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ABSTRACT

In most applications of image processing data is collected and displayed in square pixels.
Hexagonal pixels offer the advantage of greater rotational symmetry in addition to close
packed structure without gaps and a more circular (isotropic) pixel. I compared the image
quality of images using square pixels with that of images employing hexagonal pixels.
The comparison was done using various images, each considering a different aspect of
geometry (1.e., lines at different angles, curves, etc.). The square pixel images were
constructed using the average of a square area of smaller square pixels. Hexagonal pixel
images were constructed using two techniques. The first one was called the “two-
template approach”, wherein two different templates were used to create a close packed
hexagonal image from smaller square pixels. The second approach was called the “six-
neighbor approach” which creates a rectangular template using the six neighbors of a
hexagonal pixel. Euclidean distance, Resemblity, Entropy and MTF were the image
quality measures used to compare the square pixel and hexagonal pixel images. Based on
the results obtained using the image quality measures employed, I conclude that contrary
to my intuition and their widespread use in nature (retinas and ommatidia), hexagonal
pixels do not appear to offer any significant advantage over conventional square pixels.

In case of reconstructions from highly underdetermined equations using iterative
Algebraic Reconstruction Techniques (*ART including AART, MART, SIRT and
SART), the reconstruction quality is dependent on many factors. In this thesis I
implemented code for *ART and studied the effect of various seed (starting) images,
projection angle ordering schemes and pixel weighting schemes on reconstruction

quality. I used Euclidean distance for quantitative comparison of the reconstruction
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quality. Based on the experiments performed I arrived at four results: i) the Euclidean
distance measure is least (best) for SART, followed by ART, SIRT and MART; ii) the
Euclidean distance measure is best for the seed image generated using Fourier
backprojection technique, followed by the Matlab™ meshgrid and flat (constant) seeds;
ii1) of the various projection angle ordering schemes used for the experiments, the WDAS
(Weighted Distance Access Scheme) gave the lowest Euclidean distance followed by the
MLSAS (Multilevel resolution Select Access Scheme), FAAS (Fixed Angle Access
Scheme), RAS (Random Access Scheme) and SAS (Sequential Access Scheme); and iv)
of the different pixel weighting schemes used, the CONT (contribution made by pixel on
adjacent ray) scheme, introduced here, gave the least Euclidean distance measure
followed by BIN (Binary scheme), DIST (distance of center of pixel from center of ray)
and INT (length of center of ray within a pixel) weighting scheme. These optimizations
should help in the search for a computed tomography algorithm that yields the best image

quality per x-ray dose used.
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Chapter 1. Introduction, Motivation and Objective of the Thesis

Chapter 1

Introduction, Motivation and Objective of the Thesis

Man, the crowning glory of creation has come a long way from the days where his only
aim was survival. He has progressed steadily from the days of cave dwelling and coarse
creature to the present refined sophisticated being. Of these periods none has been as
stunning as the present era. One area where man has advanced leaps and bounds is
medical science. One prominent fact that has underlined these developments is that it has
been a collective achievement; no single profession (clinicians, radiologists or engineers)
can claim the entire credit. This has been made possible with the collaboration of
knowledge, ideas and ability. No other example would fit the bill as perfectly as the

advancement in Computed Tomography.

1.1 What is Computed Tomography?

Computed Tomography (CT) is an imaging technique that has revolutionized the field of
medical diagnostics. Computed Tomography is based on the x-ray principle: as x-rays
pass through the body they are absorbed or attenuated (weakened) at differing levels
creating a matrix or profile of x-ray beams of different strength. This x-ray profile is
registered on film, thus creating an image. Each profile is then backwards reconstructed
(i.e. back-projected) by a dedicated computer into a two-dimensional image of the slice
that was scanned. This is shown in Figure 1-1. CT is used in many areas such as
nondestructive evaluation of industrial and biological specimens, radio astronomy,

electron microscopy, optical interferometry, X-ray crystallography, petroleum
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engineering and geophysical exploration. Indirectly, it has also led to new developments
in its predecessor techniques in radiographic imaging.

CT has the ability to image a combination of soft tissue, bone and blood vessels with high
contrast. CT can be very useful in providing diagnostic information on several areas of

the body including brain, eyes, heart, liver, kidney, woman’s breast, etc.

Figure 1-1. Diagram showing relationship of x-ray tube, patient, detector,
and image reconstruction computer and display monitor [24]. Copyright ©
1997-2001 Imaginis Corporation All rights reserved.

1.2 Mathematical Representation of CT

Mathematically, the main principle behind CT imaging is estimating an image (object)
from its projections. In ordinary radiography, a two dimensional (2-D) shadow of a three-
dimensional (3-D) body is produced on film by irradiating the body with X-ray photons
as shown i Figure 1-2. But historically imaging a 3-D body is accomplished by
reconstructing one 2-D section at a time through the use of one-dimensional (1-D)
projections as shown in Figure 1-3. Exceptions to this are the Dynamic Spatial

Reconstructor developed at the Mayo Clinic [40] [41], where a series of 2-D projection
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images are obtained by irradiating the body of interest on a fluorescent screen, and

single-photon emission computed tomography (SPECT), where a series of 2-D projection

images are obtained using a gamma camera [45].
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Figure 1.2. Diagram Graphic/Mathematical model showing CT [17]. A 2-D shadow
of a 3-D body is produced on film by irradiating the body with X-ray photons.

Theoretically, every cone-beam datum is a linear integral along an X-ray path. To
facilitate algorithmic implementation, the problem is cast in discrete domains. After the
object and detection plate are made discrete, a continuous cone-beam projection frame is
approximated as a set of values on a 2-D detection grid. Each of the values equals a sum

of weighted values of those voxels that are in a neighborhood of the corresponding X-ray

path.
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Figure 1-3. A4 3-D CT can be converted into multiple 2-D CT [24].
Copyright © 1997-2001 Imaginis Corporation All rights reserved.

Simplifying the 3-D problem of CT into 2-D, it can be expressed mathematically as

below —

Given (the graphical representation is shown in Figure 1-4): -
At 0° angle, the projection values P (6=0) = {ay, az, a3, as, as}
At 90° angle, the projection values P (6=90) = {b1, b, b3, by, bs}
Find fix,y).
Note that Figure 1-4 shows an x-ray source emitting parallel beams of x-rays. Different
x-ray sources can be used. Some emit fan-beam x-rays. This thesis considers the CT
problem with a parallel beam x-ray source. Also it deals in 2-D, since a 3-D problem can
be reduced to a two-dimensional problem by recognizing that if a horizontal (planar)
cross-section of the mass distribution is known at every height then all of the three-

dimensional information is readily available.
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Figure 1-4. Graphical representation of the mathematical model of
Jorward CT. The X-ray source and detecior are rotated around the object
and the detector readings are recorded at each angle. These projection
values are used to reconstruct back the image. Note that more the angles,
the better the resolution of the reconstructed image, but higher would be
the dose.

1.3 Challenges of Computed Tomography

To obtain high quality tomograms, image reconstruction is essential. A reconstruction
algorithm determines, along with the measured data, how accurately the linear
attenuation c oefficient c an b e calculated in medical x -ray CT. In c linical s canning the
efficiency of the detectors is constrained both by techniques and costs. Since the patient’s
dose must be limited [23], the most convenient way to improve the accuracy is to
optimize the reconstruction algorithm. High performance algorithms are sought to

achieve reconstructions yielding more diagnostic information.
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Several key factors characterize the performance of a CT reconstruction algorithm. The
first and most important one is accuracy: how faithfully the precious diagnostic
information can be reconstructed and presented in the tomogram. The image quality can
be evaluated by different criteria, each characterizing a specific kind of information.
Subjective image quality is also critical since most images are interpreted visually.
Freedom from artifacts is crucial to avoid misleading diagnostic human interpretations.
Another important factor is the computational speed. Fast reconstruction is always
expected to reduce the diagnostic time. Other factors include how flexible the algorithm
is, how easy it is to implement, etc. Improving the image quality when there is limited
amount of projection data is also important in x-ray CT.

Radiation doses from CT scans are often higher than needed and may contribute to cancer
later i life (according to studies published [24] in the American Journal of
Roentgenology). Even though CT scans are very beneficial in detecting disease,
researchers have found that many centers use the same CT settings on children as they do
on adults, possibly exposing children to radiation levels approximately five times [24]
higher than necessary to obtain a quality image. CT scans account for approximately 4%
of medical imaging exams, however, research shows that CT scans contribute to 40% of
the total amount of radiation received from diagnostic tests. In a study, conducted by
Lane Donnelly, MD, a radiologist from the Children’s Medical Center in Cincinnati, and
his colleagues, the researchers found that approximately 600,000 abdominal and head CT
examinations are annually performed in children under the age of 15 years, a rough
estimate is that 500 of these individuals might ultimately die from cancer attributable to

the CT radiation [24]. The number of CT scans performed in recent years has also risen
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dramatically, further creating the need for minimizing radiation exposure during the test.
In most cases, the benefits of finding disease with a CT scan outweigh the risks of X-Ray
radiation exposure and/or injections of imaging contrast and use of sedatives during the
scan. However, there is an important need to reduce the dose a patient receives in CT.
From the forward-CT standpoint, the more the projection angles the higher is the dose.
From CT image reconstruction standpoint, one cannot always get away with less

projection data, since it will reduce the quality of the reconstructed image.

Reconstruction T omography from a limited number o f p rojections has always been o f
vital interest. Because of the need to protect the patient from an excessive dose, it is
desirable to take as few projections as p ossible asis consistent with the goal to get a
medically acceptable reconstruction [31]. In many applications of CT, the projection data
from only a small number of viewing angles are available. Images reconstructed from a
limited number o f projections using the c onventional i mage r econstruction a lgorithms,
which are designed for 360° coverage of viewing angles, suffer from a systematic

geometric distortion and severe streaking artifacts [31].

From a mathematical standpoint, the challenge of limited dose CT can be expressed as
reconstructing a n-by-n image using m projections with 7 equations each where mn << n’.
In this case the equations are highly underdetermined. If the equations are consistent,
then there exists infinitude of possible solutions. If they are not consistent, solutions may
be found within certain tolerances [18], again giving an infinite set.

The challenges of low dose CT can be summarized as below [37] —
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a) Dose reduction: Projections need to be taken in as few angles and/or as few
photons per angle as possible.

b) Accuracy: Reduce the number of false positives and false negatives in the
reconstruction.

c) Spatial resolution of the radiation collector

d) Size of the radiation source

e) Speed of the reconstruction algorithm. Fast reconstruction is always expected to
reduce the diagnostic time.

f) Density resolution of the radiation collector

g) Computer time and storage

h) Ability of the chosen reconstruction algorithm to handle noise

1) Resolution actually needed for a given type of diagnosis [37]

1.4 Motivation and Objective of the thesis
The reconstruction quality of CT for providing better diagnosis can be improved by the
development of more efficient detectors, improving the display of the reconstruction or
by improving the algorithms used for reconstruction. The work in this thesis addresses
the latter two issues assuming that the detector quality has reached its limit.
The display of the reconstructed image is dependent on two main factors [46]:

a) Resolution of the display device

b) Pixel shape
The resolution of the display device depends on the display device hardware. While a

larger number of pixels has led to higher image resolution so far, any further pixel
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number increase is known to adversely affect the sensitivity, Signal to Noise (S/N) ratio
and dynamic range, since the size of each pixel becomes increasingly smaller [46]. Even
though the pixel shape seems to play a crucial role in the display of images, not much
work has been done in the area of pixel shape. Hence in this thesis the task of comparing

the image quality based on pixel shape is undertaken.

A circular pixel is the most suitable for an omni-directional image representation since
almost all camera systems are based on perspective projection. The geodesic dome has
been considered for spherical image representation [25]. However, in the geodesic dome,
the connections of neighborhood pixels are complex. Further, it is difficult to represent
the geodesic dome with a 2-D array. The problem is the same for 2-D. The pixel shape is
usually square and not a circle.

This problem also exists in cell phone networks, where the shape of each cell (coverage
area of one cellular tower) has to be a circle because the signal is transmitted omni-
directionally [34]. However, a cell is typically hexagonal in shape, since it provides the
ease of implementation and also resembles very closely to a circle.

Some of the properties of hexagons are as below -

a) A hexagon gives better rotational symmetry than a square. Rotational symmetry is
important in CT, because the projections are taken at different angles. Also certain
algorithms rotate the pixel [12]. These algorithms will become relatively easy if
the unit of measure (pixel) were as rotationally symmetrical as possible.

b) Hexagons give a closed-packed structure without gaps.

¢) A point in the hexagonal raster has the same distance to all its six neighbors.
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d)

Relatively easy math compared to a circular pixel.

In spite of the merits of hexagons as described above, images have almost always been

represented in square pixels in CT. Researchers have preferred square pixels for the ease

and speed of computation. With computer speed increasing at a rapid rate and

sophisticated off-the-shelf software packages, it was time to investigate the quality of

hexagonal pixels over the traditional square pixels.

In case of reconstructions from highly underdetermined equations, Algebraic

Reconstruction Techniques (*ART like AART, MART, SIRT and SART) prove very

helpful. The reconstruction quality of each of the techniques is dependent on various

factors some of which are explained below —

1)

2)

3)

4)

Nature of the original image: The performance of the algorithm will differ based
on the nature of the original image and what it contains in terms of objects,
contrast and resolution.

Ray Width: Generally in CT, instead of considering the ray as a single straight
line (no thickness), it is considered as a ray with thickness. The ray width refers to
the thickness of the ray. See Figure 1-5 for the graphical illustration of ray width.
Ray Gap: The ray gap refers to the gap between two adjacent rays. The lower the
ray gap the better the quality of the reconstructed image. Ray gaps could occur if
there are collimators between the x-ray source and the patient. See Figure 1-5 for
the graphical illustration of ray gap.

Detector Width: The detector width refers to the width of the detectors. See

Figure 1-5 for the graphical illustration of detector width. The larger the detector

10
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5)

6)

7)

8)

9

width the lower the resolution of the reconstructed image. On the other hand, the
lower the detector width the lower would be the signal to noise ratio.

Detector Gap: In practical CT, the detectors are placed very close to one another.
However there is a gap kept between two neighboring detectors to prevent energy
transfer due to conduction between detectors. Also to reduce scattering noise
caused by scattering photons, collimators are kept between two adjacent detectors.
The gap between two adjacent d etectors is referred to as the d etector gap. See
Figure 1-5 for the graphical illustration of detector gap.

Pixel Width: This parameter refers to the width of the pixel in the original and
the seed image. See Figure 1-5 for the graphical representation of pixel width.
Weighting Scheme: The weight factors or the contribution that each pixel makes
in a ray are calculated using four different approaches. “Binary”, “Length of ray
within a pixel”, “Distance of center of pixel from center of ray” and
“Contribution made by the pixel in adjacent rays™ are the four weighting schemes
presented in this thesis. The different schemes are explained in detail in section
4.5.

Type of *ART: AART, MART, SIRT and SART differ from one another in
terms of the value of correction and the time at which it is applied.

Seed image: This is the initial estimate of the solution. [22] showed that the seed

image plays a role in the convergence and reconstruction quality.

10) Number of Cycles: This refers to the number of times the code loops through all

the angles and all the detectors for the entire image.

11
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11) Projection angles: This parameter specifies the different angles at which the
projections are taken.

12) Projection Angle Ordering Scheme: This refers to the order in which the
projection angles are considered. “Sequential”, “Fixed Angle”, “Random”,
“Multilevel resolution access”, “Weighted Distance” are the five projection angles
ordering schemes discussed in this thesis. See section 4.6 for the discussion on the
projection angle ordering schemes.

13) Relaxation Factor: The factor used for smoothing *ART (ART, MART, SIRT
and SART) correction matrix.

The different parameters are explained graphically in Figure 1-5. This thesis talks about
some of the factors affecting the performance and quality of the * ART reconstruction and

discusses the results.

Detectors

Ray Width Pixel Width @_ Detector Width

/

¥ j
o
7 !
//////////////////////////////

X Ray Source

Ray Gap —

Figure 1-5. lllustration of the different parameters that affect
the convergence and quality of *ART reconstruction
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The first objective of the thesis is to compare hexagonal pixel resolution over square
pixel resolution using different image quality measures. The second objective of the
thesis is to study the effect of alternate seed images, projection angle ordering schemes

and pixel weighting schemes on the reconstruction quality of *ART.

1.5 Organization of the thesis

Chapter 2 talks about the square vs. hexagonal pixel comparison experiment and shows
the results, the third chapter of the thesis gives an introduction to the various
reconstruction techniques. The fourth chapter discusses the *ART experiments and
results. The fifth chapter talks about future work arising out of this thesis. Appendix A
includes the Matlab™ code written for my experiments. Due to the nature of the
experiments performed, the results are extensive and are summarized inside the chapters
for illustrative purposes. Interested readers can see the tabulated results in Appendix B

and C.

13
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Chapter 2

Comparison of Square Pixel and Hexagonal Pixel Resolution

2.1 Overview

In most applications of image processing, data is collected and displayed in square pixels
[16]. Hexagonal pixels offer the advantage of greater rotational symmetry in addition to
close packed structure without gaps and a nearly circular pixel. We compared the image
quality of images using square pixels with that of images employing hexagonal pixels.
The comparison was done using various images, each considering a different aspect of
geometry (i.e., lines at different angles, curves, etc.). The square pixel images were
constructed using the average of a square area of smaller square pixels. Hexagonal pixel
images were constructed using two techniques. The first one was called the “two-
template approach”, wherein two different templates were used to create a close packed
hexagonal image from smaller square pixels. The second approach was called the “six
neighbor approach” which creates a rectangular template using the six neighbors of a
hexagonal pixel. Different image quality measurements such as Euclidean distance,
resemblance measure, entropy and modulation transfer function (MTF) were used to
compare the square pixel and hexagonal pixel images. Based on our results obtained
using these quality measures, we conclude that contrary to our intuition and their
widespread use in nature (retinas and ommatidia); hexagonal pixels appear to offer little

or no significant advantage over conventional square pixels.

14
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2.2 Introduction

For most modern display devices the shape of the pixels is square. It is due to this fact
that in most applications of image processing, including computed tomography; data is
gathered and arranged in square pixels [25]. The compound eye of insects and
crustaceans is made of smaller, simple eye units, called ommatidia. The rhabdome is the
common area where light is transmitted to the reticular cells. Each of these cells is
connected to an axon and since each ommatidium consists of seven or eight reticular
cells, there are these number of axons, which form a bundle from each ommatidium.
Each o mmatidium p asses i nformation about light from a single direction. The eyes o f
strepsipteran insects are very unusual among living insects. Externally they differ from
the usual "insect plan" by presenting far fewer but much larger lenses. Beneath each lens
is its own independent retina. Anatomical and optical measurements indicate that each of
these units is image forming, so that the visual field is subdivided into and represented by
"chunks," unlike the conventional insect compound eye that decomposes the visual image
in a nearly point wise manner. This results in profound changes in the neural centers for
vision and implies major evolutionary changes [13]. The total image formed therefore is a
sum of the ommatidia fired. This resultant image can be thought of as a series of dots,
just like a computer image is composed of a series of discreet pixels. The more pixels, the
better the picture. Figure 2-1 shows the eyes of the mosquito. We can see that the
ommatidia are more hexagonal than square shaped. It is this natural occurrence that
motivated us to hypothesize that hexagonal p ixels may provide a better image quality

than square pixels.
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Figure 2-1. The eyes of an insect such as a
mosquito  have  hexagonally  arranged
ommatidia. [10]

2.3 Methods and Materials

2.3.1 Platform

The experiments were done on a Windows98 PC with 256MB RAM and having a single
AMD-K6 450MHz processor. The image processing programs were written in Matlab™.
The images that were used for comparison purposes were assorted test patterns and not
partial to any particular geometry. Some test patterns were mathematically created to
observe and verify the accuracy of the image comparison algorithms. All test images
were 256 by 256 pixels. Euclidean distance, resemblance measure, entropy and
modulation transfer function (MTF) were the different image quality measures used for

comparison. Figure 2-2 (a-h) show the different test patterns used for the experiment.

I
%
I
i
|

(a) admin256.bmp (b) balcony256.bmp
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SERR R
T ’%ﬁ“‘?g%

(¢) phantom256.bmp

(e) square256.bmp

(g) sinewave01_256.bmp ‘ (h) sinewavel0_256.bmp

Figure 2-2. Test images used for comparing square and hexagonal pixel resolution. (a) University of
Manitoba Administration Building (courtesy of Prof. W. Lehn, University of Manitoba, reproduced from
his Digital Image Processing class). (b) Friends standing in balcony. (c¢) The Shepp-Logan brain
Phantom image (d) Random image: Image created by uniformly distributed random numbers (€) Regular
Square Image — This image is constructed by having one value for all pixels in a 8x8 square. (f) Regular
Hexagon Image — This image is constructed by having one value for all pixels in a hexagon of length 4.5
pixels. (g) Sine wave image of frequency o ne across the width o fthe image (h) Sine wave image of
Jfrequency ten across the width of the image
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Note that the test images are referred to with their file names in this chapter. For example
the University building image is stored in a file called admin256.bmp (Figure 2-2(a)).
The “friends standing in a balcony” image is called friends256.bmp (Figure 2-2(b)). The
Shepp-Logan brain phantom image is called phantom256.bmp (Figure 2-2(c)). The image
created by uniformly distributed random numbers is called rand256.bmp (Figure 2-2(d)).
The image created by 8 by 8 square blocks of uniform gray-level pixels is called
square256.bmp (Figure 2-2(e)). The image created by assigning one pixel value to all
pixels in a hexagon of length 4.5 is called hexagon256.bmp (Figure 2-2(f)). The image
containing a horizontal sine wave of frequency one is called sinewave0l 256.bmp
(Figure 2-2(g)) and the image containing horizontal sine wave of frequency ten is called

sinewavel0_256.bmp (Figure 2-2(h)).

2.3.2 Euclidean Distance

Euclidean Distance is defined as the straight-line distance between two points. In a plane
with point p; at (x1, y1) and point p; at (x2, y2), it is ((x1 - x2) 2 + (11 -y2) 2) * [34]. For
comparing the difference between two images, the Euclidean Distance is calculated as the
square root of the sum of the difference of the squares of pixels. For example if x;, x,
x3... are the pixel values of imagel at position pi, p, ps... respectively and y1, ys, y3. ..
are the pixel values of image2 at the same positions then the per-pixel normalized
Buclidean distance for an m by n picture is calculated by Equation 1. In equation 1, g
indicates the maximum possible gray level of the image. The normalization is done by
gVinn to make the Euclidean distance dimensionless (independent of size of image) and

gray scale independent.
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The Euclidean distance between Input Image and Output Image in Figure 2-3 with g=32

is given by

When two images are identical, the Euclidean distance measure will be 0. The maximum

value that the Euclidean distance can have is 1, which indicates that the difference

1 mn

Input

Image
1 2 3 4
5 b i B . Imaging
g | 10| 11 | 12 System
13 14 15 16

2
xi ylj (1)
g
Output
Image
1.1 22 1 33 | 44
56 | BB | 7.7 | B8
99 10 | 111122
133 | 144 [ 1556 166

Figure 2-3. Graphical/Mathematical Representation of an Imaging
System. The numbers indicate pixel values.

VL= +(22-2%+(33-3)7+ ...

32 4%4

between the two images being compared is large.

2.3.3 Resemblity (Resemblance) as an Image Quality measure

The fundamental difficulty of Euclidean distance is that it calculates the quality of the
image precisely, which could be different from human perception. To address this
problem, Cornwell, Holdaway, and Uson introduced the resemblity measure [6] (for radio

astronomy). The resemblity measure is defined as the ratio of the value of a pixel to the

= 0.0252
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error between the true sky distribution and the reconstructed image. In image processing,
the ratio becomes the ratio of the value of a pixel to the error between the original image
and the reconstructed image. In layman’s terms this can also be described as the visual
similarity between two images.

The resemblity measure [29] is given in equation 2.

2igu)f

XSD = = )

Jiiﬂuy Jiigw

i=l j=1 i=] j=

where g(ij) and f{i,j) are the two images whose resemblance to each other needs to be
calculated. The resembility measure, like the normalized Euclidean Distance, is
dimensionless (not dependent on the size of the image) and gray-scale independent. The
resemblity measure of two identitical images will be 1. The resemblity is lowest if 1 is
zero at all points where g is non-zero and vice versa. The lowest value of resemblity is 0.
The resemblity measure cannot be greater than 1. It is interesting to note that the
resemblity measure of two images where f oc g is 1. Also I calculated the resemblity of
two uniformly distributed random images. The resemblity interestingly came close to 0.7

everytime.

The resemblity (resemblance) measure between the input f{z, /) and output g(i, j) image of

Figure 2-3 when calculated will come to 0.99955.
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2.3.4 Entropy as an Image Quality measure

To quantify the information of an image (the digital number of pixels) is similar to
quantifying the information of communication. According to Shannon’s assumption, one
element of a large number of messages from an information source is just as likely as
another, so the digital number of one pixel in an image is just as likely as another pixel.
In any one image the number of pixels can be very large. In such cases, to quantify the
information content of an image one can just satisfy the Shannon’s assumption. Hence, it
is reasonable to use Shannon’s entropy in image analysis [30]. By applying Shannon’s
entropy in evaluating the information content of an image, the formula is modified as in

equation 3:
H =3 d(i)log,|d(:)] ®3)

where G is the number of grey levels in the image’s histogram ranging for a typical 8-bit

image between 0 to 255 and d(7) is the normalized frequency of occurrence of each grey

level such that Zd(i)=1. To sum up the self-information of each grey level from the
image, the average information content is estimated in the units of bits per pixel. The
entropy of an image is not an ideal measure for its information content [30]. It depends
only on the probability of the elements o fthe image and totally disregards the s patial
distribution of the pixel values. Therefore the image of a gray ramp can have the same
entropy as random noise as long as the values have the same probability distribution. If
entropy is used as the image quality measure for determining the quality of an imaging
system, the ratio of the entropy of output image to the entropy of the input image is

calculated. The imaging system is expected to preserve the amount of information in the
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output. Hence the ratio is expected to be as close as possible to 1. Depending upon the
nature of noise that the imaging system introduces, the output image could have more
information than the input image. Entropy measure should be used only after careful
consideration in these cases. Since entropy gives the probability distribution, it is never
negative. The lowest value that the entropy could have is 0 where all the pixel values in
the image are the same. Entropy is dimensionless i.e., it is not dependent on the size of
the image. For the square and hexagonal pixel resolution comparison experiment, entropy
is a good measure as both square and the hexagonal pixel output tends to smoothen the
image and loses resolution and information content in the process. By comparing the
entropy we can see by what factor each method preserves the information-content.
Algorithm for calculating image quality based on Entropy
a) Take the test image. Call it 7.
b) Calculate the entropy of the test image using the formula given in equation 3. Call
it E,.
c) Pass the test image as input to the imaging system. Call the output image of the
imaging system as O.
d) Calculate the entropy of the output image using the formula given in equation 3.
Call it E,,.
e) The ratio of the entropy in the output image E, to the entropy in the test image E;
gives us the entropy preservation of the imaging system.
The entropy ratio of the output to input in the square pixel and hexagonal pixel resolution
comparison experiment will be less than one in most of the cases. However, they could

be greater than one in some cases. One example is shown in Figure 2-4.
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() (b)

Figure 2-4: [llustration o f's cenario w here the ratio of

output image entropy to input image entropy is greater

than one. The numbers indicate p ixel v alues. (a) Input

Test image. Entropy of this image is 0.8113 (b) Output

image of the square pixel (explained later) counterpart.

Entropy of this image is .
2.3.5 Modulation Transfer Function (MTF) as an Image Quality measure
The modulation transfer function (MTF) characterizes the spatial resolution of an
imaging system. MTF is the amplitude of a linear system's output in response to a
sinusoidally varying input signal of unit amplitude. Equivalently, it is the magnitude of
the Fourier transform of a system's response to an input signal that is a perfectly sharp,
single p oint o f 1ight - the p oint-spread function o f the sy stem. S ine-wave frequencies,
usually in units of cycles/mm are used as the metric for specifying detail in an MTF plot.
These frequencies are always plotted as the independent variable on the x-axis. To
complete the MTF metric, a measure of how well each sine-wave frequency is preserved
after being imaged, i.e., transferred through an imaging device, is required. This measure,
called modulation transfer is plotted along the y-axis for each available frequency.
Algorithm for calculating MTF

f) Create a test image that is made of a sine wave of frequency one. Measure the

amplitude. Call it 4;
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g) Pass this image through the imaging system. Measure the amplitude of the
frequency one component of the output image. Call it A4,.

h) The ratio of 4, over 4; gives the modulation of the imaging system for frequency
one.

1) Repeat steps a to ¢ by for different frequencies. Plot the modulation function
against frequency and you get the modulation transfer function. The typical plot
of a imaging system’s MTF is shown in Figure 2-5.

A

1

Modulation .
Function

e

frequency

Q0

Figure 2-5. Typical plot of MTF of an imaging system. The larger
the shaded area, the better the MTF of the system.

2.3.6 Test Images and Process Steps

The images that were used for carrying out the i mage quality analysis w ere shown in
Figures 2-2(a-h). These images were reconstructed into squares of 64 pixels and
hexagons of 62 pixels (average) in size. The manner in which this is done is explained
below.

One test image from the ones shown in Figure 2-2 is taken at a time. This image is called
the original image. The original image was b roken into hexagons and each h exagonal

pixel was given the average value of the pixels that fall in the hexagon. In order to ensure
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that no two hexagons overlap and no gaps exist between two hexagons (see Figure 2-6)

the hexagons were created using the following two approaches:

Bap

Figure 2-6. Illustration of gaps, which can occur in
hexagonal pattern created using a single definition of a
hexagon.

a) Two -Template Approach

In the two-template approach shown in Figure 2-7, the hexagons numbered 1 were
created first, the hexagons numbered 3 were constructed later using the same formula as
that of the hexagons numbered 1 and were vertically displaced by the height of the
hexagon. The hexagons numbered 1 and 3 were called odd layered hexagons. Once the
entire image was filled with odd layered hexagons, the hexagons numbered 2 were
constructed such that they resemble very closely to the hexagons numbered 1 and do not
include any pixel already taken by the odd layered hexagons and would include all pixels
not considered by the odd layered hexagons. The hexagons numbered 4 were constructed
similarly and were displaced by length equal to the hexagon’s height from the hexagons

numbered 2. The hexagons numbered 2 and 4 were called even layered hexagons. The
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odd layered hexagons form one template, where as the even layered hexagons form

another template. Hence this approach was called the two-template approach.

Figure 2-7. Hexagonal Packed Structure using the two-
template approach.

b) Six -Neighbor Approach

Figure 2 -8. Hexagonal Packed Structure using the
six-neighbor approach. Note that the grid is shown
only to clearly identify the rectangular template.

The six-neighbor approach used a rectangular template by considering one hexagon and
part of its six neighbors as shown in Figure 2-8. The rectangular template was then
replicated to tile the entire image. The two-template approach algorithm in itself ensured
that no two hexagons overlapped and that no pixel was left out. However it was

computationally cumbersome.
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The six-neighbor approach on the other hand offered us the advantage of being
computationally and p rogrammatically e fficient but required additional logic to ensure
that all the pixels in the image were accounted exactly once. Using both the approaches
described above the original images were converted into hexagonal pixels. The two-
template approach gives the ability to count the number of pixels that lie in a hexagon,
which is useful in comparing against the square pixel counterpart. Hence in most cases

the Two-template approach has been used for the experiments illustrated in this chapter.

The original images (Figures 2-2(a-h)) were then converted into square pixels of size 8 x
8 and each square pixel was given a value equal to the average of the pixel values that fell

in the square.

2.3.7 Evaluation of the Image Quality (Euclidean Distance, Resemblity and
Entropy)
The image quality was evaluated using the different image quality measures.
Algorithm: -
a) Take atest image. Call it T.
b) Convert the test image into a square pixel image. Call it S.
¢) Convert the test image into a hexagonal pixel image. Call it H.
d) Calculate the image quality between S and 7. This is Q.

e) Calculate the image quality between H and 7. This is Oy.

f) Plot Oy - Qs
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g)

h)

Rotate T by 5 degrees and repeat steps b to f. The rotation is done to ensure that
the results are not partial to any objects in the image. The rotation is carried out
from O degrees to 360 degrees in increments of 5 degrees using bicubic
interpolation. The graphical representation of the algorithm is represented in
Figure 2-9. Note that even though these plots are shown for rotation angles of 0,
45 and 90 degrees, the actual experiment was done for rotation angles from 0 to
360 degrees in increments of 5 degrees. The graphs are shown in the following
pages. The experiments were done for all test images, but only the admin256.bmp
image is illustrated in this figure.

Image quality of the square pixel image at 0° is the difference between Figure 2-
9(a) and Figure 2-9(b). The image quality of the hexagonal pixel image at 0° is the
difference between Figure 2-9(a) and Figure2-9(c). Similarly the image quality of
the square pixel image at 45° is the difference between Figure 2-9(d) and Figure
2-9(e) and the image quality of the hexagonal pixel image at 45° is the difference

between Figure 2-9(d) and Figure 2-9(f) and so on.

®
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(2 (h) M
Figure 2-9. Square vs Hexagon resolution comparison experiment process for evaluating Euclidean distance,
resemblity and entropy image quality measures (a) University of Manitoba Administration Building (courtesy of
Prof. W. Lehn, University of Manitoba, reproduced from his Digital Image Processing class) (b) The 256 x 256
test image shown in (a) is broken into square pixels each of size 8 x 8 (64 pixels). The entire 256 by 256 image
would be filled with 32 by 32 such squares. (¢) The 256 x 256 test image shown in Figure (a) is broken into
hexagonal pixels each of length 4.5 (62 pixels). The entire 256 by 256 image is filled with 1057 hexagons. (b) and
(c) are constructed using the two-template approach but the six-neighbor approach gives the same result.(d)
Image in (a) is rotated by 45 degrees. () Rotated Image in (d) is converted into square pixel image of size 8 x 8
(64 pixels) (f) Rotated image in (d) is converted into hexagonal pixel image of size 4.5 (62 pixels). (g) Image in
(a) is rotated by 90 degrees. (h) Rotated image in (g) is converted into square pixel image of size 8 x 8 (64
pixels). (i) Rotated image in (g) is converted into hexagonal pixel image of size 4.5 (62 pixels).

Rounding and interpolation errors are introduced when an image is rotated [28]. These
rotation errors can be determined by rotating an image by 0 and rotating it back by —6.
The difference between the original image and the image obtained by rotating the image
by 6 and then by -0 gives an estimate of the rotation error. Also a major portion of
rotation error occurs at the edges [28]. To minimize the rotation error, one should ignore

the edges and just consider the center portion of the image. The rotation error gets
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complemented if the rotation is done in increments. To avoid this the original image is
rotated by the angle of rotation for each successive angle. The results presented in this
chapter do not ignore the rotation error. Future work is warranted to estimate the effect of

rotation error on the overall results.

Instead of displaying the plots of the image quality measures for both square pixel and
hexagonal pixel images as shown in Figure 2-10 (a, c, €), in the results section, I only
show the plot of the difference in the error margin of the image-quality-measure between
hexagon and square pixel images. This makes the graph much easier to read. The mean of
the difference is represented as a continuous dotted line as can be seen in Figure 2-10 (b,
d, f). If this line is above the horizontal axis, then it means that the square pixel method is
better for that particular quality measure, if the dark line is below the horizontal axis, then
it indicates that the hexagonal pixel method is better for that particular quality measure. 2
standard deviation (o) is calculated for all experiments. From Figures 2-10 (a,c,e) it is
difficult to interpret which pixel-method is better, but Figures 2-10 (b,d,f) simplifies this

task.
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Figure 2-10. Euclidean distance, resemblity and entropy plots for comparison between square pixel and
hexagonal pixel and how they are simplified by only showing the difference. (a) The Euclidean distance is
plotted as a function of rotation in degrees for both the square and hexagonal pixel images. (b) The difference
between the Euclidean distance of the hexagonal pixel image and the square pixel image is plotted as a function
of rotation in degrees. This graph gives an easy representation as to which (square pixel or hexagonal pixel) is
better in terms of Euclidean distance (c) The resemblity measure is plotted as a function of rotation in degrees
Jor both the square and hexagonal pixel images. (d) The difference between the resemblity of the hexagonal
pixel image and the square pixel image is plotted as a function of rotation in degrees. This graph is for easy
graphical comparison of resemblity between the two pixel-resolution methods. (e) The entropy is plotted as a
Junction of rotation in degrees for both the square and hexagonal pixel images. (f) The difference between the
entropy of the hexagonal pixel image and the square pixel image is plotted as a function of rotation in degrees.
This graph gives an easy graphical comparison of entropy between the two pixel-resolution methods.
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2.3.8 Evaluation of the Image Quality using MTF
The image quality was evaluated using MTF using the algorithm below —
Algorithm: -
a) Create a sine wave image of frequency one. Call it T
b) Calculate the FFT of T and get the amplitude at frequency one.
c) Convert the test image into square pixel image. Call it S. Calculate the FFT of §
and get the amplitude for frequency one. Call it 4.
d) Convert the test image into hexagonal pixel image. Call it H. Calculate the FFT of
H and get the amplitude at frequency one. Call it 4y,
e) Calculate the ratio of 4¢/4;. This is the modulation factor of the square pixel
image at frequency one.
f) Calculate the ratio of 41/4:. This is the modulation factor of the hexagonal pixel
image at frequency one.
g) Increase the frequency gradually and repeat steps a to f.
h) Plot a graph of the modulation function at the different frequencies as a function
of frequency.

Graphical procedure of calculating MTF is shown in Figure 2-11.
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() (h) ®

Figure 2-11. Square vs Hexagon resolution comparison experiment process for evaluating MTF quality measure
(a) Sinewave of frequency one. (b) The 256 x 256 test image shown in (a) is broken into square pixels each of
size 8 x 8 (64 pixels) (¢) The 256 x 256 test image shown in Figure (a) is broken into hexagonal pixels each of
length 4.5 (62 pixels). (c) is constructed using the two-template approach but even the six-neighbor approach
gives the same result.(d) Sinewave of frequency ten cycles across the width of the image (€) Image in (d) is
converted into square pixel image of size 8 x 8 (64 pixels) (f) Image in (d) is converted into hexagonal pixel
image of size 4.5 (62 pixels). (g) Sinewave of frequency forty across the width of the image. (h) Image in (g) is
converted into square pixel image of size 8 x 8 (64 pixels). (i) Image in (g) is converted into hexagonal pixel
image of size 4.5 (62 pixels).

Note that even though these plots are shown for frequencies 1, 10 and 40, the actual experiment was done for
Jrequencies from 1 to 128 in increments of one. The MTF plot for the square pixel, hexagonal pixel comparison
experiment is shown in Figure 2-20.
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2.4 Results and Discussion

The results of the Euclidean distance, resemblity and entropy evaluation are shown for all
test images in Figures 2-13 to 2-20. The graphs show the difference in image quality
measures between hexagonal pixels and square pixels. The difference is p lotted in the
graphs as it gives a clearer picture of the behavior of the two pixel methods. The mean
difference is also plotted in the same graphs. The mean difference gives an easy
interpretation as to which pixel method is better at a quick glance for the entire rotation.
If the mean difference line is above the horizontal axis then it indicates that the square-
pixel is better. If the mean difference line is below the horizontal axis then it indicates
that the hexagonal pixel is better. The distance of this mean difference line from the
horizontal axis indicates the extent of the superiority of one pixel-method over the other

for the particular image quality measure.

Figures 2-13a to 2-20a shows the Euclidean distance plots. Note that the Euclidean
distance is based on hexagonal pixels generated using the two-template approach.
Figures 2-13b to 2-20b shows the Resemblity plots for all the test images. Figures 2-13¢
to 2-20c shows the Entropy plots for the test images. Figures 2-13d to 2-20d tabulate the

summary of the plots including the 2o.

2.4.1 Results for the admin256.bmp (University of Manitoba building) image
Figure 2-13 shows the image quality comparison for the admin256.bmp image. This
image is a real life picture and has objects partial to both square and circles. However,

since the square pixel can lie exactly over the square objects, but the hexagonal pixels
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cannot over the circular object, it was expected and seen that the Euclidean distance at 0°
for the square pixel image is less than the hexagonal pixel image. As soon as the image is
rotated by a small angle of 5°, some of the lines in the image got aligned with the square
and hexagonal pixel counterpart, thereby bringing the Euclidean distance down at 5°.
These 5° lines are the ones that exist in the top arch of the admin building. However,
there are no objects that are at a 10° angle. Hence when I rotated the image by 10°, the
Euclidean distance of the square-pixel image increased. However, at 10° rotation the
rectangular pellets that exist just above the “The University of Manitoba” label
overlapped one another, which brought the hexagonal pixel resolution down. For each
increment of rotation, certain objects add up and certain objects move away from the
standard square and hexagonal pixel geometry thus making the plot very volatile. An
image when rotated at a certain angle using bicubic interpolation will have its own
rounding precision error. However, when the image is rotated at 90°, 180° and 270°, these
errors are small. Hence I paid special attention to these rotation angles. At 90°, 180° and
270° rotations the square pixel will fit in exactly the same way as the 0° (original) image.
Hence the square-pixel Euclidean distance at these rotations angles is nearly same. One
would have expected the image quality measures to be identical at 0° and 60° for a
hexagonal pixel. However, since the center of the image is (128.5, 128.5) and is not the
center of the centermost hexagon, the rotation of the image is not symmetrical at the
center. Hence the results did not match my expectation. One way to work around this
problem is to rotate the image at the center of the centermost hexagon and see the result.
The explanation of the resemblity measure follows along the same lines. Resemblity

gives the degree of resemblance between two images. The closer the resemblity measure
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to 1, the better the resemblance between the two pictures. At 0° the background of the
admin image finds a very good match with the square pixel image than the hexagonal
pixel counterpart and hence the resemblance of the square-pixel image to the original
image is better than the resemblance of the hexagonal pixel image to the original image.
This is true even at 180°. However, when the angle increases above 0°, the difference
between the square and hexagon image quality based on resemblity measure is not very
different. At 90° rotation, the bottom part of the image coincides with the hexagonal pixel
image. Hence the resemblity measure is good for the hexagonal pixel image compared to
square pixel image. When I did a summary of the resemblity measure between square and
hexagonal pixel image for all the rotation angles, I found that the resemblity measure of
the hexagonal pixel is 0.0345% better than the resemblity measure of square pixel. But
this difference could also be because in my experiment there are 62 pixels in one hexagon
compared to 64 pixels in one square. I did the experiment for a larger hexagonal pixel
size (one hexagon having 69 pixels) and found that the resemblity decreases for the
larger-hexagon hexagonal pixel image. The entropy measure is a measure of how well the
hexagon and s quare p ixel p reserve information c ontent. The entropy ratio will be less
than 1 in most cases, but scenarios still exist where the entropy ratio can be greater than
1. See section 2.3 for the specific scenario. Since the number of pixels in the hexagon
image is more than the number of pixels in the square image, it was expected that the
hexagonal pixel would retain more information that its square pixel counterpart. This was
found to be the case.

Summary (for admin256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 0.1034% 0.0315% Hexagon
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Resemblity

0.0345%

0.0012%

Hexagon

Entropy

0.0008%

0.0100%

Square

2.4.2 Results for the balcony256.bmp (Friends standing in the balcony of a high rise
building) image

The balcony test image was used more for interest than intelligence. The results are
shown in Figure 2-14. Since this image does not have lot of edges (straight lines), I
expected the hexagon image to be better than the square image. However, the degree of
difference between the square and hexagon image is much less than my anticipated
difference. The ground seems to be tilted at ~20°; hence rotating the image by 20° aligns
it with the square pixel, thereby bringing the Euclidean distance down. The explanation
follows on similar lines as that for the admin256 image. Since this image has more
objects that are a little partial to circular symmetry, the hexagonal pixel did find a better
match thereby bringing the overall Euclidean distance down.

As far as the resemblity measure is concerned, I thought the resemblity measure for the
hexagon image would be better than square image, since I visually found the hexagon
image more pleasing and resembling more closely to the original image compared to the
square image. This came out correct.

The entropy measure of the square-pixel came out better than hexagonal pixel. This is
rather surprising. I currently have no explanation for this.

Summary (for balcony256.bmp)

Quality % Difference 2c Which is better?
Fuclidean Distance 0.6181% 0.0403% Hexagon
Resemblity 0.0483% 0.0010% Hexagon
Entropy 0.1431% 0.0101% Square
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2.4.3 Results for the phantom256.bmp (Shepp-Logon brain phantom) image

Figure 2-15 shows the image quality comparison for the phantom256.bmp file. Since this
image has got more circular objects, I was expecting the hexagon image to have better
resolution than the square image. Since the borders of this image are 0, this is a good
image to test. In this case the noise introduced by the rotation algorithm is less. Hence the
result tells us the difference between square and pixel image more correctly. Even though
this image has more circles, the border white circle resembles very closely to a line and
the square pixel image fell exactly on this line. Hence the Euclidean distance became less
for the square image compared to hexagon image. Since the image is centered in the
middle, the noise introduced by the rotation algorithm is less, hence the entropy ratio falls
in the same range at 0° and any other rotation angle (unlike other images where the ratio
is minimum at 0° rotation). Since at 45°, the square pixel image overlaps exactly with the
border of the circular objects, the preservation of information at this angle for a square
image is large. The distance of the pixel values between the original image and the pixel
values in the square-pixel image are closer than the distance of the original image pixel
values to the hexagon image. This is a strange result and needs more exploration. I
expect that if the center of the centermost hexagon had been the center of the image, we
would have got slightly different results.

Summary (for phantom256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 0.2351% 0.0723% Square
Resemblity 0.1264% 0.0251% Hexagon
Entropy 0.2723% 0.0463% Hexagon
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2.4.4 Results for the rand256.bmp image

Figure 2-16 shows the image quality comparison for the rand256.bmp file. This test
image is impartial to any geometry; it has all frequency components (as can be seen from
its FFT in Figure 2-12b), and has a uniformly distributed histogram (as can be seen from

its histogram plot in 2-12c¢).

¥ v 3

Frequency

100 180
. Pixel Malue
(©)
Figure 2-12. (a) Random Image generated by a uniformly distributed random number generator (b) FFT
of the image shown in (a). (¢) Histogram of the image shown in (a).
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The Euclidean distance is 0.0021% better for square image as compared to hexagon
image. The resemblity of the hexagon image came out better than square. The biggest
difference was noticed in entropy. Entropy is the ratio of information content in the target
image to that of the original image. Since the hexagon image has more number of pixels
than the square image (62 pixels in one hexagon compared to 64 pixels in one square),
there is a greater likelihood of the hexagon image retaining the information than the
square image. Local peaks were observed in all the quality measures at rotation angles of
0° 90° 180 ° and 270 °. These were caused because in other rotation angles, the small
local homogeneous blocks that exist in the random image get busted up during rotation,
whereas at 0, 90, 180 and 270 they are not altered.

Summary (for rand256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 0.0021% 0.0020% Square
Resemblity 0.1331% 0.0011% Hexagon
Entropy 0.7402% 0.0254% Hexagon

2.4.5 Results for the square256.bmp (Mathematically created to fit the 8 by 8 square
pixel-image)

Figure 2-17 shows the image quality comparison for the square256.bmp file. This test
image was created for two reasons — 1) to check the accuracy of the code and 2) to check
the behavior of the pixel-methods to images that fit its geometry.

Since the image was partial to square pixels, I expected that the Euclidean distance of
square pixels would be better than the Euclidean distance of its hexagonal pixel
counterpart. Even though my hypothesis turned out to be correct, the extent of the

difference is small. The square-pixel method gave a 6.8704% improvement in the
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Euclidean distance. The square-pixel image is exactly similar to the squar256.bmp image
at the rotation angles of 0°, 90°, 180° and 270° and hence the square-pixel Euclidean
distance at these angles is zero. Hence the plot shows the peak at these angles. However,
as soon as the image is rotated by a small angle, the square-pixel does not fit the rotated
image any more. Hence the Euclidean distance changes rapidly and becomes comparable
with the Euclidean distance of the hexagonal pixel image.

One interesting fact was that the resemblity of the hexagonal pixel image came out better
than the square-pixel image.

Summary (for square256.bmp)

Quality % Difference 2c Which is better?
Fuclidean Distance 6.8704% 0.7570% Square
Resemblity 0.0390% 0.0009% Hexagon
Entropy 0.0823% 0.0608% Square

2.4.6 Results for the hexagon256.bmp (Mathematically created to fit the hexagon of
length 4.5)

Figure 2-18 shows the image quality comparison for the hexagon256.bmp file. This test
image was created for two reasons — 1) to check the accuracy of the code and 2) to check
the behavior of the pixel-methods to images that fit its geometry.

Since the image was partial to hexagonal pixels, I expected that the Euclidean distance of
hexagonal pixels would be better than the Euclidean distance of its hexagonal pixel
counterpart. This was found to be the case. The hexagonal pixel method gave a 3.2687%
improvement in the Euclidean distance. The hexagonal pixel image is exactly similar to
the hexagon256.bmp image only at the rotation angle of 0°. As soon as the rotation starts

the hexagonal pixel image does not match with the rotated image. We could have
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expected this to happen at least at the rotation degrees of 60, 120, 180, 240, 300, but as
the center of the centermost hexagon is not the center of rotation, there is no pattern
across these angles. The hexagonal pixel shows the best quality match over its square-
pixel counterpart at 0° since it matches exactly with the test image. As soon as a slight
rotation is applied, the hexagonal pixel image no longer matches with the rotated image
making the image quality measure comparable with its square-pixel counterpart. When
the image is rotated 180°, because of the two different templates used in construction of
the hexagon, the hexagonal pixel image does not exactly overlap with that of the rotated
image but the overlap area is increased. This explains the small peak that we see at 180°
angle.

Summary (for hexagon256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 3.2687% 0.4801% Hexagon
Resemblity 0.2986% 0.0309% Hexagon
Entropy 4.5298% 0.7157% Hexagon
2.4.7 MTF Results

The modulation transfer function describes the quality of an imaging system by giving
the amplitude response of the system to different spatial frequencies. The blurring caused
by the system causes the amplitude to be reduced as spatial frequency increases. For the
square-pixel and hexagonal pixel comparison experiment, the square-pixel and the
hexagonal pixel can be considered as the imaging system in itself as they take a test
image as input, execute their respective algorithm and produce an output i mage. A Iso
since both the methods take the average over an area of pixels of the original image, they

essentially are blurring the image.
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The plot of MTF results obtained for the square-pixel and hexagonal pixel comparison
experiment is shown in Figure 2-21. Since the area under the curve is more for the
hexagonal pixel image one can say that the hexagonal pixel image gives a better MTF
than its square-pixel counterpart. Note that the square-pixel MTF becomes zero at
frequencies 32, 64, 96 and 128. This is because at these frequencies, the square-pixel
image averages out evenly across a 8 by 8 block thereby making it lose the frequency
component. The square-pixel image becomes a flat image at these frequencies and
therefore has only the DC component. The peak occurring in the MTF of the hexagonal

pixel image at frequency 18 is rather curious and needs further analysis.

Summary
Quality % Difference 2c Which is better?
MTF 3.1003% 0.1066% Hexagon

2.5 Conclusion

I averaged the results of all the test images. They summarize as below

Euclidean Distance: 0.9594% + 0.0391% better for hexagonal pixel

Resemblity: 2.0483% =+ 0.0317% better for hexagonal pixel

Entropy: 8.8201% % 0.2989% better for hexagonal pixel. Note that this averaged value
looks higher only because of the increase in entropy for the hexagon256.bmp image at 0°
rotation.

MTF: 3.1003% =+ 0.1066% better for hexagon.

Since in the experiments each hexagon has 62 pixels compared to 64 pixels in a square,
there were approximately 1057 hexagons compared to 1024 squares for the test images

(Note that the test images are 256 by 256 pixels). Hence I was expecting an improvement
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in hexagonal pixel. I estimated this improvement by plotting a graph of the image quality
measure as a function of number of pixels that fit the 256 by 256 image. This plot is
shown in Figure 2-22. Based on this plot, I calculated the image quality of the
reconstruction that will have 1057 square pixels in the 256 by 256 image. A 62 pixel
square image shows an improvement over a 64 pixel square image as below —

Euclidean distance: 2.45%

Resemblity: 7.56%

Entropy: 2.84%

Also it cannot be generalized that the hexagonal pixel is always better than square-pixel
as we have seen from the experiments that the nature of the test image plays an important
part in determining which one is better (compare results of phantom256.bmp and
balcony256.bmp). Due to the closeness of the quality measures between the two pixel-
methods I conclude based on my experiments and the image quality measures employed,
that hexagonal pixels do not appear to offer any significant advantage over conventional

square pixels.
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 Normalized Fuclidean Distance
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Summary (for admin256.bmp)

Quality % Difference 2c Which is better?
[Euclidean Distance 0.1034% 0.0315% Hexagon
Resemblity 1.3768% 0.0012% Hexagon
Entropy 0.1008% 0.0100% Square

(a)

Figure 2-13. Plots are shown for admin256.bmp image (a) Plot of Euclidean Distance Measure
(b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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Summary (for balcony256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 0.6181% 0.0403% Hexagon
Resemblity 0.0483% 0.0010% Hexagon
Entropy 0.1431% 0.0101% Square

(d)

Figure 2-14. Plots are shown for balcony256.bmp image (a) Plot of Euclidean Distance
Measure (b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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Rotation (in degrees)

()
Summary (for phantom256.bmp)
Quality % Difference 2c Which is better?
Euclidean Distance 0.2351% 0.0723% Square
Resemblity 0.1264% 0.0251% Hexagon
Entropy 0.2723% 0.0463% Hexagon

(d)

Figure 2-15. Plots are shown for phantom256.bmp image (a) Plot of Euclidean Distance
Measure (b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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Summary (for rand256.bmp)

Quality % Difference 2c Which is better?
Fuclidean Distance 0.0021% 0.0020% Square
Resemblity 0.1331% 0.0011% Hexagon
Entropy 0.7402% 0.0254% Hexagon

(@)

Figure 2-16. Plots are shown for rand256.bmp image (@) Plot of Euclidean Distance Measure
(b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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Summary (for square256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 6.8704% 0.7570% Square
Resemblity 0.0390% 0.0009% Hexagon
Entropy 0.0823% 0.0608% Square

(d)

Figure 2-17. Plots are shown for square256.bmp image (a) Plot of Euclidean Distance Measure
(b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary

56




Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

ixel and Square-pixel -=

Reserblity

57




Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

Summary (for hexagon256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 3.2687% 0.4801% Hexagon
Resemblity 0.2986% 0.0309% Hexagon
Entropy 4.5298% 0.7157% Hexagon

(d)

Figure 2-18. Plots are shown for hexagon256.bmp image (a) Plot of Euclidean Distance
Measure (b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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Summary (for sinewave0l 256.bmp)

Quality % Difference 20 Which is better?
Euclidean Distance 1.3260% 0.1069% Hexagon
Resemblity 0.0295% 0.0006% Hexagon
Entropy 1.6943% 0.1323% Hexagon

(d)

Figure 2-19. Plots are shown for sinewaveQl_256.bmp image (a) Plot of Euclidean Distance
Measure (b) Plot of Resemblity Measure (¢) Plot of Entropy (d) Summary
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Summary (for sinewavel0 256.bmp)

Quality % Difference 2c Which is better?
Euclidean Distance 1.2471% 0.0958% Hexagon
Resemblity 0.2065% 0.0098% Hexagon
Entropy 1.9541% 0.1633% Hexagon

(d)

Figure 2-20. Plots are shown for sinewavel0_256.bmp image (a) Plot of Euclidean Distance
Measure (b) Plot of Resemblity Measure (c) Plot of Entropy (d) Summary
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. quﬁléﬁon; Tran#‘fér Fum:non ,
(MTE) '

Summary
Quality % Difference 2c Which is better?
MTF 3.1003% 0.1066% Hexagon

(b)

Figure 2-21. MTF plots (a) Plot of MTF (b) Summary
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Plot of Normalized Euclidean Distance as a function of number of pixels in a 258 by 256 image
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Figure 2-22. Plot of normalized Euclidean distance as a function of number of square pixels in
a 256 by 256 image
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Chapter 3

Reconstruction (from Projections) Techniques

Note that this chapter is called Reconstruction from Projections because there are other
approaches not based on reconstruction from projections (example - acoustic holography
and techniques based on the transmission and reflection of ultrasonic waves [38]), to get
three-dimensional information about structures within the body. Discussion of the same is
beyond the scope of this thesis. This thesis will only talk about reconstruction from

projection techniques.

3.1 Overview

This chapter reviews a few algorithms that have been proposed to solve the
reconstruction problem. Each method has its own advantages and disadvantages.
Workarounds have been discovered to eliminate some of the de-merits of the algorithms.
This chapter does not talk about the de-merit removal techniques. The objective of this
chapter is to give a good understanding of the different reconstruction techniques, which

will help the reader in understanding the experiments discussed in chapter 4.

3.2 Statement of the Reconstruction Problem
Image reconstruction is one of the key components of Computed Tomography (CT). For
limited dose, the projection data is limited and hence the reconstruction accuracy can

only be improved by the development of more efficient detectors and the optimization of
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reconstruction algorithms to make more efficient use of the available dose. The work in
this thesis addresses the latter issue assuming that the detector quality has reached its
limit. In CT this is referred to as the backward or inverse problem.

The problem of reconstructing two-dimensional (2-D) objects from a set of one-
dimensional (1-D) projected images has arisen and been solved independently in fields
ranging from medicine and electron microscopy to holographic interferometry. By using
a source of radiation external to the object, one can obtain a transmission picture or
projection of the 2-D object onto a 1-D detector array. The reconstruction problem is:
Given a subset of all possible projections of an object, estimate its internal density

distribution [37]. This is illustrated diagrammatically in Figure 3-1.
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Figure 3-1a. Graphical representation of the Figure 3-1b. Graphical representation of the
mathematical model of forward CT. The X-ray mathematical model of backward CT. The
source and detector are rotated around the projection values are used to reconstruct back
object and the detector readings are recorded the image. Note that more the angles, the
at each angle. better the resolution of the reconstructed

image, but higher would be the dose.
All algorithms for reconstruction take as input the projection data, and all produce as
output an estimate of the original structure based on the available data. The estimate

varies from method to method. The relative performance of the various methods depends
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on the object and how the data is collected. It is therefore important that qualitative

Jjudgments be made only after a careful and exhaustive study.

Three known reconstruction algorithms are widely known. They are —

a) Summation: The ray sums of the rays through each point are simply added to
obtain an estimate of the density at the point.

b) Use of Fourier Transforms: It is possible to derive reconstruction algorithms using
the Fourier Slice Theorem (also called the Projection Theorem) (explained in
section 3.4).

c) Iterative Method

3.3 Summation Reconstruction Technique (SRT)

A rough but nonetheless elegant method [38] of obtaining an approximate reconstruction
is the summation method. In the summation method the density of each point in the
reconstructed picture is obtained by adding up the densities of all the rays going through
that point. For example, if the test picture consists of a single point and two projections of
it are made, the reconstruction is a four-pointed cross as shown in Figure 3-3. The cross
demonstrates the roughness of the summation method. An exact method of reconstruction
would reconstruct a point as a point and not as a cross. It should be mentioned, however,
that a method that succeeds in reconstructing a single point as a point is not necessarily
an exact method for reconstructing more complex pictures.

For the purpose of obtaining three-dimensional information that is quantitatively accurate

for medical applications there are two major objections to employing the summation
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method for the reconstructions. First, the reconstruction is inaccurate because every point

in the original is blurred in the reconstruction. Second, if we take the reconstruction and

calculate its projections, we find that they are not the same as the projections of the

original picture.

Imacge

Figure  3-2a.
The projections
of the image are
taken.

a [ gl | &l
a2 | a2
a3 | 63| &3

Figure 3-2b. The projections at
the first angle are back-projected
such that each pixel in the grid
that contributes to the projection
is assigned a equal value as that
of the projection.

Figure 3-3a. Original Image consists of a point
near the top left corner. All the other values in

the original image are 0.

bl | b2 | b3
h2 | b3
bt [ B2 | k3

Figure 3-2c. The
procedure is
repeated  for all
angles  and  the
results are added up.

Reconstruction  Technique
projections at 0° and 90°.

3.4 Use of Fourier Transforms
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Figure

3-2d.
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Figure 3-3b. Reconstructed
reconstructed based
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image
Summation
(SRT)  using

There are various techniques that use Fourier Transforms to reconstruct images from

projections. These techniques vary only slightly but they nevertheless have their own
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names: Fourier Backprojection (FBP), which is the same as Convoluted Backprojection
(CBP), Filtered Fourier Backprojection (FFBP) and Filtered Convoluted Backprojection
(FCBP). The FFBP is done by adding a filter like Butterworth and Hanning to smoothen

the projection data.

It is possible to derive reconstruction algorithms using the Fourier Slice Theorem (also
called the Projection Theorem) [42]. The Projection Theorem relates the three spaces
(image or spatial space, Fourier or frequency space and projection space) we encounter in
image reconstruction from projections. Considering a 2-D image, the theorem states, “the
Fourier Transform of 1-D projections of the 2-D image is equal to the radial section
(slice) of the 2-D Fourier Transform of the 2-D image at the angle of the projection”.
This is illustrated graphically in Figure 3-4.

When the projection data is transformed to the frequency domain, there is lot of statistical
noise. This noise introduces artifacts in the reconstructed image. Hence the frequency
space is smoothened by the application of filters. The most commonly used filters are
Butterworth, Hanning, Weiner, and low pass cosine filter. The filters have slightly
different characteristics [43]. Regardless of the filter used, the end result is to display a
final image that is relatively free from noise and is pleasing to the eye. Figure 3-5 shows

the result of the application of the FBP approach in image reconstruction.
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S
2D eeverse FFT

Figure 3-4. Graphical illustration of the Fourier slice theorem [42]. f{x,y) is the
original image. Projections are taken at angles 6, and 6, The projection values are
called Pg; and Py, respectively. 1-D Fourier transforms of these projections are taken
and are backprojected in the Fourier space. This gives us F(u,v). Taking the inverse
Fourier transform of F(u,v) gives us f(x,y).Note that f{x,y) is in the spatial space, Py
and Pg; is in the projection or Radon space and F(u,v) is in the Fourier space.

€)) (b)
Figure 3-5. (a) Original Image — 256 by 256 brain phantom image (generated in Matlab) (b)
Reconstructed Image based on projections from 0 to 180 degrees intervals of 1 degree. Hann filter is
used to smoothen the sinogram.The code is available in Matlab™ under the help section of the iradon

function.

Algorithm of Filtered Backprojection Technique

1. Measure Projection.
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2. Compute the filtered projection
3. Backproject the filtered projection.

4. Repeat steps 1, 2 and 3 for all projection angles.

This technique is good if we have the projections in as many angles as p ossible (0 to
180), however this is not good for reducing dose. Figure 3-6 shows an example of a

reconstruction with projection angles from 0 to 180 in intervals of 10 degrees.

(@) (b)
Figure 3-6. (a) Original Image — 256 by 256 brain phantom image (generated in Matlab) (b)
Reconstructed Image based on projections from 0 to 180 degrees intervals of 10 degrees. Hann filter
is used to smoothen the sinogram. The code is available in Matlab™ under the help section of the
iradon function.

As one can see from Figures 3-5 and 3-6, the quality of the reconstruction deteriorates as

soon as the available projection data is reduced.

3.5 Iterative Method
In the case of sparse projection data, the equation system for reconstructing the image
may be underdetermined, i.e., the number of equations is less than the number of

unknowns, which is usually the case in PET, SPECT, and sometimes in CT. In this case
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the solution by inversion methods is hampered both by the size of the equation system
and the inconsistencies caused by the inherent noise in the acquired projection data and
the approximate description of the weight factors. Thus, a method devised by Gordon,
Bender, and Herman [39] can be used: Iteratively, for each projection image ray, the grid
is projected, the projection is compared with the corresponding ray value in the acquired
projection image, and a correction term is computed and back-projected onto the grid.
Ideally, each back-projection updates the grid to correspond more closely to the acquired
projection data. The concept of iterative method can be understood by the method
devised by Kaczmarz to solve linear simultaneous equations [26]. This is illustrated in

Figure 3-7.

Line 2

Initial Guess
.

Figure 3-7. Graphical i llustration o f K aczmarz’s
approach for solving equations of two lines.
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The lines (linel and line2) in Figure 3-7 represent two equations. The solution of these
two equations is the intersection of the two lines. One starts with an initial guess (S?). It
can be shown that a correction to this initial guess is equivalent to dropping a line
perpendicular to one of the lines (say linel) from the initial guess point. The point of
intersection of this perpendicular and the line is our new solution (point 1 in Figure). This
new point is closer to the actual solution than our initial guess. Now starting at pointl, a
perpendicular is drawn on line2. The point of intersection is point2, which is closer to the
actual solution than pointl. We then select the first line and perform this procedure again.
The more the iterations the closer the solution will be to the actual solution. The iterative
process 1s terminated when some convergence-rate threshold is reached.

It was shown by Andersen and Kak [1] that noise-like artifacts in the reconstruction can
be reduced if the grid is corrected only once per projection image and not for every
projection ray. Note that for the remainder of this thesis, a cycle constitutes a sequence of
grid corrections in which all available projections are utilized exactly once and an
iteration constitutes a sequence representing the number of times the grid is corrected.
Although conceptually this approach is much simpler than the transform-based methods
discussed in section 3-4, for medical applications it lacks accuracy and speed of
computation [4]. However, there are situations where it is not possible to measure a large
number o f projections, or the projections are n ot uniformly distributed o ver 1 80° both
these conditions being necessary requirements for the transform-based techniques to
produce results with the accuracy desired in medical imaging [4]. Problems of this type
are sometimes more amenable to solution by iterative techniques. Iterative techniques are

also useful when the energy propagation paths between the source and receiver positions
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are subject to ray bending on account of refraction, or when the energy propagation

undergoes location dependent attenuation along ray paths as in emission CT.

In most literature, I found the formula confusing because the 1-D (projection-space) and
2-D (spatial space) variables were used ambiguously; I modified the representation of the
formula to make it easier to understand and straightforward to code. To understand the

formulae see Figure3-8 and understand the notations.

ngﬁld3 Seed Image 5 Detectars
i
l X-Rayf 7e4,
D
Sa | Saz | Sz t?l d 3
/4 #
;
F P P
62d1 a2d2 §2d3

Figure 3-8. Figure to help understand the
Jormulae for ART, MART, SIRT and SART

In this thesis, O by itself represents the measure of the angle, whereas © with subscript
(example 01) or © following a index (example 01) indicates the index of the angle,
example 6, is the first angle, 0, is the second angle and so on. Similarly d with subscript
indicates the detector number, example d; indicates the first detector, d, indicates the

second detector and so on.
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Original Image (0)
Let (7)) be the row and column number of the image respectively. O, represents
the pixel value of the original image at (7,7) location. The size of the image is n by
n=N.

Seed Image (S)

Let (i) be the row and column number of the image. Therefore Sij represents the
pixel value of the seed image at (i,j) location. In the formulae given (i) are
synonymous with (a,b), except they represent different algorithmic loops.
Projection Data (P)

If the projections are taken- at an angle 0, the projection value measured on a
detector is given by Pgq. M represents the total number of projection angles or if
the gantry is moved, M is the number of detectors times the number of positions.
T represents the total number of detectors.

Weight Matrix (W)

The weight matrix stores the contribution each pixel makes to each detector at all
Wi a

the projection angles. Hence the weight matrix is 4 dimensional. 3

represents the contribution of pixel (/) to detector d; at projection angle 6.
Coordinate System

The programs are written in Matlab™. Since Matlab’s geometry is different from
Cartesian geometry, I made the Cartesian geometry equations fit Matlab’s system.
i represents the row number of the image and runs from top to bottom. j is the

column number of the image and runs from left to right. The origin is (1,1) and
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not (0,0) as in Cartesian geometry. 0 is the angle made by the x-ray with the
horizontal.

Other

K is the total number of cycles. Cycle signifies the completion of the
consideration of all pixel values on all detectors at all projection angles. k is the
current cycle. (k-1) is the previous cycle. Iteration signifies the completion of the
consideration of all pixel values on a particular detector at one projection angle. In
case of ART and MART, the seed image used to start the iteration is the one
obtained after the end of the previous iteration. In case of SIRT and SART the
seed image used to start the iteration is the one obtained after the end of the
previous cycle. Hence it is necessary to declare two more variables. P is the total
number of iterations (applies to ART and MART only). p is the current iteration

and (p-1) is the previous iteration.

Basic Algorithm of Iterative Method

a) Start with a seed image.

b) Copy the seed image into another variable called reconstructed image.

¢) Calculate the projections. Compare the projection value of the reconstructed
image with that of the original image.

d) Calculate how each pixel in the reconstructed image needs to be adjusted to
get projection values same as that of the original. The adjustments are
calculated differently based on the iterative method (ART, MART, SIRT and

SART) used.
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e) Apply the adjustments to the reconstructed image.

f) Applying adjustments for one projection data will typically throw off the
values for another projection. Hence there is a need for iteration.

g) Go back to step b and repeat steps b-f. This procedure is repeated until a

satisfactory convergence criterion is met.

3.5.1 Additive Algebraic Reconstruction Technique (AART or simply ART)

In many ART implementations the correction to the (i,/)" image cell is written as in

Equation 1.
! (o1 3
Y A
F, & Z%@&z ‘Sab
ah
< e 3
ng iﬁab&:? 3
ad
\ / (1)
where I(x) =1 x>0
=0  otherwise
where EI(W"”ﬁ"' represents the number of image cells which are contributing to the d"

detector at projection angle 6. This approximation is easier to implement. However it
introduces artifacts in the reconstructed images. ART reconstructions suffer from salt and
pepper noise, which is caused by the inconsistencies introduced in the set of equations by
the approximations used for the weight factor [4]. The effect of such inconsistencies is
worsened by the fact that as each equation corresponding to a ray in a projection is taken

up, it changes some of the pixels just altered by the preceding equation in the same
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projection. To reduce the effects of this noise in ART reconstructions, relaxation factors
are commonly used. The relaxation factor A is less than 1. In some cases, the relaxation
factor is made as a function o f the iteration number; that is, it b ecomes progressively
smaller with increase in the number of iterations [4]. The resulting improvements in the
quality of reconstruction are usually at the expense of convergence rate.

The formula for ART is given in equation 2-

(b
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3.5.2 Multiplicative Algebraic Reconstruction Technique (MART)

Most iterative methods encounter problems in determining the areas with lower density
than the surrounding; MART comes in handy especially in images like the brain phantom
(Figure 2-2c). Generally all iterations start with a homogeneous first estimate (seed
image). The selection of the seed image is of main importance for the applicability of a
method and for the number of iterations. Researchers [22] have reconstructed the first
estimate from the Backprojection of projections where each element is assigned the
minimum of the backprojected data. This modification provides the advantage that a cell
content once set to 0 cannot increase. The problem with all methods is that there is no
confirmed mathematical or physical reason to set particular pixel elements to zero, except

for MART where this is done at least for all the pixels along a ray from one of the
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detectors which showed zero content in the image. Because the total intensity within the
images has to correspond to the total source distribution, some pixels at the outer surface
of the object contain intensity, which is then missing in the center pixels. This is also
most probably the reason why tomography tends to overestimate the electron density on
the topside of the reconstruction [47]

In MART implementations the correction to the (i,/)™ image cell is as shown in Equation

3.

, 7
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g €)

This approximation is easier to implement. MART suffers the same noise problems as
that of ART. A priori information like ART improves the situation, but the median filter
[22] best improves the signal to noise ratio of the reconstruction. The knowledge about
the nature of noise sources helps in improving results by proper filtering.

The formula for MART is given in equation 4.
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3.5.3 Simultaneous Iterative Reconstruction Technique (SIRT)

This approach uses the same formula as that of ART, except the change in the (i)™ pixel
isn’t done immediately. In this technique before making the adjustment to the pixel value,
all equations are considered and only then at the end of each cycle are the pixel values
changed, the change for each pixel being the average value of all the computed changes
for that pixel. The SIRT algorithm also suffers from the same inconsistencies as that of
ART in the forward process (i.e, computation of the weight factor), but by eliminating the
continual and competing pixel update as each new equation is taken up, it results in
smoother reconstructions. This technique leads to better looking images than those

produced by ART, at the expense of slower convergence [4].

The formula for SIRT is shown in Equation 5.

£ 3
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where /(x) =1 ifx>0

=() otherwise

3.5.4 Simultaneous Algebraic Reconstruction Technique (SART)
SART is a variation of ART, and it combines the best of ART and SIRT. This technique
yields reconstructions of good quality and numerical accuracy in only one iteration [4].

The main features of SART include —

80




Chapter 3. Reconstruction (from Projections) Techniques

a) Reduction of errors in the approximation of ray integrals of a smooth image by
finite sums.

b) Traditional pixel basis is abandoned in favor of bilinear elements.

c) For a circular reconstruction region, only partial weights are assigned to the first
and last picture elements on the individual rays.

d) To further reduce the noise resulting from the unavoidable but now presumably
considerably small inconsistencies with real projection data, the correction terms
are simultaneously applied for all the rays in one projection; this is in contrast
with the ray-by-ray updates in ART.

e) In addition, a heuristic procedure is used to improve the quality of
reconstructions. A longitudinal Hamming window is used to emphasize

corrections applied near the middle of a ray relative to those applied near its ends.

The formula for SART is given in Equation 6.
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The last step, heuristic in nature consists of modifying the back distribution of correction
terms by a longitudinal Hamming window. The idea of the window is illustrated in
Figure 3-9. The uniform back distribution according to the coefficients Wiea 1s replaced
by a weighted version. The weighting correction term is Hyjos Where H, is given by —

Hijed = szed hij
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where £;; 1s the Hamming window in pixel (i /).

W;jglds Seed Image S Detectors

X-Ra

Hyoa

Figure 3-9. [llustration of the Hamming window
correction concept in SART.

However SART is slightly slower than ART in software, due to the pixel based pooling

of correctional updates [26].

3.6 Summary
In this chapter types of algebraic methods have been presented. In spite of the
computational cost, algebraic methods have several advantages like —
a) Different ray geometries are easy to implement.
b) Possible to provide a priori knowledge about the reconstructed object in the
algorithm.
¢} Fewer projections than for the analytical methods are required which is proved
mathematically [26].
d) Metal streaking artifacts are reduced
e) It is possible to handle detectors of variable size inside projections, provided that
detector geometry remains unchanged from one projection to another [14]

f) Better reconstruction technique for low dose CT imaging.
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I decided to do the experiments on *ART to see the effect of the different parameters on
the reconstruction quality. In the next chapter, the experiments performed to analyze the

different factors that affect *ART are discussed.
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Chapter 4

Experiments on *ART

4.1 Overview

In case of reconstructions from highly underdetermined equations, Algebraic
Reconstruction Techniques (*ART like AART, MART, SIRT and SART) prove very
helpful. The reconstruction quality of each of the techniques is dependent on many
factors. This chapter investigates some of the factors affecting the performance and

quality of the *ART reconstruction and discusses the results.

4.2 Parameters affecting *“ART

The different parameters that affect *ART are explained in detail in chapter 1. Below is a
summary o f the parameters that I experimented with and a brief description regarding
how I used them for my experiments.

1) Nature of the original image: I did my experiments with 9 test images to make
sure that the results are consistent across all the images and are not partial to any
kind of image. The different test images used for the experiments are shown in
Figure 4-1 and the reasoning for using each of them is provided in section 4.3.

2) Ray Width: In my experiments the ray width is always 1 pixel.

3) Ray Gap:. For all my experiments I consider the ray gap as equal to 0.

4) Detector Width: For all my experiments I consider the detector width as equal to
1 pixel.

5) Detector Gap: For all my experiments, I consider the detector gap as equal to 0.
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6)

7)

8)

9

Pixel Width: For all my experiments, I consider pixel width as equal to 1.
Weighting Scheme: The weight factors or the contribution that each pixel makes
in a ray are calculated using four different approaches. “Binary”, “Length of ray
within a pixel”, “Distance of center of pixel from center of ray” and
“Contribution made by the pixel in adjacent rays” are the four weighting schemes
presented in this thesis. The different schemes are explained in detail in section
4.5.

Type of *ART: I have written code for ART, MART, SIRT and SART.

Seed i mage: T he different test images used for the experiments are shown in

Figure 4-3 and the details about it are provided in section 4.4.

10) Number of Cycles: The algorithm is executed until the convergence criteria are

met. The convergence criteria used for the experiment is explained in section 4.7.

11) Projection angles: This parameter specifies the different angles at which the

projections are taken.

12) Projection Angle Ordering Scheme: This refers to the order in which the

projection angles are considered. “Sequential”, “Fixed Angle”, “Random”,
“Multilevel resolution access”, “Weighted Distance™ are the five projection angles
ordering schemes discussed in this chapter. See section 4.6 for the discussion on

the projection angle ordering schemes.

13) Relaxation Factor: For all my experiments, I consider the relaxation factor as

equal to 0.5.
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The different parameters are explained graphically in Figure 4-2. I wrote the code in

Matlab™ . The front-end application, where the user can enter parameters is shown in

Figure 4-4.
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@® " (h)

®

Figure 4-1. Test images used for *ART experiments All images are 32 by 32 pixels. (a) admin32.bmp:
University of Manitoba Administration Building (courtesy of Prof- W. Lehn, University of Manitoba,
reproduced from his Digital Image Processing class). (b) rose32.bmp: White Rose. (¢) phantom32.bmp:
Phantom image (d) abcd32.bmp: Image containing the text “abcd”. () paint32.bmp: This image is
created mathematically. It contains a circular patter within a checkerboard pattern. (£f) shingles32.bmp:
This image is created mathematically. It contains repeated blocks where each block contains pixels
whose value increases gradually from top left to bottom right. (g) circles32.bmp: This image is created
mathematically. It contains 6 randomly placed circles of uniform radius having random gray scale
background on a uniform gray scale background. (h) sine32.bmp: This image is created mathematically.
1t contains vertical and horizontal sine waves of frequency 10 superimposed on top of one another. (i)
rand32.bmp. This image is created contains pixels with uniformly distributed pixel values.
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Figure 4-2. [llustration of the different parameters that affect the
convergence and quality of *ART reconstruction.

4.3 Test Images used for the *ART experiments
In order to be fair in my analysis of results, I did the experiments on a variety of test
images. Shown in Figure 4-1 are the different test images used for my experiments. All
the test images are 32 by 32 pixels. The choice of the images is done to consider images
with as diverse properties as possible —
a) admin32.bmp (henceforth referred to as test image a@): This image is a low
brightness low contrast image.
b) rose32.bmp (test image b): This image is a high brightness low contrast image.
¢) phantom32.bmp (test image c): This image contains zeros except in the area
inside the outer ellipse.
d) abcd32.bmp (test image @): This image was constructed to provide a better visual

interpretation of the reconstruction quality.
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e) paint32.bmp (test image e): This image is constructed mathematically. It contains
circles within a checkerboard background. This test image is used to see the effect
(if any) of the checkerboard background on the circles.

f) shingles32.bmp (test image f): This image is constructed mathematically. It
contains repeated 8 by 8 blocks, where the pixel value in each block increases
gradually from the top left to bottom right. It is a good representation o f1ocal
concentration of high contrast.

g) circles32.bmp (test image g): This image is constructed mathematically. It
contains 6 circles of uniform radius of varying gray levels (contrast) placed
randomly on the 32 by 32 grid. This image is used as it is a good representation of
localization of varying contrast areas.

h) sine32.bmp (test image /): This image is constructed mathematically. It contains a
vertical and a horizontal sine wave of frequency 10 superimposed on top of one
another.

1) rand32.bmp (test image i): This image is constructed such that each pixel value is
a generated by a uniform random number generator. This image is not partial to

any particular geometry, contrast or brightness.

4.4 Seed Images used for the *ART experiments
A variety of seed images was used for the experiments. Shown in Figure 4-3 are the
different seed images used. All the seed images have a 32 by 32 pixel resolution.

a) Zeros seed (zeros): The value of all pixels in this seed image is 0.

b) Flat seed (flat): This seed contains pixels with uniform gray value (all ones).
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d)

g)

h)

b))

k)

Meshgrid seed (meshgrid): The values of all pixels in each column of this image
1s same. The value increases from left to right.

Random seed (rand): The pixel values in this seed image are generated by a
uniformly distributed random number generator.

Random-Normal seed (randn): The pixel values in this seed image are generated
by normally distributed random number generator with a mean of 128 and
variance of 32.

Checkerboard seed (checkerboad): The pixels values form a checkerboard pattern.
The dark square has value of 1 and the bright square has value of 255.

Shingles seed (shingles): This seed image contains pixels where the pixel value
increases from top-left to bottom right. Because of the limitation of our eye in
deciphering differing shades of gray and also because of the contrast resolution of
the printer, the image shown in Figure 4-3(g) may not look that way.

Sinewave seed (sinewave): This seed image contains a vertical sine wave of
frequency one cycle across the width of the image.

Noise seed (noise): Noise is added to the test image to create this seed. The Signal
to Noise Ratio (SNR) for generating the noise is 50 (unless otherwise specified).
FBP seed (fbp): This seed image is created by taking the filtered back projection
of the test image. i.e., the test image is reconstructed using filtered back projection
technique first for the same projection data. The reconstructed image is then used
as the seed for the *ART experiments.

Stretched seed (stretch): The seed image is generated by stretching the test image

by a stretch factor of 150%.
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1) Blur seed (blur): This seed image is generated by blurring the test image by a blur
factor. The blur factor for the experiments is 20% unless otherwise specified.
Algorithm for generating the blur image —

a. Take the test image. Call it 7.

b. Reduce the image size of T to (100 - blur factor) % of its original size.
Reducing the image size will blur the image. Call this image as S.

c. Increase size of § to the same size as 7. This new image whose size is

same as that of T'is the blurred image.

(a) zeros

o B
(c) meshgird (d) rand
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(k) stretch (1) blur

Figure 4-3. Seed images used for *ART experiments. (a) Zeros Seed. All pixel values are 0. (b) Flat
seed: All pixel values are 1 (¢) Meshgrid seed: Generated mathematically where the pixel value
increases from left to right. (d) Rand seed: Generated by uniformly distributed random number
generator (€) Randn seed: Generated by normally distributed random number gernerator with a mean of
128 and a variance of 32. (f) Checkerboard seed: Alternate checkers are 1 and 255 (g) Shingles seed:
The pixel values in this seed progresses arithmetically from the top left to bottom right. (h) Sinewave
seed: The pixel values represent a horizontal sine wave of frequency one (i) Noise seed: Seed image is
generated by adding noise to the original image (j) FBP seed: Seed image is the reconstruction obtained
by the Filtered backprojection technique (K) Stretched seed. Seed image is generated by stretching the
original image (1) Blurred seed: Seed image is generated by blurring the original image.

4.5 Pixel Weighting Schemes

For algebraic techniques a ray is defined as a “fat” line running through the image. This
is illustrated in Figure 4-5. Researchers have often considered the ray width as equal to
the image pixel width. I have done the same in my experiments. However my code gives
the flexibility to experiment with different pixel and ray widths. When a ray passes
through the image, each pixel that falls on the ray contributes a certain fraction on the ray
sum. The fraction by which the pixel contributes is between 0 and 1, where 0 indicates no
contribution and 1 indicates that the entire pixel lies within the ray. This fraction depends
upon the material (atomic number and electron density) of the pixel and the area of the
pixel that lies in the ray. Since this thesis is dealing with the inverse problem, all pixels
are considered homogeneous and hence the effect of atomic number and electron density

are not considered. In essence the physics behind forward CT is ignored. Since, precise
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calculation of the area is generally difficult, people tend to simplify this by various

weighting schemes.

Figure 4-4. Front-end application screen for entering the
different parameters for the *ART experiments.
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Figure 4-5. Illustration of the intersection of a ray
with a pixel.

4.5.1 Binary Weighting Scheme (BIN)

The weighting scheme most commonly used in ART is the binary scheme. In this scheme
the contribution made by the pixel in a ray sum is considered equal to one if the center of
the pixel falls in the ray. If the center of the pixel does not lie in the ray then the

contribution of the pixel in the ray sum is considered equal to zero.

4.5.2 Length of Center of Ray within Pixel Weighting Scheme (INT)
In this scheme the weighting factors are calculated as the length of the center of the ray
within the pixel. Figure 4-6 is a graphical illustration of the length of ray within pixel

scheme.
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.
Canbes of donar

Pieal3 Bl

Figure 4-6. Illustration of the “Length of center of ray within a pixel”
weighting scheme.l;, [, I3 are the length ofthe ray within pixel 3, 2 and 1
respectively.

At 45°, the ray covers the maximum distance within a pixel, if it passes through the center
of the pixel. This distance is equal to V2 times the pixel width. Hence I normalize the
length over this value to get the weighting factors. The weighting factors for pixels 1, 2, 3
and 4 in Figure 4-6 will be I,/ (p\2), I/ (pN2), I,/ (pV2) and 0 respectively where p is

the pixel width.

4.5.3 Distance of Center of Pixel from Center of Ray Weighting Scheme (DIST)

In this scheme, the contribution made by a pixel in the ray is calculated as a function of
the distance of the center of the pixel from the center of ray. If R is the ray width and d is
the distance of the center of the pixel from the center of the ray, then the weighting factor

is given by -
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1-2d/R d<=R/2

I
I

= ( otherwise
By this scheme, if the center of the pixel lies on the center of the ray, it will have a
weighting factor of one. The weighting factor will decrease linearly as the distance of the
center of pixel from the center of ray increases and will become zero if the distance is
greater than R/2. Figure 4-7 shows the plot of weighting factor W as a function of

distance d.

oo R72 4

Figure 4-7. Plot of weighting factor W as a function of d in the case of
“Distance of center of pixel from center of ray " weighting scheme.

4.5.4 Distance of Center of Pixel from Farthest Edges of Adjacent Ray Scheme
or
Consideration of contribution made by Pixel on Adjacent Rays Scheme
(CONT)
Intuitively any pixel in the original image would have contributed 100% in a particular

ray or in a combination of adjacent rays. However the “Length of center of ray within

pixel” as well as the “distance of center of pixel from center of ray” approach does not
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guarantee this condition. Figure 4-8 (a and b) shows scenarios where the two previous

schemes do not satisfy the 100% contribution condition.

Center of Eay

(@)

Center of Rayl

—p —|

Center of Pixel

Listance of Pixel from Rayl —

Distance of Pixel from Ray2

Ditance of Pixel from Ray3

Contrbuton made by Pixel in Ray2

Contribution made by Poxel in Rayl

(b)

Figure 4-8. (a) [llustration of scenario where the “length of ray within pixel” weighting scheme
does not satisfy the 100% pixel-contribution condition. (b) Illustration of scenario where the

“distance of center of ray from center of pixel” does not satisfy the 100% pixel-contribution
condition.
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Using the “length of center of ray within pixel” scheme as shown in Figure 4-8(a), we get
the weight factor of pixel 2 as less than one since it is not passing through the opposite
corners of the pixel. However, we can see that the pixel lies completely within the ray
and hence ideally contributes 100%. This means that we are not getting the true
contribution made by pixel 2 on the ray.

Similarly employing the “Distance of center of pixel from center of ray” scheme in the
scenario shown in Figure 4-8(b), we get the weight factors of the centermost pixel on Ray
1 and Ray 3 as zero. Also the centermost pixel’s contribution on the ray sum of Ray 2 is
not equal to one, as the center of the pixel does not lie on the centerline of Ray 2. Hence
essentially, we are losing the true contribution made by the pixel on the detectors.

To rectify this problem, I modified the “distance of center of pixel from center of ray”
approach to consider the contribution made by the pixel on the adjacent rays to calculate
the weight factor of the pixel on the current ray. The algorithm is explained more clearly
below.

Algorithm of “Consideration of pixel contribution on adjacent rays” weighting
scheme.

Consider Figure 4-8 (b).

a) Let R be the ray width, P the pixel width, d, the distance of the center of the pixel
from the farthest-edge of Ray 1, d, the distance of the center of the pixel from the
first-edge of Ray 2, d; the distance of the center of the pixel from the second-edge
of Ray 2 and d, the distance of the center of the pixel from the farthest-edge of
Ray 3.

b) Contribution made by the pixel on Ray 1
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;=0 if di >= R+P/A2
=1-di/(R+ PAN2)  otherwise
c) Contribution made by the pixel on Ray 3
s =0 if d; >= R+PN2
=1—dyJ/(R+ PN2)  otherwise
d) If the pixel is contributing in Ray 2 (determined based on d, and d3), then the
contribution made by pixel on Ray 2 is given by 1 — (¢1+c¢3)
e) The above algorithm considers only the two adjacent rays and is true if P <= R. If

R>P, more adjacent rays need to be considered.

4.6 Projection Angle Ordering Schemes

It has been known for quite some time [20], that both the quality of the approximation
and the rate of convergence of the iterative reconstruction procedure depend, among
other factors, on the order in which the projections are selected for grid correction. In this

section I discuss a few projection angle order schemes.

4.6.1 Sequential Access Scheme (SAS)

In this scheme the projections are taken in the same order as that of the projection data.
For example if the projections are taken at 0 degrees, then at 30 degrees then at 15
degrees and then at 85 degrees, the algorithm also considers the data in the same order 0,
30, 15 and 85. The schematic representation of the access order for 9 projections using

SAS is shown in Figure 4-9.
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6 a

7 1125° 90° 675 |3
3 1350

167 .5°

) 180¢

Figure 4-9. S chematic representation ofthe a ccess order for 9 projections

using SAS
4.6.2 Fixed Angle Access Scheme (FAAS)
A number of researchers have pointed out [19] [21] that it is desirable to order the
projections in such a way that subsequently applied projections are largely uncorrelated.
This means that consecutively applied projections must have significantly different
angular orientations. Many implementations have used a fixed angle for projection
spacing: In my code, I consider the constant angle to be 90 degrees.
For example consider 10 equally spaced projections taken from 0 to 180 degrees. i.e., the
projection angles are 0,20, 40, 60, 80, 100, 120, 140, 160 and 180. According to the
FAAS algorithm the angle 0 will be considered first. The second angle is considered such
that is as close to 90 degrees with the first angle (0 degrees) as possible. Hence the angle
80 is selected next. The third angle is considered such that it is as close to 90 degrees
with the second angle as possible. Hence the angle 160 is selected and so on. However I
modified the code such that the odd angles are selected in sequential order and the even
angles are selected close to 90 degrees apart from their odd counterpart to make the
access order cyclic in a 180° range. Hence for the given example the angles will be order

in the sequence 0, 80, 20, 100, 40, 120, 60, 140, 160, 180.
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The schematic representation of the access order for 9 projections using FAAS is shown

in Figure 4-10.

4 ) 7
6 112.6° 9Q° 57.5°
8 /5° 3
167 &° 22.5°
g 180° g° 1

Figure 4-10. Schematic representation of the access order for 9 projections

using FAAS
4.6.3 Random Access Scheme (RAS) '
VanDijke [32] concluded that, among all schemes he tried, a random projection
permutation gave the best results. In this scheme the projections are taken in a random
order. The schematic representation of the access order for 9 projections using RAS is

shown in Figure 4-11.

3 ] 6
4 1125° 90° 67.5° 2

157.5°

7 180°

Figure 4-11. Schematic representation of the access order for 9 projections
using RAS

4.6.4 Multilevel resolution select Access Scheme (MLSAS)
Using the Random Access Scheme as proposed by VanDijke will give inconsistent

results each time the experiment is done due to the sheer nature of the angle ordering
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scheme. Therefore one may prefer an ordering scheme that is more controllable and
deterministic than a random number generator. Recently, Guan and Gordon [21]
presented, what they termed, the Multilevel Access Scheme(MLS). This method works
best when the number of projections is a power of 2, but can also be used, with minor
modifications, in the general case. The following description is for the simple case of M
being a power of 2: First, for level one and two, the method chooses the projections at 0%,
90*, 45*, and 135%*. All subsequent levels L=3, .., log,S contain 2L views. The projection
order at level L is computed by simply going through the list of all applied projections at
levels 1. MLS generates a permutation of the angle ordering such that there is an even
spread of the applied projections around the reconstruction cycle.

For example consider 10 equally spaced projections taken from 0 to 180 degrees, i.e., the
projection angles are 0, 20, 40, 60, 80, 100, 120, 140, 160 and 180. According to the
MLSAS algorithm the angle 0 will be considered first. The second angle is considered
such that is as close to the center angle of the reconstruction angle as possible. Hence 80
1s considered next. The third angle is selected such that it is close the mean of the first
two angles, hence 40 is selected next. The fourth angle is the mean of the third and the
last angle and the angle that has the highest degree of uncorelation with the third angle.
Hence 120 is selected next and so on. Hence for the given example the angles will be
order in the sequence 0, 80, 40, 120, 20, 100, 60, 140, 160, 180.

The schematic representation of the access order for 9 projections using MLSAS is

shown in Figure 4-12.
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6 z i
4 112.5° 90° B7.5% 3

1567.58°

9 180°

Figure 4-12. Schematic representation of the access order for 9 projections
using MLSAS

4.6.5 Weighted Distance Access Scheme (WDAS)
[27] While all pre.viously proposed ordering schemes take great care to space far apart
consecutively chosen projections, they somewhat neglect the problem of optimizing the
selection in a global sense. In the process of selecting a newly applied projection, all, or
at Jeast an extended history of, previously applied projection orientations must be taken
into account and weighted by their time of application. The Weighted Distance Scheme
(WDS) heuristically optimizes the angular distance of a newly selected projection with
respect to the complete sequence of all previously applied projections (including those
applied in the previous iteration) or any continuous, time-wise adjacent subset thereof.
Thus the WDS projection angle scheme is suitable when -

a) a series of subsequently applied projections is eveﬁly distributed across a wide

angular range and

b) at no time is there an angular range that is covered more densely than others.
All of the existing methods tend to be strong in one of the two aspects, but weaker in the
other. However, none o f the previous m ethods c omments on how one should proceed
with the projection selection at iteration boundaries. It is clearly necessary to also include

projections applied in previous iterations into the selection process. A smooth transition
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between iterations is warranted if the selection scheme is continuous across cycle
boundaries i.e., in the previous methods the same sequence of projections are repeated for
all cycles, the weighted distance considers the projections taken in the previous cycle to
determine the sequence of projections for the next cycle. The Weighted Distance
Projection Ordering Method is designed to maintain a large angular distance among the
whole set of used projections while preventing clustering of projections around a set of
main view orientations. The m ethod selects, from the p ool o f unused p rojections, t hat
projection that optimizes both the angular spacing and the spread with respect to the
complete set or a recent subset o fall previously applied projectional views. Hereby it
takes into account that more recent applied projections should have a stronger influence
in the selection process than projections that have been applied earlier in the
reconstruction procedure. The selection algorithm results in uniform sampling of the
projection access space, minimizing correlation in the projection sequence. This produces
more accurate images with less noise-like artifacts than previously suggested projection
ordering schemes.

The schematic representation of the access order for 9 projections using WDAS is shown

in Figure 4-13.

9 2 5
1125° 90°

167 5°

b 180°

Figure 4-13. Schematic representation of the access order for 9 projections
using WDAS.
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Table of the projection angle ordering schemes —

Given the projection angles [0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5, 180], the different

ordering schemes will consider the angles as shown in Table 4-1.

Sequential Fixed Angle Random Multilevel Weighted
Access Access Access Resolution Distance
Scheme Scheme Scheme Select Access Access
(SAS) FAAS) (RAS) Scheme Scheme
(MLSAS) (WDSAS)
0 0 157.5 0 0
22.5 90 45 90 90
45 22.5 112.5 45 22.5
67.5 112.5 135 135 135
90 45 0 22.5 67.5
112.5 135 67.5 112.5 180
135 67.5 180 67.5 157.5
157.5 157.5 90 157.5 45
180 180 22.5 180 112.5

equally spaced projections taken from 0 to 180 degrees.

Table 4-1. Table showing the different projection angle schemes for 9
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4.7 Results

The results presented in this chapter are based solely on the experiments that I performed.
I have written all the code except the code for implementing the weighted distance
scheme. I have reproduced this code from Chris Badea (Email:

chris@orion.mc.duke.edu).

The various factors affecting the reconstruction based on *ART is discussed in section
4.2. The only factors that I experimented on are the seed image, projection angle ordering
schemes, pixel weighting schemes and the different *ART algorithms. Since I used nine
test images, nine seed images, five projection angle ordering scheme, four pixel
weighting schemes and four *ART algorithms (ART, MART, SIRT and SART), there
were 9*9*5%4*4 = 6480 experiments that needed to be performed. Due to the limitation
of time I did only 500 experiments. The results are summarized in this section for
illustrative purposes.

Number of Cycles:

ART, MART and SIRT were executed until convergence, but since SART gave
noticeable differences at 2 50 cycles, the S ART e xperiments w ere d one for 2 50 c ycles
only (unless otherwise specified).

Convergence Criteria:

All the *ART algorithms have a strange behavior in the sense that if the number of
iterations are increased beyond a certain number of iteration, the error starts increasing
[35]. T used this criterion as the convergence criteria for my code. This is illustrated in

Figure 4-14.
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%

Cycles Convergence point.
Etror starts increasing
beyond this poitit

4

Normalized FEuclidean Distance

Figure 4 -14. [llustration of convergence criteria. Beyond a
certain number of cycle, the ervor in *ART algorithms starts
increasing, i.e., the algorithm is said to be converged at the
cycle beyond which the error is equal to or more than the
previous cycle.

Size of Weight Matrix and Image size:

The code was written such that the weight factor matrix is stored in memory. The weight
factor is a 4 dimensional array and increases rapidly with image size and number of
projection angles. Storing the weight matrix in memory gives us the advantage of faster
computing time. On the flip side, it needs more memory for large images and higher
projection data. A typical 32 by 32 image for 10 projection angles will require
32%32*10%*32 = 327680 elements where each array element will store (depending upon
the weighting scheme used) at least 8-bit information (for binary weighting scheme). This
requires a minimum of 327KB memory. If the image size increases to 256 by 256 and the
number of projection angles is 30, then there will be 503316480 elements in the weight
matrix array and a minimum of503MB memory is required. If the w eighting s cheme
used is non-binary, then more bits are required to represent the weight factor. Typically

for a non-binary scheme, a 16-bit floating number is required to represent the weight
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factor, which doubles the weight matrix size. I used the test images shown in Figure 4-1
for my experiments. All these images are of size 32 by 32. 10 projection angles were used
for the experiments. Hence the task was to find 1024 (32 by 32) unknowns using 320
(10*32) equations. In the practical case the size of the image is at least 256 by 256
(65536 unknowns). The results shown in this chapter may or may not hold true for the
practical case. Given a more powerful machine, the code written for this thesis can be

used for larger images. This work is definitely warranted.

Image Quality Measure:

Euclidean distance was used as the image quality measure for quantitative differentiation
of the reconstructions. Euclidean distance is calculated between the original test image
and the reconstructed image and is normalized based on the maximum allowed pixel
value and image size, to make it gray-scale independent and dimensionless (size
independent). For more information about Euclidean distance refer section 2.3B in

chapter 2.

4.7.1 Comparison of ART, MART, SIRT and SART
The experiments were done with *ART for all test images. All the parameters were kept
constant except the algorithm type. The values for the different parameters are as below —
a) Projection Angles: 10 equally spaced projections from 0 to 180 degrees.
b) Projection angles ordering scheme: Fixed Angle Ordering Scheme.
c¢) Raywidth: 1

d) Ray Gap: 0
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e) Detector Width: 1

f) Detector Gap: 0

g) Pixel Width: 1

h) Weighting Scheme: “Distance of the center of pixel from center of ray” scheme

1) Test Image: Used all the test images shown in Figure 4-1.

J) Seed Image: All the seed images shown in Figure 4-3 were used. However, for
illustrative purposes, only the results from Flat seed are shown in this thesis for
this experiment.

k) Number of Cycles: Until convergence. The convergence criterion used is that the
normalized Euclidean distance starts increasing or is the same as the previous
cycle.

1) Relaxation Factor: 0.5

Figure 4-15 (b-¢) shows the reconstructed images based on ART, MART, SIRT and
SART. Note that even though this experiment was performed for all test images, only test
image d is shown in the figure for illustrative purposes. Figure 4-15(f) shows the plot of
the normalized Euclidean distance of each of the algorithms against the particular test

image.
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(e)

(d)
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Comparisonof ARTMART, SIRT and SART

_at convergence
.
[&3)

Normalized Fucl Distance

®
Algorithm Type | Mean Euclidean Distance lc
ART 0.1272 0.1250
MART 0.3138 0.1168
SIRT 0.1343 0.1209
SART 0.1174 0.1118

Conclusion: Based on the experiment parameters, the mean Euclidean distance
was least (best) for SART followed by ART, SIRT and MART. Little significant
difference was found between SART, ART and SIRT.

(2
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Algorithm Type Mean Number of Cycles to converge
ART 17
MART 4
SIRT 231
SART 1032
Conclusion: Based on the experiment parameters, MART converges
faster than ART; ART converges faster than SIRT; SIRT converges
faster than SART.

)

Figure 4-15. Comparison of ART, MART, SIRT and SART (a) Test Image (b) Reconstructed Image based on
ART (¢) Reconstructed Image based on MART (d) Reconstructed Image based on SIRT (e) Reconstructed
Image based on SART (f) Plot comparing the different algorithm types for the different test images (g)
Summary of the Euclidean distance comparison between ART, MART, SIRT and SART (h) Summary of the
number of iterations required for convergence between ART, MART, SIRT and SART.

As one can see from Figures 4-15 (b-e), the visual quality of the reconstructions is very
close to one another. Although 4-15 (c) looks better than the others, one is not able to
deduce quantitatively the degree of difference between the reconstructions. Hence
Euclidean distance was used to provide a quantitative measure of the difference in the
image quality between the different algorithms types. Figure 4-15 (f) shows that the
Euclidean distance for MART is worse compared to the other algorithms for all the test
images used. The Euclidean distance measure of SIRT is better than MART at all times
and is the same or worse than ART and SART at all times. The Euclidean distance
measure of ART is very close to SART and for some images (example test image H)
becomes better than SART. At the outset, taking the mean of all the Euclidean distances
for a particular algorithm type, one can arrive at the conclusion that the Euclidean
distance of SART is the best among the algorithm types used for the experiment, ART
ranks next after SART in terms of Euclidean distance measure, then is SIRT and finally

MART.
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I also compared the time required for the iterations to converge. The correction made in

each cycle in SIRT and SART is less compared to the per-cycle-correction made in ART

and MART. This is because the corrections at each projection in SIRT and SART are

stored and averaged at the end of the cycle. This not only requires additional storage for

the correction matrix but also the correction factor is less. Hence the time and the number

of cycles required for SIRT and SART to converge is much larger than that of ART and

MART. This is shown in Figure 4-15 (h).

4.7.2 Comparison of different seed images in *ART reconstruction

The experiments were done with *ART for all test images. All the parameters were kept

constant except the seed image. The values for the different parameters are as below —

2)
b)
c)
d)
€)
f)

g)
h)

)

Projection Angles: 10 equally spaced projections from 0 to 180 degrees.
Projection angles ordering scheme: Fixed Angle Ordering Scheme.

Ray width: 1

Ray Gap: 0

Detector Width: 1

Detector Gap: 0

Pixel Width: 1

Weighting Scheme: “Distance of the center of pixel from center of ray” scheme
Test Image: Used all the test images shown in Figure 4-1.

Seed Image: All the seed images shown in Figure 4-3 were used. However, for
illustrative purposes, only the results from Flat seed, Meshgrid seed and FBP seed

are shown in this thesis for this experiment.
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k) Number of Iterations: Until convergence

1) Relaxation Factor: 0.5 for ART, SIRT and SART (0.1 for MART)

Figure 4-16 (b-d) shows the reconstructed images based on the flat seed, meshgrid seed
and fbp seed respectively. Note that even though this experiment was performed for all
seed 1mages, only flat, m eshgrid and fbp seeds are shown in the figure for illustrative
purposes. Figure 4-16 (e) shows the plot of the normalized Euclidean distance of each of

the seed image for MART.

abC

(@ (b)

(©) (d)
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 Comparison of Seed Trnages in MAR

(e)
Seed Image Mean Euclidean Distance 1o
Used
Flat 0.2318 0.1173
Meshgrid 0.1963 0.1227
FBP 0.1735 0.1201
Conclusion: Based on the experiment parameters, the mean Euclidean distance
measure was least (best) for FBP seed image, followed by meshgrid and flat
seeds.
®
Seed Image Mean Number of Cycles to converge
Flat 20
Meshgrid 22
FBP 22
Conclusion: Based on the experiment parameters, there is not much
difference in the convergence speed between the seed images.

(®

Figure 4-16. Comparison of Seed images in MART (a) Test Image (b) Reconstructed Image based on a Flat
seed (¢) Reconstructed Image based on a Meshgrid seed (d) Reconstructed Image based on FBP seed (e)
Plot comparing the Euclidean distance of the reconstructed images based on flat, meshgrid and fbp seed (£)
Summary of the Euclidean distance measure of the reconstructed images of the different seed images (g)
Summary of the convergence (number of cycles required) for the different seed images.
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As one can see from Figures 4-16 (b-d), the visual quality of the reconstructions is very
close to one another. Not much can be deduced just by looking at the reconstructed
images. The Euclidean distance was used to provide a quantitative measure of the
difference in the image quality between the different seeds. The plot in figure 4-16 ()
shows that the Euclidean distance for the FBP seed is the best. This is intuitive because
the image reconstructed using the Filtered backprojection technique itself has brought the
solution much closer to the actual solution. This also indicates that the FBP solution does
not satisfy the linear equation criteria of CT reconstruction. The difference in the
Euclidean distance of FBP when used as a seed in MART reconstruction over FBP

reconstruction is shown in Figure 4-17.

 Comparison of Seed Tinages in MART

05

03

No‘;fmééﬁif;dEWl}DiﬂWe , o . ‘

01

Figure 4-17. Graph showing difference in the normalized Euclidean distance between FBP reconstruction
and *ART reconstruction (when FBP is used as a seed).
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I compared the time required for the cycles to converge in case of flat, meshgrid and FBP

seed images. Figure 4-16(g) shows that there is little difference in the convergence speed

of the different seed images.

4.7.3 Comparison of the different projection angle ordering schemes in*ART

The experiments were done with *ART for all test images. All the parameters were kept

constant except projection angle ordering scheme. The values for the different parameters

are as below —

a)
b)
©)
d)
€)
f)

g)

h)

)
k)

D

Figure 4-18 (b-f) shows the reconstructed images based on Sequential Access Scheme

(SAS), Fixed Angle Access Scheme (FAAS), Random Access Scheme (RAS), Multilevel

Projection Angles: 10 equally spaced projections from 0 to 180 degrees.
Projection angles ordering scheme: {SAS, FAAS, RAS, MLSAS, WDS}
Ray width: 1

Ray Gap: 0

Detector Width: 1

Detector Gap: 0

Pixel Width: 1

Weighting Scheme: “Distance of the center of pixel from center of ray” scheme
Test Image: Used all the test images shown in Figure 4-1.

Seed Image: Flat seed.

Number of Iterations: Until convergence

Relaxation Factor: 0.5 for ART, SIRT and SART, 0.1 for MART.
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Resolution Select Access Scheme (MLSAS), and Weighted Distance Access Scheme
(WDAS) respectively. Figure 4-18(g) shows the plot of the normalized Euclidean

distance of each of the projection angle-ordering scheme for MART.

(©) (d)

(e) ®
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at conyergence

Nofma]ized Eucl Dlstance .

(®
Projection Angle Ordering Mean Euclidean
. 1o
Scheme Distance
Sequential Access Scheme (SAS) 0.2510 0.1176
Fixed Angle Access Scheme (FAAS) 0.2318 0.1173
Random Access Scheme (RAS) 0.2327 0.1272
Multilevel Resolution Select Access
Scheme (MLSAS) 0.2532 0.1212
Weighted Distance Scheme (WDS) 0.2125 0.1184
Conclusion: Based on the experiment parameters, the mean Euclidean
distance measure of the reconstructed image is best for WDAS, followed by
MLSAS, FAAS, RAS and SAS.

(h)

Figure 4-18. Comparison of projection angle ordering schemes in MART (a) Test Image (b) Reconstructed
Image based on Sequential Access Scheme (SAS) (¢) Reconstructed Image based on a Fixed Angle Access
Scheme (FAAS) (d) Reconstructed Image based on Random Access Scheme (RAS) (€) Reconstructed Image
based on Multilevel Select Access Scheme (MLSAS) (f) Reconstructed Image based on Weighted Distance
Access Scheme (WDAS) (g) Plot comparing the Euclidean distance of the reconstructed images based on the
different projection angles ordering schemes (h) Summary of the Euclidean distance measure of the
reconstructed images based on the different projection angles ordering scheme.
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Euclidean distance was used for comparison. The plot of the Euclidean distance measure
for the different projection angles ordering scheme is shown in Figure 4-18 (g). The
Weighted Distance Access Scheme gives the least (best) Euclidean distance measure as it
heuristically optimizes the angular distance of a newly selected projection with respect to
the complete sequence of all previously applied projections. The Multi Level resolution
Select Access Scheme came in second. For test images A, C and H, the MLSAS gives
better Euclidean distance than WDAS. The fixed angle-ordering scheme came next best
to MLSAS. In the fixed angle-ordering scheme we are forcing the projection angles to be
as orthogonal (requirement for subsequent projection data to be uncorrelated) as possible,
unlike the Random Access Order scheme, where the orthogonality between subsequent
projections is random. The Euclidean distance measure of random projection order came
out better than sequential. This is because in the sequential access scheme the subsequent
projections are the least uncorrelated among the different projection access ordering

schemes.

4.7.4 Comparison of different pixel weighting scheme in*ART
The experiments were done with *ART for all test images. All the parameters were kept
constant except the pixel weighting scheme. The values for the different parameters are
as below —

a) Projection Angles: 10 equally spaced projections from 0 to 180 degrees.

b) Projection angles ordering scheme: FAAS

c) Ray width: 1

d) Ray Gap: 0
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e) Detector Width: 1
f) Detector Gap: 0
g) Pixel Width: 1
h) Weighting Scheme: {
1. “Binary Scheme (BIN)”,
2. “Length of pixel within pixel scheme (INT)”,
3. “Distance of the center of pixel from center of ray (DIST)”,
4. “Distance of center of pixel from adjacent ray scheme (CONT)” }
1) Test Image: Used all the test images shown in Figure 4-1.
1) Seed Image: Flat seed.
k) Number of Iterations: Until convergence

1) Relaxation Factor: 0.5 for ART, SIRT and SART, 0.1 for MART.
Figure 4-19 (b-e) shows the reconstructed images based on BIN, INT, DIST and CONT

pixel weighting scheme respectively. Figure 4-19(f) shows the plot of the normalized

Euclidean distance of each of the pixel weighting schemes for MART.
Eil.b I
Jlb I d-
- o
| |

(@
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Normalized Eucl Dist.
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. C . Mean Euclid
Pixel Weighting Scheme an can 1o
Distance
Binary Scheme (BIN) 0.1579 0.1098
Length of Center of Ray in pixel (INT) 0.1728 0.1245
Distance of Center of Pixel from Center of
Ray (DIST) 0.1736 0.1201
Distance of Center of Pixel from Adjacent
Ray scheme (CONT) 0.1441 0.0988
Conclusion: Based on the experiment parameters, the mean Euclidean distance
measure of the reconstructed image is best for CONT followed by BIN, DIST
and INT.

(2)

Figure 4-19. Comparison of Weighting schemes in MART (a) Test Image (b) Reconstructed Image based on
Binary Scheme (BIN) (¢) Reconstructed Image based on “length of center of ray in pixel” scheme (INT) (d)
Reconstructed Image based on “Distance of center of pixel from center of ray” scheme (DIST) (e)
Reconstructed Image based on “Distance of Center of Pixel from Adjacent Ray scheme” (CONT) (f) Plot
comparing the Euclidean distance of the reconstructed images based on the different weighting schemes (g)
Summary of the Euclidean distance measure of the reconstructed images based on the different weighting
schemes.

Euclidean distance is the image quality measure used for this experiment. The plot of the
Euclidean distance measure for the different pixel weighting schemes is shown in Figure
4-19 (f). The INT weighting scheme showed the worst Euclidean distance. This is
because the complete contribution of the pixel is not considered. This scenario is
illustrated in Figure 4-8(a). The DIST weighting scheme showed a better Euclidean
distance than INT. Even DIST suffers from the problem of not considering the true
contribution of pixel (illustrated in Figure 4-8(b)). However, the likelihood of deviating
from the 100% contribution of the pixel on the detectors is more in case of INT than in
DIST because the necessary condition for 100% contribution in INT is met only by the
ray passing at a 45° degree angle through the diagonal points of the pixel. In case of DIST

the 100% contribution is met by any ray passing through the center of the pixel regardless
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of its angle. Hence the improvement in the Euclidean distance measure of DIST over INT
was expected. The binary scheme does not give a true contribution but forces all pixels to
contribute 100% on exactly one ray at a given angle. Hence the BIN scheme gave a better
Euclidean distance. The CONT scheme forces all pixel to contribute 160% on the
detectors and at the same time measures the contribution relative to the position of the
pixel and the ray. Hence the CONT scheme gives the best Euclidean distance.

Once the weight matrix is calculated, the time taken by any of the reconstruction
algorithm only depends on the algorithm type (ART, MART, SIRT and SART).
However, the time taken to calculate the weight matrix in case of INT and CONT is

much larger than the time taken to calculate the weight matrix in BIN and DIST.

4.8 Conclusion

The object of the experiments was to come up with as many permutations and
combinations of CT parameters as possible to arrive at an optimal parameter solution.
The object was accomplished successfully. Based on the experiments performed and
using Euclidean distance as the quantitative measure for comparing the reconstruction
quality, I conclude that the below parameters gives an optimal solution for *ART.
Typical Parameters for best *ART solution

Projection Angle Ordering Scheme: Weighted Distance Access Scheme

Weighting Scheme: “Distance of center of pixel from adjacent ray scheme”
Algorithm Type: SART
Seed Image: FBP
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Similarly the typical parameters for the worst solution of *ART are —
Typical Parameters for worst *“ART solution

Projection Angle Ordering Scheme:Sequential Access Scheme

Weighting Scheme: “Length of center of ray in pixel scheme”
Algorithm Type: MART
Seed Image: Flat (there are others like blur and stretch but since they

are not presented above, I did this experiment with the

flat seed)

Figure 4-20 (b and c) shows the difference between the reconstruction images obtained
by the best case *ART parameters and the worst case *ART parameters. Just by looking
at the images we can see the improvement in the reconstruction quality. This suggests

that the space of the parameters may be single peaked.
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(b) (©

Figure 4-20. Comparison of the best-case parameters and the worst-case parameters in *ART (a) Test Image
(b) Reconstructed Image based on the best case *ART parameters (¢) Reconstructed Image based on the
worst case *ART parameters.

In general the weight matrix coding style for *ART is a good way of writing *ART code.
It provides the ease of implementing different weighting schemes; projection angle
ordering schemes fairly easily and also gives the advantage of faster execution.
Pros of using the Weight Matrix approach —

a) Simple to code

b) Flexibility in implementation

c) Faster execution
Cons of using the Weight Matrix approach —

a) Restricted to size ofimage and projection data due to the large size o f weight

matrix created. But with the decreasing cost of memory this may not be a problem

in the future.
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Chapter 5

Future Work

5.1 Future Work

The c omparison b etween s quare p ixels and hexagonal pixels presented in c hapter 2 is
biased towards hexagonal pixels because they have fewer pixels compared to the square
pixels. i.e., each hexagonal pixel has 62 pixels compared to 64 pixels in square pixels.
Experiments need to be done such that both the pixel-methods contain the same number
of pixels. Also the test images used in the square pixel and hexagonal pixel resolution
comparison experiment are either created mathematically or acquired with a digital
camera. The experiments need to be performed on more samples of real life CT data to
see if one pixel-method can be preferred over another in CT imaging. The center of
rotation is not the center of the centermost hexagon. Had this been not the case we would
have seen uniformity in the hexagonal plots at angles that are multiples of 60° (example
0°, 60°, 120° etc). The algorithm should create the hexagons such that the center of the
centermost hexagon is the center of the image. It was interesting to note that the
hexagonal pixel consistently gave a slightly better resemblity measure over square pixel.
It will be interesting to see the effect of other quality measures on the two pixel methods.
The experiments need to be performed by employing different tiling techniques other
than a hexagonal grid for example work using a triangular tessellation is warranted, since

it is the only other regular tessellation of the plane.
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In chapter 4, the different factors that affect the reconstruction quality of *ART
algorithms are presented. The experiments presented in chapter 4 show the results of the
effect of algorithm type (ART, MART, SIRT and SART), seed images, the pixel-
weighting scheme and the projection angle-ordering scheme. The experiments on *ART
presented dealt only with parallel CT. The effect of seed images needs to be tested on
cone beam and helical CT.

Only five different projection angle-ordering schemes were compared. The weighted
distance approach gives the best result (in terms of Euclidean distance measure) among
the ones that were compared. However, the weighted distance approach considers the
history of past-applied projections and is hence not “global” in its real sense.
Considering 10 projection angles, there is a possibility of 3,628,800 (10 factorial)
different permutations of angles possible out of which one or more would be the optimal
solution. The object of the projection angle-ordering scheme is to find the angle-order
that gives the least value for the dot product of subsequent angles, but other optimization
functions are conceivable. Work in this area is required. Work has already been done [26]
in comparing various angle-ordering scheme in cone beam CT. However, work needs to
be done in obtaining optimal angle-ordering schemes for cone beam and helical CT.
Work is being done in the area of using the scattering photon information. Since *ART
algorithms give good reconstruction when a priori information is applied, the algorithms
will come in very handy when the research data becomes available with scattering
photons. Also CT of moving body organs like the heart and lungs face the challenges of
distortions due to the organ movement. *ART is extremely useful in places where ray

tracing techniques need to be employed, The ray tracing techniques can be modified to
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organ movement techniques to make it extremely useful in CT imaging of moving
organs. Between successive scans of the breast of a woman, the physical characteristics
of the breast typically change. Image subtraction techniques are employed in this case.
Image subtraction techniques can be combined with *ART to give more appropriate

results.

Euclidean distance was used to quantitatively compare the quality of the images in the
*ART experiments. The fundamental difficulty of Euclidean distance is that it calculates
the quality of the image precisely, which could be different from human perception.

Since the images are interpreted visually other image quality measures should be used.

The weight factors calculated are stored in a matrix. The matrix is 4 dimensional and is
extremely large. However, most of the factors in the weight matrix are 0. My code did
not consider compressing the weight matrix and hence I had lot of difficulty in running
the program for larger images. Compressing the weight matrix will enable the

implementation of the program in real CT data system. This needs to be done.

While Computed Tomography allows determination of relatively static zones, it shows
serious limitations in regions with physiologic motion. The main challenge is to give the
physician the best functionality needed to take into account the dynamic nature of a living
human body having moving organs. Thisis a key issue for diagnostic i maging where
motion induces blurred images and for all interventional procedures where the organ is a

target and motion compensation is of first importance to reach the region of interest and
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preserve nearby organs. especially chest and abdomen. The modality CT fluoroscopy
(CTF or continuous imaging CT) has become the usual imaging technique for real-time
guidance during biopsy of pulmonary nodules [33]. But the key issue in X-ray CT
fluoroscopy is the dose delivery. Dose reduction can be achieved using motion
compensated reconstruction. The use of weight matrix could be extended to construct a
good motion compensated reconstruction algorithm. Depending upon the a priori
knowledge of the physical characteristics of the organ, different weight matrices could be
pre-developed and stored in memory. Reconstructions based on projection data from
limited dose CT can be made fast and of better quality using these weight matrices. This
will expand the possibilities for minimal invasive therapeutic procedures, the surgery of

the next century.
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Appendix A

Matlab™ Code

The source codes listed in this appendix are written in Matlab™ 6.0 (for windows) and
used throughout the thesis. They consist of two sections. Section A.l1 contains the
programs written for the square and hexagon pixel comparison experiment. Section A.2
contains the programs written for the*ART experiment. Some of the test images were
generated mathematically. Code for generating the test images is not included in this

appendix.

A.1 Code for comparing square pixel and hexagonal pixel resolution

Extract all the files in this section into a particular folder on your computer. Change your
Matlab™ session’s present working directory to this folder. Simply type project]l main
in the Matlab™ command prompt for comparing the resolution based on Euclidean
distance, fidelity measure, resemblance measure, hausdorff distance and entropy. For
comparing resolution based on modulation transfer function (MTF) type project] mtf in
the Matlab™ command prompt. Note that you will need test images for using the code.

The different test images (all are 256 by 256 images) that I used are tabulated below.

Sr# | Test Image File Description How the image was
Name generated?
1. admin256.bmp University of Manitoba Reproduced with Prof.W. Lehn’s
Administration Building permission from his Digial Image
Processing class.
2. balcony256.bmp Three friends standing in the | Produced using a digital camera
' balcony of a high rise
building
3. | phantom256.bmp Phantom Image Produced using the phantom function
in Matlab™
4. rand256.bmp Uniformly distributed | Produced using the rand function in
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random Image Matlab'",

5. square256.bmp Image containing 8 by 8 | Created using the square pixel image
squares of the same pixel | function.
value.

6. | hexagon256.bmp Image containing hexagons | Created using the

of length 4.5 of the same | hexagon pixel image function
pixel value

7. sinewaveOl 256.bmp Image containing sine wave | Created using the sine wave function
of frequency 1
8. sinewavelQ 256.bmp Image containing sine wave | Created using the sine_wave function

of frequency 10

projectl _main.m

¥ Created By : Girish Tirunelveli
% Created On : June 8, 2001
%

File Name : projectl_main.m
% Description: This program when executed in Matlab, will ask the user to enter the length of the square
% and hexagon pixel. It will also ask the user to enter the image he wants to compare the
% resolution for. After accepting the user parameters, the program will rotate the image
% from 0 to 360 degrees in increments of 5 and compute the square and hexagon image gquality
% based on different algorithms (Euclidean Distance, Fidelity, Resemblance, Hausdorff dstnce
% and Entropy). The program takes 4.5 hours to process a 256 by 256 image.

% Clear the picture window and clear all variables
clf
clear

file = input('Enter name of image file (.bmp only) to perform resolution comparison: ','s');
original_image=imread(file, ‘'bmp');

length_of_square_pixel = input ('Enter length of square pixel: °)
length_of_hexagon _pixel = input ('Enter length of hexagon pixel: '
theta in_degrees=[0:5:360];

i
);
time_start=cputime;

% For each rotation angle, get the square pixel image, the hexagon pixel image,
% the image quality using Euclidean distance, fidelity measure, resemblity
¥ measure and Hausdorff distance.

for angle_number=1:length(theta_in_degrees)

% Rotate the image

rotated image = imrotate(original_image, theta_in degrees(angle_number), 'bicubic', ‘ecrop');
%rotated_image = rotate(original_ image, theta_in_degrees(angle_number));

rotated_image = double{rotated_image);

% Convert the rotated_image to square_pixel_image and get the image_quality
% using Euclidean distance between the square and rotated image.
SPI=square_pixel image (rotated_image, length_of_square_pixel);

% Convert the rotated_image to hexagon_pixel_image
HPI=hexagon_pixel image 2template (rotated image, length_of_hexagon_pixel);

% Calcuate the image quality using Euclidean distance.
SIQ_ed{angle_number} = image_gquality using_ed {(rotated_image, SPI);
HIQ_ed(angle numbex) = image_guality using ed {(rotated_image, HPI);

% Calcuate the image quality using fidelity measure.
51Q_ fd(angle number) = image_quality_using_fd (rotated image, SPI);
HIQ_ fd(angle_number) = image_quality_using_fd (rotated image, HPI);

% Calcuate the image quality using resemblity measure.
$1Q _rb(angle_number) = image_quality using_rb (rotated_image, SPI);
HIQ rb(angle_number} = image_quality using_rb (rotated_image, HPI);

% Calcuate the image quality using hausdorff distance
SIQ_hd(angle number) = image_quality using_hd (rotated_image, SPI);
HIQ hd(angle_number) = image_quality_using_hd (rotated_image, HPI);

% Get entropy (information content) of each of the images

133




Appendix A: Matlab Code

% and compare the preservation of information in square_pixel image

% compared to hexagon_pixel_ image.

fhistogram_rotated_image, entropy_ rotated_image] = entropy (rotated_image) ;
fhistogram SPI, entropy_ SPI} = entropy (SPI);
[histogram HPI, entropy_ HPI} = entropy (HPI);

SIQ_en(angle_number) = entropy_SPI/entropy rotated_ image;
HIQ_en(angle_number) = entropy HPI/entropy rotated_image;

end; % for angle number
time_end=cputime;
disp(strcat('Process Completed. Time taken: ', num2str(time end-time_start), ' seconds'));

clf

plot(theta_in degrees, SIQ ed, ‘r+-');

hold

plot{theta_in_degrees, HIQ_ed, 'bo-'};

title ('Resolution Comparison between square and hexagon pixel using Euclidean distance')
xlabel {'Rotation (in degrees):')

ylabel ('Normalized Euclidean Distance!');

legend ('Square Pixel', ‘'Hexagon Pixel');

pause

plot(theta_in degrees, SIQ fd, 'r+-');

hold

plot(theta_in degrees, HIQ_fd, 'bo-');

title ('Resolution Comparison between square and hexagon pixel using Fidelity measure');
xlabel ('Rotation (in degrees)')

ylabel ('Fidelity Measure');

legend ('Square Pixel', 'Hexagon Pixel');

pause

clf

plot(theta_in degrees, SIQ_rb, 'r+-');

hold

plot(theta_in degrees, HIQ rb, 'bo-');

title ('Resolution Comparison between square and hexagon pixel using Resemblity measure')
xlabel ('Rotation (in degrees)')

ylabel {'Resemblity Measure');

legend ('Square Pixel', 'Hexagon Pixel');

pause

clf

plot(theta_in_degrees, SIQ_hd, 'r+-');

hold

plot{theta_in_degrees, HIQ_hd, 'bo-');

title ('Resolution Comparison between square and hexagon pixel using Hausdorff Distance');
xlabel ('Rotation (in degrees)')

ylabel ('Hausdorff Distance');

legend ('Square Pixel', 'Hexagon Pixel'};

pause

clf

plot(theta_in_degrees, SIQ_en, 'r+-');

hold

plot{theta_in_degrees, HIQ en, 'bo-');

title ('Resolution Comparison between square and hexagon pixel using Entropy'):
xlabel ('Rotation (in degrees)')

ylabel ('Entropy'):

legend (‘'Square Pixel', 'Hexagon Pixel');

square_pixel image.m

% Created By : Girish Tirunelveli

% Created On : June 19, 2001

% File Name : square pixel_image.m

% Description: This program accepts the image which needs to be converted into
% square pixel image. The second parameter is the length of the

% square pixel desired.
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3== mmm===== == S =======sssz====

% Stepl. Assign the output variables as 0, just in case the job abhends
in the middle. Alsoc store all the values required for this
% program in variables.

original_image = double (original_image) ;

square_pixel_image (size(original_image)) = 0;

[no_of_pixels_in_x_direction, no_of_pixels_in_y_direction] = size(original_image);

no_of tsi_pixels_in_x direction = ceil (no_of pixels_in x_direction/length_of_square pixel);
no_of_tsi pixels_in y direction = ceil (no_of_pixels_in_y direction/length_of_square_pixel);

B = m m m e e e e o e e e e e e e e e e e e e s e e o o e e e e e e e e A A A e e e e e
% Step3. Create the tiny square image based on the original image such
% such that the value of hte pixel in the tiny square image is
% the average of all the pixels that falls in the tiny square
% image. Initialize the tiny square_image pixel values to 0.
% Note that tsi in the variable names indicate tiny square image.
B m = m e e e e o o e e e e o e e o e e e e e e e e e e e e . —————— e e e
tiny_square_img (1:no_of_tsi_pixels_in x_direction, l:no_of_tsi_pixels_in y_direction) = 0;
no_of _pixels_in_square(l:no_of_tsi_pixels_in x_direction, 1l:no_of_tsi_pixels_in_ y direction) = 0;
for row_no = l:no_of_pixels_in_x direction
for column_no = 1:no_of pixels_in_y_ direction
g
% Find the integer value of the division of row_no by length_of_square_pixel
% and the column_no by length_of_square, because that becomes the index
% value of the tiny square_image.
e m e m e e m e oo o
tsi_row no = £looxr{(row_no+length of_square_pixel-1)/length_of_square_pixel);
. tsi_column no = floor((column_no+length of_square_pixel-1)/length_of_square pixel);
tiny_square_img(tsi_row_no, tsi_column_no) = tiny_square_img(tsi_row_no, tsi_column_no) +
original_image (row_no, column_no) ;
no_of_pixels in_square(tsi_row_no, tsi_column _no) = no_of_pixels_in_square(tsi_row_no, tsi_column_no) + 1;
end;
end;
i

% Take the average of the pixel values. In one square there are
% length_of_square_pixel”2 pixels
tiny_square_img(l:no_of_tsi_pixels_in_x_direction, l:no_of_tsi_pixels_in_y_direction) = ...
tiny_square_img(l:no_of_tsi_pixels_in_x_direction, l:no_of_tsi_pixels_in_y direction)./ ...
(no_of_pixels_in_square(l:no_of_tsi_pixels_in_x_direction, 1:no_of_tsi_pixels_in_y direction));

For quality measurement, it will be simpler if we enlaxge the
tiny_square image to the size of the original image. Create
% the enlarged square_img matrix which contains the pixel value
% of the enlarged square image.

for esi_row_no = l:no_of_pixels_in_x_direction
for esi_column_no = l:no_of_pixels_in y_direction
tsi_row _no = floor((esi_row_no+length_of_square_pixel-1)/length_of_square_pixel);
tsi_column_no = floor((esi_column_no+length of_square_pixel-1)/length of_square pixel);
enlarged square_img(esi_row_no, esi_column_no) = tiny_square_ img(tsi_row_no, tsi_column_no);
end;
end;

square_pixel image = enlarged square_img;

hexagon_pixel_image 2template.m

Created By :

Created On : June 19, 2001

File Name : hexagon_pixel_image.m

Description: This program accepts the image which needs to be converted into
hexagon pixel image. The second parameter is the length of the
hexagon pixel desired.

Algorithm:

For comparison with hexagonal resolution, we have to break the original image

into tiny hexagonal image. For better comparison purposes the program should

give the choice while reconstruction. Either it should have the same number

of hexagons as the square reconstruction or there should be equal number of

pixels within one hexagon as there would be in a square. Note that all the

hexagons are considered in the following orientation: -
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Note that the number of horizontal and vertical hexagons differ as the
horizontal distance between the farthest points that lie within the hexagon is
more than the vertical distance. Note that the length of_hexagon_pixel
parameter will later depend only on the optimizer mode. This program will
calculate the length_of_ hexagon_pixel parameter.

This program is copied from hexagon2.m to test for all fractional
length_of_hexagon_pixel.
H11 H12 H13
H21 H22 H23
H31 H32 H33
H41 H42 H43....
This program will move the rectangular template in the below order -
H11l H12 H13

H31 H32 H33
and once all the odd layers are done, it will start doing the even layers in the
below sequence -

H21 H22 H23
H41 H42 H43
The hexagon conventions are still the same. Note the orientation below -
F ommmmmmmmmmmmea E
/| 5 \
/6| 4\
/L2 \
/11 | \

Imagine segments joining vertices AD and FB.
The perpendicular distance between FB and vertex A =
L1l = length_of_ hexagon_pixel * Cos60
The perpendicular distance between AD and vertex F =
L2 = length of_hexagon_pixel * Siné0

% Stepl. Assign the output variables as 0, just in case the job abhends
% in the middle. Also store all the values required for this
%

program in variables.

= double (original_image);

hexagon_plxel image (size(original_ image)) = 0;

[no_of_pixels_in x direction, no_of_pixels_in y_direction] = size(original_image):

% Step2. Initialize the number of pixels in x and y direction of the hexagonal image. Note that

% x is the vertical direction and y is the horizontal direction. Note that we are going

% to have some restrictions on the value that the length of hexagon_pixel is going to have.
% For understanding the variable names see the hexagon picture above.

L1l = length_of_hexagon_pixel * cos(pi/3);:
L2 = length_of_hexagon_pixel * sin(pi/3);:
% Calculate the increment for the top left corner along the same layer.
increment_top_left_x = 0;

increment_top_left_y = round(length_of_hexagon_pixel * 3);

% Calculate the number of hexagons in x and y direction that will fit in the original image.
% Bogus this calculation has to be revised for accuracy.

no_of_hexagons_in_y_direction = ceil(no_of_pixels_in dlrectlon / (3 * length_of_hexagon_pixel));
no_of hexagons_in_x_direction = ceil((no_of_pixels_in_x_dlrectlon) / (length_of hexagon_pixel*0.8660254));

% Initialize all the hexagons that fit in the original image to 0. The program follows the

% accumulative logic. Also note that the origin in matlab is (1,1). While converting this
program to C, this must be taken care of. Also this program considers two template approach.
Templatel is first created using the regular equations of a hexagon. Template 2 is created

% containing all pixels that are not already taken up by templatel. To indicate whether or not
% the pixel is not taken already by templatel create a matrix variable called is_pixel_taken

% and initialize to 0.

a8 oe

hexagon_img(1:no_of hexagons_in_x_direction, 1:no_of_hexagons_in_y direction) = 0;
no_of_pixels_in hexagon(l:no_of_hexagons_in x direction, l:no_of _hexagons_in_y_direction) = 0;
is_pixel_taken(l:no of_plxels in_x dlrectlon, l:no_of pixels_in y direction) = 0;

The algorithm of the program is written as below :-

1. Create a rectangular template that acts a circum-rectangle to one hexagon.

2. Move the template over the entire image.

3. within the template the equations of all 6 sides of the hexagon are determined.

4. The template movement is started from the first point on the top-left corner of the

W 90 K 0P o
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image. Bach pixel in the original image that lies inside this rectangular template

is analysed to determine whether or not they lie inside the hexagon.

If they do then the pixel value at that point is accumulated against the hexagonal
image array. Also the number of pixels that went into the accumulation is calculated.
6. Once this first pass is over then the same routine is done, then the average value at
each hexagonal array is calculated.

o o0 d° e
wn

ER

% 7. The routine is traversed again to unallocate the averaged hexagonal array value to the
% pixels in the original image that lie within the hexagon.
UG

for hex_x = 1:2:no_of_hexagons_in_x_direction % This will get all the odd layers.

for hex_y = 1:no_of_ hexagons_in y direction

% Calculate the co-ordinates of the top_left and bottom-right corners of the rectangle that
% exactly covers the entire hexagon. The calculation of these co-ordinates should depend
% only on length_of_hexagon pixel and the hexagon number (hex x, hex_y).

G m = m e e e e e e e e m o e et e e e e e e e e e e e m e e e e m e o e e e e mm e m e mm o m M e e e m e mem————
if (hex x == 1) & (hex y == 1) % Indicates the first hexagon.
top_left x = 1;
top_left y = 1;
bottom_right_x = top_left_x + round(2*L2);
bottom_right y = round{top_left_y + (2*L1l) + length_of_hexagon_pixel-1); %GT
vertical_no_of_pixels = bottom right_x - top_left x + 1;
G m m m e e m e e e e A e e e e e e e e e e e e e e e o o e e m e a o — o m — o m . ————————
% Bogus create variables to store the row number of the "A" pixel of the first
% hexagon in the odd layer. This is used for determining the top_left_x position
% of the first hexagon in the even layer. Similary create a variable to store the
% column number of the "E" pixel of the first hexagon in the odd layer. This will
% be used in determining the top_left_y position of the first hexagon in the even
% layer.
K m m et e e e e e m e e e e e e e o o o e o e o e e e e M a e m—— e mmm e e e e e mmm e m e m—m
= top_left_x + L2;
top_left_y + L1 + length_of_ hexagon_pixel-1;
elseif (hex y == 1) % Indicates the start of a new layer of hexagons
top_left_x = top_left_x + vertical_no_of_pixels;
top_left_y = 1;

else % Indicates that the hexagon is in the same layer as the previous one that was considered.
top_left x = top_left_x + increment_top_left x;
top_left_y = top_left_y + increment_top_left_y;

eng; % end if (hex x == 1) & (hex y == 1

bottom right_x = top_left x + round(2*L2);

bottom right_y = round(top_left_y + (2*L1} + length_of_hexagon pixel-1); %GT

= mmmm o m m e e e e e e e e e e e e e e e e & o e o o e e e e e e mma——————

% To draw and identify all hexagons, each hexagon is given a different pixel value.
% All odd layer (see documentation) hexagons are given a pixel value of 75 and 225 while all
% even layer hexagons are given a pixel value of 150 and 300 respectively.

B m m o m e e e e e e e L e e e m e m e e e o o e o e e e e m e o e e e e~

if (rem(hex x, 4) == 0) % Indicates every second even layer (eg L4, L8, L12 ...)
pixel_value = 300;

elseif {rem(hex_x, 4) == 1) % Indicates every second odd layer (eg L3, L7, L1l ...)
pixel_value = 225;

elseif (rem(hex x, 4) == 2) % Indicates every first even layer {eg L2, L6, L10O ...}
pixel_value = 150;

else % Indicates every first odd layer (eg L1, L5, L9 ...)
pixel _value = 75;

end;

B m s v e e o e e e e e e o e e e e e e e e e e o e e e e e e e A e — e — e ——

% Determine the coordinates of the vertices of the hexagon based on the top left corner.

% Note that in the calculations below there should be only the top_left x, top_left vy,

% sin60, cos60 and length_of hexagon_pixel variable. If we have more then the calculation is

% incorrect. Bogus Try the logic first without rounding the vertices and then by rounding

% them.

B m s mm e e e e e e e e e m it m e e e e e mm ;s 4 ;o e o o o e e e MMM m e mm e m e m e m e, ————————

A_x = top_left_x + L2;

Ay = top_left_y;

B_x = top_left_x + 2*L2;

B_y = top_left_y + Ll;

C_x = top_left x + 2*L2;

C_y = top_left_y + L1 + length_of_hexagon_pixel-1;

D x = top_left x + L2;

D_y = top_left_y + (2* length of_ hexagon_pixel -1};

E_x = top_left x;

E_y = top_left_y + L1 + length of_hexagon_pixel-1;

F_x = top_left x;

F_y = top_left y + L1;

= = m e e e e e L e e e e o e e e e e e e e e o e e e o e e e e e A et e e e e e

% Calculate the slope of segments AB, BC, CD, DE, EF and FA. Note that the slopes of
% segments BC and EF will be 0. Note that the geometry is opposite of conventional geometry
% and also the origin is (1,1) instead of (0,0) as in conventional geometry.

slope_ ab = (B_x - A _x)/{B_y - A_y):
slope bc = (C_x - B_x)/(C_y - B y};
slope _cd = (D_x - C_x)/(D_y - C_y);
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slope_de = (E x - D x)/(E_.y - D_y);
slope_ef = (F x - E_X)/(Fy - E_y);
slope fa = (A x - F x)/{(Ay - F y);

% After calculating the top_left and bottom_right corner within which each hexagon will fall,
% loop only across this rectangle of pixels to determine which pixels fall inside and which
% pixels fall outside the hexagon.

for x_loop = top_left_x: bottom right_x
for y_loop = top_left y: bottom_right y

boo_outside_hexagon = 0; % Initialize the boo_outside_hexagon variable to indicate that
the pixel is inside the hexagon.

if round({({x_loop - B_x}} > round{slope_ab * (y_loop - B_y)}
boo_outside_hexagon = 1;

end;

if round((x_loop - B_x)) > round(slope bc * (y_loop - B_y))
boo_outside_hexagon = 2;

end;

if round((x_loop - C_x)} > round(slope_cd * (y_loop - C_y))
boo_outside_hexagon = 3;

end;

if round({x_loop - E_x}) < round{slope_de * (y_loop - E_y))
boo_outside_hexagon = 4;

end;

if round((x_loop - F_x)) < round(slope_ef * (y_loop - F_y))
boo_outside_hexagon = 5;

end;

if round((x_loop - F_x)}) « round(slope fa * (y_loop - F_y}}
boo_outside_hexagon = 6;

end;

if (boo_outside_hexagon == 0) % Indicates that the pixel is inside a hexagon.
if (x_loop <= no_of_pixels_in_x direction & y_loop <= no_of_pixels_in_y_ direction)

hexagon_img(hex_x, hex_y) = hexagon_img(hex_x, hex_y) + original_image(x_loop, y_loop);
no_of_pixels_in_hexagon(hex_x, hex_y) = no_of_pixels_in_hexagon(hex x, hex_ y) + 1;

% Store the hex_x value in another matrix variable to indicate that the

% pixel(x_loop, y_loop lies in the hexagon whose hex_x value is so-and-so.

% This way we wouldn't have to write the re-allocating algorithm.
U Y
original_img_lies_in_x(x_loop, y_loop) = hex_x;
original_img_lies_in_y(x_loop, y_loop) = hex_y;

% Bogus the below line is only for debugging purposes. It shows how the tiled layer
% of regular hexagons will look like.
regular_hexagon(x_loop, y_loop) = pixel_value;

% Create a matrix variable to indicate whether the pixel value is taken or not by the
% first template.
is_pixel_taken(x_loop, y_loop) = 1;

end;
end;

end; % End for y_loop
end; % End for x_loop

end; % End for hex_x

end; % End for hex_y

% The below logic is an exact replica of the above code, but considers only even layers. The
% above code did the processing for odd layers. Note that this program works on the principle
% of two templates. The odd layer will have a different template compared to the even layers.
%=
for hex_x = 2:2:no_of_hexagons_in x direction
for hex_ y = 1:no_of hexagons_in_y direction

% Calculate the co-ordinates of the top_left and bottom-right corners of the rectangle that
% exactly covers the entire hexagon. The calculation of these co-ordinates should depend
% only on length_of hexagon_pixel and the hexagon number(hex_x, hex_y).
if (hex_x == 2) & (hex_y == 1) % Indicates the first hexagon in the even layer
top_left x = round(A_x1};
top_left_y = round(E_yl) + 0;
bottom right_x = top_left_x + round(2+%L2);
bottom _right y = round(top_left_y + (2*L1) + length of_hexagon_pixel-1); %GT

elseif (hex_y == 1) % Indicates the start of a new layer of hexagons
top_left x = top_left_x + vertical_no of_pixels;
top_left_y = round(E_yl) + 0;

else % Indicates that the hexagon is in the same layer as the previous one that was considered.
top_left x = top_left_x + increment_top_left x;
top_left_y = top_left_y + increment_top left_y;
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end;

bottom right x = top_left_x + round(2+*L2);
bottem right_ y = round{top_left_y + {(2*Ll) + length of hexagon pixel-0); %GT

% To draw and identify all hexagons, each hexagon is given a different pixel value.
% All odd layer (see documentation) hexagons are given a pixel value of 75 and 225 while all
% even layer hexagons are given a pixel value of 150 and 300 respectively.

if (rem(hex x, 4) == % Indicates every second even layer (eg L4, L8, L12 ...)
pixel_value = 300;
elseif (rem(hex x, 4) == 1) % Indicates every second odd layer (eg L3, L7, L1l ...)
pixel value = 225;
elseif (rem(hex_x, 4) == 2) % Indicates every first even layer (eg L2, L6, L10 ...)
pixel value = 150;
else % Indicates every first odd layer (eg L1, L5, L9 ...)
pixel_value = 75;
end;
B m m m o m e e e e e e e e e e e e e e m e e e e e e e e e e e m e —

% After calculating the top_left and bottom_right corner within which each hexagon will fall,
% loop only across this rectangle of pixels to determine which pixels fall inside and which
% pixels fall outside the hexagon.

for x_loop = top_left x: bottom right_x
for y_loop = top_left_y: bottom right_y
if (x_loop <= no_of pixels_in_x_direction & y_loop <= no_of_pixels_in_y_ direction)

% Check whether the pixel is already taken by the hexagon template above. If it has then
% ignore the pixel, else put it in this template.

if (is_pixel_taken(x_loop, y_loop) == 0)
hexagon_img(hex_x, hex_y) = hexagon_img(hex_x, hex_y) + original_image(x_loop, y_loop);
no_of_pixels_in_hexagon(hex_x, hex y) = no_of_pixels_in_hexagon(hex_x, hex y) + 1;
regular_hexagon{x_loop, y_loop) = pixel_value; % Bogus this line is not actually needed
but helps if we have to determine breaks or overlaps in the regular hexagon structure.

% Store the hex x value in another matrix variable to indicate that the
% pixel(x_loop, y_loop lies in the hexagon whose hex_x value is so-and-so.
% This way we wouldn't have to write the re-allocating algorithm.

original_img_lies_in_x(x_loop, y_loop) =
original_img_lies_in_y(x_loop, y_loop) = hex_y:

is_pixel_taken({x_loop, y_loop) = 1;

end; % End for y loop
end; % End for x_loop

end; % End for hex_x

end; % End for hex_y

% Calculate the averaged pixel values.
for hex_x = 1l:no_of_hexagons_in_x_direction
for hex_y = l:no_of_hexagons_in_y_direction
if no_of_pixels_in_hexagon(hex_x, hex_y) == 0
averaged_hexagon(hex_x, hex_ y) = 0;
else
averaged_hexagon(hex_x, hex_y) = hexagon_img(hex_x, hex_y)/no_of_pixels_in_hexagon{hex_x, hex_y);
end;
end;
end;

for x_loop = l:no_of_ pixels_in_x direction
for y_loop = l:no_of_pixels_in y direction
if original img_lies_in x(x_loop, y_loop) == 0 | original_img lies_in_y(x_loop, y_loop) == 0
enlarged_hexagon_img(x_loop, y_loop) = original_image(x_loop, y_loop);:
else
enlarged_hexagon_img(x_loop, y_loop) = averaged_hexagon({original_img_lies_in x(x_loop, y_loop),
original_img_lies_in y({x_loop, y_loop)):
end;
end; % End for y_loop
end; % End for x_loop

hexagon_pixel_image = enlarged_hexagon_img;
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hexagon_pixel_image 6neighbor.m

% Created On : June 07, 2002

% File Name : hexagon_pixel_image_6neighbor.m

% Description: This program accepts the image which needs to be converted into hexagon
% pixel image. The second paramter is the length of the hexagon pixel

% desired. It creates the hexagon pixel image based on the six-neighbor

% approach.

%¥function [hexagon_img] = hexagon pixel_image_éneighbor (image_variable, length_of_hexagon_pixel)
length_of hexagon_pixel = 4.5;
length_of_rectangular_template = ceil(length of_hexagon_pixel*3);
height_of_rectangular template = ceil (length_of_hexagon_pixel * 4 * sin{pi/3});

column_section_length = floor(length of_ rectangular_template * 1/6);
row_section_length = flooxr (height_of_ rectangular_template * 1/4);
clear hexagon_img;
for column_no = l:length_of_rectangular_template
for row no = l:height of_rectangular_template
if column_no <= floor(length_of_rectangular_template *1/6)
if row_no <= height of_ rectangular template/2

hexagon_img (row_no, column_no) = 0; % Blackl
o else
s hexagon_img (row_no, column_no) = 200; % Yellowl

end;
elseif column_no <= floor(length of_rectangular_template * 2/6)
if row_no <= 0*row_section_length + (column_no - column_section_length) * sin (pi/3)

hexagon_img {(row_no, column_no) = 75; % Redl
else
hexagon_img (row_no, column_no) = 0; % Blackl
end;
if row_no <= l*row_section_length + (column_no - column_section_length) * cos (pi/3)
hexagon_img (row_no, column_no) = 0; % Blackl
else
hexagon_img (row_no, column_no) = 150; % Greenl
end;

if row_no <= 2*row_section_length + (column no - column_section_length) * sin{pi/3)
hexagon_img (row_no, column_no) = 150; % Greenl

else
hexagon_img (row_no, column_no) = 200; % Yellowl
end;
if row_no <= 3*row_section_length + (column_no - column_section_length) * cos (pi/3)
hexagon_img (xow_no, column_no) = 200; % Yellowl
else
hexagon_img (row_no, column_no) = 75; % Red2
end;

elseif column_no <= length_of_rectangular_template *3/6
if row_no <= height_of_rectangular_template/4

hexagon_img (row_no, column_no) = 75; % Redl
elseif row_no <= height_of_rectangular_template/2

hexagon_img (row_no, column_no) = 150; % Greenl
elseif row_no <= height_of_rectangular_templatex.75

hexagon_img (row_no, column_no) = 150; % Greenl
else

hexagon_img (row_no, column_no) = 75; % Red2

end;
elseif column _no <= length_of_rectangular_template * 4/6
if row_no <= height_ of_rectangular_template/4

hexagon_img (row_no, column_no) = 75; % Redl
elseif row_no <= height of_rectangular_template/2

hexagon_img (row_no, column_no) = 150; % Greenl
elseif row_no <= height_of_rectangular_template*.75

hexagon_img (row_no, column_no) = 150; % Greenl
else

hexagon_img (row_no, column no) = 75; % Red2

end;

end;
end;
end;

image_quality using ed.m

% Created By Girish Tirunelveli
% Created On : June 19, 2001

% File Name : image_quality using ed.m
% Description: This program calculates the image quality between two images using
% the Euclidean Distance method.

% Stepl. Assign the output variables as 0, just in case the job abhends in
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% the middle. Also do all initializing required for this function.

image_quality = 0;

imagel = double{imagel);

image2 = double (image2);

[no_of_pixels_in x_direction, no_of_pixels_in_y direction] = size(imagel);

B e mm e e e e e M e o MM e e e e e e e e e MM o e e M e mm e mmmm——————
% Step2. Calculate the image quality-

% Euclidean Distance Image Quality =

% sqrt {sum( (imagel - enlarged hexagon_img)"*2)).

% For calculating the image_quality consider a circle that is only

% 1/3rd the size of the image to get rid of the distortions caused

% in the edge while rotating.
U R
radius = 100; %floor (no_of_pixels_in x_direction/3);

x_center = floor (no_of_pixels_in_x_direction/2);
y_center = floor (no_of pixels_in_y_direction/2);
for x_loop = l:no_of_pixels_in_x_direction
for y_loop = l:no_of_pixels_in_ y direction
if (x_loop-x_center)”2 + (y_loop-y_center)”*2 <= radius’2
difference_img(x_loop, y_loop) = imagel{x_loop, y_loop) - image2 (x_loop, y_loop):
else
difference_img(x_loop, y_loop) = 0;
end;
end;
end;

difference_img = difference_img."2;

image_guality = sqrt (sum(sum(difference_img))):

image_quality = image_quality/{255 * sqrt(no_of pixels_in_x direction*no_of_pixels_in y direction)};
% 255 is the maximum grey value in the image.

image_quality using fd.m

%

% Created By : Girish Tirunelveli
% Created On : June 19, 2001

% File Name : image_quality using fd.m

% Description: This program calculates the image quality between two images using
% the fidelity measure
%
£

% Stepl. Assign the output variables as 0, just in case the job abhends in
% the middle. Also do all initializing required for this function.

image_quality = 0;
imagel = double(imagel);
image2 = double (image2);

% Step2. Calculate the image quality-

% Fidelity B2D = sum{sum(imagel*image2)) / sum{sum(imagel*imagel)).

% Note that the multiplication above is matrix mulplication.

m m m e e e e e e e m e e e e e m MMM e e e e m G MG A e e rrmomAm . —————————
BZD_numerator = sum({sum(imagel.*image2));

BZD_denominator = sum{sum(imagel.*imagel));

image_quality = BZD_numerator/BZD_denominator;

image_quality_using rb.m

%=

% Created By : Girish Tirunelveli
% Created On : June 19, 2001

% File Name : image_quality using rb.m

% Description: This program calculates the image quality between two images using
the resemblity measure

unction [image_gualityl= image_quality using_rb (imagel, image2)

% Stepl. Assign the output variables as 0, just in case the job abhends in
% the middle. Also do all initializing required for this function.

image_quality = 0;
imagel = double(imagel);
image2 = double(image2);
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Step2. Calculate the image quality-
XSD_numerator

= sum{sum(imagel*image2))
XSD_denominator = sqrt(sum(sum(imagel*imagel))) *

sqrt (sum{sum (image2*image2)))

XSD = XSD_numerator/XSD_dencminator;
Note that the multiplication above is matrix mulplication.

XSD_numerator = sum{sum({imagel.*image2));
XSD_denominator = sqrt(sum(sum(imagel.*imagel))) * sqrt(sum(sum(image2.*image2)));

image_guality =

XSP_numerator/XSD_denominator;

image quality using hd.m

%=

%
%
¥

o

Created By :
Created On :
File Name

Description:

Girish Tirunelveli

January 12, 2003

image_quality_using_hd.m
This program calculates the image quality between two images using

imagel
image2
image_quality = 0;

double (imagel) ;
= double (image2) ;

B o m e e e e e e e e e e e o o e e e e e e
% Step2. Resize the image to 16 by 16 for faster computation.

RI_imagel = imresize (imagel, [16 16}, ‘'bicubic');

RI_image2 = imresize (image2, (16 16}, ‘'bicubic');

BC = zeros (16);

= = mmm e e e o o e e e e e e o e e e e e e e e e e et mm e —m
% Step3. For each pixel value of imagel, find the closest match in image2.

% Add all the differences.

G m m o mmm e e e e e e e e e e e e e e e e e e o e o o e e e e e m—a—— e

total_distance = 0;
for rnl=1:16
for cnl=1:16
distance = 1000000;
PC_x = (1;
PCy = (1:

for rn2= 1:16

for en2 = 1:16
if PC(rn2,cn2) =

=0
pixel_value_diff =

% Indicates not chosen
abs (RI_imagel (rnl, cnl) - RI_image2({rn2, cn2));

if pixel_value_diff < distance

if (isempty(PC_x) == 0) % Indicates chosen before
PC(PC_x, PC_y) = 0; % Unmarked to not chosen

end;

PC(rn2, cn2) = 1; % Marked as chosen

PC_x = rn2;

PC_y = c¢n2;

distance = pixel_value_diff;

end;
end;
end;

total_distance = total_distance + distance;

end;
end;

image_quality = total_distance;

enfropy.m

Created By
Created On
File Name

Description:

Girish Tirunelveli
: July 31, 2001
entropy.m
This program calculates
in an image. It returns
parameters.

the
the

information content (entropy) present
histogram and entropy as output
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function ([histogram, entropy] = entropy(original_image)
original_image = double (original_image) ;
min_pixel_value=round(min(min(original_image)));
max_pixel_value=round(max{max(original_image)}));

pixel_value = min_pixel value:max_pixel_value;
histogram(size (pixel_value)) = 0;

{number_of_rows, number_of_columns] = size(original image);
for row_number = 1:number of_rows
for column_number = 1:number_ of_columns
current_pixel_value = round (original_image (row_number, column_number));
histogram (current_pixel value-min_pixel _value+l) = ..
histogram(current_pixel_value - min_pixel_valle+l) + 1;
end;
end;

% levels.

entropy = 0;
for pixel value_number = l:max_pixel value-min_pixel_value+l
if histogram(pixel_value number) -~= 0
norm_hist = histogram (pixel_value_number) /
(number_of_rows * number of_ columns);
entropy = entropy - norm_hist * log2 (nmorm_hist);

a0

Created By : Girish Tirunelveli

Created On : June 8, 2001

File Name : projectl mtf.m

Description: Draws the MTF Curve (Modulation Transfer Function Curve) of the square pixel image
and the hexagon pixel image.

Create sine_wave image of frequency 1. This is SWI.

Create the square pixel image of the sine wave. Call it SPI.

. Create the hexagon pixel image of the sine wave. Call it HPI.

. Take the fourier transform of all images. fft_SWI, f£ft_SWI, E£ft HPI.
Point of interest in the transform is (129, 129-frequency).

. Ratio of this point between two images is the MTF.

. Plotting MTF for a range of frequencies gives the MTF curve.

@ o8 oP e

Algorithm

R

a0 o0 oo
N U W R

.

% Accept the input parameters.

3 U Y

length_of_square_pixel = input {'Enter length of square pixel: '};
length_of hexagon _pixel = input ('Enter length of hexagon pixel: '};
frequency=[0:2:128];

time_start=cputime;

*®

For each freguency, construct the sine_wave_image. Get the square pixel image
and hexagon pixel image. Get the fourier transform of each of these images.
Get the value at (129, 129-frequency) coordinate. Lets say this value is

AQ for the original sine image

Al for the square pixel image and

A2 for the hexagon pixel image.

EE R

e

% MTF at the frequncy = Al/A0 for square.

% = A2/A0 for hexagon.

% Do this for all frequencies and plot a curve.
g

for frequency_number=1:length{frequency)

% Get the sine_wave_image at the specified frequency.
SWI=sine_wave (frequency (frequency number), 256);

% Convert it to square_pixel_ image and get SPI.
SPI=square_pixel image (SWI, length of_ square_pixel);

% Convert it to hexagon_pixel_ image and get HPI.
HPI-hexagon_pixel_image_2template (SWI, length_of_hexagon_pixel);

% Get 2D FFT of all the images.
fft_SWI = real (fftshife(fft2 (SWI)));
fft_SPI = real(fftshift(fft2 (SPI)));
Eft_HPI = real(fftshift(f£ft2 (HPI)))

% Get the amplitude of the transform at the point of interest.
fft_SWI (129, 129-frequency(frequency number));
f£ft_SPI (129, 129-frequency(frequency number)};
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amp_HPI = ££t HPI (129, 129-frequency(frequency_number));
SIQ mtf (frequency number) = amp_SPI/amp_SWI;
HIQ mtf (frequency_number) = amp_ HPI/amp_SWI;
end; % for frequency number
time_end=cputime;
disp(strcat('Process Completed. Time taken: ', num2str (time_end-time_start), '

clf

plot (frequency, SIQ mtf, 'r+-');

hold

plot (frequency, HIQ mtf, 'bo-');

title ('Resolution Comparison between square and hexagon pixel using MTF')

xlabel ('Frequency ')
ylabel ('Modulation Transfer Function (MTF)');
legend ('Square Pixel', 'Hexagon Pixel')

seconds')) ;

sine_wave.m

% Created By : Girish Tirunelveli

% Created On : June 07, 2002

% File Name : sine_wave.m

% Description: This program creates a sine wave at a particular frequency.

$=
function [sine_wave_img] = sine_wave (frequency, size_of_img)
sine_wave_img = zeros(size_of_img);:
for column_no=l:size of_ img
theta in degrees = column_no * 360 * frequency / size of_img;
theta_in_radians = theta_in_degrees * pi / 180;
sine_wave_img(:, column_no) = 128 + sin (theta_in_radians) * 128;
end;
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A.2 Code for *ART experiment

Extract all the files in this section into a particular folder on your computer. Change your
Matlab™ session’s present working directory to this folder. Simply type project2 main
in the M atlab™ ¢ ommand prompt. This will show a p arameter screen. The p arameter
screen is shown in Figure A-1. Enter the parameters for your experiment and click Ok.
Based on the parameters entered, the code will do its magic and display as output the
original test image, the seed image used (applies to *ART), the reconstructed image and
the plot of the normalized Euclidean distance with respect to cycles. Note that test images
are needed for using the code. The different test images that Iused (all are 32by 32

1mages) are tabulated below.

Sr# | Test Image File Description How the image was
Name generated?

1. admin32.bmp University of Manitoba Reproduced with permission from

Administration Building Prof. W. Lehn’s Digial Image
Processing class.

2. rose32.bmp A low contrast image of a | Produced using my digital camera.
rose

3. | phantom32.bmp Phantom Image Produced using the phantom function

in Matlab™

4. abcd32.bmp Image  containing  the | Created manually in Microsoft®
alphabets “abcd” Paintbrush.

5. | paint32.bmp Image containing pattern | Created manually in Microsoft®
from Microsoft Paintbrush Paintbrush.

6. checker32.bmp Image containing 8 by 8 | Created manually in Microsoft®
blocks of sequential pixel | Paintbrush.
values

7. circles32.bmp Circles of uniform radius | Created manually in Microsoft®
and  different  contrast | Paintbrush.
thrown randomly on a
uniform background.

8. sine32.bmp Horizontal sine wave of | Created mathematically in Matlab™™.
frequency 1 and 10 is added
with vertical sine wave of
frequency 1 and 10.

9. rand32.bmp Uniformly distributed | Created using Matlab’s rand function
random image.
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Figure A-1. The front-end application screen for entering
*ART parameters

project2_main.m

% Created By
¥ Created On :
% File Name :
% Description:
%

: Girish Tirunelveli

December 31, 2002

project2_main.m

This program asks for all the input parameters required for studying the
confidence of *ART algorithms. Note that this program is written only
for square images.

input_options.Resize ='off’;
input_options.WindowStyle ='normal’;

input_options.Interpreter
input_window_title

input_prompts

'tex‘,’

*Input for *ART function';

= {'Enter the name of the input file (.bmp only):',

‘Projection Angles in Degrees', ...

'Projection Angle Ordering Scheme {sas,faas,ras,mlsas,wdas)', ...
'Ray Width',

‘Detector Width (0 for variable)',

ou
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'Ray Gap', .

'Detector Gap', ...

'Number of Detectors (Enter 0 if you need to cover the entire image)',

‘Pixel Width',

'Weighting Scheme (bin,int,dist,cont)', ...

'Algorithm Type (SRT, FBP, ART, MART, SIRT, SART, ART_-MART)', ...

‘Enter the name of the seed (zeros, flat, meshgrid, rand, randn, checkerboard, shingles,
sinewave, noise, fbp, stretch, blur, blockl, block2, block3, block4) : !,

'Number of Cycles (0 for convergence)', ...

‘Relaxation Factor', ...

'Enter Weight Matrix Variable (Enter blank if recalculation required)',

'Enter the Projection Values Variable (Enter blank if recalculation required)'

input_defaults = {'abcd32.bmp', ...
'{0:20:1801", ...
‘faas’,
e .
o, Ll
wQr,
o,
o,
1, L.
‘aistr,
"MART',
'flat’,
1300, ...
1, L
WM,
e

)i

% For proper display in desktop

input_lines = {0.9, 0.8, 0.9, 0.1, 1.0, 0.1, 0.1, 0.1, 0.1, 0.8, 0.8, 0.9, 0.9, 0.8, 0.6, 0.6];
% For proper display in laptop

%input_lines =[1,1,1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1);
answer:inputdlg(input_prompts,input_window_title,input_lines,input_defaults,input_options);

answer

% Step2. Convert the user response into proper datatypes.

input_number=input_number+l;
clear original_image
original_image txt = cell2struct (answer (input_number), 'value', 2);

If the file name has a equal to sign in it, then it indicates that
the user wants to execute a function and store the function in the
original_image variable. If the original file name has a period in
it then the user wishes to open a image file, the characters flwing
the image name are treated as the file format. If the file does not

G0 of o0 e ol

% have either a equal to sign or a period in it then it is a .mat

% variable.

G m e m e m e e e e e e e e  — e e e e o o e m A e e e
equal_sign found = find(original_image_txt.value == '=');

period_found = find(original_image txt.value == '.');

if (isempty(equal_sign_found) 0}
eval (sprintf{'original_image %s;', original_image_txt.value));

elseif (isempty(period_found) == 0)
original_image = imread (original_image txt.value, 'bmp');
original_image = double(original image);
original_image = original_image+1;

: else
- eval (sprintf('load %s;', original_image_txt.value));

original image(3,3)=8;

end;

[number_of_rows_in image, number of_columns_in_image) = size (original_image) ;

% INPUT2: Projection Angle (Theta) in Degrees
% If the seed image is fbp then calculate the seed image
% based on Filtered Back-Projection.

input_number=input_number+1;
clear theta in_degrees
theta in degrees_txt = cell2struct (answer{input_number), 'value', 2);

theta_in_degrees = str2num(theta_in_degrees_txt.value);

$==

% INPUT3: Projection Angles Ordering Scheme (1,2,3,4,5,6)

% 1 indicates Sequential (angles are taken in order the data is
% gathered) (SAS)

% 2 indicates Fixed Angle Access Scheme (FAAS)

% (angles are 90 degrees apart in this case)
% 3 indicates PNDAS (Prime Number Decomposition)

% 4 indicates Random Access Scheme (RAS)

% 5 indicates Multilevel Access Sceme (MLSAS)
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% 6 indicates Weighted Distance Scheme (WDAS)

input_number=input_number+l;
projection_angles_ordering_txt = cell2struct (answer {input_number), fvalue', 2);
N switch lower(projection_ angles_ordering_txt.value)
case {'sas'}
theta_in_degrees = generate_paos_sas (theta_in_degrees);
case {'faas'}
theta_in_degrees = generate_paos_faas (theta_in_degrees);
case {'pndas'}
theta_in_degrees = generate_paos_pndas(theta_in_degrees) ;
case {'ras'}
theta_in_degrees = generate paos_ras (theta_in_degrees);
case {'mlsas'}
theta_in_degrees = generate_paos_mlsas (theta_in_degrees) ;
case {'wdas'}
theta_in_degrees = generate_paos_wdas (theta_in_degrees);
cthexwise
disp('Invalid Value for Projection Angles Ordering Scheme.')
return;

input_number=input_number+l;

clear ray_width

ray_width _txt = cell2struct (answer{input_number), 'value', 2);
ray_width = str2num (ray_width_txt.value);

Detector Width

clear detector_width
detector_width_txt = cell2struct (answer(input_number), 'value', 2);
detector_width = str2num (detector_width txt.value);

input_number=input_number+l;

clear ray gap

ray_gap_txt = cell2struct (answer{input_number), 'value', 2);
ray_gap = str2num (ray_gap_txt.value);

input_number=input_number+1;

clear detector_gap

detector_gap_txt = cell2struct (answer(input_number), 'value', 2);
detector_gap = str2num (detector_gap_txt.value);

] nput_number+1
clear number of_ detectors
number_of detectors_txt = cell2struct (answer{input_number), 'value', 2);
number_of_detectors = str2num (number_of_ detectors_txt.value);

if (number_of_detectors == 0)

number_of_detectors = numbexr_of_rows_in_image + number_of_columns_in_image-1;
end;

input_number=input_number+1;

clear pixel_width

pixel_width_txt = cell2struct (answer (input_number), 'value', 2);
pixel_width = str2num (pixel width_txt.value);

Weighting Scheme
1 indicates Binary scheme (bin)

indicates Length of ray withing pixel scheme (int)

indicates Distance of Ray-Center from center of pixel scheme (dist)
indicates Distance of center of pixel from farthest edge of
adjacent ray scheme (cont).

W

input_number=input_number+l;
clear weighting scheme_txt
weighting scheme_txt = cell2struct(answer (input_number), 'value', 2);

input_number=input_number+1;
clear algorithm_type
algorithm type_txt = celllZstruct (answer (input_number), 'value', 2);:
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algorithm_type = algorithm type_txt.value;

input_number=input_number+l;
clear seed_image
seed_image_txt = cell2struct (answer(input_number), ‘'value', 2);
switch lower (seed_image_txt.value)
case {'zeros'}

seed_image = zeros{size(original_image));
seed_image_title = 'Seed Image(zeros)';

case 'flat'
seed_image = ones(size(original_image)) ;

seed_image_title = 'Seed Image(flat)';
case 'meshgrid!
seed_image = meshgrid(i: length(original_image));
seed_image_title = 'Seed Image(meshgrid)';
case 'rand'
seed_image
seed_image_title
case 'randn'
seed_image
seed_image_title
case 'checkerboard’'

rand(size(original_image)) ;
'Seed Image(rand)';

']

abs(128+randn(size(original_image))*32);
'Seed Image(randn) ‘;

seed_image = checkerboard(size(original_image, 1), 1, 255);
seed_image_title = 'Seed Image(checkerboard)';
case 'shingles'

seed_image = shingles(size({original_image));
seed image_title = 'Seed Image(shingles)';

case 'sinewave'
seed_image

sinewave (length(original_image)) ;

seed_image_title = 'Seed Image(sinewave)';
case 'noise’
Poriginal_image = sqrt(sum(sum(original image."2)));
seed image = rand{size{original_image)} * Poriginal_ image/50 + original_image;
seed_image_title = 'Seed Image(noise)';
case 'fbp'
pv_radon = radon(original_image,theta_in_degrees);

seed_image = iradon(pv_radon, theta_in_degrees, 'nearest', 'Hann', 1, number_of_rows_in_image) ;
seed_image_title = 'Seed Image(fbp)';

case ‘'stretch!
seed_image = abs(stretch(original_ image, 1.5));
seed_image_title = 'Seed Image(stretch)';

case 'blur'

seed_image = blur(original_image, 1);
seed_image_title = 'Seed Image(blur)';

case 'blockl’
seed_image = block (ones(size(original_image)}, 1);

seed_image_title = 'Seed Image(blockl}';
case 'block2’
seed_image = block (ones(size(original_image)), 2);:
seed_image title = 'Seed Image(block2)';
case 'block3!
seed_image = block (ones(size(original_image)), 3);
seed_image_title = 'Seed Image(block3)';

case 'block4!'
seed_image = block (ones{size(original_image)}, 4);
seed_image title = 'Seed Image(block4)';
otherwise
disp('Invalid Seed Image.')
seed_image_title = 'Seed Image';
return;

input_number=input_number+l;

clear number_ of_cycles

number_of_cycles_txt = cell2struct (answer(input_number), 'value', 2};
number_of_cycles = str2num(number_of_cycles_txt.value);

input_number=input_number+1l;
clear relaxation_factor;
relaxation_factor_txt
relaxation_factor

cell2struct (answer (input_number), ‘'value', 2);
str2num(relaxation_factor_txt.value);

% Weight Matrix
% If the weight matrix is entered then assign the weight matrix to the entered

% variable. else recalculate the weight matrix. This is done for speeding up

% testing. Note that the weight matrix is a 4-D matrix as below -

% WM (x of pixel, y of pixel, angle number, detector number)

% The weight matrix is computed by four different methods -

% 1. Binary Scheme (bin)

% 2. Length of the ray within the pixel Scheme (int).

% 3. Distance of the center of the pixel from the center of the ray Scheme (dist).
% 4. Contribution made by pixel to the adjacent rays Scheme (cont).
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% sszcmz==== = sm=as
input_number=input_number+1;
weight_matrix_txt = cell2struct (answer(input_number), 'value', 2);
if (isempty(weight_matrix_txt.value))

time_start=cputime;

switch lower({weighting_scheme_txt.value)

case {'bin'}
{WM]=generate_wm_bin (original_image, theta_in_degrees, number_of_detectors, detector_width,

pixel_width);
case {'int'}
[WM] =generate_wm_int (original_image, theta_in degrees, number_of_detectors, detector_width,
pixel_width);
case {'dist'}
[WM] =generate_wm_dist (original_image, theta_in degrees, number_of_detectors, detector width,
pixel _width);
case {'cont'}
{WM] =generate_wm_cont (original_image, theta_in_degrees, number_of_detectors, detector_width,
pixel_width);

otherwise
disp('Invalid Value for Weighting Scheme'};
return;
end;
time_end=cputime;
disp(strcat ('Weight Matrix Computed. Time taken: ', num2str(time_end-time_start), ' seconds'));
else
eval (strcat{'WM =', weight_matrix_txt.value, ';'}));

% INPUT16: Projection Values (Forward Simulation)
% If the variable is entered then assign the PV variable to the entered variable,
% else recalculate PV by calling generate_projections function. This is done for
% speeding up testing. Note that the PV is a 2-D matrix as below -

% PV (theta_in_degrees, detector_number)

input_number=input_number+l;
projection_values_txt = cell2struct (answer(input_number), 'value', 2);
if (isempty(projection_values_txt.value})
time_start=cputime;
[PV] =generate_projections(original_image, theta_in_degrees, WM, number_of_detectors);
time_end=cputime;
disp(strcat('Forward Simulation Complete. Time taken: ', num2str(time_end-time_start), ' seconds'));
else
eval (strcat('PV =', projection_values_txt.value, ';'});

% Step3. Validate the input. This input validates include both the

% program limitations and also the algorithm limitations.
B mm e e e e e e e frr MM E e e e m e mmm e m e a e e r A e ————————
if size(original_image) -= size(original_image’)
disp('Input Error');
disp('Original Image must be square.');
return;
end;
if size(seed_image) ~= size(original_image)
disp('Input Error'j;
disp('Seed Image must be the same size as that of the original image.');
return;
end;

%

%if -isempty(find{oxiginal_image==0)}

% disp('Input Error');

% disp('Original Image must not have any elements with 0 value.');
% return;

$end;

$if -isempty(find({seed image==0))
% disp('Input Error');

% disp('Seed Image must not have any elements with 0 value.');
% return;
¥end;

% Step4. Do the appropriate processing
switch upper(algorithm_type)
case {'FBP'}
time_start=cputime;
precision_multiplier = 10000000;
[RI_£bp, ID_fbpl=ifbp(seed image, original_image,
PV, theta_in_degrees,
number_of_cycles, number_of_detectors, ...
WM, precision_multiplier, relaxation_factor);
time_end=cputime;
disp(strcat ('Backward Simulation (FBP) Complete. Time taken: ', num2str({time_end-time_start),
seconds')};
case {'SRT'}
time_start=cputime;
precision_multiplier = 10000000;
[RI_srt, ID_srt]=isrt (seed_image, original_image,
PV, theta_in_degrees, ...
number_of_cycles, number of_ detectors, ...
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WM, precision multiplier, relaxation_factor):;
time_end=cputime;

disp(strcat ('Backward Simulation (SRT) Complete. Time taken: ', numzstr({time_end-time_start),

seconds'));
case {'ART'}
time_start=cputime;
precision_multiplier = 10000000;
[RI_art,ID_art}=iart(seed_image, original_image, ...
PV, theta_in degrees,
number_of_cycles, number_of_detectors,
WM, precision multiplier, relaxation_factor);
time_end=cputime;

disp(strcat ('Backward Simulation (ART) Complete. Time taken: ', num2str(time_end-time_start},

seconds'));
case {'MART'}
time_start=cputime;
precision multiplier = 10000000;
[RI_mart, ID_mart}=imart (seed_image, original_image, ...
PV, theta_in_degrees,
number_of_cycles, number_of_detectors, ...

WM, precision_multiplier, relaxation_factor);

time_end=cputime;

disp(strcat{'Backward Simulation (MART) Complete. Time taken: °', num2str{time_end-time_start),

seconds')) ;
case 'SIRT'
time_ start=cputime;
precision multiplier = 10000000;
[RI_sirt,ID_sirt]=isirt(seed_image, original_image,
PV, theta_in degrees,
number of_cycles, number_of_ detectors,

WM, precision multiplier, relaxation_factor);

time_end=cputime;

disp(strcat{'Backward Simulation (SIRT) Complete. Time taken: ', num2str (time_end-time start), '

seconds')) ;
case {'SART'}
time_start=cputime;
precision multiplier = 10000000;
[RI_sart, ID_sart]=isart (seed image, original_image,
PV, theta_in_degrees,
number_of_cycles, number_ of_ detectors,

WM, precision multiplier, relaxation_factor);

time_end=cputime;

disp(strcat('Backward Simulation (SART) Complete. Time taken: ', num2str (time_end-time_start), '

seconds')) ;
case {'ART_MART'}
time_start=cputime;
precision_multiplier = 10000000;
[RI_art_mart,ID art _mart]=iart_mart(seed_image, original_image,
PV, theta_in_degrees,

number_of_cycles, number_of_detectors,
WM, precision multiplier, relaxation_ factor);

time_end=cputime;
disp (strcat('Backward Simulation (ART MART) Complete. Time taken:

seconds')) ;
otherwise
disp('Invalid Algorithm Type.')
return;
end;

current_figure=figure(1s);

clf
set (current_figure, 'NumberTitle', 'off');
set (current_figure, 'Name', 'Project2 Results');

subplot (2, 2, 1), imagesc (original_image);
colormap (gray);

title 'Original Image'

axis square

axis off

subplot (2, 2, 2), imagesc (seed_image):
colormap (gray):

title (seed_image_title)

axis square

axis off

cycle=[0:number_of_cycles];
switch upper(algorithm_type)
case {'FBP'}

subplot (2, 2, 3), imagesc (RI_fbp);
colormap (gray);
title 'Reconstructed Image (FBP)'
axis square
axis off

ID_fbp(l:number_of cycles+1)=ID_fbp;

subplot (2,2,4), plot (cycle, ip_fbp, 'r-', cycle, ID_fbp, 'bo')
grid on;

xlabel ('Cycle');

ylabel ('Normalized Eucl. Distance');

', num2str(time_end-time_start)

[
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title ('Plot of Normalized Eucl.Distance Vs Cycle');
axis ([0 number_of_cycles 0 1.l*max(ID_fbp)]})
ID_fbp’

case {'SRT'}
subplot (2, 2, 3), imagesc (RI_srt);
colormap (gray);
title 'Reconstructed Image (SRT)'
axis square
axis off

ID_srt (1:number_of_cycles+1)=1D_srt;

subplot (2,2,4), plot (cycle, ID_srt, 'r-', cycle, ID_srt, 'bo')
grid on;

xlabel ('Cycle'):

ylabel ('Normalized Eucl. Distance'};

title ('Plot of Normalized Eucl.Distance Vs Cycle');

axis ([0 number_of cycles 0 L.l*max(ID_srt)])

ID_srt’

case {'ART'}
subplot (2, 2, 3), imagesc (RI_art);
colormap (gray):
title 'Reconstructed Image (ART)?®
axis square
axis off

ID_art{l:number_of_cycles+1)=ID_art;

subplot (2,2,4), plot (cycle, ID_art, 'r-', cycle, ID_art, 'bo')
grid on;

xlabel ('Cycle’');

ylabel ('Normalized Eucl. Distance');

title ('Plot of Normalized Eucl.Distance Vs Cycle');

axis ([0 number_of_cycles 0 1.l*max(ID_art)])

ID_art’

case {'MART'}
subplot (2, 2, 3}, imagesc (RI_mart);
coloxrmap (gray);
title 'Reconstructed Image (MART)'
axis square
axis off

ID_mart(1:number of_ cycles+l)=ID_mart;

subplot (2,2,4), plot (cycle, ID_mart, '‘r-', cycle, ID_mart, 'bo')
grid on;

xlabel ('Cycle');

ylabel ('Normalized Eucl. Distance');

title ('Plot of Normalized Eucl.Distance Vs Cycle'};

axis ({0 number_of_cycles 0 1.1l*max(ID _mart)))

ID_mart'

case {'SIRT'}
subplot (2, 2, 3), imagesc (RI_sirt);
colormap (gray);
title 'Reconstructed Image (SIRT)'
axis square
axis off

ID_sirt(l:number_of_ cycles+1)=ID_sirt;

subplot (2,2,4), plot (cycle, ID_sirt, 'r-', cycle, ID_sirt, 'bo')
grid on;

xlabel (rCycle');

yvlabel ('Normalized Eucl. Distance');

title {('Plot of Normalized Eucl.Distance Vs Cycle');

axis ([0 number_of_cycles 0 1.1*max(ID_sirt)])

ID_sirt!'

case {'SART'}
subplot (2, 2, 3), imagesc (RI_sart);
colormap (gray):
title 'Reconstructed Image (SART)'
axls square
axis off

ID_sart(l:number_ of_ cycles+1)=ID_sart;

subplot (2,2,4), plot (cycle, ID_sart, 'zr-', cycle, ID_sart, 'bo')
grid on;

xlabel ('Cycle');

ylabel ('Normalized Eucl. Distance');

title ('Plot of Normalized Eucl.Distance Vs Cycle');

axis ([0 number_of_cycles 0 1.1*max{ID_sart)])

ID_sart’

case {'ART_MART'}
subplot (2, 2, 3), imagesc (RI_art_mart);
colormap (gray);
title 'Reconstructed Image (ART_-MART)'
axis square
axis off

ID_art_mart(l:number_of_cycles+1)=ID_art_mart;

152




Appendix A: Matlab Code

subplot (2,2,4), plot (cycle, ID_art_mart, 'r-', cycle, ID_art _mart, 'bo')
grid on;

xlabel ('Cycle');

ylabel ('Normalized Eucl. Distance');

title ('Plot of Normalized Eucl.Distance Vs Cycle');

axis ([0 number_of_cycles 0 1.l*max(ID_art _mart}])

ID_art_mart'

otherwise
disp('Invalid Algorithm Type.')
return;
end;

load handel
X=y(1:1000) ;
sound {x, 8192);

generate_paos_sas.m

Created By : Girish Tirunelvelil
% Created On : January 01, 2003

% File Name : generate_paos_sas.m
% Description: The generate_paos_sas function generates the sequential projection angles

% ordering. It returns the projection angles in the same order as they
% were received. Technically this program is not required. It is created
% only to be consistent with the other projection angles ordering schemes.

function [R_angles] = generate_paos_sas(theta_in_degrees)
R_angles = theta_in_degrees;

generate_paos_faas.m

% Created By : Girish Tirunelveli

% Created On : January 01, 2003

File Name : generate_paos_faas.m

Description: The generate_paos_faas function generates the projection angles ordering
scheme such that the projection angles are as orthogonal as possible.
For example a sequence of angles 0, 30, 60, 90, 120, 150, 180 is
changed to 0, 90, 30, 120, 60, 150, 180.

a0 A de

oo op

unction [R_angles}

% Stepl. Initialize all the appropriate variables. Also initialize the output
% parameter, just in case the program abhends in the middle.

number_of_angles = length(theta_in_ degrees);
R_angles zeros(size{theta_in_degrees));
angle_selected zeros(size(theta_in_degrees));

o e o o o e e e e e e e e e e e e e e A e e e e e e e —————— e =
% Step2. The first orthogonal angle is the first one from the theta series.

G m e e e e e e e e e e e e e e e e e e e e .
R_angles (1} = theta_in_degrees (1);

angle_selected (1) = 1;

B e e e m e m e e r Mt e o e e e e e e e e e e A e e e o e e A m e . — —— — e — e —
% Step2. We need to assign the orthogonal angles from the 2nd element until the

% last.

for oan = 2:number_of_angles
if mod{oan, 2} ==
ref_angle_value = R_angles(can-1)-90;

else
ref_angle_value = R_angles(oan-1)+90;
end;
diff =1000;
previous_an = {}:

for an=2:number_of_angles
if (angle_selected(an) == 0) % Indicates the angle has not been selected before.
new _diff- abs(ref_angle_value - theta_in degrees(an));
if new_diff < diff
% Reset previously set angle
if (isempty (previous_an) == 0)
angle_selected(previous_an) = 0;
end;

% Set the current angle.

previous_an = an;
diff = new_diff;
R_angles{oan) = theta_in_degrees{an);
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angle_selected(an) = 1;

generate_paos_ras.m

%
%

a*

E R

%
£

Created By :

Girish Tirunelveli

Created On : January 01, 2003
File Name : generate_paos_ras.m
Description: Random Access Scheme for ordering the projection angles.

Algorithm: -

% Stepl. Initialize all the appropriate variables. Also initialize the output

% parameter, just in case the program abhends in the middle.

o m & m e e e
number_of angles = length{(theta_in_degrees);

R_angles = zeros(size(theta_in degrees));

angle_selected = zeros(size(theta_in_degrees));

next_angle_index = 0;

% Step2. We need to assign the random angles from the 1lst element until the
% last.

% Algorithm: -
% a) Select an angle in random.
% b) Make sure that the angle_index has not been selected before.

for ran = l:number_ of_angles
angle_index = round(rand*(number_of_angles-1)) + 1;
girish = find (angle_selected == angle_index);

while isempty(girish) ==
angle_index = round(rand*(number_of_angles-1)} + 1;
girish = find (angle_selected == angle_index);
end;

% If the program control comes to this point then it indicates that
the angle index has not been selected before. Assign the next_angle
of the output variable as the angle from the input set with the
same index. Also mark the index as selected so that it will not be
selected again.

o o0 e op

next_angle_index = next_angle_index+1;
R_angles(next_angle index) = theta_in_degrees(angle_index);
angle selected(next_angle_index) = angle_index;

end; % for ran

generate_paos_mlsas.m

9 9e op

s o0

%
function [R_angles] = generate paos_mlsas(theta_in_degrees)

Created By : Girish Tirunelveli

Created On : January 01, 2003

File Name : generate_paos_mlsas.m

Description: The generate_paos_mlsas function generates the projection angles ordering

scheme based on MLS (Multi Level Acess Scheme) based on Guan And Gordon.

S

% Stepl. Initialize all the appropriate variables. Also initialize the output

% parameter, just in case the program abhends in the middle.

B m m m e e e e e e e e h e M m e e m e e e m e e e e e e e o e e e et m e e m e m e m e ———————
number_of_angles = length(theta_in_degrees);

R_angles = zeros(size(theta_in_degrees));

angle_selected = zeros({size(theta_in_degrees));

E e mmm e e e e e el a e e MMM MM e e e e e e Mmoo e e e e e rmmmmam e —————————

R_angles (1) = theta_in_degrees (1);
angle_selected (1) = 1;
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= = = m mm e e e e e e e e e e e e e e e e e o e o o e o A m e e e e e e e mmm————
% Step2. For the second angle, the difference from the first angle must be
% close to 90.

for oan = 2:number_of_angles
if (oan==2)

preferred_distance = 90;
ref_angle value = 90;

elseif mod(ocan, 2) 1 % 0ad
preferred_distance = (R_angles(oan-1)+ R_angles(oan-2))/2;
ref_angle_value = R_angles(can-1)-preferred distance;

else
preferred_distance = 90;
ref_angle_value = R_angles(oan-1)+preferred_distance;

end;
diff =1000;
previous_an = 11;

for an=2:number_of_angles
if (angle_selected(an) == 0) % Indicates the angle has not been selected before.
new_diff= abs({ref_angle value - theta_in degrees{an});
if new_diff < diff
% Reset previously set angle
if (isempty (previous_an) == 0)
angle_selected(previous_an) = 0;
end;

% Set the current angle.

previous_an = an;
diff = new_diff;
R_angles (oan) = theta_in_degrees{an);
angle_selected{(an) = 1;
end;
end;
end; % for an

end; % for oan

generate_paos_wdas.m

% Created By : Girish Tirunelveli

% Created On : January 01, 2003

% File Name : generate_paos_wdas.m

% Description: The generate_paos_wdas function generates the projection angles ordering
scheme as proposed by Mueller. The code is written by Chris Badea and

is reproduced here with his permission. The code is changed slightly

o oo

to fit the standards of my coding and style.

%

e m e e e e o e m e i m e e e e e e A o o e e e e e m e maem e ——————————
% Stepl. Initialize all the appropriate variables. Also initialize the output

% parameter, just in case the program abhends in the middle.
U Y
number_of_angles = length(theta_in_degrees);

wds = m_order (number_of_ angles, 1, '2');

R_angles = theta_in_degrees(wds);

m_order.m (Code written by Chris Badea Email: chris@orion.mc.duke.edu)

% m_order function used wit WDS for the ART/MART reconstruction
% C. Badea Nov. 2k2

function m_order=create_order(n_of_pr, n_of_it, ordering)

s_pr=0; %* index of selected projection *%

%S; %* length of circular queue *%
%¥Theta;%* circular gueue *%
%¥M; %* number of projections *%
%Lambda; %* List of projections not yet used *%
¥temp;
%L; %* length of projections not yet used *¥%
%Q; %* number of proj currently in Theta *%
%¥count_wds;
first=1;
order_ind=1;
%¥i, iteration;
%m;
$* Initialisation for wds *%
M=n_of_pr;
S=M; %* This is optimal number from the paper *%
%* First projection for reconstruction is 0. *%
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Q=1; %* Theta filled with first proj *%
m_oxder(1l)=1;
Theta(1)=0;
L=M-1;

% Fill in projection pool =*/
for i =1:1L

Lambda (i)=1i;
end

% Iteration loop */
for iteration=1: n_of_it

if (first==0)
L=M;
for i = 1: L
Lambda (i) =i;
end

Fmmmm
% Projection loop */
for m=1l:n_of pr

%/* choice for ordering */
if (ordering == '2')

if (first==1) first=0;
else
%/* Select projection from Lambda */
order_ind = order_ind + 1;
s_pr = SelectProj(Lambda, L ,Theta, Q, S};
m_order (order_ind)=s_pr;
%/* Change Lambda and Theta */
% /* Cancel from Lambda */
count_wds = 1;

for i=1: L
if (Lambda(i)~= s_pr)
temp (count_wds) = Lambda(i);
count_wds=count_wds+1;
end
end
L=L-1;
for i =1:L
Lambda (i) =temp (i) ;
end

%/* Add to Theta */
if (Q < 8)
Q=Q+1;
Theta(Q)= s_pr; %%%%% HERE !!!!

else %/* with replacement */

for 1 = 2:Q
Theta(i-1)=Theta(i);
end
Theta{Q)= s_pr; %%%%% HERE !!!!
end
end%/* for else first*/

%$/* for if ordering */
else
m_order (order_ind) =m;
order_ind = order_ind + 1;
end
end %/* for m */

end % iterations

SelectProj.m (Code written by Chris Badea Email: chris@orion.mc.duke.edu)

% sel_proj function used with wds for the ART/MART reconstruction
% C. Badea Nov. 2k2

function sel_prj=SelectProj (Lambda, L, Theta, Q, §)

%float *mu;%// Repulsive force

$float *sigma;
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$float *sigmanorm;
%¥float *munorm;

%¥float *D;

sel_prj=0;

%$int 1,1, index_sel_pr;
%int dlg;

¥float wq;

tfloat suml, sum2, sum_dig, dl_avg, min_temp, max_temp;

suml=0.0;
sum2=0.0;

sum_dlqg=0.0;

for r = 1:Q
wg=(r+1)/Q;
%// Compute minimal distance
if abs(Theta(r)-Lambda{l)) < S-abs{Theta(r)-Lambda{l)) dlg=abs(Theta(r)-Lambda(l));
else dlg= S-abs(Theta(r)-Lambda{l));
end $¥dlg=lessval (abs (Theta(r) -Lambda(l) ), S-abs (Theta(r)-Lambda(l)));
sum_dlg = sum_dlg + dlg;
%// Accumulate
suml = suml + (wg * ( S /2.0-dlq));
sum2 = sum2 + wq;
end %//for r
mu (1) =suml/sum2;
dl_avg = sum dlg / Q:
suml=0;

for r = 1:Q

wq=(r+1)/Q;

if abs(Theta({r)-Lambda(l))<S-abs(Theta(r)-Lambda(l)) dlg= abs(Theta{r)-Lambda{l)});
else dlg= S-abs(Theta(r)-Lambda(l));

end

%lessval {abs(Theta(r)-Lambda(l)),S-abs(Theta(r)-Lambda{1)));
suml = suml + (wq*{dlg-dl_avg)*(dlqg-dl_avg) );

end %// for r

sigma(l) =suml/sum2;

end %//for 1

%Normalize mu
$Find min of mu
min_temp=mu(l);
for 1 = 2:L
if (win_temp > mu(l)) min_temp = mu{l); end
end
%// Find max of mu

max_temp=mu (1) ;

if (max_temp < mu(l)) max_temp = mu(l); end

end
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%// Compute mu_norm

for 1 = 1:L
if (max_temp ~= min_temp) munorm(l)s=(mu(l)-min_temp)/(max_temp-min_temp) ;
else munorm{1)=0.0; end

end

%//Normalize sigma

%// Find min of sigma

min_temp=sigma (1) ;

for 1 = 2:L
if (min_temp > sigma(l)) min_temp = sigma(l}; end

end

%Find max of sigma

max_temp=sigma(l);

for 1 = 2:L

if (max_temp < sigma(l)) max_temp = sigma(l); end

end

%¥// Compute sigma_norm

for 1 = 1:L

if (max_temp ~= min_temp) sigmanorm(l)=(sigma(l)-min_temp)/(max_temp-min_temp) ;
else sigmanorm(l)= 0.0; end

end

if 0

for 1 = 1:L

aa= sprintf('Mul%d}= $£ Sigma = %f ',1,munorm(l},sigmanorm(l));

%/printf (" Mu [%d] = %f Sigma = %f *, 1, munorm(l]}, sigmanorm{l]};

disp(aa);

end

end
$// Compute D{]

D{1) =munorm(1l) *munorm{1) +0.5*sigmanorm(1l) *sigmanoxm(1} ;

end

%// Find minimal DI[]

min_temp=D(1);

index_sel pr=0;

for 1 = 1:L

if (min_temp »>= D(1))
min_temp = D(1);
index_sel _pr=1;

end

end

sel prj=Lambda(index sel_pr);

checkerboard.m

% Created By

Created On : Januarty 21, 2003

File Name : checkerboard.m

Description: This program asks for the size of the image and creates a checkerboard
image.

W o

a0 o oo

158




Appendix A: Matlab Code

function [cb_image] = checkerboard (length_of_square, pixel_valuel, pixel_value2)

% Initialize all the required variables. All intialize the output parameter
% just in case the program abhends in the middle.

cb_image = zeros (length_of_square);
next_pixel value = 0;

for rn = l:length_of_ square
for cn = l:length of_square
if mod(rn+cn, 2) == 0
cb_image{rn,cn) = pixel_valuel;
else
cb_image(rn,cn) = pixel_value2;
end;
end;
end;

shingles.m

%
%
%

%

Created By : Girish Tirunelveli

Created On : December 31, 2002

File Name : shingles.m

Description: This program asks for the size of the image and creates a shingles data.
The pixel values increases

% Initialize all the required variables. All intialize the output parameter

% just in case the program abhends in the middle.

e T TS U U VSO RRPUUR
sb_image = zeros (length_of_square);
next_pixel value = 0;

for rn = l:length_of_square
for ecn = l:length_of_ square

next_pixel_value = next_pixel_value + 1;
sb_image (rn, cn) = next_pixel_value;
end;
end;

sinewave.m
F. N
% Created By : Girish Tirunelveli
% Created On : December 20, 2002
% File Name sinewave.m
% Description: This program creates a sine wave at a particular frequency.

function [sinewave_imgl

if pargin ==
frequency = 1;
end;

sinewave_img = zeros(length_ of_square_img);

for column_no=1:length of_sguare_img
theta_in_degrees = column_no * 360 * frequency / length_of square_img;
theta_in_radians = theta_in_degrees * pi / 180;
sinewave_img(:, column no) = 128 + sin (theta_in_radians) * 127;

end;

stretch.m

Created By : Girish Tirunelveli
Created On : December 25, 2002
Pile Name : stretch.m

Description: Stretch the original_image by the stretch factor and return the
stretched image back.

unction [stretched_image] = stretch (original_image, stretch factor)

% Resize the image according to the stretch factor. After resizing, get
% only the center pixels.

[no_of_rows, no_of columns] = size (original_image);
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stretched_image = imresize (original_image, ...

[no_of_rows*stretch_factor no_of_columns*stretch_factor],

‘bicubic', 'crop');
range_of_rows = no_of_rows * (stretch_factor-1) / 2 + 1 : no_of_rows * (stretch_factor+1)/2;
range_of_columns = no_of_columns * (stretch_factor-1) / 2 + 1: no_of_columns * (stretch factor+l)/2;
stretched_image = stretched_image (range_of_rows, range of_columns);

OMin=min{min(original_image));

OMax=max (max(original_image}) ;
zZMin=min(min{stretched_image));
ZMax=max (max (stretched_image)) ;
Scaling_Factor={OMax-OMin)/(ZMax-2ZMin) ;
stretched_image = stretched_image * Scaling Factor;

blur.m

% Created By : Girish Tirunelveli

% Created On : January 21, 2003

% File Name : blur.m

% Blur the original image by the blur factor

function [blurred_image] = blur (original_image, blur_factor)

% Resize the image according to the blur factor. After resizing, resize it
% back to the original_ size

= mmm e mm e e e e e e M e m m o m e m e A e e oo m o m e e e e mm e oo e mmm -
[no_of_rows, no_of_columns] = size (original_image);
blurred image = imresize (original_image, ...

[no_of_rows*blur_factor no_of_columns*blur_factor],
‘bicubic', ‘crop'):
blurred image = imresize (blurred_image, size(original_image), 'bicubic', 'crop');
OMin=min (min({original_image)) ;
OMax=max (max (original_image)) ;
ZMin=min(min(blurred_image));
ZMax=max (max (blurred image));
Scaling_Factor= (OMax-OMin)/ (ZMax-2ZMin) ;
blurred_image = blurred image * Scaling_Factor;

generate_wm_bin.m

%=
% Created By : Girish Tirunelveli
% Created On : December 25, 2002
% File Name : generate_wm _bin.m
% Description: Compute Weight Matrix required for *ART transform.
The Weight matrix is computed based on the binary scheme. If the center

%
% of the pixel falls in the ray, then the pixel is said to be contributing
% 100% (=1) in the ray, else 0.

function [weight_matrix])
pixel_width)

Dmax=detector_width/2;
{number_of rows_in_image, number of columns_in_imagel = size(original_image);
weight_matrix = 0;
if mod(number_of_rows_in image, 2) Y % Indicates even
Centre_Row = number_of_rows_in_image/2;
else
Centre Row = number_of_ rows_in_image/2+0.5;
end;
if mod(number_of_columns_in_image, 2) 0 % Indicates even
Centre_Column = number_of_columns_in_ image/2;
else
Centre_Column = number of columns_in_image/2+0.5;
end;

Centre Detector = (number_of_detectors+1)/2 ;
theta_in_radians=theta_in_degrees.*pi/180;

% Step2. For each projection angle, get the contribution of each pixel in a particular

% detector. This is the weight matrix. Note that the weight matrix will increase

% rapidly as the size of the image, projection angles and number of detectors

% increases.

B = m = e s s e o e e e e e e e e e e e e e e e . e e ——

for angle number=l:length(theta_in_radians)
costheta = cos(theta_in radians(angle_number)) ;
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sintheta = sin(theta_in_radians(angle_number)) ;

if Dmax
Dmax=max{sintheta, costheta)/2;
end;

for detector number=l:number of_detectors
P=(detector_number-Centre_Detector)* max(sintheta, costheta);

% Equation of line P{1) is given by xcos{theta)+ysin(theta) -P = 0;

% In matlab terminclogy it becomes -

¥ row_number*cos(theta) + column_number*sin(theta) - P = 0;

% Since the Centre pixel is not the origin the eguation gets changed to -

¥ (row_number-Centre_Row)*cos({theta) +

% (column_number-Centre_Column)*sin(theta) - P = 0

% row_number*cos (theta) + column_number*sin(theta) -

% Centre Row*cost (theta)-Centre_Column*sin(theta) - P= 0;
U

=-1*Centre_Row*costheta - Centre_Column*sintheta -
A=costheta;
B=sintheta;

% Perpendicular distance of (1,1) from the line Ax+By+C=0 is
D=abs{A{1) + B(1) +C / sqgrt (A"2+B"2));

for pixel_row_number = l:number_of_rows_in_image
for pixel_column_number = l:number_ of_columns in_image
D=abs (A*pixel_row_number+B*pixel column_numbexr+C)/sqrt (A*2+B*2) ;
if D>Dmax
weight_factor = 0;

else
weight_factor = 1;
end;
welght_matrix(pixel row_number, pixel_column_number, ...

angle_number, detector_number) = weight_factor;
end; % End for column_number = 1:number_of_columns_in_image

end; % End for row_number = 1:number_of_rows_in_image

end; % End for detector_number=1:number_of_detectors
end; % End for angle_number=l:length(theta)

generate_wm_int.m

%==
% Created By : Girish Tirunelveli
% Created On : December 25, 2002

% File Name : generate_wm_int.m
% Description: Compute Weight Matrix required for *ART transform.

% The Weight matrix is computed based on the length of the ray within

% the pixel scheme. It is called "Int" scheme as it is the integration of

% of the ray length within a pixel. In this scheme, the weight that a

% pixel can contribute to a ray can be greater than 1.

function [weight matrix] = generate_wm_int (original_image, theta_in_degrees, number_of_detectors, detector_width,

pixel_width)

B = = m e e e o e e e e e o L e e e A e e e e e e e e e ——————
% Stepl. Initialize all the variables appropriately. Also initialize the output
% parameter just in case the program abhends in the middle.

Dmax=detector_width/2;
[number_of rows_in_image, number of_columns_in_image] = size(original_image) ;
weight_matrix = 0;
if mod(number_ of_rows_in_ image, 2) == % Indicates even
Centre Row = number_of_rows_in_image/2;
else
Centre Row = number_of_ rows_in_image/2+0.5;
end;
if mod(number of_ columns_in_image, 2) == 0 % Indicates even
Centre_Column = number_of_columns_in_image/2;
else
Centre Column = number_of_columns_in_image/2+0.5;
end;

Centre_Detector = (number_of_detectors+l)/2 ;
theta_in_radians=theta_in_degrees.*pi/180;

% Step2. For each projection angle, get the contribution of each pixel in a particular

% detector. This is the weight matrix. Note that the weight matrix will increase
% rapidly as the size of the image, projection angles and number of detectors
% increases.
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for angle number=1:length(theta_in radians}
costheta = cos(theta_in_radians(angle_number));
sintheta = sin(theta_in_radians(angle_number));

% If no detector width is specified (0) then assume variable detector width.

= = m = m o mm e m e e e e m e e e e o m e e e e e o e oo e e e e e e e oo e
if Dmax ==

Dmax=max (sintheta, costheta)/2;
end;

for detector_numbex=1:number_ of_ detectors
P=(detector_number-Centre_Detector)* max(sintheta, costheta);
B m e e A e e e e A e e e e
% Equation of line P(1) is given by xcos(theta)+ysin(theta) -
% In matlab terminology it becomes -

% row_number*cos (theta) + column_number*sin(theta) - P = 0;

% Since the Centre pixel is not the origin the equation gets changed to -

% (row_number-Centre_Row) *cos (theta) +

% (column_number-Centre_Column)*sin(theta) - P = 0

% row_number*cos (theta) + column_number+*sin(theta) -

% Centre_Row*cost (theta)-Centre_Column*sin(theta) - P= 0;

G m e m m o m e e e e e e e e e e o e e e e o e e e e e o o e o e e A e e mm e
C=-1*Centre_Row*costheta - Centre_Column*sintheta - P;

A=costheta;

B=sintheta;

% If the center of the pixel is (1,1), the 4 lines that identifies
% the pixel are x=1-pixel_width/2, x=1l+pixel_width/2

% and y=l-pixel width/2, y=l+pixel_width/2

% Find the point of intersection of each of this lines with the

% ray under consideration.

% Point of intersection is calculated by simply substituting the

% x or the y coordinate in the equation of the line.

for pixel row number = l:number_of_rows_in_image
for pixel column_number = 1:number_of_columns_in_image
% Point of intersection between ray line and line 1 is
= pixel_row_number-pixel_width/2;
(- C - A*P1_y)/B;
pixel_row_number+pixel_width/2;
(- C - A*P3_y)/B;

pixel_column_number-pixel_width/2;
3 (-C - B*P2_x)/A;
P4_x = pixel_ column_number+pixel_width/2;
P4_y = (-C - B*P4_x)/A;

% Convert all points with precision multiplier of 10.
Pl_x = precision (Pl _x);
Pl_y = precision (Pl_y);
P2_x = precision (P2_x);
precision (P2_y);
= precision (P3_x);
. precision (P3_y);
P4_x = precision (P4_x);
P4_y = precision (P4_y);

g
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% If the point of intersection is outside the pixel then

% ignore it.

dl2 = distance (P1_x, Pl_y, P2_x, P2_y);

d13 = distance (P1_x, Pl_y, P3_x, P3_y);

dl4 = distance (P1_x, Pl_y, P4_x, P4_y);

d23 = distance (P2_x, P2_y, P3_x, P3_y);

d24 = distance (P2_x, P2_y, P4_x, P4_y);:

d34 = distance (P3_x, P3_y, P4_x, P4_y);

if P1_x< pixel_column_number-pixel _width/2 | P1_x > pixel_column_number+pixel_width/2

di2z = 0;
dl3 = 0;
dld = 0;
end;
if Pl_y< pixel row_number-pixel width/2 | Pl_y > pixel row_number+pixel width/2
diz = 0;
di3 = 0;
dlg = 0;
end;

if P3_x< pixel_ column_number-pixel width/2 | P3_x » pixel_column_number+pixel width/2

di3 = 0;
d23 = 0;
d3g = O;
end;
if P3_y< pixel row_number-pixel_width/2 | P3_y » pixel row_number+pixel width/2
di3z = 0;
d23 = 0;
d34 = 0;
end;
if P2_x< pixel_column_number-pixel width/2 | P2_x > pixel_column_number+pixel_width/2
di2 = 0;
d23 = 0;
d24 = 0;
end;

if P2_y< pixel_row_number-pixel width/2 | P2_y > pixel_row_number+pixel width/2
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diz = 0;
d23 = 0;
d24 = ©;
end;
if P4_x< pixel column_number-pixel_width/2 | P4_x > pixel_column_number+pixel_width/2
dig = 0;
d24 = 0;
d34 = 0;
end;
if P4_y< pixel _row_number-pixel width/2 | P4_y > pixel row_number+pixel width/2
di4 = 0;
a4 = 0;
d34¢ = 0;
end;

weight factor = max((dl2,d13,d14, &23,d24, d34));

weight matrix({pixel_row_number, pixel_column_number, ...
angle number, detector number) = weight_factor;

end; % End for column_number = l:number_ of_columns_in_image
end; % End for row_number = 1l:number_of_rows_in_image

end; % End for detector_number=1:number_ of_detectors
end; % End for angle_number=1:length(theta)

§momm== === sz==
Sub-Function: distance: Calculates the distance between two points, The
x and y co-ordinates of the two points has to be supplied.
If this subfunction is not able to calculate the distance,

o o

then 0 is returned.

$==
function [distance]

distance (x1, yl, x2, y2)

distance = sqrt( {(x1-x2)"2 + (yl-y2)*2);
if (isfinite(distance) == 0)

distance = 0;
end;

sion multiplier.

function [R_value} = precision (I_value)
R_value = round(I_value * 10000000000} / 10000000000;

generate_wm_dist.m

% Created By : Girish Tirunelveli
% Created On : December 25, 2002
% File Name : generate_wm dist.m
% Description: Compute Weight Matrix required for *ART transform.
The Weight matrix is computed based on the distance of the center
% of the ray from the center of the pixel logic.

function (weight matrix] = generate wm dist(original image, theta_in_degrees, number_of_detectors, detector_width,

pixel_width)

= m m m o o oo e e e e e o e o o e ——————— e e
% Stepl. Initialize all the variables appropriately. Also initialize the output
% parameter just in case the program abhends in the middle.

Dmax=detector_width/2;
[number_of rows_in_image, number_of_ columns_in_image) = size{original_image);
weight_matrix = 0;

if mod(number_of_rows_in_image, 2) == % Indicates even
Centre Row = number_of_rows_in_image/2;
else
Centre Row = number_ of_rows_in_image/2+0.5;
end;
if mod(number_of_columns_in_image, 2) == 0 % Indicates even
Centre_Column = number_of_columns_in_image/2;
else
Centre_Column = number_of_ columns_in_image/2+0.5;
end;
Centre_Detector = (number_of_detectors+l)/2 ;

theta_in_radians=theta_in_degrees.*pi/180;

B v m m mm e e e e e e e e e e e MMt m e m e e e e o e e o e e e e e e e m A —— e mm o m e ——— —m e e~
% Step2. For each projection angle, get the contribution of each pixel in a particular

% detector. This is the weight matrix. Note that the weight matrix will increase

% rapidly as the size of the image, projection angles and number of detectors

% increases.

o o o o o o e e e e e e e e s e e o o e e e e e o e e e e e e e e e _
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for angle_number=1:length(theta_in_radians)
costheta = cos(theta_in_radians(angle_number));
sintheta = sin(theta_in_radians(angle_number));

) R e R e T T R I ISP RS
B % If no detector width is specified (0) then assume variable detector width.
B Ty T
if Dmax ==
Dmax=max (sintheta, costheta) /2;
end;

for detector_number=1:number_of_detectors
P=(detector_number-Centre_Detector)* max(sintheta, costheta);

% Equation of line P(1) is given by xcos{theta)+ysin(theta) -P = 0;
% In matlab terminology it becomes -
row_number*cos{theta) + column_number*sin(theta) - P = 0;
Since the Centre pixel is not the origin the eguation gets changed to -
(row_numbex-Centre_Row) *cos (theta) +
% (column_number-Centre_Column)*sin(theta) - P = 0
% row_number*cos (theta) + column_number*sin(theta) -
% Centre_Row*cost (theta) -Centre_Column*sin(theta) - P= 0;

o

A=costheta;
B=sintheta;

% Perpendicular distance of (1,1) from the line Ax+By+C=0 is
% D=abs{A{1) + B(l) +C / sqgrt {(A*2+B™2));

for pixel_row_number = l:number_of_rows_in_ image
for pixel_column_number = l:number of_ columns_in_image
D=abs (A*pixel row_number+B*pixel_ column_number+C)/sqrt (A*2+B"2);
if D>Dmax
weight_factor = 0;
else
weight factor = 1-D/Dmax;
end;
weight_matrix(pixel_row_number, pixel_column_number,
angle_number, detector number) = weight_factor;

end; % End for column_number = 1:number_of_columns_in_image

end; ¥ End for row_number = l:number_of_ rows_in_ image

end; % End for detector_ number=1:number_ of_ detectors
end; % End for angle_number=1:length(theta)

generate_wm_cont.m

% Created By : Girish Tirunelveli
% Created On : December 25, 2002
%

File Name : generate_wm_cont.m
% Description: Compute Weight Matrix reguired for *ART transform. The weight matrix in
% this program is computed by considering the contribution made by the
% pixel in the neighbouring rays. It makes sure that the sum of the
% contribution that the pixel makes in all rays eguals one.

function (weight matrix] generate_wm_cont (original_image, theta_in_degrees, number_ of_detectors, detector_width,
pixel_width)

% Stepl. Initialize all the variables appropriately. Also initialize the output
% parameter just in case the program abhends in the middle.

Dmaxl=detector_width/2;
Dmax2=sqrt (1+1)/2;

[number of rows_in_image, number_of_columns_in image) = size(original_image) ;
weight_matrix = 0;
if mod{number_of_rows_in_image, 2) == 0 % Indicates even
Centre_Row = number_of_ rows_in_image/2;
else
Centre_Row = number_of_rows_in_image/2+0.5;
end;
if mod(number_of_columns_in_image, 2) == 0 % Indicates even
Centre_Column = number_of_ columns_in_ image/2;
else
Centre_Column = number of_ columns_in_image/2+0.5;
end;

Centre Detector = (number_of_detectors+1)/2 ;
theta in_radians=theta_in_degrees.*pi/180;
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% Step2. For each projection angle, get the contribution of each pixel in a particular
% detector. This is the weight matrix. Note that the weight matrix will increase
% rapidly as the size of the image, projection angles and number of detectors

% increases.

for angle_number=1:length(theta_in_radians)
costheta = cos({theta_in_radians(angle_number));
sintheta = sin(theta_in_radians (angle_number)) ;

for detector_ number=1:number of_detectors
P=detector_numbex-Centre_Detector;

% Equation of line P(1) is given by xcos(theta)+ysin(theta) -P = 0;
% In matlab terminology it becomes -
row_number*cos(theta) + column_number*sin(theta) - P = 0;
Since the Centre pixel is not the origin the equation gets changed to -
(row_number-Centre_Row) *cos (theta) +
(column_number-Centre_Column)*sin{theta) - P = 0
row_number*cos{theta) + column_number*sin(theta) -
Centre_Row*cost (theta) -Centre_Column*sin(theta) - P= 0;

90 a9 d° N AP

o

C_previous =-1*Centre_Row*costheta - Centre_Column*sintheta - P-1

C_current =-1*Centre_Row*costheta - Centre_Column*sintheta - P;
C_next =-1*Centre_Row*costheta - Centre_Column*sintheta - P+1;
S = costheta;

B = sintheta;

B — m o o e o — e e e e e o o e e e e oo oo e d e -

% Perpendicular distance of (1,1) from the line Ax+By+C=0 is
D=abs(A(1) + B(1l) +C / sqrt (A"2+B*2));

for pixel_row_number = 1:number of_rows_in_image
for pixel_column number = l:number of columns_in_image

How much has this pixel contributed in the previous detector

"contribution_previous

How much is this pixel going to contribute in the next detector

"contribution_next

The amount that this pixel is going to contribute in this ray is
contribution current = 1-(contribution_previous+contribution_ next)

o a°

9 0 a° oo

D_previous = abs{A*pixel row_number+B*pixel_column_number+C_previous)/sqrt (A*2+B*2);
D_current = abs(A*pixel row_number+B*pixel_column_number+C_current)/sqrt (A*2+B"2) ;
D_next = abs (A*pixel_row_number+B*pixel_column_number+C_next)/sqrt (A*2+B*2);

D_previous_edge = D_previous/2;
D_next_edge = D_next/2;

if (D_previous_edge > Dmax2)
contribution_previous = 0;
else
contribution_previous = 1-D_previous_edge/Dmaxl;
if contribution previous < 0
contribution previous = 0;
end;
end;
if (D_next_edge > Dmax2)
contribution next = 0;
else
contribution_next = 1-D_next_edge/Dmaxl;
if contribution_next < 0
contribution_next = 0;
end;
end;
if (D_current > Dmax2)
weight_factor = 0;

else
weight factor = 1- (contribution_previcus+contribution_next);
end;
weight _matrix(pixel_row_number, pixel_column_number,

angle number, detector number) = weight_factor;
end; % End for column_number = 1:number_of_columns_in_image

end; % End for row_number = l:number of_rows_in_image

end; % End for detector_number=1:number_of_detectors
end; % End for angle number=1:length(theta)

generate projections.m

%
% Created By : Girish Tirunelveli

% Created On : December 25, 2002

% File Name : generate_projections.m

% Description: Compute Forward Simulation. i.e. Project the image on the detectors
% and determine the projected value.

Fmm= ==
function [projected valuel = generate_projections (original_image, theta_in_degrees,
weight_matrix, number_ of_ detectors)
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for angle_number=1:length(theta_in_degrees)
for detector_number=1:number_of_detectors
projected_value (angle_number, detector_number) = .
sum(sum(weight_matrix(:, :,angle_number,detector number).* original_image)) ;

% Created By : Girish Tirunelveli
% Created On : January 03, 2002

% File Name : ifbp.m

% Description: Compute inverse FBP (Fourier Backprojection Technique) transform.

% The iFBP function computes the inverse FBP transform, and reconstructs
% the result_image.

function [result_image, image_differencel ifbp (seed_image, original_image, projection_values, theta_in_degrees,
number_of_cycles, number_of_ detectors, weight_matrix, precision multiplier, relaxation_factor)

B o m  m m e m e e m e m e C e e e e oo
% Stepl. Initialize all appropriate variables. Also initialize the output parameters,

% just in case the job abhends in the middle.

3 U g

warning off % To suppress the Divide by zero warning.

result_image = zeros(size(seed_image));

RI2=0;

[number of_rows_in_image, number_of_columns_in_image] = size(original_image) ;

e mm e e e e m et e e e e e e e e e e e e e e e d e e mmmmmeam————————————

% Step2. Since FBP considers radon transform and not the weight matrix
for generating forward projections get the forward projections

% and compute the backward reconstruction.

B = m m mmm m o m o e e e e e o o o e e e e e e e e e e e e e e e e e e ————

projection_values = radon(original_image,theta_in_ degrees);

result_image = iradon(projection_values,theta_in degrees, 'nearest', 'Hann', 1, number_of_rows_in_image) ;
U

% Step3. Since the algorithm is not dependent on the seed and the number of

% cycles, the image difference is the difference between the

% original image and the result image and is the same for all the

% cycles. We do not have to do based on cycles, but is done

% to be consistent with our other algorithms.

image_difference(l) = image_difference_ed (original_image, result_image):
for cycle number=1:number_of_cycles
image_difference (cycle_number+l) = image_difference(1);

end;

unction [ID] image_difference_ed (imagel, image2)
diff_img = imagel - image2;
diff_img = diff_img."2;
[rn, cn] = size (imagel):
iD = sgrt (sum{sum(diff img)))/ (sqrt(rn*cn)*255);

%
%
%
%
£

% Created By : Girish Tirunelveli

% Created On : January 03, 2002

% File Name : isrt.m

% Description: Compute inverse SRT (Summation Reconstruction Technique) transform.

% The iSRT function computes the inverse SRT transform, and reconstructs
3 the result_image.

function [result_image, image_difference] = isrt(seed image, original_image, projection_values, theta_in_degrees,
number_of cycles, number_ of_ detectors, weight_matrix, precision_multiplier, relaxation factor)

e
% Stepl. Initialize all appropriate variables. Also initialize the output parameters,

% just in case the job abhends in the middle.

B o m e e e C e C e e
warning off % To suppress the Divide by zero warning.

result_image = zeros({size(seed image));

RI2=0;

{number_of rows_in_image, number_of_columns_in_image] = size{original_image);

 mm mm o m e e e e e e e e e e e e e e e e M e S e e e e e e e e A M — . — o m e m

% Step2. Add the contribution that each pixel makes in all the rays.

g m mm o m e m e e e o o o o e e e e e e e e e e e e e e ——————

for row_number=1:number_of_rows_in_image
for column_number=1:number_ of_columns_in_image
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for angle number=1:length(theta_in_ degrees)
for detector_number=1l:number of_detectors
RI2=RI2+weight_matrix(row_number, column_number, angle number,detector_number) * ...
projection_values (angle_number, detector number);

end;
end;
Z(row_number, column_number) = RI2;
RI2=0;

OMin=min{min(original_image});
OMax=max (max (original_image)) ;
ZMin=min(min(z)) ;

ZMax=max (max(2)) ;
Scaling_Factor=(OMax-OMin)/(ZMax-2ZMin) ;
result_image = Z * Scaling_Factor;

e m m m m e e e e e L e e e e e e e e o e e e e e m e M e a e e
% Step4. Since the algorithm is not dependent on the seed and the number of

% cycles, the image difference is the difference between the

% original image and the result image and is the same for all the

% cycles. We do not have to do based on cycles, but is done

% to be consistent with our other algorithms.

B -

image_difference(l) = image_ difference_ed (original_image, result_image);
for cycle_ number=1:number_of_cycles
image_difference(cycle number+l) = image difference(l1);

%
% Sub-Function: image_difference_ed: Calculates the image difference between two
% images based on Euclidean distance.

%= s==
function [ID] image_difference_ed (imagel, image2)
diff_img = imagel - image2;
diff_img = Giff_img."2;
frn, cn] = size (imagel};
ID = sgrt (sum(sum(diff_img)))/ (sqrt(rn*cn)*25s);

Girish Tirunelveli
December 25, 2002

% Created By :
% Created On :
% File Name : iart.m

% Description: Compute inverse ART (Additive Reconstruction Technique) transform.

% The iART function computes the inverse ART transform, and reconstructs

% the result_image.

Yrmsc—ccsssmmmmsco—== - =

function [result_image, image_difference] = projection_values, theta_in_degrees,
number_of_cycles, number_of_detectors, weight matrix, precision_multiplier, relaxation_factor)

% Stepl. Initialize all appropriate variables. Also initialize the output parameters,
% just in case the job abhends in the middle.

warning off % To suppress the Divide by zero warning.
result_image = zeros(size(seed image));
image_difference(l) = image_difference ed (original_image, seed_ image);

for cycle_number = l:number_of_cycles
new_seed_image = seed_image;
for angle number = l:length(theta_in_degrees)
$disp (Sprintf (' **¥kkaxsxrtxxxxxx***NEW CYCLE for angle FAX*FXAXAFH AR KRR KA RAXXL angle number));

for detector_ number=1:number_ of_detectors
PV_seed(angle_number, detector number) =

sum{sum{weight_matrix(:,:,angle_number, detector_number) .*seed image));
number_of contributing pixels=length(find(weight_matrix{:,:, angle number, detector_number)});
adding_factor = (projection_values{angle_number, detector_number) - ...

PV_seed(angle number, detector_number))/
number_of_contributing pixels;

if isfinite{adding_factor) 1

Wl=weight _matrix(:,:,angle_number, detector_number);

z=find (W1) ;

seed _image(z) = seed_image(z}+relaxation_factor*adding factor;
end;

end; % End for detectoxr_number=1:number_of_detectors
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%3isp (sprintf('***k**xkaxkxtrrxxx***END OF CYCLE for anglefdr¥xrrskxxxdkkkrrnknhkt angle_number));
end; % End for angle number = 1l:length(theta in degrees)

image_difference(cycle number+i) = image_difference_ed(original_image, seed_image):

if image_difference(cycle_number+l) - image_difference{cycle_number) >= 0
seed_image = new_seed image;
image_difference(cycle number+l) = image_difference(cycle_number) ;
for new_cycle_number = cycle number:number of_cycles
image_difference (new_cycle_number+l) = image_difference (new_cycle_number) ;
end;
break;
end;
seed_image = abs(seed_image); % Positivity Constraint

end; % End for cycle_number = 1l:number_of_cycles

result_image=seed_ image;

o

Sub-Function: image_difference_ed: Calculates the image difference between two
images based on Euclidean distance.

o a0

%
function [ID} image_difference_ed (imagel, image2)

diff img = imagel - image2;

diff_img = diff_img."2:

[rn, cn)] = size ({(imagel);

ID = sqrt (sum{sum(diff_img)))/ (sqrt(rn*cn)*255);
Imart.m

§osmmmmmesco—c—ccsmssmeooo N
% Created By : Girish Tirunelveli
% Created On : December 25, 2002
% File Name : imart.m

% Description: Compute inverse MART transform.

The iMART function computes the inverse MART transform, and reconstructs
the result_image.

© o0 of

function [result_image, image_difference] = imart({seed_image, original_image, projection_values, theta_in_degrees,
number_of_cycles, number_of_detectors, weight matrix, precision_multiplier, relaxation_factor)

% Stepl. Initialize all appropriate variables. Also initialize the output parameters,

% just in case the job abhends in the middle.

fmm e mm e e e e e e mmmdamaaean

warning off % To suppress the Divide by zero warning.
result_image = zeros(size(seed_image));

image_difference(l} = image difference_ ed {original_image, seed image);

for cycle_number = l:number of_cycles
new_seed_image = seed_image;
for angle number = 1l:length{theta_in_degrees)
%disp (Sprinbtf ('**x**+kxk**kxkx*k****NEW CYCLE for angle FAFTx*kAkA kA x N kAR AR *RFH L angle_number));

for detector_number=1:number_of_ detectors
PV_seed(angle_number, detector number) = ...
sum(sum(weight_matrix(:,:,angle_number,datector_number).*seed_image));

multiplying_factor = projection_values(angle_number, detector_number) ./
PV_seed{angle_number, detector_number);
multiplying factor = multiplying_factor.”0.1;

if isfinite(multiplying factor) ==

Wl=weight matrix(:, :,angle_number, detector_number} ;

z=find (Wl);

seed_image(z) = seed_image(z)* relaxation_ factor*multiplying_factor;
end;

end; % End for detector_number=1:number_of_ detectors
%¥disp (Sprintf('**xxxxsxaxxxxxsxx*x*END OF CYCLE for anglekdr**+*xttxsxxsksthnsxs! angle_number));
end; % End for angle_number = 1l:length(theta_in_degrees)

image difference(cycle_number+l) = image_difference_ed(original_image, seed image);

if image_ difference(cycle_number+l) - image_difference(cycle_number) >= 0
seed_image = new_seed_image;
image_difference (cycle_number+l) = image_difference{cycle_number);
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for new_cycle number = cycle_number:number_of_cycles
image_difference(new_cycle_number+l) = image_difference(new_cycle_number) ;
end;
break;
end;
seed_image = abs(seed_image); % Positivity Constraint

end; % End for cycle_number = l:number of cycles

result_image=seed_image;

image_¢ dlfference ed Calculates the image difference between two
images based on Euclidean distance.

function [ID] = image_ difference_ed (imagel, image2)
diff_img = imagel - image2;
diff img = diff_img."2;
[rn, cn] = size (imagel);
D = sqrt (sum(sum(diff_img)))/ {sqrt(rn*cn)*255);

isirt.m

T T T mas
% Created By : Girish Tlrunelvell
% Created On : December 25, 2002

% File Name : isirt.m
% Description: Compute inverse SIRT (Simultaneous Iterative Recomstruction Technique)
% transform. The iSIRT function computes the inverse SIRT transform,

and reconstructs the result_image.

.~

functlon [result _image, image_ dlfference] = isirt(seed 1mage, original_image, projection_: values theta_in_degrees,
number_of _cycles, number of_detectors, weight_matrix, precision _multiplier, relaxation_factor)

®

S U
% Stepl. Initialize all appropriate variables. Also initialize the output parameters,

% just in case the job abhends in the middle.

[,

warning off % To suppress the Divide by zero warning.

result_image = zeros(size(seed_image));

image_difference(l) = image difference_ed (original_image, seed_image);

for cycle_number = l:number_of_cycles
new_seed_image = seed_image;
correction_matrix = zeros(size(seed_image)) ;
corrections_done_matrix = zeros(size(seed_image));
for angle number = l:length(theta_in_degrees)
%¥disp {SPrintf (' ****xx*xx*xkxxxx++*x*xNEW CYCLE for angle FdXxxxxkexxx X *xk kK *F KRR angle_number));

for detector_number=1:number_of_detectors
h:4% seed(angle number, detector _number) =
sum{sum(weight _matrix(: ,.,angle number, detector_number) . *seed_image)) ;

number of contributing pixels=length(find(weight_matrix(:,:, angle_number, detector_numbex)));
adding_factor = (projection_values(angle_number, detector _number) - .
PV_seed(angle_number, detector_number))/
number_of_contributing pixels;

if isfinite(adding_factor) ==
Wl=weight _matrix(:,:,angle_ number, detector_number);
z=find (W1) ;
correction matrix(z) = correction_matrix(z)+adding_factox;
corrections_done_matrix(z) = corrections_done_matrix(z)+1;
%¥seed image(z) = seed_image(z)+adding_factor;

end;

end; % End for detector_ number=1:number of_ detectors
%disp (SprinbE (' ****xxaxkxxkxx*xxx*xxEND OF CYCLE for angleydr  rrrkkxxkahkh Kk kxR 1 angle_number)};
end; % End for angle number = 1l:length(theta_ in_degrees)

seed_image=seed_image+relaxation_factor*correction _matrix./corrections_done matrix;
image_difference(cycle_number+l) = 1mage_d1£ference_ed(orlgxnal_lmage seed_image) ;

if image_difference(cycle_number+l) - image difference(cycle_number) »= 0
seed_image = new_seed_image;
image_difference (cycle_number+l) = image _difference(cycle_number) ;
for new_cycle_number = cycle_number:number of _cycles
image_difference (new_cycle_number+l) = image difference(new_cycle number) ;
end;
break;
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end;
seed_image = abs(seed_image); % Positivity Constraint

end; % End for cycle number = 1:number_of_cycles

result_image=seed_image;

Sub-Function: image difference_ed: Calculates the image difference between two
images based on Euclidean distance.

unction [ID] = image_difference_ ed (imagel, image2)
diff_img = imagel - image2;
diff_img = diff_img."2;
[rn, cn] = size (imagel);:
1D sqrt (sum{sum(diff_img)))/ (sqrt(rn*cn)*255);

Mhooe o0 o0 P

0

isart.m

o

a0

Created By : Girish Tirunelveli
Created On : December 25, 2002
File Name : isart.m
Description: Compute inverse SART (Simultaneous Additive Reconstruction Technique)
transform. The iSART function computes the inverse SART transform,
and reconstructs the result_image.

° o0 A A oF oo

function [result_image, image_difference] isart (seed_image, original_image, projection_values, theta_in_degrees,
number_of_cycles, number of_ detectors, weight_matrix, precision_multiplier, relaxation_factor)

e = m o o m o m e e o e e e e m e e e
% Stepl. Initialize all appropriate variables. Also initialize the output parameters,
% just in case the job abhends in the middle.

warning off % To suppress the Divide by zero warning.
result_image = zeros (size(seed_image));
image difference(l) = image difference_ed {original_image, seed_image) ;

[x,y)=size(seed_image);
for cycle_number = l:number_of_cycles
new_seed_image = seed_image;
correction_matrix = zeros(size(seed_image));
corrections_done matrix = zeros(size(seed_image));
for angle_number = l:length(theta_in_degrees)
%disp (sprintf (1 *x*xxxxwxrxrxxrx****NEW CYCLE for angle Fdxxrkkkkdkrxrbw R Ao hohk 1 angle_number));

for detector_number=1:number_of_detectors
PV_seed(angle_number, detector_ number) = .
sum(sum(weight_matrix(:,:,angle_number,detector_number).*seed_image));

difference = projection_values(angle number, detector_ number) -
PV_seed(angle_number, detector_numbex) ;

denominator = sum(sum(weight_matrix(:,:,angle_number, detector_number)));
if denominator ~= 0
Wl=weight_matrix(:, :,angle_number, detector_number) ;
z=£ind (W1} ;
correction_matrix(z) = correction matrix{z)+
difference/denominator.*Wl(z) ;
corrections_done_matrix(z) = corrections_done_matrix(z)+l;
end;

end; % End for detector_number=1:number_ of_detectors
$3isp (Sprintf ('*****xxxxxxxxxxxxxx**END OF CYCLE for angles@*xx**xx****kkkkx*k44%'  angle number));
end; % End for angle_number = l:length(theta_in degrees)

seed_image=seed_image+relaxation_factor*correction matrix./corrections_done_matrix;
image_difference(cycle number+l) = image_difference_ed(original_image, seed image) ;
e m e MM dMmmmmmmmeme— oo
% Apply the convergence criteria.
%
if image_difference(cycle_numbers+l) - image_difference(cycle_number) »= 0
seed_image = new_seed_image;
image_difference(cycle_number+l) = image_difference{cycle_number) ;
for new_cycle_number = cycle_number:number_of_cycles
image_difference(new_cycle_number+l) = image_difference (new_cycle_ number);
end;
break;
end;
seed_image = abs(seed_image); % Positivity Constraint

end; % End for cycle_number = 1:number_of_cycles

result_image=seed_image;
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% . s=sco=mmsss======= =

% image_difference_ed: Calculates the image difference between two
% images based on Euclidean distance.

Fmms == ====s===zssmss======

function [ID] = image_difference_ed (imagel, image2)

diff_img = imagel - image2;

diff_img = diff_img."2;

[rn, cn] = size (imagel);

ID = sqrt (sum{sum(diff_img)))/ (sqrt(rn*cn)*255);
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Appendix B

Tabular Results of the Square pixel and Hexagonal pixel
Resolution Comparison Experiment

This appendix contains the results of the square vs. hexagon pixel comparison
experiment. The length of square pixel is 8, the length of hexagon pixel is 4.5 and the
rotation is done from 0 to 360 degrees in intervals of 5 for all experiments. In case of

MTF results, the data is tabulated based on frequency and not on the rotation angle.

B.1 Results for admin256.bmp image

Rotation in
Degrees  [SIQ ed HIQ ed|SIQ rb |HIQ rb|SIQ en |HIQ en
0 0.0773] 0.0782 0.9773] 0.9771] 0.9578| 0.9604
5 0.0753] 0.0767, 0.9757| 0.9753] 0.9855 0.9875
10 0.0765, 0.0764] 0.9753] 0.9753] 0.9917| 0.9885
15 0.0764| 0.0765 0.9748 0.9752] 0.996/ 0.9962
20 0.0762| 0.0766] 0.975 0.9752] 0.9985 (.9982
25 0.0751] 0.0766] 0.9758 0.9754/ 1.0012] 0.9967|
30 0.0757, 0.0762| 0.9755 0.9755 1.0025 1.0018
35 0.076) 0.0765 0.9755 0.9755 1.0056] 0.9954
40 0.0758 0.0769 0.9755 0.9753] 1.005 1.0027|
45 0.0754| 0.0752 0.9759 0.9758 0.9877| 0.9977
50 0.0765, 0.0758 0.9752| 0.9758 1.0024| 0.9945
55 0.0762,  0.076] 0.9752 0.9753] 1.0043] 1.003
60 0.0754| 0.0758 0.9755 0.9753] 1.0027| 0.9962
65 0.0756] 0.0751] 0.9752 0.9757| 0.9981] 0.999
70 0.0763] 0.0758| 0.9747| 0.9752] 0.9993| 0.996
75 0.0757| 0.0756| 0.9745 0.9753] 0.9962| 0.9976
80 0.0764] 0.075 0.9746] 0.97531 0.9932 0.9935
85 0.0755 0.0745 0.9753 0.9761] 0.987| 0.9848
90 0.0773] 0.0755 0.9773 0.9779 0.9578 0.9625
95 0.0754] 0.075 0.9757| 0.9762] 0.9855 0.9817|
100 0.0765 0.0753| 0.9753] 0.9757| 0.9917| 0.9895
105 0.0765 0.0756| 0.9748] 0.9756/ 0.996] 0.9963
110 0.0762 0.0747| 0.975 0.9761] 0.9985 0.9968
115 0.0751] 0.0758 0.9758 0.9758 1.0012] 0.9973
120 0.0757] 0.0759 0.9755 0.9763] 1.0025 0.9972
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125 0.0761] 0.0751] 0.9755 0.9764] 1.0056 0.9967,
130 0.0759| 0.0752 0.9755 0.9761] 1.005 1.0018
135 0.0754| 0.0756] 0.9759 0.9758/ 0.9877| 0.9974
140 0.0765 0.0755] 0.9752 0.976| 1.0024| 0.9954
145 0.0763 _0.0761| 0.9752 0.9755 1.0043] 0.998
150 0.0755] 0.0761] 0.9755 0.9756| 1.0027] 0.9934
155 0.0757| 0.0752 0.9752| 0.9758/ 0.9981] 0.9973
160 0.0764] 0.0772 0.9747| 0.975 0.9993 0.9924
165 0.0758| 0.0766] 0.9745 0.9748/ 0.9962 0.9943
170 0.0765] 0.0758 0.9746/ 0.9754] 0.9932 0.9904
175 0.0756] 0.077| 0.9753 0.9752] 0.987| 0.9842
180 0.0774] 0.0787| 0.9773 0.9772] 0.9578 0.961
185 0.0755] 0.0764| 0.9757| 0.9756] 0.9855 0.9889
190 0.0766] 0.0768 0.9753 0.9751] 0.9917] 0.9913
195 0.0766] 0.0763] 0.9748 0.9751] 0.996] 0.9933
200 0.0763 0.0764] 0.975 0.9758 0.9985 0.9955
205 0.0752] 0.0765| 0.9758 0.9758| 1.0012 0.9962
210 0.0758| 0.076] 0.9755 0.9759 1.0025 1.0018
215 0.0761] 0.0763 0.9755 0.976| 1.0056] 0.9914
220 0.0759 0.0768] 0.9755 0.9755 1.005 1.0032
225 0.0755 0.0749 0.9759 0.9764] 0.9877| 1.0005
230 0.0766,  0.076] 0.9752 0.9757| 1.0024] 0.9966
235 0.0763| 0.0762 0.9752| 0.9754] 1.0043 1.0036
240 0.0755| 0.0756] 0.9755 0.9757, 1.0027| 0.9938
245 0.0757, 0.0757] 0.9752 0.9757| 0.9981] 1.0009
250 0.0764] 0.0746] 0.9747, 0.9758/ 0.9993 1.0007|
255 0.0758 0.0758 0.9745 0.9751] 0.9962 0.9971
260 0.0764] 0.0759 0.9746/ 0.9753] 0.9932 0.9965
265 0.0756| 0.0753 0.9753 0.9757, 0.987| 0.9843
270 0.0774] 0.0792 0.9773| 0.9771| 0.9578 0.964
275 0.0755] 0.0751] 0.9757| 0.9757| 0.9855 0.9825
280 0.0766| 0.0752 0.9753 0.9759] 0.9917] 0.9944
285 0.0766] 0.0747| 0.9748 0.9759] 0.996 0.9949
290 0.0763] 0.0748 0.975 0.976| 0.9985 0.9901
295 0.0752] 0.0756| 0.9758 0.9758 1.0012 0.9962
300 0.0758 0.0752 0.9755 0.9765 1.0025 1.0007
305 0.0761] 0.075 0.9755 0.9766] 1.0056] 0.9955
310 0.0759, 0.0754] 0.9755 0.9759 1.005 0.9973
315 0.0755| 0.0761] 0.9759 0.9756| 0.9877] 0.9951
320 0.0765_ 0.0753] 0.9752 0.9758 1.0024] 0.9961
325 0.0763 0.0756| 0.9752 0.9756| 1.0043 0.9996
330 0.0754 0.0763] 0.9755 0.9752] 1.0027| 0.9926
335 0.0757| 0.076] 0.9752 0.9754] 0.9981] 0.9922
340 0.0763 0.0771| 0.9747| 0.9746] 0.9993] 0.9968
345 0.0757| 0.0761} 0.9745 0.9752] 0.9962 0.9913
350 0.0763 0.0753| 0.9746) 0.9754] 0.9932 0.9943
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355 0.0756] 0.0763| 0.9753] 0.975] 0.987| 0.9845
360 0.0773 0.0782 0.9773] 0.9771 0.9578] 0.9604

B.2 Results for balcony256.bmp image

Rotation in Degrees | SIQ ed |HIQ ed |SIQ rb|HIQ rb| SIQ en |HIQ en
0 0.0627 ] 0.0644 | 0.9920 | 0.9923 | 0.9748 | 0.9684
5 0.0637 | 0.0630 | 0.9883 | 0.9888 | 0.9800 | 0.9805
10 0.0629 | 0.0621 | 0.9877 | 0.9884 | 0.9878 | 0.9893
15 0.0619 | 0.0620 | 0.9876 | 0.9881 | 0.9951 | 0.9897
20 0.0609 | 0.0616 | 0.9878 | 0.9880 | 0.9963 | 0.9961
25 0.0634 | 0.0621 | 0.9874 | 0.9880 | 0.9950 | 0.9921
30 0.0623 | 0.0625 | 0.9874 | 0.9882 | 0.9962 | 0.9968
35 0.0623 | 0.0620 | 0.9873 | 0.9875 | 0.9975 | 0.9939
40 0.0625 | 0.0617 | 0.9872 | 0.9880 | 1.0008 | 1.0002
45 0.0626 | 0.0614 | 0.9878 | 0.9878 | 0.9915 | 0.9927
50 0.0622 | 0.0627 | 0.9873 | 0.9876 | 1.0012 | 0.9978
55 0.0623 | 0.0623 | 0.9873 | 0.9876 | 1.0003 | 1.0006
60 0.0623 | 0.0614 | 0.9873 | 0.9880 | 0.9993 | 0.9943
65 0.0631 | 0.0623 | 0.9875 | 0.9879 | 0.9939 | 0.9965
70 0.0623 ] 0.0615 | 0.9876 | 0.9884 | 0.9980 | 0.9952
75 0.0627 | 0.0619 | 0.9876 | 0.9885 | 0.9968 | 0.9943
80 0.0621 | 0.0609 | 0.9878 | 0.9890 | 0.9907 | 0.9896
85 0.0615 | 0.0610 | 0.9888 | 0.9893 | 0.9856 | 0.9846
90 0.0627 | 0.0611 | 0.9920 | 0.9930 | 0.9748 | 0.9732
95 0.0638 | 0.0626 | 0.9883 | 0.9891 | 0.9800 | 0.9856
100 0.0629 | 0.0625 | 0.9877 | 0.9886 | 0.9878 | 0.9899
105 0.0620 | 0.0621 | 0.9876 | 0.9883 | 0.9951 | 0.9939
110 0.0610 |} 0.0610 | 0.9878 | 0.9884 | 0.9963 | 0.9930
115 0.0635 | 0.0617 | 0.9874 | 0.9883 | 0.9950 | 0.9964
120 0.0625 | 0.0610 | 0.9874 | 0.9882 | 0.9962 | 0.9961
125 0.0623 | 0.0609 | 0.9873 | 0.9879 | 0.9975 | 0.9914
130 0.0626 | 0.0619 | 0.9872 | 0.9875 | 1.0008 | 0.9970
135 0.0626 | 0.0621 | 0.9878 | 0.9879 | 0.9915 | 0.9973
140 0.0623 | 0.0622 | 0.9873 | 0.9874 | 1.0012 | 0.9954
145 0.0624 | 0.0635 | 0.9873 | 0.9874 | 1.0003 | 1.0016
150 0.0624 | 0.0624 | 0.9873 | 0.9870 | 0.9993 | 0.9873
155 0.0631 | 0.0623 | 0.9875 | 0.9878 | 0.9939 | 0.9976
160 0.0624 | 0.0626 | 0.9876 | 0.9879 | 0.9980 | 0.9948
165 0.0628 | 0.0622 | 0.9876 | 0.9883 | 0.9968 | 0.9991
170 0.0622 | 0.0618 | 0.9878 | 0.9884 | 0.9907 | 0.9912
175 0.0615 | 0.0624 | 0.9888 | 0.9887 | 0.9856 | 0.9802
180 0.0628 | 0.0628 | 0.9920 | 0.9925 | 0.9748 | 0.9727
185 0.0638 | 0.0630 | 0.9883 | 0.9887 | 0.9800 | 0.9824
190 0.0630 | 0.0618 | 0.9877 | 0.9884 | 0.9878 | 0.9891
195 0.0621 | 0.0624 | 0.9876 | 0.9880 | 0.9951 | 0.9939
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200 0.0609 | 0.0631 | 0.9878 | 0.9878 | 0.9963 | 0.9915
205 0.0635 | 0.0629 | 0.9874 | 0.9877 | 0.9950 | 0.9911
210 0.0624 | 0.0623 | 0.9874 | 0.9883 | 0.9962 | 1.0007
215 0.0623 | 0.0609 | 0.9873 | 0.9881 | 0.9975 | 0.9942
220 0.0626 | 0.0621 | 0.9872 | 0.9877 | 1.0008 | 0.9985
225 0.0626 | 0.0625 | 0.9878 | 0.9876 | 0.9915 | 0.9969
230 0.0623 | 0.0626 | 0.9873 | 0.9874 | 1.0012 | 0.9935
235 0.0623 | 0.0622 | 0.9873 | 0.9876 | 1.0003 | 1.0000
240 0.0624 | 0.0614 | 0.9873 | 0.9879 | 0.9993 | 0.9894
245 0.0631 | 0.0621 | 0.9875 | 0.9879 | 0.9939 | 0.9956
250 0.0623 | 0.0614 | 0.9876 | 0.9884 | 0.9980 | 0.9970
255 0.0628 | 0.0616 | 0.9876 | 0.9885 | 0.9968 | 0.9922
260 0.0622 | 0.0607 | 0.9878 | 0.9889 | 0.9907 | 0.9919
265 0.0615 | 0.0612 | 0.9888 | 0.9893 | 0.9856 | 0.9849
270 0.0627 | 0.0634 | 0.9920 | 0.9924 | 0.9748 | 0.9735
275 0.0638 | 0.0608 | 0.9883 | 0.9893 | 0.9800 | 0.9795
280 0.0629 | 0.0611 | 0.9877 | 0.9889 | 0.9878 | 0.9924
285 0.0620 | 0.0619 | 0.9876 | 0.9883 | 0.9951 | 0.9947
290 0.0609 | 0.0619 | 0.9878 | 0.9882 | 0.9963 | 0.9905
295 0.0634 | 0.0622 | 0.9874 | 0.9882 ! 0.9950 | 0.9979
300 0.0623 | 0.0608 | 0.9874 | 0.9879 | 0.9962 | 0.9960
305 0.0623 | 0.0621 | 0.9873 | 0.9877 | 0.9975 | 0.9917
310 0.0626 | 0.0616 | 0.9872 | 0.9877 | 1.0008 | 0.9950
315 0.0626 | 0.0620 | 0.9878 | 0.9879 | 0.9915 | 0.9944
320 0.0622 | 0.0623 | 0.9873 | 0.9874 | 1.0012 | 0.9930
325 0.0622 | 0.0618 | 0.9873 | 0.9871 | 1.0003 | 0.9963
330 0.0623 | 0.0631 | 0.9873 | 0.9870 | 0.9993 | 0.9877
335 0.0631 | 0.0630 | 0.9875 | 0.9875 | 0.9939 | 0.9964
340 0.0623 | 0.0614 | 0.9876 | 0.9882 | 0.9980 | 0.9972
345 0.0627 | 0.0630 | 0.9876 | 0.9881 | 0.9968 | 0.9937
350 0.0621 | 0.0625 | 0.9878 | 0.9884 | 0.9907 | 0.9897
355 0.0615 | 0.0632 | 0.9888 | 0.9891 | 0.9856 | 0.9852
360 0.0627 | 0.0644 | 0.9920 | 0.9923 | 0.9748 | 0.9684
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B.3 Results for phantom256.bmp image

Rotation
in

Degrees| SIQ ed |HIQ ed|{SIQ rb|HIQ rb!SIQ en |HIQ en
0 0.0937 | 0.0962 | 0.8327 | 0.8351 | 2.0607 | 2.0929
5 0.091 10.0927 | 0.8409|0.8348 | 1.3841 | 1.3558
10 0.0921 | 0.0928 | 0.8381|0.8413 | 1.4011 | 1.3673
15 0.0957 | 0.0912 | 0.8337 1 0.8523 | 1.3961 | 1.4075
20 0.0961 | 0.0913 | 0.8369 | 0.8419 | 1.404 | 1.3943
25 0.0932 ] 0.0944 | 0.84650.8362 | 1.3832 | 1.3942
30 0.0932 | 0.0933 |1 0.8442 | 0.8404 | 1.3782 | 1.3889
35 0.0951 | 0.0912 1 0.8325 | 0.845 | 1.3974 | 1.3867
40 0.0932 | 0.0958 | 0.8373|0.8366 | 1.4122 | 1.4051
45 0.0911 | 0.0951 | 0.8547 | 0.8358 | 1.3793 | 1.4120
50 0.0933 | 0.0936 | 0.8373 | 0.8459 | 1.3972 | 1.4158
55 0.0949 | 0.0929 |1 0.8328 | 0.8463 | 1.4132 | 1.388
60 0.0935 | 0.0937 {0.8436 | 0.8378 | 1.3765 | 1.3763
65 0.0932 | 0.0945 1 0.8465|0.8396 | 1.3932 | 1.4031
70 0.0961 | 0.0955 [ 0.8368 | 0.8429 | 1.4069 | 1.421
75 0.0956 | 0.0972 | 0.8339|0.8371 | 1.4002 | 1.3909
80 0.092 |0.0945 /0.8384{0.8373| 1.398 | 1.3823
85 0.0909 | 0.0929 | 0.8412|0.8459 | 1.3895 | 1.3984
90 0.0937 | 0.097 |0.8327|0.8331|2.0607 | 2.1131
95 0.091 [0.0956 [0.8409|0.8336 | 1.3841 | 1.3967
100 |1 0.0921 | 0.0948 | 0.8381{0.8435| 1.4018 | 1.4134
105 | 0.0956 | 0.0922 10.8337 | 0.8451 | 1.3947 | 1.4231
110 0.096 | 0.0935|0.8369| 0.84 1.404 | 1.3697
115 | 0.0929 | 0.0952 | 0.8465 | 0.8426 | 1.3839 | 1.3876
120 1 0.0932 {0.0949 |0.8442 | 0.839 | 1.3795 | 1.3700
125 10.0948 | 0.0941 {0.8325|0.8374 | 1.3984 | 1.3977
130 0.093 {0.0944 [0.8373]0.8397 | 1.4121 | 1.3714
135 0.091 |0.0924 |0.8547 {0.8397 | 1.3793 | 1.3694
140 0.093 | 0.0906 [0.8373]|0.8439| 1.3968 | 1.3752
145 10.0947 | 0.093 |0.8328(0.8458| 1.4131 | 1.399
150 10.0933 | 0.095 10.8436(0.8376| 1.3773 | 1.3791
155 0.093 |0.0917 |0.8465{0.8417 | 1.3932 | 1.3638
160 | 0.0959 | 0.0919 |0.8368 | 0.8419 | 1.4067 | 1.3688
165 | 0.0952 | 0.0924 |0.8339]0.8354 | 1.3998 | 1.3759
170 1 0.0917 | 0.0919 |1 0.8384 | 0.8424 | 1.3996 | 1.3763
175 10.0906 | 0.0929 10.8412| 0.846 | 1.3895 | 1.3995
180 | 0.0934 | 0.0961 |0.8327 | 0.8296 | 2.0584 | 2.1043
185 10.0906 | 0.0923 | 0.84090.8354 | 1.3837 | 1.3695
190 | 0.0918 | 0.0913 10.8381 | 0.8468 | 1.4018 | 1.386
195 10.0953 | 0.09 }0.8337/0.8521 | 1.3958 | 1.3608
200 | 0.0958 | 0.0922 |1 0.8369|0.8376| 1.403 | 1.3626
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205 10.0927 | 0.0946 | 0.8465 | 0.8337 | 1.3839 | 1.3892
210 |0.0932 | 0.0905 | 0.8442 |0.8418 | 1.3785 | 1.3912
215 10.0947 | 0.0927 | 0.8325|0.8412| 1.3984 | 1.3687
220 10.0928 | 0.096 |0.837310.8291|1.4122 | 1.3892
225 10.0911]0.0941 | 0.8547 | 0.8394 | 1.3788 | 1.3964
230 10.0928 | 0.0927 | 0.8373[0.8471| 1.3961 | 1.4193
235 10.0945 | 0.0926 | 0.8328 | 0.8434 | 1.4132 | 1.3911
240 |0.0936 | 0.0933 | 0.8436 | 0.8401 | 1.3757 | 1.3847
245 10.0927 | 0.0945 | 0.8465]0.8407 | 1.393 | 1.4023
250 | 0.0959 | 0.0957 | 0.8368 | 0.8395 | 1.4065 | 1.4171
255 10.0952 | 0.0964 | 0.8339 | 0.8362 | 1.3993 | 1.3899
260 ]0.0916 | 0.0931 | 0.8384 | 0.8348 | 1.398 | 1.3907
265 10.0905 | 0.0937 | 0.8412|0.8434 | 1.3896 | 1.3773
270 10.0934 | 0.0971 | 0.8327 | 0.8325 | 2.0557 | 2.1257
275 10.0907 | 0.094 10.84090.8345| 1.3841 | 1.399
280 |0.0918 | 0.0955 | 0.8381|0.8403 | 1.4022 | 1.403
285 |0.0953 | 0.0922 | 0.8337 | 0.8372 | 1.3955 | 1.3969
290 |0.0959 | 0.0929 | 0.8369 | 0.8398 | 1.4047 | 1.3418
295 10.0929 | 0.0946 | 0.8465 | 0.8508 | 1.3839 | 1.3934
300 | 0.093 | 0.0946 |0.84420.8407 | 1.3785 | 1.3739
305 10.0949 | 0.094 |0.83250.8304 | 1.3977 | 1.4071
310 | 0.093 |0.0945|0.8373|0.8381 | 1.4121 | 1.396
315 0.091 | 0.0921 |0.8547 1 0.8446 | 1.3789 | 1.3826
320 | 0.093 | 0.0915]0.8373/0.8439| 1.397 | 1.3708
325 10.0946 | 0.0935 | 0.8328 | 0.8498 | 1.4132 | 1.3813
330 ]0.0935 | 0.0935 | 0.8436 | 0.8428 | 1.3767 | 1.3891
335 10.0929 | 0.0941 | 0.8465 | 0.8395 | 1.3931 | 1.3864
340 | 0.096 | 0.0921 |0.8368 | 0.8452 | 1.4061 | 1.3671
345 10.0955 | 0.0916 | 0.8339 | 0.8391 | 1.4009 | 1.3696
350 10.0919 | 0.0917 | 0.8384 | 0.8391 | 1.3995 | 1.3552
355 10.0908 | 0.0928 | 0.8412 | 0.8466 | 1.3895 | 1.4009
360 |0.0937 | 0.0962 | 0.8327 | 0.8351 | 2.0527 | 2.087
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B.4 Results for rand256.bmp image

Rotation
in
Degrees| SIQ_ed |HIQ ed|SIQ rb |HIQ rb|SIQ en |HIQ en
0 0.1984 | 0.1983 | 0.8683 | 0.8703 | 0.6535 | 0.6685
5 0.1612 | 0.1613 | 0.9028 | 0.9044 | 0.6949 | 0.7063
10 0.1608 | 0.1609 | 0.9029 | 0.9043 | 0.7161 | 0.7266
15 0.1613 | 0.1613 | 0.9024 | 0.9037 | 0.7262 | 0.7276
20 0.1612 | 0.1613 | 0.9026 | 0.9036 | 0.7247 | 0.7310
25 0.1610 | 0.1612 | 0.9027 | 0.9035 | 0.7286 | 0.7252
30 0.1608 | 0.1607 | 0.9028 | 0.9043 | 0.7365 | 0.7375
35 0.1614 | 0.1612 ] 0.9025 | 0.9041 | 0.7332 | 0.7378
40 0.1615 | 0.1616 | 0.9024 | 0.9036 | 0.7325 | 0.7374
45 0.1614 ] 0.1616 | 0.9032 | 0.9038 | 0.7220 | 0.7363
50 0.1611 | 0.1612 | 0.9028 | 0.9036 | 0.7385 | 0.7327
55 0.1610 | 0.1611 | 0.9029 | 0.9035 | 0.7395 | 0.7402
60 0.1614 | 0.1614 | 0.9023 | 0.9034 | 0.7311 | 0.7396
65 0.1611 | 0.1611 | 0.9023 | 0.9032 | 0.7263 | 0.7355
70 0.1613 | 0.1611 | 0.9022 | 0.9034 | 0.7245 | 0.7372
75 0.1612 | 0.1612 | 0.9020 | 0.9032 | 0.7191 | 0.7252
80 0.1610 | 0.1609 | 0.9023 | 0.9038 | 0.7117 | 0.7198
85 0.1609 | 0.1611 | 0.9029 | 0.9042 | 0.7058 | 0.7063
90 0.1984 | 0.1984 | 0.8683 | 0.8704 | 0.6535 | 0.6739
95 0.1612 | 0.1611 | 0.9028 | 0.9044 | 0.6949 | 0.7119
100 0.1608 | 0.1611 | 0.9029 | 0.9037 | 0.7161 | 0.7153
105 0.1612 | 0.1613 | 0.9024 | 0.9037 | 0.7262 | 0.7194
110 0.1612 | 0.1613 | 0.9026 | 0.9037 | 0.7247 | 0.7275
115 0.1610 | 0.1610 | 0.9027 | 0.9040 | 0.7286 | 0.7338
120 0.1608 | 0.1608 | 0.9028 | 0.9039 | 0.7365 | 0.7371
125 0.1613 | 0.1612 | 0.9025 | 0.9037 | 0.7332 | 0.7324
130 0.1615 | 0.1614 | 0.9024 | 0.9036 | 0.7325 | 0.7398
135 0.1614 | 0.1613 | 0.9032 | 0.9037 | 0.7220 | 0.7393
140 0.1611 | 0.1609 | 0.9028 | 0.9039 | 0.7385 | 0.7373
145 0.1610 ] 0.1612 | 0.9029 | 0.9035 | 0.7395 | 0.7356
150 0.1614 | 0.1614 | 0.9023 | 0.9034 | 0.7311 | 0.7359
155 0.1611 | 0.1610 | 0.9023 | 0.9034 | 0.7263 | 0.7376
160 0.1613 | 0.1612 | 0.9022 | 0.9032 | 0.7245 | 0.7301
165 0.1611 | 0.1611 | 0.9020 | 0.9035 | 0.7191 | 0.7285
170 0.1610 | 0.1609 | 0.9023 | 0.9038 | 0.7117 | 0.7205
175 0.1609 | 0.1610 | 0.9029 | 0.9043 | 0.7058 | 0.7037
180 0.1985 | 0.1984 | 0.8683 | 0.8704 | 0.6535 | 0.6710
185 0.1612 | 0.1611 | 0.9028 | 0.9044 | 0.6949 | 0.7111
190 0.1608 | 0.1609 | 0.9029 | 0.9041 | 0.7161 | 0.7188
195 0.1612 | 0.1613 | 0.9024 | 0.9035 | 0.7262 | 0.7230
200 0.1612 | 0.1611 | 0.9026 | 0.9039 | 0.7247 | 0.7297
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205 ] 0.1610 | 0.1612 | 0.9027 | 0.9037 | 0.7286 | 0.7266
210 ] 0.1609 | 0.1608 | 0.9028 | 0.9042 | 0.7365 | 0.7377
215 ] 0.1613 | 0.1613 | 0.9025 | 0.9039 | 0.7332 | 0.7317
220 | 0.1615 | 0.1615 | 0.9024 | 0.9035 | 0.7325 | 0.7407
225 | 0.1613 | 0.1614 | 0.9032 | 0.9038 | 0.7220 | 0.7393
230 | 0.1611 | 0.1611 | 0.9028 | 0.9038 | 0.7385 | 0.7331
235 | 0.1610 | 0.1610 | 0.9029 | 0.9038 | 0.7395 | 0.7386
240 | 0.1614 | 0.1614 | 0.9023 | 0.9033 | 0.7311 | 0.7324
245 | 0.1611 | 0.1610 | 0.9023 | 0.9032 | 0.7263 | 0.7397
250 | 0.1613 | 0.1614 | 0.9022 | 0.9032 | 0.7245 | 0.7306
255 1 0.1611 | 0.1612 | 0.9020 | 0.9033 | 0.7191 | 0.7234
260 | 0.1610 | 0.1609 | 0.9023 | 0.9037 | 0.7117 | 0.7200
265 | 0.1608 | 0.1609 | 0.9029 | 0.9044 | 0.7058 | 0.7072
270 ] 0.1984 | 0.1984 | 0.8683 | 0.8704 | 0.6535 | 0.6703
275 1 0.1612 | 0.1613 | 0.9028 | 0.9042 | 0.6949 | 0.7045
280 | 0.1608 | 0.1610 | 0.9029 | 0.9036 | 0.7161 | 0.7173
285 | 0.1612 | 0.1614 | 0.9024 | 0.9036 | 0.7262 | 0.7164
290 | 0.1612 | 0.1612 | 0.9026 | 0.9038 | 0.7247 | 0.7328
295 1 0.1610 | 0.1611 | 0.9027 | 0.9038 | 0.7286 | 0.7297
300 | 0.1608 | 0.1608 | 0.9028 | 0.9041 | 0.7365 | 0.7330
305 | 0.1613 | 0.1611 | 0.9025 | 0.9039 | 0.7332 | 0.7358
310 ] 0.1615 | 0.1614 | 0.9024 | 0.9037 | 0.7325 | 0.7353
315 | 0.1613 | 0.1614 | 0.9032 | 0.9035 | 0.7220 | 0.7367
320 | 0.1611 | 0.1608 | 0.9028 | 0.9040 | 0.7385 | 0.7469
325 1 0.1610 | 0.1611 | 0.9029 | 0.9039 | 0.7395 | 0.7434
330 | 0.1614 | 0.1613 | 0.9023 | 0.9036 | 0.7311 | 0.7362
335 1 0.1612 | 0.1611 | 0.9023 | 0.9031 | 0.7263 | 0.7354
340 ] 0.1614 | 0.1613 | 0.9022 | 0.9031 | 0.7245 | 0.7258
345 1 0.1612 | 0.1612 | 0.9020 | 0.9035 | 0.7191 | 0.7248
350 | 0.1610 ] 0.1610 | 0.9023 | 0.9037 | 0.7117 | 0.7175
355 ] 0.1608 | 0.1609 | 0.9029 | 0.9043 | 0.7058 | 0.7075
360 | 0.1984 | 0.1983 | 0.8683 | 0.8703 | 0.6535 | 0.6685
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

B.5 Results for square256.bmp image

Rotation
in
Degrees| SIQ ed |HIQ ed |SIQ rb |HIQ rbjSIQ en |HIQ en
0 0.0000 | 0.0065 | 1.0000 | 0.9999 | 1.0000 | 1.0227
5 0.0062 | 0.0062 | 0.9944 | 0.9947 | 1.0173 | 1.0198
10 0.0062 | 0.0062 | 0.9939 | 0.9944 | 1.0177 | 1.0119
15 0.0062 | 0.0061 | 0.9938 | 0.9943 | 1.0317 | 0.9936
20 0.0062 | 0.0061 | 0.9940 | 0.9944 | 1.0234 | 1.0257
25 0.0062 | 0.0061 | 0.9940 | 0.9944 | 1.0334 | 1.0150
30 0.0062 | 0.0061 | 0.9940 | 0.9946 | 1.0357 | 1.0335
35 0.0062 | 0.0061 | 0.9941 | 0.9949 | 1.0183 | 1.0320
40 0.0062 | 0.0060 | 0.9941 | 0.9944 | 1.0432 | 1.0371
45 0.0062 | 0.0060 | 0.9945 | 0.9943 | 1.0390 | 1.0383
50 0.0062 | 0.0060 | 0.9941 | 0.9943 | 1.0406 | 1.0338
55 0.0062 | 0.0059 | 0.9941 | 0.9939 | 1.0262 | 1.0290
60 0.0062 | 0.0059 | 0.9940 | 0.9941 | 1.0380 | 1.0315
65 0.0062 | 0.0060 | 0.9940 | 0.9942 | 1.0337 | 1.0342
70 0.0062 | 0.0060 | 0.9940 | 0.9943 | 1.0361 | 1.0215
75 0.0062 ] 0.0060 | 0.9938 | 0.9943 | 1.0326 | 1.0276
80 0.0062 | 0.0061 | 0.9939 | 0.9944 | 0.9577 | 0.9912
85 0.0062 | 0.0061 | 0.9944 | 0.9949 | 1.0195 | 1.0151
90 0.0000 | 0.0064 | 1.0000 | 0.9999 | 1.0000 | 1.0239
95 0.0062 | 0.0061 | 0.9944 | 0.9950 | 1.0173 | 1.0179
100 0.0062 | 0.0062 | 0.9939 | 0.9949 | 1.0177 | 1.0231
105 0.0062 | 0.0062 | 0.9938 | 0.9945 | 1.0317 | 1.0221
110 0.0062 | 0.0062 | 0.9940 | 0.9946 | 1.0234 | 0.8741
115 0.0062 | 0.0063 | 0.9940 | 0.9946 | 1.0334 | 1.0303
120 0.0062 | 0.0063 | 0.9940 | 0.9947 | 1.0357 | 1.0298
125 0.0062 | 0.0064 | 0.9941 | 0.9947 | 1.0183 | 1.0239
130 0.0062 | 0.0063 | 0.9941 | 0.9946 | 1.0432 | 1.0372
135 0.0062 | 0.0063 | 0.9945 | 0.9944 | 1.0390 | 1.0365
140 0.0062 | 0.0063 | 0.9941 | 0.9946 | 1.0406 | 1.0342
145 0.0062 | 0.0062 | 0.9941 | 0.9937 | 1.0262 | 1.0379
150 0.0062 | 0.0062 | 0.9940 | 0.9941 | 1.0380 | 1.0311
155 0.0062 | 0.0063 | 0.9940 | 0.9944 | 1.0337 | 0.9909
160 0.0062 | 0.0063 | 0.9940 | 0.9946 | 1.0361 | 1.0330
165 0.0062 | 0.0063 | 0.9938 | 0.9945 | 1.0326 | 1.0262
170 0.0062 | 0.0063 | 0.9939 | 0.9946 | 0.9577 | 1.0235
175 0.0062 | 0.0062 | 0.9944 | 0.9954 | 1.0195 | 0.9345
180 0.0000 | 0.0065 | 1.0000 | 0.9999 | 1.0000 | 1.0228
185 0.0062 | 0.0062 | 0.9944 | 0.9952 | 1.0173 | 1.0207
190 0.0062 | 0.0062 | 0.9939 | 0.9946 | 1.0177 | 1.0138
195 0.0062 | 0.0061 | 0.9938 | 0.9945 | 1.0317 | 0.9931
200 0.0062 | 0.0061 | 0.9940 | 0.9945 | 1.0234 | 1.0222
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

205 | 0.0062 | 0.0061 | 0.9940 | 0.9947 | 1.0334 | 1.0152
210 ] 0.0062 | 0.0061 | 0.9940 | 0.9950 | 1.0357 | 1.0345
215 1 0.0062 | 0.0061 [ 0.9941 | 0.9944 | 1.0183 | 1.0308
220 | 0.0062 | 0.0060 | 0.9941 | 0.9946 | 1.0432 | 1.0371
225 1 0.0062 | 0.0060 | 0.9945 | 0.9944 | 1.0390 | 1.0394
230 | 0.0062 | 0.0060 | 0.9941 | 0.9943 | 1.0406 | 1.0341
235 1 0.0062 | 0.0059 | 0.9941 | 0.9944 | 1.0262 | 1.0301
240 | 0.0062 | 0.0059 | 0.9940 | 0.9938 | 1.0380 | 1.0301
245 | 0.0062 | 0.0060 | 0.9940 | 0.9943 | 1.0337 | 1.0368
250 | 0.0062 | 0.0060 | 0.9940 | 0.9945 | 1.0361 | 1.0241
255 | 0.0062 | 0.0060 | 0.9938 | 0.9944 | 1.0326 | 1.0264
260 | 0.0062 | 0.0061 | 0.9939 | 0.9945 | 0.9577 | 0.9892
265 | 0.0062 | 0.0061 [ 0.9944 | 0.9949 | 1.0195 | 1.0145
270 | 0.0000 | 0.0064 | 1.0000 | 0.9999 | 1.0000 | 1.0240
275 1.0.0062 | 0.0061 | 0.9944 | 0.9950 | 1.0173 | 1.0174
280 | 0.0062 | 0.0062 | 0.9939 | 0.9945 | 1.0177 | 1.0229
285 | 0.0062 | 0.0062 | 0.9938 | 0.9945 | 1.0317 | 1.0207
290 | 0.0062 | 0.0062 | 0.9940 | 0.9945 [ 1.0234 | 0.8693
295 1 0.0062 | 0.0063 | 0.9940 | 0.9945 | 1.0334 | 1.0302
300 | 0.0062 | 0.0063 | 0.9940 | 0.9947 | 1.0357 | 1.0311
305 | 0.0062 | 0.0064 | 0.9941 | 0.9948 | 1.0183 | 1.0235
310 | 0.0062 | 0.0063 | 0.9941 | 0.9942 | 1.0432 | 1.0357
315 | 0.0062 | 0.0063 | 0.9945 | 0.9944 | 1.0390 | 1.0361
320 | 0.0062 | 0.0063 | 0.9941 | 0.9941 | 1.0406 | 1.0329
325 ] 0.0062 | 0.0062 | 0.9941 | 0.9943 | 1.0262 | 1.0397
330 | 0.0062 | 0.0062 | 0.9940 | 0.9939 | 1.0380 | 1.0298
335 | 0.0062 | 0.0063 | 0.9940 | 0.9943 | 1.0337 | 0.9900
340 | 0.0062 | 0.0063 | 0.9940 | 0.9943 | 1.0361 | 1.0324
345 1 0.0062 | 0.0063 | 0.9938 | 0.9943 | 1.0326 | 1.0266
350 | 0.0062 | 0.0063 [ 0.9939 | 0.9944 | 0.9577 | 1.0221
355 | 0.0062 | 0.0062 | 0.9944 | 0.9947 | 1.0195 | 0.9377
360 | 0.0000 | 0.0065 | 1.0000 | 0.9999 | 1.0000 | 1.0227
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

B.6 Results for hexagon256.bmp image

Rotation
in
Degrees| SIQ ed |HIQ ed|SIQ rb|HIQ rb|SIQ en |HIQ en
0 0.1657 | 0.0000 | 0.9363 | 1.0000 | 2.7411 | 1.0000
5 0.1581 | 0.1565 | 0.9374 | 0.9374 | 1.2747 | 1.2725
10 0.1582 | 0.1567 | 0.9378 | 0.9394 | 1.2785 | 1.2849
15 0.1583 | 0.1579 | 0.9371 | 0.9386 | 1.2759 | 1.2860
20 0.1578 | 0.1578 | 0.9376 | 0.9387 | 1.2792 | 1.2792
25 0.1572 | 0.1579 | 0.9371 | 0.9389 | 1.2770 | 1.2714
30 0.1564 | 0.1581 | 0.9368 | 0.9387 | 1.2745 | 1.2788
35 0.1562 | 0.1577 | 0.9373 | 0.9396 | 1.2769 | 1.2714
40 0.1579 | 0.1569 | 0.9373 | 0.9392 | 1.2745 | 1.2802
45 0.1581 [ 0.1577 1 0.9379 | 0.9388 | 1.2641 | 1.2831
50 0.1586 | 0.1572 | 0.9378 | 0.9388 | 1.2757 | 1.2677
55 0.1604 | 0.1590 | 0.9378 | 0.9377 | 1.2808 | 1.2590
60 0.1601 [ 0.1577 | 0.9383 | 0.9389 | 1.2772 | 1.2744
65 0.1595 | 0.1671 | 0.9374 | 0.9316 | 1.2720 | 1.2396
70 0.1593 | 0.1564 | 0.9376 | 0.9389 | 1.2754 | 1.2775
75 0.1584 | 0.1576 | 0.9375 | 0.9386 | 1.2829 | 1.2619
80 0.1588 | 0.1569 | 0.9375 | 0.9393 | 1.2724 | 1.2837
85 0.1583 | 0.1568 | 0.9374 | 0.9393 | 1.2703 | 1.2803
90 0.1657 | 0.1634 | 0.9363 | 0.9378 | 2.7411 | 3.1840
95 0.1582 | 0.1569 | 0.9374 | 0.9392 | 1.2747 | 1.2790
100 | 0.1581 | 0.1569 | 0.9378 | 0.9393 | 1.2785 | 1.2826
105 0.1583 | 0.1583 | 0.9371 | 0.9383 | 1.2759 | 1.2680
110 | 0.1577 | 0.1563 | 0.9376 | 0.9388 | 1.2792 | 1.2683
115 0.1573 | 0.1703 | 0.9371 | 0.9291 | 1.2770 | 1.2323
120 | 0.1565 | 0.1582 | 0.9368 | 0.9395 | 1.2745 | 1.2765
125 0.1562 | 0.1563 | 0.9373 | 0.9399 | 1.2769 | 1.2602
130 | 0.1578 | 0.1571 | 0.9373 | 0.9392 | 1.2745 | 1.2728
135 0.1581 | 0.1568 | 0.9379 | 0.9390 | 1.2641 | 1.2781
140 | 0.1586 | 0.1585 | 0.9378 | 0.9391 | 1.2757 | 1.2710
145 0.1602 | 0.1571 | 0.9378 | 0.9385 | 1.2808 | 1.2809
150 | 0.1600 | 0.1573 | 0.9383 | 0.9389 | 1.2772 | 1.2758
155 0.1594 | 0.1575 | 0.9374 | 0.9383 | 1.2720 | 1.2768
160 | 0.1592 | 0.1576 | 0.9376 | 0.9389 | 1.2754 | 1.2818
165 0.1583 | 0.1582 | 0.9375 | 0.9387 | 1.2829 | 1.2803
170 | 0.1586 | 0.1572 | 0.9375 | 0.9385 | 1.2724 | 1.2815
175 0.1581 | 0.1575 | 0.9374 | 0.9384 | 1.2703 | 1.2829
180 | 0.1657 | 0.1474 | 0.9363 | 0.9491 | 2.7411 | 1.0875
185 0.1580 | 0.1577 | 0.9374 | 0.9387 | 1.2747 | 1.2782
190 | 0.1581 | 0.1572 | 0.9378 | 0.9388 | 1.2785 | 1.2852
195 0.1583 | 0.1574 | 0.9371 | 0.9388 | 1.2759 | 1.2793
200 | 0.1576 | 0.1574 1 0.9376 | 0.9386 | 1.2792 | 1.2790
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

205 ] 0.1572 | 0.1589 | 0.9371 | 0.9391 | 1.2770 | 1.2746
210 | 0.1564 | 0.1580 | 0.9368 | 0.9391 | 1.2745 | 1.2821
215 | 0.1560 | 0.1575 1 0.9373 | 0.9394 | 1.2769 | 1.2700
220 | 0.1576 | 0.1568 | 0.9373 | 0.9391 | 1.2745 | 1.2775
225 | 0.1580 | 0.1573 | 0.9379 | 0.9393 | 1.2641 | 1.2791
230 | 0.1585 | 0.1573 | 0.9378 | 0.9388 | 1.2757 | 1.2563
235 | 0.1601 | 0.1557 | 0.9378 | 0.9405 | 1.2808 | 1.2679
240 ] 0.1600 | 0.1579 | 0.9383 | 0.9391 | 1.2772 | 1.2716
245 | 0.1594 | 0.1701 | 0.9374 | 0.9290 | 1.2720 | 1.2377
250 | 0.1592 | 0.1566 | 0.9376 | 0.9391 | 1.2754 | 1.2751
255 1 0.1584 | 0.1566 | 0.9375 | 0.9391 | 1.2829 | 1.2742
260 | 0.1586 | 0.1566 | 0.9375 | 0.9392 | 1.2724 | 1.2836
265 | 0.1581 | 0.1569 | 0.9374 | 0.9397 | 1.2703 | 1.2785
270 | 0.1657 | 0.1635 | 0.9363 | 0.9377 | 2.7411 | 3.1347
275 ] 0.1579 | 0.1566 | 0.9374 | 0.9394 | 1.2747 | 1.2810
280 | 0.1582 | 0.1569 | 0.9378 | 0.9390 | 1.2785 | 1.2851
285 | 0.1583 | 0.1577 | 0.9371 | 0.9387 | 1.2759 | 1.2614
290 ] 0.1578 | 0.1567 | 0.9376 | 0.9391 | 1.2792 | 1.2740
295 | 0.1571 | 0.1652 | 0.9371 | 0.9331 | 1.2770 | 1.2346
300 | 0.1564 | 0.1576 | 0.9368 | 0.9395 | 1.2745 | 1.2767
305 | 0.1561 | 0.1588 | 0.9373 | 0.9379 | 1.2769 | 1.2498
310 | 0.1577 | 0.1570 | 0.9373 | 0.9390 | 1.2745 | 1.2640
315 | 0.1580 | 0.1573 | 0.9379 | 0.9391 | 1.2641 | 1.2816
320 | 0.1586 | 0.1581 | 0.9378 | 0.9389 | 1.2757 | 1.2684
325 10.1602 | 0.1580 | 0.9378 | 0.9387 | 1.2808 | 1.2851
330 ] 0.1601 | 0.1579 | 0.9383 | 0.9383 | 1.2772 | 1.2738
335 | 0.1594 | 0.1581 | 0.9374 | 0.9382 | 1.2720 | 1.2719
340 | 0.1592 | 0.1574 | 0.9376 | 0.9387 | 1.2754 | 1.2815
345 | 0.1585 | 0.1574 | 0.9375 ] 0.9384 | 1.2829 | 1.2865
350 | 0.1587 | 0.1566 | 0.9375 | 0.9391 | 1.2724 | 1.2784
355 1 0.1583 | 0.1565 | 0.9374 | 0.9373 | 1.2703 | 1.2746
360 | 0.1657 | 0.0000 | 0.9363 | 1.0000 | 2.7411 | 1.0000
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

B.7 Results for sinewave01_256.bmp image

Rotation
in
Degrees| SIQ ed | HIQ ed |SIQ rb|HIQ rb|SIQ en [HIQ en
0 0.0128 | 0.0120 | 0.9995 | 0.9996 | 0.7272 | 0.7712
5 0.0129 | 0.0120 | 0.9954 | 0.9959 | 1.0121 | 1.0130
10 0.0129 | 0.0121 | 0.9951 | 0.9955 | 1.0091 | 0.9851
15 0.0129 | 0.0121 | 0.9951 | 0.9954 | 1.0197 | 1.0175
20 0.0129 | 0.0122 | 0.9952 | 0.9955 | 0.9961 | 1.0144
25 0.0129 | 0.0123 | 0.9952 | 0.9957 | 1.0136 | 0.9986
30 0.0129 | 0.0124 | 0.9953 | 0.9962 | 1.0237 | 1.0188
35 0.0129 | 0.0125 | 0.9954 | 0.9956 | 1.0024 | 1.0125
40 0.0129 | 0.0126 | 0.9954 | 0.9957 | 1.0198 | 1.0109
45 0.0129 | 0.0127 | 0.9957 | 0.9958 | 0.7873 | 1.0245
50 0.0129 | 0.0128 | 0.9954 | 0.9955 | 1.0198 | 1.0184
55 0.0129 | 0.0130 | 0.9954 | 0.9955 | 1.0024 | 1.0211
60 0.0129 | 0.0131 | 0.9953 | 0.9953 | 1.0237 | 0.9999
65 0.0129 | 0.0132 | 0.9952 | 0.9955 | 1.0136 | 1.0119
70 0.0129 | 0.0132 | 0.9952 | 0.9954 | 0.9961 | 1.0118
75 0.0129 | 0.0133 | 0.9951 | 0.9954 | 1.0197 | 0.9852
80 0.0129 | 0.0134 | 0.9951 | 0.9955 | 1.0091 | 1.0159
85 0.0129 | 0.0134 | 0.9954 | 0.9955 | 1.0121 | 1.0112
90 0.0128 | 0.0134 | 0.9995 | 0.9994 | 0.7272 | 0.8620
95 0.0129 | 0.0134 | 0.9954 | 0.9959 | 1.0121 | 1.0088
100 | 0.0129 | 0.0134 | 0.9951 | 0.9955 | 1.0091 | 1.0146
105 0.0129 | 0.0133 | 0.9951 | 0.9955 | 1.0197 | 0.9977
110 | 0.0129 | 0.0133 | 0.9952 | 0.9956 | 0.9961 | 1.0122
115 0.0129 | 0.0132 | 0.9952 | 0.9956 | 1.0136 | 1.0011
120 | 0.0129 | 0.0131 | 0.9953 | 0.9958 | 1.0237 | 0.9997
125 0.0129 | 0.0130 | 0.9954 | 0.9958 | 1.0024 | 0.9947
130 | 0.0129 | 0.0129 | 0.9954 | 0.9956 | 1.0198 | 1.0223
135 0.0129 | 0.0127 | 0.9957 | 0.9957 | 0.7873 | 1.0251
140 | 0.0129 | 0.0126 | 0.9954 | 0.9955 | 1.0198 | 0.9997
145 0.0129 | 0.0125 | 0.9954 | 0.9952 | 1.0024 | 1.0150
150 [ 0.0129 | 0.0124 | 0.9953 | 0.9955 | 1.0237 | 1.0191
155 0.0129 | 0.0123 | 0.9952 | 0.9954 | 1.0136 | 0.9984
160 | 0.0129 | 0.0122 | 0.9952 | 0.9954 | 0.9961 | 1.0189
165 0.0129 | 0.0121 | 0.9951 | 0.9954 | 1.0197 | 1.0154
170 ] 0.0129 | 0.0121 | 0.9951 | 0.9954 | 1.0091 | 1.0111
175 0.0129 | 0.0120 | 0.9954 | 0.9958 | 1.0121 | 1.0127
180 | 0.0128 | 0.0120 | 0.9995 | 0.9996 | 0.7272 | 0.7746
185 0.0129 | 0.0120 | 0.9954 | 0.9957 | 1.0121 | 1.0124
190 | 0.0129 | 0.0121 | 0.9951 | 0.9956 | 1.0091 | 1.0140
195 0.0129 | 0.0121 | 0.9951 | 0.9955 | 1.0197 | 1.0136
200 | 0.0129 | 0.0122 | 0.9952 | 0.9956 | 0.9961 | 1.0176
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

205 | 0.0129 | 0.0123 | 0.9952 | 0.9957 | 1.0136 | 1.0027
210 [ 0.0129 | 0.0124 | 0.9953 | 0.9956 | 1.0237 | 1.0177
215 10.0129 | 0.0125 | 0.9954 | 0.9960 | 1.0024 | 1.0108
220 | 0.0129 | 0.0126 | 0.9954 | 0.9959 | 1.0198 | 1.0100
225 | 0.0129 | 0.0127 | 0.9957 | 0.9956 | 0.7873 | 1.0337
230 | 0.0129 | 0.0128 | 0.9954 | 0.9958 | 1.0198 | 1.0181
235 10.0129 | 0.0130 | 0.9954 | 0.9953 | 1.0024 | 1.0154
240 | 0.0129 | 0.0131 | 0.9953 | 0.9954 | 1.0237 | 1.0019
245 10.0129 | 0.0132 | 0.9952 | 0.9955 | 1.0136 | 1.0022
250 | 0.0129 | 0.0132 | 0.9952 | 0.9956 | 0.9961 | 1.0191
255 10.0129 | 0.0133 | 0.9951 | 0.9954 | 1.0197 | 0.9889
260 | 0.0129 | 0.0134 | 0.9951 | 0.9955 | 1.0091 | 1.0130
265 | 0.0129 | 0.0134 | 0.9954 | 0.9959 | 1.0121 | 1.0069
270 1 0.0128 | 0.0134 | 0.9995 | 0.9994 | 0.7272 | 0.8635
275 | 0.0129 | 0.0134 | 0.9954 | 0.9955 | 1.0121 | 1.0091
280 | 0.0129 | 0.0134 | 0.9951 | 0.9957 | 1.0091 | 1.0141
285 | 0.0129 | 0.0133 | 0.9951 | 0.9955 | 1.0197 | 0.9988
290 | 0.0129 | 0.0133 | 0.9952 | 0.9956 | 0.9961 | 1.0180
295 | 0.0129 | 0.0132 |0.9952 | 0.9958 | 1.0136 | 1.0042
300 ] 0.0129 | 0.0131 | 0.9953 | 0.9959 | 1.0237 | 1.0007
305 | 0.0129 | 0.0130 | 0.9954 | 0.9959 | 1.0024 | 0.9889
310 | 0.0129 | 0.0129 | 0.9954 | 0.9958 | 1.0198 | 1.0215
315 ] 0.0129 | 0.0127 | 0.9957 | 0.9957 | 0.7873 | 1.0345
320 | 0.0129 | 0.0126 | 0.9954 | 0.9957 | 1.0198 | 1.0175
325 ] 0.0129 | 0.0125 | 0.9954 | 0.9958 | 1.0024 | 1.0124
330 | 0.0129 | 0.0124 | 0.9953 | 0.9950 | 1.0237 | 1.0170
335 | 0.0129 | 0.0123 | 0.9952 | 0.9955 | 1.0136 | 1.0043
340 ] 0.0129 | 0.0122 | 0.9952 | 0.9956 | 0.9961 | 1.0192
345 1 0.0129 | 0.0121 | 0.9951 | 0.9955 | 1.0197 | 1.0179
350 ] 0.0129 | 0.0121 | 0.9951 | 0.9955 ] 1.0091 | 0.9845
355 10.0129 | 0.0120 | 0.9954 | 0.9957 | 1.0121 | 1.0124
360 | 0.0128 | 0.0120 | 0.9995 | 0.9996 | 0.7272 | 0.7712
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

B.8 Results for sinewavel0_256.bmp image

Rotation
in
Degrees| SIQ ed HIQ ed SIQ rb HIQ rb{SIQ en |HIQ en
0 0.1292 0.1211 0.9518 { 0.9593 | 0.6791 | 0.7634
5 0.1293 0.1213 0.9475 | 0.9547 | 0.9923 | 0.9950
10 0.1292 0.1210 0.9474 | 0.9541 | 0.9737 | 1.0202
15 0.1288 0.1217 0.9474 |1 0.9534 | 0.9975 | 1.0159
20 0.1289 0.1223 0.9476 | 0.9533 | 1.0147 | 1.0230
25 0.1285 0.1231 0.9477 | 0.9528 | 0.9796 | 1.0188
30 0.1286 0.1240 0.9478 | 0.9520 | 0.9955 | 1.0153
35 0.1283 0.1250 0.9480 | 0.9514 | 0.9522 | 1.0254
40 0.1283 0.1261 0.9482 | 0.9501 | 0.9982 | 0.9677
45 0.1284 0.1271 0.9484 | 0.9495 | 0.7945 | 1.0502
50 0.1283 0.1283 0.9482 | 0.9490 | 0.9982 | 1.0164
55 0.1283 0.1294 0.9480 | 0.9477 | 0.9522 | 1.0198
60 0.1286 0.1304 0.9478 | 0.9470 | 0.9955 | 1.0046
65 0.1285 0.1311 0.9477 1 0.9464 | 0.9796 | 1.0093
70 0.1289 0.1318 0.9476 | 0.9462 | 1.0147 | 1.0134
75 0.1288 0.1326 0.9474 | 0.9456 | 0.9975 | 0.9634
80 0.1292 0.1330 0.9474 | 0.9452 | 0.9737 | 1.0068
85 0.1293 0.1332 0.9475 {1 0.9452 | 0.9923 | 0.9948
90 0.1292 0.1334 0.9518 | 0.9502 | 0.6791 | 0.9295
95 0.1293 0.1334 0.9475 | 0.9453 | 0.9923 | 0.9919
100 0.1292 0.1332 0.9474 | 0.9454 | 0.9737 | 1.0033
105 0.1288 0.1324 0.9474 | 0.9456 | 0.9975 | 0.9958
110 0.1289 0.1322 0.9476 | 0.9457 | 1.0147 | 1.0133
115 0.1284 0.1313 0.9477 1 0.9468 | 0.9796 | 1.0117
120 0.1286 0.1303 0.9478 | 0.9472 | 0.9955 | 1.0132
125 0.1282 0.1295 0.9480 | 0.9481 | 0.9522 | 1.0117
130 0.1282 0.1284 0.9482 | 0.9489 | 0.9982 | 1.0116
135 0.1284 0.1275 0.9484 | 0.9496 | 0.7945 | 1.0474
140 0.1282 0.1262 0.9482 | 0.9502 | 0.9982 | 1.0040
145 0.1282 0.1251 0.9480 | 0.9508 | 0.9522 | 1.0230
150 0.1286 0.1243 0.9478 | 0.9516 | 0.9955 | 1.0166
155 0.1284 0.1233 0.9477 | 0.9522 | 0.9796 | 1.0201
160 0.1289 0.1224 0.9476 | 0.9531 | 1.0147 | 1.0301
165 0.1288 0.1219 0.9474 | 0.9535 | 0.9975 | 1.0134
170 0.1292 0.1210 0.9474 | 0.9540 | 0.9737 | 1.0198
175 0.1293 0.1218 0.9475 | 0.9547 | 0.9923 | 0.9793
180 0.1292 0.1214 0.9518 | 0.9586 | 0.6791 | 0.8216
185 0.1293 0.1218 0.9475 | 0.9549 | 0.9923 | 0.9823
190 0.1292 0.1207 0.9474 | 0.9540 | 0.9737 | 1.0219
195 0.1288 0.1218 0.9474 | 0.9536 | 0.9975 | 1.0191
200 0.1289 0.1223 0.9476 | 0.9533 | 1.0147 | 1.0261
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205 | 0.1285 0.1230 0.9477 | 0.9529 | 0.9796 | 1.0210
210 | 0.1286 0.1241 0.9478 | 0.9518 | 0.9955 | 1.0091
215 | 0.1283 0.1250 0.9480 | 0.9513 | 0.9522 | 1.0260
220 | 0.1283 0.1261 0.9482 | 0.9505 | 0.9982 | 0.9832
225 | 0.1284 0.1272 0.9484 | 0.9495 | 0.7945 | 1.0447
230 | 0.1283 0.1282 0.9482 | 0.9484 | 0.9982 | 1.0113
235 | 0.1283 0.1294 0.9480 | 0.9476 | 0.9522 | 1.0190
240 | 0.1286 0.1304 0.9478 | 0.9467 | 0.9955 | 1.0085
245 | 0.1285 0.1311 0.9477 | 0.9464 | 0.9796 | 1.0137
250 | 0.1289 0.1319 0.9476 | 0.9461 | 1.0147 | 1.0175
255 | 0.1288 0.1327 0.9474 | 0.9456 | 0.9975 | 0.9479
260 | 0.1292 0.1329 0.9474 | 0.9453 | 0.9737 | 1.0023
265 | 0.1293 0.1332 0.9475 | 0.9455 | 0.9923 | 0.9950
270 | 0.1292 0.1334 0.9518 | 0.9501 | 0.6791 | 0.9136
275 | 0.1293 0.1334 0.9475 | 0.9454 | 0.9923 | 0.9939
280 | 0.1292 0.1331 0.9474 | 0.9453 | 0.9737 | 1.0041
285 | 0.1288 0.1324 0.9474 | 0.9455 | 0.9975 | 0.9595
290 | 0.1288 0.1322 0.9476 | 0.9458 | 1.0147 | 1.0108
295 | 0.1284 0.1312 0.9477 | 0.9466 | 0.9796 | 1.0018
300 | 0.1286 0.1303 0.9478 | 0.9475 | 0.9955 | 1.0139
305 | 0.1282 0.1295 0.9480 | 0.9474 | 0.9522 | 1.0175
310 | 0.1282 0.1284 0.9482 | 0.9486 | 0.9982 | 1.0163
315 | 0.1284 0.1274 0.9484 | 0.9494 | 0.7945 | 1.0453
320 | 0.1282 0.1262 0.9482 | 0.9503 | 0.9982 | 0.9770
325 | 0.1282 0.1252 0.9480 | 0.9508 | 0.9522 | 1.0303
330 | 0.1286 0.1242 0.9478 | 0.9515 | 0.9955 | 0.9910
335 | 0.1284 0.1233 0.9477 | 0.9523 | 0.9796 | 1.0292
340 | 0.1288 0.1223 0.9476 | 0.9531 | 1.0147 | 1.0296
345 | 0.1288 0.1218 0.9474 | 0.9539 | 0.9975 | 1.0094
350 | 0.1292 0.1212 0.9474 | 0.9542 | 0.9737 | 1.0190
355 | 0.1293 0.1212 0.9475 | 0.9546 | 0.9923 | 0.9979
360 | 0.1292 0.1211 0.9518 | 0.9593 | 0.6791 | 0.7634

187




Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

B.9 MTF Results
Frequency
( No of cycles across
the width of the image) SIQ_mtf HIQ_mtf

0 1.0000 1.0000
2 0.9874 0.9893
4 0.9504 0.9577
6 0.8912 0.9060
8 0.8132 0.8294
10 0.7209 0.7960
12 0.6195 0.6950
14 0.5142 0.6075
16 0.4105 0.56349
18 0.3131 0.7606
20 0.2259 0.2580
22 0.1519 0.2174
24 0.0927 0.1650
26 0.0490 0.1189
28 0.0202 0.0856
30 0.0046 0.0581
32 0.0000 0.0409
34 0.0036 0.0313
36 0.0125 0.0283
38 0.0239 0.0266
40 0.0352 0.0292
42 0.0445 0.0325
44 0.0505 0.0353
46 0.0525 0.0434
48 0.0506 0.0403
50 0.0453 0.0400
52 0.0376 0.0386
54 0.0285 0.0358
56 0.0194 0.0351
58 0.0113 0.0319
60 0.0051 0.0291
62 0.0013 0.0268
64 0.0000 0.0317
66 0.0011 0.0234
68 0.0042 0.0224
70 0.0084 0.0217
72 0.0131 0.0213
74 0.0174 0.0206
76 0.0207 0.0204
78 0.0225 0.0202
80 0.0226 0.0199

188




Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

82 0.0211 0.0202
84 0.0181 0.0191
86 0.0143 0.0190
88 0.0100 0.0189
90 0.0060 0.0190
92 0.0028 0.0194
94 0.0007 0.0195
96 0.0000 0.0199
98 0.0007 0.0203
100 0.0026 0.0208
102 0.0053 0.0211
104 0.0085 0.0215
106 0.0116 0.0218
108 0.0142 0.0221
110 0.0158 0.0217
112 0.0162 0.0224
114 0.0155 0.0227
116 0.0136 0.0231
118 0.0110 0.0252
120 0.0079 0.0206
122 0.0048 0.0220
124 0.0023 0.0223
126 0.0006 0.0225
128 0.0000 0.0137
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Appendix C

Tabular Results of *ART Experiments

This appendix contains the tabular results of the *ART experiment. Note that a large
number o f e xperiments were done to arrive the *ART results. However only the ones

whose graphs are shown and discussed in chapter 4 are provided here.

C.1 Comparison of ART, MART, SIRT and SART

Normalized Euclidean distance
at convergence Number of lterations to Converge
Test Image ART MART SIRT SART ART MART SIRT SART

A 0.0685 0.2197 0.0680 0.0542 11 3 250 250
B 0.0574 0.3463 0.0654 0.05B5 10 2 183 250
C 0.0746 0.1223 0.0895 0.0688 35 3 250 250
D 0.2078 0.5006 0.2127 0.1805 9 3 233 250
E 0.3818 0.4645 0.3928 0.3669 12 2 250 250
F 0.0064 0.2918 0.0183 0.0184 27 B 250 250
G 0.1143 0.2733 0.1173 0.1010 9 1 210 250
H 0.00866 0.2661 0.0263 0.0236 23 7 250 250
I 0.21868 0.3395 0.2184 0.1866 9 3 206 250

C.2 Comparison of Seed Images in “ART Reconstruction

Seed Image
{Algorithm: MART)
Test Image flat meshgrid| FBP

0.1393 | 0.1084 0.0789
0.1811 0.12%1 0.1003
0.0975 0.0946 0.0885
0.3862 0.3343 0.2841
0.4418 0.4348 0.4227
0.1547 | 0.0858 0.0779
0.1986 0.1686 0.1424
0.1758 01341 0.1186
0.2969 0.2730 0.2518

| LMo ey ||
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C.3 Comparison of the different Projection Angle Ordering Schemes in *ART

Projection Angle Ordering Schemes

Random
Sequential Fixed Angle Access Multi-teve! Weighted
Access Scheme | Access Scheme Scheme Access Scheme | Distance Scheme
Test Image {SAS) (FAAS. 30) (RAS) {MLSAS) {WDAS)
A 0.1559 0.1393 0.1453 0.1248 0.1255
B 0.2269 0.1911 0.1822 0.1588 0.1579
C 0.0991 0.0975 0.1011 0.0944 0.0350
D 0.4194 0.3862 0.4187 0.3635 0.3536
E 0.4457 0.4418 0.4553 0.4419 0.4376
F 0.1829 0.1547 0.1403 0.1221 0.1210
G 0.2153 0.1986 0.1803 0.1842 0.1818
H 0.2040 0.1798 0.1688 0.1552 0.1577
1 0.3102 0.2969 0.2813 0.2851 0.2827
C.4 Comparison of the different Weighting Schemes in *ART
Weighting Schemes
Distance of
center of pixel
Length of ray |Distance of Pixel-| from farthest
within Pixel Center from corner of
Binary Scheme Scheme Center of Ray adjacent Ray
Test Image (SAS) (INTY (DIST) Scheme (CONT}
A 0.0735 0.0782 0.0789 0.0661
B 0.0917 0.0947 0.1003 0.0825
C 0.0622 0.0764 0.0885 0.0560
D 0.2724 0.2848 0.2841 0.2451
E 0.3730 0.4330 0.4227 0.3357
F 0.0723 0.0798 0.0773 0.0651
G 0.1348 0.1408 0.1424 0.1214
H 0.10B62 0.1147 0.1156 0.0956
| 0.2347 0.2527 0.2518 0.2112
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