
The State of the Art Time-Domain
Wavefield Imaging using a

Discontinuous Galerkin
Forward-Backward Time-Stepping

Method

Forouz Mahdinezhad Saraskanroud

PhD thesis
Submitted in Partial Fulfillment

of the Requirements for the Degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2021 by Forouz M. Saraskanroud





DGM-FBTS Imaging

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

Supervisor: Ian Jeffrey
Associate Professor, Dept. of ECE, University of Manitoba

External Examiner: Milica Popovic
Associate Professor, Dept. of Engineering, McGill University

Internal Member: Joe LoVetri
Professor, Dept. of ECE, University of Manitoba

Internal-External Member: Scott Ormiston
Professor, Dept. of Mechanical Engineering, University of Manitoba



DGM-FBTS Imaging

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.



DGM-FBTS Imaging

Abstract

In this thesis, an efficient wavefield imaging technique of Forward/Backward Time-Stepping

(FBTS) in the Time Domain (TD) is developed, employing the Discontinuous Galerkin Method

(DGM) as the spatial-discretization technique. The FBTS method is based on calculating gra-

dients of a TD cost functional with respect to the constitutive parameters of the target, and

updating the modeled target using Conjugate Gradient (CG) method. The DGM and Runge-

Kutta method are used to solve the mentioned problem, respectively, in space and time. We call

this TD - Microwave Imaging (MWI) technique DGM-FBTS and present it, for the first time,

for dispersive media.

The electromagnetic (EM) two-dimensional non-dispersive Transverse Magnetic (TM) DGM-

FBTS is compared to Frequency Domain (FD) imaging algorithms for synthetic and experimental

imaging targets in terms of computational cost, the quality of results, and robustness. For the first

time, a direct comparison of TD and single-frequency FD MWI, DGM-Contrast Source Inversion

(CSI) and DGM-Gauss Newton Inversion (GNI) schemes are used as the FD counterparts, all

implemented in Matlab. For experimental data, the DGM-FBTS algorithm shows a robust noise

performance, generating higher-resolution results than the two FD methods.

The DGM-FBTS formulation is also modified for quantitative ultrasound imaging with pre-

liminary results presented, as a foundation for future experimental work in this area. This

ultrasound imaging technique is validated briefly in this work, and it shows to be promising in

quantitative wavefield imaging.

Finally, a novel development and investigation of quantitative hybrid time- and frequency-

domain techniques is presented, focusing on enhancing the performance of both FD and TD

schemes by improving the inversion speed and image resolution, respectively. These hybrid

schemes are tested/validated on experimental data to study their accuracy in the presence of

- i -
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measurement noise and system modeling error. These results show improvement of image resolu-

tion compared to stand-alone FD algorithms (especially for complicated targets) and improvement

in computational time by an average of 44% compared to stand-alone TD algorithm.
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Contributions

The specific contributions of this work are:

• The development of 2D transverse-magnetic time-domain discontinuous Galerkin method

(DGM) forward solver in Matlab1, including:

– The electromagnetic version of this forward solver for non-dispersive media,

– The electromagnetic version of this forward solver for dispersive media,

– The ultrasound version of this forward solver for non-dispersive media.

• The development of 2D time-domain DGM- Forward-Backward Time-Stepping (FBTS)

inversion algorithm in Matlab, including:

– The electromagnetic version of this inversion algorithm for non-dispersive media,

– The electromagnetic version of this inversion algorithm for dispersive media,

– The ultrasound version of this inversion algorithm for non-dispersive media.

• The validation of these inversion algorithms using synthetic and experimental data.

• The first-time comparison of the electromagnetic version of 2D DGM-FBTS with two FD

inversion algorithms2; DGM-CSI and DGM-GNI, with synthetic and experimental data.

• Presenting and developing hybridization methods using quantitative inversion algorithms of

TD DGM-FBTS, FD DGM-CSI and FD DGM-GNI, and showing their significant benefits

by testing/evaluating them using synthetic and experimental data.

1A Matlab code of the frequency-domain DGM forward solver developed by the previous members of the
Electromagnetic Imaging Laboratory (EIL) at University of Manitoba (UofM) was available before this thesis. We
benefited from these implementations for the TD implementation of the forward solvers in this thesis.

2Implementing the inversion algorithms of DGM-CSI and DGM-GNI is not the subject of this thesis. We use
these pre-implemented (by UofM-EIL) inversion algorithms in this thesis for the comparison reason.
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Ey(t, ~r) ây + Ez(t, ~r) âz in three-dimensional space is denoted by E(t, ~r) =

Ex(t, ~r)

Ey(t, ~r)
Ez(t, ~r)

,

• ∂i is the partial derivative operator with respect to parameter i.

- xx -



DGM-FBTS Imaging LIST OF SYMBOLS

Symbols Description

Ω Entire computational domain

D Imaging domain

S Measurement domain

M Total number of transmitters

N Total number of receivers

t Time

∆t Time step

T Final measurement time

~r Cartesian position vector

j Imaginary unit: j =
√
−1

~B Magnetic flux density

~D Electric flux density

~D Time-harmonic electric flux density

~E , ~E inc, ~Esct Total, incident and scattered electric fields

~E, ~Einc, ~Esct Time-harmonic total, incident and scattered electric fields

~H, ~Hinc, ~Hsct Total, incident and scattered magnetic fields

~H, ~H inc, ~Hsct Time-harmonic total, incident and scattered magnetic fields

~P Polarization

ε Permittivity

εr Relative permittivity

εr,eff Effective relative permittivity in frequency-domain

ε′, ε′′ Real and imaginary part of frequency-domain permittivity

ε0 Free space permittivity

εs Static permittivity

ε∞ Optical permittivity

µ Permeability

µr Relative permeability

µ0 Free space permeability

σs Static conductivity

σe Dispersive media’s effective conductivity

σa Alternative polarization-dependant conductivity

τr Debye model relaxation time

τrr Relative relaxation time in Debye model

τr0 Free space relaxation time in Debye model

- xxi -



DGM-FBTS Imaging LIST OF SYMBOLS

Symbols Description

ω Angular frequency

cem Speed of electromagnetic wave

c0 Speed of light in free space

Zem Impedance of electromagnetic wave

η0 Electromagnetic intrinsic impedance of free space

~J c, ~J E , ~JM Conduction, electric, and magnetic current densities

~J c,S , ~J E,S , ~JM,S Surface conduction, surface electric, and surface magnetic current densities

ρ Electric charge density

ρS Surface charge density

F Cost functional

F ′ Cost functional’s Fréchet derivative
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ŝ Adjoint (backward-in-time) solver source vector

hX Search direction for the parameter X
γX Search direction for the parameter X
Γ Search distance or search step

V Volume

% Fluid mass density

ρ Average amount of a volume density

ρ0 Background’s average density

ρr Relative average density

ρ1 Density fluctuations

~U Ultrasound volume velocity

~U0 Average amount of a volume velocity

~u Velocity fluctuations

P (.) Pressure

P0 Average amount of pressure over a volume

p Pressure fluctuations

κ′ Compressibility

κ′0 Background compressibility

κ′r Relative compressibility

F src Ultrasound source force

cus Speed of ultrasound wave

Zus impedance of ultrasound wave

vus Ultrasound’s normalized field vector

sus Ultrasound’s normalized source vector

wus Solution to the Ultrasound’s adjoint operator

Stot(.), Ssct(.), Sinc(.) Total, scattered and incident S-parameters

ζ Root Mean Square Deviation (RMSD) metric

- xxiii -



DGM-FBTS Imaging LIST OF SYMBOLS

Matrix
Operators

Description

∂ Differential operator

∇× Curl operator

∇· Divergence operator

∇ Gradient operator

∗ Convolution operator

� Element-wise product of two vectors

‖ . ‖ Euclidean norm or 2-norm

〈., .〉 Inner product operator

ᵀ Transpose operator

K Forward solver differential operator

K̃ Normalized forward solver differential operator

K̃∗ Adjoint operator of K̃
BlockDiag Block diagonal operator

VRP Interpolation operator from order P to order R

Kus Ultrasound’s forward solver differential operator

K∗,us Adjoint operator of Kus

- xxiv -



DGM-FBTS Imaging 1. Introduction

Chapter 1

Introduction

This thesis presents the development and implementation of a time domain (TD) wavefield imag-

ing algorithm with the primary focus on Microwave Imaging (MWI) while providing an overview

of an analogous ultrasound TD algorithm. MWI involves solving microwave electromagnetic

(EM) inverse scattering problems, and has been used as an imaging technique in many applica-

tions starting with astronomy [4, 5], and biomedical application of cancer detection [6, 7]. Other

MWI applications include through-wall imaging [8, 9], medical imaging like stroke and breast

cancer detection/classification [10, 11, 12], industrial non-destructive testing [13, 14], and aircraft

radars [15].

Generally speaking, MWI techniques are classified to: TD and Frequency Domain (FD) tech-

niques by the reconstruction algorithm’s domain/formulation, into quantitative and qualitative

techniques by the format of the reconstructed image, and into linear and non-linear methods

by the type of mathematical formulation of the inverse problem. Herein we are concerned with

non-linear TD quantitative imaging. Specifically, we develop an algorithm referred to as the Dis-

continuous Galerkin Method - Forward-Backward Time-Stepping algorithm (DGM-FBTS) for

the application of near-field imaging, steering toward a specific biomedical application of breast

cancer detection.
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In this chapter, we briefly review the concepts of MWI and inverse problems. This thesis’s

motivation and goals are described, and the outline of the thesis is presented afterward.

1.1 MWI

MWI for medical applications has been of particular interest in the last two decades because of

its non-invasive diagnostic capabilities, low cost, and safety compared to Magnetic Resonance

Imaging (MRI) and X-ray CT [16, 17, 18, 19, 20, 21, 22, 23]. Despite the benefits of MWI

compared to today’s care standards like MRI and X-ray CTs in medical diagnosis, it has one

main drawback. These standards still generate higher resolution images, so that recovering higher

resolution images in MWI has been the main goal over the last decades.

MWI techniques usually start with illuminating the object of interest or the unknown object

with either monochromatic (FD-MWI) [24, 25, 26, 27, 28, 29] or wide-band EM radiation, e.g. TD-

MWI [28, 29, 30, 31], wide-band simultaneous frequency domain imaging or wide-band frequency

hopping. A reconstruction algorithm, based on the collected data, is then applied to map the

measured scattered signal from the target to an image of the spatial distribution of the object’s

electrical properties such as permittivity and conductivity. Whether in TD or FD, this mapping

procedure minimizes a cost functional, which includes the discrepancy between the measured

fields and those produced by a system model with estimated spatial distribution of the object’s

electrical properties. This cost functional is minimized by either stochastic [32] or deterministic

[33] optimization algorithms.

Machine/deep learning techniques in artificial intelligence, simulated annealing, neural net-

works, and genetic algorithms are some examples of useful stochastic optimization algorithms in

MWI with very slow convergence or training session. On the other hand, gradient search methods

like Steepest Descent (SD) or Conjugate-Gradient (CG) schemes are examples of deterministic

techniques, which usually converge more rapidly to local solutions [34]. All of these techniques

can be employed to either FD or TD -based algorithms in MWI. Herein we are concerned with
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deterministic gradient-based methods.

1.2 Motivation, Goals and Contributions

1.2.1 The Choice of Conjugate-Gradient based TD Inversion over FD algo-

rithms

The general problem of determining a target’s constitutive parameters using measured microwave

data is referred to as the microwave inverse scattering problem. One solves the inverse problem

using an inverse solver formulated according to one of the possible strategies mentioned in Section

1.1.

Conventional methods of FD monochromatic image reconstruction have occupied the major-

ity of literature in MWI. For these FD methods, both the forward scattering problem (computing

electric/magnetic fields by having full knowledge of target’s parameter) and inverse scattering

problem (estimating target’s electric/magnetic parameters from partial knowledge of electric/-

magnetic fields outside of the target) are formulated and solved in the FD. The common drawback

of all of these techniques is low image resolution due to a lack of information about the target.

Lack of information in imaging algorithms usually happens due to using insufficient collected

informative data during the measurement process, which is highly effected by the type of imaging

algorithm. An insufficient number of transmitter/receiver pairs or measurement frequencies (or

poor frequency selection) in the measurement process can result in a lack of information in the

measurement data. Imaging at higher frequencies has the potential to produce higher resolution

images, but the ill-posedness and non-linearity, which are two obstacles of inverse problems in

MWI, are more pronounced at higher frequencies [35, 30]. Obtaining a high-resolution image

from a single monochromatic measurement is unlikely.

FD strategies like frequency hopping or simultaneously frequency inversions have been ap-

plied in the last two decades to provide higher-resolution images [36]. In these strategies, lower
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frequency reconstructions are used as prior information1 for better resolution reconstructions at

higher frequencies. In this manner we can avoid having the algorithm get trapped in local minima

at higher frequencies. However, using either more frequencies or independent frequency-domain

forward models incurs a significant increase in computational cost.

There are a few TD inversion strategies proposed in the literature for inverse scattering

problems [35, 30, 31, 37, 38, 39]. TD inversion techniques require TD data which, in general,

means that TD methods use more information about the target than FD inversion techniques

[31, 1]. As a result, the image resolution and the target’s image accuracy are generally higher

in TD imaging, which would make one expect that past research has paid significant attention

to these MWI techniques. However, the lower per-iteration speed of 2D TD methods (compared

to monochromatic 2D FD algorithms) appears to have suppressed interest in TD imaging. This

rationale should no longer prevail due to available High-Performance Computing (HPC). Besides,

we suspect that TD techniques may be more efficient than FD methods - including simultaneous

frequency inversion or frequency hopping techniques - for three-dimensional problems.

Further comparing TD and FD MWI algorithms, monochromatic FD imaging is unable to im-

age dispersive loss2 as TD and multi-frequency FD inversion algorithms do. Almost all dielectrics

are dispersive and a dispersive media’s constitutive parameters are frequency-dependent. That

makes it impossible for a single-frequency FD inversion to distinguish dispersive materials from

lossy non-dispersive materials [40]. This frequency dependency may be crucial to model using

simultaneous frequency inversion FD imaging technique as the number of unknowns will double

(at least) by introducing dispersive models in FD algorithms. Although, it seems that the ill-

posedness of FD algorithms is more pronounced when modeling the dispersivity of materials as

the dispersive models usually add an auxiliary equation and so more unknowns (fields in forward

solver and constitutive parameters in inversion algorithm) to the system, it has been shown that

1Any information about the target, e.g., shape, location, or dielectric parameters’ initial values, that allows us
to initialize the inverse solver with something other than a “blind” image is referred to as prior information.

2For a detailed description of dispersive loss, please refer to Section 2.1.2.
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it brings the advantage of providing robust multi-frequency FD inversion techniques [41, 42, 36].

This increases computational costs, and also requires lots of information about target(s) coming

from measured data by adding frequencies. Despite the benefits of imaging the dispersivity of

materials, and considering that it does not increase the computational costs of TD algorithms,

there is a lack of work on TD algorithms in this area.

So, inverse EM scattering using monochromatic data has three significant shortcomings.

First, it is almost impossible to have a high-resolution image using just single-frequency data due

to the non-linearity and ill-posedness of the MWI optimization problem, unless the number of

transmitters/receivers and the non-linearity of the scattering problem (contrast value) were in

favor of the used inversion technique (high number of transceivers with low contrast target). Sec-

ond, choosing a “good” frequency to perform the experiments is tough. According to the literature

[43, 44, 45], one can improve resolution using techniques like simultaneous frequency inversions

or frequency hopping methods. Still, in FD-MWI, we may struggle to pick proper frequencies,

whether in a single- or multi-frequency imaging algorithm [1]. Third, TD and multi-frequency

FD algorithms can distinguish dispersive loss from conductive loss. As almost all dielectrics are

dispersive to some degree, this gives a distinct advantage to these algorithms, because detecting

dispesive loss (as opposed to conductive loss) helps to better distinguish target(s).

So far we argued FD and TD inversion techniques software-wise. Hardware-wise, different

data acquisition processes are required for experiments by FD and TD inversion techniques. As

FD imaging algorithms typically operate on complex-valued data, the energy interrogation and

data collecting part usually use sinusoidal energy, e.g., by a Vector Network Analyzer (VNA).

On the other hand, TD imaging algorithms operate on real-valued signals coming directly from

a time-domain measurement system, or a broadband VNA-measured data after applying signal

processing. Although real-valued signal compared to broadband complex-valued VNA-measured

data suffer from low signal-to-noise ratio (SNR) degrading image resolution, there have been lots

of strategies in this area studying/boosting the SNR [46, 47, 48, 49, 50].

- 5 -



DGM-FBTS Imaging 1.2 Motivation, Goals and Contributions

This thesis focuses on a novel TD-MWI technique, hoping to provide more accurate results

than FD-MWI with the ability to image dispersive materials as a frequency-dependency param-

eter, such that MWI has its rightful place in the medical space in the future. Of course, this

accuracy comes with computational costs that can certainly be compensated to some extent by

parallelism strategies and HPC. Besides, because of availability, we use broadband VNA-measured

data acquisition for all of the experiments in this thesis.

The TD-MWI technique used in this thesis, is formulated using Partial Differential Equa-

tion (PDE) conjugate gradient minimization of a cost functional. Comparing TD deterministic

optimization algorithms, the iterative PDE-based methods are less time-consuming in compari-

son with time convolution integral-based algorithms [31]. To this end, the PDE gradient-based

method of CG is chosen over the other types in this thesis as the inverse solver.

1.2.2 The Choice of DGM Forward Solver

The general problem of determining the total/scattered EM fields over the measurement domain

from knowledge of the target’s constitutive parameters is the forward/direct scattering problem.

One solves the forward problem numerically using a forward solver by simulating the system

model.

Generally speaking, forward solvers are critical components to any imaging problem because,

in the majority of imaging technique types, we repeatedly solve the forward problem. Therefore,

improving the modeling capabilities of a forward solver implies enhanced imaging capabilities.

The DGM forward solver has some significant features. The DGM solver’s major benefit is its

high flexibility in solving inverse scattering problems due to supporting high-order locally vary-

ing polynomial expansions of both the fields and constitutive parameters in each mesh element.

The DG model can support any imaging system geometry, boundary condition, and even inho-

mogeneous background media [51]. Using inhomogeneous backgrounds to represent prior target

information can be crucial in the sense of preventing the inversion algorithm from getting stuck
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in local minima for high contrast scatterers.

Herein, the DGM forward solver has been chosen to benefit from its significant features along

with the advantages of the designated TD inverse algorithm. We have the first time-domain

imaging algorithm that uses the time-domain DGM as a forward solver.

1.2.3 Ultrasound Imaging

In addition to solving the TD inverse problem for EM, we can use the same imaging strategy to

establish a new way of image detecting in Ultrasound (US). As ultrasounds exhibit similar wave

behaviour as in EM, it is straightforward to modify the TD-EM formulation to produce a TD-US

inversion method capable of reconstructing the ultrasound properties of a target.

An US equivalent of the EM DGM-FBTS algorithm is included in this work. US is not a

focus of this work, but is included to provide a foundation for future studies.

1.2.4 General Contributions

The contributions of this work are:

1) The development of the first high-order time-domain quantitative non-linear algorithm,

namely the DGM-FBTS algorithm with CG minimization.

The DGM-FBTS formulation supports dispersive media through the addition of a Debye

model included as an auxiliary differential equation.

2) An evaluation of the dispersive DGM-FBTS imaging algorithm compared to its FD coun-

terpart, by using it to reconstruct the spatial distribution of optical and static permittivities as

well as the relaxation time of Debye targets.

3) A framework for applying time-domain imaging to broadband measurement data first col-

lected in the frequency domain, i.e., to calibrate experimental data collected from the 2D imaging
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hardware in the UofM EIL so that it can be used for time-domain imaging.

4) A comparison between TD and FD methods for intricate synthetical/experimental targets

demonstrating the benefits of TD imaging for practical problems by alleviating the needs for

frequency selection and in some cases overcoming the need for prior information.

No comparisons of TD and FD imaging algorithms existed in the literature before of pub-

lishing [1], as a contribution of this thesis.

5) An equivalent formulation of the solvers for ultrasound, laying a framework for multimodal

imaging in the future. Ultrasound imaging and/or multimodal imaging are not the focus of this

thesis.

6) The development of two hybrid schemes combining quantitative time- and frequency-

domain algorithms for, to the best of my knowledge, the first time. These hybrid formulations

improve the performance of standalone time- and frequency-domain algorithms as demonstrated

for both synthetic and experimental target data.

1.3 Preview/Scope

This thesis aims to develop theories in three-dimensional (3D) space while all implementations are

applied to the two-dimensional (2D) space with a Transverse Magnetic (TM) wave configuration.

Improving the TD-FBTS algorithm itself, beyond adopting the DGM forward solver, is not the

scope of this work. The thesis lays a foundation for making future contributions to time-domain

imaging algorithms.

Two previously implemented frequency domain inverse algorithms, namely DGM-Contrast

Source Inversion (CSI) and DGM-Gauss Newton Inversion (GNI) have been employed in this
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work. Previous UofM-EIL members have developed these solvers, and they are great tools used

for comparing the TD tools developed herein. The details of the mentioned FD methods have

been omitted from this report because their developments were not part of this work. Interested

readers are referred to the EIL literature for more details about these two algorithms [52, 51].

The remainder of the thesis is presented as follows:

• The fundamentals of the inverse problem are presented in Chapter 2. This Chapter also

goes through Maxwell’s equations and gives a general perspective about MWI.

• Chapter 3 reviews the continuous form of the FBTS imaging algorithm for both dispersive

and non-dispersive media.

• We follow the method-of-lines approach in this work, and take care of the space- and time-

discretizations separately. Chapter 4 presents the DGM spatial-discretization of the MWI

problem followed by applying general boundary conditions to the problem, highlighting the

DGM discretization scheme’s benefits.

• Next, focusing on the time-dependence of the differential equations, time-integrating for the

forward solver fields is discussed in Chapter 5. The chapter leads to solving the forward

problem using a few implicit/explicit time-stepping strategies.

• Chapter 6 goes into the details of the inverse solver implementation used in this work. We

briefly talk about the CG algorithm and the details necessary to implement it. The chapter

includes details of how the DGM discretization is used to discretize the continuous FBTS

formulation.

• Chapter 7 formulates DGM-FBTS to ultrasound problems.

• Chapter 8 discusses the hardware setup(s) and data calibration followed by the implemen-

tations’ results when applied to both synthetic targets and experimental targets.
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• Finally, Chapter 9 introduces the first quantitative hybrid schemes by TD DGM-FBTS and

FD DGM-CSI/GNI algorithms.

• The thesis concludes in Chapter 10, where the work is summarized, conclusions are drawn,

and some thoughts for prospective future achievements are proposed.
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Chapter 2

Electromagnetic Fundamentals and

Maxwell’s Equations

This chapter presents Maxwell’s equations and formulates the electromagnetic scattering problem.

2.1 Maxwell’s Equations

In this section, we first review the basic Maxwell’s equations for non-dispersive media and then

augment these Partial Differential Equations (PDEs) for the general case of dispersive media.

2.1.1 Non-dispersive media

The general form of Maxwell’s curl equations for macroscopic electromagnetic field behavior in

the TD are given by the following coupled PDEs as a function of location ~r in 3D space and time

t:

∂t ~D(t, ~r)−∇× ~H(t, ~r) + ~J c(t, ~r) = − ~J E(t, ~r) (2.1a)

∂t ~B(t, ~r) +∇× ~E(t, ~r) = − ~JM (t, ~r) (2.1b)
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where ~D [C/m2] and ~B [Wb/m2] are the electric and magnetic flux densities and ~J E [A/m2] and

~JM [V/m2] are the electric and magnetic current densities, respectively. ~E [V/m] and ~H [A/m]

are the electric field (intensity) and magnetic field (intensity). ~J c [A/m2] is the conduction cur-

rent density. The physical medium is characterized by the constitutive parameters of permittivity

ε [F/m], permeability µ [H/m] and (static) conductivity σs [S/m]. Equations (2.1a) and (2.1b)

are commonly called Ampére’s and Faraday’s laws, respectively.

Microwave imaging is commonly performed at low field strengths and applied to simple

isotropic materials (or to materials that can be well-approximated as such). Consequently, if we

restrict consideration to a linear constitutive relationship for a stationary, isotropic, non-dispersive

medium, then:

~J c(t, ~r) = σs(~r)~E(t, ~r) (2.2a)

~D(t, ~r) = ε(~r)~E(t, ~r) (2.2b)

~B(t, ~r) = µ(~r) ~H(t, ~r) (2.2c)

where ε(~r) = ε0εr(~r) and µ(~r) = µ0µr(~r), or ε(~r) = ε0(1+χ(~r)) and µ(~r) = µ0(1+χm(~r)). εr and

µr are the relative permittivity and permeability and ε0 = 8.85× 10−12 [F/m] and µ0 = 4π× 107

[H/m] are the permittivity and permeability of free space (vacuum). χ and χm are the electric and

magnetic susceptibilities, which are the measures of electric and magnetic polarization properties

of materials, respectively. For instance, the quantity ~P(t, ~r) = ε0χ(~r)~E(t, ~r) represents the average

electric dipole moment per unit volume and ~P [C/m2] is called dielectric polarization density

or simply polarization. Similarly, ~M(t, ~r) = χm(~r) ~H(t, ~r) represents the average quantity of

magnetic moment per unit volume and ~M [A/m] is called magnetization.

Using the auxiliary equations (2.2), Maxwells’ curl equations reduce to 6 equations in 6

unknowns in 3D space, assuming the constitutive parameters are known. Specifically, Maxwell’s
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curl equations in non-dispersive media are:

ε0εr(~r)∂t~E(t, ~r)−∇× ~H(t, ~r) + σs(~r) ~E(t, ~r) = − ~J E(t, ~r) (2.3a)

µ0µr(~r)∂t ~H(t, ~r) +∇× ~E(t, ~r) = − ~JM (t, ~r) (2.3b)

For simplicity, we introduce the differential operator K, field vector u and source1 vector s:

K =

ε∂t + σs −∇×

∇× µ∂t

 , u =

 ~E
~H

 , s =

 ~J E
~JM

 . (2.4)

Then Maxwell’s equations can be succinctly written as

Ku = −s. (2.5)

In the following section we rewrite (2.5) for the linear, isotropic, temporally dispersive dielectric

materials, with neither time-varying magnetic susceptibility and nor magnetoelectric coupling.

2.1.2 Dispersive media

At the presence of time-varying electric field, the polarization response of materials can not be

instantaneous and this dynamic response is described by the convolutional constitutive relation-

ship:

~D(t, ~r) =

ˆ t

−∞
ε0εr(t− t′, ~r) ~E(t′, ~r) dt′, (2.6)

or by using the convolution operator ∗, ~D(t, ~r) = ε(t, ~r) ∗ ~E(t, ~r). These materials with this

dielectric mamory are called dispersive [53, 54]. The relative permittivity in (2.6) contains of two

optical and dispersive parts:

εr(t, ~r) = ε∞(~r) + χ(t, ~r), (2.7)

1The charge and current densities ρ, J are usually taken (thought of) as the sources of the electromagnetic
fields, and they are localized in space for wave propagation problems, e. g., flowing these densities on an antenna.
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where ε∞ ≥ 1 is the instantaneous or optical permittivity and χ here is the time-dependant

susceptibility kernel, describing the dispersive part.

In the frequency domain, the convolutional constitutive relation (2.6) appears as a simple

multiplication, and at a single radial frequency ω becomes:

~D(ω,~r) = ε0εr(ω,~r) ~E(ω,~r), (2.8)

where ~D [C/m2] and ~E [V/m] are the time-harmonic forms of the electric flux density and elec-

tric field. So the dispersive materials are usually distinguished by their frequency dependent (i.e.,

dispersion) constitutive parameters2 [55].

All materials are in fact electromagnetically dispersive. Although, in some cases, e.g. metals,

the loss is dominantly the result of the static conductivity, called conduction loss. We neglect

the dipole motions, which are the cause of dispersivity, in these materials when dealing with the

electromagnetic equations. On the other hand, in dielectrics (non-metallic materials), e.g. human

body tissues, the polarization-dependant term usually dominates the static conductivity [56]. This

fact is usually neglected in FD microwave imaging modalities, as this dispersivity is frequency-

dependent and the resulting loss is hard to distinguish from conduction loss. In these FD modal-

ities, we image both types of loss by the complex permittivity ε(ω,~r) = ε′(ω,~r) + jε′′(ω,~r). Note

that in all of the time-harmonic equations in this thesis, a dependence of ejωt is suppressed, where

j =
√
−1.

Therefore, the dispersive media’s effective conductivity σe [S/m] in a general microwave

imaging scenario comes from both the electron collisions, which introduces the static conductivity

σs [S/m] and the dipole motions, making the polarization-dependant conductivity σa [S/m] due

2Note that the primary mechanism that determines the medium’s frequency despersion is its time domain
response.
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to an alternating field:

σe = σs + σa. (2.9)

There are many methods in the literature modeling the material dispersion by either convo-

lution integral or differential equation, including Debye, Cole-Cole and Lorentz models [57, 58,

59, 60, 61, 62, 54, 63, 64].

According to Lazebnik et al. in [65], the single-pole Debye model provides an accurate rep-

resentation of the frequency-dependent behavior of the constitutive parameters in the biomedical

application of breast cancer detection at microwave frequencies. So, we use the Debye model in

this work and in the following we show that it is a reasonable model for the targets considered

here, too. The relation to model the dispersive behaviour of the time-harmonic (complex) relative

permittivity, εr, of the materials is3:

εr(ω,~r) = ε∞(~r) +
∆εr(~r)

1 + jωτr(~r)
(2.10)

where ∆εr(~r) = εs(~r) − ε∞(~r) is a positive quantity, ε∞, εs and τr [s] are the relative optical

permittivity, relative static permittivity and the relaxation time, respectively.

By substituting (2.10) in (2.8), we obtain:

~D(ω,~r) (1 + jωτr(~r)) = ε0ε∞(~r) ~E(ω,~r) (1 + jωτr(~r)) + ε0∆εr(~r) ~E(ω,~r). (2.11)

By transforming (2.11) from the phasor domain to the TD, we obtain:

~D(t, ~r) + τr(~r) ∂t ~D(t, ~r) = ε0ε∞(~r)τr(~r) ∂t~E(t, ~r) + ε0εs(~r) ~E(t, ~r). (2.12)

Equation (2.12) is called the TD Auxiliary Differential Equation (ADE) [54] for the electric flux

3In the case of using other models, the formulation would differ from this point onwards. For instance, in the
case of using Cole-Cole model, εr(ω,~r) = ε∞(~r) + ∆εr(~r)

1+(jωτr(~r))α
, where 0 < α < 1 [66].
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density in dispesive media, as it relates the electric flux to the electric field, to solve the Maxwell’s

curl equation.

An alternative form of the ADE due to the polarization ~P using:

~D(t, ~r) = ε0ε∞(~r)~E(t, ~r) + ~P(t, ~r), (2.13)

after rewriting it based on polarization and electric fields, is4 [54]:

~P(t, ~r) + τr(~r) ∂t ~P(t, ~r) = ε0 ∆εr(~r) ~E(t, ~r). (2.14)

From (2.1), (2.13), and the ADE (2.14), the augmented Maxwell’s equations for the dispersive

media in TD are given by the PDEs:

ε0ε∞(~r) ∂t~E(t, ~r)−∇× ~H(t, ~r) + σs(~r) ~E(t, ~r) + ∂t ~P(t, ~r) = − ~J E(t, ~r) (2.15a)

µ0µr(~r) ∂t ~H(t, ~r) +∇× ~E(t, ~r) = − ~JM (t, ~r) (2.15b)

∂t ~P(t, ~r)− ε0∆ε(~r)

τr(~r)
~E(t, ~r) +

1

τr(~r)
~P(t, ~r) = 0. (2.15c)

With the goal of removing the time-derivative of ~P from equation (2.15a), we substitute the

equation (2.15c) into (2.15a). Adopting the notation used in [54], we introduce the quantities α,

4In the case of using Cole-Cole model, this formulation would be replaced by ~P(t, ~r) + (τr(~r))
α ∂α ~P(t,~r)

∂tα
=

ε0 ∆εr(~r) ~E(t, ~r). Here ∂α ~P(t,~r)
∂tα

is the Letnikov fractional derivative represented by ∂α ~P(t,~r)
∂tα

= 1
Γ(1−α)

d
dt

´ t
0
(t −

s)−α ~P(s, ~r) ds, [66].
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β and fr as follows for simplicity:

β(~r) ,
ε0∆εr(~r)

τr(~r)
(2.16a)

α(~r) , β(~r) + σs(~r) (2.16b)

fr(~r) ,
1

τr(~r)
. (2.16c)

Then, the augmented Maxwell’s equations can be simplified to

ε0ε∞(~r) ∂t~E(t, ~r)−∇× ~H(t, ~r) + α(~r) ~E(t, ~r)− fr(~r)~P(t, ~r) = − ~J E(t, ~r) (2.17a)

µ0µr(~r) ∂t ~H(t, ~r) +∇× ~E(t, ~r) = − ~JM (t, ~r) (2.17b)

∂t ~P(t, ~r)− β(~r) ~E(t, ~r) + fr(~r) ~P(t, ~r) = 0. (2.17c)

Like the previous section, we rewrite the augmented Maxwell’s equations by the defined differen-

tial operator Kd and field vectors ud as

Kdud = −sd (2.18)

for simplicity, where the superscript d indicates the dispersive case:

Kd =


ε0ε∞∂t + α −∇× −fr

∇× µ0µr∂t ∅

−β ∅ ∂t + fr

 , ud =


~E

~H

~P

 , sd =


~J E
~JM

∅

 . (2.19)

It is important to note that the non-dispersive equations (2.5) are a special case of (2.18)

when ∆εr → 0 or β → 0 and so the response of ~P from the auxiliary equation (2.17c) goes to

zero. Both sets of equations of (2.5) for non-dispersive media and (2.18) for dispersive media are

essential in illustrating the required formulations to solve the forward electromagnetic problem.
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The forward problem approximates the fields resulting from known sources in a known media

(with known constitutive parameters). We use forward solvers to compute field approximation(s)

associated with estimates of the target’s constitutive parameters when solving inverse problems.

2.1.3 2D TM Problems

The focus of this thesis has been on implementing two-dimensional transverse magnetic (2D-TM)

codes. In this and subsequent chapters, theory is developed for 3D physics. At the end of each

chapter we explicitly talk about the restriction to the 2D-TM case.

If we assume that all targets and sources are invariant in one direction, we can benefit from

two-dimensional (2D) imaging. In this case, rates of change along the length of the targets (which

we assume is the z-direction) are assumed to be 0; ~E(x, y, z) = ~E(x, y), ~H(x, y, z) = ~H(x, y), and

~P(x, y, z) = ~P(x, y). Consequently, the curl equations (2.17) decouple into two sets of equations:

one involves Ez, Hx, Hy, Pz and J Ez, and the other involves Ex, Ey, Hz, Px, Py and J Ex,

J Ey. The first set of PDEs represents the Transverse Magnetic or TM polarization involving a

single electric field component in the z-direction (Ex = Ey = 0 & Hz = 0) and the second set

of PDEs represents the Transverse Electric or TE polarization which contains a single magnetic

field component in the z-direction (Hx = Hy = 0 & Ez = 0). Therefore, if we only electrically

source J Ez then the TM polarization waves are provoked and if we only electrically source J Ex

or J Ey then the TE polarization waves are produced.

For the specific case of 2D TM electromagnetic scattering problem, when the electric field

and electric current density are in the z-direction in the rectangular coordinate system, the

propagation of the TM wave would be in the x− y plane, so Ex = Ey = Hz = 0 and consequently

Px = Py = 0. The original PDE system of (2.18), which contains nine equations, reduces to a
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system of PDEs with just four equations:

Kd =



ε0ε∞∂t + α ∂y −∂x −fr

∂y µ0µr∂t 0 0

−∂x 0 µ0µr∂t 0

−β 0 0 ∂t − fr


, ud =



Ez

Hx

Hy

Pz


, sd =



J Ez

JMx

JMy

0


. (2.20)

For synthetic and experimental problems we limit problem configurations to be TM config-

urations.

2.2 Physical Boundary Conditions

Generally speaking, what makes an electromagnetic forward problem presented by Maxwell’s

equations uniquely solvable, like any system of PDEs, is the problem’s boundary conditions.

At a material interface (material discontinuity), certain rules about the behaviour of the fields,

crossing the interface, exist. We use those rules, called boundary conditions, in addition to initial

conditions discussed in the next chapter, to solve the forward problem uniquely.

Here in this section, we first present the most typical case of dielectric interface boundary

condition, and then we discuss the particular case of a perfect electric conductor [67].

2.2.1 Dielectric Interfaces

Consider the shared interface of two mediums 1 and 2. We show the characteristic parameters of

mediums with subindices 1 and 2. The tangential and normal fields at the interface must satisfy

boundary conditions as a result of Poisson’s equation:

∇ · ~D(t, ~r) = ρ(t, ~r) (2.21)
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and the condition of solenoidal magnetic flux density:

∇ · ~B(t, ~r) = 0. (2.22)

where ρ [C/m3] is the electric charge density.

Gauss’s Theorem

Suppose volume V enclosed by surface ∂V . If ~F is a continuously differentiable vector field

defined on V , then according to the Gauss’s theorem:

˚
V
∇ · ~F dv =

‹
∂V

~F · ~n ds (2.23)

where ~n is the outward pointing unit normal vector at surface ∂V .

Applying Gauss’s theorem to the Poisson’s equation (2.21) and the condition of solenoidal

magnetic flux density (2.22), two boundary conditions are:

~n · [~B2(t, ~r)− ~B1(t, ~r)] = 0, (2.24a)

~n · [~D2(t, ~r)− ~D1(t, ~r)] = ρS(t, ~r), (2.24b)

where ρS is the surface charge density on the shared interface.
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Stokes’s Theorem

Suppose S is a surface enclosed by the curve ∂S. If the vector field ~F over the surface S

has continuous first order partial derivatives in this region, then according to the Stokes’s

theorem: ¨
S

(∇× ~F ) · ds =

˛
∂S

~F · dl. (2.25)

Using the same analogy and applying the Stokes’s theorem to the integrals of the Ampere’s

law (2.1a) and Faraday’s law (2.1b), we can find two more constraints for the fields as boundary

conditions:

~n× [~H2(t, ~r)− ~H1(t, ~r)] = ~J E,S(t, ~r) + ~J c,S(t, ~r), (2.26a)

~n× [~E2(t, ~r)− ~E1(t, ~r)] = −~JM,S(t, ~r). (2.26b)

where ~J E,S , ~JM,S and ~J c,S are electric, magnetic and conduction surface current densities,

respectively on the surface S. Continuity of the tangential electric field and magnetic field at

the shared interface between the two medium in the absence of the current densities can be

interpreted from these results.

In summary, the dielectric boundary conditions are given by (2.24) and (2.26) which specify

the change in normal and tangential field components across dielectric interfaces. Note that these

boundary conditions hold for both non-dispersive and dispersive media.
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2.2.2 Perfect Electric Conductors (PEC)

There is no electric field and consequently, no electric displacement penetrating inside a perfect

electric conductor. If we take the first medium as the PEC media, then:

~n · ~D2(t, ~r) = ρS(t, ~r) (2.27a)

~n× ~E2(t, ~r) = −~JM,S(t, ~r). (2.27b)

Also, according to Faraday’s law, magnetic flux density (and consequently magnetic field) inside

a PEC is zero:

~n · ~B2(t, ~r) = 0, (2.28a)

~n× ~H2(t, ~r) = ~J E,S(t, ~r) + ~J c,S(t, ~r). (2.28b)

2.3 General Perspective of TD-MWI

This section reviews the general concept of a simple MWI system’s hardware/software in a general

form with dispersive media. Here, we use the same set of antennas as both transmitters and

receivers i.e., collocated transceivers.

A general imaging system is shown in Figure 2.1. An unknown target or Object of Interest (OI)

located inside the imaging domain D is successively illuminated by M transmitters surrounding

the object, outside of D. For each illumination, measurements of the electric (~E) or magnetic ( ~H)

field(s) (or both) are collected by N receivers5 defining the measurement domain or measurement

surface S. Measuring the polarization vector ~P is not required/practical because it is numerically

calculated from the measured electric field and the known constitutive parameters on S external

to D by the auxiliary equation of (2.17c). Although it is not measured, we still refer to it as

~Pmeas in this thesis.

5In a co-resident system, N is at most M .
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We consider the entire system, either the physical system or computational model, to reside

inside a bounded region Ω, which usually determines the boundary conditions (e.g. metallic

boundary or an absorbing condition).

Consider that in practice there is a need to install different types of antennas for measuring

various fields (electric or magnetic) with different polarizations. Using transceivers, the mea-

surement error due to the antennas’ coupling effect reduces because of fewer and more distant

antennas.

Target

Tx

Rx

𝓢

Ω

𝒟

𝒙

𝒚

Figure 2.1: A general imaging system. Ω, D and S are the entire computational domain, the
imaging and the measurements domains, respectively.

To reproduce the properties of the target from field measurements, we first construct an

objective function that relates the measured fields to fields produced by a model estimate of the

target parameters. The cost functional F(p) considered here, following the notation used in [31],

is:
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F(p) =

T̂

0

M∑
m=1

N∑
n=1

Wm(t) ‖ η
NF

(~rn) �
[
umodelm (p, t, ~rn)− umeasm (t, ~rn)

]
‖2 dt, (2.29)

where T is the final time (t = 0...T ) of the measurements. η
NF

is the stacked Normalization

Factor (NF), and umodelm and umeasm are the model field vector and the measured field vector,

respectively. The target properties are represented by p, the constitutive parameter vector. The

symbol � denotes the element-wise product of two vectors and ‖ . ‖ is the Euclidean norm or

2-norm. Here,Wm(t) is a user-defined non-negative weight function (envelope function) applying

zero initial conditions (a requirement that is needed by the algorithm as discussed in Appendix

A). We can rewrite the cost functional definition in (2.29) using the weighted data error vector

Rm(p, t, ~rn) described by:

Rm(p, t, ~rn) =Wm(t) η
NF

(~rn) �
[
umodelm (p, t, ~rn)− umeasm (t, ~rn)

]
, (2.30)

as:

F(p) =

T̂

0

M∑
m=1

N∑
n=1

1

Wm(t)
‖ Rm(p, t, ~rn)

]
‖2 dt. (2.31)

In brief, the equation (2.31) quantifies the error in the measured and modelled fields for a given

estimate of the target properties p.

The goal of an imaging algorithm is to reconstruct accurate estimates of p by minimizing

(2.31) given knowledge of the measured fields.

What follows provides the remaining details of the cost-functional.

The spatial-dependant NF vector η
NF

is required to ensure that each differential equation
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contributes more-or-less equally to the cost functional:

η
NF

(~r) =


η
E

(~r)

η
H

(~r)

η
P

(~r)

 . (2.32)

The modelled fields vector umodelm (p, t, ~rn), which is a function of the estimated target constitutive

parameters vector p, and the measured fields vector umeasm (t, ~rn) due to the source m at the

receiver location ~rn, for dispersive media are:

ud,modelm (p, t, ~r) =


Emodelm (p, t, ~r)

Hmodelm (p, t, ~r)

Pmodelm (p, t, ~r)

 , ud,measm (t, ~rn) =


Emeasm (t, ~rn)

Hmeasm (t, ~rn)

Pmeasm (t, ~rn)

 , (2.33)

where the constitutive parameters vector p is:

p =



ε∞(~r)

∆εr(~r)

µr(~r)

σs(~r)

τrr(~r)


. (2.34)

We, again in the case of dispersive imaging, assume that the relaxation time is the product of

the free space relaxation time τr0, which is a constant, and the relative relaxation time τrr(~r):

τr(~r) , τr0 τrr(~r) or fr(~r) = fr0 frr(~r). (2.35)

This kind of definition is similar to the permittivity and permeability definitions of ε = ε0εr and

µ = µ0µr and it is necessary for the purpose of balancing/normalizing the functions comprising p.
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Note that as mentioned in the list of symbols, all of the vector functions like the electric field

~E(t, ~r) = Ex(t, ~r) âx + Ey(t, ~r) ây + Ez(t, ~r) âz are shown in the form of a stacked vector E(t, ~r)

by the following definition:

E(t, ~r) =


Ex(t, ~r)

Ey(t, ~r)

Ez(t, ~r)

 . (2.36)

As a part of MWI with the DGM-FBTS method, we are required to solve the forward prob-

lem for estimated constitutive parameters at each iteration. This requires us to computationally

model the system of study using a target estimation. In this computational model, the equation

(2.18) introduces a system of three Ordinary Differential Equation (ODE)s in the 3D space for

each of the receivers. The overall ODE system can be evolved over time by explicit/implicit

time-marching methods like Runge-Kutta, resulting in ud,modelm (p, t, ~rn).

Depending on the target’s characteristics and the application of the MWI problem, the num-

ber of unknown elements in the vector p decreases, as some of its parameters may be known

(or approximately known). For instance, in non-magnetic materials, the relative permeability is

about µr = 1. Sometimes, the dielectrics’ static conductivity is negligible (σs = 0) because of the

dominant loss due to the ∆εr parameter. In other cases, according to literature, the relaxation

time is constant and equal to τr = 1
fr

= 17.5 ps over the body tissues at some frequencies of the

microwave band [59]. We chose the free space relaxation time τr0 to be 17.5 ps in this work.

In MWI it is common to use regularization techniques along with the standard cost functional of

(2.29) in different inverse solvers in order to obtaining meaningful solutions to the ill-posed inverse

scattering problem. This is especially true in FD imaging due to the limited frequency-domain

data used during the inversion process. For the TD algorithm developed in this thesis, no regu-
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larization is used. The time-domain measurement data contains sufficient information that, when

combined with the highly robust FBTS method (which generates very smooth gradients), and

the robust technique of step size seeker, can produce meaningful solutions without any additional

regularization.

2.3.1 2D TM Considerations

Consider a 2D TM electromagnetic scattering problem (depicted as a literal interpretation of

Figure 2.1) where the physics are governed by the dispersive equations (2.20). With no magnetic

current density, the only non-zero element of the source is the electric current density in z-

direction. These point sources, or the transmitters for this system, are located at ~rm ;m = 1 : M ,

such as

(sdm(t, ~r))2DTM =


~J E,m(t, ~r)

∅

∅

 , (2.37)

or

(sdm(t, ~r))2DTM =



Iz,m(t)δ(~r − ~rm)

0

0

0


. (2.38)

For the 2D model, the fields ud,modelm (p, t, ~r) and ud,measm (t, ~r), due to the current source m, Iz,m(t),

at the receiver location n, reduce to the components:

(ud,modelm (p, t, ~rn))2DTM =



Emodelz,m (p, t, ~rn)

Hmodelx,m (p, t, ~rn)

Hmodely,m (p, t, ~rn)

Pmodelz,m (p, t, ~rn)


, (ud,measm (t, ~rn))2DTM =



Emeasz,m (t, ~rn)

Hmeasx,m (t, ~rn)

Hmeasy,m (t, ~rn)

Pmeasz,m (t, ~rn)


.

(2.39)

- 27 -



DGM-FBTS Imaging 2.3 General Perspective of TD-MWI

2.3.2 A Step-by-Step Overview of the DGM-FBTS Algorithm

In this chapter we have presented Maxwell’s curl equations, the augmented form of Maxwell’s

equations for dispersive media, the general perspective of TD microwave imaging, and the specific

case of 2D-TM imaging.

The following section lists the steps required to execute the TD DGM forward solver and the

inverse solver used in the DGM-FBTS algorithm developed in this thesis to provide the readers

a general overview. The algorithmic steps illustrated here are described later in detail.

Algorithm 1 illustrates the steps for the implemented time domain forward solver using the

discontinuous Galerkin method. The first four lines of this algorithm initializes the geometry,

source, and parameters of the forward solver. Next, the algorithm solves for the fields due to

each of the sources and collects the required fields either at the location of receivers or inside

the domain D depending on the requirements. Note that here ∂tv = A v + B is the normalized

rewritten form of formulation (2.18), and will be explained thoroughly in the next chapter.

The continuous form of the forward solver along with its required initial conditions for the

fields are presented in Chapter 3. The discretized form of the forward solver is discussed in

Chapter 5 after introducing the DG method. The chapter is allocated to solving the discretized

forward problem in time using some explicit/implicit iterative methods.

Algorithm 2 provides the steps of the implemented time domain inverse solver scheme using

the FBTS method. The first four lines initialize the problem. Afterward, the cost-functional

minimization is iteratively performed. Lines 6-16 show the FBTS method steps described in

Chapter 3 in continuous form. Chapter 6 discusses the FBTS discretization and the rest of the

steps shown in Algorithm 2.
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Algorithm 1 TD DGM Forward Solver

1: Specify the desired constitutive parameters model,
2: Specify the number of the transmitters M and receivers N ,
3: Set the problem boundary conditions,
4: Specify the locations of the transmitter/receivers on domain S,
5: Compute the discretized matrix A (and its LUPQ decomposition) in the DGM form of

Maxwell’s; ∂tv = A v +B,
6: for m = 1, 2, . . . ,M do
7: Apply a wide band point source (We use Gaussian point source in this work. Other options

of source signals are not tested in this work.)
8: Compute the discretized matrix B in the DGM form of Maxwell’s for each transmitter;
∂tv = A v +B,

9: Apply initial conditions of the fields to the problem,
10: Solve for the vector of coefficients v by an iterative implicit/explicit Runge-Kutta methods,
11: Collect the fields at the receiver locations (or inside the domain D to calculate the required

gradients for the inverse solver),
12: end for.

Algorithm 2 TD DGM-FBTS Inverse Solver

1: Specify an initial guess for the constitutive parameters model in domain D,
2: Specify the number of the transmitters M and receivers N ,
3: Set the problem boundary conditions,
4: Specify the locations of the transmitter/receivers on domain S,
5: while the algorithm is converging do
6: for m = 1, 2, . . . ,M do
7: Apply the same source (Gaussian) as the original forward solver’s,
8: Run forward-in-time forward solver,
9: collect the fields at domain D.

10: end for,
11: for m = 1, 2, . . . ,M do
12: Apply the windowed data error quantities as the point source amplitude in time,
13: Run backward-in-time forward solver,
14: Collect the fields at domain D.
15: end for,
16: Calculate the gradients,
17: Calculate search (conjugate gradient) direction h for each parameter,
18: Find the search step,
19: Update the parameter model,
20: Run the forward solver and collect the receiver’s data,
21: Compute the cost functional F ,
22: Get back to line 6.
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Chapter 3

The Continuous Form of FBTS

In this chapter, the forward-backward time-stepping algorithm is developed for electromagnetic

inverse scattering in dispersive media. In the FBTS method, the forward/backward time-stepping

name comes from this fact that it involves running things backwards in time.

As the dispersive media is a more general type of media, we derive the dispersive FBTS

formulation using Maxwell’s equations and the ADE introduced in Section 2.1.2 for dispersive

media in this chapter. Spatial and temporal discretization of Maxwell’s equations and the FBTS

formulation are discussed in Chapters 4 and 5, respectively. We restrict the FBTS formulation

to 2D-TM problems and non-dispersive media in the final sections of this chapter.

Note: The non-dispersive FBTS gradients derivation in this chapter follows the methodology

introduced in [31] for the 2D TM case, and is augmented by the specific spatial discretization

method, time-marching methods, and the local minimum seeker repetitive algorithm used in this

work. The extended FBTS to dispersive media is introduced for the first time in this work.
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3.1 The Optimization Process

In Section 2.3 we introduced the cost functional of (2.29), repeated here for convenience,

F(p) =

T̂

0

M∑
m=1

N∑
n=1

Wm(t) ‖ η
NF

(~rn) �
[
umodelm (p, t, ~rn)− umeasm (t, ~rn)

]
‖2 dt, (3.1)

and addressed minimizing this functional through optimization tactics as an inverse problem.

Solving this optimization problem requires solving a highly nonlinear and mathematically ill-

posed1 problem. This section enumerates all of the steps during this optimization process.

• The first step to minimize the cost functional is to pick an optimization method. Note that

there are many different kinds of methods that could be applied (as discussed in Chapter

1). The CG method has been selected in this work because the gradients can be computed

in closed-form, and a gradient-based local optimization method benefits from improved

convergence over other techniques (see Section 1.2.1).

• Having settled on CG, the next step becomes about how to calculate the gradient of the

cost functional with respect to the functions stored in p.

• Once the gradient is known, the next step is to update the value of p by searching along

the conjugate gradient direction, i.e., we must determine the search distance (step-size) for

the gradients’ directions to minimize the cost functional.

• After updating the model, the optimization process iterates the process of computing the

gradients and determining the step size.

1In this problem, ill-posedness is due to instability and non-uniqueness of the response.
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3.2 The Cost Functional’s Fréchet Derivative

In this section we seek to evaluate the (Fréchet) gradient of the cost functional (3.1) with respect

to the constitutive functions ε∞, ∆εr, µr, σ and τrr represented by p.

The designated cost functional F , mapping functions in space D to the one-dimensional space

R, is a function of discrepancies of electromagnetic fields over the measurement domain S. These

discrepancies are non-linear functions mapping the modeled parameters of the spatial area D to

vector fields on S. Consequently, the Fréchet Derivatives of functional F mathematically quan-

tifies changes in F (the differentials) relative to the changes in each of vectors of the modeled

parameters p in space.

Let a variation in the constituitve parameters be denoted by

δp =



δε∞(~r)

δ∆εr(~r)

δµr(~r)

δσs(~r)

δτrr(~r)


, (3.2)

following the method in [31], the cost functional’s Fréchet derivative F ′p in the δp direction is

F ′pδp = 2

T̂

0

M∑
m=1

N∑
n=1

(Rm(p, t, ~rn))ᵀ δvm(p, t, ~rn) dt, (3.3)

where superscript ᵀ stands for transpose operator and δv(p, t, ~rn) is the Fréchet differential of the

vector of functions

v(p, t, ~r) = η
NF

(~r) � umodel(p, t, ~r) (3.4)

at the receiver positions. Here, v(p, t, ~rn) and R(p, t, ~rn) are vectors of nonlinear operators that
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map the constitutive parameter vector p to the normalized field vector v and the data error vector

R at the receiver locations.

As the Fréchet derivative F ′p is a linear operator/functional, the Fréchet differential F ′pδp

can be represented as an inner product according to Riesz representation theorem [68]. In what

follows, we will focus on rewriting the right-hand side of (3.3) as an inner product of G and δp:

F ′pδp = 〈G, δp〉, (3.5)

to identify the gradients G from the Fréchet derivative F ′p. For the vectors of time-domain func-

tions presented in the cost functional, the inner product definition involves integrals in space and

time.

Inner product definition

We use the 〈., .〉 to represent the inner product of two functions of space and time, defined

as:

〈f(t, ~r), g(t, ~r)〉 =

T̂

0

˚
∞

(f(t, ~r))ᵀ g(t, ~r) dV, (3.6)

if the two arbitrary functions of f and g are functions of time and location, and

〈f(~r), g(~r)〉 =

˚
∞

(f(~r))ᵀ g(~r) dV, (3.7)

if the functions f and g are just functions of position. The superscript ᵀ in these definitions

stands for transpose operator.
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3.3 The Forward-in-Time Operator

The purpose of this section is normalizing (2.18) and describing proper initial conditions to solve

the forward problem, or what we call here the forward-in-time solver. The choice of the vector of

normalized factors η
NF

must be considered when deriving the adjoint operator, and any changes

in these parameters can change the adjoint operator and consequently the derived gradients.

Therefore, we need to be careful when choosing how to normalize the equations. Good choices of

NFs not only serve to normalize the fields, but they also help simplify the gradients.

The vector η
NF

adopted in this work is chosen as equation (3.8), where 13,1 is the all-one

vector with size of 3-by-1 and η0 is the intrinsic impedance of free space.

η
NF

(~r) =


13,1

η0 13,1

1
ε0∆εr(~r)

13,1

 (3.8)

This choice of NF does not change the electric field’s amplitude, and adjusts the amplitudes of

other fields to be commensurate with the electric field. The choice of η0 13,1 in the second row

of η
NF

means that we multiply the amplitudes of the magnetic fields by η0. Finally, 1
ε0∆εr(~r)

13,1

at the last row means that we multiply the polarization parameters by the factor of 1
ε0∆εr(~r)

to

normalize their amplitude with respect to the other fields.

Rewriting the expanded system of equations (2.18) in terms of the normalized field vector

v(p, t, ~r) =


13,1

η0 13,1

1
ε0∆εr(~r)

13,1

 � ud(p, t, ~r), produces the normalized dispersive system:

K̃v = −s̃ (3.9)
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where the tilde indicates the normalized dispersive formulations and

K̃ =


ε∞∂c0t + η0α −∇× −η0β

∇× µr∂c0t ∅

−η0β ∅ ∆εr∂c0t + η0β

 , v =


~E

η0
~H

~P
ε0∆εr

 , s̃ =


η0
~J E
~JM

∅

 , (3.10)

where c0 is the speed of light in free space and the time derivations replaced by ∂c0t during the

normalization process.

Solving (3.9) (with appropriate boundary conditions) for a given estimate of the constitutive

parameters produces the fields at each iteration of the FBTS algorithm. The initial condition for

this problem is s̃(t = 0, ~r) = 0 and so v(t = 0, ~r) = 0 or

Ex(t = 0, ~r) = Ey(t = 0, ~r) = Ez(t = 0, ~r) = 0,

Hx(t = 0, ~r) = Hy(t = 0, ~r) = Hz(t = 0, ~r) = 0, (3.11)

Px(t = 0, ~r) = Py(t = 0, ~r) = Pz(t = 0, ~r) = 0.

In addition to ensuring causality, these initial conditions are necessary for the FBTS inversion

algorithm; details can be found in Appendix A. This problem is called the forward-in-time problem

in the FBTS method; having a known initial condition at time zero means it can be solved by

time-marching forwards in time.

3.3.1 2D TM Forward Operator in Time

The forward in time solver for the 2D-TM case has the following system of equations

∂z(.) = 0, Ex = Ey = 0, Hz = 0, Px = Py = 0 (3.12)
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ε∞(~r)∂c0tEz(t, ~r)− ∂x[η0 Hy(t, ~r)] + ∂y[η0 Hx(t, ~r)] + η0α(~r)Ez(t, ~r)− · · ·

η0β(~r) [ 1
ε0∆εr

Pz(t, ~r)] = η0J Ez(t, ~r)

µr(~r)∂c0t[η0 Hx(t, ~r)] + ∂yEz(t, ~r) = JMx(t, ~r)

µr(~r)∂c0t[η0 Hy(t, ~r)]− ∂xEz(t, ~r) = JMy(t, ~r)

∆εr(~r)∂c0t[
1

ε0∆εr
Pz(t, ~r)]− η0β(~r)Ez(t, ~r) + η0β(~r) [ 1

ε0∆εr
Pz(t, ~r)] = 0

(3.13)

where the initial conditions for this system are:



Ez(t = 0, ~r) = 0

Hx(t = 0, ~r) = 0

Hy(t = 0, ~r) = 0

Pz(t = 0, ~r) = 0

. (3.14)

Non-Dispersive Non-Magnetic Media

In some cases, approximating the region of interest as non-dispersive non-magnetic media in

order to reduce the computational cost and potentially improve convergence speed is beneficial.

Also, some targets just have no magnetic part and have little to no dispersive properties. In this

subsection (followed by similar subsections studying non-dispersive 2D TM) we modify/simplify

the 2D TM forward-in-time system to non-dispersive and non-magnetic media.

While solving the inverse problem, if the media can be approximated as non-dispersive non-

magnetic, the number of unknowns reduces to two. In this case the variation of the constitutive
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parameters become:

δp =

δεr
δσs

 . (3.15)

Correspondingly, the size of the cost functional’s Fréchet derivative F ′p in (3.3) is reduced.

The forward solver system of equations of (3.13) for the non-dispersive 2D-TM becomes:

∂z(.) = 0, Ex = Ey = 0, Hz = 0, Px = Py = Pz = 0 (3.16)


εr(~r)∂c0tEz(t, ~r)− ∂x[η0 Hy(t, ~r)] + ∂y[η0 Hx(t, ~r)] + η0σs(~r)Ez(t, ~r) = η0J Ez(t, ~r)

µ0∂c0t[η0 Hx(t, ~r)] + ∂yEz(t, ~r) = JMx(t, ~r)

µ0∂c0t[η0 Hy(t, ~r)]− ∂xEz(t, ~r) = JMy(t, ~r)

(3.17)

where εr is the relative permittivity. The equations (3.17) are obtained from (3.13) by setting

∆εr = 0 and µr(~r) = µ0 everywhere.

The initial conditions for this system are:


Ez(t = 0, ~r) = 0

Hx(t = 0, ~r) = 0

Hy(t = 0, ~r) = 0

. (3.18)

3.4 The Fréchet Differential δv(p, t, ~r)

The goal of this section is to derive an expression or a differential equation for the Fréchet

Differential of the normalized field vector v(δp, t, ~r) at p in the direction δp, shown by δv(p; δp, t, ~r)

or δv(p, t, ~r), based on the fact that v is the solution of equation (3.9).
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We start with expanding v(p+ δp, t, ~r) by Taylor series to its first order:

v(p+ δp, t, ~r) = v(p, t, ~r) + δv(p+ δp, t, ~r) + o(δp) (3.19)

where o(δp) stands for a vector function such that: limδp→0
‖o(δp)‖
‖δp‖ → 0.

On the other hand, as the right-hand side of Equation (3.9) is independent from p, we have:

K̃p+δp v(p+ δp, t, ~r)− K̃p v(p, t, ~r) = 0 (3.20)

where

K̃p+δp = K̃p +


δε∞∂c0t + η0δα ∅ −η0δβ

∅ δµr∂c0t ∅

−η0δβ ∅ δ∆εr∂c0t + η0δβ

 . (3.21)

After substituting (3.19) in (3.20), the differential δv(p; δp, t, ~r) is estimated as the solution of the

following equation:

K̃ δv(p, t, ~r) = −


δε∞∂c0t + η0δα ∅ −η0δβ

∅ δµr∂c0t ∅

−η0δβ ∅ δ∆εr∂c0t + η0δβ

 v(p, t, ~r). (3.22)

Since the initial conditions of the Equation (3.9) is independent of p, the following initial condition

apply to (3.22):

δv(t = 0, ~r) = 0. (3.23)

If we change the transmitter, the fields v will change. So for each transmitter m, the Fréchet

differential of the fields vm with respect to p in the δp direction is the solution of (3.22) which

illustrates the sensitivity of operator K̃ due to the change in p.

Equation (3.22) provides a way to compute δv, and now we are able to evaluate the Fréchet
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derivative of the cost functional (3.3). In the following, we are going to isolate δp’s effect on the

cost functional in order to maximize the rate of change of the cost functional with respect to the

direction δp, i.e., we are going to determine an expression for the gradient of the cost functional.

3.5 The Adjoint Operator

This section contains a brief introduction to the adjoint operator and how defining an appropriate

adjoint operator helps facilitate calculating the gradients.

We start this section with a notationally useful definition:

A Collection of Dirac Delta functions

δ̃(~r, ~rn = ~r1 . . . ~rN ) = δ(~r, ~r1) + δ(~r, ~r2) + ... + δ(~r, ~rN ) represents a sum of Dirac Delta

functions with the non-zero quantity at ~rn locations where n = 1 . . . N .

For now we suppress transmitter indexing for the sake of less complications. One convenient

way of calculating the required Fréchet derivative F ′ is through introducing an adjoint operator

K̃∗:

K̃∗w(p, t, ~r) = R(p, t, ~r) δ̃(~r, ~rn) (3.24)

where ~rn is the location of receivers. Remember that R(p, t, ~r) is the data error (Equation (2.30)).

The vector w(p, t, ~r) is interpreted as the solution to the adjoint operator equation (3.24) when

sources are cost-functional discrepancies at the observation points. Consider that by choosing

this particular right-hand-side for solving the adjoint fields in (3.24), we related the quantities to

the cost functional.
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According to the adjoint operator definition:

〈K̃∗g, f〉 = 〈g, K̃f〉, (3.25)

and defining g and f as g = w(p, t, ~r) and f = δv(p, t, ~r), we obtain the following equality:

〈K̃∗(w(p, t, ~r)), δv(p, t, ~r)〉 = 〈w(p, t, ~r), K̃(δv(p, t, ~r))〉. (3.26)

Expanding both sides of equation (3.26) using the inner product definition (3.6) gives:

T̂

0

˚
∞

(K̃∗(w(p, t, ~r)))ᵀ δv(p, t, ~r) dV dt =

T̂

0

˚
∞

(w(p, t, ~r))ᵀ K̃(δv(p, t, ~r)) dV dt, (3.27)

and substituting the term K̃∗(w(p, t, ~r)) into the right hand side of equation (3.24), we have:

T̂

0

˚
∞

(R(p, t, ~r) δ̃(~r, ~rr))
ᵀ δv(p, t, ~r) dV dt =

T̂

0

˚
∞

(w(p, t, ~r))ᵀ K̃(δv(p, t, ~r)) dV dt. (3.28)

The spatial integral on the left side of (3.28) is easily evaluated due to the presence of the

delta functions. After re-writing (3.28) for a sum of transmitters and evaluating the left-hand

spatial integral we arrive at:

M∑
m=1

ˆ T

0

N∑
n=1

(Rm(p, t, ~rn))ᵀ δvm(p, t, ~rn) dt =
M∑
m=1

ˆ T

0

˚
∞

(wm(p, t, ~r))ᵀ K̃(δvm(p, t, ~r)) dV dt.

(3.29)

Comparing to the Fréchet derivative of the cost functional in equation (3.3), the left side of the

above expression is equal to 1
2F
′
pδp and so:

F ′pδp = 2
M∑
m=1

ˆ T

0

˚
∞

(wm(p, t, ~r))ᵀ K̃(δvm(p, t, ~r)) dV dt. (3.30)
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This last expression relates the cost functional derivatives to the field adjoint vectors wm(p, t, ~r)

and the differentials of the functional K̃(δvm(p, t, ~r)) relative to the change of p. The term

K̃(δv(p, t, ~r)) has been calculated in Section 3.4 and can easily be replaced here.

As the last two steps to derive the required gradients in this work, we need to solve the (3.24)

for the field adjoint vector wm(p, t, ~r). In order to do so we need to know the adjoint operator.

3.6 The Backwards-in-Time Operator

This section presents the adjoint operator K̃∗, referred to herein as the backward-in-time opera-

tor. The goal of this section is finding the field adjoint w(t, ~r).

A detailed derivation of the adjoint K̃∗ for the operator K̃ can be found in Appendix A. This

adjoint operator is:

K̃∗ =


−ε∞(~r)∂c0t + η0α(~r) ∇× −η0β(~r)

−∇× −µr(~r)∂c0t ∅

−η0β(~r) ∅ −∆εr(~r)∂c0t + η0β(~r)

 . (3.31)

As mentioned in Appendix A, this adjoint operator relates the field adjoints:

w =


~w1

~w2

~w3

 (3.32)

to the adjoint sources:

ŝ =


~̂s1

~̂s2

~̂s3

 (3.33)
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by the equation

K̃∗w = −ŝ, (3.34)

with zero conditions on the field adjoints at time T . Thus it is crucial to ensure that the following

conditions are met when using FBTS when using the adjoint (Appendix A.10).

~v (t = 0, ~r) = 0 (3.35a)

~w (t = T, ~r) = 0 (3.35b)

Substituting (3.31) and (2.30) into (3.34) and using the (3.8) for the normalization vector

η
NF

, we have


−ε∞(~r)∂c0t + η0α(~r) ∇× −η0β(~r)

−∇× −µr(~r)∂c0t ∅

−η0β(~r) ∅ −∆εr(~r)∂c0t + η0β(~r)



~w1(p, t, ~r)

~w2(p, t, ~r)

~w3(p, t, ~r)

 = · · ·

Wm(t)δ(~r, ~rr)


~E(p, t, ~rn)− ~Emeas(t, ~rn)

η0 [ ~H(p, t, ~rn)− ~Hmeas(t, ~rn)]

1
ε0∆εr(~r)

[~P(p, t, ~rn)− ~Pmeas(t, ~rn)]

 . (3.36)

Solving equations (3.36) in the time range [0 : T ], is referred to as a backward-in-time solution

in the FBTS method because the known (zero) initial (or final) condition at time T suggests that

one solves it by starting at time t = T , or the final measurement time. In other words, (3.36)

provides the time-reversed fields ~w generated by the measurement error as the sources at the

receiver locations at time t = T .
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3.6.1 2D TM Backwards-in-Time Operator

The backward-in-time system has the following equations:

∂z = 0, w1x = w1y = 0, w2z = 0, w3x = w3y = 0, (3.37)



ε∞(~r)∂c0tw1z(t, ~r)− ∂xw2y(t, ~r) + ∂yw2x(t, ~r)− η0α(~r)w1z(t, ~r) + η0β(~r)w3z(t, ~r) = −ŝ1z(t, ~r)

µr(~r)∂c0tw2x(t, ~r) + ∂yw1z(t, ~r) = −ŝ2x(t, ~r)

µr(~r)∂c0tw2y(t, ~r)− ∂xw1z(t, ~r) = −ŝ2y(t, ~r)

∆εr(~r)∂c0tw3z(t, ~r) + η0β(~r)w1z(t, ~r)− η0β(~r)w3z(t, ~r) = −ŝ3z(t, ~r)

,

(3.38)

where the sources ŝ1z(t, ~r), ŝ2x(t, ~r), ŝ2y(t, ~r), ŝ3z(t, ~r) are:



ŝ1z(t, ~r) =Wm(t)δ(~r, ~rr) [Ez(t, ~rn)− Emeasz (t, ~rn)]

ŝ2x(t, ~r) = η0 Wm(t)δ(~r, ~rr) [Hx(t, ~rn)−Hmeasx (t, ~rn)]

ŝ2y(t, ~r) = η0 Wm(t)δ(~r, ~rr) [Hy(t, ~rn)−Hmeasy (t, ~rn)]

ŝ3z(t, ~r) = 1
ε0∆εr(~r)

Wm(t)δ(~r, ~rr) [Pz(t, ~rn)− Pmeasz (t, ~rn)]

. (3.39)

The initial conditions for this solver are:

w1z(t = T,~r) = 0

w2x(t = T,~r) = 0

w2y(t = T,~r) = 0

w3z(t = T,~r) = 0

. (3.40)
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Non-Dispersive Non-Magnetic Media

The backward-in-time solver has the following system of equations for a non-dispersive non-

magnetic 2D TM case:

∂z(.) = 0, w1x = w1y = 0, w2z = 0, w3x = w3y = w3z = 0, (3.41)


εr(~r) ∂c0tw1z(t, ~r)− ∂xw2y(t, ~r) + ∂yw2x(t, ~r)− η0σs(~r) w1z(t, ~r) = −ŝ1z(t, ~r)

µ0 ∂c0tw2x(t, ~r) + ∂yw1z(t, ~r) = −ŝ2x(t, ~r)

µ0 ∂c0tw2y(t, ~r)− ∂xw1z(t, ~r) = −ŝ2y(t, ~r)

, (3.42)

where the sources ŝ1z(t, ~r), ŝ2x(t, ~r) and ŝ2y(t, ~r) are:


ŝ1z(t, ~r) =Wm(t)δ(~r, ~rr) [Ez(t, ~rn)− Emeasz (t, ~rn)]

ŝ2x(t, ~r) = η0 Wm(t)δ(~r, ~rr) [Hx(t, ~rn)−Hmeasx (t, ~rn)]

ŝ2y(t, ~r) = η0 Wm(t)δ(~r, ~rr) [Hy(t, ~rn)−Hmeasy (t, ~rn)]

. (3.43)

The initial conditions for this solver becomes:
w1z(t = T,~r) = 0

w2x(t = T,~r) = 0

w2y(t = T,~r) = 0

. (3.44)
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3.7 Deriving the Gradients

Now that we have determined the adjoint operator, we can proceed to evaluate the gradient of

the designated cost functional ((3.3)) for each of the unknown parameters in p.

Getting back to the equation (3.30) and substituting K̃(δv(p, t, ~r)) by the right hand side of

(3.22), gives

F ′p(p, ~r)δp(p, ~r) = −2

M∑
m=1

ˆ T

0

˚
∞

(wm(p, t, ~r))t · · ·

δε∞(p, ~r)∂c0t + η0δα(p, ~r) ∅ −η0δβ(p, ~r)

∅ δµr(p, ~r)∂c0t ∅

−η0δβ(p, ~r) ∅ δ∆εr(p, ~r)∂c0t + η0δβ(p, ~r)

 vm(p, t, ~r)

 dV dt.

(3.45)

By taking equations (3.5), (3.2) and (3.7) into account and defining G =



Gδε∞(p, ~r)

Gδ∆εr(p, ~r)

Gδµr(p, ~r)

Gδσs(p, ~r)

Gδfr(p, ~r)


, the

expanded matrix version of (3.45) becomes:
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˚
∞



Gδε∞(p, ~r)

Gδ∆εr(p, ~r)

Gδµr(p, ~r)

Gδσs(p, ~r)

Gδfr(p, ~r)



t 

δε∞(p, ~r)

δ∆εr(p, ~r)

δµr(p, ~r)

δσs(p, ~r)

δfr(p, ~r)


dV = −2

M∑
m=1

ˆ T

0

˚
∞


~w1m(p, t, ~r)

~w2m(p, t, ~r)

~w3m(p, t, ~r)


t

· · ·



δε∞(p, ~r)∂c0t + η0δα(p, ~r) ∅ −η0δβ(p, ~r)

∅ δµr(p, ~r)∂c0t ∅

−η0δβ(p, ~r) ∅ δ∆εr(p, ~r)∂c0t + η0δβ(p, ~r)



~v1m(p, t, ~r)

~v2m(p, t, ~r)

~v3m(p, t, ~r)


 dV dt.

(3.46)

To enforce equality of the integrals in (3.46), we can enforce equality of the integrands and

remove the integrals. As the differentials of α and β are:

δα(p, ~r) = δσs(p, ~r) + δβ(p, ~r) (3.47a)

δβ(p, ~r) = ε0 fr(p, ~r) δ∆εr(p, ~r) + ε0 ∆εr(p, ~r) δfr(p, ~r), (3.47b)

it follows that expanding the integrands of (3.46) and separating the terms with the same consti-
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tutive parameter variations, the gradients with respect to the constitutives functions are revealed:



Gε∞(p, ~r) = −2
M∑
m=1

´ T
0 ~w1m(p, t, ~r)� ∂c0t~v1m(p, t, ~r) dt

G∆εr
(p, ~r) = −2

M∑
m=1

´ T
0 ~w3m(p, t, ~r)� ∂c0t~v1m(p, t, ~r) dt+ · · ·

−2η0ε0fr(p, ~r)
M∑
m=1

´ T
0

[
~w1m(p, t, ~r)− ~w3m(p, t, ~r)

]
�
[
~v1m(p, t, ~r)− ~v3m(p, t, ~r)

]
dt

Gµr(p, ~r) = −2
M∑
m=1

´ T
0 ~w2m(p, t, ~r)� ∂c0t~v2m(p, t, ~r) dt

Gσs(p, ~r) = −2η0

M∑
m=1

´ T
0 ~w1m(p, t, ~r)� ~v1m(p, t, ~r) dt

Gfr(p, ~r) = −2η0ε0fr(p, ~r)
M∑
m=1

´ T
0

[
~w1m(p, t, ~r)− ~w3m(p, t, ~r)

]
�
[
~v1m(p, t, ~r)− ~v3m(p, t, ~r)

]
dt

(3.48)

Finally, (3.48) provides the primary result of this chapter; the gradients for all of the unknown

constitutive parameters in the imaging domain D. Of course, we need to discretize these for-

mulations, both spatially and temporally, and those steps are the subjects of the following two

chapters.

At a given iteration, the gradient calculations require a summation of the dot products

between fields and adjoint fields over the transmitters and an integral over the measurement

time.The fields are the results of solving the forward-in-time system described in Section 3.3, and

the adjoint fields are the results of solving the backward-in-time system discussed in Section 3.6.

If some of the constitutive parameters of a target are known, we can easily replace the related

gradient with a zero vector/matrix of the same size. These cases happen a lot in practice, as is

explained in Section 2.3.
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3.7.1 Gradients for the 2D TM Case

Reducing (3.48) to the 2D-TM case is straightforward, resulting in:



Gε∞(p, ~r) = −2
M∑
m=1

´ T
0 w1z,m(p, t, ~r)� ∂c0tEz,m(p, t, ~r) dt

G∆εr
(p, ~r) = −2

M∑
m=1

´ T
0 w3z,m(p, t, ~r)� ∂c0tEz,m(p, t, ~r) dt+ · · ·

−2η0ε0fr(p, ~r)
M∑
m=1

´ T
0

[
w1z,m(p, t, ~r)− w3z,m(p, t, ~r)

]
�
[
Ez,m(p, t, ~r)− · · ·

1
ε0∆εr

Pz,m(p, t, ~r)] dt

Gµr(p, ~r) = −2η0

M∑
m=1

´ T
0 w2x,m(p, t, ~r)� ∂c0t Hx,m(p, t, ~r) + w2y,m(p, t, ~r)� ∂c0t Hy,m(p, t, ~r) dt

Gσs(p, ~r) = −2η0

M∑
m=1

´ T
0 w1z,m(p, t, ~r)� Ez,m(p, t, ~r) dt

Gτrr(p, ~r) = 2η0
τ0ε0∆εr(p,~r)

τ2
r (p,~r)

M∑
m=1

´ T
0

[
w1z,m(p, t, ~r)− w3z,m(p, t, ~r)

]
�
[
Ez,m(p, t, ~r)− · · ·

1
ε0∆εr

Pz,m(p, t, ~r)] dt

(3.49)

Non-Dispersive Non-Magnetic Media

The gradients for the non-dispersive non-magnetic 2D-TM case are:


Gεr(p, ~r) = −2

M∑
m=1

´ T
0 w1z,m(p, t, ~r)� ∂c0tEz,m(p, t, ~r) dt

Gσs(p, ~r) = −2η0

M∑
m=1

´ T
0 w1z,m(p, t, ~r)� Ez,m(p, t, ~r) dt

. (3.50)

In this chapter we have derived the continuous domain gradients required for the CG solution

to the TD-FBTS microwave imaging algorithm. The next two chapters discuss the spatial and

temporal discretizations of the TD-FBTS scheme.
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Chapter 4

The Discontinuous Galerkin Method

In microwave imaging, the inversion algorithm that seeks to reconstruct a model of the unknown

target is commonly implemented as an iterative optimization method. Each iteration of an it-

erative inverse solver simulates the fields within the measurement domain corresponding to an

updated target model. This process demands an efficient and accurate forward solver. Additional

solves are required to produce the gradients (i.e., computing the adjoint fields).

The Discontinuous Galerkin Method (DGM) is a robust forward solver that has high flexibil-

ity to introduce versatile inhomogeneous backgrounds and imaging enclosures (boundaries). The

EIL has been using a frequency-domain DGM forward solver for different imaging applications

for a number of years [51, 69, 52]. This forward solver has been developed to the dispersive and

non-dispersive time-domain versions as a part of this work.

The main objective of this chapter is to present details of the time-domain DGM. For the

time-harmonic version of this forward solver, readers are referred to [52].

This chapter is focused on spatially discretizing the normalized Maxwell’s equations for dis-
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persive media.

4.1 Discretizing the computational domain

Assume a partition of the 3D computational domain Ω into NE finite volumes (or elements), Vn,

n = 1, 2, . . . NE such that
⋃
n Vn ≈ Ω. Depending on the type of elements, these elements have

faces (facets) common with the adjacent elements. These faces are surfaces in 3D, lines in 2D

and points in 1D scenarios. In each element, both fields and constitutives are expressed in terms

of a basis of Lagrange polynomials of order p(n), where this order can vary between elements.

By construction, such a basis expansion is generally discontinuous across element interfaces.

The interpolating Lagrange polynomial with the `k(~rj) = δkj property, where δ is Kronecker

delta function, is:

`k(~r) =

Np∏
j=1, j 6=k

~r − ~rj
~rk − ~rj

, (4.1)

where `k(~r) uniquely exists, as long as ~rj points or nodes are distinct [3].

The number of nodes and consequently the number of required basis functions required to

represent an pth order polynomial in different dimensional spaces are:

Np =


(p+ 1) in 1D,

1
2(p+ 1)(p+ 2) in 2D,

1
6(p+ 1)(p+ 2)(p+ 3) in 3D.

(4.2)

Introducing the local time-dependent coefficients vx(t, ~r n
k ), vy(t, ~r

n
k ) and vz(t, ~r

n
k ) at a fixed time

t - where k = 1 : Np - defined as the value of the function at the kth node in Vn, the electric field

can be expanded in the Lagrange basis {`nk} as:
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~vn(t, ~r) ≈
Np∑
k=1

vx(t, ~r n
k )`nk(~r) âx +

Np∑
k=1

vy(t, ~r
n
k )`nk(~r) ây +

Np∑
k=1

vz(t, ~r
n
k )`nk(~r) âz, (4.3)

where ~vn(t, ~r) is a field over the element n at time t. âx, ây and âz are the unit vectors of the

rectangular coordinate system, respectively in the x, y and z direction. Note that the all of the

fields expansions follow the same structure.

Utilizing the vector of the Lagrange interpolation polynomials of `n for the nth element with

Np nodal points:

`n(~r) =



`n1 (~r)

`n2 (~r)

`n3 (~r)

...

`nNp(~r)


, (4.4)

and an analogous definition for vnx(t), vny (t) and vnz (t), the equation (4.3) is rewritten as:

~vn(t, ~r) ≈ (`n(~r))ᵀ ~vn(t), (4.5)

where:

~vn(t) = vnx(t) âx + vny (t) ây + vnz (t) âz. (4.6)

4.2 Local DGM Volumetric Matrices

This section is allocated to the DGM local expansions of parameters in the Maxwell’s PDEs (3.9).

In this section we restrict consideration to an arbitrary nth mesh element, and for simplicity su-

perscript n is omitted throughout. Theory is developed for the discrete forward operator; the
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discrete adjoint operator can be derived analogously.

Remember (3.9) and (3.10) from the previous chapter, repeated here for convenience:

K̃v = −s̃; (4.7)

K̃ =


ε∞∂c0t + η0α −∇× −η0β

∇× µr∂c0t ∅

−η0β ∅ ∆εr∂c0t + η0β

 , (4.8)

v =


~v1

~v2

~v3

 =


~E

η0
~H

~P
ε0∆εr

 , s̃ =


~s1

~s2

~s3

 =


η0
~J E
~JM

∅

 . (4.9)

Consider testing Maxwell’s equations at a fixed time t by the scalar test function ψ(~r), where

we consider a “strong form” by applying integration by parts twice (as opposed to the “weak

form” in which the testing function must be differentiable [3]) leading to:

- 52 -



DGM-FBTS Imaging 4.2 Local DGM Volumetric Matrices

ˆ
Vn

ψ(~r) ε∞(~r) ∂c0t~v1(t, ~r) ~dr −
ˆ
Vn

ψ(~r) ∇× ~v2(t, ~r) ~dr + η0

ˆ
Vn

ψ(~r) α(~r) ~v1(t, ~r) ~dr . . .

− η0

ˆ
Vn

ψ(~r) β(~r)~v3(t, ~r) ~dr +

‹

∂Vn

ψ(~r) n̂(~r)×
(
~v2(t, ~r)− ~v∧2 (t, ~r)

)
~dr = . . .

−
ˆ
Vn

ψ(~r)~s1(t, ~r) ~dr, (4.10a)

ˆ
Vn

ψ(~r) µr(~r) ∂c0t~v2(t, ~r) ~dr +

ˆ
Vn

ψ(~r) ∇× ~v1(t, ~r) ~dr − . . .
‹

∂Vn

ψ(~r) n̂(~r)×
(
~v1(t, ~r)− ~v∧1 (t, ~r)

)
~dr = −

ˆ
Vn

ψ(~r) ~s2(t, ~r) ~dr, (4.10b)

ˆ
Vn

ψ(~r) ∆εr(~r)∂c0t~v3(t, ~r) ~dr − η0

ˆ
Vn

ψ(~r) β(~r) ~v1(t, ~r) ~dr + η0

ˆ
Vn

ψ(~r) β(~r) ~v3(t, ~r) ~dr = 0,

(4.10c)

where ∂Vn is the boundary surface of Vn and n̂(~r) is the outward unit normal vector to the surface

∂Vn. The sign ∧ represents a quantity that is used to enforce the appropriate boundary conditions

at the interface between elements by considering the solution from both sides of the interface [3].

The surface integrals in (4.10a) and (4.10b) introduces a surface flux or the dynamics of the

problem that accounts for the flow of information in the underlying PDE by coupling adjacent

elements.

The next step is discretizing the tested equations by expanding the fields in the basis (4.5).

By adopting the same basis function set as test functions, we arrive at the discontinuous Galerkin
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method discretization [3].

ˆ
Vn

`(~r) (`(~r))ᵀ ∂c0t[ε∞ ~v1(t)] ~dr −
ˆ
Vn

`(~r) ∇× [(`(~r))ᵀ ~v2(t)] ~dr + η0

ˆ
Vn

`(~r) (`(~r))ᵀ . . .

[α ~v1(t)] ~dr − η0

ˆ
Vn

`(~r) (`(~r))ᵀ [β ~v3(t)] ~dr + ~Fv1
(t) = −

ˆ
Vn

`(~r) (`(~r))ᵀ~s1(t) ~dr,

(4.11a)ˆ
Vn

`(~r) (`(~r))ᵀ ∂c0t[µr ~v2(t)] ~dr +

ˆ
Vn

`(~r) ∇× [(`(~r))ᵀ ~v1(t)] ~dr + ~Fv2
(t) = −

ˆ
Vn

`(~r) . . .

(`(~r))ᵀ ~s2(t) ~dr, (4.11b)ˆ
Vn

`(~r) (`(~r))ᵀ ∂c0t[∆εr ~v3(t)] ~dr − η0

ˆ
Vn

`(~r) (`(~r))ᵀ [β ~v1(t)] ~dr + η0

ˆ
Vn

`(~r) (`(~r))ᵀ . . .

[β ~v3(t)] ~dr = 0. (4.11c)

where

~Fv1
(t, ~r) =

‹

∂Vn

`(~r) n̂(~r)×
(
~v2(t, ~r)− ~v∧2 (t, ~r)

)
~dr, (4.12a)

~Fv2
(t, ~r) = −

‹

∂Vn

`(~r) n̂(~r)×
(
~v1(t, ~r)− ~v∧1 (t, ~r)

)
~dr. (4.12b)

and the ~Fv1
(t) and ~Fv2

(t) are the discretized vectors of ~Fv1
(t, ~r) and ~Fv2

(t, ~r) over the Np

nodes in element n, respectively. Note that `(~r), ~vi(t), ~si(t) and ~Fvi(t), where i = 1, 2, 3 and

vi = v1, v2, v3, areNp-by-1 vectors and ε∞, α, β, µr areNp-by-Np diagonal matrices and the terms

related to these parameters in the equations (4.11) are discretized along with the multiplications

of parameters, for instance:

ε∞(~r)~v1(t, ~r) ≈ (`(~r))ᵀ [ε∞ ~v1(t)]. (4.13)

The element-wise mass and stiffness matrices are used to simplify the local discretization
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notation of Maxwell’s within an element:

M ,
ˆ

Vn

`(~r) (`(~r))ᵀ ~dr, S
i
,
ˆ

Vn

`(~r) (∂i`(~r))
ᵀ ~dr. (4.14)

After substituting the mass and stiffness matrices and simplifying the nine scalar Maxwell’s

equations, (4.11) become:

∂c0t[v1x(t)] + ε∞
−1D

z
v2y(t)− ε∞−1D

y
v2z(t) + η0ε∞

−1 α v1x(t)− η0ε∞
−1 β v3x(t) + ε∞

−1 . . .

M−1Fv1
x (t) = −ε∞−1s1x(t) , (4.15a)

∂c0t[v1y(t)]− ε∞−1D
z
v2x(t) + ε∞

−1D
x
v2z(t) + η0ε∞

−1 α v1y(t)− η0ε∞
−1 β v3y(t) + ε∞

−1 . . .

M−1Fv1
y (t) = −ε∞−1 s1y(t) , (4.15b)

∂c0t[v1z(t)] + ε∞
−1 D

y
v2x(t)− ε∞−1 D

x
v2y(t) + η0ε∞

−1 α v1z(t)− η0ε∞
−1 β v3z(t) + ε∞

−1 . . .

M−1 Fv1
z (t) = −ε∞−1 s1z(t) , (4.15c)

∂c0t[v2x(t)]− µr−1 D
z
v1y(t) + µr

−1 D
y
v1z(t) + µr

−1 M−1 Fv2
x (t) = −µr−1 s2x(t) , (4.15d)

∂c0t[v2y(t)] + µr
−1 D

z
v1x(t)− µr−1 D

x
v1z(t) + µr

−1 M−1 Fv2
y (t) = −µr−1 s2y(t) , (4.15e)

∂c0t[v2z(t)]− µr−1 D
y
v1x(t) + µr

−1 D
x
v1y(t) + µr

−1 M−1 Fv2
z (t) = −µr−1 s2z(t) , (4.15f)

∂c0t[v3x(t)]− η0∆εr
−1 β v1x(t) + η0 ∆εr

−1 β v3x(t) = 0 , (4.15g)

∂c0t[v3y(t)]− η0∆εr
−1 β v1y(t) + η0∆εr

−1 β v3y(t) = 0 , (4.15h)

∂c0t[v3z(t)]− η0∆εr
−1 β v1z(t) + η0∆εr

−1 β v3z(t) = 0 , (4.15i)

where D
i

=M−1S
i
.

The simplified version of (4.15) set of equations, which contains the local matrices are:

∂c0t v(t)n = −An v(t)n −Bn Fn(t) v(t)n − C(t)n , (4.16)
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where Fn(t) is the sparse flux matrix with non-zero entries arising from interactions to each of

the adjacent elements, and:

An = A1 +A2 , (4.17)

A1 =



η0ε∞
−1α 0 0 0 0 0 −η0ε∞

−1β 0 0

0 η0ε∞
−1α 0 0 0 0 0 −η0ε∞

−1β 0

0 0 η0ε∞
−1α 0 0 0 0 0 −η0ε∞

−1β

0 −µr−1 D
z

µr
−1 D

y
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−η0∆εr
−1β 0 0 0 0 0 η0∆εr

−1β 0 0

0 −η0∆εr
−1β 0 0 0 0 0 η0∆εr

−1β 0

0 0 −η0∆εr
−1β 0 0 0 0 0 η0∆εr

−1β



,

(4.18)

A2 =



0 0 0 0 ε∞
−1D

z
ε∞
−1D

y
0 0 0

0 0 0 −ε∞−1D
z

0 ε∞
−1D

x
0 0 0

0 0 0 ε∞
−1D

y
ε∞
−1D

x
0 0 0 0

0 −µr−1 D
z

µr
−1 D

y
0 0 0 0 0 0

µr
−1 D

z
0 −µr−1 D

x
0 0 0 0 0 0

−µr−1 D
y
−µr−1 D

x
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, (4.19)
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B = BlockDiag(



ε∞
−1M−1

ε∞
−1M−1

ε∞
−1M−1

µr
−1 M−1

µr
−1 M−1

µr
−1 M−1

0

0

0



) , C(t)n =



ε∞
−1s1x(t)

ε∞
−1s1y(t)

ε∞
−1s1z(t)

µr
−1 s2x(t)

µr
−1 s2y(t)

µr
−1 s2z(t)

0

0

0



, v(t)n =



v1x(t)

v1y(t)

v1z(t)

v2x(t)

v2y(t)

v2z(t)

v3x(t)

v3y(t)

v3z(t)



. (4.20)

So far in this section, the local matrices for a specific element n have been generated using the

Mass and Stiffness matrices and local interpolation coefficients. The resulted matrices’ sizes are

9Np-by-1 for the field and source coefficient vectors v(t)n and C(t)n and 9Np-by-9Np for the other

matrices An, Bn and Fn(t).

4.3 Evaluating Fluxes on Interfaces

This section provides some details about the local flux term, which is the heart of the formulations

(4.10) and couples an element to its neighbours.

The goal here is to evaluate the surface integrals of equations (4.12) by summing the contri-

butions over each of the element faces. Hence, we use the expansion polynomials `n,f (~r) which

are defined on the face (facet) f ; substituting it into equation (4.12) gives:

~Fvi,n(t) =

Nf∑
f=1

¨
∂Vn,f

`n,f (~r) ~Φvi,n,f (t, ~r) ~dr (4.21)

=

Nf∑
f=1

Mn,f ~Φvi,n,f (t) ; vi = v1, v2
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where Mn,f is the mass matrix corresponding to the the fth face of element n. Nf is the total

number of faces regarding element n, which means that this element has common boundaries

with Nf other elements; f = 1 : Nf .

Appropriate choices of flux conditions can be found in [3]. According to [3], a natural choice

for the flux in wave equations is:

~Φv1(t, ~rn,f ) ,
Z+(~rn,f )

Z−(~rn,f ) + Z+(~rn,f )
n̂(~rn,f )×

[
~v−2 (t, ~rn,f )− ~v+

2 (t, ~rn,f )
]
− . . .

α

Z−(~rn,f ) + Z+(~rn,f )
n̂(~rn,f )× n̂(~rn,f )×

[
~v−1 (t, ~rn,f )− ~v+

1 (t, ~rn,f )
]
, (4.22a)

~Φv2(t, ~rn,f ) ,
−Y +(~rn,f )

Y −(~rn,f ) + Y +(~rn,f )
n̂(~rn,f )×

[
~v−1 (t, ~rn,f )− ~v+

1 (t, ~rn,f )
]
− . . .

α

Y −(~rn,f ) + Y +(~rn,f )
n̂(~rn,f )× n̂(~rn,f )×

[
~v−2 (t, ~rn,f )− ~v+

2 (t, ~rn,f )
]
, (4.22b)

where α is a numerical parameter and n̂ is the unit normal outward vector from the element n on

the surface of fth face. The minus superscripts represent quantities associated with nth element

and the positive superscripts represent the quantities in the neighbour across the fth facet. Z(~r)

is the impedance defined by
√

µ0µr(~r)
ε0ε∞(~r) at the location ~r and Y (~r) is the admittance defined by

Y (~r) = Z(~r)−1 at the location ~r.

If parameter α ∈ [0, 1] is chosen 0, called “central flux” [3], an equal contribution from the

internal and external boundaries is used to calculate the flux term. The choice of α = 1 refers to

classic “upwind flux” [3]. Here in this work, we use α = 1, as it offers visually smoother solution

[3].

Properly evaluating the flux integrals requires care in accounting for the potential of having

different solution orders in adjacent elements. In such cases, interpolation is required, and details

can be found in [52].
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4.4 Boundary Conditions

In this section two boundary conditions are presented using the “strong form” representation of

flux terms.

4.4.1 Absorbing Boundary Condition

The characteristics of an absorbing boundary imposes zero incoming waves of electric and mag-

netic from the absorbing layer, means that the flux terms arising from ~v+
1 and ~v+

2 are zero.

Assuming zero incoming flux from the neighbouring elements leads to a simple Silver-Müller

absorbing boundary condition:

~Φv1
ABC(t, ~rn,f ) =

1

2
n̂(~rn,f ) ~v−1 (t, ~rn,f )− α

2Z−(~rn,f )
n̂(~rn,f )× n̂(~rn,f )× ~v−1 (t, ~rn,f ),

~Φv2
ABC(t, ~rn,f ) =

−1

2
n̂(~rn,f ) ~v−1 (t, ~rn,f )− α

2Y −(~rn,f )
n̂(~rn,f )× n̂(~rn,f ) × ~v−2 (t, ~rn,f ).

4.4.2 Perfect Electric Conductor (PEC) Boundary Condition

In the case of a Perfect Electric Conductor (PEC) surface f adjacent to the element n, the

following conditions hold for the PEC neighbour:


Z+(~rn,f ) = 0,

~v+
1 (t, ~rn,f ) = ~v+

2 (t, ~rn,f ) = ~0

. (4.24)

These conditions simplify the the flux terms of (7.21) to:

~Φv1
PEC(t, ~rn,f ) = − α

Z−(~rn,f )
n̂(~rn,f )× n̂(~rn,f )× ~v−1 (t, ~rn,f ),

~Φv2
PEC(t, ~rn,f ) = − n̂(~rn,f )× ~v−1 (t, ~rn,f ).
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4.5 Constructing the Global System

So far, the previous sections of this chapter have focused on discretizing Maxwelle’s PDEs in a

local volume of Vn. The last step of this discretization is to collect the local equations into a

sparse block global system of equations:

∂c0t v(t) = −E v(t)−Q F(t) v(t)−R(t), (4.26)

where the matrices E and Q are the result of a block-diagonal concatenation of matrices An

and Bn, respectively. R(t) is the concatenation of C(t)ns, and F(t) is the general flux matrix

F(t) =
∑NE

n=1F
n(t).

The end result, (4.26) is a system of ODEs. Solving this system of ODEs is the subject of the

next chapter.
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Chapter 5

Integration in the Temporal

Dimension

We have emphasized so far the discrete spatial representation of the DGM formulation. This

chapter concentrates on different time-integration methods employed to solve the semidiscrete

system of ODEs (4.26), which is simplified here for conciseness as:

∂t v(t) = F(v, t). (5.1)

Here, v is the vector of unknowns or the field coefficients as a function of time corresponding to

the DGM spatial discretization in Ω.

The next sections focus on time integration, first explaining the general difference between

implicit and explicit methods, and then presenting four different implicit and explicit strategies.

Then we study the implementation features of each of these four methods. The techniques

presented in this chapter have been selected from [3, 70, 71, 72, 73, 74, 75].
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5.1 Explicit versus Implicit Time Integration Methods

Two German mathematicians, Carl Runge and Wilhelm Kutta, developed a family of implicit

and explicit iterative methods used for temporal discretization and solving ODEs, around 1900.

This family of iterative methods are called Runge-Kutta in numerical analysis [76].

To illustrate the differences of implicit and explicit methods, we initiate with rewriting the

equation (5.1) and separating F(v, t) into the source term s(t) which is a function of time, and

the term A v(t), which is a linear function of the fields:

∂t v(t) = A v(t) + s(t). (5.2)

The simplest explicit routine, from the Runge–Kutta (RK) family, is the Forward Euler

method, which approximates the time derivative as a forward difference. Let vn = v(n∆t) where

∆t is a time step and n is the time step index. To launch from vn to vn+1 separated by time step

∆t by Forward Euler method, we have:

vn+1 − vn

∆t
= A vn + sn. (5.3)

The simplest implicit routine, from Runge–Kutta family, is the Backward Euler method, where

the time derivative is approximated by a backward difference:

vn+1 − vn

∆t
= A vn+1 + sn+1. (5.4)

Solving for the updated solution vn+1 gives:

vn+1 = (I + ∆t A) vn + ∆t sn Explicit, (5.5)

vn+1 = (I −∆t A)−1 [vn + ∆t sn+1] Implicit, (5.6)
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where the inverse operator is symbolic of solving a system of equations (but does not mean com-

puting the inverse). There are two important differences between these two strategies: First, the

forward Euler method, like all explicit methods, suffers from numerical instability if the time step

is chosen too large [77]. Second, while the backward Euler method, like all implicit methods,

does not suffer the instability of its explicit counterpart, it requires solving a system of linear

equations at each time step by multiplying (I −∆t A)−1 by some other term (right hand side).

Note that we generally assume that the media is stationary so A is constant and this inverse can

be computed once and stored.

The electromagnetic wave propagation by a point source is categorized as a stiff-problem1.

It is well-known that implicit methods are the most efficient methods to solve these kinds of

ODEs [77]. However, one requires an associated method for solving the implicit equation. In

this project, an LUPQ decomposition [78] step is utilized for solving the sparse matrix equations

arising from implicit time-marching schemes.

5.2 Low-Storage Explicit Runge-Kutta (LSERK)

The explicit Runge-Kutta method described in this section has been picked from [3], and is a

low-storage fourth-order explicit RK whose pseudo-code is described in Algorithm 3. The low-

storage version requires three fewer intermediate storage vectors than the standard fourth-order

RK method, at the price of one additional stage of computation. The cost of the additional stage

is offset by the low-storage method (less computational cost) allowing larger stable time steps ∆t

[3].

The related coefficients for this LSERK (Algorithm 3) are given in table 5.1.

1The differential equations that feature an exponential dynamical decaying solution are called stiff-problems.
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Algorithm 3 Low-Storage Fourth-Order Explicit Runge-Kutta

1: Compute the DGM constant matrices,
2: Set zero (temporal) initial values for fields; v0 = 0,
3: Set the ai, bi and ci coefficients for i = 1, . . . , 5 according to table 5.1
4: for n = 1, 2, . . . , N do
5: u(0) = vn,
6: for i = 1, . . . , 5 do
7: k(i) = ai k

(i−1) + ∆t F(u(i−1), tn + ci ∆t)
8: u(i) = u(i−1) + bi k

(i)

9: end for
10: vn+1 = u(5)

11: end for
12: Return the vn values for the time indices n = 1, 2, . . . , N .
13: =0

i ai bi ci

1 0 1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 −2404267990393
2016746695238

17201146321549
2090206949498

2526269341429
6820363962896

4 −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Table 5.1: Table of LSERK’s coefficients reproduced from [3]

5.3 Diagonally Implicit Runge-Kutta (DIRK) Method

This section describes another Runge-Kutta method that has been evaluated for solving the DGM

system of equations as part of this work. This scheme is a fourth-order four-stage diagonally im-

plicit Runge-Kutta method, presented for the first time by Jawias et al. [71], designed explicitly

for the Linear Ordinary Differential Equations (LODEs) governing wave and heat phenomena.

The DIRK algorithm is described step-by-step in Algorithm 4.
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Algorithm 4 4th Order DIRK

1: Compute the DGM constant matrices,
2: Set zero (temporal) initial values for fields; v0 = 0,
3: Set the ai, bi and ci coefficients for i = 1, . . . , 5 according to Butcher Tableau,
4: for i = 1, 2, . . . , 4 do decomposition

[Li, U i, P i, Qi] = (I − aii∆t A)

5: end for
6: for n = 1, 2, . . . , N do
7: Compute V 1 using the LUPQ-decompositions:

Y 1 = A vn,

V 1 = (I − a11∆t A)−1 [Y 1 + s(tn + c1∆t)] .

8: for i = 2, . . . , 4 do Compute V i; i = 1, 2, . . ., using the LUPQ-decompositions:

Y i = A V i−1,

V i = (I − aii∆t A)−1[Y 1 + ∆t
i∑

j=2

ai(j−1) Y j + s(tn + ci∆t)].

9: end for
10: Compute vn+1:

vn+1 = vn + ∆t

4∑
i=1

bi V i

11: end for
12: Return the vn values for the time indices n = 1, 2, . . . , N .
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The coefficients required for this algorithm are written in the Butcher’s array as follows:

c a

bᵀ
=

0.20 0.20

0.05 −0.15 0.20

0.40 −0.78518518518519 0.98518518518519 0.20

0.80 0.70671936758894 −0.19819311123659 0.091473743647652 0.20

0.40740740740741 0.016931216931217 0.10714285714286 0.46851851851852

5.4 2nd Order Rosenbrock Implicit Method

According to [72], the TD MWI’s OD equations, like other wave equations, may not demand

highly accurate calculations, and decreasing the time integration solution order seems feasible.

Therefore, providing the required restrained accuracy, second-order Runge-Kutta methods could

be more efficient, and sufficiently accurate, than higher-order methods. There is only one LU

(LUPQ) decomposition required in this method as opposed to simple implicit Runge-Kutta meth-

ods, like DIRK.

In the following, a second-order two-stage implicit Runge-Kutta method known as Rosen-

brock is represented. Algorithm 5 describes the steps of this method in detail [72].
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Algorithm 5 2nd-order Rosenbrock

1: Compute the DGM constant matrices,
2: Set zero (temporal) initial values for fields; v0 = 0,
3: Set γ = 0.5,
4: Do decomposition [L,U, P ,Q] = (I − γ∆t A),
5: for n = 1, 2, . . . , N do
6: Compute K using the LUPQ-decomposition:

K = (I − γ∆t A)−1 [vn + γ∆t s(tn + γ∆t)]

7:

F = A K + s(tn + γ∆t)

8: Compute vn+1 using the LUPQ-decomposition:

vn+1 = (I − γ∆t A)−1 [vn + ∆t (1− γ) F + γ∆t s(tn + ∆t)]

9: end for
10: Return the vn values for the time indices n = 1, 2, . . . , N .

5.5 Trapezoidal Rule - 2nd Order Backward Differentiation For-

mula (TR-BDF2)

This section represents another efficient implicit method, which is introduced as one of the top

methods to solve a Cauchy problem by [72]. The method is referred to as TR-BDF2, which

stands for Trapezoidal Rule - 2nd Order Backward Differentiation Formula. This stiffly accurate

L-stable diagonally implicit method has been presented by Skvortsov’s [72]. This method, like

the Rosenbrock implicit method, needs just one LU (LUPQ) decomposition as opposed to simple

implicit Runge-Kutta methods, like DIRK.

Algorithm 6 presents the TR-BDF2 method.
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Algorithm 6 TR-BDF2

1: Compute the DGM constant matrices,
2: Set zero (temporal) initial values for fields; v0 = 0,

3: Set γ = 1−
√

2
2 , c = 2γ and a = 1−γ

2 ,
4: Do decomposition [L,U, P ,Q] = (I − γ∆t A),
5: for n = 1, 2, . . . , N do
6: Compute V using the LUPQ-decomposition:

Y = Avn

V = (I − γ∆t A)−1 [vn + γ∆t Y + γ∆t s(tn) + γ∆t s(tn + c∆t)]

7: Compute vn+1 using the LUPQ-decomposition:

vn+1 = (I−γ∆t A)−1 [vn + a∆t Y + a∆t A V + a∆t s(tn) + a∆t s(tn + c∆t) + γ∆t s(tn + ∆t)]

8: end for
9: Return the vn values for the time indices n = 1, 2, . . . , N .

5.6 Implicit and Explicit Methods’ Evaluation

One can examine the implicit and explicit methods through their two features: memory require-

ment and execution time. Although memory requirement for the microwave imaging problem

performed by TD DGM-BFTS is not the biggest issue, the execution time plays the most cru-

cial role in deciding the optimum approach due to the high computational cost. However the

following discussion focuses on speeding up TD inversion solver by choosing the fastest available

time-marching method, we should be careful about the accuracy presented by these methods. As

the FBTS method is a robust scheme, we present the cases with the same final reconstructed

images to have a fair comparison of the implicit and explicit methods.

This section presents a homogeneous non-dispersive 2D TM imaging scenario by which the

four time marching methods previously discussed, are evaluated by comparing their execution

time and accuracy.

The synthetic imaging example considered here has a simple geometry illustrated in Figure
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5.1. Note that all of the meshes in this work are triangular and unstructured, generated by Gmsh

[79].

In this example, there are two cylindrical targets tagged as T1 and T2 located asymmetrically

inside the cylindrical domain D. Both targets have diameters of 0.028 m, and the imaging domain

D has a diameter of 0.07 m. The four transceivers are located at a radius of 0.055 m and angles

of 0, π/2, π, 3
4π with fixed meshes enforced by cylinders of S1, S2, S3, and S4, with a diameter of

0.004 m. This problem is simulated with an absorbing boundary condition at radius 0.066 m.

Note that the transmitters (and receivers) are simulated as point sources in 2D (or line

sources in 3D assuming no variation along the third dimension), and the Sis centered on the

source locations ensure having a fixed mesh around the sources. These sources’ amplitudes,

follow equation (5.4) in time with Am = 1 A/m2 and τ = 0.125 ns. Figure 5.2 shows the

frequency response of sources’ amplitude.

Iz,m(t) = Am(
t

τ
)3(4− t

τ
)e−

t
τ (5.4)

The constitutive parameters in this problem are as follows. The whole space of Ω has con-

stitutive of free space or εr = 1 and µr = 1, while lossless T1 and T2 targets have relative

permittivities of 2.5 and 3.0, respectively. Both targets have a relative permeability of µr = 1.

We run the implemented forward solver with the 1st order DGM, for the time interval [0, T =

3.3 ns] with the possible maximum or optimum time step ∆t for each of the implicit and explicit

methods discussed earlier. Table 5.2 gives these optimum time steps for the specific scenario 1 and

the average execution time for each strategy and, for each source, by the same system with the

same number of cores on Matlab. These time steps are the maximum amounts of time steps by
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T1 T2

𝓓

Ω

S3

S2

S1

S4

Figure 5.1: Scenario 1: time-marching methods evaluation: two cylindrical shaped scatterers,
four sources. (#Nodes(Ω) = 1676, #Elements(Ω) = 3236, #Elements(D) = 732)

Figure 5.2: Frequency response of the time-domain source signal.

which each time-marching methods can solve the PDEs without messing/deforming the measured

fields at the receiver points. Consider that the point of finding the maximum/optimum time step
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Average Execution Time (s) Optimum Time Step ∆t (ps)

LSERK 9.70 2
DIRK 6.73 30
Rosenbrock 7.00 10
TR-BDF2 3.31 30

Table 5.2: Comparison of Some Implicit and Explicit RK methods, when the A sparse matrix
has the size of 29124× 29124.

is lowering the execution and computational time and also lowering the required memory.

The optimum time step for an explicit method is the maximum possible time step before

the response becomes unstable. The optimum time step for any of the implicit methods is the

maximum amount of this parameter before the fields reshape and lose their smooth form. This

reshaping can be observed by comparing the fields in time resulted from the designated implicit

method with the resulted fields of an explicit one. Although, replacing an explicit by an implicit,

if one increases the time step by, for example, a factor of ten in the implicit scheme, a slight

time-shifting has been observed. This time-shifting does not cause any difficulty for the final

results because a right calibration process can fix these small discrepancies.

Table 5.2 gives a worthy evaluation perspective about the LSERK, DIRK, Rosenbrock, and

TR-BDF2 schemes. According to this table, the TR-BDF2 method outperforms the other three.

In this case, the general Forward problem takes about 41 s, which means that the rest of the code

including the DGM discretization takes about 7 s in average for each transmitter. In the rest of

this thesis, TR-BDF2 will be used as the time-marching method, unless it is noted otherwise.

Figure 5.3 captures the the normalized electric field calculated by the four schemes, measured

by receiver 2, when transmitter 1 is active. We can see a small shifting in time in the implicit

method with ∆t of 30 ps, as expected.

- 71 -



DGM-FBTS Imaging 5.7 General Evaluation of the TD DGM Forward Solver

Figure 5.3: The normalized electric field captured by receiver 2 when the transmitter 1 is prop-
agating.

5.7 General Evaluation of the TD DGM Forward Solver

Having presented the DGM formulation we can now validate the implemented forward solver.

Two techniques are used in this section to validate the implemented forward solver. First, we

compare the results of the solver to the fields obtained by a FD DGM solver. This FD forward

solver has been previously implemented and evaluated by the UofM EIL members [51].

Second, the TD DGM solver is applied to a PEC cylinder enabling a comparison to the

available analytic solution for that problem. The frequency response of a known metallic cylin-

der is analytically available in literature, e.g., [80]. Note that any other known target can be

used instead, but the metallic target is chosen in this work because it has a convenient analytic

response.
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5.7.1 Comparing TD-DGM fields to FD-DGM fields

In this section, we compare the well-proven frequency domain discontinuous Galerkin forward

solver with the time domain discontinuous Galerkin forward solver. This comparison is performed

by converting the time domain fields to frequency domain fields at discrete frequencies using a

discrete Fourier transform. The scattered and incident fields over the domain D - a square with

the side of 24.2486 cm - will be compared.

We use a box-like target that we refer to as the BoxTarget. The constitutive parameters

of this target are shown in Figure 5.4. The BoxTarget contains a square-shaped shell with 24

cm outer sides and three cylinders enclosed. The permittivity of the lossless square shell is 2.0.

The relative permittivities of the three cylinders are εr = (2.5, 3.0, 0.0) with conductivities of

σs = (0.0559, 0.0, 0.0559) S/m, respectively. The background is free space and the problem’s

absorbing boundary is a circle of 34.6 cm radius.

We assume a transmitter located at (x, y, z) = (25, 0, 0) cm. The same mesh, shown in

Figure 5.5, and the 3rd order basis function for the fields/constitutives are used for the both TD

and FD solvers.

The frequency of 2 GHz is chosen for this geometry so that the free space wavelength is about

15 cm. For this reason, the dominant frequency of the source signal in the TD forward solver is

chosen to be 2 GHz by selecting τ in equation (5.4) equal to 0.04 ns.

We calculate Eincz (ω,~r) using the straightforward summation of equation (5.5). The time

step dt, and the final time T for the BoxTarget are chosen to be 30 ps (using the TR-BDF2) and

3 ns, respectively.

Eincz (ω,~r) =
∑

t=0:dt:T

E incz (t, ~r)e−jωt dt (5.5)

The scattered fields (the TD-DGM’s responses) are being transformed in the same way from the

time domain to the frequency domain.

Note that the FBTS method is implemented based on total fields as discussed in previous
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Figure 5.4: (Scenario 2) BoxTarget Properties. (left) conductivity, and (right) permittivity.

𝓓

S

Ω

Figure 5.5: (Scenario 2) The forward solvers’ mesh for the BoxTarget.

chapters. The TD method’s scattered fields are being calculated by subtracting the total fields

with (total fields) and without (incident fields) the presence of the BoxTarget. The reason we

illustrate incident and scattered fields separately here, is to better compare this modality (FBTS)
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with the FD method.

In all of the related figures, the right column shows the results of the TD DGM while the

FD results are in the left column. The first, second, and third rows show Ez, Hx, and Hy. The

figures demonstrate that the general shape of the TD and FD results are the same. Differences

in the results are attributed to the following:

Consider that the FD-DG method’s incident fields are being calculated analytically using the

Green’s function in free space, which gives us an ideal response in the domain D. However, the

incident field by FBTS is actually the total field computed without the presence of any target, so

the (incident) field has interactions with the boundary. Besides, equation (5.5) is an estimation

of the Fourier transform. For the ideal case, the summation has to be an integral, and the limits

of this integral have to be infinity.
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Figure 5.6: The normalized amplitude of the incident Ez (first row), Hx (second row) and Hy

(third row) by the FD-DGM (left) and the TD-DGM (right) at 2 GHz.
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Figure 5.7: The phase of the incident Ez (first row), Hx (second row) and Hy (third row) by
the FD-DGM (left) and the TD-DGM (right) at 2 GHz.
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Figure 5.8: The normalized amplitude of the scattered Ez (first row), Hx (second row) and Hy

(third row) by the FD-DGM (left) and the TD-DGM (right) at 2 GHz.
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Figure 5.9: The phase of the scattered Ez (first row), Hx (second row) and Hy (third row) by
the FD-DGM (left) and the TD-DGM (right) at 2 GHz.
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5.7.2 Analytic PEC Cylinder Comparison

This section compares the TD-DGM code to the analytic solution for a PEC cylinder. This target

will be used again in forthcoming chapters as a calibration object for experimental examples.

This scenario’s geometry is shown in Figure 5.10, consists of a circular PEC cylinder in free

space. The metallic cylinder (MC) target is located at the center of the imaging domain D. The

target has an external diameter of 0.0889 m, and the imaging domain’s diameter is 0.15 m. Eight

transceivers are located equidistantly on the measuring domain (circle) with a radius of 0.1525 m.

This problem is simulated with an absorbing cylindrical boundary at radius 0.44 m. The source

amplitudes follow the equation (5.4) in time with Am = 1 A/m2 and τ = 0.04 ns (with dominant

frequency of 2 GHz).

S1

S2

S3

S4

S5

S6

S7

S8

𝓓

Ω

MC target

Figure 5.10: Imaging Scenario 3: a metallic cylinder target, eight sources

The figure 5.11 illustrates the analytic answer (blue graph) of scenario 3 versus the simulated
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Figure 5.11: Analytic answer vs. TD DGM result. Amplitude (right) and phase (left) of the
scattered electric field by transmitter 1 at receiver 2 from the metallic cylinder target.

results of the TD DG method (red graph) in frequency domain. We picked the first transmitter

and second receiver pair of scattered electric field to show here, but other pairs have similar

behaviour.

Although the phases in 5.11-a are nicely aligned, the amplitudes in Figure 5.11-b do not

completely aligned. This slight mismatch is again due to total fields interacting with the boundary

in the TD DGM forward solver. This discrepancy can be calibrated, and as will be shown in

Chapter 8, the forward model works sufficiently well for high-quality experimental inversion.
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Chapter 6

DGM-FBTS

The previous chapter time-integrated the DGM system of linear ODEs, resulting in the DGM

time-domain forward solver. This chapter combines DGM with FBTS leading to the DGM-FBTS

inversion algorithm.

After initializing the inverse problem and operating the forward- and backward-in-time

solvers, we compute the discretized gradients based on equation (3.48) and features of the DGM

basis discussed in Chapter 4. Once the gradients are computed, the conjugate gradient method

can be applied.

6.1 Discrete Gradients in Ω

To apply the Conjugate Gradient algorithm we must first calculate the gradients of the cost

functional with respect to the unknown (constitutive) parameters. Specifically, we compute them

using the DGM discretization.

Using the DGM basis functions, the continuous form of the fields ~w1m(p, t, ~r) and ~v1m(p, t, ~r)
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related to transmitter m, in element n are approximated as:

~wn1m(p, t, ~r) ≈
Np∑
k=1

~w1m(p, t, ~r n
k ) `nk(~r)

≈ (`n(~r))ᵀ ~wn1m(p, t), (6.1)

~vn1m(p, t, ~r) ≈
Np∑
k=1

~v1m(p, t, ~r n
k ) `nk(~r)

≈ (`n(~r))ᵀ ~vn1m(p, t) (6.2)

where `nk(~r) is the kth Lagrange polynomial of order p on Vn

Recall that the gradient with respect to the optical permittivity is:

Gε∞(p, ~r) = 2

M∑
m=1

ˆ T

0
~w1m(p, t, ~r) ∂c0t~v1m(p, t, ~r) dt.

In the following, we discretize this gradient; the remaining gradients can be discretized analo-

gously. By substituting equations (6.1)-(6.2) into this gradient, an approximation for the contin-

uous form of this gradient is:

Gnε∞(p, ~r) ≈ 2
M∑
m=1

ˆ T

0

(
(`n(~r))ᵀ ~wn1m(p, t)

)
∂c0t

(
(`n(~r))ᵀ ~vn1m(p, t)

)
dt.

However, the continuous form of this approximate gradient can be recovered by the value of the

gradient at the location of nodal basis points in the element n, so it suffices to calculate:

Gε∞(p, ~r n
k ) = 2

M∑
m=1

ˆ T

0
~w1m(p, t, ~r n

k ) ∂c0t~v1m(p, t, ~r n
k ) dt,

for k = 1 : Np. Having expanded the fields to order P and the constitutive parameters to order
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R, the interpolation matrix VRP 1 projects P th order nodal coefficients of the gradients to Rth

order nodal coefficients.

Gε∞(p) = VRP

(
2

M∑
m=1

ˆ T

0
~w1m(p, t) ∂c0t~v1m(p, t) dt

)
(6.3)

Equation (6.3) is the discrete form of the TD cost functional gradient due to the optical permit-

tivity. The rest of the gradients are likewise easily determined.

6.2 The DGM Discrete Conjugate Gradient Solution

Having calculated the necessary discrete gradients using the DGM field coefficients, this section

fills in the rest of the steps used to reconstruct a target image.

6.2.1 Search Direction

After computing the gradients, we update the search direction hi+1
X for each of the unknown

parameters X = ε∞, ∆εr, µr, σs, τrr, using the following relation. Here, i denotes the iteration

index.

hi+1
X = gi+1

X + γXi hi
X (6.4)

Fletcher-Reeves [81] or Polak-Ribiere-Polyak [82] schemes are commonly used to update the pa-

rameter γi, as the final results. We witnessed no benefit of one of these techniques over the other

in the examples tested in this thesis. Note that we need different search directions for different

parameters of X , and the line-search is in the negative direction of the gradients, so g = −G for

each of the parameters X .

1For the cases that P < R, we have to be careful about finding the right interpolation matrix VRP , otherwise
it leads to losing data. The process of calculating this operator is described in [1].
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Fletcher-Reeves

γFRi+1 is the Fletcher-Reeves search direction for the current iteration of the inverse solver, where

(., .)D is the inner product of two vectors over the imaging domain D.

γFRi+1 =
(gi+1, gi+1)D

(gi, gi)D
. (6.5)

Polak-Ribiere-Polyak

The Polak-Ribiere-Polyak search direction γPRPi+1 for the current iteration of the inverse solver is:

γPRPi+1 =
(gi+1, gi+1 − gi)D

(gi, gi)D
. (6.6)

6.2.2 Search Distance/Step

The next step of the Conjugate Gradient optimization technique is finding a proper search distance

(or search step) Γ > 0 such that:

f(p
i
+ Γi H i) = arg min

Γ
{f(p

i
+ Γ H i) | Γ ≥ 0}. (6.7)

Here, f is our cost functional, p
i

is the (reconstructed) constitutive parameters vector of Equa-

tion (2.34) at iteration i and the vector H i is the concatenation of the search directions at the

current iteration:

H =



hε∞

h∆εr

hµr

hσs

hτrr


. (6.8)

Here we need an algorithm to find an approximate minimum of a function, f , of one real

variable, Γ, by limited-precision arithmetic. The derivative f ′(Γ) is challenging to compute, so
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a method that does not need the function derivative is desirable. Since the evaluation of f is

computationally expensive for this specific problem, a technique should be used to guarantee

convergence to the correct answer within some prescribed tolerance, using just a small number

of cost functional evaluations.

To this end, we are after an algorithm that is guaranteed to succeed in finding the local

minimum of the one variable function f , over the interval [alm, blm], in the presence of rounding

error, in a reasonable time [83] (same things as small number of points). An algorithm providing

all of these requirements, which uses the combination of Golden Section Search (GSS) - similar to

Bisection zero finding algorithm - and Successive Parabolic Interpolation (SPI) - similar to zero

finding algorithm of Successive Linear Interpolation - [83], is used in this work. SPI method has

a super-linear convergence, but there is no convergence guarantee when it is used alone. GSS,

on the other hand, has a linear convergence (slower) with the guarantee of convergence. Mixing

GSS and SPI methods, we have a fast enough minimum finding algorithm that sure converges

(to either local or global minimum) [83].

Consider that, like most of the minimization methods, it is impossible to be sure that the

global minimum has been found by the combination of GSS and SPI. The reader may wonder

why we did not use another method as a remedy in this case. The answer is: those methods

usually need upper bound derivatives (first and second) as prior information, and that brings

more computational cost to the problem, which we wish to avoid [83].

The GSS-SPI algorithm will find the unique minimum if f is unimodal2 in the absence of

rounding errors. A computed approximation to a unimodal function (e.g., this study’s case) is

δ-unimodal for some positive δ, where the size of δ depends on the function and the precision

of computation. Giving an upper bound on the error to this algorithm, we can justify it in the

presence of rounding error [83].

2Please find the definitions related to unimodality in Appendix B.
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GSS-SPI - Local Minimum Seeking

This section briefly reviews the iterative algorithm of the hybrid golden section search and suc-

cessive parabolic interpolation. For more details, the readers are referred to [83].

The input parameters of this algorithm are the domain limits alm, blm, the positive absolute

tolerance tl, the relative tolerance ε, an initial value for the extreme point x, and of-course the

function f (the matrices p
i
, H i, and the forward solver).

The function f is defined on the interval [alm, blm] at each iteration of the CG method. The

tl and ε define the tolerance Tol = |x| ε+tl, which is the minimum distance between the evaluated

points of f . In this algorithm, the function f is assumed to be δ-unimodal with the constraint of

δ < Tol and the x is the approximation of the global minimum of function f with the maximum

error of 3×Tol3. When the function f is not δ-unimodal on the designated interval, the algorithm

gives the local minimum instead of the global minimum.

Suppose we represent the relative machine precision4 ( β(1−τ) for τ -digit truncated floating-

point arithmetic with base β ) with parameter εmach. In that case, the parameter ε has to be

smaller than 2 εmach, and it should not be significantly smaller than
√
εmach. For the details and

the reasons of these selection, the readers are referred to [83].

According to [83], if ignoring the rounding error and f function has a continuous second

derivative, the hybrid GSS-SPI’s convergence is expected to be super-linear with the least(minimum)

order of about 1.3247.

The GSS-SPI algorithm’s pseudocode is illustrated in detail in Algorithm 7. At each iteration

of this algorithm, there are six points, namely alm, blm, u, v, w and x. A local minimum lies in

the interval [alm, blm], and this interval changes for each GSS-SPI iteration. The point x is the

updated location of the local minimum at each iteration. The next lowest value of f is shown by

f(w). v reserves the previous amount of the parameter w, and the last point where we calculate

3Please refer to [83] for the details.
4Machine precision is the smallest number εmach such that the difference between 1 and 1 + εmach is nonzero.
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Algorithm 7 GSS-SPI for ith iteration of the inverse solver Adapted from [83]

1: Initialize c = 3−
√

5
2 , v = w = x = alm + c (blm − alm) and d = e = 0,

2: Compute the cost functional due to the constitutive parameter vector of (p
i
+x H i) or f(x),

3: Initialize fv = fw = fx = f(x), Iterationlm = 1,
4:

5: while (1) do
6: Set m = alm+blm

2 , Tol = ε |x|+ tl, t2 = 2 Tol,

7: if |x−m| > (t2− blm−alm
2 ) then

8: Set p = q = r = 0
9: if |e| > Tol then

10: % Parabola Fitting:
11: r = (x− w)(fx− fv), q = (x− v)(fx− fw)
12: p = q(x− v)− r(x− w), q = 2(q − r)
13: if q > 0 then p = −p else q = −q
14: r = e, e = d
15: end if
16: if (|p| < | qr2 |) ∧ (p > q(alm − x)) ∧ (p < q(blm − x)) then
17: % Parabolic Interpolation:
18: d = p

q , u = x+ d
19: % f(.) needs to be far enough from alm and blm:
20: if (u− alm < t2) ∨ (blm − u < t2) then d = if x < m then Tol else −Tol
21: else
22: % Golden Section Search:
23: e = (if x < m then blm else alm)− x, d = c e
24: end if
25: % f(.) needs to be far enough from x:
26: u = x+ ( if |d| > Tol then d else if d > 0 then Tol else −Tol)
27: Compute the cost functional due to the constitutive parameter vector of (p

i
+ u H i)

or f(u), fu = f(u)
28: % Updating the five points alm, blm, v, w and x:
29: if fu 6 fx then
30: if u < x then b = x else a = x, v = w, fv = fw,w = x, fw = fx, x = u, fx = fu
31: else
32: if u < x then a = u else b = u,
33: if fu 6 fw ∨ w = x then v = w, fv = fw,w = u, fw = fu
34: else if fu 6 fv ∨ v = x ∨ v = w then v = u, fv = fu,
35: end if
36: end if
37: else
38: Break!
39: end if
40: Iterationlm = Iterationlm + 1
41: end while
42: Return Γi = x and Iterationlm. - 88 -
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the function f is stored in u (Figure 6.1).

𝑎𝑙𝑚 𝑏𝑙𝑚
𝑣 𝑥 𝑤

𝑢 𝑚

Figure 6.1: A possible configuration of the points in GSS-SPI.

On line 6, m gives the midpoint of the interval. If max(x− a, b−x) is less (or equal) than 2 Tol

(criteria in line 7), the point x would be our local minimum point and the algorithm terminates.

Otherwise, the next step is fitting a parabola to the (v, f(v)), (w, f(w)), (x, f(x)) points such

that x+ p
q is its turning point. The points p and q are calculated as:

p = ±[(x− v)2(f(x)− f(w))− (x− w)2(f(x)− f(v))], (6.9a)

q = ∓2[(x− v)(f(x)− f(w))− (x− w)(f(x)− f(v))]. (6.9b)

If x is close to the local minimum, the p
q correction would be small. In line 14, after fitting the

parabola, we put e = p
q for the next cycle. If x + p

q /∈ (alm, blm), or |pq | >
|e|
2 , the golden section

search starts, so that the parameter u updates as:

u =


√

5−1
2 x+ 3−

√
5

2 alm, x > m

√
5−1
2 x+ 3−

√
5

2 blm, x < m

. (6.10)

Otherwise, a parabolic interpolation starts by taking u as x+ p
q , except that making the distances

|u − x|, u − alm, and b − u have to be greater (or equal) than Tol. Next, the other parameters
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get updated accordingly and the cycle is repeated.

Note that this algorithm never calculates the function f at two points closer than Tol.

Therefor, the δ-unimodality condition of f for some δ < Tol is enough to have the minimum

accuracy of 2 Tol + δ by the algorithm [83].

6.2.3 Finalizing the Inverse Algorithm and Stopping Condition

The last step of the conjugate gradient iterative method is to update the constitutive parameters

for iteration i+ 1 based on the computed/calculated search distance Γ:

p
i+1

= p
i
+ Γ H i (6.11)

After updating these parameters, the CG algorithm continues to minimize the cost functional

iteratively.

There exist many stopping conditions for iterative algorithms in the literature, e.g., relative

error change [1, 2, 84, 41], and KS test [85]. However, it is still common in MWI to just run some

iterations and stop the algorithm manually while monitoring inversion algorithm convergence.

This thesis, also, does not have a robust stopping condition except stopping the algorithm when

the cost functional minimization process slows down drastically, in conjunction with experience

developed running this algorithm.
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Chapter 7

Ultrasound Inverse Problems

The inversion algorithm developed here was motivated by electromagnetic imaging problems in

microwave range of frequency (300 MHz to 300 GHz). Further still, the mechanical wave propa-

gation of ultrasound (frequency above human hearing (20 KHz)) energy can be represented in a

similar fashion, making the formulation capable of ultrasound imaging. Here, an ultrasound TD

solver (US-TD-FBTS), is presented which results in an inverse solver capable of reconstructing,

the ultrasound parameters of unknown objects.

In this chapter, we provide the details for converting the time-domain forward and inverse

solvers to ultrasound, with the goal of reconstructing some images for its preliminary performance

evaluation. Here in this thesis, we use the non-dispersive assumption for the ultrasound waves.

7.1 Basics of Ultrasound Wave Propagation

In this section, we start with the basics of lossless ultrasound wave propagation to derive the

required formulations in the time domain, using an approach similar to that of previous works

by UofM-EIL members, e.g., [86, 87].

The two primary laws of ultrasound waves, which lead us to the final equations of ultrasound
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wave propagation, are conservation of mass and conservation of linear momentum.

According to the mass conservation law (Equation (7.1a)), the mass inside an isolated volume

V (t) always remains constant during the volume’s reshaping and movements by time. Here

%(t, ~r) [kg/m3] is the fluid mass density.

Also the linear momentum conservation law, shown in Equation (7.1b), states the continuum

generalization of Newton’s second law by parameters of the volume velocity ~U(t, ~r) [m/s], fluid

mass density %(t, ~r) [kg/m3], and the fluid pressure P (t, ~r) [N/m2]. The assumption is that the

only source/form of force comes from the pressure gradients of the fluid volume1, and the viscosity

and external forces are zero.

d

dt

ˆ
V (t)

%(t, ~r) dv = 0, (7.1a)

d

dt

ˆ
V (t)

%(t, ~r) ~U(t, ~r) dv = −
ˆ
V (t)
∇P (t, ~r) dv. (7.1b)

Before going forward, we separate the variational and the average parts of the ultrasound

parameters according to the following definitions:


P (t, ~r) = P0 + p(t, ~r),

~U(t, ~r) = ~U0 + ~u(t, ~r),

%(t, ~r) = ρ(~r) + ρ1(t, ~r),

(7.2)

where P0, ~U0, and ρ(~r) are the average quantities over the volume V (t). P0 is constant and ~U0 = 0

as the fluid is assumed to be at rest. Note that by these definitions, the parameters p(t, ~r), ~u(t, ~r),

and ρ1(t, ~r) are assumed to be small fluctuations such that |p(t, ~r)| � |P0| and |ρ1(t, ~r)| � |ρ(~r)|.
1According to [88, 89, 86], piezoelectric transducers, which are usually used as ultrasound transducers, insoni-

ficate target object(s) by generating ultrasonic pressure waves. The transducer’s structure deforms and generates
local pressure changes in the propagating medium (water), When it is driven with a voltage signal. Then, trans-
ducers in receiving mode detect these pressure changes after passing through the medium and target(s). The
received pressure changes at the receivers cause deformation in the piezoelectric crystals, generating electronically
recordable voltage signals.
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Defining the average density as a function of space helps to have inhomogeneous media in small-

amplitude modelling [86].

After substituting the new parameters (7.2) in (7.1), and some manipulations [86], the mass

and momentum conservation laws result:

∂tρ1(t, ~r) +∇ · (ρ(~r) ~u(t, ~r)) = 0, (7.3a)

ρ(~r) ∂t~u(t, ~r) +∇p(t, ~r) = 0. (7.3b)

Equation (7.3a) needs to be modified by omitting ρ1 before using this set of equations. We

introduce an auxiliary relation [86, 90, 87]:

∂P (t, ~r)

∂%(t, ~r)
=

1

κ′(~r) %(t, ~r)
, (7.4)

where κ′ is the compressibility parameter, which is the inverse of the average adiabatic bulk

modulus of the fluid in units of pressure (N/m2)−1[86, 90, 87]. Substituting the definitions (7.2)

into (7.4), we have

p(t, ~r)

ρ1(t, ~r)
=

1

κ′(~r) ρ(~r)
, (7.5)

or

ρ1(t, ~r) = κ′(~r) ρ(~r) p(t, ~r). (7.6)

Substituting Equation (7.6) into (7.3a), our set of equations becomes [91]:

κ′(~r) ∂tp(t, ~r) +∇ · ~u(t, ~r) = 0, (7.7a)

ρ(~r) ∂t~u(t, ~r) +∇p(t, ~r) = −∇psrc(t, ~r), (7.7b)

where F src = −∇psrc is the source term which consists of the imposing force to the system.
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Comparing equations (7.7a) and (7.7b) with the non-dispersive lossless electromagnetic set

of equations of (2.3) (when σs = 0 and ~JM=0), one can setup a duality between the two sets of

EM and US equations as follows:

EM 
 US

ε 
 κ′

µ 
 ρ

cem =
1
√
µε

 cus =

1√
ρκ′

Zem =

√
µ

ε

 Zus =

√
ρ

κ′

~E 
 p

~H 
 ~u

~J E 
 ∇psrc

±∇× 
 ∇. (∇)

where cem and Zem are the speed and impedance of electromagnetic wave in a media with

constitutive parameters µ and ε. cus and Zus are the ultrasound speed and impedance in a media

with constitutive parameters ρ and κ′.

To construct a vector of unknowns in ultrasound (similar to the EM), we introduce similar

definitions for the parameters of ρ and κ′. We divide the density to two parts; the background

density ρ0, which is usually water with density ρ0 = 1000 (kg/m3), and the relative density ρr(~r)

as

ρ(~r) = ρ0 ρr(~r). (7.8)

The compressibility follows a similar rule

κ′(~r) = κ′0 κ
′
r(~r) (7.9)
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where κ′0 is the background compressibility. If water is taken as the default background, the

speed of ultrasound waves would be about cus0 = 1483 m/s2. This makes the background (water)

compressibilty equal to κ′0 = 4.5469× 10−10 (N/m2)−1 [92].

After applying normalization factors, similar to the EM case, the ultrasound forward solver

is summarize by:

Kusvus = −sus, (7.10)

where:

Kus =

κ′r ∂cus0 t ∇·

∇ ρr∂cus0 t

 , vus =

v1

~v2

 =

 p

zus0 ~u

 , sus =

 0

~s2

 =

 0

∇psrc

 . (7.11)

Note that the normalization process converts derivative ∂t to ∂cus0 t, similar in electromagnetic.

From now on, we limit the ultrasound problem to 2D in x-y plain, so that the parameters

have no variation in the z-direction. Assume that the pressure is applied to the system in the z-

direction (note that pressure is a scalar, but it acts perpendicular to the surface), so the non-zero

velocity is in x- and y-direction in the coordinate system. We can rewrite the ultrasound forward

solver matrices 7.11, as the following:

Kus =


κ′r ∂cus0 t ∂x ∂y

∂x ρr ∂cus0 t 0

∂y 0 ρr∂cus0 t

 , vus =


p

zus0 ux

zus0 uy

 , sus =


0

∂xp
src

∂yp
src

 . (7.12)

Based on the analogy between the electromagnetic set of equations and the ultrasound de-

rived equations of (7.12), the procedure for formulating an ultrasound DGM-FBTS inverse solver

2Note that the speed of sound in water (as in other mediums) is a function of temperature, e.g. [92] presents
it as cus0 = 1405.610 + 4.59754 T − 0.0381796 T2, where T [ ◦C] stands for temperature, in the range of 15 ◦C to
35 ◦C. In this work, we take this quantity constant and equal to 1483 m/s2 at the temperature of 20 ◦C, which is
a usual temperature of laboratories.
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amounts to reproducing the work of the previous chapters with minor modifications. Although

we do not present the procedure here for brevity, the ultrasound gradients with respect to the

relative compressibility and relative density in the imaging domain are:



Gκ′r(p
us, ~r) = −2

M∑
m=1

´ T
0 wus1m(pus, t, ~r) ∂c0tpm(pus, t, ~r) dt,

Gρr(p
us, ~r) = −2

M∑
m=1

´ T
0 [wus2m(pus, t, ~r) ∂c0t[z

us
0 uxm(pus, t, ~r)] + . . .

wus3m(pus, t, ~r) ∂c0t[z
us
0 uym(pus, t, ~r)]] dt,

where the ultrasound constitutive parameters vector pus and the ultrasound field adjoint vector

wus are:

pus(~r) =

κ′r(~r)
ρr(~r)

 , (7.13)

wus(pus, t, ~r) =

~wus1 (pus, t, ~r)

~wus2 (pus, t, ~r)

 . (7.14)

7.2 DGM Discretization of Ultrasound Formulations

In this section, we use the DGM method to spatially discretize the ultrasound equations above.

7.2.1 Local DG Volumetric Matrices in Ultrasound

This section is allocated to the DGM local expansions of parameters in the ultrasound PDEs

(7.10). In this section we restrict consideration to an arbitrary nth mesh element, and for sim-

plicity superscript n is omitted throughout. Note that the theory is similar to DGM discretization

in EM.

Consider testing the ultrasound PDEs (7.10) at a fixed time t by the scalar test function

- 96 -



DGM-FBTS Imaging 7.2 DGM Discretization of Ultrasound Formulations

ψ(~r), where we consider a “strong form”:

ˆ
Vn

ψ(~r) κ′r(~r) ∂cus0 t v1(t, ~r) ~dr −
ˆ
Vn

ψ(~r) ∇ · ~v2(t, ~r) ~dr + . . .

‹

∂Vn

ψ(~r) n̂(~r) ·
(
~v2(t, ~r)− ~v∧2 (t, ~r)

)
~dr = 0, (7.15a)

ˆ
Vn

ψ(~r) ρr ∂cus0 t ~v2(t, ~r) ~dr +

ˆ
Vn

ψ(~r) ∇v1(t, ~r) ~dr − . . .
‹

∂Vn

ψ(~r) n̂(~r)
(
v1(t, ~r)− v∧1 (t, ~r)

)
~dr =

ˆ
Vn

ψ(~r) ~s2(t, ~r) ~dr. (7.15b)

By adopting the Lagrange polynomial (4.1) as the basis and test functions, and substituting the

mass and stiffness matrices, the 2D ultrasound formulations become:

∂c0t[v1(t)] + κ′r
−1D

x
v2x(t) + κ′r

−1D
y
v2y(t) + κ′r

−1M−1Fv1(t) = 0 , (7.16a)

∂c0t[v2x(t)] + ρr
−1D

x
v1(t) + ρr

−1M−1Fv2
x (t) = −ρr−1 s2x(t) , (7.16b)

∂c0t[v2y(t)] + ρr
−1D

y
v1(t) + ρr

−1M−1Fv2
y (t) = −ρr−1 s2y(t) . (7.16c)

The simplified version of (7.16) set of equations, which contains the local matrices are:

∂c0t v(t)n = −An v(t)n −Bn Fn(t) v(t)n − Cn , (7.17)

where Fn(t) is the sparse flux matrix with non-zero elements regarding the nth adjacent elements,

and:

A =


0 κ′r

−1D
x

κ′r
−1D

y

ρr
−1D

x
0 0

ρr
−1D

y
0 0

 , (7.18)
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B = Block Diag(


κ′r
−1M−1

ρr
−1M−1

ρr
−1M−1

) , Cn =


0

ρr
−1s2x(t)

ρr
−1s2y(t)

 , v(t)n =


v1(t)

v2x(t)

v2y(t)

 . (7.19)

So far in this section, the local matrices for a specific element n have been generated using the

Mass and Stiffness matrices and local interpolation coefficients. The resulted matrices’ sizes are

3Np-by-1 for the field and source coefficient vectors v(t)n and Cn and 3Np-by-3Np for the other

matrices An, Bn and Fn(t).

7.2.2 Evaluating Ultrasound Fluxes on Interfaces

The goal here is to evaluate the surface integrals of equations (7.15) by summing the contributions

over each of the element faces. Following the same method used to find the flux terms in EM, a

natural choice for the ultrasound flux terms in the integral (4.21) is [3]:

Φv1(t, ~rn,f ) ,
α

Z−(~rn,f ) + Z+(~rn,f )

[
v+

1 (t, ~rn,f )− v−1 (t, ~rn,f )
]

+ . . .

Z+(~rn,f )

Z−(~rn,f ) + Z+(~rn,f )

[
~v+

2 (t, ~rn,f )− ~v−2 (t, ~rn,f )
]
· n̂(~rn,f ) · n̂(~rn,f ), (7.20a)

~Φv2(t, ~rn,f ) ,
Y +(~rn,f )

Y −(~rn,f ) + Y +(~rn,f )

[
v+

1 (t, ~rn,f )− v−1 (t, ~rn,f )
]
n̂(~rn,f )− . . .

α

Y −(~rn,f ) + Y +(~rn,f )

([
~v+

2 (t, ~rn,f )− ~v−2 (t, ~rn,f )
]
· n̂(~rn,f )

)
n̂(~rn,f ), (7.20b)

where Z(~r) is the ultrasound impedance defined by
√

ρ0ρr(~r)
κ′0κ
′
r(~r)

at the location ~r and Y (~r) is the

ultrasound admittance defined by Y (~r) = Z(~r)−1 at the location ~r. Note that Φv1 is an scalar

and ~Φv2 is a vector here.
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7.2.3 Ultrasound Absorbing Boundary Condition

The characteristics of an absorbing boundary imposes zero outgoing waves of pressure and velocity

from the absorbing layer, means that the flux terms arising from ~v+
1 and v+

2 are zero. Assuming

zero incoming flux from the neighbouring elements leads to a simple Silver-Müller absorbing

boundary condition:

Φv1
ABC(t, ~rn,f ) ,

−α
2Z−(~rn,f )

v−1 (t, ~rn,f )− 1

2
~v−2 (t, ~rn,f ) · n̂(~rn,f ),

~Φv2
ABC(t, ~rn,f ) ,

−1

2
v−1 (t, ~rn,f ) n̂(~rn,f ) +

α

2Y −(~rn,f )

(
n̂(~rn,f ) · ~v−2 (t, ~rn,f )

)
n̂(~rn,f ).

7.2.4 Constructing the Global System

So far, we focused on discretizing ultrasound’s PDEs in a local volume Vn. The last step of this

discretization is to collect the local equations into a sparse block of global system of equations:

∂c0t v(t) = −E v(t)−Q F(t) v(t)−R(t), (7.22)

similar to the (4.26) in EM. At the end, (7.22) is a system of ODEs. We can solve this system

of ODEs after temporal discretizing (Chapter 5). Having developed a forward model and expres-

sions for the gradients, it is straightforward to combine them into an ultrasound DGM-FBTS

scheme by following the steps discussed in Chapter 6.

7.3 Evaluating the Ultrasound TD-DGM Forward Solver

In this section we validate the incident/scattered pressure/velocity parameters by comparing

them to their FD counterparts in frequency domain. Again, we choose the well-proven frequency

domain discontinuous Galerkin forward solver formulated for ultrasound wave propagation, as
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the FD counterpart3.

This comparison is performed by calculating the harmonic pressure/velocity at the dominant

frequency of the TD source signal using discrete Fourier transform (as previously discussed in

5.7). The scattered and incident pressure/velocity will be compared over the domain D, which

is a 5.0 cm-sided square.

We use a simple off-center cylinder target in this section. The constitutive parameters of this

target are shown in Figure 7.1. The center of this circular cylinder is at (x, y) = (0.4, 0.0) cm

and it’s radius is 0.4 cm. Relative compressibility and density of this target are respectively 1.1

and 1.0. The background is water and the problem’s absorbing boundary is a circle of 5.0 cm

radius.

Figure 7.1: (Scenario 4) off-center cylinder’s relative compressibility

We assume a transmitter located at (x, y, z) = (3.64, 0, 0) cm. The same fine mesh with

1st order basis function for all of the parameters/constitutives is used for the both TD and FD

solvers.

The frequency of 100 KHz is chosen for this geometry so that its wavelength in water is about

1.48 cm. For this reason, the dominant frequency of the source signal in the TD forward solver is

3The Ultrasound FD code was implemented by the UofM-EIL members before the start of this thesis.
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chosen to be 100 KHz by selecting the τ in equation (5.4) equal to 806.815 ns. The comparisons

of incident waves are shown in Figures 7.2 (amplitudes) and 7.3 (angles). Scattered wave (from

the designated target) comparisons are shown in Figures 7.4 (amplitudes) and 7.5 (angles).

Note that the same procedure as in 5.7.1 is used here to extract the scattered field of the

TD wave results. Note that the artifacts or the amount of errors seem to be less from EM to

US, mostly because the antenna-boundary and target-boundary distances with respect to the

problem’s wavelength are larger in US and also likely because of the difference in the level of

parameters4. Obviously, by putting the boundaries of an imaging problem further from the

imaging domain and the antennas, receivers record less interactions of the propagating wave to

the boundary.

In all of the related figures, the right column shows the results of the TD DGM while the FD

results are in the left column. The first, second, and third rows show p, ux, and uy. The figures

demonstrate that the general shape of the TD and FD results are the same. Differences in the

results are attributed to the modeling errors discussed in 5.7.

4For instance ρ0 = 1000 kg/m3, while its dual parameter is µ0 = 4π10−7 H/m.
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Figure 7.2: The normalized amplitude of the incident p (first row), ux (second row) and uy
(third row) by the FD-DGM (left) and the TD-DGM (right) at 100 KHz.
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Figure 7.3: The phase of the incident p (first row), ux (second row) and uy (third row) by the
FD-DGM (left) and the TD-DGM (right) at 100 KHz.
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Figure 7.4: The normalized amplitude of the scattered p (first row), ux (second row) and uy
(third row) by the FD-DGM (left) and the TD-DGM (right) at 100 KHz.
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Figure 7.5: The phase of the scattered p (first row), ux (second row) and uy (third row) by the
FD-DGM (left) and the TD-DGM (right) at 100 KHz.
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Chapter 8

Results

In the previous chapters, we have developed a DGM-FBTS inversion algorithm.

This presentation started with electromagnetics and has been expanded to ultrasound waves.

The modifications required to convert the solver from EM to ultrasounds was presented in Chap-

ter 7.

The present chapter aims to evaluate the implemented TD DGM-FBTS algorithms for both

EM and US. For EM problems, the focus is on experimental imaging and providing, for the

first time, a side-by-side comparison of experimental TD and FD imaging, beginning with the

hardware setup description and calibration process. For US problems, the results are limited to

a very simple synthetic example that simply demonstrates the correctness of the formulation. A

rigorous synthetic and/or experimental study of the US code is beyond the scope of this thesis.

Two DGM-based frequency-domain algorithms, which UofM-EIL members previously de-

veloped, are employed in this chapter to help us compare TD and FD imaging capabilities.

Algorithms used for the frequency-domain microwave imaging are the popular Contrast Source

Inversion (CSI) method discretized by DGM: DGM-CSI [93], and the Gauss-Newton Inversion

method (GNI), which can be shown to be equivalent to the Distorted Born Iterative Method,
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again discretized by DGM: DGM-GNI [52].

Some of the results in this chapter, which compare the TD and FD algorithms, are regenerated

from [1], a published paper as a contribution of this thesis.

8.1 Hardware Setup

The hardware generating this work’s experimental data is an air-filled Plexiglas cylindrical cham-

ber with an inner diameter of 44 cm.

This chamber was originally designed to have twenty-four transducers, and was one of several

different systems developed by the University of Manitoba’s Electromagnetic Imaging Lab (EIL).

In this work, just sixteen transducers are installed inside this chamber, to highlight the benefit of

fewer transmitter requirements in TD imaging as a specific interest. The TD data (here) contains

a wide-band range of frequencies, and we can benefit from fewer transmitters compared to FD,

as each antenna collects a lot more data (information about the target(s)) for TD [1].

A picture of the system is shown in Figure 8.1. The inner edge of the installed Vivaldi

antennas make a 12 cm radius circle. The other 20 cm of the remaining space houses the antenna

body (7 cm each) and the SMA connectors. So, the imaging domain has a maximum permissible

diameter of 24 cm. The Vivaldi antennas used in this work, are double-layered with nominal

operating range of about 1 GHz to 10 GHz. This chamber is connected to a broadband VNA

and a switch, via these antennas.

For calibration purposes, we need a known target established at a known position. To this

end, a metallic cylinder of 46 cm height and 8.89 cm outer diameter is serving as the calibration

object (CO) during this work.

Note that we positioned the CO and antennas setup by hand so that their locations are

approximate; The CO is assumed to be at the center during the simulations. This imposes an

extra measurement error on the data collected by this device.
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Figure 8.1: The imaging system’s hardware, possessed by the UofM-EIL, with 16 Vivaldi antennas
during collecting data from a metallic cylinder calibration object (CO).

Also, during system modeling, a corresponding Absorbing Boundary Condition (ABC) is

implemented at the chamber’s inner radius.

The VNA was set to collect 1601 frequencies from 10 MHz to 12 GHz which are subsequently

converted to a time-domain signal for the time-domain imaging algorithm for all of the experi-

mental targets. Recall that the Vivaldi antennas’ nominal operating frequency starts from 1 GHz

to 10 GHz. Although choosing a wider range of frequency for the measurements in this work

may not add any information, it does not add more noise to the measured data after calibra-

tion either. One of the measurement frequencies, based on the problem size, is picked for the

frequency-domain imaging algorithms. The dominant frequency of the source’s time-signal is also

chosen based on the problem sizes.

All of the experiments in this work are approximated as a 2D TM configuration. Because

of this reason, the Vivaldi antennas are installed vertically, and the targets are restricted to be

cylinders elongated in the vertical z-direction.
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In all of the experiments, data were collected using 15 antennas, and monostatic measure-

ments was removed from the data for imaging purposes. Therefore, for the TD and FD algorithms,

we have 15 measurements per transmitter.

8.2 The Simulation Setup

It is required to discuss how we model the synthetic sources or the transducers during this work’s

experiments. As previously mentioned, two-dimensional transverse magnetic imaging problems

are concerned in this thesis. Here, we model all of the sources, either the synthetic or the Vivaldi

antennas, as ideal line sources (actually point sources in 2D). These sources are modelled with a

time-varying amplitude, i.e., the mth transmitter is defined by the z-directed current density:

J z,m(t, ~r) = Iz,m(t)δ(~x− ~xm),

located at the transmitter location ~xm. The time function Iz,m(t) dictates the spectral content

of the source and has a broadband spectrum, shown by the formulation (8.1), illustrated in

Figure 8.2 for all examples (synthetic and experimental).

Iz,m(t) = (
t

τ
)3(4− t

τ
)e−

t
τ . (8.1)

According to previous EIL work in FD MWI, the Vivaldi antennas, used in this work, propa-

gate from the tip at lower frequencies and the nearer to the feed at higher frequencies. Although

we tried some different locations for the simulated source points, the best result are obtained at

18.75 cm radius for the frequencies used in this work for all of the FD and TD schemes, unless it

is mentioned otherwise. We found this radius (18.75 cm) as a part of calibration process, which

is fully described in Section 8.4.1.
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Figure 8.2: Frequency response of the time-domain source signal Iz,m(t) at (8.1). [The image
is reproduced from [1] with permission.]

8.3 Imaging Targets

This section is allocated to describe the synthetic and experimental imaging targets used to test

the DGM-FBTS algorithm.

Note that all of the targets studied in this work are generally non-metallic (except the CO).

This means that the static conductivity of these targets is negligible. As we mentioned in the

definition of dispersive media, the loss in these (dielectric) targets is due to the dispersivity, which

is traceable by the Debye or other similar models.

At the time of writing this thesis, the only available frequency-domain codes (DGM-CSI and

DGM-GNI) are implemented for the non-dispersive media. In these codes, the permittivity’s

imaginary part presents all loss types as a single quantity. Therefore, we define an equivalent

conductivity to capture the dispersive targets’ dispersivity and reconstruct it by the non-dispersive

FD and TD codes to have a fair comparison.

To this end, the dispersive targets are reconstructed twice by the TD code; once as a dis-

persive target with the optical and static permittivities as the two unknowns, and once again

as a non-dispersive target with equivalent permittivity and equivalent conductivity as unknown
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parameters.

The relationship between the dispersive permittivities and the equivalent parameters of per-

mittivity and conductivity is extracted in the following. After rewriting the effective relative

permittivity of Equation (2.10), we have

εr,eff (ω,~r) =

[
ε∞(~r) +

∆εr(~r)

1 + ω2 τ2
r (~r)

]
− j

[
∆εr(~r) ω τr(~r)

1 + ω2 τ2
r (~r)

]
.

By equating the real and imaginary parts of the result by εeq,r and −σeq,s
ω ε0

, which are the real and

imaginary parts of a non-dispersive lossy target in FD, the equivalent relative permittivity and

(static) conductivity would be

σeq,s =
∆εr(~r) ω

2 τr(~r) ε0

1 + ω2 τ2
r (~r)

, (8.2a)

εeq,r = ε∞(~r) +
∆εr(~r)

1 + ω2 τ2
r (~r)

. (8.2b)

Therefore, by knowing the dispersive parameters, we could find the loss in the frequency domain,

which is the imaginary part of the relative permittivity in FD.

Synthetic Target 1: The Lossy/Lossless BoxTarget

The lossy BoxTarget is introduced and used for the first time in Section 5.7.1. The constitu-

tive parameters are shown in Figure 5.4 and described in that section. We do not repeat this

information, here again, to avoid redundancy.

The lossless BoxTarget has all of the features of the lossy BoxTarget except that the conduc-

tivity is set to zero.

The transducers for this target, either with or without loss, are located on a circle of 25 cm

radius (note that this is different from the 18.75 cm radius used for the experimental examples),

and the source waveform is shown in Figure 8.2.
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Figure 8.3: The Dispersive Cylinders Properties. Left: (relative) static permittivity, Right:
(relative) optical permittivity.

Synthetic Target 2: The Dispersive Cylinders

This target contains of two cylinders with centers located at (x, y, z) = (−0.019, 0, 0) m

and (x, y, z) = (0.014, 0, 0) m. The constitutive parameters of this target are shown in

Figure 8.3. The optical permittivity and the static permittivity of cylinders are ε∞ = (1.5, 2.5)

and εs = (2, 3), respectively from left to right. The problem’s absorbing boundary is a circle of

0.066 m radius and the imaging domain’s diameter is 0.035 m.

To reconstruct this target’s image, 4 transmitters and 8 receivers are used, so that in each

round of measurement 1 transmitter and 7 receivers are used. These antennas are located on

a circle of the radius 0.055 cm, with the source signal shown in Figure 5.2. The imaging time

interval of [0, T = 3.3 ns] is selected here.

Synthetic Target 3: The Ultrasound Off-Center Cylinder

The only ultrasound target presented in this thesis is an off-center cylinder.

This 0.5 cm radius cylinder is centered at (x, y, z) = (0.4, 0, 0) cm. The background is

water and the constitutive parameters of this target relative to water are κ′r = 2.0 and ρr = 1.0.

The relative compressibility of this target is shown in Figure 8.4.
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We have 4 transmitters and 8 receivers in this problem, so that in each round of measure-

ment 1 transmitter and 7 receivers (we neglect the monostatic measurement) are working. The

transmitter (and receivers) are located equally spaced on a 3.64 cm radius circle. The imaging

domain and the total domain Ω are circles with respective 1.2 and 5.0 cm radius.

Figure 8.4: The relative compressibility κ′r of the ultrasound Off-Center cylinder target.

Experimental Target 1: The Lossless TwoCylinder Target

The first EM experimental target consists of two lossless cylinders, that we refer to it as the

lossless TwoCylinder target. This target is shown in Figure 8.5.

The cylinders’ diameters are 3.8 cm and 5.08 cm, with the respective height of 29.9 cm and

65 cm. Both of the cylinders are nylon with a relative permittivity of about 2.7 (at 2 GHz) [94].

Note that we do not have the exact amounts of these nylon’s dielectric parameters, but we expect

that they may have different permittivities as they are different colors.

Experimental Target 2: The Lossless E-Phantom Target

The most complicated free-space experimental target in the UofM-EI lab is the lossless E-phantom

target. This target is shown in the Figure 8.6.
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Figure 8.5: The lossless TwoCylinder target. [The image is reproduced from [1] with permission.]

Figure 8.6: Left: The lossless E-phantom target’s cross section, Right: The lossless E-phantom
target image, inside the imaging system. [The image is reproduced from [1] with permission.]
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This E-phantom target has been featured in a number of EIL publications, as both a syn-

thetic and experimental target [95, 1]. The E-phantom is made of ultra-high molecular weight

polyethylene with a relative permittivity of about 2.5 [95].

Experimental Target 3: The Lossy WoodTarget
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Figure 8.7: Left: The lossy Wood target’s cross section, Right: The lossy Wood target image,
inside the imaging system. [The image is reproduced from [1] with permission.]

The first lossy experimental target is the lossy WoodTarget. This cylindrical wooden target

has about 110 cm length, whose cross-sectional shape and dimensions are shown in Figure 8.7.

The dielectric properties of woods change drastically based on their tree type, moisture level,

and frequency. The WoodTarget is treated spruce1 wood. The humidity of the air at the time

(late September, 2020) and location (Winnipeg, MB, Canada) of WoodTarget measurement was

about 65%, and according to [96], the spruce wood moisture level is about 11.7% to 12.8%. As a

result, we estimate ε′ = 2.5 and ε′′ = 0.3 (σ = 0.035) at 2 GHz [96, 97, 98].

Note that no device2 was available at the time of the MWI measurement to measure/validate

1Softwood trees like spruce usually remain evergreen and their wood is not very dense. The woods obtained
from hardwood trees, which lose their leaves annually, are denser.

2The dielectric Probe Kit 85070, used to measure the average dielectric parameters of the Salted-Butter target,
can not be used here, as it is not appropriate for solid materials like woods.
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the (estimated) dielectric parameters for this solid target. Also, the estimated parameters here

are valid as far as the target’s moisture is from the humidity of the air. We do not guarantee

that the target was not exposed directly to water before coming to our lab.

Experimental Target 4: The Salted-Butter Target

Figure 8.8: The lossy Salted-Butter target image, inside the imaging system.

A target of salted butter is another lossy target used in this work. This target has higher

loss than the WoodTarget, making it a more challenging target to reconstruct with the dispersive

code.

Four whole blocks of salted butter, one pound each with the dimensions of about 6.3×6.5×11.6

cm are used to build this target. After stacking the butter, as shown in Figure 8.8, the resulted

height is about 46.4 cm.

The Salted-Butter target has an effective complex relative permittivity of about εeff,r(ω) =

5− j0.74 at f = 2 GHz, which is equivalent to εeq,r = 5 and σeq,s = 0.082 S/m at this frequency.
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This parameter has been measured by a Dielectric Probe Kit 85070, made by Keysight Tech-

nologies. According to this measurement, the dispersive permittivities are about ε∞ = 1.8 and

εs = 5.13. Figure 8.9 shows the equivalent relative permittivity and static conductivity measured

by the probe in a frequency range of 0.5 GHz to 8.5 GHz.

Figure 8.9: Salted-Butter constitutive parameters, measured by the dielectric probe; (top) relative
permittivity, and (bottom) conductivity.

Experimental Targets 5 & 6: The High-Constitutive Tree-Trunk-1 & Tree-

Trunk-2 Targets

We use two tree trunks at two different states; wet and dry. Figure 8.10 shows the tree trunks.

Tree-Trunk-1 is the smaller tree trunk with 10.5 cm average diameter and 73 cm height. Tree-

Trunk-2 is the larger tree trunk with 11.7 cm average diameter and 98 cm height. The height of the

vivaldi antennas is approximately 1/2 and 1/3 of the respective target heights for Tree-Trunk-1

and Tree-Trunk-2.

Wet state: These two tree trunks were collected from a forest in early April when they
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Figure 8.10: The lossy Tree-Trunk-1 (top) and Tree-Trunk-2 (bottom) targets.

were cut and left on the ground, covered thoroughly by snow. In this thoroughly wet state, their

constitutive parameters are high, and they serve as two high-contrast targets when the imaging

background is air.

Dry(er) state: We do a second round of measurements of the same tree trunks, after

keeping them indoor for about three months. Although the targets in this state are still high-

contrast targets (compared to air background), we expect that the imaging process reveals smaller

constitutive parameters than before, as they are dryer.

8.4 Calibration

The experimental imaging chamber is made of an air-filled Plexiglas chamber with a relative

permittivity larger than 2. This chamber is attached to cables, VNA, and a switch by SMAs.

However, we simulate this hardware system as a simple open-space region with absorbing bound-

ary condition (ABC) at the chamber’s inner radius using line sources. The calibration process

alleviates this modeling/measurement error between the simulated and physical systems. The
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VNA measures S-parameters, and another cause for having a data calibration process is to con-

vert these S-parameters to the required electrical fields adoptable by the inversion algorithms.

The FD and TD data calibration procedures adopted in this work are based on a scattered-

field data calibration procedure [95, 1]. Because the VNA measures total S-parameters Stot(f)

at frequency f , we are required to take one extra step of measuring the incident S-parameters

Sinc(f) without the presence of any target to calculate the scattered S-parameters Ssct(f) by:

Ssct(f) = Stot(f)− Sinc(f). (8.3)

Therefore, after the data calibration process, either in TD or FD, the scattered fields from

the unknown targets at the receiver locations are the retrieved data.

The following sections explain the FD and TD data calibration procedures after closely

investigating how to model the Vivaldi antennas.

8.4.1 Source Calibration

The point from which the electromagnetic radiation spreads from an antenna is that antenna’s

phase center. The Vivaldi antennas used in this work are dispersive, and their phase center

changes by frequency. The problem of using such antennas for a TD imaging purpose is that the

modeling error of these antennas increases as we have to use just one phase center for a wide

range of frequencies. This section presents a source calibration process to decrease the source

modeling error due to the frequency-dependency of the Vivaldi antenna’s phase center.

We mentioned earlier in Section 8.2 that we chose the radius of 18.75 cm as the point source

location to simulate the Vivaldi antennas. We found this radius as a part of the calibration

process using trial and error over the range of rviv = 12 cm to rviv = 19 cm antennas radius3. In

3The length of Vivaldi antennas are about 7 cm, starting from the radius of rviv = 12 cm in the chamber after
installation.
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the following, we briefly explain the process of this radius selection.

A second metallic cylinder of 44.9 cm height and 3.9 cm outer diameter is used to do the

calibration of Vivaldi antennas in the time-domain. The steps of this source calibration procedure

are:

1. Picking a random rviv from the range of 12 cm to 19 cm,

2. Measuring the S-parameters for the second metallic cylinder,

3. Calibrating the total electric fields as discussed in Section 8.4.3,

4. Modelling the total electric field for the second metallic cylinder,

5. Comparing the measured and modelled electric fields at different receiver locations (we have

16 receivers),

The generated time-domain signal at the receivers shifts back and forth in time if the chosen

rviv is respectively larger and smaller than the right amount.

6. Increasing/decreasing the amount of rviv according to the results, and repeating the proce-

dure from step 3 until we decrease this time-shifting reasonably.

Before ending this section, we need to clarify a couple of things:

1- As mentioned before, the CO and also the second metallic cylinder used for the source cal-

ibration are positioned at the center of the imaging chamber by hand. This causes different

time-shifting between the modelled and the measured (and then calibrated) electric fields at

different receiver locations. This discrepancy is one of the measurement errors during the exper-

iments. Note that as the TD DGM-FBTS is a really robust inversion technique, we did not get

into more details for the source calibration for brevity and we picked a simulation radius by trial

and error, without quantifying the time-shifting errors.
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2- Although the radius rviv = 18.75 is selected as the phase center for the dispersive anten-

nas for the wide-band range of frequencies used in this work, this radius is also valid for the

single-frequency FD inversion algorithms used in this thesis at the used/required frequencies. We

backup this claim by having a brief comparison of the FD inversion results of an experimental

lossy target, at frequencies 1 GHz, 2 GHz, 3 GHz, 4 GHz, and 5 GHz, with two radius selections

in Section 8.5.4; 1- rviv = 18.75 cm, and 2- rviv = 14.40 cm, which is previously selected by

UofM-EIL for the same hardware setup, by a different procedure in frequency-domain [95].

8.4.2 Frequency-Domain Data Calibration

In this process, the measured scattered S-parameters of the known CO and unknown object plus

the field solution of a forward model with the CO target generate the calibrated scattered field

of the unknown object at the receivers’ location.

The scattered field calibration method compares the measured scattered S-parameters of a

known CO to the field solution of a forward model with the same target [95]. Then, the relation

between the modeled electric field in the direction and the related S-parameter measurement

would be:

~Esct,meastarget,cal(f) · ~p = Sscttarget(f)
~Esct,modelCO (f) · ~p
SsctCO(f)

(8.4)

where ~Esct,modelCO (f) · ~p is the FD modeled/simulated scattered field with the target of the CO,

and SsctCO(f) and Sscttarget(f) are the scattered S-parameters for the CO and the unknown target,

all at frequency f .

Note that ~p here is the unit vector in the z-direction to support the TM wave.

8.4.3 Time-Domain Data Calibration

Compared to frequency-domain data calibration, the time-domain calibration scheme necessitates

some additional steps. We explain these steps utilizing the lossless E-Phantom data as an example.

Herein, the collected data is the S-parameters by the VNA as a function of frequency; SsctCO,

- 121 -



DGM-FBTS Imaging 8.4 Calibration

Sscttarget. The difference is that we collect broadband measurement at frequencies [f1 : df ′ : f2], by

the measurement frequency-step of df ′.

For instance, Figure 8.11 shows the incident, total, and scattered measured S91-parameters

for the CO and the E-Phantom target, shown using gain definition of g91 = 20 log10 | S91 |. Here,

the underscript 91 means the parameters are regarding the 9th receiver, when the 1st transmitter

is active. Also, the measurement frequencies are: [0.01 GHz : 7.5 MHz : 12.01 GHz].

Figure 8.11: Measured incident(top), total (middle), and scattered (bottom) gains, measured
for the CO and the E-Phantom target, from left to right.

The Flowchart illustrated in Figure 8.12 draws all of the required steps of the time-domain

calibration procedure.

Similar to the FD calibration procedure, the first step is to generate the TD forward model’s
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Figure 8.12: The time-domain calibration procedure to convert the VNA measured S-parameters
to calibrated TD scattered electric fields applicable by the inverse imaging algorithm. [This
diagram is reproduced from [1] with permission.]

field solution with the CO target by the designated time-domain forward solver. In the flowchart,

Esct,modelCO = ~Esct,modelCO · ~p is the projection of the TD modeled scattered electric field of the cal-

ibration object, where ~p is the z-direction for the TM waves. In the E-Phantom example, the

modeled incident, total, and scattered electric fields due to the calibration object are shown in

Figure 8.13. Here the fields are modeled at times [t : dt : T ] = [0 : 9.5 ps : 5.5 ns].

The next step is to compute Esct,modelCO (f = f1 : df ′ : f2) by taking the Fourier transform of

Esct,modelCO (t = 0 : dt : T ) and applying appropriate interpolation. Figure 8.14 shows this modeled

signal in our example by its real and imaginary parts.

Next, Equation (8.4) produces calibrated fields in the frequency-domain Esct,meastarget,cal (f = f1 :

df ′ : f2). Figure 8.15 shows the calibrated measured electric field, scattering from the E-Phantom

target, due to 1st transmitter and 9th receiver. The last step of the TD calibration procedure is

taking the Inverse Fourier Transform of the data after zero-padding and interpolation applied to

the calibrated data. The interpolation is required herein, to take the data from [f1 : df ′ : f2] band

to the [0 : df : F ] frequency-band. Also, the zero-padding is required to get a smooth time-domain
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Figure 8.13: The time-domain incident, total, and scattered modeled electric field at the location
of 9th receiver from the calibration object, when the 1st transmitter is on.

Figure 8.14: The interpolated frequency-domain scattered modeled electric field at the location
of receiver 9 from the calibration object, when the 1st transmitter is on.

signal of Esct,meastarget,cal (t = 0 : dt : T ). The time-domain calibrated field Esct,meastarget,cal (t = 0 : dt : T ) for

the E-Phantom target is shown in Figure 8.16 as example. This signal, along with other 16×15−1

signals retrieved from the rest of the transmitter-receiver pairs, is utilized to reconstruct the image
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Figure 8.15: The calibrated frequency-domain scattered measured electric field at the location
of receiver 9 from the E-Phantom target, when the 1st transmitter is on.

of the E-Phantom target by the inversion algorithm DGM-FBTS.

Figure 8.16: The calibrated time-domain measured electric fields at the location of receiver 9 for
the E-Phantom target, when the 1st transmitter is on.
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8.5 Comparing FD DGM-CSI and DGM-GNI with the non-

dispersive TD DGM-FBTS

This section compares FD DGM-CSI and DGM-GNI with the non-dispersive TD DGM-FBTS,

to highlight the benefits of this TD scheme over the designated single-frequency FD scheme.

8.5.1 The Lossy BoxTarget Example

We first consider the synthetic BoxTarget to see the performance of the DGM-FBTS scheme, and

compare it with the performance of DGM-CSI and DGM-GNI.

The frequency-domain imaging results are taken from the results generated by the DGM-CSI

and DGM-GNI methods in the range of 1 GHz to 5 GHz, to demonstrate the best single-frequency

output here. The best4 FD results for this specific target by these methods were obtained at 2

GHz (λ0 = 15 cm). Note that at 2 GHz, σ = 0.0556 S/m corresponds to a relative imaginary

permittivity of −0.5, the value adopted for frequency-domain simulations.

The time-domain inversion method adopts the source spectrum shown in Figure 8.2, which is

a wide-band signal with dominant frequency and half power bandwidth of 2 GHz and 2.68 GHz,

respectively.

For this synthetic example, some noise analysis for the time- and frequency-domain inversion

algorithms has been done in the paper [2] by the author. Here in this report, no noise was added

to the time- and frequency-domain DGM forward solvers, because the experimental examples

presented shortly demonstrate the algorithms’ capabilities in noisy scenarios. In all of the cases,

inversion was performed on a different mesh that did not include any geometric information about

the target, to avoid any inverse crime.

Two imaging scenarios were considered for this synthetic setup in order to illustrate different

aspects of the TD FBTS scheme: an Absorbing Boundary Condition (ABC) and a PEC on the

4We did not use any quantitative metric to find the best result here. A visual comparison was deemed sufficient
to qualify the results.
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system.

BoxTarget with Absorbing Boundary

In this section, we place the BoxTarget within an absorbing boundary conditions and compare

the results of DGM-FBTS with DGM-CSI and DGM-GNI. We end this section by comparing

TD image reconstructions with 1st solution order and higher solution orders to discuss DGM

discretization effects on the DGM-FBTS inversion algorithm.

The meshes which are used for BoxTarget image reconstructions, are shown in Figure 8.17.

For the first comparison of FD and TD algorithms, the frequency-domain inversion mesh is coarser

with the order of nodal DGM coefficients of 4 and 3 for the fields and constitutive parameters,

respectively. Also, the basis order of the contrast sources in DGM-CSI is 3. This mesh is

shown in Figure 8.17(a). For this comparison, the time-domain inversion mesh is finer, shown

in Figure 8.17(b), and basis functions have the order of 1. As the next step, 4th solution order

for fields’ basis functions, with a coarser mesh (about four times coarser) than the TD 1st order

mesh, is used for DGM-FBTS to study DGM benefits in TD inversion algorithm more closely.

This mesh is shown in Figure 8.17(c).

(a) (b) (c)

Figure 8.17: Meshes used for the BoxTarget image reconstruction by algorithms from (a) to (c):
FD, TD with 1st order of basis functions, TD with higher (4th) order of basis functions.

Note, the effect of solution order for FD algorithms has previously been observed in [93] to
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enable high-order solutions on coarse meshes that provide faster reconstruction times without

significantly changing the resulting image.

The reconstructed images of the BoxTarget, with 8 transmitters and 15 receivers (the mono-

static measurement is removed), are compared for DGM-FBTS, DGM-CSI, and DGM-GNI in

Figure 8.18. In this figure, DGM-FBTS was run for 12 iterations using mesh (b) (row 1), FD

DGM-CSI for 200 iterations using mesh (a) (row 2), and FD DGM-GNI for 15 (row 3) iterations

using mesh (a). Comparing the results, the top-right cylinder’s permittivity is under-estimated in

the frequency-domain results, while the conductivity is over-estimated. The time-domain DGM-

FBTS clearly results in higher resolution, and it corrects the top-right cylinder’s permittivity.
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Figure 8.18: The BoxTarget reconstruction images using 8 transmitters and 16 receivers at 2
GHz, (left) conductivity and (right) permittivity. From top to bottom: DGM-FBTS using mesh
(b), DGM-CSI using mesh (a), DGM-GNI using mesh (a). [The image is reproduced from [1] with
permission.]
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Next, we increased the number of transmitters (with the same number of receivers) in the

FD simulations, to provide the FD algorithms with more information. Figure 8.19 illustrates FD

DGM-CSI and DGM-GNI results after doubling the number of transmitters, when the number

of iterations are the same as before. We witness that both DGM-CSI and DGM-GNI reproduce

similar reconstructions after increasing the number of transmitters and consequently extending

the amount of frequency-domain data did not improve the results appreciably for this target.

Figure 8.19: The BoxTarget reconstruction images using 16 transmitters and 16 receivers at 2
GHz using mesh (a), (left) conductivity and (right) permittivity. From top to bottom: DGM-CSI,
DGM-GNI. [The image is reproduced from [1] with permission.]

Note that in all cases, the iteration counts were selected based on our experience with the
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algorithms, and additional iterations did not significantly improve the results.

Evaluating imaging algorithms using synthetic targets gives us the opportunity to quantify the

reconstruction error, as the true target is known. The quantitative Root Mean Square Deviation

(RMSD) metric, denoted by ζP is given by:

ζP =

√
(P true − P )T (P true − P )

ND
, (8.5)

where P true and P are the ND-long arrays containing the real-valued coefficients of any one of the

respective true and the corresponding reconstructed constitutive functions. Table 8.1 summarizes

the error in the reconstructions for the synthetic target. While DGM-CSI and DGM-GNI offer

comparable results, DGM-FBTS quantitatively out-performs both in the reconstruction of the

permittivity, with slightly degraded reconstruction of the conductivity.

Configuration ζεr ζσ

DGM-FBTS / 8Tx 0.1955 0.0064

DGM-CSI / 8Tx 0.3208 0.0056

DGM-GNI / 8Tx 0.2969 0.0060

DGM-CSI / 16Tx 0.3186 0.0051

DGM-GNI / 16Tx 0.2935 0.0054

Table 8.1: Synthetic lossy BoxTarget reconstruction RMSD error. [This table is reproduced from
[1] with permission.]

The BoxTarget reconstruction cost functional by TD DGM-BFTS using mesh (b) and the 1st

order of basis functions is shown in Figure 8.20. This curve is normalized to the cost functional

quantity at the first iteration, when the modeled fields are the fields of the free space (the initial

parameters for this reconstruction was εr = 1, and σ = 0).

In the following, we refer to the cost functional value associated with the free space modeled

fields by free space cost functional5, for brevity.

The effect of solution order has been previously studied for the FD DGM-CSI and DGM-

5Note that the free space cost functional quantity is different for different targets.
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Figure 8.20: The BoxTarget reconstruction cost functional by TD DGM-BFTS using mesh (b)
and the 1st order of basis functions.

GNI algorithms [93]. Here, we do a similar study for the time-domain inversion algorithm FBTS.

The same BoxTarget with the same geometry setup is used for this purpose. Figure 8.21 shows

the image reconstruction of this target with 8 transmitters and 15 receivers by the DGM-FBTS

method. The 1st solution order (same images from Figure 8.18) results are shown at the first row

of Figure 8.21. We take the mesh size in this case as the reference for the following comparison.

The results regarding 4/3-th fields/constitutives solution orders and 4/4-th fields/constitutives

solution orders, with about 4 times coarser imaging-domain mesh illustrated in Figure 8.17(c),

are shown in this figure’s second and third rows, respectively. To have a better evaluation of

the execution time, we use a time average over the first 5 inverse algorithm iterations for each

of these inversions. After changing the solution orders from 1/1-st fields/constitutives to 4/3-th

fields/constitutives and 4/4-th fields/constitutives, time-per-iteration decreased by 19.66% and

40.78%, respectively.
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Figure 8.21: The BoxTarget reconstruction images of permittivity (right) and conductivity (left)
with 8 transmitters and 15 receivers by DGM-FBTS after 12 iterations with: 1st solution order
using mesh (b) (top), 4th and 3rd solution orders for respective fields and constitutives using mesh
(c) (middle), and 4th solution orders for fields and constitutives both using mesh (c) (bottom).
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Note that the per-iteration execution time increases when the order of basis functions of

constitutives is different from the order of basis functions of fields. This slowing speed results

from extra step(s) of multiplication(s) in each iteration to interpolate different quantities to

their proper basis function orders. Although choosing different solution orders for fields and

constitutives accompany increasing the execution time, this method adds more flexibility to the

problem.

Comparing the image reconstructions in Figure 8.21, we witness a decreased effect of the

shell shadow in conductivity result and an increased effect of the imaging domain shadow in the

permittivity when increasing the solution order. The upper left cylinder is detected as a lossy

target in the 1st order results (causing false recognition), which is fixed after increasing the field’s

solution order to 4.

The presence of imaging domain boundary effect at higher solution orders makes it difficult

to have a fair quantitatively comparison. We know that these effects do not occur in high order

FD counterparts, and can not be interpreted as false/positive alarm error in practice. Additional

research is needed to find the reason and mitigate the issues at the edges of the imaging domain.

The BoxTarget reconstruction cost functional by TD DGM-BFTS using mesh (c) and the

4th order of basis functions is shown in Figure 8.22. This curve is again normalized to free space

cost functional of this target.

BoxTarget with Perfect Electric Conductor Boundary

Although using resonant enclosures, modeled with PEC boundary conditions, is common in

microwave imaging [99, 100, 101], it imposes a great challenge for frequency domain inversion

algorithms as the collected data at the presence of high reflective boundaries (PEC) makes the

inversion problem more difficult. In this section, we aim to show the benefit of the time domain

DGM-FBTS imaging scheme over FD imaging for PEC-enclosed problems.

Within a PEC enclosure, the electromagnetic wave does not penetrate (or attenuate by) the
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Figure 8.22: The BoxTarget reconstruction cost functional by TD DGM-BFTS using mesh (c)
and the 4th order of basis functions.

chamber walls. Energy remains inside the chamber, bouncing until the wave attenuates due to

loss (if loss exists). This effect makes DGM-FBTS computationally more expensive compared

to an analogous case with an absorbing boundary. In order to compute meaningful DGM-FBTS

gradients, we need to choose a proper final measurement time. This final measurement time has

to be long enough that after windowing the measured fields by Wm(t) in (3.1), we do not lose

meaningful data.

On the other hand, due to the mode patterns inside the PEC chamber, FD algorithms may

not work at all at many frequencies, requiring us to sweep a large number of frequencies to find

an acceptable result.

First we try the BoxTarget with the same settings as before except changing the boundary

condition to PEC, to see the effects of PEC chamber on the TD and FD algorithms. The recon-

structed images of the BoxTarget, by the time-domain DGM-FBTS solver with 8 transmitters

and 15 receivers, and DGM-CSI and DGM-GNI frequency-domain solvers with 16 transmitters

and 15 receivers are shown in Figure 8.23. TD DGM-FBTS was run for 12 iterations (row 1), FD

DGM-CSI for 200 iterations (row 2), and FD DGM-GNI for 15 iterations (row 3). The dominant

source frequency is 2 GHz and the FD results are generated at 2 GHz. The final measurement
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time in DGM-FBTS remains 3 ns.

As expected, the TD results are degraded due to the more complicated wave propagation

problem, however the broadband interrogation provides meaningful results. The FD results are

not good at all, which is not surprising having picked a single frequency. Note that there is very

little loss in this problem, so it is very difficult.
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Figure 8.23: The BoxTarget reconstruction images, (left) conductivity and (right) permittivity.
From top to bottom: DGM-FBTS by 8 transmitters and 16 receivers using mesh (b), DGM-CSI
by 16 transmitters and 16 receivers at 2.0 GHz using mesh (a), DGM-GNI by 16 transmitters and
16 receivers at 2.0 GHz using mesh (a).
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As the next experiment, we increase the final measuring time to 7 ns in DGM-FBTS. Also

we sweep a frequency range from 800 MHz to 2.5 GHz with 50 MHz step size to find the best

results by DGM-CSI and DGM-GNI. The reconstructed images resulting from these changes are

shown in Figure 8.24. FD DGM-CSI was run for 200 iterations, FD DGM-GNI for 15 iterations,

and TD DGM-FBTS for 15 iterations. FD results are shown at 2.2 GHz, one of the best imaging

frequencies (We do not show the other frequency results here, for brevity). The improvements

in the FD results obtained after changing the frequency by 200 MHz support the idea of the

sensitivity/difficulty of these FD algorithms face for PEC boundary condition. This may be

related to the fact that calibrating to a PEC cylinder at one frequency or another may lead to

different modelling error.

Comparing the TD to FD results in Figure 8.24, the top-right cylinder’s permittivity is

under-estimated in the frequency-domain results, while the conductivity is over-estimated. The

conductivity result by FD DGM-GNI is not as clear as the absorbing boundary condition case.

The time-domain DGM-FBTS clearly resulted in higher resolution, and it corrects the top-right

cylinder’s permittivity and conductivity.
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Figure 8.24: The BoxTarget reconstruction images, (left) conductivity and (right) permittivity.
From top to bottom: DGM-FBTS by 8 transmitters and 16 receivers using mesh (b), DGM-CSI
by 16 transmitters and 16 receivers at 2.2 GHz using mesh (a), DGM-GNI by 16 transmitters and
16 receivers at 2.2 GHz using mesh (a).
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8.5.2 The Experimental Lossless TwoCylinder Example

The previous sections confirmed the resolution benefits of the time-domain DGM-FBTS imaging.

The following sections focus on reconstructing the experimental targets described earlier, starting

with the lossless TwoCylinder target. Moving to experimental targets, we want to demonstrate

the additional advantages of time-domain imaging, e.g., the TD algorithm’s robustness in the

presence of noise or the ability to overcome frequency selection issues.

The reconstructed images of the TwoCylinder target are shown in Figure 8.25. The first

image, at top, shows the reconstruction obtained from DGM-FBTS after 10 iterations. The

second- and third-row images at the left-column show 200-iteration DGM-CSI reconstruction

and 15-iteration DGM-GNI at 2.05 GHz. The second- and third-row images at the right-column

show 200-iteration DGM-CSI reconstruction and 15-iteration DGM-GNI at 3.10 GHz.

Examining the results, DGM-FBTS could nicely detect the circular shapes of the targets,

while neither of the two FD algorithms could do this task clearly.

Based on Figure 8.25, it lookes that our guess about different permittivities for the two cylin-

ders was not entirely wrong, and the cylinder with the smaller diameter shows larger permittivity

in all of the results. Considering this, the DGM-FBTS imaging result for this target configura-

tion is significantly improved over both results of DGM-CSI and DGM-GNI. Even though there

is no regularization added to DGM-FBTS in this thesis, this inversion method was robust enough

to detect the experimental TwoCylinder target through noise- and modelling error-contaminated

data. Recall that both DGM-CSI and DGM-GNI algorithms used here benefit from regularization

which can help with the non-ideal data.

The cost functional (normalized to the free space cost functional) of DGM-FBTS is shown in

Figure 8.26 to demonstrate the convergence speed of this algorithm for the TwoCylinder target

reconstruction.
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Figure 8.25: Reconstructed relative permittivity for the experimental TwoCylinder target. From
top-to-bottom: DGM-FBTS (left), DGM-CSI and DGM-GNI. From left-to-right: at 2.05 GHz,
and 3.10 GHz. Top-right photo: the TwoCylinder target inside the imaging chamber. [The image
is reproduced from [1] with permission.]
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Figure 8.26: The cost functional of image reconstruction of experimental TwoCylinder target by
DGM-BFTS.

8.5.3 The Experimental Lossless E-Phantom Example

The reconstructed images of the E-Phantom target are shown in Figure 8.27. The first image,

on top, shows the reconstruction obtained from DGM-FBTS after 11 iterations. The second-

and third-row images at the left-column show 200-iteration DGM-CSI reconstruction and 15-

iteration DGM-GNI at 2.05 GHz. The second- and third-row images at the right-column show

200-iteration DGM-CSI reconstruction and 15-iteration DGM-GNI at 3.10 GHz.

Examining the results in Figure 8.27, DGM-FBTS had a significant improvement over the

two FD algorithms in reconstructing this target. The data collected at a single frequency was

not enough to reconstruct the image of this complicated target (by DGM-CSI and DGM-GNI).

The cost functional (normalized to the free space cost functional) of DGM-FBTS is shown

in Figure 8.28 to demonstrate the convergence speed of this algorithm for the Experimental

E-Phantom target reconstruction.
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Figure 8.27: Reconstructed relative permittivity for the experimental E-phantom target. From
top-to-bottom: DGM-FBTS (left), DGM-CSI and DGM-GNI. From left-to-right: at 2.05 GHz,
and 3.10 GHz. Top-right photo: the E-phantom target inside the imaging chamber. [The image
is reproduced from [1] with permission.]
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Figure 8.28: The cost functional of image reconstruction of experimental E-Phantom target by
DGM-BFTS.

8.5.4 The Experimental Lossy WoodTarget Example

So far we have evaluated the non-dispersive TD DGM-FBTS code with one synthetic lossy target

and experimental lossless targets. This section aims to take this evaluation further with a lossy

experimental target; the Lossy WoodTarget.

Although the WoodTarget is a dielectric with dispersive loss, this section uses the equiva-

lent (static) conductivity and permittivity of this target as unknowns instead of the dispersive

parameters (optical and static permittivity), for two reasons: to have a better understanding of

the non-dispersive TD code’s performance for the lossy targets, and, to have a comparison of the

two non-dispersive and dispersive versions of TD DGM-FBTS (the dispersive code result is in

Section 8.6.2).

As the DGM-GNI result for this target is similar to DGM-CSI, here we present only the

DGM-CSI frequency-domain algorithm. The first row of Figure 8.29 shows the DGM-FBTS

results after 12 iterations. The DGM-CSI reconstructions after 200 iterations at 3.10 GHz and

4.00 GHz are also shown in the last two rows of this figure.

It looks that the FD algorithm struggles to maintain consistency across frequencies for this
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target and the DGM-FBTS result is an obvious improvement over the DGM-CSI results.

In the experimental examples, and based on the Vivaldi antennas’ features [86], the FD

single-frequency algorithms are sensitive to the simulated/modeled location of the sources. In

these cases, the modeled location of the sources should be chosen carefully based on the frequency.

This sensitivity is less pronounced in time-domain algorithms because of dealing with a wide range

of frequencies in the TD scenario. In the following, we do an experiment by changing the modeled

transceivers’ radius from the default quantity of 18.75 cm to 14.40 cm, with the hope of improving

the FD results. We picked radius 14.40 cm because it has been used before by the UofM-EIL

in the past and resulted in reasonable outputs [95]. The related results of DGM-CSI, when the

transceivers’ radius is modeled at 14.4 cm, are shown in Figure 8.30. In this figure, we have

reconstructions after 200 iterations at 3.10 GHz, 4.00 GHz, and 5.00 GHz in rows 1-3. The

results show no improvement but some overshooting for the conductivity.

Again, the FD algorithm struggles to maintain consistency across frequencies, after changing

the location of the modelled sources. Indeed, image reconstruction of (equivalent) conductivity

by frequency-domain inversion schemes is a significant challenge in microwave imaging. Different

strategies, including balancing of the real and imaginary part [102], material property dependen-

cies [103], and mixture models [104], proposed in the recent literature, show some improvement.

In addition to these techniques, treating the dielectric targets as lossy dispersive targets instead

of lossy conductive materials is a potential remedy which is investigated in the next section.

To finish this section, the DGM-FBTS cost functional (normalized to the free space cost func-

tional) for image reconstruction of the experimental lossy WoodTarget is shown in Figure 8.31

to demonstrate the convergence speed of this non-dispersive algorithm for the first lossy experi-

mental target.
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Figure 8.29: The WoodTarget reconstructed (left) conductivity and (right) relative permittivity.
From top to bottom: DGM-FBTS, DGM-CSI at 3.10 GHz, DGM-CSI at 4.00 GHz. [The image
is reproduced from [1] with permission.]
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Figure 8.30: The WoodTarget reconstructed (left) conductivity and (right) relative permittivity,
when the transceivers’ radius is changed to 14.4 cm (from 18.75 cm). From top to bottom:
DGM-CSI at 3.10 GHz, DGM-CSI at 4.00 GHz, DGM-CSI at 5.00 GHz.
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Figure 8.31: The cost functional of image reconstruction of the experimental lossy WoodTarget
by the non-dispersive DGM-BFTS code.

8.6 Dispersive TD DGM-FBTS Evaluation

In this section we perform microwave imaging on simple dispersive synthetic target and lossy

experimental targets using the dispersive DGM-FBTS inversion algorithm.

Here, we assume that the target’s loss is entirely dispersive, i.e., we assume there is no

conductive loss. As discussed in Section 2.3, we assume a relaxation time equal to 17.5 ps,

leaving two unknown Debye parameters: the optical permittivity ε∞ and static permittivity εs.

For the experimental targets, representing the constitutive parameters by the equivalent

quantities described in (8.2) is convenient for the purpose of comparison. Therefore, besides the

static and optical permittivities, we also illustrate the equivalent permittivity and conductivity

calculated by (8.2) for each experimental target. As these equivalent parameters are frequency

dependant, we show the parameters at 2 GHz as it is the dominant frequency of the time-domain

source used to interrogate the experimental targets.
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8.6.1 The Synthetic Dispersive Cylinders Example

As the first dispersive target, we study a simple synthetic target in this section. This target,

called dispersive cylinders, is introduced in Section 8.3.

The true parameters of relative static (left) and optical (right) permittivities for this target

are shown in the first row Figure 8.32.

The image reconstruction of this target by the dispersive DGM-FBTS after 15 iterations,

with ε∞ = 1 and εs = 1 initial values, is shown in bottom row Figure 8.32. The left image is the

static, and the right image is the optical permittivity.

Although there are just 4 transmitters used for reconstructing this dispersive target, the result

properly shows the constitutive parameters, location and boundaries of these two cylinders.

8.6.2 The Experimental Dispersive WoodTarget Example

As the first experimental dispersive target, we image the WoodTarget described in Section 8.5.4.

Note that this target is genuinely a dispersive material, but we previously assumed it as a lossy

non-dispersive target in Section 8.5.4. We now compare the dispersive reconstruction capabilities

of DGM-FBTS to those previous results.

The image reconstruction of the WoodTarget by the dispersive DGM-FBTS after 8 iterations,

with ε∞ = 1 and εs=2 initial values6, is shown in Figure 8.33. The top images are the static

permittivity εs and optical permittivity ε∞, from left to right. Also, the equivalent permittivity

and conductivity of this target are shown in the left middle and right middle, respectively.

The reconstructed image of this target by the non-dispersive DGM-FBTS code are repeated in

Figure 8.33 from the previous section, for a better comparison. The permittivity and conductivity

of this target are shown in the left bottom and right bottom, respectively.

Comparing the equivalent constitutive parameters with the same parameters produced by

6Recal that εs > ε∞ is the requirement of dispersive media
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Figure 8.32: The image reconstruction results of the syntheticdispersive cylinders by dispersive
DGM-FBTS with ε∞ = 1 and εs = 1 initial values after 15 iterations.
True target: Top left: static permittivity, top right: optical permittivity.
Dispersive code results: Top left: static permittivity, Bottom right: optical permittivity.

the non-dispersive DGM-FBTS algorithm after 12 iterations in Figure 8.29, demonstrates that

the dispersive algorithm converged faster (by 33%) and revealed more accurate shape of the

WoodTarget. The shadowy parts in the conductivity (and permittivity) image resulted from

the non-dispersive code disappeared in the image generated by the dispersive DGM-FBTS. This

supports the idea of having a more robust inversion algorithm by counting the dispersivity of

materials [41].

All of the image reconstructions of this target so far show some inconsistency at the bottom

boundary. This inconsistency can be interpreted due to the higher percentage of humidity.
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Figure 8.33: Comparing the image reconstruction results of the experimental WoodTarget by
dispersive DGM-FBTS with ε∞ = 1 and εs=2 initial values after 8 iterations and non-dispersive
DGM-FBTS with free space initial values after 12 iterations.
Dispersive code results: Top left: static permittivity, top right: optical permittivity, middle left:
equivalent permittivity at 2 GHz, middle right: equivalent conductivity at 2 GHz.
Non-dispersive code results from Figure 8.29: Bottom left: permittivity, bottom right: conductiv-
ity.
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Also, the dispersive DGM-FBTS cost functional, normalized to the free space cost functional,

is shown in Figure 8.34. Here, the cost functional at iteration 8 is 0.14326, which is slightly larger

than the cost functional at iteration 12 from the non-dispersive code in Figure 8.31, which is

0.0934. Although the dispersive code is still minimizing the cost functional after iteration 8, e.g.,

the cost functional is about 0.14033 at iteration 15, the resulted images at iteration 8 have the

consistency of the target geometry and they seem quite converged.

Note that the Cost functional curve in Figure 8.34 initiates from 1.1814, because the initial

values in this case are not free space parameters anymore.

Figure 8.34: The cost functional of image reconstruction of the experimental lossy WoodTarget
by the dispersive DGM-BFTS code.

8.6.3 The Experimental Dispersive Salted-Butter Example

In this section, we move on to the Salted-Butter target. This target has higher constitutive

parameters which makes it a relatively high contrast target when the background is free space.

Figure 8.35 shows the reconstructed image of this target by the dispersive DGM-FBTS after

just 3 iterations, when εs = 3.0 is the initial static permittivity of the imaging domain. The top

images are the static permittivity εs and optical permittivity ε∞, from left to right. Also, the

equivalent permittivity and equivalent conductivity of this target are shown respectively in the
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left bottom and right bottom of Figure 8.35.

Interestingly, the dispersive DGM-FBTS has generated an almost united image (especially

about the conductivity) of this target, which can be considered a great improvement. Also

the constitutive parameter quantities show some agreement with the measured numbers by the

dielectric probe: ε∞ = 1.8 and εs = 5.13 (Section 8.3).

The DGM-FBTS cost functional for image reconstruction of the dispersive Salted-Butter

target is shown in Figure 8.36 to demonstrate the convergence speed of the dispersive algorithm

for this target.

Figure 8.35: The dispersive Salted-Butter target reconstructed image by dispersive DGM-FBTS
after 3 iterations. Top left: static permittivity, top right: optical permittivity, bottom left: equiv-
alent permittivity at 2 GHz, bottom right: equivalent conductivity at 2 GHz.
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Figure 8.36: The cost functional of image reconstruction of the experimental dispersive Salted-
Butter target by the dispersive DGM-BFTS code.

8.6.4 The Experimental Dispersive Tree-Trunk-1 & Tree-Trunk-2 Examples

To show the capability of the dispersive DGM-FBTS algorithm with high contrast targets, we

test it with Tree-Trunk-1 & Tree-Trunk-2 when they are in their wet state, as described in Section

8.3. Next, we do imaging of these logs when they are dryer, confirming the idea of decreasing

loss with decreasing moisture content. Note that although we tried to keep imaging at the same

approximate height of trunks, some variation may have occurred when changed from wet state to

dry state. Also the orientation of targets from “wet state” to their “dry state” has been changed

as these experiments were run months apart.

Wet State:

Figure 8.37 shows the Tree-Trunk-1 image reconstruction by dispersive DGM-FBTS after 6 it-

erations. When dealing with high contrast targets, good initial values have to be selected for

inversion algorithms. Here, we took ε∞ = 1 and εs = 5 as initial values of the imaging domain.

The top left image shows εs and the top right shows ε∞ reconstructed for this target. The equiv-
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alent permittivity and conductivity7 of this target are shown in the left bottom and right bottom,

respectively.

Figure 8.37: The dispersive Tree-Trunk-1 target reconstructed image by dispersive DGM-FBTS
after 6 iterations, with ε∞ = 1 and εs = 5 initial values. Top left: static permittivity, top right:
optical permittivity, bottom left: equivalent permittivity at 2 GHz, bottom right: equivalent
conductivity at 2 GHz.

Figure 8.38 shows the Tree-Trunk-2 image reconstruction by dispersive DGM-FBTS after 5 it-

erations. The initial constitutive parameters of the imaging domain for this reconstruction are

ε∞ = 2 and εs = 10. The top images are the static permittivity εs and optical permittivity ε∞,

from left to right. Also, the equivalent permittivity and conductivity of this target are shown in

7See Section 8.3 for the equivalent permittivity and conductivity definitions.
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the bottom-left and bottom-right part of the figure respectively.

Figure 8.38: The dispersive Tree-Trunk-2 target reconstructed image by dispersive DGM-FBTS
after 5 iterations, with ε∞ = 2 and εs = 10 initial values. Top left: static permittivity, top right:
optical permittivity, bottom left: equivalent permittivity at 2 GHz, bottom right: equivalent
conductivity at 2 GHz.

The DGM-FBTS cost functional for the Tree-Trunk-1 and Tree-Trunk-2 are shown in Figure 8.39,

from left to right.
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Figure 8.39: The cost functional of image reconstruction of the experimental Tree-Trunk-1 (left),
and Tree-Trunk-2, both in wet state, by DGM-BFTS.

Dry State:

Figure 8.40 shows the Tree-Trunk-1 image reconstruction by dispersive DGM-FBTS after 3 iter-

ations, after the target had been drying indoors for about 3 months. Here, we used ε∞ = 1 and

εs = 3 as initial values for the constitutive parameters everywhere within the imaging domain.

Similarly, Figure 8.41 shows the drier Tree-Trunk-2 image reconstruction by dispersive DGM-

FBTS after 5 iterations. The initial constitutive parameters of the imaging domain for this

reconstruction is ε∞ = 2 and εs = 10. The top images are the static permittivity εs and optical

permittivity ε∞, from left to right. Also, the equivalent permittivity and conductivity of this

target are shown in the left bottom and right bottom, respectively.

Comparing the Tree-Trunk-1 results at two wet and dry state, Figures 8.37 and 8.40, and the Tree-

Trunk-2 results at two wet and dry state, Figures 8.38 and 8.41, confirms the idea of increasing

loss and permittivity when the objects are wet. Although we were unable to accurately measure

these solid dielectrics using our probe kit, the results are quite reasonable based on how wet the

wood was originally, and that the targets’ radiuses are accurately reconstructed.

- 157 -



DGM-FBTS Imaging 8.6 Dispersive TD DGM-FBTS Evaluation

Figure 8.40: The dispersive dry Tree-Trunk-1 target reconstructed image by dispersive DGM-
FBTS after 3 iterations, with ε∞ = 1 and εs = 3 initial values. Top left: static permittivity, top
right: optical permittivity, bottom left: equivalent permittivity at 2 GHz, bottom right: equivalent
conductivity at 2 GHz.
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Figure 8.41: The dispersive dry Tree-Trunk-2 target reconstructed image by dispersive DGM-
FBTS after 5 iterations, with ε∞ = 2 and εs = 10 initial values. Top left: static permittivity, top
right: optical permittivity, bottom left: equivalent permittivity at 2 GHz, bottom right: equivalent
conductivity at 2 GHz.
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The DGM-FBTS cost functional for the Tree-Trunk-1 and Tree-Trunk-2 are shown in Fig-

ure 8.42, from left to right.

Figure 8.42: The cost functional of image reconstruction of the experimental Tree-Trunk-1 (left),
and Tree-Trunk-2, both in dry(er) state, by DGM-BFTS.

8.7 TD Ultrasound DGM-FBTS Evaluation

The evaluation of TD ultrasound DGM-FBTS in this thesis is quite limited and is simply to

provide preliminary validation of the ultrasound DGM-FBTS algorithm. In this section we briefly

evaluate this inversion algorithm by reconstructing the image of a simple target; the synthetic

Off-Center cylinder target.

The same source signal (5.4) with τ = 806.815 ns (dominant frequency 100 KHz) was used

for this problem.

Figure 8.43 shows the true (left) and the reconstructed (right) relative compressibility image

of this target. The compressibility image reconstruction is resulted by US DGM-FBTS, by free

space initial values and after 6 iterations. The location, shape, and the amplitude of this target

are reconstructed by this algorithm nicely, as we expect. Note that the only unknown in this

image reconstruction is the relative compressibility. Also, the DGM-FBTS cost functional for

this target and the Root Mean Square Deviation (RMSD) (Equation 8.5) of the reconstructed
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Figure 8.43: The true (left), and reconstructed relative compressibility of the synthetic Off-Center
cylinder target by US DGM-FBTS.

compressibility in the imaging domain are shown from left to right in Figure 8.44, to demonstrate

the convergence speed of this algorithm for this target.

Figure 8.44: The cost functional (left) and the imaging domain reconstructed RMSD (right) of
the US image reconstruction of the synthetic Off-Center cylinder target by DGM-BFTS.

8.8 Computational Time

A potential drawback of time-domain microwave imaging is its computational cost. There are

many possible techniques to alleviate expense, for example: optimally choosing time parame-

- 161 -



DGM-FBTS Imaging 8.8 Computational Time

ters, employing an efficient time-marching method, applying a coarse enough spacial mesh while

using higher-order DGM expansions, benefiting from a fast and efficient local minimum func-

tion, or code parallelization as an additional step of algorithm implementation. Some of these

remedies depend on the application/geometries of the imaging problem. This section explains

these speed-up techniques for general DGM-FBTS imaging, followed by examples from the thesis.

Choosing the right final measurement time has a significant role in the image resolution and

the computational cost of the inversion algorithm. If this parameter is too small, the wave scat-

tering from the target8 does not reach all of the receivers, and the image reconstructed by the

inversion algorithm may be degraded. A straightforward technique to find the optimum final

measurement time is to run a synthetic forward solver with our transmitter/receiver setup and

the whole imaging domain as the target with the maximum expected constitutive parameters.

The final measurement time can then be selected by monitoring the received signals at the re-

ceiver antennas.

The next parameters determining the computational cost of a TD imaging scheme are the

time-step and the employed time-marching technique. Chapter 5 presented details of some im-

plicit and explicit time-marching methods. We discussed that increasing time-step parameter too

much in explicit methods makes the forward solver diverge and in implicit methods makes the

received time-signal erroneous by improperly capturing, or entirely missing, high-frequency com-

ponents. Table 5.2 gives a numerical evaluation of some of the time-marching methods tested in

this thesis. This table shows that a properly chosen time-step could easily speed up the inversion

algorithm and decrease the computational cost by about 65.88% (e.g., by increasing dt = 2 ps in

LSERK to dt = 30 ps in TR-BDF2).

8only the meaningfully large-amplitude scattered fields
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Employing higher-order expansions in discontinuous Galerkin method, the DGM-FBTS in-

version method can perform faster than having 1st order basis function. While using a higher

order expansion, we can use a coarser mesh for the inversion solver. In Section 8.5.1, we showed

that by increasing the solution order from 1 to 4, we could decrease the computational time of

the inversion algorithm by about 40.78%.

Before getting into implementation details of the GSS-SPI minimum seeker algorithm in

Chapter 6, we discussed the requirements of an efficient minimum seeker algorithm; the guarantee

of convergence and a reasonable convergence speed. Recall that in this thesis, we chose the serial

GSS-SPI iteration algorithm because it meets these requirements.

Although GSS-SPI is a pretty efficient algorithm, it can still be improved/modified, or re-

placed to speed up the inversion process. For instance, according to [83], there exist parallel

algorithms, possibly faster than the serial GSS-SPI. As the accuracy/performance of these algo-

rithms compared to GSS-SPI in DGM-FBTS is unknown, a separate study in this area remains

a great option to improve the DGM-FBTS computational cost.

8.8.1 A rigorous comparison of the computational time of DGM-FBTS and

DGM-CSI or DGM-GNI

We now present a rigorous comparison of the computational time of DGM-FBTS and DGM-CSI

or DGM-GNI.

Recall that all three algorithms are implemented as Matlab-based codes. The DGM-GNI and

DGM-CSI algorithms adopt a hybridizable DGM formulation to reduce the computational time

compared to the standard DGM implementations [93]. Further, the DGM-FBTS implementation

is still in the research phase, neither heavily optimized nor supporting a time-domain variant of

the hybridizable DGM formulation. All computations have been run on Intel Xeon processors.
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As a representative example, consider the BoxTarget with absorbing boundary whose results

are presented in Section 8.5.1. The DGM-FBTS algorithm takes approximately 4 minutes per

iteration (averaged over 12 iterations), resulting in the image shown in Figure 8.18 after about

50 minutes. However, this execution time decreases by 8 times, if we use non-transducer anten-

nas. The single-frequency DGM-GNI takes about 50 seconds per iteration, resulting in the image

shown in Figure 8.19 after about 14 minutes, and the single-frequency DGM-CSI takes about 4

seconds per iteration, resulting in the image shown in Figure 8.19 after about 12 minutes. How-

ever, to obtain reasonable imaging results, it was necessary to perform inversions at 1, 2, 3, 4,

and 5 GHz9. This additional cost will vary greatly depending on the imaging problem. So while

the time-domain solver may take 5-10 times longer, the robustness of the algorithm and improved

resolution has significant benefits. In the next chapter we seek to combine FD and TD imaging

in beneficial ways.

Although the DGM-FBTS computational cost is more extensive than single-frequency DGM-

CSI and DGM-GNI, the quality of the reconstructed image compensates for this cost difference.

We suspect that in 3-D problems, the DGM-FBTS inversion scheme can outperform any multi-

frequency inversion due to the increased computational expense of solving 3-D frequency domain

problems.

9Note that this is not a multi-frequency imaging like frequency hopping or simultaneously
imaging techniques. A multi-frequency DGM-CSI inversion, using four frequencies 1, 2, 3 and 4 GHz, takes about
10 seconds per iteration, or roughly 30 minutes for 200 iterations [1].
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Chapter 9

Quantitative TD-FD and FD-TD

Hybrid Methods

Improving the performance of MWI algorithms has been a major subject since the very beginning

of MWI history, mostly because of the nonlinearity and illposedness of the MW inverse problem.

Using Prior Information (PI) has been a great subject for this purpose, as high-quality prior

information can greatly reduce the non-linearity of the imaging problem.

Dual-mode image reconstruction using prior information, for instance using ultrasound or

MRI results as PI, is a pervasive way of improving the reconstructed image in microwave imaging

[105, 106, 107, 108]. However, obtaining prior information from another modality introduces

challenges to the imaging process. PI image adjustments from one mode to another or increasing

the time of data acquisitions due to doing different types of measurements in different modes

with the same fixed-position target are some of these challenges. If we are able to limit prior

information in MWI to that obtained from the MWI system itself, we alleviate the need to register

the two images created from data collected from two different systems.

In this chapter, we present the novel implementation of quantitative single-mode hybrid time-

and frequency-domain algorithms. Synthetic and experimental comparisons of these methods with
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stand-alone DGM-FBTS, DGM-CSI, and DGM-GNI schemes demonstrates the benefits of the

hybrid formulations.

Note that in this chapter, similar to the previous chapter, the provided FD algorithms results

are qualitatively the best images obtained from the available data, i.e., the frequency is chosen

to obtain good FD images. Also, no noise is added to the synthetic data.

Also, the execution times presented here are due to running Matlab codes with the controlled

maximum number of 4 computational threads, on an Intel Xeon processor.

Some of the results in this chapter are regenerated from [2], a published paper as a contribu-

tion of this thesis.

9.1 TD-FD Hybrid Method

Monochromatic FD algorithms benefit from accurate PI. For instance, we showed in the previous

chapter that switching to more complicated targets like the E-phantom, single frequency DGM-

CSI and DGM-GNI did not generate good results without prior information.

This section uses an early-iteration time-domain image produced by DGM-FBTS, as prior

information for the two single-frequency FD algorithms, DGM-CSI and DGM-GNI, to enhance

the image quality of the FD inversion results. A rule of thumb chooses the number of iterations

for the TD algorithm, and the first experiments show that the early-iteration TD results are good

enough to offer improved FD images.

In this thesis, we refer to this approach as the TD-FD hybrid algorithm. The goal of this

hybridization is to generate a final response more efficient/accurate than the FD approaches

(DGM-CSI and DGM-GNI) without the use of dual-mode prior information while mostly pre-

serving the speed of the FD algorithms.

In the following, we begin by applying the proposed TD-FD hybrid to the synthetic lossy
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BoxTarget, and then explore two experimental targets: the TwoCylinder and E-phantom targets.

9.1.1 BoxTarget Reconstruction by TD-FD Hybrid

In this section we consider reconstructing the BoxTarget constitutives by the hybrid TD-FD.

The configurations of TD and FD solvers for the BoxTarget are the same as in the previous

chapter used to generate the results in Figure 8.18, with 8 transmitters and 16 receivers.

Figure 9.1 shows TD-FD hybrid performance for the synthetic BoxTarget, when the TD

algorithm is DGM-FBTS and the FD algorithm is DGM-CSI. The prior information generated

by DGM-FBTS, after 4 iterations, is illustrated in row 1. The reconstructed images from DGM-

CSI with (row 2) and without (row 3) the PI are generated after 200 iterations at 2 GHz.

Figure 9.2 shows TD-FD hybrid performance for the synthetic BoxTarget, when the TD

algorithm is DGM-FBTS and the FD algorithm is DGM-GNI. The prior information generated

by DGM-FBTS, after 4 iterations, is illustrated in row 1. The reconstructed images from DGM-

GNI with (row 2) and without (row 3) the PI are generated after 15 iterations at 2 GHz.

Note that DGM-FBTS at the 4th iteration can generate a crisper image of the permittivity

than DGM-CSI and DGM-GNI alone. Recall that DGM-FBTS converges after about 12 iterations

for this target (Section 8.5.1).

Table 9.1 gives the execution time breakdown of reconstructing the lossy BoxTarget by the

stand-alone DGM-FBTS, DGM-CSI, DGM-GNI and also the hybrids of TD-FD in minutes (m)

and seconds (s). The TD-FD hybrids with respective DGM-CSI and DGM-GNI algorithms are

about 42.8% and 40.5% faster than the stand-alone DGM-FBTS.
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Figure 9.1: TD-FD hybrid performance for the synthetic BoxTarget by TD DGM-FBTS and
FD DGM-CSI. Reconstructed relative permittivity (right) and conductivity (left) by DGM-FBTS
after 4 iterations as PI (column 1), hybrid TD-FD (FD with PI) (column 2), and stand-alone FD
(column 3). [The image is reproduced from [2] with permission.]
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Figure 9.2: TD-FD hybrid performance for the synthetic BoxTarget by TD DGM-FBTS and
FD DGM-GNI. Reconstructed relative permittivity (right) and conductivity (left) by DGM-FBTS
after 4 iterations as PI (column 1), hybrid TD-FD (FD with PI) (column 2), and stand-alone FD
(column 3). [The image is reproduced from [2] with permission.]
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TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 12 0 247 s × 12 0 49 m & 24 s

CSI 0 200 0 3.54 s × 200 11 m & 48 s

GNI 0 15 0 51.72 s × 15 12 m & 55.8 s

FBTS-CSI 4 200 247 s × 4 3.54 s × 200 28 m & 16 s

FBTS-GNI 4 15 247 s × 4 51.72 s × 15 29 m & 23.8 s

Table 9.1: Lossy BoxTarget reconstruction computational cost evaluation of the TD-FD hybrids

From the figures we can see a clear benefit of the proposed TD-FD hybrid formulation. The

final FD images retain high-resolution features from the initial time-domain iterations, and serve

to clean up the imaginary part of the target using significantly faster FD iterations.

9.1.2 TwoCylinder target Reconstruction using a TD-FD Hybrid

In this section we continue assessing the TD-FD hybrid approach by applying it to the TwoCylin-

der experimental targets.

The first row of Figure 9.3 shows the prior information used for this target. This PI is the

result of DGM-FBTS after 2 iterations.

The images reconstructed by the stand-alone DGM-CSI and DGM-GNI methods at 3.10 GHz

for the TwoCylinder target are illustrated in the right column, rows 2 and 3, of Figure 9.3. These

images are generated after 200 iterations of DGM-CSI and 15 iterations of DGM-GNI.

The second row of the left column in Figures 9.3 shows the hybrid TD-FD results using

DGM-CSI after 70 iterations at frequency at 3.10 GHz. The third row of the left column in

Figures 9.3 shows the hybrid TD-FD results using DGM-GNI after 4 iterations at frequency at

3.10 GHz.

Table 9.2 gives the execution time breakdown of reconstructing the TwoCylinder target by

the stand-alone DGM-FBTS, DGM-CSI, DGM-GNI and also the hybrids of TD-FD. The TD-FD
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hybrids with respective DGM-CSI and DGM-GNI algorithms are about 75.6% and 77.1% faster

than the stand-alone DGM-FBTS.

Although the TwoCylinder target is not a complicated target, employing early iteration TD

images as PI to FD inversion algorithms improves the final image accuracy of the target, compared

to the stand-alone FD algorithms.

TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 10 0 461.39 s × 10 0 76 m & 53.90 s

CSI 0 200 0 2.93 s × 200 9 m & 46 s

GNI 0 15 0 33.74 s × 1156 8 m & 26 s

FBTS-CSI 2 70 461.39 s × 2 2.93 s × 70 18 m & 47.90 s

FBTS-GNI 2 4 461.39 s × 2 33.74 s × 4 17 m & 37.70 s

Table 9.2: TwoCylinder target reconstruction computational cost evaluation of the TD-FD hy-
brids
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Figure 9.3: TD-FD hybrid performance for the experimental TwoCylinder target. Reconstructed
relative permittivity by DGM-FBTS after 2 iterations as PI (row 1), DGM-CSI (row 2), and DGM-
GNI (row3). left: TD-FD hybrid, right: stand-alone FD (without PI). [The image is reproduced
from [2] with permission.]
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9.1.3 E-phantom target Reconstruction by TD-FD Hybrid

As the final assessment of the TD-FD hybrid approach, we consider the E-phantom experimental

target.

The first row of Figure 9.4 shows the prior information used for this target. This PI is the

result of DGM-FBTS after 2 iterations.

The images reconstructed by the stand-alone DGM-CSI and DGM-GNI methods at 3.10 GHz

for the E-phantom target are illustrated in the right column, rows 2 and 3, of Figure 9.4. These

images are generated after 200 iterations of DGM-CSI and 15 iterations of DGM-GNI.

The second row of the left column in Figure 9.4 shows the hybrid TD-FD results using DGM-

CSI after 200 iterations at frequency at 5.05 GHz. The third row of the left column in Figures 9.4

shows the hybrid TD-FD results using DGM-GNI after 15 iterations at frequency at 5.05 GHz.

Table 9.3 gives the execution time breakdown of reconstructing the E-phantom target by the

stand-alone DGM-FBTS, DGM-CSI, DGM-GNI and also the hybrids of TD-FD. The TD-FD

hybrids with respective DGM-CSI and DGM-GNI algorithms are about 69.3% and 70.2% faster

than the stand-alone DGM-FBTS for this target.

Employing the prior information generated by the robust TD scheme for the FD inversion

modalities could result in significantly more accurate images of this target compared to the stand-

alone FD algorithms. The E-phantom is a complicated target, and interestingly, an early iteration

of the quantitative TD algorithm helps the monochromatic FD inversion methods to detect this

target quite correctly.
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Figure 9.4: TD-FD hybrid performance for the experimental E-phantom target. Reconstructed
relative permittivity by DGM-FBTS after 2 iterations as PI (row 1), DGM-CSI (row 2), and DGM-
GNI (row3). left: TD-FD hybrid (with PI), right: stand-alone FD (without PI). [The image is
reproduced from [2] with permission.]
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TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 11 0 461.39 s × 11 0 84 m & 35.29 s

CSI 0 200 0 3.18 s × 200 10 m & 36 s

GNI 0 15 0 39.42 s × 15 9 m & 51.3 s

FBTS-CSI 2 200 461.39 s × 2 3.18 s × 200 25 m & 58.78 s

FBTS-GNI 2 15 461.39 s × 2 39.42 s × 15 25 m & 13.30 s

Table 9.3: E-phantom target reconstruction computational cost evaluation of the TD-FD hybrids

Analyzing all of the results from the TD-FD hybrid approach, We can claim that this com-

bination is considerably beneficial. Monochromatic FD algorithms struggle in the absence of a

strong/robust initialization due to a lack of information in measured data, leading the FD algo-

rithm to local minimums at the start of the inversion. On the other hand, a robust TD algorithm

like DGM-FBTS can provide an accurate initial estimate, especially for more complicated targets.

Considering that only a couple of TD imaging iterations have been shown to be enough to pro-

vide proper PI for this hybrid approach, we do not add much computational cost to the problem,

especially compared to other strategies like frequency hopping or simultaneous inversions in FD.

Comparing the speed of the standalone TD algorithm with the TD-FD hybrid, the TD-FD hybrid

showed an average of 62.56% speed improvement for the targets in this section, while the quality

of the reconstructed images is almost the same.

9.2 FD-TD Hybrid Method

Although TD algorithms may be slower per-iteration than a single-frequency FD algorithm,

they can converge quickly and generally converge to higher-resolution images than their single-

frequency counterparts.

Having a low-resolution frequency-domain image as prior information for subsequent time-

domain inversion is the subject of this section. We refer to this hybrid approach as FD-TD

hybridization. The general idea is to retain the high-resolution capabilities of time-domain iter-
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ations, but to require fewer time-domain iterations than without prior information. So the idea

of FD-TD hybridization is very valuable, as it helps to have high accuracy results similar to the

standard quantitative TD imaging, only faster.

In the following, we begin by applying the proposed FD-TD hybrid to the synthetic BoxTar-

get, and then explore two experimental targets: the TwoCylinder and E-phantom targets.

9.2.1 BoxTarget Reconstruction by FD-TD Hybrid

We start the FD-TD hybrid evaluation by reconstructing the synthetic lossless BoxTarget con-

stitutive parameters using the hybrid TD-FD imaging algorithm.

The configurations of TD and FD solvers for the BoxTarget are the same as in the TD-FD

setup.

Figure 9.5 shows FD-TD hybrid performance for the synthetic BoxTarget. The prior information

generated by DGM-CSI (column 1, row 1) and DGM-GNI (column 1, row 2), at 2 GHz after 200

and 15 iterations, respectively, are illustrated in this figure. The reconstructed images from

DGM-FBTS with DGM-CSI PI (column 2, row 1) and DGM-GNI PI (column 2, row 2) are

generated after 4 iterations. At the bottom row the stand-alone DGM-FBTS reconstruction,

after 9 iterations, is shown for comparative purposes.

Although some minor undershoot is visible in the top-right cylinder image, the hybrid re-

construction results are comparable in terms of quality to those produced by the stand-alone

TD algorithm. Here, we have met the goal of reducing TD execution time while retaining its

accuracy: the FD-TD hybrid approach requires 66% fewer TD iterations for this target. Table

9.4 gives the execution time breakdown of stand-alone DGM-FBTS , DGM-CSI, DGM-GNI and

also the hybrids of FD-TD in minutes (m) and seconds (s). The FD-TD hybrids with respective

DGM-CSI and DGM-GNI algorithms are about 23.7% and 20.66% faster than the stand-alone

DGM-FBTS.
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Figure 9.5: FD-TD hybrid performance for the synthetic BoxTarget by FD DGM-CSI and TD
DGM-FBTS. Column 1: PI generated by DGM-CSI (row 1) and DGM-GNI (row 2), Column 2:
DGM-FBTS results by using DGM-CSI PI (row 1), DGM-GNI PI (row 2), and no PI (row 3). [The
image is reproduced from [2] with permission.]
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TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 9 0 247 s × 9 0 37 m & 3 s

CSI 0 200 0 3.54 s × 200 11 m & 48 s

GNI 0 15 0 51.72 s × 15 12 m & 56 s

CSI-FBTS 4 200 247 s × 4 3.54 s × 200 28 m & 16 s

GNI-FBTS 4 15 247 s × 4 51.72 s × 15 29 m & 24 s

Table 9.4: Lossless BoxTarget reconstruction computational cost evaluation of the FD-TD hybrids

9.2.2 TwoCylinder Target Reconstruction by FD-TD Hybrid

Moving on to experimental problems, in this section we continue assessing the FD-TD hybrid

approach by applying it to the TwoCylinder experimental target.

Figure 9.6 shows FD-TD hybrid performance for the experimental TwoCylinder target. The

prior information generated by DGM-CSI at 3.10 GHz (column 1, row 1) and DGM-GNI at 2.05

GHz (column 1, row 2), after 200 and 15 iterations, respectively, are illustrated in this figure. We

picked different frequencies for the FD algorithms, to challenge the hybrid scheme with different

PIs having different accuracies.

The reconstructed images from DGM-FBTS with DGM-CSI PI (column 2, row 1) and DGM-

GNI PI (column 2, row 2) are generated after 6 iterations. At the bottom row the stand-alone

DGM-FBTS reconstruction, after 10 iterations, is provided for reference.

Table 9.5 gives the execution time breakdown of stand-alone DGM-FBTS , DGM-CSI, DGM-GNI

and also the hybrids of FD-TD. The FD-TD hybrids with respective DGM-CSI and DGM-GNI

algorithms are about 27.30% and 29.03% faster than the stand-alone DGM-FBTS.

While the final results are comparable, the FD-TD hybrid approach requires 40% fewer ex-

pensive TD iterations, again demonstrating the benefit of the hybrid approach.
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Figure 9.6: FD-TD hybrid performance for the experimental TwoCylinder target by FD DGM-
CSI and TD DGM-FBTS. Column 1: PI generated by DGM-CSI (row 1) and DGM-GNI (row 2),
Column 2: DGM-FBTS results by using DGM-CSI PI (row 1), DGM-GNI PI (row 2), and no PI
(row 3). [The image is reproduced from [2] with permission.]
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TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 10 0 461.39 s × 10 0 76 m & 53.90 s

CSI 0 200 0 2.93 s × 200 9 m & 46 s

GNI 0 15 0 33.74 s × 15 8 m & 26 s

CSI-FBTS 6 200 461.39 s × 6 2.93 s × 200 55 m & 54.34 s

GNI-FBTS 6 15 461.39 s × 6 33.74 s × 15 54 m & 34.44 s

Table 9.5: TwoCylinder target image reconstruction computational cost evaluation of the FD-TD
hybrids

9.2.3 E-phantom Target Reconstruction by FD-TD Hybrid

As the final assessment of the FD-TD hybrid approach, we consider the E-phantom experimental

target.

Figure 9.7 shows FD-TD hybrid performance for the experimental E-phantom target. The

prior information generated by DGM-CSI at 2.05 GHz (column 1, row 1) and DGM-GNI at 3.10

GHz (column 1, row 2), after 200 and 15 iterations, respectively, are illustrated in this figure. We

again picked different frequencies for the FD algorithms due to the same reason as before.

The reconstructed images from DGM-FBTS with DGM-CSI PI (column 2, row 1) and DGM-

GNI PI (column 2, row 2) are generated after 7 iterations. At the bottom row the stand-alone

DGM-FBTS reconstruction, after 11 iterations, is provided for reference. Table 9.6 gives the exe-

cution time breakdown of stand-alone DGM-FBTS , DGM-CSI, DGM-GNI and also the hybrids

of FD-TD. The FD-TD hybrids with respective DGM-CSI and DGM-GNI algorithms are about

23.83% and 24.71% faster than the stand-alone DGM-FBTS.

Similar to the TwoCylinder target, the hybrid results caused a decrease of 36% of expensive TD

iterations for the E-phantom. So again, the hybrid results support the motivation of using prior

information for the TD algorithm.
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Figure 9.7: FD-TD hybrid performance for the experimental E-phantom target by FD DGM-CSI
and TD DGM-FBTS. Column 1: PI generated by DGM-CSI (row 1) and DGM-GNI (row 2),
Column 2: DGM-FBTS results by using DGM-CSI PI (row 1), DGM-GNI PI (row 2), and no PI
(row 3). [The image is reproduced from [2] with permission.]
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TD
algorithm
iterations

FD
algorithm
iterations

TD
execution
time

FD
execution
time

Total
execution
time

FBTS 11 0 461.39 s × 11 0 84 m & 35.29 s

CSI 0 200 0 3.18 s × 200 10 m & 36 s

GNI 0 15 0 39.42 s × 15 9 m & 51.30 s

CSI-FBTS 7 200 461.39 s × 7 3.18 s × 200 64 m & 25.73 s

GNI-FBTS 7 15 461.39 s × 7 39.42 s × 15 63 m & 41.03 s

Table 9.6: E-phantom target image reconstruction computational cost evaluation of the FD-TD
hybrids

Applying the FD-TD hybrid with three different scenarios, confirms the benefits of the pro-

posed approach. In all cases we could generate more accurate reconstructions than the stand-

alone FD results, comparable to the stand-alone TD results. The hybrid approach is significantly

(24.87% in average) faster, lowering the number of TD algorithm required iterations with the

application of FD prior information.

9.3 TD-FD Hybrid versus FD-TD Hybrid

Here in this section, we weigh the advantages of the TD-FD and FD-TD hybrids based on the

presented results for the BoxTarget, TwoCylinder, and E-phantom targets.

Although the execution time reduction reports show that the TD-FD hybrid is computation-

ally less expensive, FD-TD seems to be more accurate. This higher accuracy is more obvious for

the simpler target; the TwoCylinder target. On the other hand, as it is more difficult to generate

quality prior information by single-frequency imaging FD schemes, TD-FD hybrid technique is

preferred for more complicated targets, e.g., the E-Phantom.

Further, a limitation of the present study about these two hybrids is that the number of

iterations for each of the algorithms is chosen based on the experience and requires a more

rigorous study of when to optimally transition from one modality to another in a hybrid technique.
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The writer believes that such a study could reveal a better perspective of the trade-off between

accuracy and computational cost.
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Chapter 10

Conclusions and Future Work

This dissertation introduced a novel Microwave imaging technique in the time-domain by com-

bining the discontinuous Galerkin method time-domain spatial discretization technique and the

time-domain forward-backward time-stepping inversion scheme. The development and implemen-

tation of this time-domain DGM-FBTS imaging technique were presented in detail, followed by

an evaluation of the time-domain DGM forward solver and the time-domain inversion algorithm

DGM-FBTS.

The time-domain DGM forward solver was the time-domain version of a pre-existing frequency-

domain DGM forward solver able to model arbitrary imaging chambers and high-order solution

representations, either the electric and/or magnetic fields, or the constitutive parameters.

The three-dimensional time-domain electromagnetic and ultrasound wave-field imaging was

formulated and the two-dimensional transverse magnetic problem were solved by the DGM-FBTS

imaging technique. The method was utilized to reconstruct the electromagnetic and ultrasound

constitutive parameters of a variety of targets. Both electromagnetic and ultrasound formulations

were validated; ultrasound results were limited to a single test case providing a preliminary

validation of the formulation.

Validation extended to a number of experimental targets to evaluate the electromagnetic
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version of DGM-FBTS. A calibration procedure was developed to the S-parameters collected from

a 16 Vivaldi-antenna system using a VNA. The developed DGM-FBTS algorithm was extensively

compared to two frequency-domain algorithms; such a comparison has not, to the best of my

knowledge, been previously performed. This comparison shows the robustness and high accuracy

of TD DGM-FBTS compared to these single-frequency FD schemes.

Further comparisons can be conducted between this TD technique and multiple-frequency

FD schemes to investigate the TD scheme better.

Also, one simple synthetic target is used for the ultrasound TD DGM-FBTS inversion tech-

nique evaluation. This dissertation was mostly focused on the electromagnetic version of the TD

imaging, and we did not get further to experimental ultrasound evaluations. This thesis provides

a foundation for quantitative ultrasound imaging using TD DGM-FBTS, and future studies and

applications to experimental scenarios are warranted.

Due to its highly accurate and robust responses in either electromagnetic and ultrasound, the

method of TD DGM-FBTS can/should be applied to more practical biomedical data (as the next

step toward applying TD DGM-FBTS for breast cancer detection). This requires investigating

an appropriate time-domain pulse generator with a suitable excitation and duration time. Also,

some investigation about proper transmitters/receivers in the presence of a matching medium1,

while having very high contrast targets like body tissues, is future work.

Finally, we introduced a couple of new hybrid combinations of quantitative time- and frequency-

domain schemes by TD DGM-FBTS and single-frequency FD DGM-CSI and DGM-GNI. The

experimental results of these hybrids show that the TD-FD hybrids’ accuracy and the FD-TD

hybrids’ computational costs are improved compared to the FD and TD algorithms, respectively.

As an extension of this dissertation, it will be helpful to find a stopping criterion for the

TD DGM-FBTS inverse algorithm. Furthermore, implementing the three-dimensional code and

1To have better penetration into targets in the electromagnetic area, they usually use matching mediums.
By having a matching medium as the background medium, the contrast between the biomedical target and the
background decreases, causing better wave penetration into the target and so higher resolution images.
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experimenting with it is undoubtedly one of the forthcoming works of this dissertation.
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Appendix A

Adjoint Operator K̃∗

This appendix goes into the details of mathematically calculating the adjoint operator of K̃; K̃∗.

The field adjoint vector w is an operator that converts the modeled constitutive parameters at the

imaging domain to the field adjoint quantities of w. This process is done by the adjoint operator

of K̃∗ .

Here, we start with the inner product definition between the operator K̃ and K̃∗, which was

introduced by equation (3.25)

〈K̃∗(g), f〉 = 〈g, K̃(f)〉 (A.1)

, when 
f = v(t, ~r)

g = w(t, ~r).

(A.2)

So

〈K̃∗(w(t, ~r)), v(t, ~r)〉 = 〈w(t, ~r), K̃(v(t, ~r))〉. (A.3)

First we expand the right hand side of the equation (A.3) and try to find a definition for the
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adjoint operator K̃∗ using the left hand side of (A.3).

ˆ T

0

˚
∞

(w(t, ~r))t K̃(v(t, ~r)) dV dt = · · ·

ˆ T

0

˚
∞


~w1(t, ~r)

~w2(t, ~r)

~w3(t, ~r)


t

(


ε∞(~r)∂c0t + η0α(~r) −∇× −η0β(~r)

∇× µr(~r)∂c0t ∅

−η0β(~r) ∅ ∆εr(~r)∂c0t + η0β(~r)



~v1(t, ~r)

~v2(t, ~r)

~v3(t, ~r)

) dV dt · · ·

= I1 + I2 + I3 (A.4)

The integrals of I1 and I2 and I3 in the equation (A.4) are

I1 =

ˆ T

0

˚
∞
~w1(t, ~r)ε∞(~r)∂c0t~v1(t, ~r) + ~w2(t, ~r)µr(~r)∂c0t~v2(t, ~r) + · · ·

~w3(t, ~r)∆εr(~r)∂c0t~v3(t, ~r) dV dt. (A.5)

I2 =

ˆ T

0

˚
∞
−~w1(t, ~r) ∇× ~v2(t, ~r) + ~w2(t, ~r) ∇× ~v1(t, ~r) dV dt. (A.6)

I3 =

ˆ T

0

˚
∞
~w1(t, ~r) η0α(~r) ~v1(t, ~r)− ~w1(t, ~r) η0β(~r) ~v3(t, ~r)− · · ·

~w3(t, ~r) η0β(~r) ~v1(t, ~r) + ~w3(t, ~r) η0β(~r) ~v3(t, ~r) dV dt. (A.7)

The first integral of I1 can be expanded using the mathematical partial integration rule, which

is shown in (A.8), as is shown in (A.9).

ˆ b

a
f(t) ∂tg(t) dt = [f(t) g(t)]t=bt=a −

ˆ b

a
∂tf(t) g(t) dt (A.8)
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I1 =

˚
∞

[ε∞(~r) ~w1(t, ~r)~v1(t, ~r) + µr(~r) ~w2(t, ~r)~v2(t, ~r) + ∆εr(~r) ~w3(t, ~r)~v3(t, ~r)]c0t=c0Tc0t=0 dV · · ·

−
ˆ T

0

˚
∞
ε∞(~r) ∂c0t ~w1(t, ~r) ~v1(t, ~r) + µr(~r) ∂c0t ~w2(t, ~r) ~v2(t, ~r) + · · ·

∆εr(~r) ∂c0t ~w3(t, ~r) ~v3(t, ~r) dV dt (A.9)

By imposing some reasonable initial conditions to the problem, we can easily omit the first

integral in the (A.9). These conditions are zero fields ~v at time t = 0 and zero field adjoints ~w at

time t = T .

~v (t = 0, ~r) = ∅ (A.10a)

~w (t = T, ~r) = ∅ (A.10b)

So, using the (A.10), the I1 integral becomes

I1 = −
ˆ T

0

˚
∞
~v1(t, ~r) ε∞(~r) ∂c0t ~w1(t, ~r) + ~v2(t, ~r) µr(~r) ∂c0t ~w2(t, ~r) + · · ·

~v3(t, ~r) ∆εr(~r) ∂c0t ~w3(t, ~r) dV dt. (A.11)

cross product rule

∇ · ( ~A× ~B) = ~B ∇× ~A− ~A ∇× ~B, (A.12)

where ~A and ~B are two arbitrary vectors and the ∇. is the divergence symbol.
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According to the cross product rule of (A.12), we can rewrite the integral I2 in (A.6) as

I2 = I21 + I22, (A.13)

I21 =

ˆ T

0

˚
∞
−∇ · (~v2(t, ~r)× ~w1(t, ~r)) +∇ · (~v1(t, ~r)× ~w2(t, ~r)) dV dt, (A.14)

I22 =

ˆ T

0

˚
∞
−~v2(t, ~r) ∇× ~w1(t, ~r) + ~v1(t, ~r) ∇× ~w2(t, ~r) dV dt. (A.15)

divergence theorem

The divergence theorem relates the divergence of a field in an enclosed volume V by a

surface to the flux of the field through the closed surface S(V). The mathematical form of

this rule is presented in (A.16). In this equation n̂ represents the unit vector perpendicular

to the surface S(V). ˚
V

(∇ · ~A) dV =

‹

S(V)

( ~A n̂)dS (A.16)

According to the divergence theorem, the integral I21 can be rewritten as (A.17).

I21 =

ˆ T

0

‹

S(∞)

−(~v2(t, ~r)× ~w1(t, ~r) + ~v1(t, ~r)× ~w2(t, ~r)) n̂ dSdt. (A.17)

It is obvious that the flux related to the designated fields in the equation (A.17) coming out of

the surface S(∞) is zero. So

I21 = 0, (A.18)

- 199 -



DGM-FBTS Imaging

and

I2 =

ˆ T

0

˚
∞
−~v2(t, ~r) ∇× ~w1(t, ~r) + ~v1(t, ~r) ∇× ~w2(t, ~r) dV dt. (A.19)

And the I3 is the same as

I3 =

ˆ T

0

˚
∞
~v1(t, ~r) η0α(~r) ~w1(t, ~r)− ~v1(t, ~r) η0β(~r) ~w3(t, ~r)− · · ·

~v3(t, ~r) η0β(~r) ~w1(t, ~r) + ~v3(t, ~r) η0β(~r) ~w3(t, ~r) dV dt. (A.20)

Now we can rewrite the equation (A.4) by expressing the integrals of I1, I2 and I3 in their

matrix form:

I1 =

ˆ T

0

˚
∞


~v1(t, ~r)

~v2(t, ~r)

~v3(t, ~r)


t

(


−ε∞(~r)∂c0t ∅ ∅

∅ −µr(~r)∂c0t ∅

∅ ∅ −∆εr(~r)∂c0t



~w1(t, ~r)

~w2(t, ~r)

~w3(t, ~r)

)dV dt, (A.21)

I2 =

ˆ T

0

˚
∞


~v1(t, ~r)

~v2(t, ~r)

~v3(t, ~r)


t

(


∅ ∇× ∅

−∇× ∅ ∅

∅ ∅ ∅



~w1(t, ~r)

~w2(t, ~r)

~w3(t, ~r)

)dV dt, (A.22)

I3 =

ˆ T

0

˚
∞


~v1(t, ~r)

~v2(t, ~r)

~v3(t, ~r)


t

(


η0α(~r) ∅ −η0β(~r)

∅ ∅ ∅

−η0β(~r) ∅ η0β(~r)



~w1(t, ~r)

~w2(t, ~r)

~w3(t, ~r)

)dV dt. (A.23)
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So

ˆ T

0

˚
∞

(w(t, ~r))t K̃(v(t, ~r)) dV dt = I1 + I2 + I3 = · · ·

ˆ T

0

˚
∞


~v1(t, ~r)

~v2(t, ~r)

~v3(t, ~r)


t

(


−ε∞(~r)∂c0t + η0α(~r) ∇× −η0β(~r)

−∇× −µr(~r)∂c0t ∅

−η0β(~r) ∅ −∆εr(~r)∂c0t + η0β(~r)



~w1(t, ~r)

~w2(t, ~r)

~w3(t, ~r)

)dV dt.

(A.24)

by expanding the inner products of both sides of the relation (A.3) in (A.25)

ˆ T

0

˚
∞

(w(t, ~r))t K̃(v(t, ~r)) dV dt =

ˆ T

0

˚
∞

(v(t, ~r))t K̃∗(w(t, ~r)) dV dt, (A.25)

and comparing it with the results in (A.24), we can extract the adjoint operator K̃∗ as

K̃∗ =


−ε∞(~r)∂c0t + η0α(~r) ∇× −η0β(~r)

−∇× −µr(~r)∂c0t ∅

−η0β(~r) ∅ −∆εr(~r)∂c0t + η0β(~r)

 . (A.26)
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Appendix B

Unimodality and δ-Unimodality

A function f is called unimodal on the interval [a, b] iff, for some unique point α ∈ [a, b], f is

strictly monotonically decreasing on [a, α) and strictly monotonically increasing on [α, b] or f

is strictly monotonically decreasing on [a, α] and strictly monotonically increasing on (α, b].

A function f is called δ-unimodal on the interval [a, b] iff, for some amount of α ∈ [a, b], f

is δ- ↓ on [a, α) and δ- ↑ on [α, b].

If the function f is δ-unimodal on [a, b], there exists a unique interval of [α1, α2] ⊆ [a, b]

such that the α points with the mentioned property are precisely the interval [α1, α2]’s points

where α2 6 α1 + δ.

- 202 -


	Abstract
	Contributions
	Acknowledgements
	Contributions
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols 
	Introduction
	mwi
	Motivation, Goals and Contributions
	The Choice of Conjugate-Gradient based TD Inversion over FD algorithms
	The Choice of DGM Forward Solver
	Ultrasound Imaging
	General Contributions

	Preview/Scope

	Electromagnetic Fundamentals and Maxwell's Equations
	Maxwell's Equations
	Non-dispersive media
	Dispersive media
	2d tm Problems

	Physical Boundary Conditions
	Dielectric Interfaces
	Perfect Electric Conductors (PEC)

	General Perspective of td-mwi
	2d tm Considerations 
	A Step-by-Step Overview of the dgm-fbts Algorithm 


	The Continuous Form of fbts
	The Optimization Process
	The Cost Functional's Fréchet Derivative
	The Forward-in-Time Operator
	2d tm Forward Operator in Time

	The Fréchet Differential v(p, t, )
	The Adjoint Operator
	The Backwards-in-Time Operator
	2d tm Backwards-in-Time Operator

	Deriving the Gradients
	Gradients for the 2d tm Case 


	The Discontinuous Galerkin Method
	Discretizing the computational domain 
	Local DGM Volumetric Matrices
	Evaluating Fluxes on Interfaces
	Boundary Conditions
	Absorbing Boundary Condition
	Perfect Electric Conductor (PEC) Boundary Condition

	Constructing the Global System

	Integration in the Temporal Dimension
	Explicit versus Implicit Time Integration Methods
	Low-Storage Explicit Runge-Kutta (LSERK)
	Diagonally Implicit Runge-Kutta (DIRK) Method 
	2nd Order Rosenbrock Implicit Method
	TR-BDF2
	Implicit and Explicit Methods' Evaluation
	General Evaluation of the TD DGM Forward Solver
	Comparing TD-DGM fields to FD-DGM fields
	Analytic PEC Cylinder Comparison


	DGM-FBTS
	Discrete Gradients in 
	The DGM Discrete Conjugate Gradient Solution
	Search Direction
	Search Distance/Step
	Finalizing the Inverse Algorithm and Stopping Condition


	Ultrasound Inverse Problems
	Basics of Ultrasound Wave Propagation
	DGM Discretization of Ultrasound Formulations
	Local DG Volumetric Matrices in Ultrasound
	Evaluating Ultrasound Fluxes on Interfaces
	Ultrasound Absorbing Boundary Condition
	Constructing the Global System

	Evaluating the Ultrasound TD-DGM Forward Solver

	Results
	Hardware Setup
	The Simulation Setup
	Imaging Targets
	Calibration
	Source Calibration
	Frequency-Domain Data Calibration
	Time-Domain Data Calibration

	TD DGM-FBTS vs. FD DGM-CSI and DGM-GNI
	The Lossy BoxTarget Example
	The Experimental Lossless TwoCylinder Example
	The Experimental Lossless E-Phantom Example
	The Experimental Lossy WoodTarget Example

	Dispersive TD DGM-FBTS Evaluation
	The Synthetic Dispersive Cylinders Example
	The Experimental Dispersive WoodTarget Example
	The Experimental Dispersive Salted-Butter Example
	The Experimental Dispersive Tree-Trunk-1 & Tree-Trunk-2 Examples

	TD Ultrasound DGM-FBTS Evaluation
	Computational Time
	A rigorous comparison of the computational time of DGM-FBTS and DGM-CSI or DGM-GNI


	Quantitative TD-FD and FD-TD Hybrid Methods
	TD-FD Hybrid Method
	BoxTarget Reconstruction by TD-FD Hybrid
	TwoCylinder target Reconstruction using a TD-FD Hybrid
	E-phantom target Reconstruction by TD-FD Hybrid

	FD-TD Hybrid Method
	BoxTarget Reconstruction by FD-TD Hybrid
	TwoCylinder Target Reconstruction by FD-TD Hybrid
	E-phantom Target Reconstruction by FD-TD Hybrid

	TD-FD Hybrid versus FD-TD Hybrid

	Conclusions and Future Work
	References
	Appendix Adjoint Operator bold0mu mumu Forouz20212*
	Appendix Unimodality and -Unimodality

