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Abstract

The emerging field of Cavity Spintronics studies the strong coupling of light (photon) with matter

(magnons) which leads to the generation of cavity magnon polaritons (CMP). This strong cou-

pling allows energy to be efficiently exchanged between photons and magnons and hence could be

used to develop quantum transducers and long-lifetime multimode quantum memories. The CMP

systems can be made more suitable for potential practical applications by using planar cavities.

Here, a planar tunable cavity was first fabricated that can be used for the on-chip observation of

CMP. This planar cavity can also be adapted to be used as a source of pseudo-magnons to achieve

pseudo-CMP which could be used to fabricate dynamic filters and to switch devices. In planar

CMP systems, a quantitative simulation of the non-resonant radiation damping was also performed

by modifying the traditional coupled matrix model to improve our understanding of this coupled

system.
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Chapter 1

Introduction

The interaction of light with matter gives rise to various physical phenomena such as absorp-

tion, spontaneous and stimulated emission as well as the polarizability of the medium which is

characterized by its refractive index[1]. The underlying assumption in studying these effects is

that the electromagnetic field of the incident light is not strong enough to alter the electronic states

of the medium[1]. However, this assumption can easily breakdown if the incident electromag-

netic field or the interaction is strong. In this case, the mixing between the electrodynamics of

the incident light and the material dynamics leads to the generation of a quasi-particle that has

both photon-like and material-like properties and is known as a ’polariton’[2]. For a homogeneous

medium, the electric permittivity, ε, and the magnetic permeability, µ, can be assumed to be fre-

quency and wave vector independent. However, due to material dynamics, it is possible that an

excitation is generated that has a dipole moment due to which the electric permittivity or the mag-

netic permeability have a frequency or wave vector dependence as well as a resonance[3]. In this

case, the electric and magnetic fields of the propagating light can strongly couple with the resonant

material dynamics and generate polaritons[3].

The polariton was first discovered independently by both Tolpygo[4] and Huang[5] who were

theoretically studying the coupling between electromagnetic fields and the vibrations in a crystal

lattice (phonons) that leads to the generation of phonon-polaritons. Since there are many different
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material dynamics that can lead to the generation of an electric or magnetic dipole moment which

can couple to the electromagnetic field of the incident radiation, there are many different types

of polaritons that are generated and have been studied[3]. For example, the coupling between

visible light and exciton (a quasi-particle resulting from the coupling between an electron-hole

pair) leads to the generation of exciton polariton[6], whereas, the strong coupling between cavity

photons and excitons leads to the generation of cavity exciton polaritons[7, 8]. In both the cases,

the coupling between the electron-hole pair generates an electric dipole moment that couples with

the electromagnetic field of the visible light. The electromagnetic field of the incident radiation

can also couple with the magnetic dipole moment generated due to magnons (quasi-particle formed

due to the collective excitation of electron spins) in a magnetic crystal. This coupling leads to the

generation of magnon-polaritons[3].

Following the discovery of polariton, this area of research evolved greatly over the years during

which different types of polaritons were theoretically and experimentally studied. This not only

led to a better understanding of the basic physics of how light interacts with matter in different

scenarios but also led to the creation of new areas of research such as cavity exciton polaritons[9]

and cavity magnon polaritons (CMP)[10]. The strong coupling of cavity photons and magnons

was first theoretically studied by Soykal and Flatte[11] who predicted that this coupling could

be achieved at microwave frequencies by using a nano-magnet. Following this theoretical real-

ization, continuous research in this area has led to the development of various potential practical

applications[12].

However, the previously used experimental CMP systems have some limitations in terms of

adaptation for practical applications. This is because they often consist of a 3-D cavity and require

an electromagnet to tune the resonance frequency of the magnon mode. Therefore, to use the CMP

systems for potential practical applications, it is important to develop on-chip planar tunable CMP

systems that do not rely on an electromagnet. Furthermore, characterizing the radiation damping in

such planar CMP systems through experiments and quantitative simulations would also be useful

for the design and adaptation of these systems for practical applications.
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1.1 General Model of Polariton Dispersion using Maxwell’s Equa-

tions

Even though the different polaritons that have been briefly described above have different ma-

terial dynamics from which they originate, it is possible to have a general theoretical approach that

describes the frequency dispersion of the incident light due to the generation of polaritons. Firstly,

the propagation of the incident electromagnetic radiation in matter can be described by using the

Maxwell’s equations in SI units as

∇× E = −∂B
∂t
,

∇×H =
∂D
∂t
,

(1.1)

where E,D,B,H are the electric field, electric displacement field, magnetic field, and magnetic

field strength, respectively. The electric displacement field and the magnetic field strength are

related to the electric field and the magnetic field, respectively according to the relations

D = ε0ε(k, ω)E,

B = µ0µ(k, ω)H,
(1.2)

where ε0, µ0 are the electric permittivity and magnetic permeability of the free space, respectively;

whereas ε(k, ω), µ(k, ω) are the frequency (ω) and wave vector (k) dependent electric permittivity

and magnetic permeability, respectively generated due to a dipole carrying excitation in a medium.

Using the relations given in Eq. (1.2), the two Maxwell’s equations given by Eq. (1.1) can be

combined to obtain a single equation that contains only the electric field as

c2(∇× (∇× E)) + ε(k, ω)µ(k, ω)
∂2E
∂t2

= 0, (1.3)
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where c is the speed of light in vacuum. A similar equation can be obtained which contains the

magnetic field only. As described in Ref. [3], when the frequency dependent permittivity and

permeability are isotropic, the solutions of the above equation that are of interest are the ones for

which the electric field E is perpendicular to the wave vector k. Assuming that the electric field

has a form similar to the plane wave i.e. E ∝ ei(kx−ωt), the dispersion relation for the transverse

wave that satisfies the above equation is given by

ω2 =
c2|k|2

ε(k, ω)µ(k, ω)
. (1.4)

When the permittivity and permeability are both independent of the frequency and the wave vector,

the above equation gives

ω =
c|k|
√
εµ
, (1.5)

which is the well-known linear dispersion relation of frequency with the wave vector k. Therefore,

in the case where the ε and µ are both independent of the frequency and the wave vector, the light

simply travels through the medium with a velocity that is different than the velocity of light in

vacuum by a factor of 1/
√
εµ. However, when ε or µ is frequency and wave vector dependent,

the frequency dispersion due to the generation of polaritons can be calculated using Eq. (1.4) by

substituting the appropriate form of ε(k, ω) (µ(k, ω)) for polaritons formed due to the coupling be-

tween the electric (magnetic) field of the incident light with the electric (magnetic) dipole moment

generated due to material dynamics[3].
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1.2 Calculating Frequency Dispersion due to Phonon-Polaritons

In order to see how Eq. (1.4) can be used to calculate the polariton frequency dispersion

consider a simple case of phonon-polaritons. In diatomic crystals, the lattice vibrations give rise

to long wavelength optical phonons which can produce an electric dipole moment in each unit

cell[3, 5]. This leads to the generation of transverse optical phonons which can strongly couple

with the transverse incident electromagnetic waves to produce the phonon-polaritons.

To study the frequency dispersion due to the generation of these phonon-polaritons the electric

permittivity and magnetic permeability are assumed to be isotropic in order have a solution of the

form of Eq. (1.4). Therefore, in this case, the magnetic permeability of the crystal is assumed

to be 1 and the electric permittivity is considered to be isotropic in the limit the wave vector k is

very small[3]. Hence, it can be assumed that the electric permittivity essentially depends only on

the frequency and is independent of the wave vector. The total permittivity of the crystal, in the

absence of any damping, can therefore be written as

ε(ω) = ε0 +
Ω2

p

ω2
T − ω2

, (1.6)

where ε0 is the electric permittivity from all other sources of polarization except from the motion of

the lattice, ωT is the resonance frequency of the transverse phonons in the crystal, and Ω2
p =

4πne′2

m

is the effective unscreened plasma frequency for the lattice which has n unit cells per unit volume

with reduced mass m. e′ is the effective charge of ions in a unit cell of the lattice. A detailed

derivation of this equation from the relative motion of sublattices can be found in Ref. [3].

Equation (1.6) exhibits a resonant structure that allows the electrical permittivity of the medium

to affect the propagation of light with frequency near the transverse phonon mode frequency ωT .

Thus, the frequency dispersion of light can be obtained by substituting the expression for the
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Figure 1.1: Frequency dispersion plotted as a function of the wave vector shows the presence of
the two polariton branches that undergo anti-crossing. The black, blue, and red dashed lines show
the uncoupled frequency dispersion of the transverse phonon mode, the incident light in vacuum,
and in medium, respectively; the dotted line represents the longitudinal phonon mode[3, 5].

permittivity shown above into Eq. (1.4) as

ω2 =
c2|k|2

ε0 +
Ω2

p

ω2
T − ω2

, (1.7)

from which the frequency can be solved for in terms of the wave vector as being

ω2
± =

c2|k|2

ε0
+ ω2

T + Ω2
p ±

√
(
c2|k|2

ε0
− ω2

T − Ω2
p)

2 +
4c2|k|2Ω2

p

ε0

2
. (1.8)

The result from the above equation has been plotted in Fig. 1.1 which shows the presence of two

frequencies for each value of wave vector k which correspond to the two branches of the polariton

modes generated due to the interaction between the transverse phonon modes and the transverse

incident electromagnetic field.

As shown in Fig. 1.1, as |k| → 0, the resonance frequency for the lower polariton branch
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goes to 0; whereas, the resonance frequency of the upper polariton branch approaches ωL which

corresponds to the resonance frequency of the long-wavelength longitudinal phonon modes[3, 5].

At this frequency, ε(ω) = 0 because for a longitudinal wave, the electric field E is always parallel

to the wave vector k and the electric displacement field ∇ · D = ε(ω)∇ · E can only be 0 when

ε(ω) = 0. Here,∇·D = 0 because there are no free charges present in a crystal[3]. The resonance

frequency of the longitudinal phonon modes can be calculated by setting ε(ω) = 0 in Eq. (1.6)

which gives

ω2
L = ω2

T +
Ω2

p

ε0
. (1.9)

which can also be written as
ωL

ωT

=

√
εs
ε0

where εs = ε0 +
Ω2

p

ω2
T

is the static or the zero frequency

electrical permittivity[3]. The longitudinal phonon modes do not couple with the transverse inci-

dent electromagnetic field due to which their resonance frequency remains unchanged[5] as shown

by the dotted line in Fig. 1.1. When |k| → ∞, the frequency of the lower polariton branch

approaches ωT , whereas the frequency of the upper polariton branch approaches the limiting be-

haviour of ω =
c|k|
√
ε0

as shown by the blue dashed line in Fig. 1.1. This implies that the frequency

of the incident light is much higher than the frequency of the light that can excite the oscillation

of crystal lattice and couple with it to generate phonon-polaritons. Therefore, when k → ∞ the

incident light will simply pass through the crystal.

Figure 1.1 clearly shows the anti-crossing between the two polariton branches that are separated

by a forbidden frequency (or Rabi) gap of ωL − ωT where ε(ω) is negative[3]. This generation of

two hybridized modes or polariton branches whose resonance frequency dispersion shows an anti-

crossing behaviour is a general feature which has been used to study the various different types of

polaritons[1, 3].
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1.3 Emergence of Cavity Polaritons

Following the theoretical description of polaritons by Huang[5], this concept was readily adapted

to describe the interaction of electromagnetic waves with the different material dynamics such as

excitons and magnons[12]. The field of polariton research regained momentum when cavity ex-

citon polaritons were demonstrated experimentally due to the strong coupling of excitons with

cavity photons[9, 12]. In this case, the solutions to the Maxwell’s equations must satisfy additional

boundary conditions being imposed due to the cavity due to which only certain wave vectors can

exist. To study cavity exciton polaritons, planar optical Fabry-Perot cavities that are made of two

highly reflecting mirrors are used[1]. The resulting cavity exciton polaritons are highly non-linear

and have a non-parabolic dispersion along with a very small effective mass. Therefore, these po-

laritons allow the observation of Bose-Einstein condensation, super-fluidity and spatial coherence

over a long range[1, 12].

Continuous research in this area has led to the development of various practical applications

such as electrically pumped low threshold polariton lasers, all optical logic circuits that include

polariton diodes and quantum polaritonics which are polariton-based quantum electronics[1, 12].

The cavity exciton polaritons could also be used as quantum bits (qubits) for the development of

quantum memories due to their ability to undergo Rabi oscillations between cavity photon and

exciton states[1]. Such cavity photon-exciton coupling based quantum memories could be used

to speed up computations and have potential applications in quantum simulation and quantum

cryptography[1].

In general, the coupling regime where polaritons are formed is known as the strong coupling

regime. This regime occurs when the energy dissipation rates due to electrodynamics of incident

light and the material dynamics is much smaller than the coupling strength between the systems[1,

11, 12]. In a cavity photon-exciton system the dissipation losses occur due to the reflectivity of the

mirrors as well as due to the energy lost by the excitons. This coupling can be described by using
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the Hamiltonian for the coupled system under the rotating wave approximation[1] as

H =

Ep − iγp ΩR/2

ΩR/2 Ee − iγe

 (1.10)

where Ep, Ee are the dispersion relations of the energies of the cavity photons and excitons, re-

spectively. γp, γe are the dissipation losses of the cavity photons and excitons, respectively with

a coupling strength ΩR which is known as the Rabi energy[1]. The real part of the eigenvalues

of the above matrix can be used to calculate the frequency/energy dispersion as a function of the

energy detuning (Ep − Ee). This plot would reveal an anti-crossing feature between the upper

and lower polariton branches. The imaginary part of the eigenvalues reveals the evolution of the

dissipation losses of the two systems. Therefore, this Hamiltonian model provides an alternative

pathway to calculate the resonance frequency dispersion of the system due to the generation of

cavity exciton polaritons and can be easily extended to describe other polariton systems. A more

detailed description about the derivation of this Hamiltonian can be found in Ref. [1].

While the cavity photon-exciton coupling experiments are performed at optical frequencies

by using semiconductor materials[1, 12], in 2010, it was theoretically predicted that strong cavity

photon-magnon coupling could be achieved at microwave frequencies by using a nano-magnet[11].

In 2013, Huebl et al.[13] provided the first experimental demonstration of this strong cavity photon-

magnon coupling at a cryogenic temperature of 50 mK by using the magnons in an yttrium iron

garnate (YIG) sample and microwave photons from a superconducting coplanar waveguide. Since

the cavity photon-magnon coupling strength is proportional to the square root of number of spins

present in the magnon sample (
√
N )[13, 14, 15], YIG is often chosen as a source of magnons to

achieve stronger coupling strengths due to its higher spin density compared to paramagnetic spin

ensembles[13, 14]. Furthermore, YIG also has low damping[13, 14] due to which it can be used

observe the strong cavity photon-magnon coupling regime which requires that the cavity photon-

magnon damping rates should be much smaller than the coupling strength between them. The

initial interest in this research area was to achieve quantum strong cavity photon-magnon coupling
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for the purpose of achieving efficient transfer of quantum information between the cavity photon

and magnon states via Rabi oscillations[12]. Therefore, in order to achieve such quantum coupling

cryogenic conditions were required due to which the initial experimental work was performed at

low temperatures[13, 14].

However, in 2014, it was demonstrated by Zhang et al.[15], that this strong cavity photon-

magnon coupling and classical Rabi-like oscillations could also be observed at room temperatures.

They further showed that by tuning their cavity, they could classically observe the different cou-

pling regimes (Strong, Weak, Magnetically induced transparency and Purcell) that were defined

by the ratios between the cavity photon-magnon coupling strength to the cavity and magnon dissi-

pation rates[15]. In 2015, Bai et al.[10] showed that this coupling leads to the generation of CMP

which can be electrically detected and described by using a classical electrodynamics model. This

model describes the cavity photon-magnon coupling by using the Ampère’s and Faraday’s Laws

and hence, differs from the earlier studies which mostly used the quantum Hamiltonian to describe

this coupling. A more detailed description of these two models will be given in the next chapter.

The pioneering work in this field described above has brought forward an important ques-

tion regarding the difference between the quantum and classical regimes of the cavity photon-

magnon coupling[12]. Since, the strong cavity photon-magnon coupling can be achieved both at

cryogenic as well as room temperatures and the commonly studied experimental features (reso-

nance frequency anti-crossing and linewidth exchange) can be described by using the quantum

theory[13, 15] or by using the Maxwell’s equations for macroscopic electromagnetic fields[10]

it becomes difficult to distinguish between the quantum and classical regimes of the CMP sys-

tem. Therefore, new experiments are being designed to probe the boundary between the quantum

and classical regimes and to search for experimental features that can be exclusively described by

quantum mechanics[12].

Furthermore, continuous research work in this area has also led to the development of various

potential practical applications for the CMP systems such as the development of quantum transduc-

ers that have the ability to coherently link various quantum systems[16], long-lifetime multi-mode
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quantum memories wherein the Rabi oscillations between the cavity photon and magnon states

could be used as a quantum bit[12, 16] and quantum repeaters[17]. However, the experimental

systems that are often used to study the cavity photon-magnon coupling consist of a 3-D cav-

ity and almost exclusively rely on an electromagnet to tune the resonance frequency of the YIG

magnon modes to observe the CMP. These requirements make the CMP system not very suitable

for potential practical applications. Therefore, it is important to develop an on-chip CMP system

that does not rely on an electromagnet. Moreover, it is important to completely characterize the

sources of damping in planar CMP systems for the design and adaptation of these systems for

potential practical applications.

1.4 Thesis Outline

The research objectives for this thesis were to make the cavity photon-magnon coupled sys-

tem more suitable for potential practical applications and to modify the theoretical model to better

understand the cavity photon-magnon coupling physics and describe the various experimental re-

sults that were obtained. This thesis is divided into 4 chapters. The first chapter, as seen here

discusses the history of polariton research and gives an overview of the field of CMPs by sum-

marizing some of the pioneering research work in this area and discussing an important unsolved

problem regarding the design and adaptation of these systems for practical applications. In the sec-

ond chapter, the different theoretical models: classical harmonic oscillator, quantum Hamiltonian,

and the classical electrodynamics model have been described. The features of a common matrix

model that arises from these different theoretical models has also been discussed there. In the

third chapter, some important background information required to experimentally study the cavity

photon-magnon coupled system has been first described. This is then followed by a discussion of

the experiments that were performed to meet the research objectives described above. The final

chapter of this thesis summarizes the results of these experiments and outlines some of the future

research work that could be performed.
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Chapter 2

Theory

In order to understand and explain the cavity photon-magnon coupling, in this chapter, a brief

review of the different theoretical models that have been proposed is presented. In general, this

coupling can be described by using the coupled harmonic oscillator analogy which assumes that

the cavity mode and the magnon mode can be modelled as two harmonic oscillators that are cou-

pled to each other via a coupling constant κ. From this harmonic oscillator picture, the resonance

frequency dispersion that shows the generation of polaritons and the linewidth evolution of the cav-

ity photon and the magnon mode can be calculated by using either the quantum hamiltonian or the

classical equations of motion for the coupled harmonic oscillator system. Each of these two meth-

ods is presented in detail in the following sections of this chapter. Furthermore, another method

proposed by Bai et. al.[10] that uses classical electrodynamics to study the cavity photon-magnon

coupling is described. This classical electrodynamics model describes the origin of the cavity

photon-magnon coupling from the phase correlation effect arising from Faraday’s and Ampère’s

laws. Yet, the final equation, that can be used to theoretically model the cavity photon-magnon

coupling, obtained from these three different methods remains the same and is a 2 x 2 matrix. In

the final section, it is shown how this two coupled oscillator system described by a 2 x 2 matrix can

be expanded to an N-coupled oscillator system to describe the coupling between multiple cavity

and/or magnon modes.
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2.1 Classical Harmonic Oscillator Model

Figure 2.1: Schematic diagram of the two coupled harmonic oscillator model that can be used to
describe the cavity-photon magnon coupling.

As described previously, the cavity photon magnon coupling can be represented by using a

coupled harmonic oscillator system as shown in Fig. 2.1. In this figure the two oscillators have

a unit mass, a resonance frequency of ωc and ωm and represent the microwave cavity photon and

the magnon modes, respectively. These two oscillators are coupled via a coupling constant κ.

Let β and α be the damping of the oscillators representing the cavity and the magnon mode,

respectively. These damping constants are used to model the intrinsic losses of the cavity and the

Gilbert damping of the magnon mode. A detailed description of the effect of Gilbert damping

on the magnon mode is given in the next chapter. The derivation of equations of motion for this

system [Eq. (A.10)] has been discussed in detail in Appendix A.

The derived equations of motion can be written in a 2 x 2 matrix format as

ω2 − ω2
c + iωωcβ −κω2

c

−κω2
c ω2 − ω2

m + iωωcα


Ac

Am

 =

−f
0

 . (2.1)

Here, f is the driving force acting on the oscillator representing the cavity photon mode, the diag-

onal terms represent the resonance of the harmonic oscillators that model the cavity mode and the
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magnon mode, respectively and the off-diagonal terms denote the coupling between them. From

this matrix equation, it can be easily seen that in the absence of the coupling term (i.e. κ = 0), only

the resonance of the cavity mode oscillator will be observed i.e. Am = 0. By solving for ω from

the determinant of the above matrix [given by Eq. (A.12)], two roots are obtained. The real part

of the roots gives the resonance frequency dispersion for the two oscillators; whereas, the imagi-

nary part of the roots gives the linewidth evolution of the two modes[18]. These two results can

therefore be used to explain the experimentally obtained data in CMP experiments which shows

the generation of the ’Rabi gap of the CMP’[19] and the linewidth evolution of the cavity photon

and the magnon mode.

When ωc = ωm i.e. the resonance frequency of the two oscillators is matched, the real part of

the eigenfrequencies of this system [Eq. A.13] can be simplified such that

ω± = ωc ±
κωc

2
. (2.2)

Thus, the resonance frequency difference between the two hybridised modes is given by ∆ωgap =

ω+ − ω− = κωc. Therefore, if the cavity resonance frequency is known, the coupling strength

between the two resonators can be determined experimentally from the ’Rabi gap of CMP’.

The theoretical model briefly described here is sufficient to model the frequency dispersion

and the linewidth exchange between the two resonators. However, in order to relate the amplitudes

of oscillation (Ac, Am) of the oscillators to the microwave transmission that is usually measured

in experiments, Harder et. al[18] developed a formalism that can be used to calculate the input

and output energy of the system. This is achieved by connecting an absorber, which models the

measurement system, to the cavity mode oscillator. If it is assumed that the output oscillator has no

damping, then the output energy and hence the microwave transmission is found to be proportional

to |Ac|2 where

|Ac|2 =
|ω2 − ω2

m + iαωωc|2

|det(Ω)|2
. (2.3)

and det(Ω) is the determinant of the coupling matrix given by Eq. (A.12). An exact quantitative
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Figure 2.2: Simulated amplitude of oscillation, obtained from the classical harmonic oscillator
model Eq. (2.3), shows the generation of two hybridized modes with ∆ωgap/2π = 0.2 GHz.

relationship between the microwave transmission and |Ac|2 along with its detailed derivation can

be found in Ref. [18]. Figure 2.2 shows a simulated oscillation amplitude (|Ac|2) curve plotted

as a function of frequency at ωc/2π = ωm/2π = 4 GHz which is similar to the experimentally

obtained microwave transmission curve obtained in cavity photon-magnon coupling experiments.

Here, α = 0.0002 and β = 0.003. This figure clearly shows the generation of two hybridized

modes, separated by a frequency difference of ∆ωgap/2π = 0.2 GHz which is dependent on the

coupling strength κ = 0.05 between the oscillators.

When ωc 6= ωm, there will be less efficient transfer of energy between the two modes due to

which the peak amplitudes of the two modes will be different. Using the real and imaginary parts

of the roots of Eq. (A.12), the resonance frequency and the linewidth of the two modes can be

simulated and have been plotted as a function of the detuning ∆ = ωm−ωc in Figs. 2.3(a) and (b),

respectively. These figures show the two key features that are often used to experimentally study

the cavity photon-magnon coupling[10, 12, 15, 18]. Figure 2.3(a) shows that the coupling between

the two modes leads to generation of the Rabi gap due to the generation of CMP; whereas, Fig.
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Figure 2.3: Simulated (a) resonance frequency and (b) linewidth of the cavity photon-magnon
modes obtained from the classical harmonic oscillator model Eq. (A.12) plotted as a function of
the detuning ∆

2.3(b) shows the linewidth evolution of the two modes.

Therefore, by using the classical harmonic oscillator model, the microwave transmission line-

shape, resonance frequency dispersion as well as the linewidth of the hybridized cavity photon-

magnon modes can be described. The advantages of using this model is that it is relatively easy to

use and it directly demonstrates the harmonic nature of the cavity photon-magnon coupling. This

model can also be easily extended to describe the coupling between multiple oscillators[18]. This

possibility of extending the harmonic oscillator model [Eq. (2.1)] will be discussed in more detail

in the final section of this chapter.
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2.2 Quantum Hamiltonian Model

While the previous model provided a macroscopic classical description of the cavity photon-

magnon coupling, this coupling can also be explained by using a microscopic quantum theory

of spins and electromagnetic fields[18]. The Hamiltonian for the interaction between the cavity

photons and the spins of a ferri/ferromagnetic material can be written as H = Hspin + Hphoton +

Hcoupling where Hspin, Hphoton, and Hcoupling are the Hamiltonians that describe the spin, photon,

and the interaction between these two systems, respectively.

While the actual form of this Hamiltonian might be very complex, some assumptions/approximations

can be made to simplify it. One such approximation is the rotating wave approximation in which

all the rapidly oscillating terms of the Hamiltonian can be neglected[15]. Along with this approx-

imation if it is assumed that there exists only one cavity mode and one magnon mode, then the

Hamiltonian of this system can be written as

H/h̄− ωc + ωm

2
= ωmm

†m+ ωcp
†p+ κq(p

†m+m†p)

=

[
p† m†

]ωc κq

κq ωm


 p
m

 . (2.4)

Here, ωm, ωc are the resonance frequencies of the magnon and the cavity mode, respectively, p†,

(p) is the photon creation (annihilation) operator, m† (m) is the magnon creation (annihilation)

operator, and κq is the coupling strength between the cavity and the spin system[15, 16, 18]. This

is the Dicke model or the N spin version of the Jaynes Cummings model, known as the Tavis

Cummings model[13, 18]. This model gives the quantum description of two coupled harmonic

oscillators in which one oscillator corresponds to the spin system and the other corresponds to the

electromagnetic field of the cavity. The coupling strength κq in this case is related to microscopic

parameters, and is given by

κq =
ηγ

2

√
h̄ωcµ0

V

√
2Ns, (2.5)
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where, V is the volume of the cavity, γ is the gyromagnetic ratio, N is the total number of spins in

the ferri/ferromagnetic sample, s is the spin number for a ground state ion of the sample, and η is

the overlap factor[15, 20].

The overlap factor determines the energy exchange efficiency between the cavity mode and the

spin system and can be written as

η = |
∫

(hrf ·m)dVs
hmaxmmaxVs

|, (2.6)

where, hmax is the maximum magnetic field due to the cavity, hrf is the amplitude of the mi-

crowave magnetic field at a distance r where the magnetic sample is located, Vs is the volume of

the magnetic sample, m is the time dependent off z-axis magnetization[20]. Therefore, the over-

lap factor and hence the coupling strength between the cavity photon-magnon system depends on

the relative location of the spin system inside the cavity. Furthermore, Eq. (2.5) shows that the

coupling strength is proportional to the square root of the number of spins present in the system.

Therefore, in order to experimentally achieve strong photon-magnon coupling, a magnetic sample

with a high spin density is desirable as mentioned in the previous chapter. The eigenvalues of the

Hamiltonian given in Eq. (2.4) can then be written as

ω± =
ωc + ωm ±

√
(ωc − ωm)2 + 4κ2q

2
. (2.7)

Here again, when ωc = ωm, ωgap = ω+− ω− = 2κq[13, 18]. The microwave transmission through

the cavity photon-magnon system can also be calculated using this quantum theory along with the

Green’s function for a photon; a detailed derivation for this can be found in Ref. [18].

Hence, the quantum theory of spins and electromagnetic fields can be simplified to obtain the

quantum coupled harmonic oscillator model which can be used to describe the cavity photon-

magnon coupling. The advantage of using this model is that it shows the coupling strength depen-

dence on the number of spins (N ) in the magnetic sample and on the overlap factor (η) which was

otherwise not predicted by the classical harmonic oscillator model described previously.
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2.3 Classical Electrodynamics Model

The previously described classical harmonic oscillator model does not outline the physical

origin of the cavity photon-magnon coupling. To overcome this limitation, Bai et. al[10] proposed

a classical dynamic phase correlation model in which they attribute the origin of the CMP to

electrodynamic coupling arising from Faraday’s and Ampère’s Laws. Figure 2.4 shows a schematic

diagram that can be used to explain the classical electrodynamics model. As shown in this figure,

in the absence of coupling, the cavity resonance can be modelled by using an LCR circuit which

has an inductor with inductance L, a capacitor with capacitance C and a resistor with resistance

R connected in series. This circuit carries a microwave current jx + ijy. The cavity resonance

frequency is therefore given by ωc =
1√
LC

and the damping, normalized with respect to the

cavity resonance frequency is given by β = R

√
C

L
.

Without coupling, the dynamic magnetization precession of the ferri/ferromagnetic sample is

solely governed by the Landau-Lifshitz-Gilbert (LLG) equation. A more detailed description of

how the LLG equation can be used to solve for the magnetization precession and ferromagnetic

resonance has been given in the next chapter. Nonetheless, the solution for the magnetization

precession using the LLG equation can be written as m = Amx + imy = me−iωt[10, 18] where

A = ω0/ωm, ω0 = γH and ωm is the resonance frequency of the magnetization precession which

depends on the geometry of the sample. For example, for a spherical sample, ωm = γ(H + Ha)

with an applied magnetic field H along the z-direction. Here, Ha is the anisotropy field which

depends on the geometry, and is usually much smaller than H; therefore, A ' 1.

When this ferri/ferromagnetic sample is placed inside a microwave cavity, the magnetization

precession induces an additional voltage due to Faraday’s Law. This induced voltage can be written

as

Vx = KcL
dmy

dt
,

Vy = −KcL
dmx

dt
,

(2.8)
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Figure 2.4: Schematic diagram of the classical electrodynamics model proposed by Bai et. al[10]
that describes the coupling between a cavity mode represented as an LCR circuit and the magneti-
zation precession of a ferri/ferromagnetic spin system.

where, Kc is the coupling constant that determines the phase relation between the cavity photon

and magnon due to Faraday’s Law. The total induced voltage Vind = Vx + iVy = −KcLωm

can be added to the cavity LCR circuit as an additional voltage source which in turn changes the

microwave current in the cavity as Vind = jZc. Here, Zc is the impedance of the LCR circuit

that is used to model the cavity and is given by Zc =
−iL
ω

(ω2 − ω2
c + iβωωc). The additional

microwave current, generated due to the induced voltage, would then affect the microwave field that

drives the magnetization precession[10]. According to Ampère’s Law, the relationship between the

microwave field generated due to the microwave current can be written as

hx = Kmjy,

hy = −Kmjx,

(2.9)

where, Km is the coupling constant that determines the phase relation between the cavity photon

and magnon due to Ampère’s Law.

From the LLG equation, the magnetization can now be written as m =
iω0Kmj

ω − ωm + iαω
where

α is the Gilbert damping associated with the magnon mode, and ω0 = γM0 with M0 being the

saturation magnetization. Therefore, the equations of motion that describe the electrodynamic
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cavity photon-magnon coupling due to both Faraday’s and Ampère’s Laws can be written as

−iL
ω

(ω2 − ω2
c + iβωωc)j = −KcLωm,

iω0Kmj = (ω − ωm + iαω)m,

(2.10)

or in matrix format asω2 − ω2
c + iβωωc iω2Kc

−iω0Km ω − ωm + iαω


 j
m

 =

0

0

 . (2.11)

The determinant of this 2 x 2 matrix is given by (ω2−ω2
c +iβωωc)(ω−ωm+iαω)−ω2ω0KcKm.

Similar to the classical harmonic oscillator model that was described previously, the resonance

frequency dispersion and the linewidth evolution of the cavity photon-magnon modes can be found

by using the real and imaginary parts of the roots of this determinant[10]. Here, the coupling

strength K between the cavity photon and the magnon mode is given by K =
√
KcKm. If α, β �

1, the roots can be easily calculated as being

ω± =
ωc + ωm ±

√
(ωc − ωm)2 +K2ω0ωc

2
. (2.12)

If ωc = ωm, ωgap = ω+−ω− = K
√
ω0ωc[10, 18]. Therefore, the electrodynamic coupling strength

can be directly estimated from the experimental data by using the frequency separation between

the two hybridized modes generated. The microwave transmission can also be calculated using this

classical electrodynamic model by using the microwave circuit theory and a detailed derivation has

been presented in Ref. [18].

Therefore, the classical electrodynamics model is valuable since it can both explain the origin

as well as the key features of the cavity photon-magnon coupling by using the phase correlation

due to Ampère’s and Faraday’s Laws. This model can also be easily extended to describe the

coupling between multiple cavity photon and magnon modes[10, 18].
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2.4 Features of the Matrix Model

In the previous sections, three different models have been described that can be used to model

the cavity photon-magnon coupling. While each of these three models have their own origin and

advantages, these models give a similar 2 x 2 coupling matrix whose general form can be written

from Eqs. (2.1, 2.4, and 2.11) as being

Ω =

Cavity resonance Coupling term

Coupling term Magnon resonance

 . (2.13)

In this matrix, the diagonal elements contain the terms that describe the uncoupled resonance of

the cavity mode and the magnon mode; whereas, the off-diagonal elements represent the coupling

between the cavity and the magnon modes. Such a 2 x 2 matrix is obtained irrespective of which

theoretical model is chosen to describe the cavity photon-magnon coupling. The real and imag-

inary parts of the eigenvalues of this matrix can then be used to model the resonance frequency

dispersion and the linewidth evolution of the cavity photon and magnon modes which are the two

key experimental features that have been used to experimentally study the cavity photon-magnon

coupling[15, 10, 18].

Using the above described general form of the coupling matrix (Ω), this matrix model can

be easily extended to describe a cavity photon-magnon coupling system that has multiple cavity

and/or magnon modes. For example, consider a system that contains 2 magnon modes separately

coupled with a single cavity mode. This system can then be described by a 3 x 3 matrix given by

Ω =


Cavity resonance κ1 κ2

κ1 Magnon1 resonance κ3

κ2 κ3 Magnon2 resonance

 , (2.14)

where, κ1 (κ2) is the coupling term between the cavity mode and the magnon mode 1 (2), and

κ3 is the coupling between the two magnon modes. Here again, the diagonal elements are the
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resonance terms describing the cavity and the 2 magnon modes; whereas, each pair of the off-

diagonal elements describe the coupling between the cavity mode and the respective magnon mode.

The coupling terms in the above matrices are different for each of the three different models that

have been described in the previous sections. For experimental results obtained for a macrospin

system at room temperature, either of those three models can be used to describe the cavity photon

magnon coupling i.e. no difference will be observed for the results obtained from the quantum

or the two classical models[12]. However, some differences may arise at low temperatures or in

a few spin system wherein the quantum nature of this coupling may become dominant due to the

breakdown of the assumptions that allow the simplification of the quantum Hamiltonian model

to a quantum coupled harmonic oscillator system. Therefore, the cavity photon-magnon coupling

could be used to explore the boundary between the quantum and classical regimes[12].

The relationship between κ, κq and K (the coupling strengths for the classical harmonic oscil-

lator, the quantum Hamiltonian and the classical electrodynamics model) can be determined for

the case when ωc = ωm from Eqs. (A.13, 2.7, and 2.12) as

∆ωgap = κωc = 2κq = K
√
ω0ωc, (2.15)

where, κq =
ηγ

2

√
h̄ωcµ0

V

√
2Ns[15]. Therefore, in the harmonic oscillator limit, the coupling

strengths obtained from the classical harmonic oscillator and the phase correlation models can also

be related to microscopic parameters.

In this thesis, the classical harmonic oscillator model is extended and modified to describe the

various experimental results that were obtained. These results have been presented in detail in the

next chapter.
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Chapter 3

Experiment and Results

In this chapter, the main experimental results related to the topic of cavity photon-magnon cou-

pling are presented. Firstly, a short background section is provided which describes the knowledge

that forms the basis for experimentally studying this cavity photon-magnon coupling. Then the

following three sections of this chapter describe in detail the three main results that were obtained

i.e. voltage control of cavity photon-magnon coupling, non-resonant radiation damping in CMP

systems and voltage tunable pseudo cavity photon-magnon coupling.

3.1 Background

As described in the previous chapter, the cavity photon-magnon coupling studies the inter-

action or the energy exchange efficiency between a cavity photon and a ferri/ferromagnetic spin

system. The cavity photon-magnon coupling is often experimentally studied in the microwave

(GHz) regime because efficient THz radiation generation and detection electronics are still under

development. Traditionally, the external magnetic field is required to tune the resonance frequency

of the spin system. In this work, alternative ways to study the cavity photon-magnon coupling are

explored which do not require the external magnetic field and may make this system more suitable

for potential practical applications. These alternative methods can be devised by using an arti-

ficially engineered structure known as a split ring resonator (SRR) that has an effective magnetic
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permeability and can either enhance/oppose the incident electromagnetic radiation based on its rel-

ative orientation[21, 22]. Thus, a SRR could either be used to design a cavity or be used a source of

pseudo magnons in the cavity photon-magnon coupling experiments to replace the ferromagnetic

sample. Both of these alternatives have been explored in detail in the following sections of this

chapter. But firstly, in this section a detailed discussion of the elements required for studying the

cavity photon-magnon coupling and the reasoning used for the selection of particular components

in carrying out the experiments is presented.

3.1.1 S-Parameter Measurement

In this thesis, the cavity photon-magnon coupling is experimentally studied by measuring the

microwave transmission through this system. The microwave propagation through any system can

be described by using the transmission line theory. This theory has the ability to describe wave

propagation in terms of voltage, current and impedance[23]. Therefore, it has been widely used at

radio and microwave frequencies to describe wave propagation through cavities, transmission lines

and resonators etc by modelling them as lumped capacitances, and inductances. It is also being

extensively employed to describe the response of metamaterials operating in GHz range[24, 25].

A key feature of the transmission line theory is that it provides us the ability to analyse microwave

networks that are just a cascade connection of two port networks by simply using the Transmission

(ABCD) matrix. For a two-port network shown in Fig. 3.1(a), the transmission matrix is defined

as V1
I1

 =

A B

C D


V2
I2

 , (3.1)

where V1, I1 are the input voltage and current applied at Port 1; whereas, V2, I2 are the output

voltage and current at Port 2. The advantage of using the transmission matrix is that for a cas-

cade connection of two port networks, the overall transmission matrix can be found by simply

multiplying the transmission matrix for each individual network.

However the drawback of using the ABCD matrix is that it is difficult to measure the input
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Figure 3.1: (a) The transfer and (b) the scattering matrix parameters for a two-port network.

or transmitted microwave current and voltage due to which the microwave transmission is exper-

imentally measured in terms of the scattering (S) parameters[23]. The S-parameters of an active

or passive microwave network are the ratios of the voltage waves reflected from, to the voltage

waves incident on any microwave port i[23]. In general, the S-parameters measure the microwave

reflection and transmission through a system. In microwave range, the magnitude and phase of

these parameters are usually measured by a vector network analyzer(VNA) which consists of two

or four channels. For a two port network shown in Fig. 3.1(b), the scattering or the S-matrix is

given by

[S] =

S11 S12

S21 S22

 , (3.2)

where Sij =
V −i
V +
j

|V +
i =0 with V −i being the voltage wave that is reflected from port i when a voltage

wave V +
j is made incident on port j[23]. Therefore, the general naming convention used to define

the S-parameters is S[outputport][inputport]. Hence, for a two-port network S11, or S22 measures the

microwave signal reflected from the system when the microwaves are input at port 1 or port 2,

respectively. Whereas, S12 and S21 measure the microwave signal transmitted through the system

when the microwaves are input at port 2 and port 1, respectively. For a reciprocal system (which

is often the case for a cavity photon-magnon coupled system) S12 = S21. The S-parameters can be

easily obtained from the ABCD parameters by applying the conversion equation
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S11 S12

S21 S22

 =



A+
B

Z0

− CZ0 −D

A+
B

Z0

+ CZ0 +D

2(AD −BC)

A+
B

Z0

+ CZ0 +D

2

A+
B

Z0

+ CZ0 +D

−A+
B

Z0

− CZ0 +D

A+
B

Z0

+ CZ0 +D


, (3.3)

where Z0 = 50Ω is the characteristic impedance of the input and output ports which is a design

standard chosen for optimal power handling and signal loss per unit length[23]. Therefore any mi-

crowave network can be analysed by using the transmission (ABCD) matrix formalism described

above and then converted in terms of the S-parameters that can be experimentally measured by

using a VNA.

The advantages of using a VNA for the S-parameter measurement is that a VNA can make very

accurate measurements by taking into account a variety of possible errors by using an in-built error

correction model and a calibration process[23]. For the experiments described in the following

sections, the microwave transmission (S21) was measured by using a calibrated two-port Agilent

PNA 5230C VNA.

3.1.2 Ferromagnetic Resonance

The cavity photon-magnon coupling physics essentially studies the interaction between cavity

photons and the spins of a ferri/ferromagnetic material in the presence of an externally applied

magnetic field. Here, a magnon is a quasiparticle that is generated due to the collective excitation

of electron spins in a magnetic material. The effect of magnetic fields on the spins of a ferromag-

netic material was first studied by Lev Landau and Evgeny Lifshitz in 1935[26]. They described

that if a magnetic field (H) is applied in a direction perpendicular to the magnetization (M) of a

ferromagnetic material, the external field will exert a torque on the magnetization which will cause

it to precess along the direction of H as shown in Fig. 3.2(a). This torque is given by
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Figure 3.2: Sketch of the magnetization precession around an applied magnetic field (a) without
damping and (b) with Gilbert damping.

dM
dt

= −γM×H, (3.4)

where γ is the electron gyromagnetic ratio in the material. This equation was modified by T. L.

Gilbert to include the effects of magnetic damping within the material[27]. The modified equation

referred to as the Landau-Lifshitz-Gilbert (LLG) equation is given as

dM
dt

= −γM×H +
αM
M0

× dM
dt
, (3.5)

where α is the Gilbert damping factor which describes how quickly the precession of the moments

will stop and M0 is the component of the magnetization that lies along the direction of the external

field. A schematic representation of this system is shown in Fig. 3.2(b). If the effect of internal

demagnetization field is taken into account then the effective magnetic field acting on the system

can be written as Heff = H−N ·M where N is the demagnetization factor whose value is different

along different directions. The demagnetization field exists due the preference of the magnetic

moments to align along the easy axis which would correspond to a smaller value of N in that

direction.

The LLG equation describes that without the presence of a continuous driving torque, the

amplitude of magnetization precession will decrease due to damping and the magnetization will
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eventually align along the direction of the effective applied magnetic field. To maintain the mag-

netization precession, a continuous driving torque is required which can be obtained by using a

microwave magnetic field (he−iωt) which oscillates with a frequency ω. The magnitude of this

field is usually much smaller than the magnitude of the externally applied magnetic field. In this

case, the magnetization M can be written as M = M0k̂ + me−iωt, where me−iωt is the oscillating

component of the magnetization due to the microwave magnetic field and is much smaller than

M0. The solution from the LLG equation can then be written as m = χhin or

m =


χxx iχxy 0

−iχyx χyy 0

0 0 0



hinx

hiny

hinz

 , (3.6)

where hinx , h
in
y , h

in
z are the components of the microwave magnetic field inside the sample and χ is

the Polder tensor which describes the motion of the magnetization due to an oscillating magnetic

field. The components of this tensor are given by

χxx = χyy =
(ω0 − iαω)ωm

ω2
0 − ω2 − 2iαωω0

,

χxy = χyx =
ωωm

ω2
0 − ω2 − 2iαωω0

,

(3.7)

where ωm = γM0, ω0 = γH is the resonance frequency of the magnetization precession and the

Gilbert damping is assumed to be much smaller than 1 [28]. This resonance of the magnetization

precession is referred to as the ferromagnetic resonance (FMR).

For the experimental observation of strong cavity photon-magnon coupling, a ferri/ferromagnetic

sample that has a small Gilbert damping factor and high spin density is desirable. These require-

ments can be met by using a spherical yttrium iron garnet (YIG, Y3Fe5O12) sample. The crystal

structure of YIG is shown in Fig. 3.3. This figure shows that the oxygen (O2−) ions form three

types of polyhedrons namely the dodecahedron, the octahedron and the tetrahedron[29]. The yt-

trium (Y 3+) ion occupies the dodecahedral site whereas the iron (Fe3+) ions occupy the tetrahedral
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Figure 3.3: Schematic diagram of the crystal structure of YIG as described in Ref. [29]

and octahedral sites. The Fe3+ ions which are in these two different sites have a difference in spin

which results in the magnetic behaviour of this compound[29]. YIG spheres have a high quality

factor due to which they have been used for designing tunable microwave filters and resonators[30].

YIG has a very low Gilbert damping factor∼ 10−5 and a very high spin density of∼ 1027m−3 due

to which it is often used for cavity photon-magnon coupling experiments[15, 31, 32]. Thus, in the

experiments that have been described in the following sections a 1 mm diameter YIG sphere was

chosen to be used as a source of magnons.

3.1.3 Magnetic Response of Split Ring Resonator

The pseudo spin system or cavity used in this thesis is a SRR. The design of a SRR was first

proposed by Pendry et. al.[21] and is shown in Fig. 3.4(a). It consists of two concentric split-

rings made up of non-magnetic materials at a distance ’d’ from each other. Even though these

rings have their own response, a composite structure of these rings is used in order to ensure that

incident electromagnetic radiation interacts with them as a homogeneous medium. This composite

structure exhibits an effective magnetic permeability (µeff ) in the presence of microwave radiation

given by the equation
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µeff = 1− Fω2

ω2 − ω2
0 + iωαsω0

, (3.8)

where F =
πr2

a2
, r is the radius of the inner ring, a is the size of the unit cell of the composite

medium, ω0 is the resonance frequency of the SRR given by ω0 =

√
3l

π2µ0Cr3
and αs is the

damping of the SRR given by αs =
2lρ

rµ0ω0

[21]. Here l is the spacing between the layers of rings,

C is the capacitance due to the gap between the rings and ρ is the resistance per unit length of the

rings that is measured around the circumference. While the loops of the SRR can be concentric

circles or squares as needed, the splits in the SRR ensure that the resonant wavelength is much

larger than the diameter of the rings. In this design, the orientation of the two rings is such that

the two splits are opposite to each other so that the direction of the currents induced in the two

rings is opposite to each other. This generates a capacitive interaction between the two rings

which significantly lowers the resonance frequency of the structure as compared to the resonance

frequency of a single SRR[22].

In 2000, Smith et al.[22] adapted this design in order to experimentally demonstrate that a com-

posite array of SRRs not only has a magnetic permeability but this permeability could be negative

at high frequencies. The negative permeability was discovered from the presence of a gap in the

frequency dispersion curve. Since, it was assumed that the permittivity of this structure is always

positive, it was inferred that the gap in the frequency dispersion curve was due to the presence of a

region with negative permeability. It was also shown that by adding wires between the split rings,

as shown in Fig. 3.4(b), a negative refractive index could be achieved[22, 34]. Therefore, these

artificially engineered structures could exhibit properties that are difficult or impossible to find in

nature. Such materials are referred to as metamaterials and they were first theoretically described

in 1968 by V. G. Veselago[35]. Following the experimental demonstration by Smith et al.[22], var-

ious different types of metastructures have been proposed that can be used for a variety of different

potential applications such as in designing super lenses, electromagnetic cloaks etc[36].

SRRs are one of the most commonly used metamaterials due to their compact size and high
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Figure 3.4: (a)Schematic diagram of the SRR proposed by Pendry et. al.[21] and fabricated by
Smith et. al.[22]. (b) Schematic diagram of a composite array of square SRRs with wires at the
back[33]. This array can be used to achieve a negative refractive index[34].

sensitivity. Due to these characterisitics, SRRs have been successfully adapted to be used as bio-

sensors and to detect the dielectric properties of various liquids[37, 38]. This is because of the

fact that the SRRs can be oriented in such a way that they are excited by both the electric and the

magnetic field of the incident electromagnetic radiation[21, 22]. This induces a strong current in

the SRR which allows it to either enhance/oppose the incident electromagnetic field. Therefore,

SRRs have the potential to being used as a cavity to perform photon-magnon coupling experiments.

Furthermore, due to the effective magnetic response of the SRR, it has the potential of being used

as a pseudo magnon source to replace the YIG sample in these experiments. In the cavity photon-

magnon coupling experiments described below, a SRR has been used either as a cavity or as a

source of pseudo-magnons in order to achieve additional tunability of this coupling from which

further potential practical applications of this system are proposed.
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3.2 Voltage Control of Cavity Photon-Magnon Coupling

As described in the previous chapter, the cavity photon-magnon coupling, which leads to the

generation of CMP, is being extensively investigated and has many potential practical applications[13,

14, 15, 10, 16, 17, 18, 31, 32, 39]. It has been demonstrated that this coupling offers a promis-

ing approach to develop long-lifetime broadband, multi-mode quantum memories[16], quantum

repeaters[16] and quantum transducers that could coherently link different quantum systems to-

gether [17]. However, the experimental systems that have been previously used to demonstrate

the cavity photon-magnon coupling have limitations in terms of adapting them for practical ap-

plications. This is because they often consist of a 3-D cavity and an YIG sample and employ an

electromagnet to tune the coupling strength between the cavity photons and the YIG magnons by

changing the resonance frequency of the magnons. The previous experimental systems exclusively

rely on an electromagnet to tune the cavity photon-magnon coupling because the cavities that have

been used have a fixed resonance frequency. Therefore, the development of a planar tunable cavity

whose resonance frequency can be easily and continuously tuned would eliminate the require-

ment of an electromagnet to study the cavity photon-magnon coupling. Such a cavity would also

help in easier integration of this photon-magnon coupling system to on-chip devices for advanced

spintronic applications[13, 39].

3.2.1 Design and Characterization of the Planar Tunable Cavity

In order to develop a planar cavity that satisfies all the above mentioned requirements, DC

voltage controlled metamaterials can be used. These materials have been used in the past to develop

switch-able metamaterial absorbers[40] or zero index arrays[41]. Thus, this technique can be

adapted to achieve a planar metamaterial cavity whose resonance frequency can be controlled by

using a DC voltage.

To achieve this goal, a rectangular SRR with a tapered transmission line was chosen to function

as a planar cavity as shown in Fig. 3.5. A rectangular instead of the usual circular SRR design was
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Figure 3.5: Photograph of the fabricated varactor loaded SRR cavity.

chosen in order to maximize the coupling between the transmission line and the resonator. The

SRR had a length and a width of 10 mm and 5 mm, respectively with a slit-width of 0.2 mm. The

SRR was fabricated on a printed circuit board (PCB) that had a 1.5 mm thick FR-4 substrate using

the LPKF Protomat machine. The width of the copper strip used for fabrication was 0.2 mm. The

tapered transmission line had a length of 7 cm and its thickness varied from 3 mm at the edges

to 0.2 mm at the center. The microwave current was sent via the transmission line which in turn

excited the SRR’s resonance through inductive coupling. A Skyworks SMV-2019 varactor diode

was integrated along an edge of the SRR as shown in Fig. 3.5 and two inductors (RF chokes) were

soldered on either side of the SRR to decouple the microwave circuit from the DC-voltage bias

circuit. The capacitance of the varactor diode changes from 2.22 pF to 0.3 pF as the applied DC

voltage changes from 0 to 20 V[42]. This in turn changes the capacitance as well as the resonance

frequency of the SRR.

The resonance frequency of the SRR cavity can be measured by connecting it to a VNA. The

measured microwave transmission |S21| through the varactor loaded SRR cavity at different DC

voltage biases is shown in Fig. 3.6(a). Due to the non-linear response of the varactor diode,

the |S21| line shape is not pure Lorentzian at low applied voltages as can be seen in Fig. 3.6(a).

Nevertheless, the resonance frequency of this cavity can be easily and continuously tuned from
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Figure 3.6: (a) (Offset for clarity) Plot of the experimentally measured transmission spectra for the
SRR at different applied voltages. (b) Resonance frequency of the SRR cavity as a function of the
applied voltage.

3.55 GHz to 4.27 GHz by changing the applied voltage as shown in Fig.3.6(b).

3.2.2 YIG Sample Characterization

In order to demonstrate the voltage control of the CMP using the varactor loaded SRR cavity,

the dispersion of the uncoupled magnon modes of the YIG sample should be first measured. For

this, a tapered transmission line with the same parameters as the one used to excite the SRR was

fabricated (length = 7 cm, width varying from 3 mm at edges to 0.2 mm at the center) on a 1.5 mm

thick FR-4 substrate PCB board. A 1 mm diameter spherical YIG sample was placed just above the

center of this transmission line which was then placed between the poles of an electromagnet. The

microwave transmission through this system was then measured by connecting the transmission

line to a VNA as shown by the schematic diagram in Fig. 3.7.

The magnetic field produced by the electromagnet (along the z-axis) is perpendicular to the mi-

crowave magnetic field (in the x-y plane) generated by the current flowing in the transmission line.

The microwave magnetic field also has a spatial variation over the diameter of the YIG sample.
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Figure 3.7: Schematic diagram of the measurement setup used to measure the dispersion of the
YIG magnon modes.

Due to this spatial variation of the driving microwave magnetic field, higher order magnetostatic

modes (long wavelength spin waves) of the YIG sample are excited[43] as shown by the plot of

transmission amplitude in the top panel of Fig. 3.8 which was measured at 157.4 mT. Here, the

amplitudes of the first and the fourth modes have been multiplied by a factor of 5 so that they can

be clearly seen. These magnetostatic modes can be labelled by using the (n,m,k) classification

scheme proposed by Walker[44]. According to this scheme, index n and m refer to the r-f mag-

netization reversal sectors in the z-direction and in the x-y plane, respectively[44]. The index k

is used to label the mode which has more than one solution[20] and for simplicity it is assumed

that k = 0 which corresponds to the lowest order mode. The dominant mode in the transmission

amplitude spectra corresponds to the (1,1,0) mode. The other higher order modes visible in Fig.

3.8 are believed to be the (3,1,0), (2,2,0) and (4,1,0) modes. By continuously tuning the applied

magnetic field, several transmission spectra can be measured and have been plotted as a mapping

in the bottom panel of Fig. 3.8. This figure clearly shows the frequency dispersion of the different

magnetostatic modes along with their relative amplitudes as a function of the applied magnetic
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field.

Figure 3.8: Transmission amplitude spectra at 157.4 mT and the transmission amplitude mapping
for the YIG sample measured using a tapered transmission line shows the different magnetostatic
modes.

Figure 3.9: The r-f magnetization for the (1,1,0) and (3,1,0) modes

The r-f magnetization for the (1,1,0) and the (3,1,0) mode has been plotted in Fig. 3.9. The

(1,1,0) mode corresponds to the uniform magnetostatic mode where the r-f magnetization always

points in the same direction. However, the (3,1,0) mode has 3 sectors of r-f magnetization reversal

along the z-direction as shown by Fig. 3.9. These two magnetostatic modes can couple with

each other due to the effect of dipole-dipole and exchange interactions on the dispersion of these
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Figure 3.10: (Offset for clarity) Plot of the measured transmission spectra as a function of fre-
quency shows the coupling between the two magnetostatic modes of YIG

modes[43, 45] as shown by the plot of transmission spectra in Fig. 3.10. The black and the

blue arrows in this figure are used to indicate the high and low frequency modes, respectively.

This figure shows that the two magnetostatic modes [(1,1,0) and (3,1,0)] couple to produce two

hybridized modes at 157.4 mT.

The resonance position and linewidth of these two coupled modes can be obtained by fitting the

transmission spectra using a combination of symmetric and anti-symmetric Lorentz lineshapes[46]

given by the equation

|S21| =
A1∆ω

2
1 +B1∆ω1(ω − ω01)

(ω − ω01)2 + ∆ω2
1

+ C1 +
A2∆ω

2
2 +B2∆ω2(ω − ω02)

(ω − ω02)2 + ∆ω2
2

+ C2. (3.9)

Here, ∆ω1,∆ω2 are the linewidths of the two modes, ω01, ω02 are the resonance frequencies of the

modes, C1, C2 are the offsets, A1, A2, and B1, B2 are the scaling factors for the symmetric and

anti-symmetric Lorentzian lineshapes for the two modes.

The resonance frequencies and linewidths, obtained from fitting the transmission spectra using
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Figure 3.11: Experimentally (symbol) and analytically (solid line) obtained (a) resonance position
and (b) linewidth of the coupled magnetostatic modes plotted as a function of the applied magnetic
field

the above equation, have been plotted as a function of the applied magnetic field in Fig.3.11(a)

and (b), respectively. Here, the resonance position of the modes is obtained by subtracting the

linear dispersion of the (1,1,0) mode given by ω = γ(H + H0) in the simplest approximation,

where γ = 171.4µ0GHz/T is the gyromagnetic ratio and µ0H0 = −6.76 mT is the field related to

the orientation of the sphere with respect to the applied magnetic field[47, 48]. The anti-crossing

feature associated with coupling can thus be clearly seen from Fig. 3.11(a), whereas the linewidth

evolution of the two modes can be seen in Fig. 3.11(b). This magnetostatic mode coupling can

be modelled in a classical picture using the two coupled harmonic oscillator model as described

previously in the Theory chapter. For this model, the damping parameters α and α2 for the (1,1,0)

and (3,1,0) modes can be estimated to be 0.0009 and 0.0002, respectively from the linewidth of the

modes obtained by fitting the transmission spectra using Eq. (3.9) when the modes are uncoupled.

Since α, α2 � 1, the coupling strength g = 0.0019 has been calculated from the frequency gap

∆ωgap ' gω′ where ω′ is the resonance frequency at which the two hybridized modes have equal

amplitude. The resonance frequency and linewidth evolution can then obtained by solving for the

real and imaginary parts of the determinant of the coupling matrix given by Eq. (A.12). The result

has been plotted as solid lines in Fig. 3.11(a) and (b), respectively where good agreement between

the experimental and the analytical results can be seen.
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3.2.3 Magnetic Control of the Cavity Photon-Magnon Coupling

After characterizing the magnetostatic modes of the YIG sample, the coupling between the YIG

magnon modes and the photons of the tunable SRR cavity can be studied. To do so, the YIG sphere

was placed along the width of the SRR (i.e. on one of the vertical arms) where the microwave

current and hence the microwave magnetic field is maximum. The system was connected to a

VNA and placed between the poles of an electromagnet such that the magnetic field produced by

the electromagnet was perpendicular to the driving microwave magnetic field. The DC voltage

applied to the cavity was set at 11 V which corresponds to a resonance frequency of 4.08 GHz.

Figure 3.12 shows a series of the measured S21 spectra plotted as a function of the microwave

frequency at different applied magnetic fields where the red, green and blue arrows are used to

identify the modes with the highest, intermediate and lowest resonance frequency. The modes

can only be clearly labelled far from the coupling region because in the coupling regime only

hybridized modes exist. Figure 3.12 shows that the (1,1,0) mode strongly couples with the cavity

mode at 160.0 mT to produce the CMP; whereas the (3,1,0) mode does not couple with the cavity

mode and simply passes through it. The difference in the respective mode magnetizations of the

(1,1,0) and (3,1,0) mode[49] may be responsible for the difference in their coupling strength with

the cavity mode since the coupling strength between the cavity mode and the magnon mode is

dependent on the overlap factor (η) which is in turn dependent on the mode magnetization [shown

by Eq. (2.6)] [20]. Instead of coupling to the cavity mode, the (3,1,0) mode is magnetically

coupled to the two branches of the CMP produced by the cavity photon-magnon coupling between

the cavity mode and the (1,1,0) mode.

By fitting the measured transmission spectra using a combination of the symmetric and anti-

symmetric Lorentzian lineshapes [an extension of Eq. (3.9) to |S21| =
A1∆ω

2
1 +B1∆ω1(ω − ω01)

(ω − ω01)2 + ∆ω2
1

+

C1 +
A2∆ω

2
2 +B2∆ω2(ω − ω02)

(ω − ω02)2 + ∆ω2
2

+ C2 +
A3∆ω

2
3 +B3∆ω3(ω − ω03)

(ω − ω03)2 + ∆ω2
3

+ C3] the resonance fre-

quency and linewidth of these three coupled modes can be obtained. The results have been plotted

as symbols in Fig. 3.13 (a) and (b), respectively. The red, green, and blue symbols correspond to
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Figure 3.12: (Offset for clarity) Plot of the measured transmission spectra as a function of fre-
quency shows the coupling between the two magnetostatic modes of YIG and the SRR cavity
mode at different applied magnetic fields.

the highest, intermediate and lowest frequency modes as identified using the same coloured arrows

in Fig. 3.12. The dominant anti-crossing shown in Fig. 3.13 (a) corresponds to the generation of

the CMP at 160.0 mT due to the cavity photon-magnon coupling between the cavity mode and the

(1,1,0) mode. The (3,1,0) mode does not couple with the cavity mode and simply passes through

it but undergoes anti-crossing twice with the lower and upper branches of the CMP at 154.0 and

166.5 mT as shown by the insets. Figure 3.13 (b) shows the corresponding linewidth evolution of

the cavity mode and the (1,1,0) and (3,1,0) modes.

The coupling between the cavity mode and the magnetostatic modes can be described by ex-

tending the 2 x 2 matrix based on the two coupled classical harmonic oscillators model, described

in the Theory section, to a 3 by 3 matrix model that contains three coupled oscillators. To do so, an

oscillator with resonance frequency ωc and damping β which represents the cavity mode, is con-

nected to another oscillator with resonance frequency ω1 and damping α via a spring with coupling
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Figure 3.13: Experimentally (symbol) and analytically (solid line) obtained (a) resonance posi-
tion and (b) linewidth of the coupled magnetostatic modes and the SRR cavity mode plotted as a
function of the applied magnetic field

constant κ. This oscillator represents the (1,1,0) magnetostatic mode which is in turn coupled via

a coupling constant g to the oscillator that represents the (3,1,0) mode with resonance frequency

ω2 and damping α2. The equation of motion for this system can be written in a matrix format as

ΩA = F where

Ω =


ω2 − ω2

c + iβωωc −κω2
c 0

−κω2
c ω2 − ω2

1 + iαωωc −gω2
c

0 −gω2
c ω2 − ω2

2 + iα2ωωc

 , (3.10)

F = (−f, 0, 0) and A = (Ac, A1, A2). Here Ac, A1, and A2 are amplitudes of oscillation for

the different oscillators and f is the driving force acting on the oscillator representing the cavity

mode. Since, the (3,1,0) mode simply passes through the cavity mode, the coupling between them

is assumed to be zero. The damping for the cavity mode β has been normalised with respect to

the cavity resonance frequency ωc. Its value can be calculated by fitting the experimental data for

the cavity resonance measured at µ0H = 0. The value of β thus obtained is 0.058. It is assumed

that resonance frequency of the magnetostatic modes varies linearly with the applied magnetic

field and that their damping parameters α and α2 remain the same. The value of α = 0.0009 and
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α2 = 0.0002 was calculated previously from the transmission line measurement of the YIG sphere

in Section 3.2.2. The real and imaginary part of the determinant of Ω corresponds to the resonance

frequency and linewidth of the coupled modes, respectively.

Thus, by using κ and g as fitting parameters, the theoretical result obtained has been plotted

as a solid in line in Fig. 3.13 (a) and (b), respectively. The values of g and κ thus obtained

are 0.0049 and 0.04, respectively. The g calculated in this case is slightly higher than the one

calculated previously (Section 3.2.2 where g = 0.0019) using a transmission line. This might be

due to the difference in wave configuration in a microwave transmission line and the SRR cavity.

Furthermore, the lineshape of the modes cannot be fitted appropriately using this model. This may

be due to the fact that the lineshape of the varactor loaded SRR cavity is not pure Lorentzian or

due to the simplicity of the current model. Nonetheless, the frequency dispersion and the linewidth

of the modes can be well fitted by using the 3 x 3 classical harmonic oscillator model, as shown

by Fig. 3.13 (a) and (b), respectively which reinforces the usefulness of this model in describing

multi-mode coupling.

3.2.4 Demonstration of Voltage Control of the Cavity Photon-Magnon Cou-

pling

The previous section describes the experimental results obtained using the traditional method

that involves using the applied magnetic field to control the cavity photon-magnon coupling. How-

ever, since the resonance frequency of the varactor loaded SRR cavity can be easily and continu-

ously tuned, the coupling between the cavity photons and magnons can also be studied by changing

the voltage applied to the SRR cavity. To demonstrate this experimentally, the applied magnetic

field was fixed at 152.5 mT such that resonance frequency of the magnetostatic modes was fixed

and the applied voltage was tuned from 6.5 V to 15 V.

Figure 3.14 shows a plot of the transmission spectra as a function of frequency measured at

different values of voltage applied to the SRR cavity. As shown in the figure, as the applied

voltage is increased, the cavity mode (indicated by the red arrow) approaches the (1,1,0) mode

43



Figure 3.14: (Offset for clarity) Plot of the measured transmission spectra as a function of fre-
quency shows the coupling between the two magnetostatic modes of YIG and the SRR cavity
mode at different applied voltages.

(indicated by the blue arrow) at 8.5 V. Furthermore, a decrease in the cavity mode linewidth can

also be seen by tuning the applied voltage. This effect is due to the linewidth exchange between

the cavity mode and the (1,1,0) magnetostatic mode which shows that hybridised cavity photon-

magnon quasi-particles can be generated by simply tuning the applied voltage. This figure also

shows that resonance frequency of the (3,1,0) mode (indicated by the green dashed line) remains

fixed. This is because of the fact that the (3,1,0) mode does not couple with the cavity mode.

However, the amplitude of this mode changes with the applied voltage as it undergoes magnetic

coupling with a branch of the CMP generated due to the coupling between the cavity mode and the

(1,1,0) mode.

By continuously tuning the applied voltage from 6.5 V to 15 V, the transmission through this

system can be measured and the resonance frequency of the modes has been plotted as a function

of voltage in Fig. 3.15. For simplicity, the (3,1,0) mode has been omitted as the resonance fre-

quency of this mode does not vary with the applied voltage. In this figure, the uncoupled resonance

frequency dispersion of the cavity mode [same as Fig. 3.6 (b)] and the (1,1,0) mode has also been
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Figure 3.15: Experimentally (symbol) and analytically (solid line) obtained resonance position of
the SRR cavity mode and the (1,1,0) mode plotted as a function of the applied voltage. The dotted
lines shows the uncoupled resonance frequency of the cavity mode and the (1,1,0) mode.

plotted as dotted lines. The anti-crossing between the cavity mode and the (1,1,0) mode due to the

generation of CMP can be clearly seen at around 8.5 V. The resonance frequency of these two cou-

pled modes can also be calculated using the 3 x 3 matrix model [Eq. (3.10)] and the result has been

plotted as a solid line in Fig. 3.15 where again there is good agreement between the experimental

and calculated results.

Therefore, this varactor loaded SRR cavity not only gives an additional degree of freedom

to study the cavity photon-magnon coupling (by tuning the applied voltage to tune the cavity

resonance frequency) but also has the advantage of being planar and thus being better suited for

practical applications. The quality factor of this cavity could be further improved by using high

temperature superconducting substrates/films for fabrication which would make this electrically

tunable cavity even more suitable for potential practical applications. This work has been published

in the Applied Physics Letters.[50]
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3.3 Non-Resonant Radiation Damping in Cavity Magnon Po-

lariton Systems

As discussed in the previous section, planar cavity photon-magnon coupling systems are more

suitable for the various potential practical applications that have been proposed[13, 39]. However,

in a planar system, a quantitative simulation is essential where the radiation damping must be

considered.

Radiation damping is the loss of energy due to the emission of radiation[51]. This radiation

can take different forms in different coupled systems. For example, in vibrating systems the energy

is radiated in the form of sound due to acoustic radiation damping[52] whereas in coupled surface

plasmon polariton systems, modification of the radiative decay due to the coupling between optical

excitation leads to generation of super and sub radiance states[53]. Radiation damping in magnetic

resonance experiments has been studied for decades[54] and has been attributed to the generation

of the magnetic dipole radiation due to the precession of dipole moments[55, 56, 57]. This preces-

sion is excited due to the inductive coupling between the waveguide and the magnetic sample[58]

and can be calculated using either the photon-magnon Hamiltonian[56, 59], or the Landau-Lifshitz

equation[56] and Bloch’s equation[54].

However, a simpler theoretical formalism for this magnetic radiation damping can be found

by using the CMP physics. As described in the Theory section of this thesis, the CMP physics

can be modelled by using a 2 x 2 matrix model that has three important parameters, the cou-

pling strength (κ) measured at the cavity resonance frequency (ωc) and the uncoupled damping

parameters of the cavity mode (β) and the magnon mode (α). This model can well explain the

mode anti-crossing (that represents the generation of CMP) and the resonant radiation damping

that leads to the linewidth exchange between the cavity photon-like and magnon-like hybridized

modes. However in planar cavity systems, the YIG sphere that generates the magnon mode may

lose energy to the surroundings, especially in the weak coupling regime, due to the effect of the

non-resonant radiation damping. Thus, for a complete theoretical description of the CMP physics,
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it is important to consider all the sources of damping for the YIG sphere and accordingly modify

the 2 x 2 matrix model.

3.3.1 Modelling the Non-Resonant Radiation Damping

In a planar cavity photon-magnon system, the damping of the YIG sphere consists of two parts:

the damping that arises due to the exchange in energy between the YIG sphere and the cavity due

to the coupling between them, and the damping that arises due to the loss of energy by the YIG

sphere to the environment due to magnetic dipolar radiation. In order to simultaneously describe

the two sources of radiation damping, the 2 x 2 matrix model can be extended by adding a non-

resonant damping term that represents the open space. The resulting 3 x 3 matrix equation is given

by f = ΩA where f = (−f, 0, 0)T , A = (Ac, Am, Ae)
T and

Ω =


ω − ω2

c + iβωωc −κω2 0

−κω2 ω − ω2
m + iαωωm −ρω2

0 −ρω2 ω2 + iξω2

 . (3.11)

Here, f is the driving force acting on the system, and Ac, Am, Ae are the amplitudes of oscilla-

tions for the resonators representing the cavity photon, magnon, and the environment, respectively.

κ represents the coupling between the cavity mode and the magnon mode whereas ρ represents the

coupling between the magnon mode and the environment. ωm denotes the resonance frequency

of the magnon mode that can be determined from the Kittel’s equation ωm = γ(H + H0), whose

parameters γ and µ0H0 can be determined experimentally. Since the environment has no obvious

resonance, it has been represented as a non-resonant term with a microwave energy dissipation rate

of ξ. Therefore, in this case the environment can refer to any non-resonant damping channel. The
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transmission through this system is proportional to Ac[18] and is given by

S21 ∝
1

(ω2 − ω2
c + iβωωc)−

κ2ω4

(ω2 − ω2
m + iαωωm)− ρ2ω4

ω2 + iξω2

(3.12)

Based on the 3 x 3 matrix, an equivalent phenomenological RLC circuit model can be built

to quantitatively describe this system as shown in Fig. 3.16. In this figure, the series RLC circuit

consisting ofRc, Lc andCc represents the cavity mode that is inductively coupled via an inductance

M with the YIG sphere, which is represented by another series RLC circuit that consists of Rm,

Lm and Cm. The YIG sphere is then in turn coupled to the environment through an inductor with

inductance M ′. Since the environment functions as a non-resonant absorber, it can be represented

using an inductively coupled circuit with resistance R′ and inductance L′[60]. Therefore, all the

parameters in Eq. (3.12) can be related to the RLC circuit model as ωc = 1/
√
RcLc, ωm =

1/
√
RmLm, α = RmCm, β = RcLc κ = M/

√
LmLc, ρ = κ

√
Lc/L′ and ξω = R′/L′. Thus, the

transmission through this RLC circuit has the same form as Eq. (3.12).

Figure 3.16: Schematic diagram of the phenomenological RLC circuit model that can be used to
describe the non-resonant radiation damping in coupled CMP systems.
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The impact of coupling between the magnon mode and the environment (ρ) on the coupled

CMP system can therefore be studied by expanding the denominator of the second term in Eq.

(3.12). For small value of ρ the denominator can be written as ω2 − ω′2m + i∆ω′mω where

ω′m ' ωm(1 +
ρ2

2(1 + ξ2)
) (3.13)

and

∆ω′m = αω′m +
ρ2ξω

1 + ξ2
(3.14)

The above equations show that when |ωc − ωm| � αωm, βωc i.e. the cavity and magnon

resonance frequencies are far away from each other, the coupling between the magnon mode and

the environment would produce two simultaneous effects on the magnon mode: its resonance

frequency will be blue-shifted and there will be an additional linewidth broadening. These two

effects are found to be directly proportional to ρ2.

3.3.2 Experimental Verification of the Non-Resonant Radiation Damping

Model

In order to experimentally verify the above described theoretical predictions, the planar cavity

shown in Fig. 3.17 was fabricated on a 1.5 mm thick PCB board with a Rogers RT/duroid 5880

(εs = 2.2) substrate. The length and width of the cavity is 31 mm and 2 mm, respectively. The

damping factor of this planar cavity (β) can be optimized by tuning the two gaps between the

stripline cavity, port 1, and port 2. Here, the gap was chosen to be 1.6 mm. The microwave

transmission through this planar cavity can be measured by connecting it to a VNA and the result

is shown in Fig. 3.18(a). The resonance frequency (ωc) of the cavity is measured to be at 3.45 GHz

with a damping factor of β = 4.8× 10−3 and a quality factor of approximately 100. The solid line

in the figure is the calculated result from Eq. (3.12) with κ, ρ = 0.

To study the radiation damping of a coupled CMP system, a 1 mm diameter YIG sphere was

placed in a sample holder that was kept slightly above the surface of the planar cavity. This YIG
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Figure 3.17: Schematic diagram of the fabricated cavity with a 1 mm diameter YIG sphere that
was placed above its surface.

sphere had a gyromagnetic ratio of γ = 27.5 × 2πµ0 GHz/T, an anisotropy field of µ0Ha = 1.7

mT and a damping factor of α = 2 × 10−4 that were determined experimentally. The stripline

cavity was attached to a Velmex x-y-z stage which could freely move in all directions. Therefore,

using this experimental set-up, the coupling strength between the cavity and the YIG sphere could

be continuously tuned while the external applied magnetic field on the YIG sphere remained the

same. The microwave transmission through this system was then measured at 123 mT when the

separation between the planar cavity and the YIG sphere (d) was fixed at 2 mm. The result has been

plotted in Fig. 3.18(b) which corresponds to the case that the resonance frequency of the cavity

and the magnon mode is matched. In this strongly coupled case, the energy exchange between the

cavity photon and the YIG magnon is dominant therefore the energy radiated by the YIG sphere

to the environment can be ignored (i.e. ρ ' 0). The cavity photons couple with the magnons to

generate the Rabi gap of CMP (∆ωgap) which is proportional to the coupling strength κ between

them. In this case, κ is determined to be 0.0182 from ∆ωgap = κωc[18] and the calculated result

from Eq. (3.12) has been plotted as a solid line in Fig. 3.18(b) where good agreement between the

experimental and calculated results can be seen.

In order to experimentally determine the relationship between κ and ρ, the variation of κ with

distance (d) was first determined. This was achieved by measuring a series of transmission spectra

at 123 mT by continuously varying the cavity-YIG separation. Figure 3.19 shows four typical
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Figure 3.18: Measured (symbol) and calculated (solid line) microwave transmission plotted as a
function of frequency (a) without the YIG sphere and (b) with the YIG sphere at a distance of 2
mm from the cavity. The red arrow indicates Rabi gap of CMP (∆ωgap) generated due to the cavity
photon-magnon coupling.

transmission spectra measured when the separation between the YIG sphere and the cavity was 2,

3, 4 and 5 mm. The spectra shown in this figure have been offset for clarity and clearly show a

decrease in the Rabi gap of CMP or the coupling strength as the distance between the YIG sphere

and the cavity increases. From these spectra, the coupling strength κ can be determined and has

been plotted as a function of 1/d in Fig. 3.20.

Figure 3.19: Typical transmission spectra measured at different values of separation between the
YIG sphere and the cavity.
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Figure 3.20: Measured photon-magnon coupling strength (symbol), simulated amplitude of mi-
crowave magnetic field generated by the cavity (solid line) and the result from Gauss’ Law (dashed
green line) plotted as a function of inverse of the distance from the cavity.

In this experiment κ ∝ η ∝ hrf/hmax where η is the overlap coefficient[15], hmax is the

maximum microwave magnetic field generated by the stripline cavity (which is fixed for a fixed

input microwave power) and hrf is the amplitude of microwave magnetic field at the position of the

YIG sphere. To verify this distance dependence of the coupling strength, the microwave magnetic

field generated by the stripline cavity was simulated as a function of the distance (d) from the cavity

using the computer simulations technology (CST) software. The result has been plotted as a solid

line in Fig. 3.20 and shows that hrf/hmax is also inversely proportional to d. This observation can

also be explained theoretically by using Gauss’ Law which states that the magnetic field generated

by a current carrying wire of a finite length at any point is inversely proportional to the distance

from the wire. The result calculated from Gauss’ Law has been plotted as a green dashed line in

Fig. 3.20. This result shows some deviations when the YIG sphere is very close to the cavity such

that the separation between them is comparable to the actual size of the YIG sphere. Nonetheless,

good agreement between the theoretical, experimental and simulated results can be seen when the

separation between the YIG sphere and the cavity is greater than the size of the YIG sphere.

To verify the theoretical predictions made in the previous section regarding the effect of the
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non-resonant radiation damping on the resonance frequency and linewidth of the uncoupled magnon

mode, the applied magnetic field was set at 133 mT. The magnon resonance frequency was there-

fore at 3.71 GHz which is far away from the cavity resonance frequency of ωc/2π = 3.4 GHz. In

this case, since |ωc − ωm| � αωm, βωc the effect of the non-resonant radiation damping should

become apparent. To study these effects a series of transmission spectra were measured at differ-

ent separations between the YIG sphere and the planar cavity and some typical spectra have been

plotted in Fig. 3.21. The figure shows that the resonance frequency and linewidth of the magnon

mode varies with the separation due to the coupling effect. Furthermore, the magnon signal line-

shape changes from a transmission maximum to a transmission minimum as the distance between

the YIG sphere and the cavity is increased. This variation can be explained as follows. Generally,

in a waveguide measurement of the YIG ferromagnetic resonance, there is minimum transmission

at the resonance frequency because of absorption of the microwave energy by the YIG sample.

The transmission maximum that is observed in Fig. 3.21 shows that at small values of separation

between the YIG sphere and the cavity, the hybridized mode generated due to the cavity photon-

magnon coupling is dominated by the signal from the cavity mode. As the separation increases,

the hybridized mode becomes dominated by the signal from the magnon mode and the lineshape

changes to being a transmission minimum. The measured transmission signal can be fitted by us-

ing a combination of symmetric and anti-symmetric Lorentzian lineshapes [Eq. 3.9][46] and the

result has been plotted as a solid line in Fig. 3.21.

From the fitting results, the resonance frequency and linewidth can be obtained and have been

plotted as a function of the square of the coupling strength κ2 [obtained from Fig. 3.20] in Fig.

3.22(a) and (b), respectively. As shown by the figures, both the resonance frequency and linewidth

of the magnon mode vary linearly with κ2. The dashed lines are the result obtained from Eq. (3.12)

with ρ = 0 which corresponds to the case that the YIG radiates no energy to the environment. In

this case, the 3 x 3 model reverts back to the 2 x 2 model that has been previously used to describe

the cavity photon-magnon coupling. As shown by the figures, even though the calculated resonance

frequency and linewidth vary linearly with κ2, there exists a significant difference between the
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Figure 3.21: Typical transmission spectra measured (symbol) at different values of separation
between the YIG sphere and the cavity. The solid line is the fitting result obtained by using a
combination of symmetric and anti-symmetric Lorentzian lineshapes [Eq. (3.9)].

theoretical and experimental results especially for the linewidth. This deviation can be resolved

by taking into account the non-resonant radiation damping by using the 3 x 3 model proposed

in the previous sub-section. The results calculated from Eq. (3.12) have been plotted as a solid

line with the open space dissipation rate ξ = 0.33 and the coefficient ρ/κ ' 1. This linear

relationship between ρ, κ and the magnon mode linewidth implies that the stronger the photon-

magnon coupling the larger the linewidth of the magnon mode.

Using the experimentally determined values of ξ and ρ in the phenomenological RLC circuit

model, it can be obtained that M ′ ∼ M,L′ ∼ Lc and the resistance R′ of the open space shows

a frequency variation given by R′ = ξωLc. Therefore, all the parameters of the RLC circuit have

been determined and it can now be used for simulation purposes.

Hence, the conventional 2 x 2 matrix model used to explain the cavity photon-magnon coupling

has been modified to include a non-resonant damping term to take into account the energy lost by

54



Figure 3.22: Experimentally measured (symbol) and theoretically calculated (a) resonance fre-
quency and (b) linewidth variation using ρ 6= 0 (solid line) and ρ = 0 (dashed line).

YIG to the environment. The effect of this energy loss becomes apparent in a planar cavity system

when the resonance frequency of the cavity photon and magnon modes are mismatched. In this

case, both the magnon resonance frequency and linewidth show a linear variation with the cavity

photon-magnon coupling strength which can be easily explained by the 3 x 3 matrix model and

simulated using the phenomenological RLC circuit model. This matrix model provides a simple

and precise explanation of the radiation damping induced by the coupling effect and it can be easily

extended to describe other many-body systems that include both resonant and non-resonant objects.

This theoretical modelling and experimental realization of the non-resonant radiation damping in

planar cavity photon-magnon systems may help in the design and adaptation of these systems for

potential practical applications. This work has been published in the Applied Physics Letters[61].
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3.4 Pseudo Cavity Magnon Polariton Device for Voltage Con-

trol of Electromagnetically Induced Transparency

Apart from the potential practical applications of the cavity photon-magnon coupled systems

in developing quantum transducers[17] and long lifetime multi-mode quantum memories[16], it

has been shown that in 3-D cavities the CMP coupling leads to electromagnetically induced trans-

parency (EIT)[15]. In this section, the development of a 2-D pseudo CMP system that can be used

to achieve tunable EIT is described and an LCR circuit that can be used to precisely simulate this

observation is proposed.

EIT is an effect that renders an otherwise opaque medium transparent over a narrow frequency

window and is accompanied by a sharp change in refractive index[62]. EIT was first observed

in alkali vapours[63] and occurs due to the destructive interference between two different exci-

tation pathways[64]. These pathways are often labelled as the ’bright’ and the ’dark’ mode and

correspond to the mode that can and cannot be directly excited by the incident electromagnetic

radiation[65, 66]. These modes are usually generated due to an asymmetric excitation of the sys-

tem. For example in a three-level atomic system which is often used to study EIT[62], the transition

of the atom from the ground state to the excited state which is directly excited by the probe beam is

referred to as the ’bright mode’. Whereas, the transition of the atom from the meta-stable state to

the excited state which is not directly excited by the probe beam is referred to as the ’dark mode’.

The observation of EIT in alkali vapours could not be used for the development of practical

applications because this effect requires high power lasers, high magnetic fields and cryogenic

temperatures[62]. But, it was soon realized by researchers that this quantum effect has many

classical analogues such as coupled mechanical oscillators which led to the implementation of this

effect in coupled optical resonators and photonic crystal waveguides[62]. Since these structures

extend along the direction of propagation of waves, they imposed a restriction on the minimum

dimension of the medium. This restriction was overcome by using metamaterials.

In 2007, the first observation of EIT in metamaterials was made by Fedotov et al[67], follow-
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ing which continuous research in this area has led to the development of various metastructure

designs that can demonstrate EIT like features in the mid-infrared, microwave, optical, and THz

region of the frequency spectrum[66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Several poten-

tial applications for these metamaterial based systems have also been proposed such as optical

buffering, compact delay lines, high sensitivity refractive index sensors and data storage due to

the permittivity dependent slow light behaviour associated with EIT[62, 70]. Apart from further

developing potential applications for this phenomenon, the current focus of researchers has been

on developing metamaterial systems that offer the ability to control EIT. Passive control of EIT

has been achieved by varying the design parameters associated with the metamaterial design such

as the distance between the meta-structures or the resistance of the meta-structures[62, 73]. How-

ever, to achieve the full potential of this non-linear effect and in order to develop further practical

applications such as designing dynamic filters, phase shifters and switch devices, it is important to

achieve active control of EIT.

Active control of metamaterial EIT has so far being achieved by fabricating the sample on a

compressible/stretchable substrate and applying an external force that would change the separation

between the different elements of the meta-structure or by temperature control of the resistance of

the meta-structure fabricated on superconducting substrates[79, 80, 81, 82]. Furthermore, in 3-

D cavities the EIT effect due to the cavity photon-magnon coupling can be actively controlled

by tuning the applied magnetic field. However, from the perspective of device application, the

external applied magnetic field used to alter the energy exchange efficiency or the coupling strength

between the cavity mode and the magnon mode is not favourable. Thus, the motivation behind the

experiments that are described in the following sections was to develop simple alternative methods

to achieve active mechanical and electrical control of the EIT effect in metamaterial based pseudo-

CMP systems.
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3.4.1 Transmission Line Model for Pseudo Cavity Photon-Magnon Coupling

As described in previous section, the study of metamaterials[22, 21] has allowed the develop-

ment of non-magnetic conducting materials that can be designed to provide a magnetic response

at microwave frequencies. Inspired from this work, a 2-D artificial CMP system was created by

integrating an artificial magnetic resonator with an on-chip cavity resonator. The cavity mode

and the artificial magnon mode are created by using a cut-wire resonator and a rectangular SRR,

respectively that are mutually coupled with each other. The rectangular shape of the SRR en-

sures maximum coupling between the cut-wire and the SRR. Here, the cut-wire resonator acts as

a ’bright mode’; whereas, the SRR acts as a ’dark mode’ as it cannot be directly excited by the in-

cident microwaves. The microwave magnetic field produced due to the microwave current flowing

in the cut wire induces a microwave current in the SRR. Thus, an effective magnetic response is

produced by the SRR which can be characterized by its resonant permeability[21] due to which

the SRR can be used to mimic the magnetic response of an YIG sample.

Similar to that of the cavity photon-magnon coupling, the response of the pseudo CMP can be

described by using 5 parameters, the cavity resonance frequency (ωc), the pseudo-magnon reso-

nance frequency (ωs), the damping of the cavity mode and the magnon mode β and α, respectively

and the coupling strength between them (κ). To quantify these parameters from the microwave

transmission that is measured for this pseudo-CMP system, the transmission line model for cou-

pled LCR circuits can be used.

In order to model the cavity and the pseudo magnon modes in terms of LCR circuits, the

transmission line models proposed in Ref. [83] have been used to separately describe the cut-wire

and the SRR, respectively. As shown by the insets of Fig. 3.23 (a) and (c), the cut wire and the

SRR can be represented as a series and parallel LCR circuits whose impedance is given by

Zc = Rc + i(ωLc −
1

ωCc

), (3.15)
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Figure 3.23: Experimentally measured (symbols) and analytically calculated (solid lines) trans-
mission curves for (a) the cut wire resonator connected to a 50 Ω transmission line, (c) the SRR
excited by a 150 Ω transmission line, and (e) the coupled cut wire and SRR separated by a dis-
tance of 2.7 mm. The insets show the corresponding equivalent LCR circuits. (b), (d) and (f) are
photographs of the fabricated microwave devices.

and

Zs =
ωLs −Rsω

2LsCs

1− ω2LsCs + iωCsRs

, (3.16)

respectively. Here the subscripts ’c’ and ’s’ are used to denote the parameters that correspond to

the cut wire and the SRR, respectively. The LCR circuit for the SRR can also be equivalently rep-

resented as a capacitance(C ′s) in parallel with an inductance (L′s) that is in series with a resistance

(R′s). In this case, the impedance of the circuit will be given by Zs =
R′s + iωL′s

1− ω2L′sC
′
s + iωC ′sR

′
s

. The

values of the parameters will be slightly different in this case, but the response of the two circuits

59



will be the same which implies that these two representations can be used interchangeably. Using

the ABCD matrix and the conversion formula [Eq. (3.3)], the transmission (S21) parameter can be

obtained as

S21 =
2Zc

2Zc + Z0

, (3.17)

and

S21 =
2Z0

2Z0 + Zs

(3.18)

for the cut wire resonator and the SRR, respectively. Here Z0 is the characteristic impedance of

the transmission line.

In order to describe the combination of the two resonators for the observation of pseudo-CMP,

the circuit shown in the inset of Fig. 3.23(e) was used in which the interaction between the two

resonators is modelled using a mutual inductance M between the inductors Lc and Ls. This in-

teraction can also be described by using a transformer that links the magnetic flux generated by

the cut-wire resonator to the inductor of the SRR. From the net impedance of this circuit, the S21

parameter can be written as

S21 = 1−

Z0∆ωc

Z0 + 2Rc

i(ω − ωc) + β +
κ2

i(ω − ωs) + ∆ωs

. (3.19)

Here, ωc =
1√
LcCc

, ωs =
1√
LsCs

, ∆ωc =
Ccωω

2
c (Rc + Z0/2)

ω + ωc

, and ∆ωs =
CsRsω

2
sω

ω + ωs

are the

resonance frequency and linewidth of the cut wire and SRR, respectively. The coupling strength

κ = ω2Mωcωs

√
CcCs

(ω + ωc)(ω + ωs)
is linearly dependent on the mutual inductance M . When

ω ∼ ωc ∼ ωs, it can be found that ∆ωc ∼
Rc + Z0/2

2Lc

, ∆ωs ∼
Rs

2Ls

, and κ ∼ Mω

2
√
LcLs

. The

damping of the cut wire and the SRR as well as the coupling strength have a unit of frequency

here. The impedance mismatch between the 50 Ω microstrip line and the 150 Ω SRR lines has

been ignored for the purpose of simplicity as the focus here is to qualitatively model the response
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the coupled cut wire and SRR system. Eq. (3.19) has a similar form as that of the coupled cavity

photon-magnon system [as described in the Theory section Eq. (2.3)] which indicates that the

artificial CMP has similar physical features.

In order to validate this LCR circuit based transmission line model, the cut-wire resonator,

the SRR, and their combination was fabricated on a 1.55 mm thick FR-4 substrate with a copper

thickness of 35 µm. Figure 3.23(b), (d), and (f) show photographs of the fabricated microwave

devices. The cut-wire resonator was positioned at the center of a 50 Ω transmission line and had a

length and a width of 15.1 mm and 0.2 mm, respectively. The SRR was 4 mm in width and 12 mm

in length and had a linewidth of 0.2 mm. A 0.2 mm gap was located at the center of the width of

the resonator and a 0.2 mm wide 150 Ω transmission line was used to excite its resonance. In Fig.

3.23(f) the gap between the center of the two resonantors is 2.7 mm and the microstrip line has a

characteristic impedance of 50 Ω. The transmission response of these fabricated devices was then

measured by connecting them to a VNA.

Figure 3.23(a), (c), and (e) shows the measured transmission response plotted as a function

of the microwave frequency. As shown by the figures, a transmission minimum at the resonance

frequency of 3.0 GHz is observed for both the cut wire and the SRR, respectively; whereas, a

transmission maximum centred at 3.0 GHz is obtained when the two resonators are coupled. This

transmission response can be explained by the fact that when a cut wire or a SRR is directly ex-

cited by microwave radiation flowing through the transmission line, a current is induced in the cut

wire (SRR) that produces electric (magnetic) fields. The induced electric (magnetic) field exactly

cancels the electric (magnetic) field of the microwave radiation flowing in the transmission line,

thereby minimizing transmission at resonance. However, when the cavity mode and the pseudo

magnon mode are coupled together and have an identical resonance frequency, the electrodynamic

coupling between them leads to the generation of an artificial CMP gap that is centred at the orig-

inal resonance frequency of the resonators. Hence, a transmission maximum is obtained in this

case.

By fitting the experimentally obtained transmission curves for the cut wire and the SRR using
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the transmission line models given by Eqs (3.17) and (3.18), the transmission curves obtained have

been plotted as a solid line in Fig. 3.23(a) and (c), respectively. The corresponding values of

Rc = 2.87Ω, Cc = 0.499 pF and Lc = 5.64 nH for the cut wire resonator, and Rs = 0.091Ω,

Cs = 8.78 pF and Ls = 0.314 nH for the SRR were obtained from the fitting. Therefore, the

transmission spectra for the coupled resonators shown in Fig. 3.23(e) can be calculated by using

just one fitting parameter i.e. mutual inductance M = 0.74 nH. As shown by the Figs. 3.23(a), (c)

and (e) there is good agreement between the experimentally measured and theoretically calculated

results using the transmission line models.

3.4.2 Distance Dependence of Coupling Strength

Since the mutual inductance (M) determines the coupling strength κ which characterizes the

energy transfer efficiency between the cavity mode and the quasi-particle system[10], it is nec-

essary to understand its physical origin in an artificial CMP system for practical applications. In

order to do so, another experiment was performed wherein the distance between the two resonators

fabricated as separate chips was tuned in the horizontal direction by using a Velmex x-y-z stage.

Figure 3.24 shows a schematic diagram of the experimental set-up in which the cut wire resonator

integrated with a 50 Ω transmission line was connected to a VNA whereas the SRR was mounted on

the x-y-z stage. The separation between the two chips was less than 20 µm. By tuning the distance

between the two resonators along the y-direction, the coupling between them can be changed.

The left panel of Fig. 3.25(a) shows some typical transmission (S21) spectra measured at differ-

ent values of y-distance between the resonators, whereas the right panel shows the corresponding

flux-configuration between the resonators due to the microwave current in the cut-wire resonator.

When the SRR is far from the cut wire, the magnetic flux generated by the cut wire cannot excite

the SRR’s resonance and only the cut wire’s resonance is measured at 3.0 GHz. As the distance be-

tween the cut wire and the SRR decreases, the amount of magnetic flux through the SRR increases

which leads to an increase in coupling strength between the cut wire and the SRR which there-

fore leads to an increase in frequency range of the transmission window. The coupling strength is
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Figure 3.24: Schematic diagram of the experimental set-up used to achieve active tunability of the
pseudo-CMP coupling by tuning the distance between the resonators.

therefore maximum when the edges of the cut wire and the SRR are closest without any overlap.

However when the cut wire is exactly at the centre of the SRR (y = 0), the cut wire induces equal

and opposite amounts of flux in the two arms of the SRR due to which the resonance of the SRR

cannot be excited. Therefore, the transmission corresponds to the resonance response of the cut

wire alone. However, as soon as the cut wire is no longer at the centre of the SRR, the transmission

window reappears. Figure 3.25(b) shows the transmission amplitude mapping obtained by tun-

ing the distance y between the resonators in the horizontal direction. The mapping is symmetric

around y = 0 mm.

By fitting the various transmission spectra obtained from the distance tuning experiment using

the transmission line model [Eq. (3.19)], the mutual inductance between the resonators can be

plotted as a function of distance as shown in Fig. 3.26. This dependence of mutual inductance on

the distance between the resonators can be explained by calculating the flux (φ) through the SRR

due to the microwave current I in the cut-wire as
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Figure 3.25: (a)The left panel shows typical S21 spectra (offset for clarity) obtained at differ-
ent resonator separations and the right panel shows the schematic diagram of the corresponding
measurement configuration along with the amount of flux flowing through the SRR. (b) The S21

amplitude mapping result for distance y between the two resonators as a function of frequency.

M =
φ

I
=

∮ −→
B ·
−→
dA

I
, (3.20)

where from Gauss’ LawB =
µ0(cos θ1 + cos θ2)

4πy
is the microwave magnetic field produced by the

finite length of the cut wire, θ1, θ2 are the angles subtended by the two end points of the cut-wire

at any point on the SRR located at a distance y from the center of the cut-wire, and A is the area

of the SRR. For simplicity, the effect of the substrate of the SRR is neglected and the magnetic

field is integrated over the width of the SRR and the result is simply multiplied by the length of

the SRR. This theoretically obtained result has been plotted as a solid line in Fig. 3.26 where good

qualitative agreement between the experimental and theoretical results can be seen.

Using the experimentally obtained data, the different coupling regimes that are reached (as

defined by Zhang et. al[15]) by tuning the y-distance and hence the coupling strength between

the cavity mode and the pseudo magnon mode can be classified. As shown in Fig. 3.27, classical

analogues of the strong (κ > ∆ωc,∆ωs), weak (κ < ∆ωs,∆ωc), and EIT (∆ωs < κ < ∆ωc)
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Figure 3.26: Experimentally obtained (symbol) and theoretically calculated (solid line) mutual
inductance curve as a function of the separation y between the resonators.

coupling regimes can be achieved by using this pseudo CMP system. Furthermore by tuning the

quality factor of the SRR by adding additional resistance, it should be possible to use this system

to classically observe the Purcell (∆ωc < κ < ∆ωs) coupling regime as well. Figure 3.28(a)-

(d) show a plot of the typical transmission spectra as a function of the microwave frequency that

correspond to the EIT, strong, weak, and Purcell coupling regimes, respectively simulated by using

Eq. (3.19). The simulation parameters that were used have been listed in Table 3.1.

Range κ/2π (GHz) ∆ωc (GHz) ∆ωs (GHz)
EIT 0.05 0.3 0.001

Strong 0.45 0.15 0.05
Weak 0.05 0.15 0.06

Purcell 0.4 0.35 1

Table 3.1: Simulation parameters

65



Figure 3.27: The different coupling regimes, as defined by Zhang et. al.[15], that were classically
observed by changing the distance between the metamaterial resonators.

Figure 3.28: Simulated transmission curves corresponding to (a) EIT (b) strong (c) weak and (d)
Purcell coupling regimes. The parameters used for these results have been listed in Table 3.1. The
dashed curve in (d) shows the simulated transmission through the cut-wire alone.
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3.4.3 Voltage Control of Metamaterial EIT

The high tunability of the artificial CMP device allows the fabrication of an on-chip microwave

device that exhibits tunable EIT. Based on the dependence of mutual inductance/coupling strength

between the cavity and pseudo magnon mode, an appropriate coupling regime (∆ωs < κ < ∆ωc)

was selected to demonstrate this active voltage control of the transparency window associated with

EIT that is generated due to electrodynamic coupling. To do so, a varactor loaded SRR (similar

to the one described in the previous section) with a Skyworks SMV 2019 varactor diode was

fabricated at a distance of 4 mm from the cut wire as shown by the schematic diagram in Fig.

3.29. Here again, two r-f chokes were soldered on either side of the varactor diode to decouple the

DC and microwave current circuits. The DC voltage was then applied across the edge of the SRR

which contains the diode. The capacitance of the varactor diode can be changed from 2.2 pF to

0.3 pF[42] by applying a DC voltage which changes the resonance frequency of the SRR while the

resonance frequency of the cut-wire remains the same.

Figure 3.30(a) shows some typical spectra obtained at different values of applied DC voltage.

As shown in the figure, both resonances can be observed even when ωs 6= ωc due to the mutual cou-

pling between the pseudo cavity photon-magnon system. However, the amplitude of the resonance

of the SRR is an order of magnitude weaker compared with that of the cut wire resonator when ωs

is far away from ωc. This indicates less-efficient energy transfer from the cut-wire resonator to the

Figure 3.29: Schematic diagram of the fabricated varactor loaded SRR coupled with a cut-wire
resonator located 4 mm away.
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Figure 3.30: (Offset for clarity) (a) Typical transmission spectra plotted as a function of frequency
at different values of applied voltage. (b) Microwave transmission at 3 GHz plotted as a function
of the applied voltage.

SRR. The transmission at the resonance of the SRR is significantly enhanced when ωs approaches

ωc. The two subsystems have identical resonance, i.e. ωc/2π = ωs/2π = 3 GHz at the applied

DC voltage of about 6.5 V. Here the bright mode (cut wire resonance) and the dark mode (SRR’s

resonance) both have equal amplitudes and the coupling between them leads to the generation of a

Rabi gap of pseudo-CMP (of about 0.3 GHz) that creates a transparency window associated with

EIT near 3 GHz. The microwave transmission measured at 3 GHz has been plotted as a function of

the applied voltage in Fig. 3.30(b) where maximum transmission due to the generation of the Rabi

gap of pseudo-CMP at around 6.5 V can be seen clearly. As shown in this figure, as the applied

voltage increases, the device changes from being opaque to being transparent and then to being

partially transparent at 3 GHz.

Figure 3.31(a) shows the experimentally measured dispersion of the artificial CMP in this volt-

age controlled device. This figure clearly shows the hybridization of the pseudo magnon and cavity

modes which generates photon like and pseudo magnon-like polaritons separated by a gap near 3

GHz. The generation of EIT-like tranmission window in this system can be explained as follows.
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Figure 3.31: (a) Measured and (b) calculated transmission amplitude mapping obtained by contin-
uously tuning the DC voltage applied to the varactor loaded SRR cavity.

In a coherent coupling system consisting of a cavity mode and a magnon mode, when the dissi-

pation of the cavity mode becomes dominant, a transparency window in the transmission similar

to the classical EIT can be observed when the resonance frequency of the two modes is matched.

While the study in Ref. [15] has used the applied magnetic field to tune this transparency win-

dow by tuning the resonance frequency of the magnon mode, here the resonance frequency of the

pseudo magnon-mode is tuned by tuning the applied voltage. This controls the efficiency of en-

ergy transfer between the cavity mode and the pseudo magnon mode. By tuning the voltage bias,

the resonance frequency of the two modes is matched. Dominated by the dissipation of the cavity

mode, there is efficient energy transfer between the two modes which creates EIT like profile in

this system.

The dispersion of this device can also be calculated by using Eq. (3.19) by integrating the

equivalent circuit for the varactor diode which includes multiple electronic elements. For simplic-

ity, it is assumed that only the capacitance varies with the external applied DC voltage. Assuming

Cv of the varactor is in series connection with Cs = 2.7 pF for a SRR with Ls = 0.88 nH, the

transmission mapping is calculated as shown in Fig. 3.31(b) which qualitatively reproduces the

observed EIT-like feature in the coupled pseudo CMP system.

The quantitative differences between Fig. 3.31(a) and (b) can be attributed to the effect of

impedance mismatch between the 50Ω microstrip line and the 150Ω SRR line, or to the simplicity

of the circuit used for the varactor diode and the saturation of the capacitance of the varactor
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diode at higher voltages or to a combination of these two effects. Moreover, while varactor loaded

microstrip resonators have been studied in the past[84, 85], here the varactor diode is used to

tune the response of the SRR which in turn tunes the response of the entire device due to mutual

electrodynamic coupling.

Therefore, by using the concept of artificial CMP, an on-chip hybrid device has been fabricated

where the pseudo magnon-photon gap is produced due to electrodynamic coupling. This device

can thus be used to achieve voltage tunable EIT in the microwave regime. The pseudo magnon-

photon coupling can be well-explained by the transmission line model that has been developed.

This system has the advantage of being easily tunable and therefore could be used for the classical

observation of different coupling regimes. Moreover, since this system is planar and relies on

voltage instead of magnetic control of the EIT transparency window, it could easily be adapted for

potential practical applications in fabricating dynamic filters and to switch devices. This work has

been published in the Journal of Physics D, Applied Physics[86].
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Chapter 4

Summary

This thesis reports the results of three experimental studies that are based on the recently

emerged but extensively investigated field of cavity photon-magnon coupling which leads to the

generation of CMP. The focus of these experiments was to develop additional methods to control

and study the cavity photon-magnon coupling. The results of these studies could also help in easier

integration of the CMP system to on-chip devices for the various advanced spintronic applications

that have been proposed[16, 17]. For the development of these applications, strong cavity photon-

magnon coupling is required. This strong coupling can be achieved at room temperature by using

a ferro/ ferrimagnetic sample that has a high spin density and low Gilbert damping as the cou-

pling strength is proportional to the square root of the number of spins in the magnetic sample[15].

Therefore, for the purpose of cavity photon-magnon coupling experiments an YIG sample, that has

a high spin density and low Gilbert damping, was used as a source of magnons.

The CMP system can be theoretically described by the classical harmonic oscillator or the

quantum Hamiltonian or the classical electrodynamics model. Each of these three models and

their relative advantages have been presented in detail in the Theory chapter of this thesis. At room

temperature, for a bulk spin system, the quantum Hamiltonian model converges to the harmonic

oscillator model in the rotating wave approximation. Thus, the quantum and the two classical

models give a similar 2 x 2 matrix that can be used to model the cavity photon-magnon coupling
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with the only difference being in the definition of the coupling parameter that describes the cou-

pling strength between the cavity photon and the magnon in each model. The resonance frequency

dispersion and the linewidth evolution of the cavity photon-magnon modes can then be modelled

by using the real and imaginary parts of the eigen-frequencies of this matrix, respectively. The ad-

vantage of using this 2 x 2 matrix is that it can be easily extended to describe the coupling between

multiple cavity photon and magnon modes. In this thesis, the 2 x 2 matrix obtained from the clas-

sical harmonic oscillator model was extended and modified to describe the various experimental

results that were obtained.

In order to achieve the objective of making the cavity photon-magnon coupled system more

suitable for potential practical applications, an artificially engineered structure known as a split ring

resonator (SRR) has been used in this work. As described in Chapter 3, the SRR is made of a non-

magnetic conducting material and is designed such that it has an effective magnetic permeability

in the presence of microwave radiation due to which it can be used a source of pseudo-magnons.

Furthermore, the SRR can be oriented in such a way that it is excited by both the electric and

magnetic fields of the incident electromagnetic radiation. This induces a strong current in the SRR

which allows it to either enhance/oppose the incident electromagnetic radiation due to which it

also has the potential of being used as a cavity for cavity photon-magnon coupling experiments.

Therefore, a voltage tunable varactor loaded SRR that could be excited by using a tapered

microstrip line was adapted to be used as a cavity for the first set of cavity photon-magnon experi-

ments. By tuning the applied voltage, the capacitance of the varactor diode can be changed which

in turn changes the resonance frequency of the varactor loaded SRR cavity. Experimentally, a

spherical YIG sample was chosen as a source of magnons. The YIG sample characterization using

a tapered microstrip line revealed that different long wavelength spin waves (known as magneto-

static modes) were excited due to the non-uniform microwave distribution across the YIG sphere.

Furthermore, it was revealed that two of these magnetostatic modes were coupled to each other

due to the effect of the dipole-dipole and exchange interactions on the dispersion of these modes.

This coupling leads to the typical mode anti-crossing and linewidth exchange behaviour which can
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be well-explained by the classical harmonic oscillator model.

The cavity photon-magnon coupling between the planar varactor loaded SRR cavity and the

YIG sphere was then experimentally studied. The advantage of this varactor loaded cavity is that

it not only allows the cavity photon-magnon coupling to be studied in the traditional way of tuning

the applied magnetic field to tune the resonance frequency of the magnon modes but also allows to

tune the resonance frequency of the cavity mode and hence tune the coupling between the photon-

magnon modes. Hence, the cavity photon-magnon coupling was studied using both these methods

and it was revealed that the two coupled magnetostatic modes interact differently with the cavity

mode i.e. one of the magnetostatic modes was found to be strongly coupled with the cavity mode;

whereas, the other magnetostatic mode was found to have no coupling with the cavity mode. This

difference in their relative coupling strengths may be due to the difference in their respective mode

magnetizations which could be further studied in the future. Nonetheless, the coupling between

these two magnetostatic modes along with the cavity mode, examined using both the methods, can

be well-described by extending the classical 2 x 2 matrix model to a 3 x 3 matrix model.

This voltage control of CMP using a planar varactor loaded SRR cavity would allow the de-

sign of an on-chip CMP system. This system would simply consist of a battery and a permanent

magnet and hence would be more suitable for potential practical applications as it would eliminate

the need of a big electromagnet that has been traditionally used to investigate the cavity photon-

magnon coupling. However, for planar CMP systems, a quantitative simulation of the non-resonant

radiation damping is essential which was also investigated in detail in this work.

The 2 x 2 matrix model that is used to describe the cavity photon-magnon coupling takes into

account the resonant or the Gilbert damping of the magnon mode. This damping is responsible

for the linewidth exchange between the cavity photon-magnon modes in CMP experiments. How-

ever, due to the precession of magnetic dipoles, the magnetic dipole radiation is produced which

acts as a non-resonant radiation damping in CMP experiments. The effect of this non-resonant

radiation damping was taken into account by adding an additional relaxation channel in the 2 x

2 matrix model. An LCR circuit model was also built based on this modified matrix model for
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the purpose of quantitative simulations. The main predictions from this modified matrix model

were that the effect of the non-resonant radiation damping becomes apparent only when the cav-

ity photon-magnon resonance frequencies are far away from each other and that this additional

damping causes the magnon resonance frequency to shift higher and the linewidth of the magnon

mode to become broader. These predictions were verified experimentally by using a planar strip-

line cavity along with an YIG sphere. Here, it was found that this shift in the magnon resonance

frequency and linewidth was proportional to the square of the coupling strength between the cav-

ity photon-magnon modes. Hence, this experimental realization and theoretical modelling of the

non-resonant radiation damping might help in the design and adaptation of planar CMP systems

for potential practical applications.

To further remove the requirement of the static magnetic field, in the final section of the Exper-

iment and Results chapter, pseudo CMP coupling is explored by utilizing the magnetic response

of a SRR in order to replace the YIG sample as a source of magnons. Here, a planar cut-wire res-

onator was used as a cavity to excite the resonance of the SRR. In order to theoretically describe

this planar coupled pseudo CMP system, a microwave transmission line model was built based on

mutually coupled LCR circuits. The final result from this model was found to have a form that

was similar to the CMP coupling model with the coupling strength being inversely proportional to

the distance between the two resonators. Based on the ratio between the coupling strength and the

linewidths of the two resonators, classical analogues of different coupling regimes can be defined

such as the strong, weak, EIT and Purcell regimes. Using this definition of the different coupling

regimes, a varactor loaded SRR was then used to show voltage control of metamaterial EIT. Here,

the pseudo-CMP gap associated with the generation of pseudo-polaritons could be tuned by chang-

ing the applied voltage which tuned the transmission window associated with metamaterial EIT.

This on-chip voltage control of metamaterial EIT could therefore be used in designing dynamic

filters and to switch devices.

Hence, all the experimental works that have been discussed in this thesis were aimed at un-

derstanding the cavity photon-magnon coupling physics and developing systems that were better
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suited for potential practical applications. Future work in this area could involve designing higher

quality factor tunable circuit cavities in order to achieve effective control of cavity photon-magnon

coupling. Furthermore, the ability to design and fabricate tunable cavities could be used to design

a multi-terminal planar cavity wherein the effect of the input microwave phase at different input

terminals could be used to achieve phase control of CMP. Moreover, the cavity photon-magnon

coupling could be examined in the few photon, spin number limit at low temperatures. At this con-

dition, it might be possible to observe and study the distinction between the classical and quantum

coupling regimes.
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Appendix A

Derivation of Classical Equations of Motion

As discussed in the first section of the Theory chapter of this thesis, the cavity photon-magnon

coupling can be described by using a system of two coupled harmonic oscillators. In this chapter,

the classical equations of motion that can be used to describe the cavity photon-magnon system

will be derived starting from the Hamiltonian of the coupled system. This Hamiltonian would also

be then compared with the quantum Hamiltonian that has been discussed previously [Eq. (2.4)].

The cavity photon-magnon system can be represented as a system of two harmonic oscillators

with a unit mass and resonance frequency ωc and ωm, respectively. The kinetic energy of the

oscillators when they are at a distance x1, x2 away from their equilibrium positions can therefore

be written as

T1 =
p21
2

=
ẋ21
2
,

T2 =
p22
2

=
ẋ22
2
,

(A.1)

where ẋ1, ẋ2 are the velocities of the two oscillators with momentum p1 and p2, respectively.

The potential energy of the coupled system can be represented by V which is assumed to be

only a function of the position of the two oscillators. This potential energy satisfies the equilibrium

condition −∂V
∂x

∣∣∣∣
x=x0

= 0 i.e. when the system is in equilibrium there will be no restoring forces

acting on it. In the case of small oscillations of the system near the equilibrium condition, the
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potential energy can be expanded near the equilibrium point as

V (X1, X2) = V (x01, x02) +
2∑

i=1

∂V

∂x′i

∣∣∣∣
x′
i=x0i

xi +
1

2

2∑
i,j=1

∂2V

∂x′ix
′
j

∣∣∣∣x′
i=x0i

x′
j=x0j

xixj, (A.2)

where, Xi = x0i + xi, with x0i being the equilibrium positions[87]. The potential energy at the

equilibrium position can be chosen to be zero. Here, the potential energy terms that are linear

in displacement vanish due to the equilibrium condition mentioned above so that the only the

quadratic terms are left. The potential energy of this system can thus be written as

V (x1, x2) =
ω2
cx

2
1

2
+
ω2
mx

2
2

2
+ κω2

cx1x2, (A.3)

where it is assumed that ω2
c =

∂2V

∂x′21

∣∣∣∣
x′
1=x01

, ω2
m =

∂2V

∂x′22

∣∣∣∣
x′
2=x02

, and κω2
c =

1

2

∂2V

∂x′1∂x
′
2

∣∣∣∣x′
1=x01

x′
2=x02

+

1

2

∂2V

∂x′2∂x
′
1

∣∣∣∣x′
1=x01

x′
2=x02

.

Therefore, the Hamiltonian of the coupled system is given by

H = T1 + T2 + V (x1, x2) =
ẋ21
2

+
ẋ22
2

+
ω2
cx

2
1

2
+
ω2
mx

2
2

2
+ κω2

cx1x2. (A.4)

From the above Hamiltonian, the Lagrangian of the system can be calculated as being

L = T1 + T2 − V =
ẋ21
2

+
ẋ22
2
− ω2

cx
2
1

2
− ω2

mx
2
2

2
− κω2

cx1x2. (A.5)

The effect of damping on the cavity photon and magnon system can be included by introduc-

ing frictional forces in this harmonic oscillator model. If the frictional force is assumed to be

proportional to the velocity of the oscillator, then the dissipation energy Uf ∝
ẋ2

2
[87] such that the

frictional force is given by Ff = −∂Uf

∂ẋ
. Therefore, the damping force acting on the cavity photon

77



and magnon system can be represented as

Ff1 = −βωcẋ1,

Ff2 = −αωcẋ2.

(A.6)

Here, βωc, αωc are the constants of proportionality for the dissipation energies of the cavity photon

and magnon systems.

The equations of motion for this coupled oscillator system can then be obtained from

d

dt
(
∂L

∂ẋi
)− ∂L

∂xi
= Ffi (A.7)

as being

ẍ1 + ω2
cx1 + κω2

cx2 = −βωcẋ1,

ẍ2 + ω2
mx2 + κω2

cx1 = −αωcẋ2.

(A.8)

Here, it is assumed that the only external force acting on the system is the frictional force. If it

is assumed that the oscillator representing the cavity mode is being driven by an external force f

then the above equations can be re-written as

ẍ1 + ω2
cx1 + κω2

cx2 = −βωcẋ1 + f,

ẍ2 + ω2
mx2 + κω2

cx1 = −αωcẋ2.

(A.9)

If the displacement of the oscillators x1, x2 are assumed to have a form of Ace
−iωt and Ame

−iωt,

respectively whereAc andAm are the maximum amplitudes of oscillation, then the above equations

of motion can be written as

ω2Ac − ω2
cAc − κω2

cAm + iωβωcAc = −f,

ω2Ac − ω2
mAm − κω2

cAm + iωαωcAm = 0.

(A.10)
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or in matrix format asω2 − ω2
c + iωωcβ −κω2

c

−κω2
c ω2 − ω2

m + iωωcα


Ac

Am

 =

−f
0

 . (A.11)

The determinant of the 2 x 2 matrix given above is

det(Ω) = (ω2 − ω2
c + iωωcβ)(ω2 − ω2

m + iωωcα)− κ2ω4
c . (A.12)

The real and imaginary parts of the roots of the above equation have been plotted as a function

of the detuning ∆ = ωm − ωc in Fig. A.1 (a) and (b), respectively which show the frequency

dispersion and the linewidth evolution of the two hybridized modes produced due to coupling. The

parameters used here for computation were ωc = 2, α = 0.0002, β = 0.03 and κ = 0.15. For the

case when α, β � 1, Eq. (A.12) can be simplified as det(Ω) = (ω2 − ω2
c )(ω2 − ω2

m)− κ2ω4
c = 0

from which the roots can be calculated near the coupling point ω ' ωc ' ωm to be

ω± =
ωc + ωm ±

√
(ωc − ωm)2 + κ2ω2

c

2
. (A.13)

From the above equation, it can be seen that the coupling between the two oscillators produces

two hybridized modes, with resonance frequency ω+ and ω− such that ω+ > ω−. The eigenvectors

([x+, y+] and [x−, y−]) corresponding to these two eigenfrequencies (ω+ and ω−, respectively) can

be calculated for the case when α, β � 1. If it is assumed that ω2 − ω2
c = 2ωc(ω − ωc), and

ω2 − ω2
m = 2ωc(ω − ωm), the matrix equation for eigenvectors can be simplified as

2(ω+ − ωc) −κωc

−κωc 2(ω+ − ωm)


x+
y+

 =

Ω + ∆ −κωc

−κωc Ω−∆


x+
y+

 = 0, (A.14)

where ∆ = ωm − ωc,Ω =
√

(ωc − ωm)2 + κ2ω2
c . The normalized eigenvector is then given by

79



x+
y+

 =
1√

κ2ω2
c + (∆ + Ω)2

 κωc

Ω + ∆

 . (A.15)

Assuming that sin θ =
κωc

Ω
and cos θ =

∆

Ω
then,

x+
y+

 =
1√

2Ω2(1 + cos θ)

 Ω sin θ

Ω(1 + cos θ)

 =
1

2 cos(θ/2)

 sin θ

(1 + cos θ)

 (A.16)

x+
y+

 =
1√
2

√1− cos θ
√

1 + cos θ

 =
1√
2Ω

√Ω−∆
√

Ω + ∆

 . (A.17)

Similarly, the eigenvector corresponding to ω− can be calculated and is given by

x−
y−

 =
1√
2

−√1 + cos θ
√

1− cos θ

 =
1√
2Ω

−√Ω + ∆
√

Ω−∆

 . (A.18)

The eigenvectors corresponding to ω+ and ω− have been plotted as a function of the detuning (∆)

in Fig. A.1 (c) and (d), respectively with κ = 0.15 and ωc = 2.

A special case arises when ωc = ωm i.e. the resonance frequency of the two oscillators is

matched. In this case, Eq. (A.13) can be further simplified such that

ω± = ωc ±
κωc

2
. (A.19)

Then, Ω =
√

∆2 + κ2ω2
c = κωc and the two eigenvectors calculated above can be simplified as

being

x+
y+

 =
1√
2Ω

√Ω−∆
√

Ω + ∆

 =
1√
2

1

1

 , (A.20)
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Figure A.1: The (a) eigenfrequency, (b) linewidth, (c) and (d) eigenvectors for the two hybridized
modes plotted as a function of the detuning ∆.

x−
y−

 =
1√
2Ω

−√Ω + ∆
√

Ω−∆

 =
1√
2

−1

1

 . (A.21)

The above equations show that the coupling between the two oscillators produces two hybridized

modes in which the oscillators are either moving in the same direction with a resonance frequency

of ω+ or they are moving in the opposite direction with a resonance frequency of ω−. The motion

of the oscillators for these two cases has been shown in Fig. A.2 (a) and (b), respectively.

For the coupled cavity photon-magnon system described above in terms of the classical har-

monic oscillator model, the interaction term in the potential V given by Eq. (A.3) was positive

i.e.
1

2

∂2V

∂x′1∂x
′
2

∣∣∣∣x′
1=x01

x′
2=x02

+
1

2

∂2V

∂x′2∂x
′
1

∣∣∣∣x′
1=x01

x′
2=x02

= κω2
c > 0. However, this classical harmonic oscillator

model is general and can be applied to other coupled systems in which the interaction term of the

potential can also be negative. For example, consider the atomic system, where two atoms combine

to form a molecule by forming bonding and anti-bonding molecular orbitals. The bonding orbitals

are lower in energy than the orbitals of the separate atoms and correspond to in-phase interactions
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Figure A.2: The two hybridized oscillation modes generated due to coupling in which the oscil-
lators oscillate (a) in the same direction with a resonance frequency ω+ and (b) in the opposite
direction with a resonance frequency ω−.

between the atomic orbitals, whereas the anti-bonding molecular orbitals are higher in energy than

the orbitals of the separate atoms and correspond to out of phase interactions between the atomic

orbitals. This difference in the energy levels of the in phase and out of phase eigenstates for the

molecular orbital case compared to the cavity photon-magnon coupled case (wherein the in phase

oscillation had a higher energy than the out of phase oscillation) can be explained as follows. When

two atoms combine to form a molecule, their binding energy is negative which corresponds to the

case that the interaction term in the potential V given by Eq. (A.3) is negative. In this case, the

potential energy V can be modelled as being the potential energy due to a spring that is connected

to two oscillating masses such that V =
κω2

c (x2 − x1)2

2
[87]. Then, the modified equations of

motion in matrix format (in the absence of damping) are

ω2 − ω2
c κω2

c

κω2
c ω2 − ω2

m


Ac

Am

 =

−f
0

 . (A.22)

The eigenvalues of this system are equal to the eigenvalues of the coupled cavity photon-

magnon system given by Eq. (A.13) (with β, α = 0) but the eigenvectors for ω+ and ω−, when

ωc = ωm are now given by
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x+
y+

 =
1√
2

−1

1

 , (A.23)

x−
y−

 =
1√
2

1

1

 , (A.24)

respectively. Therefore, the above equations clearly show that when the interaction term of the

potential energy is negative (which corresponds to a negative binding energy), the out of phase

interaction has a higher eigenfrequency and hence a higher energy than the in-phase interaction.

Thus, the sign of the interaction term of the potential energy governs the energy of the hybridised

eigenstates of the system and is dependent on whether the binding energy is positive (as is the case

for cavity photon-magnon systems) or negative (for molecular orbital systems).

The Hamiltonian derived above using classical mechanics [Eq. (A.4)] can also be compared

with the Hamiltonian that was obtained by using microscopic quantum theory [Eq. (2.4)] discussed

in Section 2.2. This quantum Hamiltonian is given by

H/h̄− ωc + ωm

2
= ωmm

†m+ ωcp
†p+ κq(p

†m+m†p). (A.25)

Here, p† =

√
ωc

2h̄
(xp−

ipp
ωc

), p =

√
ωc

2h̄
(xp +

ipp
ωc

), m† =

√
ωm

2h̄
(xm−

ipm
ωc

), and m =

√
ωm

2h̄
(xm +

ipm
ωm

) are the photon and magnon creation and annihilation operators, respectively expressed in

terms of the position xp, xm and momentum pp, pm operators used in the context of quantum har-

monic oscillators with a unit mass. Therefore, by using this definition of the creation and annihi-

lation operators, the above equation can be written as

H

h̄
−ωc + ωm

2
=
ω2
c

2h̄
(x2p−

h̄

ωc

+
p2p
ω2
c

)+
ω2
m

2h̄
(x2m−

h̄

ωm

+
p2m
ω2
m

)+κq

√
ωcωm

2h̄
(2xpxm+

2pppm
ωcωm

), (A.26)
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or simplified as being

H =
ω2
cx

2
p

2
+
p2p
2

+
ω2
mx

2
m

2
+
p2m
2

+ κq
√
ωcωmxpxm + κq

pppm√
ωcωm

. (A.27)

In the above equation, if the momentum coupled term is ignored then the Hamiltonian has the

exact same form as the one obtained from classical mechanics [Eq. (A.4)] with the only difference

being in the definition of the coupling constant κ and κq. Therefore, the classical and quantum

Hamiltonians that can be used to describe the coupled cavity photon-magnon system in terms of

harmonic oscillators are equivalent. Hence, either of these two models can be used to study the

cavity photon-magnon system.
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(2016).
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