1821 97.9 s7.9 No
1 681 1683 332.6 110.9 No 181 1 lE1 I 96.5 96.5 No
IEE6 1888 319.3 106.4 l\o 1969 1969 Jó.4 93.4 Yes
r923 1925 3t2.3 104.1 Yes 1767 1767 93.3 vó. ó No
1763 1763 ó-t 311.3 'I No 1E4E 1849 85.6 42.8 2 No
1928 930 294.8 96.3 YES 1853 1853 82.8 ó2.ó 1 No
1893 1895 286.1 95.4 \o 1698 1698 80.9 5U.V No
1799 L799 zErJ.4 zóu.4 t No 797 1797 79.6 79.6 l\o
L728 L729 275.2 139.6 2 No 7737 737 78.4 78.4 No
I 7ô5 1765 274.3 274.3 No 1956 1557 16.3 39.I 2 Yes
1976 7976 27t-5 277.5 I Yes tE5tt 1856 75.6 75.6 No
1659 1660 268.0 134.0 2 No i678 1678 74.9 74.5 1 No
7592 1595 264.8 66.2 4 No t787 t787 / l.ô 1 No
1909 1 909 263-9 263.9 1 No 1579 t579 64.7 64.7 No
1938 I 939 26t.8 r30.9 2 No 1836 lE37 hz-u 31.0 2 l\o
tEl tt at7 254.7 127.4 t No 1586 1586 Ðl NO
644 1645 zõ3-4 t26.7 2 No 1ä41 I641 56.3 b b..l 1\O

78 7979 240.2 t'¿rJ.7 2 Yes 1.875 1875 52.4 52.4 .l\ o
673 1673 235.8 235.8 No 1700 1700 51.0 51.0 No
782 84 220.O ¡õ.J J No 1802 1802 44.7 44 No
o?t 933 2r7.6 108.8 2 No r609 1610 42.3 27.2 2 No
I 13 274.9 r.o YES 1733 1733 26.7 26.7 1 No

649 651 13.4 77.r No 1687 1687 2r.5 27.5 1 No
846 846 208.6 208.6 1 No t735 i735 27.1 No
904 905 206.6 103.3 2 No igtt7 1967 t9.2 ts.2 1 Yes
948 949 200.9 100.5 No 7779 1779 r3.0 13.0 1 No

1959 961 198.1 66.0 J Yes 1823 1823 12.3 t2.3 I No
636 638 190.1 63.4 3 No 1709 1709 4.2 4.2 No

1691 691 189.5 189.5 I No IE I9 1E19 2.2 2.2 No
r795 1795 183.9 r83.9 No
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Table 6.12: Comparison of Drought Flequency Analysis at Various Return Periods for
0544023

Return Pe¡iod Gauged Data Reconstructed
Data

(Yea¡'s) Severity (Mm")
10 404 330
20 582 452
50 812 606
i00 981 777
1000 1504 1038
10000 1950 1288
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have been a more ideal way of relating the two gauging stations. Unfortunately no unregulated

overlapping data set was available in the inmediate area to accompiish this. In addition the

period between 1950 and 1965 had a large number of high florv years .øhich may have biased

the model. Even though the 'early' model independent verification and full model verification

showed good lesults the poor performance of the 'late' model verification means that these

results must be used with caution. The use of anecdotal data, if available, to further verify
the results of the reconstruction may be useful in this case.

The data analysis presented has shown a seven times increase in the number of muitiyear

droughts and low flow events and a six times increase in the number of low flow years . It also

illustrates that even a moderate reduction in variance makes the daia unsuitable for accurate

quantitative analysis.
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6.4 Castle River Near Beaver Mine Station

6.4.L Background Information

The Castle River is a tributary of the Oldman River Basin that forms the western most part

of the south saskatchewan River Basin. This river is shown in Figure 6.27.
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Figure 6.27: Map of Castle River Gauge Locations

The gauge reconstructed is the Water Survey of Canada gauge 05L1r022 described as

Castle River Near Beaver Mine Station.
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6.4.2 Available Data

Streamflow data for gauge 0544022 were obtainecl from the \Mater Survey of Canada Hydai

CD' Data at this location are available between 1945 and 1991. This does not provide enough

overlap with local tree ring data sets for an acceptable regression analysis and verification.

It was, therefore, decided to use a gauge downstream on the same river to supplement this

record.

The gauge 0544003, Castle River Nea¡ Cowley, is approximately 20km downstream of

0544022. Its record extends betrveen 1911 and 1930. There is no overlapping period between

the two gauged records. No major tributaries enter the river between the two gauges) there-

fore a straight pro-ration of monthly data based on the ratio of drainage areas was deemed

appropriate' To this end the monthly average data in 0544003 was multiplied by a factor

of ffiffi, the drainage area of 0544022 over the drainage area of 0544003. These data

were then combined with 05,{,{022 to form a complete record at Beaver Mine Station from

1911-1930 and 1945-1990 with a potential minimum overlap of 40 years with tree ring data

in the area.

In addition several months of missing data exist in 1949 and 1950. The months of De-

cember 1949, and January through March 1950 were filled in by fitting a regression model for

each month against the months for which complete records were available (May-Nov). These

regression models were calibrated with the complete data between 1945-1991. -R2 for these

models was generally low (between 17%-48%) but since these five months colleciively only

account for less than 74To of the total yearly flow and only one years worth of data is being

filled in some additional variance would probably not harm the final reconstructions.

The monthly data were converted to 12 series of yearly streamfl.ow volumes based on start-

ing months between January and December. These were then preprocessed by techniques

discussed in Section 3.2. None of the flow data had to be normalized using Box-Cox transfor-

mation and no trends or autocorrelation were found.
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6.4.3 Predetermination of Predictors

The number of tree ring data sets was narrowed from a possible 140 candidates to 51 based

on the criterion suggested by Cook (1995). The tree ring data sets to be entered into the

best subsets analysis were further reduced 'a priori' based on judgement and the five criteria

discussed in Section 3.3.

Only one of the data sets, CANA136 Crorvsnest Pass, is within the gauging station's sub-

basin. Of the remaining sets, seven are in the Bow River Basin which is also part of the South

Saskatchewan River Basin and adjacent to the Castle River Basin. Four are in sub-basins of

the Mackenzie River Basin in areas of similar geography as the Castle River Basin. The other

39 potential data sets are located on the West side of the Rocky Mountains and., therefore,

could not have responded to the same weather patterns as those located East of the Rocky

Mountains due to orographic effects. All 12 tree ring data sets identified were investigated

further.

All tree ring data had more than 25 years of overlap when compared to the periods of

continuous streamflow records from 1911-1929 and 1945-1995. The shortest overlap was 40

years.

All of the tree ring data sets could be made normal by Box-Cox transformation. They all

displayed little or no trend, shifts in the mean or periodicity. Significant autocorrelation was

removed with low order ARMA modelling (AR1 or ARl MA1).

A correlation analysis between tree ring series and monthly streamfl.ow yielded ten tree

ring series with significant correlations. These are presented in Table 6.13. Eight of these

are within the Saskatchewan River Basin so they could have responded to the same fl.ow

characteristics present in the gauged record. Two are within the MacKenzie River Basin so

they could have responded to weather patterns common to both basins. Plots of the correlation

analysis against monthly flows can be found in Appendix E.

A correlation analysis bet'rveen tree ring series and annual streamflorv yielded eight t¡ee

ring series with significant correlations. These are presented in Table 6.14. Ail of these tree

ring records were identified in the monthly correlation analysis except CANA020. This record.

had correlations close to significant but not at the 95% confidence level. The correlation
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Table 6.13: Tlee Ring Data Significantly Correlated With Monthly Record of 0544022

Table 6.14: Tlee Ring Data Significantly Correlated With Annual Record of 0544022

91

Identifier Description Minor Basin Ma.ior Basin
CANAO2l l\rnnel Mountain, Banff, Alberta Bow River Saskatchewan R ver
CANAO22 .Ðxshaw, Tunnel and Banff, Alberta Bow River Saskatchewan R. ver
CANAO24 Exshaw, Alberta Bow River Saskatchewan River
CANAO26 Pyramid Lake and Patricia Lake, Alberta Athabasca River Nlacl(enzie River
CANAO2s Pyramid Lake, Alberta Athabasca River lVlacKenzie River
CANAO96 Sunwapta Pass, Alberta North -Brazeau River Saskatchewan R ver
CANAO9T Peyto Lake, Alberta North Clearwater River Saskatchewan River
CANAO99 Sarrail Glacier, Alberta Bow River Saskatchewan River
CANA135 Towers Ridge, Alberta Bow River Saskatchervan River
CANA136 Crowsnest Pass, Alberta Oldman River Sasl<atchewan River

fdentifier Description Minor Basin Major Basin
CANAO2O Powerhouse, Alberta Bow River Saskatchewan R ver
CANAO2l Tunnel lVlountain, Banff, Aiberta lJow River Saskatchewan R ver
CANAO22 Exsharv, Tunnel and Banff, Alberta lJov¡ ltrver Saskatchewan R ver
CANAO24 Exsharv, Alberta Bow River Saskatche'rvan R ver
CANAO26 Pyramid Lake and Patricia Lake, Alberti Athabasca River MacKenzie River
CANA02S Pyramid Lake, Aiberta Athabasca River MacKenzie River
CANAO96 Sunrvapta Pass, Alberta North Brazeau River Saskatchervan River
CANA136 Crowsnest Pass, Alberta Oldman River Saskatchervan River
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against annual streamfl.ow shows that it is indeed significantly correlated. with streamflow

from this station. Plots of the correlation analysis against annualized streamfl.orv can be found

in Appendix E.

The correlation analysis against monthly streamflow data yielded ten possible d.ata sets to

be investigated for model building. The correlation analysis against annual streamflow reaf-

firms that seven of these data sets contain significant common information with the gauged

streamflow data and also identified one additional potentially significant predictor. The re-

duction, based on the correlation analysis with monthly streamflow, to 11 data sets simplifies

the regression procedure.

6.4.4 Principal Components Analysis

The overlapping period for all lL tree ring series was found to be from 1639 to 1g65. The tree

ring sets were lagged forward and backward one year to account for growth and storage effects

forming 33 possible predictors for the reconstruction. Nine Eigenvectors had eigenvalues in

excess of the I{aiser-Guttman eigenvalue-1 criterion. These nine components representTg.g%

of the total variance contained in the 33 predictors with the largest single vector representing

75.7% and the smallest 4.9%. These were retained for use in the best subsets model building

exercise.

6.4.5 Best Subsets Analysis

The period of overlap between the tree ring series and the streamflow series from 1g11-1g2g

and 1945-1965 was used in this analysis. Each monthly annualization \Ã/as regressed against

all possible combinations of the nine orthogonalized tree ring vectors. The best model for each

number of predictors was then separated out based oî RZaiurt"a and plotted in Figure 6.28.

The model that produced the highest RZ¿jurt"¿ with the least number of predictors was a

regression using the 1st to 5th eigenvectors on the December Annualization. This regression

ot

produced an -R2 o150.1% and RZ¿jurr"o of 42J%.
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Figure 6.28: Results of Best Subset Analysis of 0bAA022

6.4.6 Investigation of Outliers

It was found that one data point, Lg27,had high Studentized Residuals and. Dfits and that
removal of this point significantly improved the regression model. This data point was therefore

removed from the regression data set.

6.4.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.

The data from 1911-1929 was first used to build a regression equation (the 'early, model) and

this was tested against the independent data from 1945-1965. In turn the data from 1945-1965

was used to build a regression model (the 'late' model) and verified with the ind.ependent data

from 1911-1929.

The final regression equation takes the following form:

streamflow : öo * brPct i bzPCz+ ... + b*PC^ (6.3)

Where:

streamf low: Estimate of annualized streamflorv

m : Number of predictor variables
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PCt . . . PC*: Principal components of tree ring data

bt...b*: Regression coeficients corresponding to each principal component

ðo : fntercept coeffi.cient which scales the regression equation io the mean of the preclictand

The regression coefficients can be observed in Table 6.15 as well as the R2, Rf;* andgauged

vel'sus modelled means and standard deviations. Some qualitative observations from the model

building portion of this exercise âre as follows. The highest Rlo, was 45.1% for the regression

model built on the 'early' data and the lowest was 36.77o for the regression model on the 'late,

data. All three of f"he Rl¿, for the models were within reasonable limits for past streamflorv

studies in the literature.

The regression coeffi.cients B¡, Bt, Bz and 85 are of the same order and sign for all

models. 83 and 84 however differ in sign for each model. This raises some concerns about

model stability which *ill b" born out in the verifi.cation.

Table 6.15: Calibration Statistics

Parameter -Ejâ-rly
Calibration
(1e11-1e2e)

Late
Calibration
(1e45-1e65)

.trtrll
Calibration
(19L1-1929
and
1945-1965)

Rz 0.627 0.525 0.549
Räa, 0.472 0.367 0.481
B6 454.26 506.67 484.06
B1 -25.948 -29.98 -26.760
Bz 27.9r7 29.2I 33.548
-Bs 7.t2 -36.29 -30.562
Ba 2.75 -3.62 4.608
B5 28.25 4.67 i8.60
Gaueed Mean 432.724 543.2t7 492.220
Reconstructed
Mean

432.726 543.222 492.21ç)

Gauged
Standard
Deviation

95.037 115.367 118.994

Reconstructed
Standard
Deviation

75.274 83.595 88.1 89

94

Verification statistics for each of the split models and the full model are shown in Table 6-16.
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The sign test shows that 'full' and 'early' models fail at 90% when applied to the calibration

Table 6.16: Verifrcation Statistics

Parameter Calibration
Period
(1e1 1-1e2e)
Verification
Period
(1e45-1e65)

Calibration
Period
(1e45-1e65)
Verification
Period
(191 1-192e)

Full
Calibration
(L911-r.929
and
1945-1965)

Sign Test
Right T2 I4 24
Wrong I 4 15
Status
(Confidence)

Fail(90%) Pass(95%) Fail(90%)

Product Means Test
tvalue 0.40 r.70 4.10
mlnlmum
value

t.72 t.73 2.71

Status
(Confidence)

Fail(90%) ¡'ail(90%) Pass(99%)

Producl Mornent Correlation Coefficient Test
tvalue 1.32 3.01 6.7t
mlntmum
value

t.72 2.88 2.71

Status
(Confidence)

Fail(90%) Pass(99%) Pass(99%)

Reduction o Error Test
value 0.287 0.656 0.853
mtntmum
value

0 0 0

Status Pass Pass Pass

data. The 'late' model passes at the 95% confidence interval.

The product means test for both the 'early' and 'late) models failed at the g0% confidence

level while the 'full' model passed at greater than gg% on the calibration data. Again this

test is a very powerful validation tool when a positive result is obtained but it is so sensitive

to individual deviations that a negative result does not invalidate the results.

The 'late' and 'full' models passed the product moment correlation coeffi.cient test at gg%

confi.dence while the 'early' model failed at 90%. Again this indicates that the early model

does not reproduce variance well while the late model does.
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The reduction of error statistic was passed in all cases. However the results for the ,early,

data are lower than the others. The positive results are a strong indicator that both the split

models have merit.

Figures 6.29 and 6.30 show how the 'early' regression model performs on independent data.

FI'om Figure 6.29 it can be seen qualitatively that the calibrated mod.el does a good job of re-

constructing both low and high flow events although during the verifi.cation period the low flow

events are somewhat better represented. The scatter diagram in Figure 6.30 shows relatively

tight correlation between the gauged and modelled data for the calibration period. During the

verification period for fl.ows above 550 Mm3 the early model consistently und.erpredicts the

independent data. The variance appears to be a little larger for the verification period than

during the calibration period especially for higher flow years. These observations indicate that

although the early model does not represent high flows very well it does an adequate job of

representing low flows even during independent verification.

Figures 6.31 and 6.32 show how the 'late' regression model performs on ind.ependent data.

Fhom Figure 6.31 it can be seen qualitatively that the calibrated model does a good job

of reconstructing both low and high flow events during the calibration period but does not

reproduce the verifi.cation data nearly as well. The scatter diagram in Figure 6.32 confirms

this by showing relatively tight correlation between the gauged and modelled data for the

calibration period but a skewed spread for the verification period. Although the variance

only appears slightly greater for the veriflcation period the data are skewed such that the

model consistently overpredicts flows over the entire range. These observations indicate that

although the 'late' model represents the calibration data weil it does not do a very good job

of representing independent data.

Figures 6.33 and Figure 6.34 show the performance of the final reconstruction model using

all available data with respect to the gauged data. Figure 6.33 shows a good correspondence

between gauged low flows and modelied low flows as well as a poorer representation of above

average flows. Figure 6.34 confirms this by showing relatively tight correlation between the

gauged and modelled data.

The split sample verification shorvs that even though the 'late' model passed more of
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the verifrcation statistics the 'early' model qualitatively seems to perform slightly better on

independent data. The sign and order of the regression coefficients correspond. to those in the

full model except for 83 in the 'early' model and Ba in the 'late' model. The 'early' model

did not pass most of the verification statistics except the most important reduction of error

statistic. This gives confidence in the performance of the fult model and indicates a satisfactorv

result for the reconstuction.

The poor performance of the 'early' model in the verifi.cation statistics and the 'late' model

in the qualitative verification could be due to the choice of how the data was split. The period

between 1911 and 1929 had less than 25%high fi.ow years. A calibrated model created from

this data could not be expected to accurately reproduce a period such as 1945-1965 which

has roughly 60% high flow years. This shows up in verification statistics because they do not

discriminate between high and low data points. In the qualitative analysis, however, we are

interested in the low flow data much more than the high flow. A model built almost exclusively

of low flow data would reproduce similar events very well but would not reproduce the high

flows as well.

Reconstructed Dala over Modet BurraiÅi Ë".iáJ
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6.4.8 Final Reconstruction

Figure 6.35 shows the final reconstruction rvith gauged data incorporated. Tables of the gauged

Figure 6.35: Time Series of Reconstructed 0bAÄ022 Fiow Record

and reconstructed data may be found in Appendix H.

Again, the reduction in variance in the reconstruction versus the gauge record is not as

pronounced as in the first case study. The standard deviation of the reconstruction in this

case is 75% of that of the gauged data alone. Again this reduction in variance still makes

accurate quantitative analysis of drought unreliable. The potential for applying this data in a
verification role or qualitative analysis still exists, howeve¡.

6.4.9 Drought Analysis

An analysis was performed on the reconstructed data based on the procedure described in

Section 2.3. A truncation level of the mean annual runoff volume was used. to separate lorv

florv from high flow years. Distinct multiyear droughts were formed by grouping adjacent

years of lower than average flow. These are presented in Table 6.17 sorted by severity. Several

observations can be made about this new drought record.

o The reconstruction identified a record of 84 distinct drought events including I72 low

flow years compared to a record of 13 distinct drought events including 32 low flow years
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in the recorded data.

The highest severity drought identified was from the reconstructed record, five droughts

were identified in the reconstructed record that were at least as severe as the three most

severe droughts recorded.

Seven droughts lasting four years or more were identified in the reconstructed record. in

addition to the two droughts identified in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged and recon-

structed data using methods described in Section 2.3. A probability distribution was chosen

by qualitatively comparing the different distributions on a single plot. In the case of the re-

constructed data shown in Figure 6.36 the \Meibull distribution fits the data the best out of

the five distributions. With the gauged data shown in Figure6.37the \Meibull distribution fits

the data the best out of the five distributions.

The best ût line was then plotted with 95% confidence limits as well as the data. The

plots for the gauged and reconstructed data can be observed in Figures 6.38 and 6.39. These

plots show that the drought analysis using the reconstructed data underpredicts the severity

of droughts at all return periods. Table 6.18 illustrates this quantitatively. This is due to

the reduction of variance in the reconstruction and illustrates that even with only a moderate

reduction in variance the reconstructed record is still unsuitable for frequency analysis.

6.4.1"0 Important Observations

This case study showed how the choice of a split sample can affect the verification. The

'early' model was built almost exclusively of data from drought years. This showed up as poor

verification statistics even though the'early'model clearly reproduced low flow events better

than the 'late' split. The verifrcation statistics were largely positive for both models but in

hindsight a different type of split sampling that balanced ihe high and low fl.ow years may

have yielded more balanced verification results.

The data analysis presented has shown a thirteen times increase in the number of multiyear

droughts and low flow events and a five times increase in the number of low flow years . It also
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Table 6.17: Historical Drought Periods for 0544022

5ta r-
ting
Year

End-
ing
Yea¡

Seve-
rity

(M*"

lvtâg-
nitude

(M*t

lJu
ation

(years

Gaug-
ed
Data
(Y/N)

Star-
ting
Yea¡

tind-
ing
Year

Seve-
rity

(M*"

Mag-
nitude

(M*"

lJu r-
ation

(years)

Gaug-
ed

Data
(Y/N)

I9I7 t922 586.35 97.72 t) Yes 7670 1670 123.22 t23.22 1 No
1755 1759 485.1 5 97.03 5 No t847 r847 I t 5.02 rt'.o2 1 No
1812 181 5 474.94 118.74 4 No 1796 7796 I74.27 174.27 I No
7976 1979 474.54 118.63 4 Yes t952 r952 772.82 7I2.82 I Yes
1681 1684 445.92 I.48 4 L\O 1692 L692 i 10.85 110.85 1 No
1 986 1988 4t2.75 737.58 J Yes 1867 1867 106.68 106.68 I No
1841 1844 411.05 702.76 4 No 1661 1661 106.54 106.54 1 No
1981 1984 394.88 98.72 4 Yes 1865 1865 1 06.46 106.46 1 No
7775 i718 370.11 92.53 4 No 1764 7764 L02.27 ro2.27 I No
1798 1800 366.63 122.21 3 .l\ o L949 r949 100.94 100.94 1 Yes
1928 1931 365.48 91.37 4 Yes L824 1825 100.02 50.01 2 .L\ o
7793 7794 364.72 182.06 2 No 1909 1910 99.91 49.96 2 No
7924 7926 338.08 112.69 ó Yes 1725 1725 98.13 98.13 I No
1837 1838 33 1.80 165.90 2 No I663 1664 95.27 47.63 2 No
1939 7942 311 19 77.80 4 No 1833 1834 oÐ <o 4b.2t) 2 No
1701 L703 297.44 97.15 t .t\o 7741 r74t 92.03 92.03 1 No
1861 186.3 288.61 96.20 No 1859 1859 88.63 88.63 I No
1705 1706 288.26 744.73 2 No 1884 1884 86.14 86.14 1 1\o
1656 1657 285.97 r42.98 2 No 1695 1695 80.65 80.65 No
7720 1727 273.63 136.81 2 No 7677 7679 78.91 26.30 No
7645 1648 263.15 65.79 4 No 1732 1732 76.56 76.56 1 No
7790 179I 260.27 130.14 2 l\o i639 1639 t5.44 75.84 1 No
1852 1854 254.73 84.91 J l\o 7957 1 958 74.t6 37.08 2 Yes
1889 1889 238.27 238.2i 1 No !t to t777 73.63 36.81 2 No
1777 L773 2i9.50 J No 1729 1730 77 t4 35.57 2 No
1869 1870 ,)101t 109,56 2 No 1933 1934 67.04 2 No
1894 1896 2i 1.66 70.55 J No 1973 1 973 64.87 64.87 Yes
r766 1766 204.79 204.79 1 No t779 1780 52.72 26.36 2 No
7972 1915 202.05 50.51 4 fes 1944 1944 50.85 50.85 I No
1936 1937 200.r2 100.06 2 No 1882 1882 49.28 49.28 1 No
1 905 1906 197.99 99.00 2 No 1849 1849 48.90 48.90 No
i960 1963 197.58 49.40 4 Yes 1708 1708 48.23 48.23 1 No
t751 775I 191.70 191.70 i No 1667 r667 45.83 45.83 1 No
I8T7 i818 158.53 '70 q,7

2 1\o 7642 7642 47.72 4r.72 1 No
1891 t892 158.05 79.03 t No 1738 1738 J4.9b 34.95 1 No
I831 1831 157.67 r57.67 1 No 1768 1 768 34.00 34,00 I t\o
7746 1748 150.89 50.30 No 1 699 1699 33.32 9t 90 I No
1650 165 1 t49.77 74.59 2 No 1969 I 969 30.98 30.98 1 Yes
1674 L674 145.31 145.31 I l\o 1802 1803 29.83 14.91 2 No
7743 7744 I42.54 7r.27 2 No 1783 1783 16.76 76.76 1 No
1686 1688 14r.95 47.32 No 1857 r857 12.85 12.85 1 No
1 808 1809 1 28.99 64.50 2 No 7822 7822 t2.26 12.26 No
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Table 6.18: Comparison of Drought Frequency Analysis at Various Return Periods for
05A.A'022

Return Period Gauged Data Reconstructed
Data

(Years) Severity (Mm'\
10 500 356
20 603 431
50 729 525
100 819 591
1000 I 092 795
10000 1339 98i
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illustrates that even a moderate reduction in variance makes the data unsuitable for accurate

quantitative analysis.
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Chapter 7

Conclusions and Recommendations

7.L Conclusions

The goal of this thesis was to:

1. Explore approaches for using tree ring information to characterize drought events.

and near the Churchill-Nelson Rive¡2. Determine the availability of tree ring data within

Basin.

3. Employ the approaches in a series of case studies to demonstrate the feasibility of using

tree ring data to reconstruct drought.

A literature leview of dendroclimatology and its use in reconstructing drought was com-

pleted. This review revealed that tree ring data has been used to reconstruct many climatic

variables. trbrther, tree ring data are ideally suited to reconstruct streamflow because both pa-

rameters integrate the effects of temperature, precipitation and evapotranspiration. It was also

noted that most research to date has been done on reconstructing precipitation and tempera-

ture records. Research into reconstruction of streamflow has been very limited. The projects

that have been done have mostly concentrated in more arid areas of the United States such

as Arizona and New Mexico.

A revielv of the available streamflow data explains some of the leason for the lack of research

into stleamflow. It was found that in Canada, the unregulated. streamfl.ow records are very
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short and discontinuous. Very few records were found in the prairie provinces that were long

enough to facilitate a statistical reconstruction. All of the streamfl.ow records that were long

enough were located in Alberta. Of the five most promising gauging stations found., three of

them required the combination of two separate gauging station locations to create a sample

large enough for reconstruction. This would explain why temperature and precipitation, whose

records tend to be much longer in duration, are more often reconstructed.

A review of available tree ring data revealed that although there are many tree ring data

sets available in the United States there are comparably few available in Canada. Tlee ring

data available in Canada are mostly concentrated in Western Alberta and Quebec. Although

this is the case now, research is in progress that should expand this data network appreciably.

The work of Eric Nielsen and Scott St. George at Manitoba Energy and Mines as well as

Jacques Tardif at the University of Winnipeg should help expand the tree ring network in

Manitoba.

Three case studies were completed, one in the MacKenzie River Basin and two in the

South Saskatchewan River Basin. Two of the case studies verified very well using split sample

techniques, one v¡as questionable. The reconstructions extended streamflow records from 5g

to 190 years, from 60 to 420 years and from 65 to 3b2 years.

The first case study reconstructing the Water Survey of Canada gauge 078E001, Athabasca

River at Athabasca, extended a record that originally spanned between 7974_7929 and 1gb2-

1995 to a record that spans from 1805-1995. The drought record for this set was extended

from 15 distinct events to 49 distinct events. An attempt was made to estimate low frequency

droughts using standard frequency analysis. It was determined that the reduced variance of

the reconstruction model makes the reconstructed data unsuitable for quantitative frequency

analysis.

The second case study reconstructing the Water Survey of Canada gauge 0544023, Oldman

River Near Waldron's Corner, extended a record that originally spanned between 1911-1930

and 1950-1995 to a record that spans from 1571-1995. Unfortunately there is some question

as to the validity of the r-econstruction due to a poor verification. It is suggested that further

verification possibly using anecdotal data be done before this reconstruction can be used. The
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drought record for this set was extended from 14 distinct events to 103 distinct events. Again

the reconstruction proved unusable for frequency analysis due to reduced variance compared

to the gauged record.

The third case study reconstructing the Water Survey of Canada gauge 0544022, Castle

River Near Beaver Mine Station, extended a record that originally spanned between 1g11-

1929 and 1945-1990 to a lecord that spans from 1639-1990. The verifi.cation of this data set

was successful but could have been improved with a split sampling procedure that equalized

the number of high and low florv years in each sample. The drought record for this set was

extended from 13 distinct events to 84 distinct events. AIso, with this model reconstruction

proved unusable for frequency analysis.

The results of a comparison between extreme droughts estimated from the gauged data

and the reconstructed data showed a decrease in drought severity at all return periods. This

is contrary to what accepted theory would predict. It was found that this is due mainly

to the reconstructed model being unable to reproduce the gauged variance. The magnitude

of streamflow records are smoothed down as they are filtered through the tree ring data.

Although the reconstructed drought magnitudes are unreliable, the reconstructed records could

potentially be used in conjunction with other techniques to iclentify times of severe drought

and for verification purposes.

7.2 Recommendations

This thesis has shown that using existing tree ring data to reconstruct streamflow is one viable

method of dealing with the problem of short record.s of drought in Canada.

The research, however, was complicated by the lack of available tree ring data within

the Prairie Provinces. In addition, the high quality tree ring data that was available was

largely sampled in 1965. This meant that the last 35 years of streamflow record for active

hydrometric stations could not be used. This made finding streamflow gauging stations with

sufficient overlap with the tree ring data very difficult. Currently there is research being

conducted in Manitoba by people such as Eric Nielsen, Scott St. George and Jacques Tardif

thai will extend the tree ring lecord in the prairie provinces. It is recommended that as these
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and other tree ring data sets become available in areas of interest that further research be

conducted to help expand our understanding of drought in critical areas of the Prairies.

Difficulty was encountered using the standard sptit sample verification method where a

point in time is used to divide the data sei. This occurred because the statistical properties of

the two split samples r"¡/ere not essentially equal. ft is recommended that in further research of

this type a method of splitting that is less affected by statistically anomalous periods in time

be adopted. One such method would be the DUPLEX methocl of sample splitting based on

equalized statistical properties presented by Snee (Ig7T)

The results of a comparison between extreme droughts estimated from the gauged d.ata

and the reconstructed data showed a decrease in drought severity at all return periods. This

was a result of the reconstruction models not being able to reproduce the amount of variance

found in the gauged data. The data reconstructed in this study cannot be used in quantitative

frequency analysis of extreme drought. F\rrther study is required to determine if it is possible to

produce a reconstruction with sufficient explained variance to perform quantitative frequency

analysis

The most difficult complication of this study was that the drought reconstructions yielded

smaller severity drought events at all r*eturn periods. This was shown to be due to the lorv

expìainecl variance of the reconstruction models. Previous tree ring studies identified in the

literature have shown ihat it is possibie to produce reconstructions with much higher explained

variances in the 70% to 80% range. This however was only accomplished through specifi.c

sampling of tree ring data for streamflow reconstruction close to the gauge of interest. It is

recommended that future work be conducted using site specific sampling. Staiistical methods

such as Maintenance of Variance Extension(MovE) (Hirsch, 1982) should be investigated to

help reproduce the missing variance.
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Streamfl-ow Record Preprocessor Log

Input Filename: 07be001. txt
gsprefix for all files associated wiLh this raw file: 07beO01
SLat,ion = ATHABASCA RIVER AT ATHABASCA - STATIoN No. OTBEoO1
Latitude = 54:43:2ON
Drainage Area = 600 km2
Longitude = 113 :17:10W
Flow Type = NATURÄL FLOW

,fanuary
Number of Data Values = 43
Mean = 1,3'7 65 .828
Variance = 9435880
Standard Deviation = 3071.798
Standard Error = 468.443
Coeffi-cient of Variation = O.223
Skewness = 1.041
]I.UTLOS].S = I.332
AuLocorrellation = 0 -I32
Mean Sensitivity = 0.21,5

February
Number of Data Values = 43
Mean = 4376'7.9'72
Variance = 9552846
Standard Deviation = 3090.768
SLandard Error = 471.338
Coefficient of Variation = O.224
Skewness = 7.02
Kurtosis = L.238
AuLocorrel-l-ation = O.L27
Mean Sensit.ivity = O.21,9

March
Number of Data Values = 43
Mean = L3769.O59
Variance = 9614598
Standard Deviation = 3100.i42
Standard Error = 4i2.BS9
Coefficient of Variat.ion = O.225
Skewness = 1.001
Kurtosis = 1.175
Autocorrellation = 0 -I2i
Mean Sensitivit.y = 0.22
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Number of DaLa Values = 43
Mean = 1_3110.259
Variance = 9li60a2
Standard Deviation = 3t_26.66a
Standard Error = 4i6.811,
Coefficient of Variation = 0.22i
Skewness = o.942
Kurtosis = 1.029
Autocorrellation = 0.72
Mean Sensitivity = 0.226

May
Number of DaLa Values = 43
Mean = L3750.487
Variance = 9690642
St.andard Deviation = 3II2.9i9
Standard Error = 474.725
Coefficient. of Variation = 0.226
Skewness = 0.981
Kurtosis = 1.435
Autocorrellation = 0.156
Mean Sensitivity = O.22

,June
Nurnber of Data Values = 43
Mean = I3'1 45.504
Variance = BB29s96
Standard Deviation = 29iI.464
Standard Error = 453.1,44
Coefficient of Variation = 0.21_6
Skewness = 0.71,6
Kurtosis = 0.38
Autocorrellat.ion = 0.28
Mean Sensit.ivity -- 0.2I

July
Number of Data Values = 43
Mean = 13732.001
Variance = 8368002.5
Standard Deviation = 2892.'ts
Standard Error = 44I-I4
CoefficienL of Variation = 0.2]-L
Skewness = 0.388
lturE.OS].S = -U.5J
Autocorrellation = 0.285
Mean Sensitivity = 0.20l.
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August
Number of Dat.a Values = 43
Mean = 13124.I53
Variance = 8697245
Standard Deviation -- 2949.IO9
Standard Error = 449.'t3S
Coefficient. of Variation = 0.2I5
SKeWneSS = U.56 /
Kurtos].s = -O.367
Autocorrellation = 0 -221,
Mean Sensitivity = 0.2Is

Sept.ernber
Number of Data Values = 43
Mean = 13749.504
Variance = i926sB7
Standard Deviation = 2815.4I9
Standard Error = 429 -34i
Coefficient of Variation = 0.205
Skewness = 0.62i
Kurtosis = 0.136
Autocorrellation = 0.258
Mean Sensitivity = O.206

October
Number of Data Values = 43
Mean = 13149.564
Variance = 8311520
Standard Deviation = 2882.97].
Standard Error = 439.649
Coefficient of Variation = 0.21
Skewness = 0.93
Kurt.osis = L.I71,
Autocorrellation = O.222
Mean Sensitivity = 0.199

November
Number of Data Values = 43
Mean = L3747.OI7
Variance = 87't0950
St.andard Deviation -- 296L.S't9
St.andard Error = 45I .631
Coefficient of Variation = 0.21"s
Skewness = 1.002
Kurt.osis = I.274
Autocorrellation = 0.179
Mean Sensitivity = O.204

119



December
Number of Data Values = 43
Mean = L3146.046
Varíance = 9l-I4963
Standard DeviaLion = 3019.1
Standard Error = 460.4O8
Coefficient. of Varia:-íor. = O.22
Skewness = 1.034
Kurtosis = :--3:-2
AuLocorrellation = 0.156
Mean Sensitivity = 0.208

Annualized Streamflow in: 07beO01.str

Checking for normality,,fanuary Annualization
Probability Plot Correlation Coefficient = 0.96519
Table Value at 95å Confidence = 0.973II
The data set. is sufficiently non normal_ to undergo Box-Cox
Lrans formation
Box-Cox Lamda = -0. 944L40624999998
Probability Plot Correlation Coefficient = 0.99534
Table Val-ue at 95? Confídence = 0.97311
The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43
Mean = 1.059
Variance = 0

Standard Deviat.ion = 0
Standard Error = O

Coefficient of Variation = 0
Skewness = 0
Kurtosis = -0.534
Autocorrellation = 0.183
Mean Sensitivity = I

Checking for normality, February Annualization
Probability Plot Correlation CoefficienL = 0.9656
Table Value at. 95? Confidence = 0.97311
The data set is sufficíently non normal t.o undergo Box-Cox
trans format ion
Box-Cox Lamda = -0. 94''t656249999998
Probability PJ-ot Correlation Coefficient = 0.99462
Table Value aL 95? Confidence = 0.97311
The set was transformed to normal_ using t.he Box-Cox method.
Number of Data Values = 43
Mean = 1.055
Variance = 0

Standard Deviation = 0
Standard Error = 0
Coefficient of Variation = 0
Skewness = 0

Kurtosis = -0.588
Aut.ocorrellation = 0.175
Mean Sensj-tivity = I
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Checking for normaliLy, March Annualization
Probability Plot Correlation Coefficíent = 0.96613
Table Val-ue at 952 Confidence = 0.973aa
The dat.a set is sufficiently non normal to undergo Box-Cox
trans format ion
Box-Cox Lamda = -0.9L6196814999998
Probability Plot Correlat.i-on CoefficienL = 0.99393
Table Value at 952 Confídence = 0.97311
The set was transformed to normaÌ using t.he Box-Cox method.
Nurnber of Data Val-ues = 43
Mean = 1.091
Variance = 0
Standard Deviation = 0
Standard Error = 0
Coefficient of VariaLion = O

Skewness = 0
Kurt.osis = -0.599
Autocorrellation = 0.i.'t2
Mean Sensitivity = I

Checking for normality, April Annualization
Probability Plot Correlation Coefficient = 0.96991
Table Value at 95? Confidence = 0.97311
The data set j-s sufficiently non normal to undergo Box-Cox
t.ransf ormation
Box-Cox Lamda = -0.164453L24999998
Probabilit.y Plot Correlation Coefficient = 0.99537
Table Value at 95å Confidence = 0.97311
The set was transformed t.o normal using t.he Box-Cox method.
Number of Data Values = 43
Mean = I.3O'l
Variance = 0
Standard Devi-at.i_on = O

Standard Error = O

Coefficient of Variation = 0
Skewness = 0

Kurtosis = -0.543
AuLocorrellation = 0.159
Mean Sensitivity = I
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Checking for normality, May Annualizat.ion
Probability Plot. Correlation Coefficient = 0.96634
Table Val-ue aL 95? Confidence = 0.97311
The dat.a set is sufficiently non normal to undergo Box-Cox
trans formation
Box-Cox Lamda = -0. 692968149999998
Probability Plot Correl-atíon CoefficienL = O.g9283
Tabl-e Value at 95å Confidence = 0.97311
The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43
Mean = 7.44I
Vari-ance = 0

Standard Deviation = O

Standard Error = 0
Coefficient of Variation = O

Skewness = 0
Kurtosis = -0.43
AuLocorrellation = 0.175
Mean SensiLivity = I

Checking for normality, June Annualization
Probability Plot Correlat.ion Coefficient = 0.97923
Table Value at 952 Confi-dence = 0.97311
The data set is sufficiently normal that no transformati-on is
required

Checking for normality, rTuly Annualization
Probability Plot Correlation Coefficient = O.9g6O3
Table Va1ue at 95Zr Confidence = 0.97311
The data set is sufficiently normar thaL no t.ransformation is
required

Checking for normal-ity, August Annual-ization
Probability Plot Correlat.ion Coefficient = 0.9824.1
Tab1e Value aL 95"< Conf idence = 0.97311
The data set is sufficiently normar that no transformat.ion is
required

Checking for normality, September Annualization
Probability Plot Correlation Coefficient = 0.98039
Table Value at 95? Confidence = 0.97311
The data set is sufficiently normal that no transformation is
required
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Checking for normality, October Annualization
Probabilit.y Plot. Correlation Coefficient = 0.96935
Table Value aL 952 Confidence = 0.97311
The daLa set is sufficient.ly non normal to undergo Box-Cox
trans formation
Box-Cox Lamda = -0.6742a8149999998
Probabilíty Plot Correl-ation Coefficient = O.99362
Table Value at 95? Confidence = 0.97311
The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43
Mean = 7.48I
Variance = 0

Standard Deviation = 0
Standard Error = 0
Coefficient of Variation = O

Skewness = 0

Kurtosis = -0.314
Autocorrellation = o.254
Mean SensiLivity = I

Checking for normality, November Annualization
Probability Plot Correlation Coefficient = O.96jI
Table Value at 95å Confidence = 0.97311
The data set is sufficiently non normal t.o undergo Box-Cox
transformation
Box-Cox Lamda = -0.861578124999998
Probability Plot Correlation Coefficient = O-99557
Table Va1ue at 95å Confidence = 0.9i3i_I
The set was t.ransformed to normal using the Box-Cox method.
Number of Dat.a Values = 43
Mean = I.I52
Variance = O

Standard Deviation = 0
Standard Error = 0
Coefficient of Variation = O

Skewness = 0

Kurtosis = -0.458
Autocorrellation = 0.223
Mean Sensitivity = 6
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Checking for normality, December Annualization
ProbabiÌity Pl-ot Correlation Coefficient = O.965l.4
Table Value at 95? Confidence = O.9i3aI
The dat.a set is sufficiently non normal to undergo Box-Cox
L rans format ion
Box-Cox Lamda = -O.92578L249999998
ProbabiliLy Plot. Correlation CoefficienL = 0.99515
Table Val-ue at 95? Confidence = 0.97311
The set was t.ransformed to normal using the Box-Cox method.
Number of Data Values = 43
Mean = 1.08
Variance = O

SLandard Deviation = O

St.andard Error = 0
Coefficient of Variation = 0
Skewness = 0
Kurtosis = -O.476
Autocorrellation = 0 -2O4
Mean Sensitivity = 6

Testing for Stationarity
Mann Kendall Test For Trend

January Annualization Trend analysis
uc = 0.6691869
95? Test Stat = 1.960
The hypothesis of a up or downward trend is rejected at the 95å
confídence interval

February Annualization Trend analysis
uc = 0.6488561
95å Test Stat = 1".960
The hypothesis of a up or downward trend is rejected at the 95?
confidence interval

March Annualization Trend analysis
uc = 0.565L327
95å Test Stat = 1.960
The hypothesis of a up or downward trend is rejected. at the 95?
confidence interval-

April Annualization Trend analysis
uc = 0.52321a
95? Test Stat = 1.960
The hypothesis of a up or downward trend is reject.ed at. the 95t
confidence interval

May Annualization Trend analysis
uc = 0 .2'721009
95? Test Stat = 1.960
The hypot.hesis of a up or downward trend is rejecLed at the 95å
confidence interval
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June AnnualizaLion Trend analysis
uc = 0 .690'tL78
95? Test St.at = I.960
The hygothesis of a up or downward t.rend is rejected at t.he 95?
confidence ínterval

,July Annualízation Trend analysis
uc = 0 .7'7444aI
95å Test StaL = 7.960
The hlzpot.hesi.s of a up or downward trend is rejected at the 952
confidence interval

August Annual-ization Trend analysis
uc = 0 -1325195
953 Test. St.at = 1-.960
The hypothesis of a up or downward trend is rejected at the 95å
confidence interval

September Annualization Trend analysis
uc = 0.7535103
95? Test. Stat = 1.960
The hypothesis of a up or downward trend is rejected at t.he 95?
confidence interval

Oct.ober Annualization Trend analysis
Uc = 0.6697869
95å Test Stat = 1.960
The hypothesis of a up or downward trend is rejected at the 95?
confidence interval

November Annualizat.ion Trend analysis
uc = 0.6488561
95å Test. Stat = 1.960
The hypothesis of a up or downward t.rend is rejecLed at t.he 95å
confidence interval

December AnnuaÌization Trend analysis
uc = 0.8163028
95å Test. Stat = 1.960
The hypothesis of a up or downward trend is rejected at t.he 95?
confidence interval
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Check for Autocorrelation

January Annualization

ACF PACF
o.L82873 0.a82813
-0.0s1465 -0.08't846
-0.143s36 -0 .722232
-o.12567 -0.084161
-0.004983 0.0L8542
0.00571 -o.026424
-o.0276a9 -O.O52632
0.060445 0.0694
0.086826 0.064334
-o.I79182 -O.228909
0.055146 0.L6II'74
0.11s258 0 .104622
-0.077508 -O .182592
-0.180694 -O.L7424
-0.111634 0.039418
t.value for autocorrelation (t*) = I.A9IO234389238
Critical t value (tcrit) = 2.O1-99499]-30249
The series is not. autocorrelated, regression anarysis may proceed.

February Annualizat.ion

ACF PACF
o.L7460j- 0.17460L
-0.053243 -0,086361
-0.133631 -0.II2704
-0.134451 -0.099137
-0.00838 0.018098
0 -07221,3 -O.077902
-0.028665 -0.057152
o.062574 0.068984
0.083784 0.0626Lr
-0.182093 -0 .225692
o.062625 0.162194
0.7]-145l- 0.10364
-0.088629 -O.183872
-o.I't4444 -0.7697a6
-o.ro9226 0.031,572
tvalue for autocorrelation (t*) = L.L3542630209l91
Critical t value (Lcrit) = 2.0l99499L30249
The series is not auLocorrerat.ed, regression analysis may proceed.
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March Annualizat.ion

ACF PACF
0.172342 0.I'72342
-0.056538 -0.08888
-o.1_25227 -0.103154
-0.139905 -0.10889
-0 -01,2869 0.015844
0.01751 -0.O1-O929
-0.030216 -0.060616
0.064042 0.069256
0.082813 0.060996
-0.183042 -0.22297
0.068839 0.L66266
0.!1"1184 0.O9'7'757
-0.09905s -0.18544'/
-0.770211_ -0.16313
-0.108694 0.0278].6
tvalue for autocorrel_ation (t*) = j-.I2O2j65792gg5î
Crit.ical t. value (tcrit) = 2.or99499L30249
The series is not autocorrefated, regression anarysis may proceed.

April Annualization

ACF PACF
0.159364 0.159364
-0.05258 -0.080009
-o.L26172 -0.107781
-0.I4r29I -0.1115
-0.072234 0.014398
o.020674 -0.006803
-0.026337 -0.058656
0.058873 0.060682
0.083407 0.067L92
-0.189555 -0.227'796
0.085566 0 .119054
0.1,76276 0.0945
-o.096241 -O.:-1924]-
-o.L69526 -0.166063
-0.1090s6 0.02Io32
tvalue for autocorrelat.ion (t*) = 1,0336109:-23jL98
Critical t value (tcrit) = 2.0199499r30249
The series is not. autocorrelat.ed, regression analysis may proceed.
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May Annualization

Àl-E' ÐÀr'E
0.774565 0.a7456s
-0.085879 -0.120008
-0.135932 -O.]-02758
-0.1041s5 -0.o'73929
-0.002954 0.0063'72
0.02653s -0.003886
0.05925 0.03832
0.024625 0.003393
0.0215s o.029972
-0.1'72822 -0.]-78602
0.139023 0 .236461
0.096504 -0.001801
-0.100847 -0.136313
-0.18139 -0.a39541
-0.159181 ,0.083606
tvalue for auLocorrel-ation (L*) = 1.13515794O76012
Crítical t value (tcrit) = 2-OI9g4ggI3O249
The series is not aut.ocorrelated. regression analysis may proceed.

June Annualizat.ion

ACF PACF
0 -250281 0.250281
-0.100218 -0.L7314]-
-0.270295 -0.]-517L2
-o.1469I4 -O.0740'74
-0.096153 -0.09319s
0.05765 0.054107
0.118569 0.04181s
0.00644 -0.069619
-0.042552 -0.01012
-o.I228I8 -0.103678
0.198503 0.29'7238
0.06'7484 -0.103386
-0.062556 -0.070684
-0.20054 -0.14s19
-0.185974 -O.LL7437
tvalue for autocorrelaLion (t*) = 1 .655254857666L8
Critical- t value (tcrit) = 2.0L99499130249
The series is not autocorrelated, regression analysis may proceed.
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July Annualizat.ion

ACF PACF
0.285335 0.285335
-0.107599 -O.205768
-0.235893 -0.15933
-0.136007 -0.038913
-0.06042 -0.07086
0.016499 -0.008188
0.201093 0.18L829
-o.03646 -O.20'7062
-0.111838 -0.01111s
-0.148804 -0.0797
0.185894 0.26788
o .1"46443 -O . 052823
-0.02322 -0.06906
-o.L66663 -O.]-5762]-
-0.250495 -O.120732
tvalue for autocorrelat.ion (t*) = L.90624139236432
Critical t value (tcrit) = 2.o:-99499730249
The seríes is not autocorrel-ated, regression analysis may proceed.

August Annualization

ACF PACF
0.220921, 0.22092].
-0.107301 -0.764]-77
-0 -19241_9 -0.138905
-0.089226 -O.029984
-0.o44623 -0.o629L2
-0.045485 -0.069276
0.!1646L 0.724974
0.078404 -0.006434
-0.044327 -0.068171
-0.163546 -0.111381
0 .o91289 0.188112
0 .167 4L 0 . o't 48'7 I
-0.o48222 -0.131141
-0.187808 -0 .]-2577L
-0.22203 9 -0 .162604
tvalue for autocorrelation (t*) = 1.45041513910802
Critical t value (tcrit) = 2.oj"99499I30249
The series is not autocorrelat.ed. regression analysis may proceed.
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September Annual i zat j-on

ACF PACF
o.258378 0.258378
-0.110917 -0.190387
-0.l-4206s -0.06533
-o.731762 -0.109251
-0.049022 -0.013137
-o.04268L -0.016942
0.048308 0.056117
0.06733 0.005839
0.003671 -0.02181
-0.161561 -0.171801_
0 .t-24589 0 .26s154
0 -L5226 -0.002694
-0.096119 -0.743216
-0.r475I2 -O.074498
-0.L99904 -0.137051
tvalue for autocorrelation (t*) = I.].J252220983566
Critical t value (Lcrit) = 2.0L99499130249
The series is not. autocorrelated, regression analysis may proceed

Oct.ober Annual i zat ion

ACF PACF
0.253609 0.253609
-0.054098 -0.126555
-0.146358 -0.7073r'l
-0.08489 -0.025309
-o.021874 -O.02024
-0.054031 -0.072587
0.012335 0.032087
0 -01229 0.051211
o.061222 0.022307
-0.18705 -0.226541_
0.075863 0 -238665
0.125831 0.036437
-0.080013 -0.199247
-0.186066 -0.0975s
-0.183736 -0.066589
tvalue for autocorrelation (t*) = 1".6'1817O75531116
Critical t val-ue (tcrit) = 2.0J.99499:-30249
The series is not autocorrelated, regression analysis may proceed
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November Annualization

ACF PACF
o.222696 0.222696
-0.030499 -O.084212
-0.149315 -0.130538
-0.r07544 -0.O49236
-0.016885 0.00678
-o.022494 -0.049033
0.004233 -0.00a'729
0.06L229 0.O51052
0.068205 0.036665
-0.L16664 -0.2L9s
o .070641 0 .200032
0.118631 0.0'799'7
-0.062651 -0.184453
-0.I7L602 -O.a29407
-0 -758577 -0.019328
tvalue for auLocorrelation (t*) = 7.46263963668588
critical t. value (tcrit\ = 2.01-99499I30249
The series is noL auLocorrelated, regression analysis may proceed

December Annualization

ACF PACF
0.204088 0.204088
-o.021094 -0.07L734
-0.L29425 -O.]-IAI'78
-0.]-2973 -0.084853
-o.0]-2703
-0.00694
-0.001253
o . 06445r
0.o6916
-0.]-1405

0 .02288l-
-0.032:-1r
-0.018861
0 -062047
0 - 045682
-0 -215337

o.063142 0.a't5236
o -723915 0.t04369
-0.076303 -0.185338
-0.16956 -O.L5468'7
-0.1386 0.00'796'7
tvalue for aut.ocorrelation (t*) = 1.33484240511-455
Cricical L val-ue (tcrit) = 2.0199499130249
The series is not aut.ocorrelated, regression anarysis may proceed
Datafile Printed as 07be001. st.r

End of analysis.
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Tree Ring Chronology Preprocessor Log

Input Fifename: CANAO22.TXT
Prefi-x for all files associated with this raw file: CANA022
Site Name : EXSHAW+TUNNEL+BANFF,ALBERTA,
State/Count.ry : CANADA
Location : 51ø 10'N 115Ø 33'W
Year Range : t46O - 7965
Elevation : 1310m
Species Code : PSME
Common Name : DOUGLAS-FIR
P. I. : C. W. FERGUSON AND M. L. PARKER
File Name : CANAO22.CRN
Number of Data Values = 506
Mean = 996.022' Variance = 1"23159.281
Standard Devi_at.ion = 350.94:-
Standard Error = 15.601
Coefficient of Variation = 0.352
Skewness = 0.463
Kurtosis = 0.59

. Autocorrel-lation = 0-426
Mean Sensitivity = 0.328

Checking for normalit.y
Probability PloL Correlat.ion Coefficient = 0.992't6
Table Value aL 952 Confidence = 0.996983
The data set is sufficiently non normal to undergo Box-Cox
transformation
Box-Cox Lamda = 0.625000000000002
Probabilit.y Plot Correlation Coefficient. = O.99BO6
Tab1e Value at. 95? Confidence = 0.996983
The set. was transformed to normal_ using the Box-Cox met.hod..
Number of Data Values = 506
Mean = L]-6.2t5
Variance = i09.698
St.andard Deviation = 26.64
Standard Error = 1.184
Coefficient of Varíation = 0.22g
Skewness = 0

Kurtosis = O.265
Aut.ocorrellation = 0.391
Mean Sensitivity = 0.2I3
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Testing for Stationarity
Mann Kendall Test For Trend

Trend analysis
uc = 0 .!56066'7
95? Test StaL = 1.960
The hrcothesis of a up or downward trend is rejected at t.he 95?
confidence interval

Chronoloqy 
.l]me 

Seris

Check for Autocorrelation

ACF PACF
0.39726 0.391,26
0.281953 0.\59241
o .202261 0 . 054'7 97
o.739021 0.014767
0.14041 0.057932
o.091491 -0.002755
0.073788 0.005441
-0 _ 00989 -o.07186
0.002072 0.004207
-o.or223'7 -0.010902
-0.01591 -0.005436
-0.01256 -0.001856
0.0258s4 0.053494
-0.060395 -0.090892
-0.021686 0.01312
tvalue for autocorrelation (t*) = 9.54466405012143
Critical L value (tcrit) = L.97991454601288
The series is autocorrelated, an Arma model is required.
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Lags

Arma Model Minitab Output.

ARIMA Model

ARIMA modef for C2

Estimates at each it.eration
Iteration SSE parameters

0 414.616 0.100 0.090
I 438.860 0.250 0.049
2 427.443 0.385 0.009
3 42'7 .364 0.392 0. ooo
4 427.363 0.393 -0.000
5 421.363 0.393 _0.000
6 427.363 0.393 _0.000

Relative change in each est.imate less than O.OO1O

Final Estimates of Parameters
Type Coef StDev
AR 1 0.3929 0.0410
Const.ant -0.00019 0.04093
Mean -0.00032 O.O6i42

T
9 .59

-0.00

Number of observat.ions: 506
Residuals: SS = 42i.]-9O (backforecasts excl_uded)

MS = 0.848 DF = 504

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag 12 24 36 48
Chi-Square 20.6 (DF=11) Zg.4(DF=23) +t. s (DF=3s) s7 .s (DF=47)
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Check for Aut.ocorrelation

ALI

- 0 .064232
0.11795
o.018049
0.03104
0.08448
0.024105
0.063675

PACF
-0.064232
0 .714296
0.093706
0.o289'77
0.070035
o . o217'7
0,04s6

-o.048616 -0.061813
0.013251 -0.015826
-0.010813 -0.015661
-o.009694 -0.01014
-0.o22614 -O.0277'78
0.0698s1 0 -o792s8
-0.081157 -0.064884
0.012586 -0.000661
tvalue for autocorrel_ation (t*) = -I.44426584-t43BI4
crit.ical t. value (tcrít) = r.97991"4s46oa2!B
The series is not. autocorrelated, regression analysis
Datafile Printed as CANAO22.trg

End of analysis.

may proceed.

140



Appendix B

Correlation Analyzer Example

Output
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The Fol-lowing are t.he Tree Ring Files Used.

CANAO41 . t.rg
CANA042 . trg
CANAO43 . trg
Mno 02 . trg
MNO05. t.rg
MNo06. trg
MN008. trg
MNo09. trg
MNo10. trg
MN013 . trg
MNo14. trg
MNO15. trg
MNO16. trg
MN017. t.rg
MN018. trg
MNO25. trg
MN02 6 . t.rg

Output File For Reconstruction

Correlation Analysis for Investigat.ion of predictors

The following is t.he Monthly Stream Fl_ow and file used.

02.AÄ001. ra\^t
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Correfation Graphs of Tree Ring Series Vs Monthly Streamflow
T Criticaf Value for Correlation Test = 2.0357000827i893
Data set sample size35

Month
Jan(t-1)
Feb (t. - 1)
Mar(t-1)
Apr(t-1)
May(t-1)
Jun(t-1)
JuI (t. - 1)
Aug(t-1)
Sep (t. - 1)
oct(t-1)
Nov(t-1)
Dec (t-1)
Jan
Feb
Mar
Apr
May
,fun
Ju1
Aug

Oct
Now
Dec

Corr
0.044805
0 .0622'7r
- 0 . 016053
0 .025498
0.480092
0.169339
u.366ó / ¿

0.458802
0.383411
o.24262
-0.030301
0.187936
0.195337
0.209959
0.302898
0.353582
-0 -275602
- 0 . 184285
-o.o15257
0.006858
-0.02901r
0.103381
0 . 13 0534
0.169808

Tval
0.275029
0.301,62
-o.0741
o.r2l.l-49
3.123006
o.8"7I41 6

2 . 162622
a ôaÊaaÀ

2.290223
1" -30762
-0.140021
0.918195
1.021381
1.107955
1.70160s
2 .0621 45
-I.1"44554
-o.19428L
-0.340408
0 - 0322'71
-o.L344]-5
0.5]-2094
0.656611
0 . 87 4739

CorelaÈion analys¡s of CANAo41,trq
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Correlation craphs of Tree Ring Series Vs Monthly Streamfì_ow
T Critical Value for Correlation Test = 2.03570008217893
Data set sämple size35

Month
Jan(t-1)
Feb(t-1)
Mar(t-1)
Apr(t-1)
May(t-1)
.lun (t - 1)
Jul (t-1)
Aug(L-1)
sep(t-1)
Oct (t.-1
Nov(t-1
Dec (t. - 1

Jan
Feb
Mar
Apr
May
Jun
,ful
Aug

Oct
Nov
Dec

Corr
0.028017
0 .021 21 I
-0.L46416
-0.160613
0.196309
-0.094361
- 0 . 05432
- o . 09236'7
0,119038
0 .21,1 563
0.LL4246
0.18636
0.284988
0.30045
- 0 . 02673'l
0.218089
-o.1L1429
0.081144
o . 046022
-o.07]-736
0 .026304
-0.076629
0.1"'78984
0 . ]-81461

Tval
0.]-33289
0.L29727
-o .64L648
-0.699275
L . O27 081
-0 .423083
-o.248]-34
-0.414518
0 -594867
t- .l-53644
0 .569377
0.969051
1. s80815
1, .6849
-0.123163
r .156822
-0.495756
o.397048
o -22]-007
-0.325016
0.125033
-0 -346396
0 -926507
0 -940181

Correlation analysis of CANA042.trg
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Correlation Graphs of Tree Ring Series Vs Monthly St.reamflow
T Crit.ical Vafue for Correlation Test = 2.0357000827.t893
Data set sample size35

Month
Jan(L-1
Feb (t-1
Mar (t-1
Apr(t.-1
May(t-1)
Jun(t-1)
,fu] (t - 1)
Aug(t-1)
Sep(t-1)
oct (L-1)
Nov(t-1)
Dec(t-1)

Corr
0.14272
0.20l-948
-0.334173
-o . 02226L
0.333128
0.034887
-0.004876
0.021087
0.160036
0.100134
0.008001
0.190399
0.235036
0 .242466
-0.188793
0.2L0779
-0.238133
-0.107069
- 0 . 11619
-0.09448'7
-0.006125
-0 -L241,7
-0.080649
-0.089365

Jan
Feb
Mar
Apr
May
Jun
,Jul
Aug
sep
Oct
Nov
Dec

Tval
n 1) ) qaÇ,

1.060313
-1.3s6988
-0.703272
1.913383
0.166s68
-0.022816
o .099969
0.81903
0.49511
0.037677
o .992523
1.26045
1 . 3 06658
-0.8]-2L64
r.L12857
-1.003801
-0.477296
-0.515835
-o .423622
-0.031438
-0.549303
-0.363886
-o .40L597

Correlation analysis of C-ANA043,trg

0.2

-0.4

0.0

-0.2

¡
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Correlation Graphs of Tree Ring Series
T Critical Value for Correlation Test =
Data set sample size35

Vs Mont.hly Streamflow
2 . 0 3 5 7 0 0 0 B 27't 893

Month
Jan(L-1)
Feb(r-1)
Mar(r-1)
Àpr(t-1)
May(t-1)
Jun(t-1)
LJUJ- (t-1)
Aug(t-1)
Sep (t-1)
oct (t-1)
Nov(t-1)
Dec (t-1)
,Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
sep
Oct
Nov
Dec

Corr
-0.049558
-0.025108
0.175073
o.207905
-0.131844
-o.212876
-0.038565
0.060135
0.145933
0.187495
-0 -048464
0.039144
0.119899
0.089904
0.241203
-o.098661
o .037 527
0.755821
0.473108
o.523612
0.331288
0.244588
0.068389
0.158215

TvaI
-0 -22689s
-0.116316
0.904113
1.09569
- 0 - 606L2
-0.906397
-o.L77494
0.290943
0.740667
o -915634
-0.222
0 . 1873 02
o .599463
o .442023
1.336368
-o .44L5l-9
0.]-19415
o.795499
3.0s7105
3.558919
1.900193
r,319943
o .332331
0.808832

Correlation analysis of Þ1n002.trg

0.6
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlat.ion Test. = 2.035700082't7Bg3
Data set sample size35

Month
.lan (t - 1)
Feb(t-1)
Mar (t-1)
Apr(t-1)
May(t-1)
Jun (b - 1)
JuI (t-1)
Aug(t-1)
Sep(L-1)
oct. (t - 1)
Nov (t. - 1)
Dec (r-1)
,f an
Feb
Mar
Apr
May
,Jun
Jul
Aug
sep
Oct
Now
Dec

Corr
0.037086
0.061368
0.082121
0 .263968
-o.066979
-0.262586
-o .021 42
0.L2L0'72
0.159555
0.104015
-0.171313
-0.037408
0 -136748
0 . ]-41293
o.209468
0.006121
0 . 043 044
0.248733
0 .40'7 651
0 -4L1662
0.292156
0.1346
0.084885
0.170385

Tval-
0.I'77267
0 .29'7rjr
0.402073
L .443762
-o.30473'7
-a . o96107
-o.1-26884
0.605128
0.816331
0.51s416
-0.742446
-0 -L12268
0.690341
0.7]-5169
1.105016
0.0288
0.206386
I.342228
2 .484392
2.5L't32
7 .6321 99
0 -618653
0 .476204
0 . 87'7 416
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Correlat.ion Graphs of Tree Ríng Seríes Vs Monthly SLreamflow
T Critical Val-ue for Correlation Test = 2.0357000827lgg3
DaLa set sample size35

Month
Jan(t-1)
Feb(t-1)
Mar (t. - 1)
Apr(t-1)
May(t-1)
Jun (r. - 1)
Jul (t-1)
Aug(t-1)
Sep (t-1)
Oct (t-1)
Nov(t-1)
Dec (t-1)
Jan
Feb
Mar
Apr
May
,fun
Ju1
Aug
sep
Oct
Nov
Dec

Corr
-0.119368
-0.186906
0 -L43426
0.114559
-0.L9916
-0.178813
0 . o64677
0.089336
0.23874'7
0.221862
-0.108388
-0 -019648
o . 04936
0.000218
0.2L1 67'7
-0.0042L4
0.764968
0.401635
0.326'754
0.24641_9
0 .761 o52
0.018901
0.109891
0.185946

Tval
-o .52979].'
-0.804687
o.126869
0.571034
-0.855405
-0.1'72482
0.3l-3677
0.439095
7 .21 9735
1_.2]-6286
-0.482889
-0.359538
o.23't45I
0.001021
L . ]-54332
-o.0]-.972s
0.84676
2 .435344
L .86'7 863
1.331437
0.858529
0.089502
o .546324
0.966656

Corelation analysis of lvlN006.trg
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Correlation Graphs of Tree Ring Series
T Critical Value for Correlation Test
Data set sample size35

Vs Monthly Streamffow
= 2 - 0357 OO0827'l 893

MonLh
Jan(r-1)
Feb(t-1)
Mar (L-1)
Apr(t-1)
May(L-1)
Jun (t.-1)
Jul (t-1)
Aug(t-1)
sep (t-1)
oct (t-1)
Nov(L-1)
Dec (t-1)
Jan
Feb
Mar
Apr
May
,Jun
Jul
Aug
sep
Oct
Nov
Dec

Corr
-0.096014
-0.09685
0.2060s5
-o.146873
0.320ss
0.313578
0.347385
0.29049r
0.559129
0.299674
0.109982
o .21,3262
0.18601
0.145608
0.522249
^ 

a))1a1

-0.304157
- r\ 1 tr L10)

-0.054802
-0.028319
0.019765
-0.o01472
0 . 083 986
0.01323

TvaI
-o .430424
-0.433747
I .08467 4
-o.643273
I .8240a7
L.1"75256
2 .0L6944
L.6]-758
3 - 95666L
7 .61 962
0.546805
L.L27742
0.961o23
0.738867
3 .543955
1.248924
-]-.25L473
-o.675628
-0.250277
-0 -73126r
0.093634
-0.034638
0.41159
0 - 0624'7

Cotrelation analysis of MN008.trg
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Correlation Graphs of Tree Ring Series Vs Monthly St.reamflow
T Critical Value for Correlation Test = 2.O35700OB2itgg3
DaLa set sample size35

MonLh
Jan(t-1)
Feb(t-1)
Mar(t-1)
Apr(t-1)
May(t.-1)
Jun(t-1)
.lul (t-1)
Aug(r-1)
sep(t-1)
oct (t-1 )

Nov(t-1)
Dec (t-1)
Jan
Feb
Mar
Apr
May
Jun
.ful
Aug
sep
Oct
Nov
Dec

Corr
-0.067298
-0.021357
-0.013117
-0.162306
0 .36644
o.3441,21,
0.363326
0.292284
0.598233
o.383522
0.739047
0.3L1657
0.254474
0.2L907I
0 - 408632
o.220614
-0.285725
-0 -243446
- 0 .024L16
0.0907
0.10333
0.055719
0 . 07 436a
0.065309

Tval
-0.305s44
- o . 0991_22
-0.06LL24
-0.106:-32
2.159338
1.993013
2.L3574r
L .629625
4 .426849
2.29IO95
0 -702883
r.80312
I.382367
r-16276
2 .49238L
I -L12473
-r .1-8]-974
-1.024001
-0.Ll-'t_776
0 .446132
o - 51,1,826
0 -268944
o.362524
0.316849

CorelaÈion analysis of MN009.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correl-ation Test = 2.03570008217893
DaLa set sample size35

Mont.h
Jan (r. - 1)
Feb(t-1)
Mar (t. - 1)
Apr(t-1)
May (t. - 1)
Jun(t-1)
.lu] (t - 1)
Aug (t-1)
sep (t-1)
oct (t-1)
Nov(t-1)
Dec (t-1)
Jan
Feb
Mar
Apr
May
Jun
,fu1
Aug
sep
Oct
Nov
Dec

Corr
-0 -1,o76'77
-o.05692
-0.011401
o .0s4L44
0.283131
o.l-45442
o.221014
0. r_53502
0.498s85
0.297487
0.0924
0.244564
0.196s3
0.181874
0.43833
0.202s45
-0.358528
-0.359161
-0.037198
0 -130262
-0.003183
0.016483
0.74160'l
0 - 0960'77

Tval-
-0.479847
-o.25969L
-0.053174
0.267126
1.568481
0.736303
r .1-7 4902
0.782552
3.302572
a .664'7 6s
0 .45492
7 .3L91 9
1.028383
o .943A32
2.743292
1.063851
-r .44277 9
-I - 444992
- 0 . 171316
0.65514
-0.014906
o.011955
0.716893
o.473984

Corelation analys¡s of l',1N010.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correl-ation Test = 2.03570008277893
Data set sample size35

Month
LTan (t - 1)
Feb(t-1)
Mar(t-1)
Apr(t-1)
May(t.-1)
Jun (t - 1)
Jul (t-1)
Aug(t-1)
sep(t-1)
oct (t-1)
Nov(t-1)
uec (c.-11
Jan
Feb
Mar
Apr
May
Jun
JuI
Aug
sep
Oct
Nov
Dec

'I

I

Corr
-o.027'7r
-0.035708
-o.0742'77
0.o09824
0 . 0953 09
0 .74'7 598
0,34554
^ 

aÊt?Éa

0.461045
0.224132
0.141056
o.2L4252
0.708114
0.084736
0.437I41
-0.002451
-0.154853
- 0 . 194553
-0.005655
0.1991s1
0.090113
o . ]-29635
o.24413I
0.2L502

Tval-
-o.L28209
-o.]-645'73
-0.336131
0.046305
o .469995
0 -74984
2.003399
1.400705
3.000717
1.197158
o.'tL38'7
1.133688
0.540436
0.415438
2.13301,2
- 0 . 011481
-o.675815
-o.834925
-0.o264s1,
1.043803
0.443105
0.651751
r .32084
1.138309

Corelation analysis of MN013.trq
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Correlation Graphs of Tree Ring Series Vs Monthly St.reamflow
T Criti-caf Value for Correlation Test = 2.O357OOOB277Bg3
Data set sample size35

Month
lTan (t - 1)
Feb (t-1)
Mar(t-1)
Apr(t-1)
May (t. - 1)
Jun (t-1)
Jur (E.-t)
Aug(t-1)
Sep (t.-1)
oct (t-1)
Nov(t-1)
Dec (t-1)
,Jan
Feb
Mar
Apr
May
Jun
Ju1
Aug
sep
Oct
Nov
Dec

Corr
-0.13053
-0.139489
-0.115026
0.000736
0.-t 67'753
0.115613
0.275042
0.204922
o.33547
0.29L469
-0.086332
0.00818
o - 037266
0.078738
¡ a,)q-4)t
o .03202L
-0.246904
-0.210036
-0.059431
0.216489
0.235445
0.158705
o.725609
o -).9699

TvaI
- 0 . 57581
-o.672909
-0.510935
0.0034s2
0.86249]-
0.s16629
r.138444
7 . 071 944
r .930225
1- .624L43
-0.388511
0.038525
0 .74899'7
o.384'7'75
1.88686
0.152658
-1.037104
-0.895582
-o.270824
I.L471,6I
I.26298
0.811574
0.630054
1.031084

Corelation analysis of MN014.trg
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Correl-ation Graphs of Tree Ring Series
T Critical- Value for Correlatíon Test =
DaLa set. sample size35

Vs Monthly Streamflow
2 . 03s700082'71893

Month
Jan (t. - 1)
Feb (t-1)
Mar (t. - 1)
Apr (t-1)
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Correlation Graphs of Tree Ring Series Vs Monthly St.reamflow
T Critical- Value for Correlation Test = 2.O357OOOB277Bg3
Data set. sample size35
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Correlat.ion Graphs of Tree Ríng Seríes
T Cri-tical Value for Correlation Test =
Dat.a set sample size35

Vs Monthly Streamfl-ow
2.035700082'7'7893
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Correlation Graphs of Tree Ring Series
T CriCical Value for Correlat.ion Test =
Data set sample size35

Vs Mont.hl-y Streamf l-ow
2 . 035700082'77893
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Correlat.ion Graphs of Tree Ring Series
T Critical Val-ue for Correl-ation Test =
DaLa set sample size35

Vs Monthly Streamfl-ow
2 . 0 3 5 7 0 0 0 8 21 7 893
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Correlation Graphs of Tree Ring Series
T Crit.ical Value for Correlat.ion TesL =
Dat.a set sample size35

Vs Monthly Streamflow
2 . 03570008277893
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Appendix C
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Figure C.1: Correlation betrveen CANA021 and Monthly Flows of 07E8001
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Figure C.2: Correlation between CANA022 and Monthly Flows of 07E8001
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Figure C.3: Correlation between CANA026 and Monthly Flows of 0788001



C. Correlation Analysis for 078E001 L62

;;¡";Stre

It

I

ili
-llr
LJLJi
ã Fì

tlil;i;;
nilI

-, fl, -, o,ll ¡, -EleegÃåFlasEÉEsd
-=.ajj3:Þ1 35ég3

0.5

o.4

o.3

o.2

e ol

ro
g

-o.2

-o.3

-o.4

-o.5

Month
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Figure C.6: Correlation between CANA097 and Monthly Flows of 07E8001

:1Ìï::
l-Correlat¡on with Annual Streamflow 

I'- -'- 95"/" Signif¡cance Level 
I

;- gÌ

o_5

o.4

o.3

o.2

:Þ o.l

?o
g
g -o.1

-o.2

'o.3

-o.4

-o5
Month

Figure C.7: Correlation between CANA099 and Monthly Flows of 07E8001



C. Correlation Analysis for 0788001 1.64

cANAlo2 
]

Month

Figure C.8: Correlation between CANA102 and Monthly Flows of 07E8001

Month

Streamflow

...:
o,o I
Õ?o

I::-

'.'''.

-.-'-

!;
<:

Correlat¡on w¡th Annual
9-s7: Sisllljcãf,ìce Leve I

fl

il
I
U'r u H p ,l

À"""áièiiä.-ri"*
e Level"...--*-.. ^.''-..,--,|

:''
)
l'-***=-------.--.l
i
I

itì .t
-J

_ ! [ r Ll:
bl ø o z o,
fl ' -l
ll.
U

Correlation with

.99-7,: 9i-s:ili:e1-:

-:t:

nllttlltt;'trl'N'trl
= FIFIFI

L]

!!gr!ãHHsF!sF!

o.5

o.4

o.3

o.2

E o.1

sg -o.1

-o.2

-o.3

-o.4

-o.5

...-..::...

'-..*-,.

n

_n
titi

CANAl03

'_*--.

.l

'-,E'zo9PHgE

it--
I
Ll.- =
:J

n

llrn
3 & qE

o.5

o.4

o.3

o.2

,E o.1

?o
3

-o.2

-o.3

_o.4

-o.5

Figure C.9: Correlation betrveen CANA103 and iVfonthly Flows of 0788001



C. Correlation Analysis for 078800L 165

I Èiè"rréøiøn *üÂ À""""1 streamrrow
L - 

"ssoa: 
sielir!1ar]:e_!:ve-r 

.

Figure C.l-0: Correlation between CANA104 and Monthly Flows of 07E8001

CANAlO5

Figure C.11: Correlation between CANA105 and Monihly Flows of 07E8001

!i,-l=u -,;;,:;;f ;:,;,, j,
o.5

o.4

o.3

o.2

:Þ o.1

!
E -o.1

o
-o.2

-o.3

-o.4

-ì-.8,tr -,: - [tsBlsãFlssõ
=Eiî1ElFr¡Fflfl

E

Ë

o.5

o.4

o.3

o_2

E o,

!
Ë -o.1

-o-2

-o-3

-o.4

-o5



C. Correlation Analysis for 078E001 166

l:::-Correlat¡on w¡th Annual Streamflow

.:- : 9 9 :/:. s igr il,: ?::.?*1.:Y-". 1. .o.5

o.4

o.3

o.2
E
:È o.1

sE -o.1

-o.2

-o.3

-o.4

-o.5

i a ge EÈg g e îe E F F
E
e

rl
fl:E:F'F:g'E fl

ozo-

o.5

o.4

o.3

o.2

.9
€ o.t

s

4.2

-o.3

-o.4

-o.5

Figure C.12: Correlation between CANA131R and Monthly Flows of 07E8001

n
il

t:

_ _.=.r _ r u uu-n-i-i'E'ï'F . ØBtHttÉEr5ttÈöËltsl++5ëEIBB
Þl *Hii:èeré

Figure C.13: Correlation between CANA135 and Monthly Flows of 0788001



C. Correlation Analysis for 0788001 L67

o.6

o.5

o.4

o.3

ã o.2'õ

t o.to
€o
!

=3 -0 1

-o.2

-0.3

-o.4

-o.5

, Illlil[lll

rrr!rrlllllil
EJSàSâ.''à39ãF4sÃã T7?1:Ê?7??

CANA026

Start of Annual¡zat¡on

Figure C.14: Correlation between CANA026 and Annualized Flows of 07E8001

CANAO2A

. ............. .................._....t..........:.........:. . ...........

correlat¡on w¡th Annual stt"á-ä"i ì

9s% sj91lic91-99- Le.v-el 
I

Start of Annual¡zat¡on

Figure C.15: Correlation between CANA028 and Annualized Fiorvs of 07E8001

ll it rlililtl

iltililtl
'ë ã !'s u r

: l:
I



C. Correlation Analysis for 0788001 168

CANAlO5
o.5

0.4

o.3

o.2

:Þ o.i

?o
õ ^.

-o.2

-o.3

-o.4

-o5

o.5

o.4

o.3

- o.2
.9

'b o1

Ëo
E

t-o.l

-o.2

i
I

I

-..--.-)

: Correlation w¡th Annual Siiéá-ff"* I
I' 9570 S¡gn¡ficance Level 
I

iH:H 
H H t H s Ë s F F s n Ð H E 

n 
il ¡1 nr -ililj -- u iii "u

flnn
L]LII

Flows of (

lli
i

Start of Annualizatlon

Figure C.16: Correlation between CANA105 and Annualized OTEB

-0.3 ;
i

-0.4.i ^--. -.

Figure C.17:

='..,";;";;;;;;,';; 
-

Correlation between CANA135 and Annualized Flows of 0788001



Appendix D

Correlation Analysis for 05AAO23

E-CorrelatÌon W¡th Monthly Streamf¡ow

Figure D.1: Correlation between CANA020 and Monthly Flows of 05A.4023
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Figure D.11: Correlation between CANA022 and Annualized Flows of 05,4.4023
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Appendix E

Correlation Analysis for 05AAO22

Figure E.1: Correlation between CANAO21 and Monthly Flows of 05A'A.022
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E. Correlation Analysis for 0544022
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180E. Correlation Analysis for O5A,^O22
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181E. Correlation Analysis for 05A.A'022
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E. Correlation Analysis for 051-1'022

CANA136

L. .t---
Start of Annua¡¡zâtion

Figure 8.14: Correlation between CANA136 and Flows of Annualized 05,4.Ä.022

183

ffiJ,illJ-M
(>Ø

iiÈccêöfdi-r¿5

| I::Correlation With Annual¡zed Streamflow

| . ..^- 95Yo Signif¡cance Level

j

H [ il:
oza



Appendix F

Gauged and Reconstructed

Streamflow Record for 0788001
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Year

1805
1 806
1807
1 BOB

1 809

Gauqed Data

1810
1811

lMm')

1812
1813
1814
1815
1816

Reconstructed Data

1817
1818
1819

(Mm3)

1820

1 5339

1821

11772

1822

12905

1823

14099

1824

139'15

1825

13582

1826

1 0557

1827

1 3303

1828

9966

1829

13741

1830

11565

1831

1 3560

1832

14781

1 833

13473

1834

14984

1 835

1 3343

1 836

11773

1837

13629

1 838

1 1610

1 839

14709

1840

14004

1841

1 3594

1842

1 6403

1843

16226

1844

1 0638

1845

12239

1846

10972

1847

14175

1848

13149

1849

14897

1850

1 0368

1851

12964

1852

12173

I 853

1 6750

1 854

13429
11122
11055
12861
12042
1 5604
11820
12271
13634
11293
14120
1 0554
1 1935
14231

185

1 3208
15020



Year

1 855
1 856
1857
1 858
1 859

Gauqed Data

1 860
1 861

(Mm')

1862
1 863
1864
1865

Reconstructed Data

1 866
'r867

1868
1 869

(Mm3)

1870

1 1906

1871

15453

1872

1 0376

1873

15737

1874

12126

1875

14137

1876

11093

1877

I 3681

1878

11399

1879

15640

1 880

14309

1 881

11893

1882

12175

1 883

1 2830

1884

11359

1885

15142

1 886

14608

1887

14940

1 888

15081

1889

15186

1 890

14421

1 891

12752

1892

18755

1 893

14084

1894

20402

1 895

11803

1 896

12866

1 897

12381

1 898

1 3689

1 899

17029

1 900

15515

1 901

1 1865

1902

11213

1 903

12455

1904

1 5096
12107
13477
12068
13871
11345
'13394

14144
1 5350
14429
1 5330
15382
13327
15501

186

14285
10189



Year

1 905
1 906
1907
1 908
1 909

Gauoed Data

1910
191 1

(Mm3)

1912
1913
1914
1915

Reconstructed Data

1916
1917
1918
1919

(Mm3)

1920

1 3580

1921

14403

13378

1922

14734

15374

1923

11928

12541

1924

13417

13347

1925

12277

11272

1926

15527

9416

1927

13123

16671

1928

13284

1 3602

1929

13182

9504

1 930

14484

12524

1 931

12813

13094

1932

10225

15415

1 933

11797

12438

1934

1 3983

1 5661

1 935

14624

9726

1 936

13106

10911

1937

13114

1 938

1 2905

1 939

12424

1940

1 3833

1941

13407

1942

12612

1943

11759

1944

11239

'1945

13557

1946

12850

1947

1 3568

1 948

12822

1 949

11563

1 950

12119

I 951

1 2936

1952

13980

1 953

1 0705

1954

12036
14083
1 3905
1 3885
12172
1 5783

12715

14161

14596
23337

14762
1 5568
12297
16877
1 3433
1 5868
17231

t87

14294
13478



Year

1 955
1 956
1957
1 958
1 959

Gauoed Data

1 960
1 961

lMm")

1962

13284

1 963

12811

1964

1 2306

1965

12122

Reconstructed Data

1 966

10713

1 967

11738

1 968

10171

'1969

(Mm3)

14242

1 970

12139

1 3020

1971

11749

14041

1972

21382

15762

1973

14776

13407

1974

119s6

1 0000

1975

14015

10267

1 976

12353

12172

1977

13278

1 0628

1 978

1 6635

18344

1979

13216

17136

1 980

13216

1 3498

1981

1 8038

1982

11711

1 983

13263

1984

17862

1 985

16784

1 986

14687

1 987

I 5683

1 988

11191

1 989

I 6399

1 990

11719

1 991

12645

1992

12049

1 993

1 5976

1994

10221
9472
15626
15122
15203
9700
9837
13491

188



Appendix G

Gauged and Reconstructed

Streamflow Record for 05AAO23
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Year

1571
1572
1573
1574
1575

Gauqed Data

1576
1577

lMm')

1578
1579
1 580
1 581
1582

Reconstructed Data

1 583
1584
1 585

(Mm")

1 586
1587

576

'1588

423

1 589

681

1 590

732

1591

459

1592

513

1 593

437

1594

525

1 595

459

1596

559

1597

578

1 598

528

1 599

680

1 600

547

1 601

592

1602

466

1 603

796

1604

556

1 605

670

1 606

704

1607

574

'1608

333

'1609

483

1610

516

161 1

499

1612

593

1613

590

1614

571

1615

416

1616

536

1617

475

1618

5'10

1619

451

1620

ôôz
488
446
608
632
515
490
563
527
525
370
500
492
395
384

190

429
503



Year

1621
1622
1623
1624
1625

Gauqed Data

1626
1627

(Mmt)

1628
1629
1 630
1 631
1632

Reconstructed Data

1 633
1634
1 635

(Mm")

1 636
1637

436

1 638

305

1 639

550

1 640

497

1641

369

1642

371

1643

542

1644

397

1 645

472

1646

688

1647

720

1 648

537

1 649

414

1 650

268

I 651

627

1652

421

1 653

496

1654

465

1 655

632

1 656

637

1657

468

1 658

576

1 659

629

1 660

460

1 661

334

1662

572

1 663

398

1 664

641

1 665

451

1 666

407

1667

500

1 668

533

1 669

604

1670

517
449
245
559
566
485
295
662
431
459
664
638
600
704
778

19r

368
604



Year

1671
1672
1673
1674
1675

Gauqed Data

1676
1677

(Mm')

1678
1679
1 680
1 681

1682

Reconstructed Data

1 683
1 684
1 685

(Mm")

1 686
1687

752

1 688

754

1 689

288

1 690

796

1 691

597

1692

392

1 693

538

1694

449

1 695

677

1 696

610

1697

475

'1698

472

1 699

292

1700

656

1701

533

1702

546

1703

502

1704

635

1705

561

1706

563

1707

334

1708

589

1709

621

1710

402

1711

497

1712

526

1713

691

1714

443

1715

524

1716

473

17 17

532

1718

405

1719

596

1720

508
130
567
527
621
520
549
547
684
6'10

433
485
216
JJ..)

572

t92

316
318



Year

1721
1722
1723
1724
1725

Gauqed Data

1726
1727

(Mm3)

1728
1729
1730
1731
1732

Reconstructed Data

1733
1734
1735

(Mmt)

1736
1737

751

1738

689

1739

698

1740

409

1741

606

1742

653

1743

613

1744

435

1745

333

1746

622

1747

564

1748

704

1749

497

1750

594

1751

503

1752

546

1753

445

1754

584

1755

590

1756

370

1757

607

1758

543

1759

397

1760

672

1761

543

1762

420

1763

446

1764

544

1765

732

1766

366

1767

607

1768

632

1769

625

1770

508
460
407
477
240
561
629
56'1

545
213
583
250
702
431
568

t93

655
541



Year

1771

1772
1773
1774
1775

Gauqed Data

1776
1777

(Mm')

1778
1779
1780
1781
1782

Reconstructed Data

1783
1784
1785

(Mm")

1786
1787

299

1788

412

1789

682

1790

557

1791

410

1792

523

1793

648

1794

613

1795

511

1796

721

1797

557

1798

403

1799

471

1 800

478

'1801

682

1802

737

1 803

453

1 804

610

1 805

349

1 806

256

1807

656

1 808

234

'1809

309

1810

535

1811

340

1812

631

1813

444

1814

572

1815

243

1816

802

1817

529

1818

480

1819

615

1820

559
594
609
342
318
694
579
427
526
402
169
759
319
474
662

194

522
548



Year

1821
1822
1823
1824
1825

Gauoed Data

1826
1827

(Mm')

1828
1829
1 830
1 831
1832

Reconstructed Data

'1833

1 834
1 835

(Mm")

1 836
1837

426

1 838

529

1 839

512

1840

605

1841

707

1842

620

1843

617

1844

724

1845

629

1846

182

1847

551

1 848

595

1 849

525

1 850

526

1 851

704

1852

492

1 853

494

1854

798

1 855

653

1 856

477

1857

JJ..)

1 858

445

1 859

327

'1860

637

1 861

543

1862

315

1 863

563
451

1 864
1 865

511

'1866

538

1867

377

1 868

597

1 869

441

1870

676
660
448
540
378
693
432
471

174
572
393
691

400
469
374

195

331

486



Year

1871
1872
1873
1874
1 875

Gauoed Data

1876
1877

(Mm")

1878
1879
'1880

1 881
1882

Reconstructed Data

1 883
1884
1 885

(Mm")

1 886
1887

690

1 888

584

1 889

594

1 890

601

1 891

471

1892

619

1 893

634

1 894

659

1 895

650

'1896

605

1897

306

1 898

495

1 899

423

1 900

703

1 901

679

1902

511

1 903

465

1 904

277

1 905

677

1 906

539

1907

350

1 908

538

1 909

484

1910

470

1911

JJI

1912

592

1913

799

1914

790

1915

665

1916

755

1917

712

1918

610

1919

460

748

1920

495

522
319

401
669

615
719

765
544

530

342

260

3'15

743

506

506

350

633
532
580
683
547
339
256

196

544
379



Reconstructed Data

lMm')
316
568
464
535
496

Gauqed Data

669
528

(Mm')

561
434

361
663

408

430

655

436

477

393

353

774

531

Year

658

373

444

327

1921

582

425

1922

356

1923

430

1924

550

1925

552

1926

652

1927

411

1928

616

1929

563

1 930

706

193'l

596

1932

368

1 933

479

1 934

545

'1935

514

I 936

645

1937

535

1 938

571

1 939

351

1 940

495

1941

528

1942

970

654

1943

527

465

1944

833

424

1945

700

516

1946

587

617

1947

oto

682

1948

452

598

1 949

517

557

1 950

637

1 951

465

1952

514

1 953

394

1954

584

1 955

Ãoo

1 956

590

1957

541

1 958

786

1 959

505

1 960

650

1 961

431

1962

563

197

1 963
1964
1 965
1 966
1967
1 968
1 969
1970



Year

1971
1972
1973
1974
1975

Gauoed Data

1976
1977

(Mm')

1978
1979

923

1 980

368

1 981

789

1982

677

Reconstructed Data

1 983

608

1984

252

1 985

619

(Mm")

1 986

385

1987

422

1 988

688

1 989

428

1 990

300
268
342
548
345
267
404
745
752
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Appendix H

Gauged and Reconstructed

Streamflow Record for 05AAO22
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Year

1 639
1640
1641
1642
1 643

Gauqed Data

1644
1645

(Mm")

1646
1647
1648
1649
1 650

Reconstructed Data

165'l
16s2
1 653

(Mm3)

1654
1 655

408

1 656

491

1657

516

1658

442

1 659

571

1 660

538

1 661

448

1662

387

1 663

479

1 664

358

1 665

572

1 666

434

1667

385

1 668

515

1 669

493

1670

587

1671

498

1672

428

1673

254

1674

545

1675

590

1676

526

1677

377

1678

574

1679

389

1 680

483

1 681

615

1682

530

1 683

438

1684

571

1 685

623

1 686

361

1687

519

1 688

707
669
339
624
566
472
482
418
573
481
400
310
298
561
441
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1 689
1 690
1 691

1692
1 693

Gauqed Data

1 694
1 695

(Mm")

1 696
1697
1 698
1 699
1700

Reconstructed Data

1701
1702
1703

(Mm")

1704
1705

601

1706

c/ I

1707

586

1 708

373

1709

525

1710

490

1711

403

1712

499

1713

527

1714

bcJ

1715

451

1716

496

17 17

395

1718

420

1719

345

1720

534

1721

463

1722

216

1723

499

1724

436

1725

557

1726

514

1727

559

1728

552

1729

656

1730

552

1731

376

1732

422

1733

314

1734

453

1735

548

1736

307

1737

387

1738

676
516
498
386
530
506
539
455
441

497
407
597
524
603
548
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484
449
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1739
1740
1741
1742
1743

Gauged Data

1744
1745

(Mm'

1746
1747
1748
1749
1750

Reconstructed Data

1751
1752
1753

(Mm")

1754
1755
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1756

557

1757

392

1758

542

1759

459

1760

366

1761

589

1762

392

1 763

426

1764

483

1765

530

1766

560

1767

292

1768

581

1769

578

1770

559

1771

432

1772

442

1773

372

1774

443

1775

245

1776

552

1777

516

1778

536

1779

533

1780

382

1781

586

1782

279

1783

663

1784

450

1785

538

1786

559

1787

482

1788

312
437
568
514
411
483
552
474
441

652
515
467

523
493
612
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702
534
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1789
1 790
1791
1792
1793

Gauqed Data

1794
1795

(Mm')

1796
1797
1798
1799
1 800

Reconstructed Data

1 801

1802
1 803

lMm")

1 804
1 805

647

1 806

371

1807

336

1 808

554

1 809

227

1810

376

1811

493

1812

370

1813

523

1814

385

1815

471

1816

229

1817

733

1818

466

1819

471

1820

571

1821

535

1822

563

1823

59'l

1824

422

1825

417

1826

624

1827

510

1828

467

1829

472

1 830

311

1 831

211

1832

646

1 833

332

1834

477

1 835

614

1 836

533

1837

523

1 838

472
508
416
452
578
513
486
617
667
326
4BB

409
466
524
607
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Reconstructed Data
(Mm')
632
576
420
342
437

Gauqed Data

325
604

lMm')

541
369
542
435
497
488
409

Year

430
358

1 839

660

I 840

s49

1841

471

1842

499

1843

395

1844

551

1845

366

1846

438

1847

359

1 848

558

1 849

377

1 850

615

1 851

377

1852

500

1 853

380

1854

369

'1855

497

1 856

588

1857

488

1 858

555

I 859

622

1 860

489

1 861

598

1862

508

1 863

588

1864

602

1 865

560

'1866

435

1 867

574

1 868

398

1 869

535

1870

560

1871

508

1872

494

1873
1874
1875
1876
1877
1878
1879
1 BBO
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1882
1 883
1884
1 885
1 886
1887
1 888
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1 889
1 890
1 891
1892
1 893

Gauqed Data

1894
1 895

(Mm')

1 896
1897
1 898
1 899
1900

Reconstructed Data

1 901
1902
1 903

(Mm')

1 904
1 905

246

1 906

557

1907

419

1 908

391

'1909

498

1910

410

191 1

447

1912

JÕJ

1913

569

1914

627

1915

539

1916

530

1917

640

1918

605

1919

641

527

1920

382

667

1921

449

447

1922

323

451

1923

451

496

1524

617

535

1925

445

472

1926

396

352

1927

666

247

1928

441

462

1929

509

380

1 930

485

431

459

1 931

597

1932

448

5'18

1 933

454

301

479

1934

365

1 935

298

824

476

456

1 936
1937

280

397

1 938

347
504
409
468
472
525
468
438
362
355
552
479
421
566
404
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1 939
1940
1941
1942
1 943

Gauoed Data

1944
1945

(Mm")

1 946
1947
1948
1949
1 950

Reconstructed Data

1 951
1952
1 953

527

(Mm')

1954

542

1 955

637

317

1 956

602

438

1957

JOJ

420

1 958

/óþ

449

1 959

747

497

'1960

371

433

'1961

679

554

1962

585

429

1 963

592

532

1964

543

514

1 965

454

466

440

1 966

587

1967

646

576

1 968

467

471

1 969

478

567

1970

344

615

1971

448

683

1972

413

611

1973

604

458

1974

496

497

1975

595

594

1976

567

489

1977

453

421

1978

514

412

1979

505

554

1 980

555

625

1 981

593

419

1982

600

1 983

795

'r984

345

1 985

265

1 986

451
399

1987

488

1 988

380
461
329
370
510
436
300
303
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1 989
1 990

Gauqed Data

lMm")
541
594

Reconstructed Data
(Mm'
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