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ln most applications of image processing data is collected and displayed in square pixels.

Hexagonal pixels offer the advantage of greater rotational symmetry in addition to close

packed structure without gaps and a more circular (isotropic) pixel. I compared the image

quality of images using square pixels with that of images employing hexagonal pixels.

The comparison was done using various images, each considering a different aspect of

geometry (i.e., lines at different angles, curves, etc.). The square pixel images were

constructed using the average of a square area of smaller square pixels. Hexagonal pixel

images were constructed using two techniques. The first one was called the "two-

template approach", wherein two different templates were used to create a close packed

hexagonal image from smaller square pixels. The second approach was called the "six-

neighbor approach" which creates a rectangular template using the six neighbors of a

hexagonal pixel. Euclidean distance, Resemblity, Entropy and MTF were the image

quality measures used to compare the square pixel and hexagonal pixel images. Based on

the results obtained using the image quality measures employed, I conclude that contrary

to my intuition and their widespread use in nature (retinas and ommatidia), hexagonal

pixels do not appear to offer any significant advantage over conventional square pixels.

In case of reconstructions from highly underdetermined equations using iterative

Algebraic Reconstruction Techniques (*ART including AART, MART, SIRT and

SART), the reconstruction quality is dependent on many factors. In this thesis I

implemented code for *ART and studied the effect of various seed (starting) images,

projection angle ordering schemes and pixel weighting schemes on reconstruction

quality. I used Euclidean distance for quantitative comparison of the reconstruction

vi
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quality. Based on the experiments performed I arrived at four results: i) the Euclidean

distance measure is least (best) for SART, followed by ART, SIRT and MART; ii) the

Euclidean distance measure is best for the seed image generated using Fourier

backprojection technique, followed by the MatlabrM meshgrid and flat (constant) seeds;

iii) of the various projection angle ordering schemes used for the experiments, the'WDAS

(Weighted Distance Access Scheme) gave the lowest Euclidean distance followed by the

MLSAS (Multilevel resolution Select Access Scheme), FAAS (Fixed Angle Access

Scheme), RAS (Random Access Scheme) and SAS (Sequential Access Scheme); and iv)

of the different pixel weighting schemes used, the CONT (contribution made by pixel on

adjacent ray) scheme, introduced here, gave the least Euclidean distance measure

followed by BIN (Binary scheme), DIST (distance of center of pixel from center of ray)

and INT (length of center of ray within a pixel) weighting scheme. These optimizations

should help in the search for a computed tomography algorithm that yields the best image

quality per x-ray dose used.
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Chapter l.Introduction, Motivation and Objective of the Thesis

Introduction, Motivation and Objective of the Thesis

Man, the crowning glory of creation has come a long way from the days where his only

aim was survival. He has progressed steadily from the days of cave dwelling and coarse

creature to the present refined sophisticated being. Of these periods none has been as

stunning as the present era. One area where man has advanced leaps and bounds is

medical science. One prominent fact that has underlined these developments is that it has

been a collective achievement; no single profession (clinicians, radiologists or engineers)

can claim the entire credit. This has been made possible with the collaboration of

knowledge, ideas and ability. No other example would fit the bill as perfectly as the

advancement in Computed Tomogaphy.

Chapter I

1.1 What is Computed Tomography?

Computed Tomography (CT) is an imaging technique that has revolutionized the field of

medical diagnostics. Computed Tomography is b ased on the x-ray principle: as x-rays

pass through the body they are absorbed or attenuated (weakened) at differing levels

creating a matrix or profile of x-ray beams of different strength. This x-ray profile is

registered on film, thus creating an image. Each prof,rle is then backwards reconstructed

(i.e. back-projected) by a dedicated computer into a two-dimensional image of the slice

that was scanned. This is shown in Figure 1-1. CT is used in many areas such as

nondestructive evaluation of industrial and biological specimens, radio astronomy,

electron microscopy, optical interferometry, X-ray crystallography, petroleum



engineering and geophysical exploration. Indirectly, it has also led to new developments

in its predecessor techniques in radiographic imaging.

CT has the ability to image a combination of soft tissue, bone and blood vessels with high

contrast. CT can be very useful in providing diagnostic information on several areas of

the body including brain, eyes, heart, liver, kidney, woman's breast, etc.

Chapter 1. Introduction, Motivation and Objective of the Thesis
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Figure l-1. Diagram showing relationship ofx-ray tube, patient, detector,
and image reconstruction computer and display monitor [24]. Copyright @
1997-2001 Imaginis Corporation All rights reset-ved.

1.2 Mathematical Representation of CT

Mathematically, the main principle behind CT imaging is estimating an image (object)

from its projections. In ordinary radiography, a fwo dimensional (2-D) shadow of a three-

dimensional (3-D) body is produced on film by irradiating the body with X-ray photons

as shown in Figure 1-2. But historically imaging a 3-D body is accomplished by

reconstructing one 2-D section at a time through the use of one-dimensional (1-D)

projections as shown in Figure 1-3. Exceptions to this are the Dlmamic Spatial

Reconstructor developed at the Mayo Clinic 140] [41], where a series of 2-D projection



images are obtained by inadiating the body of interest on a fluorescent screen, and

single-photon emission computed tomography (SPECT), where a series of 2-D projection

images are obtained using a gamma camera [45].
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,4rrit\'ùl
Diu-¡tnr:

Figure 1.2. Diagram Graphic/Mathetnatical model showing CT [17J. A 2-D shadow
of a 3-D body is produced on film by itadiaÍing the body with X-ray photons.

Theoretically, every cone-beam datum is a linear integral along an X-ray path. To

facilitate algorithmic implementation, the problem is cast in discrete domains. After the

object and detection plate are made discrete, a continuous cone-beam projection frame is

approximated as a set of values on a 2-D detection grid. Each of the values equals a sum

of weighted values of those voxels that are in a neighborhood of the corresponding X-ray

path.
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Simplifyrng the 3-D problem of CT into 2-D,

below -
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Given (the graphical representation is shown in Figure I-4): -

At 0o angle, the projection values P (0:0) : {at, a2, a3, aq, as}

At 90o angle, the projection values P (0:90) : {bt, bz, bt, bq, bs}

Findflxy).

Note that Figure 1-4 shows anx-tay source emitting parallel beams of x-rays. Different

x-ray sources can be used. Some emit fan-beam x-rays. This thesis considers the CT

problem with a parallel beam x-ray source. Also it deals in 2-D, since a 3-D problem can

be reduced to a two-dimensional problem by recognizing that if a honzontal (planar)

cross-section of the mass distribution is known at every height then all of the three-

dimensional information is readily available.

it can be expressed mathematically as
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Figure l-4. Graphical representation of the mathematical model of
fonuard CT. The X-ray source and detector are rotated around the object
and the detector readings are recorded at each angle. These projection
values at'e used to reconstruct back the intage. Note that more the angles,
the befter the resolution of the reconstructed image, but higher would be
the dose.
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1.3 Challenges of Computed Tomography

X-rarr So urce

To obtain high quality tomograms, image reconstmction is essential. A reconstruction

algorithm determines, along with the measured data, how accurately the linear

attenuation c oefficient c an b e c alculated i n m edical x -ray C T. In c linical s canring t he

efficiency of the detectors is constrained both by techniques and costs. Since the patient's

dose must be limited 1231, the most convenient way to improve the accuracy is to

optimize the reconstruction algorithm. High perforrnance algorithms are sought to

achieve reconstructions yielding more diagnostic information.
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Several key factors charactenze the perfoÍnance of a CT reconstruction algorithm. The

first and most important one is accuracy: how faithfully the precious diagnostic

information can be reconstructed and presented in the tomogram. The image quality can

be evaluated by different criteria, each charac|enzing a specific kind of information.

Subjective image quality is also critical since most images are interpreted visually.

Freedom from arlifacts is crucial to avoid misleading diagnostic human interpretations.

Another important factor is the computational speed. Fast reconstruction is always

expected to reduce the diagnostic time. Other factors include how flexible the algorithm

is, how easy it is to implement, etc. Improving the image quality when there is limited

amount of projection data is also important in x-ray CT.

Radiation doses from CT scans are often higher than needed and may contribute to cancer

later in life (according to studies published l24l in the American Journal of

Roentgenology). Even though CT scans are very beneficial in detecting disease,

researchers have found that many centers use the same CT settings on children as they do

on adults, possibly exposing children to radiation levels approximately five times [24]

higher than necessary to obtain a quality image. CT scans account for approximately 4o/o

of medical imaging exams, however, research shows that CT scans contribute to 40o/o of

the total amount of radiation received from diagnostic tests. ln a study, conducted by

Lane Donnelly, MD, a radiologist from the Children's Medical Center in Cincirurati, and

his colleagues, the researchers found that approximately 600,000 abdominal and head CT

examinations are annually performed in children under the age of 15 years, a rough

estimate is that 500 of these individuals might ultimately die from cancer attributable to

the CT radiation pfl. The number of CT scans performed in recent years has also risen

Chapter l.Introduction, Motivation and Objective of the Thesis



dramatically, further creating the need for minimizingradiation exposure during the test.

In most cases, the benefits of hnding disease with a CT scan outweigh the risks of X-Ray

radiation exposure andlor injections of imaging contrast and use of sedatives during the

scan. However, there is an important need to reduce the dose a patient receives in CT.

From the forward-CT standpoint, the more the projection angles the higher is the dose.

From CT image reconstruction standpoint, one cannot always get away with less

projection data, since it will reduce the quality of the reconstructed image.

Chapter 1. Introduction, Motivation and Objective of the Thesis

Reconstruction T omography from a l imited n umber o f p rojections h as a lways b een o f

vital interest. Because of the need to protect the patient from an excessive dose, it is

desirable to take as few projections as possible as is consistent with the goal to get a

medically acceptable reconsttuction [31]. In many applications of CT, the projection data

fiom only a small number of viewing angles are available. Images reconstructed from a

limitednumberofprojectionsusingtheconventionalimagereconstructionalgorithms,

which are designed for 360o coverage of viewing angles, suffer from a systematic

geometric distortion and severe streaking artifacts [31].

From a mathematical standpoint, the challenge of limited dose CT can be expressed as

reconstructing a n-by-n image using m projections with n equations each where *n.< ,'.

In this case the equations are highly underdetermined. If the equations are consistent,

then there exists infinitude of possible solutions. If they are not consistent, solutions may

be found within certain tolerances [18], again giving an infinite set.

The challenges of low dose CT can be summarized as below l37l -



a) Dose reduction: Projections need to be taken in as few angles and/or as few

photons per angle as possible.

Chapter 1. Introduction, Motivation and Objective of the Thesis

b) Accuracy: Reduce the number of false positives and false negatives in the

reconstruction.

c) Spatial resolution of the radiation collector

d) Size of the radiation source

e) Speed of the reconstruction algorithm. Fast reconstruction is always expected to

reduce the diagnostic time.

Ð Density resolution of the radiation collector

g) Computer time and storage

h) Ability of the chosen reconstruction algorithm to handle noise

i) Resolution actually needed for a given type of diagnosis l37l

1.4 Motivation and Objective of the thesis

The reconstruction quality of CT for providing better diagnosis can be improved by the

development of more efficient detectors, improving the display of the reconstruction or

by improving the algorithms used for reconstruction. The work in this thesis addresses

the latter two issues assuming that the detector quality has reached its limit.

The display of the reconstructed image is dependent on two main factors [46]:

a) Resolution of the display device

b) Pixel shape

The resolution of the display device depends on the display device hardware. While a

larger number of pixels has led to higher image resolution so far, any further pixel



number increase is known to adversely affect the sensitivity, Signal to Noise (SA{) ratio

and dynamic range, since the size of each pixel becomes increasingly smaller 146]. Even

though the pixel shape seems to play a crucial role in the display of images, not much

work has been done in the area of pixel shape. Hence in this thesis the task of comparing

the image quality based on pixel shape is undertaken.

Chapter 1. Introduction, Motivation and Objective of the Thesis

A circular pixel is the most suitable for an omni-directional image representation since

almost all camera systems are based on perspective projection. The geodesic dome has

been considered for spherical image representation [25]. However, in the geodesic dome,

the connections of neighborhood pixels are complex. Further, it is difficult to represent

the geodesic dome with a 2-D anay. The problem is the same for 2-D. The pixel shape is

usually square and not a circle.

This problem also exists in cell phone networks, where the shape of each cell (coverage

area of one cellular tower) has to be a circle because the signal is transmitted omni-

directionally pal. However, a cell is typically hexagonal in shape, since it provides the

ease of implementation and also resembles very closely to a circle.

Some of the properties of hexagons are as below -

a) A hexagon gives better rotational symmetry than a square. Rotational synmetry is

important in CT, because the projections are taken at different angles. Also certain

algorithms rotate the pixel [12]. These algorithms will become relatively easy if

the unit of measure (pixel) were as rotationally symmetrical as possible.

b)

c)

Hexagons give a closed-packed structure without gaps.

A point in the hexagonal raster has the same distance to all its six neighbors.



d) Relatively easy math compared to a circular pixel.

In spite of the merits of hexagons as described above, images have almost always been

represented in square pixels in CT. Researchers have preferred square pixels for the ease

and speed of computation. With computer speed increasing at a rapid rate and

sophisticated off-the-shelf software packages, it was time to investigate the quality of

hexagonal pixels over the traditional square pixels.

Chapter 1. Introduction, Motivation and Objective of the Thesis

In case of reconstructions from highly underdetermined equations, Algebraic

Reconstruction Techniques (*ART like AART, MART, SIRT and SART) prove very

helpful. The reconstruction quality of each of the techniques is dependent on various

factors some of which are explained below -
1) Nature of the original image: The performance of the algorithm will differ based

on the nature of the original image and what it contains in terms of objects,

contrast and resolution.

2) Ray Width: Generally in CT, instead of considering the ray as a single straight

line (no thickness), it is considered as a ray with thickness. The ray width refers to

the thickness of the ray. See Figure 1-5 for the graphical illustration of ray width.

Ray Gap: The ray gap refers to the gap between two adjacent rays. The lower the

ray gap the better the quality of the reconstructed image. Ray gaps could occur if

there are collimators between the x-ray source and the patient. See Figure 1-5 for

3)

the graphical illustration of ray gap.

4) Detector Width: The detector width refers to the width of the detectors. See

Figure 1-5 for the graphical illustration of detector width. The larger the detector

10
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width the lower the resolution of the reconstructed image. On the other hand, the

lower the detector width the lower would be the signal to noise ratio.

Detector Gap: In practical CT, the detectors are placed very close to one another.

However there is a gap kept between two neighboring detectors to prevent energy

transfer due to conduction between detectors. Also to reduce scattering noise

caused by scattering photons, collimators are kept between two adjacent detectors.

The gap b etween two adjacent d etectors i s referred to as the detector gap. S ee

Figure 1-5 for the graphical illustration of detector gap.

Pixel Width: This parameter refers to the width of the pixel in the original and

the seed image. See Figure 1-5 for the graphical representation of pixel width.

Weighting Scheme: The weight factors or the contribution that each pixel makes

in a ray are calculated using four different approaches. "Binary", "Length of ray

within a pixel", "Distance of center of pixel from center of ray" and

"Contribution made by the pixel in adjacent rays" are the four weighting schemes

presented in this thesis. The different schemes are explained in detail in section

4.5.

s)

6)

7)

8) Type of *ART: AART, MART, SIRT and SART differ from one another in

terms of the value of correction and the time at which it is applied.

9) Seed image: This is the initial estimate of the solution. 122] showed that the seed

image plays a role in the convergence and reconstruction quality.

10) Number of Cycles: This refers to the number of times the code loops through all

the angles and all the detectors for the entire image.

11



11) Projection angles: This parameter specifies the different angles at which the

projections are taken.

Chapter 1. Introduction, Motivation and Objective of the Thesis

l2)Projection Angle Ordering Scheme: This refers to the order in which the

projection angles ate considered. "Sequential", "Fixed Angle", "Random",

"Multilevel resolution access", "Weighted Distance" are the five projection angles

ordering schemes discussed in this thesis. See section 4.6 for the discussion on the

projection angle ordering schemes.

13)Relaxation Factor: The factor used for smoothing *ART (ART, MART, SIRT

and SART) correction matrix.

The different parameters are explained graphically in Figure 1-5. This thesis talks about

some of the factors affecting the performance and quality of the *ART reconstruction and

discusses the results.

D etectors

Ray Width Pixel \tVidrh

Ray Gap

Figure l-5. Illustrøtion of the dffirent paratnetets that ctffect
the convergence and quality of *ART reconstruction

D etector VVidth

Detector Gap

I
!
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Chapter 1.Introduction, Motivation and Objective of the Thesis

The first objective of the thesis is to compare hexagonal pixel resolution over square

pixel resolution using different image quality measures. The second objective of the

thesis is to study the effect of altemate seed images, projection angle ordering schemes

and pixel weighting schemes on the reconstruction quality of *ART.

1.5 Organization of the thesis

Chapter 2 talks about the square vs. hexagonal pixel comparison experiment and shows

the results, the third chapter of the thesis gives an introduction to the various

reconstruction techniques. The fourth chapter discusses the *ART experiments and

results. The fifth chapter talks about future work arising out of this thesis. Appendix A

includes the MatlabrM code written for my experiments. Due to the nature of the

experiments performed, the results are extensive and are summarized inside the chapters

for illustrative purposes. Interested readers can see the tabulated results in Appendix B

and C.
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Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

Comparison of square Pixel and Hexagonal Pixel Resolution

2.1 Overview

In most applications of image processing, data is collected and displayed in square pixels

116]. Hexagonal pixels offer the advantage of greater rotational symmetry in addition to

close packed structure without gaps and a nearly circular pixel. We compared the image

quality of images using square pixels with that of images employing hexagonal pixels.

The comparison was done using various images, each considering a different aspect of

geometry (i.e., lines at different angles, curves, etc.). The square pixel images were

constructed using the average of a square area of smaller square pixels. Hexagonal pixel

images were constructed using two techniques. The first one was called the "two-

template approach", wherein two different templates were used to create a close packed

hexagonal image from smaller square pixels. The second approach was called the "six

neighbor approach" which creates a rectangular template using the six neighbors of a

hexagonal pixel. Different image quality measurements such as Euclidean distance,

resemblance measure, entropy and modulation transfer function (MTF) were used to

compare the square pixel and hexagonal pixel images. Based on our results obtained

using these quality measures, we conclude that contrary to our intuition and their

widespread use in nature (retinas and ommatidia); hexagonal pixels appear to offer little

or no signif,rcant advantage over conventional square pixels.

Chapter 2
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Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

2.2lntroduction

For most modern display devices the shape of the pixels is square. It is due to this fact

that in most applications of image processing, including computed tomography; data is

gathered and arranged in square pixels 125). The compound eye of insects and

crustaceans is made of smaller, simple eye units, called ommatidia. The rhabdome is the

common area where light is transmitted to the reticular cells. Each of these cells is

connected to an axon and since each ommatidium consists of seven or eight reticular

cells, there are these number of axons, which form a bundle from each ommatidium.

Each ommatidium passes information about light from a single direction. The eyes of

strepsipteran insects are very unusual among living insects. Externally they differ from

the usual "insect plan" by presenting far fewer but much larger lenses. Beneath each lens

is its own independent retina. Anatomical and optical measurements indicate that each of

these units is image forming, so that the visual field is subdivided into and represented by

"chunks," unlike the conventional insect compound eye that decomposes the visual image

in a nearly point wise manner. This results in profound changes in the neural centers for

vision and implies major evolutionary changes [13]. The total image formed therefore is a

sum of the ommatidia fired. This resultant image can be thought of as a series of dots,

just like a computer image is composed of a series of discreet pixels. The more pixels, the

better the picture. Figure 2-1 shows the eyes of the mosquito. We can see that the

ommatidia are more hexagonal than square shaped. It is this natural occurrence that

motivated us to hypothesize that hexagonal pixels may provide abetter image quality

than square pixels.
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Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

Figure 2-1. The eyes of an insect such as a
mosquito have hexagonally arranged
ommatidia. fl01

2.3 Methods and Materials

2.3.1 Platform

The experiments were done on a Windowsg8 PC with 256M8 RAM and having a single

AMD-K6 450MHz processor. The image processing programs were written in MatlabrM.

The images that were used for comparison purposes were assorted test patterns and not

pafüal to any particular geometry. Some test patterns \Ã/ere mathematically created to

observe and verify the accuracy of the image comparison algorithms. All test images

were 256 by 256 pixels. Euclidean distance, resemblance measure, entropy and

modulation transfer function (MTF) were the different image quality measures used for

comparison. Figure 2-2 (a-h) show the different test patterns used for the experiment.

(a) admin256.bmp

t6

(b) balcony256.bmp
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(c) phantom256.bmp

(e) square256.bmp

(d) rand256.bmp

Figure 2-2. TesÍ images used for comparing scluc¿re and hexagonal pixel resolution. (a) University of
Manitoba Administration Building (courtesy of Prof. ll. Lehn, tJniversity of Manitoba, reproduced fi'om
his Digital Image Processing class). (b) Friends standing in balcony. (c) The Shepp-Logan brain
Phantom image (d) Random image: Image created by uniformly distributed random numbers (e) Regtlar
Sqttare Image - This image is constructed by having one value for all pixels ín a 8x8 square. (f) Regutør
Hexagon Image - This image is constructed by having one valuefor all pixels in a hexagon of length 4.5
pixels. (g) Sinewave image offrequency one across the wtdth of the image (h) Sine wave image of
frequency ten across the width of the image

(f) hexagon256.bmp

) sinewavel0_256.bmp
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Note that the test images are referred to with their file names in this chapter. For example

the University building image is stored in a file called admin256.bmp (Figure 2-2(a)).

The "friends standing in a balcony" image is called friends256.bmp (Figure 2-2(b)). The

Shepp-Logan brain phantom image is called phantom256.bmp (Figure 2-2(c)). The image

created by uniformly distributed random numbers is called rand256.bmp (Figure 2-2(d)).

The image created by 8 by 8 square blocks of uniform gray-level pixels is called

square256.b*p (Figure 2-2(e)). The image created by assigning one pixel value to all

pixels in a hexagon of length 4.5 is called hexagor256.bmp (Figure 2-2(Ð).The image

containing a horizontal sine wave of frequency one is called sinewaveOl _256.bmp

(Figure 2-2(gÐ and the image containing horizontal sine wave of frequency ten is called

sinewave 1 0 256.bmp (Figure 2-2(h)).

Chapter 2. Compaison of Square Pixel and Hexagonal Pixel Resolution

2.3.2 Euclidean Distance

Euclidean Distance is defined as the straight-line distance between two points. In a plane

withpoint p1 at(x1,y1) andpointp2 at@z,yz),it is ((x1 - *r)'+ Ot -yz)'¡t/'¡341.Fo,

comparing the difference between two images, the Euclidean Distance is calculated as the

square root of the sum of the difference of the squares of pixels. For example if x1, x2,

x3... ãra the pixel values of imagel at position pt,pz, p3... respectively andy1,y2,y3...

are the pixel values of image2 at the same positions then the per-pixel normalized

Euclidean distance for an mby n picture is calculated by Equation 1. ln equation 1, g

indicates the maximum possible gray level of the image. The normalization is done by

g^kn to make the Euclidean distance dimensionless (independent of size of image) and

gray scale independent.

18
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The Euclidean distance between Input Image and Output Image in

is given by

Figure 2-3. Graphical/Mathematical Representation of an Imaging
System. The numbers indicate pixel values.

16

Inraging
System

When two images are identical, the Euclidean distance measure will be 0. The maximum

value that the Euclidean distance can have is 1, which indicates that the difference

between the two images being compared is large.

Outp ut
Irnage

(1)

2.3.3 Resemblity (Resemblance) as an Image Quality measure

32vø+4

The fundamental difficulty of Euclidean distance is that it calculates the quality of the

image precisely, which could be different from human perception. To address this

problem, Comwell, Holdaway, and Uson introduced the resemblity measure [6] (for radio

astronomy). The resemblity measure is defined as the ratio of the value of a pixel to the

Figure 2-3 with g:32

= 0.0252

79



error between the true sky distribution and the reconstructed image. In image processing,

the ratio becomes the ratio of the value of a pixel to the error between the original image

and the reconstructed image. In layrnan's terms this can also be described as the visual

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

similarity between two images.

The resemblity measure [29] is

where g(ij) and f(ij) are the two images whose resemblance to each other needs to be

calculated. The resembility measure, like the normalized Euclidean Distance, is

dimensionless (not dependent on the size of the image) and gray-scale independent. The

resemblity measure of two identitical images will be 1. The resemblity is lowest if f is

zero at all points where g is non-zero and vice versa. The lowest value of resemblity is 0.

The resemblity measure cannot be greater than 1. It is interesting to note that the

resemblity measure of two images where/oc g is 1. Also I calculated the resemblity of

two uniformly distributed random images. The resemblity interestingly came close to 0.7

everytime.

given in equation 2.

MM

II sQ,¡)fQ,¡)
r=1 j=t

XSD =

Zl,¡(¡,¡)'./II sQ,i)'

The resemblity (resemblance) measure between the inputfli, j) and output g(i, j) image of

Figure 2-3 when calculated will come to 0.99955.

(2)
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2.3.4 Entropy as an Image Quality measure

Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

To quantify the information of an image (the digital number of pixels) is similar to

quantifying the information of communication. According to Shannon's assumption, one

element of a large number of messages from an information source is just as likely as

another, so the digital number of one pixel in an image is just as likely as another pixel.

In any one image the number of pixels can be very large. ln such cases, to quantify the

information content of an image one can just satisfy the Shannon's assumption. Hence, it

is reasonable to use Shannon's entropy in image analysis 130]. By applying Shan¡on's

entropy in evaluating the information content of an image, the formula is modified as in

equation 3:

where G is the number of grey levels in the image's histogram ranging for a typical 8-bit

image between 0 To 255 and d(i) is the normalized frequency of occurrence of each grey

level such thatäd|):l. To sum up the self-information of each grey level from the

image, theaverage information content is estimated in the units of bitsper pixel. The

entropy of an image is not an ideal measure for its information content [30]. It depends

only o n the probability of the elements o f the image and totally disregards the spatial

distribution of the pixel values. Therefore the image of a gray ramp can have the same

entropy as random noise as long as the values have the same probability distribution. If

entropy is used as the image quality measure for determining the quality of an imaging

system, the ratio of the entropy of output image to the entropy of the input image is

calculated. The imaging system is expected to preserve the amount of information in the

G

H = ->a(i)tog,[a(i)]
i=l

(3)
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output. Hence the ratio is expected to be as close as possible to 1. Depending upon the

nature of noise that the imaging system introduces, the output image could have more

information than the input image. Entropy measure should be used only after careful

consideration in these cases. Since entropy gives the probability distribution, it is never

negative. The lowest value that the entropy could have is 0 where all the pixel values in

the image are the same. Entropy is dimensionless i.e., it is not dependent on the size of

the image. For the square and hexagonal pixel resolution comparison experiment, entropy

is a good measure as both square and the hexagonal pixel output tends to smoothen the

image and loses resolution and information content in the process. By comparing the

entropy we can see by what factor each method preserves the information-content.

Algorithm for calculating image quality based on Entropy

a) Take the test image. Call it T.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

b) Calculate the entropy of the test image using the formula given in equation 3. Call

it Eþ

c) Pass the test image as input to the imaging system. Call the output image of the

imaging system as O.

Calculate the entropy of the output image using the formula given in equation 3.

Call it 8".

d)

e) The ratio of the entropy in the output image Eo to the entropy in the test image -E¡

gives us the entropy preservation of the imaging system.

The entropy ratio of the output to input in the square pixel and hexagonal pixel resolution

comparison experiment will be less than one in most of the cases. However, they could

be greater than one in some cases. One example is shown inFigure 2-4.
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2.3.5 Modulation Transfer Function (MTF) as an Image Quality measure

The modulation transfer function (MTF) characterizes the spatial resolution of an

imaging system. MTF is the amplitude of a linear system's output in response to a

sinusoidally varying input signal of unit amplitude. Equivalently, it is the magnitude of

the Fourier transform of a system's response to an input signal that is a perfectly sharp,

single point of light - the point-spread function of the system. Sine-wave frequencies,

usually in units of cycles/mm are used as the metric for specifying detail in an MTF plot.

These frequencies are always plotted as the independent variable on the x-axis. To

complete the MTF metric, a measure of how well each sine-wave frequency is preserved

after being imaged, i.e., transferred through an imaging device, is required. This measure,

called modulation transfer is plotted along the y-axis for each available frequency.

Algorithm for calculating MTF

Ð Create a test image that is made of a sine wave of frequency one. Measure the

amplitude. CaIl it A¡

0

0

0

4

Figure 2-4: Illustration of s cenario w here t he ratio of
oLttpLtt image entropy to input image entropy is greater
than one. The numbers indicate pixel values. (a) Input
Test image. Entropy of this image is 0.8113 (b) Output
image of the scluar"e pixel (explained later) counterpart.
Entt'opy of this image is I.
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chapter 2. comparison of square Pixel and Hexagonal Pixel Resolution

g) Pass this image through the imaging system. Measure the amplitude of the

frequency one component of the output image. Call it Ao.

h) The ratio of lo over Ai gives the modulation of the imaging system for frequency

one.

Ð Repeat steps a to c by for different frequencies. Plot the modulation function

against frequency and you get the modulation transfer function. The typical plot

of a imaging system's MTF is shown in Figure 2-5.

I

fulodr¡letion
Function

Figure 2-5. Typical plot of MTF of an imaging system. The lar.ger
the shaded area, the better the MTF of the system.

2.3.6 Test Images and Process Steps

The images that were used for carrying out the image quality analysis were shown in

Figures 2-2(a-h). These images were reconstructed into squares of 64 pixels and

hexagons of 62 pixels (average) in size. The marurer in which this is done is explained

below.

One test image from the ones shown in Figure 2-2 is taken at a time. This image is called

the original image. The original image was broken into hexagons and eachhexagonal

pixel was given the average value of the pixels that fall in the hexagon. In order to ensure

ftequenuy
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that no two hexagons overlap and no gaps exist between two hexagons (see Figure 2-6)

the hexagons were created using the following two approaches:

rison of Square Pixel and Hexagonal Pixel Resolution

Figure 2-6. Illustration of gaps, which can occur in
hexagonal pattern created using a single definition of a
hexagon.

a) Two -Template Approach

In the two-template approach shown in Figure 2-7, the hexagons numbered 1 were

created first, the hexagons numbered 3 were constructed later using the same formula as

that of the hexagons numbered 1 and were vertically displaced by the height of the

hexagon. The hexagons numbered I and 3 were called odd layered hexagons. Once the

entire image was filled with odd layered hexagons, the hexagons numbered 2 were

constructed such that they resemble very closely to the hexagons numbered I and do not

include any pixel akeady taken by the odd layered hexagons and would include all pixels

not considered by the odd layered hexagons. The hexagons numbered 4 were constructed

similarly and were displaced by length equal to the hexagon's height from the hexagons

numbered 2. The hexagons numbered 2 and 4 were called even layered hexagons. The

25



odd layered hexagons form one template, where as the even layered hexagons form

another template. Hence this approach was called the two-template approach.

Chapter 2. Cornpanson of Square Pixel and Hexagonal Pixel Resolution

Figure 2-7. H exagonal Packed Strucîure using the two-
template approach.

b) Six -Neighbor Approach

The six-neighbor approach used a rectangular template by considering one hexagon and

part of its six neighbors as shown in Figure 2-8. The rectangular template was then

replicated to tile the entire image. The two-template approach algorithm in itself ensured

that no two hexagons overlapped and that no pixel was left out. However it was

computationally cumbersome.

Figure 2 -8. Hexagonal Packed Structure using the
six-neighbor approach. Note that the grid is shown
only to clearly identifu the rectangular template.
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The six-neighbor approach on the other hand offered us the advantage of being

computationally and p rogrammatically e fficient but r equired additional I ogic t o ensure

that all the pixels in the image were accounted exactly once. Using both the approaches

described above the original images were converted into hexagonal pixels. The two-

template approach gives the ability to count the number of pixels that lie in a hexagon,

which is useful in comparing against the square pixel counterpart. Hence in most cases

the Two-template approach has been used for the experiments illustrated in this chapter.

The original images (Figures 2-2(a-h)) were then converted into square pixels of size 8 x

8 and each square pixel was given a value equal to the average of the pixel values that fell

in the square.

2.3.7 Evaluation of the Image Quality (Euclidean Distance, Resemblity and

Entropy)

The image quality was evaluated using the different image quality measures.

Algorithm: -

a) Take a test image. CaIl it T.

b) Convert the test image into a square pixel image. Call it.l.

c) Convert the test image into a hexagonal pixel image. CalI it H.

d) Calculate the image quality between S and Z. This is p,.

e) Calculate the image quality between H and Z. This it Qn.

Ð PloT Q,^ - Q,
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Rotate T by 5 degrees and repeat steps b to f. The rotation is done to ensure that

the results are not pafüal to any objects in the image. The rotation is carried out

from 0 degrees to 360 degrees in increments of 5 degrees using bicubic

interpolation. The graphical representation of the algorithm is represented in

Figure 2-9. Note that even though these plots are shown for rotation angles of 0,

45 and 90 degrees, the actual experiment was done for rotation angles from 0 to

360 degrees in increments of 5 degrees. The graphs are shown in the following

pages. The experiments were done for all test images, but only the admin256.bmp

image is illustrated in this figure.

Image quality of the square pixel image at 0o is the difference between Figure 2-

9(a) and Figure 2-9(b). The image quality of the hexagonal pixel image at 0o is the

difference between Figure 2-9(a) and Figurez-9(c). Similarly the image quality of

the square pixel image at 45o is the difference between Figure 2-9(d) and Figure

2-9(e) and the image quality of the hexagonal pixel image at 45o is the difference

between Figure 2-9(d) and Figure 2-9(Ð and so on.

h)
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Figure 2-9, Square vs Hexagon resolution comparison experiment process for evaluating Euclidean distance,
resemblity and entropy image quality measures (a) University of Manitoba Administration Building (courtesy of
Prof. It/. Lehn, University of Manitoba, reproducedfrom his Digital Image Processing class) (b) The 256 x 256
test image shown in (a) is broken into square pixels each of size I x I (64 pixels). The entire 256 by 256 image
would be filled with 32 by 32 such squares. (c) The 256 x 256 test image shown in Figure (a) is broken into
hexagonal pixels each of length 4.5 (62 pixels).The entire 256 by 256 image ß filled with I057 hexagons. þ) and
(c) are constructed using the two-template approach but the six-neighbor approach gives the same result.(d)
Image in (a) is rotated by 45 degrees. (e) Rotated Image in (d) is converted into square pixel image of size 8 x I
(64 pixels) (f) Rotated image in (d) is converted into hexagonal pixel image of size 4 5 (62 pixets). (g) Image in
(a) is rotated by 90 degrees. (h) Rotated image in (g) is converted into square pixel image of size I x I (64
pixels). (i) Rotated image in (g) is converted into hexagonal pixel image of size 4.5 (62 pixels).

Rounding and interpolation errors are introduced when an image is rotated [28]. These

rotation errors can be determined by rotating an image by 0 and rotating it back by -0.

The difference between the original image and the image obtained by rotating the image

by 0 and then by -0 gives an estimate of the rotation error. Also a major portion of

rotation error occurs at the edges [28]. To minimize the rotation etror, one should ignore

the edges and just consider the center portion of the image. The rotation error gets
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complemented if the rotation is done in increments. To avoid this the original image is

rotated by the angle of rotation for each successive angle. The results presented in this

chapter do not ignore the rotation error. Future work is warranted to estimate the effect of

rotation error on the overall results.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

Instead of displayng the plots of the image quality measures for both square pixel and

hexagonal pixel images as shown in Figure 2-I0 (a, c, e), in the results section, I only

show the plot of the difference in the error margin of the image-quality-measure between

hexagon and square pixel images. This makes the graph much easier to read. The mean of

the difference is represented as a continuous dotted line as can be seen in Figure 2-I0 (b,

d, Ð. If this line is above the horizontal axis, then it means that the square pixel method is

better for that particular quality measure, if the dark line is below the horizontal axis, then

it indicates that the hexagonal pixel method is better for that particular quality measure. 2

standard deviation (o') is calculated for all experiments. From Figures 2-lO (a,c,e) it is

difficult to interpret which pixel-method is better, but Figures 2-10 (b,d,Ð simplifies this

task.
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Figure 2-10. Euclidean distance, resemblity and entropy plots for comparison betuveen scluare pixel and
ltexagonal pixel and how they are simplified by only showing the difference. (a)The Euclidean distance is
plotted as afunction of rotation in degrees for both the square and hexagonal pixel images. (b) The difference
between the Euclidean distance of the hexagonal pixel image and the square pixel image is plotted as a ftmction
ofrotation in degrees. Thß graph gives an easy representation as to which (square pixel or hexagonal pixel) is
better in terms of Euclidean distance (c) The resemblity measure is plotted as a function of rotation in degrees

for both the square and hexagonal pixel irnages. (d) The dffirence between the resemblity of the hexagonal
pixel image and the square pixel image is plotted as a function of rotation in degrees. This graph is þr easy
graphical comparison of resemblity betuveen the two pixel-resolution methods. (e) The entropy is plotted as a
function of rotation in degrees for both the square and hexagonal pixel images. (f) The dffirence between the
etxtropy of the hexagonal pixel image ønd the square pixel image is plotted as afunction of rotation in degrees.
This graph gives an easy graphical comparison of entropy between the two pixel-resolution methods.
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2.3.8 Evaluation of the Image Quality using MTF

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

The image quality was evaluated using MTF using the algorithm below -
Aigorithm: -

a) Create a sine wave image of frequency one. Call it T.

b) Calculate the FFT of Zand get the amplitude at frequency one.

c) Convert the test image into square pixel image. Call it ,S. Calculate the FFT of ,S

and get the amplitude for frequency one. Call it 1,.

Convert the test image into hexagonal pixel image. Call it H.

H and get the amplitude at frequency one. Call it An

Calculate the ratio of ArlAl. This is the modulation factor

d)

e)

image at frequency one.

Ð Calculate the ratio of AnlAt. This is the modulation factor of the hexagonal pixel

image at frequency one.

s)

h)

Increase the frequency gradually and repeat steps a to f.

Plot a gaph of the modulation function at the different frequencies as a function

of frequency.

Graphical procedure of calculating MTF is shown in Figure 2-1 1.

Calculate the FFT of

of the square pixel
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Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

b)

(e) (h) (i)
Figure 2-ll. Square vs Hexagon resolution comparison experiment process for evaluating MTF quatity measure
(a) Sinewave of frequency one. (b) The 256 x 256 test image shown in (a) ß broken into'square pixels each of
size 8 x 8 (64 pixels) (c) The 256 x 256 test image shown in Figure (a) is broken into hexagonal pixels each of
length 4.5 (62 pixels). (c) is constructed using the two-template approach but even the sLr-neighbor approach
gives the same result.(d) Sinewave of frequency ten cycles across the width of the image (e) Image in (d) is
converted into square pixel image of size I x I (64 pixels) (f) Image in (d) ß converted into hexagonal pixel
image of size 4.5 (62 pixels). (g) Sinewave of frequency forty across the width of the image. (h) Image in (g) is
convetted into square pixel image of size I x 8 (64 pixels). (i) Image in (g) is converted into hexagonal pixel
image of size 4.5 (62 pixels).
Note that even though these plots are shownforfrequencies I, I0 and 40, the actual experimentwas donefor
frequencies from I to I28 in increments of one. The MTF plot for the square pixel, hexagonal pixel comparison
experintent is shown in Figure 2-20.
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2.4 Results and Discussion

chapter 2. comparison of square Pixel and Hexagonal Pixel Resolution

The results of the Euclidean distance, resemblity and entropy evaluation are shown for all

test images in Figures 2-13 to 2-20. The graphs show the difference in image quality

measures between hexagonal pixels and square pixels. The difference is p lotted in the

graphs as it gives a clearer picture of the behavior of the two pixel methods. The mean

difference is also plotted in the same graphs. The mean difference gives an easy

interpretation as to which pixel method is better at a quick glance for the entire rotation.

If the mean difference line is above the horizontal axis then it indicates that the square-

pixel is better. If the mean difference line is below the horizontal axis then it indicates

that the hexagonal pixel is better. The distance of this mean difference line from the

horizontal axis indicates the extent of the superiority of one pixei-method over the other

for the particular image quality measure.

Figures 2-73a to 2-20a shows the Euclidean distance plots. Note that the Euclidean

distance is based on hexagonal pixels generated using the two-template approach.

Figures 2-I3b to 2-20b shows the Resemblity plots for all the test images. Figures 2-I3c

to 2-20c shows the Entropy plots for the test images. Figures 2-I3d to 2-20d tabulate the

summary of the plots including the 2o.

2.4.1 Results for the admin256.bmp (University of Manitoba buitding) image

Figure 2-13 shows the image quality comparison for the admin256.bmp image. This

image is a real life picture and has objects pafüal to both square and circles. However,

since the square pixel can lie exactly over the square objects, but the hexagonal pixels
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cannot over the circular object, it was expected and seen that the Euclidean distance at 0o

for the square pixel image is less than the hexagonal pixel image. As soon as the image is

rotated by a small angle of 5o, some of the lines in the image got aligned with the square

and hexagonal pixel counterpart, thereby bringing the Euclidean distance down at 5o.

These 5o lines are the ones that exist in the top arch of the admin building. However,

there are no objects that are at a 10o angle. Hence when I rotated the image by 10o, the

Euclidean distance of the square-pixel image increased. However, at 10o rotation the

rectangular pellets that exist just above the "The University of Manitoba" label

overlapped one another, which brought the hexagonal pixel resolution down. For e ach

increment of rotation, certain objects add up and certain objects move away from the

standard square and hexagonal pixel geometry thus making the plot very volatile. An

image when rotated at a certain angle using bicubic interpolation will have its own

rounding precision error. However, when the image is rotated at 90o,180o and 270o, these

effors are small. Hence I paid special attention to these rotation angles. At 90o, 180o and

2700 rotations the square pixel will fit in exactly the same way as the 0o (original) image.

Hence the square-pixel Euclidean distance at these rotations angles is nearly same. One

would have expected the image quality measures to be identical at 0o and 60o for a

hexagonal pixel. However, since the center of the image is (128.5, 128.5) and is not the

center of the centermost hexagon, the rotation of the image is not symmetrical at the

center. Hence the results did not match my expectation. One way to work around this

problem is to rotate the image at the center of the centermost hexagon and see the result.

The explanation of the resemblity measure follows along the same lines. Resemblity

gives the degree of resemblance between two images. The closer the resemblity measure

Chapter 2. Companson of Square Pixel and Hexa Pixel Resolution

5/



Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

to 1, the better the resemblance between the two pictures. At 0o the background of the

admin image finds a very good match with the square pixel image than the hexagonal

pixel counterpart and hence the resemblance of the square-pixel image to the original

image is better than the resemblance of the hexagonal pixel image to the original image.

This is true even at 180o. However, when the angle increases above 0o, the difference

between the square and hexagon image quality based on resemblity measure is not very

different. At 90o rotation, the bottom part of the image coincides with the hexagonal pixel

image. Hence the resemblity measure is good for the hexagonal pixel image compared to

square pixel image. When I did a summary of the resemblity measure between square and

hexagonal pixel image for all the rotation angles, I found that the resemblity measure of

the hexagonal pixel is 0.0345o/o better than the resemblity measure of square pixel. But

this difference could also be because in my experiment there are 62 pixels in one hexagon

compared fo 64 pixels in one square. I did the experiment for a larger hexagonal pixel

size (one hexagon having 69 pixels) and found that the resemblity decreases for the

larger-hexagon hexagonal pixel image. The entropy measure is a measure of how well the

hexagon and square pixel preserve information content. The entropyratio wili be less

than 1 in most cases, but scenarios still exist where the entropy ratio can be greater than

1. See section 2.3 for the specific scenario. Since the number of pixels in the hexagon

image is more than the number of pixels in the square image, it was expected that the

hexagonal pixel would retain more information that its square pixel counterpart. This was

found to be the case.

umma
Qualitv
uclidean Distance

br admin256.b
% Difference

0.10340/o
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0.0315%
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ìesemblity
lntropy

2.4.2 Results for the balcony256.bmp (Friends standing in the balcony of a high

building) image

The balcony test image was used more for interest than intelligence. The results are

shown in Figure 2-14. Since this image does not have lot of edges (straight lines), I

expected the hexagon image to be better than the square image. However, the degree of

difference between the square and hexagon image is much less than my anticipated

difference. The ground seems to be tilted at -20o; hence rotating the image by 20o aligns

it with the square pixel, thereby bringing the Euclidean distance down. The explanation

follows on similar lines as that for the admin256 image. Since this image has more

objects Lhat are a little partial to circular symmetry, the hexagonal pixel did find a better

match thereby bringing the overall Euclidean distance down.

0.0345o/o

0.0008%

0.0012o/o

0.0100%

As far as the resemblity measure is concerned, I thought the resemblity measure for the

hexagon image would be better than square image, since I visually found the hexagon

image more pleasing and resembling more closely to the original image compared to the

square image. This came out correct.

Hexagon

Square

The entropy measure of the square-pixel came out better than hexagonal pixel. This is

rather surprising. I currently have no explanation for this.

rtse

Summary (lor balconvZ56.b
Qualitv
luclidean Distance
lesemblity
3ntropy

for ba
% Difference

0.6181%

0.0483%
0.1431yo

2o
0.0403o/o

0.0010%
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0.0101o/o

Which is better?
Hexaoon

Hexaqon

Souare



2.4.3 Results for the phantom256.bmp (Shepp-Logon brain phantom) image

Figure 2-15 shows the image quality comparison for the phantom256.bmp fiie. Since this

image has got more circular objects, I was expecting the hexagon image to have better

resolution than the square image. Since the borders of this image are 0, this is a good

image to test. In this case the noise introduced by the rotation algorithm is less. Hence the

result tells us the difference between square and pixel image more correctly. Even though

this image has more circles, the border white circle resembles very closely to a line and

the square pixel image fell exactly on this line. Hence the Euclidean distance became less

for the square image compared to hexagon image. Since the image is centered in the

middle, the noise introduced by the rotation algorithm is less, hence the entropy ratio falls

in the same range at 0o and any other rotation angle (unlike other images where the ratio

is minimum at 0o rotation). Since at 45o, the square pixel image overlaps exactly with the

border of the circular objects, the preservation of information at this angle for a square

image is large. The distance of the pixel values between the original image and the pixel

values in the square-pixel image are closer than the distance of the original image pixel

values to the hexagon image. This is a strange result and needs more exploration. I

expect that if the center of the centermost hexagon had been the center of the image, we

would have got slightly different results.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

Summary (fbr phantom256.bm

0uality
uclidean Distance

lesemblity
ntropy

% Difference
0.2351o/o

0.12640/o

0.2723%

0.0723o/o

2a

0.02510/o

0.0463%

Which is better?
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2.4.4 Results for the rand256.bmp image

Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

Figure 2-16 shows the image quality comparison for the rand256.bmp file. This test

image is impartial to any geometry; it has all frequency components (as can be seen from

its FFT in Figure 2-I2b), and has a uniformly distributed histogram (as can be seen from

its histogram plot in 2-I2c).
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Histograrn ¡rlot of a random irnage

(c)
Figure 2-12. (a) Random Image generated by a uniþrmly distributed random number generator (b) FFT
of the image shown in (a). (c) Histogram of the image shown in (a).
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The Euclidean distance is 0.0021%o better for square image as compared to hexagon

image. The resemblity of the hexagon image came out better than square. The biggest

difference was noticed in entropy. Entropy is the ratio of information content in the target

image to that of the original image. Since the hexagon image has more number of pixels

than the square image (62 pixels in one hexagon compared to 64 pixels in one square),

there is a greater likelihood of the hexagon image retaining the information than the

square image. Local peaks were observed in all the quality measures at rotation angles of

0o, 90 o, 180 o and 270o. These were caused because in other rotation angles, the small

local homogeneous blocks that exist in the random image get busted up during rotation,

whereas at 0,90, 180 and 270 they are not altered.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

Summ
)ualitv
Euclidean Distance
Resemblity
Entropy

fbr rand256.bm

2.4.5 Results for the square256.bmp (Mathematicalty created to fït the 8 by I square

pixel-image)

Figure 2-17 shows the image qualitycomparison for the square256.bmp file. This test

image was created for two reasons - 1) to check the accuracy of the code and 2) to check

the behavior of the pixel-methods to images that fit its geometry.

Since the image was partial to square pixels, I expected that the Euclidean distance of

square pixels would be better than the Euclidean distance of its hexagonal pixei

counterpart. Even though my hypothesis turned out to be correct, the extent of the

difference is small. The square-pixel method gave a 6.8704% improvement in the

% Difference
0.00210/"

0.1331o/o

0.7402o/o

0.0020%

2o

0.0011o/o

0.0254%

Which is better?
Square

Hexagon

Hexaqon
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Euclidean distance. The square-pixel image is exactly similar to the squar256.bmp image

at the rotation angles of 0o, 90o, 180o and 270o and hence the square-pixel Euclidean

distance at these angles is zero. Hence the plot shows the peak at these angles. However,

as soon as the image is rotated by a small angle, the square-pixel does not fit the rotated

image any more. Hence the Euclidean distance changes rapidly and becomes comparable

with the Euclidean distance of the hexagonal pixel image.

One interesting fact was that the resemblity of the hexagonal pixel image came out better

than the square-pixel image.

Chapter 2. Compaison of Square Pixel and Hexagonal Pixel Resolution

Summarv (lbr souare256.

0uality
Euclidean Distance
Resemblity
ntropy

2.4.6 Results for the hexagon256.bmp (Mathematically created to fit the hexagon of

length 4.5)

Figure 2-18 shows the image quality comparison for the hexagon256.bmp file. This test

image was created for two reasons - 1) to check the accuracy of the code and 2) to check

the behavior of the pixel-methods to images that fit its geometry.

Since the image was partial to hexagonal pixels, I expected that the Euclidean distance of

hexagonal pixels would be better than the Euclidean distance of its hexagonal pixel

counterpart. This was found to be the case. The hexagonal pixel method gave a3.2681%

improvement in the Euclidean distance. The hexagonal pixel image is exactly similar to

the hexagon256.bmp image only at the rotation angle of 0o. As soon as the rotation starts

the hexagonal pixel image does not match with the rotated image. We could have

% Difference
6.8704o/.

0.0390%

0.0823o/"

2o

0.7570%
0.0009%

0.0608%

Which is better?
Square

Hexagon

Square
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expected this to happen at least at the rotation degrees of 60, 120, 180, 240,300,but as

the center of the centermost hexagon is not the center of rotation, there is no pattern

across these angles. The hexagonal pixel shows the best quality match over its square-

pixel counterpart at 0o since it matches exactly with the test image. As soon as a slight

rotation is applied, the hexagonal pixel image no longer matches with the rotated image

making the image quality measure comparable with its square-pixel counterpart. V/hen

the image is rotated 180o, because of the two different templates used in construction of

the hexagon, the hexagonal pixel image does not exactly overlap with that of the rotated

image but the overlap area is increased. This explains the small peak that we see at 180o

angle.

chapter 2. comparison of square Pixel and Hexagonal Pixel Resolution

Su

Qualitv
mmarY (lbr hexason256.bm

uclidean Distance
lesemblity
3ntropy

2.4.7 N4TF Results

The modulation transfer function describes the quality of an imaging system by giving

the amplitude response of the system to different spatiai frequencies. The blurring caused

by the system causes the amplitude to be reduced as spatial frequency increases. For the

square-pixel and hexagonal pixel comparison experiment, the square-pixel and the

hexagonal pixel can be considered as the imaging system in itself as they take a test

% Difference
3.26870/o

0.29860/o

4.5298%

lmage as input, execute their respective algorithm and produce an output image. Also

since both the methods take the average over an area of pixels of the original image, they

essentially are blurring the image.

0.4801o/o

2a

0.0309%

0.7157%

Which is better?
Hexaqon

Hexaqon

Hexaqon
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The plot of MTF results obtained for the square-pixel and hexagonal pixel comparison

experiment is shown in Figure 2-2I. Since the area under the curve is more for the

hexagonal pixel image one can say that the hexagonal pixel image gives a better MTF

than its square-pixel counterpart. Note that the square-pixel MTF becomes zero aT

frequencies 32, 64, 96 and 128. This is because at these frequencies, the square-pixel

image averages out evenly across a I by 8 block thereby making it lose the frequency

component. The square-pixel image becomes a flat image at these frequencies and

therefore has only the DC component. The peak occurring in the MTF of the hexagonal

pixel image at frequency 18 is rather curious and needs further analysis.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution

umma

Qualitv
MTF

2.5 Conclusion

I averaged the results of all the test images. They summarize as below

Euclidean Distance: 0.9594% ! 0.039I% better for hexagonal pixel

Resemblity: 2.0483o/o t 0.0317% better for hexagonal pixel

Entropy: 8.820I% t 0.2989% better for hexagonal pixel. Note that this averaged value

looks higher only because of the increase in entropy for the hexagon256.bmp image at 0o

rotation.

MTF: 3.1003% X 0.1066% better for hexagon.

% Difference
3.1003%

Since in the experiments each hexagon has 62 pixels compared to 64 pixels in a square,

there were approximately 1057 hexagons compared to 1024 squares for the test images

(Note that the test images are 256 by 256 pixels). Hence I was expecting an improvement

0.1066%

2o Which is better?
Hexaoon
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in hexagonal pixel. I estimated this improvement by plotting a graph of the image quality

measure as a function of number of pixels that fit the 256 by 256 image. This plot is

shown in Figure 2-22. Based on this plot, I calculated the image quality of the

reconstruction that will h ave 1057 square pixels in the 256 by 256 image. A 62 pixel

square image shows an improvement over a 64 pixel square image as below -
Euclidean distance: 2A5%

Resemblity: 7 .56Yo

Entropy: 2.84%

Also it cannot be generalized that the hexagonal pixel is always better than square-pixel

as we have seen from the experiments that the nature of the test image plays an important

part in detemining which one is better (compare results of phantom256.bmp and.

balcony256.bmp). Due to the closeness of the quality measures between the two pixel-

methods I conclude based on my experiments and the image quality measures employed,

that hexagonal pixels do not appear to offer any significant advantage over conventional

square pixels.

Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution
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% Difference
0.10340/"
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Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution
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Figure 2-L5. Plots are shown for phantom256.bmp image (ø) Plot of Euclidean Distance
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% Difference
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Which is better?
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Hexaqon
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Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution
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Chapter 2. Companson of Square Pixel and Hexagonal Pixel Resolution
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Chapter 2. Comparison of Square Pixel and Hexagonal Pixel Resolution

Plot of Normalized Euclidean Distãtlce as a function of number of pixels in á 256 by 256 image
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Chapter 3. Reconstruction (from Projections) Techniques

Note that this chapter is called Reconstruction from Projections because there are other

approaches not based on reconstruction from projections (example - acoustic holography

and techniques based on the transmission and reflection of ultrasonic waves [38]), to get

three-dimensional information about structures within the body. Discussion of the same is

beyond the scope of this thesis. This thesis will only talk about reconstruction from

proj ection techniques.

Reconstruction (from Projections) Techniques

Chapter 3

3.1 Overview

This chapter reviews a few algorithms that have been proposed to solve the

reconstruction problem. Each method has its own advantages and disadvantages.

Workarounds have been discovered to eliminate some of the de-merits of the algorithms.

This chapter does not talk about the de-merit removal techniques. The objective of this

chapter is to give a good understanding of the different reconstruction techniques, which

will help the reader in understanding the experiments discussed in chapter 4.

3.2 Statement of the Reconstruction Problem

Image reconstruction is one of the key components of Computed Tomography (CT). For

limited dose, the projection data is limited and hence the reconstruction accuracy can

only be improved by the development of more efficient detectors and the optimization of
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reconstruction algorithms to make more efficient use of the available dose. The work in

this thesis addresses the latter issue assuming that the detector quality has reached its

limit. In CT this is referred to as the backward or inverse problem.

Chapter 3. Reconstruction (from Projections) Techniques

The problem of reconstructing two-dimensional (2-D) objects from a set of one-

dimensional (1-D) projected images has arisen and been solved independently in fields

ranging from medicine and electron microscopy to holographic interferometry. By using

a source of radiation external to the object, one can obtain a transmission picture or

projection of the 2-D object onto a l-D detector array. The reconstruction problem is:

Given a subset of all possible projections of an object, estimate its internal density

distribution [37]. This is illustrated diagrammatically in Figure 3-1.
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Figure 3-la. Graphical representation of the
mathematical model of forward CT. The X-ray
source and detector are rotated around the
object and the detector readings are recorded
at each angle.
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All algorithms for reconstruction take as input the projection data, and all produce as

output an estimate of the original structure based on the available data. The estimate

varies from method to method. The relative performance of the various methods depends
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Figure 3-lb. Graphical representation of the
mathematical model of backward CT. The
projection values are used to reconstruct back
the image. Note that more the angles, the
better the resolution of the reconstructed
image, but higher would be the dose.
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on the object and how the data is collected. It is therefore important that qualitative

judgments be made only after a careful and exhaustive study.

Three known reconstruction algorithms are widely known. They are -

ter 3. Reconstruction (from Projections) Techniques

a) Summation: The ray sums of the rays through each point are simply added to

obtain an estimate of the density at the point.

b) Use of Fourier Transforms: It is possible to derive reconstruction algorithms using

the Fourier Slice Theorem (also called the Projection Theorem) (explained in

section 3.4).

Iterative Methodc)

3.3 Summation Reconstruction Technique (SRT)

A rough but nonetheless elegant method [38] of obtaining an approximate reconstruction

is the summation method. ln the summation method the density of each point in the

reconstructed picture is obtained by adding up the densities of all the rays going through

that point. For example, if the test picture consists of a single point and fwo projections of

it are made, the reconstruction is a four-pointed cross as shown in Figure 3-3. The cross

demonstrates the roughness of the summation method. An exact method of reconstruction

would reconstruct a point as a point and not as a cross. It should be mentioned, however,

lhat a method that succeeds in reconstructing a single point as a point is not necessarily

an exact method for reconstructing more complex pictures.

For the purpose of obtaining three-dimensional information that is quantitatively accurate

for medical applications there are two major objections to employing the summation
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method for the reconstructions. First, the reconstruction is inaccurate because every point

in the original is blurred in the reconstruction. Second, if we take the reconstruction and

calculate its projections, we find that they are not the same as the projections of the

original picture.

Chapter 3. Reconstruction (from Projections) Techniques

fbiTb2Tbil GT;|*I {_[|

[;-IHffi=Hr tË
Figure 3-2a.
The projections
of the image are
taken.

Figure 3-2b. The projections at
the first angle are back-projected
such that each pixel in the grid
that contributes to the projection
is assigned a equal value as that
of the projection.

b1 b2

bl

b3

Ìf

Figure 3-3a. Original lrnage consists of a point
near the top left corner. All the other values in
the original image are 0.

ha
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Figure 3-2c. The
procedure ,s
repeated fo, all
angles and the
results are added up.

h2

b3

b3

3.4 Use of Fourier Transforms

There are various techniques that

projections. These techniques vary

Figure 3-2d.
Reconstructed
Image based
on SRT.

Figure 3-3b. Reconstructed image
reconstructed based on Summation
Reconstruction Technic1ue (SRD using
projections at 0o and 90o.

use Fourier Transforms

only slightly but they
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names: Fourier Backprojection (FBP), which is the same as Convoluted Backprojection

(CBP), Filtered Fourier Backprojection (FFBP) and Filtered Convoluted Backprojection

(FCBP). The FFBP is done by adding a filter like Butterworth and Hanning to smoothen

the projection data.

Chapter 3. Reconstruction (from Projections) Techniques

It is possible to derive reconstruction algorithms using the Fourier Slice Theorem (also

called the Projection Theorem) þ2]. The Projection Theoremrelates the three spaces

(image or spatial space, Fourier or frequency space and projection space) we encounter in

image reconstruction from projections. Consideringa2-D image, the theorem states, "the

Fourier Transform of l-D projections of the 2-D image is equal to the radial section

(slice) of the 2-D Fourier Transform of the 2-D image at the angle of the projection".

This is illustrated graphically in Figure 3-4.

When the projection data is transformed to the frequency domain, there is lot of statistical

noise. This noise introduces artifacts in the reconstructed image. Hence the frequency

space is smoothened by the application of filters. The most commonly u sed filters are

Butterworth, Hanning, Weiner, and low pass cosine filter. The filters have slightly

different characteristics 143]. Regardless of the filter used, the end result is to display a

final image that is relatively free from noise and is pleasing to the eye. Figure 3-5 shows

the result of the application of the FBP approach in image reconstruction.
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Figure 3-4. Graphical illustration of the Fow.ier slice theorem [42J. f@,y) is the
original image. Projections are taken at angles 0¡ and 02. The projection vahtes are
called Psl and P62 respectively. l-D Fourier transforms of these projections are taken
and are bacþrojected in the Fourier space. This gives us F(u,v) Taking the inverse
Fourier transform of F(u,v) gives us f(x,y).Note thatf(x,y) is in the spatial space, P6¡
and P62 is in the projection or Radon space and F(u,v) is in the Fourier space.
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Figure 3-5. (a) Original Image - 256 by 256 brain phantom image (generated in Matlab) (b)
Reconstt'ucted Image based on projections from 0 to 180 degrees intet'vals of I degree. Hann filter is
used to smoothen the sinogram.The code is available in MatlabrM under the help section of the iradon
function.

Algorithm of Filtered Backprojection Technique

1. Measure Projection.
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2.

a
J.

4.

Compute the filtered projection

Backproj ect the filtered projection.

Chapter 3. Reconstruction (from Projections) Techniques

Repeat steps 1, 2 and 3 for all projection angles.

This technique is good if we have the projections in as many angles as p ossible (

180), however this is not good for reducing dose. Figure 3-6 shows an example

reconstruction with projection angles from 0 to 180 in intervals of 10 degrees.

Figure 3-6. (a) Original Image - 256 by 256 brain phantom image (generated in Matlab) (b)
Reconstructed Image based on projections from 0 to I80 degrees intet'vals of I0 degrees. Hann filter
is used to smoothen the sinogram. The code is available in MatlabrM uncler the help section of the
iradon function.

As one can see from Figures 3-5 and 3-6, the quality of the reconstruction deteriorates as

soon as the available projection data is reduced.

0to

ofa

3.5 Iterative Method

In the case of sparse projection data, the equation system for reconstructing the image

may be underdetermined, i.e., the number of equations is less than the number of

unknowns, which is usually the case in PET, SPECT, and sometimes in CT. h this case
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the solution by inversion methods is hampered both by the size of the equation system

and the inconsistencies caused by the inherent noise in the acquired projection data and

the approximate description of the weight factors. Thus, a method devised by Gordon,

Bender, and Herman 139] can be used: Iteratively, for each projection image ray, the grid

is projected, the projection is compared with the corresponding ray value in the acquired

projection image, and acorrection term is computed and back-projected onto the grid.

Ideally, each back-projection updates the grid to correspond more closely to the acquired

projection data. The concept of iterative method can be understood by the method

devised by Kaczmarz to solve linear simultaneous equations 126]. This is illustrated in

Figure 3-7.

Chapter 3. Reconstruction (from Projections) Techniques

tr'igure 3-7. Graphical ilhtstration of Kaczmarz's
approachfot'solving equations of two lines.
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The lines (line1 and line2) in Figure 3-7 represent two equations. The solution of these

two equations is the intersection of the two lines. One starts with an initial guess 1l0l; tt

can be shown that a correction to this initial guess is equivalent to dropping a line

perpendicular to one of the lines (say linel) from the initial guess point. The point of

intersection of this perpendicular and the line is our new solution (point 1 in Figure). This

new point is closer to the actual solution than our initial guess. Now starting at pointl, a

perpendicular is drawn on line2. The point of intersection is poirÍ2, which is closer to the

actual solution than pointl. We then select the first line and perform this procedure again.

The more the iterations the closer the solution will be to the actual solution. The iterative

process is terminated when some convergence-rate threshold is reached.

Chapter 3. Reconstruction (from Projections) Techniques

It was shown by Andersen and Kak [1] that noise-like artifacts in the reconstruction can

be reduced if the gnd is corrected only once per projection image and not for every

projection ray. Note that for the remainder of this thesis, a cycle constitutes a sequence of

grid corrections in which all available projections are utilized exactly once and an

iteration constitutes a sequence representing the number of times the grid is corrected.

Although conceptually this approach is much simpler than the transform-based methods

discussed in section 3-4, for medical applications it lacks accuracy and speed of

computation [4]. However, there are situations where it is not possible to measure alarge

number o f p rojections, o r t he p rojections are n ot u niformly d istributed o ver I 80o b oth

these conditions being necessary requirements for the transform-based techniques to

produce results with the accuracy desired in medical imaging l4]. Problems of this type

are sometimes more amenable to solution by iterative techniques. Iterative techniques are

also useful when the energy propagation paths between the source and receiver positions
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are subject to ray bending on account of refraction, or when the energy propagation

undergoes location dependent attenuation along ray paths as in emission CT.

In most literature, I found the formula confusing because the l-D þrojection-space) and

2-D (spatial space) variables were used ambiguously; I modified the representation of the

formula to make it easier to understand and straightforward to code. To understand the

formulae see Figure3-8 and understand the notations.

Chapter 3. Reconstruction (from Projections) Techniques
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wi¡trd= seed lmage 5,,

X-Ray

cu21

In this thesis, 0 by itself represents the measure of the angle, whereas 0 with subscript

(example 01) or 0 following a index (example 01) indicates the index of the angle,

example 0r is the first angle, 0z is the second angle and so on. Similarly d with subscript

indicates the detector number, example d1 indicates the first detector, d2 indicates the

second detector and so on.
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Figure 3-8. Figure to help understand the

formulaefor ART, MART, SIRT and SART
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. Original Image (O)

Let (ii) be the row and column number of the image respectively. O¡ represents

the pixel value of the original image at (i j) location. The size of the image rs n by

n: N.

o Seed Image (,S)

Chapter 3. Reconstruction (from Projections) Techniques

Let (ii) be the row and column number of the image. Therefore Sy represents the

pixel value of the seed image at (ij) location. In the formulae given (ij) arc

synonymous with (a,b), except they represent different algorithmic loops.

. Projection Data (P)

If the projections are taken at an angle 0, the projection value measured on a

detector is given by Pe¿. M represents the total number of projection angles or if

the gantry is moved, M is the number of detectors times the number of positions.

Zrepresents the total number of detectors.

. Weight Matrix(W)

The weight matrix stores the contribution each pixel makes to each detector at all

the projection angles. Hence the weight matrix is 4 dimensional. 
w'iara,

represents the contribution of pixel (ij) to detector fu atprojection angle d1.

. Coordinate System

The programs are written in MatlabrM. Since Matlab's geometry is different from

Cartesian geometry, I made the Cartesian geometry equations flt Matlab's system.

i represents the row number of the image and runs from top to bottom. T is the

column number of the image and runs from left to right. The origin is (1,1) and
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not (0,0) as in Cartesian geometry. 0 is the angle made by the x-ray with the

horizontal.

o Other

Chapter 3. Reconstruction (from Projections) Techniques

K is the total number of cycles. Cycle signifies the completion of the

consideration of all pixel values on all detectors at all projection angles. /c is the

current cycle. (Ë-1) is the previous cycle. Iteration signifies the completion of the

consideration of all pixel values on a particular detector at one projection angle. In

case of ART and MART, the seed image used to start the iteration is the one

obtained after the end of the previous iteration. In case of SIRT and SART the

seed image used to start the iteration is the one obtained after the end of the

previous cycle. Hence it is necessary to declare two more variables. P is the total

number of iterations (applies to ART and MART only). p is the current iteration

and þ-1) is the previous iteration.

o Basic Algorithm of Iterative Method

a) Start with a seed image.

b) Copy the seed image into another variable called reconstructed image.

c) Calculate the projections. Compare the projection value of the reconstructed

image with that of the original image.

d) Calculate how each pixel in the reconstructed image needs to be adjusted to

get projection values same as that of the original. The adjustments are

calculated differently based on the iterative method (ART, MART, SIRT and

SART) used.

76



e)

Ð
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Apply the adjustments to the reconstructed image.

Applying adjustments for one projection data will typically throw off the

values for another projection. Hence there is a need for iteration.

g) Go back to step b and repeat steps b-f. This procedure is repeated until a

satisfactory convergence criterion is met.

3.5.1 Additive Algebraic Reconstruction Technique (AART or simply ART)

In many ART implementations the correction to the (iy)th image cell is written as in

Equation 1.

where Ð'@"'") represents the number of image cells which are contributing to the dth

detector at projection angle 0. This approximation is easier to implement. However it

introduces artifacts in the reconstructed images. ART reconstructions suffer from salt and

pepper noise, which is caused by the inconsistencies introduced in the set of equations by

the approximations used for the weight factor [a]. The effect of such inconsistencies is

worsened by the fact that as each equation corresponding to aruy in a projection is taken

up, it changes some of the pixels just altered by the preceding equation in the same

Pei -Tw*o*5' ('r-l)

#rÞ

XJiilt.u*,i
ãrb

where /(x) -1

:0
ifx>0

otherwise

(1)

77



projection. To reduce the effects of this noise in ART reconstructions, relaxation factors

are commonly used. The relaxation factor I is less than 1. In some cases, the relaxation

factor is made as a function of the iteration number; that is, it becomes progressively

smaller with increase in the number of iterations 14]. The resulting improvements in the

quality of reconstruction are usually at the expense of convergence rate.

The formula for ART is given in equation 2-

Chapter 3. Reconstruction (from Projections) Techniques

5-(.ø) - rr, ',.r[

3.5.2 Multiplicative Algebraic Reconstruction Technique (MART)

Most iterative methods encounter problems in determining the areas with lower density

than the surrounding; MART comes in handy especially in images like the brain phantom

(Figure 2-2c). Generally all iterations start with a homogeneous first estimate (seed

image). The selection of the seed image is of main importance for the applicability of a

method and for the number of iterations. Researchers 122] have reconstructed the first

estimate from the Backprojection of projections where each element is assigned the

minimum of the backprojected data. This modification provides the advantage that a cell

content once set to 0 cannot increase. The problem with all methods is that there is no

confirmed mathematical or physical reason to set particular pixel elements to zero, except

for MART where this is done at least for all the pixels along a ray from one of the

Po -Ðw"rn souQ-t)
a,b

Zt(w"ro)
a.b

(2)
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detectors which showed zero content in the image. Because the total intensity within the

images has to correspond to the total source distribution, some pixels at the outer surface

of the object contain intensity, which is then missing in the center pixels. This is also

most probably the reason why tomography tends to overestimate the electron density on

the topside of the reconstruction [47]

In MART implementations the correction to the (i7)th image cell is as shown in Equation

J.
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This approximation is easier to implement. MART suffers the same noise problems as

that of ART. A priori information like ART improves the situation, but the median filter

122) best improves the signal to noise ratio of the reconstruction. The knowledge about

the nature of noise sources helps in improving results by proper filtering.

The formula for MART is given in equation 4.

^P#

Hw**s*u
tÍ,h

\

%*,
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I
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(3)
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3.5.3 Simultaneous Iterative ReconstructÍon Technique (SIRT)

This approach uses the same fotmula as that of ART, except the change in the (i7)th pixel

isn't done immediately. In this technique before making the adjustment to the pixel value,

all equations are considered and only then at the end of each cycle are the pixel values

changed, the change for each pixel being the average value of all the computed changes

for that pixel. The SIRT algorithm also suffers from the same inconsistencies as that of

ART in the forward process (i.e, computation of the weight factor), but by eliminating the

continual and competing pixel update as each new equation is taken up, it results in

smoother reconstructions. This technique leads to better looking images than those

produced by ART, at the expense of slower convergence l4].

Chapter 3. Reconstruction (from Projections) Techniques

The formula for SIRT is shown in Equation 5.

Suo' - S'-(k-l)
r

I t-
MT

3.5.4 Simultaneous Algebraic Reconstruction Technique (SART)

EM dÌ'

EE
t=Etd=dt

SART is a variation of ART, and it combines the best of ART and SIRT. This technique

yields reconstructions of good quality and numerical accuracy in only one iteration l4].

The main features of SART include -

'Fni - E w.u* sou 
(o-t)

a,b

where /(x)

Er(4,*)

-1
:0

a,b

ifx>0

otherwise

(5)
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a) Reduction of errors in the approximation of ray integrals of a smooth image by

finite sums.

Chapter 3. Reconstruction (from Projections) Techniques

b) Traditional pixel basis is abandoned in favor of bilinear elements.

c) For a circular reconstruction region, only partial weights are assigned to the first

and last picture elements on the individual rays.

d) To further reduce the noise resulting from the unavoidable but now presumably

considerably small inconsistencies with real projection data, the correction terms

are simultaneously applied for all the rays in one projection; this is in contrast

with the ray-by-rayupdates in ART.

e) In addition, a heuristic procedure is used to improve the quality of

reconstructions. A longitudinal Hamming window is used to emphasize

corrections applied near the middle of a ray relative to those applied near its ends.

The formula for SART is given in Equation 6.

suo'-s,to-" *^f,,f*u*
t=Ftd=dI

The last step, heuristic in nature consists of modifying the back distribution of correction

terms by a longitudinal Hamming window. The idea of the window is illustrated in

Figure 3-9. The uniform back distribution according to the coefficients W¡ea is replaced

by a weighted version. The weighting correction term is H¡ea where H¡øa is given by -

H¡oa: W¡¡e¿ h¡

PM - Z ÍT.u* so, 
(u-t)

ab

Zw,,u*
ûrb
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where hy is the Hamming window in pixel (i7).

Chapter 3. Reconstruction (from Projections) Techniques

Seed lrnage ,S,,

However SART is slightly slower than ART in software, due to the pixel based pooling

of correctional updates [26].

D eleclors

Figure 3-9. Illustration of the Hamming window
correction concept in SART.

3.6 Summary

In this chapter tlpes of algebraic methods have been presented. In spite

computational cost, algebraic methods have several advantages like -
a) Different ray geometries are easy to implement.

b) Possible to provide a priori knowledge about the reconstructed object

algorithm.

c) Fewer projections than for the analytical methods are required which is proved

mathematically 1261.

d)

e)

Metal streaking artifacts are reduced

It is possible to handle detectors of variable size inside projections, provided that

detector geometry remains unchanged from one projection to another [14]

Better reconstruction technique for low dose CT imaging.Ð

of the

in the
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I decided to do the experiments on *ART to see the effect of the different parameters on

the reconstruction quality. In the next chapter, the experiments performed to analyze the

different factors that affect +ART are discussed.

Chapter 3. Reconstruction (from Projections) Techniques
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4.1 Overview

Chapter 4. Experiments on *ART

In case of reconstructions from highly underdetermined equations, Algebraic

Reconstruction Techniques (*ART like AART, MART, SIRT and SART) prove very

helpful. The reconstruction quality of each of the techniques is dependent on many

factors. This chapter investigates some of the factors affecting the performance and

quality of the *ART reconstruction and discusses the results.

Experiments on *ART

Chapter 4

4.2 Parameters affecting *ART

The different parameters that affect *ART are explained in detail in chapter 1. Below is a

summary o f the parameters that I e xperimented w ith and a brief description regarding

how I used them for my experiments.

1) Nature of the original image: I did my experiments with 9 test images to make

sure that the results are consistent across all the images and are not partial to any

kind of image. The different test images used for the experiments are shown in

Figure 4-I and the reasoning for using each of them is provided in section 4.3.

2)

3)

4)

Ray Width: In my experiments the ray width is always 1 pixel.

Ray Gap:. For all my experiments I consider the ray gap as equal to 0.

Detector Width: For all my experiments I consider the detector width as equal to

1 pixel.

5) Detector Gap: For all my experiments, I consider the detector gap as equal to 0.
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6) Pixel Width: For all my experiments, I consider pixel width as equal to l.

7) Weighting Scheme: The weight factors or the contribution that each pixel makes

in a ray are calculated using four different approaches. "Binary", "Length of ray

within a pixel", "Distance of center of pixel from center of ray" and

"Contribution made by the pixel in adjacent Íays" afe the four weighting schemes

presented in this thesis. The different schemes are explained in detail in section

4.5.

8) Type of *ART: I have written code for ART, MART, SIRT and SART.

9) Seed i mage: T he different test images used for the experiments are shown in

Figure 4-3 and the details about it are provided in section 4.4.

10)Number of Cycles: The algorithm is executed until the convergence criteria are

met. The convergence criteria used for the experiment is explained in section 4.7.

11) Projection angles: This parameter specifies the different angles at which the

projections are taken.

12) Projection Angle Ordering Scheme: This refers to the order in which the

projection angles are considered. "Sequentia1", "Fixed Angle", "Random",

"Multilevel resolution access", "'Weighted Distance" are the five projection angles

ordering schemes discussed in this chapter. See section 4.6 for the discussion on

the projection angle ordering schemes.

13)Relaxation Factor: For all myexperiments,I consider the relaxation factor as

equal to 0.5.

Chapter 4. Experiments on *ART
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The different parameters are explained graphically in Figure 4-2. I wrote the code in

MatlabrM . The front-end application, where the user can enter parameters is shown in

Figure 4-4.

Chapter 4. Experiments on *ART

Fihr-: d
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Figure 4-1. Test images used for *ART experiments AII images are 32 by 32 pixels. (a) admin32.bmp;
University of Manitoba Administration Building (courtesy of Prof Il. Lehn, University of Manitoba,
reproducedfrom his Digital Image Processing class). (b) rose32.bmp; White Rose. (c) phantom32.bmp;
Phantom image (d) abcd32.bmp: Image containing the text "abcd". (e) paint32.bmp; Thß image is
created mathematically. It contains a circular patter within a checkerboard pattern. (f) shingles32.bmp;
This image is created mathematically. It contains repeated blocl<s where each block contains pixels
whose value increases gradually from top left to bottom right. (g) circlesj2.bmp; This image is created
rnathematically. It contains 6 randomly placed circles of uniform radius having random gray scale
background on a uniform gray scale background. (h) sine32.bmp: This image is created mathematically.
It contains vertical and horizontal sine waves of frequency I0 superimposed on top of one another. (i)
rand32.bmp: This image is created contains pixels with unformly distributed pixel values.
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Ray Width Fixel Width

Ray Gap

Figure 4-2. Illustration of the dffirent parameters that
convergence and quality of *ART reconstruction.

4.3 Test Images used for the *ART experiments

In order to be fair in my analysis of results, I did the experiments on a variety of test

images. Shown in Figure 4-I arc the different test images used for my experiments. All

the test images are 32 by 32 pixels. The choice of the images is done to consider images

D etectors

FE- n etector W¡dth
rt

with as diverse properties as possible -

Ð admin32.bmp (henceforth refered to as test image a): This image is a low

brightness low contrast image.

eiector Gap

T

!
affect the

b)

c)

rose32.bmp (test image ó): This image is a high brightness low contrast image.

phantom32.bmp (test image c): This image contains zeros except in the area

inside the outer ellipse.

d) abcd3Z.bmp (test image d): This image was constructed to provide a better visual

interpretation of the reconstruction quality.
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e) paint32.bmp (test image e): This image is constructed mathematically. It contains

circles within a checkerboard background. This test image is used to see the effect

(if any) of the checkerboard background on the circles.

Ð shingles32.bmp (test image l): This image is constructed mathematically. It

contains repeated 8 by 8 blocks, where the pixel value in e ach block increases

gradually from the top left to bottom right. It is a good representation of local

concentration of high contrast.

Chapter 4. Ex

s) circles32.bmp (test image g): This image is constructed mathematically. It

contains 6 circles of uniform radius of varying gray levels (contrast) placed

randomly on the 32by 32 gnd. This image is used as it is a good representation of

localization of varying contrast areas.

sine32.bmp (test image rt): This image is constructed mathematically. It contains a

vertical and a horizontal sine wave of frequency 10 superimposed on top of one

another.

h)

i) rand3Z.bmp (test image i): This image is constructed such that each pixel value is

a generated by a uniform random number generator. This image is not partial to

any particular geometry, contrast or brightness.

4.4 Seed Images used for the *ART experiments

A variety of seed images was used for the experiments. Shown in Figure 4-3 are lhe

different seed images used. All the seed images have a32by 32 pixel resolution.

a) Zeros seed (zeros): The value of all pixels in this seed image is 0.

b) Flat seed (flat): This seed contains pixels with uniform gray value (all ones).
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c) Meshgrid seed (meshgrid): The values of all pixels in

is same. The value increases from left to right.

Random seed (rand): The pixel values in this seed

uni formly distributed random numb er generator.

d)

Chapter 4. Experiments on *ART

e) Random-Normal seed (randn): The pixel values in this seed image are generated

by normally distributed random number generator with a mean of 128 and

variance of 32.

Checkerboard seed (checkerboad): The pixels values form a checkerboard pattern.

The dark square has value of 1 and the bright square has value of 255.

Shingles seed (shingles): This seed image contains pixels where the pixel value

increases from top-left to bottom right. Because of the limitation of our eye in

deciphering differing shades of gray and also because of the contrast resolution of

s)

each column of this image

the printer, the image shown in Figure 4-3(Ð may not look that way.

h) Sinewave seed (sinewave): This seed image contains a vertical sine wave of

frequency one cycle across the width of the image.

image are generated by a

Noise seed (noise): Noise is added to the test image to create this seed. The Signal

to Noise Ratio (SI'IR) for generating the noise is 50 (unless otherwise specified).

FBP seed (fbp): This seed image is created by taking the filtered back projection

of the test image. i.e., the test image is reconstructed using filtered back projection

technique first for the same projection data. The reconstructed image is then used

i)

as the seed for the *ART experiments.

k) Stretched seed (stretch): The seed image is generated by stretching the test image

by a stretch factor of I50o/o.
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l) Blur seed (blur): This seed image is generated by blurring the test image by a blur

factor. The blur factor for the experiments is 20o/o unless otherwise specified.

Algorithm for generating the blur image -
a. Take the test image. Call it T.

b. Reduce the image size of Zto (100 - blur factor) o/o of its original size.

Reducing the image size will blur the image. Call this image as S.

c. Increase size of ,S to the same size as 7. This new image whose size is

same as that of Zis the bluned image.
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(a) zeros

(c) meshgird

(b) flat
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(e) randn (f) checkerboard

(i) noise c) FBP
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Figure 4-3. Seed images used for *ART experiments. (a) Zeros Seed: All pixel values are 0. (b) Flat
seed: All pixel values are I (c) Meshgrid seed: Generated mathemattcally where the pixel value
increases from left to right. (d) Rand seed: Generated by uniþrmly distributed random number
generator (e) Randn seed: Generated by normally distributed random number gernerator with a mean of
l28 and a variance of 32 (f) Checkerboard seed: Alternate checkers are I and 255 (Ð Shingles seed:
The pixel values in this seed progresses arithmetically fi"om the top left to bottom right. (h) Sinewqve
seed: The pixel values represent q horizontal stne wave of fi'equency one (i) Noise seed: Seed image is
generated by adding noise to the original image $) FBP seed: Seed image is the reconstruction obtained
by the Filtered backprojection technique (k) Stretched seed; Seed image is generated by stretching the
original image (l) Blurred seed: Seed image is generated by blurring the original image.

4.5 Pixel Weighting Schemes

(k) stretch

For algebraic techniques a ray is defined as a "fa|" line running through the image. This

is illustrated in Figure 4-5. Researchers have often considered the ray width as equal to

the image pixel width. I have done the same in my experiments. However my code gives

the flexibility to experiment with different pixel and ray widths. 'When a ray passes

through the image, each pixel that falls on the ray contributes a certain fraction on the ray

sum. The fraction by which the pixel contributes is between 0 and 1, where 0 indicates no

contribution and 1 indicates that the entire pixel lies within the ray. This fraction depends

upon the material (atomic number and electron density) of the pixel and the area of the

pixel that lies in the ray. Since this thesis is dealing with the inverse problem, all pixels

are considered homogeneous and hence the effect of atomic number and electron density

are not considered. In essence the physics behind forward CT is ignored. Since, precise

(l) blur
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calculation of the area is generally difficult, people tend to simplify this by various

weighting schemes.

Chapter 4. Experiments on *ART

Figure 4-4. Front-end application screen fot' entering the
dffirent parameters for the *ART experiments.
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Figure 4-5. Illustration of the intersection of a ray
with a pixel.

4.5.1 Binary Weighting Scheme (BIN)

The weighting scheme most commonly used in ART is the binary scheme. h this scheme

the contribution made by the pixel in a ray sum is considered equal to one if the center of

the pixel falls in the ray. If the center of the pixel does not lie in the ray then the

contribution of the pixel in the ray sum is considered equal to zero.

Centre of X-ray

Centre of pixel

Per¡enilicuJar ilislsÌlEp sf
centte of pixel frvm
centre ofrsy

4.5.2 Length of Center of Ray within Pixel Weighting Scheme (INT)

In this scheme the weighting factors are calculated as the length of the center of the ray

within the pixel. Figure 4-6 is a graphical illustration of the length of ray within pixel

scheme.
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Figure 4-6. Illustration of the "Length of center of ray within a pixel"
weighting scheme.l y, I 2, I 3 are the I ength o f the r ay within p ixel 3, 2 and I
respectively.

At 45o, the ray covers the maximum distance within a pixel, if it passes through the center

of the pixel. This distance is equal to ',12 dmes the pixel width. Hence I normalize the

length over this value to get the weighting factors. The weighting factors for pixels I,2,3

and4 in Figure 4-6 will be tzl (p',1Ð, h/ @ 4z¡, tr/ @lÐ and 0 respectivelywherep is

the pixel width.

4.5.3 Distance of Center of Pixel from Center of Ray weighting scheme (DIST)

In this scheme, the contribution made by a pixel in the ray is calculated as a function of

the distance of the center of the pixel from the center of ray. If A is the ray width and d is

the distance of the center of the pixel from the center of the ray, then the weighting factor

is given by -
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By this scheme, if the center of the pixel lies on the center of the ray, iI will have a

weighting factor of one. The weighting factor will decrease linearly as the distance of the

center of pixel from the center of ray increases and will become zero if the distance is

greater than Rl2. Figure 4-7 shows the plot of weighting factor W as a function of

distance ¿/.

W : l-2d/R d<-R/2

: 0 otlterwise
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4.5.4 Distance of Center of Pixel from Farthest Edges of Adjacent Ray Scheme

Consideration of contributiooïuO. by Pixel on Adjacent Rays Scheme
(coNr)

Intuitively any pixel in the original image would have contributed 100% in a particular

ray or in a combination of adjacent rays. However the "Length of center of ray within

pixel" as well as the "distance of center of pixel from center of ray" approach does not

Figure 4-7 . Plot of weighting factor l[/ as a function of d in the case of
"Distance of center of pixelfi'om center of ray" weighting scheme.
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guarantee this condition. Figure 4-8 (a and b) shows scenarios where the two previous

schemes do not satisfy the I00Yo contribution condition.

Chapter 4. Experiments on *ART

Cex,tet of Fzy

Lisurc¡ of Pix¡l&om Rayl

Centpr of Pixel

(a)

Figure a-8. (a) Illustration of scenario where the "length of ray within pixel" weighting scheme
does not satisfy the 100% pixel-contribution condition. (b) Illustration of scenario where the
"distance of center of ray from center of pixel" does not satisfy the 100% pixel-contt'ibution
condition.

of Ray

Disn¡ce of Pix¡1 fromRay2

Dit¡¡ce ofPixelfrom Ray3

Concbution macle by Pixel in RayZ

C ontitution m¡.de by Pix el in Ray 1

(b)
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Using the "length of center of ray within pixel" scheme as shown in Figure 4-8(a), we get

the weight factor of pixel 2 as less than one since it is not passing through the opposite

comers of the pixel. However, we can see that the pixel lies completely within the ray

and hence ideally contributes I00%. This means that we are not getting the true

contribution made by pixel 2 ontheray.

Similarly employing the "Distance of center of pixel from center of ray" scheme in the

scenario shown in Figure 4-8(b), we get the weight factors of the centermost pixel on Ray

1 and Ray 3 as zero. Also the centermost pixel's contribution on the ray sum of Ray 2 is

not equal to one, as the center of the pixel does not lie on the centerline of Ray 2. Hence

essentially, we are losing the true contribution made by the pixel on the detectors.

To rectify this problem, I modified the "distance of center of pixel from center of ray"

approach to consider the contribution made by the pixel on the adjacent rays to calculate

the weight factor of the pixel on the current ray. The algorithm is explained more clearly

below.

Algorithm of "Consideration of pixel contribution on adjacent rays" weighting

scheme.

Consider Figure 4-8 (b).

a) Let ,R be the ray width, P the pixel width, d1 the distance of the center of the pixel

from the farthest-edge of Ray l, d2the distance of the center of the pixel from the

first-edge of Ray 2, d3 the distance of the center of the pixel from the second-edge

of Ray 2 and dq the distance of the center of the pixel from the farthest-edge of

Ray 3.

b) Contribution made by the pixel on Ray 1
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:r-dtl(R+P/12)

c) Contribution made by the pixel on Ray 3

e3 :0

Chapter 4. Experiments on *ART

c1 :0

d) If the pixel is contributing in Ray 2 (determined based on dz and fu),thenthe

contribution made by pixel on Ray 2 is given by i - (cfca)

The above algorithm considers only the two adjacent rays and is true if P <: R. If

R>P, more adjacent rays need to be considered.

e)

if dt>: R+P/12

otherwise

: I - d,ql(R+ P/lÐ otherwise

4.6 Projection Angle Ordering Schemes

It has been known for quite some time l20l,that both the quality of the approximation

and the rate of convergence of the iterative reconstruction procedure depend, among

other factors, on the order in which the projections are selected for grid correction. In this

section I discuss a few projection angle order schemes.

íf d.¿,>: R+P/12

4.6.1 Sequential Access Scheme (SAS)

In this scheme the projections are taken in the same order as that of the projection data.

For example if the projections are taken at 0 degrees, then at 30 degrees then at 15

degrees and then at 85 degrees, the algorithm also considers the data in the same order 0,

30, 15 and 85. The schematic representation of the access order for 9 projections using

SAS is shown in Figure 4-9.
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Figure 4-9. Schematic representation of the access order for 9 projections
using SAS

4.6.2 Fixed Angle Access Scheme (FAAS)

tr
112.

157.50

1 800

A number of researchers have pointed out 119] l2ll that it is desirable to order the

projections in such away that subsequentiy applied projections are largely uncorrelated.

This means that consecutively applied projections must have significantly different

angular orientations. Many implementations have used a fixed angle for projection

spacing: In my code, I consider the constant angle to be 90 degrees.

tr
67f

For example consider 10 equally spaced projections taken from 0 to 180 degrees. i.e., the

projection angles are 0, 20, 40,60, 80, 100, I20, 140, 160 and 180. According to the

FAAS algorithm the angle 0 will be considered first. The second angle is considered such

that is as close to 90 degrees with the first angle (0 degrees) as possible. Hence the angle

80 is selected next. The third angle is considered such that it is as close to 90 degrees

with the second angle as possible. Hence the angle 160 is selected and so on. However I

modified the code such that the odd angles are selected in sequential order and the even

angles are selected close to 90 degrees apart from their odd counterpart to make the

access order cyclic in a 180o range. Hence for the given example the angles will be order

in the sequence 0, 80, 20, I00, 40, I20, 60, L40,160, 1 80.

tr
FOc')']

0o
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The schematic representation of the access order for 9

in Figure 4-10.
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Figure 4-10. Schematic representation of the access
using FAAS

4.6.3 Random Access Scheme (RAS)

tr
112.

1 800

VanDijke l32l concluded that, among all schemes he tried, a random projection

permutation gave the best results. In this scheme the projections are taken in a random

order. The schematic representation of the access order for 9 projections using RAS is

shown in Figure 4-11.

projections using FAAS is shown

tr
6/f

E
5012

to

order for 9 projections

tr
112

157.5"

Figure 4-ll. Schematic representation of the access
using RAS

4.6.4 Muttilevel resolution select Access Scheme (MLSAS)

Using the Random Access Scheme as proposed by VanDijke will give inconsistent

results each time the experiment is done due to the sheer nature of the angle ordering

1 900

tr
E7.f

E
5022.

0ü

order for 9 projections
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scheme. Therefore one may prefer an ordering scheme that is more controllable and

deterministic than a random number generator. Recently, Guan and Gordon l2ll
presented, what they termed, the Multilevel Access Scheme(MLS). This method works

best when the number of projections is a power of 2, burt can also be used, with minor

modifications, in the general case. The following description is for the simple case of M

being a power of 2: First, for level one and two, the method chooses the projections at 0x,

90x,45*, and 135*. All subsequent levels L:3,..,log2Scontain 2Lvtews. Theprojection

order at level Z is computed by simply going through the list of all applied projections at

levels l. MLS generates a permutation of the angle ordering such that there is an even

spread of the applied projections around the reconstruction cycle.
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For example consider 10 equally spaced projections taken from 0 to 180 degrees, i.e., the

projection anglesare 0,20,40,60, 80, I00, 120, 140, 160 and 180. According to the

MLSAS algorithm the angle 0 will be considered first. The second angle is considered

such that is as close to the center angle of the reconstruction angle as possible. Hence 80

is considered next. The third angle is selected such that it is close the mean of the first

two angles, hence 40 is selected next. The fourth angle is the mean of the third and the

last angle and the angle that has the highest degree of uncorelation with the third angle.

Hence 120 is selected next and so on. Hence for the given example the angles will be

order in the sequence 0, 80, 40,I20,20,I00,60,740,160, 180.

The schematic representation of the access order for 9 projections using MLSAS is

shown in Figure 4-12.
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Figure 4-12. Schematic representation of the access
using MLSAS

4.6.5 Weighted Distance Access Scheme (WDAS)

tr
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157.5"
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f27] While all previously proposed ordering schemes take great care to space far apart

consecutively chosen projections, they somewhat neglect the problem of optimizing the

selection in a global sense. ln the process of selecting a newly applied projection, all, or

at least an extended history of, previously applied projection orientations must be taken

into account and weighted by their time of application. The Weighted Distance Scheme

(WDS) heuristically optimizes the angular distance of a newly selected projection with

respect to the complete sequence of all previously applied projections (including those

applied in the previous iteration) or any continuous, time-wise adjacent subset thereof.

Thus the WDS projection angle scheme is suitable when -
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Ð a series of subsequently applied projections is evenlydistributed across a wide

angular range and

b) at no time is there an angular range that is covered more densely than others.

All of the existing methods tend to be strong in one of the two aspects, but weaker in the

other. H owever, none o f the p revious m ethods c omments o n h ow o ne sh ould p roceed

with the projection selection at iteration boundaries. It is clearly necessary to also include

projections applied in previous iterations into the selection process. A smooth transition
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between iterations is warranted if the selection scheme is continuous across cycle

boundaries i.e., in the previous methods the same sequence of projections are repeated for

all cycles, the weighted distance considers the projections taken in the previous cycle to

determine the sequence of projections for the next cycle. The V/eighted Distance

Projection Ordering Method is designed to maintain a large angular distance among the

whole set of used projections while preventing clustering of projections around a set of

main view orientations. The method selects, from the pool o f unused projections,that

projection that optimizes both the angular spacing and the spread with respect to the

complete set or a recent subset of all previously applied projectional views. Hereby it

takes into account that more recent applied projections should have a stronger influence

in the selection process than projections that have been applied earlier in the

reconstruction procedure. The selection algorithm results in uniform sampling of the

projection access space, minimizing correlation in the projection sequence. This produces

more accurate images with less noise-like artifacts than previously suggested projection

ordering schemes.
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The schematic representation of the access order for 9 projections using WDAS is shown

in Figure 4-i3.
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Figure 4-13. Schematic representation of the access
using lïtDAS.
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Table of the projection angle ordering schemes -
Given the projection angles 10,22.5, 45, 67.5, 90, II2.5, 135, I57.5, 180], the different

ordering schemes will consider the angles as shown in Table 4-1.
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Sequential
Access
Scheme
(sAS)

Fixed Angle
Access
Scheme
FAAS)

0

22.5
45

67.5
90

tt2.s

Random
Access
Scheme
(RAS)

0

t3s
r57.5

90
22.5

180

1t2.5

Table 4-1. Table showing the dffirent projection angle schemes for 9
equally spaced projections talcenfrom 0 to IB0 degrees.

45

Multilevel
Resolution

Select Access
Scheme

135

157.5

67.5
r57.5

45

772.5

180

135

(M

0

LSAS

67.5

\ileighted
Distance
Access
Scheme

(wDSAS)
0

180

)

90

90
22.5

45
135

22.5

112.5
6l.s

0

r57.5

90

22.5

180

135

67.5

180

r57.5
45

1t2.5
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4.7 Results

The results presented in this chapter are based solely on the experiments that I performed.

I have written all the code except the code for implementing the weighted dìstance

scheme. I have reproduced this code from Chris Badea (Email:

chris @orion.mc. duke. edu).

Chapter 4. Experiments on *ART

The various factors affecting the reconstruction based on *ART is discussed in section

4.2.The only factors that I experimented on are the seed image, projection angle ordering

schemes, pixel weighting schemes and the different *ART algorithms. Since I used nine

test images, nine seed images, five projection angle ordering scheme, four pixel

weighting schemes and four *ART algorithms (ART, MART, SIRT and SART), there

were 9*9*5*4*4:6480 experiments that needed to be performed. Due to the limitation

of time I did only 500 experiments. The results are summanzed in this section for

illustrative pLlrposes.

Number of Cycles:

ART, MART and SIRT were executed until convergence, but since SART gave

noticeable differences at250 cycles, the SART experiments were done for250 cycles

only (unless otherwise specified).

Convergence Criteria:

All the *ART algorithms have a strange behavior in the sense that if the number of

iterations are increased beyond a certain number of iteration, the error starts increasing

[35]. I used this criterion as the convergence criteria for my code. This is illustrated in

Figure 4-14.

t0l



{Je
!t
ø
Ê
d
llJ

L)

t¡¡
(¡l
H

d

Ir
Ê
A
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Figure 4 -14. Illustration of convergence criteria. Beyond a
certain number of cycle, the error in *ART algorithms starts
increasing, i.e., the algorithm is said to be converged at the
cycle beyond which the error is equal to or more than the
previotts cycle.

Size of Weight Matrix and Image size:

The code was written such that the weight factor matrix is stored in memory. The weight

factor is a 4 dimensional anay and increases rapidly with image size and number of

projection angles. Storing the weight matrix in memory gives us the advantage of faster

computing time. On the flip side, it needs more memory for large images and higher

projection data. A typical 32 by 32 image for 10 projection angles will require

32*32*1,0*32 : 327680 elements where each anay element will store (depending upon

the weighting scheme used) at least 8-bit information (for binary weighting scheme). This

requires a minimum of 327I(B memory. If the image size increases to 256by 256 andthe

number of projection angles is 30, then there will be 503316480 elements in the weight

matrix array and a minimum of 503M8 memory isrequired. If theweighting scheme

used is non-binary, then more bits are required to represent the weight factor. Typically

for a non-binary scheme, a 16-bit floating number is required to represent the weight

Convergence poinl.
Ecror stÉris incre o.sing
beyunú this point
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factor, which doubles the weight matrix size. I used the test images shown in Figure 4-1

for my experiments. Al1 these images are of size 32by 32. 10 projection angles were used

for the experiments. Hence the task was to find 1024 (32 by 32) unknowns using 320

(10*32) equations. In the practical case the size of the image is at least 256 by 256

(65536 unknowns). The results shown in this chapter may or may not hold true for the

practical case. Given a more powerful machine, the code written for this thesis can be

used for larger images. This work is definitely warranted.
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Image Quality Measure:

Euclidean distance was used as the image quality measure for quantitative differentiation

of the reconstructions. Euclidean distance is calculated between the original test image

and the reconstructed image and is normalized based on the maximum allowed pixel

value and image size, to make it gray-scale independent and dimensionless (size

independent). For more information about Euclidean distance refer section 2.38 in

chapter 2.

4.7.1Comparison of ART, MART, SIRT and SART

The experiments were done with *ART for all test images. All the parameters were kept

constant except the algorithm type. The values for the different parameters are as below -
a) Projection Angles: 10 equally spaced projections from 0 to 180 degrees.

b) Projection angles ordering scheme: Fixed Angle Ordering Scheme.

c) Ray width: I

d) Ray Gap: 0
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e) Detector Width: 1

Ð Detector Gap: 0

g) Pixel V/idth: 1

h) Weighting Scheme: "Distance of the center of pixel from center of ray" scheme

i) Test Image: Used all the test images shown in Figure 4-1.

j) Seed lmage: All the seed images shown in Figure 4-3 were used. However, for

illustrative purposes, only the results from Flat seed are shown in this thesis for

this experiment.

Chapter 4. on *ART

k) Number of Cycles: Until convergence. The convergence criterion used is that the

normalized Euclidean distance starts increasing or is the same as the previous

cycle.

l) Relaxation Factor: 0.5

Figure a-15 (b-e) shows the reconstructed images based on ART, MART, SIRT and

SART. Note that even though this experiment was performed for all test images, only test

image d is shown in the figure for illustrative purposes. Figure 4-15(Ð shows the plot of

the normalized Euclidean distance of each of the algorithms against the particular test

image.
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Algorithm Type

ART

MART

SIRT

Mean Euclidean Distance

Conclusion: Based on the experiment parameters, the mean Euclidean distance
was least (best) for SART followed by ART, SIRT and MART. Little significant
difference was found between SART, ART and SIRT.

SART

(Ð

0.1272

0.3138

0.1 343

0.1174

1o

0.1250

0.1 1 68

(g)

0.1209

0.1118
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Algorithm Type
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ART

MART

Conclusion: Based on
faster than ART; ART
faster than SART.

SIRT

Figure 4-15. Comparison of ART, MART, SIRT and SARZ (a) Test Image (b) Reconstrttcted Image based on
ART (c) Reconstructed Image based on MART (d) Reconstructed Image based on SIRZ (e) Reconstnrcted
Image based on SART (l Plot comparing the dffirent algorithm types for the dffirent test images (g)
Stnnmary of the Euclidean distance comparison between ART, MART, SIRT and.tlRf (h) Summary of the
nwnber of iterations requiredfor convergence between ART, MART, SIRT and SART.

As one can see from Figures 4-15 (b-e), the visual quality of the reconstructions is very

close to one another. Although a-15 (c) looks better than the others, one is not able to

deduce quantitatively the degree of difference between the reconstructions. Hence

Euclidean distance was used to provide a quantitative measure of the difference in the

image quality between the different algorithms types. Figure 4-I5 (Ð shows that the

Euclidean distance for MART is worse compared to the other algorithms for all the test

images used. The Euclidean distance measure of SIRT is better than MART at all times

and is the same or worse than ART and SART at all times. The Euclidean distance

measure ofART is very close to SART and for some images(example test image 11)

becomes better than SART. At the outset, taking the mean of all the Euclidean distances

for a particular algorithm type, one can arrive at the conclusion that the Euclidean

distance of SART is the best among the algorithm types used for the experiment, ART

ranks next after SART in terms of Euclidean distance measure, then is SIRT and finally

MART.

SART

Mean Number of Cycles to converge

the experiment parameters, MART converges
converges faster than SIRT; SIRT converges

t7

4

231

(h)

1032
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I also compared the time required for the iterations to converge. The correction made in

each cycle in SIRT and SART is less compared to the per-cycle-correction made in ART

and MART. This is because the corrections at each projection in SIRT and SART are

stored and averaged at the end ofthe cycle. This not only requires additional storage for

the correction matrix but also the correction factor is less. Hence the time and the number

of cycles required for SIRT and SART to converge is much larger than that of ART and

MART. This is shown in Figure 4-15 (h).
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4.7.2 Comparison of different seed images in *ART reconstruction

The experiments were done with *ART for all test images. All the parameters were kept

constant except the seed image. The values for the different parameters are as below -
a) Projection Angles: 10 equally spaced projections from 0 to i80 degrees.

b) Projection angles ordering scheme: Fixed Angle Ordering Scheme.

c) Ray width: 1

d) Ray Gap: 0

e) Detector Width: I

Ð Detector Gap: 0

g) Pixel Width: 1

h) Weighting Scheme: "Distance of the center of pixel from center of ray" scheme

i) Test Image: Used all the test images shown in Figure 4-1.

j) Seed Image: All the seed images shown in Figure 4-3 were used. However, for

illustrative purposes, only the results from Flat seed, Meshgrid seed and FBP seed

are shown in this thesis for this experiment.
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k)

r)

Number of lterations: Until convergence

Relaxation Factor: 0.5 for ART, SIRT and SART (0.1 for MART)

Figure 4-16 (b-d) shows the reconstructed images based on the flat seed, meshgrid seed

and fbp seed respectively. Note that even though this experiment was performed for all

seed images, only flat,meshgridand fbp seedsare shown in the figurefor illustrative

plrrposes. Figure 4-16 (e) shows the plot of the normalized Euclidean distance of each of

the seed image for MART.
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Comparisonof Seed Inr4ges iíMA.RT

Seed Image
Used

Flat

Meshgrid

Conclusion: Based on the experiment parameters, the mean Euclidean distance
measure was least (best) for FBP seed image, followed by meshgrid and flat
seeds.

Mean Euclidean Distance

FBP

(e)

0.23t8

0.1 963

0.113s

Seed Image

Flat

Conclusion: Based on the experiment parameters, there is not much
difference in the convergence speed between the seed images.

Figure 4-16. Comparison of Seed images in MART (a) Test Image (b) Reconstructed Image based on a Flat
seed (c) Reconstructed Image based on a Meshgrid seed (d) Reconstructed Image based on FBP seed (e)
Plot comparing the Euclidean distance of the reconstructed images based on flat, meshgrid and Jbp seed (l
Sutnmary of the Euclidean distance meesure of the reconstructed images of the dffirent seed images (g)
summary of the convergence (number of cycles required) for the dffirent seed images.

Meshgrid

1o

FBP

(Ð

0.1t13

Mean Number of Cycles to converge

0.1227

0.1201

20

(e)
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As one can see from Figures 4-16 (b-d), the visual quality of the reconstructions is very

close to one another. Not much can be deduced just by looking at the reconstructed

images. The Euclidean distance was used to provide a quantitative measure of the

difference in the image quality between the different seeds. The plot in figure a-I6 (e)

shows that the Euclidean distance for the FBP seed is the best. This is intuitive because

the image reconstructed using the Filtered backprojection technique itself has brought the

solution much closer to the actual solution. This also indicates that the FBP solution does

not satisfy the linear equation criteria of CT reconstruction. The difference in the

Euclidean distance of FBP when used as a seed in MART reconstruction over FBP

reconstruction is shown in Figure 4-17.
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Conparison of Seed Images in MART

Figure 4-17. Graph showing dffirence in the normalized Euclidean distance between FBP reconstntction
and *ART reconstruction (when FBP is used as a seed).
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I compared the time required for the cycles to converge in case of flat, meshgrid and FBP

seed images. Figure a-16(g) shows that there is little difference in the convergence speed

of the different seed images.

4.7.3 Comparison of the different projection angle ordering schemes in*ART

The experiments were done with *ART for all test images. All the parameters were kept

constant except projection angle ordering scheme. The values for the different parameters

are as below -

a) Projection Angles: 10 equally spaced projections from 0 to 180 degrees.

b) Projection angles ordering scheme: {SAS, FAAS, RAS, MLSAS, WDS}

c) Ray width: 1

d) Ray Gap: 0

e) Detector Width: 1

Ð Detector Gap: 0

g) Pixel Width: 1

h) Weighting Scheme: "Distance of the center of pixel from center of ray" scheme

i) Test Image: Used all the test images shown in Figure 4-1.

j) Seed Image: Flat seed.

k) Number of Iterations: Until convergence

1) Relaxation Factor: 0.5 for ART, SIRT and SART, 0.1 for MART.

Chapter 4. Experiments on *ART

Figure 4-18 (b-Ð shows the reconstructed images based on Sequential Access Scheme

(SAS), Fixed Angle Access Scheme (FAAS), Random Access Scheme (RAS), Multilevel
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Resolution Select Access Scheme (MLSAS), and V/eighted Distance Access Scheme

(WDAS) respectively. Figure a-18(g) shows the plot of the normalized Euclidean

distance of each of the projection angle-ordering scheme for MART.
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Projection Angle Ordering
Scheme

Sequential Access Scheme (SAS)

Fixed Angle Access Scheme (FAAS)

Random Access Scheme (RAS)

Multilevel Resolution Select Access
Scheme (MLSAS)

Weighted Distance Scheme (WDS)

(g)

Conclusion: Based on the experiment parameters, the mean Euclidean
distance measure of the reconstructed image is best for WDAS, followed by
MLSAS, FAAS, RAS and SAS.

Figure 4-18. Comparison of projection angle ordering schemes in MART (a) Test Image (b) Reconstructecl
Image based on Sequential Access Scheme (SAS) (c) Reconstt'ucted Image based on a Fixed Angle Access
ScJteme (FAAS) (d) Reconstructed Image based on Random Access Scheme (RAS) (e) Reconstructed Image
based on Multilevel Select Access Scheme (MLSAS) (f) Reconstructed Image based on Weighted Distance
Access Scheme ]í/DAS) (g) Plot comparing the Euclidean distance of the reconstructed images based on the
dffirent projection angles ordering schemes (h) Summary of the Euclidean distance measure of the
reconstructed images based on the dffirent projection angles ordering scheme.
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Euclidean distance was used for comparison. The plot of the Euclidean distance measure

for the different projection angles ordering scheme is shown in Figure 4-18 (g). The

Weighted Distance Access Scheme gives the least (best) Euclidean distance measure as it

heuristically optimizes the angular distance of a newly selected projection with respect to

the complete sequence of all previously applied projections. The Multi Level resolution

Select Access Scheme came in second. For test images A, C and H, the MLSAS gives

better Euclidean distance than WDAS. The fixed angle-ordering scheme came next best

to MLSAS. ln the fixed angle-ordering scheme we are forcing the projection angles to be

as orthogonal (requirement for subsequent projection data to be uncorrelated) as possible,

unlike the Random Access Order scheme, where the orthogonality between subsequent

projections is random. The Euclidean distance measure of random projection order came

out better than sequential. This is because in the sequential access scheme the subsequent

projections are the least uncorrelated among the different projection access ordering

schemes.
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4.7.4 Comparison of different pixel weighting scheme in*ART

The experiments were done with *ART for all test images. All the parameters were kept

constant except the pixel weighting scheme. The values for the different parameters are

as below -

a) Projection Angles: 10 equally spaced projections from 0 to 180 degrees.

b) Projection angles ordering scheme: FAAS

c) Ray width: 1

d) Ray Gap: 0

12t



e) Detector Width: 1

Ð Detector Gap: 0

g) Pixel Width: i

h) Weighting Scheme: {

1. "Binary Scheme (B[N)",

Chapter 4. Experiments on *ART

3. "Distance of the center of pixel from center of ray (DIST)" ,

4. "Distance of center of pixel from adjacent ray scheme (CONT)" Ì

Ð Test Image: Used all the test images shown in Figure 4-1.

j) Seed Image: Flat seed.

k) Number of Iterations: Until convergence

1) Relaxation Factor: 0.5 for ART, SIRT and SART, 0.1 for MART.

2. "Length of pixel within pixel scheme (INT)",

Figure a-19 (b-e) shows the reconstructed images based on BIN, INT, DIST and CONT

pixel weighting scheme respectively. Figure 4-19(Ð shows the plot of the normalized

Euclidean distance of each of the pixel weighting schemes for MART.
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Pixel \ileightÍng Scheme

Chapter 4. Ex

Length of Center of Ray in pixel (INT)

Distance of Center of Pixel from Center of

Binary Scheme (BIN)

Distance of Center of Pixel from Adjacent
Ray scheme (CONT)

Conclusion: Based on the experiment parameters, the mean Euclidean distance
measure of the reconstructed image is best for CONT followed by BIN, DIST
and INT.

ments on *ART

Ra

Figure 4-19. Comparison of lleighting schemes in MART (a) Test Image (b) Reconstructed Image based on
Binary Scheme (BIN) (c) Reconstructed lrnage based on "length of center of ray in pixel" scheme @D @)
Reconstructed Image based on "Distance of center of pixel from center of ray" scheme (DIST) (e)
ReconsÍructed Image based on "Distance of Center of Pixel from Adjacent Ray scheme" (COND (f) Plot
comparing the Euclidean distance of the reconstructed images based on the dffirent weighting schemes (g)
Snmtnaty of the Euclidean distance measure of the reconstructed images based on the different weighting
schemes.

Euclidean distance is the image quality measure used for this experiment. The plot of the

Euclidean distance measure for the different pixel weighting schemes is shown in Figure

4-I9 (Ð. The INT weighting scheme showed the worst Euclidean distance. This is

because the complete contribution of the pixel is not considered. This scenario is

illustrated in Figure a-8(a). The DIST weighting scheme showed a better Euclidean

distance than INT. Even DIST suffers from the problem of not considering the true

contribution of pixel (illustrated in Figure 4-8(b)). However, the likelihood of deviating

from the 100% contribution of the pixel on the detectors is more in case of INT than in

DIST because the necessary condition for 100% contribution in INT is met only by the

ray passing at a 45o degree angle through the diagonal points of the pixel. ln case of DIST

the 100% contribution is met by any ray passing through the center of the pixel regardless

v (DIST)

Mean Euclidean
Distance

0.1519

0.1728

0.1736

0.1441

1o

(e)

0. I 098

0.1245

0.1201

0.0988
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of its angle. Hence the improvement in the Euclidean distance measure of DIST over INT

was expected. The binary scheme does not give a true contribution but forces all pixels to

contribute I00% on exactly one ray at a given angle. Hence the BIN scheme gave a better

Euclidean distance. The CONT scheme forces all pixel to contribute I00o/o on the

detectors and at the same time measures the contribution relative to the position of the

pixel and the ray. Hence the CONT scheme gives the best Euclidean distance.

Once the weight matrix is calculated, the time taken by any of the reconstruction

algorithm only depends on the algorithm type (ART, MART, SIRT and SART).

However, the time taken to calculate the weight matrix in case of INT and CONT is

much larger than the time taken to calculate the weight matrix in BIN and DIST.
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4.8 Conclusion

The object of the experiments was to come up with as many permutations and

combinations of CT parameters as possible to arrive at an optimal parameter solution.

The object was accomplished successfully. Based on the experiments performed and

using Euclidean distance as the quantitative measure for comparing the reconstruction

quality, I conclude that the below parameters gives an optimal solution for *ART.

Typical Parameters for best *ART solution

Projection Angle Ordering Scheme:Weighted Distance Access Scheme

Weighting Scheme:

Algorittrm Type:

Seed Image:

"Distance of center of pixel from adjacent ray scheme"

SART

FBP
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Similarly the typical parameters for the worst solution of *ART are -

Typical Parameters for worst *ART solution

Proj ection Angle Ordering Scheme : S equential Access Scheme

Weighting Scheme:

Algorithm Type:

Seed Image:
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Figure 4-20 (b and c) shows the difference between the reconstruction images obtained

by the best case *ART parameters and the worst case *ART parameters. Just by looking

at the images we can see the improvement in the reconstruction quality. This suggests

that the space of the parameters may be single peaked.

"Length of center of ray in pixel scheme"

MART

Flat (there are others like blur and stretch but since they

are not presented above, I did this experiment with the

flat seed)

nhËd
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'):. ltlt:*
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Figure 4-20. Comparison of the best-case parameters and the worst-case parameters in *ART (a) Test hnage
(b) Reconstructed Image based on the best case *ART parameters (c) Reconstructed Image based on the
worst case *ART parameters.

In general the weight matrix coding style for *ART is a good way of writing *ART code.

It provides the ease of implementing different weighting schemes; projection angle

ordering schemes fairly easily and also gives the advantage of faster execution.

Pros of using the Weight Matrix approach -

a) Simple to code

b) Flexibility in implementation

c) Faster execution

Cons of using the Weight Matrix approach -

(c)

a) Restricted to s ize o f image and projection d ata due to the I arge s ize o f weight

matrix created. But with the decreasing cost of memory this may not be a problem

in the future.
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5.1 Future Work

The c omparison b etween s quare p ixels and h exagonal p ixels p resented i n c hapter 2 i s

biased towards hexagonal pixels because they have fewer pixels compared to the square

pixels. i.e., each hexagonal pixel has 62 pixels compared to 64 pixels in square pixels.

Experiments need to be done such that both the pixel-methods contain the same number

of pixels. Also the test images used in the square pixel and hexagonal pixel resolution

comparison experiment are either created mathematically or acquired with a digital

camera. The experiments need to be performed on more samples of real life CT data to

see if one pixel-method can be preferred over another in CT imaging. The center of

rotation is not the center of the centermost hexagon. Had this been not the case we would

have seen uniformity in the hexagonal plots at angles that are multiples of 60o (example

0o,60o, 120o etc). The algorithm should create the hexagons such that the center of the

centermost hexagon is the center of the image. It was interesting to note that the

hexagonal pixel consistently gave a slightly better resemblity measure over square pixel.

It will be interesting to see the effect of other quality measures on the two pixel methods.

The experiments need to be performed by employing different tiling techniques other

than a hexagonal grid for example work using a triangular tessellation is warranted, since

it is the only other regular tessellation of the plane.

Chapter 5. Future'Work
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In chapter 4, the different factors that affect the reconstruction quality of *ART

algorithms are presented. The experiments presented in chapter 4 show the results of the

effect of algorithm type (ART, MART, SIRT and SART), seed images, the pixel-

weighting scheme and the projection angle-ordering scheme. The experiments on *ART

presented dealt only with parallel CT. The effect of seed images needs to be tested on

cone beam and helical CT.

Chapter 5. Future'Work

Only five different projection angle-ordering schemes were compared. The weighted

distance approach gives the best result (in terms of Euclidean distance measure) among

the ones that were compared. However, the weighted distance approach considers the

history of past-applied projections and is hence not "global" in its real sense.

Considering 10 projection angles, there is a possibility of 3,628,800 (10 factorial)

different permutations of angles possible out of which one or more would be the optimal

solution. The object of the projection angle-ordering scheme is to find the angle-order

that gives the least value for the dot product of subsequent angles, but other optimization

functions are conceivable. Work in this area is required. Work has already been done [26]

in comparing various angle-ordering scheme in cone beam CT. However, work needs to

be done in obtaining optimal angle-ordering schemes for cone beam and helical CT.

'Work is being done in the area of using the scattering photon information. Since *ART

algorithms give good reconstruction when a priori information is applied, the algorithms

will come in very handy when the research data becomes available with scattering

photons. Also CT of moving body organs like the heart and lungs face the challenges of

distortions due to the organ movement. *ART is extremely useful in places where ray

tracing techniques need to be employed, The ray tracing techniques can be modified to
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organ movement techniques to make it extremely useful in CT imaging of moving

organs. Between successive scans of the breast of a woman, the physical characteristics

of the breast typically change. Image subtraction techniques are employed in this case.

Image subtraction techniques can be combined with *ART to give more appropriate

results.

Chapter 5. Future Work

Euclidean distance was used to quantitatively compare the quality of the images in the

*ART experiments. The fundamental difficulty of Euclidean distance is that it calculates

the quality of the image precisely, which could be different from human perception.

Since the images are interpreted visually other image quality measures should be used.

The weight factors calculated are stored in a matrix. The matrix is 4 dimensional and is

extremely large. However, most of the factors in the weight matrix are 0. My code did

not consider compressing the weight matrix and hence I had lot of difhculty in running

the program for larger images. Compressing the weight matrix will enable the

implementation of the program in real CT data system. This needs to be done.

While Computed Tomography allows determination of relatively static zones, it shows

serious limitations in regions with physiologic motion. The main challenge is to give the

physician the best functionality needed to take into account the dynamic nature of a living

humanbodyhavingmovingorgans.Thisisa key issue fordiagnosticimaging where

motion induces blurred images and for all interventional procedures where the organ is a

target and motion compensation is of first importance to reach the region of interest and
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preserve nearby organs. especially chest and abdomen. The modality CT fluoroscopy

(CTF or continuous imaging CT) has become the usual imaging technique for real-time

guidance during biopsy of pulmonary nodules [33]. But the key issue in X-ray CT

fluoroscopy is the dose delivery. Dose reduction can be achieved using motion

compensated reconstruction. The use of weight matrix could be extended to construct a

good motion compensated reconstruction algorithm. Depending upon the a priori

knowledge of the physical characteristics of the organ, different weight matrices could be

pre-developed and stored in memory. Reconstructions based on projection data from

limited dose CT can be made fast and of better quality using these weight matrices. This

will expand the possibilities for minimal invasive therapeutic procedures, the surgery of

the next century.

Chapter 5. Future Work
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The source codes listed in this appendix are written in MatlabrM 6.0 (for windows) and

used throughout the thesis. They consist of two sections. Section 4.1 contains the

programs written for the square and hexagon pixel comparison experiment. Section 4.2

contains the programs written for the*ART experiment. Some of the test images were

generated mathematically. Code for generating the test images is not included in this

appendix.

4.1 Code for comparing square pixel and hexagonal pixel resolution

Extract all the files in this section into a particular folder on your computer. Change your

MatlabrM session's present working directory to this folder. Simply type projectl_main

in the MatlabrM command prompt for comparing the resolution based on Euclidean

distance, fidelity measure, resemblance measure, hausdorff distance and entropy. For

comparing resolution based on modulation transfer function (MTF) type projectl_mtf in

the Matlabrt command prompt. Note that you will need test images for using the code.

The different test images (all are 256by 256 images) that I used are tabulated below.
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Sr# Test Image File
Name

1 admin256.bmp

2. balcony256.bmp

3.

4.

phantom256.bmp

Description

rand256.bmp

University of Manitoba
Administration Building

Three friends standing in the
balcony of a high rise
buildins
Phantom Image

Uniformly distributed

Reproduced with Prof.W. Lehn's
permission from his Digial Image
Processins class.

How the image was
generated?

Produced using a digital camera

t32

Produced using the phantom function
in MatlabrM
Produced usins the rand function in



5. square256.bmp

6, hexagon256.bmp

7.

8.

sinewave0l_256.bmp
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sinewavel0_256.bmp

random Image
Image containing 8 by 8

squares of the same pixel
value.

iectl main.m

Image containing hexagons
of length 4.5 of the same
pixel value

å Created By : cirj.sh Tirunelveli
g C¡eated On : ,]une 8, 2001
? File Name , projecLl_main.m
* Descliption: This program when executed in Matlab, will ask the user to ent.er the Lengeh of Che square
3 and hexagon pixel. It wiII al,so ask the user to encer the image he wants to compa¡e bhe
å resolubion for. AfLer àccepting the use¡ parameÈers, the program will rotate the imaqe
* from 0 to 360 deg¡ees in incÍements of 5 and compute Ehe squale and hexagon image quality
I based on differenb algorithms (Euclidean Dj.stance, Fidelj.ty, Reseriblance, Hausdorff dstnce
3 and EntÌopy). The program takes 4.5 hours Eo proceÊs a 256 by 256 inage.
t==============
3 Cl.ear hhe pict.ure window and clear all varíables

Image containing sine wave
offrequencv I
Image containing sine wave
offreouencv 10

Matlab'

clf
c1 ea¡

*----

Created using the squarejixel_image
function.

t Àccept the input parameEers.

file = i.nput('Enber name of image fi.le (.bmp onty)
original_image=imread(f ite,'bmp' ) t

leûgth_of_squarejixel = i.nput ('Ent.er length of
length_of_hexagonji.xet = input ('Ðnter length of
bheta_j.n_degrees= [0 : 5 : 360] ;

biñe_starL=cput ime,.

Created using the
hexagonjixel_image fu nction

Created using the sine_wave function

Created using the sine_wave function

g For each rot.ation angle, get the square pixeJ. image, the hexagon pixel image,
I the image guality using Euclidean distance, fidelity measure, resembLity
t measure and Hausdorff dist.ance.
s-----------------
Eor angle_number=1 : length ( t.heta_in_degrees )

I Rotate the image
roLat.ed_image = imrotate (origj.nal_image, theLa_in_degrees (angle_nurìber) . ,bicubic, 

,
*rotated_image = roCaCe(originaÌ_j.mage, theta_in_degrees (angl.e_nurìber) );
rotated_inage = double (rotated_image) ;

t Convert the rot.ated j.mage to squarejixe.l_image and 9e! the inage_gualiLy
t using Euclidean dj.sEance between thã"quaie a.a rotaùed j.nage.
SPI=squarejixel_image (rotated_image. length_of_square3ixel) ;

I Convert bhe lotated image to hexagonjixel_image
HPI=hexagonjixel_ima!e_ZÈenplate (iorãied_image] tengch_ot_hexagonjixel),.

t CalcuaLe t.he image guality using Euclidean disÈance.
Slo_ed(angle_number) = image_quality_using_ed (rorated_image, SpI) ;
HIQ_ed(an91e_number) = image_quality_using_ed (rotated_image, HpI) ;

t Calcuate the image quality using fi.deliCy measure.
slo_fd (angle_nuñber) = image_guality_using_fd (rotated_image, Spt),.
HIQ_f d (angle_numbe¡) = image_qua1iÈy_using_f d ( ¡otated_image, HpI ) ;

S Calcuate Che inage quality using resemblity measule.
SI0_!b (angle_numbe¡) = image_quatity_usj.ng_rb (rotated_image, SpI ) ;
HIo_rb(ang1e_nuûìber) = image_quality_using_¡b (rotated_image, HpI),.

t Calcuate the image quality using hausdo!ff distance
SIQ_hd (ang1e_nurìbe¡) = image_guatity_us j.ng_hd (rotated_image, SpI ) ;
HIQ_hd ( angle_number) = image_quality_using_hd (rotaEed_image, HpI ),.

t Get eng¡opy (j.nfomation conLenÈ) of each of bhe images

to perform resol.ution comparison, , , ' s' ) ;

square pixel: '),.
hexagon pixel: ,),

'crop');
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t and compaÍe the preservat.ion of infomat.ion in squarejixel image
Ì compared t.o hexagonjixel_inage.
Ihistoglam_rotated_image, entropy_rotated_image] = entropy (rotated_inage);
[histogram_SPI. entropy_SPl] = ent.ropy (Spl),.
lhistoglam_HPI, entropy_HPl] = entropy (HPI);

SIQ_en(an9le_number) = entropy_SPI/e¡¡¡epy_¡o¡abed_image;
H IQ_en ( angLe_nurÌber ) = entropy_HPl /entropy_roLat.ed_image,.

end; 3 for angle_number

time_end=cput ime,'

disp(strcat(rProcess Completed. Tine taken: ', num2st.r(time_end-time_start), 'seconds')),.

'f--------------

B Plot Che Euclidean dist.ance image quality difference.
3--------------
c1f
plot (Lhet.a_in_degrees, SIQ_ed, 'r+-') ;
hoLd
ploL(theta_in_degrees, HIo_ed,'bo-') ;
EiCle ('Resolution Comparison beÞween square and hexagon pixel using EucÌidean distance')
xlabel ('Rot.ation (in degrees)')
ylabel ('Nomalized Euclidean Dist.ance'),.
legend ('Square Pixel', ,Hexagon Pixel');
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pause

t PloL the fj.deliLy image quality measure
t--
clf
ploL(theta_in_degrees, SIQ_fd,,r+-,) ;
hold
pl"ot(È.heba_in_degrees, HIQ_fd.'bo-, ) ;
tít1e (,Resolution Comparison between square and hexagon pixel using Fidelity measure'),.
xlabel ('Rot.aEion (in degrees) ,)
ylabel { ,Fidelity Measure, ) ,.

l-eqend ('Square Pixel', 'Hexagon Pixe]'),.
pau se

t--------------
Rr PloC the !esembliby image guality measure.
3--------------
cIf
plot (thet.a_in_degrees, SIQ_rb, ,r+- , ) ;
hold
plot (Cheta_in_degrees, HIQ_rb, 'bo-,) ;
title ('Resolution Comparj.son between squale and hexagon pixel using Reserìb1ity measure,)
xlabel ('Rotat.ion (in deglees) ,)
ylabel ( 'Reserìbl.ity Measurer ) ;
legend ('square Pi.xel', 'Hexagon Pixel,),
pause

t--------------
* PLo! the Hausdorff DisEance measure.
g--------------
c1f
plot (theta_in_degrees, Slo_hd, 'r+-' ) ;
hold
ploh (theta_in_degrees, HIQ_hd, ,bo-') i
title {'Resolution Comparison between square and hexagon pixel using Hausdorff Dist.ance');
xlabel ('Rotation (in degrees)')
ylabel (,Hausdorff Dist.ance, ) ;
legend ( 'Square Pixelr , 'Hexagon Pixel' ) ;
pause

Plot the entropy image quality heasure.

c1f
plot(theta_in_degrees. SIQ_en,,¡+-'),.
hold
ploe (theta_i.n_degrees, HfQ_en, 'bo- , ) ;
title (,Resolution Comparison between squale and hexagon pixel using Entropy');
xlabel ('RoÈaEion (in deglees) ')
yl.abel ('Entropy'),.
legend ('Square Pixel,, 'Hexagon Pixel');

square pixel

È==============
? C¡eaeed By : cirish TiruneLveLi
? Creaeed On : June L9, 2O0l
t File Name : squâre__pixel_imàge.m
å Description: This program accepts the image which needs to be convert.ed into
t square pixel image. The second patameter is the length of the
t square pixeL desired.

m
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t==============
funct.ion Isquarejixel_image]=square_pixel_image(original_image,length_of_squarejixel)

t Stept, Àssign the outpuL variabLes as O,
t in the middle. ÀLso store all the
? proglam in variables.
t--------------
original_image = double (origina.l_image),.
squarejj.xel_image (size (original_inage) ) = 0,.
Ino_ofjixe].s_in_x_direction. no_ofjixels_in_y_direcEionl = size(original_inage);
no_of_CsijrixeLs_in_x_direction = cei.l (no_ofjixels_in_x_direction/length_of_6quarejixel);
no_of_tsijixels_in_y_dj.rection = ceit (no_ofjixels_in_y_direction/.length_of_squarejixel);

Step3. Create the t.iny_square image based on the original image such
such that the value of hte pixeÌ in the tiny_sguaÌe image is
Èhe average of all the pixels bhat falls in the Ciny square
image, Initialize t.he Ciny_square_image pixel values bo O.
Note that. tsi in the variable names indicate tiny square image.
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biny_square_img ( L r no_of_E s ijixels_in_x_direction,
no_ofjixels_in_square ( I : no_of_tsijixels_in_x_di.rect.ion,

for row
for

t Find Che integer value of the division of row_no by length_of_squarejixel
* and the colum_no by length_of_square, because that becomes Che index
* value of Che tiny_sguare_image.
*----------
bsi_row_no = f loor ( (row_no+Ìength_of_squarejixet-1) /length_of_squarejixel),.
tsi-co1uM_no = f loor ( (co1um_no+length_of_squarejixel-1) /l.engLh_of_squarejixel) ,'

_ tiny_sguare_img(tsi_row_no, tsi_colum_no) = tiny_square_img(tsi_row_no, tsi_co1um_no) +
original_image (row_no, coÌum_no),.

no_ofjixels_in_square(Lsi_row_no, !si_colum_no) = no_ofjj.xels_in_square(tsi_row_no, tsi_colum_no)
end;

end,.

t--------------
B Take the average of the pixel values. In one squale there are
& lengLh_of_squarejixel^2 p j.xeIs
*--------------
tiny_square_img(1.no_of_tsijixels_in_x_directÍon, 1:no_of_tsi3ixels_j.n_y_direction) = ...

tiny-square_im9(t¡no_of_tsijixels_in_x_direct.ion, 1:no_of_tsiJixels_in_y_direction)./
(no_ofjÍxel.s-in_square(1:no_of_tsijixels_in_x_direction, f:no_of_tsìjixels_in_y direction));

just in case the job abhends
values required for Chis

_no = I : no_of_pixels_in_x_direction
colum_no = I :no_of_pi.xels_in_y_di.rection
t--------------

* Step4: For quality measurement. it wj.ll be sj,mpler if we enlarge the
t tiny_square image to t.he size of the original image. Create
? the enlarged_sguare_img mat.rix which conEains the pixel value
t of the enlarged square image.
t--------------
f or esi_row_no = 1 : no_of jixels_in_x_direcbion

f or esi_colum_no = 1 : no_of _pixels_in_y_direcbion
Lsi-row_no = floor ( (esi_row_no+lengbh_of_sguarejixel-1) /1en9th_of_squarejixel) ;
tsi-colum-no = f.loor( (esi_colum-no+length_of_squarejixel-1) /tengbh_of_squarejixel) ,.

enlarged_square_img(esi_row_no, esi_co1um_no) = t.iny_square_img(tsi_row_no, tsi_colum_no);
end,.

end,.

squarejixel_image = enlarged_square img;

1 :no_of_t.sijixels_in_y_direction) = 0-
I : no_of_tsijixels_in_y_di¡ect j.on) = 0,.

hexagon_pixel ima

t==============
g Created By : cirish Tirunelveli
& Cleated On : June L9, 200]-
* File Name , hexagonjixel_image.m
t Description: Thj.s proglam accepts Lhe image which needs to be converted inbo
t hexagon pixel inage. The second parameter is bhe length of Ehe
I hexagon pÍxel desired.
t Àlgorithn,

For comparison wit.h hexagonal resoÌution, we have Eo break the originat image
into tiny hexagonal image. For betbet comparison purposes the program should
give the choice while reconstruct.ion. Either it should have the same nunber
of hexagons as the square reconstructj.on or the¡e should be equal number of
pixels within one hexagon as t.hete wouLd be in a square. Note that a1l the
hexagons are considered in the folLoçing orientation¡ -

F ----------------- E

2temnlate.m

/6

\1

5\

\

3/
/D
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? Note that. the nuûÌber of horizontal. and vertical hexagons differ as the
t horj.zonlal distance between t.he farthest poj-nts that 1ie within the hexagon is
? more than the verEicaf distance. Note that the length_of_hexagonjixel
t parameter will later depend only on the optimizer_mode. This progran will
t calculate the lengCb_of_hexagonjixel parameter.
?
îr This program is copied from hexagon2.m to test for all fractional
t IengEh_of_hexagonjixel.
t HII HT2 H13
t H21 H22 H23

H4r H42 H43. . . .

This program will. move the reccangular template in the below order
H11 Hr2 H13

H31 H32 H33

\2/
B ----------------- C

H31
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and once all. the odd Layers are done, it will start doing the even layers in t.he
below sequence -

H2T H22 H23

H32

H41 H42 H43
The hexagon conventions are still Che same. Note bhe orientation below

H33

t Imagine segfrents joining vertices ÀD and FB.
t The perpendicul"ar distànce between FB and vertex À =* Ll = length_of_hexagonjixel * Cos6O
t The perpendicular distance between ÀD and vert.ex F =
* L2 = length_of_hexagonjixel * Sin60
'6==============

function fhexagon_pixel_imagel=hexagonjixel_image{original_inage,length_of_hexagonjixel)
.6--------------

g sE.epl. Assign t.he output wariables as O, just in case the job abhends

/l
/61

/ lt'z
/Lr I

F ----------------

t
z
*--

\t 3/\/
\2/

B ----------------- C

orisina.l-imase = doubLe ("tt;t;;i-;;;.;; 
-

hexagon3ixel_image (size(original_image) ) = o;
Ino_of3ixels_in_x_direction, no_of3ixels_in_y_direcbion] = size(original_image);

E

in Ehe middLe. AÌso stoÌe all the values lequired for Chis
program j.n variables.

3
.6

*
t
t
z

step2. Init.ialize the nunber of pixeLs in x and y direction of the hexagonal inage. Note that
x is the verticaÌ direction and y is the horizon[al direction. NoCe that we are going
to have some restrict.ions on the value that the tength_of_hexagonjixel is going to have.
For understanding t.he variable names see the hexagon picture above.

/D

L1 = length_of_hexagonSixel * cos(pi/3);
L2 = length_of _hexagonjixel r sin (pi,/3 ) ;

t Calculate the increment for t.he top Left cornet along the same layer.
increment_Lop_Ief t_x = 0,.
increnent_top_1ef!_y = round(length_of_hexagon3ixel * 3) ;

t Calculat.e the number of hexagons
* Bogus t.his calculabion has to be
*--------------
no_o É_hexagons_in_y_direction = cei I (no_ofjixels_ìn_y_di¡ecuion /
no_of_hexagons_in_x_direcEion = ceil ( (no_ofjixels_in_x_direcLion)

lnitialize a1I the hexagons that fit in the original image to O. The program foÌÌows Che
accumulative logic. Àl,so note Lhat the origin in mattab is (1,I). l4hile converting Ehis
program to C, Chis must be taken care of. Àlso this program considers two templat.e app¡oach.
?emplatel is first creaEed using t.he regular equations of a hexagon. Template 2 is created
containing all pixels that ale not already taken up by templatel. To j.ndicate whether or not
bhe pj.xel. is not Eaken already by templatel create a matrix variable called isjixel_taken
and inieialize to 0-

hexagon_ing(1:no_of_hexagons_in_x_direction, t,no_of_hexagons_in_y_di!ecEion) = o;
no_ofjixels_in_hexagon(1:no_of_hexagons_in_x_directj.on,1¡no_of_hexagons_in_y_direction) = 0,.
isjixel_Caken(1,no_ofjixels_in_x_directior, 1:no_ofjixets_in_y_direcriõn) = 0,.

in x and y di.rection thaL uill fit in the oliginal image.
revised for accuracy,

I The aLgorithm of the program is uritten as below :-
I l. Create a rectangular template that acts a circum-¡ectangle Eo one hexagon.
t 2. Move the templàt.e over the entire image.
* 3. within Lhe template the equations of all 6 sides of bhe hexagon are det.ermined.
t 4. The templ.aË.e movement is sLarEed from the firsL point on the top-left corner of the

(3 * length_of_hexagonjixel) ),.
/ (length_of_hexagonjixel*0. 8660254) ) ¡
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image, Each pixel in the original image that lies inside this rectangular template
is analysed Eo determine whethe¡ or not they lie inside lhe hexagon.
If they do then t.he pixel value ab that poinc is accumuLated against the hexagonal
image array. Àlso the nunÌber of pixels t.hat. went into the accumuLation is calcuLated.
Once this first pass is over then the same routine is done, Lhen the average value at
each hexagonaL array is calcuLated.
The routine is È.raversed again È.o unallocate Èhe averaged hexagona.I array value Eo È.he
pixels in the original image that lie uithin the hexagon.

5.

6.

t 7.

for hex_x = 1 :2 :no_of_hexagons_in_x_direction
for hex_y = I :no_of_hexagons_in_y_direcEion
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t calcuLate the co-ordinates of lhe top_Ieft and bot.tom-right corneÌs of the rectangle lhat
* exactly covers the entire hexagon. The calculation of Lhese co-ordinat.es should depend
t only on length_of_hexagonjixel and the hexagon number(hex_x, hex_y).

if (hex_x == 1) & (hex_y == 1)
t.op_Ieft_x = 1;
top_left_y = 1;
botton_right_x = top_left_x + round(2*L2) ;
bottom_right_y = lound(t.op_left_y + (2*Ll) + Length_of_hexagonSixel-1) ;
vertical_no-ofjixeLs = bottom_right_x - top_Ieft_x I 1,.

I Bogus creale variables to store bhe row number pixel of the first
t hexagon in the odd layer. This is used fo! detemining Lhe top_teft_x position
& of the first hexagon j.n the even layer. Similary cteate a wa¡iabÌe to store the
I coÌum nunber of t.he "E" pixel of the first hexagon in the odd layer. This wiLl
t be used in determining the top_left_y posj.tion of the first hexagon in the even
È laye!.
r-------

t This will get all the odd layers

À_xL=top_left_x+L2i
E_y1 = top_Ieft_y + Lt + length_of_hexagonjixel-1,.

elseif (hex_y == 1) t Indicates Lhe start of a new .layer of hexagons
top_left_x = top_lefÈ_x + verLical_no_of3ixels;
top_left_y = 1,.

t lndicates the first hexagon.

else I Indicates that. the hexagon is in the same layer as the previous one that was considered.
top_left_x = top_Ieft_x + increment_Eop_1eft_x;
top_left_y = gop_left_y + increment_top_.lef[_y;

end,. * end if (hex_x == 1) & (hex_y == 1)

botÈ.om_righh_x = top_Ieft_x + round(2*L2);
bottom_righe_y = round(t.op_left_y + (2*L1) + length_of_hexagonjixel-1); &cT

*-
t To draw and identify all hexagons. each hexagon is given a dif€erent pixel value.
t À11 odd layer {see documenEation) hexagons are given a pixel value of ?5 and 225 while all
3 even layer hexagons are giwen a pixel value of I5O and 3OO respect.ively.
&---------
if (rem(hex_x, 4) == 0)

pixel_vaLue = 300,.
el.seif (rem(hex_x, 4) ==

pixel_value = 225;
elseif (rem(hex_x, 4) ==

pixel_value = 150,.
e lse

pixel_value = 75,.
end;

t DeLemine the coordinates of the verEices of the hexagon based on the t.op left corner.
& Note Ehat in the cal.culations beLow bhere should be only Þhe top_Left_x, Lop-lefb_y,
f sin60, sos60 and lengch-of_hexagon¡rixet variable. rf ue have more t.hãn the èalculation is
& incorrecL, Bogus Try the logic first withoue rounding the vertices and then by rounding

t Indicates every second even layer (eg L4, LB, Lt2 ...)

t Chem.
8------------

1) r

2)+

À_x=top_lefb_x+L2;
À_y = top_left_y;
B_x=Uop_left_x+2*L2î
B_y=top_left_y+L1,'
C_x=¡qp_1s¡¡_**r'ar.
C_y = top_lefL_y + L1 + length_of_hexagonjixel-1;
D_x = Ë.op_Lef t_x + L2,.
D_y = top_Ieft_y + (2* length_of_hexagon3ixel -1);
E_x = top_left_x;
E_y = top_left_y + L1 + length_of_hexagonjixel-1;
F_x = top_Left_x,.
F_y=Lop_Ieft_y+L1;

Indicates every second odd layer \eg L3, L'7 , L11 . . . )

lndj-cates every first even laye¡ \eg L2, L6, Lto ,..)

t Indicates every first odd layer (eg LI, Ls, L9

t Calculate the slope of segmenLs À.B, BC, CD, DE, EF and FÀ. Not.e that the slopes ofg segments BC and EF will be 0. Note that t.he geometry is opposit.e of conventional geometry
t and also the origin is (1,1) instead of (0,0) as in conventional geomet¡y.
k-------
slope_ab = (e_x - À_x),/{B_y - À_y),
slope_bc = (C_x - B_x),/(C_y - B_y);
slope_cd = (P_x - C_x) / (D_y - C_y) i
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sl.ope_de = (E_x - D_x)/(E_y - Þ_y);
sl.ope_ef = (F_x - E_x)/(F_y - E_y);
slope_fa = (À_x - F_x)/(À_y - F_y);

*.After calculating the top_left and botLom_right corner within çhich each hexagon eilL fall,
* Loop only across this recbangte of pixeÌs !o determine which pixels fa]] inside and which

boo ôutside_hexagon = 0,. * Initialize Ehe boo_outside_hexagon vatiabl-e to indicate rhaC
the pixel i.s inside ghe hexagon.

if round((x_1oop - B_x)) > round(slope_ab * (y_Ìoop - B_y))
boo_outside_hexagon = 1,.

end,.
if round((x_1oop - B_x)) > Ìound(sLope_bc * (y_loop - B_y))

boo_outside_hexagon = 2;
end;
if round((x_loop - C_x)) > round(slope_cd a (y_loop - C_y))

boo_oubside_hexagon = 3,.
end,.

if rouûd((x_loop - E_x)) < round(slope_de * (y_loop - E_y))
boo_out.side_hexagon : 4,.

end;
if round((x_loop - F_x)) < round(s1ope_ef * (y_loop - p_y))

boo_outside_hexagon = 5;
end,.
if round((x_loop - F_x)) < round(slope_fa * (y_loop - F_y))

boo_outside_hexagon = 6,'
end;

if (boo_outside_hexagon == 0) t lndicabes that the pixel is insi.de a hexagon.
if (x-loop <= no_ofjixels_in_x_direcEion & y_loop <= no-ofjixels_in_y_direcrion)

hexagon_j.mg(hex_x, hex_y) = hexagon_img(hex_x, hex_y) + original_image(x_Loop, y_loop);
no_ofjixels_in_hexagon(hex_x, hex_y) = no_of3ixeì.s_in_hexagon(hex_x, hex_y) + 1;

t pixels fall ougside the hexagon.
t--------------
foÌ x_loop = top_left_x: bottom_right_x

fo¡ y_1oop = lop_Ìeft_y' bot.È.om_rj-ght_y
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& SCore the hex_x value in anothe¡ matrix variable to indicabe that the
I pixel(x_loop, y_loop lies j.n t.he hexagon whose hex_x value is so-and-so
* Thi.s way we wouLdn'L have bo write the re-allocahing algorithm.

original_ing_l.ies_in_x(x_Ioop, y_toop) = hex_x;
original_img_lies_in_y (x_loop, y_1oop) = hex_y ;

t Bogus the below l"ine is only for debugging pu¡poses. lt shows how the t.iled Layer
t of regula¡ hexagons will look like.
regular_hexagon (x_loop, y_loop) = pixel-_value,.

t Create a maCrix variabÌe bo indicate whether bhe pixel value is Caken o¡ not by the
t first template.
isjixel_taken(x_loop, y_1oop) = Ìt

end;

end; & End for y_loop
end,. t End for x_loop

end; t End for hex_x

end,. B End for hex_y

end;

B CaLculate lhe co-ordinates of the top_left and bottom-right corners of the rectangle thaL
I exactly covers t.he entire hexagon. The calculation of these co-ordina[es should depend
t onLy on length_of_hexagonjixeL and the hexagon number(hex_x, hex_y) .

&--------------
if (hex_x == 2) e (hex_y == 1) I lndicates the firsE hexagon in the even Ìayer

top_left_x = round(À_x1) t
top_lefr_y = round(E_y1) + 0;
bottom_right_x = top_left_x + round(2*L2) ;
bottom_righe_y = round(t.op_left_y + (21L1) + lengÈh_of_hexagonjixel-1); tcT

elseif (hex_y == L)

else t Indicates thaL t.he hexagon is in the same layer as the prewious one !hat. was considered.
lop_left_x = top_left_x + increment_Lop_left_xi
top_left_y = top_left_y + increment_hop_tefr_y,.

top_l.ef t_x = top_lef t_x + verticaÌ_no_of jixe1s,.
top_Left_y = round(E_y1) + 0t

t Indicates the start of a new layer of hexagons
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bohtom_right_x = bop_left_x + round(2'L2),.
boctom_right_y = round(Lop_left_y + (2*LI) + lengt.h_of_hexagonjixel-o),. &cT

*-
t To draw and idenbify alL hexagons, each hexagon is given a differenb pixel value.
t ÀlI odd ]ayer (see docußentation) hexagons are gíven a pixeÌ value of ?5 and 225 while alL
t even layer hexagons are given a pixel value of 150 and 3OO respectively,
t--------------
if (ren(hex_x, 4) == 0) I Indicates every second even layer (eg f,4. L8, LI2 ,..)

pixel_value = 300;
eLsei.f (rem(hex_x, 4) == 1) t Indicates every second odd layer leg L3, L1, LI1 ...)

pixel_value = 225,.
elseif (rem(hex_x, 4) == 2) I Indicates every first even Layer leg L2, L6, L1O ...)

pixel_vaLue = 150;
eLse t Indicates every first odd laye¡ (eg L1, L5, L9 ...)

p j.xel_value = ?5,.
end,.
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t-
t Àfte! calculating È.he bop_left and bot.t.om_righE corner within which each hexagon wiLl fall,
t loop onÌy across this recLangle of pixels to detemine which pixels fall inside and which
B pi.xels fa11 outside the hexagon.
t--------------
for x_loop = top_lef!_x¡ bottom_righL_x

for y_loop = top_lefc_y: bottom_right_y
if (x_Ioop <= no_ofjixels_in_x_dj.recEion & y_loop <= no_ofjixels_in_y-di¡ection)

if (isjixel_taken(x_loop, y_Ìoop) == 0)
hexagon_img(hex_x, hex_y) = hexagon_ing(hex_x, hex_y) + original_image(x_Ioop, y_loop);
no_ofjixels_in_hexagon (hex_x, hex_y) = no_of jixels_in_hexagon (hex_x, hex_y) + 1 ;
regular_hexagon(x_1oop, y_loop) = pixel_walue; t Bogus this line is noh actually needed

but. heLps if we have to determine breaks or overlaps in the regular hexagon scructure.

t-
t Check wheÈher hhe pixel is already taken by the hexagon templaCe above. If it. has then
t ignore t.he pixeL, else put it j.n this EempLate
8--------------

end,. I End fo! y_loop
end; t End for x_loop

end; t End for hex_x

end,. * End fo¡ hex_y

t Store E.he hex_x value in another matrix valiable to indicate that hhe
& pixel(x_Loop, y loop lies in bhe hexagon whose hex x value is so-and-so
I ?his way we uouldn't have bo write Lhe re-alLocating algorithm.
s----------
origj.nal_img_lies_j.n_x (x_loop, y_Ioop) = hex_x;
original_img_lies_in_y(x_toop, y_loop) = hex_y;

isjixel_t.aken(x_loop, y_loop) = 1,.

end,.

t Calculahe the averaged pixel values.
for hex_x = 1 :no_of_hexagons_in_x_ditection

for hex_y = 1 :no_of_hexagons_in_y_direction
if no_ofjixels_in_hexagon(hex_x, hex_y) == o

averaged_hexagon(hex_x, hex_y) = 0;
else

averaged_hexagon(hex_x. hex_y) = hexagon_img(hex_x, hex_y)/no_ofji.xels_in_hexagon(hex_x, hex_y);
end;

end;
end;

for x_loop = 1 :no_ofjixels_in_x_dilection
for y_Loop = L :no_ofjixels_in_y_direcÈ.ion

if original_img_li.es_in_x(x_1oop, y_loop) == 0 | original_ing_lies_in_y(x_loop, y_loop) == O

enlarged_hexagon_img(x_loop, y_toop) = origina)._image (x_1oop, y_loop) ;
else

enlarged_hexagon_ing(x_1oop, y_loop) = averaged_hexagon(oliginal_img_lies_in_x(x_loop, y_loop),
original_img_l-ies-in_y(x_Ìoop, y_loop) ) ;

end;
end; t End for y_loop

end; t End for x_Ioop

hexagonjixeÌ_image = enlarged_hexagon_img,.
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hex

t Created By : Girish Tirunelveli
CreaÈed On : June 07, 2002
File Nane : hexagonjixeL_inage_6neighbor.m
Description: This progran accepts the inage which needs to be convetted into hexagon

pixel. inage. The second paramter is the length of the hexagon pixeL
desired. Ib creates the hexagon pixel image based on bhe six-neighbor
approach.

xel

i ==============
tfuncCion Ihexagot_ing] = hexagonjixel_inage_6neighbor (image_variable, length_of_hexagonjixel)

Lengbh_of_hexagon_pixe1 = 4.5;
lengCh_of _rectangular_template = ceiÌ ( length_of_hexagonj j.xe1 +3 ),.
height_of_rectangulartemplate=ceil(lengrh_of-hexagon-pixet*4isin(pil3)),

colum_section_tength = fÌoor(length_of_¡eccangular_t.emplate * 1/6) ;
¡ow_sect.ion_length = floor (height_of_rectangulâr_templ.ate * I/4) ;
clear hexagon_j.mg,'
for colum_no = L : lengbh_of_rectangulat_template

for row_no = I :height_of_rectangular_EempLate
i.f colum_no <= floor(1en9th_of_rectangular_Eemplate *1/6)

if Ìow_no <= height_of_receangular_template/2
hexagon_img (row_no, col.um_no) = 0,. I Blackl

ôì -ô
hexagon_img (row_no, colum_no) = 200,. I yellowl

end;
elseif colum_no <= floor(tength_of_¡ectangular_template i 2/6)

if row_no <= otrow_section_length + (colum no - colum section_lengLh) * sin (pi/3)
hexagon_img (rów_no, cõ1um_no) = ?5,. ã nedr

else
hexagon_img (row_no, colum_no) = O; t Blackl

end,'
j.f row_no <= 1*¡ow_secEion_length + (coluú no - colum section_.length) * cos (pi/3)

hexagon_j.mg (row_no, colum_no) = 0,. t Black1
e1s e

hexagon_img (row_no, colum_no) = 150,. * creenl
end,'
if row-no <= 2*row_section-Iength + (colum no - colum section_length) * sin(pi/3)

hexagon_img (row_no, cãl.um_no) = 150,. & Greenl
eLse

hexagon_img (row_no, colum_no) = 2OO; I yetÌowl
end;
if row-no <= 3*row_secbion_length + (colum no - colum section_Iength) * cos (pi/3)

hexagon-img (rów_no, cõlum_no¡ = 2oQ¡ \ Yellowl
else

hexagon_img (row_no, colum_no) = ?5,. I Red2
end;

elseif colum_no <= length_of_rectangular_template *3/6
if row_no <= height_of_rectangular_template/4

hexagon_img (tow_no, colum_no) = 75; * Redl
elsei f low_no <= height_of_rectanguLar_Eemplate/ 2

hexagon_img (lou_no, col-uM_no) = 150,. t creenl
elseif row_no <= heighb_of_rectangular_templaLe*.75

hexagon_img (row_no, colum_no) = 150; 3 c¡een1
âl cô

hexagon_img (row_no, colum_no) = ?5,. t Red2
end;

elseif coLum_no <= length_of_rectangul.ar_Eemplate * 4/6
i f row_no <= heighb_of _recLangular_template/4

hexagon_img (low_no, colum_no) = ?5; I Redl
elsei f row_no < = he ight_of_recEangu lar_Lemplate/ 2

hexagon_img {row_no, colum_no} = L50,. * creenl
el sei f row_no < = heighe_of _¡ect.angular_template' . 75

hexagon_img (low_no, colum_no) = 150; t creenl
else

hexagon_img (row_no, colum_no) = 75,. & Red2
end;

6neighbor.m
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image quali

t======::======
3 Created By : cirish Titunelveli
g Created On : June 19, 2001
t File Name : image_guaLity_using_ed.m
* Description¡ This program calculaE.es the inage quality beCween two images using
t fhe Eucl-idean Distance method.

f unction Iinage_guality] = image_quality_using_ed ( j.mage1, image2 )

using ed.m

t Step1. Àssign the oubput variables as O, just in case the job abhends j.n
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3

*-
image_guality = 0,.
ima9eL = double(imagel) ;
j.mage2 = double (image2),.
[no_ofjixe.Is_in_x_direction, no_ofSixels_in_y_direction] = size(imagel);

t--------------
* Step2. Calculate the image quality-
t Euclj.dean DisLance lmage Quality =
* sqrt(sum((ima9eL - enlarged_hexagon_img)^2)).

the middle. Àlso do all initializing required for Lhis function.

t in the edge whiLe rot.at.ing.
t--------------
radius = 100,. Sfloor (no_ofjixels_in_x_direction/3);
x_cenbe! = f Loor (no_ofjixels_in_x_directíon/ 2) ¡
y_center = f loor (no_ofj j.xe1s_in_y_direc¿ìon/ 2) ¡
f or x_Ìoop = 1 

' 
no_ofj j.xels_in_x_d j.recCion

for y_loop = L :no_ofjixels_in_y_direction
if (x_loop-x_cenher)^2 + (y_loop-y_center)^2 <= radius^2

difference_img{x_loop, y_Ioop) = image1(x_loop, y_loop) - image2 (x_loop, y_loop) ;
e 1se

difference_img(x_loop, y_toop) = 0;
end,.

end,.
end;

For calculating the image_quality consider a circÌe bhat is onl.y
I,/3rd the size of the image t.o geL ri.d of the disÈortions caused
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dif ference_img = dif ference_img. ^2;
image_quality = sqrt (sum(sum(difference_img) ) ) ;
image-quaLity = image_quaLiLy/(255 * sqrt(no_of__pixels_in_x_direction*no_ofjixels_in_y_direction));

I 255 is the maximum gley value j.n the image.

image_quality_usi

'r = = = = = = = = = = == = =
I Creat.ed By : cirish Tirune]veli
g Created On : June L9, 2001,
* FiLe Name : inage_guality_using_fd.m
t Descrípbion: This program calculaLes the inage quality between t.wo images using
& lhe fideLiey measure

EuncÈion Iimage_qualicyl= image_gualiLy_using_fd (image1. image2)

+-

t

fd.m

Step1. Àssign the output variables as O, just in case t.he job abhends in
bhe middLe. À1so do atL initiatizing required for this function.

t---------
image_gualiry = o;
inagel = double(inagel),.
image2 = doubLe(image2) ;

t Step2. Calculate the
? Fidelity BzD
& NoLe Chat the
t-------
BzD_numerator = sum(sum(image1. *i.mage2) ) ,.

BZD_denominator = sun(sum(imagel.*inagel) ),'

image_qua li ty = BzD_numerator/BzD denomìnator,.

l

image gualiby-
sum ( sum ( image1*image2 ) )

multiplicat.ior above is

g Created By : cirish TiruneLvel.i
? Creat.ed On : June 19, 2001
? File Name : image_qualit.y_using_rb.m
* Descrj.pLion: This progran calculates the image quality between Lwo images using
t Ehe resembliE.y meâsure
t==============
function Iimage_guality]= image_qualiEy_using_rb (image1, image2)

ua usins rb.m

/ sum(sum(inaget *image1) )

mat¡i.x mulpLication.

t Step1. Assign Che output variables as 0, just in case the job
&

*--
image_quality = 0;
imagel = double( j"magel) ;
image2 = doubl.e(idage2) ;

rhe middle. ÀIso do alL inj.Eializing required for this
abhends in
function.

T4T



t-------------------
t seep2. Calculat.e hhe image quality-
t XsD_numerator = sun(sum(imaget*image2) )
t XsD_denonj.naLor= sqrt(sum(sum(inagel*imagel))) *
I sqrÈ (sum{sum(image2rinage2) ) )
t XSD = XsD_numerator/XsD_denominator,.
t Note that. the muLtiplicatj.on above is matrix mul.pÌicaeion

XsD_numeraLo¡ = sum(sum(image1. *image2) ) ;
XsD_denoninator = sqrt (sun(sum(imagel.iimagel) ) )

inage_gualiCy = XSÞ_numerat.or/XSD_denominator,'
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È==============
* Created By : cirish Tirunelveli
* Creat.ed On : January 12, 2003
t File Name : image_qua1j.ty_using_hd.n
t Description: Thj.s program caLculates the image quality betHeen two images using
* the hausdorff distance
t==============
function Iimage_quality] = image_qual.ity_using_hd (image1, image2 )

e uali us

t-------
t Step1.

hd.m

t
t--
imaget = double (inagel) ;
image2 = double(image2);
image_guality = 0,.

Inibialìze alL reguired variables.
paramet.er just in case Èhe program

sqrt (sum (sum(image2. * j.mage2) ) ) ;

& Sbep2. Resize Ehe inage to 16 by 16 for faster compuLat.ion.

R¡_j.magel
RI_ima9e2
PC = zeros

t---
* St.ep3. For each pj.xel value of imagel, find the closest match in image2.
t Àdd all the diffe¡ences.
3--------------
Lot.al_distance = 0,.

for rn1=1:16
for cn1=l-: l6

distance = I000000.
PC-x = [];
Pc Y = [];

IOr rnz= a:ab
for cn2 = t:16

if PC(rn2,cn2) == 0 I Indicates not chosen
pixel_value_diff = abs(RI_inagel(rn1, cn1) - Rl_image2lt[2, cn2)) ì

if pixel_vaLue_diff < distance
if (isempty(PC x) == o) t lndicat.es chosen before

PC(PC_X, eCjl = O; I Unmarked to not chosen
end,.
PC(rn2, cn2) = 1; I Marked as chosen
PC_x = rn2;
PC-Y = cn2;
diËtur.. = pixel value diff;

endt
end;

end;
end;
totaL_distance = toEal_distance + distance,'

end,'
end,.
image_qualìty = total_distance;

= imresize (image1, [16 I6]
= imresize (imalez, t16 16i:

(16);

Also iniEialize the outpub
abhends in the middle.

'bicubic , ) ;
'bicubic ' ) ;

entropy.m

3

4

*
*
I
*

Created By ¡ ci¡ish Tirunelvel,i
Created On : July 31, 2001
File Name : entropy.n
Desc¡ipt.ion: ?his program calcuLales the infomat.ion content (enEropy) present

in an image. It returns the histogram and entropy as output
parameters.
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function (hist.ogram, entropyl = enbropy(original_image)
original_image = double (originaJ._image),.
min3ixel_vaLue=round (min (min (eriginal_image) ) ) ;
maxjixel_value=round (max (max ( originaL_image ) ) ) ,.

pixel_value = min-_p j.xel_va1ue : max3ixel_vatue,.

histogram(size (pixel_vaLue) ) = 0;

Inurìber_of_rows, number_of_colums] = size (original_image) ;
for row_number = 1:nuriber_of-rows

for colum_number = 1 ¡nunber_of_colums
currentjixel_value = round (original_image (row_number, colum_nunber) ) t
histogram (currentjixeÌ_value-minjixel_value+I) = ...

hisbogram(currentjixel_value - nin__pixe1_valûe+I) + 1;
end;

end;
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&----
t Enbropy H =
3 levels.
t----
entropy = 0;
f or pixel_value_nuÍiber = 1 ¡ maxjixel_value -minjixeÌ_value+t

if hisLogram(pixe1_value_number) -= O

nom_hisÈ. = histogram (pixeL_value_nuñber) / .. .

(number_of_rows * number_of_colums),.
entropy = enLropy - norm_hist * Iog2 (norm_hist);

end;
end,.

Sun tPV(i) '1092tPV(i)ì) where i runs Éor all grey

ro tl mtf.m

Created By : Gj-rish Tirunelveli
Creat.ed On : June 8, 2001
File Name : projectl_mtf.m
Description¡ Draus t.he MTF Curve (Modulat.ion Transfer Function Curve) of hhe square pixel image

and the hexagon pixel image.
Àlgorithn 1. Creat.e sine_uave_image of frequency 1. This j.s SwI.

2. Create the square pixel image of Lhe sine wave. CatI it SpI.
3. Create the hexagon pixel image of Che sine wave. Call it HpI.
4. Take the fourier transforn of aLl images. ffL_SWI, fft_StJI, fft_HpI.
5. Point of interest. in the transfom is (129, 129-frequency).
6. Ratio of thj.s point bebween tro images is the MTF.
7, Plotting MTF for a range of frequencies gives the MTF curve.z

t==============
clear
t--------------
I Àccept the input parametefs.
t--------------
length_of_squarejixel = input ('Enter lengt.h of sguare pixel: ,);
length_of_hexagonjixel = input ('Enber length of hexagon pixel: ,),'
frequency= l0:2,L2A);

time,s balt=cput ime;

;;;;;;; ;;;;;;;;;-;;;;;;.; ; ;;_;;;;_;;; '¿"; ; ;;;;;;;;;;i ;;;; " -

and hexagon pixel image. Get the fourier transform of each of these images.
Get the value al 1f29,129-frequency) coordj.nate. Lets say this value j.s
À0 for the original sine image
.41 for the square pixel image and
À2 for the hexagon pixel image.
MTF at lhe frequncy = À1/40 for squale.

= A2/A0 for hexagon.
Do this for all frequencies and pLoL a curve.

for f requency_number=1 : Length(frequency)

I Get the sine_wave_image at lhe specified frequency,
SwI=sine_wave (frequency (frequency_numbet) , 256) ;

* Conve¡t it to sgualejixel_image and get SPI.
SPI=squarejixeL_image (SWl, length_of_square3ixel) ;

t Convert it to hexagonjixel_image and get HpI.
HPI =hexagonjixel_image_2 teñp1abe ( SWI, lengrh_of _hexagon_pixeI ) ;

f ueE ¿D !!-l o! all Ene rnages.
ffc_s¡.rr = reaL(ffrshìfL(fft2 (sf,ùr)))i
ffr spr = real(ffrshifr(ff12 (spr) ) );
ffr_Hpr = reàt(ffrshifr(ffr2 (Hpr) )) ;

t Get the añplitude of the transfom aÞ bhe point of interest..
amp_SwI = ffC_SWI (129, 129-freguency(frequency_number) ) ;
amp_SPI = fft_SPI (129. 129-frequency(frequency_nunber) ),.
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amp_HPI = fft_HPI (129, 129-freguency(frequency_nurÌber) ) ;

S lQ_mtf ( f reguency_number) = amp_SPI /amp_Slll ;
HIQ_mt.f ( f requency_number ) = amp_Hpt /amp_SÍ¡I ;

end,. * for frequency number

t ime_end=cput i.me;

disp (strcaE { ' Process Compleced. Tj.me taken¡

t Plot the MTF curve.
g---------
c1f
plot (frequency, SlQ_mtf, 'r+-') ,.

hold
plob (frequency, HIQ_mtf, 'bo-') ;
tiEle ('Resolution Conparison beUueen square and hexagon pixel using MTF')
xlabe.l ('Frequency')
ylabel ('Modulation Transfer FuncEion (MTF) ');
Iegend ('Square Pj.xel.', 'Hexagon Pixel,)
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stne wave.m

*==============
t Created By : cirish Tirunelveli
å Created On : June 07, 2002
t File Name : sine wave.m
I Description: Thislrogran creates a sine wave at a particular frequency.
îr = = = = === == == = = =
funcLion Isine_wave_imgl = sine_wave (flequency, size_of_img)

sine_wave_img = zeros (size_of_ing) ;
for colum_no=1 : size_of_img

thet.a_in_degrees = col.um_no * 360 * frequency / size_of_img,.
bheta_i.n_¡adians = theta_in_degrees * pi / IgO,,
sine_wave_img(¡, colum_no) = l-28 + sin (theta_in_radians) * 128,.

end;

num2str (Eime end-tj.me st.arh) , ' seconds' ) ) ,.
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4.2 Code for *ART experiment

Extract all the files in this section into a particular folder on your computer. Change your

MatlabrM session's present working directory to this folder. Simply type project2_main

intheMatlabrM commandprompt. This will show a parameter screen. Theparameter

screen is shown in Figure A-1. Enter the parameters for your experiment and click Ok.

Based on the parameters entered, the code will do its magic and display as output the

original test image, the seed image used (applies to *ART), the reconstructed image and

the plot of the normalized Euclidean distance with respect to cycles. Note that test images

are needed for using the code. The different test images that I used (all are 32by 32

images) are tabuiated below.
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Sr# Test Image File
Name

I admin32.bmp

2.

3.

rose32.bmp

4.

phantom32.bmp

5.

abcd32.bmp

Description

6.

paint32.bmp

University of Manitoba
Admirustration Building

checker32.bmp

7.

A low contrast image of a

IOSE

circles32.bmp

Phantom Image

8.

Image containing the
alphabets "abcd"

sine32.bmp

Image containing pattern
frbm Microsoft Paintbrush

9.

Reproduced with permission fi'om
Prof.W. Lehn's Digial Image
Processins class.

Image containing 8 by 8

blocks of sequential pixel
values

llow the image was
generated?

rand32.bmp

Produced using my digital camera.

Circles of uniform radius
and different contrast
th¡own randomly on a

uniform backsround.

Produced using the phantom function
in MatlabrM
Created manually in Microsoft-
Paintbrush.

Horizontal sine wave of
frequency 1 and 10 is added
with vertical sine wave of
flequencv 1 and 10.

Created manually in Microsoft@
Paintbrush.
Created manually in Microsoft-
Paintbrush.

Uniformly distributed
random imase.

Created manually in Microsoft@
Paintbrush.

Created mathematically in Matlab' *

Created using Matlab's rand function
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project2_main.m

Created By , cirish Tirunelveli
Created On : December 3L, 2002
FiÌe Name : projecE2_main.m
Descripbion: This program asks for all t.he input parameters lequired for studying the

confidence of *ÀRT atgorit.hms, Note that this program is written only
for square images.

Figure A-1. Thefront-end application screenþr entering
*ART parameters

pack; t Helps in stoling t.he weight matrix variabLe especially if the image size is t.oo large

t--------------
t Step1. Display the GUI inpuC screen. cive approp¡iate defaults,
t--------------
clc
inpuE_options.Resize ='oÊf'ì
input_options,windoustyle =' nomal.' ;
inpuL_opf ions. InterpreLer =' bex' ;j"npuL_window_tit1e 

= 
, lnput for *ÀRT function' ,.

inputjrompts = ('Enter the name of the input fi.le (,bmp only):', ...
'Projection Àngles i.n Degrees' , . . .

' Projection Àngl.e Ordering Schene (sas, faas, las.mlsas,wdas),, . . .

'Ray width', ...
'DetecLor 9¡idth (0 for variable)', ...
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sinewave, noise, fbp,

i.nÞu[ defaults

iRay Gapr, ,.,
'Detector Gap,, ,.-
'Number of Detecbors (Enter O if you need Co cover the entire image)', ...
'PixeL widt.h', ...
'weighting Scheme (bin,int,dise,cont),, ...
'AlgoriÞhm lype (SRT, FBP. ÀRT, MÀRT, SÌRT, SÀRT, ÀRT_-MÀRT) ,, ...
'Ent.er the name of the seed (zeros, fIaÈ., meshgrid, rãnd, randn, checkelboard, shingles,
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sEretch, blur, bLockl, block2, block3, block4) :', ..
'Number of CycLes (0 for convergence)', ...
'RelaxaEion Factor', ...
'Enter weight Matrix Variable (EnLer blank if
'Enter the Projection Values Variable (EnEer

)t

I Por proper displÀy in desktop
input_lines
? For proper display in lapCop
*input_lines = tl,1,1,1,1.1,1, t,1,1,1, t,1,1,1, Iì;
answer= inputdlg ( inpubj¡ompts , input_window_b i L1e, input_lines , input_defaul t.s . inpuL_opEions ) ,.
answer

*------
tr Step2. Conve¡t the useÍ response into proper datatypes.
t--
input_nunber= 0;

?==============
t INPUTI: Original Image
g==============
inpuL_nurìber= inpuL_nufiber+ 1 ;
clear original_image
original_image_txt = cell2struct (answer(inpuÈ._number),'value', 2);

recalcuLation required)',
blank if recaLculation tuq"iråal' ...

t If the file name has a equal bo sign in it, then iE indicates thar
t the user wants to execute a funcÞion and store the function in theg original_image variable. If the original file name has a period in
t ih then Lhe user wishes Èo open a image file, the chalacters flwing
? the image name are breated as the file fomat. lf the file does not
t have eit.her a equal to sign or a peÌiod in iÈ then it is a .nat
I variable.
t------------------
equal_sign_found = find(original_image_txt..value ==,='),.
period_found = find(original_image_txt.value ==,.');
if (isempty(equaI_sign_found) == o)

eval (sprintf ( ,oriqinal_image 8s,. ' . original_image_txt..va1ue) ) ,.

elsej.f (isempty(period_found) == 0)
original_image = imread (original_image_txt..value,'bmp,),.
original_image = double (o¡iginat_image) ;
original_image =original_image+1;

else
eval (sprintf ( 'Ioad ts; ' , original_image_txf.vaLue) ) ;
original_inage (1, 3 ) =B t

end i
lnunber_of_rows_in_image, numbe¡_of_coLums_in_imagel = size (originaL image),.

INPl.n3: Projection Àng1es Ordering Scheme (1,2,3,4.5,6)
1 j.ndicates Sequent.ial (angles are taken j.n older the daÈa is

gathered) (SÀS)
2 indicates Fixed Àn91e Àccess Scheme (FÀ-AS)

(angles are 90 degrees apart in t.his case)
3 indicates PNDÀS (prime Number Decomposition)
4 indicates Random Àccess Scheme (RÀS)
5 indicates Multilevel Àccess Sceme (MLSÀS)

cell2shruct (answer ( input_number)
st!2num ( hheta_in_degrees_txt. val.ue),.
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input_number= input_nurÌber+ l. t
projecbion_angles_ordering_txt = cell2sÈ.ruct (answer(input number), 'vaLue', 2),.
swj.tch lower (projection_angles_o¡dering Lxt.value)

6 indicaLes Weighted DisÈance Scheme (WDÀS)

case ( 'sas, )
Cheba_in_degrees

case {'faas | 
)

theta_in_deg!ees
case ( 'pndas' )

CheÈa_in_degrees
case ( 'ras' )

thet.a_in_degrees
case {'mtsas')

Ehet.a_in_degrees
case (,wdas')

t.he t. a_in_degree s
oLheruise
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: generatejaos_sas (theÈ.a_in_deglees);

= genelatejaos_faas (theta_in_degrees),.

= generate_paosjndas (thet.a_in_degrees) ;

= generatejaos_Ìas {theta_in_degrees);

= generatejaos_mlsas ( theta_in_degrees),.

: generatejaos_wdas (theta_in_degrees) ;

disp(,Invatid Value for ProjecLion ÀngLes Ordering Scheme.')
return i

T INPTIT :

ínput_number=input_number+1 ;
clear ray_uidt.h
ray_widEh_txt = celI2st.rucC (answer(input_nurìber),,value', 2),.
ray_widbh = sEr2num (ray_Hidth_txb.value),.

3 INPI.IT5: Detect.or Width
t==============
inpuL_nuûìber= input_nuñber+ 1 ,.

clear deLecÈoÌ_uidth
detector_widÈ.h_txt = cell2sLrucb (answer(inpub_nunber),,valuei
detector_widbh = str2num (detecto¡ width txt.value),.

Ray widhh

t INPUT6: Ray cap
z==============
inpu!_numbe!= input_number+1 ;
clear ray_gap
ray_gap_txe = cell2struct (answer(inpuÈ._nurìber),'value,
ray_gap = str2num (ray_gap_txt.value);

t INPUT? ¡ Detector cap

input_numbe!= input_number+ 1,.
clear detector_gap
dehecLor_gap_txt. = ceLl2struct. (arswer (inpuL_number) .' value,, 2),.
detecCor_gap = str2num (detector_gap_txt.value);

t==============
? INPII"IS: Number of Detectors

inpuL_nurÌber= j.nput_nurìber+ I ;
clear nuûÌber_of_detecto!s
nurìber_of_detecÈors_txt = cell2struct (answer(input_number), 'value,, 2);
nunber_of_detectors = str2num (numbel of detecEols txt.vaLue);
if (nunber_of_detectors == O)

nurÌber_of_detectors = nuñber_of_rows_in_image + numbel_of_colums_in_image- 1,.
end,.

? INPtlI9: Pixel tÍidth
*==============
input_number= inpuc_nurìlcer+ 1,'
clear pixel_widbh
pixel_widt.h_txt = cell2sE.¡ucb (answer (input_number) , ,value' , 2) ,.

pixel_width = str2num (pixet width txE.value),.

& lNPlIItl: Àlgorithm T'?e
t====:=========
inpuL_number= input_numbet+1,.
c.lea¡ aLgorithm_Eype
algolithm_Èype_txt = cell2struct (ansuer(input_number),'value

scheme (int)
center of pj.xel scheme (dist)
from farthest edge of

number), 'va1uer, 2);
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algorithn type

t==============
t ¡NPUT12: Seed Image
t==============
input_number= input_number+ 1,.
clear seed_image
seed_image_txt = cell2struct (answer(input_number), ivalue', 2) i
switch Lower(seed_image_Lxt..vaIue)

case ( ,zeros' 
)

seed_image = zeros (size (original_image) ) ;
seed_image_title ='Seed Image(zeros)' ;

case ,flat'
seed_image = ones (size (original_inage) ) ,.

seed_image_title =,Seed Inage(flat)',.
case ,meshgrid'

seed_image =meshgrid(1.: length(original_image));
seed_image_title ='Seed Inage(meshgrid),,.

case 'rand'
seed_image = rand (size (original_image) ) ,
seed_image_tj.tLe ='Seed Image(rand)' ;

case ' randn'
seed_image = abs(128+randn(size(original._image))*32);
seed_image_tit1e ='Seed lmage(rand¡),,.

case ' checkerboard '

seed_image = checkerboard(size(origina.l_ì.mage, 1) , I, 255) ì
seed_image_hitIe =,Seed Image(checkerboard)',.

case 'shingÌes,
seed_image = shingLes (size (original_image) ) ;
seed_image_title ='Seed Image(shingles)' ;

case rsinewavet
seed_image = sinewave(lengbh(original_image));
seed_image_title =,Seed lmage(sinewave)',.

case,noise'

aLgori thm_Eype_txb . value;

Poriginal_image = sqrb (sum{sum(original_image, ^2) ) ) ;
seed_image = rand(size(orj.ginal._image)) * Þoriginal_inage/50
seed_image_title = rSeed Image(noise)',.

'rbp'
pv_radon = radon (original_image, theta_in_degrees) ;
seed_image = iradon(pv_ladon.theta_in_degrees,rnearesh',,Hann
seed_image_ritle = 'Seed Image (fbp) , 

,.

'sCretch'
seed_image = abs(sbretch(original_image, 1.5));
seed image tiEle = 'Seed Image(stretch)';

caserblur,
seed_image =blu¡(original_image, 1),'
seed_j.mage_title ='Seed Image(bLur)',.

case 'blockl'
seed_image = block (ones (size (original_image) ) , I) ;
seed_image_tj.t.le ='Seed Image(b1ock1)';

case rblock2 |

seed_inage = block (ones (size{original_image) ) , 2) ;
seed_image_title = ,Seed Image(block2) ,;

case ,b1ock3,
seed_image = block (ones(size(originat_image) ), 3);
seed_image_tiLIe ='Seed Image(block3)';

case'block4,
seed_image - block (ones {size (original_image) ) . 4) ;
seed_image_title ='Seed Image(block4)' ;

o theÌwi se
disp ( ' InvaLid Seed lhage. ' )

seed_image_bitle = ,Seed Image,,.

end;

.6==============

* INPUT13: Number of Cycles
t===:==========
j.nput_nurÌber= i.npuE_nurìber+ 1 ;
clear number_of_cycles
number_of_cycles_txL = celL2struct (answer(inpuE_num¡er),'vaÌue,, 2) ;
number_ot_cycles = sEr2num(nurìber_of_cycles_LxÈ..va1ue) ;

t==============
t INPUT14: RelaxaLion Factor

inpu L_number= input_number+ 1 ;
clear relaxation_f actor ;
relâxation_factor_txt = cel12struct (answer(input nuñber),'value'
relaxation factor = str2num(relaxat.ion factor tx¿.value);

+ original_image,'

t, number_of_rows_in_image),.

INPUT15: Weight Matrix
If the weight matrix is entered then assign the weight matrix to the entered
variable. eLse recalculate the ueight natlix. This is done for speeding up
testing. Not.e that the weight matrix is a 4-D maLrix as beLow -

wM (x of pixel, y of pixel, angle_number, deCector number)
The çeight natrix is comput.ed by four different methods -

1. Binary Scheme (bin)
2, Length of the ray within the pixel Scheme (inh).
3. Distance of the centel of the pixel from the cenber of the lay Scheme (disE)
4. Contríbution made by pixel ho the adjacent rays Scheme (cont),
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input_numbe!=inpub_nurìber+ I ;
weight_matrix_txt = cell2st.ruct (answer(input_number),'vatue', 2),.j.f (isempty(weighL_maCrix_txt.value) )

t ime_sta!t= cput ine;
switch lower(weighting scheme LxE.value)

case ( 'bin' )
(WMl=generate_m_bin (original_image, theta_in_deçJrees, number_of_dehectors,

pixel_width);
case {'inc')

[WM]=generate_m_inL (originat_image, ghet.a_in_deglees, number_of_detecEors,
pixel._widbh),.

case (,dist,)
IWM]=generate_m_dist(original_image, theta_in_degrees, number_of_detectors,

pixel_width);
case { 'cont' )

ItlMl=generate_m_cont{original_image, theta_in_degrees, number_of_det.ectors,
pi.xel_width),.

ot.herw i s e
disp { , Invalid Va1ue for Weight.ing Scheme, ) ;

end,.
Cime_end=cputime;
disp(strcat(,weight Matrix CompuLed. Time taken: ', num2str(tj.me end-time start), '

else
eval (strcat('t,lM =', weight matrj.x t.xb.value, ';,));

end;
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INPUTI6: ProjecÞion values (Porward Simulation)
lf the variable is enLered then asaign the pv variable bo the entered valiable,
else recalculate Pv by calling generahejrojections function. This is done for
speeding up testing. Not.e that the PV is a 2-D matrj.x as below -

Pv ( theta_i.n_degrees, detector_nuñbe¡)
?==============
input_number= input_number+ 1 ;
projecbion_values_txt = cell2strucL (answer(input_number),,value', 2),.
if ( isenpty (proj ecE. j-on_values_txb . value ) )

Cime_start=cput.ine,.
IPVl=generatejrojecEions(original_image, theta_in_degrees, WM, number_of_detectors);
t.ime_end= cputime;
dj.sp(strcat('Forward Sj.mul.aCion Complete. Time taken¡ ', num2str(time end-time start),

else
eval (strcat(,PV =', projection_values_txt.value,,r'));

å--------------
åi Step3. validaee the input.'fhis input validabes include boEh bhe
3 program limitations and also the algorithm linitations.
'f--------------

if size (original-image) -= size (original_j"mage, )

disp (,Input Error, ) ,.

disp ( 'Original lmage must be square. ' ) ,.

re gu!n,.
end;
if size(seed_image) -= size(original_image)

disp('Input Error'),.
disp('Seed Image must be the same size as bhat of t.he original image

end,'
*
8if -isempty (f ind(original-_image==O) )
t dísp ( ' Input Erro!' ) ,.

& disp('original Image must not have any elemenEs with o value.'),.
t return,.
tend;
tif -isempty(find(seed_inage==0) )

t disp ( ' Input Error, ) ,.

t disp('Seed Image must. not have any element.s with O value.'),.
t reLurn,.
* eñd,.

de tector_width,

debector_width,

de t.ec t.or_ç idth,

deLecLor_width,

seconds' ) ) ,.

switch upper ( aLgorithm_type)
^.-- /'ÞÞD,l

t ime_s LarE =cputime,'
precj.sion_ñulCiplier = l-0000000,.
{Rl_fbp, ¡D_fbpl =ifbp (seed_image, original_inage, . , .

Pv, theta_in_deglees, ...
number_of_cycles, nunber_of_detectors, -..
wM, precision_multiplier, relaxation_factor),.

time_end=cpufime;
disp(st.!cat('Backward Sinulation (FBp) Complete. Time taken: ,, num2str(È.ime end-time sta!t.),

seconds' ) ) ;
case ( ,snr' )

time_s Lart=cputime,'
precision_mulÈiplier = 10O0OOOO,.
IRf_srt, ID_srb] =isrt (seed_image, origina.l_image, . . .

Pv, theta_in_degrees, ..,
number_of_cycles, nuÍÌbet_of_detectors, . . .

seconds')),'
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wM, precision_multiplier, reLaxat.ion_factor) ;
time_end=cputime;
disp(strcaE(,Backward Simulabion (SRT) Complete. Time taken: ,, num2st.r(t.ime

seconds' ) ) ;
case ('ÀRT' )

L ime_s tart=cput ime;
precisj.on_multiplier = 10000000;
IRI_a¡8, JD_art] =iarE (seed_image, original_image, . . .

PV, theta_in_degrees, ...
number_of_cyc1es, nurìber_of_deÈectors. ...
HM, precision_nultiplier, relaxation_factot) ;

time_end=cput ime ;
disp(st.rcat('Backward Simulation (ÀRT) Compl.ete.

seconds'));
case (,MÀRT,)

time_s tart=cput.ime ¡
precision_multiplier = lOOOOOOO'
IRl_mart, ID_martl =inart (seed_image, original_image, . , .

PV, theta_in_degrees, ...
number_of_cycles, numbe!_of_deEectors, ...
WM, precision_multiplier, retaxation_facÞor),.

t ime_end=cpuLime,.
disp(strcat('Backward Simulation (t'4ÀRT) Complete. Time taken: t, num2str(Lime_end-time_start),

seconds') ) ,.

case 'sIRT'
t i.me_starE=cput i.me,.
precision_multj.ptier = lOO0OOOO-
IRl_sirb, ID_sirt] =isirt (seed_image, original_image, . . .

PV, theta,in degrees, ...
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disp(sErcat('Backward Simulation (SIRT) Complete. Time taken¡ r, num2srr(t.ime end-time start), '
seconds')),.

case ( ,sanr')
t ime_start= cputime,.
precisj.on_mult.iplier = 10000000 ;
IRI_sart, ID_sart] =isa!t (seed_image, originaL_image, . . .

Pv. theta_in_degrees, ...
number_of_cycles. number_of_detectors, ...
WM, precision_muLt.iplier, relaxat.ion_factor) ;

t ime_end=cput ime,.
disp(sbrcat('Backward Simulation (SÀRT) Complebe. Time taken: ', num2str(time end-time start), 'seconds'));

case {'anr_l,tar.r,)
time_starL=cputime;
precision_multiplier = 1¡669699'
IRl_art_mart, fD_art_marE] =iart_mart (seed_image, original_inage, . . .

pv, theta_in_deg¡ees, ...
number_of_qycles, number_of_detectors, ...
WM, preci sion_multiplier, relaxaÈ ion_f actor),.

Lime_end=cpuLime,.
disp(sErcat('Backward Simulation (ÀRT_MÀRT) Complete. Time taketr: ,, num2sCr(time end-time sLart),

seconds') ) ;
oCherwi- se

disp ( , Inval.id Àlgorithm Type. ' )
re turn,.

end,.

t ime_end= cput.ime;

Time taken,', num2str(time_end-Lime_sCart),

numbe¡_of_cycles, number_of_detecÈ.ors, . . .

wM, precision_mu1tip1ier, Ìelaxation_factor) ;

_end- time_start ) ,

? SCep5.
*---
current_f igure=figlre ( 15 ) ;
cIf
seb (current_figure,,NumllerTiÈle,,'off ,),.
set (current_figure,,Name,,,projectz Results,);

subplot (2, 2, 1), imagesc (o¡iginaL_image);
colomap (g!ay);
title ,Original Imagel
axis square
axis off

subplot (2, 2, 2), imagesc (seed_image),.
colormap (gray),.
title ( seed_image_title)
axj"s square
axis off

cycle= [0 : number_of_cycles],.
switch upper (algorithm_type)

case {'FBP,)
subplot (2, 2. 3), imagesc (R1_fbp);
colormap (gray),.
t.itle'Reconst.lucted Image (FBP)'

Clear t.he figure window and show results

axis square
axis off

ID_f bp ( 1 : nurÌber_of_cycles+I) = ID_f bp,'
subpLot (2,2,4), plot (cycle, ID_fbp,
grid on,.
xlabel ('Cyc1e,),'
ylabe1 ( 'Nomalized Eucl. Distance, ) ,.
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tiLle ('Plot of Nomalized Eucl.Distance Vs Cycle');
axis ( [0 nunber_of_cycles 0 1.1*max(ID_fbp) ] )
ID_fbp'

case ( 'sRT' )
subplot (2, 2, 3). j.nagesc (Rl_srt);
colomap (gray);
title'Reconst.ructed Image (SRT)'
axis square
axis off

ID_srt. (1 : nunìber_of_cycles+1) =lD_srC,.
subplot (2,2,4), plot (cycle, ID_srt, ,r-', cycle, ID srt, 'bo,)
9rÍd on,.
xlabeÌ (,Cycle')i
ylabel ( 'Normalized Eucl . Distance, ) ;
Li.tle ( 'Plot of Normalized EucL . Distance Vs Cycle' ) ;
axis ( [0 number_of_cycles O 1.1*max(ID_srt)l)
ID_srt '

case {'ÀRT'}
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subplot (2, 2, 3). inagesc (RI_art),.
coÌomap (gray) ;
title 'ReconstlucLed Image (ART),
axis square
axis off

ID_ar! ( 1 : nunrber_of_cycles+1 ) = ID_art,.
subplot (2,2,4), plot (cycle, ID art, 'r-
grid on,.
xl-abeL ('Cycle'),'
yLabel ('Nornalized Eucl. Distance' ),.
titLe ('PÌoC of NormaLized Eucl.Distance Vs Cycle,);
axis ( [0 number_of_cycles 0 l t*max ( ID art) ] )
ID_art'

case { 'umt' )
subpl.ot. (2, 2, 3), imagesc (RI_mart);
colormap (gray),.
Eitle'ReconsLructed Image (MÀRT),
axis square
axis off

ID_mart. ( Ì : nunber_of_cycles+1 ) = ID_maft,.
subplot (2,2,4), plot (cycle, ID mart, 'r
grid on;
xLabel ('Cycle,);
yLabel ('No¡nalized EucI. Distance, ) ;
title ('Plot. of NormaLized Eucl.Distance Vs Cycte'),.
axis ([0 number_of_cycles O 1.I+max(tD mart)])
ID_matc I

case ( 'srnr' )
subplot (2, 2, 3), imagesc (R¡_sirt);
colormap (gray) ;
title,Reconstructed lmage (SIRT),
axis square
axi.s off

cycle, ID_arC, 'boi)

ID_siÌt ( 1' number_of_cycles+1) = ID_sirt,.
subplot (2,2,4), pl.oL (cycle, ID_sirt.,,r-', cycle, ID_sirt,'bo')
grid on,.
xlabel ('Cycle'),.
y).abel ( 'Normalized Eucl . Distance, ) ,.

title {'Plot of Nomalized Eucl.Dist.ance Vs Cycle');
axis ( [0 nunber_of_cycles O L.1*max(ID_sirt)] )
ID_sirt'

case ( 'sa,nr, )
subplot (2, 2, 3), imagesc (RI_sart),.
colormap (gray);
title'Reconstrucred Image (SÀRT)'
axis square
axis off

1D_sart ( 1 : number_of_cycLes+1 ) = ID_sart ;
subplot. (2,2.4), plot (cycte, tD_sart, 'r-', cycl.e. lD sarE, 'bo')
grid on,.
xlabel ('Cycl.e,),.
ylabel ( ,Nomalized Euc1. Distance, ) ,.

title ('PIot of Nomalized EucL.Distance Vs Cycle');
axis ([0 number_of_cycles 0 1.1*max(ID sart)1)
ID sart'

cycle, ID mart, ' bo ' )

case ( 'a-nr_tø1.t, )
subplot (2, 2, 3), imagesc
col.ormap (gray);
tiCle'Reconstructed Image
axis square
axis off

ID_art_màrt ( 1 : nurìber_of _cycLes+1 ) = lD_a! C mart,.

(Rl_art_mart.);

(ÀRT_-MÀRT) '
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subplot (2,2,4), plob (cycLe, ID_art_mart, 'r
grid on;
xlabel ('Cycle') ,.

ylabel ('Normalized Euc1.
EibIe ('PLot of Normalized
axis ( [0 nuñber_of_cyc].es
ID_arÈ_mart'

oCherwi se
disp ( 'Invalid Àlgorithm .I.ype. ')

end

load handel
x=y (1: Ì000) ;
sound (x, 8192);
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generate

Distance') ,.

Eucl.Distance Vs Cycle , ) ;
0 L. lrmax(ID_art_marr) I )

t=== ======= ====* Creaced By : cirish Tirunelveli
Created On : ,January 01, 2003
File Nane ¡ genelaLejaos_sas.m
Descriplion: The generatejaos_sa6 function generates the sequentiaì projecEion angles

ordering. lt returns bhe projectj.on angles in the sane order as they
were received. Technical.ly this program is not required. It. is c¡eated
onl.y Co be consistent with the other projectj.on angles ordering schemes.

os sas.m

cycLe. ID_art_mart,'bo')

t=======-::====
function IR_ang.IeSj = generatejaos_sas (theta_in_degrees)

R_ang.Les = LheEa,in degrees;

generate

t==============
I CreaLed By ¡ cirish Tirunelveli
å Created On r rlanuary 01, 2003
t Pile Name : generatejaos_faas.m
t Description: The generatejaos_faas function generaLes the projection angles ordering
er scheme such that the projection angles are a6 orthogoral as possible.
3 For example a sequence of angles 0. 30, 60, 90, IZO,15O, 180 is
t changed to 0. 90, 30, I20, 60, 150, 180.
;==============
function IR_angles] = generatejaos_faas(theta in degrees)

t--------------
t Step1, Initialize all the appropriate variables. Àlso initialize the output

os faas.m

t
g--
number_of_angLes = Length ( Eheba_in_degrees),.
R_angles = zeros (size (theEa_in_degrees) ) ;
angle_selecLed = zeros (size (Eheba_in_degrees) ) ;

parameter, just in case t.he program abhends in the middle.

B--------------
t Step2. The first ort.hogonal angle is the first one from the theta selies.

R_angles (1)
angle_selected (1)

å

t
z
z

Step2. We need to assign the orthogonal angLes from the 2nd element unEil the
last.

fo! oan = 2:number_of_angles
iÉ nod(oan, 2) == 1

ref_angle_walue = R_angles(oan-1) -90,'
else

ref_angle_value = R_angles (oan-1) +90,.
end,.
diff =1000,.
previous_an = tl ;

f or an=2 :number_of_angles
if (ang1e_select.ed(an) == O) t Indicates the angle has not been selected before

new_diff= abs (ref_angle_waLue - thega_in_degrees (an) ) ;
if new_di.ff < diff

3 Reset previously seC angle
if (isempcy (previous_an) == O)

angle_selected(plevious an) = 0;
end,

t Seb the current angle.
previous_an = ant
diff = new diff,.

theta_in_degrees (1);

R_angLes (oan) theta_indegrees (an) ;
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angle_selected(an) = 1;

end t
end;

end,. t for an

end,. B for oan

eratejaos_ras.m

t Creabed By : cirish Tirunelveli
t Created On : January 01, 2003
t File Name r generatejaos_las.m
g Descrj.ptj.onr Random Àccess Scheme for ordering Che projection angles.
t Àlgorichm, -
t t,
ir = = = == = = = = = = = = =
funcCion lR_angles] = generatejaos_ras (theta_in_degrees)

t--------------
I Step1. Initialize all the appropriate variables. À1so initialize t.he output
t paraneter, jusE in case the program abhends in bhe middle.
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\-----------
nurìber_of_angles = length ( theE.a_in_degrees) ;
R_angles = zeros (size (thet.a_in_degrees) ) ,.

argle_selected = zeros (size (theta_j.n_degrees) ) ,.

next_angle_index = O;

Step2. f,¡e need to assign the randon angles from the 1st elemenÈ. unbil the
.Iast.
ÀlgoriÈ.hm: -

a) SelecE an angle in random.
b) Make sure lhat the angle_index has not been selected before,

fol ran = 1:number_of_ang.les
angle_index = round(rand* (number_of_angles-I) ) + j.,.
girish = find (angle_selected == angle_index),.

while isenpty(girish) == 0
angle_index = round(rand* (numbel of
girish = find (angl.e seleccãd

end;

"6--.
g If the progran control comes to this point. Chen it indicates that
B the angle index has not been selecbed before. Ässign the next_angle
t of the oubput variable as bhe angle from the input set. with the
t same index. Àlso ma¡k Lhe index as selected so that ig will not be
t seLecLed again.
t--------------
next_angle_index
R_angles (next_angle
an91e selecbed(next

end,. I for ran

enerate

3 CreaÈed By : Girish TiruneLveli
3 CreaE.ed On ' ¡anq¿¡y 01, 2003
t File Name : generate_paos_m1sas.m
ij Description: 'Ihe generatejaos_m1sas function generates the projection angles o¡dering
& scheme based on MLS (Multi Level Àcess Scheme) based on cuan À¡d cordon.
t==============

_angles-1)) + 1t
== angle_index),.

= next_an91e_index+1;
index) = theta_ìn_degrees(angle index);
angle_index) = angle_index;

mlsas.m

Eunction IR_angles] = generate_paos_mlsas (theta_in_degrees)
t--------------
3 Stepl. Initj.aLize all lhe ðppropriaLe variabLes. Also iûitialize the outpuE
I parameter, jus! in case the progran abhends in the middle.

number_of_angLes = length(theta_in_degrees),.
R_angles = zeros (size (theEa_in_degrees) ) ;
angLe_selected = zelos (size (theca_in_degrees) ) ;

t Step2. The first orthogonal angte is the first one from Lhe bheta se¡ies
*---
R_angles (1)
angl-e_selected (1)

= È.heta_in_degrees (1) ;
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t Step2. For lhe second angle, Che difference flon the first angle must be
t close to 90.

for oan = 2¡nuñber_of_angles
if (oan==2)

preferred_disCance = 90,.
ref_angle_value = 90;

efseif mod(oan, 2) == 1 t Odd
preferred_distance = (R_angles (oan-1)+ R_angles (oan-2) ) /2;
ref_angl.e_value = R_an91es (oan-1) -preferred_distance,.

else
preferred_dist.ance = 90;
ref _angle_value = R_angles ( oan- 1 ) +pref erred_distance,.

end;
di.f f
previous_an
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f or an=2 : number_of_angl.es
j.f (angle_selecbed(an) == O) t Indicates lhe aûgLe has not been selected before.

new_diff= abs {ref_angle_value - theLa_in_degrees (an} ) ,.

if new_diff < diff
t Reset previously set angle
if (isempty (previous_an) == O)

angle_selecLed(previous an) = 0;
end,.

îr Set the current. angLe.
previous_an = an;
diff = new_diff;
R_angles (oan) = theta_in_degrees (an) ,.

angle_selected(an) = 1;

end;
end;

& for an

=1000;

end; t for oan

generate

9--------------
t Created By : cirish Tirunelvel.i

Created On : January 01. 2003
FiLe Name : generaeejaos_wdas.n
Description: 'Ihe generatejaos_wdas function generat.es bhe projection angles ordering

scheme as proposed by Mueller. The code is uritten by Chris Badea and
is reproduced here with his permission. The code is changed slight.ly
to fit the standards of my coding and style,

wdas.m

function lR_angles] = generatejaos_wdas (theLa_in_degrees)
t--------------
I SbepL. Initialize all the appropriate variables. À1so inibialize the output
* parameter, just in case ghe program abhends in the middle.

number_of_angLes = length(theta_in_degtees) ;
wds = m_orde¡(number_of_angles, L, '2,) i
R_angles = theta_in_degrees (Hds) ;

m_order.m (Code \ryritten by Chris Badea Email: chris@orion.mc.duke.edu)
&--------------
* m_orde¡ funcbion used vit WDS for Che ÀRT/MÀRT reconstruction
i; C. Badea Nov. 2k2

function m_order=create_order(n_ofjr, n_of_it., ordering)

sjr=o; t* index of selected projection *t

tS; ** length of cilcular queue *å
*Thetar*i circula¡ queue *t

*14,' ei nuñber of projections **
8lambda,. t* List of plojections not. yet used ¡8

åL; t* Iength of projectj.ons nob yet used *8
?0,. 3i nuñber of proj cullentÌy in Theta i&
*count_wds;
firsL=1;
order_ind=1,.
gi, iteration,'
tm,'

Initi.aIisaLi.on for wds *t
M=n_of jr;
S=M; t* This is opt.imal number from the paper **

First projecEion for reconsituction is O. *t
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Q=l; t* Theta filled vit.h first proj *8

m_order ( 1) =1,.

1L6Èâ/1\-^.

L=M-1;

t FilI in projection pooL */
for i = 1, L
Lantbda(i)=i;
end

t It.eration loop +/
for iteration=1: n_of_it

if (first==0)
L=M;
for i = 1: L

Lambda(i)=i;
end

end
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*----
I Projection loop */

for m=1:n ôf Dr

B/* choice for ordering '/if (ordering == '2')

if (first==1) first=0;
else

*/* select projection from Larìbda */
order_ind = order_ind + 1,.
sj! = selectproj(Lambda, L ,Theta, Q, s);
m order (order_ind) =s_pr;

t,/* Change l,ambda and theEa */
& /* Cancel from Lambda */

count_wds = 1,.

for i=1: L
if (Lambda (i) -= sjr)

temp (count_Hds) = Lanìbda (i) ;
count_wds= count_wds+ 1 ;

end
end

L=L-!;
for i =1:L

l,ambda(i)=Cemp(i);
end

t/* Àdd to Theta */
if(0<s)

Q=Q+t;
Theba (Q) = sjr,. +t&tt HERE | | | |

else */* uiEh replacement */

for i = 2:Q
Theta(i-1)=TheCa(í);

end
Theta(Q) = sjr,. &t*?? HERE l M

end
end&/r for else first.*/

Z/* fot íf ordering */
else

m_order (order_ind) =m,.
order_ind = order_ind + 1,'

end
end */* for m */

end & iherations

SelectProj.m (Code written by Chris Badea Email: chris@orion.mc.duke.edu

3 seljroj functìon used with çds fol the ART/MÀRT leconstruction
t C. Badea Nov. 2k2
t--------------
function selj¡rj=Seleccproj(Lambda, L, TheLa, Q, S)

*float rmu;*// Repulsive fo!ce

tfloat isj.gma,.
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tfloat *sigmanom;

gfloat *nunorm;

tfLoat iD;

sel1rj =0,.

tint L, r. index_seljr;

tint dlq;

tfloaE Hq,.

tfloat suml, sun2, sum_dlq,

for 1 = 1: L

sunl-=0 ,0;

sum2=0 . 0;

sum_d1q=0 . 0,-

wq= (r+1) ,/Qi

dl_avg, min_bemp, max_temp;

*// CompuLe minimal distance
if àbs(Thera(r)-¡,ambda(l)) < S-abs(Theba(r)-Lambda(t)) dlq=abs(Thera(r)
else dlq= s-abs (Theta{r) -Lambda(l) ) i
end

tdlq=lessval (abs (Theta (r) -Larìbda (1) ) , S-abs (Theta(r) -Lambda (1) ) ) ;

sum-dlq = sun_dl-q + dlq;

t// Accumulale

suml = suml + (wq r ( S /2.0-d1q))i

sum2=sum2+wq;

eûd *//f.ot t

mu (1. ) =sunl/sum2,'

d]-_avg=sun_dlq/Q;

suml= 0,.

wq= (r+1) /e;
if abs (Theta {r) -Lambda (1) ) <s-abs (Theta (r) -Lañbda (1) ) dlq= abs (Thera (r)

else dlq= S-¿5"1"nuta(r) -f,anbda(l) ) t
end

SlessvaI (abs (Theta (r) -Lambda (1) ) , S-abs (Theha (r) -Lambda(I) ) ) ;

suml = suml + (wq*(dlq-dl_avg)*(dlq-dl_avg) );

end *// for t

sigma(L)=suml/sum2;

end *//fot I

SNormali.ze mu

tFind min of mu

min_temp=mu(1);

if (min_temp > mu(1)) min_Cemp = mu(1.); end

end

"4 / / Êínd max of mu

max_temp=mu ( t) ;

if (max_temp < mu(l)) ñax_temp = mu(I),.end

-Lambda(l) ):

Lañbda(1));

157



for

Compube mu_nom

1 = 1:L

if (max_benp -= min_temp) munorm(1) = (mu (1) -min_temp),/ {nax_Èemp-min_temp) ;

else munom(1)=0.0: end

t//Normalize sigma

ï// FLnd min of sigma

min_temp=sigma (1) ;

fot I = 2tI)

if (min_temp > sigma(l)) min_temp = sigma(1); end

end
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tFind max of sigma

max_temp=sigma (1) ,.

Êot I = 2.L

if (max_temp < signa(1)) max_temp = sigma(f),.end

end

g// compube sigma_nom

for ì = 1:L

if (max_È.emp -= mj.n_temp) sigmanorm(1)=(sigma(1)-min_temp)/(max_temp-min_temp) i

eì.se sigmanom(l)= 0.0,. end

end
if 0

for I = 1:L
aa= sprintf('Mut*d)= 8f Sigma =
?/printf(" Mu [td] = tf Sigma =
disp (aa) ;
end
end
3,/,/ Corpute D(l

ÌO! a = l:L

D ( 1) =munom(1) *munorm( l) +0.5*sigmanorm(1) *sigfranorm ( 1) ,.

end

Z// FíÛd minimal D[]

min_temp=D (1) ,.

index_selJr=0,.

tO! I = a:L

if (min_temp >= D(1))

min_temp = D(1),.

index_seL3r=l;

end

end

seu)rj =Lanbda (index se1¡rr) ;

tf ' ,l,munom(1), sigmanom(1) ) i
tf ", I. munormIl] , sigmanormIl] ) ;

checkerboard.m

& Creaeed By : cirish Ti.¡unelveli
?r Cleated On : JanuarLy 21,, 2003
? File Name : checkerboald.n
* DescripEion: This program asks for the size of the image and creates a checkerboard
* image.
?==============
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function Icb_image] = checkerboard (length_of_square, pixel_value1, pixel_value2)

& lnj.tialize all the required variables. À1Ì intialize the output parameter
* jusÈ. in case the progtam abhends in the niddle.
8-------
cb image
nextjixel_value = 0,.

for rn = 1:length_of_squale
for cn = 1:1engt.h_of_square

if mod(rn+cn, 2) == o
cb_imageirn, cn) = pixel_valuel;

else
cb_image(rn, cn) = pixeL_value2;

end,.
end,'

end;

= zeros (length_of_sguare) ;
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shingles.m

t==============
t Created By ¡ cirish Tirune.LveIi
g Created On : December 3L, 2002
t File Nane : shingles.m
? Description: This program asks for the size of the inage and cÌeates a shingles data.
t The pj.xel values increases
i==============
function Isb_image] = shingles (lengÞh_of_square)

s--------------
t InitiaLize aIl the required variables. À11 intialize the output. paraneter
3 just in case the program abhends in rhe middLe
t--------------
sb_image = zeros (length_of_square) ;
nextjixel_vaLue = 0,'

for rn = 1:length_of_square
fo! cn = 1:lengLh_of_square

nextjixel_va1ue = nextjixel_value + 1;
sb_image (rn, cn) = nexLjixel-_vaLue;

end,.
end;

sinewave.m

*==============
3 Created By : Girish Tirunelveli
t Created On , December 20, 2002
t File Name : sinewave.m
t Desclipcj.on: This progran creates a sine uave at a particular ftequency.
t==============
function (sinewave_imgl = sinewave (length_of_square_img, frequency)

j.f nargin == 1
frequency = 1;

end,'

sinewave_img = zeros (length_of_square_img) ;
f or col.um_no=1 : length_of _square_img

theta_in-degrees = coluffi_no * 360 * freguency / length_of_sguare_img,.
theta_in_radians = theta_in_degrees + pi / tBO,.
sinewave_img(:, cotum_no) = 128 + sin (theta_in_radians! * 1-27ì

end,

stretch.m

i==============
I Created By : cirish Tj.runelveli
8 CreaLed On : December 25, 2002
t File Name : stretch.m
I Description, Strebch the original_image by Che stretch fac[or and return the
t strebched image back.
;===========:==
function Ist!etched_image] = sbretch (original_image, sEletch factor)

t Resize the j.mage according to Lhe stretch facEor. Àfte! resizing, get
I only the cent.er pixeLs.

Ino_of_rows, no_of_coluffis] = size (original_image) 
;
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st.¡etched_image = imresize (original._image,,..
Ino_of_rows*stretch_factor no_of_colums*stretch_factor], . . .

'bicubic,, ,crop');
range_of_rows=no_of_rows*(strebch_factot-7)/2+L:no_of_rows*(stretch_factor+I)/2i
range-of_colums = no_of_colums * (streLch_factor-1) ,/ 2 + 1: no of colums * {sbretch factor+1)/2;
stretched_imàge = stretched_image(range_of rows, range_of_colu*ã)r-
oMin=min (min (original_image) ) ;
oMax=max (max (original_inage) ) ,.

zMin=min (min { stretched_image ) ),.
ZMax=max (nax ( stretched_image ) ) ;
Scaling_Fact.oÌ= {OMax-OMin),/ (zMax-ZMin) ;
stretched_image = stretched_image i Scaling_Facbol;

blur.m

Appendix A: Matlab Code

* Created By : Girish Tirunelveli
å Created On ¡ January 27, 2003
3 File Name : blu!.m
* DescripÞion: Blur the originat image by the blur factor
?==============
function Iblurred_image] = blu¡ (original_image, blut_factor)

I Resize the image according to the blur facEor. Afher resizing, tesize it
3 back to the oriqinal size
*--------------
Ino_of_rows, no_of_colums] = size (origìnal_image) ¡
blulred_image = imresize (original_image, ...

[no_of_rows*blur_factor no_of_co].uMs*blu!_factorl . . . .

'bicubic,, 'crop');
blurred_image = imresize (blurred_image, size(original_image), ,bicubic', 'crop,);
oMin=min (min {original_image) ) ,.

oMax=max (max (original_inage) ) ;
ZMin=min (min (blurred_image) ) ;
zMax=max (max (blurred_inage) ) ;
Scaling_Factor= (OMax-OMin),/ (ZMax-ZMin),.
blurred_image = blurred_inage * Scaling Factor,.

generate_wm_bin.m

t Created By ¡ cirish TirunelveÌi
Created On , Decerìber 25, 2002
FiLe Name : generate m bin.m
Description, Compuee Weight Matrix required for *ÀRT btansform.

The Weight. mattix is computed based on the binary_scheme. If bhe center
of the pj.xel falls in the ray, then the pixet is said to be contributing
100t (=1) in Ehe ray, else o.

t==============
function fweight_matrixl = generaee_w_bi.n(original_inage, bheba_iû_degrees, number_of_detectors, detector_width,
pixel_width)

s--------------
t Stepl. Initialj.ze al1 t.he variables appropriat.ely. Àlso initiatize the output
3 paramecer just in case Lhe program abhends in the middle.

Dmax= de t.ec t or_w idth/ 2,'
InurÌber_of_!ows_in_image, numbet_oE_coluMs_in_j.mageJ = size(oligj.naL_j.mage);
weight_matrix = 0;
if mod(nurìber_of_rows_in_image, 2) == o * Indicat.es even

Centre_Row = nuriber_of_rows_in_image/2,.
else

Centre_Row = nunber_of_rows_in_inage/2+0. 5,.
end;
i-f mod(nurìber_of_colums_in_image, 2) == O + fndicates even

Centre_Colum = number_of _colums_i.n_image/2 ;
else

Centre_Co1uM = nunber_of_colums*ìn_image/2+0.5;
end;

t St.ep2. For each projection angÌe, get the cont.ribution of each pixel in a particula¡
t dehector. This is t.he weight mat.rix. Note that Lhe veight matrix will increase
&

*
t--
for aûgle_numbe!=1: Length (theta_in_radians)

costheta = cos ( theta_in_ladians (angìe_nurÌber) ) ;

rapidly as t.he size of the image, projecÈioû angLes and number of detectors
increases.
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t If no deeector width is specified (O) t.hen assume variable detector widhh.
t--------------
if Dmax == 0

Dmax=max ( sintheta, cosEheta) /2 ;
end,.

for detector_nuntber=l :number of detectors
P= (detector_nuñber-Centre_Detector) * max (sineheta, cosÈhet.a) ;
t--------------
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EguaLion of line P(1) j.s given by xcos(theta)+ysin(bheta) -p = O;
In matLab teminotogy it. becomes -

row_nunber*cos(theta) + columnumbe!*sin(theta) - p= O;
since t.he Centre pixel is not the origin tfre equation gets changed to -

(row_number-Centre_Row) *cos (theta) +
(co1um_number-Centre_Colum)isín(theta) - p = O

row_number*cos(theta) + colum_nudber*sin(Eheta) -
CenLre_Row*cosL (EheÈa) -Centre_Colum*sin(theta) - p= 0,.

&--------------
3 Perpendicular distance of (1,t) from the line Àx+By+C=o is
t D=abs{À(1) + B(1) +C / sqrr (À^2+B^2));
t--------------
for pixel_row_number = l:number of rows in image

for pixel colum nudber = tlnunber ãe ãolums_in_image
¡=a¡s (¡*pixet_row_number+B*pi*ãt_Ëotum_num¡e-r+ctlsqrt (À^2+B^2 ),.
if D>Dmax

weight_fact.or = 0;
else

weight_fact.or = 1;
end,.
weight_mat.lix (pixel_row_nuÍiber, pixe_l_co1um_nuriber, . . .

angle_nurìber, deLecEor_number) = weight_factor,'

end; & End for colum nunìber = 1:number of_colums_in_image
end,. * End foÌ row_nunber = 1:number_of_ro"s in_image - -

end,. t End for det.ector number=l:number of debectors
end; t End for angle_number=Ì:length(theca)

C=-1*Centre_Row*costheta - CenLre Colum*si.ntheta - pr
À=costheta,.
B=s intheta t

generate_\rym int.m

I Created By : cirish Tirunelveli
t Creat.ed On : December 25, 2002
t File Name ¡ generate_w_int.n
t Description¡ Compute Weight. Matrj.x lequired for *ÀRT transfom.
t The Weight mabrix is compubed based on the length of Èhe ray within
+ the pixel scheme. It is cal1ed',Int,ischeme as it is the integrabìon of
* of Ehe ray lengLh uithin a pixe1. In this scheme, the weight thab a
t pixeL can contribute to a ray can be greater than 1.

function IweighL-matrix] = generabe_w_int(oliginaL_image, theca_in_deg¡ees, nunìber_of_deteccors, detector_widbh
pixel_width)

3 SCep1. Initialize all the variables appropriately. ÀÌso initialize bhe output
t parameter just in case the program athends in the middl.e.
+----
Dmax=detecto¡_width/2 ;
[number_of _rows_in_image, nuñber_of _colums_in_j.magel = s i ze (original_image ) ;
weighc_mahrix = 0;
if mod(nufiÌber_of_rows_in_j.mage, 2) == O t Indicat.es even

Centre_Row = number_of_rows_in_imàge/2;
else

Centre Row = nuûiber of _rows_in_image/2+0.5i
end;
if mod(number_of_coLums_in_image, 2) == O * Indicabes even

cenEre_Colum = nurnber_of_colums_Ín_image/2,.
else

cert.re_Co1uffi = ounrber_of _colums_i.n_ima9e/ 2+ 0 . 5,.
end;

Centre_Det.ector = (nuftber_of_detectors+1)/2 ;
theta in radians=theta in degrees.*pi./tBO;

& Step2. Fol each projection angle, get the contribution of each pixeL in a particular
å detector. This is bhe weighb matrix. Note that. the weight. matrix will increase
& rapidly as the size of the image, projection angles and number of detectors
* increases.
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for angle_numbel=I :length (theLa_in_radians)
costheÈ.a = cos (theta_in_radians (angle_number) ) ;
sintheta = sin(Þhet.a_in_radians (angle_number) ) ;

t If no detecbor widhh j.s specified (0) Þhen assume variable detector widhhg--------------
if Dmax == 0

Dmax=max (sintheEa, costheta) /2,.
end,'

f or detector_number=1, numbe¡_of_detecÈ.ors
P= (detector_nurìber-Cenlre_Detecto!) r max(sintheta, cost.heÈa) ;

Appendix A: Matlab Code

* Equation of line P{1} is given by xcos(theta)+ysin(theba) -p = 0,.
t In natLab teminology iL becomes -
* row nunber*cos(Cheta) + colum nurìber*sin(Lheta) - p = 0,.
3 sínce the Centrã pixet is not Èhe origin the equâtion gers changed tog (row_number-Centre_Row) *cos (theta) +
t(coluM_number-centre_CoLum)*sin(theta)-Þ=o
t row_numbe!*cos(theta) + colum nunìber*sin(theta) -
t
*----
C=-1*Centre_Rowtcostheta - Centre CoLum*sinCheta
A=cos theta;
B=sintheLa;

t If the center of the pixeL is (1,1), the 4 Lines t.hat j.dentifies
* the pixel are x=1-pixel_width/2. x=1+pixel_uidth/2
I and y=1-pixel_width/2, y=1+pixel_widrh,/2
* Find Lhe point of inÈersection of each of this lines wit.h the
t ray under consideration.
t Point. of íntersection is calculated by simpty substituting t.he
t x or the y coordinate in t.he equation of the line.
t--------------
for pixel_row_nunber = I:number_of_row6_in_image

for pixel_colum_nurnber = 1:nudber of coluffis in image
& Point. of interseccion betweeã rãy Line ãnd line t is
PL_y = pj-xel_row_number-pixel_width/2 ;
P1-x=(-C-À*P1_Y)/B;
P3_y = pixel_row_number+pixel_widt.h/2;
P3-x= (-C-À*P3-Y)/B;

P2_x = pixel_colum_nurìber-p ixel_width,/2,.
P2_Y=l-C-B*P2_x)/À;
PA_x = pixel_co]um_number+pixel_uidth/2 i
P4_Y=(-C-B*PA-X)/A;

t convert all poinLs with precision mult.iplier of 10.
P1_x = precision (Pl_x);
Pt_y = precision (p1_y) i
P2_x = precision (P2_x);
P2_y = precision \P2_y) i
P3_x = precisi-on (P3_x);
p3_y = precision (p3_y);
P4_x = precisior (p4_x),.
P4_y = precision (P4_y);

& If the poinC of intersect.ion is oubside lhe pixel then
* ignore iL.
d12 = distance (PI_x, P1_y, p2_x, p2_y) |
dl3 = disCance (p1_x, pl_y, Þ3_x, p3_y),.
dt4 = distance (Pl_x, P1_y, p4_x, p4_y) i
d23 = dist.ance lpz-x, p2_y, p3_x. p3_y),
d24 = distance lP2_x, p2_y, p4_x, p4_y)i
d34 = distance (p3_x, p3_y, p4_x, pA_y);
if P1_x< pixeL_coluM_number-pixel_uidth,/2 | p1_x > pixel_colum_nunrber+pixe1_widrh/2

da2 = 0'
dI3 = 0;
d14 = 0;

end,.
if Pl_y< pixeL_row_nurìber-pixel_çidth/2 I pf_y r pixel_row_numbe!+pixel_widLh/2

d12 = 0,'
dL3 = 0;
d14 = 0,'

end,'

if P3_x< pixel_colum_number-pixeL_widLh/2 | P3_x > pixel_coluM_nurìber+pi.xeL_width/2
d13 = 0;
d23 = 0¡
d34 = 0,'

end,.
if P3-y< pixel_row_number-pixel_widbh/2 | P3_y' píxe1_row_nurìber+pixel_width/2

d13 = 0,'
d23 = 0,'
d34 = 0,'

end;
if P2_x< pìxel-coluM_number-pixeL_widLh/2 I P2_x > pixel_coluM_nunìber+pixel_width/2

d12 = 0'
d23 = A;
d24 = 0l

end,
íf P2_y< pixel_row_number-pixel_width/2 I p2_y , pixel_row_numbe!+pj.xel width/2

Centre_Row*cost(theta) -Centre Colum*sin(theta) - P= 0,.
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d12 = o'
d23 = 0;
d24 = o'

end,.
if P4_x< pixel_colum_number-pixel_width/2 

|

d14 = 0;
d24 = 0,.

d34 = 0;
end,.
if P4_y< pixel_row_nunber-pixe1_width/2 

|

d14 = 0,.

weight_matrix (pixeL_row_number, pixel_coLum_number, . . .

angle_number, detecto!_number) = weight_factor;

end; I End for coÌum number = 1:number of_colums_in_image
end,. t End for row_number = 1:nuÍÌber_of_ro*ã_iñ_image - -

end; 3 End for debector nuÍiber=l:nunber of detectors
end,. t End for angle_num¡er=1:length(theE.ã)
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d24 = O¡
d34 = 0,'

end,.
wej.ght_facÞor = max( [d12,d13, dI4, d23,d24, d34)) ¡

? Sub-FuncEion¡ distance: CaÌculahes the distance between two poinbs, The
t x and y co-ordinaÞes of the two points has to be suppLied.
4 If this subfunction is not able Lo caÌcutate the distance,g then 0 is letulned.
8=======:======
function [distancel = distance (xI, yI, x2, y2)

distance = sqrt( (xr-x2)^z n lyt-yz)^z) ¡
if (isfinite(distance) == O)

distance = 0;
eûd,.

'r = = = = = == = = = = = = =
å Sub-Functíon: precision: Returns the value qhere the number of decimal points is
t equal to the nuñber of 0's in Ë.he precision mulEiplier.
?=======:======
functj.on IR_value] = precision (l_vaLue)

R_value = round(I_value * 10000000000) / lOOOOOOOOOO;

P4_x > pixel_co1uM_nurÌber+pixel widthii 2

P4_y > pixe.I_row_nuf,rber+pixel width/2

generate_wm dist.m

t=====:========
t Created By : Girish Tirunelveli
& Created On ¡ Deceftber 25, 2002
& File Name : generate_m_dist.m
t Description¡ Compute ç.¡eight Mattix required for *ÀRT transfom,
t The weight. maÈrix is compuEed based on the dishance of the cent.er
'a af the ray from Èhe center of the pixel logic.
*==============
function Iweight-matrix] = generaCe_m_dist(original_image. theta_in_degrees, nuùber_of_detectors, detecto¡_uidCh,
pixe 1_width)

t-
* Stepl. lnitial.ize a1.l Che variables appropriateLy. À1so init.ialize the oubput.
t parameber just in case Lhe program abhends in the middle.*----
Dmax=de Lector_width/ 2 ;
InunbeÌ_of_rows_in_image. number_of_colums_in_image] = size(original_image)
weight_matrix = 0,.
if mod(nurÌbel_of_rows_in_image, 2J == O I Indicates even

Cent.re_Row = number_of_tows_in_image/2 ;
eLse

Cencre_Row = nurìber_of_rows_in_image/z' 0. 5 ;
end;
if mod(nurÌber_of_colums_in_image. 2) == O t lndicates even

Centre_ColuM = nurÌber_of_colums_in_image/2;
eLse

cent.le_CoLuM = number_of _coluMs_in_inage/ 2+ o . 5,.
end;

CenCre_Detector = (number_of_deb.ectors+1)/2,.
theLa in radians=theta in degrees.*pi/180,.

t
t
g

*-

Step2. For each projection angle, get the conLribution of each pixel in a particular
detector. this is the weight maE.rix. Note that the weight matri.x wil-l increase
rapidly as the size of the image, projection angles and nuûÌber of detecEors
increases.

t63



f o¡ angl.e_number= 1 : length ( thet.a_in_radians )

cosCheba = cos (theta_in_radians (ang1e_number) ) ;
sintheta = sin(theta_in_radians (angle nunÌber) ) ;

* If no deeector width is specified (0) then assume varj,able detector width

if Dnax == 0
Dmax=max ( sintheta, cos Eheta) / 2 ,.

endi

f or deCector_nurìber=1 : number_of _detectors
P= (detecLor_number-Cent!e_Debector) * max(sintheta, costheLa)
t--------------

Appendix A: Matlab Code

Equation of line P(1) is given by xcos(theta)+ysin(Eheta) -p = O;
In matÌab teminolog:y it becomes -

row_number*cos(t.heba) + colum nunber*sin(fheta) - P = 0;
Since the CenÞrã pixel is not the origin tËe equaLion gebs changed to -

(row_number-Centre_Row) *cos (bheta) +
(co1um_number-Centle_Colum)*sin(theLa) - P = 0

row_nuñber*cos(t.heba) + coLum_nunìber*sin(theta) -
Centre Row*cost(Eheta)-Centre CoLum*sin(Ehet.a) - P= 0;

C=-1*CenLre_Row*costheta - Cenere_Colum*sintheta - pj
À=costheta,.
B=sintheta,.

fo¡ pixel_row_nunber = 1'number_of_rows_in_image
for pixel_colum nurnber = f:nuÍiber of coluMs_in_image

o=abs (¡'pixel_row_number+atpixãl_ãolum_nim¡ãr+ctlsqrr (À^2+B^2 ) ;
if D>Dmax

weighE_factor = 0,.
else

weight_factor = t-DlDmax,.
end,.
weight_matrix(pixel_row_nufrber, pixel_colum_number, . . .

angle_number, deEecbor_nunber) = weight_f actor,'

end,. ? End for colum number = 1:number of_colums_in_image
end; t End for row_number = 1:number_of_rowã_in_i*age - -

end,. t End for dehector nunber=t,number of detectors
end; îi End fo¡ angle_nurÌber=t¡length(theta)

%-

t
t
z-

Perpendicular distance of (1,1) from t.he line Àx+By+C=O is
D=abs(À(1) + B(1) +C,/ sqrt {À^2+B^2));

nerate vvm cont.m

ir Created By ¡ cirish Tirunelveli
t Created On . Decerìber 25, 2002
t File Name : generat.e_m_cont..m
* Desc!iption: Compute Weight Matrix required fol iÀRT transform. The weighE. mat.rix in
& this program is computed by considering the qontributj.on made by the
g pixel in the neighbouring rays. It makes sure that the sum of the
t conhribution that the pixel makes in aI1 rays equals one.

funcLion Iweight_mat!ix] = generate_m_cont.(originat_image, Lheta_in_deg¡ees, number_of_detectors, detector_widLh
pj.xe1_widLh )

s--------------
t Step1. Initialj.ze a1l. Ehe variables appropriat.ely. ÀIso initialize the output
& parameter just in case Lhe progran abhends j.n t.he middle.

Dmaxl = de L ec t.or_widhh/ 2,.
Dmax2=sqrt(1+1)/2,.
Inuriber_of_rows_in_image, nun]ber_of_colums_in_j.nagel = size(original_image)j
weight_matrix = 0,'
if mod(nuñber_of_rows_in_inage, 2) == 0 t Indicates even

Centre_Row = number_of_tows_in_image/2;
else

Centre_Row = number_of _rows_in_image/ 2 + 0 . 5,.
end,.
if mod(number_of_colums_in_image, 2) == 0 t Indicates even

cenEre_coLuM = nunbe!_of_colums_in_image/2;
else

Centre Colum = nunìber of coLums in image/2+o.5;

Cent!e_Þetector = (number_of_deEectors+1)/2,.
theta_i,n_radi.ans=theta_in_deg¡ssg. *pi./180,'
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+ Step2.
t
t
t
t----

For each projechion angle, geC the contribuLion of
detector. This is the weight matrix- Note that the
rapj.dly as the size of the image, plojection angles
increases.

for angle_number=1 : length (È.heta_in_radians)
costheEa = cos (theta_in_radi.ans (angle_number) ) ;
sintheta = sin(theta_in_radians (angle_number) ) ;

f or detector_number=1 : number_of_detectors
P=detect.or_number-Centre_Delector ;

t Equatj-on of lj.ne P(1) is given by xcos(LheÈ.a)+ysin(theÞa) -p = 0,.
? In matlab terminology it becomes -
+ row_numbel*cos(thet.a) +columnumber*sin(theta) - p= O;
t Since the Centre pixel is not Ehe origin t[e equation gets changed to
t (row_number-Centre_Row) *cos (theta) +

B (coLum_nurìber-Centre_ColuM)*sin(theta) - p = O

îr low_number*cos(theta) +colum_number*sin(theta) -

Appendix A: Matlab Code

I Centre_Row*cos t ( theta) - Centre_Colum* s in ( theta)
t--------------
Cjrevious =-lrcenLre_Row*costheta - Centre_Colum*sintheta - p-1;
C_current =-1*Centre_Row*cosEheta - Cent.le Colum*sin[heÈa - p,.
C_next =-1*Centre_Row*cost.heta - Cent.re-ColuM*sintheta - p+1,.
À = costheLa,
B = sintheta;

t--------

each pixel in a particular
weight matrj.x will increase
and number ôf deteclors

t Perpendicular distance of (t,t)

for pixeL_row_number = 1:nuñber of rows in
for pixel colum_nudbe! = rlnuñ¡er ãe

D_-F,revious = abs(À*pixel_row_nunber+Brpixel_coLuM_number+Cjrevious)/sqrt(A^2+B^2),.
D_current = abs (Àrpixel_roH_nuñber+B*pixel_coLum_nuñber+c_current) /sqrt {À^2+B^2) ;
D-next = abs (À*pixel_row_numlcer+B*pj.xe1_colum_number+C_next) /sqrL (À^2+B^2) ;

Þjrevious_edge = Djrevious/2;
D_next_edge = D_nexL/2 i

if (Djrevious_edge > Dmax2)
contributionjrevious = 0,.

else
contri.butionjrevious = 1-Djrevious_edge/Dmaxl;
if contributionjrevious < O

contribubionj¡evious = 0;
end;

end;
if (D_next_edge > Dmax2)

cont.ribution next = 0,.
else

contribuEion_next = 1-D_rext_edge/Dmaxl;
if contribuLion_next < 0

conLribution_next. = 0,.
end;

end;
if (D_curlent > Dmax2)

weight_facÞor = 0,.
else

weight_factor = 1- (cont¡ibution¡trevious+contlibution_nexL) ;
end;
weight_maErix (pixel_row_nuÍìber, pixel_co1um_number, . . .

angle_nunber, detector_num¡er) = weight_fachor;

end; t End for colum nuÍì.bel = 1:nunber of_colums_in_image
end; & End for row_nuÍrber = I:nurnber_of_rowã_iñ_image - -

end; t End for detecto! nuftìber=l:nuñber of detectors
end,. * End for angle number=î:length(theta)

*-------
* How much has this pixe-l contributed in the previous detector
& "contributionjrevious
? How much is this pixel going to contribute in Lhe next debect.or
t rrcontribution next
t The amount that this pixel is going bo contribute in this ray is
I contribution_current = 1-(contribution3revious+con!ribubion next)

from the line Àx+By+C=o is
(À^2+B^2 ) ) i

_ama9e
coluMS_in_image

generate_proj ections.m

* CreaLed By : ci!ish TirunelweÌi
t Created On : Decembe! 25, 2002
t File Name : generate_projections.m
t Description: CompuCe Fo¡ward Sinulation. i.e. project the image on the detectors
t and detemine Þhe projected value.
;===========:==
function [project.ed_value] = generatejrojections (original_inage, Lhet.a_in_degrees, .. .

welght_mattix, numbe¡_of_detecLors)
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for angle_numlcer=1 : length(theta_in_degrees)
for deE.ector_number=1:number of deLeccots

projecbeã_value(angle_numbei, detecEor_number) = ...
sum(sum(weight_matrix(:,:,angle_number,detector_number).* original_image))

end,.
end;

ifbp.m

I Created By : cirish Tirunelveli
t Created On : Janua¡y 03, 2002
t Fj.le Nane : ifbp.m
* DescripLion: Compute inverse FBP (Fouriel Backprojection Techûique) transform.
? The iPBP function computes the j.nverse FBp transform, and teconstructs
? the result_image.
È==============
functj.on Iresult_image, image_differencel = ifbp(seed_inage, oliginal_image, projection_values, theta_in_degrees,
nurìber_of_cycLes, number_of_detectors, weight_mat.rix, precision_multiplier, relaxation_factor)

t--------------
t Step1. Initialize all approp!iate wariables. Àlso initialize the output. parameters,
t just in case the job abhends in the middle.
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warning off t 1'o suppress the Divide by zero warning.
resul L_image
RI2=0,.
lnumber_of_rows_in_image, number_of_colums_in_j.nagel = size(original-_image)i

t--------------
I Sbep2. Since FBP considers radon transform and not Ehe weight matrix
t for generating forward projections get the forward project.ions
* and compute the backward reconstrucgion.
'r--------------
plojecLion_values = radon(oliginal_image. thetà_in_degrees) ;
resulL_imãge = iradon(projection_values,bheta_in_degrees,,nearest,,,Hannl

= zeros {size (seed_image) ) i

t-
Step3. Since lhe algorithm is noL dependent on the seed and the nurìber of

cycles, the imàge difference is the difference between the
original image and t.he resuLt image and is the same for all the
cycfes. we do noL have to do based on cycles, but is done
to be consistent with our other aLgorithms.

image_diffelence(1) = image_difference_ed (ori.ginal._image, result_image);
for cycle_number=1 :number_of_cycles

inage_difference (cycle_number+1) = image_difference (1),.
end;

*==============
* Sub-Function¡ image_difference_ed: Calculates the image difference between two
t i.mages based on Euclidean disLance.

funcÞion IID] = image_difference_ed (j.mageI, image2)
diff_ing= imagel - image2,.
diff-img = diff_img.^2;
lrn, cnl = size (imagel);
ID = sqrt (sun(sum(diff_img) ) ) / {sqrt (rn*cn) t255) .

isrt.m

t Created By : cirish Tirunelveli
t Created On : January 03, 2002
& File Name : isrt..m
* DescripLion: Compute inverse SRT (Sumation Reconstruction Technique) ttansform.
* The j.SR'I' function computes the inve¡se SRT transfom, ard reconstructs
Z Che tesult_image.
t==============
functj-on (resulh_image, image_differencel = isrE(seed_image, original_image. projection_vaLues, theta_in_degrees
nuñ.ber_of_cycIes, numbel_of_detectors, ueight_matrix, precision_nultiplier, rel.axat.ioû_factor)s--------------

B stepI. Initialize alI appropriate variables. ÀLso initj.alize the output parameters,
t just. in case the job abhends in the middle.

1, number_of_rows_in_image)

warning off t To suppless the Divide by zero warning.
resul.t_image = ze¡os (size (seed_image) ) ;
RI2 = 0,'
(nuúber_of_rows_in_image, number_of_coLums_j.n_imagel = size {original image),.

t Step2. Àdd t.he contribution bhat each pj.xe.I makes in aI1 the rays
&-------
f or row_nurrber=1 : nunber_of _rows_in_image

f or colum_number= 1 : nurnber_of _colums_in_image
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fo¡ angLe_number=1 :length (theta_in_degrees)
for delect.or_number=1 ¡number of deLectors

Rl2=RI2+weighb_matrix(rou_number, colum_nurÌber, angLe nurìber,det.ector number)

end,.

Z (row_number,
R72=0;

OMin=min (nj.n (original_image) ) ;
oMax=max (max (original_image ) ) ;
zMin=min(min(Z) ) ;
ZMax=max (màx (z) ) ,.

Scalíng_Fact.or= (OMax-OMin),i ( ZMax- ZMin),
resuLt_image = Z * Scaling_Factor,.
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coluM number) = R12,.

the algoribhm adds up
scaling is required.

proj ecgion_va lues ( angle_nunìber, detector_number ) ;

I SCep4. Since the aLgorithm is not dependent on the seed and the number of
* cycles, the image diffe¡ence is the difference bet.ween the
& oliginaL image and the resul! image and is the same for atL the
* cycLes. We do not have to do based on cycles, but. is doneg to be consistenE wiLh our other aìgorithms.
T--------------
image_difference(1) = image_difference_ed (original_image, result_image),.
f or cycle_number=1 : number_of_cycles

image_difference (cycle_number+1) = image_dif felence (1) ;
end,.

all the conLribution, the result is Þoo
scale according t.o Ehe original.

& Sub-Funct.ion: image_difference_ed. Calculates the image difference bet.ween tuo
t images based on Euclidean distance,.r==============

function IID] = image_difference_ed (j"magel, image2)
diff_img = imagel - image2;
diff_ing = diff_img.^2;
Irn, cn] = size (imagel),.
lD = sqrt (sum(sum(diff_img) ) ),/ (sqrt (rn*cn) *255) ;

iart.m
å==============
å creaEed By : cirish lirunelveli
t Creabed On r December 25, 2002
* File Nane : iart.m
t DescripLion: Compute inverse ÀRT (Àdditive Reconseruction Technigue) Eransfom.g The iAR? funct.ion compuÈ.es the inverse ÀRT transfom, and reconsbructsg the result_image.
t==============
function Iresult_j.mage, image_dj.fference] = iart(seed_image, original_image, ptojection_values, theta in degrees,
nurì¡er-of-cycles, number-of-debectors, weight_matrix, precision_mu1t.ip1ier, relaxation Eaccor)

3-
t Step1. lnitialize a1l. applopriate variabl.es. À1so initialize the out.pub parameters,
a; just in case bhe job abhends in the middle.
t--------------
Harning off t To suppress Che Dj.vide by zero warnj.ng.
resulL_image = zeros (size (seed_image) ) ;
image_dif ference (1) = image_difference_ed (original_image, seed_image) ;

for cycle_num.ber = 1 :number_of_cycles
new_seed_j.mage = seed_image,.
for angle_nunber = I:length(theta_in_deg¡ees)

tdisp (sprintf( at****NEw cyctE for angle tdi**"*** , angle_number)),.

f or detect.or_number=1 : number_of_detect.ors
PV_seed(ang1e_number, detector_number) = ...

sum ( sum (weight_mat rix ( : , : , angle_nurùer, det.echor_number) . * seed_image ) ) ,.

nuÍiber-of-contlibutingjixels=LengÞh(find(wej.ght_matrix(:,:, angle_nunbe¡, det.ector_nurìbe!)))
adding_facto¡ = (projectj.on_values(angle_number, deLector_nunber) - ...

Pv_seed(angle_number, det.ector_nunbe¡) )/ ...
nuÍiber_of _coDtributingjixels,.

if isfinite(adding_facto!) == 1
W1=weight_natrix( :, :,argLe_number, detector_nurlcer) ;
z=t1nq(wI),.
seed_inage (z) = seed_image (z) +lelaxaÞion_factor*adding_factor;

end;

end,. * End for detector numbet=1:number of deLecÈ.ors
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*disp (sprintf( **{**'END OF CYCLE for angletd**** **', angle_nurìber));

end; t End for angle_nuûÌber = 1:Length(theta_in_deglees)

image_difference(cyc1e_number+1) = image_dj.fference_ed(original_image, seed_image);
B--------------
t Àpp1y the convergence criteria.
t--------------
if image_difference(cycle_number+1) - image_difference(cycl.e_number) >= O

seed_image = new_seed_image;
image_dif f e¡ence { cycle_number+1 ) = image_dif f elence ( cycle_number ),.
f or new_cycle_number = cycle_number : nurìber of_cycles

image_difierence (new_cycfe_number*r) = imãgË_difference (new_cycle_number) ;
end,.
break;

end,.
seed_image = abs(seed_image); I posiÈivity Constraint

end,. & End for cycle_number = f:nunber_of_cycles

resul t_image= seed_image,.

Appendix A: Matlab Code

t Sub-Function: i.mage_difference_ed: Calculates the image difference beEween two
* images based on Euclidean distance.
È==============
function IID] = image_difference_ed (image1, image2)

diff_img = inagel - image2;
dif f_img = dif f_img. ^2;
Irn, cn] = size (imagel),'
ID = sqrE (sum(sum(diff_img) ) ) / (sqrc (!n*cn)'255) ;

imart.m
?=======::=====
I Created By : cirish Tirunelveli
t Created On : Decerìber 25, 2002
? File Name : imart.m
t Descliption: Compute invetse MÀRT Lransfotm.
* The 1MÀRT funct.ion computes the inverse t'fÀRT transform, and reconstructs
t the result_image.

function Iresult_image, image_difference] = imart(seed_image, original_image, project.ion_waLues, theta_in_degrees,
nuûìber_of_cycles, number_of_debecLors, weight_matrix, pÌecision_multiplier, relaxation_faclor)

I Step1. Initialize all appropriaLe variables. Àlso iniCialize the outpuL parameters,
t just in case Ehe job abhends in t.he mi.dd1e.
t--------------
warning off * To suppress t.he Divide by zero warning.
result_image = zeros (size (seed_image) ) ;
image_difference(1) = image_difference_ed {original_image, seed_image),.

for cycle_number = 1 :number_of_cycles
new_seed_image = seed_image,.
for angle_nunber = 1:length{theta_in_degtees)

tdisp (sprintf( ******NEw CYCLE for angle *d******* , angle number)),.

for detecgor_nurìber=1 :numbet_of_detectors
Pv_seed(angle_nunber, deÈ.ect.or_nurìber) = ...

sum(sum(veight_matrix(:, :, angle_nunber,deÈecEo¡_nurìber) . *seed_image) ) ;

multiplying_facbot = projection_values(angle_number, debector_number) ./ ...
Pv_seed {ang}e_number, deEecbor_number),.

mulCiplying_f act.or = mul r j.pLying_f actor. ^ O . 1,.

if isfinihe(multiplying_factor) == 1
Wl=weighb_matrix ( :, :, angle_number, detecLor_number ),.
z=find(ÍJ1) ;
seed_i.mage(z) = seed_i.mage(z)* relaxation_factor*muÌtiplyi¡g_factor;

end,'

end,. t End for detecto!_nuúber=LnumbeÍ_of_detectors

&disp (sprinlf( ******END OF CYCLE for angletd**** **', angle_number))

end; t End for angle_number = 1:length(theta_in_degrees)

image_diffelence(cycle_number+1) = image_diffelence_ed(original_image, seed_image),.
3--------------
t Àpply the convergence cribelia.
t--------------
if image_diÉference(cycLe_number+l) - inage_difference(cycle_number) >= o

seed_image = new_seed_image,.
image_dif f erence (cycle_number+1) = image_dif ference (cyc1e_number) ;
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f or new_cycle_number = cycle_number :nunber_of_cycles
inage_difference (new_cycfe_number+1) = imãSã_difference (new_cycle_number) ;

end,.
break;

end,.
seed_image = abs(seed_image),. ? positivity ConstrainE

end; t End for cycle_number = 1:nuñber_of_cycLes

resuL t_image= seed_image ;

t==============
g Sub-Function: image_difference_ed: Calculates the image difference between tuo
e images based on Euclidean disLance,
;==============
funcLion IID] = inage_difference_ed (image1, image2)

dj.ff_img = imagel - image2,.
diff_img = diff_img.^2;
lrn, cn] = size (imagel),'
ID = sqrt (sum(sum(diff_ing) ) ) / (sqrb (rn"cn) *255) ;

Appendix A: Matlab Code

isirt.m

Created By : cirish Tirunelveli
Created On : December 25, 2oo2
File Name ¡ isirt.m
Description: compute inverse srRT (simultaneous rt.erative ReconstrucÈion Technique)

transfom. The iSIRT funct.ion computes the inverse SIRT transfoln,
and leconstructs bhe result_inage.

å==============
function Iresulc-image, image_differencei = isirE(seed_image. original_inage, projection_values, Eheba in degrees.
nurìber-of-cycles, number-of_detectors, weight_matrix, precision_muIt.ipLiet,..1u*ãcion fãctor)

& shepL. lniEiarize all appropriate variables. À1so iniEiatize the output paramebers,
t just in case the job abhends in the middle.\---^----------
warnj.ng off t To suppress t.he Divide by zero warning.
result_image = zeros (size (seed_image) ) ;
image_dif f erence (1) = image_dif f erence_ed (oÌiginaL_image, seed_image) ;

f or cycle_nufrber = 1 :number_of_cyc.les
new_seed_image = seed_image;
correction_matrix = zeros (size (seed_image) ) ,.

correcbions_done_matrix = zeros (size (seed_image) ) ;
for angle_number = 1:lengEh{theta_in_degrees)

tdisp (sprintf( ******NEl,ù CYCLE for angle gd*****i* , angle ûurìber));

for deEector_numbe¡=l:number of detecEors
Pv_seed(ángle_number, deEecEor nunber) = ...

sum ( sum (weight_maÈrix (,, ¡, angle_nurìber, detector_nurÌLrer ) . *seed_image) ),.

nuÍiber-of-contributingjixels=l.ength(find(weight_matrix(:, :, angle_number, detecLor_nuñber) ) ) ;adding_facbor = (projection_values(angle_num.ber, det.ecbor_number) I ...
Pv_seed(angle_number, detector_number) ) / . . .

nuÍiber_of _cont.ributingjixets ;

if isfinite(adding_factor) == 1
W1=weight_matrix ( : . :, angle_number, detector_nunber ),.
z=find (W1) ;
correction_datrix(z) = çq¡¡sç¡ion matrix(z) +adding_factor,.
correcti.ons_done_matrix ( z ) = corrãct ions_done_matifx ( z ) +t,.
tseed_image(z) = seed_image(z) +adding_faãEor¡-

end,.

end,' t End f or deCector_nurÌbeÌ=1 : nurÌber_of_detect.ors

tdisp (sprinEf( r*ria*END OF CYCLE for angletd**** **', angle nurìber));

end; t End for angle_nurìber = 1:length(bheta_in_degrees)

seed-image=seed_image+relaxation factor*cor!ect.ion mac¡ix./corrections done matrix,.
image_differencã(cycte_number+1) = image_differencã_ed(original_image,-seed-image),.
+--------------
t Apply the convergence criteria.

if image_difference(cycle_nuftìber+1) - iñage_difference(cycle_nunìber) >= O

seed_image = new_seed_image;
image_dif f erence (cycle_number+1) = image_dif ference (cycle_number) ;
f or new_cycLe_number = cycle_nunber, nunbãr_of _cycles

image_difference (new_cycle_number+1) = image_difference (new_cyc1e_number) ,
end;
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end;
seed_image = abs(seed_image); t PositiviCy Constraint.

end; t End for cycle_number = 1:number_of_cycles

!esult_image=seed_image ;

t==============
t Sub-Function: image_diffetence_ed: Calculates the image difference between È.wo
t images based on Euclidean distance.

function IID] = image_difference_ed (inage1. image2)
diff_img = inagel - image2,.
dif f_img = dif f_img. ^2;
Irn, cn] = size (inagel);
ID = sqrt (sum(sum(diff_img) ) ),/ (sqrt (rnrcn) r255) ;

Appendix A: Matlab Code

isart.m

t CreaEed By : cirish Tirunelveli
år Created On ¡ December 25, 2002
t FiIe Name : isarÈ..m
t Description. Compute inverse SART (Siñultaneous Àdditive Reconst.ruction Technique)
* Lransform. The iSÀRT funcLion computes t.he inverse SÀRT bransform,
* and teconst.ructs the lesulC_image.
t==============
function Iresult_image, image_difference] = isa!t(seed_image, original_image, projecCion_va1ues, theta_in_degrees,
number-of_cycles, nurìber_of_dehectors, weight_matrix, precision_multiptier, relaxation fãcto¡)

* Step1, InitiaLize al-1 appropriate variables. ÀLso initialize the ouÞput parameEers,
t just in case t.he job abhends in the middle.
t--------------
warning off t To suppress the Divide by zero warning.
result_image = zeros (size (seed_image) ) ;
image_difference(1) = image_difference_ed (original_image, seed_image),.

lx,yl =size (seed_image) ,'

for cycle_number = L rnumber_of_cycles
new_seed_image = seed_image;
correct.ion_matrix = zeros (size (seed_image) ) ;
correct.ions_done_mat.rix = zeros (size (seed_image) ) ;
for angle_nuñber = 1:length(theta_in_degrees)

*disp (sprintf( **i***NEt¡ CYCLE for angle td******* ', angle nurìber)),.

for detector_nuûÌber=1 :number of detectors
Pv_seed(ãngle_number, deEecEor_num¡er) = ...

sum ( sum (wej.ght_mat.lix ( : , : , angle_nunber, deteqtor_number ) . * seed_image ) ) ,.

difference = projection_values(angLe_nurÌbeÍ, detector_nurìber) - ...
Pv_seed (angle_nurÌber, detector_number),.

denominator = sum(sum(weight_maerix(:,:,angle_nurìber, detector_nurÌber)));
if denominator -= o

l.¡1=weight_nat¡ix ( :, :, angle_number, detector_nufr.ber ),.
z=¡Inq (wli ;
correcgion_matrix(z) = qq¡¡ss¡j.on_natrix(z)+ ...

dif f erence/denominator. *wL ( z ),.
correcLions_done_matrix(z) = corrections_done_maLrix(z) +t;

end,.

end,. t End f or detecLo!_number=1 i nurÌber_of_detect.ors

*dj.sp (sprintf( **i***END OF CYCLE for angletd**** *+', argte nurìber));

end; t End for angle_number = 1:length(theta_in_deglees)

seed-image=seed_inage+relaxation factor*correction_matrix./corrections_done_maEtix,.
image_differencã(cycle_nunber+1) = image_differencË_ed(originaÌ_image, seed-image);

S Àpply the convergence criteria.
t--------------
if inage_difference(cycle_nuñber+1) - image_difference(cycle_number) >= O

seed_image = new_seed_inaget
image_dif ference (cycle_number+1) = inage_difference (cycle_nuñber),.
f or new_cycle_number = qycle_number : nunìber_of _cycles

image_difference (new_cycIe_number+1) = image_difference (new_cyc1e_number) ;
endi
break;

end;
seed_image = abs(seed_image),' I posj.tivity Constraint

end; t End fol cycle_nurìber = 1:numbe¡_of_cycles

result_image=seed image ;
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* Sub-Functi.on: j.mage_difference_ed: Calculates Che image difference between two
t images based on Euclidean distance.
t==============
function IID] = image_difference_ed (image1, j.mage2)

diff_img = imaget - image2;
dif f_img = diff_img. ^2;
Irn, cn] = size (imagel);
ID = sqrt (sum(sum(diff_img) ) ) / (sqrt (!n*cn) *255) ;

Appendix A: Matlab Code
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

Tabular Results of the Square pixel and Hexagonal pixel

This appendix contains the results of the square vs. hexagon pixel comparison

experiment. The length of square pixel is 8, the length of hexagon pixel is 4.5 and the

rotation is done from 0 to 360 degrees in intervals of 5 for all experiments. In case of

MTF results, the data is tabulated based on frequency and not on the rotation angle.

8.1 Results for admin256.bmp image

Resolution Comparison Experiment

Appendix B

Rotation in
Des rees

U

5

IIO ec

10

o.o77i

15

20

0.075:

HIO ed

0.076t

25

30

0.0764

0.0782

0.076,

35

o.o76i

SIO rb

40

o.076¿

0.075'

45

0.075i

0.977i

0.076€

0.975i

50

0.076(

o.o7(

HIO rb

0.975:

0.075t

55

0.076(

0.9771

0.974t

60

0.075t

0.0761

0.975:

0.076t

65

0.076t

0.97:

SIO en

0.975Í

0.975t

0.076!

l0

0.0762

0.9752

0.975t

15

0.957€

o.0752

0.0751

0.975i

0.075€

0.975{

80

0.985r

0.075t

HIO en

0.975¿

0.975t

85

0.991i

0.0763

0.07(

0.975S

0.975t

90

0.0757

0.075€

0.960r

0.99€

0.975t

9s

0.975i

0.076¿

0.998r

0.0751

0.987t

0.975:

100

4.9752

0.075r

1.0012

0.988t

0.075€

105

0.975t

0.975¡

0.075€

1.OO2r

0.077î

0.996i

0.975t

110

0.9752

0.075t

1.005(

0.998'

0.07r

0.975:

115

0.9741

0.076f

0.9967

0.074!

'1.00f

120

0.975:

0.987/

0.076¡

0.974r

0.075t

1.001{

0.9751

0.076i

0.974(

0.995r

1.002t

0.07!

0.9752

0.075:

0.075'

0.975:

1.0021

1.004:

0.9753

0.075/

0.075€

0.977i

0.997i

1.0021

0.9753

0.9981

0.994r

0.0741

0.9751

0.975Í

0.9761

0.999:

0.075t

1.00:

o.g77s

0.9962

0.974t

0.075s

0.996'

0.976t

0.9932

0.97¡

0.99S

0.975i

0.975t

0.98i

0.99€

0.975e

0.975r

0.957€

0.997€

0.9761

0.985t

0.9935

0.975t

0.991

1.72

0.984€

0.976Í

0.962r

0.99€

0.998r

0.981

0.989t

1.0012
1.0021

0.996:
0.996€

0.997:
0.997i



Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution

125

130

35

Comparison Experiment

140

0.0761

0.075s

45

0.0754

50

0.076t

0.0751

55

0.076:

o.0752

60

0.0755

0.075e

65

0.97

0.075i

0.075a

70

0.9755

0.076t

0.0761

15

180

0.975(

0.075[

0.0761

185

0.97

0.9751

0.0752

0.076t

0.9761

0.075€

0.9752

o.o77t

90

0.975t

0.0774

0.975{

0.076€

95

200

0.075t

1

0.075€

0.9752

0.97(

205

0.975r

0.076(

0.9747

1.00{

0.077

210

0.975e

0.9741

0.076(

0.987i

0.078r

215

0.975€

0.974(

0.

0.076Í

0.076¿

1.002t

220

0.975Í

1.OO43

0.0752

1 .001t

0.076t

0.97{

225

0.974t

0.075t

1.0021

0.977i

0.076Í

0.997¿

230

0.975t

0.998'

0.995r

0.076t

0.975i

0.0761

235

0.975i

0.999Í

0.076:

0.075€

0.975:

0.99€

240

0.9772

0.996i

0.9934

0.974t

0.075i

0.07e

245

0.975€

0.997Í

0.076€

0.993i

0.076:

0.97f

250

0.9751

0.975i

0.0763

0.9922

0.076t

0.981

255

0.9751

0.957€

0.975t

0.994:

0.0755

0.074s

260

0.975[

0.985t

0.990r

0.975t

0.075;

0.07e

265

0.9917

0.975t

0.9842

0.9755

0.076t

0.0761

210

0.975S

0.975f

0.075f

0.075(

0.996

0.961

275

0.988S

0.9985

0.076t

0.9751

0.075i

0.97(

280

0.975t

0.075(

1.0012

0.9751

0.991

0.074(

285

0.976t

0.993:

0.0774

1 002!

0.975f

0.075t

290

0.975i

0.9752

0.075f

0.9955

0.075s

1 005É

295

0.975¿

0.9962

0.9741

0.076(

0.075

1.00t

300

0.9757

0.987i

0.0792

0.974Í

0.076(

1 .001t

305

0.9757

0.974C.

1.0021

0.99'1r

0.075'

0.076Í

310

0.975t

0.975í

1.004î

0.075t

0.0751

1 003i

315

0.975'

0.075f

1.0027

0.977i

0.0741

1.000t

320

0.975Í

0.996(

0.0761

0.998'l

0.975i

o.o74t

325

0.975i

0.075s

0.999Í

0.075€

0.975Í

1.003É

330

0.9771

0.996i

0.974t

0.075t

0.993€

0.075,

335

0.9751

0.993i

0.076t

1.000s

0.97t

0.07t

340

0.975€

0.975t

0.076

0.0754

1.0001

0.981

34s

0.975S

0.957t

0.0754

0.975t

0.0761

0.997'

350

0.985t

0.975t

0.0751

0.075:

0.996t

0.97€

0.975€

0.984Í

0.9917

0.975:

0.076Í

0.075e

0.9765

0.075i

0.975S

0.0763

0.96r

0.99€

0.976e

0.998r

0.975i

0.982r

0.076Í

0.07(

0.975S

0.975t

0.9941

1.0012

0.0771

0.975(

0.994ç

1.OO2r

0.975t

0.0761

0.975t

0.9901

1.005(

0.9752

0.075:

0.975(

0.9741

0.9962

1.00t

0.9752

0.987i

0.974Í

1.0007

0.9751

0.974(

0.995{

1.002¿

0.974e

0.997Í

1.004

0.9751

1.0027

0.9951

t73

0.975t

0.9981

0.9961

0.999:

0.999€

0.996i

0.992e
o.9922

0.993i

0.996t
0.991Í
0.994:



Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution

8.2 Results for balcony256.bmp image

Rotation in Desrees
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution

8.3 Results for phantom256.bmp image
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

8.4 Results for rand256.bmp image
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

8.5 Results for square256.bmp image
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

8.6 Results for hexagon256.bmp image
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment
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Appendix B: Tabular Results of the Square pixel and Hexagonal pixel Resolution
Comparison Experiment

8.7 Results for sinewave0l 256.bmp image
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8.9 MTF Results
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Appendix C: Tabular Results of *ART Experiments

This appendix contains the tabular results of the *ART experiment. Note that a large

number o f experiments were done to arrive the *ART results. However only the ones

whose graphs are shown and discussed in chapter 4 are provided here.

Tabular Results of *ART Experiments

Appendix C
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C.3 Comparison of the different Projection Angle Ordering Schemes in *ART

Appendix C: Tabular Results of *ART Experiments

Test lmaqe
A
B

Seq uential
Access Scheme

lsast

c
D

E

F

G

u.1 5b9

C.4 Comparison of the different \ileighting Schemes in *ART

H

u.¿tby

I

0.0991

Fixed Angle
Access Scheme

ÍFÂ.AS- 90)

Proiection Anqle Orderinq Schemes

o.4194
9.4457
8.1829
0.2153
0.2040

0.1393

u.31U2

0.1911

0.0925

Random
Access
Sch eme

fRASI

0 3862
0.4418
o.1547
0.1 986
0. 1 798

0.1 453

0.2969

o.1422

Test lmaqe

0.101

Multi-level
Access Scheme

IMLSASI

04187
0.4553

A

0.1 409

B

0. 1 903
0 1689

C

0.1 248

Binary Scheme
fSASI

0.2913

D

u. 1 589
ü.8944

Weighted
Distance Scheme

ÍWDASì

E

0 3635

F

n 44't9

b

[.0235

u.1221

Weiqhtinq Schemes

H

0.1842

0.0912

u. 1 552

Length of ray
within Pixel

Scheme

I

n 1755

o.D622

U 2851

0.1529

u.¿t ¿4

û.0s50

0.3730

0.3536

u.0723

0.4376

0.1 349

u.12 1 U

0.1818

0.1 062

0.0782

J.15 I

o.2347

D htance of Pixel"
Cenler fron

Center of Ray
IDtSï

u Ds47

o.282/

0.0764
0 2849
0.4330
0.0798
0.1 4DE

Dbtance of
center of p ixel
from farthest

corner of
adjacent Ray

Scheme fCONTI
0.0789

o.1147

ú.1 003

t.252

0.[885
0.2841
0.4227
u.0779
D.1424
[.1156

0.0661

0 2518

0.8825
0.t560
0.245i
0.3357
0.[651
o.1214
0.0956
o.2112

191



t1] A. H. Andersen, A. C. Kak, "simultaneous algebraic reconstruction technique
(SART): A superior implementation of the ørt algorithm",Ultlasonic. Imaging,
vol. 6, pp. 8i-94, Jan 1984.

l2l A. Macovski, "Medical Imaging Systems", Englewood Cliff, Prentice-Hall,
New Jersey (1983).

t3] A. Macovski,"Plrysical problems of Computerized Tomography", Proceedings
IEEE 7 I :37 3 -37 8 ( 1 983).

l4l A.C. Kak, M. Slaney, "Principles of Computerized TomographÌc Imaging",
IEEE Press, 1988.

t5] C. Hamaker, D.C. Solmon, "Tlte angles between the null spaces of X rays", J.

Math. Anal. Appl., vol. 62,pp. I-23,1918.

t6] Cornwell, Holdaway, tlson, "Radio-interferometric imaging of very large
objects: implications for array design", A&4, 271,691-713 (1993)

l7l D. Alexander, P. Sheridan, P.Bourke, "An Algebraic-Geometric Model of the
Receptive Field Properties of the Macaque Striate Cortex", Proceedings
Australian Neuroscience Society vol.8, February (1991).

t8] D. Ros, C. Falcon, I Juvells, J. Pavia, "The influence of a relaxation parameter
on SPECT iterative reconstruction algorithms", Phys. Med. Biol., no. 41, pp.
925-937, 1996.

t9] D. Saint-Felix, Y. Trousset, C. Picard, C. Ponchut, R. Romeas, A. Rougee,"In
vivo evaluation of a new system for 3D computerized angiography", Phys.
Med. Biol, Vol. 39, pp. 583-595,7994.

f 10l D. Scharf, "Magnifications: Photography with the Scanning Electron
Microscop¿". Schocken Books, New York (1977).

[11] E. Krestel, "Imaging systems for medical diagnoslics", Siemens Medical
Division (1991).

ll2l E. Mazur, R. Gordon, "Interpolative algebraic reconstruction techniques
without beam partitioning for computed tomography", Med Biol Eng Comput
33(1), 82-6, (t995)

References

References

t92



[13] E.Buschbeck, B.Ehmer, R.Hoy, "Clrunkversus point sampling: visual imaging
in a small insect" . Science 286(5442), I 178- 1 1 80 (1999).

[14] F. Noo, C. Bernard, F.X. Litt, P. Marchot, "A comparison befween filtered
bacþrojection algorithm and direct algebraic method in fan beam CT',
Signal Processing, 5I :I91-199, T996.

[15] G. Rote, "Computing the minimum Hausdorff distance between two point sets
on a line under translation". Information Processing Letters, v. 38, pp. 123-
r27 (reer).

116] G. Tirunelveli, R. Gordon, S. Pistorius, "Comparison of Square-Pixel and
Hexagonal-Pixel Resolution in Image Processing", IEEE CCECE-2002
Proceedings.

l17l G. Wang, M.W. Vannier, P. Chong, "fterative X-ray Cone-Beam Tomography

for Metal ArtÌfact Reduction and Local Area Reconstruction", Microscopy and
Microanalysis, Microscopy Society of America (1999)

[18] G.T. Herman, A.Lent, S.Rowland, "ART: Mathematics and Applications (a
report on the mathematical þundations and on the applicability to real data oJ
the Al gebrai c Re cons truction Techniques)", J.Theor.B iol, (197 3)

119] G.T. Herman, L.B. Meyer, "Algebraic reconstruction can be made
computationally fficient",IEEE Trans. Med. Img, vol.12, no.3, pp. 600-609,
1993.

l20l G.T.Herman, "Image Reconstruction from Projections; The Fundamentals oJ
Computed Tomography", Academic Press, New York (1980).

l2ll H. Guan, R. Gordon," A projection access order for speedy convergence oJ
ART: a multilevel scheme for computed tomograplx!", Phys. Med. Biol., no.
39, pp. 1005 -2022, 1994.

l22l H. U. Frey, S. Frey, "Tomograpltic methods _fo, magnetospheric
applications", in press in Ann.Geophys, 1998.

l23l H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford, B.C. Teeter, "Two
algorithms _fo, the three-dimensional reconstruction of tomograms",
Med.Phys. 15, 320-327 (1 988)

l24l Imaginis Breast Health Web Site, URL: http:llimaginis.com/ct-
scan/biopsy.asp, January 2003. Figure 1-1 is reproduced from URL:
http:llimaginis.com/ct-scan/how_ct.asp. Copyright @ I99l-200I Imaginis
Corporation All rights reserved

References

r93



125l

126l

J. Foley, A. Van Dam, J.Hughes, "Computer Graphics, Principle and Practice
(Second Edition)". Addison Wesley, Sydney (1990).

K. Mueller, "Fast and accurate three-dimensional reconstruction from cone-
beam projection data using algebraic methods", PhD thesis, The Ohio State
University, 1998.

K. Mueller, R. Yagel, J.F. Cornhlll, "The Weighted Distance Scheme: A
Globally Optimizing Projection Ordering Method for ART", Transactions on
Medical Imaging, Vol.16, No.2, Apnl1997.

K. Shoemaker, "Animating Rotation with Quaternion Curves", Computer
Graphics (1985)

L. Youping, X. Qingfen, B. Guoliang, "Study on Quality Evalutaion oJ
Compressed Remote Sensing fmages", Beijing Remote Sensing Information
Institute, ACRS (1990)

M. Goesele, W. Heldrich, H.Seidel, "Entropy-Based Dark Frame
Subtraction", fmage Processing, Image Quality, Image Capture Systems
Conference (PICS) 2001.

M.B. Katz, "Questions of Uniqueness and Resolution in Reconstruction from
Projections"', L ecture Notes in Biomathematics, Springer-Verlag, New York
(1 e78)

M.C. van Dijke, "Iterative methods in image reconstruction" Ph.D.
Di s sertati on, Rij ksuniversiteit Utrecht, The Netherlands, I 9 9 2.

O. Magnan, P. Grangeat, R. Proksa, "Real Time Motion Compensated
Reconstruction and Visualization for Dynamic Computed Tomography",
DynCT Consortium -2000

P. Agarwal, M. Shamir, "Efficient Algorithms for Geometric Optimization",
ACM Computing Surveys 30(a): 412-458 (1998)

R. Gordon,"A tutorial on ART (Algebraic Reconstruction Techniques)",IEEE
Trans. Nucl. Sci. NS-21 ,78-93,95, (1914).

R. Gordon, "Artifacts in reconstructions made from a few projections",
Proceedings of the First International Joint Conference on Pattern Recognition,
IEEE Computer Society (1973).

R. Gordon, G.T. Herman, "Three-Dimensional Reconstruction fro*
Projections: A Review of algorithms",Ptoceedings of the SocietyofPhoto-
Optical lnstrumentation Engineers, Vol. 47 (I975)

l2tl

[28]

l2el

References

l30l

l3 1l

132l

[33]

134l

[3s]

[36]

l37l

t94



[38] R. Gordon, G.T. Herman, S.A. Johnson, "Imãge Reconstruction from
Proj ections", Scientifi c American, Vol. 233, no.4, pp. 56-68, (October 197 5).

139] R. Gordon, R. Bender, G.T. Herman, "Algebraic reconstruction techniques
ØRD for three-dimensional electron microscopy and X-ray photography", J.

Theoret. Biol., vol. 29, pp. 47I-482, 1910.

[40] R.A. Robb et al, "High-speed three-dimensional x-ray computed tomography;
The Dynamic Spatial Reconstructor", Ptoc. IEEE, 7 1:308-31 9 (1983)

[41] R.A. Robb, "X-ray Computed Tomography; An engineering synthesis oJ
multiscientific principles", CRC Crit. Rev. Biomed. Eng,7:264-333 (1982)

l42l R.M. Rangaryan, A.Kantzas, "Image Reconstruction", Wiley Encyclopedia of
Electrical and Electronics Engineering, Supplement 1, Wiley-Interscience
publication, New York, (2000)

l43l S Horbelt, M Liebling, M Unser, "Filter designforfiltered back-projection
guided by the interpolation model", CH-1015 Lausanne EPFL, Biomedical
Imaging Group, Swiss Federal lnstitute of Technology.

l44l S. Matej, G.T. Herman, T.K. Narayan, S.S. Furuie, R.M.Lewitt, P.E. Kinahan,
"Evctluation of task-oriented perþrmance of several funy 3D PET
reconstruction algorithms", Phys. Med. Biol, Vol. 39, pp. 355-361,1994.

l45l S.A. Larsson, "Gamma Camera Emission Tomography", Acfa Radiol. Suppl.,
363 (1e80).

L46l T. Yamada, "A Progressive Scan CCD Image Sensor for DSC Applico.tions",
IEEE Journal of Solid-State Circuits, vol. 35 (12), December 2000 pp. 2044-
2054.

l47l Walker, L K., J. A. T. Heaton, L. Kersley, C. N. Mitchell, S., E. Pryse, M. J.'Williams, "EISCAT verificotion in the development of ionospheric
tomo grap hy", Arln. Geophys, I 4, I 4I3 -I 421, 199 6.

[48] Z.H. Cho, J.P. Jones, M. Singh, "Foundations of Medical Imaging", Wiley,
New York (1993).

References

t9s


