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Abstract 

 

 Three-dimensional (3D) nuclear organization is the study of the spatial 

distribution of nuclear contents and components.  Aspects of nuclear organization that are 

examined in this thesis were chromosome territories, chromosomal sub-regions and 

telomeres. 

  

We began by examining nuclear disorganization in a transgenic mouse model.  

Mouse plasmacytoma (PCT) has different latency periods depending on the method of 

induction.  Slow-onset PCTs are induced with pristane-only, take over 300 days to 

develop, and harbor activating MYC/Ig translocations.  Fast-onset PCTs are induced with 

the v-abl/myc retrovirus, develop in an average of 45 days, do not harbor MYC/Ig 

translocations, but they display trisomy of cytoband 11E2.  The nuclear location of the 

11E2 cytoband was more central in the fast- compared to slow-onset PCTs and normal 

lymphocytes.  The central location of this cytoband may increase the transcription of this 

region leading to the overexpression of genes located on 11E2.  3D telomere quantitative 

fluorescence in situ hybridization (Q-FISH) illustrated unique telomere profiles for fast- 

compared to slow-onset PCTs and normal lymphocytes.  Fast-onset PCTs, compared to 

slow-onset PCTs and wild-type mice, had higher numbers of telomeres and telomeric 

aggregates per cell, more short telomeres, an altered distribution of telomeres throughout 

the nucleus, and a larger nuclear volume (P < 0.0001).  
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Our study of mouse PCT identified differences in the nuclear organization 

between aggressive and non-aggressive forms of the cancer.  We further examined this 

distinction in a human context, looking for changes in nuclear organization in MYCN 

amplified compared to non-amplified neuroblastomas.  Similar to PCT, neuroblastoma 

pathogenesis is driven by deregulation of the MYC family of oncogenes.  Neuroblastoma 

also harbors chromosome aberrations in the syntenic region to mouse cytoband 11E2:  

human cytoband 17q25.   

 

Neuroblastoma is the most common extracranial tumor in children.  Multiple 

clinical features are considered poor prognostic factors such as higher tumor stage, 

unfavorable histology, older age at diagnosis, MYCN amplification and gain of 

chromosome arm 17q.  Using dual-colored FISH and MYCN immunofluorescence on 16 

neuroblastoma tissue samples, the unbalanced gain of 17q was found to be associated 

with high MYCN expression, no gain of 17q to be associated with medium MYCN 

expression, and numerical gain of chromosome 17 to be associated with low expression 

(P < 0.0001).  The nuclear location of 17q also correlated with chromosome 17 copy 

number status:  in tumors with unbalanced gain and no gain of chromosome 17, the 17q 

region occupies a location closer to the nuclear centre than in tumors with balanced gain 

(P < 0.0001).  A more central nuclear location of 17q coincided with the increased 

expression of genes found within this chromosome arm.  Telomere Q-FISH on 74 

neuroblastoma tissue samples identified three tumor subgroups based on the measured 

telomere parameters, which represented unique levels of telomere dysfunction and 

genomic instability.  Subgroups with higher levels of telomere dysfunction had more 
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telomeres and telomeric aggregates per cell, and greater percentages of short and long 

telomeres (P < 0.0001); these subgroups also were associated with poor prognostic 

clinical features (P < 0.001).  Increased MYCN expression in two constitutively low-

expressing neuroblastoma cell lines was correlated with unbalanced gain of 17q, more 

central nuclear location of 17q, and altered telomere organization. 

 

In summary, this thesis illustrates the significance of multiple parameters of 3D 

nuclear organization in both PCT and neuroblastoma.  The changes observed in the 

nuclear architecture of these cancers reflect increased telomere-mediated genomic 

instability that is driven by MYC and MYCN.  Furthermore, the differences between 

aggressive and less-aggressive forms of the tumors suggest 3D nuclear organization 

could be used as a novel biomarker in cancer.  
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Chapter 1: 

Introduction 

 

1.1.  Chromosome Territories (CTs) 

 

1.1.1. Structure, Models and Measurement Methods of CTs 

 

CTs are distinct volume regions occupied by decondensed chromosomes in the 

interphase nucleus (1).  CTs have been identified in animals (2), plants (3-5), and the 

single-cell eukaryotes, budding and fission yeast (6, 7).  Although not completely 

defined, CTs are thought to be built from ~1 Mbp chromatin domains (8, 9), termed 

topologically associating domains (TADs) by Hi-C and Carbon Copy Chromosome 

Conformation Capture (5C) studies (10, 11).  These ~ 1 Mbp chromatin domains join to 

form chromatin clumps that are in turn, folded and organized into CTs (12).  TADs are 

conserved between cell types and during development, and are independent of epigenetic 

markings such as DNA methylation and histone modifications.  It was found that TADs 

near the X-inactivation centre in mouse embryonic stem cells were aligned with 

repressive methylation markers; however, the removal of these markers did not alter 

TAD formation (11).  CT folding may be influenced by function; for example, the 

inactive X chromosome is more compact than the active X chromosome (13, 14).  The 

folding of chromatin into CTs is also physically advantageous, as long polymer 

molecules such as DNA can maximize entropy by limiting intermingling and forming 

intramolecular territories (15). 
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The most widely accepted model of CT architecture is the CT Interchromatin 

Compartment model (16).  This model proposes that CTs are spatially associated with a 

contiguous three-dimensional (3D) network called the interchromatin compartment (IC).  

The IC channels from nuclear pores through higher-order chromatin.  Although the IC is 

DNA free, it is separated from the CTs by a thin layer of decondensed chromatin, called 

perichromatin (17), which is the major site for transcription (18, 19), splicing (18-20), 

DNA replication (21) and DNA repair (22).  The CT IC model stemmed from an earlier 

concept called the Interchromosomal Domain (ICD) model (23).  This model stated that 

transcription occurred at the CT periphery, releasing RNA transcripts into the ICD; 

however, as genes were found to be transcribed both inside and outside of CTs (18, 24-

26), this model fell out of favor.  The Interchromatin Network model (27) suggests that 

chromatin fibers intermingle in a uniform way both inside CTs and between neighboring 

ones, which makes the distinction between the interior and periphery of CTs meaningless.  

The Giant-Loop model (28, 29) proposes giant loops of chromatin can reach across CTs 

to carry genes to remote sites for co-regulation or repression (30); this model incorrectly 

states there is no DNA-free space, which previous studies have proven by electron 

microscopy (16, 31). 

 

Two main methods are used to study CTs:  firstly, microscopic methods, such as 

fluorescence in situ hybridization (FISH) with probes that label entire or parts of 

chromosomes, are used to see chromatin structure and measure spatial distance between 

loci; secondly, non-microscopic methods, such as Chromosome Conformation Capture 

(3C) (32), use proximity-ligation assays of DNA to quantify the frequency of contact 
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between DNA segments, which is considered inversely proportional to their in vivo 

distance.  Although microscopic resolution has previously limited the use of FISH, the 

implementation of super resolution microscopes (33, 34) has removed this barrier.  While 

3C examines pairwise interactions between loci on the same or different chromosomes, 

Circularized Chromosome Conformation Capture (4C) examines interactions of a locus 

of interest with the entire genome, and 5C and Hi-C examine pairwise interactions over 

the entire genome (35).  Thresholding in both FISH and Hi-C methodologies must be 

used to avoid over-interpretation of interacting regions and sequences in CTs. 

 

1.1.2. Factors Contributing to CT Arrangement 

 

CTs are arranged in a non-random, cell-type specific manner in the nucleus (36-

38).  Their position is established early in G1 and is stable throughout interphase, until 

chromosomes must move to align in the metaphase plate during prophase (39-42).  

During interphase, CTs may undergo limited diffusion (43).  CTs have been shown to 

undergo repositioning during cellular differentiation (44, 45) and tumorigenesis (36, 46-

49). 

 

One of the main factors thought to contribute to the arrangement of CTs is gene 

density.  Early studies on human lymphocyte nuclei with chromosome probes for the 

gene-dense chromosome 19 and gene-poor chromosome 18, illustrated that CT 19 was 

consistently found in the nuclear interior and CT 18 at the nuclear periphery (50).  This 

arrangement was confirmed in multiple normal cell types and tumor cell lines (48) and 
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was determined to be evolutionarily conserved in lymphoblastoid cells from primates, 

where orthologous segments of human chromosomes 18 and 19 were located at the 

nuclear periphery and centre, respectively (51).  A gene density correlated radial 

arrangement was confirmed in all human chromosomes by Boyle et al. (52) and also 

found in rodents (53), cattle (54) and birds (55).  A study of bovine embryos showed a 

radial arrangement of CTs depending on gene density was not present at the blastomere 

stage, but was established in the blastocyst (54).  Although a size-based radial 

arrangement of CTs in human fibroblasts was initially proposed (56), a gene density 

correlated pattern was seen at the subchromosomal level with gene-dense Alu sequence-

rich chromatin in the nuclear interior of the CTs.  While bladder cells showed weak linear 

relationships with either gene density or size-based radial arrangements, the ratio of 

density:size showed a strong correlation (57).   

 

The arrangement of CTs may also be due to DNA-binding factors or as a result of 

cellular preservation or function.  Hi-C has identified CCCTC-binding factor (CTCF) as a 

highly conserved protein that plays a role in organizing DNA loops within chromosomes 

at specific loci (58).  CTCF regulates gene expression by binding insulator sequences 

(59).  At heterochromatin boundaries this creates barriers dividing chromatin into silent 

and active domains, which terminates the spread of histone marks and prevents 

interactions that activate transcription (60-64).  Chromosomes have been found to be in 

closer proximity to a heterologue than a homologue (57, 65).  This may be evolutionarily 

important to avoid homologous recombination, loss of heterozygosity (LOH) and 

damaging both copies of a chromosome from a single stress.  A hallmark example of CT 
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arrangement that illustrates functionality was identified in rod cells of retinal tissue in 

nocturnal animals (66):  whereas euchromatin is usually in the nuclear centre and 

heterochromatin at the periphery, nocturnal animals showed the opposite chromosome 

order with a MSR-positive chromocentre surrounded by a thick shell of gene-poor 

noncentromeric heterochromatin and thin outer shell of Alu sequence-rich euchromatin.  

This inverted arrangement was proposed to be an adaption of the animals to lower light 

conditions, as it allows for clearer night vision due to the higher refractive index when 

heterochromatin is in the nuclear interior.  Although there are multiple theories about the 

arrangement of CTs, most groups agree that more than one factor contributes to the final 

arrangement. 

 

1.1.3.  CTs and Gene Regulation 

 

 Gene expression and gene location within a CT, and within the nucleus, are 

thought to influence each other (67).  Studies have found transcriptionally active alleles 

to be located on the edges of CTs or looping outside the CT, whereas inactive alleles are 

embedded inside the CT (68).  With increased transcription, gene-rich loops of 

chromosome 6, containing sections of the major histocompatibility complex, have been 

shown to loop outside of their CT (69).  Furthermore, as genes in cis and trans can share 

the same transcription factory, they may relocate by looping out of their CT to reach 

transcription factories.  For example, with induction, MYC rapidly relocated to the 

transcription factory occupied by IgH (70); this is functionally significant as MYC and 

IgH undergo frequent translocation in mouse plasmacytoma (PCT) and Burkitt 
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lymphoma.  Additional studies have shown that chromatin looping is necessary for gene 

transcription:  forced looping with a DNA binding protein between the IFN-β enhancer 

and a reporter gene stimulated the gene’s transcription (71); tethering a looping factor to 

the murine β-globin locus triggered chromatin looping and β-globin transcription (72). 

 

Traditionally, the nuclear periphery has been thought of as a repressive 

environment for transcription, and the nuclear interior as an area of transcriptional 

activity (73).  Tethering a silencing-defective mating-type locus in yeast to the nuclear 

periphery restored its gene silencing (74).  In Drosophila melanogaster, gene-poor 

chromatin is associated with the nuclear lamina, and genes near it are silent and marked 

by repressive chromatin modifications (75).  In C. elegans, down-regulation of lamin A 

or a reduction in repressive chromatin markings, detached genes from the nuclear 

periphery; detachment also increased the expression of some of these genes (76, 77).  

Depletion of lamin A alters genome dynamics by inducing fast and normal diffusion in 

place of slow anomalous diffusion (78).  Furthermore, in mammalian cells, reduction in 

lamin A lead to altered nuclear telomere distribution (79) and gene relocalization that 

may allow for, previously inhibited, gene activation (80).  A study in rabbit of the 

position of casein milk protein genes (CSN) in mammary epithelial cells during lactation 

compared to hepatocytes, showed CSN looped out of its CT to be positioned in 

euchromatic regions in mammary cells, but remained at the periphery in hepatocytes; a 

control gene not involved in lactation occupied a similar position relative to its CT in 

both cell types (81).  Tethering genes to the inner nuclear membrane in mouse fibroblasts 

resulted in transcriptional repression (82).  Expression of the murine β-globin locus 
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increased with its relocation from the nuclear periphery to interior (83).  With increased 

transcription, CFTR moved from the nuclear periphery to the interior; however, altering 

its nuclear location did not change its transcriptional status (84).  In embryonic stem cells, 

the MASH1 gene is transcriptionally repressed and located at the nuclear periphery; upon 

neural induction, MASH1 transcription was up-regulated and it relocated to the nuclear 

interior (85).   

 

There has also been evidence against the nuclear periphery being repressive and 

the centre being transcriptionally active.  For example, artificially tethering chromatin 

regions to the nuclear envelope down-regulated certain genes, but not all (86, 87).  Also, 

nascent RNA was found to be produced throughout the entire nucleus (88).  It has been 

hypothesized that the nuclear interior may be important in acquiring a higher 

transcriptional rate, rather than initiating the event itself (89).    

 

1.2.  Telomeres 

 

1.2.1.  Telomere Structure and the Shelterin Complex 

  

Telomeres are nucleoprotein structures at the ends of chromosomes.  Human 

telomeres are composed of repeats of the DNA sequence 5′(TTAGGG)n3′, measuring 

between 5 and 15 kb in length (90, 91).  Telomeres also have a G-rich DNA strand 

overhang at the 3′-end, measuring between 35 and 600 nucleotides (92, 93).  This G-

overhang folds back on itself forming a telomere loop (T-loop) (94, 95), and then evades 
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into the double-stranded DNA forming a D-loop (96).  This folding structure protects 

telomeres by suppressing recombination and inhibiting telomerase (97).  

 

Telomeric and subtelomeric regions are characterized by repressed 

heterochromatin with epigenetic markings such as trimethylation of histone H3 at lysine 

K9 (H3Km3) and histone H4 at lysine K20 (H4K20m3) (98, 99), and subtelomeric DNA 

methylation (100).  It has been suggested that telomere elongation is regulated by the 

telomere’s epigenetic status, with heterochromatic markings as a negative regulator of 

telomere length.  For example, cells deficient for histone lysine N-methyltransferases 

caused the loss of H3K9m3 and H4K20m3 and exhibited very long telomeres (98, 99).  

Telomere repeat-containing RNAs (TERRAs) are also negative regulators of telomere 

length (101, 102).  TERRAs are long, non-coding telomere RNA transcripts that originate 

from subtelomeres and contain telomeric repeats in RNA form (102).  It has been 

proposed that TERRAs stimulate telomerase to be recruited to the shortest telomere from 

which they were transcribed (103).  It has also been suggested that TERRAs bind 

hnRNPA1, releasing hnRNPA1 from telomeric DNA; this allows tripeptidyl peptidase 1 

(TPP1)/protection of telomere-1 (POT1) to bind and recruit telomerase to the site (104, 

105). 

 

 Shelterin is a protein complex bound to telomeres, and is important in their 

maintenance and protection.  The six human telomeric proteins in the shelterin complex 

are telomere repeat factor-1 and -2 (TRF1 and TRF2), POT1, TRF1-interacting protein 2 

(TIN2), the human ortholog of the yeast Repressor/Activator Protein 1 (RAP1) and TPP1.  



	 9 

TRF1 and TRF2 bind to the telomeric double-stranded DNA (106), and POT1 binds to 

the single-stranded G-overhang (107).  TPP1 and POT1 form a heterodimer that is 

connected to TRF1 and TRF2 via TIN2 (108).  RAP1 interacts with TRF2 (108). 

 

 TRF1 and TRF2 are negative regulators of telomere length (109, 110).  

Homozygous deletion of TRF1, TRF2 or TIN2 led to embryonic lethality in mice (111, 

112).  Many of the shelterin proteins have been implicated in repressing DNA damage 

responses (DDRs) at telomeres.  TRF2 has been associated with the ataxia telangiectasia 

mutated- (ATM-) mediated non-homologous end-joining (NHEJ) pathway: mouse 

embryonic fibroblasts (MEFs) deficient in TRF2 exhibited end-to-end fusions mediated 

by the NHEJ pathway (112).  POT1 has been shown to protect telomeres from ataxia 

telangiectasia and Rad3-related- (ATR-) dependent DDRs, and RAP1 has been 

implicated in repressing homologous recombination at telomeres (113).  Both POT1 and 

TPP1 regulate telomerase-dependent telomere elongation (114-117).  TPP1 recruits 

telomerase to telomeres.  TPP1 null MEFs and mice show decreased binding of 

telomerase and shortened telomeres (118).  As the central component of the shelterin 

complex, TIN2 helps facilitate rolls of other shelterin proteins such as inhibition of ATM-

mediated DDRs and telomerase recruitment (119).  Mutations in TIN2 and POT1 have 

been identified in human disease.  Dyskeratosis congenita is characterized by a triad of 

dystrophic nails, skin hyperpigmentation and oral leukoplakia; bone marrow failure and 

aplastic anemia are often fatal in patients with this disease (120).  Patients with 

dyskeratosis congenita have missense mutations in TIN2, which are thought to contribute 

to the shortened telomeres found in these patients (121).  Recurrent somatic mutations in 
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POT1 were identified in 3.5% of a cohort of patients with chronic lymphocytic leukemia; 

cell lines with mutated POT1 showed an increase sister chromatid fusions consistent with 

POT1-mutation mediated telomere uncapping (122). 

 

 The shelterin complex also works with the hCST complex to maintain telomere 

homeostasis.  hCST is a telomere end-binding complex composed of STN1, TEN1 and 

CTC1 (123, 124).  hCST binds to guanine-rich single-stranded telomeric DNA (123).  

The roles of hCST include protecting telomeres from eliciting DDRs, and acting as a 

terminator of telomerase by binding to the 3′ overhang generated by telomerase (125, 

126).  It has been proposed that the hCST and shelterin complexes compete to bind to the 

3′ overhang as depleting the TPPI/POT1 heterodimer increased the association of hCST 

with the telomere (126).   

 

1.2.2.  Telomerase and Telomere Elongation 

 

 Telomere length is dynamic.  Because DNA polymerases can only replicate DNA 

in a 5′ to 3′ direction, the lagging strand is built in a backstitching manner with RNA 

primers.  After the final RNA primer is removed, a portion of the 3′ end of the lagging 

strand is incompletely replicated, termed the end replication problem (127, 128).  This 

causes telomeres to shorten with each cycle of cell division and limits the number of 

possible DNA replication rounds.  The stage at which cells enter replicative senescence 

due to critically short telomeres is called the Hayflick limit (129).  Cells that escape 

replicative senescence have inactivated cell cycle checkpoint proteins, such as p53 and 
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Rb1 (130, 131).  These cells continue to divide, resulting in dysfunctional telomeres and 

genomic instability, until they reach a second proliferative block or crisis (132, 133).  

Cells can evade crisis by activating telomerase (132, 134), which elongates and protects 

critically short telomeres called t-stumps (135).  Telomerase is an enzyme that recognizes 

the unique telomere sequence at the ends of chromosomes, and elongates the 3′ end to 

avoid telomere attrition.  However, telomerase is insufficient to compensate for the 

telomere length lost with cell division and is absent in most normal human somatic cells 

(136); therefore, telomere shortening is associated with age in most tissues (137, 138).   

 

 Telomerase is a ribonucleoprotein complex.  It consists of a telomerase reverse 

transcriptase (TERT) and a telomerase RNA component (TERC).  TERC is a template for 

the addition of telomere sequence repeats to the 3′ end (139).  TERT expression is high in 

stem cells and in approximately 85% of cancer cells, but low or undetectable in somatic 

cells (140-142).  The deletion of TERT or TERC in mice led to telomere shortening, 

genomic instability and aging phenotypes (143, 144).  Mice with a competent p53 

pathway and no telomerase activity were resistant to cancer (145-148).  The 

overexpression of TERT in mice caused an increased incidence of cancers (149, 150); 

however, the overexpression of TERT in tumor-resistant mice with enhanced p53, p16 

and p19 expression, greatly increased the lifespan of the mice (151).  Mutations in the 

TERT and TERC components of telomerase have also been linked to human disease such 

as dyskeratosis congenita (120, 140), aplastic anemia (152) and idiopathic pulmonary 

fibrosis (153). 
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 Although telomerase is the mechanism by which telomeres are elongated in the 

majority of cancers, alternative methods exist in the remaining tumors (141).  Ten to 15% 

of tumors employ alternative lengthening of telomeres (ALT) methods, which use 

recombination to amplify or rearrange previously existing telomeric sequences (154-157).  

The ALT mechanism is most common in mesenchymal tumors (158-160).  ALT is 

repressed in normal cells by telomeric proteins such as the shelterin proteins TRF2 and 

POT1 (161, 162).  ALT-positive tumors have unique features such as the presence of 

telomeres of heterogeneous lengths (163), extrachromosomal telomeric DNA termed T-

circles (164), circular single-stranded DNA rich in cytosine and guanine termed C- or G-

circles (165, 166), and ALT-associated promyelocytic leukemia nuclear bodies (APBs) 

(167, 168).    

 

 Most tumors express either telomerase or ALT.  However, with experimental 

manipulation in vitro, both mechanisms can occur within the same cell.  For example, 

expression of telomerase in some ALT cell lines resulted in telomerase-mediated 

elongation of telomeres along with the presence of ALT characteristics (169-171).  

Contrastingly, studies have shown telomerase expression inhibited ALT characteristics 

(172) or that the ALT mechanism suppressed telomerase activity (173).  In vivo studies 

have identified a subset of tumors that express both telomerase activity and ALT 

characteristics (174-176); however it is unknown whether these findings reflect the 

presence of both mechanisms in individual cells, or rather that it reflects tumor 

mosaicism with certain subpopulations of cells exhibiting ALT and others telomerase. 
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1.2.3.  Telomere Dysfunction and Genomic Instability 

 

 Telomere dysfunction is thought to contribute to genomic instability and 

tumorigenesis (177-181). When telomeres become critically short, for example from the 

high rate of proliferation in a preneoplastic cell, or uncapped, such as from shelterin 

defects, they can trigger a DDR (182).  In cells with competent tumor suppressor 

pathways, cell cycle arrest and apoptosis, or senescence, is induced (131, 183).  In cells 

that have lost natural cell cycle checkpoints and do not undergo senescence, the 

chromosome end is then recognized as a DNA double-strand break (DSB) and a repair 

mechanism is employed (130, 131).  Activation of homologous repair leads to terminal 

deletions, whereas NHEJ causes end-to-end fusions of sister chromatids or of different 

chromosomes (184).  These fusions generate breakage-fusion-bridge (BFB) cycles as the 

fused chromatids form a bridge during anaphase, which breaks during cell division (185).  

This results in the uneven distribution of DNA to daughter cells with chromosome 

deletions and amplifications.  The BFB cycle often repeats leading to complex genomic 

rearrangements such as dicentrics, rings, translocations and double-minute chromosomes; 

this genomic instability can be preceded and propagated by changes in the 3D telomere 

organization of the cells (46, 186).  The cycle terminates when the cell enters crisis and 

undergoes cell death or when chromosomes acquire a new telomere through telomere 

healing mechanisms such as telomerase and/or ALT.   

 

 Other mechanisms that have been proposed to link telomere dysfunction with 

genomic instability include the resemblance of telomeres to fragile sites and the 
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susceptibility of telomeres to genotoxicity.  Telomeres have similarities with fragile sites 

due to their complex folding structure and heterochromatic status.  As fragile sites cause 

replication forks to stall and are often sites of DNA breaks (187), telomeres have been 

proposed as probable sites for the initiation of genomic instability (113).  The role of 

TRF1 in suppressing the ATR-mediated DDR is essential in preventing DNA breaks 

from stalled replication forks (188).  Because guanine triplets are particularly susceptible 

to oxidative damage, telomeres have a high risk of single-strand DNA breaks (189, 190).  

Telomeres are also sensitive to DNA damage from ultraviolet (UV) radiation because 

they are pyrimidine-rich.  It was found that after UV radiation, telomeres had sevenfold 

more cyclobutane pyrimidine dimers than the rest of the genome (191).   

 

1.2.4.  Methods to Study Telomeres 

 

 Many methods have been employed to measure telomere length.  They can be 

divided into two main categories:  firstly, those that measure average telomere length, 

such as telomere restriction fragment (TRF) analysis and quantitative polymerase chain 

reaction (Q-PCR); secondly, those that measure the length of individual telomeres, 

including single telomere length analysis (STELA), quantitative FISH (Q-FISH) and 3D 

telomere FISH. 

 

 TRF involves the digestion of genomic DNA by restriction enzymes and 

subsequent Southern blot analysis where the gel is labeled with a probe that labels 

telomeric DNA (192).  The average length of the telomeres in the DNA sample can be 
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determined from the smear size and intensity.  This method is advantageous because it 

allows for the comparison of telomere lengths between studies; however, it requires a 

large amount of DNA.  To measure telomere length with Q-PCR, telomeric sequences of 

DNA are amplified with specific primers along with a reference gene sequence (193, 

194).  This allows for the average length of the telomeres in the DNA samples to be 

determined by comparing the ratio of telomeric copies to those of the reference gene.  

Although Q-PCR requires a small DNA sample, the results cannot be compared amongst 

studies, and the distribution of telomere lengths cannot be determined. 

 

 STELA can measure individual telomeres because it uses specific primers for the 

subtelomere region of a specific chromosome telomere (195).  It uses this primer, along 

with a primer that anchors to the 3′ end of telomeres, in ligation-mediated PCR.  

Following Southern blot analysis and labeling with a specific telomeric probe, the length 

of the telomere of interest can be determined.  The main disadvantage to this method is 

that not all telomeres can be measured due to the lack of specificity of the telomeric 

sequences.  STELA can only be used to measure the telomeres on chromosome arms Xp, 

Yp, 2p, 11q, 12q and 17p (196).  Telomere lengths can be measured at a cellular and 

chromosomal level using Q-FISH with a flurochrome-labeled telomeric probe (197, 198), 

the most common being a peptidic nucleic acid (PNA) probe.  This method allows for the 

visualization and measurement of all the telomeres individually in metaphase preparation.  

The telomere length is measured as a mean of relative fluorescent units (RFU) that 

correlates with telomere size in kilobases (197, 199-202).  The disadvantage of telomere 

Q-FISH is that high quality metaphase spreads are necessary.  The Mai laboratory 
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extended the method of Q-FISH from two-dimensional (2D) metaphases to labeling 

telomeres in 3D nuclei (203).  Briefly, samples undergo a 3D fixation procedure (204) to 

preserve the nuclear architecture of the cells, and then are hybridized with a telomere 

PNA probe to label all telomeres.  3D image acquisition and deconvolution (205) are 

employed to generate a 3D rendering of the sample in which each telomere can be 

visualized within the interphase nucleus.  Using TeloView software (203) multiple 

telomere parameters can be measured:  the number of telomeres, the length of each 

telomere in RFU, the number of telomeric aggregates, the distance of each telomere to 

the nuclear centre and nuclear periphery, the spherical nature of the telomere distribution 

(termed the a/c ratio), and the nuclear volume.  Telomeric aggregates are telomeres in 

close proximity to each, which cannot be further resolved as separate entities at an optical 

resolution of 200 nm (203); they can represent either end-to-end-fused chromosomes 

and/or telomeres that are in close vicinity (206).  The main disadvantage of examining 

3D telomere organization is that it is time consuming.  Consequently, the Mai laboratory 

developed TeloScan (207).  TeloScan is an automated high-throughput scanning, 

acquisition and analysis system that has significantly reduced sample processing time. 

  

1.2.5.  Variations in Telomere Length 

 

 Telomere length has been shown to vary with many conditions such as tissue 

type, age, genetic background, environment and tumorigenesis.  Early findings showed 

that telomeres were longer in fetal liver than in cord blood and bone marrow (208), and 

longer in cerebral cortex and myocardium than liver and renal cortex (209).  Telomeres 
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are generally longer in females than males (210, 211), although not at birth (212).  

Studies of monozygotic and dizygotic twins found that telomere length was genetically 

determined as average telomere length had 78% heritability (213) and lengths of 

individual telomeres of homologous chromosomes were identical in monozygotic, but not 

dizygotic twins (214).  Telomere length has also been negatively correlated with obesity 

(215), smoking (215) and psychological stress (216, 217).  Telomeres shorten with age by 

nine to 147 bp per year (209, 210, 218); exceptions to this include cerebral cortex, 

myocardium and spermatozoa, which all showed no shortening of telomere length with 

age (209, 219).  Meta-analyses have shown inverse associations between leukocyte 

telomere length and cardiovascular disease (220), type 2 diabetes (221) and cancer (222, 

223). 

 

 Depending on the type of cancer, telomere length has been negatively, positively 

or not associated with patient outcomes.  Studies of leukocyte telomere length in breast 

cancer have shown mixed results:  three studies found shorter telomeres in patients with 

breast cancer than healthy controls (224-226); two studies showed longer telomeres were 

associated with an increased risk of breast cancer (227, 228); two studies found no 

association of telomere length with breast cancer (229, 230).  In colorectal cancer, studies 

of mean leukocyte telomere length from blood samples showed no association between 

telomere length and cancer risk (231-233).  Telomeres were significantly shorter in the 

patient populations than healthy controls in studies of esophageal cancer (234, 235), 

gastric cancer (236, 237) and head and neck cancer (238).  Two studies of telomere 

length in peripheral blood leukocytes from patients with lung cancer found shorter 
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telomeres in lung cancer cases than healthy controls, and an increased risk of lung cancer 

in individuals with shorter, compared to longer, telomeres (238, 239); however, a study 

of telomere length in morning sputum found no association of telomere length with lung 

cancer (240).  Strong associations were identified between telomere length of surrogate 

tissues and ovarian (241), renal (238, 242) and bladder (238, 243, 244) cancers.  The 

mixed results in breast and lung cancer may be due to different methodologies of 

telomere length measurement, the variability of the average telomere length parameter in 

a cohort of patients, prospective versus retrospective analyses and/or the use of different 

surrogate and control cell types.  A prospective, population-based study of almost 800 

individuals that were cancer-free at enrollment, found that the hazard ratio for incident 

cancers, and mortality in those that developed cancer, was highest in those with shortest 

telomere lengths (245).   

 

 In addition to differences in telomere length between tissues, it can also vary 

between chromosomes within the same cell (197).  Studies have shown telomeres on 

chromosome arms 17p, 19p and 20q are the shortest, and those on chromosome arms 5p, 

3p, 4q and 1p are the longest (200, 201, 246, 247).  Variation in telomere length of 

homologous chromosome arms has also been shown (199, 248).  Longer telomeres have 

been found on the arms of the active compared to the inactive X chromosome (248).  

Chromosome-specific telomere length changes have also been identified in cancer.  For 

example, short telomeres on chromosome arms 17p and 12q are associated with an 

increased risk of esophageal cancer (235), and short telomeres on chromosome arm 9p 

are associated with increased risk of breast cancer (226).  It has also been suggested that 
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chromosome-specific protective factors may lead to the lengthening of specific telomeres 

important to the tumor’s pathogenesis (247, 249).  In chronic myeloid leukemia (CML), 

chromosome arms 18p and Xp have the longest telomeres, which differs from the longest 

telomeres in healthy control patients (247).   

 

1.2.6.  3D Telomere Organization 

 

 3D nuclear telomere organization has been studied by the Mai lab in many cell 

types and cancers using TeloView software (203).  Telomeres are organized in a cell 

cycle dependent manner, with the formation of a telomere disk in late G2 (250, 251).  

MYC overexpression induced the formation of telomeric aggregates in Ba/F3 and PreB 

cells in a cyclic appearance that was directly linked to the duration of MYC deregulation 

(46).  Epstein-Barr virus infection of human B cells also induced changes in 3D telomere 

organization, but in the absence of telomere shortening (252).   

 

Typical differences between normal and tumor cells include altered numbers of 

telomeres, changes in telomere length, and the presence of telomeric aggregates.  Chuang 

et al. (2004) described the altered 3D telomere organization and formation of telomeric 

aggregates in the RAJI Burkitt lymphoma cell line and in a primary human head and neck 

squamous cell carcinoma (250).  The transition from mono-nucleated Hodgkin cells to 

multi-nucleated Reed-Sternberg cells can be monitored by changes in 3D telomere 

organization, with an increase in nuclear volume, very short telomeres and telomeric 

aggregates (253-255).  Unique 3D telomere profiles are also associated with recurrent 
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compared to non-recurrent Hodgkin’s lymphoma patients at diagnosis (256).  Telomere 

profiles based on telomere number and size, and frequency of telomeric aggregates, 

identified previously unknown patient subgroups in glioblastoma that corresponded with 

patient survival (257).  Mouse models of endometrial carcinoma (258) and melanoma 

(259) found changes in telomere length, and telomere distribution in the nucleus, to be 

early events in malignant transformation.  A model of progression from myelodysplastic 

syndromes (MDS) to acute myeloid leukemia (AML) was defined based on distinctive 

telomere profiles (260).  Subpopulations of circulating tumor cells were identified by 

telomere organization within the same patient with either melanoma, prostate, colon or 

breast cancer (261).  Unique telomere profiles based on telomere signal intensities, 

telomeric aggregates, nuclear volume and overall telomere distribution, characterized 

patients with multiple myeloma, the precursor stage monoclonal gammopathy of 

undetermined significance (MGUS), and patients that relapsed (262).  These telomere 

parameters also distinguished CML patients in the chronic phase from their profile at 

diagnosis (263).  A study of a mouse model of follicular thyroid cancer found altered 

telomeric signatures in mice as young as one month of age (264).  

 

1.3.  MYC 

 

1.3.1.  MYC’s Role in Cancer Initiation and Maintenance  

 

 MYC is a proto-oncogene that largely functions as a transcription factor.  Its 

expression is tightly regulated in non-cancerous cells (265).  MYC is activated in over 
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half of human cancers through multiple mechanisms including chromosomal 

translocation, gene amplification, increased RNA or protein stability, viral insertion, and 

oncogenic and epigenetic events (266-270).  MYC activation results in the hallmark 

features of cancer:  sustained proliferation and growth, angiogenesis, changes in tumor 

microenvironment and cellular metabolism, and avoidance of host immune responses 

(268, 271, 272).  Tumor survival often becomes dependent on high levels of MYC, 

termed MYC addiction.  These findings have led MYC to be proposed as a necessary 

event in tumor initiation (273).   

 

 Usually MYC activation cannot induce tumorigenesis alone.  MYC 

overexpression in normal human cells leads to proliferative arrest, senescence and 

apoptosis due to protective checkpoints (274-276).  MYC overexpression also results in 

DNA replication, but alone it cannot cause cellular division (277); this leads to 

polyploidy (278) and DNA breakage (279).  Therefore, to initiate tumorigenesis MYC 

cooperates with many other oncogenic events.  For example, events that evade cell-cycle 

checkpoints, such as overexpression of BCL-2 or loss of p53, allow MYC to induce 

proliferation and malignant transformation (280, 281).   In experimental mouse models, 

MYC suppression after conditional activation has reversed tumorigenesis for a variety of 

cancer types (282-287).  In some cases although remission was initially observed, it was 

followed by tumor recurrence with reactivated MYC expression, illustrating MYC 

addiction (288).   
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1.3.2.  MYC Regulates Cell Growth and Metabolism  

 

Multiple growth-promoting signal transduction pathways, such as MEK-ERK and 

NOTCH, converge on MYC highlighting one of its primary functions:  cell growth 

regulation (289, 290).  MYC binds to proximal gene promoter sequences, relieving 

paused RNA polymerases and initiating transcriptional elongation (291).  Although it was 

proposed that MYC amplifies expression of all genes without specificity (292, 293), this 

does not account for MYC’s ability to repress certain genes (294).  Also, simply 

amplifying genes already expressed in a resting cell would not alter the ratio of growth-

promoting versus growth-arresting signals (295).  Therefore, it is thought that MYC alters 

the transcriptome in favor of growth-promoting genes while suppressing growth-arresting 

genes (294, 296, 297).  

 

MYC activation not only promotes cell growth but also induces synthesis of the 

cellular components necessary for this growth.  MYC directly regulates genes involved in 

glucose and glutamine metabolism (298, 299).  MYC is also involved in ribosome and 

mitochondrial biogenesis (300, 301).  Furthermore, MYC plays a role in activating genes 

involved in nucleotide and lipid biosynthesis (302-304).  These processes push cells into 

S phase and MYC directly triggers cell-cycle progression by activating cyclin D and 

CDK4 (305, 306).  MYC also activates the E2F transcription factor, which in turn 

activates genes involved in DNA replication (307). 
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1.3.3.  MYC and DNA Damage and Repair 

 

 MYC has the ability to mediate DNA damage.  Brief MYC expression in normal 

human fibroblasts caused DNA breaks due to reactive oxygen species (ROS) (308, 309).  

A further study showed that MYC-overexpressing cell lines had an increase in ROS 

(310).  It was proposed that the increase in cellular metabolism from MYC activation 

caused a rise in ROS (309, 311).  Also, genes that protect ROS are MYC transcriptional 

targets (312, 313).  MYC can cause DNA damage independent of ROS production (314). 

MYC induction in normal human foreskin fibroblasts cultured in normal (10%) serum 

and murine lymphocytes in vivo caused ROS-independent DSBs; however, MYC 

induction in the same fibroblasts cultured in low (0.05%) serum and ambient oxygen 

saturation cause ROS-associated single-stranded breaks (314).   

 

 Replication stress from MYC overexpression may lead to an increase in DNA 

damage accumulated during S phase (315).  MYC overrides cell cycle checkpoints (276) 

and uncouples DNA replication from mitosis (316), both which can lead to polyploidy 

and endoreduplication (316-318).  MYC also induces DNA damage at early replication 

and common fragile sites (319).  Furthermore, MYC can interfere with DNA break 

repair.  The NHEJ pathway is directly suppressed by MYC causing inhibition of DSB 

repair and VDJ recombination (320).  Homologous recombination is inhibited through 

MYC regulation of RAD51 (321).   
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1.3.4.  MYC Induces Genomic Instability 

 

Initial studies of MYC-mediated genomic instability occurred when a relationship 

between MYC and gene amplification, cellular replication, replication stress was not 

known (322).  The first gene discovered to demonstrate a link between MYC and 

genomic instability was dihydrofolate reductase (DHFR), which had an increased copy 

number with MYC overexpression in vitro, in transgenic mice and human cancer tissues 

(278, 323-326).  DHFR amplification occurred intrachromosomally, 

extrachromosomally, with and without locus rearrangements and in extrachromosomal 

elements (EEs) (278, 325, 327, 328).  Further studies identified more amplified genes as a 

result of MYC overexpression (329-336); many of these genes are involved in DNA 

synthesis and cell cycle progression suggesting that cells harboring such amplifications 

may have a proliferative advantage (337). 

 

 MYC deregulation was found to be associated with illegitimate recombination 

and long-range chromosomal rearrangements, but not point mutations (338).  These 

events can lead to chromosomal translocations, deletions and inversions (322).  MYC-

induced EEs were found to be transcriptionally active and to carry MYC targets of locus-

specific genomic instability (339).  Not only does MYC alter single loci, but it also 

induces chromosomal instability including centromere and telomere fusions, 

chromosome and chromatid breaks, ring chromosomes, translocations, deletions and 

inversions, aneuploidy and Robertsonian chromosomes (259, 276, 311, 312, 338, 340-

344).  Notably, MYC box II mutants were able to induce structural and numerical 
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aberrations, gene amplification and EEs, but telomere fusions were not observed (345-

347).  

 

1.3.5.  MYC and Apoptosis 

 

 Although MYC is a strong driver of proliferation, it paradoxically is a potent 

apoptotic agent.  The initial observation that an increase in apoptosis occurred after MYC 

overexpression in pre-malignant but not cancerous cells (348) led to the discovery that 

tumor cells acquire mechanisms that allow them to evade apoptotic signals.  Soon after it 

was shown that the cell environment and the level or kinetic pattern of MYC, rather than 

the gene sequence, were key to determining the response to MYC:  either proliferation or 

apoptosis (349). 

 

 Often cancers with elevated MYC levels also have elevated levels of BCL-2, a 

pro-survival agent (350, 351); this has led to the hypothesis that tumors evade the 

apoptotic effects of MYC because they concurrently overexpress a pro-survival protein.  

In support of this, Bcl-2 knockout in MYC transgenic mice induces massive apoptosis 

(352).  Additionally, MYC activation of BAG-1, a pro-survival agent, was found to be a 

critical event in evading MYC’s apoptotic effect (353).  MYC activation induces the p53 

pathway, which enforces the apoptotic potential of MYC; therefore a mechanism for 

MYC to circumvent activation of the pro-apoptotic pathway is through loss of p53 

function, either through mutations in p53 or p14ARF, or overexpression of hMDM2 

(354).  The Eµ-myc transgenic mouse model illustrates this:  early in the six-month 
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latency period high levels of apoptosis are observed but tumor formation does not arise 

until a secondary genetic change that inactivates the p53 pathway (355).  MYC-induced 

apoptosis has also been shown to occur in a p53-independent manner (356-360).   

 

1.3.6.  MYC as a Therapeutic Target 

 

 MYC is amplified in a wide range of cancers and often correlates with advanced 

stage, aggressive tumor behavior, poor clinical outcomes and increased chance of relapse 

(270, 361).  This coupled with its essential role in tumor initiation makes MYC an 

attractive therapeutic target.  As MYC is involved in the regulation of many cellular 

functions, there are concerns that targeting MYC will generate severe undesirable 

toxicity.  Studies found tissue-specific MYC loss or down-regulation was tolerated in 

liver and intestinal tissues; however, compensatory up-regulation of MYCN was 

generated (362, 363).  Therefore MYC inhibition may have a narrow therapeutic index.   

 

MYC, and transcription factors in general, has difficult features to pair with 

traditional binding models for small organic drug molecules (364), making it a currently 

“undruggable target”.  Other obstacles include MYC’s absence of enzymatic activity, 

lack of globular function domains, finely tuned post-translation regulatory mechanisms 

and short half-life (365-368).  Many efforts have been made to identify small molecules 

that can inhibit MYC:MAX binding, but their use has been limited to mechanistic 

research due to their limited potency (369, 370).  However, the development of Omomyc, 
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which competitively binds MYC, has shown promise in transgenic mouse cancer models 

(371, 372).   

Another approach for targeting MYC has been to inhibit MYC-dependent 

transcriptional signaling.  Studies have tried targeting coactivator proteins critical to 

MYC-specific initiation and elongation such as the bromodomain and extraterminal 

(BET) domain family of coactivator proteins (373).  Murine models of hematological 

malignancies have shown promising results of MYC pathway inhibition and down-

regulation of MYC transcription with BET inhibition (374).  Other active areas of MYC-

therapeutic research include inhibitors of transcriptional kinases, targeting upstream 

signal transduction pathways of MYC such as KRAS, and synthetic lethal interactions 

with MYC (367).  

 

1.4.  Mouse PCT 

  

1.4.1.  PCT Pathogenesis 

 

Plasma cells are end-stage fully-matured B cells that secrete immunoglobulin (Ig).  

PCT cells also secrete Ig, mainly IgG or IgA, in mouse tumors (375) but they 

continuously cycle.  Because spontaneous mouse PCTs are rare (376), most studies rely 

on induction methods.  Of note, only BALB/c and NZB mice are genetically susceptible 

to developing pristane-induced PCTs (377, 378). 
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PCTs were initially induced by intraperitoneal (IP) insertion of plastic implants 

(379, 380).  IP injections of pristane (2,6,10,14-tetramethylpentadecane) were later found 

to be the most efficient oil-based plasmacytomagen (381).  The peritoneum appears to be 

the site of PCT development because it has extensive lymphatic drainage and mesothelial 

surfaces in which inflammatory exudates accumulate during chronic irritation from the 

plastic implants or pristane (382).  The irritation from pristane injections causes a cellular 

response of macrophages, neutrophils and lymphocytes that phagocytizes small oil 

droplets and surround larger ones (383-385).  This cellular response induces chronic 

inflammation and the formation of reactive tissue, oil granuloma (OG) on peritoneal 

surfaces such as omentum (382).  The deposits are then covered by mesothelium and 

angiogenesis of the OG occurs.  The inflammatory cells in the OG produce IL-6, which 

stimulates B cell to plasma cell differentiation (386).  IL-6 has also been implicated as a 

survival and proliferation factor for PCTs (387-389).  A further study that illustrated the 

inability of IL-6 knockout mice to develop pristane-induced PCTs, provided direct 

evidence for IL-6 as a critical factor in PCT development (390).  

 

 MYC deregulation is known to be an indispensible initiating event in PCT 

pathogenesis (391, 392).  B cells are vulnerable to accumulating oncogenic mutations, 

which may become expressed at B cell to plasma cell differentiation (386).  The effects 

of MYC activation in B cells and plasma cells include increased rates of proliferation and 

decreased apoptosis (393, 394).  It has been proposed that cytokines such as IL-6 

selectively stimulate plasma cells that have undergone MYC deregulation to form 

neoplastic proliferative plasma cell foci (395, 396).  
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All PCTs have MYC deregulation; however, the mechanism of deregulation, and 

PCT latency periods, depend on their method of induction.  Slow-onset pristane-only 

induced PCTs have a latency of greater than 300 days (382).  MYC deregulation occurs 

by MYC/Ig chromosomal translocations, most commonly involving the Ig heavy chain 

locus (T(12;15)) in over 90% of the tumors.  Ig enhancers drive constitutive expression of 

MYC in B cells leading to tumor development (397).  Pristane-induced PCTs followed by 

Abelson murine leukemia virus infection have a shorter latency with a mean of 88 days 

(382).  These PCTs have both MYC and ABL overexpression and display MYC/Ig 

translocations.  However, they also demonstrate the non-random chromosome aberration 

of chromosome 11 trisomy in 61.1% of tumors (398).  This finding suggests 

amplification of genes on chromosome 11 may promote PCT development when 

overexpression of MYC and ABL is also present (399).  Chromosome 11 trisomy was 

only found in 7.1% of pristane-only induced PCTs (400).  Fast-onset PCTs were induced 

with pristane followed by v-abl/myc retrovirus infection and had a mean latency of only 

45 days (399).  There are no MYC/Ig translocations as the constitutive retroviral MYC 

expression suppresses endogenous MYC production (401).  These fast-onset PCTs also 

had the highest frequency of chromosome 11 trisomy, with 90% of tumors displaying this 

aberration (399).   

 

Further investigations of this chromosome aberration were performed to 

determine whether the whole, or a particular region of chromosome 11 was duplicated.  

Studies of F1 mice that had reciprocal translocations (rcpTs) involving chromosome 11 
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narrowed the duplicated region to cytoband 11E (399).  To further define the important 

region of cytoband 11E, fast-onset PCTs were induced in congenic T38HxBALB/c mice 

with a rcpT between chromosomes X and 11 (rcpT(X;11)), in which the telomeric 11E 

band is translocated to the A2 band of chromosome X (402).  This mouse model 

narrowed the trisomic region to cytoband 11E2, most commonly through duplication of 

the T(X;11) chromosome (402).  This mouse model also created a unique opportunity to 

study the 11E2 region, as the rcpT(X;11) created a tiny T(X;11) translocation 

chromosome that contains only cytoband 11E2 and part of E1.  Using array comparative 

genomic hybridization (CGH) and expression arrays, six genes were found to be 

duplicated and overexpressed in fast-onset compared to slow-onset PCTs (Sabine Mai, 

unpublished results).  The six candidate genes were Aspscr1, Ict1, Kcnj2, Foxk2, Sec14l1, 

and Tbcd; the function of these genes are glucose transport, mitochondrial function, 

resting membrane potential regulation, DNA repair, intracellular transport system and 

nuclear organization, respectively. 

 

1.4.2.  Nuclear Disorganization in Mouse PCT 

 

 Studies of mouse-derived cell lines and primary mouse PCTs have demonstrated 

that altered nuclear organization contributes to the accelerated tumorigenesis and unique 

chromosome aberrations of fast- compared to slow-onset PCTs.  The PreB cell line was 

generated from diploid mouse PreB cells of BALB/c origin that were immortalized with 

v-abl and stably transfected with MYC-estrogen receptor fusion protein (MYCER) vector 

for conditional expression (334).  This cell line shows similar chromosome 11 aberrations 



	 31 

as seen in fast-onset mouse PCTs (403).  Conditional expression of MYC in the PreB cell 

line caused remodeling of the 3D telomere organization, including the formation of 

telomere aggregates (46).  These MYC expressing cells also showed evidence of BFB 

cycles such as broken chromosomes, non-rcpTs and chromosome fusions (46).  

Examination of interphase nuclear positions of the chromosome pairs that showed 

rearrangements in the PreB cell line, illustrated altered nuclear positions and greater 

overlap of the chromosome pairs, with MYC overexpression (46).  MOPC460D is a PCT 

cell line with MYC activation from chromosomal translocation (T(12;15)) (342, 404).  

PreB and MOPC460D cell lines have altered 3D centromere positions compared to 

primary mouse lymphocytes (405).  It was proposed that the alteration in centromere 

positions reflects nuclear remodeling during oncogenesis, and may impact the nuclear 

organization of chromosomes (405).  A later study in PreB and MOPC460D cell lines 

showed that MYC mediated the formation of Robertsonian chromosomes through 

centromere disorganization and telomere-telomere fusions (342). 

 

 To further study the organization of chromosomes in mouse PCTs, software was 

developed to detect, segment and measure CTs in 3D nuclei that underwent 3D FISH 

with chromosome paints (406).  To examine whether chromosome proximity affected 

translocation frequency in slow-onset PCTs, this software was used to determine the 

proximity and overlap of chromosomes 6, 12, 15 and 16; chromosomes 6 and 15, which 

are involved in 50% of MYC/Ig translocations in BALB/cRb6.15 PCTs, were found in 

close proximity suggesting their nuclear position may contribute to their Robertsonian 

translocation frequency (406).  Using a modified version of this software (Christiaan 
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Righolt, unpublished results), the position of the 11E2 cytoband on chromosome T(X:11) 

in PCTs and normal B cells was determined:  the T(X;11) chromosome was found in a 

more central position in fast-onset PCTs compared to slow-onset PCTs and normal B 

cells from T38HxBALB/c with rcpT(X;11) mice (Alexandra Kuzyk, unpublished 

results).  A more centralized nuclear position of the 11E2 cytoband may grant it access to 

an accelerated rate of transcription, supporting the previous finding of six overexpressed 

11E2 genes in fast-onset PCTs.   

 

1.4.3.  Syntenic Regions to Mouse Cytoband 11E2 

 

The syntenic regions to mouse cytoband 11E2 have been associated with 

tumorigenesis in other species.  The syntenic region to mouse 11E2 is 17q25 in human, 

and 10q32 in rat.  Gain of the distal region of rat chromosome 10 (10q32) is observed in 

rat endometrial adenocarcinomas of different genetic backgrounds (407). Copy number 

gains including the 17q25.3 region have been found in 65% (13 of 20 tumors) of 

metastatic prostate cancers (408), 44% (four of nine tumors) of a renal cell carcinoma 

(409), 6% (five of 87 tumors) of myeloproliferative neoplasms (410) and 90% (118 of 

131 tumors) of BRCA1 mutated breast cancers (411). The increased expression of 

Survivin, located on 17q25.3, has been associated with unfavorable outcomes and 

decreased survival in colorectal cancer (412, 413) and non-small cell lung cancer (414).   

 

The unbalanced gain of chromosome 17q is the most frequent chromosome 

aberration in human neuroblastoma (415-417).  It is found in approximately 50% of 
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neuroblastomas (415, 418-420) and is a poor prognostic factor (418, 419, 421, 422).  

Neuroblastomas with numerical chromosome 17 gain had a better prognosis than those 

with gain of chromosome 17q or no gain (423).  All MYCN amplified neuroblastomas 

exhibit chromosome 17q gain and/or 1p loss (418).  The most recent study has narrowed 

the shortest region of gain from the whole 17q arm to an approximately 14 Mb region 

from the 17q terminus (424). They also found a high density of overexpressed genes 

associated with survival in the 17q25.3 region (424). The syntenic region to 17q25.3 is 

gained in mouse and rat neuroblastoma (425).  Because of the cross-species association 

of this cytoband with aggressive tumors, it has been proposed as a potential oncogenic 

cluster (424, 426). 

 

1.5.  Human Neuroblastoma 

 

1.5.1.  Incidence, Clinical Presentation, Prognosis of Neuroblastoma 

 

 Neuroblastoma is the most common extracranial solid tumor in childhood with 

over 650 cases diagnosed each year in North America (427, 428).  The median age of 

diagnosis is 19 months with 37% of cases diagnosed in infants and 90% of cases 

diagnosed in children younger than five years of age (429).  There is no racial bias in 

incidence (430).  There is also no support for screening infants for neuroblastoma (431-

433). 
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 Neuroblastomas originate in sites where sympathetic nervous system tissue is 

present, such as the adrenal medulla or paraspinal nerve tissue.  Patients with 

neuroblastoma most commonly present with an abdominal mass.  Other signs and 

symptoms are often due to tumor mass and metastasis, which include bone pain, 

pancytopenia, fever and paralysis from spinal cord compression.  At diagnosis, a tumor 

biopsy is needed for diagnostic confirmation with pathology and for tumor staging, which 

includes molecular tests for MYCN copy number, DNA index and 11q and 1p LOH.   

 

 In 2010 in the United States, the five-year survival rate for patients diagnosed 

with neuroblastoma at an age younger than one year was 95%, and between ages one to 

14 was 68% (434); the five-year overall survival for patients diagnosed over 21 years of 

age was 46% (435).  At diagnosis, approximately 70% of neuroblastomas are metastatic.  

Prognosis is dependent on multiple factors including age at diagnosis, site of primary 

tumor, tumor histology and molecular features (436, 437).  Infants that are 18 months and 

younger at diagnosis have a very good prognosis even with advanced disease (429, 438).  

Although the primary tumor site is not an independent prognostic factor, adrenal primary 

tumors are associated with more unfavorable prognostic features, such as MYCN 

amplification, than non-adrenal primary tumors (439).  Neuroblastomas with favorable 

histologic features, such as cellular differentiation, have a better prognosis than those 

with unfavorable histologic features, such as mitotic figures and karyorrhexis (440, 441).  

Multiple molecular features such as MYCN amplification (442, 443), segmental 

chromosome aberrations (418, 421, 444-448), ALK mutations (449, 450) and telomere 

length aberrations (451-453), have all been associated with unfavorable outcomes in 
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neuroblastoma.  Neuroblastomas have been found to spontaneously regress; although this 

is most common for stage 4S tumors, spontaneous regression can occur with tumors of all 

stages (454-456). 

 

1.5.2.  Staging and Treatment of Neuroblastoma 

 

 The International Neuroblastoma Pathology Classification System or Shimada 

System is used to prognostically classify neuroblastomas before therapy (440).  Tumors 

are categorized as favorable or unfavorable based on histologic parameters and patient 

age.  The prognostic value of this system has been confirmed in several large patient 

cohort studies (440, 441, 457).  The Shimada System is described in Table 1-1.     

 

   

 

The International Neuroblastoma Staging System (INSS) is used worldwide to 

stage neuroblastomas postoperatively (458).  Stage 1 tumors are localized, completely 

resected with or without microscopic residual disease, and ipsilateral lymph nodes are 

Shimada 
Classification

Age (Years) Histologic Features

<1.5 Poorly differentiated or differentiating & low or 
intermediate MKIa tumor

1.5 - 5 Differentiating & low MKI tumor
a) Undifferentiated tumor

b) High MKI tumor
a) Undifferentiated or poorly differentiated tumor

b) Intermediate or high MKI tumor
≥5 All tumors

aMitosis-karyorrhexis index

Table 1-1. Shimada Classification System for Neuroblastoma

Favorable

Unfavorable

<1.5

1.5 - 5
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tumor-negative.  Stage 2A tumors are localized, incompletely resected, and ipsilateral 

lymph nodes are tumor-negative.  Stage 2B tumors are localized, completely or 

incompletely resected, and ipsilateral lymph nodes are tumor-positive.  Stage 3 tumors 

are either unresectable and cross midline with or without lymph node involvement, or 

localized with contralateral lymph node involvement.  Stage 4 tumors have dissemination 

to distant lymph nodes, bone, bone marrow, liver, skin and/or other organs.  Stage 4S 

tumors are localized as defined in Stages 1 or 2, with dissemination to skin, liver and/or 

bone marrow, in infants younger than 12 months.   

 

 Due to advances in the understanding of neuroblastoma, the Children’s Oncology 

Group (COG) developed a risk classification system for neuroblastomas that incorporates 

INSS staging and Shimada classification (459).  The COG risk classification system is 

described in Table 1-2. 
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 The management for neuroblastoma is generally dependent on the tumor’s risk 

category.  For low risk tumors, the treatment is usually surgery followed by observation 

and chemotherapy for symptomatic disease (460).  Perinatal neuroblastomas found in the 

adrenal glands are observed without biopsy (461).  Intermediate risk tumors usually 

receive chemotherapy, except in infants surgery can be followed with observation (462-

464).  High risk neuroblastomas have a complicated treatment regimen including 

chemotherapy, surgery, stem cell transplant and radiation therapy (465-468).  Current 

induction chemotherapy regimens are suboptimal as about one-third of patients with high 

risk disease do not respond to first-line induction therapies (469).  Common induction 

regimes include cisplatin or/or carboplatin, cyclophosphamide, etoposide, vincristine and 

Risk Group
INSS 
Stage

Age at 
Diagnosis MYCN Status

Shimada 
Classification

DNA 
Ploidy

1 0-21y Any Any Any
<365d Any Any Any

≥365d - 21y Non-amplified Any -
≥365d - 21y Amplified Favorable -

4S <365d Non-amplified Favorable >1
<365d Non-amplified Any Any

>365d - 21y Non-amplified Favorable -
4 <548d Non-amplified Any Any

<365d Non-amplified Any 1
<365d Non-amplified Unfavorable Any

2A/2B ≥365d - 21y Amplified Unfavorable -
<365d Amplified Any Any

≥365d - 21y Non-amplified Unfavorable -
≥365d - 21y Amplified Any -

<365d Amplified Any Any
≥548d - 21y Any Any -

4S <365d Amplified Any Any

High
3

4

Table 1-2.  COG Risk Stratification System for Neuroblastoma

Low 2A/2B

Intermediate

3

4S
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doxorubicin (470).  To improve response rates, new agents such as Topotecan have been 

added to the regimen (471).  Patients that reach a first remission also receive 13-cis-

Retinoic acid (468).  To treat minimal residual disease and increase induction phase 

response clinical trials with immunotherapy agents are ongoing (470). 

 

1.5.3.  The Effects of MYCN Amplification and MYCN Expression in Neuroblastoma 

 

MYCN is part of the MYC family of proto-oncogene transcription factors.  Although 

MYC is ubiquitous and highly expressed in proliferating cells during development and 

adult tissues, MYCN is only expressed during development in pre-B, kidney, forebrain 

and intestinal cells (472).  MYCN plays an essential role in brain development by driving 

proliferation of granule neuron precursors (473) and its deletion is embryonically lethal 

(474, 475).  MYCN along with mutant HRAS was found to transform rat embryo 

fibroblasts into foci that developed in to tumors in rats (476).  Furthermore, transgenic 

mice that overexpress MYCN in neuroectodermal cells were found to develop 

neuroblastoma (477).     

 

Twenty-five to 30% of neuroblastomas display MYCN amplification (457).  MYCN 

amplification is a strong indicator of advanced tumor stage and poor clinical outcomes 

(442, 443, 478).  Because of this, MYCN amplification is determined in all new 

neuroblastoma diagnoses, and those who test positive receive more aggressive treatment 

(479, 480).  High MYCN protein expression is associated with MYCN amplification 

(481).  MYCN expression can also occur without MYCN amplification and is a poor 
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prognostic factor in neuroblastoma (481-484).  Furthermore, in addition to MYCN 

amplified tumors, a subset of MYCN non-amplified tumors were found to be associated 

with high expression of a MYC core target gene signature that predicts poor 

neuroblastoma prognosis; this subset of tumors was also associated with indicators of 

poor prognosis such as older patient age and advanced clinical stage (485).  

 

It has been proposed that activation of the PI3K/AKT pathway in neuroblastoma 

may stabilize MYCN, as GSK3β, which phosphorylates MYCN decreasing its stability, 

is inactivated by AKT (486, 487).  These findings led to the suggestion of PI3K inhibitors 

as potential therapeutic agents in neuroblastoma.  A study that identified the H2A/H2B 

histone chaperone FACT as a driver of MYCN transcription and protein stability, also 

found that chemical inhibition of FACT impaired neuroblastoma formation in mice; 

therefore, it was proposed that FACT may also be a therapeutic target in neuroblastoma 

(488). 

 

MYCN is involved in many cellular processes including proliferation, apoptosis, 

metastasis, pluripotency and angiogenesis (489, 490).  Increased expression of MYCN in 

a neuroblastoma cell line was associated with an increase in the rate of DNA synthesis 

and proliferation by shortening the G1 phase (491).  A role for MYCN in invasion and 

metastasis was proposed as a decrease in MYCN expression in a neuroblastoma cell line 

led to increased tumor cell attachment, decreased tumor cell motility and decreased 

proteolytic ability (492).  Lentivirus vector-mediated silencing of MYCN induced 

differentiation and apoptosis in neuroblastoma cell lines and reduced tumor growth in 
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nude mice (493).  The identification of embryonic stem cell-related factors as putative 

MYCN targets by expression microarray was further validated by studies of MYCN 

overexpression in a neuroblastoma cell line:  expression of lif, klf2, klf4 and lin28b was 

closely correlated with MYCN expression (494).  MYCN overexpression was also found 

to down-regulate leukemia inhibitory factor, which is a modulator of endothelial cell 

proliferation, suggesting a role of MYCN in angiogenesis (495).   A genome-wide gene 

expression analysis of neuroblastoma tumors and cell lines identified differentially 

regulated genes with MYCN expression to be known oncogenes (NCYM and RAB20), 

genes associated with neural differentiation (PTN, FMNL, DNER, CLU, GDA, NCRAM, 

ECEL1 and SNPH), and cell proliferation (CDCA7, CENPE and CDC2L2) (496).   

 

1.5.4.  Structural Chromosome Aberrations and Gene Expression Profiles in 

Neuroblastoma 

 

 Neuroblastoma has several recurrent structural chromosome aberrations that relate 

to disease prognosis.  MYCN amplification occurs through the gain of chromosome 

region 2p24 as intrachromosomal homogeneously staining regions or extrachromosomal 

double minutes (497-499) and is a strong predictor of aggressive disease (443).  LOH at 

1p36 was found in 23% of neuroblastomas, and was associated with MYCN amplification 

and decreased progression-free survival in low and intermediate risk disease (444).  

Allelic loss of 1p was also found to be associated with decreased three-year survival in 

patients with Stage 3 and 4 disease (500).  LOH at 11q23 was identified in 34% of 

tumors, and unbalanced 11q LOH, defined as loss of 11q with retention of 11p, was 
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found in 49% of tumors with 11q23 LOH; unbalanced 11q LOH was associated with 

decreased event-free survival in the entire cohort, and 11q23 LOH was associated with 

decreased progression-free survival in low and intermediate risk disease (444).  Gain of 

chromosome arm 17q, from 17q21-qter, is the most frequent chromosome abnormality in 

neuroblastoma, found in 53.7% of tumors; the gain is associated with MYCN 

amplification, 1p deletion, adverse outcomes and decreased five-year overall survival 

(418).    

 

 Multiple studies used CGH and array-CGH to identify subgroups of 

neuroblastomas based on genomic profiles that correlated with patient outcomes (422, 

446, 501-507); the principal conclusion of this work was that tumors with segmental 

chromosome aberrations have a worse prognosis than those with whole chromosome 

losses and gains.  Although many of these studies suggested using CGH to profile 

neuroblastomas at diagnosis to determine prognosis, it has not been adopted as a standard 

of practice.  

 

 The lack of clinically translatable findings from CGH experiments led 

investigations of neuroblastoma in a new direction:  expression profiling.  A study by 

Hiyama et al. (2004) found favorable tumors to be associated with genes involved in 

neuronal differentiation and apoptosis; unfavorable tumors were associated with MYCN, 

hTERT, NME1 and genes involved in cell cycle regulation (508).  All studies found that 

their unique gene signature, ranging from 19 to 200 genes, was capable of significantly 

stratifying their patient cohort into higher- and lower-risk groups (508-512).  The general 
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recommendation from these studies was to implement gene expression profiling of 

neuroblastomas at diagnosis to improve patient stratification and personalize treatment 

options; however, similar to genomic profiling, gene expression profiling has not been 

adopted as a routine clinical tool.  The lack of clinical translation of the CGH and 

expression profiling results may be due to the inconsistency of the identified signatures. 

 

1.5.5.  Telomere Length and Maintenance in Neuroblastoma 

 

 Segmental and numerical chromosome aberrations in neuroblastoma have been 

proposed to be a result of telomere dysfunction (451). Previous studies of telomere length 

in neuroblastomas have found conflicting results.  Long telomere length has been 

proposed as a poor prognostic factor (452, 453); conversely, short telomeres have also 

been suggested as an indication of poor prognosis (513).  Lundberg et al. (2011) found 

two groups of neuroblastomas to have poor clinical outcomes:  firstly, those with MYCN 

amplification, which showed decreased or unchanged telomere length; secondly those 

without MYCN amplification that had increased telomere length (451).  Contrastingly, 

this study also found that tumors without MYCN amplification and decreased or 

unchanged telomere length, had excellent clinical outcomes (451).  Onitake et al. (2009) 

found MYCN amplified tumors to have short telomeres (453).  A study of average 

telomere length in neuroblastoma found one third of tumors to have two subpopulations 

of cells with different telomere lengths; tumors with predominately short or 

predominately long telomeres had the same overall survival as tumors with 
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homogeneously short or long telomeres, respectively (175).  This study also found tumors 

with long telomeres to have lower event-free survival than those with short telomeres.  

 

 Both telomerase and ALT have been proposed to play a role in telomere length 

regulation in neuroblastoma.  Neuroblastomas with high telomerase expression are 

clinically aggressive and have poor outcomes (514, 515).  High telomerase expression is 

also associated with MYCN amplified tumors (453).  Of 40 neuroblastoma cell lines, four 

lacked telomerase activity, had elongated telomeres and lacked MYCN amplification, 

suggesting they had an ALT-based telomere maintenance mechanism (516).  A study 

found that neuroblastomas without MYCN amplification but with poor survival and 

increased telomere length, to also have APBs; this suggests the presence of an ALT 

mechanism in these tumors (451).  A study of 102 neuroblastomas detected hTERT 

expression in 99 tumors and the ALT mechanism in 60 tumors, 20 of which also had 

hTERT expression; tumors with both ALT mechanism and telomerase had significantly 

reduced overall survival compared to solely the presence of ALT or high hTERT 

expression (175). 

 

1.6.  Thesis Rationale, Hypotheses and Objectives 

 

1.6.1.  Rationale 

 

 Nuclear disorganization is a feature of cancer cells.  3D telomere organization has 

been found to be altered in cancer cells compared to normal cells (203).  3D telomere 
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organization has also been able to distinguish multiple myeloma from its precursor stage 

(262), subgroups of glioblastoma with differing patient survival (257), and recurrent 

compared to non-recurrent Hodgkin’s lymphomas at diagnosis (517).  Mouse PCT is a 

unique model of cancer because it has different latency periods depending on the method 

of induction (382, 399).  This allows an aggressive (fast-onset PCT) and non-aggressive 

(slow-onset PCT) form of the same tumor to be studied.  Therefore we examined whether 

there are differences in the 3D telomere organization of fast- compared to slow-onset 

PCTs, and normal mouse lymphocytes.  This study is described in Chapter 3. 

 

 It has been proposed that tumors have chromosome-specific protective 

mechanisms that maintain or lengthen the telomeres of specific chromosomes, which 

contain key regions to the pathogenesis of the cancer (247, 249).  However, the link 

between uniquely lengthened telomeres on a chromosome that is important to 

tumorigenesis has not been identified.  The sole chromosome aberration found in fast-

onset mouse PCT is the duplication of cytoband 11E2 (402).  Fast-onset PCTs induced in 

T38HxBALB/c with rcpT(X;11) mice have a tiny T(X;11) translocation chromosome that 

contains only cytoband 11E2 (402).  This creates a unique opportunity to study the 11E2 

region, which is necessary for fast-onset PCT development.  Therefore we examined 

whether the T(X;11) chromosome has chromosome-specific protected telomeres.  This 

study is also described in Chapter 3. 

 

 The syntenic region to mouse cytoband 11E2 is human cytoband 17q25.  The 

most frequent chromosome aberration in neuroblastoma is the gain of chromosome arm 
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17q (415-417), which is a poor prognostic indicator (418, 419, 421, 422).  MYCN 

amplification and high MYCN expression are also predictors of poor prognosis in 

neuroblastoma (442, 443).  As cytoband 11E2 is duplicated in aggressive fast-onset 

mouse PCTs, we investigated whether copy number of cytoband 17q25 is increased in 

aggressive MYCN amplified, and high MYCN-expressing, neuroblastoma patient 

samples.  This study is described in Chapter 4. 

 

 The location of chromosomes in the interphase nucleus is non-random (36-38, 

518) and influences gene transcription with the nuclear interior associated with higher 

rates of transcription compared to the periphery (73, 84, 85).  The position of CTs has 

been found to be altered with tumorigenesis (36, 46-49).  Cytoband 11E2 was found in a 

more central nuclear location in fast- compared to slow-onset PCTs (Alexandra Kuzyk, 

unpublished results).  This supports our finding of six genes on cytoband 11E2 being 

exclusively overexpressed in fast-onset PCTs (Sabine Mai, unpublished results).  We 

studied whether cytoband 17q25 was associated with a more central nuclear location in 

MYCN amplified compared to non-amplified neuroblastoma patient samples.  We also 

investigated whether MYCN overexpression could influence the nuclear position of 

cytoband 17q25 in two neuroblastoma cell lines.  This study is also described in Chapter 

4.	

 

 Studies of telomere length in neuroblastoma have been inconclusive as to whether 

short or long telomeres are associated with poor patient prognosis (451-453).  3D 

telomere organization has been illustrated as a diagnostic and prognostic biomarker in 
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multiple cancers (254, 257, 260).  We investigated whether 3D telomere organization 

could identify subgroups of neuroblastomas with unique clinical characteristics.  We then 

compared the groups identified by telomere analysis with current classification systems 

used to predict neuroblastoma prognosis.  We also investigated whether MYCN 

overexpression could alter telomere organization in two neuroblastoma cell lines.  This 

study is described in Chapter 5. 

 

1.6.2.  Hypothesis 

 

We hypothesize that there is a close functional relationship between MYCC (and MYCN) 

expression and the 3D nuclear organization of telomeres and chromosomal sub-regions in 

mouse plasmacytoma and human neuroblastoma. 

Sub-hypotheses: 

1. Fast- and slow-onset mouse PCTs, and normal mouse lymphocytes, have unique 

3D telomere organization. 

2. Cytoband 11E2 exhibits chromosome-specific protected telomeres in fast-onset 

mouse PCTs. 

3. Cytoband 17q25 has an increased copy number in MYCN amplified compared to 

non-amplified neuroblastomas. 

4. The nuclear location of cytoband 17q25 is altered and driven by MYCN in MYCN 

amplified compared to non-amplified neuroblastomas. 

5. 3D telomere organization in neuroblastoma identifies clinically relevant tumor 

subgroups and is altered by MYCN overexpression. 
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1.6.3.  Objectives 

 

The objectives of this thesis are: 

1. To determine the 3D telomere organization of fast- and slow-onset PCTs, 

and normal mouse lymphocytes. 

2.  To determine the telomere length of chromosome T(X;11) in fast-onset 

PCTs. 

3. To determine the copy number of cytoband 17q25 in MYCN amplified 

compared to non-amplified neuroblastomas. 

4. To determine the nuclear location of cytoband 17q25 in MYCN amplified 

compared to non-amplified neuroblastomas and the relationship of 17q25 

nuclear location to MYCN expression. 

5. To determine the 3D telomere organization of a cohort of neuroblastomas 

and the relationship of telomere organization to MYCN expression. 
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Chapter 2: 

Selected Telomere Length Changes and Aberrant Three-dimensional 

Nuclear Telomere Organization during Mouse Plasmacytomas 

 

Part of this chapter was published in: 

 

Kuzyk A1 and Mai S1.  (2012).  Selected telomere length changes and aberrant three-

dimensional nuclear telomere organization during fast-onset mouse plasmacytomas.  

Neoplasia.  14(4):  344 – 51.     

 

1Manitoba Institute of Cell Biology, Department of Biochemistry and Medical Genetics, 

The University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba, Canada 

 

Running Title:  Telomeres in Mouse Plasmacytoma 

 

Key Words:  telomere, 3D nucleus, genomic instability, mouse plasmacytoma 

 

Contributions:  Alexandra Kuzyk contributed to study design, performed the research, 

analyzed the data and wrote the manuscript.  Sabine Mai designed the study and critically 

reviewed the manuscript. 
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2.1.  Abstract 

 

Mouse PCT can develop within 45 days when induced by a v-abl/myc replication-

deficient retrovirus, in contrast to within 300 days when induced with pristane only.  

Fast-onset PCT development is always associated with trisomy of cytoband E2 of mouse 

chromosome 11.  Trisomy of 11E2 was identified as the sole aberration in all fast-onset 

mouse PCTs in [T38HxBALB/c]N congenic mice, with a rcpT between chromosome X 

and 11 (rcpT(X;11)).  Using this mouse model, we have now examined the overall and 

individual telomere lengths in fast- and slow-onset PCTs compared with normal B cells 

using 3D Q-FISH of telomeres.  We found fast-onset PCTs to have a significantly 

different 3D telomere profile, compared with slow-onset PCTs and primary B cells of 

wild-type littermates with and without rcpT(X;11) (P < 0.0001 for all comparisons).  Our 

data also indicate that in fast-onset PCTs the T(X;11) chromosome carrying 11E2 is the 

only chromosome with telomere lengthening (P = 4 x 10-16).  This trend is not seen for 

the T(X;11) chromosome in control [T38HxBALB/c]N mice with the rcpT(X;11).  This 

finding supports the concept of individual telomere lengthening of chromosomes that are 

functionally important for the tumorigenic process. 

 

2.2.  Introduction 

 

 Telomeres are DNA-protein structures at the ends of mammalian linear 

chromosomes.  Telomeres shorten with each cycle of cell division (128, 519), and once 

they reach a critically short length, in a primary cell, this cell will normally undergo 
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senescence (137, 520, 521). Therefore, rapidly dividing cells, such as stem and tumor 

cells, or cells surviving “crisis”, often activate telomere lengthening mechanisms to 

ensure their replicative potential (522-525). Approximately 85% of tumor cells use 

telomerase, a reverse transcriptase with an RNA template, to add telomeric repeats to the 

3′ end of parental DNA (526, 527). However, not all tumor cells with elevated telomerase 

have long telomeres (135). Approximately 15% of tumor cells use the alternative 

lengthening of telomeres mechanisms to lengthen telomeres through cycles of 

homologous recombination (156, 159, 528, 529). 

 

Telomere regulation plays a critical role in genome instability and tumorigenesis 

(530-532). Critically short telomeres and uncapped telomeres can trigger a series of 

events that lead to genomic instability and include dynamic chromosome structure and 

number abnormalities (533, 534). Dysfunctional telomeres can cause the fusion of sister 

chromatids, or the fusion of neighboring chromosomes, leading to the formation of 

anaphase bridges (535). These bridges break as the centromeres are pulled apart (so-

called BFB cycles), which results in unbalanced translocations and terminal deletions in 

the daughter cells (523). The repetitive nature of such aberrant genome remodeling cycles 

creates ongoing rearrangements, aneuploidy and polyploidy, all of which are commonly 

found in tumor cells, especially in tumors with complex karyotypes and high levels of 

cell-to-cell heterogeneity (46, 49, 113, 186, 536). However, these cycles will end if a new 

telomere is acquired, usually through the cell's activation of telomere lengthening 

pathways. 
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Most cancer studies reported in the literature show mean telomere shortening 

(537-539), but few studies have measured individual telomere lengths. Quantitation of 

telomere length using a telomeric PNA probe was done for the first time in 1996 by 

Lansdorp et al. (197). Chromosome-specific features were proposed to control telomere 

length because particular telomere lengths were associated with specific chromosomes 

(200). Telomeres on specific chromosome arms were also found to have interallelic 

differences through the use of STELA, a polymerase chain reaction-based technique 

(195, 196). Chromosome-specific telomere length changes have been identified in 

esophageal cancer (235), CML (247, 249), and breast cancer (226). These findings in 

tumor cells have led to the hypothesis that there may be chromosome-specific protective 

factors leading to lengthening of certain telomeres on chromosomes “key” to the 

pathogenesis of the cancer (247, 249); however, the connection between a chromosome 

known to be critical for tumorigenesis and uniquely lengthened telomeres has yet to be 

made. 

 

Mouse PCT is a B-cell lineage tumor and the mouse model for human Burkitt 

lymphoma because they both result from MYC activating chromosomal translocations 

(391) and are cytogenetically identical. Slow-onset mouse PCTs are induced with solely 

IP injections of pristane, harbor MYC/Ig translocations and develop within 300 days.   

Fast-onset mouse PCTs, which can develop within 45 days, are induced with v-abl/myc, 

which generates constitutive retroviral MYC expression in infected preB lymphocytes 

(399). A characteristic of these tumors is the presence of chromosome 11 aberrations, 

which are the only chromosomal change in fast-onset PCTs (399). The generation of a 



	 52 

mouse model with a rcpT between chromosomes 11 and X, congenic [T38HxBALB/c]N 

with rcpT(X;11) mice, allowed us to narrow down the affected region on chromosome 

11. This rcpT generates a very small T(X;11) translocation chromosome with only 

cytoband E2 and part of E1 (Figure 2-1). The chromosome 11 aberration found in all fast-

onset PCTs was determined to be trisomy of the 11E2 cytoband, which contains all the 

genes necessary for the accelerated tumorigenesis of these tumors (402). 

 

 

Figure 2-1.  Graphical Illustration of the Chromosomal Constitution of 

Chromosomes 11 in the [T38HxBALB/c]N Backcross Generation Mouse. 

Chromosome 11 with the breakpoint T38H in the telomeric cytoband 11E1 (brown), 
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whereas the breakpoint in Chr X is located in the centromeric A2 band. The cytoband 

11E2 is red. The reciprocally translocated T(11;X) chromosome resulted from the fusion 

of the ABCD bands of Chr 11 proximal to the T38H breakpoint with the centromeric A2 

band of Chr X. The T(X;11) chromosome was generated by the translocation of the X-

derived A2 subband onto the 11E1 cytoband of Chr 11. The final, definitive version of 

this figure has been published in Wiener et al. (2010) (402) SAGE Publications Ltd. All 

rights reserved. © http://online.sagepub.com.proxy1.lib.umanitoba.ca. 

 

We examined for the first time in mouse PCT, whether telomere dysfunction has a 

role in this tumor's development. We analyzed both the 3D telomere organization and 

potential 2D telomere length changes in the [T38HxBALB/c]N mouse model, which 

could have been difficult because of the long telomeres in inbred mice (537, 540, 541). 

However, we present the consistent finding, in both 2D and 3D experiments, of more 

very short telomeres in the fast-onset PCT cells compared with the control 

[T38HxBALB/c]N mice, with or without the rcpT(X;11) translocation.  Compared to the 

wild-type mice, fast-onset PCTs had significantly greater numbers of telomeres and 

telomeric aggregates per cell, percentage of cells with aggregates and nuclear volume.  

Fast-onset PCTs also have a significantly different 3D telomere organization than slow-

onset PCTs, with more telomeric aggregates (P < 0.0001).  Our unique rcpT mouse 

model allows us to study the metaphase telomere length of the T(X;11) translocation 

chromosome for chromosome-specific telomere length changes that may indicate a 

protective mechanism. We find the T(X;11) translocation chromosome, which carries the 

11E2 band critical for fast-onset PCT development (402), has significantly longer 
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telomeres in the fast-onset PCT compared with the wild-type rcpT(X:11) mice. 

Therefore, we demonstrate, for the first time, a connection between a chromosome key to 

a tumor's development and chromosome-specific telomere lengthening. This finding may 

provide significant support for a chromosome-specific protective mechanism used by 

tumor cells. 

 

2.3.  Materials and Methods 

 

2.3.1.  Cell Harvest, Culture, and Fixation 

 

Primary lymphocytes were harvested from the spleens of congenic 

[T38HxBALB/c]N wild-type and [T38HxBALB/c]N with rcpT (X;11) mice (402). 

Primary PCT cells were harvested from the ascites of fast- and slow-onset PCT mice 

(382). All procedures were done in accordance with Animal Protocol 11-019 as approved 

by Central Animal Care Services, University of Manitoba (Winnipeg, Manitoba, 

Canada). For metaphase preparation of wild-type [T38HxBALB/c]N mice, with or 

without rcpT(X;11), lymphocytes were cultured short term (48–72 hours) in RPMI 1640 

with 10% fetal bovine serum, 1% l-glutamine, 1% sodium pyruvate, 1% penicillin-

streptomycin, and 0.1% β-mercaptoethanol (Invitrogen/Gibco, Burlington, Ontario, 

Canada) with lipopolysaccharide at a concentration of 10 µg/ml at 37°C in a humidified 

atmosphere and 5% CO2. Cells were maintained at a density of around 106 cells/ml. 

 

2.3.2.  2D Chromosome and 3D Nuclei Fixation 
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Primary cells from the mice or cell culture were spun down at 200g for 10 

minutes at room temperature. For 3D fixation (46, 250, 345), the pellet was resuspended 

in 5 ml of 0.075 M KCl for 10 minutes at room temperature and then overlaid with 1 ml 

of fresh 3:1 methanol-to-acetic acid fixative and inverted gently. Twice more, the cells 

were spun down at 200g for 10 minutes at room temperature and resuspended in 2 ml of 

fixative. Thirty microliters of this solution was gently placed on a slide, and the 

remainder was stored at -20°C. For 2D fixation, the initial pellet was resuspended in 5 ml 

of 0.075 M KCl for 30 minutes at room temperature, spun down at 200g for 10 minutes at 

room temperature and then the pellet underwent drop fixation with 3:1 methanol-to-acetic 

acid fixative (542). For statistical significance, at least 20 metaphases with non-

overlapping chromosomes and 30 nuclei were examined in three independent 

experiments for each mouse type (46, 49). 

 

2.3.3.  Telomere Q-FISH 

 

Telomere Q-FISH was performed on both 2D metaphases and 3D interphase 

nuclei with a PNA probe for telomeres purchased from DAKO (Glostrup, Denmark). In 

brief for the 2D telomere hybridization, the slides were fixed in fresh 3.7% 

formaldehyde/1 x phosphate-buffered saline (PBS), washed in 1x PBS, followed by a 

pepsin/HCl treatment and a second fixation. After ethanol dehydrations, the telomere 

PNA probe was applied, sealed onto the slide with rubber cement, and underwent a 3-

minute denaturation at 80°C and 2-hour hybridization at 30°C using a Hybrite (Vysis; 

Abbott Diagnostics, Des Plains, IL). Then the slides were washed in 70% formamide/10 
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mM Tris at pH 7.4, 1x PBS, 0.1x SSC at 55°C, and 2x SSC/0.05% Tween 20. The cells 

were then counterstained with 4′6′-diamidino-2-phenylindole (DAPI), dehydrated, and 

mounted in Vectashield (Vector Laboratories, Burlington, Ontario, Canada). For the 3D 

telomere hybridization, briefly, the slides were fixed in 3.7% formaldehyde/1x PBS, 

incubated in 0.5% Triton X, followed by an hour incubation in glycerol and freeze-thaw 

treatment with liquid nitrogen. After 1x PBS washed and a HCl incubation, the slides 

were equilibrated in 70% formamide/2x SSC at pH 7.0. Then the slides underwent the 

same denaturation and hybridization, subsequent washes, staining, and mounting 

procedure as in the 2D fixation protocol. 

  

In 3D, very short telomeres are defined as signals at a relative fluorescent 

intensity from 0 to 5,000 and short telomeres are defined as signals at a relative 

fluorescent intensity from 5,000 to 20,000. In 2D, very short telomeres are defined as 

signals at a relative fluorescent intensity from 0 to 30,000 and short telomeres are defined 

as signals at a relative fluorescent intensity from 30,000 to 50,000.   

 

Telomeric aggregates are telomeres that are found in close proximity and cannot 

be further resolved as separate entities at an optical resolution of 200 nm (203).  The a/c 

ratio is a measure of the spherical nature of the telomere distribution, with higher ratio 

indicating more cells in the G2/M phase and a higher overall level of cell proliferation 

(203, 250). 

 

2.3.4.  Image Acquisition 
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2D and 3D imaging and acquisition were performed using an AxioImager Z2 

microscope (Carl Zeiss, Toronto, Canada), an AxioCam HR charge-coupled device (Carl 

Zeiss), and Zeiss AxioVision 4.8 software (Carl Zeiss). A 63x/1.4 oil objective lens (Carl 

Zeiss) was used with a DAPI filter, for detection of nuclear DNA staining, and a cyanine 

3 filter, for detection of the telomere PNA probe signals. All metaphases images were 

taken at the same exposure time, and tricolor beads were used for standardization; the 

same protocol was used for all imaging of all interphase nuclei. For 3D imaging, 80 z 

stacks at 200 nm each, with x, y = 102 nm, z = 200 nm were acquired. The acquired 

images were deconvolved using the constrained iterative algorithm (205). To 

quantitatively analyze the metaphase telomere signals, Case Data Manager 4.0 software 

(Applied Spectral Imaging, Migdal HaEmek, Israel) for PC was used. TeloView software 

(203) was used to quantitatively analyze the 3D interphase telomere signals. 

 

2.3.5.  Statistical Analysis 

 

Statistical analysis was done to compare the number of interphase telomeric 

signals at a certain intensity, using bins at an interval of 1000, from 0 to 225,000. An 

analysis was also done on the number of metaphase telomere signals at a certain 

intensity, using bins at an interval of 5000, from 0 to 195,000. Using a χ2 test, the 

telomere signal distribution was compared between the fast- and slow-onset PCTs and the 

wild-type mice, with and without rcpT(X;11).  Analyses were done with both one 

threshold set at the 50th percentile or median, and two thresholds set at the 25th and 75th 
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percentiles.  χ2 analysis was also used to compare the percentage of very short telomeres 

between the mouse types.  Analysis of variance (ANOVA) with Tukey’s multiple 

comparison test, was used to compare the number of telomeres, number of telomeric 

aggregates, percentage of aggregates, a/c ratio and nuclear volume between mouse types.  

P < 0.01 is considered significant.   

 

Statistical analysis was also done to compare the telomere length of translocation 

chromosome T(X;11) to the telomere length of all other chromosomes. This was done 

using a Kolmogorov-Smirnov test in both the fast-onset PCT and the [T38HxBALB/c]N 

with rcpT(X;11) wild-type mice. P < 0.001 is considered significant. 

 

2.4.  Results 

 

2.4.1.  3D Telomere Organization 

 

To investigate the 3D telomere organization in wild-type mice, with or without 

rcpT(X;11), and in fast- and slow-onset PCTs, 3D Q-FISH was performed with a 

telomere PNA probe. This approach preserves the 3D nuclear architecture of the cells and 

specifically labels interphase telomeres in the whole cell population. After acquisition 

and constrained iterative deconvolution, all 3D interphase nuclei were analyzed with 

TeloView to determine the number of telomeric signals per cell and their intensity. The 

signal intensity correlates to the length of the telomere (202).  The number of telomeric 
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aggregates per cell, the percentage of cells with aggregates, the a/c ratio and the nuclear 

volume of each cell were also determined. 

 

Figure 2-2 (A – D) shows a representative example of the 3D telomere 

organization in a primary lymphocyte interphase nucleus from the [T38HxBALB/c]N 

wild-type and [T38HxBALB/c]N with rcpT(X;11) control mice and a primary 

plasmacytoma cell nucleus from the fast- and slow-onset PCT mice. The telomeric 

signals were visibly smaller in the fast-onset PCT nuclei than in controls and slow-onset 

PCTs. The results from three independent experiments for each mouse type were 

combined, and the telomeric profiles of the three mice were compared. Figure 2-2 E is a 

scatterplot that illustrates the number of telomere signals at a specific intensity. The 

distribution of telomeres is shown for intensities in the range of 0 to 140,000.  As 

expected, 3D nuclei of the wild-type mice, whether carrying the rcpT(X;11) or not, have 

a similar telomere profile and are not significantly different, P = 0.4 (as determined by a 

χ2 test with P < 0.01 considered significant). The fast-onset PCT nuclei have many more 

low-intensity or very short telomeres (Materials and Methods), and their telomere profile 

is significantly different from both wild-type mice, with or without rcpT(X;11) (P < 

0.0001 for both comparisons), and slow-onset PCTs (P < 0.01).   
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Figure 2-2.  3D Telomere Organization in Interphase Nuclei of PCT and Wild-type 

Mice. (A) Primary lymphocyte nucleus from the [T38HxBALB/c]N wild-type mouse. 

(B) Primary lymphocyte nucleus from the [T38HxBALB/c]N with rcpT(X;11) mouse. 
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(C) Plasmacytoma cell nucleus from the fast-onset PCT mouse.  (D) Plasmacytoma cell 

nucleus from the slow-onset PCT mouse. (E) Comparison of the telomeric profile of the 

four mouse types. The intensity correlates to the telomere length. The fast-onset PCT 

nuclei (black) have more very short telomeres and a significantly different telomere 

length distribution than the slow-onset PCT (green) (P < 0.01), [T38HxBALB/c]N wild-

type (red) and the [T38HxBALB/c]N with rcpT(X;11) (blue) mice (P < 0.0001 for both 

comparisons). 

 

There was a significant difference amongst the four mouse types for each 

measured telomere parameter (Table 2-1) (P < 0.0001).  Fast-onset PCTs had the highest 

number of telomeres per cell (89.50), followed by slow-onset PCTs (64.14).  The wild-

type mice had the lowest number of telomeres per cell (37.27 and 38.79), and in a pair-

wise comparison, there was no significant difference between the two types of wild-type 

mice.  Fast-onset PCTs had the highest number of aggregates per cell (11.14), followed 

by slow-onset PCTs (6.71).  The wild-type mice had the lowest number of aggregates per 

cell (4.46 and 4.27), and in a pair-wise comparison, there was no significant difference 

between the two types of wild-type mice.  In both fast- and slow-onset PCTs, 100% of 

cells contained telomeric aggregates; both types of control mice had a similar percentage 

of cells with aggregates (94% and 92%).  The a/c ratio was significantly greater in the 

fast- and slow-onset PCTs (3.15 and 2.12, respectively; P < 0.0001 for all comparisons), 

compared to the a/c ratio in the control mice (1.30 and 1.31).  The nuclear volume was 

also significantly greater in the fast- and slow-onset PCTs (1072 µ3 and 1404 µ3; P < 
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0.0001 for all comparisons), compared to the nuclear volume in the control mice (392.5 

µ3 and 443.1 µ3). 

 

 

 

2.4.2.  2D Telomere Length 

 

To determine the length of individual telomeres on all chromosomes in wild-type 

mice, with or without rcpT(X;11), and in fast-onset PCTs of the same mice, 2D Q-FISH 

was done with a telomere PNA probe. This method hybridizes metaphases with a specific 

probe for labeling all telomeric signals. After acquisition, all metaphase spreads were 

[T38HxBALB/c]N 
Wild-type

[T38HxBALB/c]N 
with rcpT(X;11)

Fast-
onset 
PCT

Slow-
onset 
PCT

P-value 
Between 

Subgroupsa

Average 
Number of 
Telomeres 

per Cell

37.27 38.79 89.5 64.14 <0.0001

Average 
Number of 
Aggregates 

per Cell

4.46 4.27 11.14 6.71 <0.0001

Average 
Percentage of 

Cells with 
Aggregates 

(%)

94 92 100 100 <0.0001

Average a/c 
Ratio

1.3 1.31 3.15 2.12 <0.0001

Average 
Nuclear 
Volume 
(µm3)

392.5 443.1 1072 1404 <0.0001

Table 2-1.  Statistical Analysis of Telomere Parameters by Mouse Type

aP-value determined by one-way ANOVA
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analyzed with Case Data Manager 4.0 to determine the intensity of each telomere signal, 

which correlates to the length of the telomere (202). 

 

Figure 2-3 (A – C) illustrates an example of the telomeric signals in a metaphase 

spread from the [T38HxBALB/c]N wild-type and [T38HxBALB/c]N with rcpT(X;11) 

control mice and in fast-onset PCTs. As indicated with a circle, the small T(X;11) 

translocation chromosome is easy to identify based on size alone (see also Figure 2-1). 

The results from three independent experiments for each mouse type were combined, and 

the telomere lengths of the three mice were compared. Figure 2-3 D is a scatterplot that 

illustrates the percentage of telomere signals at a specific intensity. The distribution of 

telomeres is shown for intensities in the range of 0 to 160,000. As in the 3D interphase 

study, chromosomes from wild-type mice, with or without rcpT(X;11), have a similar 

distribution of telomere lengths and are not significantly different, P = 1.0 (as determined 

by a χ2 test with P < 0.01 considered significant). The chromosomes of fast-onset PCTs 

have more lower intensity or very short telomeres (see Materials and Methods), and their 

telomere length distribution is significantly different from [T38HxBALB/c]N mice, 

carrying rcpT(X;11) or not (P < 0.0001 for both mouse types). 
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Figure 2-3.  2D Telomere Length in Metaphase Chromosomes of PCT and Wild-

type Mice. (A) Metaphase spread from the [T38HxBALB/c]N wild-type mouse. (B) 

Metaphase spread from the [T38HxBALB/c]N with rcpT(X;11) mouse. The translocation 

chromosome T(X;11) is circled and enlarged. (C) Metaphase spread from the fast-onset 

PCT mouse. The translocation chromosome T(X;11) is circled and enlarged. Very short 

telomeres are marked with an asterisk. (D) Comparison of the telomeric length 

distribution of the three mouse types. The intensity correlates to the telomere length. The 

fast-onset PCT nuclei (black) have more very short telomeres and a significantly different 

telomere profile than the [T38HxBALB/c]N wild-type (red) and the [T38HxBALB/c]N 

with rcpT(X;11) (blue) mouse (P < 0.0001 for both mouse types). 
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The graphs in Figure 2-4 (A and B) compare the telomere length of translocation 

chromosome T(X;11) to the telomere length of the rest of the chromosomes for the 

[T38HxBALB/c]N with rcpT(X;11) (Figure 2-4 A) and fast-onset PCT mice (Figure 2-4 

B). In the tumor-free control mouse, [T38HxBALB/c]N with rcpT(X;11), the telomeres 

of the T(X;11) translocation chromosome do not have a significantly different length 

from those of the rest of the chromosomes, P = 0.006 (as determined by a Kolmogorov-

Smirnov test with P < 0.001 considered significant). However, in the fast-onset PCT 

mouse, the telomeres of the T(X;11) translocation chromosome, carrying 11E2, are 

significantly longer than those of the rest of the chromosomes (P = 4 x 10-16). 

 

 

Figure 2-4.  Comparison of the Length of the T(X;11) Translocation Chromosome in 

PCT and Wild-type Mice. (A) In the [T38HxBALB/c]N with rcpT(X;11) mouse, 

telomeres of the T(X;11) translocation chromosome (black) are not significantly longer 

than those of the other chromosomes (gray) (P = 0.006). (B) In the fast-onset PCT 

mouse, the telomeres of the T(X;11) translocation chromosome (black) are significantly 

longer than the other chromosomes (gray) (P = 4 x 10-16). 
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2.5.  Discussion 

 

Although short telomeres are a common finding in many tumor cells, 3D telomere 

organization and telomere length have not been previously examined in mouse PCT. Our 

mouse model offers a unique opportunity to study chromosome-specific telomere length 

regulation because its rcpT places only the genes necessary for accelerated tumorigenesis 

on a single easily identifiable chromosome, the T(X:11) translocation chromosome (402). 

Because we also studied control wild-type mice, with and without the rcpT(X;11) 

translocation, we are able to make conclusions about tumor-specific telomere changes.  

 

Inbred mice can pose a problem for telomere studies because they normally have 

long telomeres (540, 541).  When comparing generations of telomerase knockout mice, 

significant decreases in telomere size were not seen until generation six (537). However, 

we present similar results regarding significant alterations in telomere length within the 

identical mouse strain/generation. Using two complementary approaches, 2D and 3D 

telomere Q-FISH, we identified significant telomere length changes during PCT 

development.  With a 3D interphase nuclei study, features of every cell can be analyzed, 

whereas only metaphases can be examined in a 2D study.  Also, multiple telomeres 

parameters in addition to telomere length can be measured with 3D compared to 2D 

telomere FISH.  Therefore, a 3D analysis is more exact and provides more information, 

and although it is complemented by the results of a 2D study, it cannot be replaced by 

solely a 2D analysis.   
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We found that the 3D interphase nuclei of fast-onset PCT mice had visibly and 

significantly shorter telomeres compared with the slow-onset PCT and wild-type mice, 

with or without the rcpT(X;11) translocation (P < 0.0001; Figure 2-2).  There was a 

significant difference in the distribution of telomere lengths between the fast- and slow-

onset PCTs (P < 0.01), and between the PCT and wild-type mice (P < 0.0001 for both 

comparisons). PCT mice had a significantly greater number of telomeres and telomeric 

aggregates per cell, and percentage of cells with aggregates (P < 0.0001).  Telomeric 

aggregates have been found in greater numbers in tumor cells and also in increasing 

number with tumor progression (254, 260, 262).  We also determined that there were 

more short telomeres on the metaphase chromosomes of fast-onset PCT mice than wild-

type mice, with a significantly difference in their telomere length distribution (P < 0.0001 

for both wild-type mice; Figure 2-3). By examining the telomeres of the T(X;11) 

translocation chromosome compared with all other telomeres, we identified that T(X;11) 

telomeres were significantly longer than telomeres on all other chromosomes in the fast-

onset PCT cells (P = 4 x 10-16), but this finding was not illustrated in the wild-type mice 

with rcpT(X;11) (P = 0.006; Figure 2-4). 

 

It is now apparent that gene expression depends on more than the underlying 

DNA sequence. Therefore, it is important to study the nuclear architecture of cells, such 

as telomeres, because this may lead to new diagnostic and treatment options. Multiple 

studies have identified changes in the 3D telomere organization in disease states (186, 

207, 250, 254, 257, 543). For example, MDS and AML are part of the same disease 

spectrum because some cases of MDS will transform into AML, but they have unique 
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telomere profiles (260).  Unique 3D telomeric signatures have been identified for normal 

versus tumor cells, which can aid in the diagnosis of patients (207). 

 

Our findings in fast-onset mouse PCTs identify a tumor for which there is a 

unique 3D telomere profile compared with control cells (Figure 2-2 E). More short 

telomeres were observed in the fast-onset PCT mouse compared with the control mice. 

This is consistent with our mouse model because a fast-developing tumor, with 45 days 

of latency period, exhibits a high rate of cell division and consequently displays enhanced 

telomere shortening, as we observed in this study.  Also the a/c ratio was highest in fast-

onset PCTs, indicating more cells at the G2/M boundary and therefore an overall higher 

level of cell proliferation. 

 

Telomerase and alternative lengthening of telomeres, the mechanisms by which 

tumor cells lengthen telomeres to avoid cell senescence from critically short telomeres, 

are well described. However, chromosome-specific telomere alterations are not as well 

understood. In 2009, Samassekou et al. identified chromosome arms in CML that 

consistently had longer telomeres (18p, Xp, 1p, and 14p) and ones that consistently had 

shorter telomeres (20q, 21p, 21q, and 9q) than the rest of the chromosomes (247). In their 

most recent study, Samassekou et al. found that Xp and 5p had significantly longer 

telomeres at a higher frequency in CML than in healthy cells (249). They propose that the 

presence of only one X chromosome may drive the cell to protect it from telomere 

shortening. They also suggest that because the gene encoding the reverse transcriptase 

component of telomerase is located on 5p, the cell may lengthen its telomeres to regulate 
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the gene. These findings have led them to propose that tumor cells may protect key genes 

responsible for their tumorigenesis through a chromosome-specific telomere lengthening 

mechanism. 

 

Our study supports this hypothesis and goes one step further to prove its potential 

validity. In fast-onset PCTs, the T(X;11) translocation chromosome contains all the genes 

necessary for the tumor's accelerated development in cytoband 11E2 (402), and the 

trisomy of 11E2 represents the only aberration; therefore, it is probably the most 

important chromosome to protect. Our findings indicate that the T(X;11) translocation 

chromosome has significantly longer telomeres than all other chromosomes in the fast-

onset PCT cells but not in B cells of the tumor-free [T38HxBALB/c]N mice with rcpT 

(X:11). Therefore, these findings illustrate a chromosome-specific protective mechanism 

and suggest a functional tumor-dependent requirement for this selective protection.  A 

deeper understanding of the mechanism behind telomere-specific protection is needed.  

The multiple possibilities include: maintenance of a specific telomere length while all 

others are shortened; lengthening of a specific telomere after all telomeres were initially 

shortened; or lengthening of a specific telomere without change in the length of other 

telomeres.  Whether the selective-protection functions via special binding of shelterin 

proteins or a chromosome-specific ALT or telomerase mechanism, is also not known. 

  

Mouse PCT is cytogenetically identical to human Burkitt lymphoma and therefore 

is an excellent mouse model of the cancer. The genes within mouse chromosome 11E2 

are syntenic to rat chromosome 10q32 (544) and human chromosome 17q25 (545). This 
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region is duplicated, translocated and amplified in many lymphoid and non-lymphoid 

tumor types such as human AML, neuroblastoma, breast, ovarian, and thyroid cancers 

(424, 545-548). Therefore, the chromosome-specific telomere length increase observed 

on translocation chromosome T(X;11) in fast-onset mouse PCT may also occur on the 

human chromosome 17 due to the functional relevance of 17q25 for tumor development 

and warrants further investigation in an independent study. 

 

To examine whether telomere dysfunction has an important role in mouse PCT, 

we used the techniques of 2D and 3D telomere Q-FISH to study the tumorigenic changes 

associated with mouse PCT in interphase telomere organization and metaphase telomere 

length. We found selective telomere lengthening and aberrant 3D telomere organization 

in the fast-onset PCTs.  Therefore, we provide significant support for a chromosome-

specific protective mechanism that has a functional tumor-dependent requirement for its 

selective protection. 
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Prologue to Chapter 3 and 4 
 
 

 After examining the 3D nuclear chromosome territory and telomere organization 

in a mouse PCT model, we wanted to continue studying nuclear disorganization but in a 

human cancer context.  We choose to use human neuroblastoma for multiple reasons.  

Firstly, we had access to neuroblastoma patient samples at our home institution and there 

was potential to obtain a neuroblastoma tumor microarray from COG.  We also had 

access to multiple neuroblastoma cell lines for mechanistic studies.  Secondly, both PCT 

and neuroblastoma have clear aggressive and non-aggressive forms: fast- and slow-onset 

PCT, and MYCN amplified and non-amplified neuroblastoma.  Therefore our goal of 

determining differences in nuclear organization between aggressive and non-aggressive 

forms of a cancer could be carried forward from our mouse model to the human context. 

 

Lastly, there are multiple similarities in the pathogenesis of PCT and 

neuroblastoma.  First of all, both tumors have additional copies of the same chromosome 

region.  The sole aberration in fast- compared to slow-onset PCT is the duplication of 

cytoband 11E2.  The human syntenic region to mouse cytoband 11E2 is 17q25; cytoband 

17q25 is found on chromosome arm 17q, which is the most frequent chromosome 

aberration in neuroblastoma and an independent predictor of poor prognosis.  Secondly, 

both cancers have deregulation of the MYC family of oncogenes:  MYC in PCT and 

MYCN in neuroblastoma.  

 

 Our studies of 3D chromosome and telomere organization in neuroblastoma are 

described in Chapters 3 and 4, respectively. 
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Chapter 3: 

MYCN Overexpression is Associated with Unbalanced Copy Number 

Gain, Altered Nuclear Location and Overexpression of Chromosome 

Arm 17q Genes in Neuroblastoma Tumors and Cell Lines 
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contributed to data analysis by imaging and determining chromosome 17 copy number in 

half the patient samples.  Christiaan Righolt contributed to software design for data 

analysis.  Shubha Mathur contributed to the research by performing multicolor banding 

(mBANDing) of one cell line.   John Gartner provided the patient samples and their 

clinical characteristics, and critically reviewed the manuscript.  Sabine Mai designed the 

study and critically reviewed the manuscript. 

 

3.1.  Abstract 

 

MYCN amplification and MYCN overexpression are poor prognostic factors in 

neuroblastoma.  Tumors with unbalanced chromosome arm 17q gain are often associated 

with MYCN amplification; however, the relationship between chromosome 17 copy 

number status and MYCN expression is not known.  We investigated the relationship 

between MYCN expression and chromosome 17 copy number, nuclear location, and gene 

expression.  By performing dual-colored FISH on 16 primary neuroblastomas we found 

that those with unbalanced gain of 17q have high MYCN expression, whereas those with 

no gain have medium expression and those with numerical gain have low expression (P < 

0.0001).  We also found the nuclear location of 17q correlates with chromosome 17 copy 

number status:  copies in tumors with unbalanced gain and no gain of chromosome 17 

occupy a more central location than those in tumors with balanced gain (P < 0.0001).  We 

show that a more central nuclear location of 17q coincides with increased expression of 

genes found within this chromosome arm.  To further understand the association between 

MYCN expression and chromosome 17, we overexpressed MYCN in two low-expressing 
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MYCN cell lines, SHEP and GIMEN.  We found that both cell lines had an unbalanced 

gain of chromosome 17q, a more central nuclear location of the region and increased 

expression of the 17q genes.  Therefore, this study indicates, for the first time, a 

functional relationship between MYCN overexpression and the gain of 17q in 

neuroblastoma. 

 

3.2.  Introduction 

 

Neuroblastoma is characterized by both clinical and molecular heterogeneity 

(436, 549).  To determine prognosis and patient management, COG uses a combination 

of factors, including the age at diagnosis, disease stage, histological grade, ploidy and 

MYCN amplification (447).  Because this panel still yields inconsistent results, more 

reliable prognostic biomarkers are needed.  Nuclear organization is important in 

regulating DNA replication, transcription, and the maintenance of DNA structure.  

Nuclear disorganization is a feature of cancer cells, including the altered location of 

chromosomes and parts thereof, and has been proposed as a biomarker for disease 

classification and progression (49, 254, 260, 262).  To our knowledge, nuclear 

disorganization has not been examined in neuroblastoma. 

 

 MYCN amplification occurs in 25 - 30% of neuroblastomas (457) and is a 

powerful biomarker used to predict poor prognosis and tumor aggressiveness (442, 443).  

Multiple studies have reported MYCN protein overexpression also as a poor prognostic 

factor in neuroblastomas (481-484), except one study of solely Stage 3 and 4 single-copy 
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MYCN tumors that found no significant difference in four-year survival between 

neuroblastomas with high compared with low MYCN expression (550).  Valentijn et al. 

(2012) found a 157-gene signature that predicts poor clinical outcome and is associated 

with all MYCN amplified neuroblastomas, as well as a group of neuroblastomas without 

MYCN amplification but with moderate MYCN immunostaining (485).  

 

 The unbalanced gain of 17q is the most frequent chromosome aberration in 

neuroblastoma (415-417) and is an independent prognostic factor of poor outcome (418, 

419, 421, 422).  Theissen et al. (2014) found that neuroblastomas with numerical gain of 

chromosome 17 have a better prognosis compared with those with partial or no gain 

(423), a distinction not made in previous studies (551).  Tumors with partial or no gain of 

chromosome 17 also had very similar gene expression profiles (423).  These findings 

suggest that although neuroblastomas with no gain of chromosome 17 are genetically 

distinct from those with partial chromosome 17 gain, these types of tumors may share 

similar oncogene regulation, such as MYCN, resulting in similar gene expression profiles 

and prognosis.  In accordance with this hypothesis, a study by Godfried et al. (2002) 

found that two genes on chromosome arm 17q, NM23-H1 and NM23-H2, were up-

regulated after MYCN transfection in the low MYCN-expressing SHEP-2 neuroblastoma 

cell line (552). 

 

 The aim of our study was to determine the relationship between MYCN 

expression and unbalanced, numerical and no gain of chromosome 17.  We also 

examined whether the nuclear location of the 17q region correlated with 17q copy 
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number status.  We used immunofluorescence quantification and found that 

neuroblastomas with an unbalanced gain of 17q have high MYCN expression, those with 

no gain of chromosome 17 have medium expression, and tumors with numerical 

chromosome 17 gain have low expression.  We also found a more central nuclear 

location of 17q in neuroblastomas with unbalanced gain and no gain of chromosome 17 

compared with those tumors with numerical gain of chromosome 17.  We showed that 

altered nuclear location and unbalanced gain of 17q are induced with MYCN 

overexpression in low MYCN-expressing cell lines, suggesting for the first time, a 

functional relationship between MYCN and chromosome 17 copy number status in 

neuroblastoma. 

 

3.3.  Materials and Methods 

 

3.3.1.  Cell Lines and Patient Samples 

 

Established neuroblastoma cell lines SHEP and GIMEN were a gift to our 

laboratory from Manfred Schwab (The German Cancer Research Center, Heidelberg, 

Germany).  Cells were cultured in RPMI 1640 with 10% fetal bovine serum, 1% l-

glutamine, 1% sodium pyruvate, and 1% penicillin-streptomycin (Life Technologies Inc., 

Burlington, Ontario, Canada) at 37°C in a humidified atmosphere and 5% CO2.  Tissue 

sections of 16 formalin-fixed paraffin-embedded primary human neuroblastomas and 

patient-matched lymph nodes, 5 µm in thickness, were obtained from the Health Sciences 

Centre (Winnipeg, Manitoba, Canada).  Tumor areas were identified through examination 
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of haematoxylin and eosin stained sections.  The experimenters were blinded as to the 

MYCN amplification status of the cases, with the key held by the pathologist until after 

the experiments and measurements were complete.  This study was approved by 

Pathology Access Committee for Tissue (12-0048), Health Science Centre Research 

Impact committee (2012:187), CancerCare Manitoba Research Resource Impact 

Committee (92-2012), and Research Ethics Board (H2012:391).  

 

3.3.2.  MYCN Transfection of SHEP and GIMEN Neuroblastoma Cell Lines 

 

MYCN pUHD 10-3, a gift to our laboratory from Manfred Schwab, contains the 

entire MYCN coding sequence under the control of an hCMV minimal promoter.  For 

transfection, approximately 6x105 SHEP and 2x105 GIMEN cells were seeded per well in 

a 6-well plate and grown to near confluence.  Twenty-four hours post-seeding, cells were 

co-transfected with TransIT-X2 (MIR6004, Mirus Bio LLC, Madison, WI) and 

pmaxGFP (Lonza, Allendale, NJ) in a ratio of reagent:vector DNA of 2:1, as per the 

company’s protocol.  Cells were cultured in the absence of serum for the first 12 h.  At 15 

h post-transfection, the transfection efficiency was 40%, and the cells were sterile sorted 

by GFP expression.  Cells were put back into culture and harvested at 72 h for 

immunofluorescence, metaphase spreads and 3D nuclei fixation.  

 

3.3.3.  Metaphase Spread Preparation and 3D Nucleus Fixation 
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The cells were harvested from the cultures of SHEP and GIMEN and underwent 

2D and 3D fixation to prepare metaphases and nuclei for immunofluorescence and FISH 

experiments. The 2D chromosome fixation was performed according to our published 

protocol (553). The 3D nuclei fixation was performed according to the protocol published 

by Solovei et al. (2002) (204). 

 

3.3.4.  Immunofluorescence  

 

SHEP and GIMEN cells were cultured on glass coverslips, fixed with 3.7% 

formaldehyde for 10 min, washed three times in 1 x PBS, permeabilized with 0.2% 

TritonX-100 for 12 min, and then washed three times in PBS.  Blocking was performed 

for five min in immunofluorescence buffer (PBS plus 1% bovine serum albumin and 2% 

fetal calf serum) before applying primary antibodies (dilutions described below) and 

incubating at 4°C overnight.  Blocking was performed in immunofluorescence buffer 

before applying secondary antibodies and incubating at room temperature for one hour, 

shaking.  After washing three times with PBS, the cells were counterstained with DAPI 

and mounted in Vectashield (Vector Laboratories, Burlington, Ontario, Canada).  The 

antibodies were diluted as follows:  MYCN, a gift to our laboratory from Manfred 

Schwab and is described in Wenzel et al. (1991) (554), 1/2000; ASPSCR1 

(WH0079058M1, Sigma-Aldrich Canada Co., Oakville, Ontario, Canada) 1/50; FOXK2 

(SAB2100846, Sigma-Aldrich Canada Co.) 1/100; TBCD (14867-1-AP, Proteintech 

Group Inc., Chicago, IL) 1/50; Cy3 goat anti-mouse IgG secondary antibody (A10521, 

Life Technologies Inc.) 1/1000; Alexa Fluor 488 goat anti-rabbit IgG secondary antibody 
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(A-11008, Life Technologies Inc.) 1/1000.  Neuroblastoma tissue samples were 

immunofluorescently stained for MYCN, ASPSCR1, FOXK2 and TBCD according to 

the protocol described by Robertson and Isacke (2011) (555) with the same dilutions 

described for the cell lines.  

  

The slides were imaged using an AxioImager Z2 microscope (Carl Zeiss, 

Toronto, Ontario, Canada), an AxioCam HR charge-coupled device (Carl Zeiss) with a 

63x/1.4 oil objective lens (Carl Zeiss) and DAPI, Cy3 and FITC filters.  Exposure times 

were kept constant between cell lines and between tissue samples to allow for 

quantitative immunofluorescence comparison and analysis of protein expression between 

samples.  The acquired images were quantitatively analyzed using Zeiss AxioVision 4.8 

software (Carl Zeiss), specifically the “Outline Spline tool”, to determine the average 

signal intensity of the antibodies for at least 30 cells per experimental replicate for the 

cell lines and at least 100 cells in each tissue sample.  After subtracting the background 

intensity, we used the following ranges to classify MYCN expression in the tissue 

samples:  low = < 2000 relative fluorescence units (RFU), medium = 2000 – 4999 RFU, 

and high = ≥ 5000 RFU for MYCN.  ASPSCR1, FOXK2, and TBCD expression and 

MYCN expression in the cell lines were categorized as high, medium, or low by visual 

inspection.  Throughout this paper, expression refers to expression of the protein. 

 

3.3.5.  2D and 3D FISH 
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Metaphases and nuclei from the neuroblastoma cell lines underwent FISH with 

chromosome band 17q25.3 and 17p11.2 probes (G100160R-8 and G10020G-8, Agilent 

Technologies Inc., Santa Clara, CA) according to the product instructions.  

Neuroblastoma tissue samples underwent FISH with the probes as described in the 

protocol by Chin et al. (2003) (556).   

 

Image acquisition was performed as described above using DAPI, Cy3 and FITC 

filters.  For 3D images, 60 - 80 z-stacks for cell lines and 40 z-stacks for tissue at 200 nm 

each, with Δx=Δy = 106 nm and Δz = 200 nm, were acquired.  The acquired 3D images 

were deconvolved using a constrained iterative algorithm (205).  The copy number of 

17q25.3 and 17p11.2 signals in the neuroblastoma cell line metaphases were determined 

visually from at least 20 metaphases with non-overlapping chromosomes from three 

consecutive passages.  A modified version of TeloView (203), implemented using the 

DIPimage toolbox for Matlab (www.diplib.org), was used to analyze the copy number of 

17q25.3 and 17p11.2 and the radial distance of each signal in at least 30 non-overlapping 

intact interphase nuclei from three consecutive passages in neuroblastoma cell lines, or 

100 in each tissue sample.  The program detected the volume of the 3D nuclei 

automatically using an isodata threshold (557) and the signals were detected by TeloView 

as described previously (203).  The relative radial position of each signal within its 

nucleus was determined by an algorithm that calculated the relative radial position as the 

ratio of two quantities:  the distance between the signal and the center of mass of its 

nucleus to the radius of the nucleus. To perform this computation robustly, the nucleus 

was first approximated by an ellipsoid (using the moment of inertia tensor) and then 
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normalized to a sphere.  Chromosome 17 copy number status was defined as numerical 

gain with equal gain of at least one additional copy of 17q25.3 and 17p11.2, as 

unbalanced gain with additional gained copies of 17q25.3 compared with 17p11.2, and as 

no gain with no additional copies of 17q25.3 or 17p11.2, relative to genome ploidy. 

 

3.3.6.  mBANDing 

 

Metaphases from the SHEP and GIMEN neuroblastoma cell lines underwent 

mBANDing with chromosome 17 Xcyte mBAND paint (Metasystems Group Inc., 

Boston, MA) according to the product instructions.  The paint labels chromosome 17 

with three different fluorochromes:  pseudo-colored cyan at the 17p end, magenta for the 

interstitial region and green at the 17q end (Supplementary Fig. 3-1 A).  The slides were 

imaged with an Axioplan 2 microscope (Carl Zeiss) equipped with a 63x/1.4 oil objective 

lens (Carl Zeiss), the ISIS-FISH imaging system 5.0 SR 3 (Metasystems Group Inc.), a 

DAPI filter to detect nuclear staining and DEAC, Cy3, and FITC filters to detect the tri-

color mBANDed chromosome 17.  At least 20 metaphases with non-overlapping 

chromosomes from three consecutive passages were evaluated for the structural 

arrangement of chromosome 17. 

 

3.3.7.  Western Blotting 

 

Western blot analysis was conducted on whole cell lysates obtained from 

approximately 1x106 asynchronously growing SHEP and GIMEN cell lines before and 72 
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h post-transfection of MYCN.  Cells were lysed at 4°C in radioimmunoprecipitation 

assay buffer containing protease inhibitor. Cell debris was cleared by centrifugation.  

Lysates were resolved on a 4 - 20% gradient SDS-polyacrylamide gel and transferred to a 

0.45 µm polyvinylidene difluoride membrane. Membranes were blocked with 5% nonfat 

milk for one hour at room temperature and incubated overnight at 4°C with MYCN 

antibody in a dilution of 1/1000.  Membranes were washed in triplicate with tris-buffered 

saline and 1% Tween 20 at 10 min intervals and incubated at room temperature with 

secondary antibodies.  Membranes were repeatedly washed as described above and 

incubated with SuperSignal West Dura chemiluminescent substrate (Thermo Fisher 

Scientific, Rockford, IL) prior to X-ray film exposure. 

 

3.3.8.  Statistical Analysis 

 

Statistical analyses were performed using GraphPad’s Prism 6 software (La Jolla, 

CA).  The ordinary multiple comparisons Tukey test was used to compare the MYCN 

expression levels, and nuclear location of 17q25 and 17p11 signals, with chromosome 17 

copy number status.  For this test, family-wise significance and confidence levels were 

set at 0.05 and P < 0.001 was considered significant.  A two-tailed unpaired student t-test 

was performed with the confidence interval set at 95% and P < 0.001 considered 

significant, to compare the nuclear location of 17q25 and 17p11 signals pre and post 

MYCN-transfection in the SHEP and GIMEN cell lines.  
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3.4.  Results 

 

3.4.1.  MYCN Expression in Neuroblastoma Patient Samples 

 

To determine the correlation between MYCN expression level and chromosome 

17 copy number status in neuroblastoma, we performed dual-colored FISH for a 

chromosome band on both the 17q and 17p arm followed by MYCN 

immunofluorescence on 16 neuroblastoma patient samples and four patient-matched 

lymph node tissue samples.  Lymph node tissue was used as a control for this study 

because there is no expression of MYCN, or MYCN amplification, in adult lymphoid 

tissues (472).  A summary of clinical patient characteristics can be found in Table 3-1.   
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Patient 
#

MYCN 
Amplif-
ication 
Status

Tumor 
Stage

Age at 
Diagnosis 

(Years)

Histologic 
Grade

5-Year 
Survival

1p LOHd
Unbalan-

ced 
11qLOH

Ploidy

1 Non-
amplified

2B 1 Favb Alive Not done Not done 1.26

2 Non-
amplified

1 2 Fav Alive Not done Not done 1.62

3a Non-
amplified

1 17 days Fav Alive No No 1.52

4 Non-
amplified

1 5 Fav Alive No No 1.55

5 Non-
amplified

1 6 Fav N/Ac Not done Not done Unsatis-
factory

6a Non-
amplified

4 1 Fav N/A No No 1.397

7 Amplified 4 2 Unfav Alive Not done Not done 1.46

8 Amplified 4 1 Unfav Deceased Not done Not done 1

9 Amplified 4 3 Unfav Deceased Yes Yes 1.958

10 Amplified 4 6 Unfav Deceased Not done Not done Not done

11 Amplified 4 1 Fav N/A Not done Not done 1

12a Non-
amplified

4 4 Unfav Alive Not done Not done 2.03

13 Non-
amplified

4 2 Unfav Alive Not done Not done 1.24

14 Non-
amplified

4 3 Unfav Deceased No Yes 1

15a Non-
amplified

4 3 Unfav N/A No Yes 1.127

16 Non-
amplified

4 1 Unfav N/A No No 1

Table 3-1.  Clinical Characteristics of Manitoba Neuroblastoma Patients Samples

dLoss of heterozygosity

cCase was diagnosed less than 5-years ago

bFavorable

aCases in which patient-matched lymph node tissue was available.
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 Of the stage four neuroblastomas examined, 7/11 (64%) had unbalanced 17q gain 

and 4/11 (36%) had no gain of chromosome 17.  All stage one and two neuroblastomas 

had numerical chromosome 17 gain.  The lymph node tissues had no gain of chromosome 

17.  MYCN amplified neuroblastomas had unbalanced 17q gain, whereas in MYCN non-

amplified tumors 5/11 (45%) had numerical chromosome 17 gain, 4/11 (36%) had no 

gain, and 2/11 (18%) had unbalanced gain of 17q.  The five-year survival was 100% for 

neuroblastomas with numerical gain, 75% for those with no gain, and 57% for those with 

unbalanced gain.  An example of neuroblastomas with unbalanced, no gain, and 

numerical gain of chromosome 17, as determined by FISH, can be seen in Figure 3-1 A – 

F.   
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Figure 3-1.  3D Chromosome Band 17q25 and 17p11 FISH in Neuroblastoma Tissue 

Samples.  The nuclei are counterstained with DAPI (blue) with cytoband 17q25 in red 

and cytoband 17p11 in green.  Images of multiple cells in 2D and 3D rendering of 

individual representative nuclei (outlined in white in the overview) of a neuroblastoma 

with (A – B) unbalanced gain, (C – D) no gain, and (E – F) numerical gain of 

chromosome 17.  Scale bars represent 5 µm.  
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Neuroblastomas with unbalanced gain of chromosome 17 had significantly higher 

MYCN expression, with an average of 6216 RFU (Fig. 3-2 A), compared with those with 

no gain, with an average of 2673 RFU (Fig. 3-2 B) (P < 0.0001).  Neuroblastomas with 

numerical chromosome 17 gain had significantly lower MYCN expression, with an 

average of 595 RFU (Fig. 3-2 C), compared with both neuroblastomas with unbalanced 

17q and no gain (P < 0.0001 for both).  The lymph node tissues had significantly lower 

MYCN expression than tumor tissue (Fig. 3-2 D) (P < 0.001).  A summary of the MYCN 

expression data in all patient samples can be found in Table 3-2.   
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Patient 
#

Chromosome 
17 Copy 
Number 
Status

MYCN 
Expression 

Level

Average 
MYCN 

Intensity 
(RFUb)

ASPSCR1 
Expression 

Level

FOXK2 
Expression 

Level

TBCD 
Expression 

Level

1 Numerical 
gain

Low 227 Low Low Low

2 Numerical 
gain

Low 1164 Low Low Low

3 Numerical 
gain

Low 325 Low Low Low

3 LNa No gain Low 115 Low Low Low

4 Numerical 
gain

Low 1129 Low Low Low

5 Numerical 
gain

Low 132 Low Low Low

6 Unbalanced 
gain

Low 1995 Low Medium Low

6 LN No gain Low 121 Low Low Low

7 Unbalanced 
gain

High 8758 Medium High High

8 Unbalanced 
gain

High 9277 High Medium High

9 Unbalanced 
gain

High 7390 High High High

10 Unbalanced 
gain

High 7483 High High High

11 Unbalanced 
gain

High 6099 High High Medium

12 Unbalanced 
gain

Medium 2510 Medium High Medium

12 LN No gain Low 123 Low Low Low

13 No gain Medium 2506 Medium High Medium

14 No gain Medium 3331 Medium Low Medium

15 No gain Medium 2344 Medium Medium Medium

15 LN No gain Low 101 Low Low Low

16 No gain Medium 2512 Low Medium Low
aRelative fluorescence units
bLymph node

Table 3-2.  Immunofluorescence of MYCN, ASPSCR1, FOXK2 and TBCD 
in Neuroblastoma Patient Samples
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Figure 3-2.   Immunofluorescence of MYCN, ASPSCR1, FOXK2 and TBCD in 

Neuroblastoma Tissue Samples.  High, medium, low, and lymph node expression of (A 

– D) MYCN, (E – H) ASPSCR1, (I – L) FOXK2, and (M – P) TBCD.  The nuclei are 

counterstained with DAPI (blue); the protein expression is red (MYCN, ASPSCR1, 

FOXK2) or green (TBCD).  Exposure times were kept constant between tissue samples.  

Scale bars represent 10 µm. 

 

We conclude that the 16 patients showed a correlation between MYCN 

expression and chromosome 17 status:  high expression in tumors with unbalanced gain, 
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medium expression in tumors with no gain, and low expression in tumors with numerical 

gain.  MYCN expression also correlates with tumor stage and five-year survival as 

neuroblastomas with either unbalanced or no chromosome 17 gain have a high MYCN 

expression, more advanced stage and poorer five-year survival compared with those with 

numerical gain of chromosome 17.  

 

3.4.2.  Nuclear Location of 17q in Neuroblastoma Patient Samples 

 

To determine the correlation between the nuclear location of chromosome 17 and 

its copy number status, we used a modified version of TeloView to analyze the 

neuroblastoma patient samples that had undergone dual-colored 17q/17p FISH.  This 

program determines the distance of each signal from the nuclear center as a percentage of 

the nuclear radius.  A signal in the central shell of the nucleus has a radial distance of < 

33.34%; a signal in the middle shell has a radial distance of 33.34 – 66.67%; a signal in 

the peripheral shell has a radial distance of > 66.67%.  

 

 Neuroblastomas with an unbalanced gain of chromosome 17q had an average 17q 

radial distance of 40.45% (range 2.02 – 99.72%), with the majority of signals found in 

the central shell of the nucleus (46.13%) (Fig. 3-1 A – B).  The average radial distance of 

17p was 58.19% (range 8.57 – 99.85%), and the majority of signals were found in the 

peripheral and middle shells of the nucleus (41.23 and 48.87%, respectively; Table 3-3).  

This distribution suggests that unbalanced copies of 17q have a more central nuclear 

location than those found on whole copies of chromosome 17.  Neuroblastomas with 
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numerical gain of chromosome 17 had an average 17q radial distance of 62.59% (range 

12.82 – 99.84%), with the majority of signals found in the peripheral shell of the nucleus 

(48.93%) (Fig. 3-1 E – F).  The average radial distance of 17p was 63.64% (range 11.67 – 

99.57%), and the majority of signals were also found in the peripheral shell of the 

nucleus (48.87%:  Table 3-3).   This distribution suggests that the whole copies of 

chromosome 17 have a peripheral location in the nucleus.  Neuroblastomas with no gain 

of chromosome 17 had an average 17q radial distance of 43.61% (range 2.39 – 89.95%), 

with the majority of signals found in the middle shell of the nucleus (55.83%) (Fig. 3-1 C 

– D).  The average radial distance of 17p was 45.14% (range 2.69 – 32.06%), and the 

majority of signals were also found in the middle shell of the nucleus (51.91%; Table 3-

3).  This distribution suggests that the majority of the whole copies of chromosome 17 are 

located in the middle shell of the nucleus.  These results demonstrate that the whole 

copies of chromosome 17 in tumors with no gain have a more central nuclear location 

than those with numerical gain (P < 0.0001).  A summary of the radial distances of 17p 

and 17q in the neuroblastoma patient samples can be found in Table 3-3.  
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To determine whether the nuclear location of 17q correlated with expression of 

genes in this chromosome arm, we performed immunofluorescence for ASPSCR1, 

FOXK2 and TBCD on the neuroblastoma patient samples.  A summary of these findings 

can be found in Table 3-2.  Regarding ASPSCR1, 4/7 (57%) of the neuroblastomas with 

unbalanced gains had high expression, 3/4 (75%) with no gain had medium expression, 

and 5/5 (100%) with numerical gain had low expression (Fig. 3-2 E – G).  Regarding 

FOXK2, 5/7 (71%) of neuroblastomas with unbalanced gains had high expression, 3/4 

(75%) with no gain had medium or high expression, and 5/5 (100%) with numerical gain 

had low expression (Fig. 3-2 I – K).  Regarding TBCD, 4/7 (57%) of neuroblastomas 

with unbalanced gains had high expression, 3/4 (75%) with no gain had medium 

expression, and 5/5 (100%) with numerical gain had low expression (Fig. 3-2 M – O).  

  

Neuroblastomas with unbalanced gain of 17q are associated with the highest 

protein expression of genes found on 17q and the most central nuclear location of 17q 

Patient 
#

Average 
Radial 

Distance 
17q (%)

Average 
Radial 

Distance 
17p (%)

Range Radial 
Distance 17q 

(%)

Range Radial 
Distance 17p 

(%)

17q in 
Central 
Shell 
(%)

17p in 
Central 
Shell 
(%)

17q in 
Middle 
Shell 
(%)

17p in 
Middle 
Shell 
(%)

17q in 
Peripheral 
Shell (%)

17p in 
Peripheral 
Shell (%)

1 66.88 65.35 20.13 - 99.38 11.67 - 99.57 7.33 8.94 34.03 36.87 58.64 54.19
2 63.7 63.96 19.10 - 99.65 14.68 - 99.30 9.95 8.45 41.86 44.98 48.19 46.58
3 60.51 61.13 18.17 - 99.75 18.86 - 99.61 15.06 13.32 39.1 41.08 45.84 45.6
4 59.71 62.8 18.71 - 99.69 19.01 - 99.67 16.41 10.88 38.67 41.28 44.92 47.84
5 63.22 66.04 12.82 - 99.84 11.84 - 99.95 10.92 7.27 39.32 40.85 49.76 51.88
6 44.65 62.2 2.28 - 98.63 19.85 - 99.28 39.57 1.66 38.58 59.94 21.85 38.4
7 42.02 56.01 3.35 - 99.72 11.58 - 98.62 45.66 8.98 37.17 64.07 17.17 26.95
8 41.01 56.65 3.55 - 95.85 18.16 - 99.85 45.17 5.03 38.07 67.34 16.76 27.64
9 35.51 56.92 2.02 - 89.82 11.45 - 99.74 52.23 5.1 37.17 65.31 10.59 29.59

10 42.26 63.32 2.46 - 97.82 14.08 - 99.04 43.14 4.42 37.48 50.44 19.38 45.13
11 39.19 53.88 3.52 - 98.99 20.18 - 99.83 48.75 5.82 41.5 76.19 9.75 17.99
12 38.06 56.43 3.71 - 98.42 8.57 - 97.60 49.28 5.72 37.96 69.7 12.76 24.58
13 40.74 44.35 2.39 - 89.95 2.69 - 89.61 39.22 37.56 49.51 43.9 11.27 18.54
14 47.05 47.17 6.02 - 87.16 5.60 - 90.96 21.76 25.91 66.84 61.66 11.4 12.44
15 48.83 45.59 3.49 - 88.47 6.80- 88.94 23.53 32 54.9 50 21.57 18
16 37.78 43.45 8.30 - 89.95 4.62 - 89.95 42.35 33.51 52.55 52.13 5.1 14.36

Table 3-3.  Results of 17q and 17p FISH in Neuroblastoma Patient Samples 
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(Fig. 3-1 B).  Neuroblastomas with no gain of chromosome 17 have higher expression of 

these genes than neuroblastomas with numerical gain of chromosome 17.  The 

neuroblastomas with no gain of chromosome 17 have a more central nuclear location of 

the 17q region than those with numerical gain (Fig. 3-1 D and F).  As the nuclear center 

is associated with greater rates of transcription than the periphery (46, 67, 84, 86, 558), 

this may explain the higher expression of 17q genes seen in the neuroblastomas with no 

gain, compared with those with numerical gain of chromosome 17. 

 

3.4.3.  Unbalanced Gain of 17q with MYCN Transfection in Neuroblastoma Cell Lines 

 

To determine whether there is a causal relationship between MYCN expression 

and chromosome 17 copy number status in neuroblastoma, we transfected two low 

MYCN expressing cell lines with a MYCN expression vector and analyzed the cells for 

changes in chromosome 17 copy number, nuclear location, and gene expression.  Both 

cell lines were co-transfected with MYCN and GFP vectors.  At 15 h post-transfection, 

the cells were sterile sorted by GFP expression to enrich for a population that over-

expressed MYCN.  Western blotting confirmed the increased expression of MYCN in 

both the SHEP and GIMEN cell lines after MYCN transfection (Fig. 3-4 Q).  FISH and 

immunofluorescence experiments were conducted on the sorted cell populations. 

  

The SHEP neuroblastoma cell line has two whole copies of chromosome 17 and 

partial gain of the 17q21 – qter region through translocation to chromosome 22 (Fig. 3-3 

A) (559).  The copy number of chromosome 17 was verified by mBANDing, which 
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reveals two whole copies of chromosome 17 (Supplementary Fig. 3-1 C1 and C2) and 

one partial copy comprised of the 17q terminal region (Supplementary Fig. 3-1 C3).  

Seventy-two hours after MYCN transfection and overexpression (Fig. 3-4 E) we found 

that 8/60 (13%) of metaphases from the SHEP cell line (15/98 (15%) of nuclei) had 

additional unbalanced gain of chromosome 17q, with four copies of 17q25 and two of 

17p11 (Fig. 3-3 C).  The GIMEN neuroblastoma cell line has four copies of chromosome 

17 (Fig. 3-3 E).  The copy number of chromosome 17 was verified by mBANDing, which 

revealed four partial copies of chromosome 17 comprised of the interstitial and 17q end 

region (Supplementary Fig. 3-1 E1 – E4) and two partial copies comprised of two copies 

of the 17p terminal region (Supplementary Fig. 3-1 E5 and E6).  We found that 72 h after 

MYCN transfection and overexpression (Fig. 3-4 M) 55/60 (92%) of metaphases (81/92 

(88%) of nuclei) had an unbalanced gain of chromosome 17, with six copies of 17q25 

and four of 17p11 (Fig. 3-3 G).  These findings suggest that MYCN overexpression can 

drive an unbalanced gain of chromosome 17.  
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Figure 3-3.  Chromosome Band 17q25 and 17p11 FISH in Neuroblastoma Cell 

Lines.  (A – B) Metaphase spread and 3D nucleus of a (A – B) SHEP cell pre-MYCN 

transfection illustrating three copies of 17q and two copies of 17p (C – D), SHEP cell 

post-MYCN transfection illustrating four copies of 17q and two copies of 17p (E – F), 

GIMEN cell pre-MYCN transfection illustrating four copies of each 17q and 17p and (G 

– H), GIMEN cell post-transfection illustrating six copies of 17q and four of 17p.  

Cytoband 17q25 is labeled in red and 17p11 in green.  The DNA is counterstained with 

DAPI (blue). 

 

Before MYCN transfection, the SHEP cell line had an average 17q radial distance 

of 68.46% (range 24.51 – 99.35%), with the majority of signals found in the peripheral 

shell of the nucleus (50.89%) (Fig. 3-3 B).  The average radial distance of 17p was 

72.23% (range 31.11 – 99.94%), and the majority of signals were also found in the 

peripheral shell of the nucleus (63.68%) (Table 3-4).  After MYCN transfection, the 

SHEP cell line had an average 17q radial distance of 49.98% (range 1.55 – 96.94%), with 
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the majority of signals found in the middle shell of the nucleus (51.68%) (Fig. 3-3 D).  

The average radial distance of 17p was 59.27% (range 15.54 – 99.97%), and the majority 

of signals were also found in the middle shell of the nucleus (56.91%) (Table 3-4).  

Before MYCN transfection, the GIMEN cell line had an average 17q radial distance of 

64.16% (range 10.02 – 99.81%), with the majority of signals found in the middle and 

peripheral shells of the nucleus (45.03 and 46.69%) (Fig. 3-3 F).  The average radial 

distance of 17p was 64.73 % (range 9.79 – 99.16%), and the majority of signals were also 

found in the peripheral shell of the nucleus (50.42%) (Table 3-4).  After MYCN 

transfection, the GIMEN cell line had an average 17q radial distance of 45.55% (range 

1.31 – 99.74%), with the majority of signals found in the central shell of the nucleus 

(42.44%) (Fig. 3-3 H).  The average radial distance of 17p was 56.21% (range 3.99 – 

99.24%), and the majority of signals were found in the middle shell of the nucleus 

(57.62%) (Table 3-4).  Overall these results demonstrate that after MYCN transfection, 

the 17q region had a more central nuclear location than pre-MYCN transfection in both 

cell lines (P < 0.0001 for both).  These changes in distribution after transfection suggest 

that increased expression of MYCN causes movement of the 17q region towards the 

center of the nucleus.  The findings in the GIMEN cell line suggest that it is the 

unbalanced copies of 17q that move, rather than the whole copies of chromosome 17.  A 

summary of the radial distances of 17p and 17q pre and post-transfection in the SHEP 

and GIMEN cell lines can be found in Table 3-4.   
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With MYCN overexpression in the SHEP cell line the expression of ASPSCR1 

(Fig. 3-4 B and F), FOXK2 (Fig. 3-4 C and G) and TBCD (Fig. 3-4 D and H) increased 

from low to medium.  With MYCN overexpression in the GIMEN cell line, ASPSCR1 

expression increased from low to medium (Fig. 3-4 J and N), and FOXK2 and TBCD 

expression increased from low to high (Fig. 3-4 K – P).  As discussed above, this may be 

due to the more central nuclear location of these genes post- compared with pre-

transfection.   

Cell line

Average 
Radial 

Distance 
17q (%)

Average 
Radial 

Distance 
17p (%)

Range 
Radial 

Distance 
17q (%)

Range 
Radial 

Distance 
17p (%)

17q in 
Central 
Shell 
(%)

17p in 
Central 
Shell 
(%)

17q in 
Middle 
Shell 
(%)

17p in 
Middle 
Shell 
(%)

17q in 
Peripheral 
Shell (%)

17p in 
Peripheral 
Shell (%)

SHEP               
Pre-

transfection
68.46 72.23 24.51 - 99.3531.11 - 99.94 1.78 0.53 47.33 35.79 50.89 63.68

SHEP             
Post-

transfection
49.98 59.27 1.55 - 96.9415.54 - 99.97 25.5 7.18 51.68 56.91 22.82 35.91

GIMEN           
Pre-

transfection
64.16 64.73 10.02 - 99.819.79 - 99.16 8.29 8.22 45.03 41.36 46.69 50.42

GIMEN           
Post-

transfection
45.55 56.21 1.31 - 99.743.99 - 99.24 42.44 12.5 39.13 57.62 18.43 29.88

Table 3-4.  Results of 17q and 17p FISH in Neuroblastoma Cell Lines
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Figure 3-4.  MYCN, ASPSCR1, FOXK2 and TBCD Expression in Neuroblastoma 

Cell Lines Pre- and Post-MYCN Transfection. In horizontal order, expression of 

MYCN, ASPSCR1, FOXK2, and TBCD in (A – D) SHEP cells pre-MYCN transfection, 

(E – H) SHEP cells post-MYCN transfection, (I – L) GIMEN cells pre-MYCN 

transfection, and (M – P) GIMEN cells post-MYCN transfection.  (Q) Western blot 
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analysis confirms the increased expression of MYCN in the SHEP and GIMEN cell lines 

after MYCN transfection.  Scale bars represent 5 µm. 

 

3.5.  Discussion 

 

In this study we found a correlation between MYCN expression and the copy 

number status of chromosome 17 in neuroblastoma.  By investigating 16 primary 

neuroblastomas with dual-colored FISH, we found that neuroblastomas with unbalanced 

gain of 17q have high MYCN expression, those with no gain of chromosome 17 have 

medium expression, and neuroblastomas with numerical gain have low expression.  We 

also found that the nuclear location of chromosome 17 correlates with chromosome 17 

copy number status.  Primary neuroblastomas with unbalanced gain of chromosome 17 

have the majority of 17q signals in the central shell of the nucleus, whereas those with no 

gain have the majority in the middle shell of the nucleus, and those with numerical gain 

have the majority in the peripheral shell of the nucleus.  Using tissue 

immunofluorescence, we found that expression of genes in the 17q region are highest in 

neuroblastomas with unbalanced gain, followed by those with no gain of chromosome 17, 

and tumors with numerical gain have the lowest expression.  To gain an understanding of 

the association between MYCN expression levels and 17q copy number status we 

overexpressed MYCN in two low-expressing MYCN cell lines, SHEP and GIMEN.  We 

demonstrated that MYCN transfection promotes unbalanced gains of 17q, more central 

nuclear location of the 17q region, and increased expression of genes in the 17q region. 
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This finding indicates, for the first time, a functional relationship between MYCN 

overexpression and the gain of chromosome arm 17q in neuroblastoma. 

 

Unbalanced 17q gain has been found to be more common in the very aggressive 

MYCN amplified neuroblastomas compared with MYCN non-amplified tumors (418, 419, 

421, 422).  Previous studies have, however, been confounded by the fact that numerical 

versus no gain of chromosome 17 was not distinguished in the non-unbalanced gain 

patient group; this has led to mixed conclusions as to whether the copy number status of 

chromosome 17 provides any prognostic value in MYCN non-amplified patients.  Our 

findings provide further support for the hypothesis that neuroblastomas with numerical 

gain of chromosome 17 have a better prognosis compared to those with no gain, initially 

proposed by Theissen et al. (2014) (423).  In our study, the majority of neuroblastomas 

with unbalanced gain of 17q are MYCN amplified and have high MYCN expression.  

Intriguingly, we find that neuroblastomas with no gain of chromosome 17 have a medium 

level of MYCN expression whereas those with numerical gain have low expression (P < 

0.0001).  We therefore propose that MYCN expression correlates with chromosome 17 

copy number status and explains why MYCN non-amplified with no gain of 17q 

neuroblastomas have a poor prognosis similar to neuroblastomas that are MYCN 

amplified with unbalanced gain.  

  

As nuclear organization contributes to tumor pathogenesis (560), and because the 

nuclear center is often considered more transcriptionally active (67, 84, 86, 558), we 

investigated whether the nuclear location of 17q varied with chromosome 17 copy 
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number status and might explain the similarities seen in gene expression between 

neuroblastomas with unbalanced and no gain of chromosome 17 (423).  We found that 

neuroblastomas with unbalanced and no gain of chromosome 17 had a more central 

nuclear location of 17q than neuroblastomas with numerical gain (P < 0.0001).  We also 

found increased expression of genes in these neuroblastomas compared with those with 

numerical gain.  We propose that MYCN, similar to MYC (46), may drive nuclear 

repositioning of genes and chromosomes towards the centre of the nucleus.  This 

dynamic behavior may grant genes access to transcriptional machinery leading to their 

increased expression.  As there are significant differences in the nuclear location of 17q 

depending on the level of MYCN expression and tumor stage (P < 0.0001), it may 

provide additional diagnostic and prognostic value for neuroblastomas. 

   

Due to the correlation between MYCN amplification and unbalanced 17q gain, a 

functional relationship between the two has been previously suggested but not shown.  

For example, Godfried et al. (2002) proposed such a relationship for the genes NM23-H1 

and NM23-H2 after finding increased copy number of these genes in MYCN amplified 

tumors by two color interphase FISH in tissue samples (552).  We further investigated 

our, and previous groups’, correlative findings in neuroblastoma patient samples for a 

causative mechanism through MYCN overexpression in low MYCN-expressing cell 

lines.  We found that post-MYCN transfection, both SHEP and GIMEN cell lines had 

unbalanced gains of 17q compared with their chromosome 17 karyotype pre-transfection.  

We also found that MYCN transfection caused more central nuclear location of the 17q 

region and increased expression of genes in this region in both cell lines.  For the first 
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time, we show a functional relationship between MYCN and 17q gain in neuroblastoma.  

In conclusion, we propose that the mechanism for chromosome 17 copy number status in 

neuroblastomas begins with MYCN expression driving a central nuclear repositioning of 

the 17q region.  This leads to overexpression of genes in this region and subsequent 

tumor progression.  In a subset of neuroblastomas, excessive overexpression of MYCN 

leads to the unbalanced gain of 17q in addition to its altered nuclear location.  This 

genetic change leads to excessive overexpression of genes in this region and aggressive 

tumor progression and evolution in these cells. 
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3.7.  Supplementary Figure 

 

 

Supplementary Figure 3-1.  mBAND of Chromosome 17 in Neuroblastoma Cell 

Lines.  (A) The labeling scheme of the chromosome 17 mBAND probe.  The 17p end is 

pseudo-colored in blue, the interstitial region in magenta, and the 17q end in green.  (B) 

Metaphase spread of the SHEP cell line that has undergone mBAND FISH of 

chromosome 17.  (C) mBAND patterns of chromosome 17 in the SHEP cell line show 
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two whole copies of chromosome 17 characterized by blue, magenta, and green staining 

(C1 – C2), and one partial copy of chromosome 17 characterized by green staining 

corresponding to the 17q terminal region (C3).  (D) Metaphase spread of the GIMEN cell 

line that has undergone mBAND FISH of chromosome 17.  (E) mBAND patterns of 

chromosome 17 in the GIMEN cell line show four partial copies of chromosome 17 

characterized by green and magenta staining corresponding to the interstitial and 17q 

terminal region (E1 – E4), and two partial copies of chromosome 17 characterized by 

blue staining corresponding to two copies of the 17p terminal region (E5 – E6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 105 

Chapter 4: 

Identification of Neuroblastoma Subgroups Based on Three-

dimensional Telomere Organization 

 

This chapter is in submission for publication: 

 

Kuzyk A1, Gartner J2 and Mai S1  

 

11Manitoba Institute of Cell Biology/The Research Institute of Oncology and 

Hematology, Department of Biochemistry and Medical Genetics, Faculty of Health 

Sciences, University of Manitoba, Winnipeg, Manitoba, Canada 

2Deparment of Pathology and Immunology, Faculty of Health Sciences, University of 

Manitoba, Winnipeg, Manitoba, Canada 

 

Running Title:  3D telomere organization in neuroblastoma 

 

Key Words:  telomere, neuroblastoma, 3D FISH, nuclear architecture, MYCN  

 

Contributions:  Alexandra Kuzyk contributed to study design, obtained ethics approval, 

applied for the neuroblastoma tumor microarray from COG, performed the research, 

analyzed the data and wrote the manuscript.  John Gartner provided the Manitoba patient 

samples and their clinical characteristics, and critically reviewed the manuscript.  Sabine 

Mai designed the study and critically reviewed the manuscript. 



	 106 

4.1.  Abstract 

 

Using 3D telomere quantitative fluorescence in situ hybridization, we determined 

the 3D telomere organization of 74 neuroblastoma tissue samples.  Hierarchical cluster 

analysis of the measured telomere parameters identified three subgroups from our patient 

cohort.  These subgroups have unique telomere profiles based on telomere length and 

nuclear architecture.  Subgroups with higher levels of telomere dysfunction were 

comprised of tumors with greater numbers of telomeres, telomeric aggregates and short 

telomeres (P < 0.0001).  Tumors with greater telomere dysfunction were associated with 

unfavorable tumor characteristics (greater age at diagnosis, unfavorable histology, higher 

stage of disease, MYCN amplification and higher MYCN expression) and poor prognostic 

risk (P < 0.001).  Subgroups with greater telomere dysfunction also had higher intratumor 

heterogeneity.  MYCN overexpression in two neuroblastoma cell lines with constitutively 

low MYCN expression induced changes in their telomere profile that were consistent 

with increased telomere dysfunction; this illustrates a functional relationship between 

MYCN and 3D telomere organization.  This study demonstrates the ability to classify 

neuroblastomas based on the level of telomere dysfunction, which is a novel approach for 

this cancer. 

 

4.3.  Introduction 

 

Neuroblastoma is the most common extra-cranial malignancy in children.  This 

neoplasm is characterized by both clinical and molecular heterogeneity, and the 
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prognostic risk calculation is multifactorial.  The most important parameters predictive of 

an unfavorable outcome include MYCN amplification (442, 443), MYCN protein 

overexpression (481, 483), age greater than 18 months at diagnosis (561, 562), loss of 

chromosome arm 1p (421, 447) and 11q (444) and gain of chromosome arm 17q (418).   

 

 Neuroblastomas have been subgrouped according to their pattern of chromosomal 

instability:  whereas some tumors exhibit numerical and few or no structural aberrations, 

others are dominated by structural rearrangements, including intrachromosomal 

rearrangements (563, 564).  Chromosome instability has been linked to telomere length 

aberrations in many cancers, including neuroblastoma (451, 564).  However, there have 

been conflicting findings on whether an increase, decrease or unchanging telomere length 

is associated with a better outcome (451-453).  These inconclusive results may be due to 

the methods employed to measure telomere length, wherein only the average telomere 

length for each cell was determined.   

 

Nuclear architecture is key to cellular function (66), and changes in nuclear 

architecture contribute to the pathogenesis and progression of cancer (565).  Our 

laboratory developed a method of analyzing the interphase nuclear organization of 

telomeres as a novel and more in-depth approach to study telomere length and telomere 

dysfunction in disease (203).  Our method uses 3D Q-FISH to label all telomeres in 

interphase nuclei while preserving the nuclear architecture of the sample.  Our software 

measures multiple telomere parameters for each cell including the number of telomeres, 

the length of each telomere, the number of telomeric aggregates, the nuclear volume and 
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the spatial organization of the telomeres (203, 250).  These measurements create a 

telomere profile unique to an individual sample.  Increases in the number of telomeres, 

telomeric aggregates and short telomeres are frequently associated with tumor compared 

to non-tumor cells, aggressive forms of disease, and poor patient outcomes (250, 254, 

260, 262). 

 

In this study we examined for the first time, the 3D telomere organization in 74 

archived neuroblastoma tissue samples.  Using hierarchical cluster analysis of the 

measured telomere parameters, we identified three tumor subgroups representing unique 

levels of telomere dysfunction.  We found that tumors with greater telomere dysfunction 

were associated with unfavorable tumor characteristics including MYCN amplification 

and higher MYCN expression.  To test the hypothesis that high levels of MYCN present 

in a subgroup of patients (11/74) leads to increased telomere dysfunction, we 

overexpressed MYCN in two neuroblastoma cell lines with constitutively low MYCN 

expression.  This induced changes in the telomere parameters similar to those seen in 

high MYCN-expressing neuroblastoma tissue samples, demonstrating a functional 

relationship between MYCN expression and 3D telomere dysfunction. 

 

4.3.  Materials and Methods 

 

4.3.1.  Patient Samples 
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A total of 74 primary neuroblastoma tissue samples, 5 µm in thickness, were 

obtained from the Health Sciences Centre (Winnipeg, Manitoba, Canada) (n = 16) and 

Children’s Oncology Group (COG) (n = 58).  All of the tumor samples were derived 

from untreated patients.  Haematoxylin and eosin stained sections were used to identify 

tumor areas.  The experimenters were blinded to the tumor characteristics and outcome 

data until after the experiments and measurements were complete.  After decoding this 

information, it was discovered that only 31 out of the 74 patients had clinical follow-up 

and therefore survival analyses for the whole cohort was not feasible.  Available survival 

information is shown Supplementary Table 4-7. 

 

Patients were classified according to the International Neuroblastoma Staging 

System (INSS) (458) and divided into clinical-genetic risk groups using the COG risk 

scoring system (447). The MYCN amplification status was determined by FISH for the 

COG samples.  The MYCN amplification status of the Manitoban samples were provided 

to us by the Health Sciences Centre (Winnipeg, Manitoba, Canada).  MYCN protein 

expression was determined for all samples by tissue immunofluorescence.  Tumor 

characteristics of the study cohort are shown in Table 4-1.   
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4.3.2.  Cell Lines 

 

The established neuroblastoma cell lines SHEP and GIMEN were a gift from 

Manfred Schwab (The German Cancer Research Center, Heidelberg, Germany).  The 

cells were cultured in RPMI 1640 with 10% fetal bovine serum with 1% l-glutamine, 1% 

sodium pyruvate, and 1% penicillin-streptomycin (Life Technologies Inc., Burlington, 

Ontario, Canada) at 37°C in a humidified atmosphere and 5% CO2.  

Cases (n)
Stage

1 13
2 11
3 8
4 30

4S 11
Unknown 1

Histology
Favorable 28

Unfavorable 35
Unknown 11

Age at Diagnosis
<18 months 41
>18 months 33

MYCN Amplification
No 63
Yes 11

MYCN Expression
Low 43

Medium 20
High 11

COG Risk Score
Low 36

Intermediate 8
High 28

Unknown 2

Table 4-1 Neuroblastoma Cohort Characteristics
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4.3.3.  MYCN Transfection of SHEP and GIMEN Neuroblastoma Cell Lines 

 

SHEP and GIMEN cell lines were transfected with MYCN pUHD 10-3, a gift 

from Manfred Schwab (The German Cancer Research Center, Heidelberg, Germany), 

which contains the entire MYCN coding sequence under the control of an hCMV minimal 

promoter.  Before transfection, 6x105 SHEP and 2x105 GIMEN cells were seeded per 

well and grown to near confluence.  Twenty-four hours post-seeding, cells were co-

transfected with TransIT-X2 (MIR6004, Mirus Bio LLC, Madison, WI) and pmaxGFP 

(Lonza, Allendale, NJ) in a ratio of reagent:vector DNA of 2:1, as per the company’s 

protocol.  Cells were cultured in the absence of serum for the first 12 h.  The transfection 

efficiency was 40% at 15 h when the cells were sterile sorted by GFP expression.  The 

sorted transfected cells were put back into culture and harvested at 72 h for 3D nuclei 

fixation.  Mock-transfected cells were used as a control. 

 

4.3.4.  3D Nuclei Fixation 

 

Cells were harvested from the cultures of SHEP and GIMEN and underwent 3D 

fixation to prepare nuclei for Q-FISH experiments.  3D nuclear fixation was performed 

according to the protocol published by Solovei et al. (2002) (204).   
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4.3.5.  Immunofluorescence 

 

 MYCN immunofluorescence, imaging and analysis were performed on the 

neuroblastoma tissue samples and SHEP and GIMEN cell lines as previously described 

(566).  The MYCN antibody, a gift from Manfred Schwab, is described in Wenzel et al. 

(1991), and was used at a titre of 1/2000.  The slides were imaged using an AxioImager 

Z2 microscope (Carl Zeiss, Toronto, Ontario, Canada), an AxioCam HR charge-coupled 

device (Carl Zeiss) with a 63x/1.4 oil objective lens (Carl Zeiss) and DAPI and Cy3 

filters (Carl Zeiss).  Cy3 exposure times were kept constant between cell lines and 

between tissue samples.  Thirty cells per experimental replicate were analyzed for the cell 

lines and 100 cells were analyzed in each tumor sample.  We used the following ranges to 

classify MYCN expression:  low as < 2000 relative fluorescence units (RFU), medium as 

2000 to 4999 RFU, and high as ≥ 5000 RFU.    

 

4.3.6.  3D Telomere Q-FISH 

 

 Nuclei from the neuroblastoma cell lines and 5 µm tissue sections underwent 3D 

telomere Q-FISH with a telomere probe (DAKO, Glostrup, Denmark).  The hybridization 

and image acquisition was performed according to previously published protocols (517, 

567).  The slides were imaged using an AxioImager Z2 microscope (Carl Zeiss), an 

AxioCam HR charge-coupled device (Carl Zeiss) with a 63x/1.4 oil objective lens (Carl 

Zeiss) and DAPI and Cy3 filters for detection of nuclear DNA staining and telomere 

probe signals, respectively (Carl Zeiss).  Cy3 exposure times were kept constant between 
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cell lines and between tissue samples, and tricolor beads were used to standardize the 

bulb strength.  Eighty z-stacks for cell lines and 40 z-stacks for tissue at 200 nm each, 

with Δx=Δy = 106 nm and Δz = 200 nm, were acquired and then deconvolved using the 

constrained iterative algorithm (205).  Thirty cells per experimental replicate were 

analyzed for the cell lines and 100 cells were analyzed in each tumor sample.     

 

The 3D interphase telomere signals were quantitatively analyzed with TeloView 

software (203) to measure the following parameters in each cell:  the number of signals, 

which corresponds to the number of telomeres (203); the intensity of each signal, which 

correlates with telomere length (202); the number of telomeric aggregates, which are 

telomeres in close proximity that cannot be resolved as separate entities at an optical 

resolution of 200 nm (203); the nuclear volume (203); and the a/c ratio, which is a 

measurement of the spherical nature of the telomere distribution (203).  From these 

measurements the following parameters were calculated:  the percentage of cells per 

patient with aggregates, the number of telomeres per nuclear volume, and the mean 

telomere intensity (253, 256, 260).  With these measurements we generated a 3D 

telomere profile for each cell, and then combined the data from multiple cells to create an 

overall profile for each tumor sample and each cell line replicate.    

 

4.3.7.  Statistical Analysis 

 

 Statistical analysis was conducted using SAS 9.3 (SAS Institute Inc., Cary, NC) 

software.  Hierarchical clustering analysis was used to subgroup the neuroblastoma tissue 
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samples based on the following telomere parameters: number of telomeres per cell, 

number of telomeric aggregates per cell, percentage of cells per patient with aggregates, 

number of telomeres per nuclear volume and a/c ratio.  To visualize the results of the 

clustering analysis, a hierarchical tree plot was generated (Supplementary Fig. 4-1).  

Canonical discriminant analysis was also performed to generate a plot of canonical 

variable (can) 1 vs. can2.  Can1 is a calculated value for each tumor sample based on a 

linear combination of the clustering variables that has the highest correlation with the 

clusters.  Can2 is the second linear combination of the clustering variables uncorrelated 

with can1 but also showing correlation with the clusters.   

 

The nested factorial analysis of variance (ANOVA) with Tukey multiple 

comparisons test was used to compare the telomere parameters between the subgroups.  

The Chi-square test was employed to compare tumor characteristics amongst the 

subgroups.  Telomere signal intensities were binned at intervals of 1000 and divided into 

three groups formed by the 25th and 75th percentiles.  In tumor samples, telomeres were 

defined as short with an RFU less than 6000, medium-length with and RFU between 

6000 and 11999 and long with an RFU greater than or equal to 12000.  In cell lines, 

telomeres were defined as short with an RFU less than 7000, medium-length with and 

RFU between 7000 and 16999 and long with an RFU greater than or equal to 17000.  The 

Chi-square test was used to compare the distribution of short, medium and long 

telomeres.  The unpaired t-test was used to compare the telomere parameters of the cell 

lines after MYCN- and mock-transfection.  P < 0.05 was considered significant. 
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4.4.  Results 

 

4.4.1.  3D Telomere Organization Identifies Neuroblastoma Subgroups  

 

We investigated the 3D telomere organization in 74 neuroblastoma tissue samples 

using 3D telomere Q-FISH while blinded to tumor characteristics.  After image 

acquisition and deconvolution (205), 100 nuclear segments from each tumor were 

analyzed with TeloView software (203) to determine the telomere profile associated with 

that sample (see Materials and Methods).  Hierarchical cluster analysis was used to 

stratify the study cohort into subgroups based on the 3D telomere parameters.  

 

Cluster analysis revealed three unique subgroups, shown graphically in Figure 4-1 

A.  The number of neuroblastomas in each subgroup was as follows:  23 in Subgroup I 

(red), 18 in Subgroup II (blue), and 33 in Subgroup III (green).  A tissue overview as well 

as a nucleus illustrating the telomere hybridization from a representative sample in each 

of the subgroups is shown in Figure 4-1 B – G.  The scatterplot in Figure 4-1 H illustrates 

the distribution of telomere lengths in each subgroup, with a plot of the number of 

telomeres found at each relative fluorescence intensity interval measured.  
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Figure 4-1.  3D Telomere Organization of Neuroblastoma Subgroups.  Hierarchical 

cluster analysis based on the measured telomere parameters of the 74 neuroblastoma 

tissue samples in our study cohort revealed three unique subgroups.  Subgroup I (red), 

Subgroup II (blue) and Subgroup III (green) are illustrated in a graphical representation 

(A).  3D telomere Q-FISH of the tumors labels all telomeres (red) in the nuclei, 

counterstained with DAPI (blue).  Images of multiple cells in 2D, and 3D renderings of 

individual representative nuclei (outlined in white in the overview) are illustrated for a 

neuroblastoma in Subgroup I (B & E), Subgroup II (C & F) and Subgroup III (D & G).  

Scale bars represent 10 µm.  The distribution of telomere lengths in each subgroup are 

illustrated in a scatterplot (H) of the number of telomeres found at each relative 

fluorescence intensity interval measured.  

 

Chi-square analysis revealed a significantly different distribution of telomere 

lengths between the subgroups (P < 0.0001).  As shown in Table 4-2, there was also a 

significant difference in the percentage of short, medium and long telomeres per cell (P < 

0.001 for all comparisons).  Subgroups I and III are comprised of neuroblastomas with 

the greatest percentage of short telomeres per cell (38.7% and 35.9%).  Subgroup II 

contains tumors with the highest percentage of medium-length telomeres (42.92%).  

Tumors with the highest percentage of long telomeres per cell are found in Subgroup III 

(31.9%).  These findings illustrate that Subgroup III, which has a high percentage of both 

short and long telomeres, has the most telomere length heterogeneity. 
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In addition to measuring individual telomere lengths, 3D telomere organization 

calculates telomere parameters that reflect tumor cell nuclear architecture.  Telomeric 

aggregates are telomeres in close proximity that cannot be resolved as separate entities at 

a resolution of 200 nm.  The subgroups displayed significantly different numbers of 

telomeric aggregates per cell and percentages of cells per patient with telomeric 

aggregates (P < 0.0001 for both comparisons).  Subgroup III was comprised of 

neuroblastomas with the most telomeric aggregates (3.4), followed by Subgroup II (1.9) 

and Subgroup I (1.1).  The highest percentage of cells with telomeric aggregates was 

Subgroup I Subgroup II Subgroup III
P-value 
between 

subgroupsa

Average number of telomeres per 
nuclear segment (SDb)

24.6c (3.4) 16.1 (2.3) 29.5 (6.2) <0.0001

Average number of telomeric 
aggregates per nuclear segment (SD)

1.1 (0.1) 1.9 (0.1) 3.4 (1.0) <0.0001

Average percentage of cells per patient 
with telomeric aggregates (SD, %)

42.4 (6.9) 99.5 (0.7) 90.3 (5.2) <0.0001

Average nuclear volume (SD, µm3) 351.30 (71.20) 335.78 (76.76) 318.03 (85.55) nsd

Average number of telomeres per 
nuclear volume (SD)

0.072 (0.013) 0.060 (0.017) 0.092 (0.029) <0.0001

Average a/c ratio per cell (SD) 2.57 (0.64) 2.18 (0.56) 3.81 (0.87) <0.0001

Average mean telomere intensity per 
patient (SD, RFU)

8833.0 (341.7) 10322.6 (649.1) 10118.3 (472.3) <0.0001

Average percentage of short telomeres 
per cell (SD, %)

38.7 (4.8) 31.0 (4.9) 35.9 (7.3) <0.001

Average percentage of medium 
telomeres per cell (SD, %)

40.0 (3.5) 42.9 (2.7) 32.2 (4.1) <0.0001

Average percentage of long telomeres 
per cell (SD, %)

21.4 (2.7) 26.4 (4.3) 31.9 (4.7) <0.0001

Table 4-2  Statistical Analysis of Telomere Parameters by Neuroblastoma Subgroup

cData range indicated in Supplementary Table 4-6

aP-value determined by one-way ANOVA
bStandard deviation

dNot significant 
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found in tumors belonging to Subgroup II (99.5%), followed by Subgroup III (90.3%) 

and Subgroup I (42.4%). 

 

The greatest number of telomeres per cell was observed in the neuroblastomas 

found in Subgroup III (29.5), followed by Subgroup I (24.6), and Subgroup II (16.1) (P < 

0.0001).  As the nuclear volume is similar for all subgroups, Subgroup III, which has 

tumors with the most telomeres per cell, exhibits the most dense telomere distribution:  

the average number of telomeres per nuclear volume is 0.092 for Subgroup III, 0.072 for 

Subgroup I and 0.060 for Subgroup II.  The a/c ratio, which measures the spherical nature 

of the telomere distribution, was also significantly different between the subgroups (P < 

0.0001).  Subgroup III was comprised of tumors with the largest a/c ratio (3.81), followed 

by Subgroup I (2.57), and Subgroup II (2.18).   

 

In summary, the three subgroups contain neuroblastomas with unique telomere 

profiles based on both telomere length and nuclear organization.  The lowest level of 

telomere dysfunction is seen in Subgroup I, which contains tumors with the fewest 

telomeric aggregates per nucleus and lowest percentage of cells per patients with 

telomeric aggregates.  Subgroup III illustrates the highest level of telomere dysfunction; 

it is comprised of tumors with the most telomeres per nucleus, the highest number of 

telomeric aggregates per nucleus, and a high percentage of short telomeres per cell and 

cells per patient with telomeric aggregates.  A moderate level of telomere dysfunction is 

seen in Subgroup II, which contains tumors with the least number of telomeres per cell, 

but has more telomeric aggregates per cell than Subgroup I, and the highest percentage of 
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cells per patient with telomeric aggregates.  Telomere dysfunction has been linked to 

genomic instability, with higher levels of telomere dysfunction indicating greater 

genomic instability (186, 560).  Therefore, neuroblastomas with the highest level of 

genomic instability are found Subgroup III, followed by those in Subgroup II, and the 

tumors in Subgroup I have the lowest level of genomic instability. 

 

Neuroblastomas are known to exhibit intratumor heterogeneity (568), with 

increasing diversity of telomere length strongly associated with disease progression and 

mortality (175). Our study supports these findings as we determined that Subgroup III 

had the greatest standard deviation in all the telomere parameters, except percentage of 

cells per patient with telomeric aggregates and mean telomere intensity; therefore 

Subgroup III is comprised of the neuroblastomas with the greatest intratumor 

heterogeneity.  As tumors with the highest level of telomere dysfunction are also found in 

Subgroup III, our findings illustrate that greater intratumor heterogeneity correlates with 

higher levels of telomere dysfunction. 

 

4.4.2.  Tumor Characteristics in the Neuroblastoma Subgroups 

 

We decoded the neuroblastoma tissue samples to determine the histopathological 

characteristics of the tumors in each of the three subgroups identified by hierarchical 

cluster analysis of the 3D telomere parameters.  The histology, age at diagnosis, MYCN 

amplification status and MYCN expression level of each sample is summarized in Table 
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4-3.  Chi-square analysis indicated there was an association between the cluster to which 

a tumor belonged and every tumor characteristic (P < 0.001 for all comparisons).   

 

 

 

The majority of neuroblastomas with unfavorable histology and an age of 

diagnosis of more than 18 months were found in Subgroup III (24/35 and 24/33, 

respectively), whereas most tumors with favorable histology and an age of diagnosis of 

less than 18 months were found in Subgroups I and II.  All tumors with MYCN 

Subgroup I (n) Subgroup II (n) Subgroup III (n) P-valuea

Histology
Favorable 13 9 6

Unfavorable 4 7 24
Unknown 6 2 3

Age at Diagnosis
<18 months 19 13 9
>18 months 4 5 24

MYCN Amplification
No 23 18 22
Yes 0 0 11

MYCN Expression
Low 23 18 2

Medium 0 0 20
High 0 0 11

Stage
1 9 3 1
2 7 4 0
3 2 1 5
4 0 5 25

4S 5 5 1
Unknown 0 0 1

COG Risk Score
Low 21 13 2

Intermediate 1 2 5
High 0 3 25

Unknown 1 0 1
aP-value determined by Chi-square test

Table 4-3  Histopathological Characteristics and Classification of Neuroblastoma Subgroups

<0.0001

0.0005

<0.0001

0.0003

<0.0001

<0.0001
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amplification and medium or high levels of MYCN expression were found in Subgroup 

III.  Subgroups I and II were comprised of tumors with low MYCN expression and no 

MYCN amplification; however tumors in Subgroup II had a higher average MYCN 

expression than those in Subgroup I (1281.09 RFU vs. 285.26 RFU, P < 0.0001).  Our 

data clearly demonstrates that neuroblastomas with unfavorable histopathological 

characteristics were found in the subgroups associated with more telomere dysfunction. 

 

Survival analysis of the 31 patients in our cohort with clinical follow-up 

illustrated that tumors in Subgroup III (green) displayed the largest decrease in survival 

probability with time, compared to tumors in Subgroup I (red) and Subgroup II (blue) 

(Supplementary Fig. 4-2); however, this trend was not statistically significant. 

 

4.4.3.  3D Telomere Profiles versus Current Neuroblastoma Classification Systems 

 

After decoding the neuroblastoma cohort, we determined the INSS stage and 

COG risk score of the tumors in each of the subgroups to gauge their prognosis 

(summarized in Table 4-3).  Chi-square analysis indicated there was an association 

between the cluster to which a tumor belonged and both INSS stage and COG risk (P < 

0.0001 for both comparisons).   

 

The majority of neuroblastomas with Stage 1 disease were found in Subgroup I 

(9/13), which also contained no tumors of Stage 4 disease.  Subgroup III was comprised 

of mainly Stage 4 tumors (25/33).  Similar numbers of tumors of all stages were found in 



	 123 

Subgroup II (3 Stage 1, 4 Stage II, 1 Stage 3, 5 Stage 4, 5 Stage 4S).  Subgroups I and II 

were comprised almost solely of low COG risk neuroblastomas (21/23 and 13/18, 

respectively); however, Subgroup II contained three tumors of high risk.  The majority of 

tumors in Subgroup III were of high COG risk (25/33).  Therefore, neuroblastomas of 

high stage and poor prognostic risk were found in the subgroups with more telomere 

dysfunction. 

 

4.4.4.  Changes in 3D Telomere Organization Following MYCN Transfection in 

Neuroblastoma Cell Lines 

 

3D telomere profiles that indicated more telomere dysfunction were associated 

with tumor subgroups with higher MYCN expression.  To determine whether there is a 

functional relationship between MYCN expression and 3D telomere organization, we 

transfected two neuroblastoma cell lines with constitutive low MYCN expression, SHEP 

and GIMEN, with a MYCN expression vector.  3D telomere Q-FISH was conducted on 

transfected cells, and mock-transfected controls, to analyze the nuclei for changes in their 

telomere profiles.  Transfected cells were sorted to ensure that only cells with MYCN 

overexpression were analyzed (see Materials and Methods).  Representative nuclei 

illustrating the telomere hybridization in the control and MYCN-transfected SHEP and 

GIMEN cell lines are shown in Figure 4-2 A – D.  The scatterplot in Figure 4-2 E 

illustrates the distribution of telomere lengths from each condition, with a plot of the 

number of telomeres found at each relative fluorescence intensity interval measured:  
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SHEP (grey) and GIMEN (black) cell lines after MYCN- (solid lines) and mock- (dashed 

lines) transfection. 

 

 

 

Figure 4-2.  3D Telomere Organization of Neuroblastoma Cell Lines.  3D telomere 

Q-FISH labels all telomeres (red) in the SHEP neuroblastoma cell line mock- (A) and 

MYCN-transfection (B) and the GIMEN neuroblastoma cell line mock- (C) and MYCN-

transfection (D).  Nuclei are counterstained with DAPI (blue).  The distribution of 

telomere lengths for each condition are illustrated in a scatterplot (E) of the number of 

telomeres found at each relative fluorescence intensity interval measured:  SHEP (grey) 
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and GIMEN (black) cell lines after MYCN- (solid lines) and mock- (dashed lines) 

transfection. 

 

 The average MYCN expression was significantly higher in the post- compared to 

mock-transfection nuclei for both the SHEP and GIMEN cell lines:  1480.78 vs. 6962.54 

RFU in the SHEP cell line (P < 0.0001) and 1577.19 vs. 7839.49 RFU in the GIMEN cell 

line (P < 0.0001).  As shown in Table 4-4, all telomere parameters were significantly 

different between the MYCN-transfected and control cells for both cell lines (P < 0.05 

for all comparisons), except nuclear volume in both cell lines and percentage of long 

telomeres in the GIMEN cell line.  Similar to the results seen in low compared to higher 

MYCN-expressing tumor samples, increased MYCN expression in the cell lines is 

associated with an increase in the number of telomeres, number of telomeric aggregates 

and percent of cells with telomeric aggregates (P < 0.05 for all comparisons).   For both 

cell lines there is a significantly different distribution of telomere lengths between the 

control and MYCN-transfected cells (P < 0.0001), with a higher percentage of short 

telomeres correlated with increased MYCN expression (P < 0.05 for both comparisons).  

An increase in the average number of telomeres per nuclear volume and the a/c ratio 

indicates there is also a different nuclear distribution of the telomeres after MYCN 

transfection (P < 0.05 for all comparisons).  
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In summary, the increased expression of MYCN in both cell lines following 

MYCN transfection was associated with altered telomere profiles that indicated increased 

telomere dysfunction.  These findings closely parallel those in the neuroblastoma tissue 

samples and illustrate a functional relationship between MYCN expression and 3D 

telomere organization. 

 

4.5.  Discussion 

 

 Using 3D telomere Q-FISH we determined the telomere profiles of 74 

neuroblastoma tissue samples.  Statistical hierarchical cluster analysis identified three 

SHEP 
control

SHEP 
MYCN-

transfection

GIMEN 
control

GIMEN 
MYCN-

transfection

P-value 
between 
SHEP 

conditionsa

P-value   
between 
GIMEN 

conditionsa

Average MYCN expression 
per cell (RFU)

1480.78 6962.54 1577.19 7839.49 <0.0001 <0.0001

Average number of telomeres 
per nucleus

41.8 74.9 85.7 120.3 <0.0001 <0.01

Average number of aggregates 
per nucleus

4.9 9.6 10.6 15.1 <0.05 <0.01

Average percentage of cells per 
replicate with aggregates  (%) 71.3 100.0 80.7 100.0 <0.001 <0.01

Average nuclear volume (µm3) 1053.31 1262.03 1934.85 2225.43 nsb ns
Average number of telomeres 

per nuclear volume
0.040 0.060 0.044 0.054 <0.05 <0.05

Average a/c ratio per cell 3.34 6.34 6.32 11.32 <0.01 <0.05
Average percentage of short 

telomeres per cell (%)
15.1 30.5 24.7 39.1 <0.001 <0.01

Average percentage of medium 
telomeres per cell (%)

55.7 47.1 52.2 38.5 <0.05 <0.05

Average percentage of long 
telomeres per cell (%) 29.3 22.4 23.1 22.4 <0.05 ns

Table 4-4 Statistical Analysis of Telomere Parameters by Neuroblastoma Cell Line

aP-value determined by unpaired t-test
bNot significant 
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patient subgroups based on the measured 3D nuclear telomere parameters.  These 

subgroups had unique levels of telomere dysfunction.  We found that tumors with more 

telomere dysfunction were associated with unfavorable histopathologic characteristics 

and poor prognosis.  Subgroup III, which had the highest level of telomere dysfunction, 

clearly identified a group of neuroblastomas that are of high risk as the majority are Stage 

4, have MYCN amplification and high MYCN expression, are greater than 18 months at 

diagnosis and have unfavorable histology.  Although tumors in Subgroups I and II had 

similar characteristics, Subgroup II had a higher level of telomere dysfunction and may 

identify neuroblastomas with poorer prognosis; accordingly, Subgroup II contained more 

tumors of higher stage and COG risk than Subgroup I.  Previous studies have also found 

that telomere profiles can differentiate tumors that are clinically similar.  For example, 

3D telomere organization identified recurrent compared to non-recurrent Hodgkin’s 

lymphoma patients at diagnosis (256). And previously unknown subgroups of 

glioblastoma that corresponded with patient survival were discovered using 3D telomere 

organization (257).   

 

 Telomere dysfunction has previously been implicated in neuroblastoma 

pathogenesis.  However, previous studies that determined mean telomere length have 

been inconclusive as to whether no change, an increase, or a decrease in telomere length 

is associated with poor patient prognosis (451-453).  Our method of 3D telomere analysis 

determines the length of each individual telomere in addition to mean telomere length.  

All subgroups had a significantly different distribution of telomere lengths.  Interestingly, 

Subgroups II and III did not have significantly different mean telomere intensities, but 
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they had unique percentages of short, medium and long telomeres (P ≤ 0.05 for all 

comparisons, see Supplementary Tables 4-1 – 4-4).  This finding supports using our 

approach of measuring all individual telomere lengths as it can detect differences that 

may be overlooked by methods that solely determine mean telomere length.   

 

In addition to measuring telomere length, our method also analyzes the 3D 

nuclear telomere distribution.  The difference in these parameters indicated that each 

neuroblastoma subgroup had a unique nuclear architecture.  The a/c ratio measures the 

spherical nature of the telomere distribution and correlates with the cell cycle (203, 250).  

A higher ratio indicates more cells at the G2/M boundary; therefore, Subgroup III, which 

has the largest a/c ratio, has the highest level of cellular proliferation.  As telomeres 

shorten with each cell cycle, high rates of proliferation can lead to critically short 

telomeres (182).  Critically short telomeres trigger DNA damage responses and trigger 

end-to-end fusions of sister chromatids or of different chromosomes (184); subsequently, 

telomere fusions generate dicentric chromosomes and breakage-fusion-bridge cycles that 

lead to chromosome rearrangements and ongoing genomic instability (543).  Telomeric 

aggregates can represent telomere fusions (543).  Subgroup III also has the highest 

number of telomeric aggregates. 

 

3D telomere organization reflects genomic reflect genomic stability (186, 560).  

As the neuroblastoma subgroups had different telomere profiles, they will also have 

unique levels of genomic instability:  subgroups with higher levels of telomere 

dysfunction will have greater genomic instability.  Previously it has been found that 
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MYCN amplified neuroblastomas have multiple structural chromosome aberrations; 

however, a subset of high-risk MYCN non-amplified tumors harbor more segmental 

chromosome aberrations including intrachromosomal rearrangements (564) suggesting 

that these tumors have the most genomic instability.   It has also been proposed that these 

high-risk MYCN non-amplified tumors employ the alternative lengthening of telomeres 

(ALT) mechanism (451), a feature of which is heterogeneous telomere lengths (163).  To 

compare our data with these findings we further examined Subgroup III, which contained 

tumors with the highest level of genomic instability and highest prognostic risk.  We 

divided Subgroup III into two groups:  IIIa, composed of 22 MYCN non-amplified 

tumors, and IIIb, composed of 11 MYCN amplified tumors.  Subgroup IIIb had tumors 

with more telomeres and telomeric aggregates per cell than those in IIIa (P < 0.0001, see 

Supplementary Table 4-5); however, the tumors in Subgroup IIIa had more telomeres and 

telomeric aggregates per cell than both Subgroups I and II.  The neuroblastomas in 

Subgroups IIIa and IIIb also had a significantly different distribution of telomere lengths 

(P < 0.0001); MYCN amplified neuroblastomas in IIIb had predominately short 

telomeres, while MYCN non-amplified tumors in IIIa had similar percentages of short, 

medium-length and long telomeres.  Therefore, our results are consistent with the 

previous findings of a subgroup of high-risk MYCN non-amplified neuroblastomas that 

exhibit a high level of genomic instability and use ALT. 

 

As tissue samples with MYCN amplification and higher MYCN expression were 

associated with more telomere dysfunction, we examined whether MYCN overexpression 

could reproduce these findings.  MYCN transfection in two neuroblastoma cell lines with 
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constitutive low MYCN expression generated changes in their telomere profiles that were 

consistent with increased telomere dysfunction.   Therefore we suggest that MYCN 

overexpression in neuroblastoma may cause telomere dysfunction.  Previously it has been 

shown that MYC deregulation alters 3D telomere organization with increases in telomere 

aberrations and genomic instability (46). 

 

In conclusion, this study demonstrates that 3D telomere organization can be used 

to subgroup neuroblastomas.  Classifying neuroblastomas based on the level of telomere 

dysfunction is a novel approach for this cancer.  Similar to previous studies in acute 

myeloid leukemia, multiple myeloma, glioblastoma and Hodgkin’s lymphoma (254, 257, 

260, 262), we found telomere profiles in neuroblastoma to correlate with tumor 

characteristics and patient prognosis.  We propose that 3D telomere organization may be 

a novel prognostic marker in neuroblastoma and further studies are needed to validate its 

potential. 
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4.7.  Supplementary Tables 

 

 

 

 

 

 

Subgroup I Subgroup II Subgroup III

Subgroup I ≤0.0001 ≤0.0001

Subgroup II ≤0.0001 nsb

Subgroup III ≤0.0001 ns
aP -value determined by one-way ANOVA with Tukey test

Supplementary Table 4-1 Statistical Analysis of Average 
Mean Telomere Intensity per Patienta

bNot significant 

Subgroup I Subgroup II Subgroup III

Subgroup I ≤0.01 nsb

Subgroup II ≤0.01 ≤0.05

Subgroup III nsb ≤0.05

Supplementary Table 4-2 Statistical Analysis of Percentage 
of Short Telomeres per Cella

aP -value determined by one-way ANOVA with Tukey test
bNot significant 

Subgroup I Subgroup II Subgroup III

Subgroup I ≤0.05 ≤0.0001

Subgroup II ≤0.05 ≤0.0001

Subgroup III ≤0.0001 ≤0.0001

Supplementary Table 4-3 Statistical Analysis of Percentage 
of Medium Telomeres per Cella

aP -value determined by one-way ANOVA with Tukey test
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Subgroup I Subgroup II Subgroup III

Subgroup I ≤0.001 ≤0.0001

Subgroup II ≤0.001 ≤0.0001

Subgroup III ≤0.0001 ≤0.0001

Supplementary Table 4-4 Statistical Analysis of Percentage 
of Long Telomeres per Cella

aP -value determined by one-way ANOVA with Tukey test

Subgroup IIIa Subgroup IIIb
P-value 
between 

subgroupsa

Average number of telomeres per 
nuclear segment

25.8 37.0 <0.0001

Average number of telomeric 
aggregates per nuclear segment 

2.8 4.8 <0.0001

Average percentage of cells per patient 
with telomeric aggregates ( %)

87.9 95.3 <0.0001

Average nuclear volume (µm3) 302.50 349.10 nsb

Average number of telomeres per 
nuclear volume

0.081 0.114 <0.01

Average a/c ratio per cell 3.50 4.43 <0.01
Average mean telomere intensity per 

patient (RFU)
10158.2 10038.3 ns

Average percentage of short telomeres 
per cell (%)

32.5 42.5 <0.0001

Average percentage of medium 
telomeres per cell (%)

33.5 29.8 <0.05

Average percentage of long telomeres 
per cell (%) 34.0 27.7 <0.0001

Supplementary Table 4-5  Statistical Analysis of Telomere Parameters in 
Neuroblastoma Subgroup III

aP-value determined by unpaired t-test
bNot significant 
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Subgroup I Subgroup II Subgroup III
Average number of telomeres per 

nuclear segment
15.6 - 29.2 13.7 - 24.6 15.1 - 41.3

Average number of telomeric 
aggregates per nuclear segment 

0.9 - 1.3 1.5 - 2.1 2.2 - 5.3

Average percentage of cells per patient 
with telomeric aggregates (%)

28.0 - 58.0 98.0 - 100.0 79.0 - 99.0

Average nuclear volume (µm3) 213.98 - 552.07 227.21 - 499.47 167.07 - 537.50
Average number of telomeres per 

nuclear volume
0.046 - 0.091 0.034 - 0.095 0.043 - 0.176

Average a/c ratio per cell 1.81 - 4.42 1.37 - 3.71 2.55 - 6.61
Average mean telomere intensity per 

patient (RFU)
8177.9 - 9722.0 9041.8 - 11595.8 8922.5 - 11188.2

Average percentage of short telomeres 
per cell (%)

30.0 - 47.4 24.9 - 43.4 24.9 - 51.2

Average percentage of medium 
telomeres per cell (%)

32.0 - 46.7 38.1 - 50.0 21.3 - 39.4

Average percentage of long telomeres 
per cell (%) 14.2 - 28.7 18.8 - 37.4 18.5 - 40.2

Supplementary Table 4-6  Data Range of Telomere Parameters by Neuroblastoma Subgroup
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Patient ID
Number of 

Follow-up Days

Patient Status 
at End of 

Follow-up

Five-year 
Survival

1 2623 Alive Yes
3 2780 Alive Yes
4 582 Alive Unknown
7 64 Alive Unknown

11 130 Alive Unknown
14 132 Alive Unknown
16 3734 Alive Yes
17 1334 Alive Unknown
20 3054 Alive Yes
21 426 Dead No
22 1478 Alive Unknown
23 1786 Alive Unknown
24 816 Alive Unknown
25 2813 Alive Yes
26 566 Dead No
27 2900 Alive Yes
28 514 Dead No
29 61 Dead No
30 299 Alive Unknown
31 2947 Alive Yes
32 1865 Alive Yes
33 393 Dead No
35 3906 Alive Yes
39 64 Alive Unknown
41 2728 Alive Yes
42 3137 Alive Yes
46 2528 Alive Yes
47 1558 Dead No
48 1004 Alive Unknown
61 4136 Alive Yes
64 232 Alive Unknown

Supplementary Table 4-7 Neuroblastoma Cohort Suvival Data 
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4.8.  Supplementary Figure 

 

Supplementary Figure 4-1.  Dendrogram Illustrating Hierarchical Cluster Analysis 

of Neuroblastoma Tissue Samples. 
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Supplementary Figure 4-2.  Survival Analysis Neuroblastoma Tissue Samples.  

Survival analysis of the 31 patients in our cohort with clinical follow-up illustrated that 

tumors in Subgroup III (green) displayed the largest decrease in survival probability with 

time, compared to tumors in Subgroup I (red) and Subgroup II (blue).  This trend was not 

statistically significant. 
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Chapter 5: 

Discussion 

 

5.1.  3D Telomere Organization as a Clinical Tool 

 

A biomarker has been defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (569).  A biomarker should also 

be accurately measurable and reproducible (570).  Multiple studies from our lab have 

proposed 3D telomere organization to be used as a novel biomarker in cancer.  In a study 

of 16 patients with esophageal squamous cell carcinoma, differences in telomere 

signatures were found between tumor and normal tissue from the same patient, leading to 

the suggestion of 3D telomere organization as a diagnostic biomarker (571).  The 

identification of subgroups of circulating tumor cells within patients with melanoma, 

prostate, colon and breast cancer illustrated the potential of 3D telomere organization for 

diagnosis and staging of these cancers (261).  In large patient cohort studies of AML and 

multiple myeloma, unique telomere profiles were identified for these cancers and their 

precursor stages, MDS and MGUS, respectively; therefore, 3D telomere organization was 

proposed as a tool to monitor disease progression (260, 262).  3D telomere organization 
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could also be used as a prognostic biomarker:  a study of 26 patients with Hodgkin’s 

lymphoma revealed the ability of telomere organization to identify patients at diagnosis 

that would be refractory to treatment or relapse (517); another study of 11 patients with 

glioblastoma identified unique telomere profiles associated with short, intermediate and 

long term survival (257).  The potential of 3D telomere organization to be used as a 

biomarker to monitor treatment response is currently being investigated in patients with 

high risk prostate cancer, to determine whether patients responsive to hormone therapy or 

radiation therapy have a unique profile compared to those who have progressive disease 

(Landon Wark, in submission 2016); similar studies are being conducted in intermediate 

risk prostate cancers to determine if patients responsive and unresponsive to surgery have 

different telomere profiles (Julius Awe, unpublished results).  The work presented in this 

thesis continues to support the use of telomere profiling as a clinical tool.  The ability of 

3D telomere organization to detect differences between normal mouse lymphocytes and 

PCT cells (Chapter 2) may be applicable to diagnosing human Burkitt lymphoma, as 

mouse PCT is cytogenetically identical to Burkitt lymphoma.  Currently there is no single 

reliable prognostic biomarker in neuroblastoma.  The correlation between neuroblastoma 

subgroups, generated from measured telomere parameters, and multiple histopathologic 

features of the disease (Chapter 4), suggest 3D telomere organization as a potential 

prognostic marker in neuroblastoma.  One of our subgroups clearly identified a group of 

high-risk tumors.  Although the other two subgroups were comprised of tumors with 

similar clinical characteristics, we propose that the subgroup with greater telomere 

dysfunction contains neuroblastomas of higher risk.  Current prognostic markers in 

neuroblastoma may not be able to distinguish tumors in the way that telomere 
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organization can.  Therefore, 3D telomere profiling may be a novel approach for 

classifying neuroblastomas that provides additional information than currently available 

prognostic markers.  

 

 

 A unique feature of 3D telomere organization is that unlike most biomarkers, it is 

not disease specific.  Altered telomere organization has been proposed as a biomarker in 

multiple tumor types.  It has also been proposed as a biomarker in diseases other than 

cancer, such Alzheimer’s disease (572).  The relevance of 3D telomere organization to 

multiple diseases is because it reflects the sample’s genomic stability, not a disease-

specific gene, protein or clinical feature.  Greater levels of telomere dysfunction, 

indicated by high numbers of telomeres, telomeric aggregates and short telomeres, also 

reflect greater levels of genomic instability.  Our findings suggested that a group of 

neuroblastomas, both MYCN amplified and non-amplified but with medium to high levels 

of MYCN expression, had the highest level of genomic instability (Chapter 4).  Previous 

studies have determined that a subset of MYCN non-amplified harbor the most segmental 

chromosome aberrations (564, 573).  To see if our results also supported this conclusion, 

we split our subset of neuroblastomas with the highest genomic instability into MYCN 

amplified and non-amplified groups, and then compared their 3D telomere organization.  

Indeed, we found that the MYCN non-amplified tumors displayed telomere characteristics 

that indicated higher genomic instability.   
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Our study of 3D telomere organization in neuroblastoma also examined 

intratumor heterogeneity of the measured telomere parameters.  Intratumor variation of 

chromosome number has been previously observed in neuroblastoma (568).  A study 

which determined average telomere length of multiple single cells per neuroblastoma 

tissue sample, found intratumor variation of average telomere length in 32 out of 105 

samples (32/105); they stated this group of tumors had similar histopathologic 

characteristics as the group with homogenous tumor lengths (175).   Although our 

methods of measuring telomere length and classifying telomeres as short, medium and 

long are different, our results suggest that there is intratumor heterogeneity in every 

sample.  We also identified greater intratumor variation in tumors with unfavorable 

histopathological characteristics, and higher levels of telomere dysfunction and genomic 

instability.  Our results are more consistent with previous findings that intratumor 

heterogeneity increases with genomic instability (574). 

 

 The study of telomeres in disease by 3D telomere organization is elaborate 

compared to other methods such as 2D Q-FISH, STELA, Q-PCR and TRF because it 

measures multiple telomere parameters on a single-cell basis (203), rather than solely 

individual or average telomere length.  The conflicting results of previous studies of 

telomere length in neuroblastoma could be because they determined a single average 

telomere length for each patient sample by either TRF (452, 453, 513) or Q-FISH (451).  

When examining telomere length with 3D telomere Q-FISH, the length of each telomere 

is determined and the distribution of telomere lengths is compared between patients.  In 

our study of telomere length in neuroblastoma (Chapter 4), we found two subgroups had 
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similar mean telomere intensities but unique percentages of short, medium and long 

telomeres.  This finding demonstrates the ability of mean telomere length to overlook 

differences in telomere length between samples.  Therefore our study uses novel methods 

and is more comprehensive than previous studies of neuroblastoma telomere length.  

 

 3D telomere organization is also an advantageous technique because it has been 

validated in multiple species and cell types.  It has been studied in cell lines from 

multiple species (46, 250, 252, 253, 345) and in mouse cells of various origin (258, 259, 

264, 567).  It has also been validated in many human cell types:  tissue sections from 

solid tumors (250, 260, 517, 571), bone marrow (260, 262, 263), circulating tumor cells 

(261), blood cells (262, 263) and buccal cells (572).  This provides a promising future for 

diseases such as neuroblastoma, where 3D telomere organization has shown potential as a 

biomarker in tissue samples, findings that may be transferable to less invasive diagnostic 

methods such as CTCs or buccal swabs.   

 

 The drawback to studying 3D telomere organization is that the process is semi-

automated and can be time consuming.  This has led to the development of TeloScan 

(207), a high-throughput scanning/acquisition system that allows for the acquisition of 

3D images and measurement of telomere parameters on a single-cell basis, at a speed of 

10,000 to 15,000 cells per hour.  This innovation has drastically reduced sample 

processing time and eliminates the sampling bias of non-automated imaging and analysis.  

It can also detect one aberrant cell in 1,000 normal cells (207).  For certain cancers in 

which the available study material is tissue biopsies, it can be difficult to create TeloScan 
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parameters that identify correct and consistent cell populations for each sample. To 

ensure the automated method is accurately selecting cells, TeloScan reveals the analyzed 

cells after the scanning process and allows the use to manually delete and add cells to the 

analysis.  However, the use of different equipment, such as objectives, lower 

magnification, 63x to 40 or 60x, and new automated software, can lead to differing 

results when directly comparing TeloView results with those from TeloScan.  For 

example, 3D telomere profiles of Hodgkin lymphoma patients differ from TeloView to 

TeloScan (Cheryl Taylor, unpublished results) and a different number of neuroblastoma 

subgroups were identified using telomere parameter data from TeloView compared to 

TeloScan (Alexandra Kuzyk, unpublished results).  Contrastingly, identical subgroups of 

glioblastoma that correlated with patient survival were determined with both the 

automated and semi-automated software (257).  Although there may be differences when 

directly comparing samples between TeloView and TeloScan, the overall trends and 

conclusions may be indistinguishable; therefore, the role of automated software in future 

studies of 3D telomere organization will have to be determined on an individual basis. 

 

5.2. MYCN Drives Tumorigenesis by Altering 3D Nuclear Organization 

 

 MYCC is a proto-oncogene whose deregulation is present in over 70% of tumors  

(270, 575).  MYC is known to induce genomic instability though the formation of EEs 

(276, 343, 576), centromere and telomere fusion (343), chromosome and chromatid 

breaks (276, 343), ring chromosomes (343), translocations (338), deletions and inversions 

(338), aneuploidy (276, 340), Robertsonian chromosomes (259, 342), and 
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endoreduplication and polyploidy (316-318).  The genomic instability induced by MYC 

also acts on the interphase nucleus remodeling its 3D organization (536, 560).  A study 

by Louis et al. (2005) found conditional MYC deregulation resulted in changes in the 3D 

nuclear organization of telomeres and chromosomes (46).  MYC overexpression led to 

cycles of telomeric aggregate formation that were proportional to the duration of MYC 

deregulation.  The cycles continued when MYC overexpression was discontinued, 

leading to non-rcpTs, alteration in 3D telomere organization and genomic instability.  It 

was concluded that MYC-induced nuclear remodeling preceded the onset of genomic 

instability.  With MYC deregulation, chromosomes involved in structural rearrangements 

illustrated a change in their position in the interphase nucleus to be in closer proximity to 

each other; however chromosomes not involved in translocations did not exhibit a change 

in their nuclear location (46).  Robertsonian fusions were also observed after MYC 

deregulation (342). 

 

Although MYC is involved in remodeling of the interphase nucleus, the role of 

MYCN in this process has not been studied.  The work in this thesis illustrates for the 

first time, the potential of MYCN deregulation to change the 3D nuclear organization of 

telomeres and chromosomes.  MYCN deregulation in neuroblastoma cell lines led to 

altered telomere organization with an increase in the number of telomeres and telomeric 

aggregates, and more short and long telomeres (Chapter 4).  With MYCN overexpression 

in neuroblastoma cell lines, chromosomal gains of the 17q region were observed (Chapter 

3).  Although gain of the 17q region is more commonly associated with MYCN amplified 

neuroblastomas (418), we provide evidence of a functional relationship between 
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increased MYCN expression and copy number gain of 17q.  Altered nuclear location of 

the 17q region and increased expression of genes in this region was also observed with 

MYCN overexpression.  Although the increased expression of genes on 17q may be 

because they are downstream targets of MYCN, previous studies have not identified them 

as such (485, 496, 577).  This suggests the role of MYCN is to alter the nuclear location 

of the 17q region to one of higher transcriptional activity, rather than to act on a 

promoter.   

 

 The mechanism behind MYC and MYCN-dependent nuclear remodeling is not 

known.  MYC and MYCN are associated with the amplification of genes involved in cell 

cycle progression and proliferation (334); therefore, affected cells will replicate at a 

quicker rate leading to critically short telomeres and genomic instability as a result of 

BFB cycles.  As telomere repeat sequences can bind to the nuclear matrix (578, 579), 

short telomeres, which move more than long telomeres (580, 581), may have a looser 

attachment and readily alter their nuclear location.   MYC overexpression results in 

telomere uncapping (46) and down-regulation of TRF2 (582).  TRF2 is tightly associated 

with the nuclear matrix (583), therefore, telomere uncapping and the loss of TRF2 may 

also liberate chromosome ends to alter their nuclear position.  In support of this 

hypothesis, disruption of the nuclear matrix through loss of A-type lamins, resulted in an 

increased speed of chromatin diffusion throughout the nucleus (78), altered nuclear 

distribution of telomeres, and increased genomic instability (79).  Loss of TRF2, which 

protects and represses DDRs at telomeres, may also make telomeres more vulnerable to 

dysfunction creating telomere fusions; accordingly cancers with MYC (and MYCN) 
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overexpression illustrate an increase in telomeric aggregates (46, 567).  Another 

possibility is that MYC and MYCN activate downstream target genes that are involved in 

nuclear motor activities, such as nuclear myosin 1 beta (NM1β) (584), and consequently 

cause chromosome movements.   

 

5.3.  The Potential of Studying CT Arrangement in Cancer 

 

 It has been widely accepted that CT arrangement in the interphase nucleus is non-

random and cell-type specific (36-38, 518).  The most thoroughly tested conclusion about 

CT arrangement is the more peripheral position of chromosome 19 compared to 

chromosome 18 (50).  This arrangement was confirmed in multiple normal and tumor cell 

types (48) and was also found to be evolutionarily conserved in primates (51).  All other 

aspects of CT are either unknown or debated.  For example, a topic of heavy deliberation 

is which factors contribute to, and which one is most influential in, CT arrangement in a 

given cell type.  Another controversial topic is whether transcriptional regulation is 

influenced by the gene’s nuclear position and which nuclear environments are active 

versus repressive.  Nonetheless, most would agree that although complex, nuclear 

organization contributes to cell function and is important to understand. 

 

 One of the reasons why it is difficult to draw conclusions about CT arrangement 

is because it is challenging to determine the exact location of an entity in the nucleus.  

Firstly, a CT’s position in the nucleus always has to have a point of reference, such as the 

nuclear centre, the nuclear periphery, a gene locus or another CT.  Consequently, 
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comparisons between samples can be problematic if the cell size or shape differs, or if the 

function of the reference entity is not conserved.  This makes study conclusions very 

specific to the cell type analyzed and conditions used, rather than being able to generalize 

findings.  Secondly, there is often great variation in a CT’s position between cells in the 

same sample.  Therefore, rather than being able to determine an exact position, the 

average or range of positions for an entity in the nucleus has to be reported (as shown for 

the position of 17q25 and 17p11 in neuroblastoma tissue samples and cell lines in 

Chapter 3).  This variation could be due to differences in the transcriptional state or cell 

cycle status of the cells.  Also, not only can there be variation in the nuclear position of 

the CT, there can also be variation in the orientation of the chromosome (585, 586).  

Another reason it is difficult to draw generalizations about CT arrangement is that model 

systems may not accurately reflect in vivo studies.  Computer modeling and cell culture 

conditions may not be able to mimic the complex in vivo environment.  For example, 

studies of milk protein genes in mammary epithelial tissue found a significant change in 

the gene’s position in vivo, but not in vitro (81, 587).  Because of these limitations, the 

potential and value of studying the arrangement of CTs in cancer is in understanding 

tumor pathogenesis rather than in identifying a tumor biomarker. 

 

5.4.  3D Telomere Organization Reflects Telomere Maintenance Mechanism  

 

 Studies of telomere length regulation in neuroblastoma have identified a role for 

both telomerase and ALT.  High telomerase expression is associated with MYCN 

amplification (453) and poor clinical outcomes (514, 515).  As MYC directly activates 
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hTERT promotor sequences (588), MYCN may have a similar mechanism.  However, 

studies have not found a clear relationship between telomerase and telomere length (175, 

453).  Neuroblastomas without MYCN amplification and increased telomere length also 

contained APBs, suggesting the presence of an ALT mechanism (451).  These tumors 

were also associated with poor patient survival.  One study identified the coexistence of 

high hTERT and ALT in a subset of tumors with significantly reduced overall survival 

(175). 

 

 We propose that the neuroblastoma subgroups identified by 3D telomere 

parameters (Chapter 4) represent a model of neuroblastoma pathogenesis regulated by 

MYCN expression and mechanisms of telomere length maintenance.  Subgroup II 

compared to Subgroup I has a higher level of MYCN expression and fewer telomeres but 

more telomeric aggregates per cell.  Therefore the progression from Subgroup I occurs as 

MYCN deregulation causes increased cellular proliferation and the formation of shorter 

telomeres to an extent that the telomeres are very short and may not be visible by 

telomere Q-FISH (Subgroup II).  At this point of critically short telomere length, cells 

develop a telomere lengthening mechanism to continue to proliferate and progress into 

Subgroup III.  Whether telomerase and/or ALT is acquired depends on the MYCN 

amplification status of the tumor.  As discussed in Chapter 4, Subgroup III can be divided 

into two groups (IIIa and IIIb) that have different telomere profiles.  Subgroup IIIa 

contains MYCN non-amplified tumors with fewer telomeric aggregates but a greater 

distribution of telomere lengths; therefore, these tumors have acquired the ALT 

mechanism.  Subgroup IIIb contains MYCN amplified tumors with predominately one 
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length of telomere and many telomeric aggregates; therefore these tumors have acquired 

telomerase.  Identifying if and which telomere healing mechanism is active in 

neuroblastomas at diagnosis is clinically useful because different treatment strategies may 

be needed to target the cellular mechanisms leading to the tumors’ pathogenesis. 

 

5.5.  Conclusion 

 

 It is now known that cancer pathogenesis relies on much more than the underlying 

genomic sequence, and aberrations therein.  Therefore, it is important to investigate new 

mechanisms that can contribute to tumorigenesis and assist in clinical management.  The 

knowledge of the role of nuclear architecture in cancer is still in its infancy.  The studies 

in this thesis demonstrate the contribution of 3D nuclear organization to two 

malignancies:  mouse PCT and human neuroblastoma.  3D telomere organization has the 

capability of differentiating normal cells from tumor cells, and aggressive from less-

aggressive tumors in mouse PCT.  It can also stratify a neuroblastoma cohort by clinical 

prognostic risk factors.  MYC and MYCN deregulation in these tumors is associated with 

unbalanced chromosome gain of a syntenic region:  11E2 in PCT and 17q25 in 

neuroblastoma.  Their deregulation is also associated with changes in the nuclear position 

of these regions.  Therefore, MYC and MYCN may be drivers of nuclear disorganization 

in cancer.  In conclusion, this thesis demonstrates that multiples aspects of 3D nuclear 

organization contribute to the pathogenesis of PCT and neuroblastoma.  The use of 3D 

telomere organization as a novel prognostic biomarker in neuroblastoma has been 

proposed, and should be validated with further clinical trials. 



	 149 

 

 

 

 

 

5.6.  Future Directions 

 

5.6.1.  Relationship Between MYC Overexpression and CT Organization in Mouse PCT 

 

 An altered, more central nuclear location of chromosome T(X;11) containing 

cytoband 11E2 was seen in fast-onset PCTs compared to slow-onset PCTs and normal 

mouse lymphocytes (Alexandra Kuzyk, unpublished results).  Conditional MYC 

deregulation was found to alter the position of CTs in a mouse lymphocyte cell line (46); 

however, the role of MYC in the nuclear positioning of chromosomes 11E2 in fast-onset 

PCTs has not been investigated.  Whether repositioning of chromosome 11E2 or PCT 

formation occurs first, is also unknown. 

 

  To determine whether MYC drives the nuclear repositioning of chromosome 

11E2 in fast-onset PCT and the mechanism by which it does so, a model system of fast-

onset PCT can be used.  MYC can be activated in PreB ABL/MYC cells by 4-hydroxy-

tamoxifen (46).  A cell line with an inducible MYC mutant, was previously shown to be 

unable to promote nuclear remodeling (345), could be used a control for MYC’s effects.  

FISH can be used to monitor the nuclear position of chromosomes over time, to 
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determine relationship between MYC deregulation and 11E2 movement.  Both telomere 

uncapping through the loss of TRF2 and activation of nuclear motor proteins have been 

hypothesized as the mechanism by which MYC alters nuclear organization (see 

Discussion Section 5.2).  Silencing NM1β by RNA interference after MYC induction and 

performing FISH for chromosome 11 as indicated above, can determine if NM1β plays a 

role in the nuclear positioning of 11E2; no movement of 11E2 after silencing of NM1β 

would indicate a role of NM1β in chromosome movement.  Telomere de-protection after 

MYC deregulation can be determined by 3D immuno-FISH for TRF2 and telomeres; 

telomeres without corresponding TRF2 signals would indicate loss of this protein at 

telomeres (252).  Uncapped telomeres can be identified by immunofluorescence for DDR 

proteins, such as γH2AX, and TRF1; co-localization of signals would indicate uncapped 

telomeres.  γH2AX could be used because it is not normally found at telomeres, its 

presence is an early event in DDR and it has been previously validated in multiple studies 

(254, 589). 

 

To determine whether repositioning of chromosome 11E2 is a cause or 

consequence of fast-onset PCT development, the position of chromosome 11 can be 

followed in PreB cells before and after v-abl/myc infection and transformation into PCTs 

in vivo.  Fast-onset PCTs can be induced in [T38HxBALB/c]N rcpT(X;11) mice by 

infection with v-abl/myc (402).  B cells can be collected prior to infection and throughout 

the latency period by peritoneal washes in the same mouse.  B cells and PCT cells can be 

identified by immunostaining with CD45 and anti-surface IgM, respectively (590).  FISH 

can be conducted on the B cells at each harvest to determine the position of chromosome 
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11 over time.  This experiment will establish whether repositioning of chromosome 11E2 

precedes or is a consequence of tumor formation.  Because all fast-onset PCTs have 

chromosome 11 aberrations (402) and overexpression of 11E2 genes, it is most likely that 

chromosome 11E2 repositioning precedes tumor formation.  

 

5.6.2.  3D Nuclear Location of Transcription Factories 

 

 Mouse cytoband 11E2 and human cytoband 17q25 are syntenic regions.  The 

11E2 region in fast-onset PCTs, and the 17q region in high MYCN-expressing 

neuroblastomas, illustrate an altered, more central nuclear location compared to slow-

onset PCTs and low MYCN-expressing neuroblastomas, respectively (566) (Alexandra 

Kuzyk, unpublished results).  This repositioning may lead to increased transcription of 

these regions (67) through better access to transcription factories.  This is supported by 

the findings of increased expression of genes located on 11E2 and 17q25 in the cases 

where these regions occupy a more central location (566) (Sabine Mai, unpublished 

results).     

 

 To determine whether the genes in these cytobands experience higher rates of 

transcription due to their central nuclear location, the co-localization of RNA transcripts 

and transcription factories can be determined.  Slow-onset PCTs and neuroblastomas with 

low MYCN expression would be used as controls, as the cytobands are found in a more 

peripheral location in these conditions.  RNA FISH could be used to determine the 

nuclear location of transcripts from the ASPSCR1, FOXK2 and TBCD genes, which are 
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located on the 11E2 and 17q25 cytobands, and previously found to be overexpressed 

(566) (Sabine Mai, unpublished results); GAPDH transcripts could be used as a control.  

Concurrently, immunofluorescence with anti-polII-phospho-Ser5, which indicates 

transcription initiation (591), and anti-polII-phospho-Ser2, which indicates transcription 

elongation (592), would be conducted on the mouse cells and tissue samples.  Co-

localization of RNA transcript signals and transcription factories would indicate a nuclear 

location where the gene is being transcribed.  It is expected that fast-onset PCTs and 

neuroblastomas with high MYCN expression would have more active transcription sites 

overall, as well as more localized to the nuclear centre, than their respective controls.  

 

5.6.3.  Telomerase versus ALT in Neuroblastoma 

 

  There is evidence for a role of both telomerase and ALT as a telomere 

maintenance mechanism in neuroblastoma (175, 451, 514).  MYCN amplified tumors are 

associated with high telomerase expression (453).  MYCN amplified neuroblastomas had 

a distinct 3D telomere organization (Kuzyk et al., in submission) and could represent 

telomerase-positive neuroblastomas.  MYCN non-amplified tumors with increased 

telomere length are associated with the ALT mechanism (451).  3D telomere organization 

also identified a subgroup of MYCN non-amplified neuroblastomas with heterogeneous 

telomere lengths (Kuzyk et al., in submission), an indication of the ALT mechanism, and 

therefore this subgroup could represent ALT-positive neuroblastomas.  However, the 

relationship between 3D telomere organization and telomere maintenance mechanisms 

has never been investigated. 
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 Immunofluorescence can be used to determine the level of hTERT expression in 

neuroblastoma tissue samples.  To determine the presence of ALT, immuno-FISH could 

be used with a PML antibody and telomere FISH probe; co-localization of PML staining 

and a large telomere signal, such as one of the five brightest signals, would indicate the 

presence of ALT (451).  3D telomere Q-FISH could be employed to determine 3D 

telomere organization of the samples.  Tumor characteristics such as MYCN 

amplification, MYCN protein expression, age at diagnosis, histologic grade and tumor 

stage could be compared with the presence of telomerase and ALT.  Patient outcome and 

survival data could also be correlated with the presence of telomerase and ALT.  

Determination of whether 3D telomere organization correlates with the type of telomere 

healing mechanism could be clinically useful for determining patient prognosis and 

treatment strategies. 
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