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Abstract 

 

 

 Voice is a characteristic of the human body which is unique to an individual. Voice can be 

used for remote access applications, in order to verify the individual’s identity. However, robust 

feature extraction is required and the aim of this research is the establishment of security via the 

speaker’s voice.  

All the experiments in this thesis are based on a dataset recorded in an anechoic chamber, 

available at the Applied Electromagnetic Laboratory at the University of Manitoba. The 

following dataset consists of utterances, recorded using 24 volunteers raised in the Province of 

Manitoba, Canada. To provide a repeatable set of test words that would cover all of the 

phonemes, the Edinburg Machine Readable Phonetic Alphabet [KiGr08], consisting of 44 words 

was used. The utterances were recorded using a sampling frequency of 44.1 kilo-samples per 

second (kSps). The recording sessions took place between 10 AM to 3 PM, from March 27, 

2017, until September 27, 2017. 

 This thesis presents a study of text-independent speaker verification with the aim of 

experimental evaluation of features and embedding fractal algorithms to the front-end processing 

of the speaker verification system. A voice activity detection based on the variance fractal 

dimension was used to separate the non-speech segments of the signal. A fusion of multiple 

features, namely the linear prediction cepstral coefficients, Mel-frequency cepstral coefficients, 

Higuchi fractal dimension, variance fractal dimension, zero crossing rate, and turns count, was 

used to form the feature vectors. Meanwhile, an experimental sensitivity analysis was conducted 

to test the effects of each feature on the accuracy of classification using a support vector 

machine. The features were extracted using multiple voice activity detection algorithms. The best 

across-the-divide recognition accuracy of 91.60% was obtained by fusion of all the features that 

were extracted using the voice activity detection algorithm based on the variance fractal 

dimension. This shows that fusion of features and embedding of fractal methods to the front-end 

processing of text-independent speaker verification will increase the accuracy of the 

classifications. 
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Chapter 1 

 

1Introduction 

 

 

Current advancements in technology have resulted in our dependency on machines while 

accomplishing daily tasks. However, breaches of highly sensitive data have raised awareness that 

the information that can be accessed online is not safe. Some of these breaches are by human 

interaction and hence have resulted in the scientific community searching for alternative methods 

to minimize the risk of unauthorized access to personal data. One of the fields that have gained 

considerable attention is biometrics. Biometrics involves the use of physical characteristics of the 

human body that are unique to that person, such as fingerprints, iris, and voice, in order to verify 

that person’s identity. 

1.1 Problem Statement 

 To the listener, the speech signal carries many levels of information. While the speech 

transfers a message using words, it also contains information about gender, emotion, language, 
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and generally the identity of the speaker [Reyn02]. This section discusses the motivation behind 

the use of speaker recognition and the general categories and tasks associated with it, followed 

by the discussion of the aim of this work and the proposed solution.   

1.1.1 Motivation 

With the growing number of services accessed via telephone, web or mobile apps, maintaining 

and remembering multiple passwords, PIN’s, and authentication details required to gain access to 

accounts remotely has become more challenging. Especially since security experts encourage the 

use of different authentications for different accounts. 

Meanwhile, with the currently existing infrastructure speaker identity is a biometric that can 

be easily tested for remote access applications [Beig11]. This makes speaker recognition 

valuable for many real-world applications. 

1.1.2 Definition 

Speaker recognition involves the identification of the speaker based on the words they speak and 

it can be divided into two categories, text-dependent, and text-independent. Text-dependent 

requires the speaker to say the same word that was used for feature extraction, whereas text-

independent can identify the speaker regardless of the words mentioned [ChLu09]. Text-

dependent speaker recognition has prior knowledge of the text to be spoken [Reyn02]. Text-

independent speaker recognition relies on the physiological characteristics of the speaker and 

does not make any assumption about the context of the speech [Beig11]. 

 Speaker recognition can be divided into two general tasks, namely, speaker identification and 

speaker verification [Reyn02]. Speaker identification involves with the determination of who the 
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speaker is from a group of known voices or speakers. Speaker verification involves with the 

determination of whether a person is who he/she claims to be.  

1.1.3 Thesis Aim 

The aim of this work is to present an experimental evaluation of feature extraction techniques 

that could be used towards text-independent speaker verification. The Feature extraction is the 

process of extracting speaker-specific properties from the raw signal and storing it into a feature 

vector [KiLi10]. The speech signal consists of many features, all of which might not be 

important for speaker verification. A good feature should include the following characteristics 

[Rose02]: 

• Should discriminate between speakers while having small within-speaker variability. 

• Be robust against noise. 

• Occur frequently and naturally in speech. 

• Be easy to extract from the speech signal. 

• Should not be susceptible to mimicry. 

• Should be stable over time and not affected by speakers health. 

Meanwhile, the number of features should also be considered since the number of required 

training samples for reliable density estimation grows exponentially with the number of features 

[JaDM00]. Moreover, the computational savings are also achieved with lower dimension features. 

1.1.4 Approaches to Achieving the Aim 

Signals can be stationary or non-stationary, and can originate from a linear or non-linear system. 

A signal can be recorded above the Nyquist sampling frequency, and each sample can be 
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quantized to a required number of bits in order to satisfy the dynamic range of the signal. The 

total number of samples recorded is called a record and the recorded samples constitute a time 

series. If the recorded signal is stationary in the entire record, analysis can be carried out on the 

entire record. However, if the signal is not stationary, the analysis must be conducted within 

short-time stationary frames of the signal. The time series can be analyzed using several 

approaches, including: 

i. Time domain analysis [AlMi04] 

ii. Frequency domain and spectral analysis [AlMi04][Beig11] 

iii. Time-frequency analysis [AlMi04][Groch01] 

iv. Multiscale analysis [CoZa11] 

v. Polyscale analysis [Kins11][Kins05] 

In the time domain analysis, the signal is analyzed with respect to time and examples of such 

analysis are statistical methods, power, and zero crossing rate. In the frequency domain and 

spectral analysis, the signal is analyzed with respect to frequency and examples of such analysis 

are the Fourier transform, the Haar transform, and Mel-frequency cepstrum coefficients. In the 

time-frequency analysis, the signal is analyzed with respect to time and frequency 

simultaneously and examples of such analysis are the short-time Fourier transform and the 

Wigner distribution function. In the multiscale analysis, the signal is analyzed at multiple scales 

and examples of such analysis are wavelets and time-scale analysis. In the polyscale analysis, the 

signal is analyzed based on the power law relationship of the measures extracted from multiple 

scales and examples of such analysis is the variance fractal dimension and the Higuchi fractal 

dimension. 
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Many natural static objects and dynamic phenomena (speech signal) are independent of scale 

over many orders of magnitude [Kins11]. Such objects are either self-similar or self-affine. Self-

similar objects have an isotropic (the same scale along different coordinates) invariance against 

changes in scale and self-affine objects have a non-isotropic (different scales along different 

coordinates) invariance against changes in scale. To quantify such object or processes there is a 

need for polyscale analysis [Kins11]. Therefore, in this work application of polyscale analysis 

for speaker verification is introduce. The polyscale analysis provides a measure of complexity 

using fractal dimension (FD) with respect to self-similarity or self-affinity of the signal using 

measures taken from different scales simultaneously. Complexity refers to the difficulty of 

describing the pattern of an object [Kins08] and FD provides the degree of roughness of an 

object. 

1.1.5 Proposed Solution 

One of the structures of any speaker verification system is the front-end processing. Front-end 

processing generally consists of some form of voice activity detection (VAD) to remove non-

speech sections of the signal, followed by the extraction of features that contain the speaker’s 

identity from the speech signal [Reyn02]. The features vectors extract are then used to build a 

model of the speaker or test against the model and decide if the person is he/she claims to be. 

But, before proceeding to the front-end processing, a speech signal is required. A dataset 

consisting of 44 words is recorded using 12 male and 12 female volunteers raised in the province 

of Manitoba. The choice of these 44 words is due to having enough speech data to build a model 

and at the same time, quick to record making it practical to use for a real-world application. 

Moreover, the volunteers being from a specific geographical location can limit the variety of 
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accents and forms of speaking and thus, the analysis will be based on the physiological factors of 

the speaker. The motivation behind the development of this dataset arises by the need to know 

details under which the recordings were conducted. 

The traditional approach towards solving of speaker recognition problem involved the use of 

linear methods. However, the process of speech production is nonlinear [NeMM06]. Speech has 

nonlinear characteristics and its multifractal nature has been proven [LaSK97]. A VAD based on 

the FD is used to separate the non-speech segments of the signal. The choice of FD is due to the 

estimation of the FD based on signal complexity and not relying on the amplitude. This method 

would be compared to VAD detection methods that use time domain analysis which is 

commonly used [Beig11]. 

Fusion is the combination of information from multiple sources [KiLi10], which is used to 

combine nonlinear method to the traditional methods and form the feature vectors. The features 

used to form the feature vector are the linear prediction cepstral coefficients (LPCC), Mel-

frequency cepstral coefficients (MFCC), Higuchi fractal dimension (HFD), variance fractal 

dimension (VFD), zero crossing rate (ZCR), and Turns count (TC). The theory and programming of these 

algorithms are fully discussed in chapter 3 and the motivation behind using them is discussed in section 

5.4. 

 Upon extraction of the feature vectors, the support vector machine (SVM) is used to build a 

model of the speaker and test it against unseen data. The choice of SVM is due to the availability 

of different kernel functions suitable for different type of features and the availability of highly 

optimized libraries that could be used. 
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1.2 Thesis Formulation 

 This thesis comprises of three portions which include, recording of a dataset, front-end 

processing, and classification. The next section discusses the thesis statement followed by the 

thesis objective and the research questions. 

1.2.1 Thesis Statement 

The core of this thesis is to assess the suitability of embedding fractal methods, due to the nature 

of speech, to the front-end process of a speaker verification system and to investigate the 

effectiveness of these methods. But before proceeding to the front-end processes of any speaker 

verification system, a speech signal is required. Therefore, volunteers are recorded and the 

acquired signals are stored in a repository. Moreover, a detailed description of the recording 

procedures is provided to serve as a guide and ensure the repeatability of the recordings. 

1.2.2 Thesis Objective 

There are three main objectives in this thesis: 

1. Recording of participating volunteers and establishment of a dataset that could be used for 

the study of text-independent speaker verification by: 

a) Designing a set of protocols to ensure the quality and the repeatability of the recordings; 

b) Storage of the dataset in a repository accessible by researchers to allow further studying 

in the field of speaker recognition. 
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2. Study the suitability of using FD in the front-end processing of a speaker verification system 

by:  

a) Comparison of the HFD and the VFD using test data; 

b) Studying the effects of addition of colored noise on estimation of FD using the HFD and 

the VFD algorithms; 

c) Implementing a VAD based on FD of the speech signal; 

3. Assess the effectiveness of the VAD algorithm and each algorithm in the fusion of features 

by: 

a) Dividing the data into training and testing data; 

b) Extracting the features from the speech part of the signal and forming multiple feature 

vectors based on fusion of different features to assess the effects of each algorithm; 

c) Building a training model from the training data for each combination of feature vectors 

and using the testing data to measure the accuracy of the classification; 

d) Extraction of the same features vectors using different VAD and comparing the accuracy 

results. 

1.2.3 Research Question 

The goal of this thesis is the robust feature extraction from speech, which could be used in a text-

independent speaker verification system. However to achieve this goal a number of research 

questions arises which are addressed below: 
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1. What set of test words to use which would be practical for a real-world application and at the 

same time contains enough data for speaker verification? 

2. How to record these test words to ensure quality, repeatability, and similarity of all the 

recordings? 

3. How and where to store the recorded dataset to allow further research using the dataset? 

4. Fractal dimension estimation algorithms are numerous and a question that arises is which one 

is more suitable for text-independent speaker verification? 

5. What are the effects of noise on FD estimation? 

6. Can FD be used for VAD? 

7. Will using FD for VAD improve the performance of the speaker verification system in 

comparison to other algorithms? 

8. Does fusion of multiple algorithms increase the accuracy of speaker verification? 

9. How can the accuracy be compared with the literature if the dataset is different? 

10. What is the effect of addition of each feature to the feature vector, on the accuracy of speaker 

verification? 

11. Which fusion of features is more appropriate for speaker verification?  

12. How to divide the training and the testing data to avoid overtraining the SVM? 

13. Which kernel and cost function should be chosen for the extracted feature vectors? 
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1.3 Thesis Organization 

  This thesis presents a study of text-independent speaker verification with the aim of 

embedding fractal algorithms to the front-end processing of the speaker verification system. This 

thesis consists of 6 chapters. Chapter 2 presents a fundamental background for this study on 

speaker verification. This chapter discusses the physiology of the speech production and 

perception, the phonetics of speech, and some of the fundamental methods needed for speech 

processing. Chapter 3 presents the algorithms used in this thesis for this study on speaker 

verification. This chapter discussed the algorithms used to generate colored noise, test data (the 

Weierstrass function and fractional Brownian motion), feature extraction (LPCC, MFCC, HFD, 

VFD, ZCR, and TC), and the classifier (SVM). Chapter 4 presents the procedures for the 

recording of the dataset used for this study on speaker verification. This chapter discusses the 

hardware and software used to ensure the quality and similarity of all the recordings. Moreover, 

a list of English phonemes chosen for this study and the demographics of the speakers are 

presented, followed by the environment and a set of protocols that would be followed to ensure 

the repeatability of all the recordings. Chapter 5 presents the design of experiments and the 

analysis of the results obtained for this study on speaker verification. This chapter discusses the 

results of the HFD and VFD on the test data, tests the effects of colored noise on FD estimation, 

introduces a VAD algorithm based on FD, introduces the feature vectors used for experimental 

sensitivity analysis, and classifies the feature vectors to measure the accuracy. Chapter 6 presents 

the conclusion of this study on speaker verification. This chapter discusses a summary of the 

results and findings, answers the research questions and reasoning behind it, and provides 

suggestions and recommendation for future work. 
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Chapter 2 

 

2Literature Review on Speaker Verification 

 

 

Speech is a type of signal that is mainly affected by the background noise or noise from the 

transmitting channel [Grie96]. This Chapter focuses on providing a background on some of the 

fundamental aspects in the area of speaker recognition and discusses the physiology of speech 

production and perception, the phonology of speech, and some of the fundamental speech 

analysis techniques which will be used in the algorithms discussed in chapter 3.  

2.1 The Physiology of Speech 

 Understanding the mechanism of speech production and the knowledge of the auditory 

system may allow us to do a better job at extraction of characteristics of our voice and systems 

that recognize the speakers [Beig11]. In this section, a description of the process of speech 

production, the mechanics of speech perception, and the auditory pathway and how the brain 

deciphers speech is provided.  
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2.1.1 The Process of Speech Production 

The simplest principle of speech production is that all sounds are produced by moving air.  

Human speech is produced by the interaction of speech organs, as shown in fig 2.1, to shape this 

air into specific sound. The speech organs can be divided into three sections, namely, the 

pulmonary tract, the larynx, and the vocal tract [Lang92].  

The Pulmonary Tract 

The pulmonary tract provides the air flow required for speech production. It consists of lungs and 

trachea. The lungs provide the energy source, by the respiration process [Mann17]. The lungs 

expand and contract, causing a decrease and an increase in air pressure in the lungs, which 

allows air to be drawn in and out. The trachea allows the air to pass from the lungs to the larynx. 

Larynx 

The larynx converts the airflow into pulses. It consists of the vocal chords and their muscles 

[Lang92]. The opening of the vocal chords is in the shape of a triangle, the front sloping up in 

the form of the epiglottal wall, surrounded from the back by the Corniculate cartilage, and 

towards the side by the cuneiform cartilage [Beig11]. The space in between the vocal cords is 

called the glottis. 

Vocal Tract  

The vocal tract controls all the articulations. It consists of a pharynx, an oral cavity, and a nasal 

cavity. The pharynx has an irregular shape and depending on the amount of air going through the 

vocal cord, the air goes to a different section of the pharynx to produce different sounds 
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[Beig11]. The determination of whether the nasal cavity is included in the production of speech 

is up to the velum. The output of the vocal tract is passed through the teeth and lips to become 

audible acoustic waveforms. 

 

Fig. 2.1. A speech production model. (After [Lang92]) 

2.1.2 The Mechanics of Speech Perception (the Ear) 

The Ear is the mechanical part of hearing which, consist of three sections, namely, the external 

ear, middle ear, and the inner ear which is displayed in fig 2.2. The external ear consists of folds 

of cartilage called the pinna. The pinna is the visible part of the ear and is responsible for 

reflecting and attenuating the sound waves, which help the brain to determine the direction of the 

sound.  
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 The middle ear includes the tympanic membrane (ear drum) and three bones called the 

malleus, incus, and stapes. The vibrations from the ear drum that are induced by the sound waves 

being reflected and attenuated by the external ear are transferred through the malleus to the incus 

and from the incus to the stapes. From the stapes, these vibrations are then transferred to the 

inner ear through the oval window of the cochlea. The middle ear protects the inner ear from 

damage by loud sounds. 

 The inner ear is filled with fluid and is made up of the cochlea and three canals called the 

superior ampulla, the anterior ampulla, and the posterior ampulla [Beig11].  Motion from the 

stapes produces fluid waves in these canals which excites the hair (cilia) in the spiral of cochlea. 

The fluid waves are transformed to electrical impulses using the cilia. A semi-logarithmic 

cognitive ability of sounds is produced due to the spiral shape of the cochlea which is important 

in the development of speaker models and features. 

 Once the cilia are excited, the signal they generate is carried through the auditory nerve 

bundle to the brain. The ear only functions as a “transducer,” and the sound is heard with the 

brain [Beig11]. 

 

Fig. 2.2. The three sections of the ear. (From [Micr18]) 
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2.1.3 The Auditory Pathway and the Brain 

The auditory nerve carries the signals from the organ of Corti to the brainstem, where the 

auditory information is processed by the cochlear nuclei and superior olivary complex. It then 

travels up into the midbrain, which consists of three nuclei that are involved in localization of the 

sound, and decoding of basic signals such as duration, intensity, and frequency. These nuclei are 

called medial superior olive, the lateral superior olive, and the nucleus of the trapezoid body 

[Ekma12]. 

Further, in the midbrain, the inferior colliculus does higher level processing and integration 

of auditory information from the previous structures. From the midbrain, the electrical signals 

travel to the thalamus which integrates the sensory systems in the body and hence functions as an 

essential factor in the preparation of a motor response [Ekma12]. 

The thalamus then relays the signals to the auditory cortex of the brain, located in the 

temporal lobe. The primary auditory cortex is found in the superior temporal gyrus, which is 

above the ear on either side of the brain.  At this stage, the message has already been largely 

decoded, however, the signal is moreover recognized, memorized and may eventually result in a 

response [Ekma12]. Figure 2.3, displays the auditory pathway of the human’s auditory system. 

2.2 The Phonetics of Speech 

   Phonetics is the study of sounds produced by the human vocal system regardless of the 

associated language [Beig11].  In this section, three elements of speech production, initiation, 

Phonation, and articulation are discussed. 
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Fig. 2.3. The auditory pathway. (From [FiGM07]) 

2.2.1 Initiation 

Initiation is a function of the airstream mechanism and the direction of airflow [Beig11]. There 

are three types of airstreams namely, pulmonic, glottalic, and velaric. The pulmonic airstream is 

initiated from the lungs. The glottalic airstream is initiated in the larynx when the glottis is 

closed. The velaric airstream is initiated when the airstream is produced by the movement of the 

tongue. 
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 The air may move outwards or inwards for any of the three initiation airstreams. If the air 

moves outwards, it is called egressive, and if it moves inwards, it is called ingressive. 

2.2.2 Phonation 

Phonation is the process by which certain sounds are produced by the vibration of the vocal 

cords. The different kinds of phonations are unvoiced, voiced, and whisper. Unvoiced phonation 

happens when the vocal folds do not vibrate and are relaxed. Voiced phonation happens when 

the vocal folds are vibrating.  Whisper phonation happens like generating a voiced phonation, 

however, the vocal folds are more relaxed causing a greater air flow to go through them. 

2.2.3 Articulation of English Phonemes 

Phonemes are members of the smallest unit of speech that distinguish different utterances from 

each other [Grie96]. Consonants and vowels are two categories of phonemes. Consonants are 

produced when the airflow from the lungs is obstructed in the middle of the vocal tract and when 

this obstruction does not occur vowels are produced. Table 2.1 shows the Edinburg Machine 

Readable Phonetic Alphabet (MRPA) representation of English phonemes and its corresponding 

keywords [Gri96]. 

Consonants 

The consonants can be divided into several subcategories based on the voicing state, the manner 

of articulation, and the place of articulation [Carr93]. Speech articulation is the way a speech 

sound is being generated [Lang92].  

 The manner of articulation is characterized by the amount of airflow being obstructed by the 
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articulator. Stop and nasal sounds are produced when there is a complete closure at some point in 

the vocal tract, with the nasal also includes the lowering of the velum. This closure causes the-  

Table 2.1: The English Phonemes and the corresponding keyword (From [Grie96]). 

No MRPA Keyword No MRPA Keyword No MRPA Keyword 

1 /p/ Pip 16 /zh/ Measure 31 /oo/ For 

2 /b/ Barb 17 /h/ Hand 32 /u/ Book 

3 /t/ Test 18 /r/ Rear 33 /uu/ Boot 

4 /d/ Deed 19 /l/ Loyal 34 /uh/ Bud 

5 /k/ Kick 20 /m/ Mime 35 /@@/ Bird 

6 /g/ Gag 21 /n/ None 36 /@/ Banana 

7 /ch/ Church 22 /ng/ Ringing 37 /ei/ Bay 

8 /jh/ Judge 23 /y/ Year 38 /ou/ Boat 

9 /f/ Fife 24 /w/ Weal 39 /ai/ Buy 

10 /v/ Verve 25 /ii/ Bead 40 /au/ Bough 

11 /th/ Thirtieth 26 /i/ Bid 41 /oi/ Boy 

12 /dh/ Other 27 /e/ Bed 42 /i@/ Beer 

13 /s/ Cease 28 /a/ Bad 43 /e@/ Bear 

14 /z/ Zoos 29 /aa/ Baard 44 /u@/ Poor 

15 /sh/ Sheepish 30 /o/ Body    
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-airflow to build up a pressure and a sudden release that result in sounds with a noise like 

spectrum. Fricative sounds are produced when there is a stricture in the vocal tract causing the 

air flow to be forced through the vocal tract and a turbulent flow of air to be created resulting in a 

sound that looks like noise. Approximants are produced when the opening between articulators is 

wide enough to avoid turbulent airflow [Carr93]. Affricatives are sounds that are made of stops 

followed by a fricative [Beig11]. 

 The place of articulation defines the part of the vocal tract that is acting as the articulator 

[Grie96]. Bilabial sounds are produced by closing the lips to build up a pressure in the mouth and 

then releasing it to produce an impulsive sound. Labiodental sounds are produced using the lips 

and teeth to produce a turbulent air flow. Dental sounds are produced by the tip of the tongue and 

the upper teeth, producing a turbulent high-frequency vibration. Alveolar sounds are produced 

with the upper tip of the tongue placed on the alveolar ridge of the roof of the mouth. Post-

alveolar sounds are produced behind the alveolar ridge. Palate-alveolar sounds are produced 

using the blade of the tongue and the back of the alveolar ridge. Palatal sounds are produced 

using the front of the tongue and the hard palate. Velar sounds are produced by the back of the 

tongue touching the soft palate. Uvular sounds are produced by the back of the tongue and the 

uvula. Pharyngeal sounds are produced by the walls of the pharynx. Glottal sounds are produced 

by using the closure and opening of the vocal cords. 

 The parameters discussed above can be used to distinguish consonants as shown in table 2.2. 

Vowels 

The vowels can be divided into two types namely, the monophthongal vowels and the 

diphthongal vowels. The monophthongal vowels can be categorized by a set of articulatory 
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positions, namely, the height of the tongue body, the front/back position of the tongue body, and 

the presence or absence of lip rounding [Grie96]. 

Table 2.2: The English Consonants. (From (Grie96]). 
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STOPS 

Voiceless /p/   /t/   /k/    

Voiced /b/   /d/   /g/    

NASALS  /m/   /n/   /ng/    

AFFRICATIVE

S 

Voiceless     /ch/      

Voiced     /jh/      

FRICATIVES 

Voiceless  /f/ /th/ /s/ /sh/      

Voiced  /v/ /dh/ /z/ /zh/      

APPROXIMAN

TS 

Central /w/    /r/ /y/    /h/ 

Lateral    /l/       

 The height of the tongue body is categorized by, when the tongue body is near the hard or 

soft palate as close vowels, and when the tongue body is as far as possible from the roof of the 

mouth as open vowels. There are two intermediate heights which are half open and half closed 
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for the remaining vowels [Grie96]. The front-back dimension consists of three categorize, 

namely, front, central, and back, where the position of the tongue is as far forward, as far back, 

and at an intermediate position respectively. Round vowels are produced by the spread of the lips 

(lip rounding) and unrounded vowels are produced when this rounding does not occur. 

 The diphthongal vowels are articulated starting in the positions of one monophthongal vowel 

and glide through a transition to the position of another monophthongal vowel. For example, the 

vowel \ai\ starts its articulation as close, back, and unrounded and undergoes a transition to close, 

front, and unrounded. 

2.3 Fundamental Speech Analysis Techniques  

 Numerous techniques have been used in the analysis of speech. This section aims at 

introducing some of the fundamental techniques and concepts that are used in the algorithms 

discussed in chapter 3.  

2.3.1 Discrete Fourier Transform 

In order to compute the spectrum,  X f , of a signal,  x n , the discrete Fourier transform 

(DFT) is calculated on a window of N samples [Grie96] which is defined by 

      
1

2

0

N
j N fn

n

X f x n e


 




 (2.1)

 

 The DFT computed using the above equation requires  2O N  operations to be done 

[Beig11]. Hence, by using the fast Fourier transform (FFT) the complexity of this problem is 
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reduced to   logO N N  and the spectrum is calculated more efficiently [Grie96]. 

 The power spectral density (PSD) of a signal can be obtained by multiplying the spectrum by 

their complex conjugates. Figure 2.4, displays the PSD of a frame containing 512 samples of 

speech. The FFT is used in the algorithms to obtain LPCC and MFCC described in the next 

chapter, and the PSD is used to study the characteristics of noise which is discussed in section 

5.3.1. 

 

Fig. 2.4. The power spectral density of a frame containing 512 samples of speech. 

2.3.2 Root Mean Square 

The root mean square (RMS) is concerned with the magnitude rather than just the values of 

samples. It is a second-order statistics that provides a good indication of the deviation of the 

samples from its origin [Beig11]. The RMS is defined as 
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where N represents the total number of samples in a given window. Figure 2.5, displays the RMS 

of a speech signal. Please note that RMS amplitude is normalized. The RMS is used for the 

addition of colored noise which is described in section 3.1. 

 

Fig. 2.5. The normalized root mean square of a speech signal 

2.3.3 Fractal Dimension 

Fractal dimensions are used to estimate the complexity of stationary and self-affine 

monofractals. However, if the time series is multifractal, the FD has to be calculated over a 

repeated series of stationary windows to represent the complexity of the signal. 

 The calculation of nonlinear methods (such as FD) for real-world signals is challenging due 
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to the presence of noise. Hence, a reliable estimation of the fractal dimension in the time series 

requires the satisfaction of the conditions of stationarity, a sufficient number of data points and a 

good signal to noise ratio (SNR) [SOAM02]. 

 Moreover, care has to be taken in the selection of the FD estimation algorithm depending on 

the task. For instance, morphological FD estimates the dimension of a shape using its geometry, 

while the entropy-based FD can deal with non-uniform distribution in the fractal [Kins05]. The 

FD estimation algorithms used in this work are the HFD and the VFD. Both these algorithms 

estimate the FD from the temporal features of speech. The speed in the computation of the FD 

using both these algorithms makes them suitable for purpose of speech analysis. A description of 

these algorithms is provided in chapter 3. 

2.3.4 Voice Activity Detection 

Voice Activity Detection aims at detecting samples of speech in an audio file [KiLi10]. It was 

reported by [Beig11], that approximately 30% of any normal audio recording is comprised of 

silence frames, and thus, by removing the silence any computation on the audio files should 

become faster by the same rate, due to the reduced number of frames. A simple and efficient 

method commonly used for VAD is setting a threshold on signal energy to detect speech samples 

([Beig11], [KiLi10]). 

2.4 Summary 

   This chapter provided a description of the physiology of the speech production and 

perception, followed by, the phonetics of speech and three elements of speech production is 
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discussed. Furthermore, some of the speech analysis techniques and concepts that would be used 

in the upcoming chapters are discussed.  

 In the next chapter, the algorithms used in this thesis for this study on speaker verification are 

discussed.  
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Chapter 3 

 

3Theoretical Background 

 

 

This chapter presents the theoretical background and the programming of the algorithms 

which will be used in chapter 5. At first, colored noise is discussed briefly, followed by the 

framing of the speech signal into stationary segments. Moreover, the algorithms that will be used 

for feature extraction (ZCR, TC, LPCC, MFCC, HFD, and VFD) are discussed, followed by, the 

test signals (Weierstrass function and fBm) which will be used to study the accuracy of the FD 

estimation algorithms used. In the same time, the SVM which will be used to build a model and 

test the unseen data is discussed. 

3.1 Colored Noise 

 A broadband signal can be characterized by its PSD. If we assume the PSD has the following 

power law [Kins05] 
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1

( )P f
f 

  (3.1) 

Where f is the frequency of the signal and   is the exponent, then this signal can be 

characterized by colored noise depending on the value of ; for   = 0, 1, 2, the noise is white, 

pink, and brown, respectively.  

 White noise has equal intensity over all frequencies, thus, producing a flat power spectrum. 

Pink noise has a spectral decay of β = 1 and is mildly non-stationary [Pott08]. Pink noise is 

dominant in nature [Kins15] and it is common in biological systems and relaxation processes 

[Pott08]. Brown noise has a spectral decay of β = 2 and is non-stationary. Brown noise is a good 

model for natural shapes and physical processes [Kins15]. 

 The characteristics and generation of colored noise are of interest because of the use in the 

study of complex time signals [Kins15]. Colored noise is generated using the built-in code 

“dsp.ColoredNoise” in Matlab [Math16].  

 Different levels of colored noise in decibels (dB) is added to the signal using the equation 

defined as 

 
 
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 
  (3.2) 

where y is the generated colored noise, x is the signal, and iL  is the desired level of additive colored noise 

in dB. Addition of colored noise will be used in section 5.2 to test the effects of noise on the estimation of 

FD and in section 5.3 it will be used in the VAD used for this work. The matlab code used for the 

addition of colored noise to the signal is provided in the attached CD. 
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3.2 Framing of Speech 

 The speech signal is a non-stationary signal [Beig11] and in order to perform any analysis, it 

needs to be divided into frames that are stationary. At the first glance, it might seem appropriate 

to use a frame of 80 ms which is the average length of the phonemes. However, some of the 

stops might be in the order of 5 ms and thus their effects might be missed. 

 Therefore, all the algorithms used in this thesis are on frames of 512 samples of speech 

which is equivalent to 11.6 ms of speech which is used by [KiGr09]. The flowchart for the 

programming of the framing of speech algorithm is provided in appendix B, fig. B.1 and the 

Matlab code is provided on the attached CD. 

3.3 Zero Crossing Rate 

 The ZCR is the measure of the number of times the amplitude of a signal crosses the value of 

zero in a given frame. The ZCR is defined as [TeKi16] 

    | sgn[ ( )] sgn[ ( 1)] |
m

ZCR x m x m w n m




       (3.3) 

where  sgn •  represents the sign function and is defined as 
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and  w •  represents a window containing a stationary segment of a signal and is defined as 
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where N represents the total number of samples in a given window. The ZCR is a monoscale 

measure that provides an estimate of the frequency of the signal in a given frame. The ZCR of an 

unvoiced speech is greater than that of voiced speech and it is an important parameter for 

endpoint detection of speech [Beig11]. The ZCR is used for feature extraction which is discussed 

in detail in section 5.4. Figure 3.1, displays the normalized ZCR of a speech signal. The 

flowchart for the programming of the ZCR algorithm is provided in appendix B, fig. B.2 and the 

Matlab code is provided on the attached CD. 

 

Fig. 3.1. The normalized zero crossing rate of a speech signal. 

3.4 Turns Count 

 Turns count is a method of counting every change in the phase (direction of slope) of the 

speech signal [Rang01]. Let’s assume a signal  x n containing N number of samples. A turn 
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occurs if  

        1 & 1 2itr x n x n x n x n        (3.6) 

or 

        1 & 1 2itr x n x n x n x n       (3.7) 

where itr  is the occurred turn at a specific time interval. The TC is then defined by 

  
1

i

i

TC tr




   (3.8) 

Figure 3.2, displays the normalized TC of a speech signal. The TC is used for feature 

extraction which is discussed in detail in section 5.4. The flowchart for the programming of the 

TC algorithm is provided in appendix B, fig. B.3 and the Matlab code is provided on the attached 

CD. 

 

Fig. 3.2. The normalized turns count of a speech signal. 
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3.5 Mel-Frequency Cepstral Coefficients  

 Mel-frequency cepstral coefficients are used to extract short-term spectral features based on 

human perception of speech [KiLi10]. At first, the signal is divided into frames containing a 

stationary segment of the speech, and its Fourier transform is calculated using the FFT algorithm 

[Math17]. Upon calculation of the FFT, the power spectrum is obtained by extracting the 

absolute value of the FFT. 

 The envelope of the spectrum is of interest because the spectrum presents many fluctuations 

and smoothing the spectrum reduces the spectral vectors size [BBFG04]. The spectrum is then 

mapped into the Mel scale which is an auditory scale similar to the frequency scale of the human 

ear [BBFG04].  The Mel scale is given by 

 102595 log 1
700

mel

f
f

 
   

 
  (3.9) 

where f is the frequency of the signal. We then calculate the log of the spectral envelope to 

obtain the spectral vectors. Finally, to obtain the MFCC the discrete cosine transform (DCT) is 

applied to the spectral vectors which is given by [BBFG04] 
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k

c S n k
K

   
    

  
    1,2, , ,n L   (3.10) 

where kS  are the log-spectral coefficients, K is the length of log-spectral coefficients, and L is 

the number of MFCC required to be calculated (L ≤ K). We then obtain the MFCC for each 

frame of the signal. The MFCC is used for feature extraction which is discussed in detail in 

section 5.4. The flowchart for the programming of the MFCC algorithm is provided in appendix 
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B, fig. B.4 and the Matlab code is provided on the attached CD. 

3.6 Linear Prediction Cepstral Coefficients 

 Linear prediction cepstral coefficients are coefficients that are transformed from linear 

predictive coding (LPC) coefficients due to being more robust and less correlated [KiLi10]. The 

LPC analysis is based on a linear model of speech productions [BBFG04].  The LPC in the time 

domain is defined as [KiLi10] 

    
*

1

P

k

k

s n a x n k


    (3.11) 

where  x n  is the signal, ka  is the LPC coefficient, and  
*

s n  is the predicted signal.  

 At first, the signal is divided into frames containing a stationary segment of the speech. Then 

we find the autocorrelation vector by finding the inverse fast Fourier transform (IFFT) of the 

square of the spectrum for each frame of speech. The LPC coefficients ka  are then found by the 

Levinson-Durbin algorithm. The spectral model is defined as 

  
1

1

1
p k

kk

H z
a z






  (3.12) 

 We then calculate the log of the spectrum of the LPC coefficients. Finally, the LPCC 

coefficients are found by calculating the IFFT of the log-spectrum. The LPCC is used for feature 

extraction which is discussed in detail in section 5.4. The flowchart for the programming of the 

LPCC algorithm is provided in appendix B, fig. B.5 and the Matlab code is provided on the 

attached CD. 
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3.7 Higuchi Fractal Dimension 

 Consider a given finite set of time series (1), (2),......, ( )x x x N . From the given time series, a 

new time series is constructed which is defined as follows 

 ( ), ( ), ( 2 ),...., ( ( ) )m

k

N m
x x m x m k x m k x m k

k


       (3.13) 

for   1, 2,....,m k  where m indicates the initial time, k indicates the interval time, N is the total 

length of the time series and only the integer part of ( )
N m

k


is taken. The length of each of the 

time series m

kx  is defined as follows 
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 
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    (3.14) 

where 1 [ ]N N m k k    is the normalizing factor. The length of the time series ( )L k  is 

computed as the mean of the k values, for m = 1,2,…,k, as following 

 
1

( ) ( )
k

m

m

L k L k


  (3.15)   

 The HFD estimate is the slope of log( ( ))L k  over log(1 )k  where k= 1,2,…,kmax [Higu88]. 

Figure 3.3, displays the HFD trajectory of the utterance church. The HFD is tested in section 5.1 

and 5.2 and used for feature extraction in section 5.4. The flowchart for the programming of the 

HFD algorithm is provided in appendix B, fig. B.6 and the Matlab code is provided on the 

attached CD. 
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Fig. 3.3. The Higuchi fractal dimension trajectory. 

3.8 Variance Fractal Dimension 

The VFD can be used to estimate the FD of a signal [Grie96]. Let’s consider a sequence 

containing N samples at times, nt  , given by 

, 0,1,2,..., 1nt n t n N     (3.16)  

where n is the time index, and t  is the time displacement between individual samples. A dyadic 

time displacement is chosen for the measurement of the increments, t  , as shown below 

 
0 1 2, 2 ,2 ,2 ,..., maxk k kt n t n n     (3.17) 

where kn  is the vel size and maxkn  is the largest vel size. The increment, ( , )kb n t n t  , between 
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the signal samples is determined by 

 ( , ) ( ) ( )k kb n t n t x n t n t x n t         (3.18) 

where ( )x t  is the signal. 

 The variance of the increments,  V ( , )kb n t n t  , can then be calculated by 
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(3.19) 

 The slope of the log-log plot can be calculated by 
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  (3.20) 

where log( )i kX n  and   log(V ( , ) )i kY b n t n t    . The Hurst exponent (H) can be computed 

from the slope by  

 
1

H
2

s   (3.21) 

and the VFD ( D  ) for a given number of independent variables E can be computed from 

 1 HD E      (3.22) 

Where E = 1 for a single-variable time series, thus the VFD must be in the range of 1 (for a line) 

and 2 (for white noise) [Kins15]. This method of calculating the VFD leads to the analysis of 
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data in real time due to its simplicity [Kins94a] [Kins94b]. The VFD is calculated continuously 

for each stationery window which forms a trajectory. This is called variance fractal dimension 

trajectory (VFDT). The VFD is tested in section 5.1 and 5.2 and used for VAD and feature 

extraction discussed in sections 5.3 and 5.4. Figures of the VFDT of the utterances can be found 

in section 5.3 and appendix A of this document. The flowchart for the programming of the VFD 

algorithm is provided in appendix B, fig. B.7 and the Matlab code is provided on the attached 

CD. 

3.9 Test Data  

This section provides the description of the test data that can be generated with known FD. 

These test data are used in section 5.1 and 5.2 to test the VFD and the HFD and study the effects 

of noise on the estimation of the FD. The two sets of the waveforms used are the Weierstrass 

function and the fractional Brownian motion (fBm). 

3.9.1 Weierstrass Function 

The Weierstrass function is a function that is continuous but nowhere differentiable. It is defined 

as [RaDu09] 

 
0

cos(2π )kH k

k

W(t) t






   (3.23) 

where λ > 1 and 0 < H < 1. The theoretical FD of the Weierstrass function can be calculated 

from H [KiGr09], and thus the fractal dimension could be expressed as 

 FD 2 H   (3.24) 
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 Thus, due to the possibility of generating the Weierstrass function with different FD, it can 

be used to test the performance of FD estimation algorithms for signals with different 

complexity. Figure 4, displays the Weierstrass function generated using H = 0.5 and 2   .  The 

Matlab code for the generation of the Weierstrass function is provided on the attached CD. 

 

Fig. 3.4. Weierstrass function generated using H = 0.5 and λ = 2. 

3.9.2 Fractional Brownian Motion 

 Fractional Brownian motion is a continues zero-mean Gaussian process   , 0tW t   with 

covariance function [KrBo13] 

    1
Cov , ,

2
t sW W t s t s

  
        , 0t s    (3.25) 

where   is the roughness parameter and equivalent to 2H  . Similar to the Weierstrass 
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function, the theoretical FD of the fBm can be calculated from H and is equivalent to equation 

3.24 [RaDu09]. Figure 3.5, displays the fBm generated using H = 0.5 and the seed for the 

random number generator set to 1. 

 

Fig. 3.5. The fractional Brownian motion generated using H = 0.5. 

 The fBm is generated using the circulant embedding method described and implemented in 

[KrBo13]. The fBm is generated by generating an increment process known as the fractional 

Gaussian noise that can be characterized as a discrete zero-mean stationary Gaussian process 

with covariance 

    1
Cov , 1 2 1 ,

2
i i kX X k k k

  

         0,1, 2,.....k    (3.26) 
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where 1i i iX W W    , and then delivering the cumulative sum 

 
1

i
H

t k

k

W N X



    (3.27) 

where N is the number of fBm samples generated and 1,......,i N  . The fractional Gaussian 

noise is generated and stored in the first row  1 1, , nr r   . Then the first row of the circulant 

matrix is built and is given by  

  1 1 1 2r , , , , , ,n n nr r r r r    (3.28) 

From the circulant matrix   is calculated where  

 rF   (3.29) 

and 
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exp 2 ,
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ijk
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N

  
  

 
  (3.30) 

where , 0,1, , 2 1j k N  . The fractional Brownian motion is then achieved by the first 1N   

components of the real and imaginary part of  *diag ZF  , where Z is a 2 1N  complex value 

vector. The Matlab code for the generation of the fBm is provided on the attached CD. 

3.10 Support Vector Machine 

 Support vector machine is one of the most robust and popular classifiers in speaker 

verification due to its good performance in classifying unseen data [KiLi10]. Support vector 
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machine is a binary classifier that separates two classes of data using a separating hyperplane.  It 

optimizes the decision boundary in order to have a separating hyperplane that maximizes the 

geometric margin. The higher the geometric margin is the more confident we are that the system 

separates the two classes. In speaker verification, one class of training data from the authorized 

person is labeled as +1 and another class of training data from an imposter is labeled as -1. 

 Meanwhile, some of the problems are highly nonlinear which the kernel function allows us to 

solve. Kernel function allows the increase of dimensions of the input features [Fere15], and in a 

higher dimension, the two classes of data could be separated with a hyperplane. This allows 

solving of nonlinearly separable problems. 

 The SVM is constructed from the sums of a kernel function  ,K    [CCRS06] 

    
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f x t K x x d
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     (3.31) 

where it  are the ideal outputs,
1

0
N

i i

i

t


   , 0i  , and ix  are the support vectors obtained by an 

optimization process of the training data.  

 Moreover, to make the algorithm work for non-linearly separable datasets and less sensitive 

to outliers, the slack function ( ) and the cost function (C) are introduced to the optimization 

process [Wang16]. The   determine the error and C determine how strict the hyperplane should 

separate the test data. when C 0 , the SVM ignores the data and tries to find a hyperplane with 

the greatest margin, and when C  , the SVM tries to find a hyperplane which will separate all 

the data [Wang16]. Figure 3.6, displays the separating hyperplane obtained by the SVM by 
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setting C 0.1  and Fig. 3.7, displays the separating hyperplane obtained by the SVM by setting 

C 100 for the same set of data. In both the images, the support vectors are circled, the 

separating hyperplane is a solid line, and the margin is the perpendicular distance from the solid 

line to the dotted line. Please note the outlier on the far left at about (0.1,4.1). By setting C = 0.1 

the outlier is ignored and the SVM tries to find a separating hyperplane with the greatest margin, 

whereas when setting C=100 the separate all the data. 

 There are different types of kernel functions used, such as linear kernel, polynomial kernel, 

sigmoidal kernel and the radial basis function kernel. Depending on the non-linearity of the 

kernel the can be used for different situations [Beig11] and in this thesis, the linear kernel is 

used. A Linear kernel may be used in situations where the data is linearly separable. It is the- 

 

Fig. 3.6. The separating hyperplane obtained by setting C=0.1. 
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Fig. 3.7. The separating hyperplane obtained by setting C=100. 

-inner product of the vectors in observation and is defined by [Wang16] 

 
' '( , ) ( )Tx x x xK    (3.32) 

 There are highly optimized versions of SVM available, where LIBSVM [ChLi15] is used for 

this thesis. The SVM is used in section 5.5 to build a model from the training feature vectors and 

test the model using the testing feature vectors. 

3.11 Summary 

 In this chapter, the theory and the programming aspects of the algorithms that will be used in 

chapter 5 for testing, VAD, feature extraction, and classification, was discussed. But before 
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proceeding to the experimental analysis, a set of utterances is required for any study on speaker 

verification. The next chapter provides the detailed description of the recording procedures to 

record the dataset that would be used for analysis in this thesis. 
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Chapter 4 

 

4A Manitoban Speech Dataset 

 

 

 Throughout the day, we are exposed to different levels of background noise depending on 

our surrounding environment. Hence, for the purpose of this thesis which is the robust feature 

extraction from the speech, all the recordings must be done with similar conditions in order to 

ensure the features extracted are not biased due to the surrounding conditions and are based on 

the physiological characteristics of the speaker. A dataset consisting of 24 participants was 

recorded. The recordings were conducted after obtaining approval from research ethics board at 

the University of Manitoba. The process of obtaining this approval is time-consuming and as a 

result, many researchers do not record a dataset. However, this process is very educational and is 

designed to teach and assure that there will be no harm to the participants during or after the 

session. The motivation behind the development of this dataset is driven by the need to obtain 
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the lowest level of background noise in the recordings and to know the details not available in 

other recordings. These details include the list of conditions under which the development of the 

dataset was conducted, the time at which the recordings were conducted, and the type of 

background noise in the record 

 This section starts with a short introduction of a few of the databases available followed by, 

describes the hardware and software requirements needed to ensure the quality and similarity of 

all the recordings. Moreover, a list of English phonemes chosen for this study and the 

demographics of the speakers are presented, followed by the environment and a set of protocols 

that would be followed to ensure the repeatability of all the recordings. Furthermore, the 

repository at which the recorded speech is stored is discussed. 

4.1 Available Databases 

There have been a considerable number of datasets produced for different fields of speech 

analysis. In this section, the TIMIT, KING, and YOHO databases are introduced since they are 

commonly used for speaker identification and speaker verification. 

The TIMIT database consists of 630 speakers with 8 different English dialects from across 

the United States. There are 438 male and 192 female speakers that have been asked to read out 

10 sentences. The recordings were conducted in a controlled environment using a sampling rate 

of 16 kSps. This database is not used because, it is not gender neutral, consists of 8 dialects so 

the features might be based on the way of speaking, and was recorded using a low sampling rate. 

The KING database consists of 51 male speakers who were recorded using a combination of 

wideband microphone and telephone handsets. The KING dataset was recorded in a clean 
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environment in 10 sessions that were spread out over several weeks. This database is not used 

because it does not contain speech samples of female speakers, and some of the recordings were 

conducted using telephone handsets. The frequency bandwidth of telephone handsets is limited 

to 300 – 3300 Hz, which limits high frequency information which is important for speech 

intelligibility [KeTS92]. 

The YOHO database consists of 106 male speakers and 32 female speakers who were 

recorded in a clean office environment using a sampling rate of 3.8 kSps. The speakers have 

been recorded using prompted digits in 4 enrollment sessions and 10 verification sessions per 

speaker. This database is not used because of its low sampling rate, meaning due to the low 

bandwidth key information would be missed. Moreover, because the dataset contains only digits, 

this dataset is not very useful for real conditions especially for text-independent speaker 

verification [Beig11]. 

Although, these databases are commonly used for speaker identification and speaker 

verification they were not designed for this task. The dataset recorded in this work is designed 

for speaker verification using a sampling rate of 44.1 kSps to capture the independence of scale 

over many orders of magnitude. 

4.2 Microphone 

There are several characteristics of microphones that make them different from each other 

and as a result, there is no single microphone that is suitable for all conditions. This section 

provides a brief discussion of different types of microphones along with specifications that 

should be considered for a specific application. 
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Microphones generally utilize two major technologies, the carbon button type microphone, 

and the electrets type microphone. Carbon button microphones were used in telephones until the 

mid-1980 and are becoming harder to find these days [Beig11]. The carbon button microphone’s 

technology is usually made of two metal plates with carbon granules in between them. The audio 

wave excitation causes the carbon granules to be compressed resulting in varying resistance. 

Direct current is passed through the metal plates and the varying resistance changes the flow, 

causing the production of the audio wave’s electrical signal. 

The electrets type microphone is a type of condenser microphone that uses a stable dielectric 

material. As a result, this type of microphone does not require any polarizing power. The 

electrets microphone comes in different forms such as the diaphragm, back electrets, front 

electrets and the latter. 

4.2.1 Directionality 

Microphones have different directionalities, which describe the microphone’s sensitivity to audio 

from different directions. The manufacturers usually provide different directionalities, which can 

be suitable for different applications. They are often categorized into omnidirectional and 

unidirectional microphones. Omnidirectional microphones can capture audio from different 

directions, whereas unidirectional microphones can generally capture audio in the form of a 

cardioid around a microphone.  

Omnidirectional microphones increase the possibility of intercepting noise and other 

speakers. Therefore, a cardioid microphone is more suitable for the purpose of recording audio in 

this thesis. 
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4.2.2 Frequency Response 

The frequency response of a microphone provides the sensitivity of the microphone over a range 

of frequencies. Frequency response can be generalized into two types, flat frequency response, 

and tailored frequency response. Flat frequency response has the same output level over all 

audio frequencies. This is suitable for applications where the audio is recorded without any 

changing. 

A tailored frequency response is designed to enhance audio for a particular application. For 

example, a microphone may have a peak in the 2 – 8 kHz range to increase intelligibility for live 

vocals. 

4.2.3 Sensitivity 

The sensitivity of a microphone states what voltage it would produce at a certain audio pressure. 

A microphone produces a high voltage output if it has a high sensitivity and therefore, it does not 

require as much gain as a microphone with a lower sensitivity. 

4.2.4 Blue Yeti 

The Yeti is an advanced and versatile USB microphone offered by Blue [Blue17], which features 

a triple capsule array. This microphone allows the recording of audio in four different 

directionality modes, including the cardioid mode, which is used in this thesis. Figure 4.1, shows 

the Yeti which is used for the recording of the participants. 

The Yeti has a 16-bit analog to digital converter, which allows it to be connected directly to a 

computer via a USB port. Moreover, it has a number of built-in features, such as, a headphone 
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amplifier, simple controls for headphone volume, pattern selection and most importantly 

microphone gain that makes recording easier to control. 

The frequency response of the Blue Yeti is in the range of 20 Hz to 20 kHz along with the 

sensitivity of 4.5mV/Pa. The cardioid directionality setting which is used in this thesis offers an 

almost flat frequency response, thus, making it suitable for the purpose of controlled recordings. 

Figure 4.2, shows the frequency response of the Yeti in the cardioid directionality mode.  

The Blue Yeti has received THX certification, which involves factors such as the frequency 

response, SNR and performance consistency. Therefore, this microphone is used along with an 

addition of a pop shield for the recording of audio signals for this thesis. A pop shield helps to 

block the burst of air caused by plosive words, which can cause a massive pressure change.  

 

Fig. 4.1 The blue Yeti. 
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4.3 Software 

The task of recording the participants for this thesis is not limited to just a microphone. A set 

of software is required in order to record the audio with high quality, edit the audio if required 

and store the audio without any compression. Moreover, software is used to measure the 

surrounding environment noise so that all the recordings are done in an environment with similar 

background noise.  

4.3.1 Camtasia  

The software Camtasia is software used for creating video tutorials and presentations via the 

chosen parts of the screen along with recorded audio at the same time. After recording, Camtasia 

will import the recordings and provides the option to edit them separately. Camtasia can be used 

to record high-quality audio as well. All the utterances are recorded using the software Camtasia 

V.8.6 [Tech17], using a sampling frequency of 44.1 kSps and stored in WAV format. Figure 4.3, 

displays the utterance test recorded using the software Camtasia. 

 

Fig. 4.2 The frequency response of the Yeti in cardioid directionality mode. (After [Blue16]) 
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Fig. 4.3 The utterance test recorded using Camtasia. 

4.3.2 Audacity 

The software Audacity is a popular open source audio editor and recorder that is both incredibly 

powerful and versatile. It can be used to record audio, edit, and mix if required, and store the 

audio in a number of different formats including waveform audio file format (WAV), which is 

uncompressed for data collection. The software Audacity V.2.1.2 [Auda17] is used to trim the 

recorded utterances into epoch’s of 2 sec with the utterance in the center of the epoch and silence 

before and after the utterance. Figure 4.4, displays the utterance church trimmed to a 2 sec epoch 

using the software Audacity. 

4.3.3 Decibel X 

The software Decibel X V.6.0.1 is a Smartphone app that measures the sound pressure level 

using the Smartphone’s microphone and displays it in decibels [Skyp17]. It is used to measure 
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the background noise in the recording environment in order to ensure the similarity of recording 

conditions for all recordings. The background noise recorded in the chamber during the 

recordings was between 35 dB to 45 dB. Figure 4.5, displays a screenshot of the app while 

measuring the background noise in the recording environment.  

 

Fig. 4.4. The utterance “church” trimmed to a 2 sec epoch using Audacity. 

4.4 English Phonemes 

Phonemes are members of the smallest unit of speech that distinguish different words from 

each other. Consonants and vowels are two categories of phonemes. Consonants are produced 

when the airflow from the lungs is obstructed in the middle of the vocal and when this 

obstruction does not occur vowels are produced.  
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Fig. 4.5. A screenshot of Decibel X. 

In order to provide a repeatable set of test words that would cover all of the phonemes, the 44 

keywords from the Edinburg MRPA shown in table 2.1 is used and recorded for each participant 

in a recording session. The choice of MRPA over the International Phonetic Alphabet (IPA) is 

due to the IPA not being machine readable [KiGr08]. The MRPA covers all the English 

phonemes, has enough speech data to build a model and at the same time, quick to record 

making it practical to use for a real-world application. 

4.5 Demographics 

The volunteers participated in this study consists of 12 male and 12 female participants, all 

raised in the Province of Manitoba. The volunteers being from a specific geographical location 
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can limit the variety of accents and thus, the features extracted will not be biased by the forms of 

speaking. The male volunteers aged between 19 to 60 years and the female volunteers between 

18 to 44 years. Figure 4.6, displays a histogram of the number of participant against their age. 

Please note that the distribution of the participants is due to the majority of the participants in 

this study being students and researchers at the University of Manitoba. All the recordings were 

conducted in one continuous session, each approximately 15 to 20 minutes in duration. The 

recording sessions took place between 10 AM to 3 PM, from March 27, 2017, until September 

27, 2017. The 44 utterances recorded for each participant are stored in a file named with the 

alphanumeric number of each participant, along with a recording of the silence before and after 

the recordings. Moreover, a file named “Readme” is included, which contains the age range of 

the participants, as well as the date, time, weather, humidity, and pressure during the recording 

session. 

 

Fig. 4.6. The Histogram of the participants. 
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4.6 Environment 

The environment in which recordings are done plays an important role in the overall quality 

of the recordings. In general, our environment is surrounded by background noise. A quiet 

bedroom at night can have 40-50dB of noise. Another factor is the reverberation of noise.  A 

reverberation occurs when a sound wave hits obstacles or a wall and is reflected. 

In order to minimize the background noise and the effects of reverberation, all the 

participants are recorded at the University of Manitoba’s applied electromagnetic laboratory’s 

anechoic chamber shown in Fig. 4.7. An anechoic chamber is a room that completely absorbs 

reflections of sound. The anechoic chamber used has a length of 6.4m, a width of 2.4m and a 

height of 2.3m. The interior walls of the anechoic chamber are composed of wedges that are 

made of radiation absorbent material. Radiation absorbent material is designed and shaped to 

absorb radio frequency radiation from as many directions in the most effective way possible. The 

wedges on the walls are 305mm long and the wedges on the ceiling are 153mm long.  

 

Fig. 4.7. The interior of the anechoic chamber used. 



Application of Polyscal Methods for Speaker Verification  4. A Manitoban Speech Dataset 

_____________________________________________________________________________________________  

_____________________________________________________________________________________________  

 - 56 of 119 -  

4.7 Recording Protocols 

 The setup of the equipment plays an important role in the overall quality and the repeatability 

of all the recordings. The following describes the proposed setup for all the recordings: 

• The microphone is placed approximately 6 inches from the speaker’s mouth. 

• The Blue Yeti is a side-address microphone, therefore, it is placed in an upright position, 

perpendicular to the speaker. Figure 4.8, displays the Blue Yeti in a side-address position 

in the left and in front-address position on the right. 

 

Fig. 4.8. The Blue Yeti in a side-address position on the left. (After [Blue17]) 

• The microphone is set to the cardioid mode and the gain level is set to − 9 dB, as 

displayed in fig. 4.9. The input level in Camtasia is set to 80%, as displayed in fig. 4.10. 
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• The Apex 6 inch dual screen nylon pop-shield filter [Apex17] is placed in front of the 

microphone to block the burst of air when the speakers utter plosive words. Figure 4.11, 

displays the setup of the Blue Yeti and the placement of the pop-shield filter in front of it. 

• Few seconds of silence is recorded before and after the recordings. The average duration 

of the recordings is 6 s and 260 ms. The minimum duration of a recording is 4 s and 250 

ms and the maximum duration of a recording is 10 s and 750 ms. Please, note that all 

recordings are trimmed to 2 s. 

 

Fig. 4.9. The Blue Yeti in cardiod mode and with gain level of − 9 dB. 
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Fig. 4.10. The input level in Camatsia is set to 80%. 

4.8 Repository 

 The repository chosen to store all the recorded utterances is the IEEE dataport [IEEE17]. 

IEEE dataport allows the access to datasets and data analysis tools.  It has the capability to accept 

different varieties of datasets up to 2 Tb, provides downloading capabilities and access to cloud 

services to enable data analysis in the cloud.  

 IEEE dataport offers three options for uploading a dataset. The first option is called the 

‘standard dataset’. This option allows the storage of the dataset and related files at no cost and 

assigns a digital object identifier (DOI) to the dataset. Along with the uploading of the dataset 

files, the author is required to provide the metadata for citation of the authors, abstract and image 

of the dataset, instructions on how to use the dataset and an optional analysis of the dataset. The 

datasets uploaded using the standard dataset option will be available for downloading or access 
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in the cloud by IEEE paid subscribers only.   

 

Fig. 4.11. The setup of the Blue Yeti with a pop-shield filter placed in front of it. 

 The second option is called the ‘open access dataset’. This option allows the storage of the 

dataset with a onetime fee of 1,950$ and assigns a DOI to the dataset. Just like the previous 

option, the author is required to provide the metadata for citation of the authors, abstract and 

image of the dataset, and optional instructions on how to use the dataset, along with uploading of 

the dataset files. The datasets uploaded using the open access dataset option, as its name 

suggests, will be accessible to all logged in dataport users.  
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 The third option is called the ‘data competition’. This option allows the uploading of the 

dataset and instructions at no cost and assigns a digital object identifier (DOI) to the data 

competition. The administrator of the competition is required to provide the metadata for citation 

of the authors, abstract and image of the dataset, and optional instructions on how to use the 

dataset, along with uploading of the dataset files. The administrator is enabled to establish the 

competition duration, manage participation and update the competition as needed. 

 Although authors uploading dataset through any of the options described above to IEEE 

dataport have the option to provide an analysis of the dataset, they are not required to provide a 

detailed description of the recording/collecting procedures of the data. Availability of detailed 

description of the recording/collecting procedures of the data can provide the user the knowledge 

to repeat the recording/collecting of data with similar quality. Moreover, such description allows 

the user to know if the data is suitable for their analysis before downloading the data. Therefore, 

this chapter provided a detailed description of the recording procedures and protocols used to 

record the dataset. The recorded dataset is uploaded to IEEE dataport using the ‘standard dataset’ 

option and can be found at [SeKi18]. 

4.9 Summary 

This chapter provided a detailed description of the procedures used to record a dataset. The 

following dataset consists of utterances, recorded using 24 volunteers raised in the Province of 

Manitoba, Canada. To provide a repeatable set of test words that would cover all of the 

phonemes, the Edinburg MRPA, consisting of 44 words is used. Each recording consists of one 

word uttered by the volunteer and recorded in one continuous session. All the recordings are 

conducted in an anechoic chamber, available at the Applied Electromagnetic Laboratory at the 
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University of Manitoba, using a Blue Yeti microphone, with a sampling frequency of 44.1 kSps. 

All the recordings are stored in WAV, which is uncompressed and could be easily loaded into 

software programs like Matlab or Audacity for analysis. Each participant is numbered 

alphanumerically, male participants starting with M and female participants starting with F. The 

volunteers participated in this study consists of 12 male and 12 female participants, all raised in 

the Province of Manitoba. The male volunteers aged between 19 to 60 years and the female 

volunteers between 18 to 44 years. All the recordings were conducted in one continuous session, 

each approximately 15 to 20 minutes in duration. The recording sessions took place between 10 

AM to 3 PM, from March 27, 2017, until September 27, 2017. The 44 utterances recorded for 

each participant are stored in a file named with the alphanumeric number of each participant, 

along with a recording of the silence before and after the recordings. Moreover, a file named 

“Readme” is included, which contains the age range of the participants, as well as the date, time, 

weather, humidity, and pressure during the recording session. The next chapter presents the 

experimental results and analysis. 
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Chapter 5 

 

5Design of Experiment and Result Analysis 

 

 

This chapter presents the experiments conducted and the analysis of the results. At first, the 

test data is used to test the suitability of using the VFD and the HFD for speech analysis. Then 

the effect of noise on the estimation of FD is studied by addition of colored noise to the test data. 

Furthermore, a VAD detection algorithm that utilizes the FD characteristics of the background 

noise to detect speech segments is introduced. Moreover, the feature vectors that will be used to 

conduct an experimental sensitivity analysis are discussed. Subsequently, the feature vectors are 

extracted using different VAD and used to train and test the SVM. 

5.1 Comparison of Fractal Dimension Estimation Algorithm 

` In order to test the performance of the VFD and HFD, test data is generated by methods that 
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produce known fractal dimensions. Two of these methods that were discussed in chapter 3 are 

the Weierstrass function and the fBm. 

5.1.1 Weierstrass function 

The Weierstrass function is generated using 512 samples to resemble the same number of 

samples used in 1 frame of speech in this work. Assigning 2   and using nine H values spaced 

equally from 0.1 to 0.9, nine Weierstrass functions with a FD of 1.1 to 1.9 are produced. The 

VFD and the HFD are used to estimate the FD of these waveforms and the results are shown in 

table 5.1. Figure 5.1 displays the graphical representation of these results. 

Table 5.1: Fractal dimension estimation of 512 samples of Weierstrass function. 

Hurst Exponent 
Theoretical Fractal 

Dimension 

Variance Fractal 

Dimension 

Higuchi Fractal 

Dimension 

0.9 1.10 1.17 1.16 

0.8 1.20 1.24 1.23 

0.7 1.30 1.32 1.32 

0.6 1.40 1.41 1.41 

0.5 1.50 1.50 1.50 

0.4 1.60 1.60 1.59 

0.3 1.70 1.70 1.68 

0.2 1.80 1.80 1.76 

0.1 1.90 1.90 1.83 
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The results indicate that both the VFD and HFD are overestimating the FD of the Weierstrass 

function when H is set to 0.8 and 0.9. However, this estimation error is reduced when H is set to 

0.4, 0.5, 0.6, and 0.7, as the estimated FD’s are equal to the theoretical FD or have a slight error. 

The main difference in performance between the VFD and the HFD for this test occurs when H 

is set to 0.1, 0.2, and 0.3. The FD estimated using the VFD is equal to the theoretical FD, while 

the HFD underestimates the FD, with a greater error towards the FD of 1.9. Thus, even though 

the VFD, compared to the HFD, is slightly overestimating the FD of the Weierstrass function 

when H is set to 0.8 and 0.9, it is providing a more accurate result for Weierstrass functions with 

FD of 1.5 to 1.9.  

 

Fig. 5.1. Graph of fractal dimension values of 512 samples of the Weierstrass function. 

 Moreover, the Weierstrass function is generated using 88200 samples to resemble the same 

number of samples in one recording. As in the previous test, 2   and nine equally spaced H 
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values from 0.1 to 0.9 are used to generate nine Weierstrass functions with a FD of 1.1 to 1.9. 

The Weierstrass function is then framed into frames of 512 samples to replicate the framing 

method used for the analysis of speech in this work. The VFD and HFD are used to estimate FD 

of the frames which leads to a trajectory of FD. The mean and variance of this trajectory are 

calculated and the results are displayed in table 5.2. The objective of this test is to measure the 

performance of the VFD and HFD on signals that are continuous. Please note that the 

Weierstrass function is self-similar and thus, in theory, all the frames must have the same FD or 

a trajectory, which is a straight line against the respective FD.  

Table 5.2: Fractal dimension estimation of 88200 samples of the Weierstrass function 

  
Variance Fractal 

Dimension Trajectory 

Higuchi Fractal Dimension 

Trajectory 

Hurst 

Exponent 

Theoretical 

Fractal 

Dimension 

Mean Variance Mean Variance 

0.9 1.10 1.126 
0.0011 

1.121 
0.0014 

0.8 1.20 1.208 0.0007 1.205 0.0008 

0.7 1.30 1.302 
0.0003 

1.300 
0.0004 

0.6 1.40 1.400 
0.0001 

1.399 
0.0002 

0.5 1.50 1.500 
0.0001 

1.497 
0.0001 

0.4 1.60 1.600 
0.0001 

1.594 
0.0001 

0.3 1.70 1.700 0.0002 1.687 0.0002 

0.2 1.80 1.798 
0.0004 

1.777 
0.0003 

0.1 1.90 1.891 
0.0008 

1.862 
0.0004 
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  The results indicate that when H is set to 0.9 the mean of the trajectories of the VFD and the 

HFD are slightly higher than the theoretical FD. However, when H is set to 0.4, 0.5, 0.6, 0.7, and 

0.8, the mean of the trajectory of both the algorithms is close to the theoretical values. Moreover, 

as the results in the estimation of the FD for 512 samples of the Weierstrass function, the mean 

of the trajectory of the HFD tends to underestimate the FD, with a greater error towards the FD 

of 1.9, whereas, the mean of the trajectory of the VFD is close to the theoretical FD. Meanwhile, 

the variance of the trajectories of both the algorithm is the lowest when H is set to 0.5 and 

increasing as H is going away from 0.5. The variance of the VFD is lower than the HFD with the 

exception of H being set to 0.1 and 0.2. Thus, the results indicate that for the majority of the tests 

using the Weierstrass function, although slightly, the VFD provides a closer estimate of the FD 

to the theoretical FD with less variability. Figure 5.2 displays 88200 samples of the Weierstrass 

function generated by setting H to 0.4, while, figure 5.3 displays the VFDT and figure 5.4 

displays the HFDT of this waveform. 

 

Fig. 5.2. The Weierstrass function generated using Hurst value of 0.4. 
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Fig. 5.3. The variance fractal dimension trajectory of the Weierstrass function. 

 

Fig. 5.4. The Higuchi fractal dimension trajectory of the Weierstrass function. 
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5.1.2 Fractional Brownian motion 

Like the Weierstrass function, 512 samples of the fBm is generated using nine H values spaced 

equally from 0.1 to 0.9 to produce nine fBm with a FD of 1.1 to 1.9. Moreover, since the 

generation of the fBm requires random numbers which will affect the estimation of the FD, the 

fBm for each H value is generated by setting the seed of the random number generator to 1, 10, 

30, 50, and 100. This will allow for the reproduction of the same fBm waveform. The VFD and 

the HFD are used to estimate the FD of these waveforms. Table 5.3, displays the results obtained 

using the VFD and table 5.4, displays the results obtained using HFD. 

Table 5.3: The variance fractal dimension estimation of the fractional Brownian motion. 

Hurst 

Exponent 

Theoretical 

 Fractal 

Dimension 

Variance Fractal Dimension 

Seed 1 Seed 10 Seed 30 Seed 50 Seed 100 

0.9 1.10 1.05 1.12 1.06 1.22 1.12 

0.8 1.20 1.11 1.20 1.13 1.28 1.22 

0.7 1.30 1.21 1.29 1.23 1.35 1.32 

0.6 1.40 1.34 1.39 1.35 1.43 1.43 

0.5 1.50 1.47 1.49 1.47 1.52 1.53 

0.4 1.60 1.58 1.58 1.58 1.60 1.63 

0.3 1.70 1.68 1.67 1.68 1.69 1.71 

0.2 1.80 1.77 1.76 1.77 1.78 1.80 

0.1 1.90 1.87 1.86 1.87 1.87 1.89 
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Table 5.4: The Higuchi fractal dimension estimation of the fractional Brownian motion. 

Hurst 

Exponent 

Theoretical 

Fractal 

Dimension 

Higuchi Fractal Dimension 

Seed 1 Seed 10 Seed 30 Seed 50 Seed 100 

0.9 1.10 1.03 1.11 1.02 1.21 1.12 

0.8 1.20 1.10 1.19 1.11 1.28 1.24 

0.7 1.30 1.20 1.29 1.24 1.36 1.34 

0.6 1.40 1.33 1.40 1.36 1.45 1.42 

0.5 1.50 1.45 1.49 1.47 1.53 1.53 

0.4 1.60 1.57 1.59 1.58 1.60 1.62 

0.3 1.70 1.68 1.68 1.68 1.69 1.71 

0.2 1.80 1.78 1.77 1.77 1.78 1.80 

0.1 1.90 1.89 1.87 1.87 1.88 1.90 

 The results obtained when the seed of the random number generator is set to 1, shows that 

both the VFD and the HFD are underestimating the FD of the fBm waveforms, with this 

underestimation being greater for the FD of 1.1, 1.2, 1.3, and 1.4. As the FD increase, this 

underestimation is reduced and the estimated FD has fewer errors. The VFD is providing a 

slightly more accurate FD estimation for the FD of 1.1 to 1.6, the HFD is providing a slightly 

more accurate FD estimation for the FD of 1.8 and 1.9, and both the VFD and the HFD having 

the same estimation for the FD of 1.7. When the seed of the random number generator is set to 

10, both the VFD and HFD provide a close estimation for the FD of 1.1 to 1.6. The VFD and the 

HFD tend to start underestimating the FD of 1.7 to 1.9 with this underestimation being slightly 
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more in the VFD. When the seed of the random number generator is set to 30, both the VFD and 

HFD are underestimating the FD with this underestimation being reduced for the FD of 1.5 to 

1.9. When the seed of the random number generator is set to 50, both the VFD and HFD are 

estimating the FD of 1.6 to 1.9 correctly or with a slight underestimation and the FD of 1.1 to 1.5 

with overestimation, with the overestimation being greater towards the FD of 1.1. When the seed 

of the random number generator is set to 100, both the VFD and HFD are slightly overestimating 

the FD of the fBm. Figure 5.5, displays the graphical representation of the results obtained using 

the VFD and Fig. 5.6 displays the graphical representation of the results obtained using the HFD 

for the mentioned above H and random number generator seed values. Please note the seed is 

displayed in logarithmic scale in the graph. 

 

Fig. 5.5. The variance fractal dimension of the fractional Brownian motion 
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Fig. 5.6. The Higuchi fractal dimension of the fractional Brownian motion. 

 Moreover, like the Weierstrass function, 88200 samples of the fBm is generated for the 

mentioned above H and seed values. The VFD and the HFD of frames of 512 samples are 

estimated and the mean and variance of the trajectory are calculated and displayed in table 5.5 

and 5.6. Please note that just like the Weierstrass function, in theory, all the frames of the fBm 

must have the same FD or a trajectory, which is a straight line against the respective FD. Figure 

5.7, displays 88200 samples of fBm generated by setting the H to 0.5 and the seed to 10 and fig. 

5.8 and fig. 5.9 display the variance fractal dimension trajectory and the Higuchi fractal 

dimension trajectory of the fBm waveform respectively. 
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Table 5.5: The variance fractal dimension trajectory of the fractional Brownian motion. 

Hurst 

Exponent 

Theoretical 

Fractal 

Dimension 

 

Variance Fractal Dimension 

Seed 1 Seed 10 Seed 30 Seed 50 Seed 100 

0.9 1.1 

Mean 1.06 1.11 1.09 1.14 1.11 

Variance 0.0009 0.0025 0.0025 0.0025 0.0025 

0.8 1.2 

Mean 1.19 1.21 1.20 1.22 1.21 

Variance 0.0036 0.0025 0.0025 0.0025 0.0025 

0.7 1.3 

Mean 1.30 1.31 1.30 1.31 1.30 

Variance 0.0025 0.0016 0.0025 0.0025 0.0016 

0.6 1.4 

Mean 1.40 1.41 1.40 1.41 1.40 

Variance 0.0016 0.0016 0.0016 0.0016 0.0016 

0.5 1.5 

Mean 1.50 1.51 1.50 1.51 1.50 

Variance 0.0016 0.0009 0.0016 0.0016 0.0016 

0.4 1.6 

Mean 1.60 1.60 1.60 1.60 1.60 

Variance 0.0016 0.0016 0.0016 0.0016 0.0009 

0.3 1.7 

Mean 1.70 1.70 1.70 1.70 1.70 

Variance 0.0016 0.0016 0.0016 0.0016 0.0016 

0.2 1.8 

Mean 1.80 1.80 1.80 1.80 1.80 

Variance 0.0016 0.0016 0.0016 0.0016 0.0009 

0.1 1.9 

Mean 1.90 1.90 1.90 1.90 1.90 

Variance 0.0009 0.0009 0.0009 0.0009 0.0009 
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Table 5.6: The Higuchi fractal dimension trajectory of the fractional Brownian motion. 

Hurst 

Exponent 

Theoretical 

Fractal 

Dimension 

 

Higuchi Fractal Dimension 

Seed 1 Seed 10 Seed 30 Seed 50 Seed 100 

0.9 1.1 

Mean 1.04 1.10 1.07 1.13 1.11 

Variance 0.0016 0.0036 0.0036 0.0036 0.0036 

0.8 1.2 

Mean 1.18 1.20 1.19 1.22 1.20 

Variance 0.0049 0.0036 0.0036 0.0036 0.0036 

0.7 1.3 

Mean 1.30 1.30 1.30 1.31 1.30 

Variance 0.0036 0.0025 0.0036 0.0025 0.0025 

0.6 1.4 

Mean 1.40 1.40 1.40 1.41 1.40 

Variance 0.0025 0.0016 0.0025 0.0025 0.0025 

0.5 1.5 

Mean 1.50 1.50 1.50 1.51 1.50 

Variance 0.0016 0.0016 0.0016 0.0016 0.0016 

0.4 1.6 

Mean 1.60 1.60 1.60 1.60 1.60 

Variance 0.0016 0.0016 0.0016 0.0016 0.0016 

0.3 1.7 

Mean 1.70 1.70 1.70 1.70 1.70 

Variance 0.0016 0.0016 0.0016 0.0016 0.0016 

0.2 1.8 

Mean 1.80 1.80 1.80 1.80 1.80 

Variance 0.0016 0.0016 0.0016 0.0016 0.0009 

0.1 1.9 

Mean 1.90 1.90 1.90 1.90 1.90 

Variance 0.0009 0.0009 0.0009 0.0009 0.0009 
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 The results show that when H is set to 0.1 to 0.4, the mean of the trajectories of both the VFD 

and the HFD is the same as the theoretical values. Meanwhile, when H is set to 0.5 to 0.7 the 

mean of the trajectories of both the VFD and the HFD is the same as the theoretical values, with 

a slight overestimation when the seed of the random number generator is set to 50 and in case of 

the VFD when the seed is set to 10. Moreover, when H is set to 0.8 there is slight 

underestimation for the mean of trajectories of both the VFD and HFD for the seed value of 1 

and a slight overestimation for the seed value of 50. However, when H is set to 0.9 the errors 

start to increase. When the seed is set to 1 and 30, the mean of the trajectory of both the VFD and 

the HFD underestimate the FD with this underestimation being greater with HFD, while, when 

the seed is set to 50 both the algorithms are overestimating with this overestimation being greater 

for the VFD. On the other hand, the variance of the trajectory of both the VFD and the HFD 

tends to be the highest when H is set to 0.9 and decrease gradually towards the H of 0.1 with the 

exception of the fBm generated using a seed value of 1 and H set to 0.9. Moreover, the results in 

this section show that the variance of the trajectory of the VFD is lower or equal to the variance 

of the trajectory of the HFD in all cases. 

 

Fig. 5.7. The fractional Brownian motion generated using H = 0.5 and the seed set to 10. 
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Fig. 5.8. The variance fractal dimension trajectory of the fractional Brownian motion. 

 

Fig. 5.9. The Higuchi fractal dimension trajectory of the fractional Brownian motion. 
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5.2 Effects of Noise on Fractal Dimension Estimation 

As speakers, regardless of the background conditions, we are always exposed to different 

levels and types of noise. Recording of different types of real noise is beyond the scope of this 

thesis and to study the effects of noise, colored noise is used due to being compatible with the 

different conditions and the natural phenomena [Kins11]. In this section, the VFD and the HFD 

are tested by addition of white, pink, and brown noise to the Weierstrass function and the fBm. 

The level of addition of noise is −40 dB and −30 dB. 

5.2.1 Weierstrass function 

As per the previous section, the Weierstrass function is generated using 512 samples at first, by 

assigning 2   and using nine H values spaced equally from 0.1 to 0.9. Then for each of the 

waveforms, −40 dB and −30 dB of white, pink, and brown noise is added and the VFD and the 

HFD are used to estimate the fractal dimension of these waveforms. Table 5.7, displays the 

results obtained by addition of −40 dB of colored noise and table 5.8, displays the results 

obtained by addition of −30 dB of colored noise. 

 The results obtained by addition of −40 dB of colored noise shows the overestimation of the 

FD for the waveforms with a lower FD in comparison to FD estimation of the Weierstrass 

function without any additional noise. Addition of white noise causes the greatest amount of 

overestimation, followed by pink noise. Addition of −40 dB of brown noise has no impact on the 

FD estimation. Although the amount of overestimation due to the addition of −40 dB of colored 

noise is very low, this overestimation tends to be higher with the VFD in comparison to the 

HFD.Moreover, a similar behavior is seen with the addition of −30 dB of colored noise. Greater 
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overestimation of the FD is seen for the Weierstrass function with a lower FD and this 

overestimation tends to get lower and fade as the FD of the Weierstrass function increases. White 

noise has the greatest effect on the FD estimation, causing the greatest amount of overestimation, 

followed by the pink noise. Brown noise does not cause any overestimation to the FD estimation. 

The overestimation tends to be more for the VFD in comparison to HFD. 

Table 5.7: The estimated Fractal Dimension of the Weierstrass functions after addition of −40 dB of 

colored noise. 

 −40 dB Noise Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.17 1.19 1.18 1.17 1.16 1.17 1.16 1.16 

0.8 1.20 1.24 1.25 1.24 1.24 1.23 1.24 1.24 1.23 

0.7 1.30 1.32 1.33 1.32 1.32 1.32 1.32 1.32 1.32 

0.6 1.40 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 

0.5 1.50 1.50 1.51 1.50 1.50 1.50 1.50 1.50 1.50 

0.4 1.60 1.60 1.60 1.60 1.60 1.59 1.59 1.59 1.59 

0.3 1.70 1.70 1.70 1.70 1.70 1.68 1.68 1.68 1.68 

0.2 1.80 1.80 1.80 1.80 1.80 1.76 1.76 1.76 1.76 

0.1 1.90 1.90 1.90 1.90 1.90 1.83 1.83 1.83 1.83 
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Fig. 5.8: The estimated Fractal Dimension of the Weierstrass functions after addition of −30 dB of colored 

noise. 

−30 dB Noise Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.17 1.31 1.22 1.17 1.16 1.26 1.20 1.16 

0.8 1.20 1.24 1.33 1.27 1.23 1.23 1.30 1.25 1.24 

0.7 1.30 1.32 1.38 1.34 1.32 1.32 1.35 1.33 1.32 

0.6 1.40 1.41 1.44 1.42 1.41 1.41 1.42 1.41 1.41 

0.5 1.50 1.50 1.52 1.51 1.50 1.50 1.51 1.50 1.50 

0.4 1.60 1.60 1.61 1.60 1.60 1.59 1.59 1.59 1.59 

0.3 1.70 1.70 1.70 1.70 1.70 1.68 1.68 1.68 1.68 

0.2 1.80 1.80 1.80 1.80 1.80 1.76 1.76 1.76 1.76 

0.1 1.90 1.90 1.90 1.90 1.90 1.83 1.83 1.83 1.83 

 Please note that the addition of colored noise is tested using −40 dB and −30 dB only, since 

the addition of colored noise lower than −40 dB has no impact on the FD estimation and addition 

of colored noise greater than −30 dB causes greater overestimation. 

 In the same time, 88200 samples of the Weierstrass function are generated, by assigning 

2  and using nine H values of 0.1 to 0.9 to resemble the same number of samples in 1 
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recording. However, unlike the previous section, the 88200 samples consist of 172 cycles of the 

Weierstrass function which is displayed in Fig 5.10. Then for each of the waveforms, −40 dB 

and −30 dB of white, pink, and brown noise is added and the VFD and the HFD are used to 

estimate the fractal dimension of these waveforms. Table 5.9, displays the mean of the trajectory 

obtained by addition of −40 dB of colored noise and table 5.10, displays the mean of the 

trajectory obtained by addition of −30 dB of colored noise. The results obtained by addition of 

colored noise to the signal that consist of 172 cycles of the Weierstrass function shows a similar 

behavior to the Weierstrass function generated using 512 samples. 

 

Fig. 5.10. 172 cycles of the Weierstrass function generated using 88200 H = 0.7. 
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 As per the previous test, the mean of the trajectory obtained by addition of −40 dB of colored 

noise shows the overestimation of the FD for the waveforms with a lower FD in comparison to 

FD estimation of the Weierstrass function without any additional noise. Addition of white noise 

causes the greatest amount of overestimation, followed by pink noise. Addition of −40 dB of 

brown noise has no impact on the FD estimation. Although the amount of overestimation due to 

the addition of −40 dB of colored noise is very low, this overestimation tends to be higher with 

the VFD in comparison to the HFD. 

Table 5.9: The mean of the trajectories of the fractal dimension of the Weierstrass function by addition of 

−40 dB of colored noise. 

Addition of −40 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.18 1.20 1.19 1.18 1.17 1.18 1.17 1.17 

0.8 1.20 1.25 1.26 1.25 1.25 1.24 1.25 1.24 1.24 

0.7 1.30 1.33 1.34 1.33 1.33 1.32 1.33 1.33 1.32 

0.6 1.40 1.42 1.42 1.42 1.42 1.41 1.41 1.41 1.41 

0.5 1.50 1.51 1.51 1.51 1.51 1.50 1.50 1.50 1.50 

0.4 1.60 1.60 1.60 1.60 1.60 1.59 1.59 1.59 1.59 

0.3 1.70 1.70 1.70 1.70 1.70 1.67 1.67 1.67 1.67 

0.2 1.80 1.80 1.80 1.80 1.80 1.76 1.76 1.76 1.76 

0.1 1.90 1.89 1.89 1.89 1.89 1.83 1.83 1.83 1.83 
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Similarly, with the addition of −30 dB of colored noise, the mean of the trajectories shows a 

greater overestimation of the FD for the Weierstrass function with a lower FD and this 

overestimation tends to get lower and fade as the FD of the Weierstrass function increases. White 

noise has the greatest effect on the FD estimation, causing the greatest amount of overestimation, 

followed by the pink noise. Brown noise does not cause any overestimation to the FD estimation. 

The overestimation tends to more for the VFD in comparison to HFD. 

Table 5.10: The mean of the trajectories of the fractal dimension of the Weierstrass function by addition 

of −30 dB of colored noise. 

Addition of −30 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.18 1.32 1.23 1.18 1.17 1.28 1.21 1.17 

0.8 1.20 1.25 1.34 1.28 1.25 1.24 1.31 1.26 1.24 

0.7 1.30 1.33 1.38 1.34 1.33 1.32 1.36 1.33 1.32 

0.6 1.40 1.42 1.44 1.42 1.42 1.41 1.43 1.42 1.41 

0.5 1.50 1.51 1.52 1.51 1.51 1.50 1.51 1.50 1.50 

0.4 1.60 1.60 1.61 1.60 1.60 1.59 1.59 1.59 1.59 

0.3 1.70 1.70 1.70 1.70 1.70 1.67 1.68 1.68 1.67 

0.2 1.80 1.80 1.80 1.80 1.80 1.76 1.76 1.76 1.76 

0.1 1.90 1.89 1.89 1.89 1.89 1.83 1.83 1.83 1.83 
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5.2.2 Fractional Brownian motion 

Like the Weierstrass function, the fBm is generated using 512 samples at first, using nine H values spaced 

equally from 0.1 to 0.9. However, unlike the previous section, the fBm is generated using a seed number 

of 100. This is due to the noise having the same effect on the estimation of the FD for the fBm generated 

using different seed numbers. Then for each of the waveforms, −40 dB and −30 dB of white, pink, and 

brown noise are added and the VFD and the HFD are used to estimate the fractal dimension of these 

waveforms. Table 5.11, displays the results obtained by addition of −40 dB of colored noise and table 

5.12, displays the results obtained by addition of −30 dB of colored noise. 

Table 5.11: The fractal dimension of the fractional Brownian motion by addition of −40 dB of colored 

noise. 

Addition of −40 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.12 1.53 1.34 1.13 1.12 1.52 1.34 1.13 

0.8 1.20 1.22 1.50 1.35 1.21 1.24 1.51 1.37 1.25 

0.7 1.30 1.32 1.50 1.39 1.31 1.34 1.49 1.40 1.34 

0.6 1.40 1.43 1.53 1.46 1.42 1.42 1.51 1.46 1.42 

0.5 1.50 1.53 1.59 1.55 1.53 1.53 1.58 1.54 1.52 

0.4 1.60 1.63 1.66 1.64 1.63 1.62 1.66 1.64 1.62 

0.3 1.70 1.71 1.74 1.73 1.72 1.71 1.73 1.73 1.72 

0.2 1.80 1.80 1.82 1.81 1.80 1.80 1.82 1.81 1.81 

0.1 1.90 1.89 1.90 1.90 1.90 1.90 1.91 1.91 1.90 
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Table 5.12: The fractal dimension of the fractional Brownian motion by addition of −30 dB of colored 

noise. 

Addition of −30 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.12 1.87 1.67 1.17 1.12 1.87 1.69 1.19 

0.8 1.20 1.22 1.84 1.64 1.23 1.24 1.84 1.67 1.27 

0.7 1.30 1.32 1.81 1.62 1.32 1.34 1.80 1.63 1.35 

0.6 1.40 1.43 1.80 1.63 1.42 1.42 1.78 1.62 1.42 

0.5 1.50 1.53 1.80 1.66 1.53 1.53 1.78 1.66 1.52 

0.4 1.60 1.63 1.82 1.72 1.63 1.62 1.81 1.71 1.63 

0.3 1.70 1.71 1.86 1.78 1.72 1.71 1.85 1.78 1.72 

0.2 1.80 1.80 1.90 1.84 1.81 1.80 1.90 1.85 1.81 

0.1 1.90 1.89 1.95 1.91 1.90 1.90 1.96 1.91 1.90 

The results obtained shows that white and pink noises dominate the fBm, unlike the 

Weierstrass function. This is due to the structure of the fBm which has characteristics of noise 

itself [KrBo13] thus, with the addition of −40 dB of white and pink noise there is a significant 

overestimation for the waveforms with a lower FD and with the addition of −30 dB this 

overestimation is higher and closer to the FD of the respective additive noise. Meanwhile, the 

addition of Brown noise causes overestimation of the FD for the lower FD waveform which gets 

reduced and eventually fades as the FD of the waveform increases. 

In the same time, 88200 samples of the fBm are generated, by assigning the seed of the 
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random number generator to 100 and using nine H values of 0.1 to 0.9 to resemble the same 

number of samples in 1 recording. Then for each of the waveforms, −40 dB and −30 dB of white, 

pink, and brown noise is added and the VFD and the HFD are used to estimate the FD of these 

waveforms. Figure 5.11 displays 88200 samples of the fBm generated by assigning H = 0.5 and 

setting the seed to 100. Table 5.13, displays the mean of the trajectory obtained by addition of 

−40 dB of colored noise and table 5.14, displays the mean of the trajectory obtained by addition 

of −30 dB of colored noise. The results obtained by addition of colored noise to the fBm 

generated using 88200 samples shows a similar behavior to the fBm generated using 512 

samples. 

 

Fig. 5.11. The fractional Brownian motion generated by assigning H = 0.5. 

 As per the previous test, the mean of the trajectory obtained by addition of −40 dB and −30 
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dB of white and pink noise shows that the FD changes to the FD of the additive noise. Addition 

of brown noise causes an overestimation of the FD for the fBm waveform with a lower FD with 

this overestimation being higher for the colored noise added at −30 dB level. 

Table 5.13: The mean of the trajectory obtained by addition of −40 dB of colored noise to the fractional 

Brownian motion. 

Addition of −40 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.11 2.00 1.85 1.32 1.11 2.00 1.85 1.31 

0.8 1.20 1.21 2.00 1.85 1.26 1.20 2.00 1.85 1.26 

0.7 1.30 1.30 2.00 1.84 1.31 1.30 2.00 1.85 1.31 

0.6 1.40 1.40 1.99 1.83 1.40 1.40 1.99 1.84 1.40 

0.5 1.50 1.50 1.98 1.82 1.50 1.50 1.98 1.83 1.50 

0.4 1.60 1.60 1.97 1.82 1.60 1.60 1.97 1.82 1.60 

0.3 1.70 1.70 1.98 1.83 1.70 1.70 1.98 1.83 1.70 

0.2 1.80 1.80 1.99 1.84 1.80 1.80 1.99 1.85 1.80 

0.1 1.90 1.90 1.99 1.85 1.90 1.90 1.99 1.86 1.90 
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Table 5.14: The mean of the trajectory obtained by addition of −30 dB of colored noise to the fractional 

Brownian motion. 

Addition of −30 dB 

Noise 
Variance Fractal Dimension Higuchi Fractal Dimension 

Hurst 

Theoretical 

Fractal 

Dimension 

 
White 

Noise 

Pink 

Noise 

Brown 

Noise 
 

White 

Noise 

Pink 

Noise 

Brown 

Noise 

0.9 1.10 1.11 2.00 1.85 1.47 1.11 2.00 1.85 1.46 

0.8 1.20 1.21 2.00 1.85 1.41 1.20 2.00 1.85 1.40 

0.7 1.30 1.30 2.00 1.85 1.36 1.30 2.00 1.85 1.36 

0.6 1.40 1.40 2.00 1.85 1.41 1.40 2.00 1.85 1.41 

0.5 1.50 1.50 2.00 1.84 1.50 1.50 2.00 1.85 1.50 

0.4 1.60 1.60 2.00 1.84 1.60 1.60 2.00 1.85 1.60 

0.3 1.70 1.70 2.00 1.84 1.70 1.70 2.00 1.85 1.70 

0.2 1.80 1.80 2.00 1.85 1.79 1.80 2.00 1.85 1.79 

0.1 1.90 1.90 2.00 1.85 1.89 1.90 2.00 1.85 1.89 

5.3 Voice Activity Detection 

Chapter 4 described the procedures taken in order to have recordings with similar conditions 

and a reduced amount of noise. However, under even, the most controlled conditions the pre-
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silence, the silence, and the post-silence part of the utterance will contain noise. When we zoom 

on the silence we can see that these silence parts look like noise with specific characteristics and 

as a result when we apply the algorithms to extract features, the silence part will be seen in the 

trajectory as well. This makes the task of feature extraction difficult since it would be difficult to 

distinguish the features from the silence. Therefore, the characteristics of the background noise 

are studied, followed by the estimation of the fractal dimension of colored noise and the 

background noise. Upon establishment of the characteristics of the background noise, a VAD 

which is based on the VFD is introduced. 

5.3.1 Characteristics of the Background Noise 

It was reported in chapter 4 that during the recordings the background noise measured was 

between 35 dB to 45 dB, during the silence moments using the “DecibelX” smartphone app. 

Although the amplitude of the silence in the recording is related to other factors, such as the gain 

of the microphone, the amplitude of the background noise in the silence is in the range of −45 to 

–40 dB. Figure 5.12, displays 500 ms of pre-silence in one of the recordings. The background 

noise can be characterized by its PSD.  The PSD of the background noise is displayed in fig. 

5.13, along with the PSD of generated pink noise and the PSD of theoretical pink noise. The 

spectral decay shows a higher drop in the lower frequencies. However, the spectral decay of the 

higher frequency is similar to the spectral decay of pink noise or in other words 1   . The 

higher drop in the spectral decay of the lower frequencies is due to the attenution of the 

reverberation of the background noise in the anechoic chamber and the background noise can be 

characterized as having pink noise characteristics. 
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Fig. 5.12. The background noise seen in the pre-silence. 

 

Fig. 5.13. The power spectrum density of the noise. 
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5.3.2 Fractal Dimension of Colored Noise 

It is reported by [KiGr08] that the stop consonants and the fricatives have trajectories with 

dimension level of background noise, making the detection of features difficult since they could 

be easily mistaken by the background noise. 

Colored noise has specific FD for each color, the FD of white noise is in the range of 2, pink 

noise is in the range of 1.8 and brown noise is in the range of 1.5. To test the FD of colored 

noise, 88200 samples of white, pink, and brown noise is generated and the VFD is used to 

estimate the FD. The trajectory of each color of the noise obtained is displayed in fig. 5.14. 

 

Fig. 5.14. The variance fractal dimension trajectory of white, pink, and brown noise. 
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 Similarly, the VFD is used to estimate the FD of the recorded noise. The trajectory obtained 

is displayed in fig. 5.15, which shows that the FD of the background noise is in the range of 1.6 

to 1.8. Please note that in some instances the FD does go below or above this range, however in 

most cases the FD of the background noise is within the 1.6 to 1.8 range. 

 The estimated FD of the background noise in the silence is in the range, which is in between 

the FD of pink and brown noise. As it was established in the previous section that background 

noise has the characteristics of pink noise, however, the lower frequencies have a greater spectral 

decay, due to attenuation. This attenuation affects the complexity of the background noise and as 

a result, causes the FD to be lower than pink noise. Moreover, there might be minor complexity 

reduction in comparison to synthetically generated colored noise due to numerical noise 

introduced to the signal upon recording. 

 

Fig. 5.15. The variance fractal dimension trajectory of the pre-silence. 



Application of Polyscal Methods for Speaker Verification  5. Experimental Results and Analysis 

_____________________________________________________________________________________________  

  

_____________________________________________________________________________________________  

 - 91 of 119 -  

5.3.3 The Voice Activity Detection Algorithm 

Fractal dimension estimation algorithms can estimate the complexity of a signal regardless of its 

amplitude. It was established that the background noise is in the range of −45 to –40 dB and has 

the characteristics of pink noise with the FD being in the range of 1.6 to 1.8 in the majority of 

instances. Moreover, in section 5.2 it was established that addition of −30 dB and −40 dB of 

colored noise to the Weierstrass function does not significantly affect the FD estimation of the 

majority of the waveforms. 

Addition of colored noise to speech can help control the FD level of background noise by 

increasing or decreasing it, causing it to be different from the features without affecting the 

features itself. This will make the task of feature extraction simple since the dimension of the 

background noise would change but the dimension of the features will be the same due to the 

speech having a higher amplitude and thus, the unchanged data could be clearly extracted. 

It is trivial to note that acquiring a low SNR while recording the utterances is of crucial 

importance because not only the features would contain less amount of noise, but also the 

amplitude of the noise available in the silences would be lower. This would allow the addition of 

colored noise at lower SNR in order to minimize the effects of noise on the features. 

Hence, for the purpose of VAD in this work, the VFD is used to estimate the FD trajectory of 

the utterances. The choice of VFD is due to providing a more accurate estimation of the FD of 

the test waveforms in section 5.1 with FD of 1.6 to 1.9 and having a lower variability in its 

trajectory. Addition of colored noise is done using −30 dB of white noise to the signal, which can 

increase the FD level of the background noise to 2 without affecting the speech significantly, due 

to the speech having a higher amplitude. A threshold value of 0.05 is set and any frame of the 
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signal that has a change in FD greater or less than the threshold is considered as noise. Figure 

5.16, displays the waveform of the utterance “church”. Figure 5.17, shows the VFD of the 

waveform of the utterance “church”. This image shows that the background noise has a FD 

similar to the phoneme /ch/and it is very difficult to distinguish the Phoneme. 

 White noise is added to the waveform of the utterance “church” at −30 dB SNR. Figure 5.18, 

displays the VFD of the waveform of the utterance “church” after addition of −30 dB of white 

noise. This image shows that the FD trajectory of the pre-silence, silence, and the post-silence 

increase to around 2, due to addition of white noise, an overestimation which is in the range of 

0.2 to 0.3 in the FD estimation of the frames that contain silence, while, there is no change or an 

overestimation of below 0.05 in the FD estimation of the frames that contain speech. Please note 

that if the overestimation in the FD is greater than 0.05 for the frames that contain speech it is 

due to the framing having background noise in a greater SNR.  

 

Fig 5.16. The Waveform of the utterance “church”.  
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Fig. 5.17. The variance fractal dimension of the utterance “church”. 

  

Fig. 5.18. The variance fractal dimension after addition of white noise. 
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Therefore, the frames of the signal that have a FD increase or decrease of 0.05 are considered 

as the frames that contain speech signal, which are displayed in fig. 5.19 for the utterance church. 

Figure 5.20, displays the waveform of the utterance “church” after extraction of the frames 

containing speech using the VAD algorithm described. This image shows that the pre-silence, 

silence, and the post-silence have been removed. In section 5.5 this method is tested and 

compared with different VAD to see the difference in speaker verification accuracy. 

Appendix A displays the process of VAD for a set of 44 utterances recorded by one of the 

participants. As in this section for each utterance, the image of the waveform, the VFDT of the 

utterance, the VFDT after addition of noise, the extracted VFDT, and the extracted waveform are 

displayed. Furthermore, the flowchart of this algorithm is provided in appendix B, fig. B.8 of this 

document. 

 

Fig. 5.19. The extracted frames containing speech. 
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Fig. 5.20. The waveform of the utterance detected by the voice activity detection algorithm. 

5.4 Feature Extraction 

 This section presents the features extracted from the frames that contain speech. We would 

like to set the baseline to the LPCC algorithm obtained using a 23rd order LPC and 23 LPCC 

vector which will be referred to as LPCC23. The choice of the 23rd order LPCC is due to the use 

of this algorithm by [Reyn94], which yielded an accuracy of 92%. Moreover, the results obtained 

by [Reyn94], shows that changing the training and testing data yields different results. Hence, 

due to the use of a different speech dataset in this work and in order to compare the performance 

of the features, LPCC23 is set as the baseline and a feature vector based on the fusion of multiple 

features described in chapter 3 is created and used for training and testing the data. Fusion is 

widely used in the area of speaker recognition ([CaRD03]; [ChWC97]; [HaDC04]; [KiAl09]). 
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 The next feature that is added to the feature vector is 16 MFCC vector obtained using a 16th 

order MFCC which will be referred to as the MFCC16. The choice of 16th order MFCC is due to 

the intention of not significantly exceeding the 39 feature vector commonly used to solve the 

text-independent speaker recognition problem ([KiLi10]; [ToPu11]; [ChZF16]). In the same 

time, it was reported by [Reyn94] that when MFCC and LPCC used are lower than the model 

order, the accuracy is reduced, most significantly for noisy signals. 

   Asides from the LPCC23 and MFCC16, the HFD and the VFD is added to the feature 

vector. The HFD is obtained by setting kmax = 16 and the VFD is obtained using a dyadic time 

displacement by assigning 16,8,4,2,1kn  . It is specified by [KiGr09] that for the VFD algorithm 

1kn   should be omitted to reduce the effect of correlation between adjacent signal samples. It is 

noticed in this work that omission of 1kn   causes the VFDT to go significantly over 2 for 

phonemes that have a turbulent structure such as the fricatives a matter which is noticed in 

[Grie96] as well. It is noticed that with the addition of 1kn  , the VFDT is reduced to a FD close 

to 2, in some cases slightly crossing 2 which is compatible with HFD as well. The highest VFD 

values are notice for phoneme /s/, where for 2 of the participants, a peak value of 2.10 is noticed. 

Speech has nonlinear characteristics and its multifractal nature has been proven [LaSK97]. The 

choice of the HFD and VFD is due to both the algorithms estimating the FD quickly due to their 

simplicity and the possibility of implementing them for real-time applications. Moreover, the 

42nd and 43rd features are allocated to the ZCR and the TC. The ZCR provides an estimate of the 

frequency and the TC provides an estimate of the bandwidth of the signal in a given frame. 

 An experimental sensitivity analysis is conducted in the next section to test the effects of 

each feature on the accuracy of classification of the test data using the SVM. The feature vectors 
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used in these tests are as follows: 

 A: Consists of all 6 features mentioned and each feature vector is 43 fields. 

 B: Consists of only LPCC23 and each feature vector are 23 fields. 

 C: Consists of only MFCC16 and each feature vector are 16 fields. 

 D: Consists of LPCC23 and MFCC16 and each feature vector are 39 fields. 

 E: Consists of LPCC23, MFCC16, and HFD and each feature vector are 40 fields. 

 F: Consists of LPCC23, MFCC16, and VFD and each feature vector are 40 fields. 

 G: Consists of LPCC23, MFCC16, and ZCR and each feature vector are 40 fields. 

 H: Consists of LPCC23, MFCC16, and TC and each feature vector are 40 fields. 

 For simplicity, each combination of the feature vector will be referred to by the alphabet 

assigned to them above. The graphical representation of feature vector A which consists of all 

the features is displayed in fig. 5.21. In the next section, the mentioned above features are 

extracted by different VAD methods and the SVM is used to train the model and classify the test 

data. 

 

Fig. 5.21. The graphical representation of feature vector “A”. 



Application of Polyscal Methods for Speaker Verification  5. Experimental Results and Analysis 

_____________________________________________________________________________________________  

  

_____________________________________________________________________________________________  

 - 98 of 119 -  

5.5 Classification of Features 

 Upon extraction of features, it is the turn to build a training model and classify the feature 

vectors extracted from the test data. This section presents the results obtained for the different 

combination of feature vectors discussed above which were extracted using the VAD algorithm 

discussed in section 5.3. These results are then compared with results obtained by using the same 

the feature vectors that were extracted using the HFD, amplitude threshold, and energy. 

5.5.1 Building of the training model and the classification of the test data.  

The set of test words used are the 44 keywords from the MRPA displayed in table 2.1. The 

keywords are arranged in alphabetical order with the odd keywords used for training and the 

even keywords used for testing the classifier. The 22 keywords used for training and the 22 

keywords used for testing are displayed in table 5.15. The motivation behind the division of the 

keywords in this manner is to have training and testing words that contain similar phonemes but 

yet are completely different. Meanwhile, dividing the data into half will ensure that the classifier 

will not be over-trained and thus upon exposure to new data its performance will not be reduced. 

Please note that in this work the recorded utterances are not warped, thus the amount of training 

and testing data is variable from one speaker to another. Using the VAD algorithm discussed in 

section 5.3.3 to obtain the frames containing speech from the recorded utterances of the 24 

participants and by addition of -30 dB of white noise, the average training speech extracted is 

7.43 sec with a maximum of 9.76 sec and a minimum of 5.21 sec. Similarly, for the testing data, 

the average testing speech extracted is 7.59 sec with a maximum of 9.88 sec and a minimum of 

5.43 sec.  
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Table 5.15: The keywords used for training and testing the classifier. 

Training Testing 

No MRPA Keyword No MRPA Keyword No MRPA Keyword No MRPA Keyword 

1 /a/ Bad 12 /f/ Fife 1 /@/ Banana 12 /oo/ For 

2 /b/ Barb 13 /g/ Gag 2 /aa/ Bard 13 /h/ Hand 

3 /ei/ Bay 14 /jh/ Judge 3 /ii/ Bead 14 /k/ Kick 

4 /e@/ Bear 15 /l/ Loyal 4 /e/ Bed 15 /zh/ Measure 

5 /i@/ Beer 16 /m/ Mime 5 /i/ Bid 16 /n/ None 

6 /@@/ Bird 17 /dh/ Other 6 /ou/ Boat 17 /p/ Pip 

7 /o/ Body 18 /u@/ Poor 7 /u/ Book 18 /r/ Rear 

8 /uu/ Boot 19 /ng/ Ringing 8 /au/ Bough 19 /sh/ Sheepish 

9 /oi/ Boy 20 /t/ Test 9 /uh/ Bud 20 /th/ Thirtieth 

10 /ai/ Buy 21 /v/ Verve 10 /s/ Cease 21 /w/ Weal 

11 /ch/ Church 22 /y/ Year 11 /d/ Deed 22 /z/ Zoos 

  The SVM is used for training a model and classification of the testing data. All the 

experiments are conducted by setting the kernel function to the linear kernel and assigning the C 

= 10. The choice of the kernel function and the cost function is motivated by experimental 

results. All the classifications were done using a one-vs-one approach resulting in 276 
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classifications. The mean of the accuracy of the classifications of the test data obtained for each 

of the mentioned above tests is displayed in table 5.16.  

Table 5.16: The accuracy of the classifications using variance fractal dimension. 

A B C D E F G H 

91.60 % 86.79 % 76.86 % 91.27 % 91.34 % 91.40 % 91.38 % 91.41 % 

 The results obtained shows that the feature vector “B” yields an accuracy of 86.79%. This is 

a reduction of almost 5% in comparison to the results obtained by [Reyn94]. The drop in 

accuracy percentage can be related to having fewer training data. Meanwhile, feature vector “C” 

yields 76.86 % due to having a low filter order. Feature vector “D” which is a combination of 

feature vector “B” and “C” shows a significant improvement resulting in an accuracy of 91.27%. 

The classification accuracies increase for feature vectors “E” to “H”, due to the addition of 

speech features not measured by the LPCC23 and MFCC16. Feature vector “A” yields the 

highest result which is 91.60% showing that addition of nonlinear features improves the accuracy 

of the speaker verification. 

5.5.2 Comparison of the results with different voice activity detection methods. 

 The focus of this work is the comparison of different features and hence, all the processes of 

building the model and the classification steps are kept constant. This way, the changes in 

performance can be linked mostly to features and the VAD. In this section, the features are 

extracted using different VAD methods.  

 At first, the VFD is replaced with HFD in the algorithm described in section 5.3.3. The 

average training speech extracted using this method is 7.41 sec with a maximum of 10.52 sec and 
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a minimum of 5.07 sec. Similarly, for the testing data, the average testing speech extracted is 

7.57 sec with a maximum of 9.88 sec and a minimum of 5.43 sec. This shows a slight decrease in 

the average training and testing times, however an increase in the maximum and a decrease in 

the minimum training and testing times. The results of the classification of the test data by 

extraction of features using this method are displayed in table 5.17. 

Table 5.17: The accuracy of the classifications using Higuchi fractal dimension. 

A B C D E F G H 

91.43 % 86.49 % 76.91 % 91.09 % 91.16 % 91.16 % 91.18 % 91.22 % 

 The results display a slight decrease in the classification accuracy for all the feature vectors 

asides from feature vector “C”. This decrease in accuracy can be linked to the reduced training 

and test time. Thus, this reduction is not due to noise being omitted, but rather, they are frames 

containing speech being omitted due to FD estimation error.  

 In the next approach, the VAD is established by placing a threshold on the amplitude of the 

signal. Any sample greater than 0.01 V or any sample less than -0.01 V is considered a speech 

signal. The threshold is set to 0.01 V due to the background noise being in the range of −45 to    

–40 dB. The average training speech extracted using this method is 6.76 sec with a maximum of 

9.49 sec and a minimum of 4.45 sec. Similarly, for the testing data, the average testing speech 

extracted is 6.73 sec with a maximum of 9.24 sec and a minimum of 4.62 sec. The results of the 

classification of the test data by extraction of features using this method are displayed in table 

5.18. 
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Table 5.18: The accuracy of classifications using amplitude threshold. 

A B C D E F G H 

86.10 % 77.84 % 76.50 % 85.51 % 85.67 % 85.73 % 85.63 % 85.78 % 

 The results display a 5% to 6% decrease in the accuracy for feature vectors “A”, “D”, “E”, 

“F”, “G”, and “H”. However, the decrease is greater for feature vector “B” and very small for 

feature vector ‘C”. 

 Moreover, the VAD is established by setting a threshold on signal energy. The threshold is 

set to 0.0005 V with the motivation of having a threshold that is slightly higher than −40 dB 

level. The extracted speech extracted using this method is reduced as expected. The average 

training speech extracted using this method is 4.99 sec with a maximum of 7.78 sec and a 

minimum of 2.87 sec. Similarly, for the testing data, the average testing speech extracted is 4.90 

sec with a maximum of 7.16 sec and a minimum of 2.98 sec. The results of the classification of 

the test data by extraction of features using this method are displayed in table 5.19. 

Table 5.19: The accuracy of the classifications using the energy. 

A B C D E F G H 

86.06 % 77.05 % 75.55 % 85.20 % 85.27 % 85.36 % 85.44 % 85.62 % 

 The results show a slight decrease in accuracy in comparison to setting a threshold on 

amplitude, however, show the same pattern. The slight decrease in accuracy can be related to the 

decrease in average training and testing times.  

 Meanwhile, it was reported by [ReRo95], that LPC spectral representations, such as LPCC, 
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can be severely affected by noise and directly computed filterbank features are more robust to 

noisy speech. The significant difference in overall accuracy of feature vectors extracted using the 

method discussed in section 5.3.3 using VFD and HFD, in comparison to setting a threshold on 

signal amplitude and energy can be related to capturing of phonemes that have similar amplitude 

to the noise level and omission of frames that contain speech, but yet the speech is contaminated 

with noise. The VFD and the HFD can estimate the FD of a signal regardless of the amplitude of 

the signal and addition of noise can cause overestimation of the FD which allows frames 

contaminated with noise to be detected and omitted. The significant decrease in the accuracy of 

the feature vector “B” that consist of LPCC23 and a slight decrease in the accuracy of the feature 

vector “C” which consist of MFCC16, extracted using VAD based on setting a threshold on the 

amplitude and energy of the signal can be related to speech samples that were contaminated by 

noise. The LPCC23 are severely affected by noise and the MFCC16 are more robust to noisy 

speech.   

5.6 Summary 

This chapter presented the results and the analysis. Firstly, the VFD and the HFD were tested 

using the Weierstrass function and the fBm. The results show that the VFD has less variability 

for most of the waveforms and is slightly more accurate for the Weierstrass function with FD 1.7 

to 1.9. Secondly, colored noise was added to the test data to study the effects of noise on the 

estimation of FD. It was found that the VFD is more sensitive to the addition of noise. Thirdly, a 

VAD algorithm that utilizes the characteristics of the background noise and is based on FD was 

introduced. Finally, an experimental sensitivity analysis of the extracted features was conducted 

using the SVM. The features were extracted using the VAD detection algorithm based on the 
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VFD, the HFD, the amplitude threshold, and the energy. The feature vector that consisted of all 

the features and was extracted using the VAD that utilized the VFD provided the highest 

accuracy, which was 91.60%. 

In the next chapter, the thesis overview is presented followed by the thesis conclusions. 

Furthermore, the thesis contributions are presented, followed by the limitation of this work and 

possible future extensions. 
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Chapter 6 

 

6Conclusions 

 

 

6.1 Thesis Overview 

This thesis presented a study of fusion of multiple features with the focus of embedding 

fractal methods to the front end-processing of a text-independent speaker verification system. 

The fusion of the features which were extracted using a VAD detection based on FD showed an 

improved accuracy rate on the dataset that was recorded.  Chapter 2 began with the discussion of 

the anatomy of human speech production and perception, followed by the discussion of the 

organization of sound in the human language known as phonology.  Moreover, this chapter 

introduces the fundamental techniques and concepts that are used in the algorithms discussed in 

chapter 3.  
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Meanwhile, the methodology and programming of the algorithms used are discussed in 

chapter 3. Chapter 3 starts with the discussion of colored noise which was used in the VAD 

detection algorithm, followed by the framing of the speech signal into stationary segments for 

analysis. Moreover, the algorithms used to form the feature vectors (ZCR, TC, LPCC, MFCC, 

HFD, and VFD) are discussed, followed by, the test signals (Weierstrass function and fBm) 

which was used to study the accuracy of the FD estimation algorithms used. In the same time, 

the SVM which was used to build a model and test the unseen data was discussed In this chapter.  

Any study on speaker verification requires a dataset. In this thesis, a dataset is recorded under 

controlled conditions using 24 volunteers raised in the Province of Manitoba, Canada. Chapter 4 

provides a detailed description of the recording hardware and software used followed by the 

discussion of the test words used, the demographics of the participants, and the protocols used. 

Moreover, the recorded dataset is stored in a repository, to facilitate other researchers gaining 

access to the data for further research. The aim of this chapter is to provide a detailed guideline 

to allow the repeatability of the recordings. 

The experimental results and analysis are presented in chapter 5. At first, since different 

phonemes have a different FD, the accuracy of the HFD and VFD is tested for FD rang of 1.1 to 

1.9 using the Weierstrass function and the fBm, followed by, the study of effects of colored noise 

on the estimation of the FD. In the same time, a VAD algorithm based on changing the 

characteristics of the background noise and estimation of FD is introduced and used to extract 

features. An experimental sensitivity analysis of the features is conducted by using the SVM to 

model and test the feature vectors extracted using VAD based on VFD, HFD, amplitude 

threshold, and signal energy. The fusion of the 6 features discussed, which were extracted using 

a VAD based on the VFD provided the highest accuracy of 91.60%. 
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6.2 Thesis Conclusions 

 This thesis addressed a number of research questions in section 1.2.3, related to recording of 

a dataset, feature extraction, and training a classifier to test the features extracted. This section 

links the results to the research questions to provide insight into the answers and potential future 

research. 

  At first, 24 volunteers consisting of 12 male and 12 female participants raised in the 

Province of Manitoba, Canada, are recorded.  In order to provide a repeatable set of test words 

that would cover all of the phonemes, the 44 keywords from the Edinburg MRPA shown in table 

2.1 is used and recorded for each participant in a recording session. The choice of MRPA over 

the IPA is due to the IPA not being machine readable [KiGr08]. The MRPA covers all the 

English phonemes, has enough speech data to build a model and at the same time, quick to 

record making it practical to use for a real-world application. All the recordings were conducted 

in one continuous session, each approximately 15 to 20 minutes in duration. In this work, to 

eliminate any background noise from outside of the chamber each word was recorded separately. 

The recording session time could be reduced if the keywords are recorded continuously. In the 

same time, chapter 4 provides a detailed description of the hardware, the software, and the set of 

protocols used in order to ensure quality, repeatability, and similarity of all the recordings. 

Furthermore, to allow further research using the dataset by researchers, the recorded dataset is 

uploaded to IEEE dataport and can be found at [SeKi18]. 

 Secondly, the HFD and the VFD are selected. Both these algorithms use the temporal 

features of the signal to estimate the FD and are fast, making them suitable for speech 

processing. Both these algorithms are tested using the Weierstrass function and the fBm 
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generated with different complexity. The results which are displayed in section 5.1, and show 

that the VFD has less variability for most of the waveforms and is slightly more accurate for the 

Weierstrass function with FD 1.7 to 1.9. This is due to the VFD using variance to estimate the 

FD. Moreover, both the algorithms are tested with colored noise in section 5.2. The results show 

that white noise causes the greatest overestimation in the FD, followed by pink noise. This is due 

to structure and complexity of the noises. Brown noise does not cause significant overestimation 

of the FD. It is noticed that the VFD is more sensitive to the addition of colored noise and has 

more overestimation. This is due to the VFD estimating the FD by finding the variance of the 

increments, which can be found in equation 3.19, causing an error to increase by the power of 2. 

 Thirdly, the characteristics of the noise in the background of the recordings are studied and it 

is establish that the noise is pink noise with a FD of 1.6 to 1.8. The tests in section 5.2, showed 

that addition of white noise will increase the FD of noise to 2 (As per the tests with the fBm) and 

does not affect the FD of the segments containing speech to that extend. Therefore, using this 

property a VAD algorithm is introduced in section 5.3 that uses the VFD to detect the segments 

containing speech by addition of white noise to the signal. This method of VAD is more robust 

to noise as it does not rely on the amplitude but the complexity of the speech. Therefore, this 

property of the VAD allows it to detect segments that contain speech and are above the energy 

threshold level but yet are corrupted with noise. The results obtained in section 5.5 support this 

claim. The results show that when FD is not used for the VAD, the accuracy of classification of 

the feature vectors containing LPCC is degraded significantly in comparison to other feature 

vectors, since LPC spectral representations, such as LPCC, are severely affected by noise 

[ReRo95]. In these tests the VAD that utilized the VFD provided the highest accuracy rate, 

higher than the HFD. This can be linked to the VFD provided a better estimation of the FD of the 
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Weierstrass function and thus and be suggested that it is slightly estimating the FD of speech 

more accurately. 

 Finally, in section 5.4, multiple combinations of feature vectors are discussed and an 

experimental sensitivity analysis is conducted in section 5.5. Meanwhile, knowing that training 

data affects the accuracy of the correctly identified frames and in order to compare the accuracy 

of correctly identified frames to the literature the LPCC23 is used and yielded an accuracy 

86.79% which is a reduction of almost 5% in comparison to the results obtained by [Reyn94]. 

This is due to having fewer training data in this work. The results showed that fusion of features 

increases the percentage of the correctly identified frames, due to the addition of features not 

captured by a single algorithm. Fusion of MFCC16 with LPCC23 provided the highest increase 

in accuracy, followed by the TC and VFD. The combination of the features from the 6 

algorithms extracted using the VAD that utilized the VFD provided the highest accuracy of 

91.60%. As discussed in section 5.5.1, for all the tests 22 keywords are used for training and 22 

keywords are used for testing. All the tests were conducted using the SVM, using a linear kernel 

and setting C = 10 due to obtaining the highest accuracy rates in experimental results. 

6.3 Thesis Contribution 

 This thesis contributes to the current knowledge of text-independent speaker verification by 

the recording of a dataset under controlled conditions, embedding of fractal algorithms to the 

front-end processing of a speaker verification system, and conduction an experimental sensitivity 

analysis to determine the effects of fusion of each feature in the feature vector. The main 

contributions are:  
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1. In order to provide a set of test signals a group 24 volunteers raised in the province of 

Manitoba, Canada, were recorded under controlled conditions. The set of test words used 

were from the Edinburg MRPA which consists of all the phonemes [KiGr08] and is easy 

and quick to record. This dataset is posted on IEEE dataport [SeKi18] and can be used for 

research in the field of speech. 

2. A detailed description of the recording procedures taken to serve as a guideline to any 

future recordings is provided. This guideline ensures the repeatability of the recordings 

with equivalent quality to allow extension of the number of participants to the current 

dataset or recording of a different dataset with similar quality. 

3. The HFD and the VFD are used to add the multifractal features of speech to the front-end 

processing due to the speed of their computation.  It is specified by [KiGr09] that for the 

VFD algorithm 1kn   should be omitted to reduce the effect of correlation between 

adjacent signal samples. However, it was noticed that that omission of 1kn   causes the 

VFDT to go significantly over 2 for phonemes that have a turbulent structure such as the 

fricatives, a matter which is noticed in- [Grie96] as well. It is noticed that with the 

addition of 1kn  , the VFDT is reduced to a FD close to 2, in some cases slightly crossing 

2 which is compatible with HFD. 

4. The Weierstrass function and the fBm are used to study the performance of the HFD and 

the VFD and the effects of addition of colored noise on the estimation of the FD. The 

experiments show that the VFD has less variability for most of the waveforms and is 

slightly more accurate for the Weierstrass function with FD 1.7 to 1.9. However, the VFD 

is more sensitive to the addition of colored noise and has greater error. 
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5. A VAD algorithm is introduced in section 5.3 which is based on changing the FD of the 

background noise available in the recorded speech. This algorithm proved to be more 

effective in comparison to setting a threshold on the energy of the signal. The results 

show that this algorithm is capable of detecting segments that contain speech and 

omitting the segments that contain speech but are noisy. This is due to the FD relying on 

the complexity of the signal rather than the amplitude. 

6. An experimental sensitivity analysis was conducted showing that the fusion of features 

improves the accuracy of the classifications. The fusion of features yielded a 43 feature 

vector. It was intended not to significantly exceed the 39 feature vector commonly used 

in the literature since with the increased number of features the number of training 

samples for reliable density estimation grows exponentially [JaDM00]. The SVM was 

used to train the models and test them. 

6.4 Limitations and Future Work 

 This thesis provided some key contributions to the area of text-independent speaker 

verification. However, there are some limitations in this study which can be improved. These 

limitations and areas for possible extensions to this research are: 

1. The recorded dataset consisted of 44 keywords which were used for the experiments in 

this work. This dataset can be expanded to include sentences. Sentences can consist of 

more training data and thus the experiments can be repeated with more training data to 

see if they yield the same accuracy. Moreover, availability of sentences in a dataset 

makes the data suitable for research on speaker recognition. 
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2. The SVM was used to train and test a model. A possible extension to this work can be the 

investigation of the performance of the feature vectors extracted using other machine 

learning algorithms. The current machine learning algorithm popular in the literature is 

the deep learning algorithms. Meanwhile, the traditional machine learning algorithms 

such as the Gaussian mixture models and the hidden Markov model can be used for the 

comparison of the results. 

3. A VAD detection based of FD was introduced in this work. A possible extension to this 

work is the investigation of this algorithm for other application. A possible field where 

this algorithm could improve the results is speaker recognition due to the elimination of 

segments that contain noisy speech. This objective can be achieved by identifying the 

segments that contain speech and normalizing the segments in time. For this purpose, 

normalization is required to remove the variability in the speed of speaking between one 

speaker to another. 
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Fig. A.1. The waveform of the utterance “barb”. 

 

Fig. A.2. The variance fractal dimension trajectory of the utterance “barb”. 
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Fig. A.3. The variance fractal dimension trajectory of the utterance “barb” after addition of white noise. 

 

Fig. A.4. The trajectory of the utterance “barb” detected by the voice activity detection algorithm. 



Application of Polyscal Methods for Speaker Verification  Appendix A 

_____________________________________________________________________________________________  

   

_____________________________________________________________________________________________ 

 - A4 of A111 -  

 

Fig. A.5. The waveform of the utterance “barb” detected by the voice activity detection algorithm. 

 

Fig. A.6. The waveform of the utterance “test”. 
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Fig. A.7. The variance fractal dimension trajectory of the utterance “test”. 

 

Fig. A.8. The variance fractal dimension trajectory of the utterance “test” after addition of white noise. 
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Fig. A.9. The trajectory of the utterance “test” detected by the voice activity detection algorithm. 

 

Fig. A.10. The waveform of the utterance “test” detected by the voice activity detection algorithm. 
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Fig. A.11. The waveform of the utterance “deed”. 

 

Fig. A.12. The variance fractal dimension trajectory of the utterance “deed”. 
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Fig. A.13. The variance fractal dimension trajectory of the utterance “deed” after addition of white noise. 

 

Fig. A.14. The trajectory of the utterance “deed” detected by the voice activity detection algorithm. 
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Fig. A.15. The waveform of the utterance “deed” detected by the voice activity detection algorithm. 

 

Fig. A.16. The waveform of the utterance “kick”. 
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Fig. A.17. The variance fractal dimension trajectory of the utterance “kick”. 

 

Fig. A.18. The variance fractal dimension trajectory of the utterance “kick” after addition of white noise. 
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Fig. A.19. The trajectory of the utterance “kick” detected by the voice activity detection algorithm. 

 

Fig. A.20. The waveform of the utterance “kick” detected by the voice activity detection algorithm. 
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Fig. A.21. The waveform of the utterance “gag”. 

 

Fig. A.22. The variance fractal dimension trajectory of the utterance “gag”. 
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Fig. A.23. The variance fractal dimension trajectory of the utterance “gag” after addition of white noise. 

 

Fig. A.24. The trajectory of the utterance “gag” detected by the voice activity detection algorithm. 
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Fig. A.25. The waveform of the utterance “gag” detected by the voice activity detection algorithm. 

 

Fig. A.26. The waveform of the utterance “church”. 
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Fig. A.27. The variance fractal dimension trajectory of the utterance “church”. 

 

Fig. A.28. The variance fractal dimension trajectory of the utterance “church” after addition of white noise. 
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Fig. A.29. The trajectory of the utterance “church” detected by the voice activity detection algorithm. 

 

Fig. A.30. The waveform of the utterance “church” detected by the voice activity detection algorithm. 
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Fig. A.31. The waveform of the utterance “judge”. 

 

Fig. A.32. The variance fractal dimension trajectory of the utterance “judge”. 
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Fig. A.33. The variance fractal dimension trajectory of the utterance “judge” after addition of white noise. 

 

Fig. A.34. The trajectory of the utterance “judge” detected by the voice activity detection algorithm. 
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Fig. A.35. The waveform of the utterance “judge” detected by the voice activity detection algorithm. 

 

Fig. A.36. The waveform of the utterance “fife”. 
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Fig. A.37. The variance fractal dimension trajectory of the utterance “fife”. 

 

Fig. A.38. The variance fractal dimension trajectory of the utterance “fife” after addition of white noise. 
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Fig. A.39. The trajectory of the utterance “fife” detected by the voice activity detection algorithm. 

 

Fig. A.40. The waveform of the utterance “fife” detected by the voice activity detection algorithm. 
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Fig. A.41. The waveform of the utterance “verve”. 

 

Fig. A.42. The variance fractal dimension trajectory of the utterance “verve”. 
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Fig. A.43. The variance fractal dimension trajectory of the utterance “verve” after addition of white noise. 

 

Fig. A.44. The trajectory of the utterance “verve” detected by the voice activity detection algorithm. 
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Fig. A.45. The waveform of the utterance “verve” detected by the voice activity detection algorithm. 

 

Fig. A.46. The waveform of the utterance “thirtieth”. 
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Fig. A.47. The variance fractal dimension trajectory of the utterance “thirtieth”. 

 

Fig. A.48. The variance fractal dimension trajectory of the utterance “thirtieth” after addition of white noise. 
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Fig. A.49. The trajectory of the utterance “thirtieth” detected by the voice activity detection algorithm. 

 

Fig. A.50. The waveform of the utterance “thirtieth” detected by the voice activity detection algorithm. 
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Fig. A.51. The waveform of the utterance “other”. 

 

Fig. A.52. The variance fractal dimension trajectory of the utterance “other”. 
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Fig. A.53. The variance fractal dimension trajectory of the utterance “other” after addition of white noise. 

 

Fig. A.54. The trajectory of the utterance “other” detected by the voice activity detection algorithm. 
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Fig. A.55. The waveform of the utterance “other” detected by the voice activity detection algorithm. 

 

Fig. A.56. The waveform of the utterance “cease”. 
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Fig. A.57. The variance fractal dimension trajectory of the utterance “cease”. 

 

Fig. A.58. The variance fractal dimension trajectory of the utterance “cease” after addition of white noise. 
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Fig. A.59. The trajectory of the utterance “cease” detected by the voice activity detection algorithm. 

 

Fig. A.60. The waveform of the utterance “cease” detected by the voice activity detection algorithm. 
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Fig. A.61. The waveform of the utterance “zoos”. 

 

Fig. A.62. The variance fractal dimension trajectory of the utterance “zoos”. 
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Fig. A.63. The variance fractal dimension trajectory of the utterance “zoos” after addition of white noise. 

 

Fig. A.64. The trajectory of the utterance “zoos” detected by the voice activity detection algorithm. 
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Fig. A.65. The waveform of the utterance “zoos” detected by the voice activity detection algorithm. 

 

Fig. A.66. The waveform of the utterance “sheepish”. 
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Fig. A.67. The variance fractal dimension trajectory of the utterance “sheepish”. 

 

Fig. A.68. The variance fractal dimension trajectory of the utterance “sheepish” after addition of white 

noise. 
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Fig. A.69. The trajectory of the utterance “sheepish” detected by the voice activity detection algorithm. 

 

Fig. A.70. The waveform of the utterance “sheepish” detected by the voice activity detection algorithm. 
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Fig. A.71. The waveform of the utterance “measure”. 

 

Fig. A.72. The variance fractal dimension trajectory of the utterance “measure”. 
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Fig. A.73. The variance fractal dimension trajectory of the utterance “measure” after addition of white 

noise. 

 

Fig. A.74. The trajectory of the utterance “measure” detected by the voice activity detection algorithm. 
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Fig. A.75. The waveform of the utterance “measure” detected by the voice activity detection algorithm. 

 

Fig. A.76. The waveform of the utterance “hand”. 
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Fig. A.77. The variance fractal dimension trajectory of the utterance “hand”. 

 

Fig. A.78. The variance fractal dimension trajectory of the utterance “hand” after addition of white noise. 
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Fig. A.79. The trajectory of the utterance “hand” detected by the voice activity detection algorithm. 

 

Fig. A.80. The waveform of the utterance “hand” detected by the voice activity detection algorithm. 
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Fig. A.81. The waveform of the utterance “rear”. 

 

Fig. A.82. The variance fractal dimension trajectory of the utterance “rear”. 
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Fig. A.83. The variance fractal dimension trajectory of the utterance “rear” after addition of white noise. 

 

Fig. A.84. The trajectory of the utterance “rear” detected by the voice activity detection algorithm. 
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Fig. A.85. The waveform of the utterance “rear” detected by the voice activity detection algorithm. 

 

Fig. A.86. The waveform of the utterance “loyal”. 
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Fig. A.87. The variance fractal dimension trajectory of the utterance “loyal”. 

 

Fig. A.88. The variance fractal dimension trajectory of the utterance “loyal” after addition of white noise. 
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Fig. A.89. The trajectory of the utterance “loyal” detected by the voice activity detection algorithm. 

 

Fig. A.90. The waveform of the utterance “loyal” detected by the voice activity detection algorithm. 
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Fig. A.91. The waveform of the utterance “mime”. 

 

Fig. A.92. The variance fractal dimension trajectory of the utterance “mime”. 
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Fig. A.93. The variance fractal dimension trajectory of the utterance “mime” after addition of white noise. 

 

Fig. A.94. The trajectory of the utterance “mime” detected by the voice activity detection algorithm. 
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Fig. A.95. The waveform of the utterance “mime” detected by the voice activity detection algorithm. 

 

Fig. A.96. The waveform of the utterance “none”. 
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Fig. A.97. The variance fractal dimension trajectory of the utterance “none”. 

 

Fig. A.98. The variance fractal dimension trajectory of the utterance “none” after addition of white noise. 
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Fig. A.99. The trajectory of the utterance “none” detected by the voice activity detection algorithm. 

 

Fig. A.100. The waveform of the utterance “none” detected by the voice activity detection algorithm. 
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Fig. A.101. The waveform of the utterance “ringing”. 

 

Fig. A.102. The variance fractal dimension trajectory of the utterance “ringing”. 
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Fig. A.103. The variance fractal dimension trajectory of the utterance “ringing” after addition of white 

noise. 

 

Fig. A.104. The trajectory of the utterance “ringing” detected by the voice activity detection algorithm. 
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Fig. A.105. The waveform of the utterance “ringing” detected by the voice activity detection algorithm. 

 

Fig. A.106. The waveform of the utterance “pip”. 
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Fig. A.107. The variance fractal dimension trajectory of the utterance “pip”. 

 

Fig. A.108. The variance fractal dimension trajectory of the utterance “pip” after addition of white noise. 



Application of Polyscal Methods for Speaker Verification  Appendix A 

_____________________________________________________________________________________________  

   

_____________________________________________________________________________________________ 

 - A56 of A111 -  

 

Fig. A.109. The trajectory of the utterance “pip” detected by the voice activity detection algorithm. 

 

Fig. A.110. The waveform of the utterance “pip” detected by the voice activity detection algorithm. 
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Fig. A.111. The waveform of the utterance “year”. 

 

Fig. A.112. The variance fractal dimension trajectory of the utterance “year”. 
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Fig. A.113. The variance fractal dimension trajectory of the utterance “year” after addition of white noise. 

 

Fig. A.114. The trajectory of the utterance “year” detected by the voice activity detection algorithm. 
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Fig. A.115. The waveform of the utterance “year” detected by the voice activity detection algorithm. 

 

Fig. A.116. The waveform of the utterance “weal”. 
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Fig. A.117. The variance fractal dimension trajectory of the utterance “weal”. 

 

Fig. A.118. The variance fractal dimension trajectory of the utterance “weal” after addition of white noise. 
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Fig. A.119. The trajectory of the utterance “weal” detected by the voice activity detection algorithm. 

 

Fig. A.120. The waveform of the utterance “weal” detected by the voice activity detection algorithm. 
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Fig. A.121. The waveform of the utterance “bead”. 

 

Fig. A.122. The variance fractal dimension trajectory of the utterance “bead”. 
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Fig. A.123. The variance fractal dimension trajectory of the utterance “bead” after addition of white noise. 

 

Fig. A.124. The trajectory of the utterance “bead” detected by the voice activity detection algorithm. 
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Fig. A.125. The waveform of the utterance “bead” detected by the voice activity detection algorithm. 

 

Fig. A.126. The waveform of the utterance “bid”. 
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Fig. A.127. The variance fractal dimension trajectory of the utterance “bid”. 

 

Fig. A.128. The variance fractal dimension trajectory of the utterance “bid” after addition of white noise. 
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Fig. A.129. The trajectory of the utterance “bid” detected by the voice activity detection algorithm. 

 

Fig. A.130. The waveform of the utterance “bid” detected by the voice activity detection algorithm. 
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Fig. A.131. The waveform of the utterance “bed”. 

 

Fig. A.132. The variance fractal dimension trajectory of the utterance “bed”. 
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Fig. A.133. The variance fractal dimension trajectory of the utterance “bed” after addition of white noise. 

 

Fig. A.134. The trajectory of the utterance “bed” detected by the voice activity detection algorithm. 
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Fig. A.135. The waveform of the utterance “bed” detected by the voice activity detection algorithm. 

 

Fig. A.136. The waveform of the utterance “bad”. 
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Fig. A.137. The variance fractal dimension trajectory of the utterance “bad”. 

 

Fig. A.138. The variance fractal dimension trajectory of the utterance “bad” after addition of white noise. 
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Fig. A.139. The trajectory of the utterance “bad” detected by the voice activity detection algorithm. 

 

Fig. A.140. The waveform of the utterance “bad” detected by the voice activity detection algorithm. 
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Fig. A.141. The waveform of the utterance “bard”. 

 

Fig. A.142. The variance fractal dimension trajectory of the utterance “bard”. 
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Fig. A.143. The variance fractal dimension trajectory of the utterance “bard” after addition of white noise. 

 

Fig. A.144. The trajectory of the utterance “bard” detected by the voice activity detection algorithm. 
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Fig. A.145. The waveform of the utterance “bard” detected by the voice activity detection algorithm. 

 

Fig. A.146. The waveform of the utterance “body”. 
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Fig. A.147. The variance fractal dimension trajectory of the utterance “body”. 

 

Fig. A.148. The variance fractal dimension trajectory of the utterance “body” after addition of white noise. 
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Fig. A.149. The trajectory of the utterance “body” detected by the voice activity detection algorithm. 

 

Fig. A.150. The waveform of the utterance “body” detected by the voice activity detection algorithm. 
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Fig. A.151. The waveform of the utterance “for”. 

 

Fig. A.152. The variance fractal dimension trajectory of the utterance “for”. 
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Fig. A.153. The variance fractal dimension trajectory of the utterance “for” after addition of white noise. 

 

Fig. A.154. The trajectory of the utterance “for” detected by the voice activity detection algorithm. 
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Fig. A.155. The waveform of the utterance “for” detected by the voice activity detection algorithm. 

 

Fig. A.156. The waveform of the utterance “book”. 
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Fig. A.157. The variance fractal dimension trajectory of the utterance “book”. 

 

Fig. A.158. The variance fractal dimension trajectory of the utterance “book” after addition of white noise. 
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Fig. A.159. The trajectory of the utterance “book” detected by the voice activity detection algorithm. 

 

Fig. A.160. The waveform of the utterance “book” detected by the voice activity detection algorithm. 
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Fig. A.161. The waveform of the utterance “boot”. 

 

Fig. A.162. The variance fractal dimension trajectory of the utterance “boot”. 
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Fig. A.163. The variance fractal dimension trajectory of the utterance “boot” after addition of white noise. 

 

Fig. A.164. The trajectory of the utterance “boot” detected by the voice activity detection algorithm. 
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Fig. A.165. The waveform of the utterance “boot” detected by the voice activity detection algorithm. 

 

Fig. A.166. The waveform of the utterance “bud”. 
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Fig. A.167. The variance fractal dimension trajectory of the utterance “bud”. 

 

Fig. A.168. The variance fractal dimension trajectory of the utterance “bud” after addition of white noise. 
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Fig. A.169. The trajectory of the utterance “bud” detected by the voice activity detection algorithm. 

 

Fig. A.170. The waveform of the utterance “bud” detected by the voice activity detection algorithm. 
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Fig. A.171. The waveform of the utterance “bird”. 

 

Fig. A.172. The variance fractal dimension trajectory of the utterance “bird”. 
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Fig. A.173. The variance fractal dimension trajectory of the utterance “bird” after addition of white noise. 

 

Fig. A.174. The trajectory of the utterance “bird” detected by the voice activity detection algorithm. 
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Fig. A.175. The waveform of the utterance “bird” detected by the voice activity detection algorithm. 

 

Fig. A.176. The waveform of the utterance “banana”. 



Application of Polyscal Methods for Speaker Verification  Appendix A 

_____________________________________________________________________________________________  

   

_____________________________________________________________________________________________ 

 - A90 of A111 -  

 

Fig. A.177. The variance fractal dimension trajectory of the utterance “banana”. 

 

Fig. A.178. The variance fractal dimension trajectory of the utterance “banana” after addition of white 

noise. 
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Fig. A.179. The trajectory of the utterance “banana” detected by the voice activity detection algorithm. 

 

Fig. A.180. The waveform of the utterance “banana” detected by the voice activity detection algorithm. 
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Fig. A.181. The waveform of the utterance “bay”. 

 

Fig. A.182. The variance fractal dimension trajectory of the utterance “bay”. 
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Fig. A.183. The variance fractal dimension trajectory of the utterance “bay” after addition of white noise. 

 

Fig. A.184. The trajectory of the utterance “bay” detected by the voice activity detection algorithm. 
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Fig. A.185. The waveform of the utterance “bay” detected by the voice activity detection algorithm. 

 

Fig. A.186. The waveform of the utterance “boat”. 
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Fig. A.187. The variance fractal dimension trajectory of the utterance “boat”. 

 

Fig. A.188. The variance fractal dimension trajectory of the utterance “boat” after addition of white noise. 
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Fig. A.189. The trajectory of the utterance “boat” detected by the voice activity detection algorithm. 

 

Fig. A.190. The waveform of the utterance “boat” detected by the voice activity detection algorithm. 
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Fig. A.191. The waveform of the utterance “buy”. 

 

Fig. A.192. The variance fractal dimension trajectory of the utterance “buy”. 
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Fig. A.193. The variance fractal dimension trajectory of the utterance “buy” after addition of white noise. 

 

Fig. A.194. The trajectory of the utterance “buy” detected by the voice activity detection algorithm. 
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Fig. A.195. The waveform of the utterance “buy” detected by the voice activity detection algorithm. 

 

Fig. A.196. The waveform of the utterance “bough”. 
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Fig. A.197. The variance fractal dimension trajectory of the utterance “bough”. 

 

Fig. A.198. The variance fractal dimension trajectory of the utterance “bough” after addition of white 

noise. 
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Fig. A.199. The trajectory of the utterance “bough” detected by the voice activity detection algorithm. 

 

Fig. A.200. The waveform of the utterance “bough” detected by the voice activity detection algorithm. 
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Fig. A.201. The waveform of the utterance “boy”. 

 

Fig. A.202. The variance fractal dimension trajectory of the utterance “boy”. 
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Fig. A.203. The variance fractal dimension trajectory of the utterance “boy” after addition of white noise. 

 

Fig. A.204. The trajectory of the utterance “boy” detected by the voice activity detection algorithm. 
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Fig. A.205. The waveform of the utterance “boy” detected by the voice activity detection algorithm. 

 

Fig. A.206. The waveform of the utterance “beer”. 
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Fig. A.207. The variance fractal dimension trajectory of the utterance “beer”. 

 

Fig. A.208. The variance fractal dimension trajectory of the utterance “beer” after addition of white noise. 
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Fig. A.209. The trajectory of the utterance “beer” detected by the voice activity detection algorithm. 

 

Fig. A.210. The waveform of the utterance “beer” detected by the voice activity detection algorithm. 
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Fig. A.211. The waveform of the utterance “bear”. 

 

Fig. A.212. The variance fractal dimension trajectory of the utterance “bear”. 



Application of Polyscal Methods for Speaker Verification  Appendix A 

_____________________________________________________________________________________________  

   

_____________________________________________________________________________________________ 

 - A108 of A111 -  

 

Fig. A.213. The variance fractal dimension trajectory of the utterance “bear” after addition of white noise. 

 

Fig. A.214. The trajectory of the utterance “bear” detected by the voice activity detection algorithm. 
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Fig. A.215. The waveform of the utterance “bear” detected by the voice activity detection algorithm. 

 

Fig. A.216. The waveform of the utterance “poor”. 
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Fig. A.217. The variance fractal dimension trajectory of the utterance “poor”. 

 

Fig. A.218. The variance fractal dimension trajectory of the utterance “poor” after addition of white noise. 
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Fig. A.219. The trajectory of the utterance “poor” detected by the voice activity detection algorithm. 

 

Fig. A.220. The waveform of the utterance “poor” detected by the voice activity detection algorithm. 
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BSoftware Flowcharts  
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Fig. B.1. The flowchart for the framing of speech program. 
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Fig. B.2. The flowchart for the zero crossing rate algorithm. 
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Fig. B.3. The flow chart for the turns count algorithm. 
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Fig. B.4. The flowchart for the Mel-frequency cepstral coefficients algorithm. 
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Fig. B.5. The flowchart for the linear prediction cepstral coefficients algorithm. 
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Fig. B.6. The flowchart for the Higuchi fractal dimension algorithm. 
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Fig. B.7. The flowchart for the variance fractal dimension algorithm. 
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Fig. B.8. The flowchart for the voice activity detection algorithm.
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APPENDIX C 

 

CExperimental Codes and Data 

 

The recorded data for this thesis which is used for the analysis is attached to the disc. 

Furthermore, the experimental codes written for the algorithms discussed in chapter 3 and the 

experiments conducted in chapter 5 are provided on the attached disc. This includes the source 

code: 

• To add colored noise to the signal (Noise_add.m). 

• To find the zero crossing rate (ZCR.m). 

• To find the turns count (TC.m). 

• To find the mel-frequency cepstral coefficients (MFCC.m). 
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• To find the linear prediction cepstral coefficients (LPCC.m). 

• To find the variance fractal dimension (VFDT.m). 

• To find the Higuchi fractal dimension (HFDT.m). 

• To generate the Weierstrass function (wsc.m). 

• To generate the fractional Brownian motion (fBm1.m). 

• The voice activity detection algorithm that utilizes the variance fractal dimension 

(VAD_VFD.m). 

• To extract features using the voice activity detection that utilizes the variance fractal 

dimension (feature_extraction_VAD_VFD.m). 

• To extract features using the voice activity detection that utilizes the Higuchi fractal 

dimension (feature_extraction_VAD_HFD.m). 

• To extract features using the voice activity detection that utilizes the amplitude threshold 

scheme (feature_extraction_VAD_Amplitude.m). 

• To extract features using the voice activity detection that utilizes the energy of the signal 

(feature_extraction_VAD_energy.m). 

• To read the training and testing features and input to the support vector machine to build 

a model and test the training data. (SVM_classification.m). 
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APPENDIX D 

 

DColophon 

 

This thesis is a typeset in Microsoft Office 2007. The body is written in 12 point Times New 

Roman with figure and table captions displayed in 10 point Arial. 

The figures published in this thesis are generated using Matlab version 2014a and Adobe 

Photoshop CC 2016. The flowcharts in appendix B were generated using the website 

www.draw.io. All the images were saved as portable network graphics (PNG) file. 

All the work was performed using Windows 10 with a 1.6 GHZ intel Core i5 processor and 4 

GB of DDR3 memory. 

 

http://www.draw.io/

