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ABSTRACT

Recently, L. Lorch and P. Szego have shown that the positive inflection points j",n of

the Bessel function J.,(x) are increasing functions of u for k = 1 when Ð > 0, and for

k = 2,3,... when 0 < u < 3838. We show that for k: 2,3,..., jrr,* ir an increasing

functionofuwhenu>10.

Our method involves the use of an integral representation of dj",Otdo given by

* = cu,k{l*+dt f $o"3q,r}'
where crr,r is some positive quantity for k = 2,3,...when u > 1. Asymptotic

approximations as u J æ, complete with error bounds, are found for the integral

l- 4Q*
J," t

Ju2

and for the quantity

J3C;,n) (fixed k).

Using these approximations, we show that for k=2,3,..., ajr,OtOu > 0 when u ) 10, and

conclude from this result and that of l¡rch and Szego that the positive inflection points

j",u of Ju(x) are increasing functions of u when o > 0.
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INTRODUCTION

Let ju.r, j.,r,z, ... denote the positive zeros of the Bessel function Jrr(x), and similarly, let

jr,r, ji,z, ... denote the positive zeros of Jrr(x), which a-re the positive critical points of

Jrr(x). It is well-known that when u is positive, both j.,r,u and j.,,u are increasing functions

of u; see, e.g., [OLVS, pp 246 and 248]. Recently, Lorch and Szego [LOR] have

attempted to show that the same is true for the positive zeros ji,r, ji,2, ... of J'.r(x), which

are the positive inflection points of Ju(x). They succeeded in proving that this statement

holds for k=1, but for k=2,3,..., they have proved only that it is true when 0 < u < 3838.

The main objective of this thesis is to show that for k = 2,3,..., the statement is also true

when D > 3838, and so conclude that jrr,u is, indeed, an increasing function of u when

D > 0. To settle the case for u > 3838, we begin in the same fashion as Lorch and Szego

by examining the steps in the proof that jr,,o and j,r,o are increasing functions of u (u > 0).

To show, for instance, that ju,r is an increasing function of u (u > 0), we merely

differentiate the equation J.,r(.,r,¡) = 0 and utilize the identity

J+0. = å{r,(.)# - ru(x)#}

to obtain

dju,t 
=du j,,u 

{r,û,,*lt

It is clear, then, that dju,oldu > 0, and so the result for jrr,* follows. In a similar manner,

we show that

Jul .

| ¡ít*) o*.
JX
0

2u

djr,o

du

where

= c,,.k G(i.*)'



G(x)=f +¿t-r3(x) = I S* J:+ot-rl1*¡,
and where

c
D,k

o;,k)2J"c;,k) J"(i;,k)

is some positive quantity for u > 1. We then proceed to show that G(rr,n) > 0 when

u > 10, and so conclude that dju,o/du > 0 if u > 10, and hence that ju,u is an increasing

functionofuifu>10.

To show that

G(j;,k)= fSo, J" +dr-r3(jù,k)
-Ju¡ 

:

is positive for u > 10, one encounters the problem of obtaining asymptotic approximations

for the integral

2u

a
F -L.

F(u,k) = I * Or âs 'u -r æ (fixed k),

"ju,n

and for the quantity

)
J;( ji,k) as 1) -t oo (fixed k).

In this thesis it will be shown that

F(u,2)= 1 0'812634 e'(u)

z;- ù4Æ 
+ 'r]'

where

le,(u) l< 2.086 if u > 10,

and that



o. r3t j",n) < er(t) /u2 for all k> 2,

where

0<e2(ù) < 0.2T5 if u> 10.

Throughout the thesis, two or more significant figures are given for numbers; the last

significant figure is the result of rounding to the nearest digit except for numbers in

inequalities, which are rounded to obtain the weakest inequality. Now, it is known that

f 4qdr = ,r
Jo t -- 2t¡)

and since F(u,k) < F(u,2) for k = 2,3,..., then

c(j;,k) = *- F(u,k) - l3f :J,ol

=*-F(u,2)-¡3r¡J,ul

= o.8r?934 *{9, k =2,3,...,
D4t3 "D2 '

where

le(u)l< le,(u)l+ler(u)l s2.302 ifr> 10.

From this inequality, one is led to the conclusion that for k=2,3,...,

G(jJ,k)>0 whenu)10.

The function J.,r(x) has the asymprotic approximation

Ju(ux) #t*)"oo,,r'o,, as n -> oo,

uniformly with respect to x in the interval (0,-), where ( and x are related in a one-to-one

manner by the equation

,'2

"fd( I r-x2
=[d* .i *2

branches being chosen in accordance with the requirement that ( is real when x > 0. To

tackle the problem of obtaining an asymptotic approximation for F(u,2) : J. *Ot, we,L;
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replace the Bessel function J,r(t) bv its asymptotic approximation and formally obtain the

integral

f- qot-(i Ai2(-D2ßÇ) d(" ,

'¡-(u

where

( qt '¡t/a

Q(() = 
t ,_7J

The lower limit of integration ( depends on u and approaches 0 as u -) oo. We are thus

led to the consideration of integrals of the form

r([) = |.- r(,) h(ÀÐ dt
J6

with f(t) = g4(-Ð, h(Ð = ei2(-t) and ì, = t)2ß in the present case. A detailed treatment of

asymptotic expansions of the Mellin convolution I(1,), complete with explicit error bounds,

can be found in [WON1]. The derivation of the asymptotic expansion of I(I) is given in

Chapter 3, $2. The exact relation between F(u,2) and I(À) is given in $$ 3 and4 of the

same chapter.

Finally, we obtain a bound for lf( jr,o) uia a one-tenn asymptotic approximation of

Jr,(ux). In order to determine such a bound, it is necessary to first obtain bounds for the

zeros jrr,n of J"(t). More specifically, it is necessary to obtain bounds for the value (

corresponding to x = ji,/u. From Bessel's equation

*2'w"+xW'+(x2-u2¡w=0

which is satisfied, for instance, by W = Jr,(x), we find that

Il(ux) = '-r*' J,,(ux) - J-r;,{rr*).D'x-ux

Replacing each of Ju(ux) and J"(ux) by their one-terrn approximations leads to the result

Ju(ux) - ##oAi(u2i3().



Tricomi ITRII pointed out that the asymptotic behaviour of the zeros of a function can be

deduced from the asymptotic behaviour of the function itself. Hethcote [HET3],

moreover, established a theorem for the approximation of real zeros of functions by the

zeros of a comparison function. It is this theorem that we apply, with Ai(u2l3(¡ as the

comparison function, to determine bounds for ( corresponding to x = j",/". The result is

Ç = t-2l3au* Iu,k,

where tr denotes the kü negative zero of Ai(x), and where

ifu>10,

with d, = O.3743, and dn*, . du . d2 Vk > 2. This result is dealt with in Chapter 2.

One final remark: although only one-term asymptotic approximations are necessary for

our purposes, we derive (see Appendix III) the fîrst few terms of the expansions of J.,r(ux)

and j.,r,o. These are useful not only for assessing the "shatpness" of our error bounds

(by comparing bounds with coeff,rcients) but also for the sake of having them calculated.

ltlu,nl < dul ttaß
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CHAPTER 1

AN INVESTIGATION INTO THE MONOTONICITY PROPERTY

oF THE TNFLECTION POINTS OF J,.r(x)

l. Introduction

Let j[,r, ju,z, ... denote, in ascending order of magnitude, the positive zeros of Ji(x),

which are the positive inflection points of the Bessel function Ju(x). Since it is true that

when u is positive, both jr,¡ and jr.,,t are increasing functions of u IOLVS, pp. 246 and

2481, a reasonable question to ask is whether or not the same is tn¡e for ji,*. It is now

known [LOR] thatji,u does increase in u for k = 1 when u > 0 and for k = 2,3,... when

0 <u < 3838. Here we shall show that the same is true for k=2,3,... when u > 3838.

Hence, ji,* does, indeed, increase in u when u > 0. Our method is based on asymptotic

analysis, and the reason is that we are concerned primarily with large (or moderately large)

values of the parameter u.

We begin this chapter by examining the steps in the proof that ju,o and ji,o are

increasing functions of u (u > 0). This will give us an idea of the method of approach for

j[,¡. We apply this method to ji,t and, in subsequent chapters, follow up with the eventual

result.

2. The Monotonicity of ju,r and ju,*

Following in the footsteps of Olver IOLVS, pp.246 - 248], we show that for positive

D, ju,k is an increasing function of u. Differentiation of the equation Ju(u,t) = 0 with

respect to u yields

dj"{ * [a{rr*i I = o.(2.1) J,,(i,,,¡) dr, * L=, l"=j,¡

To evaluate the second term, we use the identity



yields

0, the

,k'we

(zz) JU+4*=W (p,*,,).

Since Ju(x) is a solution of Bessel's differential equationl

(2.3) *2vy'" + xW' + (xz - u2¡w = 0

we have

(2.4) *2r;{*) + xJu(x) + (x2 - rr')Ju{*¡ = 0.

Using (2.4) one may readily verify that the derivative of the right-hand-side of (2.2)

the integrand on the left. Noting that the right-hand-side can be written as

x f ¡,(*) [Ju(x) - J,(x)] - Ju(x) [Ju(x) - J"G)] I
fi+ul tt-" I'

and letting p -+ D in (2.2), we obtain

(z.s) J+dx = å{r,,-,# - r,,(x)#}

It is known (see, e.g., IWAT, p.404, Eq. (7)]) that

i- J3(*)

J0 * 
lo* = *'

and so the integral in (2.5) converges on any interval (0,x), x > 0. Provided that u >

integration limits in (2.5) can be set equal to 0 and j,r,n. Since Ju(x) vanishes at ju

have

I al"1*¡ I
L=r J*=ju¡

¡3(*) 
o*.

X

Then by su

(2.6)

I There is a considerable amount of literature devoted to Bessel's equation and its solutions; the best-known
reference is undoubtcdly WaLson's tlvAl'1.



From (2.6) it is clear that dju,y'du > 0, and so the result for j,r,o follows.

In a similar manner, we show that for u positive, ju,o is an increasing function of u.

Differentiation of the equation Jutu,t) = 0 yields

(2.7) r"(i,,k)# . t#].=,*= o.

Since J;q,k) = 0, we have from (2.4) with x = jr,r

(2 s) r,(i;,k) = 
[[r,'* l t 

]r,cu,¡)

Furthermore, provided that D > 0, the integration limits in (2.5) can be set equal to

0 and jrr,¡, Vielding

üâ .,

| 
* 

¡ir*l u* _ 
ji,u 

, ,,,, ., [al,(*) I

I -*o* = 2r, 
Juup,¡)L=, 

l"=:*

Substitution of this equation and equation (2.8) in (2.7) yields

1* = -þ- =zu ¡"-#0. (u >o).du - j;,? - "t rl6,,u¡ Jo " '

Notingthat ju,, >u foru >0 IOLVS, p.246), it follows that Oju,*tOu >0whenever

u>0,since ju,*> ju,, Vk> 1. Hence, ju,tisanincreasingfunctionof u(u>0).

We are now in a position to consider the monotonicity property of ju,t.

3. The Monotonicity of ju,u: Initial Procedure

Proceeding in a manner similar to that outlined in $2 above, we begin by considering

the equation Jufi[,¡) = 0. Differentiation of this equation with respect to u yields

(3 r) r;o;,k)*. i#]-=ü=n



From Bessel's equation (2.4), we have

J[(x)= -fr;r*r (t 4)r,,.,

Differentiation with respect to u yields

(32) 9#= l#*{,u{*) ['frg#
Again from (2.4) we have

. t2 Ji(x) * f l;f*i=--TÏ;r'
and so (3.2) becomes

(3.3) # = dr{r,,.,# -r,,(x)# +ft*r - xr,,(x)#}

If we let

G(x) = ;[r"r.i # - Ju(x) #] - r3<.1,

then (cf. (2.5))

(3.4) G(x) = f+¿x - ¡3(x),

and

(3.5) #= dr{?o,., - xJu(x)#}

Thus, provided that u > 0, we obtain from (3.5) with x = ji,r

(36) t#]-=,;= 
"#h-, 

c(j,,r),

' since Juûu,r) = 0. Substitution of (3.6) in (3.1) yields for u > 0,
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di" .(3.7) ;# = 
",.,,r 

G(,.,,t) ,

where

Zts(3.8) cu,k =
( j;,k)2 r,( j;,k) ü( j;,k)

It is known (see [LOR]) that for k = 2,3,...,

(3.9) c,r,r)0 ifu>1.

Thus, to show that for k = 2,3,..., Aji,y'au > 0 if u > 10, we must show (in light of (3.7))

that for k=2,3,...,

(3.10) Gúu,r.) > 0 wheneverD> 10.
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CHAPTBR 2

THE INFLECTION POINTS OF J.r(x)

1. Introduction

In $2 of this chapter, it is shown that J[(ux) has the asymptotic approximation

(r.1) J,(ux) -##(Ai1u2Æ(¡, as 1) -) oo,

uniformly with respect to x in the interval (0,".), where ( and x are related in a one-to-one

manner by the equation

,z) ,[::)'= +,
branches being chosen in accordance with the requirement that ( is real when x is positive.

Explicit expressions for ( in terms of x are given in $2 (see (2.4) and (2.5)). The

derivation of (1.1) relies on Olver's expansions for Ju(tx) and Ju(ux), both valid for

u > 0 and x > 0. Very precise bounds for the remainder terrns associated with these

expansions have been constructed by him. Since our work involves the use of these

delicate error bounds, we have included them in $2.

Tricomi ITRII pointed out that the asymptotic behaviour of the zeros of a function can

be deduced from the asymptotic behaviour of the function itself. The goal of this chapter is

to establish bounds for the value ( corresponding to * = ju,1t. The asymptotic behaviour

of the zeros jr,u of Ju(t) can then be deduced from these bounds. To determine such

bounds, we apply a theoreml of Hethcote (see [HET3]; see also tHETll) which was

derived from a method of Gatteschi [GAT]. This theorem approximates real zeros of

functions by the zeros of a comparison function. The comparison function in our case, as

evidenced by (1.1), is the Airy function Ai1u2Æ(). The f,rnal result is

(1.3) Ç=r¡-2t3ax*lu,k,

I This theorem is duplicated in Appendix IV.
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where ak denotes the kÈ negative zero of the Airy function Ai(x), and where

I rlrr,*l < d* / ua/3 ifu>10,

with d, = 0.3743, and dn*, < dk < dz'k> 2.

The bound on qu,L is established in $$3 and 5; the cases k = 2,3,...,9 are dealt with in

Ë3, and k > l0 in $5. The reason why we split these cases in such a fashion is simple: for

k:2,3,...,9, accurate numerical tables of values associated with the Airy function existl,

and so these cases can be dispensed with numerically. On the other hand, the cases k > 10

need to be treated in a different manner. The manner in which we treat these cases is via

asymptotic analysis, since we are interested in values of k -à oo.

The bounds for ( corresponding to x = j;,/u for the cases k > 10 can be determined by

again applying Hethcote's theorem. In order to do so, it is necessary to first determine

bounds for the zeros I and a* of Ai(x) and Ai'(x), respectively. In $4 of this chapter, we

establish a bound for ai. (a bound for an is already known.) Furthermore, in our

investigations we find it necessary to compute bounds for the value pn = å (tr - au*r) and

for the values or= -(ur - p¡) and F*= -(uu + pr). These bounds are established in $4.

We begin now with our discussion on J[(ux).

2. Derivation of the Asymptotic Approximation of Ju(ux):

Olver's Error Bounds

Bessel's equation (1.2.4) with x replaced by ux yields

(1.4)

(2.r) Jr(ux) =#t (ux) - !¡;(r*).

From (2.1) the asymptotic approximation (l.l) is obtained by replacing each of J,r(ux) and

Jrr(ux) by the leading terrns of their uniform asymptotic expansions. The uniform

asymptotic expansions of Ju(ux) and Ju(ux), valid for u > 0 and x ) 0, are given by

1 See [ABR, pp. 476 - 4781. These tables are in part the work of F.W.J. Olver.
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(z.z) J,,(ux) p{nitu'oel[t.#.îP. 
]

.+P[n'rer.Y. ]]
and

(23) J,,(ux) #{#[c,*i.#. ]

+Ai'1u2Æ('['.ry.T. ]]
respectively, where

(24) ,={+l.o#0.}*

= {å,n 
1+ (r 

-*2)r/2 - }o - x\tnl2t3, 0 < x ( 1,

l''' ,

p(

(2.s)

(2.6)

= {*.l:É#*}"'
= I+ ç*' - r¡''' - | "'-1 

*

e,=(4 ")''^,

x)1,

(2.7) V(() = 2l{x<p(Ç1.

The coefficients er(() and Br(() in (2.2),and Cr(() and Dr(() in (2.3),satisfy a set of

recurrence relations, and are holomorphic functions in a region containing the real axis.
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These results a¡e due to Olver, and can be found in [OLV2] and [OLVS, Ch. 11]. Precise

bounds for the remainder terms in each of the series (2.2) and (2.3) have also been

constructed by him; see [OLV4] and IOLVS]. To state these results, we first recall from

[OLV3, p. 750] the modulus functions M(x) and N(x), and the weight function E(x)

associated with the Airy functions Ai(x) and Bi(x); see also IOLVS, p. 395].

E(x)= e*P1t*32¡, x)0,
(2.8)

E(x)=1, x<0; P-l(*)=1/E(x),

M(x) = [n2(*) et2(x) + p-2(x) Bi2çx¡¡t12,
(2.e)

N(x) = {g2(*) Ai'21x¡ + E-2(x) Bi'21x¡¡l/2,

(2.10) l, =,gu5{n t*tt/'vttl*¡ } = 1.430,

(2.1r) p =r*?ö {nwft2 vt'(*) } = r ([ot,v3, p. 751]).

Olver's results then state that

(2.12) J,,(ux) =,.É;#i^t,"^r,å #
.+PäPtt2n+1,1tu'('i'

where

(2.r3) r ôzn*r r < z exn{2À- U-,- {tltl/2no¡}r-2n-t'u--,- 1tçt1/2nn¡,
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(2.14)l€z,,+t,t(Ù,()l<ffi*n{*1Jç,-(|Ç|1t2",ù3##?,

and

(zts) J.(ux) = 
"¿'p {#p[ä+g . r%*]

+ Ar'çr2ßÇrå# * 12,,+r,r . #þÌ,
where

(2.16) I î 2,,*r,r(Ð,() I < ä#*o{* \rr,- lÇt',"r,}ry+

In (2.13), (2.14), and (2.16), we have used U.,o(Ð to denote the total variation of a

function f(() on an interval (a,b). Numerical computations of the following values are

found in [OLV2, p. 9] and [OLV4, p.207):

(2.r7)'q*,-{t6t1/2no{()} =0.1051,

(2.18) Ðo = 2l.u--,-{l(ll/2Bo) = 0.30.

For our purpose, it suffices to take n = 0 in (2.12) - (2.16). Thus, (2.I2) gives

(z.ts) Ju(ux) = #E 
qfQfeifr'oÇ) 

*e,,,{u,() 
] 

,

and since IOLVI, p.342]

(2.20) co(() = X(() + (Bo((),

where

(2.21) X(e) = ç'(()/q((),

(2.15) gives
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(2.22) J,,(ux) = #u, æ?rrÇ{o,'t.r,'ol) 
+ rr,r .#[nit,,'n6l . r,,, 

]].

Substitution of (2.19) and (2.22) in (2.1) leads to the result

(223) Ju(ux) = #q# ?fu[{,.#} 1o,,"*,¡ 
*,,,, 

}

. 
#{ai'{,,,'nE) 

. n,,, }] ,

where

(2.24) H(() = *,p'(Ç), G(() = H(()x(() = |o(()e'(().

3. Bounds for ((ju,o/u), k = 2,3,,,.19

Provided that ( does not vanish, (2.23) can be written as

(3.1) 11+ ô,)u1Æ ryPJ,(ux) = 
{r 

.#}¡ot.'o,¡ * u,,, 
1

. 
ffi[ai'1u'r'ç) 

* n,,, 
]

= Ai(u2l3(¡ + er(u,(),

where

(3.2\ er(u,() = e,,,(u,() . # ¡ eilu2/3(¡ + e,,,(u,()J

_ H(() 1 
^ì'(,',aßç,' ",,u2ÆE) + nr,r(u,()]'

In view of (2.17) and (2.18), (2.13) simplifies to

(3.3) lðrl <2"0'30/rtq#=Y ifu210.

For ( < 0, we also have from (2.14)
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(3.4) ter,,(u,()'=#,

on account of (2.11), and from (2.16),

(3.5) lqr,r(u,()l < 2"0':0/u10.1051)u-1 ti(u2Æ(), (<0.

Since q(() is a nonnegative increasing function in (--,011, and g(0) =2113, we have

from (2.24)

(3.6) H(()<1.e)ttt=0.794, (<0.

Furthermore, since I q'(()/q(() I < 0.160, ïOLVZ, p. l0l -"o I ( ( "o,

(3.7) tC(()l = 
g#q'(Ç) < 0.08çzztt¡= 0.t2J, E<0.

By (2.9) and (2.11),

(3.8) lAi(x)l<M(x)<UlfrE(-*)t/o), x<0.

Moreover, we find (see [OLV3, p. 750, Eq. (2.07)]) that

(3.9) lAi'(x)lcN(x), x<0.

Taking absolute values of both sides of (3.2), we find by a direct substitution of the

bounds (3.4) - (3.9) that, for ( < 0,

(3.r0) re3(ù,(), = ffi . Jffi6#
. ##,,lt * z.o'30/"10.tost¡u-' ì w{u'o6,

I l o.Llozeo3ofu= n2t\u4t--7-nutt-
. t + 0.2162"0'30/urr-1 f 0.w, 0.7g4N(-t) ll* ,* LJ"eß-;liî- ,* 1¡'

where, for brevity, we have set

(3.11) r = -u2t3Ç.

I See Appendix I.
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The bound (3.10) can be further simplified by noting that for r) l, t-llaN(-t) < 0.60

[OLV3, p.152]. Then, for u > I and t 2 1 l,

0.127 .,= * 0.294_ N(-t) < 0.072 + o.477 < 0.55,
1-n r2l3rt12 xtl4

and so

(3.r2) r er(u,() t < -#,^l-W.ffi.ffiÌ
- | lo.ss 6.24.0'r0/u I
= çrnwlfrr - D1/3 i

Let us now ser ux = ji* in (3.1). Since Ji([,¡) = 0,

(3.13) 0 =Ai(u2Æ(¡ +er(u,().

If, in the usual notation, the kú negativ e zeÍo of the Airy function Ai(x) is denoted by a*

we deduce that the corresponding value of ( is given by

(3.14) Ç=r¡-2ßuu*îu,k,

where

(3.15) I,r,k = O(u-+/:¡ (fixed k).

This result will be made more rigorous in the following discussion. Also, since this value

of ( depends on u and k, we shall henceforth denote ( by (r,u. Furtherïnore, for brevity,

we shall suppress the dependence of qr,k on Ð and write îrr,n simply u5I1r.

Therefore, let

(3.16) (r,r = ((i,olu¡ = u-2Æar * qt.

We now establish a bound for (u,u. In order to determine such a bound, we consider

equation (3.1) with u2ßÇas the independent variable, and write

(3.17) t(uzßÇ) = Ai(u2Æ(¡ + er(u,(),

1 That t 2 I is not really a restriction for ou¡ purposes, as we shall see later;
cf. the rema¡ks following (3.19).
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where

(3.rs) t(t>zßÇ)= 1r+ô,)ur,ryJi(ux)

is a continuous function in -- < ( < 0.

Then, on the interval /n = [an - p¡, an + Pt], where P* t 0 is chosen small enough so that

&=Tin lAi'(x) l>0, we have -u2l3( > -(ar+ Pt) = Þn, saY, and so from (3.12),

(3.re) Eu=m,Xxre,(u,()' = df{P . -#3},
provided that B* ) 1, u ) 1.

Let us now restrict our attention to the case k =2, and choose p2=f,{a, - uä).

Then, since a, = -4.08795,u\ = -4.82010 IABR, p.478f, Pz = 0.18304, and so

þz=3.90491 > 1. Hence the bound (3.19) on er(u,() applies, provided that u > 1. If

u > 10 and pr= 0.18304, (3.19) gives

(3.20) Er=m¿xl er(u,() I <0.27965/t¡2/3 < 0.06025.

Furthermore, from tables of Airy functions [op. cít., p. 4771,

(3.21) *z =Tin I Ai'(x) I =0.74713 > 0,

(3.22) Er.Mr= min {lAi(a, - pz)l,lAi(a, + pz)l} = 0.14359.

Since a, is a zero of Ai(x), and lin I Ai'(x) I > 0, then Ai(a, - p2) and Ai(ar+ p2) are of

opposite signs. From (3.17) and inequality (3.22), we furtherdeduce thatf(ar- p2) and

f(ar+ p2) must also be of opposite signs. Hence, if u > 10, there exists at least one zero

,'ttÇr,z or r1u2/3() in the interval I, = l-4.27099, -3.904911. If we now ser

u2ß( = u'ßÇu.zin (3. l7), we obtain

(3.23)

Setting

0 = Ai(u2Æ(u,z) + er(u,(u,r).

(3.24) ,¿2ßÇr,z= &2t u'ß\2,

we find from (3.23) and Taylor's formula lop. cít., p. l4f,
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(3.25) 0 = Ai'(€z)uzß\z+er(u,(,r,r),

where Ere (ar- pz,az+ p) Ç Iz.

Since Ai'(x) * 0 on I, we have from (3.25),

(3.26),rzßrtzt.Er/ ^z 3 W #, W iru> 10,

by virtue of (3.20) - (3.22). Hence, from (3.24) and (3.26),

(3.27) Çu,z = ,t-213 a, + r1r,

where

(3.2s) | lz I < d,r/ vaß if u 2 10, with d, = 0.3743.

By a similar argument, numerical computations show that, with the choice

Pu = i(% - uu*,), then for k = 3,4,...,9,

(3.29) (,,,r = u-2Æau + t1*,

where

(3.30) ltlol . do/vaß, if u > 10,

with dz= 0.37430, d: = 0.28836, d+= 0.24212, ds = 0)1239,

do = 0.19t31, d7 = 0.17540, de = 0.t6287, ds = 0.15268.

The values which are necessary in these numerical computations, namely, %, %l' P*

El, M* and mn, are compiled in a table which we exhibit later (see TABLE I below); here,

Ei=uzn"u, where Eu is given by (3.19), Mk = max{lAi(au-pn)|, lAi(au+pr)l} and

-u = Tln I Ai'(x) i. fn" cases k = 2,3,...9 are taken care of in this manner due to the fact

that accurate numerical tables of values associated with the Airy functions exist for the

range of arguments k = 7,2,...J0 [op. cit., pp. 476 - 475]. For the remaining cases

(k > 10), we must proceed in a slightly different manner. The approach we take is again

via asymptotic analysis, since we are interested in values of k -+ -.
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Our conclusion will again be given by (3.29), with r1u bounded by du/ o4l3, valid for

u > 10, where {do} forms a monotonically decreasing sequence. The proof of this fact

will be exhibited in the next two sections.

k -ít. -au*'| Pu Ek Mr m.
l(

'¿

3
4
5
6
7
8
9

4.08195
5.52056
6.18671
7.94413
9.02265

10.04017
11.00852
1r.93602

4.820t0
6.16331
1.372t8
8.48849
9.s3s4s

10.52766
11.47506
12.38479

U. IðJU4
0.16069
0.14637
0.13609
0.12820
0.12187
0.11663
0.r1219

u.¿t96J
0.23r58
0.20447
0.18642
0.17326
0.16309
0.t5492
0.148 16

u. r4J)9
0.13570
0.13007
0.12575
0.12227
0.11936
0. I 1688
0.t1472

u.t4tI3
0.80309
0.84450
0.87771
0.90s63
0.9298t
0.95r20
o.97043

TABLE 1.

4. Bounds for Zeros of the Airy Functions Ai(x), Ai'(x)

In his paper [HET2], Hethcote has established the bound

_ _2t3

(4.1) âk = -L*,oo t,l (t+ on),

where

(4.2) ton,t s0.r30[*,oo-1.0s1)] ifk>1,

for the zeros \ of the Airy function Ai(x). He further points out that the bound on on is

quite good since 0.130 is only slightly greater than the coefficient 5148 of the next term in

the asymptotic expansion of a*. In a similar manner, we shall establish the bound

. -2/3(4.3) ar = -l*roo ,11 (1+ rk),

where
-,,

(4.4) I ru I < 0.16s [+ ** - 3.0382) ] if k> 2,

forthecriticalpointsai. of Ai(x). The bound on tn is also quitereasonable since 0.165 is

only slightly greater than the magnitude of the coefficient -7148 of the next term in the
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asymptotic expansion of ai. (cf. IABR, p. 450, Eq. 10.4.95]). The derivation of this

bound now follows.

The asymptotic expansion of Ai'(x) is given by

(4.5) Ai'(-x) - *'lo f sin rF - lL\- r* lù,,, \b - T )P(1) + cos(( - ä)a(E) Ì,

where

(4.6) E =? *t'',

(4.7) p(q) - | {-)'or,(u)/62', a(q) - ) G)'ar,*r(D)/€2'*r, 1) =2/3,
s=0 s=0

(4.8) A,(u) - Ø')2 - t\Ø')2 - 12) "'l+^)z - (z' - t)21 
.

s!8' '

see [OLV5 , p. 394]. The first few coefficients of AsQl3) are given by

AoQ/3) = 1, and

(4.9) AJ2/3) =7 /72, AzQ/3) = -455 / 10368

\(213) = 95095 12239488, A4Q/3) = -40415375 / 644972s44.

It is known llbid.) that the error in tnrncating the expansions for P(Ç) and Q(E) is less than

the first omitted term, provided that the following tefin is of opposite sign. Hence,

(4.10) P(6) = t*#|fu.L+ëo(\),
5

where

(4.11) rê4(q)t=ffiþ,

(4.r2) Q(E) = El(E),

where

(4.13) lEr(E) t 
= l, t
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We now apply Hethcote's corollaryl [HET3, Cor. 1, p.I47] in order to determine a

bound for ai.. To this end, let

(4.14) f(€):JæAi'(-x). v- -L-
x1l4 ' Y 4',

as in the corollary. Then

(4.15) f(6) = sin((+v)P(€) + cos([+V)QG)

' sin(( .*,[ t *1fi* 1-2 +è,0(E) ] + cosf( +ry) E,(€)

in view of (4.10) and (4.12). Furthermore, (4.15) can be written as

(4.16) f(E) = sin(( + V) + ê(6)

where

(4.17> rè(q)r < lrt. ffiþ .ffiþ
in view of (4.11), (4.13) and the fact that sin x and cos i are bounded in absolute

value by l.

If E> 3.88, then from(4.17), lê(6) l<0.02825. If p =0.93, then

Ê = max I ê(E) I <0.02825< sin p = 0.03.

Hence, 3 a zero d" of f(() in the interval

[næ-V- p,nru-V+p1 =[næ +nl4 -0.03, nn+n/4 +0.03] if n> 1. Theassumption

that \
u', = -1.01879, az = -3.24820, then d, =? @r¡uz. Furthermore, on the interval,

É > næ + nl4 - 0.03, and so

rdn-(næ +n/4) r< Ê/cosp =ffi#,
or equivalently,

(4.18) ldn-(nr +nl4) I < 0.10971(nn+rcl4 -0.03) ifn>1.

I For a stalement of this corollary, see Appendix IV.
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If we now compare the zeros of Ai'(x) to those of f((), we find that

(4.19) dn: ?Guni*)t''.

Thus,

(4.20) t1-a,,*,)3/2 -*Con + 1)l< *fo.ß97)/(n+0.24045).

Hence,

(4.21) (-uì*r)tt' =*(¿n + 1) +t*,,

where

(4.22) rtS,r=*t}.L}et)/(n+0.24045) ifn>1,

and so

(4.23) -u"il [* *" * rl ]to<r* 
in*r)''',

where

(4.24) lõn+rI =lî,înr lll#(4n+l))

-7

<o.z46s[*,0"+0.e61t,] , n>1.

If n 2 l, (4.24) gives I ãn*r I s0.00723 and so, by the Mean Value Theorem,

(4.2s) -an*r = [åo *" * ,) ]"'{,* r,,*r),

where

(4.26) I r,,*r | = ?lr .**f" rn.roon, [å" 
(4n + 0.e618) 

]
_)

< o.rur [+ (4n + 0.e618) ] ir n > t.

The result (4.3) - (4.4) now follows by replacing n by k - 1 in (4.25) and (4.26).
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With the bou.nds for tr and ai established, we are now in a position to determine a

bound for the value

(4.27) p* = l(uu - q.*,).

It is known [HET2, p. 73] that

(4.2s) ar s -[*,* -rrf'

Hence, from (4.27), we obtain

(4.2s) 4pr s 
[1o ,ou, ]"'{[,* # f'o 

,r*rn*,) - [t *]"'], k > r,

using (4.25) and (4.28). By the Mean Value Theorem, simple estimations yield

[' .* l'' = r.++, k ) 1,

and
r ,2ß . --ll3

[' *J = , ?lr-fj #>,-?f , k>l

Thus,

(430) 4pr s (ry\'{+,#-* [,*å),-.,]
Hence, if k > lO, (4.26) and (4.30) give

4pv s (ry|'{+aiï . # (0 16s) 
[å" o- * o nu",] ']

r ,213

- l3nk ì 1.3365-l.2 ) 4k-r

< o.g64k-1ß,

and so

(4.31) pr S 0.241k'1t3 if k> 10.
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In what is to follow, we shall further require bounds for the quantities crn and Bu

defined by

(4.32) Gk=-(an-p*), Ê*=-(k*p*),
and shall now establish these bounds. From (4.27), we have

(4.33) Êr= -*+*åq.,.
From (4.1) and (4.3), we find that

(4.i4) Êu = *[* *- - rl 
]'ocr* 

or) - +t+ (4k + rl ]"'{,* rr*,), k > r,

with bounds for 6u, tn given by @.2) and (4.4) respectively. Writing the second term in

square brackets ur * (4k - 1) *[ , Ø.34) becomes

(4.35) Êr = åi+(4k- r)]"'{r,,. o*)-[ t.h]'o rr*,u.,) ]
From Taylor's formula, we have

(4.36) (1 +x)2Æ= 1+1:<*åçt+\¡-aßxz, 0<€<*,

and so

l-- 2 f'o-t-4 l -o(4.37) ¡t+afrTj = t* äZËt + ek,

where

(4.38) leol:4 1=iwî' k>1'

Substitution of (4.37) in (4.35) yields

(4.3g) Fo = f Bu{5(1+ on) - (1 .+# + euXl+ ru*,)}

= Bk(1 +#T + Pil),

where

(4.40) Br = låt ** - ,r)' ,
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(4.43)

and

(4.4r) pil = íon - l"n - |f r * +# + e*) tu*,.

Hence,

(4.42) ?B1l' = ?r'.''(L ] ia * ut )"'.
Considering each of the bounds (4.2), (4.4) and (4.38), we find that

I ou I . o.r¡o [s/¡nf < o.os4 -, k ) 1,* 
(4k - r.osr)' (4k- t.ost¡'

rru*,r. o''e'[s/"')t < 0'119 -, k)r,K+r 
(4k + o.gota)' (4k - 1.05t)'

reur t +dî = +*i*tf ' k) 1'

and so, from (4.41),

(4.44) lpil | < f;toot +f teut +f f r * +d;¡ + lenl) lt**,l

< 0.25g4 _ + 0.040 _ + 0.014 . ,rur r. '= (4k - t.ost)2 ' (4k - t.ost)3 (4k - t.ost)a

Furthermore,

(4.4s) tpilt<0.260/(4k-1.0s1)2 ifk>10.

If we now let

(4.46) F*=-+#T+pil,
then

(4.41) t80 1.0.341/(4k - 1.0s1) <0.00880 if k> 10.

Hence, Taylor's formula applied to the last term on the right-hand-side of (4.42) leads to

(4.48) ?sï' = ?t?u''[t +"=*uu),
where
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(4.4s) tr,ot < Ttw' *å(1 -0.00880)t,'F?

t t,=o'4?3^8-.,o ifk>10,
(4k - 1.0s1)'

in view of (4.45)ànd Ø.aT. Recalling now the definition of Bn given in (4.40), we have

(4.s0) ?"I', un , . 0.3412/(4k - 1.0s1) if k > 10,

and so from (4.48)

(4.s1) ?Bï': klc +. + +or(k),

where

(4.52) re2(k)l < 0.3421(4k-1.051) ifk>10.

In a similar manner, we establish a bound for oi, where, again from (4.27),

(4.53) Gk = - Tuu-f uu*,.

Following exactly similar steps as above, we find that

(4.s4) ?'?1' = ?r'*''[t . +*ï * n; )" ,

where Bn is defined by (4.40), and

(4.ss) îil = åo* * l.n * f tr * +# + e*) ru*,.

Using the bounds given in (4.43), we have

(4.56) lnf I <,,,0''=tL^o=,,u* --i'040, * r:: 0'91=4=r., ifk> l,
(4k - 1.051)' (4k - 1.051)' (4k - 1.051)"

so

(4.s7) Inl | < 0.2r31(4k- 1.0sr)2 if k> 10.

If we let

(4.s8) ño=-+#T+n[,
then

(4.s9) rñrr.0.339/(4k- 1.0s1) <0.00871 if k> r0.
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Hence,

(4.60) ?"ï' = ?"'n''[t.+*= *no),

where

(4.61) t,¡lrt < i,nr ' 
* å 

(1 - 0.0087 1¡-tt2 -z

_ 0.3628
= a if k> 10.

Finally, we have

(4.62) ?"T'= kr +i - + . el(k),

where

(4.63) lor(k)t<0.2861(4k-1.051) ifk>10,

in light of (4.60), (4.61) and the definition of Bu in (4.40).

5. Bounds for ((i;,*/u¡, k > l0

Our goal now is to show that for k > 10,

(5.1) (u,r = ,-'ttuu* qk,

where

(5.2) llrl < dn/uaß if u > 10,

with {{} forming a monotonically decreasing sequence.

The cases k = 2,3,...,9 have been dealt with in $3.

As in $3, let us consider the interval 1* = lar - P. at + Pr]. On this interval

-t2ßÇ > -(ar + pr) = Fn. F orn tables [ABR, p. a78] we find â10 = -12.82878. Hence,

from (4.31), Þn 2 -u,o - 0.241 I rctn > 12.716 if k > 10, and so the bound (3.19) on

er(u,()applies,providedthatu>1. Ifu>l0,thenfork>10, þI''rl,andso(3.19)

gives



30

(5.3) Eu = mrSx I er(u,() I < 0.1433 /þ:*'o .

We shall now show that

(5.4) Mn = min {tei{-crn)t, 
lAi(-Pk)l } > o.zo+ sß:nto if k > 10,

and so conclt¡de from this inequality and inequaliry (5.3) that

(5.5) Eu . Mo for all k > 10-

To establish inequality (5.4) we consider the asymptotic expansion of Ai(x) given by

(s.6) Ai(-x) = ;fu{cos(Ç 
- f,) tr* É26)l- sin(( - ä) õ1(E) 

}

_ cos(þ3l2-ä) + e(6)

¡¡ *tla '

where

(s.7)

with

ã(€) = cos(( -i)82,J-J - sin((-fia,t€1, E= ?*t'',

(s.8) tõ'r(6)t < tAr(1/3)lq-t = *E-',

(s.e) t1z6)t < tA20/3)tE-2 = #q-',.
These results are given in Olver IOLVS, p.39a]. The bounds (5.8) and (5.9) are the

magnitudes of the first omitted terms in the expansions of P(6) and Q(6) given by Ø.7)

with u = l/3 replacing u = 2/3; cf . [Ibid.]; also compare with the asymptotic expansion

of Ai'(x) given in $4. From (5.7), we find that

(s.10) tã(E)t < tõ1(E) t+tlr(E)t < 0.0024 if €>30.

If we now ser * = Êt in (5.6), where Þ* is defined by (4.32), then ( = Ér = ?gt*''.

From (4.52) we have

(5.11) le2(k) I < 0.0088 if k> 10.

Using (5.11) we find from (4.51) that

(s.tz) ?þI'r10ru-+ o.oo88>30, k>10.
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Since cos(kæ + J) = cos kæ cos J - sin kæ sin J = (-l)kcos,0

then from (4.51)

(5.13) cos((n - n/4) = cos[(k-l)æ + 3nl8 + $r(k)J = t
But now, from (5.11),

Yk e V.,

cos[3æl8+ 02G)].

if k> 10,1.1692 < 3n/8 +0r(k) < 1.1869

I > lcos(f þt/'-î)t > cos(1.1869) >- 0.374s if k> 10,

In light of (5.12), inequality (5.10) applies, so (5.6) with x = pu yields

(s.14)

and so

(5.15)

(s. r 6)

(5.17)

and so

(s.18)

(s.1e)

I cos((u -Ðt - I õ(6) I

> 0.2099

pi'o
rAi(-Bk) r >

¡¡ Þ'o,o

by virtue of inequalities (5.10) and (5.15).

If we now set X = ok in (5.6), where crn is defined by (4.32), then ( = (u

Proceeding in a similar manner, we find that if k > 10, (4.63) gives

tor(k) I < o.oo74,

I > l.orÇ ol'-i)t = lcos[-3æl8 +0,(k)ì I > 0.37s8

in view of @.62) and inequality (5.17). Furthermore, since ou > Þu, then (u :

if k > 10 (see (5.12)), and so (5.6) with x = Gk yields

lAi(-q) I > 0.21061u!uta

if k> 10,

if k> 10,

(4.32), we deduce

=?ot*'''

ifk>10,

la?utz > to

by virtue of inequalities (5.10) and (5.18). Moreover, from

dr = Êr + 2pu, and so

that

(s.20)

Recalling that a,o = -12.82818, we have from (4.3t),

Þn > Þ,0 = -âlo - Pro 2 12 Vk > 10. Thus,

,Ai(-q),> jff{,.+} 
'
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(5.21) lAi(oç)r> 0'2106(1:9187)l >0'29;97 wheneverk>10.K' Pi'o Pl'o

Hence, (5.16) and (5.21) together imply the result (5.4), and consequently, (5.5) holds.

If we now choose pk as in (4.27), then

(s.22) -* = Tln I Ai'(x) t r- o.sn4 þIta ,

provided that k > 10. To see this, let us again consider the asymptotic approximation of

Ai'(-x) given in (4.5), with the coefficients P(6) and Q(Ë) given by (4.10) and (4.12),

respectively. Specifically, we have

(5.23) Ai'(-x) = #rrrr,
where I is given by (4.6), and f(É) by (a.16).

If we set* = Þrin (5.23), then (=6r= ?Btn''. Since sin(kæ + J) = t sin,0 VkeZ,

then sinÇ þ7*''-þ= t sin[3æl8 + 0r(k)1, in light of (4.51), and so

(s.24) I > rsin(| þ?r''-i) I > sin(l .t6sz> > 0.s204 if k> 10,

byvirtueof (5.14). Furthermore, since Eu=Tþ7u'' r30 fork > 10 (see (5.12)), then

(4.17) gives

(5.2s) rê(å)r < 0.0033,

and so we obtain from (5.23) with * = Þt

B:to(5.26) tAi'(-Bk), = ä Q.g204-0.0033) > 0.st74þ:kt4 wheneverk> 10.

In a similar manner, if we set x = % in (5.23), we find that

(s.27) I Ai',(-cr*) t . 
#{rrin{-rnls 

+ 0,(k)) I - rê(€) r } > o.srz 7c¡t*rt

in view of (4.62), (5.17) and (5.25). Furthermore, since oo 2 Þ* Vk, we have

(5.28) I Ai'(-an) I ,- O.Stllþlyta whenever k > 10.
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Since it is knownl that for k > 10, u**, . -dr ( un . -Êu < aL, inequality (5.22) now

follows from (5.26) and (5.28).

Since 1is a zero of Ai(x), and lin I Ai'(x) I > 0, then ei(at - P¡) and Ai(tr+ P¡) are of

opposite signs. From (3.17) and inequality (5.5), it follows that f(ar - P¡) and

f(a* + p¡) are also of opposite signs. Hence, if u > 10, there exists at least one zero

,¿2ßÇulrorrluzl3(¡ in the interval Iu. If we now set ,¿2ßÇ-u2ßÇu,uin (3.17), and let

r¡2Æ(.,r,t = âk * ttÆ''ì*, then from Taylor's formula,

(5.2g) 0 = Ai'(€*)u2Ërln + er(u,(,,,u),

where Ëu. (% - Pr, % + Pr) c /u. Since Ai'(x) *0 on1o, we thus have, fork > 10,

(5.30) ,uzßerl < En/mn

- t [o.ss 6.24.0'rolro I I
= 

uÊ 4/4 td" ' .'r' J;-^*
if u > 10, by virtue of (3.19) and (5.22). Furthermore, from (4.31) and (4.32), *" hurr"

Fo > Þ,0 >- 12.716 vk > 10, and so

(5.31) Inul . d*llaß if u > 10,

where dr = 0.5200 lþ'l'< 0.146 for k > 10.

It is now clear that (dr.)Ëro forms a monotonically decreasing sequence, and so our goal

(5.1) - (5.2) has been attained. Furthermore, in view of (3.30) and (5.31), the result

(1.3) - (1.4) now follows.

l Foraproof thatar*,. -o*.ur. -Ê, < a; fork > 10, seeAppendix II.
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CHAPTER 3

THE MONOTONICITY PROPERTY OF j;,k

l. Introduction

The goal of the present chapter is to prove that for k> z,ju,o is an increasing function

of u whenever Ð > 10. As noted in Chapter 1, to prove this result, we must show that for

k : 2,3,..., G0rr,r) > 0 whenever D > 10, where G0J,k) is determined by (1.3.4).

Specif,rcally,

(1.1) c0;,*) = I*+ax - {6",u¡

=l-+o* J- +dx-r3o;,k)

Recalling that

I-+dx = -1- '

and setting

(r.z) F(u,k) = 
[_ 

9o*,
we have from (1.1)

(1.3) c0l,k) =*-F(u,k)-rlci,k).

To show that (1.3) is positive for u > 10, we encounter the problem of obtaining

asymptotic approximations for the integral F(u,k), defrned by (1.2), for large u and fixed

k, and for the quantity rf{i;,u1, also for large u and fixed k.

Sections 2, 3 and 4 of this chapter are dedicated to determining the asymptotic

behaviour of F(u,2) as D -à "". From (1.2), it is clear that F(u,k) < F(u,2) Vk > 2, since

j.,r,u*, > jr,n Vt. Hence, it suffices for our purposes to consider only the case k = 2.

Section 5 is dedicated to determining the asymptotic behaviour of {Ci;,*) as 'u -+ oo
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To determine the asymptotic behaviour of

F(u,2) = J: $0,
J12

we replace the Bessel function Ju(t) in the integrand by its asymptotic approximation

(2.2.19) and formally obtain the integral

f-eor-Çl Ai2(-D2ß() d( ,
Jî

5u

where ç(() is defined by (2.2.6). The lower limit of integration (,., depends on u and

approaches 0 as u --¡ "o (see $4; specif,rcally, compare with eq. (4.7)), and so we are led to

the consideration of integrals of the form

r(î,) = fn, Ri21-Àt¡ dt,(1.4)

where l. is a large positiveparametre, and f(t) is a C-- function in 0 < t( æ. Section 2 is

dedicated to the study of the asymptotic behaviour of the integral in (1.4). To determine

this behaviour, we apply a recent result in asymptotics dealing with the treatment of

asymptotic expansions of Mellin convolutions (of which (1.4) is a particular example),

complete with explicit error bounds, which can be found in a paper by Wong

(see [WON1]). Section 3 then applies the result of section 2 to a specific integral, namely,

the integral

Fr(u) = 
feot-e 

\ Ai2(-n2t3Ç) dÇ .

In this case, À = D2ß is the large positive parametre, and f(t) = ga(-t) is the C-- function

in (0,-).

Section 4 establishes the relationship between F(u,2) and the function Fl(ù) studied in

section 3. [t concludes with a bound for F(u,2), and the result is
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(1.s) F(u,2) = + -0'812ç34*ry,
¿D 1)"" D-

where le,(u)l<2.086 ifu>10.
').

In section 5 we determine bounds for Ji0",¡) via a one-term asymptotic approximation

of Jrr(ux) given by (2.2.19). Theresultis

(1.6) o<Jl{i|,u)ser(u)/u2, k=2,3,...,

where 0<er(u)<0.215 ifu>10.

Section 6 concludes with the fact that G(rr,*) > 0 whenever u > 10, and realizes the

goal of this thesis and that of Lorch and Szego, namely, to show that for k = 1,2,3,...,

i" . is an increasins function of u whenever u > 0.JD,K 

-

Asymptotic Bxpansion of I(1,)

well-known that

AiGz) = + J-î["'"u n!)lrer

=?rto; see [ABR, p.447). Hence

nizç-z) = h,(z) +hr(z) + hr(z)

h,(z) = # "'n''["['lrei ]',

and

h,(z) = ; nl)frel 
"l'lrel 

= 7ltl,,rÇ¡ 
* {ocei ]

Furthermore, since

t{t'crl = J.,,(z) + i Y,.,(z), *tÎ't¿ = t{tlr) ,

we have

2. The

It is

where (

(2.1)

with

* 
"-int6 "!]]cer ] 

,

, we may write

hr(z) = fr "-inn["!]lrer ]',



3',1

["S',rf * [r1",,,], = zff"et- 
"3c,i 

],

and
1t

["S'tr]" [*f'c'l] = 4iJu(z) Yu(z).

Hence,
,)

["S',¿l = lr3r¿ -Y',r,>] + zrJ,,(z) Yu(z),

and

Itz¡2
Lni'r¿] = lt?,t >- v3r,t I - ,rJu(z) Y,,(z).

The asymptotic expansion of h.(z) can be obtained from that of { * Y3. More precisely,

we have

(z.z) hr(z) - # å | .3 .5 ... (2s ,(+f'o,,,rr, ,-3s-'\t|,
s=0

where Ar(D) is given by (2.4.8); cf. [OLV5, p.342]. Furthermore, it is known that the

remainder after n terms is of the same sign as, and is numerically less than, the n+1$ term.

From the asymptotic expansions of the Hankel functions Hf;) anO Hf;), *e also have

(2.3) h,(z) - #*{ ,ér,''' i,]ãi'[])'c,rv3¡¡,(3'*r)rz

and

(2.4) hr(z) - Í;*r{ -r(Lr,'p ä,}å t-tl'[])'", (t¡3¡¡,(3'*r)rz

where c,(u) = ËAr(u)4,-r(u).
l=0

The first few coeff,rcients of Ar(1/3) are given by Ao(li3) = 1, and

(2.5) Ar(1i3) = -5 /72 AzQ/3> = 385 / 10368

A3(1i3) = -85085 /2239488 A40/3) =27227200 /644972544.

Bounds for the remainders associated with the expansions (2.3) and (2.4) can be

consfructed from those of the Hankel functions; see [op. cít., pp.266 - 269].
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Insertion of (2.1) in (1.4) gives

(2.6) I(î,) = I,(f,) + Ir(1.) + I3(À),

where

(2.7) t,(L) = I- n,, h,(It) dt, i = r,2,3.

Throughout this section we shall assume that f(t) is an infinitely differentiable function

in (0,".) with an asymptotic expansion of the form

(2.8) f(t) - i u, ,s+cr-l , as t -> 0*,
s=0

where 0 < a < 1. We further assume that the asymptotic expansion of the derivatives of

f(t) can be obtained by termwise differentiation of (2.8), and that for each j = 0,1,2...,

(2.9) Ñ)(Ð = O(t-l-t), as t -) oo,

where e is some fixed nonnegative number.

From (2.8) it follows that the Mellin Eansform of f(Ð defined by

(2.1o) M[f; zl= Tr'-tf(t)dt, 1-cr<Rez<l+e,
-tr

can be analytically continued to a meromorphic function in the half-plane Re z < 1 + e, with

simplepoles atz= 1- s - aof residue as, s =0,1,2,...; see [EVG, p.2Il]. Throughout

this discussion, the notation M[f; z] is used to denote not only the integral in (2.10) but also

its analytic continuation.

The Mellin transforms of h,(t) can be obtained from integral tables [MAR, p. 199,

8q.23(I), p. 203,Flq.32(1), and p. 209,Flq.45(1)11, and we have

(2.1,1) M[h,; z)=-fi"'n','*";*þ rÊ-þ r'rrui

(2.12) M[hr; zf = -fi"-'*','#rq*þ I.6- þ .ttÐ

I We also makc rcfcrcncc hcrc to [ERD, p. 333, Eq. (a0)] and [OBE, p. l'02, Eq. (10.a1)], but nofe that
thc l¡ansforms givcn in thcsc rcfcrences a.re incorrect; however, Ma¡ichcv's l¡ansforms stand as correct.
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1s-z _ rö r(ï + ii rr; þ n(2.13) M[hr;'l= þcos(f)ffifr;'
where s =|12+t).

We are now ready to apply the results in IWONI, $2]. For each n ) 1, we set

n-1

(2.14) f(t) = | u, C*o-r + fn(t).
s=0

By our assumption (2.9),

as t -+ 0+,

for j = 0,1,2,.... Similarly, we write (2.2) in the form

n-l
(2.15) q(Ð = | u, ,-s-1t2 * hr,n(t)

s=0

with b"-. , = bo^.. = 0, andJs+l 5s+¿

(2.16) br, = U#[]f'o,,trr,, s = o, 1,2,....

By an earlier remark, we also have

(2.11) I \,n(Ð I < I b,, ¡r-n-rt2 for t ) 0, if n = 0,3,6,....

If cr * | tnen it follows from Theorem 1 in [Ibid.] that

n-l n-l
(2.18) I3(I) = ) u, M[hr; s+cr1 ].-'-o

s=0 s=0

whereas if cr: I then we obtain from Theorem2 in flbíit.l

n-l n-l
(2.1g) I3(I) = L cs L-s-r/2 + (ln 

^rI 
u,b, l,-'-t/2 + õr,,,(I),

s=0 s=0

where

cr(cr)=arbl+albr,

uï =,4iflr{*lr, r-zl+#| bl ="4in ivrlr; t - ,t+7;-¿l;
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cf. [IryON3, $31. In both cases, the remainder is given by

(2.20) ôr,,,(À) = [- t ,U hn(Àt) dt.
-b

Bounds for ôr,,r(L) can also be found in [Ibíd.]. In particular, if cr > ] then from (2.17),

(2.21) I ô3,,,(À), = #f 
,*,, tt-n-ttl dt, if n = 0,3,6,....

To the oscillatory integrals Ir(À.) and I2(X), we apply the result in [WONI, $4]

which gives

(2.22) I,(À.) = i ., Mlhi; s+41 l.-'-o + õ'n(À)
s=0

fori = l,2,where

(2.23) ôi,n(L) = #1[ rf',U r'l-"){rÐ a,

una nl-t){t) denores an nü iterated integral of h,(t). In the case of hr(t), we can write

r,l-")toi = #Ë1,'*"*,* - gn-' h,{w) dw;

on the path of integration, w = t + peinß and p varies from 0 to oo.

It is readily verified that

¡ ,31?

rm1w3i2¡ = |.+ ) ,'''.

In view of the well-known result IOLVS, p.266 ff]

r Hflf rer r < l ¡[ft "'c 
l, o < arg t <n,

it follows that

l h,(w),, +r-t" "*l{- # U''!
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Consequently,

r r'!-')to r < # ffrrr^rr, [+ I
Similarly, we can write

n!"ro = #Ël'*'*,* - t)'-1 hr(w) dw.

Using the estimate lop. cít., p.2671

'i1l(or< 
ll-fr"'(1,

,n!"'ro, = ffi ffrrr,rr,[+l
Thus, if !. o < 1, then (2.23) gives

(2.24) tô'"(r)' = ;ft7 f t','1rÎ',(Ðl¿', i=1,2,

-n1arl(<0,

we have

where

(2.2s) c, = (n+ 61, 
t(znt3) [+i"

3. A Special Case

Vy'e now apply the results of the previous section to the integral

(3.1) Fl(D) = 
I- 94(-() Ai2(-D2l3() d( 

'

where q(() is given by (2.2.6). In the notations of $2, we have f(t¡ = q4(-t) and î. = D2ß.

The Taylor expansion of f(t) is given by

(3.2) f(Ð=e4ct) = 24ß- å, * fr{zz\( - "'.

Hence, condition (2.8) is satisfied by this function, and c = 1 in the present case.

Furthermore, it is readily verified tnat Ñ)(t) =O(t-2- 
j¡ 

as t -+ - for j = 0,1,2,..., and so
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(3.4) f e'r-el Ç-''' aÇ = of #* = 2IE 
'

(2.9) is also satisfied by this function. We shall take n =2ín(2.14> and (2.15). The

coefficients a, in (2.14) are determined by (3.2), and b, in (2.15) by (2.16). The first few

values are given by

(3.3) ão= 24ß, u, = - å, bo= *, bl = 0.

From the definition of the Mellin transform given in (2.10), we have

rlnÍ:; r/21= f ,-tit r(Ð o, = f i1l2 qa(-Ð dt.

The last integral can be evaluated explicitly. To see this, we note that from (2.2.5) and

(2.2.6),

the relationship between d( and dx being deducible from (2.1.2), and given by

(3.s) dÇdx -- z/lxq2çù.

Thus,

(3.6) M[f; ll2] = 218.

Furthermore, the remaining Mellin transforms may be calculated directly from

(2.11) - (2.13) from which we find (see also [ABR, p.446,Eq. 10.4.a])

VI[h,; 1] + M[hr; 1] + M[hr; 1] = -Ai'2(0),
(3.7)

vl[h,; 2] + M[hr; 2l + M[hr; 2f = -f ailo¡ei'10¡.

From (2.6) we find that

(3.8) Fr(D) = ¡-1/3 - 24ßAlz(o)r-zn * fteilo¡ni'(O)oaÆ + ô(u)

in light of (2.7), (2.1S) and (2.22). The remainder ð(rl) is given by

(3.9) õ(u) = õr,2(I) + õr,r(1.) + õr,r(À),

where ì" = .J213, and ôa,, and õ,,r, i = 1,2 are as defined by (2.20) and (2.23),

respectively. ;
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We now simplify the remainder õr,r(À) where, from (2.20),

õ3,2(r) = [- 
rr,u hr,r(rÐ dt.

By Taylor's theorem (cf. (3.2)),

(3.10) f(Ð:q4(-Ð -24ß -$t+fr(t)

where

(3.1 1) f2(r) = å a't€l ,' =l(,po)"(-€) t2, 0 < Ë < t.

Since [g4(-()]" is a positive decreasing function in 0 < ( < "o 
1, we have

0 < (g4)"(-€i < (g4)"(0) :zftzzlt = 1.09. Also, since b, = 0 in (2.15), we have

in view of

of integrati

Since hr(t)

(3.12\

hr,r(Ð = hr,3(t), and so (2.17) holds for hr,r(t), t e (0,".). Thus,

= #r"'' Ii,rrr{t) 
t-stz dt

t #x"t' f qtt¡ t's/2 dr.

l\,2(Ðt =*r3-uz =hÍ-2-tt2 ift>1,

(2.5) and (2.16). Since ltL -+ 0 as î" -l -, it is convenien

on into (0,1/7"1 and [l/À,-) so that

rll?r fF
ô3,2(r) = I fr(t) hr,r(rt) dt + 

J,,r 
tr,,, hr,r(rt) dt.

is positive, we have

I 
J'!,,,h,,,(Àt) 

ot L ryll'','tfi - n,{rÐl at

= 
o#s 

¡t,^,, a, < o.o?_
Ztc ü Lj

t to split the interval

in light of (2.15), and

(3.13) | f- trr,l hr,r(Àt) dt
Jt.?"

I Sec Appcndix I.
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To bound the last integral, we note that from (3.1 1),

I t,u t-'D dt = ryf ,-"'a, = 1.0e,

and from (3.4),

(3.14) |.-t(O t't\ dt . ft(,1 r-u2 dt < 2n.Jr4
Also, a sraightforward calculation gives

l*rro't - ia t-tT dt = 1{zott)-+ = -t.s20.
J1 JJ

In light of (3.10),

¡ð

I rrcÐ t-5l', dt < 2n + 1.520 = 7.803
.tl

and so

Hence,

(3.1s) I [- t r,i hr,r(l.t) dr I < o.zzzt"-stz.
Jtlr-

Combining (3.12) and (3.15), we obtain

(3.16) tõ3,2(f,)' = 
qË . ffi

The bounds for ô.,r, i = 1,2, are given by (2.2Ð from which we find

(3.r7) rôi,2(À), 
= ffi[t'''r rf)rOro,.

To simplify these bounds, we note that since

o . 
ftrr 

t) {stz dt < 1.09 + 7.803 < 8.894.

tl'<r>=/')(,)and0 = rtt'(,) < (q4)"(-t) <ft{22t3),

(3.18) | ,''' , t'or dt < z.tll .
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On the other hand, integration by parts twice gives

(3.1e)

by virtue of the order relation as t -) 4"" given

straightforward differentiation that

fteortl 
= -

From Olver's tables IOLVZ, pp. 38 and 41] we find

g(-1) = 1.0821991911 and x(-1) = 1.9789626178. Hence,

f(1) = g4(-1) = 1.371604273 andf'(1) = -(,p4)'(-1) = -0.785580091.

Consequently, it follows from (3.19) and (3.14) that

(3.20) [t,'r r!')r,itdt s f;rzn¡+0.0ee8 < 4.813.

Coupling (3.18) and (3.20), we obtain

(3.21) lõi,2(I)l<0.310)'"'st2, i=1,2.

Finally, a combination of (3.9), (3.16) and (3.21) gives

,ô(u)r<##{'.i#}

Ï ,''' t $) o>r dt = f ,''' í')19 d, =

_ 0.856
= ù5/3

i f n'r(t) dt -

in (2.9). From

f'(1) - Ixt>

(3.5) we find by

(3.22)

for u > 10.

4. The Relationship Between F(u,2) and Fr(u): A Bound for F(u'2)

Vy'e now turn our attention to the integral defined in (1.2). Since ju,* ) jrr,z Vk > 2, it is

clear that F(u,k) < F(o,2) Vk > 2. Hence, for our pu{poses, it suffices to take k = 2 in

(1.2), and consider the integral

{;
(4.1) F(u,2) = &*.

t
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In (4.1) we first make the change of variable t = ùx and replace lf{ux) by its

asymptotic approximation which we now establish: squaring both sides of (2.2.19) gives

(4.2) lllux¡ = ^ tL+f ait1.,toq¡ + e*1r,() ] ,

1t+ ôr)" 1)''-

where e*(o,() =2\i(r¡2ß(¡ er,r(u,() + ef,r{u,().

Since ( is negative in our case, it follows from (2.3.4) and (2.3.8) that

(4.3) re*(u,()' = fffilt.tt#]
a 

'9= 

140' 
'= if u > 10.- ,+ßç_ç¡rtz

Equation (4.2) can be further simplified to

¡3(ux) = (p2(Ç)É#+ ã(u,()

(4s) õ(u,() =#{ 
}

By (2.3.3) we find l1+ ô,1> 1 - 0.022 if u > 10, and so a combination of (2.3.8) and (4.3)

glves

(4.6) rõ(u,() r < çt(() ffi
After replacing {fu*i in (4.1) by its approximation (4.4), we then make ( the variable

of integration. Since j",, t j",, t u (see [LOR, (2.4)] and IOLV 5, p. 246]), the point

X = Xu.2 = li.rlt is greater than I and its image Ç = Çu,z under the transformation (2.2.5)

(4.4)

with

ifu>10.

is negative. The result is
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(4.7) F(u,2) - 1 f- '^4', 

") 
tiz1-vznç¡d( + p,(u),, - ,ú,, t" 

* ,-t

where q = - Ç,,r, ç(() is the function defined by (2.2.6), and

(4.s) p,(u) = +[ õ(u,-() e2(-O d(.

Since (r t 0, it follows from (4.6) that

(4.s) | p,(r,) , = #feor-ei Ç-''' ¿Ç = ïjU , 1) > r0,

in light of (3.4). For convenience, let us now set

(4. r o) F*(u) = f q4(-() ri'1-r'nç¡ aç

so that we may write (4.7) as

(4.1 1) F(u,2) = #[F,(u) + p*(u)] + pr(ù),

where Fl(u) is defined by (3.1).

We shall now consider the integral in (4.10). In view of Q3.27) and (2.3.28) we can

write F*(u¡ in the form

(4.12) F*(u) = Fr(u) + pz(u),

where

-"0(4.13) F2(D) : # I^,ro{r-'or) 
Ai2(r) dr,

and 
%

(4.14) p2(D)-- I I eaqu-2ßx¡Ai2(t)dr.,rlt Ju.rnu2ß\z

Recalling that 0 < g(() <g(0) =2rß for( e (--,01, and noting that lAi(() l<0.53566

for Ç e (--,01 (see IABR, pp. 446 and 478]), we have from (2.3.27) and (2.3.28)

(4.15) lpr(u) I < 0.278lttaß foru > 10.
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To evaluate the integral in (4.13), we use the Taylor expansion (cf. (3.10) and (3.11))

a4(() -24ß *å(+Rr((),

where

R2(() =ff{,f)"{E), (<€<0.

By rhe remark following (3.11), we have 0 < tg4(()1" < 1.09 for -- < ( < 0, and so

(4.16) lR2(()l<0.55(2, ".<(<0.
Using the fact that Ai(z) satisfies the differential equation w" - zw = 0, we have by

integration by parts

Mo(z) = Jai'{tldz 
= zn¡2@)-Ai'212¡

M,(z) = J'xz{r) 
dz = ![ttøo{r)+ Ai(z) Ai'(z)]

Mr(z) = Jr'ei'{r)dz = !ßrvrr{r)+zAi(z)Ai'(z) -t12çz¡1,

from which it follows that

M0(0) = -Ai'2(0), Mr(O) =feilo)Ai'(0), M2(0) =-fRi2lo),

Mo(ar) = -Ai'z(ar), M,(ar) = -*urAilz(ar), Mr(ar) =-l*rAi'z(ar).

Consequently, we obtain

(4.17) F2(u) = #l¡:fU'+ $ {u-2ntl ]ei'1r¡ * . l, Rr(u-"3t) ai'cri a, 
}

= #loi''(o) 
- A1'2çar)] 

"þrfeirol 
Ai'(o) + arui2(ar) ]* prlu¡

where

(4.18) I p:(rr)' 
= # ¡ a?rAt',zçar) - Ai2(0)1.

From numerical tables lop. cit., pp. 476 and 4781, we find
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a?reilz{ar) - ai2(o) = T0.65253. and so

(4.r9) lpr(u)t < r.t72/u2.

Coupling (4.11) and (4.t2), we have

(4.20) F(u,2) = #F,(u) + Fr(u) + pz(u)l + pr(u).

Substitution of (3.8) and (4.17) in (4.20) yields

(5.1)

(s.2) y, r,,,(rr,() I . *ffiË=#fr iru>ro

Also as remarked earlier (see $2.5; in particular, note the remark preceding (2.5.29)), we

have

+ p(1))'

where p(u) = p,(u) + tô(u) + pz(u) + p¡(u)l l2v2ß.

From (3.22), (4.9), (4.15) and (4.19), it follows that

tp(u)t< 1.057 ltr-q+P*o.t#O 1=Uy iru>10.
D' L D"' 1J¿lt J ú

The approximation formula (1.5) is obtained from (4.21) with

e,(o) _ 4 ar{l'z(ar)
_ ,r\ u,r.15 n,2 ' t',u2 15 o2

,)

5. Bounds for J;(il,k), k > 2

If we set ux = ju,r in (2.2.19) we obtain

r,o",t) = #q+#[ni{u'r'6",u) * u,,,(r,(,,u) 
]

where utl'(..,,n = 1k = ¡-a*, -Ênl is given by (2.3.16) with crn and pu defined by Q.a3Ð.

On the interval Ik, Dzl3Çu,u s -Ê* < 0 and so from (2.3.4),

Ailu2/3(r,o) = Ai'(6r)u'lt\u, Ë¡ e (au - p¡, âo + pr) g 1r,.
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A bound for r1n is given by (2.3.38) for k = 2,3,...,9 and by (2.5.2) for k > 10.

Since 6n e [a*' ,, aill, we have lAi'((k) I < I Ai'(an) I by virtue of the fact that 1 is a

local extremum point of Ai'(x) 2, and lies between the zeros tr*, and ai of Ai'(x). Hence,

lAilu2i3(u,u)l<lAi'(au) llu2Ær1u l. Restricting ourattention again to thecase k =2,we

have from (2.3.26) for u ) 10,

. rR . 0.3743 0.53223,u",'\z' =;UE- = ¿;;qn-,
and so

lAiç¡zßr \r¿ 0'53223 lAi'(at)l'gr,r/t.-TW'

RecallingagainthatlAi'(x)l/lxll/4<0.60forx<0(seetheremarkfollowing(2.3.11)),

we have

(5.3) lAilu2/3(,,,r) I < 0.3194 /t>2ß.

Furthermore, we recall that 0 < q(() < 2tl3 for -- . ( < 0, and note that, from (2.3.3),

l1+ õ,1 > I - 0.022 if u > 10. Thus, since B, = -(az+ Pz) =3.90491, (5.1) gives

(s.4) lr"(j",z) t < #*-{o.rtro.dffir}
< 0'4636 if u 2 ro

u

in light of the bounds (5.2) and (5.3). Hence,

(5.5) 0 < Jlq, r) 3 erlr.z, with e, =0.215.

In an exactly similar manner, numerical computations show that for k:3,4,...,9,

(s.6) o < JIq,k) < enluz,

with ez=0.21458, e¡ = 0.15175, e4 = 0.12074, €s = 0.10191,

eo = 0.0891 1, et = 0.oJ977, es = 0.07267, es = 0.06692.

I See Ap¡rcndix II.
2 R¡(x) satisfics the diffcrential equation w" - xw = 0. Hence, Ai"(an) = 0.
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For the values k > 10, we follow a simila¡ argument as above, except that we replace

the bound onl rißrlrl by the bound

,rrzßr'ìrr<ffi, k>ro,

given by (2.5.31). The result on combining this bound with the bound (5.2) is,

for k > 10,

lr,,(i,,r) t < ##{o.szootAi'(q) t/þ:: +0.0568} irr=,0.

Furthermore, since Ê* = -a*(1 + pn/a*), we have from (2.4.31) and [Abr, p. 418]

for k > 10,

Bk >-*[t #ffiJ =-o.se,zun.

Thus, I Ai'(a*) | I þ{4 < 0.60(0.99o¡tt+ < 0.60, and so for k > 10,

(s.7) lJ"(",k)l < o'*7if ifo>10.

Hence,

(s.8) o<rlq,-) rffi=Y iru>10,k>10.

A combination of (5.6) and (5.8) shows that

(5.9) 0<JTq*)se*/u2 wheneveru>10,

with e, = 0.215, and en*, ( er ( e, Vk > 2. Consequently,'(1.6) follows.

6. Proof of the Monotonicity of j,r,*: Conclusion

Vy'e are now in a position to verify the property that for k 2 2, ji,o is an increasing

function of u whenever u ) 10. Recalling (1.3), we have

I
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co",r) = *- F(u,k) - {cq,oi

=f-F(u,2)-rlc6,ni2t¡

_ 0.812634 , €(u)

1D4l3 ' D2'

where I e(u) I <le,(u) I +l er(u) l<2.302 ifu > 10,

in light of (1.5) and (1.6). Consequently, if u > 10,

c(i;,u),-w1,ffi] =5p'o
Furthermore, for k=2,3,..., crr,k)0if u > 1 (see (1.3.9)), and so, recalling (1.3.7), we

have for k=2,3,...,

dr
"u,K

drl =cu,kc(ir,r)>0 ifu>10.

Thus, jrr,u is an increasing function of u if u > 10. Combining this result with that of

Lorch and Szego ILORI, we have for k = 1,2,3,...,

jr,n * an increasing function of tt if rt > 0, and so our task is complete.

The bounds that we have established throughout this thesis are not as sharp as they

could be, and they can, indeed, be improved; we believe that our asymptotic argument can

be used to show that G(jr,,*) is positive for all u > 7 and for k = 2,3,.... For slightly

sharper bounds in certain cases, see [WON4].
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APPENDIX I
(i) Monotonicity of tp(():

V/e shall demonsfate that the analytic function

¡ -ll4(1) e(o = f -iL I
[r - *t J

is a nonnegative, increasing function in -oo . ( < 0. First, from the relation (2.2.5), it is

readily verified that q(() = O((-()-tl2) ut ( -l -oo (also compare with ÍOLVZ, p.401), and

so g(-".) = g. Furthermore, g(0) = 2u3 @f . [op. cif., p. 38]). Next, we show that g(()

is increasing in (--,0) by showing that the derivative of the function f(() = 941() is

positive on this interval. It then follows that rp(() is a nonnegative, increasing function

in-"o<(<0.

Using (3.3.5), we have by straightforward differentiation (cf. the remark following

(3.3.19)),

(z) f'(()' = -4$2 -D-4(-l)x2q2(Ç)

(*'- r)'

If f'(() > 0 for -". . [ < 0, then f(() is increasing in (-""'0). Hence, we show that

f'(() > 0 by considering the numerator of the right-hand-side of (2). Replacing 9(() in (2)

by the expression in (l), we find that the numerator can be written as

4(*2 - ¡'rtz¡-1xz - l¡ttz + ZçÇ)3t2 xzl.

This expression is positive if the function g(() defined by

g(() = -(*2 - l)3tz * 2(-Ç\3n *2

is positive. Noting that sec-lx = tun-tfit - I if x > 1, we have from (2.2.5)

(3) x-2e(Ç) - - (*' :-l)tt' + 3[(x2 - \rtz- tan-11*2'- t)rtz).

Since (3) is a function of u = (x2 - 1¡112, for convenience, we write

(,4) x-ze(Ç) = h(u) = -s7+ 3(u-tan-ru),
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and note that

(= 0 1-¡ x=l <+ u=0,
r_ _q=-- (-+ X=æ ê U=æ.

Hence, we show that h(u) > 0 for u > 0. Now h(0) = 0, and

h,(u)= zlt -l-l-¡u2(t+u2J,zua = zuo-ur0 ifu>0.
L t+u'l çt+u2¡t ql+uz)¿

Thus, h(u) > 0 if u > 0, andconsequently, g(() > 0if ( <0. Retracing our steps, we find

the demonstration complete.

(ii) Monotonicity of ¡g41(¡1":

Vy'e now show that the function [q4(-()]" is a positive, decreasing function in 0 < ( < "" ot,

equivalently, that [g4(()]" is a positive, increasing function in -oo < ( < 0. Continuing to

differentiate* the function f(() =.pa1q¡ O"nned in (i) above, we find that

(5) f"(() = -z}(-Ç)tn(u-s + u-3) + 8(-()2(5u-8 + 8u-6 + 3u-4¡,

(6) f"'(() = 101-(¡-l/21u-5 +u-3) - 36G()t5u-8 + 8u-6 + 3u-al

+ 32(-Ç)sn[0u-11 + 22u-e + 15u-7 + 3u-5],

where, again for convenience, we have set u = (xz - ¡t12. From (5) and the relation

(2.2.5),we find that f"(-oo) = 0, and f"(0) = ft {Zzn¡t. To show that f"(() is increasing in

(--,0), we show that f"'(() > 0 for -- . ( < 0. To this end, let us recall (2.2.5), and write

(7) g(u) = I(()t''r"f"'(()
= 5(u6 + u8) - 27(5u3 + 8u5 + 3u7xu - tan-lul

+ 36(10 + 22u2 + 15ua +3u6¡¡u - tan-1u12.

Then, to show that f"'(() > 0 for ( < 0, we show that g(u) > 0 for u > 0.

One can show that g(u) > 0 for u > 0 by symbolic computation in the following way.

It is clear that the function g(u) has the form

* 
It should be noted that the computations involved in attaining these derivatives are

extrcmcly tcrlious, and a carcful chcck has bccn madc of thcm.
t The valuc of f "(0) may also be detcrmined by diffcrentiation of the Taylor expansion (3.3.2).



where Go,,(u), i = 0,!,2, are polynomials in u, and W = W(u) = u - tan-Iu. Specifically,

G*(u)=5u6+5u8

Gor(u) = -135u3 - 216us - 81u7

Gor(u) = 360 +792u2 + 540ua + 108u6.

Differentiation of g(u) = Bs(u) yields

B,(u) = (1 + u2) gi(u) = G,o(u) + G,,(u)w + G,r(u)w2,
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g(u) = Bs(u) = Goo(u) + Gor(u)W + Gor(u)W2,

B2(u) = (1 + u2) s'r(u) = Gro(u) + Grr(u)W + Grr(u)W2,

where Gi*r,¡(u) = (1 +u2) c;r{u) + 0 + 1)u2ci,j+1(u), r=0,r,r,..., j = 0,1,2,

with G,r(u) = 0 if j > 2. Consequently, we define the sequence (g,(u)) as

g6(u) = g(u), and

g¡*1(u) = (1 + u2) gi(u)

=Gi*r,o(u) * G,*,,,(u)W * G,*,,r(u)V/2, i = 0,1,2,...

Then each g¡(u) has the same form as Ss(u).

If g(0) = 0 and g'(u) > 0 foru > 0, then g(u) > 0 foru > 0; the same applies to each

e,(u). Hence, to show that g(u) > 0 when u ) 0, we determine that value of i for which

g¡(0) = 0 V 0 < j < i, and for which it is clear that g.(u) > 0 foru > 0. Then g,'r(u) > 0

(u > 0), since 1 + u2 > 0, and consequently, g._r(u) > 0 foru > 0 + ... Ð go(u) = g(u) > 0

for u > 0. Applying this procedure to the function g(u) given in (7), we find that

gs(0) = 81(0) = "' = Brz(0) = 0, and that the polynomials Grr,o(u), Grr,r(u) and G,r,r(u)

each have large nonnegative coefficientsl. Furthermore, it is clear from the Mean Value

Theorem that W(u) = u - tan-lu > 0 for u > 0, and so we conclude from the above argument

that go(u) > 0 for u > 0. Hence, we are done.

I Due ¡o the fact thar these coeffìcients are large, we shall not include them here. The necessary
computations were performed symbolically on an IBM 360 mainframe.
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APPENDIX II
'We show that for k > 10,

%|<-0r(L.-Þn.4,
where

-0k=1-Pr, -Þr=ar+Pr

with

Pu=å(u*-k.,).
By a simple application of Rolle's Theorem, together with the fact that Ai"(x) = xAi(x), we

have 1n, < % < {, where tr*, and 4 *" consecutive zeros of Ai'(x). (This fact can also

be deduced from the graph of Ai(-x) given in [ABR, p.aa6].) Hence, Pr t 0, and so it is

clear that fu*, . -or ( %. -Þn. All we need show now is the fact that -pu < tr for k > 10,

and to see rhis, we recall that du_, =!{-u;)tl'(see (2.4.19)). Consequently, it follows

from (2.4.18) that if k> 2,

(1) ?t-+>t'' = klr - ** r(o),

where

(2) lV(k),, . 0='to,?'= ' 0'140

kn _ 3n/4 _ 0.03 = 4k - 3.01 '

A combination of (l) and (2.4.51) gives

Lu =?þnt'' - ? f-+>t''= f * o2(k) - \r/(k).

From (2.5.11) and (2),wehave

02(k) > -0.0088 and VG) < 0.0038 for k ) 10.

Hence, Âu > 3ni8 - 0.0088 - 0.0039 > 0, and we are done.
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APPENDIX III
(i) Asymptotic Expansion of Ji(ux):

The asymptotic expansion of Ji(ux) is given by

(1) J"(ux) #(+l'l^qtJEu(oiu2k. srlrPåruc(vu*),

uniform with respect to x in the interval (0,-), valid for u > 0 and x > 0, where the

coefficients Eu(() and Fu(() are holomorphic functions in a region containing the real axis.

Explicit expressions for Eu(() and Fu(() are given by

2k

(z) Ek(() = (I p"C-t"'' w2k-,(r),

s=0

2k+l

(3) Fk(() = -Ç't'| i,, q-3'/2 *ru-,*,{t),
s=0

where

(4) t=(1 -x2)-U2,

(5) fr= , þr=-ffiÀr,

(6) wn(t) = vo(t) - i lrr'+ 1) - 2t (r2 - l)vf-,(t) ),

with vo(t) defined by IABR, p. 366, Eqs. 9.3.13 and 9.3.141, and À, and f, by

[ABR, p. 368, Eq. 9.3.41]; see also IOLVI]. Specifically, we have

Eo(() = (,

Fo(() - 2rt:5t3 
Ç''' - #,,

F ,?\ 513t2 - 798t4 + 38516 , l47t + 35t3 ,-1¡2 455 y-2r,r\s/=Tb--Täb -ffiE-s,
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eachvalidfor0 <x < 1. When 1<x< *,(2) and (3) again hold,provided thatthe two-

valued branchs are interpreted using the relations (7.20) and (7.21) given in

ÍOLV?, p. 16l.

To derive the above expansion (1), we insert the uniform expansions Ju(ox) and

Jrr(ux), derived by Olver (see (2.2.2) and, (2.2.3)¡, in Bessel's differential equation

ri(ux) = #t (ux) - !r;{u*),

and get

J,,(ux) - +(*)"'{eçri o*rÇv,,'n * 4{l'()-i 
"-rev"'-}

- t (-z\(J-Êìt'oJait""',,S" ((\h?k* Ai'(u2l3()i I

.irl +J[;f ,J t ,* fr-u""r-'+ --?ø-jonrevu'n]

The term to the left of the frst set of curly brackets can be written as

¿(t-*'fto'
F[ .a)t'

and to the left of the second set as

4 (L-t-\''o(-s--'1"'r
7[ 4aJ tæ)t)'

If we now set

(7) Ek(() = EAk(ç) * Çrn t Cn-,((),

(8) Fk(() = (Bk(() + çrtz t Dn((),

then the asymptotic expansion (1) foltows. The explicit expressions (2) and (3) of

Ek(() and F¡((), respectively, can be deduced from the explicit expressions for

Ak((), Bk((), Ck(() and D*(() given by Olver (see [ABR, pp. 368 and 369, Eqs. 9.3.40

and9.3.461; see also [OLV1]) using (7) and (8).
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(ii) Asymptotic Expansion of j.,r,u:

The following is a brief, formal derivation of the asymptotic expansion of j.,r,u; the

method used is similar in spirit to Olver's method of deriving the asymptotic expansions of

j.,, and j' 
,u 

(see and compare with [OLVI, pp. 343 - 345D.

From (1) it follows that for large o the values of ( corresponding to the zeors of Ji(ux)

satisfy the asymptotic equation

(e) 0 - w(() : Ai(u2ß()Ë 
"uc[vu 

zu * Ail9!73()i .urlllu'n.
k=0 " k=0

Let us denote the corresponding values of ( by (r,u, and set (u,k = cr + q, where

a = u-'ßuy, and q is some quantity whose asymptotic expansion we now determine.

Since W((,r,r) = W(cr + q), from (9) we derive by expansion

(10) w(cr) +qW'(cr) *$*"1o) + "'- 0,

Formal differentiation of the asymptotic series (9) yields by induction

Wt'-)(() = D2- ei1u2ßE¡i E?^(Ç)lr" ¡ ,2m4ß Ai'{uzrrE¡i ú^(ç)lr"
r=0 r=0

*t'-*t'(() = u2- ni1u2Æ(¡i p3'*t((yu 2t * ,2m+2t3 6i,çrzt3()Ë f,^*'(Ç)!u",
r=0 r=0

where

El = En' Fl = Fu'

and

"i'=år'-ït* (r?--t, 
"I.t=å"'-'" 

* (4*,

rl-=rtnït * (Éu'-t, Fi-*t=EÎ* * åt3:
Hence,
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*tt''(o) - ¡2m-4t3 Ai'(a¡)) t^(o)/u",
r=0

(2m+
[;v ""'-1)1cr ) - 1¡2^+z/t Ai'(a¡)i Fr2t*t{a)/ut',

r=0

and substitution of these values in (10) leads to the asymptotic equality

i rir"iru'o * nu'å nl{a)/u2k. #å r¡ùn o. #å {{,,)rr,* + ... - 0.

Since Få(() = E0(() = (, then fftcr) = G. Hence, by reversion of series, we have

ïì-.å # ir'-iå"''''

where, for brevity, we let I = Ërf {ct)lu2k. Thus,
k=0

n - + .ry* + + ...,
ù- D' Ð"

where, since the leading coeff,rcient of f, is cr,

rr = -ü-rFo, rz = -cr-'(F, * tì,Fl *Iq1nfr * inl Få), ....

Expanding fr(o) about the origin, and collecting like terms, we find that

î =1u,,- +[+)"",o {+.å} 
(+)"'" {#.#*.å},'^

The kû positive zero j.,r,o of Ji(x), is given by

(11) iï,r = ux(a + rl) = ux(cr) + urlx'(cr) * un2l''(cr) * ""

From (2.1.2),the expansion of x(() is found to be (cf. [OLVI, p.336])

(tz) x(() = | -z-tßç* *rtoç' * #Çt ffiz''tÇo * "'.

Higher order differentiation of (12), and insertion in (11), leads to the result
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(13) ju,* = ,¡ - z-tß\rr'Æ * t+I"{ry}" ''
u[-eo{+350

u-l + olu-sllr.
zood

Specifically, we have

:rr -n)+ 1.8557571u1Æ + 0.7637l85u-lÆ- 0.r430gz1u-t*"',Ju,l - '

:rr - n) + 3.2446016u1Æ + 3.004r4l7u-l/3 - 0.1906263u-l + "'.Ju,2 - '

To verify that (13) is actually the asymptotic representation of jr,r, we have taken

u* = jrr,r in (l) and used the corresponding value ( = (r,r -D-2l3ak+q to show by

expansion that every coefficient vanishes.

Another quantity of interest is the value J.,CJ,k), whose asymptotic representation is

+

obtained by taking

(=(,¡=u-2l3%+rl,

r"(i,,r) +P{t
In particular, we have

JuC;,r) -

ing value

trÌ

Jr(;,t - -0.1g646u-r{ 1 - t.89927t¡-2ß + 1.84437o-att * ...1.

ùx = jrr,u in (2.2.2) and, using the cor

howing by expansion that

,[+)*F.o]* .,'''(Y.ffi

0.2999tp-r{l - 0.96827D-2t3 + 0.30924t¡-at3 +
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APPENDIX IV

The following is excerpted from [HET3]:

THEOREM l. In the interval [b - p, b * p], suppose f(x) = g(x) + e(x), wher¿ f(x) is

continuous, g(x) ¿s dffirentiable, g(b) = 0, m = min I g'(x) I > 0, and

E =rìâX I e(x) I < min fl g(b - p) l, I g(b + p) l).

Then there exists d zero c of f(x) in the interval such thnt I c - b I I E / m.

ConolLaRv l. In the inrerval fnn -V -p, n7r -V +plwhere p <n/2, suppose

f(x) = sin(x+ y) +e(x), f(x) is continuous andE =max le(x) l< sin p. Thenthere exísts

a zero c of f(x) in the interval such that I c - (nru - V) | < E / cos p.
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