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ABSTRACT
Recently, L. Lorch and P. Szego have shown that the positive inflection points j{;,k of
the Bessel function J (x) are increasing functions of v for k = 1 when v > 0, and for
k =2,3,... when 0 < v < 3838. We show that for k = 2,3,..., jg,k is an increasing
function of v when v 2 10.

Our method involves the use of an integral representation of dj; | /dv given by

diy 120 120 2.
= c J: : dt-f . dt'Ju(lu,k) L

dv i
vk

where ¢, is some positive quantity for k = 2,3,... when v > 1. Asymptotic

approximations as © — eo, complete with error bounds, are found for the integral

J~°° Jﬁt(t) i

Joa2
and for the quantity
2.
JI,()u k) (fixed k).

Using these approximations, we show that for k =2.3,..., dj;} ., /dv > 0 when v 2 10, and
conclude from this result and that of Lorch and Szego that the positive inflection points

Jix Of J (%) are increasing functions of v when v > 0.
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INTRODUCTION

Let jo,l’ jv,2’ ... denote the positive zeros of the Bessel function Ju(x), and similarly, let

j;.),l’ jx'),z’ ... denote the positive zeros of J (x), which are the positive critical points of
J, (). Ttis well-known that when v is positive, both ju,k and j;)’k are increasing functions
of v; see, e.g., [OLVS, pp 246 and 248]. Recently, Lorch and Szego [LOR] have
attempted to show that the same is true for the positive zeros j{;,l, jl')',z, ... of JU(x), which
are the positive inflection points of J (x). They succeeded in proving that this statement
holds for k=1, but for k = 2,3,..., they have proved only that it is true when 0 < < 3838.
The main objective of this thesis is to show that for k = 2,3,..., the statement is also true
when v > 3838, and so conclude that jl')"k is, indeed, an increasing function of v when
v > 0. To settle the case for v > 3838, we begin in the same fashion as Lorch and Szego
by examining the steps in the proof that jn,k and j'D,k are increasing functions of v (v > 0).

To show, for instance, that j . 1s an increasing function of v (v > 0), we merely

differentiate the equation J (j, ) =0 and utilize the identity

2 '
J dJ N
J‘g dx = Z_)i)_{JU(X) ‘L)(x) _ JD(X) ‘U(X) }

S ov ov
to obtain
| oy
; 2
o 2y 1)
dv : v 2 X ’
ok {JU(]D,k)} 0

It is clear, then, that dj_,/dv >0, and so the result for J,, i follows. In a similar manner,

we show that
dJu,k
dv

= CU,k G(J'U,k) 2

» where



2 o 2 )
G(x) =f Jvt(t) dt - Jﬁ(x) = J }_ILt(_th - J EEt(t—)dt - Jﬁ(x) s
0 0 X

and where

2
G, )7 (i"D)J"'(i" )
v,k7 VNV kS TV Kk

Co,k =
is some positive quantity for v > 1. We then proceed to show that G(_,) > 0 when
v 2 10, and so conclude that dj; /dv >01if v 2 10, and hence that j_ is an increasing
function of v if v = 10.

To show that

e 2 oo 2
o= [ 20 f SO
0 e

t t
Jox

is positive for v 2 10, one encounters the problem of obtaining asymptotic approximations

for the integral

oo

I3
F(u,k) = 2 dt as v e (fixed k),
Jok
and for the quantity
Tt ) as v o eo (fixed k).

In this thesis it will be shown that

1 0812634 &)
F0.2) = — - a3 T 12 ’
2v 0 v

where
| 81(1)) 1< 2.086 ifv =10,

and that



0SI(jl ) < gy(v) /2 for all k > 2,
where

0<e,(v) < 0.215 if v =10.
Throughout the thesis, two or more significant figures are given for numbers; the last
significant figure is the result of rounding to the nearest digit except for numbers in

inequalities, which are rounded to obtain the weakest inequality. Now, it is known that

> 2
J(t
J, e =5
0

t 2V

and since F(v,k) < F(v,2) for k = 2.3,..., then

G(iy 0 = o - Fol) - ()
> 5}1—) - F2) - (G
- ().8142/?34 + 8(‘;) , k =23,
v v
where
le(v) I < Iel(n) |+ g,(0) | < 2.302 if v = 10.

From this inequality, one is led to the conclusion that for k = 2,3,...,
G(j; ) >0 whenv 2 10.
The function J (x) has the asymptotic approximation
4C 1/4
J,(0x) ~ —l—[T——E] Ai(?3Y) as v — oo,
- X
uniformly with respect to x in the interval (0,e0), where { and x are related in a one-to-one
manner by the equation

dg ’ 2
&) -2

X

branches being chosen in accordance with the requirement that { is real when x > 0. To

20

n dt, we

tackle the problem of obtaining an asymptotic approximation for F(v,2) = f ]
L2



replace the Bessel function J_(t) by its asymptotic approximation and formally obtain the

integral
[ otcoadeoa,
Co

where

4C 1/4
o) = ( J .

1-x2

The lower limit of integration —CD depends on v and approaches 0 as V — oo. We are thus

led to the consideration of integrals of the form -

I(A) = J ) f(t) h(At) dt
0

with £(t) = ¢*(-t), h(t) = Ai%(-t) and A = v?? in the present case. A detailed treatment of
asymptotic expansions of the Mellin convolution I(X), complete with explicit error bounds,
can be found in [WON1]. The derivation of the asymptotic expansion of I(A) is given in
Chapter 3, §2. The exact relation between F(v,2) and I(A) is given in §§ 3 and 4 of the
same chapter.

Finally, we obtain a bound for Jﬁ( jl')’,k) via a one-term asymptotic approximation of
JD(Ux). In order to determine such a bound, it is necessary to first obtain bounds for the
ZeToSs jl';'k of J'(t). More specifically, it is necessary to obtain bounds for the value C
corresponding to x = j;,}ﬁ). From Bessel's equation

W' + xW' + (x2 - DZ)W =()
which is satisfied, for instance, by W = Ju(x), we find that

1-x2 1
J (vx) - —1T (vx).
1,00 - — T, %)

J{;(Dx) =

Replacing each of J (vx) and J (vx) by their one-term approximations leads to the result

1oxy ~ L% )Ai(x)mC).
X



Tricomi [TRI] pointed out that the asymptotic behaviour of the zeros of a function can be
deduced from the asymptotic behaviour of the function itself. Hethcote [HET3],
moreover, established a theorem for the approximation of real zeros of functions by the
zeros of a comparison function. It is this theorem that we apply, with Ai(p¥ 3C) as the
comparison function, to determine bounds for { corresponding to x = jl';’]Jl). The result is

- 1)-2/3ak M,
where a, denotes the ki negative zero of Ai(x), and where

1N, ! < d /v*? if v > 10,
withd, =0.3743,and d,, <d, <d, Vk22. This result is dealt with in Chapter 2.

One final remark: although only one-term asymptotic approximations are necessary for

our purposes, we derive (see Appendix ITI) the first few terms of the expansions of J (vx)

and j . These are useful not only for assessing the "sharpness" of our error bounds

(by comparing bounds with coefficients) but also for the sake of having them calculated.



CHAPTER 1

AN INVESTIGATION INTO THE MONOTONICITY PROPERTY
OF THE INFLECTION POINTS OF J (x)

1. Introduction

Letj" denote, in ascending order of magnitude, the positive zeros of J'\')(x),

o1 Jp 2
which are the positive inflection points of the Bessel function J, (x). Since it is true that
when v is positive, both jn,k and j{),k are increasing functions of v [OLVS, pp. 246 and
248}, a reasonable question to ask is whether or not the same is true for j{'),k' It is now
known [LOR] that j'1'>,k does increase in v for k = 1 when v > 0 and for k = 2,3,... when
0 <v £ 3838. Here we shall show that the same is true for k = 2,3,... when v > 3838.
Hence, j;'),k does, indeed, increase in © when v > 0. Our method is based on asymptotic
analysis, and the reason is that we are concerned primarily with large (or moderately large)
values of the parameter v.

We begin this chapter by examining the steps in the proof that ju,k and j{),k are
increasing functions of v (v > 0). This will give us an idea of the method of approach for
j'x'),k‘ We apply this method to jl{),k and, in subsequent chapters, follow up with the eventual
result.

2. The Monotonicity of ju,k and jl')’k
Following in the footsteps of Olver [OLVS, pp. 246 - 248], we show that for positive

V, j,x 18 an increasing function of v. Differentiation of the equation T, U0 =0 with

respect to v yields

= 0.

djv .k [ahxx) }

dn+ ov

.1) NGRS -

To evaluate the second term, we use the identity



— 2 2
= X = “2_02 1 #09).

02 J 1) 1) X{Ta (%) To(x) - 1,00 Ty 0}

Since J D(x) is a solution of Bessel's differential equation!

(2.3) KW'+ xW' + (x2-0HW =0

we have

(2.4) x2T0 (%) + xT} (%) + (57 - )] (x) =

Using (2.4) one may readily verify that the derivative of the right-hand-side of (2.2) yields

the integrand on the left. Noting that the right-hand-side can be written as

{ To00) 11500 - T3 (0T - Tgx) [T,(x) - Ty ()] }

L+v L-v

and letting L — v in (2.2), we obtain

2
(2.5) J‘@dx = { D( )aJn(x) _ Ju( )aJD(X)}

It is known (see, e.g., [WAT, p. 404, Eq. (7)]) that

oo v2
J JD(X) dx - _1’— )
h X 2v

and so the integral in (2.5) converges on any interval (0,x), x > 0. Provided that v > 0, the

integration limits in (2.5) can be set equal to 0 and j, ,. Since J, (x) vanishes at Jup We

have
j

¥ 2w J’ 20,9
J. X dx = -5 D(]\) k) .
0 *ox

Then by substitution in (2.1) we obtain

i v,k 2
(2.6) Box _ 20 J‘ 1)
dv X

o {J;GU,Q}Z 0

! There is a considerable amount of literature devoted to Bessel's equation and its solutions; the best-known
reference is undoubiedly Watson's [WAT].



From (2.6) it is clear that dju l</d\) > (), and so the result for jn K follows.

In a similar manner, we show that for v positive, j, , is an increasing function of v.

Differentiation of the equation J, G, ) = 0 yields
e Yo [ 9T5(x) J

2.7) K0y e+ [T

Since J, (,, ) = 0, we have from (2.4) with x =] |
"oLe o 2 )

2.8) 1) = [“/Ju,k ] -1 [5G0

Furthermore, provided that v > 0, the integration limits in (2.5) can be set equal to

0 and j, ,, yielding
j‘;’k T2(x) Ji 3T (x)
ih X - \),k ot [ v X :|
J _X dx = _—21) JU(’U,k) au =i
0 vk

Substitution of this equation and equation (2.8) in (2.7) yields

L s 2

d.]u,k _ Jox 20 J‘ JL(x) dx > 0)

dv 2 2 J2 ity X )
Jok ™ v U(]u,k

Noting that j, ; >v forv >0 [OLVS, p. 246], it follows that dj, ,/dv >0 whenever
v >0, since j, , 2j. ; Vk21. Hence, j | is an increasing function of v (v > 0).

We are now in a position to consider the monotonicity property of j‘1'> K-

3. The Monotonicity of j ', : Initial Procedure
Proceeding in a manner similar to that outlined in §2 above, we begin by considering

the equation J (j;, ,) = 0. Differentiation of this equation with respect to v yields

o din . [aJ,;(x) }
x:j\;,k

CD Wl g * [Tou



From Bessel's equation (2.4), we have

2
1) = - =T00 - (1 : %—2—) 1,0%).

Differentiation with respect to v yields

aJ (x) 101.(x)  2v v2\dJ. (x)
3.2 Do o —1J -1 - -
G2 oV X o0 | X o ( xz) ov

Again from (2.4) we have

2 TG0+ =10

v
1 -y = - ’
2 T,60
and so (3.2) becomes
oly(x) 1 { Ay(x) BJD(x) 27 <2
(3.3) T el Kl e NS - 2T -
If we let
G(x) = [u< ) 2y >aja(")] -,

then (cf. (2.5))

2
(3.4) G(x) = f Jvf(x) dx - 1),

and

, 0J5(x) 1 aJu(x)
(3.5) W) XJU(X){ Gex) - x Jyx) 2 }

Thus, provided that v > 0, we obtain from (3.5) with x = j;') K

o1,
(3.:6) { ,aéx)] L= G
S G To(i,)

since J'x')(j:) k) =O Substitution of (3.6) in (3.1) yields for v > 0,

xTy(x) ——

aJv(x) }



dj,
(3.7) To = Coy G(]D,k) R
where
(3.8) Co =y 2" —e
(o0 Bulig ) Tain

It is known (see [LOR]) that for k = 2,3,...,
(3.9) ¢, >0 ifvo>1.
Thus, to show that for k = 2,3,..., dj'l') kjdu > () if v = 10, we must show (in light of (3.7))

that for k = 2,3,..., '
(3.10) G(j;’) k) >0 whenever v 2 10.

10



CHAPTER 2
THE INFLECTION POINTS OF I, (x)

1. Introduction

In §2 of this chapter, it is shown that J:(vx) has the asymptotic approximation

. 1 4¢ 2
1.1 ox) ~ L A , v = oo,
(1.1) ) = s A as

uniformly with respect to x in the interval (0,e0), where { and x are related in a one-to-one

manner by the equation

2
d 2
(1.2) c[ﬁ] =L

branches being chosen in accordance with the requirement that { is real when x is positive.

Explicit expressions for { in terms of x are given in §2 (see (2.4) and (2.5)). The
derivation of (1.1) relies on Olver's expansions for JD(UX) and J{)(Ux), both valid f‘or
v > 0 and x > 0. Very precise bounds for the remainder terms associated with these
expansions have been constructed by him. Since our work involves the use of these
delicate error bounds, we have included them in §2.

Tricomi [TRI] pointed out that the asymptotic behaviour of the zeros of a function can
be deduced from the asymptotic behaviour of the function itself. The goal of this chapter is
to establish bounds for the value { corresponding to x = j{;,kh). The asymptotic behaviour
of the zeros j\';’k of J (1) can then be deduced from these bounds. To determine such
bounds, we apply a theorem! of Hethcote (see [HET3]; see also [HET1]) which was
derived from a method of Gatteschi [GAT]. This theorem approximates real zeros of
functions by the zeros of a comparison function. The comparison function in our case, as
evidenced by (1.1), is the Airy function Ai(v¥3(). The final result is

(1.3) {=v"Pa + Moo

1 This theorem is duplicated in Appendix IV.

11



12

where a denotes the kI negative zero of the Airy function Ai(x), and where
(1.4) I, ! < d /v*? ifv 210,
with d, = 0.3743, and d,_, <d, <d, Vk 2 2.

The bound on Mok is established in §8§3 and 5; the cases k = 2,3,...,9 are dealt with in
§3, and k > 10 in §5. The reason why we split these cases in such a fashion is simple: for
k =2,3,...,9, accurate numerical tables of values associated with the Airy function exist!,
and so these cases can be dispensed with numerically. On the other hand, the cases k = 10
need to be treated in a different manner. The manner in which we treat these cases is via
asymptotic analysis, since we are interested in values of k — oo,

The bounds for { corresponding to x = j;,du for the cases k = 10 can be determined by
again applying Hethcote's theorem. In order to do so, it is necessary to first determine
bounds for the zeros a, and ai( of Ai(x) and Ai'(x), respectively. In §4 of this chapter, we
establish a bound for a, (a bound for a, is already known.) Furthermore, in our
investigations we find it necessary to compute bounds for the.value P = % (a_-a.,) and
for the values o, = —(ak - pk) and Bk= -(a.k + pk). These bounds are established in §4.

We begin now with our discussion on J:)(DX).

2. Derivation of the Asymptotic Approximation of J{;(\)x):
Olver's Error Bounds :

Bessel's equation (1.2.4) with x replaced by vx yields

(2.1) J(ox) =

2
X 1 .,
5 JD(UX) - '&JD(DX).

X
From (2.1) the asymptotic approximation (1.1) is obtained by replacing each of J, (vx) and
J,(ux) by the leading terms of their uniform asymptotic expansions. The uniform

asymptotic expansions of J Lux) and J {)(Dx), valid for v > 0 and x > 0, are given by

1 See [ABR, pp. 476 - 478). These tables are in part the work of F.W.J. Olver.



13

o) A AL
(2.2) T, (vx) ~"‘1‘E{A( ZBC)[ 11)2 + 12)4 + o
Ai'(umC)[ 1(C) }
and
: y(©) | ALY [
(2.3) J,(0x) ~ o { > C,(0) + R

V)

D D
+ AT'(0?PE) [1 + l(f) + 25? + oo ] }
v

respectively, where

2/3
1 1-){2)1/2
(2.4) (=12 J LX) g
" 2/3

3 1+ (1 2)1/2 3 12
2 X)) o 31-.x2 <
5 In " > (1-x9) , O0<x<1,

il

2/3
2 1)1/2
(2.5) (= - %—JﬁQ‘-—T——dx
1
1 2/3
- -{%(x2 1) ;seclx} , x> 1,
4C 1/4
2.6) <p<§)=( 2] ,
1-x

(2.7) W(0) = 2/{xp(0)}.

The coefficients A (L) and B(C) in (2.2), and C,(€) and D (C) in (2.3), satisfy a set of

recurrence relations, and are holomorphic functions in a region containing the real axis.



These results are due to Olver, and can be found in [OLV2] and [OL VS, Ch. 11]. Precise
bounds for the remainder terms in each of the series (2.2) and (2.3) have also been
constructed by him; see [OLV4] and [OLVS5]. To state these results, we first recall from
[OLV3, p. 750] the modulus functions M(x) and N(x), and the weight function E(x)
associated with the Airy functions Ai(x) and Bi(x); see also [OLVS, p. 395].

E(x) = exp(3 3/2) x>0,
2.8)
E(x) = 1, x <0; E'lx)=1/Ex),

M(x) = (E%(x) Ai%(x) + E2(x) Bi?(x)} 2,
2.9)

N(x) = {E%(x) Ai(x) + EX(x) Bi%(x)} /2,
(2.10) A =(r£1°a§){7t Ix1'2 MZ(X) } = 1.430,
@1y p-ma r M0} = 1 (TOLV3, p. 751]).

Olver's results then state that

(2.12) T (ox) = —1 ¢©) { Aiv 2/392 A (C)

45, v

A 2/3
i C)E B, | Mlm’c)},

s=0 D
where

(2.13) 15, I_Zexp{2 . (4B }-2“'1*11,00,00(!@11’213,1),'

14
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MR (o 12 G (G"B,)
(2.14) le, (001 SWCXP{T U, . (G Bo)} ol
and
oo 1 w® AP GO |, Cu©-EB,©)
(2.15) h(ox) = - 5, v { 23 Sz_; 2 v2"
(C) ¢'(0) Ean+1,1
+ Al (1)2/32;)2 n2n+1,1 + W 1)2-;3 }’
where
12
2N 2 12 CUQ«’ (6" By)
(216) |n2n+1,1(U:C) I < Mexp{_’l)_ ‘U'C’oa (It-'l BO)} UZTH—]

In (2.13), (2.14), and (2.16), we have used ‘Ua b(f) to denote the total variation of a
function f({) on an interval (a,b). Numerical computations of the following values are

found in [OLV2, p. 9] and [OLV4, p. 207]:
12
.17 v, T BO(C)} = 0.1051,

1/2
(2.18) Y, = ZKW[M,w(ICI B,) =0.30.

For our purpose, it suffices to take n = 0 in (2.12) - (2.16). Thus, (2.12) gives

219) T = “’E% [A i0?P) +e, (v, z;)}
1 v

and since [OLV1, p. 342]

220)  Cy0)=x(® + LBy,
where

(2.21) x(©) = ¢'(Q)/9(0),

(2.15) gives



. _ 1 2 sia 213 X(C) 2/3
2.22) Jyon) = - e {AI(D O+my Ao [AI(D 0 +e, }}

Substitution of (2.19) and (2.22) in (2.1) leads to the result

" 1 1 4 GO .
(2.23) Ljon) = 4 5. 3% P00 Hu_@_} {5.1(’1,2/30 +em}

ig) {AI W20 + n, }}

where

224)  HO = 30%Q), G(L) = HOX®) = 309" (D).

3. Bounds for C(j{; /) ko= 2,3,..9

Provided that { does not vanish, (2.23) can be written as

¢*©) GO |1,
(3.1) (1+ 81)01/3 i@ Jox) = { 2 H:AI(DZBC) +e& ]

.\ H(0) {Ai'(uwC) +T]1,1]

04/3 Z;

= Ai(W?P0) +&,(0,0),
where |
(3.2) g0, =g, 0,0+ (? [Ai™D) + &, ,0,0)]
H(E)

+ ang LAY @0 +n, 0,01

In view of (2.17) and (2.18), (2.13) simplifies to

(33) I 51| < 2 e0.30/‘0 0.1051 < 0.22 lfD > 10

LY LY

For { < 0, we also have from (2.14)



2 e939°(0,1051)v™!

(3.4) le, 01 <

on account of (2.11), and from (2.16),
(3.5) Im, (01 < 2e%%0.1051)0" NO?PE), ¢ <0.

Since @({) is a nonnegative increasing function in (-e0,0]!, and ¢(0) = 213 we have

from (2.24)
(3.6) H(E) < (/)2 = 0.794, £<0.
Furthermore, since | ¢'({)/o({) | <0.160, [OLV2, p. 10] ~00 < { < oo,
(3.7) G| < %‘39-@2(@) < 0.0802%3) = 0.127, £<0.

By (2.9) and (2.11),

(3.8) | Aix) 1 < M(x) < (/T ()"}, x < 0.

Moreover, we find (see [OLV3, p. 750, Eq. (2.07)]) that

(3.9) | Ai'(x) | £ N(x), x < 0.

Taking absolute values of both sides of (3.2), we find by a direct substitution of the

bounds (3.4) - (3.9) that, for { <0,

2¢"3°0.10510" | 0.127  1+2e%%°0.1051)0"!

(3.10) le,(0,0)1 <

3 in (—U2/3O1/4 VB30 I (_02/32;)1/4

___M_ 0.30/\) -1 2/3
+ \)2/3(-1)2/3@[1 + 263010510 | NW¥3()
_ 1 ]0.2102¢%%
02/311/4 ﬁuug

L 1+02102¢%%y 1| 0.127 0794 N¢-0)

TI/Z 502/311/2 T1/4 )

where, for brevity, we have set

(3.11) 7 = -3¢,

1 See Appendix I
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The bound (3.10) can be further simplified by noting that for T > 1, 7 #N(-1) < 0.60
[OLV3, p.752]. Then,forv=landt211,

0.127 + 0.794 N(-1)

< 0.072 + 0477 < 0.55,
502/311/2 'El/4

and so

1 0.2102e%300 955 0.2102¢%3%°(0.55)
(3.12) |83(U,C)|_<.02/311/4{ 1 +’cl/2+ TR

1 {0.55 0.24e°-3°/°}

—_— +
V2B1A ) 12 NTE

Let us now set vx =j'1'),k in (3.1). Since J‘l')(j;;,k) =0,
(3.13) 0= Ai(L?) + &,(0,0).
If, in the usual notation, the ki negative zero of the Airy function Ai(x) is denoted by 8y

we deduce that the corresponding value of { is given by

(3.14) L=va +1,
where
(3.15) n,, = 0w *?) (fixed k).

This result will be made more rigorous in the following discussion. Also, since this value
of { depends on v and k, we shall henceforth denote { by C;k Furthermore, for brevity,
we shall suppress the dependence of My, Onv and write 1} ok simply as 1,..

Therefore, let

(3.16) Coxe = LGy 0) =0 Pa + 1,

We now establish a bound for { In order to determine such a bound, we consider

vk’

equation (3.1) with V3 € as the independent variable, and write

(3.17) f?E) = Ai(?E) + £,(v,0),

1 That T > 1 is not really a restriction for our purposes, as we shall see later;
cf. the remarks following (3.19).
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where

2.3
(3.18) f?3) = (1+61)u1/3 %Jg(nx)

is a continuous function in -0 < { < 0.

Then, on the interval I, = [a, - p,, a, + p,], where p, > 0 is chosen small enough so that

m, = rr}in | Ai'(x) | > 0, we have —1)2/3C 2-(a + P = Bk, say, and so from (3.12),
k
_ 1 0.55 | 0.24¢%30P
(3.19) Ek——mI%X|83(U,C)I < W{Bllz + D1/3 ,
k k

provided that Bk >1,v=>1.

Let us now restrict our attention to the case k = 2, and choose Py = %(az - a'3).
Then, since a, = -4.08795, ag = -4.82010 [ABR, p.478], p, = 0.18304, and so
B, =3.90491 2 1. Hence the bound (3.19) on 63(D,C) applies, provided that v = 1. If
v 2 10 and p, = 0.18304, (3.19) gives

(3.20) E, = max | £5(v,0) 1 £0.27965/0* < 0.06025. -
2

Furthermore, from tables of Airy functions [op. cit., p. 477],

(3.21) m, = n}in I Ai'(x) 1 =0.74713 > 0,
2

2
(3.22) E,<M,= min {IAi(a2 - pz)l, IAi(a2 + pz)l} =(0.14359.
Since a, is a zero of Ai(x), and rr};n | Ai'(x) | >0, then Ai(a2 - pz) and Ai(a2+ p,) are of

opposite signs. From (3.17) and inequality (3.22), we further deduce that f(a, - p,) and
f(a,+ p,) must also be of opposite signs. Hence, if v 2 10, there exists at least one zero
v, of fv*) in the interval I, = [-4.27099, -3.90491]. If we now set

UZBQ = nmCUJ in (3.17), we obtain

L AiaN23
(3.23) 0=Ai(v Cu,z) + 83(1),[:,1)'2).
Setting

2/3 _ 2/3
(3.24) V 2;1),2 =a,+ 07N,

we find from (3.23) and Taylor's formula [op. cit., p. 14],

19



(325  0=AIE) n, +e,00.8, ),
where éz € (a,-p, 2, +p,) C I,
Since Ai'(x) % 0 on 1,, we have from (3.25),

0 0.27965 1 0.3743 .
(3.26) 10PN, ISEy/m, € SSERS e < S5 0210,

by virtue of (3.20) - (3.22). Hence, from (3.24) and (3.26),

(3.27) Lyp =072 0, 41y,
where
(3.28) In, | < d,/v* ifv210,  withd, =0.3743.

By a similar argument, numerical computations show that, with the choice

Py = %(ak -a,. ), then for k=34,.9,

(3.29) Lo =0 P + 1y,

where

(3.30) In < d /v, if v = 10,

with d,=0.37430, d,=0.28836, d,=024212, d,=0.21239,

d,=0.19131, d,=0.17540, d;=0.16287, dj=0.15268.
The values which are necessary in these numerical computations, namely, a, ak'+1, P>
E;, Mk and m,, are compiled in a table which we exhibit later (see TABLE 1 below); here,
E, =v>E , where E_is given by (3.19), M, = max({lAi(a - p,)l, IAi(a, +p I} and
m, = n};n | Ai'(x) l. The cases k = 2,3,...9 are taken care of in this manner due to the fact
that accurate numerical tables of values associated with the Airy functions exist for the
range of argumeﬁts k =1,2,.,10 [op. cit., pp. 476 - 478]. For the remaining cases

(k = 10), we must proceed in a slightly different manner. The approach we take is again

via asymptotic analysis, since we are interested in values of k — oe.
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Our conclusion will again be given by (3.29), with 1, bounded by d, /v

v 2 10, where {d, } forms a monotonically decreasing sequence. The proof of this fact

will be exhibited in the next two sections.

4/3

*

, valid for

k B A Py E, M, m,
2 4.08795 4.82010 0.18304 0.27965 | 0.14359 | 0.74713
3 5.52056 6.16331 0.16069 0.23158 0.13570 | 0.80309
4 6.78671 7.37218 0.14637 0.20447 0.13007 | 0.84450
5 7.94413 8.48849 0.13609 0.18642 | 0.12575 | 0.87771
6 9.02265 9.53545 0.12820 0.17326 | 0.12227 | 0.90563
7| 10.04017 | 10.52766 0.12187 0.16309 0.11936 | 0.92981
81 11.00852 | 11.47506 0.11663 0.15492 0.11688 | 0.95120
91 11.93602 | 12.38479 0.11219 | '0.14816 0.11472 | 0.97043
TABLE 1.
4. Bounds for Zeros of the Airy Functions Ai(x), Ai'(x)
In his paper [HET2], Hethcote has established the bound
3 2/3
(4.1) a = -[%(41(- 1)] (1+0)),
where
-2
4.2) lo | < 0.130{—%7-5- (4k - 1.051)] ifk>1,

for the zeros a,_of the Airy function Ai(x). He further points out that the bound on ¢, is
quite good since 0.130 is only slightly greater than the coefficient 5/48 of the next term in

the asymptotic expansion of a,. In a similar manner, we shall establish the bound

2/3
4.3) al = -[%—“(41(- 3)] (1+ ),
where
-2
(4.4) It | < o.155[~3—§’-‘- (dk - 3.0382)} ifk>2,

for the critical points a, of Ai(x). The bound on 7, is also quite reasonable since 0.165 is

only slightly greater than the magnitude of the coefficient -7/48 of the next term in the

3



asymptotic expansion of a, (cf. [ABR, p. 450, Eq. 10.4.95]). The derivation of this
bound now follows.

The asymptotic expansion of Ai'(x) is given by
st X 1/4 : T i1
(45 Al = X={sin €-FIPO) + cosG- DRG]
where

(4.6) £=2x32,

4.7 PE) ~ Y (A, ), QE) ~ Y, (A, @EFT,  v=25,
s=0

s=0

2 2 2 2 2 i 2
(4.8) Av) = (4v” - 114V 3')8s {41) (2s-1) }; ‘
S:

see [OLVS, p. 394]. The first few coefficients of A (2/3) are given by

AO(2/3) =1, and
(4.9) A(213)=17]/72, A,(2/3) =-455 /10368
A4(2/3) = 95095 / 2239488, A,(2/3) = -40415375 [ 644972544.
It is known [Ibid.] that the error in truncating the expansions for P(§) and Q(£) is less than

the first omitted term, provided that the following term is of opposite sign. Hence,

455 1
where
40415375 1
(4.11) 18,1 < 644972544 ¢4

@12 Q® = E§®),

where

@13) 5@ < é

22



We now apply Hethcote's corollary! [HET3, Cor. 1, p. 147] in order to determine a

bound for ai{. To this end, let

@14y ) = TAC)
X

<
I
ala

as in the corollary. Then

sin(§ + yPE) + cos(€ +y)Q(E)

(4.15) f(&)

sine + )| 1+ 7oa22 8" +8,0) | + cos&+ W ®

in view of (4.10) and (4.12). Furthermore, (4. 15) can be written as
(4.16) f(€) = sin(€ +y) +&(&)
where

71 455 1 40415375 1
(4.17) 1881 = =3 ¢ " 103687 * 644972544 &

in view of (4.11), (4.13) and the fact that sin x and cos x are bounded in absolute
value by 1.
If £ > 3.88, then from (4.17), 1 8(§) 1 £0.02825. If p = O.Q3, then
= max|8(E) | <0.02825 <sin p = 0.03.

Hence, 3 a zerod_ of f(€) in the interval |

[nmt -y - p,nx - ¥ + p] = [n + w/4 - 0.03, nx + n/4 + 0.03] if n = 1. The assumption
that & > 3.88 is justified, since d1 e [3.89, 3.96]. Note also that since
a, = -1.01879, a, = -3.24820, then d, = F (-a;)*?. Furthermore, on the interval,

£ 2> nx + w4 - 0.03, and so

2 3.88(0.02825) 1
- <E <
Id - (nm + m/4) | /cos p o 1/4. 003 c0s(0.03)
or equivalently,
(4.18) Id_-(m+7/4)1 < 0.1097/(nm + /4 - 003) ifnz=1.

1 For a statement of this corollary, see Appendix IV.
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If we now compare the zeros of Ai'(x) to those of f(§), we find that

_ 2 v \3/2
(4.19) d =3 (-aml) )
Thus,
v \32 3T 3
4.20) | (-an+1) -3 dn+ 1Dl - (0.1097)/(n + 0.24045).
Hence,
(4.21) a' )2 =2Z@n+1)+1*
. n+l 8 n+1’
where
3 )
(4.22) T :+1 | < o (0.1097)/(n + 0.24045) ifn21,
and so
3 o 2/3
(4.23) a’, = [—8£ (4n + 1)} a+z_ )",
where
~ In
4.24) I’cmll = IT:+II/{§—(4n+1)}
2
3
< 0.2469[ g (4n +0-9618)] : nxl.

Ifn>1, (4.24) gives|T 41 | £0.00723 and so, by the Mean Value Theorem,

2/3

425) -’ =[§g7£(4n+1)] I+t ),
where :
2
4.26 e 1< 2[— 11702469 [ 3% (4n + 09618
(4.26) Tn+1—§[m37‘2‘3'](- )| g (n+0.9618)
-2
31 .
< 0.165| 3% @n +0.9618)| o2 1.

The result (4.3) - (4.4) now follows by replacing n by k - 1 in (4.25) and (4.26).
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With the bounds for a, and a,_established, we are now in a position to determine a
bound for the value
(4.27) P .=+ -a).
It is known [HET2, p. 73] that
2/3

3
(4.28) a, < [?’“ (4k - 1)]

Hence, from (4.27), we obtain

2/3

3w T 1 7"
(4.29) 4pks[—g-(4k)] “HE] (1+Tk+1)—[1v-7{l€] } k>1,

using (4.25) and (4.28). By the Mean Value Theorem, simple estimations yield

2/3

[“41_1(] < 1+%le€, k> 1,
and
(1-—1—]2/3> 1--2.-[1-—1—]-1/3—1-> 1.2_1 _ k> 1
k) 3 k]| WS 3A-1 =
Thus,

2/3
3mk 4 1 1
(4.30) 4pk < [——2 J {3 PR + (1 + 6k)1k+1}.

Hence, if k 2 10, (4.26) and (4.30) give

2/3 21
3rk 4 1 61 3n
< | = — M ==
4pk _( J {3 1 + 60 (0.165)[ 3 (4k+0.9618)] }

2/3
< | 3nk ] 1.3365
"2 Ak -1

< 0.964k 153,
and so '

(4.31) p, < 0241k if k > 10.
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In what is to follow, we shall further require bounds for the quantities o, and ﬁk
defined by
(4.32) o = - (3 - ps Bo= - @ +pYs
and shall now establish these bounds. From (4.27), we have
(4.33) By = _%ak+4lak'+l'
From (4.1) and (4.3), we find that
2/3 23

(4.34) B, = %[%’5(41(- 1)] (1+0,) - %[38—“(4k+ 1)} (I+1.,), k=21,

with bounds for o, T, given by (4.2) and (4.4) respectively. Writing the second term in

square brackets as 3;3_n 4k -1+ —12 , (4.34) becomes

2/3 2/3
435) B, = %[%’i (4K - 1)] {5(1+ ) -[1 + 2o } (1+7,,,) }
From Taylor's formula, we have
(4.36) 1+ = 1+2x+3(1+8)*Px 0<E<x,
and so
2 17 4 1

(4.37) [1+m] =1+ 2Tt e
where
“38) el S p——;, k2 1.

(4k - 1)

Substitution of (4.37) in (4.35) yields

1 4 1
ZBk{5(1+ O'k) - (1 +'3Tm + Ck)(1+ Tk+l)}

il

(4.39) B,

_ 1.1
= B (1- 337 + 10

where
2/3

@iy Bo=[Eacy]
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and
5 1 1 4 1
(4.41) b =70- 76 7L+ 357 te) Ty
Hence,
3/2
232 2537, 1 1 .
(4.42) 3 P "3Bk[ 3 k-1 ”k)

Considering each of the bounds (4.2), (4.4) and (4.38), we find that

([ 8/3e]
o1 < 2130 3"2 < 004 k> 1,
(4k - 1.051) (4k - 1.051)
2 .
43 L g 1< 219 B o om0 k>1,
T @k +09618)° (4K - 1.051)°
o <41 _c4 1 k21,
_ 9 (k-1 7 (@k-1.051)
and so, from (4.41),
5 1 1 4 1
4.44) | },Ll’f I < Z!le +Z'|Ck| +Z'(1 + YRy + ICkl) ITk+1l
< 0.2584 - 0.040 - 0.014 . Fk>1
(4k - 1.051) (4k - 1.051) (4k - 1.051) .
Furthermore,
(4.45) Lk 1< 0.260/(4k - 1.051)% if k > 10.
If we now let
~ 11
4.46)  He=-3 T oK
then
(4.47) lﬁk I £0.341/(4k - 1.051) < 0.00880 if k> 10.
Hence, Taylor's formula applied to the last term on the right-hand-side of (4.42) leads to
2032 23200 1 1
(4.48) 3Bk = 3Bk {1 24k-1+uk)’

where
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(4.49) lp I < Iu;*;' + 8(1 0.00880) /2 fi

0.4338 L 10
= (4k - 1.051)? =0

in view of (4.45) and (4.47). Recalling now the definition of Bk given in (4.40), we have

2 532 .
(4.50) §Bk hp | < 0.3412/(4k - 1.051)  if k2> 10,

and so from (4.48)

2 a32 _ 3n 3x
4.51) §Bk = km - vy + S +62(k),
where
(4.52) | Gz(k) I £ 0.342/(4k - 1.051) if k 2 10.

In a similar manner, we establish a bound for o, where, again from (4.27),

3 1,
4.53) o =-3a.-7a,

Following exactly similar steps as above, we find that

(4.54) %— o = %—Bi’z(l + %ZI(LT g )3/2,

where B, is defined by (4.40) and

(4.55) M =30+ e + 71+ 507 +e) T ..

Using the bounds given in (4.43), we have

(4.56) Ml = (élk()-.zll.(l)il)2 * (4k (—).(1)f1(§)51)3 * (4k‘(—).(1).1(;151)4 k=1,
SO

(4.57) Infl < 0213/(4k - 1 051)? if k> 10.

If we let |

458) i =-3m7+ k.

then

(4.59) |7, 1 <0.339/(4k - 1.051) <0.00871 if k2 10.
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Hence,
a3 odgly o)
where
(4.61) in | < %lngl + %(1 - 0.00871) 2 2
< 03028 if k > 10.
(4k - 1.051)2
Finally, we have
@6 2a¥ =kn+L- 38 4900,
where
(4.63) 16,(k) | < 0.286/(4k - 1.051) if k>10, -

in light of (4.60), (4.61) and the definition of B in (4.40).

5. Bounds for ((j; ,/v), k 2 10

Our goal now is to show that for k = 10,

(5.1) Cose =V 0 + 1y,
where
(5.2) In | < d /v if v 2 10,

with {d,_} forming a monotonically decreasing sequence.
The cases k = 2,3,...,9 have been dealt with in §3.

As in §3, let us consider the interval Ik = [ak “P At pk]. On this interva'l'
¥ > -(a_+p) =B,. From tables [ABR, p. 478] we find a,, = -12.82878. Hence,
from (4.31), B, 2 -a , - 0.241/10'% 212716 if k 2 10, and so the bound (3.19) on
ES(D,C) applies, provided that v 2 1. If v 2 10, then for k = 10, B;(/z > 1, and sb (3.19)

gives
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1/4
(5.3) B, =maxle;0.0)| < 0.1433/B, .

We shall now show that

1/4 *

(5.4) M, = min {IAi(-o ), 1AI(-BI } = 0.2045/B, if k> 10,

and so conclude from this inequality and inequality (5.3) that
(5.5) E, < M, for all k = 10.

To establish inequality (5.4) we consider the asymptotic expansion of Ai(-x) given by

(5.6) M) = —p{eos® - I+ EO] -sinC - HE®) |

T X1/4

cos(%xyz -2y + B

- ’

JT x4
where
5.7) E®) = cosE-7) E,®) - sin-1)E,®), £=2x",
with
(5.8) 1E,®)1 < 1A,03) 18" = 5E7,
(5.9) 1E,®)1 < 14,3182 = 52282,

These results are given in Olver [OLVS, p. 394]. The bounds (5.8) and (5.9) are the
magnitudes of the first omitted terms in the expansions of P(€) and Q(&) given by (4.7)
with v = 1/3 replacing v = 2/3; cf. [Ibid.]; also compare with the asymptotic expansion
of Ai'(x) given in §4. From (5.7), we find that

(5.10) IEE)I < IEl(&)I+I§2(§)I < 0.0024 if £ = 30.

: 3/2
If we now set x = B,_in (5.6), where B, is defined by (4.32), then § =&, =%Bk/ .
From (4.52) we have
5.11) 16,1 < 0.0088 if k > 10.

Using (5.11) we find from (4.51) that

12 24" 2 10n - 3% -0.0088 > 30, k> 10.



Since cos(kn + £) =cos kn cos £ - sinkm sin £ = (-D¥cos £ Vke Z,

then from (4.51)

(5.13) cos(!ik -w/4) = cos[(k-1)w + 3w/8 + Oz(k)] = # cos[3rn/8+ 62(k)].
But now, from (5.11),

(5.14) 1.1692 < 37/8 +6,(k) < 1.1869 if k = 10,
and so

(515 12 lcosGB, -E)1 > cos(1.1869) 2 03745  ifk210,

In light of (5.12), inequality (5.10) applies, so (5.6) with x = Bk yields

ICOS(ik-%)I-'E(i)' . 0.2099
1/4 T glA

iT By By

if k > 10,

(5.16) TAIB) T 2

by virtue of inequalities (5.10) and (5.15).

If we now set x = &, in (5.6), where o is defined by (4.32), then § =§,_ =2}/

Proceeding in a similar manner, we find that if k > 10, (4.63) gives

(5.17)  18,(k) 1 < 0.0074,
and so
(5.18) 1 2 lcos2 0 -£)1 = Icos[-3n/8 +6,(0] | 2 03758 ifk>10,

in view of (4.62) and inequality (5.17). Furthermore, since o, 23, , then¢,_ = 232 > 30
o =Py k=3 %

if k 2 10 (see (5.12)), and so (5.6) with x = o yields
(5.19) | Ai-o,) | 2 0.2106/00/* if k 2 10,

by virtue of inequalities (5.10) and (5.18). Moreover, from (4.32), we deduce that

a, =P, +2p,, and so

k
-1
2
(5.20) | AiGog) | > 02106 {1 + Bpk} :
By k

Recalling that a,,= -12.82878, we have from (4.31),
B, 2B;o=-2,0-Pp212 Vk210. Thus,
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-1
, 0.2106(1.0187) _ 0.2067
(5.21) LAi(-o) | 2 A 2 =50

Bk Bk
Hence, (5.16) and (5.21) together imply the result (5.4), and consequently, (5.5) holds.

whenever k = 10.

If we now choose p, as in (4.27), then

/4

(5.22) m, =min| A'(x) | 20.5174 B,

provided that k 2 10. To see this, let us again consider the asymptotic approximation of
Ai'(-x) given in (4.5), with the coefficients P(§) and Q(§) given by (4.10) and (4.12),

respectively. Specifically, we have

(523)  Ai(x) = %f—f(&),

where £ is given by (4.6), and f(§) by (4.16).
If we set x = B, in (5.23), then &=, =2B,"" Since sin(kn + £) =  sin £ Vke Z,
3/2
then sin(%-[3 - ;—-‘-) =+ sin[371/8 + Gz(k)], in light of (4.51), and so

. 232 ¢ : .
(5.24) 1 2 Isin(3 Bk -7) 1 2 sin(1.1692) 2 0.9204 if k 2 10,

by virtue of (5.14). Furthermore, since & = 2B, ~ > 30 for k 2 10 (see (5.12)), then

(4.17) gives
(5.25) 18¢&)1 < 0.0033,

and so we obtain from (5.23) with x = B,

B1/4
(5.26) AR 2 “f:

(0.9204 - 0.0033) > 0.5174B. " whenever k > 10.
P k

In a similar manner, if we set x = o in (5.23), we find that
ol/A
(27 1A > k- {isin(-3/8 + 0,400 1-12®) 1} 2 0.5177/*

in view of (4.62), (5.17) and (5.25). Furthermore, since o, 2 Bk Yk, we have

1/4

(5.28) lAI'Gay) | 2 0.5177[3k whenever k 2 10.
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Since it is known! that for k 2 10, a ', <-o, <a, <-B, <a;, inequality (5.22) now
follows from (5.26) and (5.28).

Since ak is a zero of Ai(x), and rr}in | Ai'(x) | >0, then Ai(a.k - pk) and Ai(ak+ pk) are of
opposite signs. From (3.17) and inequality (5.5), it follows that f(ak— pk) and
f(a + p,) are also of opposite signs. Henc¢, if v =2 10, there exists at leést one zero
0P | of f(v?0) in the interval I If we now set v2°L = v?°L  in (3.17), and let

v =a_+v*n, then from Taylor's formula,

(5.29) 0 = Aig) v n, + e0.8, ),

where &k € (ak Pt pk) c Ik. Since Ai'(x) # 0 on I, we thus have, for k = 10,

23
(5.30) v | < E /m,
<1 ]055  0.24¢%319 1
w23, | .2 10 [os174

if v 2 10, by virtue of (3.19) and (5.22). Furthermore, frc;m (4.31) and (4.32), we h'ave
B, 2B, 212716 Vk 210, and so

(5.31) In | <d /v*P if v > 10,

where d, =0.5200/ B> < 0.146 for k 2 10.

It is now clear that {dk};’;w forms a monotonically decreasing sequence, and so our goal
(5.1) - (5.2) has been attained. Furthermore, in view of (3.30) and (5.31), the result
(1.3) - (1.4) now follows.

1 For a proof that a' <-0 <a < -Bk <a fork > 10, see Appendix II
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CHAPTER 3
THE MONOTONICITY PROPERTY OF j;,k
1. Introduction
The goal of the present chapter is to prove that for k = 2, j{;’k is an increasing function
of v whenever v = 10. As noted in Chapter 1, to prove this result, we must show that for

k =23,., G(j\')’ k) > 0 whenever v 2 10, where G(jl')' k) is determined by (1.3.4).

Specifically,
Jax 2
1, (x) 2 .
(1.1 Glig) = | “S=dx - TGy
J0 .
2 2
(™ Jy(x) = Iy(x) 2 .
= [ 2 - J' % gx - T30, -
Recalling that
2
= Jy(x) 1
J; < dx = TR
and setting
2
J
(1.2) Fuk) = r “f(x) dx,
j‘l;,k
we have from (1.15
1.3 GG" ) = - - Rk - 1§
( . ) Ou,k) - 2’1) - (Da ) - D(]D,k)'

To show that (1.3) is positive for v 2 10, we encounter the problem of obtaining
asymptotic approximations for the integral F(v k), defined by (1.2), for large v and fixed
k, and for the quantity Ji(j;’k), also for large v and fixed k.

Sections 2, 3 and 4 of this chapter are dedicated to determining the asymptotic
behaviour of F(v,2) as v — . From (1.2), it is clear that F(v,k) £ F(v,2) Vk 2 2, since
Fodr1 2y
Section 5 is dedicated to determining the asymptotic behaviour of Ji(j&k) as v — oo,

Vk. Hence, it suffices for our purposes to consider only the case k = 2.
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To determine the asymptotic behaviour of

o 2
F(v,2) = J " J"t(t) dt,

Ju2

we replace the Bessel function J (1) in the integrand by its asymptotic approximation

(2.2.19) and formally obtain the integral
= 2
[ o'co At ac,
&

where @(C) is defined by (2.2.6). The lower limit of integration Zv depends on v and
approaches 0 as L — o (see §4; specifically, compare with eq. (4.7)), and so we are led to

the consideration of integrals of the form

(1.4) 1) = rf(t) A dt,
0

where A is a large positive parametre, and f(t) is a C™- function in 0 < t < ee. Section 2 is
dedicated to the study of the asymptotic behaviour of the integral in (1.4). To determine
this behaviour, we apply a recent result in asymptotics dealing with the treatment of
asymptotic expansions of Mellin convolutions (of which (1.4) is a particular example),
complete with explicit error bounds, which can be found in a paper by Wong
(see [WONT]). Section 3 then applies the result of section 2 to a specific integral, namely,

the integral
F,(v) = L 9*-0) AP dL .

In this case, A = 23 is the large positive parametre, and f(t) = (p4(-t) is the C™- function
in (0,e0).
Section 4 establishes the relationship between F(v,2) and the function F, (v) studied in

section 3. It concludes with a bound for F(v,2), and the result is
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1 0812634 &)
(1.5) F02) = o= - =7+

where ! t—:l(\)) | £2.086 if v = 10.

In section 5 we determine bounds for Ji(j&k) via a one-term asymptotic approximation
of JD(DX) given by (2.2.19). The result is A
(1.6) 0 < LG < g0 /v k =23,.,
where 0<e,(v) <0215 if v 2 10.

Section 6 concludes with the fact that G(]"‘;,k) > (0 whenever v 2 10, and realizes the

goal of this thesis and that of Lorch and Szego, namely, to show that fork =1,2,3,...,

J; 18 an increasing function of v whenever v > 0.

2. The Asymptotic Expansion of I(A)

It is well-known that

. ) il o
Ao = L [E[HD @) + oD |,

where { =%z3/2; see [ABR, p. 447]. Hence, we may write
(2.1) AiY(-z) = h,(z) +hy(z) + hy(2) |
with
2 2
hy(2) =2 63 [H‘f,ﬁ(&)] , hy(e) =& &7 [ HOO | |
and "

1) 2
hy(2) = ZH O HLO = 25,0 +%,0].

Furthermore, since

HY(2) = 1, +i Yy, Hy(2) = Hy (2),

we have



- 2 2
0 2

H, ()] +|H, @) 2[112,(2)-Y3,(z) ]

and

. 2 - 2

1 @ .

_HD (z)_ - H,D (z)_ = 4i J(z) Y (2).
Hence,

W, T 2 2

_HU (z)_ = [Ju(z)- Yu(z)] + 21J,(2) Yy(2),
and

- 2
10| = [Po-Yio] - 25,0 v..

The asymptotic expansion of h,(z) can be obtained from that of Jf) + Yﬁ. More precisely,

we have
2s

Ll N 1.2, 5. 0.1V [3 3s-172
(2.2) h3(z) —Z—K—Z;I 3.5 (2s 1)(2] A(1/3) z R

where AS(D) is given by (2.4.8); cf. [OLVS, p. 342]. Furthermore, it is known that the
remainder after n terms is of the same sign as, and is numerically less than, the n+18 terrn..

From the asymptotic expansions of the Hankel functions Hf)l) and Hl()z), we also have

oa

(2.3) h,(z) ~ ZlEeXP{ (327 - 125)}2 is(%) CL (/3

S=

and

00

(2.4) hy) ~ Lexpl i (32%7 - 1)} (-i)s(%)scs(l/s’)/z
s=0

(3s+1)/2

where  C,0) = ) A,M)A_,).
£=0

The first few coefficients of AS(1/3) are given by A(1/3) =1, and
(2.5) A (1/3)=-5/72 A,(1/3) =385/10368
A4(1/3) = -85085 /2239488 A (1/3) = 27227200 / 644972544,
Bounds for the remainders associated with the expansions (2.3) and (2.4) can be

constructed from those of the Hankel functions; see [op. cit., pp. 266 - 269].
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Insertion of (2.1) in (1.4) gives

(2.6) IA) = II(K) + Iz(l) + I3(k),

where

Q2.7 Ii(l) = J f(t) hi(lt) dt, i=1,2,3.
0

Throughout this section we shall assume that f(t) is an infinitely differentiable function

in (0,00) with an asymptotic expansion of the form

+0-1 +
S ast— 0,

(2.8) fity ~ Y agt

s=0
where 0 < o0 £ 1. We further assume that the asymptotic expansion of the derivatives of
f(t) can be obtained by termwise differentiation of (2.8), and that for each j =0,1,2...,
(2.9) 9 = o), as t — oo,

where € is some fixed nonnegative number.

From (2.8) it follows that the Mellin transform of f(t) defined by

(2.10) MIf; z] = rt“ £(t) dt, l-<Rez<1+eg,
)

can be analytically continued to a meromorphic function in the half-plane Re z < 1 + €, with
simple poles at z = 1 - s - o of residue a,s= 0,1,2,...; see [EVG, p. 211]. Throughout
this discussion, the notation M[f; z] is used to denote not only the integral in (2.10) but also
its analytic continuation.

The Mellin transforms of hi(t) can be obtained from integral tables [MAR, p. 199,
Eq. 23(1), p. 203, Eq. 32(1), and p. 209, Eq. 45(1)]1, and we have

35-2 . 1
@1)  Mhhy;zl=-—e™ el PTG-PIG
32 er 1 s hirs Ly 2
(2.12) Mfh,; z] = T e T I'G+3TG-T7°G)

1 We also make reference here to [ERD, p. 333, Eq. (40)] and [OBE, p. 102, Eq. (10.41)], but note that
the transforms given in these references are incorrect; however, Marichev's transforms stand as correct.



52 e I‘E..,.Lr(s__.l_
@13)  Mihy; 2l = > cos(Z) @G 53) 2P %
n? I'(1 - 5—) I'(s) sin s

where s = 32- (z+1).

We are now ready to apply the results in [WONI, §2]. Foreachn =1, we set

n-

(2.14) f) = Y a 7 + £(0).

1
s=0
By our assumption (2.9),

t(nj) = Q@+, _ ast— 0%,

for j=0,1,2,... . Similarly, we write (2.2) in the form

n-1
-s-1/2
@15 b = > bt e hy (0
5=0
with b, =b, =0, and

@16 by, =130 ”{] (73, s=012,.

By an earlier remark, we also have

(2.17) Ihy ()1 < 1b | 172 for t > 0, if n = 0,3,6,....

If a ;t;— then it follows from Theorem 1 in [Ibid.] that

n-1 n-1
@18) L) = Y aMihygstad AT+ D b MIE 1210 4 8, (),
s=0 s=0
whereas if o = % then we obtain from Theorem 2 in [Ibid.}
n-1 12 n-1 ’1/2
(2.19) LO) = D A"+ ()Y ap AT+ 5, (),
: s=0 s=0 ’
where
c (o) = ab* + a’b,
*
5 zigg-rllfz{M[f 1-7] +—1/2} bs_ —z——>s+1/2{M[f 1-2] +.._...._____.1_/7}
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cf. [WONS3, §3]. In both cases, the remainder is given by

2200 8, M) = f £,(6) hy(AD) dt.

Bounds for 83 n(?») can also be found in [Ibid.]. In particular, if & >% then from (2.17),

Iby! [
(2.21) 18, M) = —= "“L £, 12 a, if n = 0,3,6,...
’ A

To the oscillatory integrals I.(A) and I,(A), we apply the result in [WONT, §4]

which gives

n-1

222) L) = ) a Mih; st A7+ 8 (M)
s=0

fori= 1,2, where

223 5 =D r 000y de
o A

and h(iun)(t) denotes an n iterated integral of hi(t). In the case of hl(t), we can write

@ D"
MO = G

t+ooe
_[ (w - 0" b (w) dw ;
t

on the path of integration, w =t + peW3 and p varies from 0 to oo,
It is readily verified that

3/2
Im(w>?) > (_J;_] P3/2.

In view of the well-known result [OLVS, p. 266 ff]

1 2
'Hm(C)'SI,/EeIQI, O<arg{<m,

it follows that

1 .12 2! 3/2
Th,(w) | < 4—n-t exp -g—l—/zp .
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Consequently,
n/3

I3

Similarly, we can write

tHoog ™3

[ w0 nmmaw
3

n

D
(n-1)!

(-n)
h, (1) =

Using the estimate [op. cit., p. 267]

H O < | / m<arg £ <0,

we have
3
1 < 1 r2/3 I3 "
2 Ml < —('-"‘1")—"— (2n/3) o
Thus, if 3< o <1, then (2.23) gives
(2.24) 15, (M) < 21 %0 1 de, i=12,
?\, 1/2 n
where
| J__ n/3
__ 1 3
(2.25) Cp= T F(2n/3)[ 5 ]

3. A Special Case

We now apply the results of the previous section to the integral

31  F® = L 9*-0) AT L,

where @({) is given by (2.2.6). In the notations of §2, we have f(t) = (p4(-t) and A = 0?3
The Taylor expansion of f(t) is given by '

(3.2) f(t) = @'t = 2% - 2o + 22(0%3) 2 -

Hence, condition (2.8) is satisfied by this function, and o = 1 in the present case.

Furthermore, it is readily verified that ) = O(t?2 ¥y ast — oo for j = 0,1,2,..., and so



(2.9) is also satisfied by this function. We shall take n = 2 in (2.14) and (2.15). The
coefficients a in (2.14) are determined by (3.2), and b, in (2.15) by (2.16). The first few

values are given by

! -
: by = o, b, =0.

ll\lOO

(3.3) a,= 2", a =-

From the definition of the Mellin transform given in (2.10), we have

MIf: 1/2] = f 2 £y de = r 12 A1) de.
0

The last integral can be evaluated explicitly. To see this, we note that from (2.2.5) and

(2.2.6),
= 4 -172 SR
o-0)¢ dl = 4] ———dx = 2&m,
oo 7=

the relationship between d{ and dx being deducible from (2.1.2), and given by

(3.5) dydx = 2/{x¢X(0)}.
Thus,
(3.6) MIf; 1/2] = 2n.

Furthermore, the remaining Mellin transforms may be calculated directly from

(2.11) - (2.13) from which we find (see also [ABR, p. 446, Eq. 10.4.4])

M[h,; 1] + M[h,; 1] + M[h,; 1] = -Ai*(0),
G MIh,; 2] + M(h,; 2] + M[hy; 2] = - 7 Ai(0)A$'(0).
From (2.6) we find that
(3.8) Fltu) =013 2P A2 2P + L AI0)AT(O) P + 8(v)
in light of (2.7), (2.18) and (2.22). The remainder 8(v) is given by
(3.9) 8(v) = 8, ,(0) + 8, ,(1) + 8, (M), ’

where A =023, and 8,, and §_,, i = 1,2 are as defined by (2.20) and (2.23),

1,2?

respectively. ;
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We now simplify the remainder 53 2(7») where, from (2.20),

8,,(0) = L £,(®) hy ,(A) dit.

By Taylor's theorem (cf. (3.2)),

3.100  fO=¢*n=2"-2t+£,0
where
@G1) O =3®=3Y"B 7 0<g<t.

Since [@*(-{)]" is a positive decreasing function in 0 < { < e 1, we have
0 < (9h"(-E) < (@H"(0) = 3£ 2% = 1.09. Also, since b, = 0 in (2.15), we have
h3,2(t) = h3,3(t), and so (2.17) holds for h3,2(t), t € (0,00). Thus,

lh, (1)} € =312 < 242172 ift>1,
32 641 647

in view of (2.5) and (2.16). Since 1/A — 0 as A — o=, it is convenient to split the interval

of integration into (0,1/A] and [1/A,e°) so that

/A
53 2(7») = J fz(t) h3 2(7@) dt + r fz(t) h3 2(7\,t) dt.
’ 0 ' /A ’

Since h3(t) is positive, we have

I 1/A 1.09 1/).2
(3.12) fo £,(t) hy ,(A) al < B J; ¢ [ - hy(Ap) dt

1/A
< 0.545 L 240 < 0.029
2n 7\,3

in light of (2.15), and

1/A ’

64n A

5 .52 (7 52
< e f .
e A J; ORI

1 Sec Appendix 1.
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To bound the last integral, we note that from (3.11),
1 1
J £,(0 2 ar < —1—92.{ 12 4t = 1.09,
2
0 0
and from (3.4),
(3.14) J £0 P ar < rf(t) F12 4t < 2.
1 1

Also, a straightforward calculation gives

J' " £y S g = %(24/3) -8 = -1.520.
1
In light of (3.10),

[ 50 ar < 2+ 1.520=7.803
1

and so
0 < J; £,(0 t52dt < 1.09 +7.803 < 8.894.
Hence,
| | o
(3.15) £, hy (A0 dt | < 02220
1/A ’

Combining (3.12) and (3.15), we obtain

0.029 = 0.222
3 e
The bounds for Si 9 i=1,2, are given by (2.24) from which we find

3.16)  15,,W1 <

(3.17) 15,001 < 0044 J; 21670 1 dt.
1, A /2

To simplify these bounds, we note that since

@) ) @)
f,@=f (Hand0 < f (1) < (H"¢1) < 31‘51(22/3),

"an @
(3.18) j t If2 ®ldt £ 2.178.
0
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On the other hand, integration by parts twice gives

(3.19) _[ '”2|f ®1dt = r 12 Dy gr = 3rt'5/2f(t)dt - £(1) - L)
1 1 1

by virtue of the order relation as t — +eo given in (2.9). From (3.5) we find by

straightforward differentiation that

d apy _ A2 +40x%%0)
dcw © = BTy

From Olver's tables [OLV2, pp. 38 and 41] we find
¢(-1) = 1.0821991971 and x(-1) = 1.9789626178. Hence,
£(1) = @*(-1) = 1.371604273 and £'(1) = -(¢*)'(-1) = -0.785580091.

Consequently, it follows from (3.19) and (3.14) that
(3.20) J 1/2If ®1dt < 3 (2m) +0.0998 < 4.813,
1,

Coupling (3.18) and (3.20), we obtain
(3.21) 15, | < 0310077, i=12
Finally, a combination of (3.9), (3.16) and (3.21) gives

0.0345
0.842 {1 + 22232
(3.22) 18| < 5/3{ o1 }

< 0.856

< = for v 2 10.
33

4. The Relationship Between F(v,2) and Fl(u): A Bound for F(v,2)

We now turn our attention to the integral defined in (1.2). Sincej;, =], Vk 22, itis

clear that F(v,k) < F(v,2) Vk 2 2. Hence, for our purposes, it suffices to take k = 2 in

(1.2), and consider the integral

o 2
4.1 F(02) = j J“t(t)d

Jy2



In (4.1) we first make the change of variable t = vx and replace Ji(\)x) by its

asymptotic approximation which we now establish: squaring both sides of (2.2.19) gives

2
@2 P = L EO2eMy 4 ewy ],
(1+8,)° v
where £'(v,0) = 2Ai(0* Y e, 0,0 + € ,(0,0).

Since ( is neg'ativc in our case, it follows from (2.3.4) and (2.3.8) that

0.1340:30/0°1 [1 , 0.1051¢%30% ]

(4.3) le*(v,0) | < (-1)2/3@1/2 >

0.140

< — if v > 10.
B2

Equation (4.2) can be further simplified to

Aif (Y

(4.4) ﬂm=w@—?r—+mo
with
20y | e @,0 - 6.2+ 8.) AP0
@5 p =28 D50 3 AR
T (1+8,)

By (2.3.3) we find {1+ Sll >1-0.022 if v = 10, and so a combination of (2.3.8) and (4.3)
gives

0.292
2( C)l/z

After replacing Ji(ux) in (4.1) by its approximation (4.4), we then make { the variable

(4.6) 80,0 | € ¢%(Q) == if v > 10.

of integration. Sincej" > j' >V (see [LOR, (2.4)] and [OLYVS5, p. 246]), the poi‘nt

X = /v is greater than 1 and its image { = CU , under the transformation (2.2.5)

Xp2 =lp2

is negative. The result is
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@7 Fv,2) = —L [ o} (D) AP0 dg + p,(v),
2V Z,

where { =- {yp» @) is the function defined by (2.2.6), and
@®  po =1 R
Go

Since tu > 0, it follows from (4.6) that

(4.9) Ip.w)l < 0292 [ A ryr'?qr < 0918 v 2> 10,
P 2 | @ 2
20 v

in light of (3.4). For convenience, let us now set

[
4.10)  F'() = L o*(-0) AP0 dt

so that we may write (4.7) as

@4.11)  F2) = ﬁmm) +F ()] + p, (),

where FI(D) is defined by (3.1).
We shall now consider the integral in (4.10). In view of (2.3.27) and (2.3.28) we can
write F*(D) in the form

(4.12) F'(v) = F,(0) +p,(v),

where
0
. 2
(4.13) Fy(v) = %BJ ¢} ?P1) Ai"(1) d1,
v a,
and
E 2
(4.14) p,(V) = %Bf ¢*v?P1) Ai" (1) dr.
L 32+Um1‘]2

Recalling that 0 < () < ¢(0) = 213 for { € (-%0,0], and noting that | Ai({) | <0.53566
for { € (-==,0] (see [ABR, pp. 446 and 478]), we have from (2.3.27) and (2.3.28)
(4.15) I p,(0) 1 < 0.278/0*" for v = 10.

47



48

To evaluate the integral in (4.13), we use the Taylor expansion (cf. (3.10) and (3.11))
¢*C) = 2%8 + 2 + Ry (),
where
2
R,©) = 51 (%H"®), {<E<0.
By the remark following (3.11), we have 0 < [(p4(1;)]" <1.09 for -0 < { £0, and so
(4.16) IR,(O) 1 < 055, ~o0 < [ < 0.
Using the fact that Ai(z) satisfies the differential equation w" - zw = 0, we have by

integration by parts

M@ = [A@) dz = 2Ai@) - AR

M,(z) = .zAiz(Z) dz = %[z M,(2) + Ai(z) Ai'(z)]

M, = [2A7@) dz = L132M,(2) + 2 Ai(2) Ai(D) - AL (2],

from which it follows that ,

M,(0) =-Ai%0),  M,(0) =5 Ai(0) Ai'(0), M,(0) = - = Ai%(0),
M,(a) =-Ai%a), M (a)=-7a, Ai%a),  M,(a)=-s2a% Ai%(a).

Consequently, we obtain

(4.17) F,(v) = ;;_/3_{ J:[24/3 +—§—(u-2/3¢)]A12(1) dt + E R, (v 1) Ai’(r) dt}
212 2 8 . o .2
= W[Al 0) - Ai (az)] —W{AI(O) Ai'(0) +a, Ai (az)]+ p5(v)
where
(4.18) | py(0) | < %?[ a2 Ait(a,) - AiX0)].

From numerical tables [op. cit., pp. 476 and 478], we find



a2 Ai’(a,) - Ai*(0) = 10.65253, and so
(4.19) I py0) 1 < 1.172 /0%
Coupling (4.11) and (4.12), we have

1

(4.20) F(v,2) = ST [F,(0) + F,(v) + p,(0)] + p, (V).

Substitution of (3.8) and (4.17) in (4.20) yields

1 2'PAi%Ga,) 4 a,Ai%(a,)

(4.21) F(U,Z) = Z)- -———-\;4—/3-——- " 15 —_‘T— + p(D),
where p(v) = p, (V) + [8(V) + p, (V) + p4(V)]/ 2073,

From (3.22), (4.9), (4.15) and (4.19), it follows that

* 2

1.057 0.4050 | 0.5540 1.382 .
Ip(\))lS——{1+— }S if v =10.
1)2 u1/3 1)2/3 v

The approximation formula (1.5) is obtained from (4.21) with

) 4 a,Ai%(a,)
12 — -ﬁ._sz. + p(D)

v

2 a1
5. Bounds for JDQU,k), k=2
If we set vx =j, in (2.2.19) we obtain

(O
(5.1) Tolip) = 5 1 TPk

T5 ol (41007, + e 08, |

where V¢ e I =[-o, -B,]is given by (2.3.16) with o,_and B, defined by (2.4.32).

On the interval /,, 02/3C1),k < -B, <0 and so from (2.3.4),

0.1186e°30/° 0.0568 :
(5.2) rr}fxlel’l(U,C)l < £e—=< -z ifv>10.
v B, v B

Also as remarked earlier (see §2.5; in particular, note the remark preceding (2.5.29)), we

have

AIPPL ) = Al v, E €@ -poa +p) C 1.
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A bound for u is given by (2.3.38) for k = 2,3,...,9 and by (2.5.2) for k 2 10.

Since Z’;k € [ak'+1, a'k]l, we have IAi'(E,k) [ <1 Ai'(ak) | by virtue of the fact that a_ is a
local extremum point of Ai'(x) 2, and lies between the zeros & and a'k of Ai'(x). Hence,
| Ai(1)2/3CU,k) I<1Ai'Ga) I umnk I. Restricting our attention again to the case k = 2, we

have from (2.3.26) for v = 10,

3 0.3743 _ 0.53223
IU nzl S 1)2/3 - (-a2)1/4‘[)2/3 ’

and so '
0.53223 IAi'(a)l
IR (_a2)1/4 :

| Ai?PE )1 <

Recalling again that | Ai'(x) | /1 x 114 < 0.60 for x < 0 (see the remark following (2.3.11)),
we have

(5.3) | AL )1 < 03194 /v,

Furthermore, we recall that 0 < @({) < 213 for -eo < € <0, and note that, from (2.3.3),

11+ 811 >1-0.022if v 2 10. Thus, since Bz =-(a, + pz) =3.90491, (5.1) gives

1/3
5 i 0.0568
A IS T T 034 B
(5.4) W0 = 7553w {0 3194+ (3.90491)"* }
. 04636 ifu>10
(V]

in light of the bounds (5.2) and (5.3). Hence,

(5.5) 0 < J‘:‘)(j;'ﬂ) <e,/ v2, with e, = 0.215.

In an exactly similar manner, numerical computations show that for k = 3,4,...,9,
(5.6) 0 < TGl < e /VR

with e, =021458, e,=015175, ¢,=0.12074, e5=0.10191,

e, =0.08911, e, =007977, e=0.07261, e, =0.06692.

1 See Appendix I1.
2 Ai(x) satisfics the differential equation w" - xw = 0. Hence, Ai"(a) = 0.



For the values k > 10, we follow a similar argument as above, except that we replace
the bound on | v*’n, | by the bound

0.5200
foPn, | € =222 k> 10,
k DZ/SBLH

given by (2.5.31). The result on combining this bound with the bound (5.2) is,

for k 2 10,
21/3

i <
IJ"Oka)l —1-0.022 o

11052001 AiGa) 1/, +0.0568 | ifv 210,
By

Furthermore, since Bk = -ak(l + pk/ak), we have from (2.4.31) and [Abr, p. 478]
for k = 10,

0.1119
B, 2 —ak(l '—12.82878J 2 -0.9912 a,.

Thus, | Ai'(a) 1/ B}/* < 0.60(0.9912)** < 0.60, and so for k > 10,

0.476

(5.7) 17 )1 < 2278 if v 2 10.
u(]u,k DBi(M
Hence,
(5.8) 0Py s 52l <000 ey 0,2 10.
’ v k/ v

A combination of (5.6) and (5.8) shows that
(5.9) 0 < G < e /v whenever v 2 10,

with e, = 0.215, and €1 <€ 6 Vk > 2. Consequently,*(1.6) follows.

6. Proof of the Monotonicity of j|,: Conclusion
We are now in a position to verify the property that for k 2 2, j' | is an increasing

function of v whenever v 2 10. Recalling (1.3), we have
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GGy = o - Fok) - Ity
1 2 o0
> = - F02) - 16

0.812634  €(v)

3
1)4/3 1)2

where leu) I £l el(u) | +1 ez(u) 1 <£2.302 if v =2 10,

in light of (1.5) and (1.6). Consequently, if v = 10,

0812634 . 2.83276 1 _ 0.31668
GG ) > 0812634, = > > 0.
vk R [ 103 ] 43

Furthermore, for k = 2,3,..., Cox 0ifv =1 (see (1.3.9)), and so, recalling (1.3.7), we
have for k = 2,3,..., |
iy .
Tiu; = Cux G(ju'k) >0 if v 210.
Thus, jl')"k is an increasing function of v if v 2 10. Combining this result with that of
Lorch and Szego [LOR], we have for k = 1,2,3,...,
j;'),k is an increasing function of v if v > 0, and so our task is complete.
The bounds that we have established throughout this thesis are not as sharp as they
could be, and they can, indeed, be improved; we believe that our asymptotic argument can

be used to show that G(j; ,) is positive for all v 27 and for k = 2,3,.... For slightly

sharper bounds in certain cases, see [WON4].
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APPENDIX I
() Monotonicity of ¢(£):
We shall demonstrate that the analytic function

(M o) = ( % ]

1-x2

1/4

is a nonnegative, increasing function in -eo < { < 0. First, from the relation (2.2.5), it is
readily verified that ¢(£) = O((-{)"/%) as { — -co (also compare with [OL V2, p.40]), and
s0 @(-0¢) = 0. Furthermore, ¢(0) = 2173 (cf. [op. cit., p. 38]). Next, we show that @({)
is increasing in (-e-,0) by showing that the derivative of the function f({) = (p4((:) is
positive on this interval. It then follows that @({) is a nonnegative, increasing function

in-o<{<0.

Using (3.3.5), we have by straightforward differentiation (cf. the remark following

(3.3.19)),

A2 A Ve 22
® oy = 062D 4O

% - 1)

If £'(C) > 0 for -eo < { < 0, then f({) is increasing in (-e;,0). Hence, we show that
£'(0) > 0 by considering the numerator of the right-hand-side of (2). Replacing ¢(C) in (2)
by the expression in (1), we find that the numerator can be written as

4(x7 - 1122 - 12 4 20 K.
This expression is positive if the function g({) defined by

g(0) = (- 12+ 2007 %

is positive. Noting that seclx =tan''Wx? -1 if x > 1, we have from (2.2.5)

2 3/2
3) x2g() = --X DT 5162 )2 a2 1)),
X

Since (3) is a function of u = (x2 - 1)1/ 2, for convenience, we write

u3

1 + u?

) x2g(0) = hQ) = - + 3(u - tan™lu),
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and note that
{=0 & x=1 & u=0,
z;:-oo € X =00 &) U = oo,

Hence, we show that h(u) > 0 for u > 0. Now h(0) =0, and '

2 NI 4
—1—2}-3“(”“) u” _ 2t ifu>0.

h'(u) =3[1- =
1+u

1 +u®? 1 +u?’
Thus, h(u) > 0 if u > 0, and consequently, g({) > 0if { < 0. Retracing our steps, we find

the demonstration complete.

(if) Monotonicity of [(p4(§)]":
We now show that the function [¢*(-{)]" is a positive, decreasing function in 0 < { < or,
equivalently, that [@*({)]" is a positive, increasing function in -0 < { <0.  Continuing to
differentiate* the function f({) = ¢*({) defined in (i) above, we find that
(5) ) =-200"@? +u) + 8¢-0)%G5u® + 8u + 3u™),
6) ) = 10¢-0) Y2 +u3) - 36(-O[5u® + 8u® + 3u™]

+ 32¢-0°[10u! + 2207 + 1507 + 3u™),
where, again for convenience, we have set u = (x2 - 1)1/2. From (5) and the relation
(2.2.5), we find that £"(-e<) = 0, and "(0) = 2 2%%)1. To show that £"({) is increasing in

(-e=,0), we show that £"'({) > 0 for -ec < { < 0. To this end, let us recall (2.2.5), and write

7 g =5 O "(Q)

5(u® + u®) - 27(5u3 + 8u® + 3u”)[u - tan"lu]

+36(10 + 22u? + 15u* +3u®)[u - tan"u)?
Then, to show that "'({) > 0 for { < 0, we show that g(u) > 0 for u > 0.
One can show that g(u) > 0 for u > 0 by symbolic computation in the following way.

It is clear that the function g(u) has the form

* 1t should be noted that the computations involved in attaining these derivatives are
extremely tedious, and a carcful check has been made of them.
T The value of £"(0) may also be determined by differentiation of the Taylor expansion (3.3.2).
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gl) = gyu) = Gyy(w) + Gy W + Gy, (WW?,
where GO'i(u), i=0,1,2, are polynomials in u, and W =W(u) =u - tan"'u. Specifically,
Go(w) = 5u° + 5u°
Gy, (u) = -1350° - 216u° - 81u’
G, (u) = 360 + 792u* + 540u* + 108u°® .
Differentiation of g(u) = go(u) yields
g, () = (1 + %) ghw) = G (W) + G, (W + G ,W?,
g,() = (1 +u?) g () = G, () + G, (W + G, (W?,
where Gy =1 +u) G @ + G+ Du*G, @),  i=012., j=0,12,
with Gij(u) =0if j> 2. Consequently, we define the sequence { gi(u)] as
g,(u) = g(u), and
g () =(1+u?) g(u)
(uw) +G.

i+1,1

W +G. , (W)W, i=0,12,.. .

= Gi+1,0 i+1,2

Then each gi(u) has the same form as go(u).

If g(0) = 0 and g'(u) > 0 for u > 0, then g(u) > 0 for u > 0; the same applies to each
gi(u). Hence, to show that g(u) > 0 when u > 0, we determine that value of i for which
gj(O) =0V 0 <j<i, and for which it is clear that g;(w) >0 foru>0. Theng' (u)>0
(u>0),since 1 + u? > 0, and consequently, gi_l(u) >0foru>0= .= go(u) =gu)>0
for u > 0. Applying this procedure to the function g(u) given in (7), we find that
g,(0) = g, 0) == gl./(()) = 0, and that the polynomials G”,O(u), G”’l(u) and G17,2(u)
each have large nonnegative coefficients!. Furthermore, it is clear from the Mean Value
Theorem that W(u) = u - tan"lu > 0 for u > 0, and so we conclude from the above argument

that g,(w) > 0 for u > 0. Hence, we are done.

1 Due to the fact that these coefficients are large, we shall not include them here. The necessary
computations were performed symbolically on an IBM 360 mainframe.
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APPENDIX 11
We show that for k = 10,

3, <-oy <2, <-B <a,
where

Oy =2y - Py Be=2, +py
with

1 '

P =7 @ -2y
By a simple application of Rolle's Theorem, together with the fact that Ai"(x) = xAi(x), we
have ak'+1 <a < a'k, where ak'+I and ai( are consecutive zeros of Ai'(x). (This fact can also
be deduced from the graph of Ai(-x) given in [ABR, p.446].) Hence, Py > 0, and so it is
clear thata ' <-o, <a <-B,. All we need show now is the fact that -B, <a fork 210,
and to see this, we recall that dk_1 = %— (—ai()3/2 (see (2.4.19)). Consequently, it follows

from (2.4.18) that if k = 2,

(D) 2y =kn - T y(k),
where
0.1097 0.140
2 [yk) !l < < .
@) Vil = 3n/4 - 0.03 = 4k-3.01

A combination of (1) and (2.4.51) gives

A =3B F(a)? =T +0,00 - y(k).
From (2.5.11) and (2), we have

0,(k) 2 -0.0088 and w(k)<0.0038 fork > 10.
Hence, A, 2 31/8 - 0.0088 - 0.0039 > 0, and we are done.
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APPENDIX III
(i) Asymptotic Expansion of J| (vx):
The asymptotic expansion of Ji (vx) is given by

a4 (1.2 Ay A3
M Iy(ox) ~ 7[75_] S BOWE + Sy RO
X L k=0 L k=0

uniform with respect to x in the interval (0,e0), valid for v > 0 and x > 0, where the
coefficients Ek(Z;) and Fk(C) are holomorphic functions in a region containing the real axis.
Explicit expressions for Ek(C) and Fk((;) are given by

2k

@ B(©) = 0> 10 wyy (),

s=0

12 2k+1 35/2
3 F@ = €0 Y A wy 0,

s=0
where
) t=(1-x)""?
_ (2s+ 1)(2s +3) - (6s - 1) - 6s + 1

® b = s! (144)° ’ M= G5 1 M
©6) w () = v, () - 5 (E+ 1) -2t (- Dy, O,

with vk(t) defined by [ABR, p. 366, Egs. 9.3.13 and 9.3.14], and }\S and M by
[ABR, p. 368, Eq. 9.3.41]; see also [OLV1]. Specifically, we have

Ey(0) =,

21t + 583 5
Fo©) = =3¢ - 32

C

513t% - 798t* + 385¢° 147t + 356 , .10 455 .
E\©= 1152 C+—1m52 & - 7085
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each valid for 0 < x £ 1. When 1 < x < o, (2) and (3) again hold, provided that the two-
valued branchs are interpreted using the relations (7.20) and (7.21) given in
[OLV2, p. 16].

To derive the above expansion (1), we insert the uniform expansions J D(Ux) and

J {)(Dx), derived by Olver (see (2.2.2) and (2.2.3)), in Bessel's differential equation

1- x> 1
J'(ux) = J (vx) - —1I (vx),
»(VX) ) » (V%) - (V%)
and get =
1/4
) ) 4 Ai ,02/3 oo A 2/3 )
Tiox) ~ 1-._[ _Cz] WO Aon® + A DN g g
x“ \1-x v k=0 v k=0

L 2)1e) [Aie?PD AW
‘u—x{?)( 3 ] T 2, GO+ = ) DO
v prs v k=0

The term to the left of the first set of curly brackets can be written as

4 (1 5 3/4

and to the left of the second set as

3/4 1/2
4 1-x2 S 1
x2\ 4C 1-x2 v

If we now set
(7 E (0 =tA 0 +(7tC (O,
(8) F () ={B (0 + "t DD,

then the asymptotic expansion (1) follows. The explicit expressions (2) and (3) of

Ek(t_,) and Fk(l;), respectively, can be deduced from the explicit expressions for
A (D), B (D), C, (0) and D, ({) given by Olver (see [ABR, pp. 368 and 369, Egs. 9.3.40
and 9.3.46]; see also [OLV1]) using (7) and (8).
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(ii) Asymptotic Expansion of j;;'k:

The following is a brief, formal derivation of the asymptotic expansion of j;’k; the
method used is similar in spirit to Olver's method of deriving the asymptotic expansions of
j,and j;),k (see and compare with [OLV1, pp. 343 - 345]).

From (1) it follows that for large v the values of { corresponding to the zeors of J%(Ux)
satisfy the asymptotic equation

NPT PA § x , AOPO 2%
©) 0~ WO =A@ Y E G + LN B on*
k=0 v k=0
Let us denote the corresponding values of { by Cu’k, and set Cu,k = + 1, where
o =023 a,, and 1 is some quantity whose asymptotic expansion we now determine.

Since W(Cn,k) =W(a +n), frozm (9) we derive by expansion
(10) W(0) + MW'(0) + 5= W'(0t) + - ~ 0,

Formal differentiation of the asymptotic series (9) yields by induction

w0 = o2 AP0 Y EONT + 02 ATRPRY) Y FGR
=0 r=0

W(Zm—%—l)(c) _ '[)zm Al(UzBC)Z Er2m+1(t_,)/02r + 02m+2/3 Ail(02/3C)z F§m+1(c)/,u2r’
=0

=0
where
E)=E, F, =F,
and
grodEr g, ML e
e 4 foonn s

Hence,



2 o0
W @) =078 Aia) Y B @),
=0
2m+1 N
W( m+ )((X) = 2m+2/3 Ai'(ak)z 1:(,r2m+1(a)/u2r’
r=0

and substitution of these values in (10) leads to the asymptotic equality

v
E Fg(oc)/uzk +Mu? E Fll((oc)/u2k Ml 51 E Ff((oc)/u2k +
k=0 k=0 k=0

Since FI(C) E (€)=, then El o(&) = o.. Hence, by reversion of series, we have

where, since the leading coefficient of f1 is a,

P | -1 1,1, 22,133
n, =-o FO, n,=-o (F1+n1F1+2n1F0+6n1FO),

Expanding {, (o) about the origin, and collecting like terms, we find that

173 213 86a,
- L A1) s |31 L) 2 59 1 {83
M= Myx ak(ZJ v {7+a!3(}(2 v {1575+2103 +aS v,

k

The k& positive zero o ofJ ;')('x), is given by
H(a)

(11 Jvk—UX((X+T]) vx(o) + vnx'(o) +D

From (2.1.2), the expansion of x({) is found to be (cf. [OL V1, p.336])

IBC + 1 C3 479 523 4.

173
(12) x() = 1-2 z;+ 52 et

Higher order differentiation of (12), and insertion in (11), leads to the result

3,4
v %y
. ;;P‘;(a)/u -
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23|32 +10
s -13. .13 1 a’k -1/3
(13) Jpg =0 -2 a0 + (—2—) {————mak }u

a8 - 602 + 350

—— v+ 0P,
7002,

+

Specifically, we have

it =0 + 1.85575710"3 + 0.76371850™7 - 0.1430921v™" + -,

jt, =0 +3.2446076v'"° + 3.0041417v°13 - 0.1906263v! + ---.

To verify that (13) is actually the asymptotic representation of j; ., we have taken

'2/3:41k + 1 to show by

vx =j;, in (1) and used the corresponding value C=C, =V
expansion that every coefficient vanishes.

Another quantity of interest is the value J (), whose asymptotic representation is
obtained by taking vx = j")',k in (2.2.2) and, using the corresponding value

=0, = u-2l3ak + 1, showing by expansion that

o 2
Alla) 1+(%]1/3 3 1 | + 217 ——69&1‘+————107 + L hys

ngu,k)N- va, 5 0 g2 700 140ak ai

In particular, we have
TG2 ) ~ 0299910711 - 0.96827027 +0.309240%7 + .},
TG ) ~ -0.19646v7 (1 - 1.89927v27 + 1.84437v% + ).



APPENDIX IV
The following is excerpted from [HET3]:
THEOREM 1. In the interval [b - p, b + pl, suppose f(x) = g(x) + e(x), where f(x) is
continuous, g(x) is differentiable, g(b) =0, m =min | g'(x) | > 0, and
E=max!le(x)!<min {lgb-p)l,1gb+p)l}.

Then there exists a zero ¢ of f(x) in the interval such thatlc-bI<E/m.

COROLLARY 1. In the interval [nm -y - p, n - Yy + p] where p < ®/2, suppose
f(x) = sin(x + W) + £(x), f(x) is continuous and E = max | (x) | < sin p. Then there exists

a zero ¢ of £(x) in the interval such thatic - (nnt - y) | <E / cos p.
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