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Abstract

The reconstruction of past flow events is of great interest to the water resources engineer.
Water resources planning requires the best possible estimates of extreme flow conditions for
investment, decision making and design. Unfortunately streamflow records in North America,
tend to be very short. The multi-year nature of drought events reduces the available sample
size making estimates of extreme droughts very difficult.

Tree ring data offer a unique way of addressing this problem. The pattern of a tree’s
growth rings reflect the environmental conditions experienced during each year. In addition,
trees are relatively long lived (up to 500 years) and well distributed in North America. Tree
rings are produced annually and can be precisely and reliably linked to climatic variations.
This makes them unique and ideal for correlation with annual climatic records.

The purpose of this thesis is to show the utility of using the methods of dendroclimatology,
the study of climate through tree rings, to extend streamflow records. These methods use the
principle that during drought periods moisture stress proportionally limits tree growth. This
limitation is reflected in the width variation of annual growth rings. The climatic information
inherently present in ring widths can then be used to extend historical records of low flow back
the entire lifetime of the tree. |

Three case studies were completed, one in the MacKenzie River Basin and two in the
South Saskatchewan River Basin. Two of the case studies verified very well using split sample
techniques, one was questionable. The reconstructions extended streamflow records from 59
to 190 years, from 60 to 420 years and from 65 to 352 years.

The results of a comparison between extreme droughts estimated from the gauged data
and the reconstructed data showed a decrease in drought severity at all return periods. This
was a result of the reconstruction models not being able to reproduce the amount of variance
found in the gauged data. The magnitude of streamflow records are smoothed as they are
filtered through the tree ring data. The data reconstructed in this study cannot be used in
quantitative frequency analysis of extreme drought. Further study is required to determine
if it is possible to produce a reconstruction with sufficient explained variance to perform

quantitative frequency analysis
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Chapter 1

Introduction

1.1 Purpose

The purpose of this research is to show the utility of using the methods of dendroclimatology,
the study of climate through tree rings, to extend streamflow records. These methods use
the principle that during drought, or low flow, periods moisture stress proportionally limits
tree growth. This limitation is reflected in the width variation of annual growth rings. The
climatic information inherently present in ring widths can then be used to extend historical
records of low flow back the entire lifetime of the tree.

‘The objective of this project is to use existing tree ring data, that has been collected from
various researchers and deposited in the International Tree Ring Data Bank, to extend stream-
flow records in and around the Churchill-Nelson River basin. If successful, the techniques used
here could help provide better understanding of past drought, assist in the operation of current

hydropower projects and assist in the design and planning of future hydropower projects.

1.2  Background

‘The reconstruction of past flow events is of great interest to the water resources engineer.
Water resources planning requires the best possible estimates of extreme flow conditions for

investment, decision making and design. For this reason, periods of low flow are of particular
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interest for hydropower developers and operators.

Low flow estimates govern the estimate of how much firm power can be developed at a
hydro site. Poor estimates of firm discharge can lead to over—development, under-development
or no development of a potential hydro site.

The problem that each water resources planner in North America has to deal with is that
streamflow records are generally very short (usually less than 50 years). Compounding this is
the fact that periods of low flow, or drought, usually take place over several years. A single
‘event’ may take up multiple years of the record (a multiyear event) further reducing the size
of the available sample data.

With such small data sets, probability distributions used to perform frequency analysis
may provide misleading or erroneous results. This is particularly true if the period of record
coincides with a period of anomalous rainfall or runoff.

‘There are several techniques that have been used to address the problem of short records
in drought estimation. Two broad categories of streamflow generation models are used to fill
in missing data and extend records: deterministic and stochastic.

Deterministic models are based on the physical characteristics of a drainage basin and
hydrologic relationships to translate meteorological records into streamflow. These methods
are particularly useful since in most areas the rainfall record is significantly longer than the
streamflow record. Some examples of deterministic models in common use are SSARR, HEC-1
and SLURP.

Stochastic models are statistically based and rely on the statistical properties of the avail-
able streamflow record or cross-correlation with other, longer, streamflow records. Stochastic
techniques include regional regression analysis and synthetic streamflow generation.

One popular technique that falls outside of these two categories is the use of the so-called
‘drought of record’. In this technique, project capacity is designed according to the worst
drought of recorded history. This does not attempt to address short streamflow records but
selects only the low observation from it.

Tree ring data offers a possible method of addressing the problem of short streamflow

records. The pattern of a tree’s growth rings reflect the environmental conditions experienced
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during each year of growth. In addition, trees are relatively long lived (up to 500 years)
and well distributed in North America. Tree rings are only one source of paleoclimatic data.
However, they have the advantage of being annually based, precisely and reliably linked to
climatic variations. This makes them a unique source of paleoclimatic data for correlation with
annual climatic records. They have been used to augment numerous climatic and hydrologic
measurements including temperature, precipitation, Palmer Drought Severity Index (PDSI),
streamflow, lake levels and atmospheric circulation (Duvick and Blasing, 1981).

The use of tree rings as a tool for extending climate records is made possible through the
‘principle of limiting factors’ which governs the tree’s annual growth. This principle states that
a biological process may not proceed any faster than allowed by the most limiting factor. For
tree rings this could be either temperature, moisture, nutrient availability, insect infestation,
etc. (Stahle and Cleaveland, 1988).

The amount of growth experienced by an individual tree is affected by many environmental
and biological factors. The most significant of these are climatic forcings of temperature and
moisture. How strongly trees are affected by these is dependent upon tree species and location.
In dry years, where moisture levels limit tree growth, narrower rings are formed. The width
of these are proportional to the amount of moisture present during that year. In wet years,
where moisture does not limit growth, wider rings are formed, limited in width by some other
factor. Hence, the use of tree ring data is most effective for reconstruction of drought related
streamflow events because they produce the best correlation with tree growth.

Traditional streamflow record augmentation is often accomplished by exploiting the cross
correlation with nearby flow recording gauges. The period of common record between the
gauges is used to form a relationship and this is used to extend the shorter record to the length
of the longer record. In streamflow reconstruction using tree rings the same general procedure
is used except the nearby ‘gauges’ are tree ring sites (Brockway and Bradley, 1995). The
statistical procedures, however, tend to be much more involved than a simple cross correlation

analysis.
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1.3 Objectives
The scope of this study involves:

¢ Exploring an approach for using the paleoclimatic information to characterize drought
events. Chapters 2 and 3 will discuss the statistical techniques and rationale behind the

methods used in reconstructing streamflow using tree rings.

¢ Determining the availability of tree ring data within and near the study area. Chapter

4 will discuss the available sources of paleoclimatic data.

e Automating the tasks involved in reconstructing streamflow from tree rings. Chapter
5 will discuss several computer applications developed to expedite the reconstruction

process.

¢ Employing the approaches in case studies to demonstrate the feasibility of using tree
ring data to reconstruct drought. Chapter 6 will discuss several case studies where the

techniques described in the previous chapters are employed.

¢ Drawing conclusions about the utility of the approaches used. Chapter 7 discusses the

outcomes of the case studies and implications for future work.



Chapter 2

Literature Review

This thesis builds upon literature found in the fields of general dendroclimatology, stream-
flow dendroclimatology and statistical drought analysis. General dendroclimatology presents
the basic tools needed to relate climatic parameters to tree rings. It presents the means to
choose the tree ring data sets and process them for climate reconstruction. It also presents
the multivariate methods that have been successful in climate reconstructions. Streamflow
dendroclimatology shows that it is possible to successfully reconstruct streamflow records us-
ing tree rings. Statistical drought analysis provides the reason for wanting to reconstruct past

streamflow and the means to gauge the success of the reconstructions.

2.1 Tree Ring Data Analysis

Tree ring data have been used for the past 30 years to extend climatic records. Fritts (1971)
was a leader in this area and defined the principles by which climate reconstructions could
be made. Fritts et al. (1971) were the first to discuss the use of multivariate statistics in
tree ring - climate recounstructions. LaMarche (1974) explained some of the inferences that
can be made from long tree ring records. Fritts (1976) wrote Tree Rings and Climate the
definitive book on relating tree ring data to climate. This is one of the most comprehensive
books ever published on the subject. More recently Cook and Kairiukstis (1989) wrote the

book Methods of Dendrochronology that updates and expands on several of the techniques
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presented by Fritts.

Fritts (1971, 1976) discusses the principles that make tree ring reconstruction of climatic
variables possible. The term dendrochronology is defined as the science of dating the annual
growth layers in woody plants and the exploitation of the information they contain on the
environment. Dendroclimatology is restricted to dendrochonological studies that use climatic
information from dated growth layers to study variability in present and past climate. The
principles of site selection, sensitivity and cross dating that make tree ring climate relationships
possible are discussed below.

The principle of site selection involves using information from a large sample of trees where
growth has been limited by the climatic factor in question. The principle of sensitivity is where
the person sampling chooses trees that exhibit the most variability in width from one ring to
the next. These provide the best indicators of climatic stress.

Cross dating is a procedure that allows the identification of the year in which individual
rings are formed. It involves taking a tree of known cutting or coring date and comparing the
ring width patterns with those of unknown or known cutting dates to locate them precisely in
time or verify the dates of the rings.

Fritts (1976) also discusses that as trees grow the annual rings systematically become thin-
ner with increasing trunk diameter. In order to remove this trend ring widths are standardized
into index values. This is accomplished by fitting either an exponential or straight line to the
systematic non-climactic effects. Individual ring width values are then divided by the corre-
sponding value of the fitted curve forming what is referred to as a standardized ring width
index. Many index series from trees in a localized area are then added together and averaged
to form what is called a tree ring chronology.

Fritts et al. (1971) and Fritts (1976) discuss how multivariate techniques provide a way of
objectively defining how the ring width growth relates to climatic factors at different periods
during the growing season. Multivariate statistics also provide a means of handling and relating
data sets consisting of correlated variables. They discuss the use of orthogonal eigenvectors,
derived from groups of tree ring and climatic predictors, for dealing with correlated variables

and for reducing the number of variables. These concepts are discussed in Chapter 3.
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LaMarche (1974) discusses how tree rings are an important source of paleoclimatic data be-
cause they are long lived, can be accurately dated and can vary in response to climate changes.
He also discusses how cross correlation can be enhanced, when lower frequencies are removed
by prewhitening, using the methods presented in Chapter 3. He also reinforces how the best
climatic response occurs in trees near climatically determined limits of the distribution, such
as near tree lines on mountains and in northern regions.

Cook and Kairiukstis (1989) expand on the concepts presented above and emphasize proce-
dures that can be used in reconstructing climate series. Particular attention is paid to proper
cross validation of regression models and the use of verification statistics to gauge the validity

of the models.

2.2 Reconstruction of Streamflow Using Tree Rings

Tree ring chronologies are particularly well suited to reconstruct runoff records. They tend
to be much longer than instrumental records, they are precisely annual in resolution and
they integrate the effects of temperature, precipitation and evapotransporation, the main
components that influence streamflow.

Many studies have been done over the last 30 years using tree rings to reconstruct stream-
flow. The earliest studies by Stockton (1975) were done to gauge the viability of relating
streamflow to tree ring chronologies as well as to investigate the various statistical procedures
that could be used. Most of the subsequent studies (Phipps, 1983; Cook and Jacoby, 1983;
Meko and Graybill, 1995; Meko et al., 2001; Woodhouse, 2001) were done in arid locations to
assist in water supply allocation to populated areas. In these locations low flow allocation is
a major concern for water resource planners. Longer streamflow records are helpful to bet-
ter quantify low frequency drought events and make informed policy decisions. Some studies
(Smith and Stockton, 1981; Cleaveland and Stahle, 1989) were done in order to assess long
term, low probability high flows in addition to low flow events. These were done to better
assess low probability flood potential and surplus water allocation. These studies use various
statistical approaches to tree ring reconstruction and verification. The following summarizes

the approaches used in each study, their purpose, results and conclusions.
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Stockton (1975) presented one of the earliest studies. In this study he investigated the
use of various statistical procedures in reconstructing streamflow and precipitation as well as
the applicability of reconstructing runoff series. Stockton investigated the used of correlation
analysis, spectral analysis, analysis of variance, principal components analysis and multiple
linear regression. He reconstructed annual streamflow and precipitation on the Bright Angel
Creek and Upper Colorado River basins in Arizona and New Mexico from 1564 to 1960.

Phipps (1983) reconstructed monthly summer streamflow on the Occoquan River in Vir-
ginia between 1841 and 1975. The purpose of this project was to quantify low flow events to
assist in planning of water supplies to populated areas in the region. A monthly streamflow
record was available for calibration between 1928 and 1976. Stepwise regression was used to
relate lagged tree ring chronologies to monthly streamflow. This study showed R2 values of be-
tween 0.33 and 0.47 with no independent verification. It found that most significant droughts
in this area occurred within the gauged record.

Cook and Jacoby (1983) reconstructed streamflow on the Potomac River between 1730
and 1976. The purpose of this project was to provide insight into water supply problems and
solutions for Washington, D.C. The goal was to see if the gauged records were representative
of long term streamflow in the area. Monthly streamflow records were available between
1907 and 1977. July, August and September streamflow were reconstructed using Stepwise
Canonical Regression techniques on prewhitened and lagged streamflow chronologies. The
results showed R? that varied between 0.28 and 0.48 with a pooled R? adjusted for degrees
of freedom of 0.36. This reconstruction was verified using independent data and the product
moment correlation coeflicient and reduction of error verification statistics. This study showed
a much better reconstruction from the use of the verification statistics than was implied by
the R2. It showed the danger of using R? as the only method of determining calibration
reliability. The study identified several periods of persistent low flow prior to the gauged
records and showed the potential utility of such studies for planners.

Meko and Graybill (1995) reconstructed streamflow on the Upper Gila River Basin in
Arizona and New Mexico between 1663 and 1985. The purpose of this project was to extend

the short gauged record to assist in water planning and allocation. The gauged streamflow
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records extended from 1915-1985. Eight chronologies were prewhitened using a low order
autoregressive rﬁoving average process and the skewness was removed. These were then lagged
forward and back in time and related to streamflow using stepwise regression. The stepwise
regression model yielded an R? of 0.66. Split sample verification was used to gauge the validity
of the model. R? values between 0.58 and 0.69 were found for the verification models. The
split sample model coefficients were compared for time stability and residuals were analyzed
to investigate regression quality. The product moment correlation coefficient and reduction of
error statistic were used to validate the split sample models. The conclusion of this study was
that the 20th century had an unusually large number of instances of clustered high flow years
and high severity multiyear droughts.

Meko et al. (2001) reconstructed streamflow on the Sacramento River in California between
869 and 1999. The purpose of this study was to gain a long term perspective of drought for
water allocation planning. The gauged record from 1906-1999 was too short to represent
low frequency persistent climate fluctuations. The gauged streamflow record was created
by summing the records of four tributaries. Tree ring chronologies were obtained from the
International Tree Ring Data Bank. The chronologies were prewhitened using a low order
autoregressive process and principal component analysis was used to deal with intercorrelations
between tree ring data sets. Stepwise regression was used to relate the principal components
of the tree ring chronologies to log streamflow. R2 values ranged from 0.64 to 0.81. Cross
validation was accomplished using the PRESS, RSME and reduction of error statistics. The
conclusion to this study was that the use of the 1930s as a design drought is justified. Although
there were several more extreme droughts in the past, they were of shorter duration.

Woodhouse (2001) reconstructed streamflow for the Middle Boulder Creek basin in Col-
orado between 1703 and 1980. The purpose of this study was to gauge the uniqueness of the
20th century low flow events. The gauged record from 1912-1980 was inadequate to assess the
low frequency variability in flow fluctuations and allow effective water policy decisions. Tree
ring data were prewhitened with a low order autoregressive process but were not orthogonal-
ized using principal component analysis due to the tendency of that procedure to mask some

climate signal. Stepwise regression was used to pick a final model with an R? value of 0.7.
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Split sample verification was used to validate the model using the reduction of error and sign
test verification statistics. The conclusion of this study was that the extended record expands
the perspective of streamflow variability and provides a tool for water planning and allocation.
Smith and Stockton (1981) reconstructed streamflow on the Salt and Verde Rivers in
Arizona between 1580 and 1990. The goal of this project was to confirm long term flood
potential and the statistics used in water allocation to populated areas and for hydropower
production. Gauged records were available for the Salt and Verde River Basins from 1914 to
1979 and 1895 to 1979 respectively. The tree ring chronologies were prewhitened using ARMA
models and tranformed to orthogonal variables using principal components anélysis. Stepwise
regression against log tranformed streamflow was used to choose a final model. The final model
had an R? value of 0.73. No discussion of model verification was made. The study found that
gauged records contained a large number of high flow events compared to the extended record.
Also several extreme and persistent low flow events were found prior to the gauged records.

Cleaveland and Stahle (1989) reconstructed streamflow on the White River in Arkansas
between 1700 and 1980. The purpose of this study was to investigate the viability of inter-
basin diversion of surplus water. This area is one of the most variable runoff regions in the
United States. Gauged data were available from 1931 to 1980. Correlation analysis was used
to determine the best season to reconstruct. Annual streamflow was found to yield the highest
correlation with tree ring data. The tree ring chronologies were regionalized using a simple av-
eraging. They were prewhitened using a low order autoregressive process. Regression analysis
yielded an R? value of 0.5. The regression was validated using a standard split sample pro-
~cedure and the reduction of error verification statistic. In addition, coefficients and moments
were compared between the split sample models and the full model to assess time stability.
'The conclusion of this study showed that tree ring reconstruction could be an important tool

in assessing the probability forecasts for the basin.

2.3 Characterizing Drought

Drought, or low flow, events are much more difficult to characterize and analyze than floods.

This is due in part to the ‘multiyear’ nature of drought events where a single event can span
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many years. The effects of droughts are also much more difficult to quantify. The dramatic
effects experienced during floods in the form of property damage and lives lost are not present
for droughts (Jarrett, 1991). Drought effects are largely measured in terms of distributed
economic loss to an industry or environmental losses, both of which are difficult to quantify.

Much research had been done to properly analyze drought events in a way similar to flood
events. Dracup et al. (1980a, 1980b) defined a way in which droughts can be statistically
characterized. Joseph (1970) defined a simple method of determining frequency of design
drought for water resources projects. Burn and DeWit (1996) expand on this methodology to
take into account the multiyear nature of droughts.

Dracup et al. (1980a, 1980b) present a method of statistically characterizing drought
events. In their method, four decisions must be made to clearly define a drought event (Dracup
et al., 1980D).

The nature of the water deficit must be characterized as either hydrologic (streamflow),
meteorological (precipitation) or agricultural (soil moisture) (Dracup et al., 1980a). The pa-
rameter of interest is decided by the purpose of the analysis. If the causes of drought are of
interest, meteorological drought needs to be evaluated. If drought impacts are to be quantified,
then either hydrologic or agricultural drought is investigated, based on the type of impacts of
interest.

The basic time unit must be established as either annual, seasonal or monthly (Dracup
et al., 1980a). For hydrologic drought the usual time units are water years. For agricultural
drought the basic time unit is the growing season. For meteorological drought the basic time
unit can be daily, monthly, seasonal or annual.

The truncation level at which a drought is said to be occurring must be defined (Dracup
et al., 1980a). This can be defined as the long term historical mean or some percentage of
one standard deviation from the mean for more extreme events. Truncation level can vary
greatly depending on the researcher and the effects being researched. In the case of hydropower
applications, truncation level can even change temporally based upon the demand for water.
This is an area of much contention but for simplicity in this thesis the long term mean is used

to define low flow or drought events.
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A regionalization or standardization approach must be chosen to allow the drought to be
transposed to different areas of the watershed (Dracup et al., 1980a). There are three choices

of regionalization:
¢ Do not regionalize.

e Standardize data and define the region according to similar climate, geomorphology and

geography.
 Standardize data and define the regions with similar hydrologic statistics.

Drought events are formulated by first dividing the historical record according to the trun-
cation level (Dracup et al., 1980a). All adjacent time periods which are below the truncation
level are then combined into individual drought events.

Drought events are characterized by three attributes (Dracup et al., 1980b). These are:
e Duration, the number of successive time periods the drought persists.

e Severity, the cumulative deficit over the entire drought.

* Magnitude, the average deficit over the drought period.

Magnitude is derived from Severity and Duration, both of which depend on streamflow values

as follows:
_ Severity(S)

Magnitude(M) = WD—)

(2.1)

The impacts of drought are best measured in streamflow records even though precipitation
records often cover a longer period of time and are more complete (Dracup et al.,, 1980a).
Hydrologic (streamflow) drought is characterized as low streamflow lasting an integer number
of years (Dracup et al., 1980b). The truncation level is usually selected as the mean annual
runoff of the watershed or some percentage of one standard deviation from the mean for more
severe drought (Dracup et al., 1980b). Using the mean simplifies the comparison of drought
severity because both high and low events have the same scale (Dracup et al., 1980b).

Joseph (1970) discusses the problems associate with hydrologic drought frequency analysis

and proposes solutions based on probability theory. The persistent nature of drought is ignored
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in favor of simplicity. By considering low flows on an annual basis, droughts can be evaluated
using traditional probabilistic techniques. For design purposes, since the probability of drought
is more important than the cause and effect relationship, this simplification is adequate though
not ideal.

A prerequisite to computing drought probabilities is the establishment of a probability
distribution to describe the data (Joseph, 1970). The main difficulty is that frequently one or
more values in a streamflow sample are zero. This poses a problem with log transformation
of the data. Joseph (1970) proposes a two step procedure to solve this problem. The samples
are first separated into zero and non-zero drought events and probability density functions are
assigned to each. The probability density functions are combined ‘a posteriori’. The following

equation is used to combine the probabilities of zero and non-zero droughts (Joseph, 1970).
Fle) =1~ (1~-po)(1 - ps) (2.2)

Where:

F(z) = probability that a drought will be equal or more severe than magnitude x

Po = probability of a zero value drought event

Pz = probability of a non-zero value drought event

The recurrence interval can then be defined as follows (Joseph, 1970):

T: = (2.3)
Where:
T = recurrence interval (years)

Using binomial theory the probability of nonoccurrence of a drought that is equal or more

severe than the T year drought is estimated as follows (Joseph, 1970):

P= <1 - %)T | (2.4)
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From this, assurance is defined as the probability of nonoccurrence of droughts more severe

than the design drought of a project during the life of the project (Joseph, 1970).
1 N
A=[(1- = )
( T) (2.5)
Where:

A = Assurance (probability)
T = Return period of design drought (years)

N = Estimated useful life of the water resources project (years)

This last equation can be used to ascertain the risk involved of drought related impacts during
the lifetime of a project.

Burn and DeWit (1996) expand on Joseph’s methodology of frequency analysis, taking into
account the multiyear nature of drought events. In their methodology, each period of drought,
regardless of length, is considered a single event. The implication of this is that the basic time
unit varies instead of being static as it was in the other methods. The severity of each drought
event is used in a standard frequency analysis as if the time units were equal (Burn and DeWit,
1996). Drought severities are then determined for different probabilities of exceedance. The
return period is then determined from the probability of exceedance and the variable time
unit is taken into account by multiplying by the average drought duration as follows (Burn

and DeWit, 1996):

= ——— AD .
T= e A (2.6)

Where:

T = Return Period (years)
POE = Probability of Exceedance (fraction)

AD = Average duration of all recorded drought events (years)

This allows a return period to be established without ignoring the fact that droughts occur

over multiple years and the effects of drought also span many years.



Chapter 3

A Technique of Reconstruction

3.1 Introduction

The goal of this study is to effectively build a statistical regression model between standardized
tree ring chronologies and annual streamflow data and to use the resulting reconstruction to
analyze low probability drought. In order to accomplish this goal a combination of statistical
tests, time series analysis, multivariate statistics and regression analysis are used to process
the available data. Most of these procedures were programmed into two applications discussed
in Chapter 5. This chapter discusses the methodologies used for this research, the reason they
were used, their application and their advantages and disadvantages. -

The first step in forming a statistical model relating tree ring data to climate is to presup-
pose a cause and effect relationship. In the case of hydrological drought the relationship that
is assumed is that water stress is limiting to tree growth during drought years. Other possible
suppositions are that temperature is limiting to growth or that pollutants are limiting.

The biological process involved in this limitation can be of many forms. The sampling of
the trees is especially important for the hypothesis to be born out. Trees taken in areas not
limited by moisture will show poor correlation. In most cases, however, tree growth is at least
partially limited by a combination of moisture and temperature.

These hypotheses are then investigated by:

1. Preprocessing the data to confirm statistical assumptions.

15
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2. Predetermining possible predictors using physical criteria and correlation analysis.
3. Using orthogonal best subsets regression to determine the best model.

4. Performing final model analysis and regression diagnostics if a satisfactory model is

found.
5. Verifying the model using split sample techniques with standard verification statistics.
6. Investigating and removing outliers based on regression diagnostics.

7. Applying the final model to the tree ring data to produce a full reconstruction substi-

tuting gauged data where applicable.
8. Analyzing drought using the methods presented in Section 2.3.

All streamflow data in this Study are first annualized based on monthly flow records. 12
annualizations are formed for each streamflow data set based on starting month. This is done
because there is some uncertainty in how the growing season corresponds to the water year.
These are each analyzed as separate streamflow series up until the point at which the best

model is chosen.

3.2 Preprocessing

Each standardized tree ring chronology and annualized streamflow data series requires a certain
amount of preprocessing before the reconstruction procedure can take place. This is done
to avoid problems with data quality, and violations of the fundamental assumptions with
multivariate analysis and linear regression to be performed during reconstruction. The three
conditions that are of concern are those of non-normality, non-stationarity and autocorrelation.

The procedures used to deal with each of these are discussed in the following sections.

3.2.1 Testing and Correcting for Non-Normality

Normally distributed time series and residuals are a requirement for most of the analysis in tree

ring reconstructions. Normally distributed error terms are required for both Autoregressive
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Moving Average (ARMA) modelling (Box and Jenkins, 1970) and linear regression (Neter
et al., 1990). The most fundamental assumption of all multivariate analysis (such as principal
component analysis) is normality (Hair et al., 1998). In addition normality is a requirement
for t and F statistics (Hair et al., 1998).

The most widely used test for normality is the normal probability plot. This is a graphical
method which compares the cumulative distribution of the data values with a cumulative
distribution of the normal distribution. A scatter plot of the data pairs is inspected to see if
there is any significant deviation from a 45° diagonal line.

A more formal and rigorous test of normality that incorporates this procedure is the
probability plot correlation coefficient test presented in Maidment (1993), chapter 13. This test
uses the Pearson correlation coefficient between the ordered data and corresponding normal
values to satisfy the hypothesis of normality at different confidence limits. The correlation

coefficient is calculated as follows:

2z — T)(w; — W)
[S(@: — )2 ¥ (w; —w)2]°°

r= (3.1)

Where:

z; = observation
T = average value of all observations
w; = fitted quantile of the normal distribution

w = average of fitted quantiles of the normal distribution

The correlation coefficient is then compared to critical values reproduced in Table 3.1. If the
value of r falls below the critical value for the 5% confidence level then a transformation is
required to normalize the data.

A widely used normalization method is the Box-Cox transformation (Maidment, 1993, ch.
18). This combines a logarithmic transformation and power transformation into a parameter
that can be used in a search algorithm. The equation used for this transformation is as follows:

=220 A £0
Yy = (3.2)
In(zy) ifA=0

Where:



3. A Technique of Reconstruction 18

A = Box-Cox coefficient
z; = Untransformed data points

y¢ = Transformed data points

Using this equation, to transform all of the original data, ) is varied using a search algorithm
so that the skewness of the transformed data is minimized. The probability plot correlation
test is then reapplied to the transformed data to make sure that the assumption of normality
is achieved.

Table 3.1: Lower Critical Values of the Probability Plot Correlation Test Statistic for the
Normal Distribution Using P; = (i — 3/8)/(n + 1/4)

Significance Level
n 0.10 0.05 0.01
10 0.9347 0.9180  0.8804
15 0.9506 0.9383 0.9110
20 0.9600 0.9503  0.9290
30 0.9707  0.9639  0.9490
40 0.9767 0.9715  0.9597
50 0.9807 09764 0.9664
60 0.9835 09799 0.9710
75 0.9865 0.9835  0.9757
100  0.9893 0.9870  0.9812
300 0.99602 0.99525 0.99354
1000 0.99854 0.99824 0.99755
Source: Maidment, 1993

3.2.2 Testing and Correcting for Non-Stationarity

A hydrologic time series is stationary if it is free of trends, shifts in the mean or periodic-
ity (Maidment, 1993, ch. 19). Generally speaking an annual streamflow series will be station-
ary unless some natural or man-made disruption has occurred. Examples of occurrences that
will produce non-stationarity are commencement of river regulation, changes in a gauging
location or instrumentation, or climate change.

Trends, shifts and periodicity can cause problems in both principal component analysis

and linear regression. These occur because of the fundamental assumption that each data
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series represents a single population. The presence of any non-stationarity indicates that more
than one population may be represented. The consequences are poor results in a regression
analysis and artificially significant principal components.

No discussion is made, in this thesis, of techniques to remove non-stationarity but tests
are presented that identify the presence of trends and shifts in the mean. Periodicity should
not be a concern for annual series.

Trends are tested using the standard Mann-Kendall test for trend (Maidment, 1993,ch.
19). This is a non-parametric test for an upward or downward trend in a time series. It is not
sensitive to whether the trend is linear or non-linear. For this test a new series is generated
by comparing each value in the time series with all the subsequent values. The new series z

is generated by the following rules:

1 if Yt > Y
ZE=94 0 ify,=uyp ' (3.3)
=1 ify, =yy

Where:

z = Mann-Kendall series
¢ = Time series value for current time period

yp = All time series values subsequent to time period t

The Mann-Kendall statistic is then computed by the sum of the points in the z, series.

N-1 N
t=1 t=t'+1
The test statistic for N > 10 is as follows:
S+m
= 3.5
A7) (3:5)
1 n
V(S) = 1—8[N(N— DEN+5) = eie; — 1)(2e; +5)] (3.6)

i=1

Where:
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m=1if{S <0
m=-1ifS>0
n = number of tied groups

e; = number of data in the ith tied group

The hypothesis of an upward or downward trend cannot be rejected at an « significance level if
[uc] > u1_g/2, where uy_, /2 18 the 1—a/2 quantile of the standard normal distribution (Maid-
ment, 1993, ch. 19).

The tests for shifts in the mean require the data to be split at the point where the shift
is assumed to occur. Although there are rigorous statistical tests for this, it is simplest to
observe a plot of the time series and qualitatively determine if a shift has occurred.

Seasonality should not be a problem in annual series, so it is not tested.

3.2.3 Testing and Correcting for Autocorrelation

Autocorrelation is defined as the correlation between successive values in a time series (Fritts,
1976). This occurs when the value of a time series in a given year impacts the values of the
following year or years (called lags). The assumption of uncorrelated errors is crucial in linear
regression to produce the best possible model. Also, serial correlation reduces the degrees of
freedom of a time series effectively reducing sample size. This is especially a problem when
dealing with very small sample sizes.

Serial correlation in tree ring time series has been shown to arise primarily from biological
factors (e.g. food, storage, crown area and root mass) but some persistence may also be due
to climatic forcing (Cleaveland and Stahle, 1989). Usually natural streamflow series do not
exhibit significant autocorrelation at an annual scale. For these reasons and the complica-
tions caused by autocorrelated series many authors reconstructing streamflow have chosen to
remove this persistence and take the risk of losing a minimal amount of climatic signal (Cleave-
land and Stahle, 1989; Brinkmann, 1987; Cook and Jacoby, 1983). The method of removing
autocorrelation, also called prewhitening, used by these authors is also adopted for this study.

In the case of streamflow series, autocorrelation may be due to storage in lakes and marshes

along the stream or some other natural phenomena. For this study significant correlation in
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streamflow series was not removed. Streamflow records with significant autocorrelation were
not reconstructed because the correlation structure between the streamflow and prewhitened
tree ring series could not be effectively matched. Although it is possible to remove the autocor-
relation structure from the streamflow records to match the prewhitened tree ring chronologies
it was decided that too much information could be lost if the streamflow series was too heavily
processed. The final streamflow series reconstructed in this way may not resemble the original
enough to be useful in planning.

First order autocorrelation is first tested by taking a time series (2¢) and its first order lag

(z¢41) and calculating the Pearson correlation coefficient between them.

M=

; (g — T)(zpp1 — Tyg1)

_ =1
" (n —1)S8:S¢41 (3.7)

Where:

n = the number of data points in the time series minus the lag order (1)
z; = data points of the unlagged time series

Ty = mean of the unlagged time series

zty+1 = data points in lag 1 time series

Tty1 = mean of the lag 1 time series

S¢ = Standard deviation of the unlagged time series

Si+1 = Standard deviation of the lag 1 time series

The first order autocorrelation coefficient is then tested for significance with a simple t-test.

p=Tvn=2 (3.8)

1—r2
where the null hypothesis is that the two series are independent. The null hypothesis is rejected
if || > tersr where tony is from the Student’s t distribution with n — 2 degrees of freedom and
exceedence probability of o/2 (Maidment, 1993, ch. 19).
If the autocorrelation is found to be significant at the 95% confidence level then an Au-
toregressive Moving Average (ARMA) model is estimated for the time series and the non-

autocorrelated residuals are used in the orthogonal regression analysis. Given the availability
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of computer programs to fit the ARMA model a full discussion of ARMA modelling is beyond
the scope of this thesis. Further explanation can be found in Maidment (1993), chapter 19
and Box and Jenkins (1970).

In order to identify the stochastic process that would best fit the data the autocorrelation
function (ACF) and partial autocorrelation function (PACF) are plotted for several lags along
with 95% confidence limits. The patterns found here are compared to those found in data of a
known stochastic process (Box and Jenkins, 1970). For example if the ACF declines steadily
with lag but the PACF becomes essentially 0 after 1 lag then an AR(1) MA(0) process is
assumed.

It has been shown that a low order ARMA process (order 1 or 2) is usually sufficient to
remove autocorrelation from a tree ring series (Cleaveland and Stahle, 1989). For the tree ring
series the fitted model is used to remove the persistence and the serially random residuals are

used for further analysis.

3.3 Predetermination of Predictors

Onme of the problems faced in dendroclimatic studies is that of the tendency to overfit models
by adding spuriously significant predictors. When one blindly adds predictors into a model the
probability of including chance features in the data that are interpreted as essential features
is high (Booy, 1996; Cook et al., 1994). A model built in this fashion will calibrate well on
dependent data but will be less useful in predicting independent data. This also reinforces the
need for independent verification of the final regression model. The chance of including spuri-
ously correlated variables in the predictor set can be minimized by only including predictors
that are likely to be significant, based on physical and statistical characteristics. This has the
added benefit of reducing the number of predictors for better computational ease later on.

In this study several criteria were used to choose candidate predictors ‘e priori’ from the
pool available from the International Tree Ring Data Bank (ITRDB). Judgement also played
a critical role in selecting candidate predictors so these criteria were only used as guidelines.

The criteria used to select the candidate tree ring chronologies are as follows:
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1. They should be less than 500 km from the gauge to be reconstructed.
2. They should be within the gauge sub-basin or an adjacent drainage basin.

3. The length of time overlap between the tree ring set and the gauged data should be

greater than 25 years.
4. The statistical quality of the tree ring data set should be high.

5. There should be statistically significant correlations between tree ring series and monthly

streamflow.

6. There should be statistically significant correlations between tree ring series and annual

streamflow.

Cook (1995) suggests that a limiting distance of 500 km be used as a guideline for climate
predictors in order to maximize common signal. This was used as a first screening to form a
list of possible candidate predictors.

Predictors that were directly within the gauge sub-basin and adjoining basins were chosen
out of this set. Adjoining basins were included because common weather patterns could
produce a common climate signal reproduced in each basin. This principle was not upheld
in the case of mountain ranges which separate basins. Orographic effects would preclude the
existence of a common signal between these basins.

If the tree ring data did not have sufficient length of overlap with the gauged data it was
excluded. Any overlap smaller than 25 years causes problems with statistical significance in
regression, verification and statistical tests.

All remaining tree ring data sets were inspected for quality, significant non-normality that
could not be corrected, non-stationarity and questionable sampling. Any of these conditions
would exclude a tree ring series.

A correlation analysis between the tree ring series and monthly streamflow for t and t+1
lags was used to further reduce the number of candidate predictors. This technique has been

used in many tree ring climate reconstruction studies to gauge the season to be reconstructed.
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In this case, if a tree ring series was not significantly correlated with monthly streamflow or
its first order lag, it was discarded.

As a final check, a correlation analysis between the tree ring series and annualized stream-
flow for t and t+1 lags was used to make sure no significantly correlated data sets were missed
by the monthly correlation analysis. This did not exclude any series but if a series with sig-
nificant correlation to annualized streamflow was found that was excluded by the monthly

correlation analysis it was included in the candidate predictor set.

3.4 Orthogonal Regression Analysis

3.4.1 Principal Component Analysis

The most common problems faced in dendroclimatic reconstruction are those of multicollinear-
ity of the predictors and an intractable number of predictors. Both of these can be dealt with
effectively using a method in multivariate statistics called principal component analysis (PCA).

Multicollinearity occurs when the independent variables are significantly correlated with
each other. This occurs with tree ring data because the trees in an area react to the same
macroclimatic signal. This being the case the tree ring records appear very similar with
differences occuring due to microclimatic and biological ‘noise’.

Multicollinearity of the predictors causes many difficulties with linear regression. It tends
to inflate the sampling variability of estimated coefficients (Neter et al., 1990), meaning that
the coefficient values cannot be estimated with any degree of certainty and tend to predict
poorly. Also the tendency to overfit is increased because the same signal is accounted for
multiple times in several predictors. This causes havoc with stepwise regression procedures
which hold one coefficient constant while varying the others. A key assumption in stepwise
regression is that each predictor is independent. When there is significant correlation between
predictors this is no longer true and varying one coefficient while holding constant another one
that is related through intercorrelations no longer makes sense.

Dealing with an intractable number of predictors is also a problem. When looking at tree

ring data it is not unusual to have upwards of 50 possible tree ring data sets of interest. Taking
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into account biological carryover effects by including forward and backward lags multiplies this
number. Even the best algorithms for stepwise or best subsets regression have difficulty in
dealing with this many predictors.

Principal component analysis is a statistical technique where a new set of variables is
derived from the original predictors to be orthogonal to each other while preserving as much
of the original information as possible. Each of these new variables are a linear combination
of the originals but are independent of each other. This is accomplished using a complex
procedure called eigenmode analysis the specifics of which are detailed in Draper and Smith
(1981) and Press et al. (1988).

Principal components are the eigenvectors of the correlation matrix of the tree ring data

sets. The standard matrix representation of this procedure is as follows.
I
~-FFE=CE=FL (3.9
n

Where:

n = number of years of data

F' = predictor matrix

F' = transpose of predictor matrix
E = eigenvector matrix

C = correlation matrix of predictors

L = diagonal matrix of eigenvalues

Each eigenvector has a corresponding eigenvalue which is proportional to the amount of vari-
ance represented by the eigenvector. Standard procedure is to present the eigenvectors in
order of decreasing variance represented.

Together the set of principal components (eigenvectors) are a more efficient representation
of the original data. The most common information or signal is concentrated into the first few
components. This means that a small subset of principal components is capable of representing
most of the variance found in the original data. Cook (1995) showed how tree ring chronologies
that tend to correlate well with climate tend to correlate well amongst themselves and are

heavily loaded into the first several principal components. This property can be exploited by
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making the assumption that important climatic signal is represented in the most important
eigenvalues and that smaller eigenvalues represent localized biological ‘noise’ or microclimatic
signal.

Several criteria have been used to choose the Principal Components (eigenvectors) to retain
for regression modelling (Cook and Kairiukstis, 1989). The criterion used in this study is the
Kaiser-Guttman eigenvalue 1 criterion (Cook et al.,, 1994). This criterion states that, since
an eigenvalue of 1 represents the expected value of an eigenvector in a correlation matrix of
random data, an eigenvector must have an eigenvalue of at least 1 to be retained (Cook et al.,
1994). Thus the only Principal Components that are kept for regression modelling are those
that perform at least as well as random data.

By using this method the problem of multicollinearity in the predictors is averted and the

number of predictors is reduced substantially.

3.4.2 Best Subsets Regression

Multiple linear regression is a statistical technique used to analyze the relationship between
a single dependent (predictand) variable and several independent (predictor) variables. In
this application it is used to form an equation between annualized gauged streamflow and
a set of significant principal components derived from standardized preprocessed tree ring

chronologies. The basic statistical equation for linear regression is as follows:
Z?t :b0+b1.731 +b2$2+...+bm$m+€ (310)
Where:

9; = Estimate of predictand (annualized streamflow)

m = Number of predictor variables

T1...%m = Predictor variables (principal components)

by ... by, = Regression coefficients corresponding to each predictor variable

by = Intercept coefficient which scales the regression equation to the mean of the predictand

€ = Random error term.
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The calculation of regression coefficients is performed using the statistical method of least
squares. There are many software packages that perform this analysis, a discussion of the '
method of least squares is beyond the scope of this thesis. For further information please refer
to Neter et al. (1990) or any basic statistics text.

At this stage in the analysis it is known that the significant principal components represent
information that is largely common to all of the tree ring chronologies. It is surmised that at
least some of this signal is climatic in nature, unfortunately it is not known which combina-
tion of principal components represents climate in the form of precipitation, temperature or
evapotransporation and their carry-over effects. It is also very likely that some of the princi-
pal components represent non-climatic regional information such as pollutant load or insect
infestation. For this reason as well as to avoid overfitting the regression model, it is necessary
to use statistical techniques to separate out only the important principal components that will
help reconstruct streamflow.

Several methods are available to accomplish this goal. Traditionally an automated method
known as Stepwise regression is used to choose the best predictors for a model. Stepwise
regression is a method of selecting variables for inclusion in the regression model by alternately
entering and deleting candidate predictors from the model based on their cumulative predictive
power (Hair et al., 1998). This allows the researcher to examine the effect of each predictor
on the regression model without having to look at all combinations.

There are two problems with Stepwise procedures. The first is that multicollinearity has a
significant negative impact. This has been dealt with by using principal components instead of
actual tree ring chronologies. The second is that a threshold significance level must be specified
for entering and deleting variables. This means that if a threshold is set too liberally overfitting
can occur causing the model to perform poorly on independent data. If the threshold is set too
conservatively the best possible model is not found. For this reason the Stepwise regression
procedure was discarded for this study. A more robust all-possible-subsets or best-subsets
procedure was adopted.

Best subsets regression procedures are methods used to select the smallest possible subset

of predictor variables that provide a model with the maximum amount of explained variance. It
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is different from Stepwise regression in that all combinations and subsets of variables are eval-
uated. This means that for n possible candidate variables 2* regression models are evaluated.
This is a computationally intense procedure that increases exponentially in computation time
and space for each added predictor. This is one reason why reduction of candidate predictors
‘a priori’ was emphasized in previous sections.

The output of this method is a ‘best’ model for each number of predictor variables based

on the coefficient of determination (R?), and the coefficient of determiniation adjusted for

2

a reduction in degrees of freedom (Radj). Calculation of the coefficient of determination is

accomplished as follows:
B2 _ SSR

= 5570 (3.11)

Where:

R? = Coefficient of multiple determination
SSR = Regression sum of squares

SSTO = Total sum of squares

R? represents the percent of the total variance explained by the regression model. Unfor-
tunately models with different numbers of predictors are not directly comparable using this
statistic. R? will generally increase with an increase in the number of predictors due to chance
alone. It is not possible for this statistic to decrease with an Increasing number of predictors
because the corresponding decrease in degrees of freedom is not taken into account. A statis-
tic used to choose between models with different numbers of predictors is the R?ldj. This is
the same as R? except it is adjusted for the loss in degrees of freedom due to the number of
predictors. It is calculated as follows:

Ry =1-(1-R? [—n—_l—] (3.12)
n—-m-—1
Where:
R? = Coefficient of multiple determination

n = Number of data points

m = Number of predictors
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Finding a model with maximum Rfldj is equivalent to finding a model with a minimum Mean

Square Error(MSE) (Minitab Inc., 1996).

3.4.3 Model Determination

At this point there are 12 best subsets analysis performed, one for each annualization of
streamflow (January-December to December-November). In addition there is a model with
highest explained variance for each number of predictors. This leaves 12 times the number
of predictors models to choose from. A formal procedure is required to sort through this
large number of competing models to choose the best possible annualization and number of

predictors for reconstruction of streamflow. The procedure that was used is as follows:

1. Separate the candidate models into groups with the same number of predictors (12

models for each number of predictors).
2. Choose the model with the highest Rgdj for each number of predictors.
3. Plot the R? and Ridj values on a chart versus the number of predictors.

4. At a certain point on this chart adding additional predictors does not increase adjusted

explained variance (R? &)

5. The model with the highest dej for the lowest number of predictors is chosen as the

model to be used in reconstruction.

3.4.4 Identifying and Removing Outliers

The model that has been identified as the best candidate for reconstruction can now be in-
vestigated for influential observations and outliers. Great care must be exercised in removing
outliers and influential points as it is very difficult to tell the cause of anomalous points from
this type of data. In addition, the nature of the principal of limiting factors makes it likely
that at least one high flow year will show up as anomalous, even though it is part of the natural

record.
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Outliers and influential observations were investigated using Leverage, Studentized Resid-
uals, Cook’s Distance and Dfits (Neter et al., 1990). They were evaluated based on guidelines
given for these statistics, potential improvement to the regression model and judgement. Only
points which showed anomalous results in several of these tests were considered for removal.
In addition removal of anomalous observations was only done if their removal significantly

improved the regression model.

3.4.5 Final Model Determination

The final model is built using the predictors identified from the best subsets analysis and the
data remaining from the investigation of outliers. This model is now ready to be verified using

a split sample technique.

3.5 Verification

The most important, yet often ignored, step in building a regréssion model is verification and
validation of the ability of the model to be applied to independent data. This is necessary
to confirm that the regression relationship has not been overfit and maintains some degree of
universal applicability to independent data.

Verification is usually accomplished using a split sample technique. This is where a portion
of the calibration data is withheld from the model building exercise in order to determine how
the model performs on independent data. Understandably, many model builders are reluctant
to withhold any portion of the available data for this purpose. This is especially true in the
case of streamflow since the records are generally very short to begin with.

Techniques have been developed in order to overcome this objection but still provide rig-
orous verification. One of these consists of splitting the sample into two equal parts and using
each as a model building data set. These ‘partial’ models are then verified using the inde-
pendent data and statistical tests as well as qualitatively compared to each other in terms
of coefficients and statistical properties. Provided that the models validate well and are rea-
sonably similar in form the data sets are combined and the “full’ model is developed using

the same form. This ‘full’ model cannot be validated against independent data but the split
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sample validation has proven a certain amount of model stability. It has also established the
minimum amount of utility that can be expected from the full model, the truth being that a
model from the full data set should perform better than the two partial models.

In order to verify the partial data models several standard statistics are used to measure
the degree of similarity between the modelled and independent data. There are niany statistics
used for this purpose by different researchers. Four of these were chosen for this study that
have relatively universal applicability in dendrochronology. These are the product moment
correlation coefficient test, sign test, product means test and reduction of error statistic.

The product moment correlation coefficient test is the most common test used for statistical
verification. It is a basic statistical test that measures the similarity between the shapes of
paired time series. It measures the relative variation (or covariance) in common between the
two data sets (Cook and Kairiukstis, 1989). This test of significance implies that the variance
of the two data sets is linearly related. It does not imply that the values are close to each
other or similar in scale. In this respect it is not very robust. The t-test is performed as
follows (Maidment, 1993,ch. 17):

Ry

t=—T—s (3.13)

Where r is the product moment correlation coefficient calculated as follows:

n -

> (w; — Zy) (& — &)

r= ;ﬂ - (3.14)
\/Z (T — 29)2 Y (& — &y)2
i=1 i=1

Where:

n = Number of related data pairs (actual and estimated data)
x; = Actual data point

Zy = Mean of actual data

#; = Estimated data point

&, = Mean of estimated data

The null hypothesis is that the correlation coefficient(r) is equal to 0. The significance is
calculated using Student’s t distribution with 1 — a/2 probability and n — 2 degrees of free-
dom (Maidment, 1993,ch. 17).
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The sign test is a non-parametric test of similarity between series based on the number
of agreements and disagreements in the sign of the first differences (Cook and Kairiukstis,
1989). If the number of agreements exceeds the number of disagreements by greater than
that expected by chance the hypothesis of a relationship existing passes. This test is not
sensitive to extremely anomalous data and is simple to apply. It is not very rigorous however
as the magnitude of correspondence between variables is not taken into account(Fritts, 1976).
Critical values for this test are calculated using the rounded values of a binomial distribution
with % n degrees of freedom.

The product means test is not a standard statistical test but is used extensively in den-
droclimatology. This test attempts to make up for the shortfalls of the sign test by testing
the signs and magnitudes of the mean deviations of paired time series. In this test the de-
partures from the mean of each paired data point are multiplied together and gathered into
two groups based on sign. The absolute values of the positive and negative data sets are then
averaged. The difference between the positive and negative product means is then tested for
significance. A positive average which is significantly larger than a negative average indicates
that a significant correspondence exists in both direction and magnitude between the two data
sets. This test is very rigorous and is a powerful indicator of a relationship when it passes.
Unfortunately it has a tendency to underestimate the value of a relationship and fails more
often than it should (Cook and Kairiukstis, 1989). When it fails one cannot be positive that
. no relationship exists because it is very sensitive to anomalous data points. The test statistic

is calculated as follows:
m+ —m_

2 82
53 4+ ==
n4 n—

t= (3.15)

Where:

m. = the mean of the positive products

m._ = the mean of the negative products

si = the sample variance of the positive products
n4 = the number of positive products

s2 = the sample variance of the negative products
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n_ = the number of negative products

This test statistic is compared to critical values for the Student’s t distribution with n-2 degrees
of freedom and 1 — «/2 probability (Cook et al., 1994).
The reduction of error statistic is the most important and powerful verification tool used in
- dendroclimatology. It is similar but not equivalent to the explained variance statistic (R?). It
is exactly the same as R? when applied only to dependent data. It is expressed as follows (Cook
and Kairiukstis, 1989):
SSR

Where:

SSR = Regression sum of squares, sum of the squared deviations between actual and
modelled independent data
SSM = Mean sum of squares, sum of the squared deviations between the actual independent

data and the mean of the dependent data

This can be calculated as follows (Cook et al., 1994):

5 (; — 1)

RE=1- |22 (3.17)
Z ((El - fc)z
i=1

Where:

n = the number of independent data points
z; = the actual independent data
%; = the estimated independent data

T = 1s the mean of the actual data in the calibration period

The values of RE can range from +1 to —co. +1 indicates perfect agreement and a value below
0.0 indicates the regression model does not predict as well as using the calibration mean. Cook
and Jacoby (1983) determined that the 95% confidence level for this test is approximately equal
to 0.0. This test is very rigorous and sensitive to poor estimates so any positive RE is a good

indicator of skill in the model.
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3.6 Final Reconstruction

The final reconstruction involves forming a time series made up of the original gauged data
extended and completed with the reconstructed data.

A final reconstruction is only made if the final model is determined to have verified well
enough to proceed. A positive verification is indicated by a series of positive verification
statistics, R? values and observed correspondence of the gauged and reconstructed time series.
Judgement is used to determine if a final model is of high enough quality for final reconstruction

and drought analysis.



Chapter 4

Data Availability

4.1 Streamflow Data

Surface water quantity data have been collected and archived in Canada for over 150 years.
Since 1908 streamflow data have been published in a variety of forms. Today, data are col-
lected from a variety of governmental and private agencies and are compiled regionally by
Environment Canada and stored by the Meteorological Service of Canada. The Meteorologic
Service of Canada stores streamflow, water level, sediment data and gauge data in their HY-
DEX database. Since 1991 these data have been available in a CD-rom format, called Hydat,
which has replaced printed publications (Environment Canada, 2002).

All streamflow data for this study were obtained using the year 2000 version of the Hydat
CD which contains data up to 1998 (Environment Canada, 2001).

4.2 'Tree Ring Data

Tree Ring data are available from the International Tree Ring Data Bank (ITRDB). This
Is a central repository administered by the United States National Oceanic and Atmospheric
Administration (NOAA). This data bank is part of the World Data Centre for Paleoclimatalogy
at the National Geophysical Data Center (NGDC) in Boulder, Colorado, USA. This data

centre also houses other types of paleoclimatic data such as ice cores, sediments, pollen, and
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anecdotal data (Grissino-Mayer, 2002).

The ITRDB provides a permanent location for the storage of well dated high quality
dendrochonological data from around the world. It prevents loss of data due to mishandling,
laboratory and scientist relocation and demise (Grissino-Mayer, 2002).

Information submitted to the ITRDB is scrutinized for quality and length to ensure high
quality error free data. The ITRDB contains more than 6000 data sets representing more than
1500 sites around the world. The data are made freely available to all researchers.

The data are readily available over the World Wide Web at:
http://www.ngdc.noaa.gov/paleo/treering. htm

by downloading the ITRDB display software (National Oceanic and Atmospheric Administra-
tion, 2002), a DOS program which allows geographic searches of the data. An example of the
- display software interface can be observed in Figure 4.1 which shows a picture of available tree

ring data in North America.

Figure 4.1: Example of ITRDB Display Software User Interface

Chronologies submitted to the ITRDB are processed using standard methods as discussed
in Fritts (1976). These methods consist of taking two cores per tree, each tree in an open stand,

with a minimum of 10-20 trees per chronology. Biological growth trend is then systematically
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removed. Biological growth trend is the tendency of the tree rings to become narrower as the
tree ages. This is produced because, although on average the same volume of wood is produced
every year, the diameter of the tree trunk is becoming larger. This trend decreases as the tree
matures and ages because the changes in diameter become less pronounced. Growth trend is
removed by fitting a curve form of limited flexibility, to minimize lost climate signal, to the
tree ring widths and dividing each ring width by its corresponding value of the fitted line. A
curve form of limited flexibility is used for this, usually a reverse expohential or a straight
line. This is referred to as standardization of the tree ring data and produces tree ring indices
with mean approximately equal to 1 and variance that is constant over the entire tree ring
record. The indices for all the trees in the stand are then averaged to reduce the local noise
in the signal produced by tree specific factors. The ITRDB has over 3275 chronologies that
were processed in this way.

All data for this study were obtained from the ITRDB. Although other data in the study
area are known to exist, because several researchers have published papers using new data, it
is highly unlikely that they would be willing to pass on this data until they have completed
their own projects with it. Collecting of tree ring data is highly labour intensive and costly so
a researcher will normally publish all of the work commissioned by the funding agency before
submitting the data to the central data bank. This can typically cause a lag of five to ten

years between data being sampled and submitted.



Chapter 5

Computer Applications for Tree

Ring Reconstruction

Chapter 3 presented the statistical procedures in a tree ring reconstruction of streamflow.
Early in this study it was discovered that quality control and consistency would be diffcult
to preserve with so many techniques and options available. For this reason it was decided to
automate the process as much as possible in order to speed and simplify the analysis and make
sure each step was rigorously followed.

Three applications were programmed using Visual Basic 5 Professional (Microsoft Corp.,
1997). This language offers advantages in that it provides a quality presentation, is easy to
program and interfaces well with other applications. The disadvantage is that it is not an
efficient platform for performing mathematics, especially matrix operations. Several options
were investigated to address this problem from programming in C++ or Fortran to interfacing
with an external program. It was decided that there was no reason to reprogram statistical
routines that are readily available in commercial statistical software packages. Minitab Release
11 was chosen to serve as the statistical ‘engine’ for the main Visual Basic programs. Minitab
offers the advantage that it is a proven industrial statistical package and it has what was
referred to as OLE or ActiveX connectivity. The two terms mean that the program exposes
part of it’s code to be taken over by a host program. This allows it to exchange information

with the host program and allows the host to take control of the ‘slave’ program’s internal
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routines.

Three programs were written during the course of this thesis. The first is a program to
preprocess the raw streamflow data or tree ring chronologies. The preprocessing consists of
statistical tests and corrections for non-normality, non-stationariy and autocorrelation. The
second program takes the preprocessed streamflow and tree ring data and performs a correla-
tion analysis on it. It identifies tree ring chronologies that are significantly correlated with the
chosen streamflow record. The last program uses that preprocessed data to perform orthogonal
best subsets regression. This program takes preprocessed tree ring chronologies, extracts the
principal components from them, chooses the significant principal components and performs
best subsets analysis on these components and all annualizations of a streamflow data, set. The
final reconstruction and verification is handled with a spreadsheet as there is too much judge-
ment involved for this process to be effectively automated. Drought analysis was done using
the Hyfran Software Package (Chair in statistical hydrology, 2002). Program methodologies

are presented in the following sections.

5.1 Data Preprocessor

"The preprocessor application has three main purposes:
1. To test and correct for non-normality in the data.
2. To test for non-stationarity.
3. To test and correct for significant autocorrelation.

In addition this processor manipulates the data into a form that makes the subsequent analysis
easier. It outputs a text file containing the preprocessed data and a Microsoft Word document
that shows a description of the data, all of the operations performed and their results. The
program is presented as a series of screens which prompt the user with choices based on the
information about the data and tests performed.

The first screen is an introduction that allows the user to choose the type of file to be

processed. This can be either a tree ring chronology or a streamflow record.
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The next screen is a file browser which allows the user to choose the text file to be processed.
Data in the text file must be in a certain format. Streamflow data must be in the form of
the 1995 Hydat monthly average streamflow print-out. Tree ring chronologies must be in the
standard output format from the ITRDB retrieval program.

Once the file is chosen, if it is a streamflow file it is first annualized. This means that
the monthly average flows are summed into yearly volumes based on the starting month. For
example a March annualization will be made up of summed monthly data from March of the
starting year to February of the next year. This is done because the exact correspondence
between tree ring chronologies and the streamflow water year is not known at this stage in the
analysis. If a tree ring file is chosen it is simply read into memory.

Descriptive statistics are calculated regardless of the data type and tabulated for use later.
These statistics are the number of data, mean, variance, standard deviation, standard error,
coefficient of variation, skewness and kurtosis. All of this information is printed to the output
Word file.

The next screen presents the test and correction for non-normality of the data. FEach
annualization of streamflow or tree ring chronology is checked for normality using the proba-
bility plot correlation coefficient test. This is accomplished using the normal scores calculation
available in Minitab. The correlation between the data and the corresponding normal scores
is tested. If the data fails this test a Box-Cox transformation is applied to the data as de-
scribed in Section 3.2.1 . The probability plot correlation coefficient test is then performed a
second time to confirm that normality has been achieved. The results of these tests and the
coefficients used for Box Cox transformation are recorded in the output file. If normality is
not achieved this is also recorded.

The next screen presents the tests for non-stationarity of the data series. First each
annualization of streamflow or tree ring chronology is checked for trends using the Mann
Kendall test for trend presented in Section 3.2. If a trend is detected in a series 1o action is
taken. The program notifies the user and a note is written into the output log but it is up to

the user to address the trend by hand in post processing.
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After the Mann Kendall test is completed the data is presented to the user in the form of
a time series plot. One plot is shown for a tree ring chronology and 12 for annualizations of
streamflow, each on a different screen with prompts to continue. The purpose of this is so the
user can determine if there are any shifts in the mean that need to be addressed. Again no
action is taken but the graphs are written to the output word file.

The next screen presents the test and corrections for autocorrelation. The test is performed
for each annualization of streamflow or tree ring chronology. The program interfaces with
Minitab and it is used to extract autocorrelation and partial autocorrelation functions from
the data. It then tests for signiﬁéant first order autocorrelation in the data using the correlation
coefficient t-test presented in Section 3.2. If significant first order autocorrelation is found in a
streamflow annualization it is noted and the program proceeds to the final screen. No remedial
action is taken because the cause of the autocorrelation structure of the gauged data is not
known. If significant first order autocorrelation is found in a tree ring series it is noted and
the program proceeds to an ARMA modelling screen.

The ARMA modelling screen only appears for tree ring chronologies. It presents graphs
of the ACF and PACF and prompts the user to enter a model order for an Autoregressive
and/or Moving Average process to be fitted to the data. An understanding of the different
possible processes and their effects on the plots of the ACF and PACF is required to make this
judgement. Tree ring data usually displays a low order autocorrelation structure. Examples of
this type of structure can be found in Box and Jenkins (1970). After the form is chosen, Minitab
is again used to perform the ARMA modelling. The prewhitened residuals are extracted and
tested again for significant autocorrelation. If there is still significant first order autocorrelation
this is noted and the program proceeds to the final screen. If the user wishes to investigate
another ARMA the program must be re-initialized.

The final screen simply shows the user that the program has completed its analysis and
prompts the user to end the program. On exit all of the processed data are saved in files
with the same prefix as the original. Streamflow files they are saved in a prefix.str file for the
processed annualized data and prefix.raw file for the unprocessed monthly data. Processed tree

ring data is saved in a prefix.trg file. The output Word document showing all the procedures
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and results is saved in a prefix.doc file. All files are saved in the same directory as the original

data file. Examples of the output produced by these analyses are presented in Appendix A.

5.2 Correlation Analyzer

The correlation analyzer application performs a correlation analysis between a preprocessed
streamflow record and several preprocessed tree ring chronologies. The programmed appli-
cation is only capable of performing a correlation analysis between uninterrupted monthly
streamflow data and uninterrupted tree ring data sets. Annual correlation analysis and
monthly correlation analysis on interrupted data sets was accomplished using the same tech-
niques in an Excel spreadsheet. The program is presented as a series of screens which prompt
the user with choices based on the information about the data and analysis performed.

The first screen prompts the user whether he/she wants to perform a correlation analysis
or orthogonal best subset regression analysis. In this case the user would choose a correlation
analysis.

‘The user is then prompted in a file browser screen to choose from preprocessed tree ring
chronology files denoted by a “.trg’ file extension. As the files are chosen they are listed on the
screen, files chosen accidentally can be removed from this list by a click of the mouse. The
number of files that can be chosen or removed is unlimited.

After choosing the tree ring files the user is prompted to choose a monthly streamflow
record denoted by a ‘raw’ file extension. All files are read into memory and the dates that
overlap are noted. The user is then prompted to start the correlation analysis.

The correlation analysis proceeds using the methodology presented in Section 3.3 and a
plot is presented to the user for each tree ring data set that was chosen. An example of the
plot produced can be seen in Figure 5.1. As can be observed the correlation coefficient is
presented for each month and t-1 lag of each month along with the 95% significance bands.

Annual correlation analysis is completed using the same methods except it is done on
annualized streamflow data in a spreadsheet environment. An example of the output from
this analysis is presented in Figure 5.2.

Examples of the output files produced by the correlation analysis software are shown in
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Appendix B.

5.3 Orthogonal Best Subsets Application

The Orthogonal Best Subsets application is invoked after the user has chosen which are the
best candidate predictors to be investigated for reconstruction. It automates the following

activities:

—

. Finding overlapping time periods between preprocessed tree ring chronologies
2. Lagging the preprocessed tree ring chronologies forward and backward in time
3. Extracting principal components from multiple preprocessed tree ring chronologies

4. Identifying the significant principal components using the Kaiser-Guttman eigenvalue 1

criterion.

5. Finding the overlapping time period between principal components and the preprocessed

annualized streamflow data set.

6. Performing orthogonal best subsets analysis on the 12 annualizations of the streamflow

data sets
7. Presenting the results of these best subsets analysis

The application is only capable of handling uninterrupted data sets. Where there was missing
data in a data set the same activities were performed using an Excel spreadsheet and Minitab
in tandem. The program is presented as a series of screens which prompt the user with choices
based on the information about the data and analysis performed.

The first screen presented prompts the user whether he/she wants to perform a correlation
analysis or orthogonal best subset regression analysis. In this case the user would choose an
orthogona;l best subsets regression analysis.

The user is then prompted in a file browser screen to choose from preprocessed tree ring

chronology files denoted by a ‘.trg’ file extension. As the files are chosen they are listed on the
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screen, files chosen accidentally can be removed from this list by a click of the mouse. The
number of files that can be chosen or removed is unlimited.

After choosing the tree ring files the user is prompted into a screen to perform the principal
components analysis. This subroutine takes the overlapping period between tree ring data sets
and lags them forward and backward one year. This forms a data set where the t-1, t and
t+1 lags of each tree ring data set are represented. These are then read into Minitab which
processes them extracting the eigenvectors, eigenvalues and transformation coefficients.

The user is then prompted into a screen which determines the significant principal com-
ponents using the Kaiser-Guttman eigenvalue 1 criterion presented in Section 3.4.1.

After the significant principal components are determined the user is prompted to choose
a preprocessed streamflow record denoted by a ‘.str’ file extension. This streamflow data set
is overlapped with the principal components.

The user is then prompted to start the best subsets analysis. As the best subsets analysis

proceeds graphs are shown for each annualization of streamflow. On this graph each number

2

ad; values shown

of predictors is shown on one axis with the corresponding maximum R? and R
on the other. These are written to a Word output file as this process continues.

A final plot is made using the output from this analysis consisting of the models with the
highest Rgdj for each number of predictors regardless of annualization. An example of this plot
Is given in Figure 5.3. From this final plot the model that gives the maximum Rgdj is chosen.
This model then goes through the process of removing outliers, final model determination,
verification and final model reconstruction.

The final drought analysis is accomplished using the methods described in Section 2.3.
The statistical frequency analysis is performed using the software package Hyfran (Chair in
statistical hydrology, 2002). This package allows many probability distributions to be inves-
tigated. The probability distribution that fits the data best is chosen for the final frequency

analysis.
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Chapter 6

Case Studies

6.1 Introduction

Three streamflow gauge records were reconstructed using the principles presented in the previ-
ous chapters in order to demonstrate their use and potential benefits. The streamflow gauges

were chosen based on several factors:
1. Lack of regulation
2. Proximity to available tree ring data sets
3. Length of record overlapping with available tree ring data
4. Proximity to the Nelson-Churchill River Basin

The case study gaﬁges were chosen by first extracting all of the unregulated streamflow gauging
stations in Manitoba, Saskatchewan and Alberta from the Hydat archive. These data sets were
sorted for length of record and only the ones with greater than 30 years of record were retained.
The retained gauge locations were then compared with available tree ring data sets within a
500 km radius. Only those with a greater than 30 year overlap with several tree ring data
sets were retained. At this stage only a few gauging stations remained and the three gauging
stations with the highest number of tree ring data sets within 500 km were retained. The

three gauging station chosen are as follows:

47
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1. 07BE001 Athabasca River at Athabasca
2. 05AA023 Oldman River Near Waldron’s Corner
3. 05AA022 Castle River at Beaver Mine Station

Of these data sets one is on the Athabasca River in the Mackenzie River Basin and two
are tributaries of the Oldman River in the South Saskatchewan River Basin. The tree ring

reconstruction of each of these records are presented in the following Sections.

6.2 Athabasca River at Athabasca

6.2.1 Background Information

The Athabasca River forms the southern most part of the Mackenzie River Basin. This river
is shown in Figure 6.1.

The Athabasca River is the longest river in Alberta at 1538 km and runs from Jasper to
Lake Athabasca. Originating in the Columbia Ice Field, a 325 km?2 glacier along the continental
divide, it flows across three major physiographic regions; the Rocky Mountains, the Interior
Plains and the Canadian Shield. The total drainage area is 133 000 km2.

Today the economic use of this river is mainly tourism and five pulp and paper mills. There
are 13 potential hydropower sites along this river but most are of low head and would probably
not be economic for development. Grand Rapid is the most noteworthy with a maximum head
of approximately 15 m (Denis and Challis, 1916). This site will probably not be developed
due to environmental impact.

The gauge that was reconstructed is the Water Survey of Canada gauge 07BE001 de-
scribed as Athabasca River at Athabasca. This gauge is located at the Town of Athabasca
approximately 580 km downstream of the headwaters and 130 km North of Edmonton. The
drainage area covered by the gauge is 74 600 km2. This gauge has been operated since 1914
with discontinuities occurring between 1931 and 1952. Mean annual flow at this location is

429 m3/s.
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Figure 6.1: Map of Athabasca River Gauge Location
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6.2.2 Available Data

Streamflow data for gauge 07BE001 were obtained from the Water Survey of Canada Hydat
CD. The monthly average data were converted to 12 series of yearly streamflow volumes based
on starting months from January to December. These were then preprocessed by using tech-
niques described in Section 3.2. Eight of the flow series (Jan-Dec, Feb-Jan, Mar-Feb, Apr-Mar,
May-Apr, Oct-Sep, Nov-Oct, Dec-Nov) had to be normalized using Box-Cox transformation.

No trends or autocorrelation were found.

6.2.3 Predetermination of Predictors

The number of tree ring data sets was narrowed from a possible 140 candidates to 19 based
on the criterion suggested by Cook (1995) that they should be less than 500 km from the
gauge to be reconstructed. The tree ring data sets to be entered into the best subsets analysis
were further selected ‘a priori’ based on judgement and the other five criteria discussed in
Section 3.3.

Only two of the data sets were within the gauging station’s sub-basin. These were
CANAQ28 at Pyramid Lake, Alberta and CANAQ26 at Pyramid and Patricia Lake, Alberta.
Of the remaining sets, eight were in the Mackenzie River Basin downstream of the gauge.
'The final eight were in sub-basins of the Saskatchewan River which abuts the Athabasca River
Basin and is of similar geographic characteristics. All of these tree ring series were investigated
further.

All tree ring data had more than 25 years of overlap when compared to the two periods
of continuous streamflow records from 1914-1929 and 1952-1995. The shortest overlap period
was 28 years.

All of the tree ring data sets could be made normal by Box-Cox transformation. They all
displayed little or no trend, shifts in the mean or periodicity. Significant autocorrelation was
removed with low order ARMA modelling (AR1 or AR1 MA1).

A correlation analysis between tree ring series and monthly streamflow yielded 12 tree
ring series with significant correlations. These are presented in Table 6.1.

Eight of these are within the Mackenzie River Basin so they could conceivably respond
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Table 6.1: Tree Ring Data Significantly Correlated With Monthly Record of 07BE001

Identifier | Description Minor Basin Major Basin
CANAO021 | Tunnel Mountain, Banff, Alberta Bow River Saskatchewan River
CANAQ22 | Exshaw, Tunnel and Banff, Alberta Bow River Saskatchewan River
CANAOQ26 | Pyramid Lake and Patricia Lake, Alberta | Athabasca River | MacKenzie River
CANAO028 | Pyramid Lake, Alberta Athabasca River | MacKenzie River
CANAQ96 | Sunwapta Pass, Alberta North Brazeau River Saskatchewan River
CANAOQ97 | Peyto Lake, Alberta North Clearwater River | Saskatchewan River
CANA099 | Sarrail Glacier, Alberta Highwood River | Saskatchewan River
CANA102 | Revillon Coupe, Alberta Slave River MacKenzie River
CANA103 | Peace River, Alberta Slave River MacKenzie River
CANA104 | Peace River, Alberta Slave River MacKenzie River
CANAI105 | Athabasca River, Alberta Athabasca River | MacKenzie River
CANA135 | Towers Ridge, Alberta Bow River Saskatchewan River

to the same flow characteristics present in the gauged record. The others are all within the
Saskatchewan River Basin so they could be responding to weather patterns common to both
basins. Plots of the correlation analysis against monthly flow are shown in Appendix C. In each
case the tree ring record is significantly correlated with at least one monthly streamflow record.
This indicates at least some useful information within the tree ring series for reconstruction
of the streamflow series.

A correlation analysis between tree ring series and annual streamflow yielded only four

tree ring series with significant correlations. These are presented in Table 6.2.

Table 6.2: Tree Ring Data Significantly Correlated With Annual Record of 07BE001

Identifier | Description Minor Basin Major Basin
CANAO026 | Pyramid Lake and Patricia Lake, Alberta | Athabasca River | MacKenzie River
CANAO028 | Pyramid Lake, Alberta Athabasca River | MacKenzie River
CANAI105 | Athabasca River, Alberta Athabasca River | MacKenzie River
CANA135 | Towers Ridge, Alberta Bow River Saskatchewan River

All of these were identified in the monthly correlation analysis. Plots of the correlation
analysis against annualized streamflow can be found in Appendix C.
The correlation analysis against monthly streamflow yielded 12 possible data sets to be

investigated for model building. The correlation analysis against annual streamflow reaffirmed
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that four of these data sets have significant common information with the gauged streamflow
data. The reduction to 12 data sets based on correlation with monthly streamflow sufficiently
simplifies the regression procedure to proceed. The principal components analysis will help
further reduce the number of distinct signals and the number of significant predictors available

to be entered into a model.

6.2.4 Principal Components Analysis

The overlapping period for all 12 tree ring series was found to be from 1805 to 1965. The tree
ring sets were lagged forward and backward one year to account for growth and storage effécts
forming 36 possible predictors for the reconstruction. This matrix was then orthogonalized
and the eigenvectors and eigenvalues tabulated. 12 Eigenvectors had eigenvalues in excess of
the Kaiser—-Guttman eigenvalue-1 criterion. These components represent 75.6% of the total
variance contained in the 36 predictors with the largest single vector representing 9.6% and

the smallest 2.9%. These were retained for use in the best subsets model building exercise.

6.2.5 Best Subsets Analysis

The periods of overlap between the tree ring series and the streamflow series from 1914 to 1929
and 1952 to 1965 were used in this analysis. Each monthly annualization was regressed against
all possible combinations of the 12 orthogonalized tree ring vectors. For each number (1 to
12) of predictors and each annualization of streamflow the best model was chosen based on R?
and thzdju steq- Lhe best model for each number of predictors was then separated out based on
dejusted and plotted in Figure 6.2. The model that produced the highest Rgdjusted with the
least number of predictors was a regression using the 2nd, 4th and 7th highest eigenvalues on

2

the January streamflow annualization. This regression produced an R2 of 49.5% and Regjusted

of 43.7%.
6.2.6 Investigation of Outliers

Outliers and influential observations were investigated using Leverage, Studentized Residuals,

Cook’s Distance and Dfits. They were evaluated based on guidelines given for these statistics,
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Figure 6.2: Results of Best Subset Analysis of 07BE001

potential improvement to the regression model and judgement. Tt was found that the data for
1959 had high Studentized Residuals and Dfits. Removal of this point did not significantly

improve the 1'égression model. This data point was therefore left in the regression data set.

6.2.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.
The verification was done using a standard split sample procedure. The data from 1914 to
1929 was first used to build a regression equation (the ‘early’ model) and this was tested
against the independent data from 1952 to 1965. In turn the data from 1952 to 1965 was used
to build a regression model (the ‘late’ model) and verified with the independent data from
1914 to 1929.

The final regression equation takes the following form:
stream flow = by + by PCy + by PCy + ... + by PCyp (6.1)

Where:

stream flow = Estimate of annualized streamflow

m = Number of predictor variables
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PCy ... PCyp, = Principal components of tree ring data
b1 ...by = Regression coefficients corresponding to each principal component

by = Intercept coefficient which scales the regression equation to the mean of the predictand

The regression coeflicients can be observed in Table 6.3 as well as the R?, Rgdj and gauged
versus modelled means and standard deviations. Some qualitative observations from the model
building portion of this exercise are as follows. The highest Rgdj was 48.2% for the calibration
on the ‘early’ data and the lowest was 39.7% for the calibration on the ‘late’ data. All three

of the Rgdj for the models were within reasonable limits for past streamflow studies in the

literature.

Table 6.3: Calibration Statistics

Parameter Early Late Full
Calibration Calibration Calibration
(1914-1929) | (1952-1965) | (1914-1929

and
1952-1965)

R? 0.585 0.536 0.481

B2, 0.482 0.397 0421

By 1.40036 1.40038 1.40033

B, 3.757 4.223 4.104

(x1079) ,

Bs -6.668 -6.507 -7.628

(x107%)

B3 4.874 6.000 3.332

(x107%)

Gauged Mean | 14034 13032 13500

Reconstructed | 14038 12458 13255

Mean

Gauged 3758 2110 2082

Standard

Deviation

Reconstructed | 2253 1288 1709

Standard

Deviation

The regression coeflicients for all models are of the same order and sign. This is a good
indicator of model stability for predicting independent data. The means for each of the

regression models on the independent data are close to the gauged means. This also indicates
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a good reconstruction of statistical parameters.

Table 6.4: Verification Statistics

Parameter Calibration Calibration Full
Period Period Calibration
(1914-1929) | (1952-1965) | (1914-1929
Verification Verification and
Period Period 1952-1965)
(1952-1965) | (1914-1929)
Sign Test
Right 2 11 26
Wrong 2 5 4
Status Pass(95%) Fail(90%) Pass(95%)
(Confidence)
Product Means Test
tvalue 1.600 1.190 1.540
minimum 1.761 1.746 1.701
value
Status Fail(90%) Fail(90%) Fail(90%)
(Confidence)
Product Moment Correlation Coefficient Test
tvalue 3.656 2.189 5.095
minimum 2.977 2.120 2.750
value
Status Pass(99%) Pass(95%) Pass(99%)
(Confidence)
Reduction of Error Test
tvalue 0.546 0.327 0.460
minimum 0 0 0
value
Status Pass Pass Pass

Verification statistics for each of the split models and the full model are shown in Table

6.4.

The sign test shows that the ‘early’ model passes at 95% confidence when applied to inde-

pendent data as does the ‘full’ model. The ‘late’ model however fails at the 90% confidence.

This does not conclusively invalidate the model but indicates that the signs of the first differ-

ences do not agree between the gauged and modelled data as often as would be expected at

random.

None of the product means test results passed at the 90% confidence interval. This test is
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a very powerful validation tool when the result is positive but is very sensitive to individual
deviations, so a negative result cannot invalidate the results.

All models passed the product moment correlation coefficient test at better than 95%
confidence. This implies that the variance between the gauged and reconstructed data is
linearly related. This is a powerful indicator of association between two variables provided the
actual and estimated means are essentially the same.

The reduction of error statistic was passed in all cases. This is the most rigorous and
sensitive verification statistic used in tree ring studies. Any positive result is a good indicator
that the model is better than using the mean.

Figures 6.3 and 6.4 show how the ‘early’ regression model performs on independent data.
From Figure 6.3 it can be seen qualitatively that the calibrated model does a good job of
reconstructing low flow events. As would be expected the high flow events are not as well
represented in magnitude. This is true for both the dependent and independent periods.
The scatter diagram in Figure 6.4 shows relatively tight correlation between the gauged and
modelled data for both the calibration and verification periods. The variance does not appear
to change significantly between the calibration and verification data except at higher flow
regimes as is expected. This is a good indication that the early model is reconstructing the
independent data adequately and provides confidence that a regression mode! built upon this
data will represent past ungauged droughts relatively well provided they are within the realm
of the known data.

Figures 6.5 and 6.6 show how the ‘late’ regression model performs on independent data.
Figure 6.5 shows qualitatively that the calibrated model reproduces low flow events well during
both the model building period and independent periods. High flows however are not as well
represented. The scatter diagram in Figure 6.6 confirms this by showing relatively tight
correlation between the gauged and modelled data for low flow events but a greater spread
for higher flow events. The variance does not change significantly between the calibration
and verification data. This indicates that the late model reconstructs the independent data
adequately which was also confirmed by the verification statistics.

Figures 6.7 and 6.8 show the performance of the final reconstruction model using all avail-
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able data with respect to the gauged data. No independent time period is available for veri-
fication in this case. Figure 6.7 shows a good correspondence between gauged low flows and
modelled low flows as well as a good correspondence with above average flows although mag-
nitude is not represented well for high flows. Figure 6.8 confirms this by showing relatively
tight correlation between the gauged and modelled data, especially below 15000 MmS3.

The split sample verification shows that the ‘early’ model and ‘late’ model perform similarly
well. The sign-and order of the regression coefficients are the same for all models and all
passed both the product moment correlation coefficient test and the reduction of error test.
This gives confidence in the performance of the full model and indicates a satisfactory result

for the reconstruction.
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Figure 6.3: Time Series Plot of 07BE001 Using 1914-1929 as the Regression Period and 1952—
1965 as the Verification Period
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6.2.8 Final Reconstruction

Figure 6.9 shows the final reconstruction with gauged data incorporated. Tables of the gauged
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Figure 6.9: Time Series of Reconstructed 07BE001 Flow Record

and reconstructed data may be found in Appendix F.

As can be observed in this plot, there is a distinct reduction in the amount of variance from
the gauged to the reconstructed record. In the 59 year gauged record streamflow drops below
10000 Mm?® /year on 4 separate occasions. During the 131 year reconstructed record however
streamflow never drops below this level. This indicates that even though the verification
results were positive the reconstruction is not reproducing the full variance of the streamflow
record. This being said the reconstruction can still be used qualitatively to illustrate the time

of occurrence of past severe droughts and long duration drought periods.

6.2.9 Drought Analysis

An analysis was performed on the reconstructed data using the procedure described in Sec-
tion 2.3. A truncation level of the mean annual runoff volume was used to separate low flow
from high flow years. Distinct multiyear droughts were formed by grouping adjacent years of
lower than average flow. These are presented in Table 6.5 sorted by Severity (the water deficit

over the drought period with respect to mean annual runoff). Several observations can be
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made about this new drought record:

e The reconstruction identified a record of 49 distinct drought events including 101 low
flow years compared to a record of 15 distinct drought events including 33 low flow years

from the gauged record.

e Although the highest severity drought identified was from the gauged record, four droughts
were identified in the reconstructed record that were at least as severe as the six most

severe droughts recorded.

¢ Three droughts lasting four years or more were identified in the reconstructed record in

addition to the three droughts identified in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged and recon-
structed data using methods described in Section 2.3. In this analysis the severities for the
reconstructed and gauged drought events were fit to multiple distributions using hyfran (Chair
in statistical hydrology, 2002). A probability distribution was chosen by qualitatively compar-
ing the different distributions on a single plot. In the case of the reconstructed data shown in
Figure 6.10 none of the probability distributions fit the data particularly well. The Weibull
was chosen however because it preserves the shape of the data and the values are slightly
conservative when compared to the data. With the gauged data shown in Figure 6.11 the
Weibull distribution fits the data the best out of the five distributions.

The best fit line was then plotted with 95% confidence limits as well as the original data.
"The plots for the gauged and reconstructed data can be observed in Figures 6.12 and 6.13.
These plots show that the drought analysis using the reconstructed data underpredicts the
severity of droughts at all return periods. Table 6.6 also illustrates this quantitatively. This
is due to the reduction of variance in the reconstruction and illustrates that the reconstructed

record is indeed unsuitable for frequency analysis.

6.2.10 Important Observations

This case study has shown that it is possible to reconstruct low flow data with reasonable

accuracy using tree ring data previously collected within the general area. The data analysis
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Table 6.5: Historical Drought Periods for 07BE001

Starting Ending Severity Magnitude | Duration Gauged
Year Year Data
(Mm?) (Mm®) (vears) (Y/N)

1955 1961 11387.6 1626.8 7 Yes
1967 1970 8994.8 2248.7 4 Yes
1916 1919 8055.1 2013.8 4 Yes
1992 1994 7485.1 2495.0 3 Yes
1987 1988 7316.3 3658.1 2 Yes
1839 1843 7013.0 1402.6 5 No
1811 1813 6687.9 2229.3 3 No
1829 1831 6664.9 2221.6 3 No
1866 1869 5761.2 1440.3 4 No
1922 1924 5391.1 1797.0 3 Yes
1835 1837 5008.8 1669.6 3 No
1886 1888 4981.3 1660.4 3 No
1933 1936 4577.8 1144.5 4 No
1850 1851 4520.3 2260.2 2 No
1938 1939 4267.6 2133.8 2 No
1983 1985 4101.3 1367.1 3 Yes
1880 1882 3463.5 1154.5 3 No
1904 1904 3315.4 3315.4 1 No
1857 1857 3128.6 3128.6 1 No
1845 1846 2918.1 1459.1 2 No
1890 1892 2861.5 953.8 3 No
1929 1929 2593.1 2593.1 1 Yes
1861 1861 2411.6 2411.6 1 No
1806 1807 2331.5 1165.8 2 No
1981 1981 2314.0 2314.0 1 Yes
1908 1910 2278.6 759.5 3 No
1894 1895 2270.2 1135.1 2 No
1848 1848 2211.0 2211.0 1 No
1863 1863 2105.6 2105.6 1 No
1975 1976 2035.1 1017.6 2 Yes
1815 1815 1939.5 1939.5 1 No
1823 1823 1894.6 1894.6 1 No
1820 1821 1893.0 946.5 2 No
1855 1855 1598.7 1598.7 1 No
1859 1859 1378.9 1378.9 1 No
1943 1943 1332.8 1332.8 1 No
1948 1948 1207.8 1207.8 1 No
1926 1926 1066.5 1066.5 1 Yes
1952 1952 789.4 789.4 1 Yes
1876 1876 753.0 753.0 1 No
1912 1914 727.9 242.6 3 Yes
1931 1931 654.6 654.6 1 No
1963 1963 . 484.7 484.7 1 Yes
1833 1833 355.3 355.3 1 No
1853 1853 296.5 296.5 1 No
1901 1901 177.7 177.7 1 No
1950 1950 7.7 717 1 No
1818 1818 31.2 31.2 1 No
1973 1973 6.3 6.3 1 Yes
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Figure 6.10: Frequency Distributions for Reconstructed Droughts

Comparison of Drought Frequency Analysis at Various Return Periods for 07BE001

Return Period Gauged Data Reconstructed
Data

(Years) Water Deficit (Mm® [yr)

2 1.3 0.5

10 6130.8 4947

20 8644.7 6976.4

50 11973.2 9469.6

100 14218.5 11578.3

1000 21042.8 17172.2

10000 28335.5 23474.4
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presented has shown a tripling of the number of observed multiyear drought events and low
flow years in the record. It also illustrates that the reduction in variance that is a result of the
low explained variance (R?) in the reconstruction model makes the data unsuitable for use in

a highly quantitative analysis.
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6.3 Oldman River Near Waldron’s Corner

6.3.1 Background Information

The Oldman River forms the western most part of the South Saskatchewan River Basin. This

river is shown in Figure 6.14.
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Figure 6.14: Map of Oldman River Gauge Locations

The Oldman River runs from the Rocky Mountains through Lethbridge until it links up
with the Bow River to form the South Saskatchewan River. The terrain of the river ranges
from mountainous to prairie. The total drainage area is 24 410 km2.

The Oldman River is very important to Southern Alberta. The Oldman River and the

Bow River provide more than 98% of all the irrigation water in Southern Alberta. In 1992, the
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Oldman Dam was built to store the water from Oldman River to augment irrigation in low flow
years. It was constructed as a multipurpose reservoir for irrigation, industrial consumption,
recreation and the potential to install 3¢ MW of hydro capacity. This hydro installation is
currently being approved. It remains the largest reservoir in Southern Alberta.

The gauge reconstructed is the Water Survey of Canada gauge 05AA023 described as

Oldman River Near Waldron’s Corner.

6.3.2 Available Data

Streamflow data for gauge 05AA023 were obtained from the Water Survey of Canada Hydat
CD. Data at this location are available between 1950 and 1990. This did not provide enough
overlap with tree ring data sets, in close proximity to 05AA023, for an acceptable regression
analysis and verification. It was, therefore, decided to use a gauge downstream on the same
river to supplement this record.

The gauge 05AA001, Oldman River Near Cowley, is approximately 20km downstream of
05AA023. Tts record extends between 1911 and 1930. There is no overlapping period between
the two gauged records. It is surmised that 05AA001 was operated until ‘The Dirty Thirties’
when funding was cut for most flow monitoring. Operation was then resumed after World
War IT at a new gauge location with a new gauge number. No major tributaries enter the
river between the two gauge locations, therefore a straight pro-ration of monthly data based
on the ratio of drainage areas was deemed appropriate. To this end the monthly average data
in 05AA001 was multiplied by a factor of i—g—gg—%, the drainage area of 05AA023 over the
drainage area of 05AA001. These data were then combined with 05AA023 to form a compléte
record at Waldron’s Corner from 1911-1930 and 1950-1990 with a potential minimum overlap
of 35 years with tree ring data in the area.

The monthly data were converted to 12 series of yearly streamflow volumes based on start-
ing months between January and December. These were then preprocessed by techniques

discussed in Section 3.2. None of the flow data had to be normalized using Box-Cox transfor-

mation and no trends or autocorrelation were found.
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6.3.3 Predetermination of Predictors

The number of tree ring data sets was narrowed from a possible 140 candidates to 51 based
on the criterion suggested by Cook (1995) that they should be within a radius of 500 km from
the gauge to be reconstructed. The tree ring data sets to be entered into the best subsets
analysis were further reduced ‘a priori’ based on judgement and the five criteria discussed in
Section 3.3 as follows.

Only one of the data sets, CANA136 Crowsnest Pass was within the gauging station’s
sub-basin. Of the remaining sets, seven were in the Bow River Basin which is also part of
the South Saskatchewan River Basin and adjacent to the Oldman River Basin. Four were in
sub-basins of the Mackenzie River Basin in areas of similar geography as the Oldman River
Basin. The other 39 potential data sets were located on the West side of the Rocky Mountains
and, therefore, could not have responded to the same weather patterns as those located East
of the Rocky Mountains due to orographic effects. All 12 tree ring data sets identified were
investigated further. -

All tree ring data had more than 25 years of overlap when compared to the two periods of
continuous streamflow records from 1911-1929 and 1950-1995. The shortest overlap was 35
years.

All of the tree ring data sets could be made normal by Box-Cox transformation. They all
displayed little or no trend, shifts in the mean or periodicity. Significant autocorrelation was
removed with low order ARMA modelling (AR1 or AR1 MA1).

A correlation analysis between tree ring series and monthly streamflow yielded eight tree
ring series with significant correlations. These are presented in Table 6.7

Seven of these are within the South Saskatchewan River Basin so they could have responded
to the same flow characteristics present in the gauged record. One is within the MacKenzie
River Basin so it could have responded to weather patterns common to both basins. Plots
of the correlation analysis against monthly flows are shown in Appendix D. In each case the
tree ring record is significantly correlated with at least one monthly streamflow record. This
indicates at least some useful information within the tree ring series for reconstruction of the

streamflow series.
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Table 6.7: Tree Ring Data Significantly Correlated With Monthly Record of 05AA023

Identifier | Description Minor Basin Major Basin
CANAO020 | Powerhouse, Alberta Bow River Saskatchewan River
CANAO021 | Tunnel Mountain, Banff, Alberta Bow River Saskatchewan River
CANA022 | Exshaw, Tunnel and Banff, Alberta Bow River Saskatchewan River
CANAO024 | Exshaw, Alberta Bow River Saskatchewan River
CANA026 | Pyramid Lake and Patricia Lake, Alberta | Athabasca River | MacKenzie River
CANAOQ99 | Sarrail Glacier, Alberta Bow River Saskatchewan River
CANA135 | Towers Ridge, Alberta Bow River Saskatchewan River
CANA136 | Crowsnest Pass, Alberta Oldman River Saskatchewan River

A correlation analysis between tree ring series and annual streamflow yielded five tree ring

series with significant correlations. These are presented in Table 6.8. All of these were iden-

Table 6.8: Tree Ring Data Significantly Correlated With Annual Record of 05AA023

Identifier | Description Minor Basin | Major Basin

CANAO020 | Powerhouse, Alberta Bow River Saskatchewan River
CANAO021 | Tunnel Mountain, Banff, Alberta Bow River Saskatchewan River
CANAO022 | Exshaw, Tunnel and Banff, Alberta | Bow River Saskatchewan River
CANAO024 | Exshaw, Alberta Bow River Saskatchewan River
CANA136 | Crowsnest Pass, Alberta Oldman River | Saskatchewan River

tified in the monthly correlation analysis. Plots of the correlation analysis against annualized
streamflow are shown in Appendix D.

The correlation analysis against monthly streamflow data yielded eight possible data sets
to be investigated for model building. The correlation analysis against annual streamflow
reaffirmed that five of these data sets contain significant common information with the gauged
streamflow data. The reduction to eight data sets based on correlation with monthly stream-

flow simplifies the regression procedure.

6.3.4 Principal Components Analysis

The overlapping period for all eight tree ring series was found to be from 1571 to 1965. The tree
ring sets were lagged forward and backward one year to account for growth and storage effects

forming 24 possible predictors for the reconstruction. This matrix was then orthogonalized in
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space and the eigenvectors and eigenvalues tabulated. Seven eigenvectors had eigenvalues in
excess of the Kaiser-Guttman eigenvalue-1 criterion. These seven components represent 72.1%
of the total variance contained in the 24 predictors with the largest single vector representing
19.5% and the smallest 4.4%. These were retained for use in the best subsets model building

exercise.

6.3.5 Best Subsets Analysis

The period of overlap between the tree ring series and the streamflow series from 1911-1929
and 1950-1965 was used in this analysis. Each monthly annualization was regressed against

all possible combinations of the seven orthogonalized tree ring vectors. For each number of

2

predictors (1 to 7) and each annualization the best model was chosen based on R giusted-

2

The best model for each number of predictors was then separated out based on Radjmte

4 and
plotted in Figure 6.15. The model that produced the highest deju steq With the least number of
~predictors was a regression using the Ist to 6th eigenvectors on the December Annualization.

This regression produced an R? of 46.3% and R2 istea Of 34.7%.
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Figure 6.15: Results of Best Subset Analysis of 05AA023
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6.3.6 Investigation of Outliers

Outliers and influential observations were investigated using Leverage, Studentized Residuals,
Cook’s Distance and Dfits. It was found that the data points for 1950 and 1955 had high
Studentized Residuals, Cook’s Distance and Dfits and that removal of these points significantly
improved the regression model. These data points were therefore removed from the regression

data set.

6.3.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.
The verification was handled by a standard split sample procedure. The data from 1911-1929
was first used to build a regression equation (the ‘early’ model) and this was tested against
the independent data from 1950-1965. In turn the data from 1950-1965 was used to build a
regression model (the ‘late’ model) and verified with the independent data from 1911-1929.

The final regression equation takes the following form:
stream flow = bg + b1 PCy + by PCy + ... + b, PC,, (6.2)
Where:

stream flow = Estimate of annualized streamflow

m = Number of predictor variables

PCy ... PCy, = Principal components of tree ring data

b1 ...bm = Regression coefficients corresponding to each principal component

bp = Intercept coefficient which scales the regression equation to the mean of the predictand

The regression coefficients can be observed in Table 6.9 as well as the R?, Rgdj and gauged

versus modelled means and standard deviations. Some qualitative observations from the model

2

adj Was 54.3% for the regression

building portion of this exercise are as follows. The highest R
model built on the ‘late’ data and the lowest was 50.0% for the regression model on the ‘early’
data. All three of the Rgdj for the models were within reasonable limits for past streamflow

studies in the literature.
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Table 6.9: Calibration Statistics

Parameter Early Late Full
Calibration Calibration Calibration
(1911-1929) | (1950-1965) | (1911-1929

and
1950-1965)

R? 0.667 0.754 0.596

RZdi 0.500 0.543 0.503

By 515.19 569.91 521.19

B; -27.92 -40.67 -26.161

B, 49.34 -29.24 42.58

B; 32.62 44.54 36.058

B, -8.76 76.30 -0.21

Bs 12.86 32.41 20.10

Bs 24.38 -64.88 20.25

Gauged Mean | 567.137 496.477 526.454

Reconstructed | 556.036 564.116 526.455

Mean

Gauged 109.640 143.117 132.901

Standard

Deviation

Reconstructed | 74.446 202.880 102.620

Standard

Deviation
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The regression coeficients for the ‘full’ and ‘early’ regression models are of the same order
and sign. This is a good indicator of model stability for predicting independent data. The
‘late’ regression model differs from the other two in sign for the By, By and Bs coeflicients.
This raises some concerns about model stability which will be born out in the verification.

Verification statistics for each of the split models and the full model are shown in Table 6.10.

The sign test shows that the ‘full’ model passes at 95% when applied to the calibration data.

Table 6.10: Verification Statistics

Parameter Calibration Calibration Full
Period Period Calibration
(1911-1929) | (1950-1965) | (1911-1929
Verification Verification and
Period Period 1950-1965)
(1950-1965) | (1911-1929)
Sign Test
Right 11 14 25
Wrong 3 5 5
Status Pass(90%) Pass(90%) Pass(99%)
(Confidence)
Product Means Test
tvalue 0.570 1.510 3.820
minimum 1.761 1.729 2.730
value
Status Fail(90%) Fail{(90%) Pass(99%)
(Confidence)
Product Moment Correlation Coefficient Test
tvalue 2.17 1.45 6.77
minimum 2.14 1.73 2.73
value
Status Pass(95%) Fail(90%) Pass(99%)
(Confidence)
Reduction of Error Test
value 0.482 -0.835 0.596
minimum 0 0 0
value
Status Pass Fail Pass

The ‘early’ and ‘late’ models, both pass only at the 90% confidence interval. This does not
conclusively validate the model but indicates that the signs of the first differences agree between

the gauged and modelled data more often than would be expected at random with not more
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than 90% confidence.

The product means test for both the ‘early’ and ’late’ models failed at the 90% confidence
level while the ‘full’ model passed at greater than 99% on the calibration data. Again one
cannot be sure that no relationship exists by a failure of this test as it is very sensitive to large
deviations from the mean.

The ‘early’ model passed the product moment correlation coefficient test at 90% confi-
dence while the ‘late’ model failed at this level. The ‘full’ model passed the product moment
correlation coefficient test at greater than 95% confidence. A pass implies that the variance
between the gauged and reconstructed data is linearly related. It is a powerful indicator of
association between two variables provided the actual and estimated means are essentially the
same.

The reduction of error statistic was passed for the ‘early’ and ‘full’ models. Results for the
‘late’ model indicate that the regression does not perform as well as the mean of the calibration
data. The RE statistic is the same as R? for the “full’ model. This is an extremely rigorous
and sensitive verification statistic because it has no lower bound (Fritts, 1976). A few bad
estimates result in a negative RE statistic. It is used extensively within the literature as the
most important‘ indicator of reconstruction reliability.

Figures 6.16 and 6.17 show how the ‘early’ regression model performs on independent data.
From Figure 6.16 it can be seen qualitatively that the calibrated model does a, reasonably good
job of reconstructing both low and high flow events although during the verification period the
low flow events are somewhat better represented. The scatter diagram in Figure 6.17 shows
relatively tight correlation between the gauged and modelled data for both the calibration and
verification periods. The variance does not appear to change significantly between the cali-
bration and verification data. This is a good indication that the early model is reconstructing
the independent data adequately and provides confidence that a regression model built upon
this data will represent past ungauged droughts relatively well provided they are within the
realm of known data.

Figures 6.18 and 6.19 show how the ‘late’ regression model performs on independent data.

From Figure 6.18 it can be seen qualitatively that the calibrated model does a reasonably
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good job of reconstructing both low and high flow events during the calibration period but
does not reproduce the verification data very well at all. The scatter diagram in Figure 6.19
confirms this by showing relatively tight correlation between the gauged and modelled data
for the calibration period but a much greater spread for the verification period. The variance
changes significantly between the calibration and verification data. This indicates that the
late model does not reconstruct the independent data adequately which was also confirmed
by the verification statistics.

Figure 6.20 and Figure 6.21 show the performance of the the final reconstruction model
using all available data with respect to the gauged data. Figure 6.20 shows a good correspon-
dence between gauged low flows and modelled low flows as well as a poorer representation of
above average flows. Figure 6.21 confirms this by showing relatively tight correlation between
the gauged and modelled data especially below 600 Mm3.

The split sample verification shows that the ‘early’ model and ‘full’ model perform similarly
well while the ‘late’ model does not. The sign and order of the regression coefficients are the
same for the ‘early’ and ‘“full’ models and both passed all of the verification statistics. This
gives some confidence in the performance of the full model.

The poor performance of the late model could be due to several factors. The combination
of the two data sets could have introduced inhomogeneities into the streamflow data. Also
the period between 1950 and 1965 had a large number of high flow years which are not well

represented by tree rings.
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6.3.8 Final Reconstruction

Figure 6.22 shows the final reconstruction with gauged data incorporated. Tables of the gauged
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Figure 6.22: Time Series of Reconstructed 05AA023 Flow Record

and reconstructed data may be found in Appendix G.

Unlike the previous case study, the change in variance is not as pronounced. The standard
deviation of the recomstruction in this case is 77% of that of the gauged data alone. It
was only 47% in the previous case study. This moderate reduction in variance still makes
accurate quantitative analysis of drought very difficult as one can never be sure if the quantities
reconstructed are indeed representative. The potential for applying this data in a verification

role or qualitative analysis still exists, however.

6.3.9 Drought Analysis

An analysis was performed on the reconstructed data based on the procedure described in
Section 2.3. A truncation level of the mean annual runoff volume was used to separate low
flow from high flow years. Distinct multiyear droughts were then formed by grouping adjacent
years of lower than average flow. These are presented in Table 6.11 sorted by Severity. Several

observations can be made about this new drought record.
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¢ The reconstruction identified a record of 103 distinct drought events including 199 low
flow years compared to a record of 14 distinct drought events including 32 low flow years

from the gauged record.

¢ The highest severity drought identified was from the reconstructed record, three droughts
were identified in the reconstructed record that were at least as severe as the three most

severe droughts recorded.

e Seven droughts lasting four years or more were identified in the reconstructed record in

addition to the two droughts identified in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged and recon-
structed data using methods described in Section 2.3. In this analysis the severities for the
reconstructed and gauged drought events were fit to multiple distributions using hyfran (Chair
in statistical hydrology, 2002). A probability distribution was chosen by qualitatively compar-
ing the different distributions on a single plot. In the case of the reconstructed data shown in
Figure 6.23 the Weibull distribution fits the data the best out of the five distributions. With
the gauged data shown in Figure 6.24 the Weibull distribution fits the data the best out of
the five distributions.

The best fit line was plotted with 95% confidence limits as well as the data. The plots for
the gauged and reconstructed data can be observed in Figures 6.25 and 6.26. These plots show
that the drought analysis using the reconstructed data underpredicts the severity of droughts
at all return periods. Table 6.12 illustrates this quantitativly. This is due to the reduction
of variance in the reconstruction and illustrates that even with only a moderate reduction in

variance the reconstructed record is still unsuitable for frequency analysis.

6.3.10 Important Observations

The split sample verification showed that a model built on the data between 1950 and 1965
produced poor results. The cause of this could be the combination of two data sets. Even
though they are on the same river, the flow provided by the additional drainage area may not

have been entirely compensated for by a simple pro-rating of areas. A cross correlation would
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Table 6.11: Historical Drought Periods for 05AA023

Star- End- Seve- Mag- Dur- Gaug- || Star- End- Seve- Mag- Dur- Gaug-
ting ing rity nitude | ation ed ting ing rity nitude | ation ed
Year Year Data Year Year Data

(Mm®)| (Mm?®)| (years) | (Y/N) (Mm®)| (Mm?®)| (years) | (Y/N)
1614 1622 901.3 100.1 9 No 1746 1747 182.4 91.2 2 No
1981 1984 758.0 189.5 4 Yes 1628 1629 179.4 89.7 2 No
1917 1921 744.6 148.9 5 Yes 1891 1891 174.1 174.1 1 No
1714 1717 628.8 157.2 | 4 No 1575 1577 162.7 | 54.2 3 No
1866 1870 559.7 111.9 5 No 1750 1750 157.9 157.9 1 No
1986 1988 556.0 185.3 3 Yes 1662 1663 157.8 78.9 2 No
1754 1758 527.3 105.5 5 No 1669 1669 156.3 156.3 1 No
1840 1843 514.0 128.5 4 No 1972 1972 156.0 156.0 1 Yes
1792 1793 504.6 2523 | 2 No 1740 1740 153.9 153.9 1 No
1860 1862 494.8 1649 | 3 No 1694 1695 149.3 74.7 2 No
1813 1814 476.7 238.4 2 No 1851 1851 146.8 146.8 1 No
1789 1790 442.5 221.3 | 2 No 1858 1858 146.4 146.4 1 No
1601 1606 440.3 73.4 6 No 1676 1676 132.1 132.1 1 No
1719 1720 414.2 207.1 2 No 1864 1864 131.3 131.3 1 No
1704 1705 409.6 204.8 | 2 No 1743 1743 126.7 126.7 1 No
1807 1808 387.2 193.6 2 No 1647 1647 126.0 126.0 1 No
1633 1634 365.5 182.7 | 2 No 1702 1702 119.2 119.2 1 No
1654 1656 360.9 120.3 3 No 1775 1776 114.8 57.4 2 No
1881 1883 348.4 116.1 3 No 1724 1724 114.5 114.5 1 No
1935 1936 347.5 173.8 2 No 1943 1943 113.2 113.2 1 No
1830 1830 342.1 342.1 1 No 1599 1599 108.2 108.2 1 No
1771 1772 336.7 168.4 | 2 No 1572 1572 101.2 101.2 1 No
1624 1626 334.8 111.6 | 3 No 1821 1821 97.9 97.9 1 No
1681 1683 332.6 110.9 3 No 1811 1811 96.5 96.5 1 No
1886 1888 319.3 106.4 3 No 1969 1969 93.4 93.4 1 Yes
1923 1925 312.3 104.1 3 Yes 1767 1767 93.3 93.3 1 No
1763 1763 311.3 311.3 1 No 1848 1849 85.6 42.8 2 No
1928 1930 294.8 98.3 3 Yes 1853 1853 82.8 82.8 1 No
1893 1895 286.1 95.4 3 No 1698 1698 80.9 80.9 1 No
1799 1799 280.4 280.4 1 No 1797 1797 79.6 79.6 1 No
1728 1729 279.2 139.6 | 2 No 1737 1737 78.4 78.4 1 No
1765 1765 274.3 274.3 1 No 1956 1957 78.3 39.1 2 Yes
1976 1976 271.5 271.5 1 Yes 1856 1856 75.6 75.6 1 No
1659 1660 268.0 134.0 | 2 No 1678 1678 74.9 74.9 1 No
1592 1595 264.8 66.2 4 No 1787 1787 71.3 71.3 1 No
1909 1909 263.9 263.9 1 No 1579 1579 64.7 64.7 1 No
1938 1939 261.8 130.9 2 No 1836 1837 62.0 31.0 2 No
1816 1817 254.7 1274 | 2 No 1586 1586 57.7 57.7 1 No
1644 1645 253.4 126.7 | 2 No 1641 1641 56.3 56.3 1 No
1978 1979 240.2 120.1 2 Yes 1875 1875 52.4 52.4 1 No
1673 1673 235.8 235.8 1 No 1700 1700 51.0 51.0 1 No
1782 1784 220.0 73.3 3 No 1802 1802 44.1 44.1 1 No
1932 1933 217.6 108.8 | 2 No 1609 1610 42.3 21.2 2 No
1911 1913 214.9 71.6 3 Yes 1733 1733 26.7 26.7 1 No
1649 1651 213.4 71.1 3 No 1687 1687 21.5 21.5 1 No
1846 1846 208.6 208.6 1 No 1735 1735 21.1 21.1 1 No
1904 1905 206.6 103.3 2 No 1967 1967 19.2 19.2 1 Yes
1948 1949 200.9 1005 | 2 No 1779 1779 13.0 13.0 1 No
1959 1961 198.1 66.0 3 Yes 1823 1823 12.3 12.3 1 No
1636 1638 190.1 63.4 3 No 1709 1709 4.2 4.2 1 No
1691 1691 189.5 189.5 1 No 1819 1819 2.2 2.2 1 No
1795 1795 183.9 183.9 1 No
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Figure 6.23: Frequency Distributions for Reconstructed Droughts

Table 6.12: Comparison of Drought Frequency Analysis at Various Return Periods for
05AA023

Return Period Gauged Data Reconstructed
Data

(Years) Severity (Mm®)

10 404 330

20 582 452

50 812 606

100 981 717

1000 1504 1038

10000 1950 1288
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have been a more ideal way of relating the two gauging stations. Unfortunately no unregulated
overlapping data set was available in the immediate area to accomplish this. In addition the
period between 1950 and 1965 had a large number of high flow years which may have biased
the model. Even though the ‘early’ model independent verification and full model verification
showed good results the poor performance of the ‘late’ model verification means that these
results must be used with caution. The use of anecdotal data, if available, to further verify
the results of the reconstruction may be useful in this case.

The data analysis presented has shown a seven times increase in the number of multiyear
droughts and low flow events and a six times increase in the number of low fow years . It also
illustrates that even a moderate reduction in variance makes the data unsuitable for accurate

quantitative analysis.
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6.4 Castle River Near Beaver Mine Station

6.4.1 Background Information

The Castle River is a tributary of the Oldman River Basin that forms the western most part

of the South Saskatchewan River Basin. This river is shown in Figure 6.27.
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Figure 6.27: Map of Castle River Gauge Locations

The gauge reconstructed is the Water Survey of Canada gauge 05AA022 described as

Castle River Near Beaver Mine Station.
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6.4.2 Available Data

Streamflow data for gauge 05AA022 were obtained from the Water Survey of Canada Hydat
CD. Data at this location are available between 1945 and 1991. This does not provide enough
overlap with local tree ring data sets for an acceptable regression analysis and verification.
It was, therefore, decided to use a gauge downstream on the same river to supplement this
record.

The gauge 05AA003, Castle River Near Cowley, is approximately 20km downstream of
05AA022. Its record extends between 1911 and 1930. There is no overlapping period between
the two gauged records. No major tributaries enter the river between the two gauges, there-
fore a straight pro-ration of monthly data based on the ratio of drainage areas was deemed
appropriate. To this end the monthly average data in 05AA003 was multiplied by a factor
of %, the drainage area of 05AA022 over the drainage area of 05AA003. These data
were then combined with 05AA022 to form a complete record at Beaver Mine Station from
1911-1930 and 1945-1990 with a potential minimum overlap of 40 years with tree ring data
in the area.

In addition several months of missing data exist in 1949 and 1950. The months of De-
cember 1949, and January through March 1950 were filled in by fitting a regression model for
each month against the months for which complete records were available (May-Nov). These
regression models were calibrated with the complete data between 1945-1991. R2 for these
models was generally low (between 17%-48%) but since these five months collectively only
account for less than 14% of the total yearly flow and only one years worth of data is being
filled in some additional variance would probably not harm the final reconstructions.

The monthly data were converted to 12 series of yearly streamflow volumes based on start-
ing months between January and December. These were then preprocessed by techniques
discussed in Section 3.2. None of the flow data had to be normalized using Box-Cox transfor-

mation and no trends or autocorrelation were found.
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6.4.3 Predetermination of Predictors

The number of tree ring data sets was narrowed from a possible 140 candidates to 51 based
on the criterion suggested by Cook (1995). The tree ring data sets to be entered into the
best subsets analysis were further reduced ‘a priori’ based on judgement and the five criteria
discussed in Section 3.3.

Only one of the data sets, CANA136 Crowsnest Pass, is within the gauging station’s sub-
basin. Of the remaining sets, seven are in the Bow River Basin which is also part of the South
Saskatchewan River Basin and adjacent to the Castle River Basin. Four are in sub-basins of
’the Mackenzie River Basin in areas of similar geography as the Castle River Basin. The other
39 potential data sets are located on the West side of the Rocky Mountains and, therefore,
could not have responded to the same weather patterns as those located East of the Rocky
Mountains due to orographic effects. All 12 tree ring data sets identified were investigated
further.

All tree ring data had more than 25 years of overlap when compared to the periods of
continuous streamflow records from 1911-1929 and 1945-1995. The shortest overlap was 40
years.

All of the tree ring data sets could be made normal by Box-Cox transformation. They all
displayed little or no trend, shifts in the mean or periodicity. Significant autocorrelation was
removed with low order ARMA modelling (AR1 or AR1 MA1).

A correlation analysis between tree ring series and monthly streamflow yielded ten tree
ring series with significant correlations. These are presented in Table 6.13. Bight of these
are within the Saskatchewan River Basin so they could have responded to the same flow
characteristics present in the gauged record. Two are within the MacKenzie River Basin so
they could have responded to weather patterns common to both basins. Plots of the correlation
analysis against monthly flows can be found in Appendix E.

A correlation analysis between tree ring series and annual streamflow yielded eight tree
ring series with significant correlations. These are presented in Table 6.14. All of these tree
ring records were identified in the monthly correlation analysis except CANA020. This record

had correlations close to significant but not at the 95% confidence level. The correlation
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Table 6.13: Tree Ring Data Significantly Correlated With Monthly Record of 05A A022

Identifier | Description Minor Basin Major Basin
CANA021 | Tunnel Mountain, Banff, Alberta. Bow River Saskatchewan River
CANAO022 | Exshaw, Tunnel and Banff, Alberta Bow River Saskatchewan River
CANAO024 | Exshaw, Alberta Bow River Saskatchewan River
CANAO026 | Pyramid Lake and Patricia Lake, Alberta | Athabasca River | MacKenzie River
CANA028 | Pyramid Lake, Alberta Athabasca River | MacKenzie River
CANAOQ96 | Sunwapta Pass, Alberta North Brazeau River Saskatchewan River
CANAQ97 | Peyto Lake, Alberta North Clearwater River | Saskatchewan River
CANAO099 | Sarrail Glacier, Alberta Bow River Saskatchewan River
CANA135 | Towers Ridge, Alberta Bow River Saskatchewan River
CANA136 | Crowsnest Pass, Alberta Oldman River Saskatchewan River

Table 6.14: Tree Ring Data Significantly Correlated With Annual Record of 05AA022

Identifier | Description Minor Basin Major Basin
CANAO020 | Powerhouse, Alberta Bow River Saskatchewan River
CANAO021 | Tunnel Mountain, Banff, Alberta Bow River Saskatchewan River
CANAO022 | Exshaw, Tunnel and BanfT, Alberta Bow River Saskatchewan River
CANAO024 | Exshaw, Alberta Bow River Saskatchewan River
CANA026 | Pyramid Lake and Patricia Lake, Alberta | Athabasca River | MacKenzie River
CANAO028 | Pyramid Lake, Alberta Athabasca River | MacKenzie River
CANA096 | Sunwapta Pass, Alberta North Brazeau River Saskatchewan River
CANA136 | Crowsnest Pass, Alberta Oldman River Saskatchewan River
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against annual streamflow shows that it is indeed significantly correlated with streamflow
from this station. Plots of the correlation analysis against annualized streamflow can be found
in Appendix E.

The correlation analysis against monthly streamflow data yielded ten possible data sets to
be investigated for model building. The correlation analysis against annual streamflow reaf-
firms that seven of these data sets contain significant common information with the gauged
streamflow data and also identified one additional potentially significant predictor. The re-
duction, based on the correlation analysis with monthly streamflow, to 11 data sets simplifies

the regression procedure.

6.4.4 Principal Components Analysis

The overlapping period for all 11 tree ring series was found to be from 1639 to 1965. The tree
ring sets were lagged forward and backward one year to account for growth and storage effects
forming 33 possible predictors for the reconstruction. Nine Eigenvectors had eigenvalues in
excess of the Kaiser-Guttman eigenvalue—1 criterion. These nine components represent 79.9%
of the total variance contained in the 33 predictors with the largest single vector representing
15.7% and the smallest 4.9%. These were retained for use in the best subsets model building

exercise.

6.4.5 Best Subsets Analysis

The period of overlap between the tree ring series and the streamflow series from 1911-1929
and 1945-1965 was used in this analysis. Each monthly annualization was regressed against
all possible combinations of the nine orthogonalized tree ring vectors. The best model for each
number of predictors was then separated out based on dejusted and plotted in Figure 6.28.
The model that produced the highest Rgdjusted with the least number of predictors was a
regression using the 1st to 5th eigenvectors on the December Annualization. This regression

produced an R? of 50.1% and R2 4 of 42.7%.

adjuste
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Figure 6.28: Results of Best Subset Analysis of 05AA022

6.4.6 Investigation of Outliers

It was found that one data point, 1927, had high Studentized Residuals and Dfits and that
removal of this point significantly improved the regression model. This data point was therefore

removed from the regression data set.

6.4.7 Model Building and Verification

The final model was built using the regression equation derived from the best subsets analysis.
The data from 1911-1929 was first used to build a regression equation (the ‘early’ model) and
this was tested against the independent data from 1945-1965. In turn the data from 1945-1965
was used to build a regression model (the ‘late’ model) and verified with the independent data
from 1911-1929.

The final regression equation takes the following form:
streamflow = by + by PCy + bo PCy + ... + b, PC,, (6.3)
Where:

stream flow = Estimate of annualized streamflow

m = Number of predictor variables
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PCy ... PCy, = Principal components of tree ring data
bi ... by = Regression coeflicients corresponding to each principal component

bo = Intercept coefficient which scales the regression equation to the mean of the predictand

The regression coefficients can be observed in Table 6.15 as well as the R2, Rgd]- and gauged
versus modelled means and standard deviations. Some qualitative observations from the model
building portion of this exercise are as follows. The highest dej was 48.1% for the regression
model built on the ‘early’ data and the lowest was 36.7% for the regression model on the ‘late’
data. All three of the Rgdj for the models were within reasonable limits for past streamflow
studies in the literature.

The regression coefficients By, By, By and Bs are of the same order and sign for all

models. B3 and B4 however differ in sign for each model. This raises some concerns about

model stability which will be born out in the verification.

Table 6.15: Calibration Statistics

Parameter Early Late Full
Calibration Calibration Calibration
(1911—1929) (1945—-1965) (1911-1929

and
1945-1965)

R? 0.627 0.525 0.549

R?ldj 0.472 0.367 0.481

By 454.26 506.67 484.06

B, -25.948 -29.98 -26.760

By 27.917 29.21 33.548

Bs 1.12 -36.29 -30.562

By 2.75 -3.62 4.608

B 28.25 4.67 18.60

Gauged Mean | 432.724 543.217 492.220

Reconstructed | 432.726 543.222 492.219

Mean

Gauged 95.037 115.367 118.994

Standard

Deviation

Reconstructed | 75.274 83.595 88.189

Standard

Deviation

Verification statistics for each of the split models and the full model are shown in Table 6.16.
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The sign test shows that ‘full’ and ‘early’ models fail at 90% when applied to the calibration

Table 6.16: Verification Statistics

Parameter Calibration Calibration Full
Period Period Calibration
(1911-1929) (1945-1965) (1911-1929
Verification Verification and
Period Period 1945-1965)
(1945-1965) (1911-1929)
Sign Test
Right 12 14 24
Wrong 9 4 15
Status Fail(90%) Pass(95%) Fail(90%)
(Confidence)
Product Means Test
tvalue 0.40 1.70 4.10
minimum 1.72 1.73 2.71
value
Status Fail(90%) Fail(90%) Pass(99%)
(Confidence)
Product Moment Correlation Coeflicient Test
tvalue 1.32 3.01 6.71
minimum 1.72 2.88 2.71
value
Status Fail(90%) Pass(99%) Pass(99%)
(Confidence)
Reduction of Error Test
value 0.287 0.656 0.853
minimum 0 0 0
value
Status Pass Pass Pass

data. The ‘late’ model passes at the 95% confidence interval.

The product means test for both the ‘early’ and ’late’ models failed at the 90% confidence
level while the ‘full’ model passed at greater than 99% on the calibration data. Again this
test is a very powerful validation tool when a positive result is obtained but it is so sensitive
to individual deviations that a negative result does not invalidate the results.

The ‘late’ and ‘full’ models passed the product moment correlation coefficient test at 99%
confidence while the ‘early’ model failed at 90%. Again this indicates that the early model

does not reproduce variance well while the late model does.
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The reduction of error statistic was passed in all cases. However the results for the ‘early’
data are lower than the others. The positive results are a strong indicator that both the split
models have merit.

Figures 6.29 and 6.30 show how the ‘early’ regression model performs on independent data.
From Figure 6.29 it can be seen qualitatively that the calibrated model does a good job of re-
constructing both low and high flow events although during the verification period the low flow
events are somewhat better represented. The scatter diagram in Figure 6.30 shows relatively
tight correlation between the gauged and modelled data for the calibration period. During the
verification period for flows above 550 Mm? the early model consistently underpredicts the
independent data. The variance appears to be a little larger for the verification period than
during the calibration period especially for higher flow years. These observations indicate that
although the early model does not represent high flows very well it does an adequate job of
representing low flows even during independent verification.

Figures 6.31 and 6.32 show how the ‘late’ regression model performs on independent data.
From Figure 6.31 it can be seen qualitatively that the calibrated model does a good job
of reconstructing both low and high flow events during the calibration period but does not
reproduce the verification data nearly as well. The scatter diagram in Figure 6.32 confirms
this by showing relatively tight correlation between the gauged and modelled data for the
calibration period but a skewed spread for the verification period. Although the variance
only appears slightly greater for the verification period the data are skewed such that the
model consistently overpredicts flows over the entire range. These observations indicate that
although the ‘late’ model represents the calibration data well it does not do a very good job
of representing independent data.

Figures 6.33 and Figure 6.34 show the performance of the final reconstruction model using
all available data with respect to the gauged data. Figure 6.33 shows a good correspondence
between gauged low flows and modelled low flows as well as a poorer representation of above
average flows. Figure 6.34 confirms this by showing relatively tight correlation between the
gauged and modelled data.

The split sample verification shows that even though the ‘late’ model passed more of
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the verification statistics the ‘early’ model qualitatively seems to perform slightly better on
independent data. The sign and order of the regression coefficients correspond to those in the
full model except for B; in the ‘early’ model and By in the ‘late’ model. The ‘early’ model
did not pass most of the verification statistics except the most important reduction of error
statistic. This gives confidence in the performance of the full model and indicates a satisfactory
result for the reconstuction.

The poor performance of the ‘early’ model in the verification statistics and the ‘late’ model
in the qualitative verification could be due to the choice of how the data was split. The period
between 1911 and 1929 had less than 25% high flow years. A calibrated model created from
this data could not be expected to accurately reproduce a period such as 1945-1965 which
has roughly 60% high flow years. This shows up in verification statistics because they do not
discriminate between high and low data points. In the qualitative analysis, however, we are
interested in the low flow data much more than the high flow. A model built almost exclusively
of low flow data would reproduce similar events very well but would not reproduce the high

flows as well.
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6.4.8 Final Reconstruction

Figure 6.35 shows the final reconstruction with gauged data incorporated. Tables of the gauged
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Figure 6.35: Time Series of Reconstructed 05AA022 Flow Record

and reconstructed data may be found in Appendix H.

Again, the reduction in variance in the reconstruction versus the gauge record is not as
pronounced as in the first case study. The standard deviation of the reconstruction in this
case is 75% of that of the gauged data alone. Again this reduction in variance still makes
accurate quantitative analysis of drought unreliable. The potential for applying this data ina

verification role or qualitative analysis still exists, however.

6.4.9 Drought Analysis

An analysis was performed on the reconstructed data based on the procedure described in
Section 2.3. A truncation level of the mean annual runoff volume was used to separate low
flow from high flow years. Distinct multiyear droughts were formed by grouping adjacent
years of lower than average flow. These are presented in Table 6.17 sorted by severity. Several

observations can be made about this new drought record.

» The reconstruction identified a record of 84 distinct drought events including 172 low

flow years compared to a record of 13 distinct drought events including 32 low flow years
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in the recorded data.

o The highest severity drought identified was from the reconstructed record, five droughts
were identified in the reconstructed record that were at least as severe as the three most

severe droughts recorded.

e Seven droughts lasting four years or more were identified in the reconstructed record in

addition to the two droughts identified in the gauged record

A frequency analysis was performed for illustrative purposes on the gauged and recon-
structed data using methods described in Section 2.3. A probability distribution was chosen
by qualitatively comparing the different distributions on a single plot. In the case of the re-
constructed data shown in Figure 6.36 the Weibull distribution fits the data the best out of
the five distributions. With the gauged data shown in Figure 6.37 the Weibull distribution fits
the data the best out of the five distributions.

The best fit line was then plotted with 95% confidence limits as well as the data. The
plots for the gauged and reconstructed data can be observed in Figures 6.38 and 6.39. These
plots show that the drought analysis using the reconstructed data underpredicts the severity
of droughts at all return periods. Table 6.18 illustrates this quantitatively. This is due to
the reduction of variance in the reconstruction and illustrates that even with only a moderate

reduction in variance the reconstructed record is still unsuitable for frequency analysis.

6.4.10 Important Observations

This case study showed how the choice of a split sample can affect the verification. The
‘early’ model was built almost exclusively of data from drought years. This showed up as poor
verification statistics even though the ‘early’ model clearly reproduced low flow events better
than the ‘late’ split. The verification statistics were largely positive for both models but in
hindsight a different type of split sampling that balanced the high and low flow years may
have yielded more balanced verification results.

The data analysis presented has shown a thirteen times increase in the number of multiyear

droughts and low flow events and a five times increase in the number of low flow years . It also
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Table 6.17: Historical Drought Periods for 05AA022
Star- | End- | Seve- | Mag- | Dur- | Gaug- || Star- | End- | Seve- Mag- | Dur- | Gaug-
ting ing rity nitude| ation | ed ting ing rity nitude| ation | ed
Year | Year Data || Year | Year Data
(Mm®Y (Mm®) (years)| (Y/N) (Mm®) (Mm®) (years)| (Y/N)

1917 | 1922 | 586.35| 97.72 | 6 Yes 1670 | 1670 | 123.22] 123.22| 1 No
17556 | 1759 | 485.15| 97.03 | 5 No 1847 | 1847 | 115.02] 115.02] 1 No
1812 1815 474.94| 118.74 | 4 No 1796 1796 114.27| 114.27| 1 No
1976 | 1979 | 474.54| 118.63| 4 Yes 1952 | 1952 ] 112.82| 112.82] 1 Yes
1681 | 1684 | 445.92] 111.48( 4 No 1692 | 1692 | 110.85| 110.85] 1 No
1986 | 1988 | 412.75| 137.58} 3 Yes 1867 | 1867 | 106.68| 106.68 1 No
1841 | 1844 | 411.05| 102.76] 4 No 1661 | 1661 | 106.54| 106.54| 1 No
1981 | 1984 | 394.88] 98.72 | 4 Yes 1865 | 1865 | 106.46| 106.46] 1 No
1715 | 1718 | 370.11| 92.53 | 4 No 1764 | 1764 | 102.27] 102.27| 1 No
1798 1800 366.63| 122.21| 3 No 1949 1949 100.94| 100.94 1 1 Yes
1928 | 1931 | 365.48| 91.37 | 4 Yes 1824 | 1825 | 100.02| 50.01 | 2 No
1793 | 1794 | 364.12] 182.06( 2 No 1909 | 1910 | 99.91 | 49.96 | 2 No
1924 | 1926 | 338.08| 112.69| 3 Yes 1725 | 1725 | 98.13 | 98.13 | 1 No
1837 | 1838 | 331.80| 165.90]| 2 No 1663 | 1664 | 95.27 | 47.63 | 2 No
1939 | 1942 | 311.19| 77.80 | 4 No 1833 | 1834 | 92.52 | 46.26 | 2 No
1701 | 1703 | 291.44] 97.15 | 3 No 1741 | 1741 | 92.03 | 92.03 | 1 No
1861 | 1863 | 288.61] 96.20 | 3 No 1859 | 1859 | 88.63 | 88.63 | 1 No
1705 | 1706 | 288.26| 144.13]| 2 No 1884 | 1884 | 86.14 | 86.14 | 1 No
1656 | 1657 | 285.97 ] 142.98] 2 No 1695 | 1695 | 80.65 | 80.65 | 1 No
1720 | 1721 | 273.63| 136.81| 2 No 1677 | 1679 | 78.91 | 26.30 | 3 No
1645 | 1648 | 263.15| 65.79 | 4 No 1732 | 1732 | 76.56 | 76.56 | 1 No
1790 | 1791 | 260.27| 130.14[ 2 No 1639 | 1639 | 75.84 | 75.84 |1 No
1852 | 1854 | 254.73| 84.91 | 3 No 1957 | 1958 | 74.16 | 37.08 | 2 Yes
1889 | 1889 | 238.27| 238.27| 1 No 1776 | 1777 | 73.63 | 36.81 | 2 No
1771 | 1773 | 219.50| 73.17 | 3 No 1729 | 1730 | 71.14 | 35.57 | 2 No
1869 | 1870 | 219.12| 109.56( 2 No 1933 | 1934 | 67.04 | 33.52 | 2 No
1894 | 1896 | 211.66| 70.55 | 3 No 1973 | 1973 | 64.87 | 64.87 | 1 Yes
1766 | 1766 | 204.79| 204.79] 1 No 1779 | 1780 | 52.72 | 26.36 | 2 No
1912 | 1915 | 202.05| 50.51 | 4 Yes 1944 | 1944 | 50.85 | 50.85 | 1 No
1936 | 1937 | 200.12] 100.06| 2 No 1882 | 1882 | 49.28 | 49.28 | 1 No
1905 | 1906 | 197.99| 99.00 | 2 No 1849 | 1849 | 48.90 | 48.90 | 1 No
1960 | 1963 | 197.58| 49.40 | 4 Yes 1708 | 1708 | 48.23 | 48.23 | 1 No
1751 1751 191.70 | 191.70( 1 No 1667 1667 45.83 | 45.83 | 1 No
1817 | 1818 | 158.53] 79.27 | 2 No 1642 | 1642 | 41.72 | 41.72 | 1 No
1891 | 1892 | 158.05| 79.03 | 2 No 1738 | 1738 | 3495 | 34.95 | 1 No
1831 | 1831 | 157.67| 157.67| 1 No 1768 | 1768 | 34.00 | 34.00 | 1 No
1746 | 1748 | 150.89| 50.30 | 3 No 1699 | 1699 | 33.32 | 33.32 | 1 No
1650 | 1651 | 149.17| 74.59 | 2 No 1969 | 1969 | 30.98 | 30.98 | 1 Yes
1674 | 1674 | 14531 145.31] 1 No 1802 | 1803 | 29.83 | 14.91 | 2 No
1743 1744 142,541 71.27 | 2 No 1783 1783 16.76 | 16.76 | 1 No
1686 | 1688 | 141.95| 47.32 | 3 No 1857 | 1857 | 12.85 | 12.85 | 1 No
1808 | 1809 | 128.99| 64.50 | 2 No 1822 | 1822 | 12.26 | 12.26 |1 No
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Figure 6.36: Frequency Distributions for Reconstructed Droughts

Table 6.18: Comparison of Drought
05AA022

Frequency Analysis at Various Return Periods for

Return Period Gauged Data Reconstructed
Data

(Years) Severity (Mm®)

10 500 356

20 603 431

50 729 525

100 819 591

1000 1092 795

10000 1339 981
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illustrates that even a moderate reduction in variance makes the data unsuitable for accurate

quantitative analysis.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The goal of this thesis was to:
1. Explore approaches for using tree ring information to characterize drought events.

2. Determine the availability of tree ring data within and near the Churchill-Nelson River

Basin.

3. Employ the approaches in a series of case studies to demonstrate the feasibility of using

tree ring data to reconstruct drought.

A literature review of dendroclimatology and its use in reconstructing drought was com-
pleted. This review revealed that tree ring data has been used to reconstruct many climatic
variables. Further, tree ring data are ideally suited to reconstruct streamflow because both pa-
rameters integrate the effects of temperature, precipitation and evapotranspiration. It was also
noted that most research to date has been done on reconstructing precipitation and tempera-
ture records. Research into reconstruction of streamflow has been very limited. The projects
that have been done have mostly concentrated in more arid areas of the United States such
as Arizona and New Mexico.

A review of the available streamflow data explains some of the reason for the lack of research

into streamflow. It was found that in Canada, the unregulated streamflow records are very
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short and discontinuous. Very few records were found in the prairie provinces that were long
enough to facilitate a statistical reconstruction. All of the streamflow records that were long
enough were located in Alberta. Of the five most promising gauging stations found, three of
them required the combination of two separate gauging station locations to create a sample
large enough for reconstruction. This would explain why temperature and precipitation, whose
records tend to be much longer in duration, are more often reconstructed.

A review of available tree ring data revealed that although there are many tree ring data
sets available in the United States there are comparably few available in Canada. Tree ring
data available in Canada are mostly concentrated in Western Alberta and Quebec. Although
this is the case now, research is in progress that should expand this data network appreciably.
The work of Eric Nielsen and Scott St. George at Manitoba Energy and Mines as well as
Jacques Tardif at the University of Winnipeg should help expand the tree ring network in
Manitoba.

Three case studies were completed, one in the MacKenzie River Basin and two in the
South Saskatchewan River Basin. Two of the case studies verified very well using split sample
techniques, one was questionable. The reconstructions extended streamflow records from 59
to 190 years, from 60 to 420 years and from 65 to 352 years.

The first case study reconstructing the Water Survey of Canada gauge 07BE001, Athabasca
River at Athabasca, extended a record that originally spanned between 1914-1929 and 1952—
1995 to a record that spans from 1805-1995. The drought record for this set was extended
from 15 distinct events to 49 distinct events. An attempt was made to estimate low frequency
droughts using standard frequency analysis. It was determined that the reduced variance of
the reconstruction model makes the reconstructed data unsuitable for quantitative frequency
analysis.

The second case study reconstructing the Water Survey of Canada gauge 05AA023, Oldman
River Near Waldron’s Corner, extended a record that originally spanned between 1911-1930
and 1950-1995 to a record thét spans from 1571~1995. Unfortunately there is some question
as to the validity of the reconstruction due to a poor verification. It is suggested that further

verification possibly using anecdotal data be done before this reconstruction can be used. The
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drought record for this set was extended from 14 distinct events to 103 distinct events. Again
the reconstruction proved unusable for frequency analysis due to reduced variance compared
to the gauged record.

The third case study reconstructing the Water Survey of Canada gauge 05AA022, Castle
River Near Beaver Mine Station, extended a record that originally spanned between 1911—
1929 and 1945-1990 to a record that spans from 1639-1990. The verification of this data set
was successful but could have been improved with a split sampling procedure that equalized
the number of high and low flow years in each sample. The drought record for this set was
extended from 13 distinct events to 84 distinct events. Also, with this model reconstruction
proved unusable for frequency analysis.

The results of a comparison between extreme droughts estimated from the gauged data
and the reconstructed data showed a decrease in drought severity at all return periods. This
is contrary to what accepted theory would predict. It was found that this is due mainly
to the reconstructed model being unable to reproduce the gauged variance. The magnitude
of streamflow records are smoothed down as they are filtered through the tree ring data.
Although the reconstructed drought magnitudes are unreliable, the reconstructed records could
potentially be used in conjunction with other techniques to identify times of severe drought

and for verification purposes.

7.2 Recommendations

This thesis has shown that using existing tree ring data to reconstruct streamflow is one viable
method of dealing with the problem of short records of drought in Canada.

The research, however, was complicated by the lack of available tree ring data within
the Prairie Provinces. In addition, the high quality tree ring data that was available was
largely sampled in 1965. This meant that the last 35 years of streamflow record for active
hydrometric stations could not be used. This made finding streamflow gauging stations with
sufficient overlap with the tree ring data very difficult. Currently there is research being
conducted in Manitoba by people such as Eric Nielsen, Scott St. George and Jacques Tardif

that will extend the tree ring record in the prairie provinces. It is recommended that as these



7. Conclusions and Recommendations 111

and other tree ring data sets become available in areas of interest that further research be
conducted to help expand our understanding of drought in critical areas of the Prairies.

Difficulty was encountered using the standard split sample verification method where a
point in time is used to divide the data set. This occurred because the statistical properties of
the two split samples were not essentially equal. It is recommended that in further research of
this type a method of splitting that is less affected by statistically anomalous periods in time
be adopted. One such method would be the DUPLEX method of sample splitting based on
equalized statistical properties presented by Snee (1977)

The results of a comparison between extreme droughts estimated from the gauged data
and the reconstructed data showed a decrease in drought severity at all return periods. This
was a result of the reconstruction models not being able to reproduce the amount of variance
found in the gauged data. The data reconstructed in this study cannot be used in quantitative
frequency analysis of extreme drought. Further study is required to determine if it is possible to
produce a reconstruction with sufficient explained variance to perform quantitative frequency
analysis

The most difficult complication of this study was that the drought reconstructions yielded
smaller severity drought events at all return periods. This was shown to be due to the low
explained variance of the reconstruction models. Previous tree ring studies identified in the
literature have shown that it is possible to produce reconstructions with much higher explained
variances in the 70% to 80% range. This however was only accomplished through specific
sampling of tree ring data for streamflow reconstruction close to the gauge of interest. It is
recommended that future work be conducted using site specific sampling. Statistical methods
such as Maintenance of Variance Extension(MOVE) (Hirsch, 1982) should be investigated to

help reproduce the missing variance.
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Streamflow Record Preprocessor Log

Input Filename: 07be001.txt

gsprefix for all files associated with this raw file: 07be001
Station = ATHABASCA RIVER AT ATHABASCA - STATION NO. 07BEOOL
Latitude = 54:43:20N

Drainage Area = 600 km2

Longitude = 113:17:10W

Flow Type = NATURAL FLOW

January
Number of Data Values = 43

Mean = 13765.828

Variance = 9435880

Standard Deviation = 3071.788
Standard Exror = 468.443
Coefficient of Variation = 0.223
Skewness = 1.041
Kurtosgsis = 1.332
Autocorrellation
Mean Sensitivity

]

0.132
0.215

February

Number of Data Values = 43
Mean = 13767.972

Variance = 9552846

Standard Deviation = 3090.768
Standard Error = 471.338
Coefficient of Variation = 0.224
Skewness = 1.02

Kurtosis = 1.238
Autocorrellation = 0.127

Mean Sensitivity 0.219

Maxrch

Number of Data Values = 43
Mean = 13769.059

Variance = 9614598

Standard Deviation = 3100.742
Standard Error = 472.859
Coefficient of Variation = 0.225
Skewness = 1.001

Kurtosis = 1.175
Autocorrellation = 0.127

Mean Sensitivity 0.22

I
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April

Number of Data Values = 43
Mean = 13770.259

Variance = 9776012

Standard Deviation = 3126.661
Standard Error = 476.811
Coefficient of Variation = 0.227
Skewness = 0.942

Kurtosis = 1.029
Autocorrellation = 0.12

Mean Sensitivity = 0.226

May

Number of Data Values = 43
Mean = 13750.487

Variance = 9690642

Standard Deviation = 3112.979
Standard Error = 474.725
Coefficient of Variation = 0.226
Skewness = 0.981

Kurtogis = 1.435
Autocorrellation = 0.156

Mean Sensitivity = 0.22

June

Number of Data Values = 43
Mean = 13745.504

Variance = 8829596

Standard Deviation = 2971.464
Standard Error = 453.144
Coefficient of Variation = 0.216
Skewness = 0.716

Kurtosis = 0.38
Autocorrellation = 0.25

Mean Sensitivity = 0.21

July

Number of Data Values = 43
Mean = 13732.001

Variance = 8368002.5
Standard Deviation = 2892.75
Standard Error = 441.14
Coefficient of Variation = 0.211
Skewness = 0.388

Kurtosis = -0.53
Autocorrellation = 0.285
Mean Sensitivity 0.201
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August

Number of Data Values = 43

Mean = 13724.153

Variance = 8697245

Standard Deviation = 2949.109
Standard Error = 449.735
Coefficient of Variation = 0.215
Skewness = 0.567

Kurtosis = -0.367
Autocorrellation = 0.221
Mean Sensitivity = 0.215

September

Number of Data Values = 43
Mean = 13749.504

Variance = 7926587

Standard Deviation = 2815.419
Standard Exrror = 429.347
Coefficient of Variation = 0.205
Skewness = 0.627

Kurtosis = 0.136
Autocorrellation = 0.258

Mean Sensitivity 0.206

October
Number of Data Values = 43

Mean = 13749.564

Variance = 8311520

Standard Deviation = 2882.971
Standard Error = 439.649
Coefficient of Variation = 0.21
Skewness = 0.93
Kurtogis = 1.171
Autocorrellation
Mean Sensitivity

0.222
0.199

November

Number of Data Values = 43
Mean = 13747.011

Variance = 8770950

Standard Deviation = 2961.579
Standard Error = 451.637
Coefficient of Variation = 0.215
Skewness = 1.002

Kurtosis = 1.274
Autocorrellation = 0.179

Mean Sensitivity 0.204
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December

Number of Data Values = 43
Mean = 13746.046

Variance = 9114963

Standard Deviation = 3019.1
Standard Error = 460.408
Coefficient of Variation = 0.22
Skewness = 1.034

Kurtosis = 1.312
Autocorrellation 0.156
Mean Sensitivity = 0.208

Annualized Streamflow in: 07be00l.str

Checking for normality, January Annualization

Probability Plot Correlation Coefficient = 0.96518

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.944140624999998

Probability Plot Correlation Coefficient = 0.99534

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.059

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0

Skewness = 0

Kurtogsis = -0.534
Autocorrellation = 0.183
Mean Sensitivity = 0

Checking for normality, February Annualization

Probability Plot Correlation Coefficient = 0.9656

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.947656249999998

Probability Plot Correlation Coefficient = 0.99462

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.055

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0

Skewness = 0

Kurtosis = -0.588

Autocorrellation = 0.175

Mean Sensitivity = 0
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Checking for normality, March Annualization

Probability Plot Correlation Coefficient = 0.96613

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

‘Box-Cox Lamda = -0.916796874999998

Probability Plot Correlation Coefficient = 0.99393

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.091

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0

Skewness = 0
Kurtosis = -0.599
Autocorrellation
Mean Sensitivity

0.172

]
o

Checking for normality, April Annualization

Probability Plot Correlation Coefficient = 0.96991

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.764453124999998

Probability Plot Correlation Coefficient = 0.99537

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.307

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0

Skewness = 0

Kurtosis = -0.543

Autocorrellation = 0.159

Mean Sensitivity 0
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Checking for normality, May Annualization

Probability Plot Correlation Coefficient = 0.96634

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.692968749999998

Probability Plot Correlation Coefficient = 0.99283

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.441

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0
Skewness = 0
Kurtosigs = -0.43

Autocorrellation = 0.175
Mean Sensitivity

1]
o

Checking for normality, June Annualization

Probability Plot Correlation Coefficient = 0.97823

Table Value at 95% Confidence = 0.97311

The data set is sufficiently normal that no transformation
required

Checking for normality, July Annualization

Probability Plot Correlation Coefficient = 0.98603

Table Value at 95% Confidence = 0.97311

The data set is sufficiently normal that no transformation
required

Checking for normality, August Annualization

Probability Plot Correlation Coefficient = 0.98247

Table Value at 95% Confidence = 0.97311

The data set is sufficiently normal that no transformation
required

Checking for normality, September Annualization
Probability Plot Correlation Coefficient = 0.98039

Table Value at 95% Confidence = 0.97311

The data set is sufficiently normal that no transformation
required
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Checking for normality, October Annualization

Probability Plot Correlation Coefficient = 0.96935

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.674218749999998

Probability Plot Correlation Coefficient = 0.99362

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.481

Variance = 0

Standard Deviation = 0

Standard Error = 0.

Coefficient of Variation = 0

Skewness = 0
Kurtosis = -0.314
Autocorrellation = 0.254

|
o

Mean Sensitivity =

Checking for normality, November Annualization
Probability Plot Correlation Coefficient = 0.9671

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergoc Box-Cox
transformation

Box-Cox Lamda = -0.867578124999998

Probability Plot Correlation Coefficient = 0.99557

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.152

Variance = 0

Standard Deviation = 0

Standard Error = 0

Coefficient of Variation = 0

Skewness = 0

Kurtosis = -0.458

Autocorrellation = 0.223

Mean Sensitivity 0
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Checking for normality, December Annualization

Probability Plot Correlation Coefficient = 0.96514

Table Value at 95% Confidence = 0.97311

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = -0.925781249999998

Probability Plot Correlation Coefficient = 0.99515

Table Value at 95% Confidence = 0.97311

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 43

Mean = 1.08

Variance = 0

Standard Deviation = 0

Standard Errxor = 0

Coefficient of Variation = 0

Skewness = 0

Kurtosis = -0.476

Autocorrellation = 0.204

Mean Sensitivity

1
o

Testing for Stationarity
Mann Kendall Test For Trend

January Annualization Trend analysis

Uc = 0.6697869

95% Test Stat = 1.960

The hypothesis of a up or downward trend is rejected at the
confidence interval

February Annualization Trend analysis

Uc = 0.6488561

95% Test Stat = 1.960

The hypothesis of a up or downward trend is rejected at the
confidence interval

March Annualization Trend analysis

Uc = 0.5651327

95% Test Stat = 1.960

The hypothesis of a up or downward trend is rejected at the
confidence interval

April Annualization Trend analysis

Uc = 0.523271

95% Test Stat = 1.960

The hypothesis of a up or downward trend is rejected at the
confidence interval

May Annualization Trend analysis
Uc = 0.2721009
95% Test Stat = 1.960
The hypothesis of a up or downward trend is rejected at the
confidence interval
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June Annualization Trend analysis

Uc = 0.6907178

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

July Annualization Trend analysis

Uc = 0.7744411

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

August Annualization Trend analysis

Uc = 0.7325795

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

September Annualization Trend analysis
Uc = 0.7535103

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

October Annualization Trend analysis

Uc = 0.6697869

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

November Annualization Trend analysis

Uc = 0.6488561

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval

December Annualization Trend analysis

Uc = 0.8163028

95% Test Stat = 1.960

The hypothesis of a up or downward trend
confidence interval
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January Flow Time Series, 07be001
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April Flow Time Series, 07be001
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July Flow Time Series, 07be001
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October Flow Time Series, 07be001
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December Flow Time Series, 07be001
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Check for Autocorrelation

January Annualization

ACF PACF
0.182873 0.182873
-0.051465 -0.087846
-0.143536 -0.122232
-0.12561 -0.084161
-0.004983 0.018542
0.00571 -0.026424
-0.027619 -0.052632
0.060445 0.0694
0.086826 0.064334
-0.179782 -0.228909
0.055146 0.161174
0.115258 0.104622
~-0.077508 -0.182592
-0.180694 -0.17424
-0.111634 0.039418
tvalue for autocorrelation (t*) = 1.1910234389738

Critical t value {(tecrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.

February Annualization

ACF PACF
0.174601 0.174601
-0.053243 -0.086361
-0.133631 -0.112704
-0.134451 -0.099137
-0.00838 0.018098
0.012213 -0.017902
-0.028665 -0.057152
0.062574 0.068984
0.083784 0.062611
-0.182093 -0.225692
0.062625 0.162194
0.117451 0.10364
-0.088629 -0.183872
-0.174444 -0.169716
-0.109226 0.031572

tvalue for autocorrelation (t*) = 1.13542630209797
Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.
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March Annualization

ACF PACF
0.172342 0.172342
-0.056538 -0.08888
-0.125227 ~-0.103154
~0.139905 -0.10889
-0.012869 0.015844
0.01751 -0.010929
-0.030216 -0.060616
0.064042 0.069256
0.082813 0.060996
-0.183042 -0.22291
0.068839 0.166266
0.117784 0.097751
-0.099055 -0.185447
-0.170271 -0.16313
-0.108694 0.021816

tvalue for autocorrelation (t*) = 1.12027657929955
Critical t value (terit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.

April Annualization

ACF PACF
0.159364 0.159364
-0.05258 -0.080009
-0.126172 -0.107781
-0.141291 -0.1115
-0.012234 0.014398
0.020614 -0.006803
-0.026337 -0.058656
0.058873 0.060682
0.083407 0.067192
-0.189555 -0.227796
0.085566 0.179054
0.116276 0.0945
-0.096241 -0.179241
-0.169526 ~-0.166063
-0.109056 0.021032

tvalue for autocorrelation (t*) = 1.03361091237198
Critical t value {(tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.
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May Annualization

ACF PACF
0.174565 0.174565
-0.085879 ~-0.120008
-0.135932 -0.102758
-0.104155 -0.073929
-0.002954 0.006372
0.026535 -0.003886
0.05925 0.03832
0.024625 0.003393
0.02155 0.02%9912
-0.172822 -0.178602
0.139023 0.236467
0.096504 -0.001801
-0.100847 -0.136313
~-0.18139 -0.139547
-0.159181 -0.083606

tvalue for autocorrelation (t*) = 1.13515794076072
Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysig may proceed.

June Annualization

ACF PACF

0.250281 0.250281

-0.100218 -0.173741

-0.210295 -0.151112

~-0.146914 -0.074074

-0.096153 -0.093195

0.05765 0.054107

0.118569 0.041815

0.00644 -0.069619

-0.042552 -0.01012

-0.122818 -0.103678

0.198503 0.297238

0.067484 -0.103386

-0.062556 -0.070684

-0.20054 -0.14519

-0.185974 -0.117437

tvalue for autocorrelation (t*) = 1.65525485766618
Critical t value (tcrit) = 2.0199499130249

The series is not autocorrelated, regression analysis may proceed.
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July Annualization

ACF PACF
0.285335 0.285335
-0.107599 -0.205768
-0.235893 -0.15933
-0.136007 -0.038913
-0.06042 -0.07086
0.016499 -0.008188
0.201093 0.181829
-0.03646 ~-0.207062
-0.111838 -0.011115
-0.148804 -0.0797
0.185894 0.26788
0.146443 -0.052823
-0.02322 -0.06906
-0.166663 -0.157621
-0.250495 -0.120732

tvalue for autocorrelation (t*) = 1.90624739236432
Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.

August Annualization

ACF PACF
0.220921 0.220921
-0.107301 ~-0.164117
-0.192419 -0.138905
-0.089226 ~-0.029984
~-0.044623 -0.062912
-0.045485 -0.069276
0.116461 0.124974
0.078404 -0.006434
~-0.044327 -0.068171
-0.163546 -0.111381
0.097289 0.188112
0.16741 0.074878
-0.048222 -0.131141
-0.187808 ~-0.125171
-0.222039 -0.162604
tvalue for autocorrelation (t*) = 1.45041513810802

Critical t value (terit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.
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September Annualization

ACF PACF
0.258378 0.258378
-0.110917 -0.190387
-0.142065 -0.06533
-0.137762 -0.109251
-0.049022 -0.013137
-0.042681 -0.076942
0.048308 0.056117
0.06733 0.005839
0.003671 -0.02181
-0.161561 -0.171801
0.124589 0.265154
0.15226 -0.002694
-0.096119 -0.143216
-0.147512 -0.074498
-0.199904 -0.137051

tvalue for autocorrelation (t*) =

1.71252220983566

Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.

October Annualization

ACF PACF
0.253609 0.253609
~0.054098 -0.126555
-0.146358 -0.107317
-0.08489 -0.025309
-0.027874 -0.02024
-0.054031 -0.072581
0.012335 0.032087
0.07229 0.051211
0.067222 0.022307
-0.18705 ~-0.226541
0.075863 0.238665
0.125831 0.036437
-0.080013 -0.199247
-0.186066 -0.09755
-0.183736 -0.066589

tvalue for autocorrelation (t*) = 1.67871075531116
Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.
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November Annualization

ACF PACF

0.222696 0.222696
-0.030499 -0.084272
~0.149315 -0.130538
-0.107544 -0.049236
-0.016885 0.00678

-0.022494 -0.043033
0.004233 -0.001729
0.061229 0.057052
0.068205 0.036665
-0.176664 ~-0.2195

0.070641 0.200032
0.118631 0.07997

-0.062651 ~0.184453
-0.171602 -0.129407
-0.158577 -0.019328

tvalue for autocorrelation (t*) = 1.46263963668588
Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.

December Annualization

ACF PACF
0.204088 0.204088
-0.0270%94 -0.071734
-0.129425 ~-0.114178
-0.12913 -0.084853
-0.012703 0.022881
-0.00694 -0.032171
-0.001253 -0.018861
0.064451 0.062047
0.06976 0.045682
-0.17405 -0.215337
0.063742 0.175236
0.123975 0.104369
~-0.076303 -0.185338
-0.16956 -0.154687
-0.1386 - 0.007967
tvalue for autocorrelation (t*) = 1.33484240511455

Critical t value (tcrit) = 2.0199499130249
The series is not autocorrelated, regression analysis may proceed.
Datafile Printed as 07be001.str

End of analysis.
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Tree Ring Chronology Preprocessor Log

Input Filename: CANAQ22.TXT
Prefix for all files associated with this raw file: CANAO22

Site Name : EXSHAW+TUNNEL+BANFF, ALBERTA,
State/Country : CANADA

Location : 51 10'N 115@ 33'W

Year Range : 1460 - 1965

Elevation : 1310m

Species Code : PSME

Common Name :  DOUGLAS-FIR

P. I. : C. W. FERGUSON AND M. L. PARKER
File Name :  CANAQ22.CRN

Number of Data Values = 506
Mean = 996.022

Variance = 123159.281

Standard Deviation = 350.941
Standard Error = 15.601
Coefficient of variation = 0.352
Skewness = 0.463

Kurtosis = 0.59
Autocorrellation 0.426

Mean Sensitivity = 0.328

It

Checking for normality

Probability Plot Correlation Coefficient = 0.99276

Table Value at 95% Confidence = 0.996983

The data set is sufficiently non normal to undergo Box-Cox
transformation

Box-Cox Lamda = 0.625000000000002

Probability Plot Correlation Coefficient = 0.99806

Table Value at 95% Confidence = 0.996983

The set was transformed to normal using the Box-Cox method.
Number of Data Values = 506

Mean = 116.275

Variance = 709.698

Standard Deviation = 26.64

Standard Error = 1.184

Coefficient of Variation = 0.229
Skewness = 0

Kurtosis = 0.265
Autocorrellation = 0.391

Mean Sensitivity = 0.213
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Testing for Stationarity
Mann Kendall Test For Trend

Trend analysis

Uc = 0.1560667

95% Test Stat = 1.960

The hypothesis of a up or downward trend is rejected at the 95%
confidence interval

Chronalogy Time Series

Indices

20

1400 1500 1600 1700 1800 1900 2000

Years

Check for Autocorrelation

ACF PACF

0.39126 0.39126

0.287953 0.159247
0.202261 0.054797
0.139027 0.014767
0.14041 0.057932
0.091497 -0.002755
0.073788 0.005447
-0.00989 -0.07786
0.002012 0.004207
-0.012237 -0.010902
-0.01591 -0.005436
-0.01256 -0.001856
0.025854 0.053494
-0.060395 -0.090892

-0.027686 0.01312

tvalue for autocorrelation (t*) = 9.54466405012143
Critical t wvalue (tcrit) = 1.97991454601288

The series is autocorrelated, an Arma model is required.
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Autocorrelation

s

Partial Autocorrelation

02 ;

Lags

Arma Model Minitab Output

ARIMA Model

ARIMA model for C2

Estimates at each iteration

Iteration SSE Parameters
0 474 .616 0.100 0.090
1 438.860 0.250 0.049
2 427 .443 0.385 0.009
3 427 .364 0.392 0.000
4 427 .363 0.393 -0.000
5 427.363 0.393 -0.000
6 427.363 0.393 -0.000

Relative change in each estimate less than 0.0010

Final Estimates of Parameters

Type Coef StDev

AR 1 0.3929 0.0410 9.59

Constant -0.00019 0.04093 -0.00

Mean -0.00032 0.06742

Number of observations: 506

Residuals: SS = 427.190 (backforecasts excluded)

MS = 0.848 DF = 504

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24
Chi-Square 20.6 (DF=11) 29.4 (DF=2

139

3)

36
47.5(DF=35)

48

57.5(DF=47)

0.4

0.2

0.0

0.4

0.2

- 0.0




Check for Autocorrelation

ACF PACF
-0.064232 -0.064232
0.11795 0.114296
0.078049 0.093706
0.03104 0.028971
0.08448 0.070035
0.024705 0.02177
0.063675 0.0456
-0.048676 -0.061813
0.013251 ~0.015826
-0.010813 ~-0.015661
-0.009694 -0.01014
-0.022614 -0.027778
0.069851 0.079258
-0.081157 ~-0.064884
0.012586 -0.000661
tvalue for autocorrelation (t*) = -1.44426584743814

Critical t value (tecrit) = 1.97991454601288
The series is not autocorrelated, regression analysis may proceed.
Datafile Printed as CANAO22.trg

End of analysis.
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Appendix B

Correlation Analyzer Example

Output
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The Following are the Tree Ring Files Used.

CANAQO41.trg
CANAO42.trg
CANAO43 .trg
Mn002.trg
MNOO5.trg
MNOO6 . trg
MNQOO8.trg
MNOO9.trg
MNO10.trg
MNO13.trg
MNO14.trg
MNO15.trg
MNOl6.trg
MNO17.trg
MNO18.trg
MNO25.trg
MNOQO26 .trg

Output File For Reconstruction

Correlation Analysis for Investigation of Predictors

The following is the Monthly Stream Flow and file used.

02AA001.raw
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month Corr Tval
Jan(t-1) 0.044805 0.215029
Feb(t-1) 0.062271 0.30162
Mar(t-1) -0.016053 ~-0.0747
Apr(t-1) 0.025498 0.121149
May (t-1) 0.480092 3.123006
Jun({t-1) 0.169339 0.871476
Jul (t-1) 0.366872 2.162622
Aug(t-1) 0.458802 2.925224
Sep(t-1) 0.383411 2.290223
Oct (t-1) 0.24262 1.30762
Nov(t-1) -0.030301 -0.140021
Dec(t-1) 0.187936 0.978195
Jan 0.195337 1.021381
Feb 0.209959 1.107955
Mar 0.302898 1.701605
Apr 0.353582 2.062745
May -0.275602 -1.144554
Jun -0.184285 -0.794281
Jul -0.075257 -0.340408
Aug 0.006858 0.032277
Sep - -0.029071 -0.134415
Oct 0.103381 0.512094
Nov 0.130534 0.656611
Dec 0.169808 0.874139

Correlation analysis of CANAD41.trg

0.6

0.4

0.2

0.0

Jan(t-1)
Feb(t-1)
Mar(t-1)

Apr(t-1)
May(t-1)
Jun(t-1)

Jul(t-1)
Aug(t-1)

Oct(1-1)

Sep(t-1)
Nov{t-1)

143

Dec(t-1)
Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct

Nov

Dec

0.6
0.4

0.2

- 0.0

-0.2



Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test
Data set sample size35

Month
Jan(t 1)
Feb(t
Mar (t
Apr(t
May(t
Jun (
Jul(
Aug (t-
Sep(t
Oct (t
Nov (t
Dec (t
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

Corr
0.028017
0.027278
-0.146476
-0.160613
0.196309%
-0.094361
-0.05432
-0.092367
.119038
.217563
.114246
.18636
.284988
0.30045
-0.026737
0.218089
-0.111429
0.081144
0.046022
-0.071736
0.026304
-0.076629
0.178984
0.181467

[eNeNoNoNol

Tval
0.133289
0.129727
-0.641648
-0.699275
1.027087
-0.423083
-0.248134
-0.414518
.594867
.153644
.569371
.969051
.580815
1.6849
-0.123763
1.156822
-0.495756
0.397048
0.221007
-0.325016
0.125033
-0.346396
0.926507
0.940787
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Correlation analysis of CANAQ42.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow

T Critical Value for Correlation Test = 2.03570008277893

Data set sample size35

Month
Jan(t-1

Corr
0.14272
0.201948
-0.334173
-0.022261
0.333128
0.034887
-0.004876
.021087
.160036
.100134
.008001
.190399
.235036
0.242466
-0.188793
0.210779
-0.238133
~0.107069
-0.11619
-0.094487
-0.006725
-0.12417
-0.080649
-0.089365

[=NeleoNeNeNol

Tval
0.722995
1.060313
-1.356988
-0.103272
1.913383
0.166568
-0.022816
.099969
.81903
.49511
.037677
.992523
.26045
.306658
-0.812164
1.112857
-1.003801
-0.477296
-0.515835
~-0.423622
~-0.031438
-0.549303
-0.363886
-0.401597
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Correlation analysis of CANAO43.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow

T Critical vValue for Correlation Test = 2.03570008277893

Data set sample size35

Month
Jan(t-1

Corr
~-0.049558
-0.025108
0.175073
0.207905
-0.137844
-0.212816
-0.038565
0.060135
0.145933
0.187495
~-0.048464
0.039144
0.119899
0.089904
0.247203
-0.098667
.037527
.155827
.473108
.523672
.331288
.244588
.068389
.158215

[eleoNeNolNelNeNoNe)

Tval
-0.226895
-0.116316
0.904113
1.09569
-0.60612
-0.906397
-0.177494
0.290943
0.740661
0.975634
-0.222
0.187302
0.599463
0.442023
1.336368
-0.441519
.179415
.795499
.057105
.558919
.900193
.319943
.332337
.808832
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Correlation analysis of Mn002.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month Corzr Tval
Jan(t-1) 0.037086 0.177267
Feb(t-1) 0.061368 0.297101
Mar(t 1) 0.082127 0.402073
Apr(t-1) 0.263968 1.443162
May(t 1) -0.066979 -0.304137
Jun(t-1) -0.262586 -1.096107
Jul(t 1) -0.02742 ~0.126884
Aug (t-1) 0.121072 0.605728
Sep(t-1) 0.159555 0.816331
Oct(t 1) 0.104015 0.515416
Nov(t-1) -0.171313 ~-0.74244¢6
Dec(t-1) -0.037408 -0.172268
Jan 0.136748 0.690341
Feb 0.141293 0.715169
Mar 0.209468 1.105016
Apr 0.006121 0.0288
May 0.043044 0.206386
Jun 0.248133 1.342228
Jul 0.407657 2.484392
Aug 0.411662 2.51732
Sep 0.292756 1.632799
Oct 0.1346 0.678653
Nov 0.084885 0.416204
Dec 0.170385 0.877416

Correlation analysis of MNOOS.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893

Data set sample size35

Month
Jan(t-1

Corxr
-0.119368
-0.186906
0.143426
0.114559
-0.19976
-0.178813
0.064677
0.089336
0.238147
0.227862
-0.108388
-0.079648
0.04936
0.000218
0.217677
-0.004214
.164968
.401635
.326754
.246419
.167052
.018901
.109891
.185946

(>N eleleleNoNoNol

Tval
~-0.529191
-0.804687
0.726869
0.571034
-0.855405
-0.772482
0.313677
0.439095
1.279735
1.216286
-0.482889
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0.237451
0.001021
1.154332
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month
Jan(t-1)
Feb

Oct (t-1)
Nov )
Dec )
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

(-1
(£-1

Corr
-0.096074
-0.09685
0.206055
-0.146873
.32055
.313578
.347385
.290491
.559729
.299674
.109982
213262
.18601
.145608
.522249
.233171
-0.304757
-0.154792
-0.054802
-0.028379
0.019765
~-0.007412
0.083986
0.01323

[eeelelololNoNoNoNeNeNol

Tval
-0.430424
-0.433747
1.084674
-0.643273
1.824017
1.775256
2.016944
1.61758
3.956661
1.67962
0.546805
1.127742
0.967023
0.738867
3.543955
1.248924
~1.251413
-0.675628
-0.250277
-0.131261
0.093634
-0.034638
0.41159
0.06247

Correlation analysis of MNOO8.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test =
Data set sample size35

Month
Jan{(t-1

Corrx
-0.067298
-0.021357
-0.013117
-0.162306
.36644
.344121
.363326
.292284
.598233
.383522
.139047
.317657
.254474
.219071
.408632
.220674
-0.285725
-0.243446
-0.024116
.0907
.10333
.055719
.074361
.065309

s oNeNeNeNoNoNoNeoNoNolNol

ol eoNeNeNel

Tval
-0.305544
-0.099122
-0.061124
-0.706132
.159338
.993013
.135741
.629625
.426849
.291095
.702883
.80372
.382367
.16276
.492381
172473
-1.181914
~-1.024001
-0.111776
0.446132
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0.268944
0.362524
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month Corr Tval
Jan(t-1) -0.107671 -0.479847
Feb(t-1) -0.05692 -0.259691
Mar(t-1) -0.011401 -0.053174
Apr(t-1) 0.054144 0.261126
May (£-1) 0.283131 1.568481
Jun(t-1) 0.145142 0.736303
Jul (t-1) 0.221074 1.174902
Aug (t-1) 0.153502 0.782552
Sep(t-1) 0.498585 3.302572
Oct (t-1) 0.297487 1.664765
Nov(t-1) 0.0924 0.45492
Dec(t-1) 0.244564 1.31979
Jan 0.19653 1.028383
Feb 0.181874 0.943132
Mar 0.43833 2.743292
Apr 0.202545 1.063851
May -0.358528 ~-1.442779
Jun -0.359161 ~-1.444992
Jul -0.037198 -0.171316
Aug 0.130262 0.65514
Sep -0.003183 -0.01490s6
Oct 0.016483 0.077955
Nov 0.141607 0.716893
Dec 0.096077 0.473984

Correlation analysis of MN010.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month Corr Tval
Jan(t-1) -0.02771 -0.128209
Feb(t-1) -0.035708 -0.164573
Mar(t-1) -0.074277 -0.336131
Apr(t-1) 0.009824 0.046305
May (t-1) 0.095309 0.469995
Jun(t-1) 0.147598 0.74984
Jul (t-1) 0.34554 2.003399
Aug(t-1) 0.257352 1.400705
Sep(t-1) 0.467045 3.000717
Oct{t-1) 0.224732 1.197158
Nov(t-1) 0.141056 0.71387
Dec(t-1) 0.214252 1.133688
Jan 0.108774 0.540436
Feb 0.084736 0.415438
Maxr 0.437147 2.733012
Apr ~-0.002451 -0.011481
May -0.154853 -0.675875
Jun -0.194553 -0.834925
Jul -0.005655 -0.026451
Aug 0.199151 1.043803
Sep 0.090113 0.443105
Oct 0.129635 0.651751
Nov 0.244731 1.32084
Dec 0.21502 1.138309

Correlation analysis of MNO13.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size3S

Month Corr Tval
Jan(t-1) -0.13053 | -0.57581
Feb(t-1) -0.139489 ~-0.612909
Mar(t-1) -0.115026 -0.510935
Apr(t l) 0.000736 0.003452
May (t 0.167753 0.862491
Jun (t 0.115613 0.576629
Jul (t- l) 0.215042 1.138444
Aug (t 0.204922 1.077944
Sep(t ) 0.33547 1.930225
Oct(t-1) - 0.291469 1.624143
Nov(t-1) -0.086332 -0.388511
Dec(t-1) 0.00818 0.038525
Jan 0.031266 0.148997
Feb 0.078738 0.384775
Mar 0.329422 1.88686
Apr 0.032021 0.152658
May ~-0.246904 -1.037104
Jun -0.210036 -0.895582
Jul ~-0.059431 -0.270824
Aug 0.216489 1.147161
Sep 0.235445 1.26298
Oct 0.158705 0.811574
Nov 0.125609 0.630054
Dec 0.19699 1.031084

Correlation analysis of MNO14.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size3s

Month Corr Tval
Jan{t-1) -0.319366 -1.304118
Feb(t-1) -0.27808 -1.153726
Mar(t-1) 0.164697 0.845228
Apr(t-1) 0.209486 1.105123
May (t-1) -0.009973 -0.046548
Jun(t-1) -0.048187 ~-0.220759
Jul (t-1) -0.059754 -0.272256
Aug(t-1) -0.079422 -0.358555
Sep (t-1) 0.264759 1.448262
Oct (t-1) 0.038803 0.185641
Nov{t-1) -0.182712 -0.788025
Dec(t-1) -0.16057 -0.6991
Jdan -0.149634 ~-0.654577
Feb -0.14024 -0.616008
Mar 0.618035 4.69043
Apr 0.178605 0.924333
May -0.367988 -1.47572
Jun -0.149917 -0.655735
Jul 0.081979 0.401318
Aug 0.105757 0.524559
Sep 0.136962 0.691509
Oct 0.087574 0.430018
Nov ~-0.083511 ~0.376303
Dec -0.127725 -0.564137

Correlation analysis of MNO15.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow

T Critical Value for Correlation Test
Data set sample size35
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Correlation analysis of MNO16.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical value for Correlation Test
Data set sample size35

Month
Jan(t
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.329806
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.105798
.183742
.0489¢61
.121343
.027085
027231

Tval
-0.626464
-0.280176
.559303
.319471
.683969
.125123
.883234
.049151
.960316
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.488793
.52121
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-0.959806
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Correlation analysis of MN0O17.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
T Critical Value for Correlation Test = 2.03570008277893
Data set sample size35

Month Corr Tval
Jan(t-1) -0.125252 -0.553823
Feb(t-1) -0.103552 -0.462352
Mar(t-1) 0.007049 0.033182
Apr(t-1) -0.110214 -0.490619
May (t-1) 0.322902 1.840584
Jun(t-1) 0.314365 1.780734
Jul (£-1) 0.341983 1.97741
Aug(t-1) 0.232049 1.242007
Sep(t-1) 0.583114 4.236003
Oct (t-1) 0.358123 2.096608
Nov(t-1) 0.145975 0.740889
Dec(t-1) 0.279864 1.546862
Jan 0.217936 1.155899
Feb 0.181669 0.941951
Mar 0.486058 3.180111
Apr 0.252139 1.36754
May -0.341453 -1.382784
Jun -0.272613 -1.13347
Jul -0.042265 -0.19418
Aug 0.059581 0.288174
Sep 0.041532 0.198977
Oct -0.007 -0.032719
Nov 0.118751 0.593332
Dec 0.064381 0.31219

Correlation analysis of MNO18.trg
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Correlation Graphs of Tree Ring Series Vs Monthly Streamflow
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Appendix C

Correlation Analysis for 07BE001
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Figure C.1: Correlation between CANA021 and Monthly Flows of 07EB001
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Correlation Analysis for 05AA023
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Figure D.1: Correlation between CANA020 and Monthly Flows of 05AA023
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Correlation Analysis for 05A A022
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Figure E.13: Correlation between CANA024 and Annualized Flows of 05AA022
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Appendix F

Gauged and Reconstructed

Streamflow Record for 07TBE001
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Year Gauged Data Reconstructed Data
(Mm®) (Mm®)
1805 15339
1806 11772
1807 12905
1808 14099
1809 13915
1810 13582
1811 10557
1812 13303
1813 9966
1814 13741
1815 11565
1816 13560
1817 14781
1818 13473
1819 14984
1820 13343
1821 11773
1822 13629
1823 11610
1824 14709
1825 14004
1826 13594
1827 16403
1828 16226
1829 10638
1830 12239
1831 10972
1832 14175
1833 13149
1834 14897
1835 10368
1836 12964
1837 12173
1838 16750
1839 13429
1840 11122
1841 11055
1842 12861
1843 12042
1844 15604
1845 11820
1846 12271
1847 13634
1848 11293
1849 14120
1850 10554
1851 11935
1852 14231
1853 13208
1854 15020
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Year Gauged Data Reconstructed Data
(Mm’®) (Mm®)
1855 11906
1856 15453
1857 10376
1858 15737
1859 12126
1860 14137
1861 11093
1862 13681
1863 11399
1864 15640
1865 14309
1866 11893
1867 12175
1868 12830
1869 11359
1870 15142
1871 : 14608
1872 14940
1873 15081
1874 15186
1875 14421
1876 12752
1877 18755
1878 14084
1879 20402
1880 11803
1881 12866
1882 12381
1883 13689
1884 17029
1885 15515
1886 11865
1887 11213
1888 12455
1889 15096
1890 12107
1891 13477
1892 12068
1893 13871
1894 11345
1895 13394
1896 14144
1897 15350
1898 14429
1899 15330
1900 15382
1901 13327
1902 15501
1903 14285
1904 10189
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Year Gauged Data Reconstructed Data
(Mm’) (Mm’®)
1905 13580
1906 14403
1907 15374
1908 12541
1909 13417
1910 12277
1911 15527
1912 13123
1913 13284
1914 13378 13182
1915 14734 14484
1916 11928 12813
1917 13347 10225
1918 11272 11797
1919 9416 13983
1920 16671 9726
1921 13602 13106
1922 9504 13114
1923 12524 12905
1924 13094 12424
1925 15415 13833
1926 12438 13407
1927 15661 12612
1928 14624 11759
1929 10911 11239
1930 13557
1931 12850
1932 13568
1933 12822
1934 11563
1935 12119
1936 12936
1937 13980
1938 10705
1939 12036
1940 ‘ 14083
1941 13905
1942 13885
1943 12172
1944 15783
1945 14161
1946 14762
1947 15568
1948 12297
1949 16877
1950 13433
1951 15868
1952 12715 17231
1953 14596 14294
1954 23337 13478
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Year Gauged Data Reconstructed Data
(Mm®) (Mm®)

1955 13284 12139

1956 12811 11749

1957 12306 15762

1958 12122 13407

1959 10713 10000

1960 11738 14015

1961 10171 12353

1962 14242 13278

1963 13020 16635

1964 14041 13216

1965 21382 13216

1966 14776

1967 11956

1968 10267

1969 12172

1970 10628

1971 18344

1972 17136

1973 13498

1974 18038

1975 11711

1976 13263

1977 17862

1978 16784

1979 14687

1980 15683

1981 11191

1982 16399

1983 11719

1984 12645

1985 12049

1986 15976

1987 10221

1988 9472

1989 15626

1990 15122

1991 15203

1992 9700

1993 9837

1994 13491
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Appendix G

Gauged and Reconstructed

Streamflow Record for 05AA023
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Year

Gauged Data

Reconstructed Data

(Mm?) (Mm’)
1571 576
1572 423
1573 681
1574 732
1575 459
1576 513
1577 437
1578 525
1579 459
1580 559
1581 578
1582 528
1583 680
1584 547
1585 592
1586 466
1587 796
1588 556
1589 670
1590 704
1591 574
1592 333
1593 483
1594 516
1595 499
1596 593
1597 590
1598 571
1599 416
1600 536
1601 475
1602 510
1603 451
1604 332
1605 488
1606 446
1607 608
1608 632
1609 515
1610 490
1611 563
1612 527
1613 525
1614 370
1615 500
1616 492
1617 395
1618 384
1619 429
1620 503
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Year Gauged Data Reconstructed Data
(Mm®) (Mm’)
1621 436
1622 305
1623 550
1624 497
1625 369
1626 371
1627 542
1628 397
1629 472
1630 688
1631 720
1632 537
1633 414
1634 268
1635 627
1636 421
1637 496
1638 465
1639 632
1640 637
1641 468
1642 576
1643 629
1644 460
1645 334
1646 572
1647 398
1648 641
1649 451
1650 407
1651 500
1652 533
1653 604
1654 517
1655 449
1656 245
1657 559
1658 566
1659 485
1660 295
1661 662
1662 431
1663 459
1664 664
1665 638
1666 600
1667 704
1668 778
1669 368
1670 604
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Year Gauged Data Reconstructed Data
(Mm®) (Mm®)
1671 752
1672 754
1673 288
1674 796
1675 597
1676 392
1677 538
1678 449
1679 677
1680 610
1681 475
1682 472
1683 292
1684 656
1685 533
1686 546
1687 502
1688 635
1689 561
1690 563
1691 334
1692 589
1693 621
1694 402
1695 497
1696 526
1697 691
1698 443
1699 524
1700 473
1701 532
1702 405
1703 596
1704 508
1705 130
1706 567
1707 527
1708 621
1709 520
1710 549
1711 547
1712 684
1713 610
1714 433
1715 485
1716 216
1717 333
1718 572
1719 316
1720 318
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Year Gauged Data Reconstructed Data
(Mm’) (Mm’)
1721 751
1722 689
1723 698
1724 409
1725 606
1726 653
1727 613
1728 435
1729 333
1730 622
1731 564
1732 704
1733 497
1734 594
1735 503
1736 546
1737 445
1738 584
1739 590
1740 370
1741 607
1742 543
1743 397
1744 672
1745 543
1746 420
1747 446
1748 544
1749 732
1750 366
1751 607
1752 632
1753 625
1754 508
1755 460
1756 407
1757 477
1758 240
1759 561
1760 629
1761 561
1762 545
1763 213
1764 583
1765 250
1766 702
1767 431
1768 568
1769 655
1770 541
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Year Gauged Data Reconstructed Data
(Mm’) (Mm°)
1771 299
1772 412
1773 682
1774 557
1775 410
1776 523
1777 648
1778 613
1779 511
1780 721
1781 557
1782 403
1783 471
1784 478
1785 682
1786 737
1787 453
1788 610
1789 349
1790 256
17N 656
1792 234
1793 309
1794 535
1795 340
1796 631
1797 444
1798 572
1799 243
1800 802
1801 529
1802 480
1803 615
1804 559
1805 594
1806 609
1807 342
1808 318
1809 694
1810 579
1811 427
1812 526
1813 402
1814 169
1815 759
1816 319
1817 474
1818 662
1819 522
1820 548
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Year Gauged Data Reconstructed Data
(Mm°) (Mm®)
1821 426
1822 529
1823 512
1824 605
1825 707
1826 620
1827 617
1828 724
1829 629
1830 182
1831 551
1832 595
1833 525
1834 526
1835 704
1836 492
1837 494
1838 798
1839 653
1840 477
1841 333
1842 445
1843 327
1844 637
1845 543
1846 315
1847 563
1848 451
1849 511
1850 538
1851 377
1852 597
1853 441
1854 676
1855 660
1856 448
1857 540
1858 378
1859 693
1860 432
1861 471
1862 174
1863 572
1864 393
1865 691
1866 400
1867 469
1868 374
1869 331
1870 486
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Year Gauged Data Reconstructed Data
(Mm?) (Mm?®)
1871 690
1872 584
1873 594
1874 601
1875 471
1876 619
1877 634
1878 659
1879 650
1880 605
1881 306
1882 495
1883 423
1884 703
1885 679
1886 511
1887 465
1888 277
1889 677
1890 539
1891 350
1892 538
1893 484
1894 470
1895 331
1896 592
1897 799
1898 790
1899 665
1900 755
1901 712
1902 610
1903 748
1904 522
1905 319
1906 615
1907 719
1908 530
1909 260
1910 743
1911 460 506
1912 495 633
1913 401 532
1914 669 580
1915 765 683
1916 544 547
1917 342 339
1918 315 256
1919 506 544
1920 350 379
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Year Gauged Data Reconstructed Data
(Mm°) (Mm°)

1921 361 316
1922 663 568
1923 430 464
1924 436 535
1925 393 496
1926 774 669
1927 658 528
1928 444 561
1929 425 434
1930 408
1931 655
1932 477
1933 353
1934 531
1935 373
1936 327
1937 582
1938 356
1939 430
1940 550
1941 552
1942 652
1943 411
1944 616
1945 563
1946 706
1947 596
1948 368
1949 479
1950 970 545
1951 527 514
1952 833 645
1953 700 535
1954 587 571
1955 616 351
1956 452 495
1957 517 528
1958 637 654
1959 465 465
1960 514 424
1961 394 516
1962 584 617
1963 599 682
1964 590 598
1965 541 557
1966 786

1967 505

1968 650

1969 431

1970 563
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Year Gauged Data Reconstructed Data
(Mm®) (Mm?®)
1971 923
1972 368
1973 789
1974 677
1975 608
1976 252
1977 619
1978 385
1979 422
1980 688
1981 428
1982 300
1983 268
1984 342
1985 548
1986 345
1987 267
1988 404
1989 745
1990 752
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Appendix H

Gauged and Reconstructed

Streamflow Record for 05AA022
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Year Gauged Data Reconstructed Data
(Mm®) (Mm?’)
1639 408
1640 491
1641 516
1642 442
1643 571
1644 538
1645 448
1646 387
1647 479
1648 358
1649 572
1650 434
1651 385
1652 515
1653 493
1654 587
1655 498
1656 428
1657 254
1658 545
1659 590
1660 526
1661 377
1662 574
1663 389
1664 483
1665 615
1666 530
1667 438
1668 571
1669 623
1670 361
1671 519
1672 707
1673 669
1674 339
1675 624
1676 566
1677 472
1678 482
1679 418
1680 573
1681 481
1682 400
1683 310
1684 298
1685 561
1686 441
1687 417
1688 452
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Year

Gauged Data

Reconstructed Data

(Mm®) (Mm®)
1689 601
1690 571
1691 586
1692 373
1693 525
1694 490
1695 403
1696 499
1697 527
1698 653
1699 451
1700 496
1701 395
1702 420
1703 345
1704 534
1705 463
1706 216
1707 499 .
1708 436
1709 557
1710 514
1711 559
1712 552
1713 656
1714 552
1715 376
1716 422
1717 314
1718 453
1719 548
1720 307
1721 387
1722 676
1723 516
1724 498
1725 386
1726 530
1727 506
1728 539
1729 455
1730 441
1731 497
1732 407
1733 597
1734 524
1735 603
1736 548
1737 484
1738 449
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Year Gauged Data Reconstructed Data
(Mm?) (Mm?)
1739 587
1740 557
1741 392
1742 542
1743 459
1744 366
1745 589
1746 392
1747 426
1748 483
1749 530
1750 560
1751 292
1752 581
1753 578
1754 559
1755 432
1756 442
1757 372
1758 443
1759 245
1760 552
1761 516
1762 536
1763 533
1764 382
1765 586
1766 279
1767 663
1768 450
1769 538
1770 559
1771 482
1772 312
1773 437
1774 568
1775 514
1776 411
1777 483
1778 552
1779 474
1780 441
1781 652
1782 515
1783 467
1784 523
1785 493
1786 612
1787 702
1788 534
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Year Gauged Data Reconstructed Data
(Mm’) (Mm?’)
1789 647
1790 371
1791 336
1792 554
1793 227
1794 376
1795 493
1796 370
1797 523
1798 385
1799 471
1800 229
1801 733
1802 466
1803 471
1804 571
1805 535
1806 563
1807 591
1808 422
1809 417
1810 624
1811 510
1812 467
1813 472
1814 311
1815 211
1816 646
1817 332
1818 477
1819 614
1820 533
1821 523
1822 472
1823 508
1824 416
1825 452
1826 578
1827 513
1828 486
1829 617
1830 667
1831 326
1832 488
1833 409
1834 466
1835 524
1836 807
1837 309
1838 327

203




Year Gauged Data Reconstructed Data
(Mm°) (Mm®)
1839 632
1840 576
1841 420
1842 342
1843 437
1844 325
1845 604
1846 541
1847 369
1848 542
1849 435
1850 497
1851 488
1852 409
1853 430
1854 358
1855 660
1856 549
1857 471
1858 499
1859 395
1860 551
1861 366
1862 438
1863 359
1864 558
1865 377
1866 615
1867 377
1868 500
1869 380
1870 369
1871 497
1872 588
1873 488
1874 555
1875 622
1876 489
1877 598
1878 508
1879 588
1880 602
1881 560
1882 435
1883 574
1884 398
1885 535
1886 560
1887 508
1888 494
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Year Gauged Data Reconstructed Data
(Mm®) (Mm”)
1889 246
1890 557
1891 419
1892 391
1893 498
1894 410
1895 447
1896 383
1897 569
1898 627
1899 539
1900 530
1901 640
1902 605
1903 527
1904 667
1905 447
1906 323
1907 496
1908 617
1909 472
1910 396
1911 641 666
1912 382 441
1913 449 509
1914 451 485
1915 451 459
1916 535 518
1917 445 454
1918 352 479
1919 247 298
1920 462 476
1921 380 280
1922 431 347
1923 597 504
1924 448 409
1925 301 468
1926 365 472
1927 824 525
1928 456 468
1929 397 438
1930 362
1931 355
1932 552
1933 479
1934 421
1935 566
1936 404
1937 363
1938 527
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Year Gauged Data Reconstructed Data
(Mm°) (Mm®)

1939 317
1940 438
1941 420
1942 449
1943 497
1944 433
1945 527 554
1946 542 429
1947 637 532
1948 602 543
1949 383 466
1950 736 587
1951 747 576
1952 371 471
1953 679 567
1954 585 615
1955 592 683
1956 514 413
1957 454 458
1958 440 497
1959 646 594
1960 467 489
1961 478 421
1962 344 412
1963 448 505
1964 611 625
1965 604 593
1966 496

1967 595

1968 567

1969 453

1970 514

1971 554

1972 555

1973 419

1974 600

1975 795

1976 345

1977 265

1978 451

1979 399

1980 488

1981 380

1982 461

1983 329

1984 370

1985 510

1986 436

1987 300

1988 303
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Year

Gauged Data

Reconstructed Data

(Mm®) (Mm?®)
1989 541
1990 594
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