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Abstract

Herein a fully parallel, upwind and flux-split Finite-Volume Time-Domain (FVTD)
numerical engine for solving Maxwell’s Equations on unstructured grids is developed.
The required background theory for solving Maxwell’s Equations using FVTD is given
in sufficient detail, including a description of both the temporal and spatial approx-
imations used. The details of the local-time stepping strategy of Fumeaux et al. is
included. A global mesh-truncation scheme using field integration over a Huygens’
surface is also presented.

The capabilities of the FVTD algorithm are augmented with thin-wire and subcell
circuit models that permit very flexible and accurate simulations of circuit-driven wire
structures. Numerical and experimental validation shows that the proposed models
have a wide-range of applications. Specifically, it appears that the thin-wire and subcell
circuit models may be very well suited to the simulation of radio-frequency coils used
in magnetic resonance imaging systems.

A parallelization scheme for the volumetric field solver, combined with the local-time
stepping, global mesh-truncation and subcell models is developed that theoretically
provides both linear time- and memory scaling in a distributed parallel environment.

Finally, the FVTD code is converted to the frequency domain and the possibility of
using different flux-reconstruction schemes to improve the iterative convergence of the
Finite-Volume Frequency-Domain algorithm is investigated.



Contributions

This dissertation focuses on the development of a fully parallel, three-dimensional elec-
tromagnetic field solver using the Finite-Volume Time-Domain (FVTD) and Finite-
Volume Frequency-Domain (FVFD) algorithms. While the application of these algo-
rithms to electromagnetic problems is not new, this work contains significant contri-
butions to FVTD, FVFD and to electromagnetic field-modeling in general.

• A subcell thin-wire model is developed for FVTD that permits the wire to be
arbitrarily oriented within the computational domain. While the coupling mech-
anism between thin-wires and electromagnetic fields is not a contribution of this
work, the FVTD solution of the resulting equations, and a thorough explanation
of the limitations of the algorithm, is.

• The introduction of a flexible lumped-element circuit model for driving the thin-
wire structures allows for complicated circuitry to be introduced into the com-
putational domain without affecting the volumetric mesh. Furthermore, circuit
quantities can be used for the straight-forward extraction of engineering system
parameters such as input impedance. In the absence of volumetric fields, the
thin-wire and subcell models could be used to model multi-conductor transmis-
sion lines, though this is not investigated in this work.

• A fully parallel FVTD code has been developed. While parallelization of hy-
perbolic problems (such as the FVTD formulation of Maxwell’s Equations) is
not so difficult, this work includes general parallelization strategies for incor-
porating local-time-stepping, global mesh-truncation and the thin-wire models
that permit linear scaling in both time and memory in distributed computing
environments.

• A fully parallel FVFD code has been developed. Currently the code only supports
volumetric field problems but allows for different flux-reconstruction schemes to
be used to accelerate the convergence of the iterative system solver.



Notation, Symbols and Acronyms

As one learns the language of a subject, one is also learning what the subject
is. ...what we call a subject consists mostly, if not entirely, of its language.
If you eliminate all the words of a subject, you have eliminated the subject.
– Neil Postman

Included in the tables that follow is a summary of the most commonly used acronyms
and notation in this work. There is a consistent need to cross-reference most of the
derived equations and expressions. For emphasis, the most important equations, re-
sulting from the end of a derivation, are “boxed”. Finally, a comment should be made
on the use of the notation x · y. If x = ~x and y = ~y are vectors, then this notation is
used to represent a standard dot-product. It is also used, however, to denote scalar,
matrix-vector and matrix-matrix products simply because, in some cases, without it
equations are not as visually clear. The meaning of the operator should be clear from
the context.

Symbols Description

Volumetric Geometry

(x, y, z) Cartesian coordinates

~r Position vector

V Computational domain

∂V Boundary of V

Tab. 0.1: Common symbols and notation (continued next page)



iv

Volumetric Geometry (Cont’d)

Vi 3-dimensional finite-volume in V

{Vi} Geometric partition of V

~ri Barycentre of Vi

∂Vi Boundary surface of Vi

∂Vi,k Facet k of surface of ∂Vi

~ri,k Barycentre of ∂Vi,k

|Vi| Volume of Vi [m3]

|∂Vi,k| Area of ∂Vi,k [m2]

~n(~r) Outer normal to a surface

~ni,k Unit outward normal to ∂Vi,k

Electromagnetic Fields

t Time [s]

~E(t, ~r) Electric field [V/m]

~H(t, ~r) Magnetic field [A/m]

~D(t, ~r) Electric flux density [C/m2]

~B(t, ~r) Magnetic flux density [Wb/m2]

~J (t, ~r) Electric current density [A/m2]

~M(t, ~r) Magnetic current density [V/m2]

qe(t, ~r) Electric charge density [C/m3]

qm(t, ~r) Magnetic charge density [Wb/m3]

∇f(t, ~r) Gradient of the scalar function f(t, ~r)

∇ · ~F(t, ~r) Divergence of the vector function ~F(t, ~r)

∇× ~F(t, ~r) Curl of the vector function ~F(t, ~r)

∂t First partial derivative with respect to t

dt First ordinary derivative with respect to t

∂tt Second partial derivative with respect to t

ε(~r) Permittivity at ~r [F/m]

µ(~r) Permeability at ~r [H/m]

σe(~r) Electrical conductivity at ~r [S/m]

σm(~r) Magnetic conductivity at ~r [Ω/m]

c(~r) Electromagnetic velocity at ~r [m/s]



v

Volumetric FVTD

~U(t, ~r) Solution vector [~E(t, ~r)T ~H(t, ~r)T ]T

~U (i)(t) Volumetric average of solution over Vi
~U i,k(t, ~r) Solution on the surface ∂Vi,k
~Uo

i,k Boundary value of solution on ∂Vi,k
~S(t, ~r) Source vector.

¯̄α(~r) Constitutive matrix

¯̄σ(~r) Conduction matrix

¯̄αb(~r), ¯̄σb(~r) Background constitutive matrices
¯̄L(~m) Rotation matrix for vector ~m
¯̄A(ε, µ, ~m) Flux matrix for vector ~m and parameters ε and µ
¯̄A
±
i,k Flux-split matrix on surface ∂Vi,k
~W(t, ~r) FVTD characteristic vector

Wp pth component of the characteristic vector

~F(t, ~r) FVTD flux

~Fo

i,k Flux on ∂Vi,k

Time-Stepping and

Global Mesh Truncation

∆t Time-step

~Un
Solution at time n∆t

V ` Local time-stepping region `

∂VΣ Huygen’s surface bounded at infinity

∂VS Finite Huygen’s surface inside V

~r ′ Integration source point

~R ~r − ~r ′
R |~r − ~r ′|
[[ · ]] Evaluation at the retarded time t−R/c



vi

Thin-Wire Models

(ρ, φ, ζ) Cylindrical coordinates

Q(t, ζ) Per-unit-length (PUL) charge [C/m2]

I(t, ζ) Current [A]

ρ0 Field coupling radius

g(ρ) Field coupling function

L PUL inductance [H/m]

C PUL capacitance [F/m]

G PUL conductance [S/m]

R PUL resistance [Ω/m]

Z Impedance [Ω]

Y Admittance [S]

V(t, ~r) Voltage [V/m]

W Continuous wire domain

Wj One-dimensional finite-volume

ζj Barycentre of Wj

|Wj| Length of Wj [m]

Tj,k Terminal k of wire j

Lj, Cj etc. PUL parameters associated with Wj

U(t, ζ) Wire solution [V(t, ζ) I(t, ζ)]T

U (j)(t) Segment average of solution on Wj

¯̄a(k) Wire flux matrix



vii

Acronym Meaning

CEM Computational Electromagnetics

CFD Computational Fluid Dynamics

DGTD Discontinuous-Galerkin Time-Domain

ERBC Exact Radiation Boundary Condition

FDTD Finite-Difference Time-Domain

FE Forward Euler

FETD Finite-Element Time-Domain

FIT Finite Integration Technique

FV Finite-Volume

FVFD Finite-Volume Frequency-Domain

FVTD Finite-Volume Time-Domain

EM Electromagnetic

HG Hypergraph

HPDE Hyperbolic Partial Differential Equation

IVBP Initial Boundary Value Problem

LTS Local Time Stepping

MUSCL Monotone Upwind Scheme for Conservation Laws

MPI Message Passing Interface

MRI Magnetic Resonance Imaging

NEC Numerical Electromagnetics Code

ORB Orthogonal Recursive Bisection

PC Predictor Corrector

PEC Perfect Electric Conductor

PMC Perfect Magnetic Conductor

REA Reconstruct, Evolve, Average

RK2 Runge-Kutta, second order

RK4 Runge-Kutta, fourth order

RF Radio Frequency

SFC Space Filling Curve

TLM Transmission Line Method

Tab. 0.2: Common acronyms.
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1

Introduction

A science only advances with certainty, when the plan of inquiry and the
object of our researches have been clearly defined. – Jean-Baptiste Say

In 1873 James Clerk Maxwell published A Treatise on Electricity & Magnetism [1],

providing a set of four partial differential equations coupling electric charge, electric

current and both electric and magnetic fields in macroscopic media. The concise sim-

plicity of Maxwell’s equations has not limited their ability to predict electromagnetic

phenomena. Perhaps the best example of the power of Maxwell’s equations was demon-

strated by Maxwell himself before publishing his treatise. In 1865, Maxwell used his

equations to show that electric and magnetic fields satisfy the electromagnetic wave

equation thereby predicting that light must be an electromagnetic wave [2]. While

Maxwell’s equations provide the theoretical framework for describing the behaviour of

electromagnetic fields and their sources, it is our limited ability to analytically describe
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the fields satisfying Maxwell’s equations that often make obtaining exact, closed-form

solutions to problems of interest impossible. Fortunately, the advent of the modern-day

computer in the 1940s made it possible to approximately solve Maxwell’s equations

numerically. The ability of Maxwell’s equations to predict electromagnetic behaviour,

combined with an exponential increase in computational power over the last seven

decades, has forever changed the field of electrical engineering. The fact that any de-

sign, no matter how complicated, can theoretically be validated before it is constructed

justifiably makes numerical solutions to Maxwell’s equations a large, and continually

growing, field of research known as computational electromagnetics (CEM) [3].

Historically, robust algorithms for numerically solving Maxwell’s equations did not

begin appearing in publication until the 1960s, nearly two decades after the advent

of the computer. It has been argued that the cause for this delay is that Maxwell’s

equations are linear, and that during the 1940s analytical progress in electromagnetics

was still being made [3]. In contrast, scientists concerned with the dynamic behaviour

of fluids were dealing with the Euler and Navier-Stokes equations [4]. The non-linearity

of these equations limits the number of analytical tools that can be used to solve them,

making numerical solutions immediately attractive. As a consequence, the field of

computational fluid dynamics (CFD) was born nearly two decades before CEM [3].

Today, numerical techniques for solving the time-dependent Maxwell’s equations in-

clude the Finite-Difference Time-Domain method (FDTD) [5], Finite-Element Time-

Domain methods (FETD) [6], the Transmission-Line Method (TLM) [7], Finite In-

tegration Techiques (FIT) [8] and more recently, the Finite-Volume Time-Domain

(FVTD) [9] and Discontinuous Galerkin Time-Domain (DGTD) methods [10]. Each

of these methods has its own advantages and disadvantages. For example, FDTD is

incredibly efficient as its implementation (primarily) depends on a regular Cartesian
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discretization of the computational domain, but suffers from geometric modeling error

introduced by “stair-stepping” approximations in the Cartesian grid. FETD offers

more geometry flexibility by allowing unstructured meshes, at the additional cost of

a sparse matrix inversion at each time-step. FVTD also permits unstructured grids

and does not require a matrix inversion but, in its simplest implementations, is limited

to second order where the errors appear as numerical dissipation [11]. DGTD is the

newest of these algorithms and attempts to balance the benefits of FVTD and FETD

[10].

Herein, we focus on the FVTD algorithm. FVTD has its origins in CFD where it has

been used, for decades, to solve the physics of fluid-flow [11, 4]. It is only within the last

20 odd years that FVTD has been applied to electromagnetics problems. In that time,

FVTD has been implemented for structured, conformal meshes [12] and unstructured

meshes [9, 13]. When used in unstructured meshes it provides excellent geometric

modeling capabilities at the sacrifice of increased memory usage and computational

time per step when compared to FDTD (for the same number of grid cells). Even

with the burden of increased memory and reduced efficiency, FVTD can be used to

accurately model highly intricate geometric features that would be incredibly difficult

to model using FDTD [14, 15, 13].

In this thesis we deal exclusively with what is referred to as the “upwind” and “flux-

split” FVTD formulation on unstructured grids [11, 9]. In this formulation, all electric

and magnetic field components are collocated in time within each grid cell. As will be

shown in this work, such a formulation permits great flexibility in introducing other

numerical models into a volumetric FVTD code. As briefly mentioned above, the price

of upwinding is that the errors introduced into the solution are dissipative. This is in

contrast to the dispersive errors introduced by FDTD. With FVTD, fields traveling
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large electrical distances can be highly dampened in amplitude (but produce excellent

phase reconstruction) if the volumetric grid is not sufficiently refined. Alternative

FVTD formulations that introduce dispersive, rather than dissipative, errors have

recently been attempted and use a leap-frog update where the electric and magnetic

fields are offset in time [16] (and the references therein). Unfortunately, this method

is not yet robust enough on unstructured three-dimensional grids as it can suffer from

local instabilities and grid-decoupling [17].

1.1 Purpose

The purpose of this thesis is to provide the details of an upwind and flux-split FVTD

numerical engine for solving Maxwell’s Equations on unstructured grids. In addition

to the basic volumetric formulation which has been previously developed in, for exam-

ple, [9] or [14], very flexible thin-wire and subcell circuit models have been developed

and implemented to expand the electromagnetic modeling capabilities of FVTD. In

addition, as parallel computing becomes more and more accessible, this work provides

a detailed parallelization strategy for running FVTD in a distributed computing envi-

ronment. Finally, the FVTD algorithm is also converted to the frequency domain and

a novel strategy for using different flux reconstruction schemes to improve the iterative

convergence of the Finite-Volume Frequency-Domain (FVFD) solver is investigated.

1.2 Outline

Although it hasn’t been done explicitly, this thesis could be broken into two parts:

the first being work required to develop an FVTD engine to the point where novel
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advancement can be made, and the second being the improvements/additional features

made to existing FVTD formulations. Herein, the first part is contained in Chapters 2

through 6. In Chapters 2 and 3 the necessary theory is developed to arrive at a semi-

discrete FVTD formulation where continuous temporal derivatives remain. Chapter 4

provides details of explicit time-integration algorithms and a local-time-stepping (LTS)

strategy previously developed in [15]. The LTS scheme has been included in this work

as it provides significant performance increases on unstructured meshes. In Chapter

5, a local mesh-truncation scheme and a global mesh-truncation scheme are discussed.

Finally, the FVTD implementation is validated in Chapter 6.

The second part of this thesis is contained in the remaining chapters and deals, in

order, with subcell models, parallelization and the Finite-Volume Frequency-Domain

(FVFD) method. In Chapters 7 to 9 an FVTD thin-wire and subcell circuit model

are introduced and validated. The thin-wire model was originally developed for FDTD

and FETD [18, 19], but is novel in the sense that it has been completely formulated for

FVTD. The subcell-circuit models are used to drive and/or terminate the thin-wires

and are both incredibly versatile and completely new. In Chapter 10, a parallelization

strategy is presented, implemented and validated for the FVTD numerical engine.

While parallelization of hyperbolic systems is relatively straight-forward for purely

volumetric problems, the parallelization herein also manages the LTS, global mesh-

truncation and subcell modeling schemes. Finally, in Chapter 11, the necessary steps

required to convert the FVTD code to a frequency-domain FVFD solver are discussed.

The focus therein is on the flexibility that upwinding provides and how different flux-

reconstruction schemes can be used, in some cases, to improve the iterative convergence

of the solution.
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1.3 Scope

The scope of the work presented herein is limited to the upwind and flux-split FVTD

formulation. While high-order reconstruction schemes are mentioned for completeness,

a second-order MUSCL scheme is used exclusively in volumetric simulations. For this

flavour of FVTD, it is unreasonable to simulate geometries that are many wavelengths

in size and the validating examples presented adhere to moderate electrical sizes.

The dissipative nature of the upwind and flux-split scheme is not the focus of this

work. As will be demonstrated, a large number of examples can be solved accurately

despite this constraint. Additionally, high-order flux-reconstruction schemes can be

used, at the cost of complexity, to overcome these dissipative effects [20].

Furthermore, outside of asymptotic limits, little focus is given to the memory and time

required to simulate the examples. The code is a work in progress and improvements

can always be made. Some details are provided at the end of Chapter 10. Nevertheless,

the majority of the results that will be presented were obtained in minutes, not hours,

on a moderate number of processors. A comparison of the computational efficiencies

of FVTD and FIT can be found, for example, in [21] and a comparison to FDTD is

available in [14].

The LTS scheme is presented in Chapter 4 with only slight differences to the founding

work [15]. The FVTD global mesh-truncation scheme discussed in Chapter 5 was first

published for FVTD by colleagues in [22] and is presented and implemented without

modifications. It is computationally expensive and a rigorous analysis of this scheme is

beyond the scope of this work. It has been included because it is both quite interesting

and worth future consideration.
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The Conservative Form of

Maxwell’s Equations

Ex nihilo nihil fit – Lucretius, Translation: From nothing, nothing comes.

The Finite-Volume (FV) method is a numerical technique for solving systems of hy-

perbolic partial differential equations (HPDEs) and can, therefore, be applied to the

class of HPDEs commonly referred to as conservation laws. A common approach for

developing FV solutions to EM problems is to manipulate Maxwell’s Equations into

a conservative form. In this chapter Maxwell’s Equations are presented; assumptions

about the class of physical problems, including the description of the physical media,

are made; the conservative form of Maxwell’s Equations is developed, and is shown

to be hyperbolic; and the solution to the system of equations when field variations

occur along a single spatial direction is discussed. The developed theory serves as the
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groundwork for the development of the FV solution to Maxwell’s Equations developed

in Chapter 3.

2.1 Maxwell’s Equations

In SI units Maxwell’s Equations relate six electromagnetic field quantities at time t

and position ~r in three-dimensional space R3:

~D(t, ~r) Electric Flux Density [C/m2] ∈ R3

~B(t, ~r) Magnetic Flux Density [Wb/m2] ∈ R3

~E(t, ~r) Electric Field [V/m] ∈ R3

~H(t, ~r) Magnetic Field [A/m] ∈ R3

~J (t, ~r) Electric Current Density [A/m2] ∈ R3

qe(t, ~r) Electric Charge Density [C/m3] ∈ R

Although the existence of magnetic charge has not been established, it is convenient to

introduce two additional magnetic sources that can be used in equivalent mathematical

models:

~M(t, ~r) Magnetic Current Density [V/m2] ∈ R3

qm(t, ~r) Magnetic Charge Density [Wb/m3] ∈ R

The introduction of magnetic current density and magnetic charge density completes

a nice duality between electric and magnetic field quantities. We allow for impressed

currents by decomposing the total current into the sum of impressed (superscript i)
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and conduction (superscript c) contributions:

~J (t, ~r) = ~J c
(t, ~r) + ~J i

(t, ~r)

~M(t, ~r) = ~Mc
(t, ~r) + ~J i

(t, ~r)

where the impressed currents are to be interpreted as the sources of the electromagnetic

fields (note that convection current is not considered herein). Similarly, we can intro-

duce impressed charges qie(t, ~r) and qim(t, ~r) and conduction charges qce(t, ~r), q
c
m(t, ~r).

Wherever the electromagnetic fields are continuous and sufficiently differentiable they

satisfy Maxwell’s Equations:

∇× ~E(t, ~r) = −∂t ~B(t, ~r)− ~Mc
(t, ~r)− ~Mi

(t, ~r) (2.1a)

∇× ~H(t, ~r) = ∂t ~D(t, ~r) + ~J c
(t, ~r) + ~J i

(t, ~r) (2.1b)

∇ · ~D(t, ~r) = qce(t, ~r) + qie(t, ~r) (2.1c)

∇ · ~B(t, ~r) = qcm(t, ~r) + qim(t, ~r) (2.1d)

which are respectively referred to as Faraday’s Law, Ampère’s Law, Gauss’s Law and

Gauss’s Law of Magnetism.

As the solution to a typical electromagnetic problem inside a volume V ⊂ R3 we seek to

determine the fields ~E(t, ~r), ~H(t, ~r), the fluxes ~D(t, ~r), ~B(t, ~r), the conduction currents,

~J c
(t, ~r), ~Mc

(t, ~r), and the conduction charges qce(t, ~r) and qcm(t, ~r) resulting from the

impressed sources ~J i
(t, ~r), ~Mi

(t, ~r), qie(t, ~r) and qim(t, ~r). This problem can be formally

stated as an initial boundary-value problem (IBVP) where we seek the solution to

Maxwell’s equations in V , bounded by ∂V , over a time interval T = (0, tmax] ⊂ R+

given initial conditions ~E(0, ~r), ~H(0, ~r), ~D(0, ~r), ~B(0, ~r), ~J c
(0, ~r), ~Mc

(0, ~r), qce(0, ~r),

qcm(0, ~r) ∀~r ∈ V . The impressed sources are assumed known ∀ t ∈ T , ~r ∈ V . The
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IBVP description is completed by providing appropriate boundary conditions on ∂V

and relates 20 unknown scalar quantities (the components of 6 vector quantities and

two scalars) through 8 scalar equations (two vector and two scalar equations).

2.2 Constitutive Relationships

Additional information is required in order to solve Maxwell’s Equations (2.1a)-(2.1d).

Twelve additional equations are obtained by the so-called constitutive relationships:

~D(t, ~r) = ~D(t, ~r, ~E , ~H) (2.2a)

~B(t, ~r) = ~B(t, ~r, ~E , ~H) (2.2b)

~J c
(t, ~r) = ~J c

(t, ~r, ~E , ~H) (2.2c)

~Mc
(t, ~r) = ~Mc

(t, ~r, ~E , ~H) (2.2d)

For simple, stationary media, these relationships can be written as

~D(t, ~r) = ¯̄ε(~r) · ~E(t, ~r) (2.3a)

~B(t, ~r) = ¯̄µ(~r) · ~H(t, ~r) (2.3b)

~J c
(t, ~r) = ¯̄σe(~r) · ~E(t, ~r) (2.3c)

~Mc
(t, ~r) = ¯̄σm(~r) · ~H(t, ~r) (2.3d)

The quantities ¯̄ε(~r), ¯̄µ(~r), ¯̄σe(~r) and ¯̄σm(~r) ∈ R3×3 are respectively referred to as the

permittivity dyadic, permeability dyadic, electric conductivity dyadic and magnetic

conductivity dyadic and are determined by the physical medium in V at ~r. In this

work we limit ourselves to simple, isotropic, time-invariant material such that the
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dyadics are scalar multiples of the three-dimensional identity matrix ¯̄I

¯̄ε(~r) = ε(~r) · ¯̄I (2.4a)

¯̄µ(~r) = µ(~r) · ¯̄I (2.4b)

¯̄σe(~r) = σe(~r) · ¯̄I (2.4c)

¯̄σm(~r) = σm(~r) · ¯̄I (2.4d)

with units ε(~r) [F/m], µ(~r) [H/m], σe(~r) [S/m] and σm(~r) [Ω/m]. These twelve consti-

tutive equations can be substituted into Maxwell’s Equations to give:

∇× ~E(t, ~r) = −µ(~r) · ∂t ~H(t, ~r)− σm(~r) · ~H(t, ~r)− ~Mi
(t, ~r) (2.5a)

∇× ~H(t, ~r) = ε(~r) · ∂t~E(t, ~r) + σe(~r) · ~E(t, ~r) + ~J i
(t, ~r) (2.5b)

∇ ·
(
ε(~r) · ~E(t, ~r)

)
= qce(t, ~r) + qie(t, ~r) (2.5c)

∇ ·
(
µ(~r) · ~H(t, ~r)

)
= qcm(t, ~r) + qim(t, ~r) (2.5d)

In this form, Maxwell’s Equations represent 8 equations relating 8 unknown quantities

~E(t, ~r), ~H(t, ~r), qce(t, ~r) and qcm(t, ~r). What is interesting is that if we seek the solution

to the vector fields in the absence of imposed charge, then equations (2.5a), (2.5b),

combined with initial and boundary conditions, are sufficient as they are six scalar

equations for six scalar functions.
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2.3 Continuity Equations

If we take the divergence of the two curl equations (2.5a) and (2.5b) we obtain:

∇ ·
(
µ(~r) · ∂t ~H(t, ~r)

)
= −∇ ·

(
σm · ~H(t, ~r) + ~Mi

(t, ~r)

)
(2.6a)

∇ ·
(
ε(~r) · ∂t~E(t, ~r)

)
= −∇ ·

(
σe · ~E(t, ~r) + ~J i

(t, ~r)

)
(2.6b)

Interchanging the temporal and spatial derivatives and substituting Gauss’s Laws into

the above equations gives:

∂t

(
qcm(t, ~r) + qim(t, ~r)

)
+∇ ·

(
σm · ~H(t, ~r) + ~Mi

(t, ~r)

)
= 0 (2.7a)

∂t

(
qce(t, ~r) + qie(t, ~r)

)
+∇ ·

(
σe · ~E(t, ~r) + ~J i

(t, ~r)

)
= 0 (2.7b)

which are respectively referred to as the electric and magnetic equations of continuity.

These equations state that electric/magnetic charge is conserved and can be interpreted

as physical laws. What is important here is that the continuity equations above put

strict limitations on the relationship between total currents and charge at ~r ∈ V .

Provided that these conditions are enforced Maxwell’s Equations can be solved by

considering only the two curl equations (2.5a) and (2.5b).

2.4 The Conservative Form of Maxwell’s Equations

Using notation similar to that in [9], we obtain the conservative form of Maxwell’s

Equations by combining the time-domain differential form of Ampère’s and Faraday’s
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laws into a single system of six partial differential equations:

¯̄α(~r) · ∂t ~U(t, ~r) + ~K(t, ~r) = ¯̄σ(~r) · ~U(t, ~r) + ~S(t, ~r), (2.8)

where

~U(t, ~r) =



~E(t, ~r)

~H(t, ~r)


 , ~K(t, ~r) =



−∇×H(t, ~r)

∇× E(t, ~r)


 , ~S(t, ~r) =



− ~J i

(t, ~r)

− ~Mi
(t, ~r)


 (2.9)

The simple, stationary, and isotropic physical medium is accounted for by the 6 × 6

diagonal matrices ¯̄α(~r) and ¯̄σ(~r):

¯̄α(~r) = diag (ε(~r), ε(~r), ε(~r), µ(~r), µ(~r), µ(~r))

¯̄σ(~r) = diag (−σe(~r), −σe(~r), −σe(~r), −σm(~r), −σm(~r), −σm(~r))

(2.10)

If a scattered-field formulation is desired, we decompose the total fields ~U(t, ~r) into

the sum of a scattered field ~U scat
(t, ~r) and an incident field ~U inc

(t, ~r). The incident

field is assumed to be supported by the impressed sources ~S(t, ~r) in some background

medium ¯̄αb(~r) and ¯̄σb(~r) and, from (2.8), satisfy

¯̄αb(~r) · ∂t ~U(t, ~r) + ~Kinc
(t, ~r) = ¯̄σb(~r) · ~U

inc
(t, ~r) + ~S(t, ~r) (2.11)

Subtracting (2.11) from (2.8) and simplifying produces:

¯̄α(~r) · ∂t ~U
scat

(t, ~r) + ~Kscat
(t, ~r) = ¯̄σ(~r) · ~U scat

(t, ~r) + ~Sscat
(t, ~r) (2.12)
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where the scattered-field source term is defined as:

~S scat
(t, ~r) , (¯̄σ(~r)− ¯̄σb(~r)) · ~U(t, ~r)− ( ¯̄α(~r)− ¯̄αb(~r)) · ∂t ~U

inc
(t, ~r) (2.13)

A comparison of (2.12) and (2.8) shows that both the total- and scattered-fields satisfy

the same system of partial differential equations, but with different source terms. Any

theory developed for one, holds for the other. (As will be shown in Chapter 3 this

is not quite true as part of the FVTD algorithm requires an incident-field-dependent

flux-term on perfect conducting surfaces.)

We now show that equation (2.8) is in fact a conservation law for the quantity ~U(t, ~r).

The vector ~K(t, ~r) is a function of the components of ~U(t, ~r), and can be written in

Cartesian coordinates (x, y, z) as:

~K(t, ~r) = ∂x




0

Hz

−Hy

0

−Ez
Ey




+ ∂y




−Hz

0

Hx

Ez
0

−Ex




+ ∂z




Hy

−Hx

0

−Ey
Ex
0




= ∂x ~Gx(t, ~r) + ∂y ~Gy(t, ~r) + ∂z ~Gz(t, ~r)

(2.14)

where the explicit dependence of the field components on space and time has been

dropped for brevity. As a consequence of (2.14), if we assume that there is no loss or

sources at ~r, (2.8) becomes

∂t

(
¯̄α(~r) · ~U(t, ~r)

)
+ ∂x ~Gx(t, ~r) + ∂y ~Gy(t, ~r) + ∂z ~Gz(t, ~r) =

∂t

(
¯̄α(~r) · ~U(t, ~r)

)
+∇ · ~G(t, ~r) = ~0

(2.15)
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The 6 × 3 matrix ~G(t, ~r) is composed of three columns ~Gx(t, ~r), ~Gy(t, ~r) and ~Gz(t, ~r).

The divergence is applied to each row of ~G(t, ~r) producing a vector in R6 [13].

For the FV algorithm developed in Chapter 3, the material parameters ¯̄α(~r) = ¯̄α

will be assumed piece-wise constant. Thus, we currently assume that the medium is

constant for all ~r under consideration and (2.15) becomes:

∂t ~U(t, ~r) +∇ ·
(

¯̄α−1 · ~G(t, ~r)
)

= ~0 (2.16)

Although we have not yet shown it, this system is hyperbolic and is interpreted as the

conservative form of Maxwell’s Equations (in the source-free/lossless case) analogous

to a scalar conservation law e.g. (2.7a), (2.7b).

2.5 The Flux Matrix

To formulate the FV solution to the conservative form of Maxwell’s two curl equations

(2.16), we will require some additional concepts and notation. As shown in Appendix

A, it is possible to rewrite (2.16) as

∂t ~U(t, ~r) +
K∑

k=1

(
¯̄A(ε, µ, ~mk) · ∂mk

~U(t, ~r)
)

= ~0 (2.17)

where {~mk}, k = 1, . . . , K is a set of K unit vectors (possibly dependent) that span

R3 and where

∂mk
~U(t, ~r) , ~mk · ∂~r ~U(t, ~r)

is the spatial rate of change of ~U(t, ~r) in the ~mk direction. The validity of this result

is far from obvious and rigorous analysis is required to develop it [9]. The 6×6 matrix
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¯̄A(ε, µ, ~mk) is given by:

¯̄A(ε, µ, ~m) , ¯̄α−1 ·




0 0 0 0 mz −my

0 0 0 −mz 0 −mx

0 0 0 my mx 0

0 −mz my 0 0 0

mz 0 −mx 0 0 0

−my mx 0 0 0 0




= ¯̄α−1 · ¯̄L(~m) (2.18)

Notational simplification can be obtained by considering the three-by-three antisym-

metric matrix:

¯̄s(~m) =




0 −mz my

mz 0 −mx

−my mx 0




(2.19)

The result of the matrix-vector-product ¯̄s(~m) ·~x = ~m×~x for any vector ~x. The matrix

¯̄L(~m) can then be written as:

¯̄L(~m) =




¯̄0 −¯̄s(~m)

¯̄s(~m) ¯̄0


 (2.20)

where ¯̄0 is a 3× 3 matrix of zeros. Therefore,

¯̄L(~m) · ~U(t, ~r) =



−~m× ~H(t, ~r)

~m× ~E(t, ~r)




For reasons that will become clear shortly, the matrix ¯̄A(ε, µ, ~m) = ¯̄α−1 · ¯̄L(~m) is

referred to as the flux matrix in the ~m direction. The flux matrix can be compactly
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written as:

¯̄A(ε, µ, ~m) =




¯̄0 −ε−1 · ¯̄s(~m)

µ−1 · ¯̄s(~m) ¯̄0


 (2.21)

2.6 The Similarity Transformation

The concept of “flux-splitting” is often used for developing “upwind” FV solutions to

hyperbolic systems [11, 9]. Although we will not define flux-splitting and upwinding

until Chapter 3, the foundational work required for introducing an upwind and flux-

split FVTD algorithm is presented in this section.

We make the assumption that the only variation in the solution is in the ~m ∈ {~mk}

direction. This would hold, for example, in the case of plane-wave propagation. Under

this assumption the conservative form of Maxwell’s Equations expanded in the basis

{~mk} reduces to a one-dimensional system of partial-differential-equations:

∂t ~U(t, ~r) + ¯̄A(ε, µ, ~m) · ∂m ~U(t, ~r) = ~0 (2.22)

Equation (2.22) shows that the matrix ¯̄A(ε, µ, ~m) is aptly referred to as the flux matrix:

if it is taken inside the spatial derivative we can interpret its product with ~U(t, ~r) as

the flux in the ~m direction. Not surprisingly, the flux-matrix is linear for the linear

Maxwell’s Equations. We now seek a direct solution to the one-dimensional system

(2.22). We know that if the system is hyperbolic, a solution is easily obtained by the

method of characteristics [11]. To prove that the system is hyperbolic it suffices to

show that the flux matrix is diagonalizable by means of a similarity transformation



2.6 The Similarity Transformation 18

with real eigenvalues [11]. Therefore we seek a transformation of the form:

¯̄A(ε, µ, ~m) = ¯̄P (ε, µ, ~m) · ¯̄Λ(ε, µ, ~m) · ¯̄P
−1

(ε, µ, ~m) (2.23)

where ¯̄P (ε, µ, ~m) is the 6 × 6 matrix of right eigenvectors, ¯̄P
−1

(ε, µ, ~m) is the matrix

of left eigenvectors and the diagonal matrix ¯̄Λ(ε, µ, ~m) contains the eigenvalues. The

matrices satisfying the transformation (2.23) are provided below. The diagonal matrix

of eigenvalues is:

¯̄Λ(ε, µ, ~m) = ¯̄Λ(ε, µ) = diag
(
0, 0, (εµ)−1/2, (εµ)−1/2, −(εµ)−1/2, −(εµ)−1/2

)

= diag (0, 0, c, c, −c, −c) = diag (Λ0,Λ1,Λ2,Λ3,Λ4,Λ5)

(2.24)

where c =
√
εµ−1 is the electromagnetic speed in the region with constant material

parameters ε and µ and where Λp denotes the pth eigenvalue. The eigenvector matrices

are:

¯̄P (ε, µ, ~m) =



mx 0 mxmzZ −mxmyZ −mxmzZ mxmyZ

my 0 mymzZ
(
m2
x +m2

y

)
Z −mymzZ − (m2

x +m2
z)Z

mz 0 −
(
m2
x +m2

y

)
Z −mymxZ

(
m2
x +m2

y

)
Z mymzZ

0 mx -my -mz -my -mz

0 my mx 0 mx 0

0 mz 0 mx 0 mx




(2.25)
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¯̄P
−1

(ε, µ, ~m) =

1

2




2mx 2my 2mz 0 0 0

0 0 0 2mx 2my 2mz

m−1
x mzY 0 −Y −my m−1

x (m2
x +m2

z) −m−1
x mymz

−m−1
x myY Y 0 −mz −m−1

x mymz m−1
x

(
m2
x +m2

y

)

−m−1
x mzY 0 Y −my m−1

x (m2
x +m2

z) −m−1
x mymz

m−1
x myY −Y 0 −mz −m−1

x mymz m−1
x

(
m2
x +m2

y

)




(2.26)

where Z =
√
µ/ε [Ω] is the impedance of the medium and Y = Z−1 [S] is the ad-

mittance. Clearly the eigenvalues of the similarity transformation are real and the

conservative form of Maxwell’s Equations is hyperbolic. We denote the six columns

of the matrix ¯̄P (ε, µ, ~m) by r̄p ∈ R6×1 p = 0, . . . , 5 and the rows of ¯̄P
−1

(ε, µ, ~m) by

¯̀
p ∈ R1×6 such that

¯̄P =

[
r̄0 r̄1 r̄2 r̄3 r̄4 r̄5

]
¯̄P
−1

=

[
¯̀T
0

¯̀T
1

¯̀T
2

¯̀T
3

¯̀T
4

¯̀T
5

]T
(2.27)

Consider ¯̄P
−1 · ¯̄A = ¯̄P

−1 · ¯̄P · ¯̄Λ · ¯̄P
−1

. Omitting the physical and spatial dependence

of the diagonalization procedure for brevity, we have




¯̀
0

¯̀
1

¯̀
2

¯̀
3

¯̀
4

¯̀
5




· ¯̄A = ¯̄Λ ·




¯̀
0

¯̀
1

¯̀
2

¯̀
3

¯̀
4

¯̀
5




=




Λ0
¯̀
0

Λ1
¯̀
1

Λ2
¯̀
2

Λ3
¯̀
3

Λ4
¯̀
4

Λ5
¯̀
5




(2.28)

Thus we see that due to the diagonal nature of ¯̄Λ the rows of ¯̄P
−1

are the left eigen-
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vectors of the flux matrix. In a similar manner, we consider the equality ¯̄A · ¯̄P =

¯̄P · ¯̄Λ · ¯̄P
−1 · ¯̄P leading to:

¯̄A ·
[
r̄0 r̄1 r̄2 r̄3 r̄4 r̄5

]
=

[
r̄0 r̄1 r̄2 r̄3 r̄4 r̄5

]
· ¯̄Λ

=

[
Λ0r̄0 Λ1r̄1 Λ2r̄2 Λ3r̄3 Λ4r̄4 Λ5r̄5

] (2.29)

demonstrating that the columns of ¯̄P are the right eigenvectors of the flux matrix.

2.7 The Characteristic Solution of Maxwell’s Equations

The system (2.22) can be solved by multiplying both sides by ¯̄P
−1

(ε, µ, ~m):

¯̄P
−1
∂t ~U(t, ~r) + ¯̄Λ · ¯̄P

−1 · ∂m ~U(t, ~r) =

∂t

(
¯̄P
−1 · ~U(t, ~r)

)
+ ¯̄Λ · ∂m

(
¯̄P
−1 · ~U(t, ~r)

)
=

∂t ~W(t, ~r) + ¯̄Λ · ∂m ~W(t, ~r) = ~0

(2.30)

The interchange of derivatives and multiplication by ¯̄P
−1

(ε, µ, ~m) is legitimized by the

assumption of constant material parameters in a neighbourhood of ~r. The quantity:

~W(t, ~r) , ¯̄P
−1 · ~U =

[
W0(t, ~r) W1(t, ~r) W2(t, ~r) W3(t, ~r) W4(t, ~r) W5(t, ~r)

]T

(2.31)

satisfies an uncoupled set of six partial differential equations and is referred to as

the characteristic vector of the conservative form of Maxwell’s Equations [11]. Each

component of the characteristic vector is referred to as a characteristic variable. In

terms of the eigenvectors of the previous section the pth characteristic variable can be
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written as:

Wp(t, ~r) = ¯̀
p · ~U(t, ~r) (2.32)

The last form of (2.30) is referred to as the system of characteristic equations consisting

of six scalar partial differential equations of the form:

∂tWp(t, ~r) + Λp∂mWp(t, ~r). (2.33)

Each of these equations is a one-dimensional advection equation in the coordinate ~m·~r.

The solution to this equation is easily obtained as:

Wp(t, ~r) =Wp(0, (~m · ~r)− Λpt) (2.34)

According to equation (2.34) the characteristic variables propagate unchanged along

the pth characteristic curve (~m ·~r)−Λpt = constant with velocity Λp. The fundamental

principle that, for hyperbolic systems, characteristic variables propagate unchanged

along characteristic curves will be used in the development of a stable FV solution to

Maxwell’s Equations in the next chapter.

2.8 Chapter Summary

In this chapter the analytic ground-work required to develop the FV solution to

Maxwell’s Equations has been laid out in some detail. Maxwell’s Equations were

presented; the medium was assumed to be simple, stationary and isotropic; the con-

servative form of Maxwell’s Equations was developed; and the characteristic solution

to Maxwell’s Equations was introduced for the case where the only field variation is
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along a single spatial dimension.



3

The Method of Lines FVTD

Discretization of Maxwell’s

Equations

“Young man, in mathematics you don’t understand things. You just get
used to them.” – John von Neumann in response to Felix T. Smith who
had said “I’m afraid I don’t understand the method of characteristics.”

In this chapter the method of lines FVTD discretization of the electromagnetic ini-

tial boundary-value problem (IBVP) in a computational domain V bounded by ∂V

is developed using an upwind, flux-split finite-volume discretization of the spatial op-

erators. Numerical approximation of the temporal derivative is discussed in Chapter

4. Furthermore, we assume that the computational domain V is either enclosed by

ideal conducting surfaces or that ∂V recedes to infinity. Methods for truncating the

computational domain are provided in Chapter 5.



3.1 Discretization of the Computational Domain 24

3.1 Discretization of the Computational Domain

To solve the IBVP in a computational domain V, the domain is partitioned into a set

{Vi} of NV finite-volumes, or cells, i = 1, . . . , NV each with an associated volume |Vi|

and boundary ∂Vi. The outer unit normal to Vi on ∂Vi is ~ni(~r), ~r ∈ ∂Vi. A fundamental

assumption of the partition {Vi} is that the physical constitutive parameters in each

Vi are constant: ε(~r) = εi, µ(~r) = µi and σ(~r) = σi, ∀ ~r ∈ Vi. Corresponding to

these constant physical parameters, the material matrices ¯̄α(~r) and ¯̄σ(~r) must also

be constant in the ith volume and are denoted as ¯̄αi and ¯̄σi. For a scattered-field

formulation the background matrices must also be constant in each Vi, and are denoted

¯̄αbi and ¯̄σbi

Beyond the assumption of constant material parameters for each cell, {Vi} can be

structured or unstructured and the cells can have arbitrary geometric order. In the

case of first-order polyhedral elements, the partition can consist of a mixture of any

first-order elements including hexahedrons, tetrahedrons and prisms.

For the remainder of this work we consider a partition consisting of first-order polyhe-

dral elements each with barycentre ~ri. Each polyhedral volume is bounded by a set of

Ki flat facets symbolized by ∂Vi,k, k = 1, . . . , Ki, each having a surface area |∂Vi,k| and

a constant outward unit-normal ~ni,k. The barycentres of each facet are symbolized by

~ri,k.
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3.2 The Volume-Surface Formulation of the Conservative Equations

According to the results of the previous chapter we can write the conservative form

of Maxwell’s Equations in terms of a set of vectors {~mk}, k = 1, . . . , K as in (2.17).

When sources and loss are present this equation becomes:

∂t ~U(t, ~r) +
K∑

k=1

(
¯̄A(ε, µ, ~mk) · ∂mk

~U(t, ~r)
)

= ¯̄α−1(~r) ·
(

¯̄σ(~r) · ~U(t, ~r) + ~S(t, ~r)
)

(3.1)

We consider this equation in a single first-order polyhedral cell Vi and let the basis

{~mk} be the set of outward unit normals to the cell facets {~ni,k}, k = 1, . . . , Ki. As

the material parameters ¯̄α(~r) and ¯̄σ(~r) are constants over Vi we define the abbreviated

notation ¯̄Ai,k , ¯̄A(εi, µi, ~ni,k). In this case the system of equations (3.1) becomes

∂t ~U(t, ~r) +

Ki∑

k=1

(
¯̄Ai,k · ∂ni,k

~U(t, ~r)
)

= ¯̄α−1
i ·

(
¯̄σi · ~U(t, ~r) + ~S(t, ~r)

)
, ~r ∈ Vi (3.2)

We denote the volumetric average of ~U and ~S over a finite-volume using a single

subscript in parentheses. In this way ~U (i)(t) denotes the volumetric average of the

solution over Vi. We define the cell-average residual ~R(i)(t) of equation (3.2) when

~r ∈ Vi as [10]:

~R(i)(t) , dt ~U (i)(t)

+
1

|Vi|

∫∫∫

Vi

Ki∑

k=1

(
¯̄Ai,k · ∂ni,k

~U(t, ~r)
)
dV − ¯̄α−1

i ·
(

¯̄σi · ~U (i)(t) + ~S(i)(t)
) (3.3)

where the partial derivative ∂t becomes an ordinary derivative dt operating on the

cell-average solution. Assuming sufficient differentiability of the solution, the volume

integral of the spatial derivatives of ~U(t, ~r) is converted to a surface integral by the

divergence theorem. While the result of this operation may not be obvious given the
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form (3.3), it can be easily shown by direct integration of (2.8) that it results in:

~R(i)(t) = dt ~U (i)(t) +
1

|Vi|

Ki∑

k=1

∫∫

∂Vi,k

¯̄Ai,k · ~U
o
(t, ~r)dS + ¯̄α−1

i ·
(

¯̄σi · ~U (i)(t)− ~S(i)(t)
)

(3.4)

where ~Uo
(t, ~r), ~r ∈ ∂Vi,k is the boundary limit of the solution. In the FVTD algorithm

we demand that the residual on each cell goes to zero resulting in the local system of

equations on each cell:

dt ~U (i)(t) =− 1

|Vi|

Ki∑

k=1

∫∫

∂Vi,k

¯̄Ai,k · ~U
o
(t, ~r)dS + ¯̄α−1

i ·
(

¯̄σi · ~U (i)(t) + ~S(i)(t)
)

(3.5)

Some comments regarding the local system of equations (3.5) are warranted and pertain

to the interpretation of the equation on Vi. In one regard, it is tempting to state that

this system of equations is exact in the sense that no approximations have been made

beyond the discretization of the computational domain. Therefore, if {Vi} models

V and its constitutive parameters exactly, Maxwell’s Equations in V are modeled

precisely by (3.5) [15]. On the other hand, the application of the divergence theorem

requires continuity constraints on the solution ~U(t, ~r) on Vi and its boundary. This is

somewhat bothersome as discontinuities in the fields result from discontinuities in the

constitutive parameters and therefore exist exactly at cell boundaries [23].

An alternative interpretation of (3.5) can be made by assuming that we have a local

solution
(
~U(t, ~r)

)
i

(not to be confused with the volumetric average) in each Vi and

that this solution is defined in Vi and on its boundary ∂Vi [10]. This reasoning permits

two solutions on the boundary ∂Vi,k of each first-order polyhedral element: one from

Vi and one from Vj with ∂Vj,k′ = ∂Vi,k. The global solution can only be recovered by
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ensuring the appropriate relationship between these two solutions, that is, by properly

determining ~Uo
(t, ~r) on ∂Vi,k that numerically satisfies Maxwell’s Equations.

3.3 Godunov’s Method for Linear Systems

There are many ways to globally solve (3.5). The method of Godunov, originally

proposed for solving Euler’s non-linear gas dynamics equations has “revolutionized

the field of computational fluid dynamics, by overcoming many of the difficulties that

had plagued earlier numerical methods for compressible flow” [11].

The basic idea behind Godunov’s method is to associate with each Vi the cell-average of

the solution. That is, for the numerical solution of (3.7) we let ~U (i)(t) be the unknown

quantities. With this in mind Godunov’s method for solving the conservative form of

Maxwell’s Equations can be summarized by a three-step procedure referred to as the

Reconstruct, Evolve, Average, or REA algorithm:

1. Reconstruct the global solution ~U(t, ~r), ~r ∈ V from the cell-average values ~U (i)(t).

2. Evolve the global solution ~U(t, ~r) over a time interval ∆t by evaluating the
boundary flux integrals and integrating the time derivative.

3. Average the global solution ~U(t, ~r) to obtain the new local volumetric average
~U (i)(t+ ∆t) in each cell.

In this chapter we are concerned with Step 1 (the reconstruction step), that is, how to

compute ~Uo

i,k(t, ~r) = ~Uo
(t, ~r) for ~r ∈ ∂Vi,k. We will have reason to consistently use the

subscript pair notation ~U i,k(t, ~r), for any quantity, to indicate that ~r ∈ ∂Vi,k. Before

solving this problem, we must choose the flavour of the FV method to be used, as
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there are many [11]. As mentioned briefly in Chapter 2, we use a flux-split, upwind

formulation. At this point it important to note the following:

• Note: The volumetric averages ~U (i)(t) and ~S(i)(t) will only be computed (known)

to some desired spatial and temporal accuracy. Henceforth, we assume that these

quantities are numerical approximations to the true values.

For notational simplicity in what follows we symbolically denote the flux of the solution

~Fo

i,k over the partial boundary ∂Vi,k as:

~Fo

i,k(t, ~r) = ~Fo

i,k(εi, µi, ~ni,k, ~U
o
(t, ~r)) , ¯̄Ai,k · ~U

o
(t, ~r), ~r ∈ ∂Vi,k (3.6)

such that (3.5) can be written as:

dt ~U (i)(t) =− 1

|Vi|

Ki∑

k=1

∫∫

∂Vi,k

~Fo

i,k(t, ~r) dS + ¯̄α−1
i ·

(
¯̄σi · ~U (i)(t) + ~S(i)(t)

)
, ~r ∈ ∂Vi,k

(3.7)

• Note: According to Godunov’s method, the flux ~Fo

i,k(t, ~r) is to be reconstructed

from the approximate cell-averages ~U (i)(t). Due to this assumption, and upwind-

ing approximations made in the next section, it is common to refer to this flux

as a numerical flux function [11].

Given a reconstruction of the boundary flux, the surface integrals can be evaluated to

the desired precision using numerical quadrature reducing (3.7) to a function of time

only.
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3.4 Vector Flux Splitting and Upwinding

A highly-versatile Finite-Volume method can be formulated by using the so-called flux-

split, upwind schemes originally introduced by Van Leer [24], and now ubiquitous in

Finite-Volume solutions for hyperbolic problems [11]. In these schemes the eigenmatrix

(2.24) is decomposed into two matrices containing the positive and negative eigenvalues

respectively

¯̄Λ
±

(ε, µ) =
1

2

(
¯̄Λ(ε, µ)± diag(|Λ0|, |Λ1|, |Λ2|, |Λ3|, |Λ4|, |Λ5|)

)
(3.8)

where the eigenvalues Λp are defined according to (2.24). The flux matrix is then split

into a matrix ¯̄A
+

i,k and a matrix ¯̄A
−
i,k

¯̄A
±
i,k = ¯̄P (εi, µi, ~ni,k) · ¯̄Λ

±
(εi, µi) · ¯̄P

−1
(εi, µi, ~ni,k). (3.9)

In Vi, these matrices are explicitly:

¯̄A
±
i,k =

1

2



∓ci ¯̄s2

i,k −ε−1
i

¯̄si,k

µ−1
i

¯̄si,k ∓ci ¯̄s2
i,k


 (3.10)

where ci =
√
εiµi

−1 is the velocity of field propagation in the volume Vi and the

notation ¯̄si,k = ¯̄s(~ni,k) has been used. From the definitions above it is easily verified

that:

¯̄Ai,k = ¯̄A
+

i,k + ¯̄A
−
i,k

¯̄A
+

i,k = − ¯̄A
−
i,−k

(3.11)

where the subscript −k is used to denote reversal of the normal ~ni,k.
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To see the benefits of this flux-matrix splitting, we will recall the characteristic solution

(2.30) developed for the one-dimensional problem (2.22). While the assumption of

a one-dimensional propagation does not, in general, hold for the three-dimensional

case, we can assume that the fields in Vi can be written in terms of a plane-wave

decomposition in each of the ~ni,k directions. Each of these plane waves would then

satisfy a one-dimensional system of the form (2.22) and the following derivations will

hold. A rigorous analysis of this plane-wave assumption is beyond the scope of this

thesis.

With the above in mind we can define characteristics propagating in the ±~ni,k direction

as:

~W±
i,k(t, ~r) ,

1

±ci
¯̄Λ
±

(εi, µi) · ¯̄P
−1

(εi, µi, ~ni,k) · ~U(t, ~r). (3.12)

where the subscripts i, k on ~W±
i,k(t, ~r) associates the characteristics with ~ni,k (and does

not necessarily imply evaluation on ∂Vi,k). Introducing the notation ¯̄Λ
±
i = ¯̄Λ

±
(εi, µi)

and ¯̄P i,k = ¯̄P (εi, µi, ~ni,k), we have:

±ci ¯̄P i,k · ~W
±
i,k(t, ~r) =

±ci
±ci

¯̄P i,k · ¯̄Λ
±
i · ¯̄P

−1

i,k · U(t, ~r)

= ¯̄A
±
i,k · ~U(t, ~r)

(3.13)

implying that the positive and negative flux-matrix ¯̄A
±
i,k are also associated with prop-

agation in the ±~ni,k direction. We consider, therefore, two boundary limits of the

solution: ~U∗i,k(t, ~r) is the boundary limit of the solution from inside Vi and ~U∗∗i,k(t, ~r) is

the boundary limit of the solution outside ∂Vi,k [9] as shown in Figure 3.1. The flux

defined in equation (3.7) is a linear function of ~Uo

i,k(t, ~r) and we can decompose the
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Cell-Interface

,

~U *

∂V

i k,

= ∂Vj k,i k,

= ~U **
,

j k,

~U **
i k,=~U *

,
j k,

Vi
Vj

Fig. 3.1: Boundary limits of the solution at a volumetric cell interface (depicted in two di-
mensions): For Vi the interior solution is transported into Vj while the exterior
solution is transported into Vi over the kth facet ∂Vi,k = ∂Vj,k′ .

flux according to the decomposition of the flux-matrix:

~Fo

i,k(t, ~r) = ¯̄A
+

i,k · ~U
∗
i,k(t, ~r) + ¯̄A

−
i,k · ~U

∗∗
i,k(t, ~r)

= ~F∗i,k(t, ~r) + ~F∗∗i,k(t, ~r)
(3.14)

Physically, the decomposition (3.14) says that the flux of the solution flowing out of

Vi is to be computed from knowledge of the solution inside Vi. Conversely, the flux of

the solution flowing into Vi should be computed from knowledge of the solution outside

Vi. Intuitively, such a decomposition makes use of causality, and is commonly referred

to as upwinding. When upwinding is used in time-marching schemes, it can be shown

that the resulting numerical scheme expresses the solution at the next time-step as a

convex combination of upwind cell-averages at the current time-step and, provided that

a limit is imposed on the time-step increment, the scheme is stable [11]. Determining
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the boundary states ~U∗i,k(t, ~r) and ~U∗∗i,k(t, ~r) that satisfy Maxwell’s Equations are the

subject of the following section.

3.5 Variable Coefficient Fluxes and Discontinuous Constitutive

Parameters

For the numerical solution of Maxwell’s Equations using the Finite-Volume method

we are considering a partition of the computational domain V in which each cell Vi

has constant constitutive parameters. This implies that, globally, the flux matrix

¯̄A(ε(~r), µ(~r), ~m) is both a function of position and discontinuous across cell interfaces

corresponding to a jump in the constitutive parameters. Even in the absence of a

material jump across a cell boundary, we are required to enforce the appropriate elec-

tromagnetic boundary conditions to ensure accuracy of the numerical scheme. For

example, across a facet ∂Vi,k between two finite-volumes having the same physical

parameters, the solution should be continuous according to standard electromagnetic

boundary conditions, i.e. ~U∗i,k(t, ~r) = ~U∗∗i,k(t, ~r) = ~Uo

i,k(t, ~r). In practice, however, we

will only have numerical approximations to these boundary limits and continuity will

not hold due to numerical error. Fortunately, modifying the upwind, flux-split scheme

to account for electromagnetic boundary conditions is straight-forward.

Given a facet between two cells, as shown in Figure 3.2, we consider the one-dimensional

reconstruction problem with coordinate n in the direction of the normal ~ni,k. We as-

sume that we can reconstruct the fields ~U+
(t, ~r), ~r ∈ Vi and ~U−(t, ~r), ~r ∈ Vj from

the cell average values. The actual mechanism for performing this reconstruction is

provided in Section 3.7. It is then possible to use characteristic propagation along

the characteristic curves to determine ~U∗i,k(t, ~r) and ~U∗∗i,k(t, ~r) from ~U±(t, ~r) where we
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t

n~U~U

Cell-Interface

Vi Vj

+ −
∂Vi k,

~U * ~U **

~W+
=~U +

( ) ~W+ ~U *
( ) ~W =~U( ) ~W ~U **

( )
− − −

Fig. 3.2: Characteristic reconstruction of the boundary limits at a cell interface. The char-
acteristic vectors propagate unchanged in space and time along the characteristic
curves (shown as arrows)

momentarily assume that cell sizes are small enough that the propagation time can

be neglected. Using the characteristics in the ±~ni,k direction defined in (3.12), the

following relationships hold along the characteristic curves:

1

ci
¯̄Λ

+

i · ¯̄P
−1

i,k · ~U
+

=
1

ci
¯̄Λ

+

i · ¯̄P
−1

i,k · ~U
∗
i,k

1

−cj
¯̄Λ
−
j · ¯̄P

−1

j,−k′ · ~U
−

=
1

−cj
¯̄Λ
−
j · ¯̄P

−1

j,−k′ · ~U
∗∗
i,k

(3.15)

where the notation ¯̄P
−1

j,−k′ is used to note that this matrix is being constructed using the

negative boundary normal from the perspective of Vj, and where the explicit time and

spatial dependence have been dropped for brevity. Provided that the electromagnetic

boundary condition relating ~U∗i,k and ~U∗∗i,k are known, the system of equations (3.15)

can be solved for, say, ~U∗i,k in terms of ~U±(t, ~r) as will be illustrated shortly for the most
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common electromagnetic boundary conditions. These are simplified by multiplying the

first set of equations in (3.15) by ci
¯̄P i,k and the second set by −cj ¯̄P j,−k′ analogous to

(3.12):

¯̄A
+

i,k
~U+

= ¯̄A
+

i,k
~U∗i,k

¯̄A
+

j,k′
~U− = ¯̄A

+

j,k′
~U∗∗i,k

(3.16)

where, in the second set of equations, conversion from ¯̄A
−
j,−k′ to ¯̄A

+

j,k′ is accomplished

by applying the second identity in (3.11) to both sides of the equality and canceling

the negative signs.

If we again consider Figure 3.2 we can note that if the states ~U± are reconstructed

infinitesimally near to the interface at time t, then the characteristic propagation time

is infinitesimally small but the relationships (3.16) still hold. This implies that we can

reconstruct the boundary states from the cell averages of the solution at time t by spa-

tial reconstruction alone. Henceforth, therefore, we are interested in the reconstruction

of ~U±i,k(t, ~r) = ~U±(t, ~r) with ~r ∈ ∂Vi,k such that (3.16) becomes:

¯̄A
+

i,k
~U+

i,k = ¯̄A
+

i,k
~U∗i,k

¯̄A
+

j,k′
~U−i,k = ¯̄A

+

j,k′
~U∗∗i,k

(3.17)

3.6 Flux Reconstruction at Material Interfaces

The general numerical boundary conditions (3.16) are the starting point for recon-

structing interface states. The following symmetry is useful on the facet ∂Vi,k:

~U−i,k(t, ~r) = ~U+

j,k′(t, ~r) = ~U+

j,−k(t, ~r) (3.18)
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We omit the subscript notation and assume we are concerned with the reconstruction at

∂Vi,k = ∂Vj,k′ . Algebraic manipulations and the use of (3.18) show that the boundary

relationships (3.16) are equivalent to:

¯̄s2 · (~E ∗ − ~E ∗∗) + ¯̄s · (Zi ~H
∗

+ Zj ~H
∗∗

) = ¯̄s2 · (~E + − ~E −) + ¯̄s · (Zi ~H
+

+ Zj ~H
−

)

¯̄s2 · ( ~H∗ − ~H∗∗)− ¯̄s · (Yj ~E
∗∗

+ Yi~E
∗
) = ¯̄s2 · ( ~H+ − ~H−)− ¯̄s · (Yj ~E

−
+ Yi~E

+
).

(3.19)

where the abbreviated notation ¯̄s(~ni,k) = ¯̄s has been used. These simplified forms are

quite handy for deriving specific boundary conditions and will be used in what follows.

Before proceeding, we note that the flux integration in equation (3.7) only involves

tangential field components due to the definition of the flux matrix.

3.6.1 Flux Reconstruction at Inhomogeneous Dielectrics

For dielectric discontinuities, the boundary conditions for Maxwell’s equations require

that the tangential field components are continuous across the discontinuity. In terms

of the operator ¯̄s(~ni,k) at the surface ∂Vi,k these conditions can be written as:

¯̄s · ~E ∗ = ¯̄s · ~E ∗∗

¯̄s · ~H∗ = ¯̄s · ~H∗∗
(3.20)

Substituting these constraints into the two equations (3.19) gives:

¯̄s · ~H∗(Zi + Zj) = ¯̄s2 · (~E + − ~E −) + ¯̄s · (Zi ~H
+

+ Zj ~H
−

)

¯̄s · ~E ∗(Yi + Yj) = −¯̄s2 · ( ~H+ − ~H−) + ¯̄s · (Yj ~E
−

+ Yi~E
+

)

(3.21)
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which can be re-written as:

− ¯̄s · ~H∗ = (Zi + Zj)
−1
(
−¯̄s2 · ~E + − ¯̄s · Zi ~H

+
+ ¯̄s2 · ~E − − ¯̄s · Zj ~H

−)

¯̄s · ~E ∗ = (Yi + Yj)
−1
(
−¯̄s2 · ~H+

+ ¯̄s · Yi~E
+

+ ¯̄s2 · ~H− + ¯̄s · Yj ~E
−) (3.22)

This system can be written in terms of the split flux-matrices as



−¯̄s · ~H∗

¯̄s · ~E∗


 = ¯̄αi ·




2Zi

Zi+Zj

¯̄I ¯̄0

¯̄0 2Yi
Yi+Yj

¯̄I


 · 1

2



−ci ¯̄s2 −ε−1

i
¯̄s

µ−1
i

¯̄s −ci ¯̄s2


 ·



~E+

~H+


+

¯̄αj ·




2Zj

Zi+Zj

¯̄I ¯̄0

¯̄0
2Yj
Yi+Yj

¯̄I


 · 1

2



cj ¯̄s

2 −ε−1
j

¯̄s

µ−1
j

¯̄s cj ¯̄s
2


 ·



~E−

~H−




(3.23)

or in a compact form:

¯̄Li,k · ~U
∗
i,k = ¯̄αi · ¯̄T i,j · ¯̄A

+

i,k · ~U
+

i,k − ¯̄αj · ¯̄T j,i · ¯̄A
+

j,k′ · ~U
+

j,k′
(3.24)

where ¯̄T i,k is the facet transmission matrix:

¯̄T i,j =




2Zi

Zi+Zj

¯̄I ¯̄0

¯̄0 2Yi
Yi+Yj

¯̄I


 (3.25)

Finally, the evaluation of the upwind and split flux, equivalent to (3.6) at an inhomo-

geneous dielectric (noted by the subscript ID) is given by

~Fo

i,k|ID = ¯̄Ai,k · ~U
o

i,k = ¯̄α−1
i · ¯̄Li,k · ~U

o

i,k

= ¯̄T i,j · ¯̄A
+

i,k · ~U
+

i,k − ¯̄α−1
i · ¯̄αj · ¯̄T j,i · ¯̄A

+

j,k′ · ~U
+

j,k′

(3.26)

As a final comment we note that in a scattered-field formulation, both the total-

and scattered-fields satisfy the same dielectric boundary conditions so the final form
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equations (3.26) also holds for scattering problems.

3.6.2 Flux Reconstruction at Homogeneous Dielectrics

When the material parameters across the facet ∂Vi,k are homogeneous dielectrics (HD),

the transmission matrices in (3.26) become unity and the constitutive matrices are

equal reducing the boundary conditions to:

~Fo

i,k|HD = ¯̄A
+

i,k · ~U
+

i,k − ¯̄A
+

j,k′ · ~U
+

j,k′ = ¯̄A
+

i,k · ~U
+

i,k + ¯̄A
−
i,k · ~U

+

j,k′
(3.27)

where the second identity in (3.11) has been used in converting − ¯̄A
+

j,k′ to ¯̄A
−
i,k.

3.6.3 Total-Field Flux Reconstruction at PEC and PMC Boundaries

In the case where finite volume Vi is bounded on a facet k by a perfect electric conductor

(PEC), the appropriate boundary condition can be obtained by noting that if the

facet ∂Vi,k is PEC, then from the perspective of Vi the fields ~U+

j,k′ are zero, as is the

impedance Zj. This leads to the expression:

~Fo

i,k|PEC = ¯̄T
PEC

i · ¯̄A
+

i,k · ~U
+

i,k, with ¯̄T
PEC

i = lim
Zj 7→0

¯̄T i,j =




2 ¯̄I ¯̄0

¯̄0 ¯̄0


 (3.28)

If, instead of a PEC boundary, volume Vi is bounded on a facet k by a perfect magnetic

conductor (PMC), we can obtain the appropriate boundary conditions by noting that
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that from the perspective of Vi the fields ~U+

j,k′ are zero as is the admittance Yj:

~Fo

i,k|PMC = ¯̄T
PMC

i · ¯̄A
+

i,k · ~U
+

i,k, with ¯̄T
PMC

i = lim
Yj 7→0

¯̄T i,j =




¯̄0 ¯̄0

¯̄0 2 ¯̄I


 (3.29)

Both the PEC and PMC flux-reconstructions above can also be used to incorportate

thin PEC/PMC screens seperating volumetric cells.

3.6.4 Scattered-Field Flux Reconstruction at PEC and PMC boundaries

A scattered-field reconstruction equation at a PEC or PMC facet can be developed by

considering the scattered-field equivalent of the first set of equations in (3.16) which

can be written as:

¯̄s2 · ~E ∗,scat + ¯̄s · Zi ~H
∗,scat

= ¯̄s2 · ~E +,scat
+ ¯̄s · Zi ~H

+,scat

¯̄s2 · ~H∗,scat − ¯̄s · Yi~E
∗,scat

= ¯̄s2 · ~H+,scat − ¯̄s · Yi~E
+,scat

(3.30)

At a PEC facet under a scattered field formulation we have the relationship:

¯̄s · ~E ∗,scat = −¯̄s · ~E ∗,inc (3.31)

where the boundary limit of the incident field is assumed to be a known function for

all time and space. Substituting this equation into the first of equations (3.30) allows

us to solve for the boundary state −¯̄s · ~H∗,scat. We obtain



−¯̄s · ~H∗,scat

¯̄s · ~E ∗,scat


 =



−Yi ¯̄s2 · ~E ∗,inc − Yi ¯̄s2 · ~E +,scat − ¯̄s · ~H+,scat

−¯̄s · ~E ∗,inc


 (3.32)
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which can be written concisely as:



−¯̄s · ~H∗,scati,k

¯̄s · ~E ∗,scati,k


 = ¯̄αi · ¯̄T

PEC

i · ¯̄A
+

i,k · ~U
+,scat

i,k + ¯̄αi · 2 ¯̄A
−
i,k ·



−~E ∗,inci,k

0


 (3.33)

such that the flux becomes

~Fo,scat

i,k|PEC = ¯̄T
PEC

i · ¯̄A
+

i,k · ~U
+,scat

i,k − 2 ¯̄A
−
i,k ·



~E ∗,inci,k

0


 (3.34)

For a PMC boundary condition under a scattered-field formulation we have the con-

dition that

¯̄s · ~H ∗,scat = −¯̄s · ~H ∗,inc (3.35)

Substituting this condition into the second set of equations in (3.30) and following a

procedure analogous to the one for PEC facets above we arrive at the scattered-field

PMC flux reconstruction equations

~Fo,scat

i,k|PMC = ¯̄T
PMC

i · ¯̄A
+

i,k · ~U
+,scat

i,k − 2 ¯̄A
−
i,k ·




0

~H∗,inci,k


 (3.36)

where again the incident magnetic field is assumed to be a known function.

3.7 Spatial Reconstruction Schemes

The method of lines FVTD formulation of Maxwell’s Equations is not complete without

detailing how ~U+

i,k and ~U−i,k should be reconstructed from the cell averages. Depending
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on the desired spatial accuracy, different reconstruction schemes can be developed. In

what follows we will assume that volume Vj bounds Vi on facet ∂Vi,k = ∂Vj,k′

A small comment regarding terminology should be made. In approximation theory,

we state that we have an nth-order approximation to a function if the approximation

contains the first n terms of the functions’ Taylor’s Expansion. This is in contrast to

the order of accuracy of a numerical method, where we say that a numerical method

is accurate to order n if the error terms are order n. Herein we are concerned only

with the order of accuracy of the FVTD method given a reconstruction scheme, and

references to “order” should be understood in this context.

Before discussing the reconstruction schemes, we present some theory. Consider the

volumetric average of a spatially varying function f(~r) over Vi, to be used in a second-

order accurate algorithm, and represented by its Taylor’s expansion about the barycen-

tre ~ri of Vi:

f(i) =
1

|Vi|

∫∫∫

Vi

f(~r)dV

=
1

|Vi|

∫∫∫

Vi

(
f(~ri) + (~r − ~ri) · (∇f(~r))|~r=~ri +O(|∆R2|)

)
dV

= f(~ri) +O(|∆R|2)

(3.37)

where ∆R = |~r − ~ri| such that O(∆R) can be interpreted as being on the order of

cell-size. This equality holds because

~ri ,
1

|Vi|

∫∫∫

Vi

~rdV

From (3.37), we can conclude that any volume (surface) average quantity is a second-

order accurate approximation to the quantity at the volume (surface) barycentre. As
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a corollary we also have:

∫∫∫

Vi

f(~r)dV = |Vi|f(i) = |Vi|f(~ri) +O(|∆R|2) (3.38)

providing a method for evaluating volume (surface) integrals to second-order using

only the value at the barycentre of the volume (surface).

3.7.1 First-Order Spatial Reconstruction

The simplest form of spatial reconstruction available for computing the boundary val-

ues of the fields from the cell-averages is to make the first-order assumption that

~U+

i,k(t, ~r), is equal to the barycentric value ~U(t, ~ri). From (3.37) a first-order recon-

struction scheme can be written as:

~U+

i,k(t, ~r) = ~U (i)(t) +O(∆R) and ~U−i,k(t, ~r) = ~U (j)(t) +O(∆R) (3.39)

where the reconstruction on ∂Vi,k is independent of position. If we reconstruct the

solution at the barycentre ~ri,k of the facet ∂Vi,k to first order, the flux integral in (3.7)

can be evaluated using the surface equivalent of (3.38) to maintain first-order accuracy.

In practice, this type of reconstruction suffers from unacceptable numerical dissipation

and a higher-order reconstruction must be obtained [11].

3.7.2 Second-Order Spatial Reconstruction: MUSCL

The Monotone Upwind Scheme for Conservation Laws or MUSCL uses the flux-split,

upwind formulation in conjunction with a second-order boundary state reconstruction.

The MUSCL scheme was first proposed by Van Leer [25] and is second-order accurate



3.7 Spatial Reconstruction Schemes 42

in space. As a consequence of (3.38), the integral of the flux over the facet ∂Vi,k can

be reconstructed by multiplying the flux at the barycentre ~ri,k by the area |∂Vi,k| of

the facet. That is:

∫∫

∂Vi,k

~Fo

i,k(t, ~r) = |∂Vi,k| ~F
o

i,k(t, ~ri,k) +O(∆R2) (3.40)

Therefore, for second-order accuracy in the flux integral, we require second-order ac-

curacy of the flux at the barycentre of the facet. We consider a single component of

~U+

i,k(t, ~r), say the x-component of the electric field Ex(t, ~r), at the facet barycentre ~ri,k

of the facet ∂Vi,k. Writing this facet-centered component as a Taylor’s series expanded

about the volumetric barycentre ~ri of Vi gives:

Ex(t, ~ri,k) =Ex(t, ~ri) + (~ri,k − ~ri) · ∇Ex(t, ~ri) +O(|∆R|2) (3.41)

From (3.37), we can substitute the cell-average Ex(i)(t) into the above expansion while

maintaining the desired accuracy:

E+
x (t, ~ri,k) =Ex(i)(t) + (~ri,k − ~ri) · ∇Ex(t, ~ri) +O(|∆R|2) (3.42)

and so, we require a method for evaluating the gradient of the field at the barycenter of

a volume to first-order accuracy; the gradient is effectively multiplied by ∆R resulting

in second-order accuracy overall. From the results of (3.37) and an application of the

divergence theorem, we have the following second-order relationships:

∇Ex(t, ~ri) =
1

|Vi|

∫∫∫

Vi

∇Ex(t, ~r)dV +O(|∆R|2)

=
1

|Vi|

Ki∑

k=1

∫∫

∂Vi,k

Ex(t, ~r)~ni,kdS +O(|∆R|2)

(3.43)
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Vi

Fig. 3.3: Computation of the MUSCL gradient for volume Vi depicted as a two-dimensional
volume. The facet-centroid fields (square boxes) are computed as a weighted average
of the solutions at the volume centroids (circular boxes) across each facet.

It follows from (3.40) that

∇Ex(t, ~ri) =
1

|Vi|

Ki∑

k=1

|∂Vi,k|Ex(t, ~ri,k)~ni,k +O(|∆R|2) (3.44)

providing an explicit equation for the gradient. The only unknowns in the right-hand-

side of (3.44) are the facet-centroid values Ex(t, ~ri,k), the same quantities that we are

seeking in order to evaluate (3.40)! The major difference, however, is that we only

require the gradient to first order. Therefore, we seek an initial first-order estimate

to the facet-centroid values Ex(t, ~ri,k) which can be obtained by a simple weighted

average:

Ex(t, ~ri,k) =
dj,k′Ex(t, ~ri) + di,kEx(t, ~rj)

dj,k′ + di,k
+O(|∆R|) (3.45)
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where di,k = |~ri,k−~ri|. Using these values to compute (3.44) computes the gradient with

second-order accuracy, which in turn provides second-order accurate reconstructed

facet-centre values. The computation of the gradient is shown pictorially in Figure 3.3

3.7.3 Higher-Order Spatial Reconstruction

It is possible to develop higher-order schemes for spatially reconstructing the solution

from each side of a cell boundary. The Essentially Non-Oscillatory (ENO)-based high-

order polynomial reconstruction scheme presented in [26] and the so-called Weighted-

ENO (WENO) schemes [20] are two such methods. By using high-order reconstruction

we can integrate the surface flux to the desired precision by using an appropriately

selected numerical quadrature rule. While mentioned briefly for completeness, these

schemes are beyond the scope of this work.

3.7.4 The Spatial Stencil of an Element

Corresponding to the selected spatial reconstruction scheme, it is apparent that the

flux-integration on Vi at time t is dependent on the solution of elements surrounding

Vi as shown in Figure 3.4. We refer to the collection of all elements contributing to the

flux-integration of Vi as the stencil for Vi. In the case of first-order flux-reconstruction,

the integration on Vi is only dependent on the immediate neighbours. In MUSCL

reconstruction, the flux integration is dependent on the reconstructed solution in Vi

and each of its neighbours, but the gradient computation extends the stencil to the

neighbours of neighbours. For higher-order flux-reconstruction schemes, this trend

continues, requiring an increasingly broader stencil in the vicinity of Vi. The flux-

reconstruction stencils are important when considering the local-time-stepping scheme
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(a)

Vi Vi

(b)

Fig. 3.4: Spatial reconstruction stencils on an element Vi. The first-order stencil (left) re-
quires knowledge of the solution in neighbouring cells. The MUSCL stencil (right)
requires knowledge of both the solution and its gradient in neighbouring cells. The
gradient in a neighbour requires the neighbour’s neighbours.

discussed in Chapter 4, as well as the parallelization of the algorithm presented in

Chapter 10.

3.8 The Global, Semi-Discrete, FVTD System and Spatial

Computational Complexity

From the formulation presented in the preceding sections of this chapter we can now

formulate a global, semi-discrete system for the FVTD solution to Maxwell’s Equa-

tions. We associate with each cell Vi the volumetric average solution ~U (i)(t) which

can be written globally as a vector ~U(t) of length 6NV where NV is the number of
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cells. Similarly we introduce the global source vector ~S. Then, abstractly, the global

semi-discrete system can be described as

dt ~U(t) = −F ·R · ~U(t) + Σ · ~U(t) + ~S(t) (3.46)

The sparse global matrix F is understood to account for the flux integration and

operates on the boundary states obtained by operating with the sparse reconstruction

matrix R on the cell-averages. The diagonal matrix Σ accounts for the conductive

losses.

The memory and computational complexity of this system at a single time-step can

be summarized for a computational domain consisting of NV volumes as follows:

• Assuming we are storing the geometric configuration of the mesh, each element

can be represented by a constant amount of memory and the mesh storage re-

quires O(NV ) memory.

• For each Vi, spatial reconstruction requires knowledge of the geometric properties

of a constant number of neighbouring cells. Therefore the memory storage for the

reconstruction matrix R and the computational complexity for evaluating the

reconstructed states is O(NV ) (as the number of facets in a volumetric partition

scales with the number of volumes). The leading constant grows with the order of

the spatial reconstruction scheme in two ways, first the reconstruction is required

at a larger number of points, and second the reconstruction at each point is

dependent on a greater number of neighbouring elements.

• For each Vi, flux integration requires knowledge of the geometric properties of

Vi itself and memory scales as O(NV ). Evaluation of the flux integral, given the

reconstructed states, requires a constant amount of time on each cell and the
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complexity scales as O(NV ).

• At time t, O(NV ) memory is required to store the solution. Any conductive loss

terms can be computed directly from the solution in Vi.

From the above summary it is clear that the semi-discrete scheme is O(NV ) in both

time- and memory. It should also be clear that provided the flux and reconstruction

matrices are stored in memory, the system (3.46) no longer requires knowledge of

the mesh. It is not, however, desirable to remove the mesh from memory – post-

processing, visualization and parallelization strategies are highly mesh-dependent. In

practice, we choose not to store the flux- and reconstruction-matrices as, for large

problems involving millions of volumes, the additional storage of both the mesh and

the matrices can become prohibitive. Instead, each block of 6 rows in (3.46) can

be evaluated by performing the reconstruction and flux integration from scratch in

constant time at each time-step.

3.9 Chapter Summary

In this chapter an upwind, flux-split, semi-discrete (method of lines) formulation of

FVTD for Maxwell’s Equations has been presented including spatial reconstruction

schemes and flux integration that accounts for electromagnetic boundary conditions.

To complete the description of the FVTD algorithm for computing approximate so-

lutions to field problems it remains to integrate the temporal derivative and truncate

the computational domain. Solutions to these problems are the subject of Chapters 4

and 5 respectively.
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Time-Integration

I want to go ahead of Father Time with a scythe of my own. – H.G. Wells

The development presented thus far constitutes a semi-discrete numerical scheme for

solving Maxwell’s Equations using the FVTD method. It remains to numerically

integrate the resulting system of ordinary differential equations (3.46) (repeated here

for convenience)

dt ~U(t) = − ~F(~U(t)) + Σ · ~U(t) + ~S(t) (4.1)

where we are using the abbreviated notation ~F(~U(t)) , F ·R·~U(t). Herein we consider

only explicit time-integration schemes as, for hyperbolic systems, they are generally

more efficient than implicit methods [11]. In this chapter we provide the details for

select global explicit time-marching algorithms. We also provide the details of a local

time-stepping (LTS) strategy that exploits local stability conditions on unstructured
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grids. The LTS scheme adopted is that of Fumeaux et. al. [15], [13]. Details of

the LTS scheme are provided such that additional FVTD features, developed in the

following chapters, can be formulated within the LTS framework.

4.1 Global Time-Stepping Schemes

A global time-stepping scheme maintains synchronization of the time-evolving solution

on each element: that is, the solution in each element is computed for the same instant

of time. Depending on the desired order of accuracy for approximating the time-

derivative in (4.1) above, different time-marching schemes can be formulated. The

superscript notation n is reserved for function evaluation at time t = n∆t for integer

values n and some global time-step ∆t. For the sake of brevity we will derive the update

equations without source terms, as in both a total- and scattered-field formulation, the

sources are assumed to be known over the computational domain for all time.

4.1.1 Explicit Forward-Euler Time-Integration

The simplest explicit scheme is the first-order, Forward-Euler time-integration scheme

with global time-step ∆t. When loss is present, a backward difference of the loss term

is required for numerical stability as discussed below. The first-order time-integration

can then be written as

~Un+1
= ~Un −∆t ~F(~Un

) + ∆tΣ · ~Un+1
+O(|∆t|2) (4.2)
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which can be simplified to

Forward Euler : ~Un+1
=
(
I −∆tΣ

)−1 ·
(
~Un −∆tF(~Un

)
)

+O(|∆t|2) (4.3)

where I is the global 6NV × 6NV identity matrix and where the matrix to be inverted

is diagonal. Evaluation of the conductive terms on the right-hand-side of (4.2) at

time n+ 1 ensures numerical stability. To elucidate this point we consider the scheme

without conductive losses:

~Un+1
= ~Un −∆tF(~Un

) +O(|∆t|2) (4.4)

It can be shown that this system is stable if the time-step-scaled flux-reconstruction

matrix has eigenvalues less than unity [27]. We will assume this to be the case but

will also allow the eigenvalues to be infinitesimally close to one. Keeping in mind that

the entries of the matrix Σ are, by definition, negative (see the definition (2.10) of

the conduction matrix ¯̄σ(~r)), the effect of the loss approximation at n+ 1 divides the

diagonal of the system (4.4) by a number larger than zero, ensuring that the eigenvalues

remain below unity. Consequently, if the loss-free system (4.4) is stable, so is (4.3).

4.1.2 Two-Step Explicit Predictor Corrector Time-Integration

A second-order-accurate-in-time Predictor-Corrector scheme can be constructed by

first computing the solution at an intermediate time-step n + 1/2 using the Forward-

Euler scheme and then using this estimate as a correction to a full step over an interval

of ∆t. The Forward-Euler step is referred to as the predictor:

Predictor: ~Un+ 1
2 =

(
I − ∆t

2
Σ

)−1

·
(
~Un − ∆t

2
~F(~Un

)

)
+O(|∆t|2) (4.5)
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These values are used to numerically evaluate the fluxes at the intermediate step n+1/

2 to be used in a centered-difference over a full time-step

~Un+1
= ~Un −∆t ~F(~Un+ 1

2 ) + ∆tΣ ·

(
~Un+1

+ ~Un
)

2
+O(|∆t|3)

Once again, the loss term is handled carefully, this time using a trapezoidal rule. This

last equation can judiciously be written in terms of the difference between the solutions

at step n+ 1 and n:

~Un+1 − ~Un
= −∆tF(~Un+ 1

2 ) + ∆tΣ ·

(
~Un+1 − ~Un

)

2
+ ∆tΣ · ~Un

+O(|∆t|3)

Collecting terms involving ~Un+1 − ~Un
gives:

(
I − ∆t

2
Σ

)
·
(
~Un+1 − ~Un

)
= −∆t ~F(~Un+ 1

2 ) + ∆tΣ · ~Un
+O(|∆t|3)

and the explicit second-order update can be solved as

Corrector : ~Un+1
=

(
I + ∆t

(
I − ∆t

2
Σ

)−1

·Σ
)
· ~Un

−∆t

(
I − ∆t

2
Σ

)−1

· ~F(~Un+ 1
2 ) +O(|∆t|3)

(4.6)

4.1.3 Second Order Runge-Kutta

An alternate second-order time-stepping scheme is the second-order Runge-Kutta

(RK2) scheme [28]. Let us assume that the computational domain V is source-free
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and lossless such that (4.1) becomes:

dt ~U(t) = − ~F(~U(t))

The time-rate-of-change, or slope, of ~U i(t) is given by right-hand-side of this equation.

The RK2 scheme computes two slopes as follows:

~Fn

RK2,1 = − ~F(~Un
)

~Fn

RK2,2 = − ~F(~Un −∆t ~Fn

RK2,1)

(4.7)

and constructs a update scheme by averaging these slopes over ∆t

RK2 : ~Un+1
= ~Un

+
∆t

2

(
Fn

RK2,1 + ~Fn

RK2,2

)
+O(|∆t|3) (4.8)

4.1.4 Fourth Order Runge-Kutta

The RK2 scheme presented above can be generalized to higher-orders as detailed in

[28]. A fourth-order scheme (RK4) uses the slopes

~Fn

RK4,1 = − ~F(~Un
)

~Fn

RK4,2 = − ~F(~Un − (∆t/2) ~Fn

RK4,1)

~Fn

RK4,3 = − ~F(~Un − (∆t/2) ~Fn

RK4,2)

~Fn

RK2,4 = − ~F(~Un −∆t ~Fn

RK4,3)

(4.9)
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and constructing the update scheme as:

RK4 : ~Un+1
= ~Un − ∆t

6

(
~Fn

RK4,1 + 2 ~Fn

RK4,2 + 2 ~Fn

RK4,3 + ~Fn

RK4,4

)
+O(|∆t|5)

(4.10)

4.2 Time-Stepping Stability

For each of the global time-marching schemes the time-step ∆t must be selected to

ensure global stability of the solution. It is shown in [29] that a necessary condition

for stability on element Vi is:

∆ti ≤
2

ci

|Vi|
|∂Vi|

(4.11)

where we note that for a cubical cell this condition reduces to

∆ti ≤
2

ci

∆x3

6∆x2
≤ ∆x

3ci

where ∆x is the length of the edge of the cube. Therefore we see that this condition is

in fact more stringent (by a factor of
√

3) than the standard Courant-Friedrichs-Lewy

(CFL) condition [11]. A less stringent stability condition, that reduces to the CFL

condition on cubical meshes, has been developed in [30] but is beyond the scope of this

work.

A necessary condition for global stability is the adherence to the local condition (4.11)
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on each cell. Therefore, the global time-step is selected as:

∆t ≤ min
i

∆ti (4.12)

4.3 Local Time-Stepping

So far, in this chapter, we have provided the details for explicit time-integration

schemes using a globally defined time-step ∆t. This time-step is not, however, de-

pendent on the global geometry of the partition {Vi} but is limited by some worst-case

geometric properties of the individual cells as illustrated by (4.12) and (4.11). This

fact motivates the use of local time-stepping (LTS) schemes where the global parti-

tion Vi is divided into geometrically connected subsets containing elements that have

approximately the same time-step stability limits. One successful and straightforward

LTS scheme is the “power-of-two scheme” of Fumeaux et. al. presented in [15], [13].

This LTS scheme is attractive as it is not algorithmically complicated, incurs minimal

computational overhead, and provides a significant increase in computation efficiency

in strongly inhomogeneous meshes. Even in the case of relatively homogeneous volume

sizes, poorly structured volumes can limit the global time-step and the LTS scheme

offers significant computational speedup. The algorithm can be decomposed into two

parts: first is a preprocessing step that assigns to each element a local time-step and

a classification depending on the time-step of its neighbours; and second is the global

time-integration scheme that is performed using the local time-step classification.
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V 1

V 2

V 3

2∆t
2∆t

4∆t∆t

∆t

Fig. 4.1: General depiction of a global partitioning of V into LTS partitions V `. A three-level
LTS scheme is shown in V . The boundaries between LTS levels are denoted by the
white dashed curves.

4.3.1 The LTS Preprocessing Algorithm

The function of the LTS preprocessing algorithm is to subdivide the partition {Vi}

of V into sub-domains V `, ` = 1, . . . , `max that are locally stable at a time-step of

2`−1∆t, where ∆t is the globally computed minimum time-step (4.12). This condition

is referred to as the “local-stability condition” of the LTS scheme in [15]. The general

idea is depicted in Figure 4.1. The level 1 region V 1 is evolved at ∆t, level 2 at 2∆t, level

3 at 4∆t and so on. The only complication that arises is in synchronizing elements that

have stencils that cross the boundaries ∂V ` of the LTS domains (recall that the stencil

of an element is the collection of elements required to compute the flux-integration

at time t). In Figure 4.1, the LTS boundaries are denoted by the dashed curves. As

it turns out, the LTS scheme is quite flexible and applies to various orders of flux-
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(b)

(a)

(c)

V `

V `−1

V `

V `

V
+1`

Vi

Vi

Vi

Fig. 4.2: LTS classification of an element Vi in V ` based on its MUSCL stencil (illustrated
in 2D). The stencil is assumed to cross, at most, one LTS level boundary (denoted
by the dashed curves). In V ` we have the following three cases: (a) Vi is an upper
element, (b) Vi is a bulk element, (c) Vi is lower element

integration and time-integration schemes. It is, however, somewhat difficult to explain

clearly in the general sense. On one hand, the method could simply be illustrated

for a particular flux/time scheme but this hides some of the implementation details.

Instead, we will approach the method generally using two assumptions:

• LTS Assumption 1: Given two elements Vi and Vj, if Vi is in the stencil of Vj,

Vj is in the stencil of Vi.

• LTS Assumption 2: The stencil of an element crosses at most one LTS bound-

ary.
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Using these two assumptions, the LTS scheme can be presented in a straightforward

way. Any given element Vi in V ` can now be classified as one of three types as shown

in Figure 4.2:

• Case (a): The stencil of element Vi in V ` contains elements in V `−1. Vi is then

referred to as an upper element of V `. The collection of upper elements in V ` is

denote as Upper(`).

• Case (b): The stencil of element Vi in V ` is contained entirely in V `. Vi is

referred to as a bulk element of V `. The collection of bulk elements in V ` is

denoted Bulk(`).

• Case (c): The stencil of element Vi in V ` contains elements in V `+1. Vi is then

referred to as a lower element of V `. The collection of lower elements is referred

to as Lower(`).

This classification of elements will be all that is required to perform the LTS update

as discussed in Section 4.3.2. An example classification for a simple 2D mesh is shown

in Figure 4.3 for first-order stencils.

The pre-processing algorithm is responsible for determining the domains V ` that satisfy

Assumption 2. The partitioning algorithm presented in [15] is:

• Compute the local ∆ti for each element Vi according to the local condition (4.11).

• Compute the global ∆t = min
i

∆ti.

• Assign to each element Vi the level `i = 1.

• Recursively increase the level of each Vi to `i + 1 provided that:
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U3
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U3
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U3

U3

V 1

V 2

V 3

Fig. 4.3: A 3-level LTS partition of a 2D mesh. The lower elements (L` in the figure) for V 2

and the upper elements (U` in the figure) for V 3 are shown for a first-order stencil.

– ∆ti > 2`i∆t (“local stability”)

– This local stability condition holds for all elements sharing a vertex with Vi,

even though one of these elements may not be increased to the next level

(“no double jumps”)

– No element sharing a vertex with Vi has a neighbour restricted by ∆ti <

2`i−1∆t (“disjoint boundaries”)

• Halt the algorithm once there are either no level increases for any element in Vi

or some preset maximum level is reached.

Upon completion of the partitioning algorithm, a level `i is associated with each ele-

ment. The collection of these elements comprises V `. Once V ` has been determined,

it is straightforward to search each subdomain to determine Bulk(`), Lower(`) and
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LTS Boundary n n+ 1
2 n+1 n+ 3
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Fig. 4.4: LTS synchronization for the Predictor-Corrector scheme. Level 1 operates at ∆t,
Level 2 operates at 2∆t. The scheme assumes that a first-order approximation is
available for Lower(1) from Upper(2).

Upper(`). The “disjoint-boundaries” constraint was introduced in [15] to “displace

the boundaries toward larger cells”, but it also has the added benefit of ensuring that

Approximation 2 holds for the MUSCL scheme. Although we do not consider it herein,

we point out that by simply expanding the “disjoint boundary” condition to consider

the neighbours of neighbouring cells and so on, we can ensure the classification into

bulk, lower and upper elements for larger stencils required in high-order schemes. This

would imply that the spatial transition from one LTS region to another would occur

more slowly, but the LTS classification into bulk, lower and upper elements would still

hold in each region.
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4.3.2 The LTS Time-Evolution Schemes

The pre-processing algorithm described in the previous section produces subdomains

V ` of V that are locally stable at time-step 2`−1∆t. In addition we have the classifica-

tions Upper(`), Bulk(`) and Lower(`). We can now describe the LTS time-marching

scheme, compatible with any of the explicit, global, time-marching schemes discussed

in Section 4.1, and illustrated by example for the Predictor-Corrector (PC) method

(4.6). We consider a domain V with two LTS levels V 1 and V 2. In this way, V 1 con-

tains only bulk and lower elements while V 2 contains only bulk and upper elements.

We assume that the fields are initially synchronized across V 1 and V 2 (say at n = 0).

The fundamental time-step in V 1 is ∆t and in V 2 is 2∆t.

The general idea is shown in Figure 4.4. Level 1 (the lower part of the figure), operates

at the fundamental time-step ∆t, while level 2 (the upper portion of the figure), op-

erates at 2∆t. The update proceeds top-down, starting from the highest level (in this

case ` = 2). As will be made clear shortly, the lower elements at level 1 will require a

first-order estimate of the solution in the upper elements of V 2 at every discrete step

that V 1 requires a flux integration. We denote this estimate as E(2, 1)n which may

be read as “the estimate in Upper(2) to be used by Lower(1)” for flux evaluation at

t = n∆t. We assume that E(2, 1)n is initialized to the current solution for all elements

in Upper(2). Before discussing why it works, we present the algorithm:

• Time step n (fields assumed synchronized)

– Compute the predictor P 2,n+1 (denoted by a grey arrow) in V 2. Upper(2)

uses the current solution in V 1.

– Compute the predictor P 1,n+1/2 (denoted by a grey arrow) in V 1. Lower(2)

uses E(2, 1)n
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– Set E(2, 1)n+1/2 (denoted in the figure by the dashed black arrows) equal

to the average of the solution at time n and the computed predictor P 2,n+1

in V 2.

• Time step n+ 1/2

– Compute the corrector C1,n+1 (denoted by a black arrow) in V 1. Lower(2)

uses E(2, 1)n+1/2.

– Set E(2, 1)n+1 equal to the predictor P 2,n+1 in V 2.

• Time step n+ 1 (the current solution in V 1 is now second order accurate)

– Compute the corrector step C2,n+2 in V 2. Upper(2) uses the current solution

C1,n+1 in V 1.

– Compute the predictor step P 1,n+3/2 in V 1. Lower(1) uses E(2, 1)n+1

– Set E(2, 1)n+3/2 equal to the average of the corrector C2,n+2 and predictor

C2,n+1 in V 2

• Time step n+ 3/2

– Compute the corrector step C1,n+2 in V 1. Lower(1) uses E(2, 1)n+3/2

– Set E(2, 1)n+2 equal to the corrector Cn+2 in V 2 (the fully updated solution

at n+ 2).

• Time step n+ 2 (all fields are second order accurate and synchronized - repeat

the above steps).

The key step to understanding how this algorithm works is to realize that:

• In the general case for any of the explicit schemes under consideration, every

time-step is a combination of first-order (in time) flux-evaluations.



4.4 Chapter Summary 62

• For Upper(`) we always have a first-order time approximation to the flux integral

using the most recently computed (possibly intermediate) solution in Lower(`−

1).

• For Lower(`) we can always construct a first-order time-approximation to the

fluxes using the two most recent (possibly intermediate) solutions in Upper(`).

Consequently, this algorithm easily extends to multiple levels in a straight-forward

manner. Although we will not provide the details herein, it is a straight-forward task

to formulate analogous LTS schemes for the RK2 and RK4 time-integration methods

given in (4.8) and (4.10).

4.4 Chapter Summary

In this chapter both global and local time-stepping schemes have been presented pro-

viding numerical techniques for integrating the time-derivative in the method-of-lines

FVTD formulation. The LTS scheme adopted is that of Fumeaux et. al. [15] and

details have been provided so that its functionality within the context of additional

numerical features presented throughout the remainder of this work can be understood.
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Mesh Truncation

We know then the existence and nature of the finite, because we also are
finite and have extension. We know the existence of the infinite, and are
ignorant of its nature, because it has extension like us, but not limits like
us. – Blaise Pascal

The volumetric FVTD formulation described in the previous chapters provides a rig-

orous mechanism for solving field problems when the computational domain V has

infinite extent or is completely enclosed by perfect conductors. The numerical solu-

tion of Maxwell’s field equations using FVTD requires that V must be finite. In this

chapter both local and global mesh-truncation schemes – the latter implemented us-

ing Huygens’ surfaces – are presented for FVTD. On one hand, local mesh truncation

schemes provide a mechanism for updating Vi on the boundary ∂V from local infor-

mation propagating at finite speed in the vicinity of Vi. Typically this is achieved by

making assumptions about the field-behaviour on ∂V , and designing conditions to ab-
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(a) (b)

∂V ∂V

V
V

Fig. 5.1: 2D Illustration of the Silver-Müller Boundary Conditions: (a) For a point source,
the fields at the boundary ∂V become spherical, or locally planar, provided ∂V
is sufficiently far removed. (b) For general sources, these conditions can be met
approximately provided ∂V is sufficiently far from the nearest sources.

sorb these assumed field. The benefit is that, in general, the computational overhead

for these methods is low. On the other hand, when the assumed field behaviour is not

satisfied, numerical reflections occur.

In contrast to local mesh-truncation, global mesh-truncation schemes avoid such as-

sumptions at the price of increased computational effort but can be used in innovative

ways to reduce the volumetric problem size.
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5.1 Local Mesh Truncation: Silver-Müller Boundary Conditions

One major benefit of the upwind, flux-split FVTD formulation, is that the split flux-

matrix provides a natural mechanism for handling incoming and outgoing propagation

across the boundary of a finite-volume. This enables the implementation of the simple

Silver-Müller boundary condition that assume the incoming flux is zero [9, 13]. There-

fore, if volume Vi has facet k on ∂V the local absorbing boundary condition on ∂Vi,k

is:

~Fo

i,k|SM = ¯̄A
+

i,k · ~U
+

i,k
(5.1)

where ~U+

i,k is computed using the desired reconstruction scheme with a modified stencil.

The accuracy of this boundary condition can be explained by assuming a single point-

source located at the origin of a spherical computational domain V and by assuming

that ∂V is sufficiently far from the origin that the observed fields can be approximated

by spherical waves as shown in Figure 5.1 (a). As the computational boundary is

spherical, the direction from the source to any point on the boundary is precisely the

outer normal ~n to ∂V . Consequently the assumption of field dependence along the

direction ~n = ~m in (2.22) is validated. Therefore, by setting the incoming flux across

∂V to zero we are simply assuming that all sources of electromagnetic radiation are

contained in V and that the solution to Maxwell’s Equations satisfy a Sommerfeld

radiation condition [31].

In the context of mesh truncation, the unstructured geometric modeling flexibility

of the FVTD formulation extends beyond accurately capturing fine structural details

by permitting arbitrary shapes of the domain V . For unbounded radiation problems

we can choose computational domains with spherical boundaries, sufficiently removed

from all radiation sources, such that the Silver-Müller boundary conditions provide ac-
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curate modeling results as shown in Figure 5.1 (b). For approximate normal incidence

these boundary conditions can be shown, using experiments, to provide reflection coef-

ficients less than −50 [dB] [13]. Approximate normal incidence can be achieved when

the boundary is placed between one and two λmax away, where λmax is the maximum

wavelength of interest in the FVTD simulation [13].

5.2 Global Mesh Truncation: Exact Radiating Boundary Conditions

A global mesh-truncation scheme reconstructs an accurate boundary flux on ∂V from

the global solution of Maxwell’s Equations. In this context such a boundary condition

is sometimes referred to as an Exact Radiating Boundary Condition (ERBC) [32]. In

the time-domain such a boundary condition can be developed using a carefully selected

Huygens’ surface inside the domain V .

5.2.1 Huygens’ Surface Field Relationships

We begin by considering a source-free region VΣ bounded by a surface ∂VΣ as shown

in Figure 5.2. As detailed in Appendix B, and as shown in [33], if in addition to being

source-free VΣ is stationary and homogeneous with material parameters µ and ε such

that the velocity c = (µε)−1/2, the fields at any location ~r inside VΣ are related to the

boundary integral of the fields over the boundary ∂VΣ:

~E(t, ~r) = +
1

4π

∫∫

∂VΣ

(
− ~n′ ×

(
[[~E + c−1R∂t~E ]]

)
×

~R

R3

−
(
~n′ ·
(

[[~E + c−1R∂t~E ]]
)) ~R

R3
+
µ

R
~n′ × [[∂t ~H]]

)
dS ′

(5.2)
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VΣ

∂VΣ

~S(t ~r ),

~S(t ~r ),

~S(t ~r ), = 0

Fig. 5.2: The general geometry of a Huygens’ Surface ∂VΣ surrounding a source-free region
VΣ.

~H(t, ~r) = +
1

4π

∫∫

∂VΣ

(
− ~n′ ×

(
[[ ~H + c−1R∂t ~H]]

)
×

~R

R3

−
(
~n′ ·
(

[[ ~H + c−1R∂t~E ]]
)) ~R

R3
− ε

R
~n′ × [[∂t~E ]]

)
dS ′

(5.3)

In these two equations, ~n′ = ~n(~r ′) is the unit outward normal to VΣ on the boundary

∂VΣ and the notation [[ · ]] indicates the the field quantities should be evaluated at

the retarded time tR = t−R/c. The quantity R = |~R| = |~r− ~r ′| is a function of both

the observation point ~r and the integration point ~r ′. The fields under the integration

sign are assumed to be a function of ~r ′. From these equations we can obtain an exact

solution at the boundary of the computational domain for unbounded field problems

by considering the geometry shown in Figure 5.3. The computational domain V is

divided into two regions. The first region VS, which may be disconnected, contains all
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VΣ∂V

∂VS

Fig. 5.3: Practical geometric configuration for incorporating a Huygens’ Surface ∂VΣ into the
FVTD Computational Domain V . The computational boundary ∂V exists inside
VΣ.

field sources and inhomogeneities, and is bounded by the surface ∂VS. In the figure,

the computational domain V is both the white and light-grey regions (the latter being

VS) and is bounded by the solid black curve. The second region VΣ = V \VS exists

external to VS and is the union of the white and dark-grey regions in the figure. It

extends beyond the computational domain and is bounded at infinity. Therefore, the

computational boundary ∂V lies entirely in the source-free, and homogeneous region

VΣ. As there are no sources outside of VS the fields at infinity are zero and the surface

integrals in (5.2) and (5.3) reduce to the portion of the surface ∂VΣ = −∂VS, where the

negative sign is present to remind us that the orientation of the two surfaces oppose

each other. Evaluation of these integrals can then be used to compute the fields on

∂V which lies entirely in VΣ. For the remainder of this work we will simply consider
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that the integral is evaluated on ∂VS and that if the outward normal of ∂VS is used,

then the evaluation of (5.2) and (5.3) requires a multiplication by −1.

The evaluation of the surface integrals (5.2) and (5.3) require knowledge of the solution

and its derivative on the surface ∂VS at appropriate retarded times. In order to evaluate

the integral the following points should be considered:

• As the FVTD solution inside VS is given only in terms of cell-averages, we must

once again reconstruct the solution on the boundary ∂VS.

• A mechanism for determining (approximating) the time-derivatives of the solu-

tion is required.

• We will be required to interpolate the time-solutions. For a given pair of points

~r ∈ ∂V , and ~r ′ ∈ ∂VS, the retarded time tr = t − |~r − ~r ′|/c is unlikely to be

equal to n∆t for some time-step index n.

• The evaluation of the surface integrals should be addressed in the context of the

local time-stepping (LTS) scheme presented in Section 4.3.

All of these issues are dealt with in what follows.

5.2.2 Spatial Reconstruction and Integration

We assume that the surface VS is made up of facets of elements in {Vi}. Therefore,

VS is comprised of first-order surface segments as shown in Figure 5.4. For the mo-

ment we will assume that the fields are known continuously in time. Computing the

field at location (t, ~r) on ∂V can then be performed to the same spatial accuracy as

the volumetric solution by numerically integrating the reconstructed fields (and their
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VS

V∂V

∂VS

Rmax

Fig. 5.4: A 2D representation of a global mesh truncation integration surface. The surface
∂VS is assumed to be aligned with the facets of the volumetric mesh. Cells external
to ∂VS are not shown.

derivatives) on each facet ∂Vi,k ∈ VS at time t−R/c. The reconstructed fields can be

obtained using the same reconstruction procedure as the underlying FVTD solution.

The integration can also be performed using the same scheme as the volumetric flux

integration. In this way, the spatial accuracy of the FVTD scheme is preserved pro-

vided that we assume that nearest observation point ~r is far enough from VS that the

negative powers of R = |~r−~r ′| appearing in the integrals (5.2) and (5.3) are sufficiently

smooth that the numerical integration is accurate. If this is not the case, singularity

extraction techniques or customized numerical integration rules may be required to

accurately compute the fields at (t, ~r) on VS.
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5.2.3 Temporal Interpolation, Time-Derivatives and Local Time-Stepping

When computing the flux on the boundary ∂V of the computational domain at time

n∆t, we require knowledge of the solution and its time-derivatives on VS at times n∆t−

R/v. This retarded time will not, in general, correspond to times when the values of the

solution are known. In the absence of local time-stepping, a time-interpolation scheme

that is compatible with the temporal accuracy of FVTD running at the fundamental

time-step ∆t can be developed as follows.

First we compute Rmax as the maximum distance between a flux evaluation point ~r

on ∂V and an integration point ~r ′ on ∂VS as shown in Figure 5.4. The maximum

propagation delay between points on ∂VS and ∂V is denoted by tr,max and is defined

as:

tr,max ,
Rmax

c
(5.4)

Assuming that we are interested in evaluating the surface integrals at time n∆t for

position ~r on the computational boundary we assume that the solution on ∂VS is stored

for M time-steps prior to n, where M is defined as

M ,

⌈
Rmax

c∆t

⌉
(5.5)

Now, for two arbitrary positions ~r ∈ ∂V and ~r ′ ∈ ∂VS as shown in Figure 5.4, we

compute the required retarded time tr = t− |~r − ~r ′|/c ≤ tr,max. This retarded time is

used to produce an index m:

m =

⌊ |~r − ~r ′|
c∆t

⌋
≤M (5.6)

such that the solution at (tr, ~r
′) is between the known stored samples (n − m)∆t
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Fig. 5.5: Time interpolation in the global mesh truncation scheme. For the source point
~r ′, and two boundary points ~r1 and ~r2, the retarded times tr,1 and tr,2 respectively
decode to indices m1 and m2. The solution at (m1∆t, ~r ′) and its nearest neighbours
are fit using a polynomial function.

and (n − m + 1)∆t as shown for two different observation positions ~r1 and ~r2, with

corresponding indices m1 and m2 in Figure 5.5. Once the appropriate index, m, has

been determined the time-samples in the vicinity of m can be used to fit a polynomial of

degree corresponding to the time-marching accuracy. Once the polynomial coefficients

are computed, the derivative of the solution at tr is easily computed by differentiating

the polynomial. Using this time-interpolation scheme poses no issues when the local

time-stepping scheme presented in Section 4.3 is used. In fact, the integration surface

∂VS can cross any number of time-step boundaries. All that is required is that the

solution at the retarded time is interpolated properly.
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5.2.4 Incorporation of a Huygens’ Surface in FVTD

The evaluation of (5.2) and (5.3) over VS can be used to evaluate the fields at the

current time-step on the boundary ∂V of the computational domain which, by defini-

tion, exists inside VΣ. Empirically we have found, however, that this cannot be done

in an adhoc manner. For example, we cannot use the integrals to compute both ~U
+

i,k

and ~U
−
i,k on a facet ∂Vi,k ∈ ∂V . Instead we have found that stability is maintained

if we compute ~U
+

i,k using the local upwinding methods described in Section 3.7, while

we compute ~U−i,k = ~UERBC

i,k by evaluating the integrals (5.2) and (5.3). Although this

mesh truncation scheme was developed independently, it ends up being similar to the

way that stable ERBCs are implemented for FDTD [32]. The global boundary flux

can be computed as:

~Fo

i,k|ERBC = ¯̄A
+

i,k · ~U
+

i,k + ¯̄A
−
i,k · ~U

ERBC

i,k
(5.7)

While a rigorous proof of the stability of this scheme is beyond the scope of this work,

we can offer some motivation for its functionality. The Huygens integrals use global

field information to translate fields through time and space. This is in contrast to the

local evaluation of the fields in which approximation errors appear, and travel, locally.

Upwinding using the two solutions then acts to mitigate the numerical tension between

them.

5.2.5 Global Mesh-Truncation Complexity and Volumetric Size Reduction

Using the global mesh-truncation scheme presented in this section requires the evalu-

ation of the surface integrals (5.2) and (5.3) on ∂VS for each flux evaluation point on

∂V . Given N∂VS facets on ∂VS and N∂V facets on ∂V the computational complexity
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Fig. 5.6: Problem size reduction using global mesh truncation. In the case of a scattered-
field formulation and two PEC spheres, the local mesh truncation scheme requires
the problem to be formulated as shown in (a) with a single domain V . The two
PEC spheres act as sources and can be enclosed by a disconnected surface ∂VS .
Computation of the incoming fluxes on ∂V can be computed directly from values
on ∂VS permitting a reduction in the volumetric problem size (b).

scales as O(N∂VSN∂V ). The additional memory required to back-store M solutions on

∂VS scales as O(N∂VSM). While the additional costs associated with the global mesh

truncation scheme are in addition to the O(NV ) time and memory required to run

FVTD simulations with local mesh truncation schemes, the global truncation scheme

can, for some problems, be used to reduce the overall volumetric discretization. Con-

sider, for example, the scattering problem of two PEC spheres separated by a distance

R as shown in Figure 5.6. When only the local mesh-truncation scheme is considered,

the configuration (a) is required to determine the scattered field inside V . By enclosing

the inhomogeneities and sources (the PEC spheres) by a closed surface ∂VS we can

reduce the computational domain to V ′, bounded by ∂V ′ as shown in configuration
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(b). If field computations at locations inside V \V ′ are desired, the surface integrals

over ∂VS can be used. There is, however, a limit to the applicability of this approach.

If, for example, the distance R separating the spheres in Figure 5.6 became increas-

ingly large, the maximum retarded time index M would grow accordingly and the

back-storage of the required retarded solutions would bottleneck the algorithm. Of

course, this bottleneck would be far less stringent than attempting to discretize the

entire computational domain.

5.3 Chapter Summary

In this chapter two techniques for truncating the computational domain V have been

presented. The first, a local truncation scheme using the Silver-Müller boundary con-

ditions, depends on the field values in the vicinity of the computational boundary ∂V

at the current simulation time. They are easily implemented and do not incur any

computational overhead. The second, a global truncation scheme using a Huygens’

surface for computing the incoming boundary fluxes on ∂V , requires additional time

and memory but has the benefit that the boundary of the computational domain can

be arbitrarily shaped and disconnected.

Combining either of these mesh truncation schemes with the upwind, flux-split, time-

marching FVTD schemes presented to this point, completes the discussion of a volu-

metric FVTD code. Implementation details and numerical validation are the subject

of the next chapter.

One possible mesh-truncation scheme that has not been mentioned is the FVTD

perfectly-matched layer developed in, for example, [34]. This method will be investi-

gated in the future.



6

Implementation and Validation of

the FVTD Volumetric Field Solver

Computers are useless. They can only give you answers. – Pablo Picasso

In this chapter we are concerned with the validation of the volumetric FVTD field

solver, including the local time-stepping (LTS) scheme and global mesh-truncation.

The validity of these algorithms will be presented for the simple case of scattering

from a PEC sphere as an analytic solution is available for comparison [35].

6.1 Implementation

The upwind and flux-split FVTD numerical engine has been implemented in the C++

programming language providing a versatile object-oriented approach to handling the
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larger subdivisions of the code [26]. For core geometric and time-stepping computa-

tions, the paradigm presented in [26] is replaced with C-style structures and C-code,

permitting greater computational efficiency at the cost of slightly less compact code.

Beyond this general description, coding-specific implementation details will not be

provided. For the serial implementation, no third-party libraries are used. All mathe-

matical operations, mesh representation and FVTD algorithmic components have been

implemented (in some cases as libraries themselves) as part of this work.

For finite-volume mesh generation we use Gmsh [36] which is a free software tool,

available for download online [37]. All post-process visualization is performed using

ParaView [38], again a free tool available at [39].

6.2 Volumetric Scattering from a PEC Sphere

The scattering problem under consideration consists of a PEC sphere of radius 1 [m],

centered at the origin within an 8 [m] radius computational domain assumed to be free-

space, truncated with local Silver-Müller boundary conditions. The volume internal

to the PEC is not introduced in the mesh as the closed PEC volume is completely

described by the appropriate flux-reconstruction conditions given in Section 3.6.3. Two

mesh discretizations are used:

• Mesh M1, having roughly 39, 000 tetrahedral volumes and 630 elements dis-

cretizing the PEC surface. For this mesh, ∆t is computed as 6.3975× 10−11 [s].

A rough geometric approximation suggests that the mesh supports frequencies

up to 50 [MHz] at 10 cells per wavelength.

• Mesh M2, contains approximately 532, 000 tetrahedral elements and 1200 PEC
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Fig. 6.1: Gaussian sources for volumetric PEC scattering. (a) Time-domain pulse with mean
1× 10−8 [s] and deviation 3× 10−9 [s]. (b) Frequency spectrum of the time-domain
pulse showing a frequency range up to 180 [MHz]

surface elements. The time-step is ∆t = 4.47× 10−11 [s] and the mesh supports

frequencies up to 150 [MHz] at 10 cells per wavelength.

For both meshes, the FVTD solution was computed using MUSCL reconstruction and

predictor-corrector time-stepping. The incident electromagnetic field was selected as a

z-directed, x-polarized plane-wave, time-varying as the derivative of a Gaussian pulse

with mean 1×10−8 [s] and standard deviation 3×10−9 [s]. The pulse and its spectrum

are shown in Figure 6.1 indicating that the plane-wave carries frequencies beyond 180

[MHz]. The resulting scattered-field is stored over time at the back-scattered location

(0, 0,−5) and its frequency response is computed by a Fast Fourier Transform (FFT)

so that it can be compared to the analytic solution which is more readily available in

the frequency domain. Although the analytic time-domain solution can be obtained by
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Fig. 6.2: FVTD Solution to Scattering from a PEC Sphere for the M1 mesh. Back-scattered
frequency spectrum of the dominant x-component at (0, 0,−5). (a) Magnitude (b)
Phase.

taking the inverse FFT (IFFT) of the analytic frequency-domain solution, it is more

insightful to compare frequency-domain results directly. The results for the mesh M1

are shown in Figure 6.2, while M2 results are shown in Figure 6.3. Beginning with the

M1 mesh in Figure 6.2 we see excellent agreement in the magnitude of the scattered-

field up to roughly 100 [MHz]. Further, the phase is reconstructed accurately up to

about 200 [MHz]. This is an excellent depiction of the dissipative nature of upwind

FVTD, where errors manifest themselves as a loss of amplitude, visible in the figure

above 100 [MHz]. This is unlike FDTD where the errors are dispersive and can be

expected to show themselves in the phase.

Comparing the results of the coarser M1 mesh to the results of the finer M2 mesh

we see, for the finer discretization in Figure 6.3, that the amplitude is converging to

the analytic solution up to 150 [MHz], approximately the frequency limit of the mesh.



6.3 LTS Validation 80

50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4
Mesh M2: Phase of x−component of Scattered Field at (0, 0, −5) 

Frequency [MHz]

P
h

a
se

 [
ra

d
]

 

 

Analytic

Computed

50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Mesh M2: Magnitude of x−component of Scattered Field at (0, 0, −5) 

Frequency [MHz]

M
a

g
n

it
u

d
e

 [
V

/m
]

 

 

Analytic

Computed

(a) (b)

Fig. 6.3: FVTD Solution to Scattering from a PEC Sphere for the M2 mesh. Back-scattered
frequency spectrum of the dominant x-component at (0, 0,−5). (a) Magnitude (b)
Phase.

The phase reconstruction is, in general, more accurate. Finally, in Figure 6.4 we show

an example of the magnitude of the electric (top) and magnetic (bottom) scattered

fields after 400 time-steps. The figures show the x-z cross-section of the computational

domain at y = 0.

6.3 LTS Validation

In order to validate the local time-stepping (LTS) scheme introduced in Section 4.3,

we consider a mesh similar to the M2 mesh. The difference is that the M2 mesh

was optimized (by Gmsh) for “element quality” which, in turn, improves the time-

step on each element. In fact, in the M2 mesh, the minimum permissible time-step is

4.4669×10−11 [s] while the maximum permissible time-step is 2.56×10−10 [s], less than
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Fig. 6.4: (Colour) Volumetric time-domain scattered-field visualization. The magnitude of
the electric (top) and magnetic (bottom) fields are shown at 400 time-steps.
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four times larger. For the M2 mesh, only two time-levels would be allowed. Therefore

we consider a new mesh, M2no−opt having the same discretization parameters as the

M2 mesh but not subjected to a Gmsh optimization. For the M2no−opt mesh, the

minimum local time-step is 4.554 × 10−13 [s] while the maximum local time-step is

1.187× 10−10 [s] resulting in 8 time-stepping levels having, in order of increasing level,

approximately 300, 3000, 20000, 80000, 280000, 222000, 40000 and 200 volumetric

elements. A cross-section of the volume and the associated LTS levels and boundaries

are shown in Figure 6.5. The back-scattered observation point (0, 0,−2) lies in the 6th

time-step level and Figure 6.6 shows the x-component of the scattered electric field for

the M2 (no LTS) and M2no−opt (LTS) meshes. Excellent agreement between the two

algorithms is demonstrated. The closeup shows that the observation point, at level 6 in

the LTS scheme, is constant while the lower levels update. While in practice we would

likely never run a simulation on an un-optimized mesh, this example is analogous to

a problem where very fine discretizations are required to capture geometric features.

The speedup observed using the LTS scheme for the M2no−opt mesh was a factor of

4.6. This is in the published range of speedups in [15], which range over 3.7-11.4 for a

variety of geometries therein.

6.4 Global Mesh Truncation Validation

To conclude the validation results of this chapter, we demonstrate the functionality of

the global mesh-truncation scheme presented in Section 5.2. We consider the interest-

ing geometry depicted in Figure 6.7: two disconnected volumetric regions, coupled by

the integrals over the Huygens-surface (shown in red - top). The integration surface

encloses the PEC sphere (yellow) and can be used to provide the incoming fluxes on

the boundary of the computational domain (blue - top). This provides a way of in-
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Fig. 6.5: (Colour) LTS levels of the unoptimized M2no−opt mesh. The levels (top) and bound-
aries (bottom) are shown for a cross-section of the computational domain. For the
boundaries, 1 denotes elements on the upper side, while −1 denotes lower boundary
elements.
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Fig. 6.6: Comparison of LTS and non-LTS solutions for the time-domain scattered field ob-
tained using the M2 and M2no−opt mesh. (a) The x-component of the electric field
is shown at the back-scatter point (0, 0,−2). (b) When the LTS fields are stored at
each time-step corresponding to level 1, we see that the the observation point, at
LTS level 6, is constant while the lower levels update.
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cluding the source-free volumetric region (blue - bottom) into the FVTD simulation.

While we could have included sources (also surrounded by an integration surface) in

the blue volumetric region, we have not. Without them we are still just solving for the

scattering of a PEC sphere and an analytic solution can be used to verify the fields in

the disconnected volume.

The geometry shown in Figure 6.7 is summarized as follows: the inhomogeneous volume

consists of a 1 [m] radius PEC sphere, centered at the origin, inside a 5 [m] radius

computational domain. The integration surface is 3 [m] is radius, centered on the

PEC sphere. The secondary, source-free volume, is centered at (0, 0,−8) [m] and has

a radius equal to 1 [m]. We again consider an x-polarized, z-propagating plane-wave.

The scattered-field is measured at the centre of the secondary sphere at (0, 0,−8) [m],

in the back-scattering direction of the incident field. The mesh discretization consists

approximately of 500, 000 volumetric elements (supporting a maximum frequency of

around 100 [MHz]), 600 PEC surface elements and 6, 300 integration surface elements.

The maximum distance between the integration and boundary surfaces is 11 [m], and at

the computed global time-step of 3.591× 10−11 [s], requires a maximum back-storage

of 1100 time-samples. Currently, the code does not support a different number of

time-samples per integration surface patch. While this improvement will be made in

the future, we currently require 1, 100× 6, 300 samples of the fields (6 components) to

support the integration surface data. Further, the computational domain is bounded by

approximately 2, 700 facets. At each (partial) time-step, the global truncation scheme

requires the integration over 6, 300 patches for each of these 2, 700 boundary surface

elements, plus the appropriate interpolation of the time-solution (and its derivatives)

on the surface ∂VS.

The incident field time variation is again chosen to be the derivative of a Gaussian
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Fig. 6.7: (Colour) Sample geometry used for the validation of the global mesh-truncation
scheme. A PEC sphere (yellow surface - top) is enclosed by an integration surface
∂VS (red - top). The surface separates the free-space volumes internal to ∂VS
(green-bottom) and external external to ∂VS (fuchsia and blue - bottom) . Using
the fields computed by integration over this surface, the disconnected volume (blue
- bottom) can be included in the FVTD simulation.
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pulse, this time with mean 2× 10−8 [s] and standard deviation 3× 10−9 [s]. In Figure

6.8 we show the propagation of the scattered field through the disconnect domains.

In Figure 6.9 we compare the x-component of the electric field to the analytic solution

in the disconnected volume at (0, 0,−8) [m] up to 100 [MHz]. The magnitude of

the x-component of the scattered field is shown in (a), while the phase is shown in

(b). The phase comparison is excellent. The magnitude diverges slightly from the

analytic solution but is quite reasonable – sufficient, at least, to validate the global

mesh truncation scheme.

6.5 Chapter Summary

In this chapter the volumetric features of an upwind and flux-split numerical FVTD

engine have been validated for scattering from a PEC sphere, including local time-

stepping and global mesh-truncation. Although we have not shown results for problems

involving dielectrics, the FVTD engine is also accurate in those cases. For example,

the code is currently being used to simulate dielectric and conductive scattering in

multi-layered media for sea-ice modeling [40].
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(a)

(b)

(c)

Fig. 6.8: (Colour) Propagation of scattered electric fields using global mesh truncation. The
magnitude of the scattered field is shown at (a) 1000 time-steps (b) 1200 time-steps
and (c) 1400 time-steps. Note that in (c) the scale has been intentionally reduced
to emphasize the fields in the disconnected volume.
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Fig. 6.9: Analytic comparison of the x-component of the scattered electric field at the back-
scatter location (0, 0,−8) in the disconnected geometry. (a) Magnitude and (b)
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An FVTD Thin-Wire Subcell

Model

All models are false but some models are useful. – George Edward Pelham
Box

The volumetric solution of Maxwell’s Equations by the upwind, flux-split FVTD for-

mulation presented to this point, does not require a structured partition of the compu-

tational domain V . One great benefit of using FVTD on unstructured meshes is that

accurate modeling of problems involving both small and large geometric features (with

respect to the wavelengths of interest) only requires a fine discretization in proximity

to fine structural details. Unfortunately, there is only so far that this benefit can take

us. If the problem of interest is dominated by fine structural detail, the number of

cells required to model the geometry will be much larger than the number of cells re-

quired to spatially reproduce the simulation frequency bandwidth. Specifically, there
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are many engineering applications that require modeling very thin wire-structures. By

“thin” we imply both that the length of the wire is much longer than its radius, and

that the radius of the wire is much smaller than the spatial sampling rate. In this

case a subcell thin-wire model, where the wire is introduced into the volumetric mesh

as a one-dimensional structure (along the length of the wire), can be used. As the

full volumetric geometry of the wire is not required in such a model, the number of

cells in the mesh can be drastically reduced. The difficulty then remains as to how

the one-dimensional wire structure should affect, and be affected by, the volumetric

fields – this is the “model” – and it ends up that for arbitrary, unstructured meshes,

developing a flexible, accurate, model is difficult.

A thin-wire model for FVTD has been formulated in [9], and requires physical wires

(or their discrete approximations) to be aligned with the edges of, and surrounded

by, prismatic elements. First, this places constraints on the meshing procedure; the

algorithm used to generate the mesh must support prismatic elements. Second, multi-

wire junctions cannot be supported; it is not geometrically possible to interface three

wires, surrounded by prismatic elements, without permitting the elements to overlap.

A model that does not impose these constraints is the focus of this chapter.

Recently, a model that supports thin-wires that can be arbitrarily oriented within

the computational domain has been developed for the Finite-Difference Time-Domain

(FDTD) and Finite-Element Time-Domain (FETD) algorithms [18, 19, 41]. In this

chapter the FVTD equivalent of these models is developed. The model equations

result in a system of hyperbolic partial differential equations that are solved using

a one-dimensional, upwind and flux-split FVTD formulation to ensure simple, yet

effective, synchronization between the thin-wire model and the volumetric model.
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7.1 A Brief History of Time-Domain Thin-Wire Modeling

To provide some context for the choice of thin-wire model developed in this work, a

brief summary of available time-domain thin-wire modeling methods is warranted. A

concise summary of differential thin-wire models used in the FDTD method is provided

in [42]. Therein, the authors summarize available thin-wire models as falling into two

distinct categories. First, there are methods in which the wire is assumed to carry

charge and current, and a system of differential equations is constructed to relate

these quantities to the surrounding fields. This method was introduced by Holland

and Simpson [43], and is the approach adopted by [18, 19, 41] and this work. The

benefit of introducing the additional variables of wire-charge and wire-current is that

they permit flexibility when geometrically introducing the wire into the mesh. The

second method is to assume that the presence of wire-current and charge introduce

constraints on appropriately constructed contour integrals in the vicinity of the wire.

In this method, the wire-current and charge are not introduced as additional unknown

physical quantities to be determined by the solver. Instead, the fields near the wire

simply act as if a wire is present. In FDTD this method can work quite well, as the

contour integrals coincide with the regular geometry of the FDTD grid [44, 45]. For

unstructured meshes, it is unclear how such a scheme can be constructed. (It should

also be noted that in [42] a third method based on a weighted-residual approach is

provided as a generalization of the first method.)

Yet another way of introducing thin-wires in to the numerical algorithm is to impose

an integral equation (IE) relating the charge and current on the wire. The hybrid

IE/FDTD/FETD schemes presented in [46] and [47] offer ways to incorporate IEs for

thin-wire structures in the presence of dielectric objects but are beyond the scope of

this work.
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7.2 FVTD Thin-Wire Formulation

In this section the theory for a sub-cell thin-wire model compatible with the FVTD

solution to Maxwell’s Equations is developed. The method is based on the Holland-

Simpson model [43] and its adaptation to arbitrarily oriented thin-wire structures as

developed by Edelvik et. al. [18, 19]. At the core of the thin-wire formulation is the

assumption that, in proximity to radiating wire structures, the fields are dominated

by static contributions.

7.2.1 Static Fields of an Infinitely Long Thin Wire

According to the Holland-Simpson formulation presented in [43], we assume an in-

finitely long thin-wire of radius a, directed in the ζ̂ direction, embedded in a homoge-

neous and simple medium ε, µ, and σ as shown in Figure 7.1 (a). Introducing a right-

handed system of cylindrical coordinates (ρ, φ, ζ) and the additional unitary vectors ρ̂

and φ̂, it is assumed that the wire carries a current I(t, ζ) [A] and a per-unit-length

(PUL) charge-density Q(t, ζ) [C/m2]. Assuming that the volumetric discretization is

much finer than the smallest wavelength of interest, the wire-driven fields in finite-

volumes near the wire are well-approximated by a static ρ̂-directed electric field and a

static φ̂-directed magnetic field:

~E(t, ρ, φ, ζ) = Eρ(t, ρ, φ, ζ)ρ̂ =
Q(t, ζ)

2περ
ρ̂ (7.1)

and

~H(t, ρ, φ, ζ) = Hφ(t, ρ, φ, ζ)φ̂ =
I(t, ζ)

2πρ
φ̂ (7.2)
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Fig. 7.1: (a) A portion of an infinite ζ̂-directed thin-wire of radius a used to derive the thin-
wire subcell model. Field/wire coupling occurs to the distance ρ0. The medium
inside the cylinder of radius ρ0 is assumed constant. (b) Discretization of the con-
tinuous wire domain into first-order wire segments. The infinite model is assumed
to approximately hold on each segment.

The assumption that the volumetric discretization is finer than the smallest wavelength

adheres to practical volumetric sampling.

7.2.2 The Thin-Wire Equations

We now derive a system of equations describing the physical behaviour of the wire

current and charge as a function of time and position along the wire. Assuming that

the thin-wire has a conductivity σw[S/m], the φ̂ component of Faraday’s law is:

∂Eζ(t, ~r)
∂ρ

= µ
∂Hφ(t, ~r)

∂t
+
∂Eρ(t, ~r)
∂ζ

+
J ζ(t, ~r)

σw
(7.3)
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where J ζ(t, ~r) is a wire-confined current density due to the wire current. Substituting

the near-wire assumptions (7.1) and (7.2) into (7.3) gives:

∂Eζ(t, ~r)
∂ρ

=
µ

2πρ
(
∂I(t, ζ)

∂t
+ c2∂Q(t, ζ)

∂ζ
) +
J ζ(t, ~r)

σw
(7.4)

where, as usual, c =
√
εµ−1. The ρ derivative is removed by integrating this last

equation over disk of radius ρ transverse to the ζ direction resulting in

Eζ(t, ρ, φ, ζ) =
µ

2π
ln
(ρ
a

)
(
∂I(t, ζ)

∂t
+ c2∂Q(t, ζ)

∂ζ
) + I(t, ζ)R (7.5)

where R = 1/(πa2σw)[Ω/m] is a PUL resistance and where we have used the fact that

the tangential field component Eζ(t, ~r) decays very rapidly inside good conductors.

Equation (7.5) relates the current and PUL charge at location ζ along the thin-wire to

the longitudinal component Eζ(t, ρ, φ, ζ) at some distance away form the wire. By ob-

taining this longitudinal field from the three-dimensional FVTD solution to Maxwell’s

Equations, we can interpret (7.5) as a single equation relating the current and PUL

charge on the thin-wire. The obvious question then becomes: which values of ρ and

φ should we use? An answer to this question that allows the wire to be arbitrarily

oriented within the volumetric mesh is to choose a weighted average over all φ and over

ρ to some distance ρ0. This was the pioneering step apparently introduced by Ledfelt

[48, 41] and used in [18, 19]. It is important to note that by truncating ρ to ρ0 we

ensure that the driving longitudinal field can be computed at ζ in constant time. Se-

lecting an appropriate value of ρ0 is discussed in Section 7.5. We introduce a weighting

function g(ρ) [1/m2] which serves to couple the fields to the wire in a weighted average
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Fig. 7.2: The wire-field coupling function g(ρ) shown for two values of ρ0. One limitation
of this function is that as ρ0 decreases, it becomes more and more difficult to
numerically integrate.

sense. The function g(ρ) is assumed to have the following properties:

g(ρ) = 0 ∀ ρ < a

g(ρ) = 0 ∀ ρ > ρ0

ρ0∫

0

2πg(ρ)dρ = 1

(7.6)

In this work we adopt the same weighting function used in [18, 19] which is given

explicitly as:

g(ρ) =
1 + cos πρ

ρ0

π(ρ2
0 − a2)− 2ρ2

0

π

(
1 + cos πa

ρ0
+ πa

ρ0
sin πa

ρ0

) , a ≤ ρ ≤ ρ0 (7.7)
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The function g(ρ) is shown depicted for two values of ρ0 and an exaggerated wire-

radius of 0.1 [m] in Figure 7.2. Weighting both sides of (7.5) by g(ρ) and integrating

over a disk of radius ρ0 transverse to the wire axis gives:

〈Eζ(t, ~r)〉 = L(
∂I(t, ζ)

∂t
+ c2∂Q(t, ζ)

∂ζ
) + I(t, ζ)R (7.8)

where the weighted average of the longitudinal electric field is

〈Eζ(t, ~r)〉 ,
2π∫

0

ρ0∫

0

Eζ(t, ~r)g(ρ)ρdρdφ (7.9)

and where the PUL inductance L [H/m] is defined as:

L ,
µ

2π

ρ0∫

0

ln(
ρ

a
)2πg(ρ)ρdρ. (7.10)

A second equation relating the current and charge along the wire can be obtained by

conservation of charge:

∂I(t, ζ)

∂ζ
+
∂Q(t, ζ)

∂t
= −σ

ε
Q(t, ζ) (7.11)

The two equations (7.8) and (7.11) form a coupled pair of partial differential equations

relating the PUL charge and current on the thin-wire structure to the surrounding

fields that can be written as a system of equations:

∂

∂t



Q

LI


+

∂

∂ζ



I

Lc2Q


+



σε−1Q

RI


 =




0

〈Eζ〉


 (7.12)

where the explicit dependence on time and position have been dropped for notational
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brevity. It will be shown in Section 7.2.6 that (7.12) is a hyperbolic system of two

partial differential equations that permits a finite-volume solution. Before introducing

the finite-volume scheme for solving this system, we will introduce a thin-wire voltage.

7.2.3 The Thin-Wire Voltage

For the extraction of engineering parameters, such as input impedance, it is beneficial

to define the thin-wire equations (7.12) in terms of a voltage. This is accomplished by

defining a PUL capacitance C [F/m] satisfying 1/(LC) = c2 [18]. The PUL capacitance

permits the definition of a wire voltage V(t, ζ) = Q(t, ζ)/C [V] and the system of

equations (7.12) can be re-written as:

∂

∂t



CV

LI


+

∂

∂ζ



I

V


+



GV

RI


 =




0

〈Eζ〉


 (7.13)

where G = σC/ε [S/m] is a PUL conductance. Insight is obtained by investigating the

nature of the introduced voltage, which is defined in terms of the arbitrary definitions

of L and C. Integrating the static electric field transverse to the wire, from a to ρ for

fixed ζ, defines a voltage V∗(t, ρ, ζ) referenced from a to ρ:

V∗(t, ρ, ζ) ,

ρ∫

a

Eρ(t, ρ′, ζ)dρ′ =
Q(t, ζ)

2πε
ln (

ρ

a
). (7.14)

Averaging V∗ analogously to the computation of 〈Eζ〉 such that:

〈V∗(t, ρ, ζ)〉 = Q(t, ζ)
1

2πε

ρ0∫

0

ln (
ρ

a
)2πg(ρ)ρdρ (7.15)
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and defining a PUL capacitance C∗ [F/m] as:

C∗−1 ,
1

2πε

ρ0∫

0

ln(
ρ

a
)2πg(ρ)ρdρ (7.16)

shows, from the definition of L given in (7.10), that 1/(LC∗) = µε i.e. C∗ = C. It is

a direct consequence of this last equality that:

V(t, ζ) = 〈V∗(t, ρ, ζ)〉 = Q(t, ζ)C−1 (7.17)

From (7.17) we conclude that the voltage V(t, ζ) along the thin-wire is defined in terms

of the coupling distance ρ0 and should be interpreted carefully.

7.2.4 Discretization of the Wire Domain

The FVTD solution to the one-dimensional hyperbolic system (7.13) is formulated by

partitioning the wire domain W into NW first-order line-segments Wj, j = 1, . . . , NW

as shown in Figure 7.1 (b). To simplify the notation we assume the coordinate ζ

continuously defines a unique position in W . For distinct physical wires, different

coordinate systems are used on each wire. The barycentre of the jth wire-segment is

denoted locally by ζj and corresponds to a global coordinate ~r(ζj) in three-dimensional

space. The segment is bounded by two facets (points) denote by Tj,k, k = ±1, located

along the wire at ζj,k = ζj + k · |Wj|/2, where |Wj| is the length of the segment.

Corresponding to these local coordinates are two global coordinates ~r(ζj,k) that define

the segment orientation ζ̂j = (~r(ζj,1) − ~r(ζj,−1))/|Wj|. Accordingly, in one dimension,

the “outward normal” in coordinate ζ to the segment at the end Tj,k is k. The physical

parameters of the medium are assumed to be constants εj, µj and σj, to a transverse

distance ρ0.
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7.2.5 The FVTD Formulation of the Thin-Wire Equations

For the time-being we will assume that we are interested in solving the system of

equations (7.13) only in the one-dimensional wire domain W ; that is, we will not be

concerned with the source terms coming from the volumetric field model. Coupling

between the developed one-dimensional theory and the volumetric solver is addressed

in Section 7.5.

The current and voltage on each wire segment are assumed to be related by a segment-

dependent instance of the system (7.13). On each segment we can write (7.13) as:

∂tU(t, ζ) + ¯̄aj · ∂ζU(t, ζ) = −¯̄bj · U(t, ζ) + ¯̄cj · S(t, ζ) ζ ∈ Wj (7.18)

where U(t, ζ) = [V(t, ζ) I(t, ζ)]T and S(t, ζ) = [0 〈Eζ(t, ζ)〉]T in analogy to the three-

dimensional solution and source vectors for the volumetric field solver. The constant

2× 2 matrices ¯̄aj,
¯̄bj and ¯̄cj are:

¯̄aj ,




0 C−1
j

L−1
j 0


 ¯̄bj ,



Gj/Cj 0

0 Rj/Lj


 ¯̄cj ,



C−1
j 0

0 L−1
j


 (7.19)

FVTD equations for segment j are obtained by averaging (7.18) over the segment and

applying the one-dimensional divergence theorem converting (7.18) to:

dtU (j)(t) =− 1

|Wj|
1∑

k=−1

Fo
j,k(t, ζj,k)− ¯̄bj · U (j)(t) + ¯̄cj · S(j)(t) (7.20)

As in the volumetric case, the quantities U (j)(t) and S(j)(t) denote averages of the

solution and source vectors over Wj and where the flux Fo
j,k = k¯̄aj · Uo(t, ζj,k) is
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dependent on the segment boundary-limit of the solution Uo(t, ζj,k). The summation

over k is a convenient way to represent the summation over the two “facets” (ends)

of the wire, with k accounting for the outward normal and where k = 0 does not

contribute to the equation. This equation is completely analogous to (3.7) and all of

the general FVTD methodology previous discussed applies. Specifically, we will again

adopt an upwind, flux-split REA algorithm where the cell averages of the solution are

associated with each cell.

7.2.6 Hyperbolicity and Flux-Splitting of the Thin-Wire Equations

To simultaneously prove the hyperbolicity of the system of PDEs (7.18) and to provide

a flux-split mechanism for upwinding the FVTD thin-wire solution, we diagonalize the

flux matrix, ¯̄a(ε, µ, k) = k¯̄a(ε, µ), at facet k (or in the direction k) by a similarity

transformation:

¯̄a(ε, µ, k) = ¯̄ψ(ε, µ) · ¯̄λ(ε, µ, k) · ¯̄ψ(ε, µ)−1 (7.21)

where the matrix of eigenvalues is:

¯̄λ(ε, µ, k) = diag(−kc, kc) (7.22)

and where the eigenmatrices are:

¯̄ψ(ε, µ) =




1 1

−Y Y


 ¯̄ψ(ε, µ)−1 =

1

2




1 −Z

1 Z


 . (7.23)

As in the volumetric case, the impedance Z =
√
µ/ε =

√
L/C and the admittance

Y = Z−1. For each direction k along the wire the flux matrix ¯̄a(ε, µ, k) is split into

positive and negative parts ¯̄a±(ε, µ, k) = ¯̄ψ(ε, µ) · ¯̄λ±(ε, µ, k) · ¯̄ψ(ε, µ)−1 where ¯̄λ±(ε, µ, k)
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is defined analogously to (3.8). As the eigenvalues of the thin-wire flux-matrix are real,

the thin-wire system of PDEs is hyperbolic. The flux-split matrices for direction k in

Wj are:

¯̄a+
j (k) =

1

2




cj kC−1
j

kL−1
j cj


 ¯̄a−j (k) =



−cj kC−1

j

kL−1
j −cj


 (7.24)

To simplify things we introduce the following notation inside Wj:

¯̄aj,k , ¯̄aj(k)

¯̄λj,k , ¯̄λ(εj, µj, k)

¯̄ψj , ¯̄ψ(εj, µj)

(7.25)

The flux-split, upwind, thin-wire system can then be written as

∂tU (j)(t) = −¯̄bj · U (j)(t) + ¯̄cj · S(j)(t)−
1∑

k=−1

(
¯̄a+
j,k · U∗(t, ζj,k) + ¯̄a−j,k · U∗∗(t, ζj,k)

)

= −¯̄bj · U j(t) + ¯̄cj · Sj(t)−
1∑

k=−1

(F∗j,k(t) + F∗∗j,k(t))

(7.26)

where U∗(t, ζj,k) is the limit of the solution at facet k from inside Wj and U∗∗(t, ζj,k) is

the limit of the solution at facet k reconstructed from outside Wj. The flux reconstruc-

tion must account for the physical boundary conditions on the current and voltage at

the wire-segment terminals. These conditions can be constructed by analogy to the

three-dimensional boundary conditions provided in [9] as shown in Section 7.3. An

alternative way to impose the boundary conditions is to use a subcell circuit model to

join/terminate wire segments as developed in Chapter 8. In fact, these subcell models

provide a direct mechanism for reconstructing the flux at multi-wire junctions.
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7.2.7 Thin-wire Characteristics

We conclude this section by determining the thin-wire characteristics which will be

used to develop thin-wire boundary conditions in Section 7.3 and Chapter 8. We

assume the source-free and loss-free instance of equation (7.18) in the k direction:

∂tU(t, ζ) + ¯̄aj,k · ∂ζU(t, ζ) = 0

multiplying this equation by ¯̄ψ−1
j uncouples the system:

∂tWj,k(t, ζ) + ¯̄λj,k · ∂ζWj,k(t, ζ) = 0, ζ ∈ Wj

where the subscript j, k notation is again used to associate the characteristic with the

jth segment in the k direction, and where the thin-wire characteristic vector Wj,k(t, ζ)

is:

Wj,k(t, ζ) = ¯̄ψ−1
j · U(t, ζ) =

1

2



V(t, ζ)− ZjI(t, ζ)

V(t, ζ) + ZjI(t, ζ)


 (7.27)

For k = 1, the first entry in the characteristic vector propagates unchanged along

the characteristic curve ζ + t/cj = constant at velocity −cj i.e. it propagates in the

negative ζ direction. The second entry propagates at the same speed in the positive ζ

direction along the curve ζ − t/cj = constant.

W±
j,k(t, ζ) ,

1

±cj
¯̄λ±j (k) · ¯̄ψ−1

j · U(t, ~r) (7.28)
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The postive characteristic vector in the k = 1 (ζ) direction is:

W+
j,1(t, ζ) =

1

cj




0 0

0 cj


 · 1

2



V(t, ζ)− ZjI(t, ζ)

V(t, ζ) + ZjI(t, ζ)


 =

1

2




0

V(t, ζ) + ZjI(t, ζ)


 (7.29)

while the negative characteristic in the k = 1 (ζ) direction is:

W−
j,1(t, ζ) =

1

−cj



−cj 0

0 0


 · 1

2



V(t, ζ)− ZjI(t, ζ)

V(t, ζ) + ZjI(t, ζ)


 =

1

2



V(t, ζ)− ZjI(t, ζ)

0




(7.30)

7.3 Thin-Wire Boundary Conditions

In the thin-wire model we have assumed that surrounding each thin-wire segment, the

physical parameters of the three dimensional medium are constant to a radial distance

of ρ0 and independent of angle φ. This assumption leads to a somewhat natural

definition of the characteristic impedance of each line segment Zj. So long as this

assumption is satisfied, it still permits discontinuities in the characteristic impedance

as we go from wire segment to wire segment, such that Zj may not equal Zj+1. This

is also the case if the wires have different radii, as suggested by the definition of Lj in

(7.10). As in the volumetric case we are required to handle the boundary conditions

explicitly.

7.3.1 General Thin-Wire boundary conditions

As discussed in the volumetric formulation, upwinding the partial differential form of

the thin-wire equations is equivalent to computing the flux at the boundary of the
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wire segments using only that part of the solution that flows into the boundary. We

assume that wire segment j shares facet ∂Wj,k = ∂Wm,k′ with wire segment m. We

suppose that a solution U+
j,k is reproduced by spatial reconstruction alone at time t

at ∂Wj,k from inside Wj. Similarly, U−j,k is reproduced from the cell-average solution

inside Wm. The true boundary limit values U∗j,k and U∗∗j,k can be written in terms of

the characteristics as:

1

cj
¯̄λ+
j (k) · ¯̄ψ−1 · U+

j,k =
1

cj
¯̄λ+
j (k) · ¯̄ψ−1 · U∗j,k

1

−cm
¯̄λ−m(k′) · ¯̄ψ−1 · U+

j,k =
1

−cm
¯̄λ−m(k′) · ¯̄ψ−1 · U∗∗j,k

(7.31)

Multiplying the first equation by cj
¯̄ψj,k and the second by −cm ¯̄ψm,k′ gives

¯̄a+
j,k · U+

j,k = ¯̄a+
j,k · U∗j,k

¯̄a+
m,k′ · U+

m,k′ = ¯̄a+
m,k′ · U∗∗j,k

(7.32)

where ¯̄a+
m,k′ = −¯̄a−m,−k′ . Recalling the symmetry of Figure 3.1, we can use U∗∗j,k = U∗m,k′

to expand (7.32) in order to obtain the following constraints on the line current and

voltage:

V∗j,k + kZjI∗j,k = V+
j,k + kZjI+

j,k

V∗m,k′ − kZmI∗m,k′ = V+
m,k′ − kZmI+

m,k′

(7.33)

I∗j,k + kYjV∗j,k = I+
`,k + kYjV+

j,k

I∗m,k′ − kYmV∗m,k′ = I+
m,k′ − kYmV+

m,k′

(7.34)

where the fact that k′ = −k has been used. From the two systems of equations (7.33)

and (7.34) conditions relating the true boundary values and reconstructed boundary

values can be enforced for a variety of boundary conditions.
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7.3.2 Inhomogeneous Dielectric Boundary Conditions

In the case of a discontinuity in the characteristic impedance from one wire-segment to

another (due to a jump in the surrounding medium or wire-radius) , the appropriate

boundary condition is continuity of the line voltage and current:

V∗j,k = V∗m,k′ = Voj,k

I∗j,k = I∗m,k′ = Ioj,k
(7.35)

These boundary conditions follow directly from the definition of the voltage and current

and the continuity requirements of the electric and magnetic fields surrounding the

thin-wire. Substituting these equations into (7.34) and solving for the boundary values

Voj,k and Ioj,k we obtain the following system:



Ioj,k
Voj,k


 =




k
Zj+Zm

Zj

Zj+Zm

Yj
Yj+Ym

k
Yj+Ym


 ·



V+
j,k

I+
j,k


+




−k
Zj+Zm

Zm

Zj+Zm

Ym
Yj+Ym

−k
Yj+Ym


 ·



V+
m,k′

I+
m,k′


 (7.36)

The required boundary flux at the wire terminal Tj,k in equation (7.20) is:

Fo
j,k = ¯̄aj,k · Uo

i,k =



kC−1

j Ioj,k
kL−1

j Voj,k


 (7.37)

which, when substituted into (7.36) gives:

Fo
j,k =



kC−1

j Ioj,k
kL−1

j Voj,k


 =



C−1
j 0

0 L−1
j


 ·




1
Zj+Zm

kZj

Zj+Zm

kYj
Yj+Ym

1
Yj+Ym


 ·



V+
j,k

I+
j,k




+



C−1
j 0

0 L−1
j


 ·




−1
Zj+Zm

kZm

Zj+Zm

kYm
Yj+Ym

−1
Yj+Ym


 ·



V+
m,k′

I+
m,k′




(7.38)
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which can be written in the compact form

Fo
j,k = ¯̄tj,k · ¯̄a+

j,k · U+
j,k − ¯̄c−1

j · ¯̄cm · ¯̄tm,j · ¯̄a+
m,k′ · U+

m,k′
(7.39)

where ¯̄c is defined in equation (7.19) and where the transmission matrix ¯̄tj,m is given

by

¯̄tj,m =




2Zj

Zj+Zm
0

0
2Yj

Yj+Ym


 (7.40)

Finally, for inhomogeneous dielectrics, from (7.39) we have

Fo
j,k|ID = ¯̄tj,k · ¯̄a+

j,k · U+
j,k − ¯̄c−1

j · ¯̄cm · ¯̄tm,j · ¯̄a+
m,k′ · U+

m,k′ (7.41)

It is interesting to note that this equation is in a form analogous to the inhomogeneous

boundary condition (3.26) developed for the volumetric FVTD algorithm.

7.3.3 Homogeneous Dielectric Boundary Conditions

When there is no change in the impedance across a thin-wire segment boundary, the

transmission matrices become unity, ¯̄cj = ¯̄cm and (7.41) reduces to

Fo
j,k|HD = ¯̄a+

j,k · U+
j,k + ¯̄a−j,k · U+

m,k′ (7.42)

Again we note the similarity to the homogeneous field case (3.27).
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7.3.4 PEC Boundary Condition (Short-Circuit)

When the wire terminates at a short circuit (say, at a PEC surface in the volumet-

ric mesh) the appropriate boundary condition can be formulated from the dielectric

condition (7.41) by assuming no incoming flux from the boundary (wire-segment m)

and by letting Zm go to zero in the transmission matrix definitions. The resulting

expression is:

Fo
j,k|PEC = ¯̄tPECj,k · ¯̄a+

j,k · U+
j,k, with ¯̄tPECj,k = lim

Zm 7→0

¯̄tj,m =




2 0

0 0


 (7.43)

Expanding and simplifying this expression yields



Ioj,k
Voj,k


 =



YjV+

j,k + kI+
j,k

0


 (7.44)

demonstrating that the voltage at the boundary is zero as we expect across a short

circuit.

7.3.5 PMC Boundary Condition (Open-Circuit)

A PMC boundary condition can be formulated from the dielectric boundary condition

(7.41) by assuming no incoming flux from the boundary and that the admittance Ym

is zero. The resulting expression is

Fo
j,k|PMC = ¯̄tPMC

j,k · ¯̄a+
j,k · U+

j,k, with ¯̄tPMC
j,k = lim

Ym 7→0

¯̄tj,m =




0 0

0 2


 (7.45)
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which when expanded:



Ioj,k
Voj,k


 =




0

kV+
j,k + ZjI+

j,k


 (7.46)

shows that the current at the boundary is zero as we expect through an open circuit.

7.3.6 Absorbing Boundary Conditions

For a physical wire embedded in the volumetric domain V , an absorbing boundary

condition doesn’t make much sense. If however, we are interested in completing the

theory for the solution to the thin-wire equations on W in one-dimensional space only,

an absorbing boundary condition is useful. As the direction of propagation is in the

±ζ direction, the one-dimensional analog of the Silver-Müller boundary conditions

presented in Section 5.1 provides perfect absorption to numerical precision. Therefore,

if an absorbing boundary condition is desired we can impose

Fo
j,k|SM = ¯̄a+

j,k · U+
j,k

(7.47)

7.3.7 Imposed Boundary Conditions

As a final, very useful boundary condition we consider imposing the incoming flux

at a terminal Tj,k of a wire. This concept is similar to that used when imposing the

global mesh-truncation scheme in the volumetric formulation. Therefore, we permit

the following boundary condition:

Fo
j,k|IM = ¯̄a+

j,k · U+
j,k + ¯̄a−j,k · U imposed

j,k
(7.48)



7.4 Spatial Reconstruction Schemes 110

This type of boundary condition will be used exhaustively in Chapter 8 when a subcell

circuit model is introduced. The circuit models will be responsible for determining an

imposed incoming solution U imposed
j,k.

7.3.8 Multiple-Wire Junctions

In this section we wish to briefly point out that we could use characteristic theory to

develop an appropriate boundary condition when multiple wire-segments intersect at

a common terminal. It is easier, however, to interface multiple-wires using the subcell

models developed in Chapter 8 and so we will not consider the multiple-wire junction

case here.

7.4 Spatial Reconstruction Schemes

We will now consider appropriate schemes for interpolating the cell-centered thin-wire

values U (j) to provide the upwinded values U+
j,k at the wire boundaries. The discussion

will be somewhat brief, as the majority of the theory presented in Section 3.7 can be

modified to the one-dimensional reconstruction problem.

7.4.1 First-Order Reconstruction

As in the three-dimensional field case, a simple, first-order interpolation scheme is avail-

able by assuming that the upwind interpolated values U+
j,k are equal to the barycentric

wire values. That is

U+
j,k = U (j) +O(∆ζ). (7.49)
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While this interpolation scheme does offer a numerically stable method for computing

the flux through the wire interfaces, as in the volumetric case, its first-order accuracy

introduces unacceptable levels of dissipation and an alternative should be considered

[11].

7.4.2 Second-Order Minimum Modulus Reconstruction

The second-order accurate reconstruction scheme that is considered herein is Van-

Leer’s minimum modulus interpolation scheme [49]. This method is one of many

so-called flux-limiting schemes and works in a manner similar to the MUSCL scheme

for three dimensional interpolation [11]. We present the method for interpolating the

voltage V+
j,k. The current is interpolated in the same way.

From Taylor’s expansion around the barycentre ζj of Wj, we may write the boundary

value of the voltage V+
j,k as:

V+
j,k = V(t, ζi) + k

|Wj|
2

(
∂ζV(t, ζ))|ζ=ζj

)
+O(|∆ζ|)2

= V(j)(t) + k
|Wj|

2

(
∂ζV(t, ζ))|ζ=ζj

)
+O(|∆ζ|)2

(7.50)

where, going from the first equality to the second, exploits the fact that value at

the barycentre ζj is approximated to second order by the average value over Wj (see

(3.37)). This leaves us with the job of determining the spatial derivative ∂ζV . The

minimum-modulus scheme constructs three estimates for the derivative: a first-order

forward difference ∆F , a first-order backward difference ∆B and a second-order central
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difference ∆C :

∆Fj
=

Vj+1 − Vj
0.5|Wj+1|+ 0.5|Wj|

∆Bj
=

Vj − Vj−1

0.5|Wj|+ 0.5|Wj−1|

∆Cj
=

Vj+1 − Vj−1

0.5|Wj+1|+ |Wj|+ 0.5|Wj−1|

(7.51)

where the Vj = V(t, ζj) is the voltage at the centroid of Wj, approximated to sec-

ond order by the average V(j). A first-order approximation to the derivative is then

computed as:

(∂ζV)|ζ=ζj = minmod(∆Cj
,minmod(θ∆Bj

, θ∆Cj
)) +O(∆ζ) (7.52)

where the definition of the minmod function is given by:

minmod(a, b) =





0 if ab < 0

a if |a| < |b|

b otherwise

(7.53)

and where the free parameter θ ∈ [1, 2] is used to limit the reconstruction in the

presence of high-gradients [49]. The product of the derivative approximation (7.52)

with k|Wj|/2 in (7.50) maintains a second-order accurate numerical scheme.

7.4.3 Higher-Order Reconstruction

As in the volumetric case, it is possible to develop higher-order schemes for spatially

reconstructing the solution from each side of a thin-wire segment. In fact, for uni-

formly discretized wires, it is relatively straight-forward [50, 10], especially when we
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limit consideration to smoothly varying currents and charge along the wire and we

can neglect the need for shock-capturing, non-oscillatory schemes [50]. Without going

into mathematical detail, when only smooth functions are concerned, the reconstruct-

ing problem reduces to reproducing a unique polynomial inside Wj from the average

solutions in Wj and surrounding cells [10]. It’s implementation is straightforward.

7.5 Thin-Wire to Field-Solver Coupling

To this point, we have developed the solution to the one dimensional wire equations

(7.20) by assuming that the source term S(j)(t) is zero. As our objective is to provide

a subcell thin-wire model for volumetric simulations, we must now address the cou-

pling between the thin-wire model and the volumetric FVTD scheme. As previously

discussed, this coupling occurs to a radial distance ρ0 surrounding each wire. This dis-

tance is empirically selected as 1.7∆V where, for uniform volumetric meshes, ∆V is the

average edge length in the partition {Vi} [19]. For non-uniform meshes ∆V should be

determined from the average edge lengths in proximity to the wires [19]. An analysis

of the effects of the definition of ρ0 on the accuracy of the thin-wire model are beyond

the scope of this work.

The coupling mechanism is subdivided into two parts: field-to-wire coupling and wire-

to-field coupling and has be shown to be unconditionally stable [18].

7.5.1 Field-to-Wire Coupling

Coupling from the fields to the wires occurs in the thin-wire equations (7.20) through

the source term S(j)(t) = [0 〈Eζ(t, ζ)〉(j)]T . For wire segment Wj the source is computed
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as:

〈Eζ(t, ζ)〉(j) =
1

|Wj|

∫∫∫

V

Eζ(t, ζ)g(ρj)Φj(ζ)dV (7.54)

where ρj is dependent on the orientation of segment Wj and where Φj(ζ) = 1 when

ζ ∈ Wj and is zero otherwise [18]. The finite support of both g(ρj) and Φj(ζ) limit the

integration over the entire computational domain V to the vicinity of Wj and (7.54)

can be evaluated in constant time. We denote the set of volumetric cells contributing to

the integral (7.54) as {V j
m} ⊂ {Vi}, m = 1, . . . ,Mj. The integral over each cell in {V j

m}

can be evaluated numerically to arbitrary order, or can be approximated to second

order by evaluating (7.54) at the barycentre of each contributing volume. In either

case, the electric field component Eζ(t, ζ) = ~E(t, ~r) · ζ̂j is determined by reconstructing

the electric field ~E(t, ~r) from cell-averaged field values in the vicinity of ~r.

7.5.2 Wire-to-Field Coupling

Coupling from the wire to the fields is achieved by introducing a volumetric current

produced by the wire-segments [18]:

~J (t, ~r) =

NW∑

j=1

I(t, ζ)g(ρj)Φj(ζ)ζ̂j (7.55)

By definition, the contribution from Wj is restricted to {V j
m}. Assuming that all

impressed currents arise from the thin-wire model, the source term ~S(i)(t) required for

the volumetric update (3.5) on finite-volume Vi is computed by evaluating:

~J (i)(t, ~r) =
1

|Vi|

∫∫∫

Vi

NW∑

j=1

I(t, ζ)g(ρj)Φj(ζ)ζ̂jdV (7.56)
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Once again the integral can be computed using numerical quadrature to arbitrary

order, or can be approximated to second order by evaluating the integrand at the

barycentre of Vi. The current I(t, ζ) is reconstructed for arbitrary ζ using the stored

segment-average values.

7.6 Bent Wires, Multi-wire Junctions and Charge Buildup

When curved wires are approximated using straight wire segments, or when multiple

segments intersect at a common terminal, the coupling cylinders associated with each

wire segment overlap as shown in Figure 7.3 (a). Under these circumstances, the

distributed current density (7.56) is no longer spatially continuous and may result in

an unphysical build-up of charge within the volumetric domain as shown by the light

grey region in the figure. In [18, 19] the charge build-up manifests itself as an undamped

low-frequency oscillation in the numerical simulation of thin-wire loops.

For continuously curved wires, the interpolation cylinders can be modified to ensure

that the resulting current-density is continuous in the interpolation cylinder as shown

in Figure 7.3 (b). In our implementation, we adopt the geometry bending approach,

provided with complete details in [19]. For junctions involving three or more wire

segments, enforcing a continuous current density is difficult. While Chapter 8 will pro-

vide a mechanism for interfacing an arbitrary number of thin-wire segments connected

at a single point in the absence of field-coupling, we have not yet been able to solve

the problem of discontinuous currents at multi-wire junctions and further research is

required. This does not mean that multi-wire junctions cannot be simulated – we may

allow the wire-segments to overlap and try to reduce the charge-build up by selecting

time-functions with minimal low-frequency components. This is not the ideal solution,
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Segment Barycenter

Segment Terminal

Thin-wire Segment

Segment Influence

Multiple

Cylinder

Segment Influence

Partial Influence

(a) (b)

Fig. 7.3: A 2D representation of the thin-wire to volume coupling influence. (a) Without
modification, the coupling cylinders of connected, but bent, wire segments overlap
resulting in discontinuous spatial current and charge build-up. (b) For two wires,
the cylinder can be modified to ensure spatial continuity of the volumetric current
density.

and a resolution to this problem will be the focus of future work. In addition to these

problems, even for straight wires the coupling between segments and cells can result

in unphysical discontinuous current densities when a finite-volume is only partially in-

fluenced by a segment as shown by the dark shaded areas in Figure 7.3 (a) and (b). In

these cells, the forcing term (7.56) is non-zero only if the numerical quadrature point

intersects the interpolation cylinder and is therefore dependent on the distribution of

quadrature points within the influenced cell.

As will be shown in Chapter 9, in many cases the numerical artifacts associated with

discontinuous currents in the interpolation cylinders do not prohibit the computation-

ally economic extraction of broad-band system parameters. A rigorous study of the
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effects of charge-buildup on problems sensitive to a lack of charge-conservation (e.g.

near-field measurements in the proximity of multi-wire junctions) is reserved for future

work.

7.7 Time Integration

The local system of equations (7.20) on each wire-segment Wj can be written in system

form analogous to the volumetric system (3.46) as:

dtU(t) = −F · R · ~U(t) + Σ · U(t) + S(t) (7.57)

where the sparse global matrix F is understood to account for the flux integration and

operates on the boundary states obtained by operating with the sparse reconstruction

matrix R on the cell-averages. The diagonal matrix Σ accounts for the loss terms. As

this system is in precisely the same form as (3.46), all of the explicit time-integration

schemes developed in Section 4.1 apply.

Global stability on the wire-segments is ensured provided the local time-step ∆tj given

by:

∆tj ≤
|Wj|
cj

(7.58)

is satisfied on each wire segment Wj [11]. Therefore, for a global time-stepping scheme,

we must select the minimum of either the volumetric time-step or the wire time-step.

For time-integration in the context of the volumetric local-time-stepping (LTS) scheme

presented in Section 4.3, we assume, for the sake of simplicity, that all connected wire-

segments and the volumetric elements they couple to, exist at the same LTS level. This
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can easily be ensured by imposing this constraint on the LTS pre-processing algorithm

detailed in Section 4.3.1.

7.8 Chapter Summary

In this chapter, a thin-wire subcell model that can be arbitrarily oriented within the

volumetric computational domain, has been developed. The upwind and flux-split

FVTD solution to the resulting thin-wire equations has been provided in detail. In

the next chapter we present a novel method for incorporating subcell circuits that can

be used to interconnect, terminate and/or drive the thin-wire equations providing an

elegant mechanism for the extraction of broad-band engineering system parameters.

We reserve numerical validation of the thin-wire and circuit models to Chapter 9.



8

FVTD Thin-Wire Boundary

Conditions by Subcell

Lumped-Circuit Models

There are no surprising facts, only models that are surprised by facts; and
if a model is surprised by the facts, it is no credit to that model. – Eliezer
Yudkowsky

In many applications it is desirable to interface thin-wires with lumped element circuits.

Examples include sourcing a voltage onto an antenna [51]; modeling tunable radio-

frequency (RF) coils used in Magnetic Resonance Imaging (MRI) applications, where

thin-wires are connected in series or parallel to small tuning capacitors [52, 53]; and

driving transmission lines with sub-cell circuits to determine system electromagnetic

susceptibility to ambient electromagnetic field coupling to the transmission lines [54].
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In this chapter a lumped-element subcell circuit model used to terminate, drive and/or

interconnected thin-wire segments, is developed. The theory permits a unification of

the three levels of electromagnetic analysis: circuit modeling, transmission-line mod-

eling and electromagnetic field modeling. Motivated by the work in [55], we solve the

coupled circuit-wire system using a modified nodal analysis (MNA) approach [56] and

the thin-wire characteristic theory developed in Section 7.2.7. The resulting numerical

scheme supports multiport networks, modeled as subcell circuits, to be connected to

multiple thin-wire elements.

This chapter begins by describing the nodal analysis (NA) and modified nodal analysis

(MNA) circuit solving techniques that are used to automate the construction of the

circuit equations. Once the basic circuit-solving concepts have been covered, the ap-

propriate coupling mechanism between the thin-wire equations and the MNA circuit

description is developed. Finally, an explicit solution method for solving the coupled

thin-wire/circuit equations is provided.

8.1 Circuit Solutions

Circuit analysis methods are based on the concepts of branch currents, nodal voltages,

and the so-called constitutive equation relating a branch current and branch voltage

(the later being the difference between the nodal voltages terminating a branch). As-

suming we have a circuit branch denoted by Qpp′ between nodes Pp and Pp′ having

respective nodal voltages vp and vp′ we can write a general form of a branch constitutive

equation as

Ypp′vpp′(t)− Zpp′ipp′(t) = fpp′(t) (8.1)
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Branch Constitutive Ypp′ Zpp′ fpp′

Type Equation

Resistor vpp′ −Ripp′ = 0 1 −R 0

Short Circuit vpp′ = 0 1 0 0

Conductor Gvpp′ − ipp′ = 0 G −1 0

Open Circuit −ipp′ = 0 0 −1 0

Capacitor sCvpp′ − ipp′ = Cvpp′(0) sC −1 Cvpp′(0)

Inductor vpp′ − sLipp′ = −Lipp′(0) 1 −sL −Lipp′(0)

IVS vpp′ = vs(t) 1 0 vs(t)

ICS ipp′ = is(t) 0 1 is(t)

Tab. 8.1: Constitutive relationships for some common circuit branches. The acronyms IVS
and ICS respectively refer to independent voltage sources and independent current
sources.

where vpp′ = vp − vp′ is the branch voltage, ipp′ is the branch current flowing from

Pp to Pp′ , Zpp′ is an impedance, Ypp′ is an admittance and fpp′ is some known forcing

quantity. Introducing the Laplace variable s for the time-derivative, we summarize

the constitutive equations for some common circuit elements in Table 8.1 [56]. For the

capacitor and inductor, the forcing term fpp′ given by Cvpp′(t = 0) and −Lipp′(t = 0)

respectively, denote the initial conditions across the branch. For simplicity in what

follows we will always assume that at time t = 0 no energy is stored in either capacitors

or inductors.

8.1.1 Nodal Analysis

Nodal analysis (NA) is a very simple, but powerful, technique used to solve circuit

equations. Topologically, the circuit is described by a set of P + 1 nodes {Pp}, p =

0, . . . P , where P0 is a reserved reference node associated with zero potential. Each

node assumes a corresponding nodal voltage value vp with v0 = 0 [V ]. Nodal analysis

seeks to uniquely determine the nodal voltages by enforcing Kirchoff’s Current Law
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(KCL) at each node. KCL states that the sum of all branch currents leaving node Pp

is equal to zero. To enforce KCL at node Pp we denote the set of qpp′ branches between

nodes Pp and Pp′ as {Qq
pp′}, q = 1, . . . , qpp′ where q uniquely identifies each branch.

NA assumes that the branch current iqpp′ flowing from Pp to Pp′ along the branch Qq
pp′

can be explicitly obtained from the branch constitutive equation. Then, KCL at node

Pp can be written as:

Pp :
P−1∑

p′=0
p′ 6=p

qpp′∑

q=1

iqpp′ = 0 (8.2)

If a branch Qq
pp′ does not exist, it can be interpreted as an open circuit and according

to the constitutive equation in Table 8.1 the current iqpp′ is zero and does not contribute

to the summation.

Nodal analysis assumes an explicit equation for iqpp′ . Inspection of Table 8.1 indicates

that describing iqpp′ explicitly is possible for conductors, open-circuits, capacitors and

independent current sources. When the constitutive equation does not involve the

branch current (short circuits and independent voltage sources) or involves the time-

derivative of the current (inductors), nodal analysis cannot be applied directly and a

modification is required. For finite, non-zero, resistive branches the current is obtained

explicitly by converting the resistance to a conductance. As an example, nodal-analysis

can be used to solve the circuit presented in Figure 8.1. The circuit consists of three

nodes P0, P1 and P2. The ground node P0 is assumed to be at 0 [V ] while the values

of the nodal voltages v1 and v2 constitute the nodal-analysis solution to the circuit.

Satisfying KCL at each node gives the following equations:

P1 : −is(t) + i12 = −is(t) +G(v1 − v2) = 0

P2 : −i12 + i20 = (v2 − v1)G+ sC(v2 − 0) = 0

(8.3)

As a general circuit can be much more complicated than this simple example, we write
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Fig. 8.1: A current-driven RC circuit.

the nodal equations as a system of equations to illustrate the general procedure:



G −G

−G G


 ·



v1

v2


+

d

dt




0 0

0 C


 ·



v1

v2


 =



is(t)

0


 (8.4)

where the time-derivative has been reinstated for the Laplace variable s. The time-

marching solution to this system of equations constitutes the nodal-analysis solution

to the time-domain circuit.

8.1.2 Modified Nodal Analysis

Modified nodal analysis (MNA) is an extension of nodal-analysis that permits for

branch constitutive equations that either a) do not involve the branch current (short
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Fig. 8.2: A voltage-driven RLC circuit.

circuits and independent voltage sources) or b) involves the time-derivative of the

current (inductors). For each of these circuit elements, an auxiliary current is assumed

to exist and KCL is satisfied using the assumed current. For each auxiliary current

introduced into the system we must determine an additional auxiliary equation such

that new system still permits a unique solution. The constitutive equation for the

branch serves as the auxiliary equation, but as we have introduced an auxiliary current

there is no need to solve the constitutive equation for the current. In order to enable

writing a system of equations for solving the circuit under the modified nodal analysis

formulation, a unique identifier m = P + 1, . . . , P + M is associated with each of the

M branches that require an auxiliary equation. In this way we can uniquely identify

the equations to be satisfied by nodal analysis: P equations (ordered 1, . . . , P ) for

each KCL equation at the nodes Pp and M auxiliary equations. As an example, we

consider the serial RLC circuit depicted in Figure 8.2 driven by an independent voltage
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source. The circuit consists of four nodes P0 (assumed to be at zero potential), P1, P2

and P3. The independent voltage source and the inductor require introducing two

auxiliary currents iV and iL which are assumed to have reference directions as shown

in Figure 8.2. The branch corresponding to the voltage source is assigned auxiliary

index m = P + 1 = 4 while the branch corresponding to the inductor is assigned

auxiliary index m = P + 2 = 5. Satisfying KCL at each node then gives:

Equation 1 at P1 : iV + i12 = iV + (v1 − v2)G = 0

Equation 2 at P2 : −i12 − iL = (v2 − v1)G− iL = 0

Equation 3 at P3 : iL + i30 = iL + sCv3 = 0

(8.5)

These three equations can be written as a system involving the five unknown quantities

v1, v2, v3, iv and iL. The system is divided into two matrices, one for frequency

independent values and one for frequency dependent values. The auxiliary currents

are stored in the vector of unknowns at the assigned auxiliary index m:




G −G 0 1 0

−G G 0 0 −1

0 0 0 0 1



·




v1

v2

v3

iV

iL




+
d

dt




0 0 0 0 0

0 0 0 0 0

0 0 C 0 0



·




v1

v2

v3

iV

iL




=




0

0

0




(8.6)

This system of equations is under-determined. In order to solve it we impose the

auxiliary equations. In this case the two auxiliary equations are the general constitutive

equations for the voltage source and inductor in Table 8.1:

Equation 4 (Auxiliary 1) iV : v1 = vs(t)

Equation 5 (Auxiliary 2) iL : v32 = (v3 − v2) = sLiL

(8.7)
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According to our auxiliary indexing convention we add these auxiliary equations at

the end of the MNA system




G −G 0 1 0

−G G 0 0 −1

0 0 0 0 1

1 0 0 0 0

0 −1 1 0 0




·




v1

v2

v3

iv

iL




+
d

dt




0 0 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 −L




·




v1

v2

v3

iv

iL




=




0

0

0

vs

0




(8.8)

where once again the time-derivative has been re-instated for the variable s.

8.2 MNA System Construction by Branch Stamps

For solving circuits involving an arbitrary number of branches and nodes, it is not

desirable to have to manually enforce KCL at each node. Fortunately, there are a

number of ways of automating the construction of an MNA system [56]. One straight-

forward way (and the method adopted herein) is to use the concept of branch stamps

[56]. By generalizing the example of the previous section, the modified nodal analysis

formulation of a general circuit consisting of P + 1 nodes (including ground) and M

auxiliary branches can be written as a system

¯̄G · ~U + ¯̄C · d
dt
~U = ~S (8.9)

where the (P + M) × (P + M) matrices ¯̄G and ¯̄C respectively contain the frequency

independent and frequency dependent parts of the MNA equations. The (P + M)-

length solution vector ~U consists of the P nodal voltages followed by the M auxiliary

currents and the (P + M)-length source vector ~S contains the source terms. For
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a general circuit the construction of the matrices ¯̄G and ¯̄C, as well as the vector

~S, can be automated. Given a branch Qpp′ connecting nodes Pp and Pp′ (and, if

necessary, an auxiliary index m), a branch stamp provides a quick way of determining

the contributions of the branch to the MNA matrices and source vector.

Branch stamps for some circuit elements are provided in Table 8.2 and are used as

follows. In the Stamp column, a stamp matrix and stamp vector are provided. The

matrices have dimension 2× 2 if no auxiliary equation is required or 3× 3 otherwise.

The source vectors have the same number of rows as the stamp matrix. The entries

in the stamp matrix and stamp vector are to be added to the MNA system matrices

and source vector using the global row indexing p, p′ and m provided beside the rows

of the stamp matrix. These indexes correspond to the nodal indexes p, p′ and the

auxiliary equation m in the global circuit system. The same indexing is assumed

across the columns, which are labeled by the circuit quantity they will multiply in the

global system. Inherent in the stamps for current and voltage sources is an orientation

defined by the source. For the admittance and impedance stamps, only the frequency

dependent impedances (inductors) and admittances (capacitors) are placed in ¯̄C while

the rest of the stamp is placed in ¯̄G.

To illustrate the use of the branch stamps for building the MNA circuit equations we

will reconsider the circuit of Figure 8.2. We begin by constructing the matrices ¯̄G,

¯̄C and the vector ~S and initializing them to zero. We then consider each branch in

the circuit and add the contribution of the branch stamp to the appropriate matrix

and source vector entries. Beginning with the voltage-source branch, according to the

voltage-source stamp we get:
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Branch
Element

Symbol
Stamp Matrix (Left) Source

Vector (Right)
Equations

Current
Source

is(t)

vp

vp’

p

vp vp’

p’
-is(t)

is(t)

ipp′ = is(t)
ip′p = −is(t)

Voltage
Source

vs(t)

vp

vp’

+
-

iV
1
-1

1 −1

p

m

vp iVvp’

p’

vs(t)

vp − vp′ = vs(t)
ipp′ = iV
ip′p = −iV

Admit-
tance

ipp’

vp

vp’

Y p

vp vp’

p’
Y

YY-

Y- ipp′ = Y (vp − vp′)
ip′p = −Y (vp − vp′)

Impe-
dance

iZ

vp

vp’

Z
1

-1

1 −1

p

m

vp iZvp’

p’

-Z

vp − vp′ − ZiZ = 0
ipp′ = iZ
ip′p = −iZ

Tab. 8.2: Branch stamps for some common linear circuit elements.
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¯̄G =




0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




, ¯̄C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




~S =




0

0

0

vs

0




(8.10)

Due to the fact that the voltage source is connected to node 0 (which is not part of

the MNA construction) we see that the stamp contribution is simplified. Using the

admittance stamp for the conductive branch contributes to ¯̄G giving:

¯̄G =




G −G 0 1 0

−G G 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




, ¯̄C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




~S =




0

0

0

vs

0




(8.11)

Using the impedance stamp for the inductive branch and adding the frequency depen-

dent part of the stamp to ¯̄C gives:

¯̄G =




G −G 0 1 0

−G G 0 0 −1

0 0 0 0 1

1 0 0 0 0

0 −1 1 0 0




, ¯̄C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −L




~S =




0

0

0

vs

0




(8.12)

Finally, applying the admittance stamp to the capacitive branch contributes to ¯̄C
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giving:

¯̄G =




G −G 0 1 0

−G G 0 0 −1

0 0 0 0 1

1 0 0 0 0

0 −1 1 0 0




, ¯̄C =




0 0 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 −L




~S =




0

0

0

vs

0




(8.13)

The final system matrices and source vector in (8.13) produced by using the branch

stamp approach is identical to the system (8.8) produced by enforcing KCL at each

node and the auxiliary equations at each auxiliary branch. MNA systems for general

circuit analysis can quickly and efficiently be constructing using branch stamps.

8.3 Thin-Wire Subcell Models Terminated at Subcell Circuits

Having developed the required circuit-theory, we can now present the primary focus

of this chapter: terminating, driving and/or interfacing the thin-wire subcell model

presented in Chapter 7 with lumped-element, subcell circuits. Explicit in the defi-

nition of a subcell circuit, is that the circuit dimensions are much smaller than the

minimum wavelength of interest, and therefore subcell circuits can be introduced into

the volumetric mesh at a single point. For the purpose of volumetric field simulations,

we permit these circuit points to correspond to wire-segment terminals as shown, for

example, by the double-box in Figure 8.3. This example circuit exists at terminal

Tj,1 = T`,−1 connecting segments Wj and W`. In the absence of thin-wires, and inde-

pendent of the actual circuit used, the circuit can be solved by the general procedure

detailed in the previous sections. We must therefore present a method for system-

atically interfacing the wire equations and the circuit equations. We recall, that for
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Fig. 8.3: A circuit-driven thin-wire loop antenna.

wire-segment Wj, the one-dimensional FVTD solution is given by 7.20, repeated here

for convenience:

dtU (j)(t) =− 1

|Wj|
1∑

k=−1

Fo
j,k(t, ζj,k)− ¯̄bj · U (j)(t) + ¯̄cj · S(j)(t) (8.14)

and that we can allow for the incoming contribution of the upwind and flux-split

boundary flux Fo
j,k to be imposed according to (7.48), also repeated here:

Fo
j,k|IM = ¯̄a+

j,k · U+
j,k + ¯̄a−j,k · U imposed

j,k
(8.15)

where the imposed solution can be written as U imposed
j,k = [V imposedi,k I imposedi,k ]T . By termi-

nating a thin-wire at a subcell circuit, we will be looking to determine an appropriate

expression for U imposed
j,k as the solution to the subcell circuit at time t. The proce-
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dure for determining U imposed
j,k is most easily demonstrated by example. Consider the

thin-wire-coupled lumped-element circuit depicted in Figure 8.4 (a). In the absence of

thin-wires, this circuit is the same as that shown in Figure 8.1 and solved by (8.4). In

the figure, thin-wire finite-volumes are denoted by gray rectangles and the thin-wire

orientation is in the ζ direction. To connect the thin-wire to the circuit we will convert

Figure 8.4 (a), to the circuit in Figure 8.4 (b). That is, from the perspective of the

circuit, we will replace the thin-wire with an auxiliary current iTW . By introducing

an auxiliary current, we will require an additional auxiliary equation. This will be

discussed in more detail momentarily. First, however, we must ask ourselves under

what conditions the circuit in Figure 8.4 (b) models Figure 8.4 (a).

8.3.1 Physical Considerations

As the motion of charge, current is a physical quantity. Therefore there is no difficult

in assuming that a current (motion of charge) in the circuit has the same definition

as the current (motion of charge) in the thin-wire model. However, the definitions

of voltage used in the two models, are not consistent. In the circuit, the voltage is

referenced to an arbitrary node. In the thin-wire model, the voltage is referenced to

the empirically selected cylinder radius ρ0 as discussed in Section 7.2.3. For the two

models to be compatible we must make the following fundamental assumption:

• Assumption When a thin-wire is connected to a circuit, at the wire/circuit

boundary the thin-wire voltage can be approximated as the difference between

two nodal voltages in the circuit.

This assumption is required to ensure that the circuit and thin-wire models are ref-

erenced in a unified fashion and we should consider what it implies. On one hand, it
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Fig. 8.4: Interfacing a single thin-wire to a circuit. The circuit/wire geometry shown in (a)
is included in the circuit by the modification shown in (b).

appears that this assumption is quite limiting as the distance ρ0, taken as 1.7 times

the average edge length of the volumetric partition {Vi}, is mesh-dependent. For the

circuit in Figure 8.4 this implies that the reference node v0 would be tied to ρ0 and

could adversely affect simulations. Fortunately, there are a large class of situations

where this assumption does not pose any real constraint. For example, the thin-wire

loop in Figure 8.3 is driven differentially, and both the circuit and the wires connected

to it, can be referenced to v0 at ρ0. Brief consideration will confirm that this is true

for any differential circuit. Furthermore, this assumption also holds whenever multiple

thin-wires are connected, without circuit branches, at a single node as shown in Figure

8.5.
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8.3.2 The Thin-Wire Auxiliary Equation

We now return to the problem of determining an appropriate auxiliary equation for

the assumed auxiliary current iTW for the example of Figure 8.4. In general, we can

permit an arbitrary number of thin-wires to terminate at the circuit. Therefore:

1. For each thin-wire segment connected to a node Pp in the circuit we introduce

an auxiliary current leaving node Pp.

2. Corresponding to the thin-wire auxiliary currents, we introduce auxiliary equa-

tions based on the characteristics of the thin-wire equations. In Section 7.2.7 it

was shown that the characteristics

Wj,±1(t) = (Vj(t)± ZjIj(t))/2 (8.16)
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propagate unchanged along segment j in the ±ζ direction. The fundamental as-

sumption that the thin-wire voltage is consistent with the circuit voltage, allows

us to write the characteristics flowing into the circuit in terms of the nodal volt-

ages and auxiliary currents at the wire/circuit interface and provides a straight-

forward way to obtain the appropriate auxiliary equation.

For the circuit given in Figure 8.4, the characteristic flowing into the circuit at the

k = −1 end of Wj isW−j,−1 = (Vj,−1−ZjIj,−1)/2. We can therefore introduce the thin

wire auxiliary equation:

v2 − ZjiTW =W−j,−1 (8.17)

relating the nodal voltages and auxiliary thin-wire current iTW to the incoming char-

acteristic. Here we have assumed that the thin wire voltage is equal to the difference

between v2 and v0. Implicit in all of this discussion is that we are working at time t,

or in the discrete case n∆t. If the incoming characteristic is known at n∆t, equation

(8.17) provides the required additional auxiliary equation relating iTW to the nodal

voltages. Augmenting the system (8.4) to the wire-free version of the circuit in Figure

8.4 with the thin-wire auxiliary current and equation we obtain:




G −G 0

−G G 0

0 1/2 −Zj/2



·




v1

v2

iTW




+
d

dt




0 0 0

0 C 0

0 0 0



·




v1

v2

iTW




=




is(t)

0

W−j,−1(t)




(8.18)

The system of equations (8.18) completely determines the behaviour of the coupled

thin-wire, lumped-circuit system. For any circuit, the auxiliary equations for the thin-

wires are determined this way, by using the incoming characteristic as a source, and

relating the thin-wire current and voltage to the auxiliary current and nodal voltages

of the circuit.
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As a final illustrating example, we consider the example circuit in Figure 8.3 where

the MNA system can be written as:




0 0 1 0 1

0 0 0 1 −1

1 0 −Zj 0 0

0 1 0 −Z` 0

1 −1 0 0 0




·




v1

v2

i1

i2

is




=




0

0

2W+1
j,1 (t)

2W−1
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(8.19)

where ¯̄C is zero. The first two equations enforce KCL at nodes P1 and P2. The

third and fourth (auxiliary) equations enforce the constitutive relationship between the

circuit quantities and the thin-wire characteristics. The last equation is an auxiliary

relationship between the voltage source and the nodal voltages. The solution to matrix

equation uniquely determines the nodal voltages and auxiliary currents at time t.

Whenever a thin-wire segment j is connected to a circuit on facet k, the imposed

incoming solution U imposed
j,k required in (8.15) can be obtained directly from the circuit

solution by simple book-keeping. In the case of the differentially-driven thin-wire loop

shown in Figure 8.3 the appropriate imposed solutions are:

U imposed(t, ζj,1) =



v1

−i1


 U imposed(t, ζ`,−1) =



v2

i2


 . (8.20)

The above method, though illustrated by example, is completely general. An arbitrary

number of thin-wire segments can be connected to an arbitrary circuit. The construc-

tion of the matrix equation, incoming characteristics and segment fluxes, is easily

automated with minimal book-keeping. In addition, the time-history of the circuit so-

lution can be stored to provide a simple mechanism for computing the input impedance



8.4 Time-Synchronization 137

to the entire electromagnetic system. It remains to discuss the time-synchronization

between the circuit solver and the thin-wire model.

8.4 Time-Synchronization

As discussed in Section 7.7, we assume that the thin-wires and volumetric update

occur synchronously and we only need to consider time-synchronization between the

thin-wire model and the circuit-solver. The key step here is to observe that, for any

of the explicit time-integration schemes discussed in Section 4.1, the thin-wire flux

integration required in (8.14) must be evaluated at the current time n∆t where the

thin-wire solution is known. Therefore we can consider the general circuit/thin-wire

system (8.9) evaluated at time n∆t:

¯̄G · ~U(n∆t) + ¯̄C · d
dt
~U(n∆t) = ~S(n∆t) (8.21)

The right-hand side of this system ~S(n∆t) is known: it is a combination of analytically

defined forcing voltages and/or currents and thin-wire characteristics at time n∆t.

Consequently the system can be solved using any implicit backward-difference scheme.

Herein we consider only the simple backward-Euler time-integration:

~Un =

(
¯̄G+

¯̄C

∆t

)−1( ¯̄C

∆t
~Un−1 + ~Sn

)
+O(∆t) (8.22)

By storing the circuit variables for one additional time-step (n−1) and by precomputing

and inverting the leading matrix, the circuit solution (8.22) and the corresponding

incoming wire-fluxes e.g (8.20) are efficiently computed.
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8.5 Chapter Summary

In this chapter a subcell circuit model for terminating/driving and or interfacing mul-

tiple thin-wire segments has been introduced. The model uses modified nodal analysis

augmented by a characteristic thin-wire equation to provide a consistent system of

equations coupling the circuits and the wires. These circuits can be used to implement

any of the flux-reconstruction boundary conditions presented in Section 7.3.



9

Subcell Modeling Validation

Two scientific activities are equally valid if they achieve results that are
true. – Alvin M. Weinberg

In this chapter the thin-wire and circuit subcell model implementations presented in

Chapters 7 and 8 are validated for some select physical problems.

9.1 Example 1: A Thin-Wire Dipole

We consider the example of a 41 [m] dipole antenna radiating in free space. This

example was simulated in [18] and serves as a good basis for comparison. The wire is

a 10 [mm] radius perfect electric conductor and is aligned in the z direction. The wire

is embedded at the centre of a spherical volumetric domain of radius 100 [m]. The
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Fig. 9.1: Thin-wire dipole geometry. The dipole contains 42 segments (not all shown) and
is driven by an independent voltage source modeled as a lumped-circuit. The wire
terminals are also modeled by circuits having a near-zero conductance.

wire is discretized to have 42 segments of equal length. The volumetric discretization

contains 300, 000 tetrahedral volumes and supports a maximum frequency of around

30 [MHz]. The coupling distance ρ0 is automatically computed to be 2.78 [m] and the

wire/field coupling integrals (7.54) and (7.56) are evaluated using third-order numerical

quadrature. As shown in Figure 9.1, the dipole is driven by a circuit containing a single

independent voltage source. The voltage time-variation was selected as the derivative

of a Gaussian pulse with mean 12 × 10−8 [s] and standard deviation 4.0 × 10−8 [s]

in order to correspond with the source used in [18]. This source contains appreciable

energy up to 30 [MHz]. In addition to the voltage source, the dipole is terminated at

each end by a circuit that models an open circuit. This is accomplished by using an

infinite series resistance that is numerically modeled as a very large value (on the order
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of 109). While we could have used the open-circuit boundary reconstruction provided

in Section 7.3.5, we use the circuit to prove its versatility.

To extract the input impedance of the dipole, the source voltage vs(t) and current

i1(t) = −is(t) (also shown in Figure 9.1) are stored over the duration of the simulation

for post-processing. The results of a MUSCL, predictor-corrector simulation are shown

in Figures 9.2 and 9.3. In Figure 9.2 (a) we show the time-domain voltage, while Figure

9.2 (b) shows the input current into the dipole. The simulated input impedance is

extracted by taking the ratio of the FFT of the source voltage and input current. In

part (c) of the figure, the input resistance is shown, while part (d) depicts the input

conductance. These results compare very well with those of [18]. Specifically, the first

half-wavelength resonance computed by the software package NEC-3 is 72.2 [Ω] at 3.53

[MHz] [18]. From our results we obtain 72.5 [Ω] at the same frequency.

9.2 Example 2: Straight and Bent Monopole Coupling

We now present the results of the thin-wire model applied to the coupling between

two monopoles as published in our paper [57] in which the model is validated by

measurements. We consider two similar geometries as shown in Figure 9.4. In the first

geometry, (a), we are interested in simulating two monopole antennas above a PEC

ground plane. The antennas are 5 [cm] long and separated by 30 [cm]. The ground

plane is 60 [cm] by 30 [cm]. The expected quarter wavelength operating frequency is

1.5 [GHz]. For the second geometry (b), the same ground-plane is used and two L-

shaped antennas made up of two 5 [cm] sections of wire were placed at the monopole

locations. In both examples, the antennas have a radius of 0.25527 [mm]. Additional

details are available in [57].
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Fig. 9.2: Thin-wire dipole results. (a) Source Voltage, (b) Input Current, (c) Input Resis-
tance and (d) Input Conductance.
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(a)

(b)

(c)

Fig. 9.3: (Colour) Visualization of simulated dipole fields. The magnitude of the electric
field is shown at (a) 1200, (b) 2000 and (c) 2800 time-steps for a cross-section of
the computational domain.

.
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The volumetric discretization of the meshes resulted in roughly 159, 000 tetrahedral

volumes and 100 thin-wire segments for the two monopoles (200 segments for the

L-shaped antennas). The maximum frequency supported by both meshes is approxi-

mately 2 [GHz]. In both simulations, one of the antennas was driven at the ground-

plane junction by a voltage source. It is important to point out that this type of source

is not differentially driven, and so the voltage referenced to ρ0 could have an effect. For

both geometries, the antennas were excited using the derivative of a Gaussian pulse

with mean 6.5×10−9 [s] and standard deviation 10−10 [s] providing appreciable energy

between 200 [MHz] and 5 [GHz]. From the simulation results, the network scattering

parameters were computed using measured currents and voltages at the antenna feed-

points. In addition, the geometries were fabricated by the lead authors of [57] and

measurements were taken using a network analyzer. The simulation and measurement

results for the two geometries are compared in Figure 9.5 (monopoles) and Figure 9.6

(L-shaped). A NEC simulation is also shown for comparison [58].

Despite the fact the wires were not differentially driven, the results are quite good. One

possible explanation is provided by image theory: the ground plane is sufficiently large

that an equivalent problem would be to remove the ground-plane and to differentially

drive a system where the antennas are imaged across the ground-plane [35].

9.3 Example 3: A Thin-Wire Loop Antenna

We now demonstrate the FVTD thin-wire capabilities for modeling a thin-wire loop.

This problem is particularly interesting as the thin-wire model permits the loop to be

modeled using piece-wise continuous line-segments as opposed to other FDTD models

that require stair-stepping. In order to compare with the results in [18], we choose a
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(a)

(b)

Ground Plane
Antenna

Fig. 9.4: (Colour) Geometry of simulated straight and L-shaped antennas. (a) Straight
monopoles above a rectangular ground-plane. (b) L-shaped antennas above a rect-
angular ground plane. In both geometries, the regions surrounding the antennas
are free-space and are introduced to ensure that the discretization in proximity to
the antennas is the same size as the wire discretization.



9.3 Example 3: A Thin-Wire Loop Antenna 146

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

Frequency (GHz)

|S
2

1
| (

d
B

)

 

 

Measurement
FVTD

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−150

−100

−50

0

50

100

150

200

Frequency (GHz)

<
 S

2
1

 (°
)

 

 

Measurement
FVTD

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

|S
1

1
| (

d
B

)

 

 

Monopole Measurement

FVTD

NEC

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−150

−100

−50

0

50

100

150

200

Frequency (GHz)
<

S
1

1
 (°

)

 

 

Monopole Measurement

FVTD

NEC

(a) (b)

(c) (d)

Fig. 9.5: (Colour) Simulation and measurement results for the coupling between two straight
monopoles over a ground plane. (a) Magnitude of S11, (b) Phase of S11, (c) Mag-
nitude of S21, (d) Phase of S21
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loop having a diameter equal to 1 [m], while the wire itself has a 1.05 [mm] radius.

The loop is embedded in a spherical computational volume having a radius of 4 [m]

and truncated using the local Silver-Müller boundary conditions. The discretized ge-

ometry contains 670, 000 tetrahedral volumes and 48 equal-length wire-segments. The

maximum frequency supported by the mesh is around 400 [MHz]. The loop is driven

using the voltage source shown in Figure 8.3, as a single independent source placed

between the terminals of two wire-segments. The derivative of a Gaussian pulse with

mean 10−8 [s] and standard deviation 1.25× 10−9 [s] is used to excite the loop over a

frequency range from 10 to 400 [MHz].

This geometry is particularly difficult to simulate and some remarks should be made

to this effect.

• First, as shown in Figure 8.3, each pair of wire-segments is bent. It is abso-

lutely necessary to bend the wire/field coupling cylinders as shown in Figure 7.3.

Without this modification, undamped low-frequency oscillations appear in the

solution, also observed in the FDTD and FETD implementations [18, 19]. These

oscillations can be partially suppressed by selecting excitation voltages without

low-frequency components (i.e. as the derivative of a Gaussian pulse), but is not

always the best approach if we are concerned with low-frequency behaviour.

• Second, there is a large discrepancy between the minimum three-dimensional

time-step of 2.752 × 10−11 [s] and the minimum one-dimensional time-step of

2.18 × 10−10 [s]. Therefore, we run the simulation at the volumetric time-step.

Unfortunately, this causes an additional problem: the first-order Van Leer spatial

reconstruction scheme (7.50) incurs too much dissipation at the volumetric time-

step. Therefore, a high-order reconstruction scheme must be used. The results

presented in this section are the combination of a fourth-order Runge-Kutta
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time-integration and a third-order spatial reconstruction on the wire. In the

volume, the MUSCL reconstruction was used. The high-order reconstruction on

the wire is based on a simple polynomial reconstruction [10, 50]. As the source

and fields are both smooth functions of time, a non-oscillatory reconstruction on

the wire was not required. We should also mention that high-order reconstruction

may not be required in all cases. For example, if radiative losses are sufficiently

high, they may dominate the dissipative loss on the thin-wires due to lower-order

reconstruction schemes.

• Third, and lastly, a sufficiently high quadrature rule must be used to ensure

that the elements only partially influenced by the wire have a volumetric current

density associated with them (recall Figure 7.3). For the loop we have used a

4th order integration rule.

The results of the FVTD simulation of the thin-wire loop are presented in Figures

9.7 and 9.8. In the first figure, the input voltage (a) and current (b) are shown. The

input impedance is again computed as the ratio of the FFTs of these quantities and

the input resistance (c) and conductance (d) are plotted up to 400 [MHz]. Again these

results are in excellent agreement with those published in [18]. Specifically, the first

resonance occurs at 99.58 [MHz] and corresponds to a resistance of 136 [Ω], within 1%

of the 99.4 [MHz] resonance and 137 [Ω] resistance obtain in [18].

9.4 Example 4: A Capacitively Tuned RF Loop for MRI

As a final example, we will further demonstrate the flexibility of the subcell circuit-

model by tuning an RF loop antenna to a 63 [MHz] operating frequency. This problem

is typical in the design of RF loops in Magnetic Resonance Imaging (MRI) signals for
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Fig. 9.7: Thin-wire loop simulation results (a) Source voltage (b) Input current, (c) Input
resistance and (d) Input conductance.

.
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(a)

(b)

(c)

Fig. 9.8: (Colour) Thin-wire loop field visualization. The loop is represented by the dashed
white curve. (a) 800 time-steps (b) 1200 time-steps and (c) 1600 time-steps.
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Fig. 9.9: Geometry of a capacitively tuned MRI thin-wire loop.

signal acquisition. The geometry is that of an 18.2 [cm] metallic loop (modeled as a

PEC) having a diameter of 2 [mm]. The circumference of the loop is approximately

0.5719 [m] and corresponds to a half-wavelength at 262.3 [MHz]. The loop is embedded

in an 80 [cm] spherical volume truncated with Silver-Müller boundary conditions and

is excited by the circuit shown in Figure 9.9. The time-domain voltage source varied

as the derivative of a Gaussian pulse with mean 2×10−9 [s] and standard deviation 6×

10−10 [s], resulting in appreciable energy over a bandwidth from 200 to 700 [MHz]. The

half-wavelength resonance of this loop at 262.3 [MHz] is not suited for, say, 1.5 Tesla

MRI systems that operate at approximately 63 [MHz] [53]. It is, however, much more

compact that the 37.9 [cm] radius loop having a natural half-wavelength resonance

at 63 [MHz]. Therefore, we must bring the first resonance of the 18.2 [cm] radius

loop down to 63 [MHz]. The low-frequency inductance of this loop can be computed

analytically as Lloop = 0.525 × 10−6 [H] [59]. Therefore, we can tune the loop by
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Fig. 9.10: Simulation results for an MRI-tuned RF loop. (a) Input current showing the
introduction of the 63 [MHz] resonance and (b) Input conductance displaying a
peak at 63.53 [MHz].

selecting a capacitance Cloop such that (LloopCloop)
−1/2 = 2π·63 [MHz], or Cloop = 12.156

[pF]. This capacitor could be added in parallel across the voltage source vs(t) shown in

Figure 9.9, but this problem is not that interesting because its input impedance could

be computed by adding the input impedance of the original loop in parallel with the

analytic input impedance for the capacitor. Instead, we add the capacitor in series by

introducing three capacitors Cs at the three locations shown in the figure. The value

of Cs is set equal to 3Cloop so that the series sum of the capacitances equals Cloop.

While such a geometry may not be precisely that used in an MRI system, it serves the

purpose of demonstrating the power of the subcell circuit model. In this configuration,

the capacitors become part a part of the field/wire system and a full simulation must be

completed to obtain the input impedance. It is interesting to note that a similar setup
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is simulated using an alternate thin-wire model (the so-called thin-rod approximation)

for FDTD in [60]. In that work, the authors simulate a square thin-wire loop and also

add series capacitors to tune the loop for MRI applications. The primary difference

is that the thin-wire model used in [60] does not introduce charge and current as new

variables (it falls into the “second” class of models discussed in Section 7.1). For

such a model, it is not clear how to introduce a subcell circuit model that directly

constrains the current and charge on the line. Instead, the capacitors are introduced

as a modification of the permittivity in the volumetric discretization, localized to the

capacitors. This makes the mesh dependent on the subcell model. On the other hand,

our subcell circuit model places no such constraint on the mesh.

An FVTD simulation was performed on a discretized computational domain consisting

of 450, 000 volumetric cells and 48 wire segments. The parameter ρ0 was automatically

computed as 1.5 [cm]. The simulation results are shown in Figure 9.10. The first

resonance occurs at 63.53 [MHz] and corresponds exceptionally well to the desired

MRI frequency of 63 MHz.

9.5 Chapter Summary

In this chapter, the thin-wire and lumped-circuit subcell models have been validated

for a few interesting modeling problems. The results presented correspond quite well

with theory and/or expectations. Specifically, the subcell models appear like excellent

candidates for full field modeling of MRI systems. Future work will include modeling

of such systems including MRI instrumentation cabling and the presence of physical

inhomogeneities used to model MRI targets.
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FVTD Parallelization

Sometimes one can improve the theories in the sense of discovering a
quicker, more efficient way of doing a given calculation. – John Pople

In this chapter an FVTD parallelization scheme for distributed parallel systems is

presented. As we have seen in Chapter 2, the conservative form of Maxwell’s Equations

is hyperbolic, and consequently time-evolution of the solution is dependent only on

local values. As will be shown, this makes parallelization straightforward provided

that a suitable decomposition of the computational domain is available.

The parallelization is presented in three stages. First, in order to demonstrate the gen-

eral parallelization strategy, the bare volumetric solution is parallelized without the lo-

cal time-stepping (LTS) scheme presented in Section 4.3 or the global mesh-truncation

scheme presented in Section 5.2. Second, a parallelization strategy is developed for

when the volumetric algorithm is complicated by LTS and global mesh truncation.
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Finally, a parallelization strategy that incorporates all aspects of the volumetric solver

and the sub-cell models formulated in Chapters 7 and 8 is given.

In the aforementioned parallelization strategies, we are primarily interested in getting

the algorithms to function in parallel. In each case, an appropriate weighting scheme

is suggested that would theoretically permit equal load balancing in a parallel system.

Only the general strategies have been implemented. Implementation of the precise

load-balancing mechanisms discussed in this chapter is reserved for future work. Even

in the absence of perfect load balancing, results presented at the end of this chapter

demonstrate increased efficiency in a parallel environment.

10.1 A Brief History of Parallel FVTD

Parallel FVTD, in the field of computational electromagnetics, dates back quite far.

As early as 1995, Rowell et. al. had developed a characteristic-based FVTD imple-

mentation, parallelized on both structured and unstructured grids [61]. In 1997, Blake

and Buter published a parallel FVTD implementation for body-fitted (conforming)

grids [62]. Shang et. al provide significant details of an MPI-based “ghost-layer” im-

plementation on body-conforming grids [63]. Other implementations and details can

be found in [64, 65, 66].

10.2 Distributed Parallel Environments - Message Passing Interface

Herein, we consider parallelization schemes for distributed parallel environments, where

by a distributed environment we mean that each processor has its own system memory

(in contrast to shared memory environments where each processing core accesses the
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same memory) [67, 68]. In this regard, we are interested in writing a Single-Program

Distributed-Memory (SPDM) algorithm [68] in which each processing core receives the

same program but contains only a portion of the volumetric domain in its local memory.

Synchronization between processors is performed using the Message Passing Interface

(MPI) [69], which although not technically a standard, is the most common way to

communicate information for high-performance computing on distributed systems and

supercomputers [70].

When discussing the parallelization strategies in this chapter we will approach the

ideas generally. Therefore, the only important features of the selected parallelization

environments are that 1) memory is distributed and not shared and 2) MPI permits

communication over processors. Beyond these facts, we will not have cause to discuss

implementation-specific details.

10.3 Volumetric Parallelization Strategy

We begin discussion of parallel FVTD by considering the volumetric domain V and

its partition {Vi} into NV volumetric elements. This partition is to be equally di-

vided into P disjoint subsets V (p) = {Vi}p, p = 1, . . . , P , containing roughly NV /P

finite-volumes. If we momentarily assume that the time-evolution of a given cell Vi

is independent of all other cells, then by assigning the partition V (p) to processor

p in a P -processor distributed system, the computational time is reduced precisely

to O(NV /P ). The time-evolution of the cell Vi is not, however, independent of the

global solution. Instead, for the upwind and flux-split FVTD scheme considered in

this work, the flux integration around each Vi at each time-step is dependent on the

reconstruction of the boundary states ~U∗ and ~U∗∗ as discussed in Chapter 3. The
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spatial dependence of these states can be summarized as follows:

• For first-order upwinding, the state ~U∗ depends only on the solution in Vi while

the states ~U∗∗ depend only on the solution in neighbouring elements.

• For the MUSCL scheme, the state ~U∗ depends on the solution in Vi and its

gradient, the latter being a function of the solution in neighbouring elements.

The states ~U∗∗ depend on the solution in the neighbouring elements and the

neighbours of neighbouring elements used to produce the neighbouring gradients.

We recall from Section 3.7.4 that the elements required to update a given cell are

referred to as the stencil for that cell. From the above conditions, it is clear that for

first-order upwinding, the stencil for Vi includes Vi itself and its neighbours, while for

MUSCL the stencil extends to the neighbours of neighbours of Vi as shown in Figure

3.4. This suggests that V (p) can be time-evolved (almost) independently of other

processors by adding the additional constraint that the partitions V (p) are spatially

continuous while covering V. Henceforth, each subdomain V (p) is assumed spatially

continuous as shown for a simple 2D example in Figure 10.1; how we compute this

partition is discussed in Section 10.4.2.

Given a partition V (p) and its boundary ∂V (p), processor p can time-evolve the solu-

tion for every element Vi in V (p) (abbreviated Vi(p)) when its stencil lies entirely in

V (p). For elements whose stencils cross beyond the local boundary ∂V (p) the neigh-

bouring elements exist on neighbouring processors and are not available locally (in this

sense the neighbours of a processor share a geometric boundary of the global parti-

tion). We denote the set V ∗(p) ⊃ V (p) as the union of all stencil elements for V (p) –

given the solution in V ∗(p), V (p) can be time-evolved independently of the rest of V .
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Fig. 10.1: A 2D depiction of the continuous parallel partitions for a three-processor dis-
tributed environment. For first-order stencils, the elements of a given domain are
labeled with the number(s) of the processors where they are also present as halo
elements.

Different techniques can be used to complete the set V ∗(p) on processor p. Herein the

concept of “halo”, or “ghost” cells are used [63]. The cells in the region V ∗(p)\V (p)

do not belong to V (p) and therefore lie in the partitions of neighbouring processors.

As the time-evolution of FVTD hinges on the geometric properties of the cells, the

so-called collection of “halo” elements, denoted V h(p) and consisting of V ∗(p)\V (p),

are obtained from the neighbouring processors and are copied on processor p. This

“ghosting” or “haloing” of elements adds an additional (but generally small) global

memory cost of duplicated geometric elements. The benefit is that the geometric

information required to update all elements in V (p) is known. For the simple 2D

example mesh presented in Figure 10.1, the elements on a given processor are numbered

to denote the processor to which they will be copied as halos.
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While the geometric information for each halo element is available directly to the

processor, processor p is not responsible for time-evolving the elements inside V h(p).

Therefore, some book-keeping is required to ensure that each processor knows which of

its elements exist as halo elements on other processors. In what follows we will assume

that such “halo-maps” exist.

10.4 The Parallel Mesh Read and Domain Decomposition

Having presented an appropriate algorithm for accelerating the bulk volumetric field-

solver for distributed systems we are left with selecting an appropriate domain decom-

position technique to determine the subdomains V (p). There is a vast literature on this

problem, so much so that it has its own dedicated website [71] where one can find an

exhaustive BibTex bibliography file [72]. To select a method, let us consider the nature

of the problems we are trying to solve: namely Maxwell’s Equations in a volume V.

We first assume that the distributed parallel environment consists of P processors each

with equal processing speed and that these processors are not running any other tasks.

As we are not considering non-stationary media, the computational domain is fixed and

if we have a partition V (p) that provides us with O(NV /P ) computational complexity

for a given time-step, this complexity persists throughout the numerical simulation.

Next, we assume that the volumetric problem is “sufficiently large” such that the

computational time required to update the halo data at each (partial) time-step is

negligible compared to local update of V (p). Finally, as we are currently neglecting

LTS, ERBC and subcell models, we can safely assume that the computational cost

associated with updating each element Vi in the global V is constant. (While it is

true that for the update of boundary elements, absorbing or perfect conductors, there

is a reduction in the computational cost, this can be neglected.) Combining these
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conditions leads to the following conclusion: a subdivision of V into a covering of P

continuous, non-overlapping subdomains V (p) each containing approximately NV /P

elements will provide O(NV /P ) computational complexity.

Before discussing domain decomposition techniques that provide a partitioning that

satisfies this condition, we consider the memory complexity of the algorithm. As stated

in Section 3.8, the FVTD algorithm requires O(NV ) memory to store the geometric

information and solution at a given time-step. If the entire mesh is stored on each pro-

cessor the memory will scale as O(NV ) independent of the number of processors used.

There are benefits to having the global mesh available to each processor when dynamic

load balancing is considered. For example, recomputing the parallel subdomains to

account for differences in the computational load and/or speed of each processor in the

distributed environment does not require shifting elements from processor to proces-

sor. The cost of this luxury, however, is too great when problem sizes become large;

irregardless of the savings in computational time, it may not even be possible to load

large meshes into memory. Consequently we require that the memory required by the

parallel algorithm also scales as O(NV /P ). In order to accomplish this scaling, we

require a parallel mesh-read.

10.4.1 Parallel Mesh Read

We assume a mesh file that consists of a list of vertices followed by a list of elements

defined in terms of vertex indices. It is assumed that the list of vertices is provided

in order of increasing mesh vertex number. To ensure that the memory never grows

beyond O(NV /P ) on a given processor we perform the following steps, depicted graph-

ically in Figure 10.2:
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• (a) Each processor reads an equal and sequential portion of the vertex list. These

vertices are created in the local memory on each processor. This list of vertices

does not change during the computation and is referred to as the static vertex

list. As the list of vertices in the mesh file is assumed to be given in order of

increasing vertex id, the range of static vertices do not overlap. On each processor

the range of static mesh-vertex indices is computed and broadcast to all other

processors. This provides each processor with the knowledge of which processor

contains what vertices in its static vertex list.

• (a - continued) Next, each processor reads an equal portion of the element list.

These elements are created in local memory and include the mesh ids of the

element vertices. By assigning only a portion of the vertex and element lists

to each processor upon reading the mesh the memory requirements on each

processor are O(NV /P ).

• (b) On each processor p, the positions of the vertices required to define the ge-

ometries of each element are not necssarily available locally as they are only

available in the static vertex lists. We refer to the list of unique vertices required

to define the local elements on processor p as the dynamic vertices. These dy-

namic vertices are obtained by making a request to the appropriate processor

based on the static vertex ranges. The dynamic vertices are created locally and

stored in memory completing the geometric information for the initial mesh read.

At this point we have both a dynamic and static vertex list on each of the pro-

cessors. While this involves additional memory, the memory complexity remains

O(NV /P ).

The benefit of the static vertex lists is that, as they do not change, they permit

complete topological description of the mesh provided that they are supplemented
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Fig. 10.2: Visual description of the parallel mesh read, illustrated in 2D. (a) Sequential sec-
tions of vertices and elements are read on each processor - the vertices make up the
static vertex list. (b) By obtaining the dynamic vertices we can complete the ge-
ometric description of each element. (c) Using a domain decomposition technique
we arrive at a continuous partition of the global domain.



10.4 The Parallel Mesh Read and Domain Decomposition 164

with a global list of all elements connected to each vertex. Such a list is easily created

in O(NV /P ) time by constructing a list of local elements connected to each dynamic

vertex on each processor and communicating these lists to the corresponding static

vertex. Amalgamating the list of all elements connected to a static vertex results in

a global list of elements (and the processors they exist on) connected to that vertex.

For well-structured meshes this results in a constant number of integers (element ids)

associated with each vertex and leaves the computational complexity unchanged.

10.4.2 Domain Decomposition

Having completed an initial parallel mesh read that requires O(NV /P ) memory stor-

age, we can now apply a domain decomposition algorithm with the simple constraint

that the decomposition produces P subdomains V (p) containing approximately NV /P

elements each. Three straight-forward and computationally efficient algorithms that

accomplish this task are: Orthogonal Recursive Bisection (ORB) [73, 74, 75], Hyper-

graph Partitioning (HG) [76, 77], and Space-Filling Curves (SFC) [78, 79]. In an initial

implementation of an FVTD solver, ORB was implemented, from scratch, directly in

the FVTD code [80]. More recently, the Zoltan library has been adopted as it provides

implementations of all three of the considered algorithms [81, 82, 83]. A complete dis-

cussion of these algorithms is beyond the scope of this thesis and the reader is referred

to the references above. What will be mentioned here is that the ORB and SFC algo-

rithms require the geometric location of each element which is available by completing

the dynamic vertex list for the initial mesh read. On the other hand, the HG algo-

rithm only requires the topological connectivity between elements. This connectivity

is computed in constant time using the global static-vertex-to-element list computed

during the initial mesh read.
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Fig. 10.3: An ORB domain decomposition for 7 processors. The volume has been split, and
shifted for perspective. The left side of the image contains 4/7ths of the total
volume.

By running one of the Zoltan domain decomposition algorithms we obtain a partition

index p associated with each element on each processor. The following steps localize

the partitions V (p) on processor p as shown in Figure 10.2 (c):

• Using the computed partition indices, each element with index p is transfered

to processor p. This communication phase results in a momentarily doubling

of the number of elements on each processor (the elements being distributed in

addition to the elements received from other processors corresponding to V (p).

The memory complexity remains O(NV /P ).

• Upon receiving the elements in V (p) the initial element list is destroyed and the

dynamic vertex lists are reconstructed to correspond to V (p).
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• The static-vertex-to-element list is updated to reflect the processor locations of

each element.

• The elements are connected to their neighbours completing the description of

V (p). If an element in V (p) is missing a neighbour on some facet then it is

either a boundary element of the computational domain or the neighbour lies on

a neighbouring processor.

This completes obtaining the list of local elements V (p) on each processor p and we are

left, for example, with the local partitions shown in Figure 10.3 where a 7-processor

partition of the global domain V is shown. We must now augment this local list to

include the halo elements.

10.4.3 Halo Construction

As discussed in Section 10.3, V (p) must be supplemented with V h(p). This is accom-

plished layer-by-layer as follows:

1. For each element in V (p) that is missing a neighbour we determine the processor

that owns the neighbour from the available topological connectivity through the

static vertex lists. (This processor will not exist if the element is a true boundary

element on ∂V .)

2. Each missing neighbour is copied to processor V (p) and appended to the end

of the element list. Book-keeping is maintained to ensure that each processor is

aware of which processors its elements have been copied to.

3. The element connectivity on V (p) is updated to include the newly acquired

elements.
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Fig. 10.4: A visualization of two halo layers required on a single processor for the MUSCL
scheme. The layers have been offset for clarity.

4. Repeat the three steps above until the appropriate number of stencil layers are

acquired.

An example of this procedure is shown in Figure 10.4. By building the halo elements up

layer-by-layer, it is easy to modify the halos to support different spatial reconstruction

schemes.

10.5 The Parallel Volumetric Solution

Having appropriately decomposed the volumetric domain V into P subdomains V (p)

of equal size O(NV /P ) on P processors, the parallel FVTD volumetric solution of

Maxwell’s Equations is straightforward. We note that the effect of the domain decom-



10.6 Volumetric Parallelization and Local Time Stepping 168

position is to partition the global system of equations (4.1):

dt ~U(t) = − ~F(~U(t)) + Σ · ~U(t) + ~S(t) (10.1)

such that each processor contains a subset of the rows of the global matrix. Therefore,

that portion of the matrix-vector product required at each time-step (or partial time-

step if higher-order schemes are considered), can be performed locally provided the

halo elements are updated to the current time n∆t. This update occurs once before

each (partial) time-step. The overhead incurred is fractional compared to theO(NV /P )

update time required on each processor provided that the processor boundaries contain

much fewer elements than the bulk volume.

10.6 Volumetric Parallelization and Local Time Stepping

When the local-time-stepping (LTS) scheme presented in Section 4.3 is desired in a

parallel framework, the computational cost associated with each volumetric element

is not equal. A straightforward partitioning of the problem into subdomains having

NV /P elements will yield acceleration, but not ideal acceleration. If O(NV /P ) mem-

ory scaling is the primary concern, say for very large meshes, then straightforward

partitioning is warranted. If, however, execution time is the primary constraint, we

offer the following obvious solution.

All of the domain partitioning algorithms available in Zoltan permit weights to be

assigned to each element. Then, the partitioning scheme attempts to balance the total

weight associated with a given subdomain. In the LTS scheme, the maximum level

`max operates at a time step 2`max−1∆t. To avoid fractional weights we will define the
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LTS parallel weight ΓVi,LTS(`) associated with each element at level `:

ΓVi,LTS(`) , 2`max−`i , where Vi operates at level ` (10.2)

In a three-level LTS scheme, the weights associated with each level are then:

ΓVi,LTS(1) = 23−1 = 4

ΓVi,LTS(2) = 23−2 = 2

ΓVi,LTS(3) = 23−3 = 1

The highest weight is associated with the lowest level, as these will require twice as

many computations as the elements one level above.

A comment should be made regarding the LTS pre-processing algorithm required to

determine the LTS domains. As presented in Section 4.3.1, the algorithm on page

57 requires checking all elements connected to a vertex of a given element Vi. If

Vi ∈ V (p) on processor p is on the boundary of processor p, this information can be

obtained through the global topology available via the static vertex lists.

10.7 Volumetric Parallelization and Global Mesh Truncation

While developing an appropriate parallel modification for local time-stepping was

straight-forward, things are not so simple when the global mesh truncation scheme

presented in Section 5.2 is included. We suppose that we have an integration sur-

face ∂VS that is made up of M∂VS facets and that M∂V facets exist on the boundary

∂V of the global computational domain as shown in Figure 10.5. For each of these

global boundary facets, the evaluation of the integrals (5.2) and (5.3) over ∂VS scales
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as O(M∂VS). For completeness, we should include the fact that the evaluation of the

integrals over a single facet is some constant qERBC times more expensive than a sin-

gle volumetric update. Therefore, the computational weight required to evaluate the

surface integrals for each boundary element is:

ΓVi,ERBC = qERBC ·M∂VS , if Vi ∈ ∂V (10.3)

and is zero otherwise. The total weight associated with each element, where we permit

an LTS scheme, is

ΓVi = (1 + δ(∂V ) · qERBC ·M∂VS) · ΓVi,LTS(`) (10.4)

where δ(∂V ) is unity when Vi ∈ ∂V and is zero otherwise. Imposing this weight on

each element and performing a domain decomposition will provide a set of proces-

sor subdomains that require approximately equal computational time. The difference

between a straightforward volumetric partition and the application of this weighting

scheme is shown in Figure 10.5. In part (a) of the figure, we see the global computa-

tional domain and the Huygens’ surface ∂VS. The boundary elements are highlighted

in grey. A simple volumetric partition (LTS excluded) could produce the volumetri-

cally balanced partitions shown in part (b). Clearly, however, the number of boundary

cells associated with each subdomain is not the same. In part (c), we see the effect

of adding the weighting in equation , where now, both the volumetric and boundary

computations are balanced.

While the above parallelization scheme does equally divide the computational weight

on each processor, we have not yet discussed the evaluation of the surface integrals

(5.2) and (5.3). To ensure that each processor is capable of evaluating these integrals,
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Fig. 10.5: A 2D visualization of the parallelization of the global mesh-truncation scheme.
(a) The global domain and the integration surface. The grey boundary elements
require evaluation of the surface integrals. (b) A partition of the global domain
that does not balance the computationally intensive boundary element. (c) A
better partition that equally balances the number of boundary elements on each
processor.

we propose a duplication of the surface ∂VS and the back-stored solution values, on

each processor as shown in Figure 10.6.

In the figure we see that each processor has its associated volumetric elements in

addition to the surface ∂VS. The memory duplication on each processor for the surface

∂VS is permissible provided that the number of required back-stored time-samples is

not exceedingly large. The back-stored surface values on ∂VS must be updated across

all processors at each time-step, resulting in a small global communication of O(M∂VS)

values across all processors at each time step.
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(a) (b) (c)

p=2 p=3p=1

∂VS ∂VS

∂VS

Fig. 10.6: Parallel partitions including global mesh-truncation in a three-processor environ-
ment. (a) Processor 1, (b) Processor 2, (c) Processor 3. In each case the Huygens’
surface is duplicated on the processor.

.

10.8 Subcell Model Parallelization

We now consider parallelization of the final aspect of the FVTD implementation con-

sidered in this work: the thin-wire and circuit subcell models described in Chapters

7 and 8 respectively. We begin by making the assumption that there is no field-to-

wire or wire-to-field coupling: that is, the one dimensional thin-wire equations (8.14)

are solved without the source term Sj(t) and that the volumetric equations (3.7) are

solved without the source term ~Si(t) (as all coupling between the two models occurs

through these source terms as described at length in Section 7.5). While this assump-

tion completely defeats the purpose of introducing the thin-wire subcell model into the

FVTD volumetric scheme, it clarifies the following argument: Under the assumption
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of decoupled field and subcell models, we assume that the volumetric field solution is

the computational, and memory, bottleneck. Therefore, we are free to duplicate all

thin-wire segments and all circuits on each processor without affecting the asymptotic

memory and computational complexity of the volumetric solver.

Now we return to the question of coupling the subcell and field models. From the

perspective of each volume inside the interpolation cylinder ρ0 of a wire element Wj

there is the added cost of evaluating the source term ~J (i)(t) (7.56), contained in ~S(i)(t).

We are assuming that the thin-wire segments exist on each processor. If we also

assume that the solution at time n∆t for each wire segment is available locally, this

cost is minimal, and can be neglected. We will return to the assumption that the

wire solutions are synchronized momentarily. On the other hand, the evaluation of

the source term S(j)(t), for each wire segment, requires evaluating the longitudinal

field integral (7.54). Each volume inside the interpolation cylinder contributes to this

integral as shown, for the simple case of a single wire segment, in Figure 10.7 (a).

Clearly, if we have a domain decomposition such as the one shown for two processors

in Figure 10.7 (b), all elements contributing to the wire source-terms are contained

on a single processor, and while the number of volumes is equal on each processor,

p = 1 is responsible for all the coupling computations, offsetting its computational

load. A more desirable picture is shown in Figure 10.7 (c), where again we have

an equal number of volumes on each of two processors, but the number of elements

affecting the wire-segment are also roughly equal. In this case, the total contribution to

S(j)(t) is the sum of the contributions on processor 1 and 2. This operation can easily

be performed, and distributed to each processor using MPI. This fact maintains the

synchronization of the wire solutions over all processors. To enforce a partition such as

that shown in Figure 10.7, we can introduce an additional weighting scheme. For each

volumetric element, we assume that the computation associated with the evaluation of
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(a) (b) (c)

p=1 p=2

Fig. 10.7: A 2D visualization of the subcell-model parallelization strategy. (a) A single wire
segment inside a global computational domain. The affected volumes are shown
in grey. (b) A two-processor partition that is unbalance as all wire-operations
exist on one processor. (c) A two-processor partition that is balanced as an equal
number of wire-influence volumes exist on each processor.

the thin-wire source term is qTW . For simplicity, we will assume that each volumetric

element only affects a single wire segment (though this is not generally the case in

practice, and the resulting expressions can easily be modified accordingly). Then, to

each element introduce the thin-wire weight:

ΓVi,TW (`) = δ(TW ) · qTW · ΓVi,LTS(`) (10.5)

where δ(TW ) is unity only if Vi affects a thin-wire segment and where Vi operates

at LTS level `. Adding this result into the ERBC and LTS weights computed in the
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previous sections we obtain the total weight associated with each volumetric element:

ΓVi = (1 + δ(∂V )qERBC ·M∂VS + δ(TW ) · qTW ) · ΓVi,LTS(`) (10.6)

10.9 Determination of the Volumetric Weights

In order to determine the weights ΓVi associated with each volumetric element, we

must pre-process the global domain V . This could be accomplished as follows:

• Perform a parallel mesh read.

• Perform a domain decomposition using unit-weight associated with each volume

and distribute the volumetric elements.

• Do Not compute the halos.

• Determine the LTS levels.

• Duplicate the ERBC surfaces and subcell models on each processor.

• Determine the number of global boundary elements and ERBC surface elements.

• Determine the elements influenced by thin-wires.

• Compute the weights according to (10.6).

• Repartition and redistribute the mesh using the computed weights.

• Compute and obtain the appropriate halo levels.
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The constants qERBC and qTW are both dependent on the accuracy of the implementa-

tion and on the computational architecture. They can easily be estimate by considering

the operations required, but can also be empirically determined by simulation.

10.10 Validation

The parallelization strategies presented in this section have been implemented using

MPI and Zoltan for a high-performance computing cluster running a Linux flavoured

operating system. The cluster has 32 compute nodes, each with 2 quad-core Intel

Xeon X5355 processors running at 2.66 [GHz]. In total there are 256 cores. Each node

is equipped with 16 [GB] of memory and are connected by a high-speed Infiniband

network permitting roughly 2 [GB/s] communication rates.

As mentioned at the beginning of this chapter, only the general parallelization schemes

have been performed. That is, in all schemes a weight of unity is associated with each

volumetric element. This will not generally result in ideal load-balancing but there is

no theoretical or practical reason why the weighting schemes presented in this chapter

will not remedy this issue.

For all aspects of the FVTD engine, including local-time-stepping, global mesh-truncation

and subcell models, the numerical results produced by the serial and parallel codes are

equal to machine precision and no comparative simulation results are provided in what

follows. Instead the validation focuses on the scalability of the parallel algorithms.
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Fig. 10.8: Parallel efficiency scaling of the volumetric solver. (a) Parallel speedup and (b)
memory scaling, normalized to the serial case. An ideal scaling curve is provided
for reference.

10.10.1 Parallel Efficiency of the Volumetric Solver

A summary of the parallel scalability of the volumetric solver (without LTS or mesh-

truncation) is shown in Figure 10.8. Simulations were run up to 100 processing cores

for the PEC scattering from a sphere where the computational domain consisted of

600, 000 volumetric elements. The left side of the figure shows the acceleration as a

function of the number of processors up to 100 processing cores. The plot is normalized

to the computational time on a single processor, which required nearly one hour and

1 [Gb] of RAM to compute 500 time-steps (of a MUSCL, predictor-corrector scheme).

The acceleration is quite good, with the deviation from the ideal curve being accounted

for by the overhead of updating the halo elements at each time-step. The right side of

the figure shows the memory scaling, again normalized to the case of a single processor
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Fig. 10.9: Parallel efficiency scaling of the LTS Scheme. (a) Parallel speedup and (b) memory
scaling (right), normalized to the serial case. An ideal scaling curve is provided
for reference.

and taken as the worst-case memory over all processors. The memory scaling shows

the required memory overhead of the halo elements. Using 100 processing cores, this

problem requires less than one minute to compute 500 time-steps at a cost of less than

50 [Mb] per core.

10.10.2 Parallel Efficiency of the Local-Time-Stepping Scheme

We now consider the LTS parallelization by running the same mesh used in Section

(6.3) to validate the serial algorithm. As in the previous example, this mesh has

approximately 600, 000 elements. The scaling curves are shown in Figure 10.9. Clearly,

the LTS scaling is not nearly as good as the straight volumetric scaling. This is because
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Fig. 10.10: Parallel efficiency scaling of the global mesh-truncation Scheme. (a) Parallel
speedup and (b) memory scaling (right), normalized to the serial case. An ideal
scaling curve is provided for reference.

the appropriate weights for each volume have not been used. In the serial case, this

problem required 6 minutes and 900 [Mb] of memory to compute 500 time steps. Above

50 processors, this is reduced to 30 seconds and 70 [Mb] of memory per processing core.

10.10.3 Parallel Efficiency of the Global Mesh-Truncation Scheme

We now return to the example run of the global mesh-truncation scheme validated in

Section 6.4. This example had 500, 000 volumetric elements, 6, 300 integration surface

elements and 2700 boundary surface elements. The parallel scaling results are shown in

Figure 10.10. It is not surprising that neither the speedup, nor the memory efficiencies

are terribly good. The maximum back-storage of the solution required 1, 100 time
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Fig. 10.11: Parallel efficiency scaling of the subcell models. (a) Parallel speedup and (b)
memory scaling (right), normalized to the serial case. An ideal scaling curve is
provided for reference.

samples. Multiplying this by 2, 700 boundary surface elements and 6 field components

requires hundreds of megabytes of storage for the ERBC integrals alone. The serial

case required 1.1 [Gb] of memory and 10 minutes to compute 10 time steps. Above

20 processors, this same run requires roughly 400 [Gb] of memory. Using 100 cores,

the 10 time-steps were computed in 45 [s]. The non-monotonic nature of the speedup

is explained by the fact that the number of surface elements is not equally balanced

on all processors and the maximum number of boundary facets on a single processor

actually increases, in some cases, as the number of processors is increased.
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10.10.4 Parallel Efficiency of the Subcell Models

Finally, we investigate the parallel efficiency obtained for the subcell models. We

reconsider the example of the MRI-tuned loop presented in Section 9.4. The volume

contained 450, 000 volumetric cells and 48 wire segments. The efficiencies are shown

in Figure 10.11. The speedup is quite good, mostly because the subcell-models are

localized and do not introduce that much overhead for this example consisting of only

48 wire segments. We do, however, see that the memory scaling is affected by the

partitioning. A large amount of the thin-wire coupling is pre-computed and stored.

Therefore, as the wire-segments become more-or-less localized on each processor, the

worst-case memory can vary according to the number of elements affected by wires on

a given processor. In serial, this example required 450 [s] to compute 100 time steps

and 600 [Mb] of memory. For 100 processing cores, the memory is reduced to 45 [Mb]

and 6 [s].

10.11 Chapter Summary

In this chapter, all aspects of the FVTD solver have been parallelized. While the ideal

load-balancing schemes presented in this section have not been validated, each part of

the FVTD scheme has been parallelized for uniform weighting over the computational

domain. Though the FVTD solver is not heavily optimized, the parallel scalability

shown herein suggests that it is capable of solving problems involving hundreds of

million of unknowns with fewer than 100 processors using both reasonable memory

and computational time. Pushing the limits of the solver will be the focus of future

work.



11

Finite-Volume Frequency Domain

Solutions of Maxwell’s Equations

When I was a boy, I had a clock with a pendulum that could be lifted off.
I found that the clock went very much faster without the pendulum. If the
main purpose of a clock is to go, the clock was the better for losing its
pendulum. True, it could no longer tell the time, but that did not matter if
one could teach oneself to be indifferent to the passage of time. – Bertrand
Russell

The FVTD scheme presented in this thesis is capable of producing broad-band system

response in a single execution. When discrete frequency solutions are required (e.g. in

the field of microwave tomography for biomedical imaging [84]), a frequency-domain

solution may be more efficient. It is interesting that the upwind, flux-split FVTD

scheme can be converted to the frequency domain under time-harmonic assumptions

without any major modifications to the underlying theory. The result is a Finite-

Volume Frequency-Domain (FVFD) method for solving the time-harmonic Maxwell’s
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Equations. Since its apparent introduction in [85], FVFD has begun to garner attention

due to its geometric modeling capabilities [17]. FVFD is not, however, a common

solution tool in computational electromagnetics.

Returning, briefly, to the time domain, one of the benefits of FVTD over finite-element

based time-domain codes (FETD) is that a sparse matrix inversion is not required at

each time-step [10]. As will be made clear shortly, when frequency domain solvers are

considered, Maxwell’s curl equations result in an ellipctic system of ordinary differential

equations and FVFD requires the solution to a sparse matrix equation. Frequency-

domain finite-element methods (FEM) [86] also require solving a sparse matrix equa-

tion. As FEM theory for solving electromagnetic problems is so rich, one might ask

why an FVFD solver is necessary. Two features of the FVFD formulation make it

an attractive alternative to FEM: first, the numerical algorithm is easily implemented

from existing FVTD codes, and second, the FVFD formulation simultaneously solves

for both electric and magnetic fields (unlike FEM is which typically solves for one or

the other [86].

In this chapter, the FVFD solution to Maxwell’s Equations is developed directly from

the FVTD theory presented in this thesis. The resulting global sparse matrix system is

solved iteratively. As will be shown, the spatial reconstruction schemes can be main-

tained from FVTD. A brief, empirical study of the effects of flux-reconstruction on

the accuracy and convergences of the iterative solution will be presented and a possi-

ble benefit of using different flux-reconstruction schemes during the iterative solution

process is proposed. For completeness, the solution is formulated in parallel using the

domain-decomposition techniques discussed in Chapter 10.

The FVFD discussion herein focuses solely on the volumetric solution of Maxwell’s

Equations. Global mesh-truncation schemes and the conversion of the subcell models
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to the frequency domain have been attempted, but insufficient theory and/or positive

results are available to warrant discussion herein.

11.1 The Global FVFD System

We recall from Chapter 4 that the global system of FVTD equations can be written

as:

dt ~U(t) = − ~F(~U(t)) + Σ · ~U(t) + ~S(t) (11.1)

where the 6NV length global solution vector ~U(t) contains the volumetric average of

the electric and magnetic field components in each of the NV volumes in the partition

{Vi} of the global domain V . The global flux vector ~F is the result of spatially

integrating the reconstructed boundary flux over the surface of each Vi and can be

viewed, according to (3.46), as a sparse global matrix multiplying ~U(t):

~F(~U(t)) = F ·R · ~U(t) (11.2)

The matrix R is responsible for the reconstruction of boundary states and is dependent

on the reconstruction scheme selected. The matrix F performs the integration of the

flux (a function of the boundary states) over each finite-volume. We can convert the

system of equations (11.1) to the frequency domain by assuming that Maxwell’s Equa-

tions are time-harmonic with radial frequency ω = 2πf where f is the time-harmonic

frequency [35]. According to Fourier Theory, and assuming an time-dependence ejωt,

e being Euler’s number and where j =
√
−1, the time-derivative in (11.1) can be

replaced by jω [35] resulting in:

jω ~U(ω) = − ~F(~U(ω)) + Σ · ~U(ω) + ~S(ω) (11.3)
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where, without having to introduce additional notation, it is to be understood that by

simply replacing t by ω in ~U(t) we imply a Fourier Transform [87]. Collecting terms

and defining the global identity matrix I we have:

(
jωI −Σ + F ·R) · ~U(ω) = ~S(ω) (11.4)

which is a global matrix equation for determining ~U(ω) due to the sources ~S(ω). By

iteratively inverting the matrix we obtain the cell-average fields in each volume which

can be used to reconstruct the solution at any location inside V .

11.2 Spatial Reconstruction and Electromagnetic Boundary

Conditions

Having converted the FVTD formulation to an FVFD formulation, we note that all

of the spatial reconstruction schemes discussed in Chapter 3 are still applicable if we

permit a “upwind” and flux-split FVFD formulation. Here the concept of upwinding is

in the context of time-harmonic field-propagation, but holds nonetheless. Under time-

harmonic assumptions, another type of flux-reconstruction is possible, as presented

in [85], the so-called “harmonic” reconstruction. This approach uses the method of

characteristics to account for the phase change between barycentric values at ~ri in

Vi and the boundary evaluation point ~r on facet k of volume i [85] (recall that the

barycentric value can be approximated to second-order accuracy from the volumetric

average - see Section 3.7)

~U
+

i,k = ~U i exp(−jω√εiµi|~r − ~ri|) (11.5)
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This reconstruction is slightly more computationally expensive than the first-order

implementation but less so than MUSCL reconstruction. It is not strictly second order

accurate. We might interpreted it as lying somewhere between first- and second-order

accuracy.

11.3 Iterative Solutions, Parallelization and (a lack of)

Preconditioners

The iterative solution to the global system of equations (11.4) requires an iterative

matrix solver. First, we note that in order to maintain code-scalability for a large

number of finite-volumes, we are not computing or storing a global matrix. Instead,

this matrix is computed by producing the rows corresponding to Vi on-the-fly. As we

do not have a global matrix, it is not immediately obvious how to obtain its Hermitian

and so we do not consider the conjugate-gradient algorithm [88]. Instead, both the

GMRES algorithm [88] and BICGSTAB algorithm [89] have been implemented. In

the pioneering work [85], Bonnet et. al suggest that BICGSTAB converges faster than

GMRES. While this may be true, we have elected to use GMRES simply because

GMRES converges monotonically whereas BICGSTAB does not.

Either of the algorithms GMRES or BICGSTAB function by computing matrix-vector

products and evaluating appropriate norms of the resulting solution estimates. In

the time-domain, the time-evolution of the global system (11.1) can be interpreted

analogously to a single matrix-vector-product of the frequency-domain system (11.4).

Therefore, all of the parallelization developed for the time-domain volumetric solution

in Chapter 10, holds. The only modification required to ensure global functionality

of the iterative algorithms is to determine global vector norms from local quantities.
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This is easily accomplished in constant time using MPI.

One of the greatest challenges when solving elliptic problems using iterative solvers is

to construct efficient preconditioners that minimize the number of iterations required

to obtain a global solution to a desired level of accuracy [88]. While the applicability

of FVFD for real-world problems may be greatly hindered by a lack of preconditioning,

we do not consider preconditioners in this work.

11.4 Numerical Results

To validate the conversion of the volumetric FVTD code to a volumetric FVFD code,

we investigate the simple problem of incident field scattering from a PEC sphere, as

an analytic solution is available [35]. In addition, we are interested in a brief empirical

study of the effects of flux reconstruction on both the accuracy and iterative conver-

gence of the FVFD algorithm. We consider a 1 [m] radius PEC sphere centered in a

10 [m] radius spherical computational domain truncated with the local Silver-Müller

mesh truncation scheme presented in Section 5.1. A mesh of the volumetric domain

was produced using Gmsh [36] and the discretization resulted in 2612 triangular facets

on the PEC surface and approximately 1.16 million first-order tetrahedral elements

in the computational domain. Correspondingly, the global matrix equation relates

roughly 7 million unknowns. As the mesh supports a maximum frequency of approx-

imately 75 [MHz] at one-tenth of a wavelength we compute the scattered field of a

50 [MHz] z-incident and x-polarized plane-wave. The iterative solution was obtained

using GMRES without any preconditioning.

In Figure 11.1(a) we show the residual relative norm of the matrix equation as a

function of GMRES iteration for the first-order (FO), harmonic (HM) and MUSCL
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Fig. 11.1: (a) FVFD GMRES convergence rate for different flux reconstruction schemes.
(b) Backscattered solution for different flux reconstruction schemes. The analytic
solution is provided for reference.
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Fig. 11.2: (a) FVFD GMRES convergence rate for the FO/MS hybrid scheme vs. the MS
scheme. The discontinuity shows where the FO solution is used as an initial guess
for the MS system. (b) Backscattered results for the FO/MS and MS systems.
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(MS) reconstructions to 2000 iterations. In Figure 11.1(b) we show the reconstructed

scattered field |~Escatx | at back-scatter locations from z = 2 [m] to z = 9 [m] in unit

steps. The analytic solution is provided for reference. From the plots we see that both

the FO and HM solutions converge much faster than then MS reconstruction but to

an inaccurate solution. The inaccuracies appear to increase away from the scatterer

(sources). We also note that the MS reconstruction is visually more accurate despite

having a significantly higher residual after 2000 iterations. A cross-sectional image

of the scattered electric and magnetic fields, produced using the parallel visualization

tool ParaView [38] is shown for the MUSCL reconstruction in Figure 11.3.

11.5 A Novel Iterative Approach

Motivated by the quick convergence of the computationally less expensive FO recon-

struction, we consider solving the matrix equation by first using the FO reconstruction

to obtain an initial guess for the MS reconstruction. As we are not storing the global

matrix, there is no need to re-evaluate the flux-reconstruction part of the system, and

we can simply switch reconstruction schemes dynamically during the iterative solu-

tion process. We denote this hybrid reconstruction scheme as FO/MS. Figure 11.2(a)

shows the convergence rate of a FO/MS scheme. The discontinuity of the convergence

indicates the location where the FO solution was used as an initial guess to the MS

system. For this simple example, the FO/MS scheme converges to a lower residual

error in the same number of iterations than the MS scheme alone.
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Fig. 11.3: (Colour) FVFD solution of the scattering from a PEC sphere. The magnitude of
the incident field (top) and scattered field (bottom) are shown.



11.6 Chapter Summary 192

11.6 Chapter Summary

In this chapter, the small modifications required to convert an upwind and flux-split

FVTD scheme to the frequency domain have been provided. The implemented algo-

rithm is completely parallelized for distributed systems, but is limited to the consid-

eration of simple volumetric problems in the absence of global mesh truncation and

subcell-models. We have empirically investigated the effects of first-order, harmonic,

and MUSCL flux reconstruction schemes on the iterative convergence of the FVFD

solution to Maxwell’s Equations for the simple problem of scattering from a PEC

sphere. While low-order reconstructions converge faster than the MUSCL scheme,

they do not accurately model the underlying system of differential equations. It has

been demonstrated that (for the scattering problem considered herein) using a hybrid

low-order/MUSCL solution can improve on the iterative convergence rate. Determin-

ing either an analytical or empirical rule for such hybrid schemes will be the focus

of future work. Furthermore, the iterative solution to the resulting global system

of equations has been performed without preconditioning. For real-world problems,

FVFD convergence rates are typically poor [17] and determining efficient precondi-

tioners and/or model or reduction methods (as in [17]) will be critical for making the

proposed FVFD scheme a viable numerical algorithm.



12

Conclusions and Future

Improvements

Un bon mot ne prouve rien – Voltaire, Translation: A witty saying proves
nothing.

12.1 Summary of Accomplishments

The work presented in this dissertation constitutes the development of an upwind, and

flux-split Finite-Volume Time-Domain numerical tool for solving Maxwell’s Equations

on unstructured grids and serves as the first steps towards a robust numerical tool for

solving real-world engineering problems. While the initial theory, presented in Chap-

ters 2 and Chapters 3, at first appears daunting, one quickly realizes that, by storing

cell-average field values and ensuring that discrete jumps in constitutive parameters
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resides precisely at cell-interfaces, this flavour of FVTD contains an inherent simplicity

that makes geometric modeling of complicated structures straight-forward. Further-

more, unlike the standard FDTD algorithm where time- and spatial accuracies are

inherently linked, the cell-centered collocated time approach used provides (at least

theoretically) an obvious direction towards higher-order accuracy.

To improve the computational cost of the developed FVTD engine, the local-time

stepping scheme of Fumeaux et. al [15] has been implemented without modification

in Chapter 4. In addition a global mesh-truncation scheme, based on the evaluation

of Huygens’ surface integrals has been presented in Chapter 5 and has been shown to

permit a reduction in the global computational volume for specific problems.

The primary contributions of this thesis were the development of the upwind and flux-

split thin-wire model presented in Chapter 7. The model is the FVTD equivalent of

the unconditionally stable models of Eldelvik et. al [18], [19], and permits thin wires

to be arbitrarily oriented within the volumetric domain. Further, the theory developed

in Chapter 8 of a novel flux-split boundary condition that permits the thin-wire model

to be coupled to arbitrary lumped-element multi-port circuits introduces incredible

flexibility when modeling thin-wires structures interconnected using electrically small

circuits. Specifically, the combined application of these circuit models appears to

have great promise for modeling the radio-frequency (RF) components of Magnetic

Resonance Imaging (MRI) systems.

As parallel computational resources become more and more abundant, the paralleliza-

tion of the FVTD algorithm makes the tool that much more capable. The general

approach presented in Chapter 10 is the secondary contribution of this thesis and pro-

vides a straight-forward method that ensures parallel efficiencies for both computations

and memory. Furthermore, the required steps to efficiently parallelize all of the FVTD
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features presented in this work has been given in detail.

Finally, the frequency-domain FVFD equivalent of the flux-split and upwind FVTD

scheme has been implemented, in parallel, and has shows some promise. A described

in Chapter 11, the small but novel idea that different flux reconstruction schemes can

be used to improve the iterative convergence of the method is the third, and final

contribution of this work.

12.2 Future Work: Modeling Capabilities

There are a countless number of additional features and improvements to the imple-

mented FVTD/FVFD algorithms that are possible without modifying the underlying

upwind and flux-split formulation. The most obvious are:

• Source Modeling: Other than the scattered-field and circuit-driven thin wire

formulations provided in this thesis, the ability of the current implementation

to model sources is somewhat limited. Baumann [13] provide a very interesting

way of imposing incoming fluxes across specially defined port-planes. The planes

are placed inside waveguide structures where an analytic description of a known

field-mode can be imposed. Using the same plane to capture the time-evolving

field provides a very elegant way of determining the system S-parameters.

• Post-Processing: For the computation of radar cross sections, a far-field trans-

formation should be implemented. This could be achieved directly from the

global mesh-truncation scheme under far-field approximations.

• Boundary Conditions: One type of boundary condition omitted from this

work has been the Perfectly Matched Layer (PML) conditions originally pre-
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sented by Berenger [90]. Recently, these conditions have been formulated for

FVTD [34] and their incorporation into the developed code would provide greater

functionality for problems involving nearly closed boundaries such as open-ended

waveguides.

• Material Modeling: Throughout this work isotropic, stationary and simple

media has been assumed. Including anisotropy could make the developed code

applicable to a larger number of interesting problems.

• Thin-Wire Modeling: The primary draw-back of the thin-wire model de-

veloped in Chapter 7 is that at multi-wire junctions it is still unclear how to

distribute the volumetric current density in a smooth manner. One possibility

is to surround all wires with a conforming tube and to remove the volumetric

discretization within the tube completely. It may then be possible to impose the

effects of the wire directly as incoming boundary fluxes at the surface of the tube.

The geometrical flexibility of FVTD certainly makes such a scheme possible.

• Frequency-Domain Preconditioning: Developing an appropriate precondi-

tioner or model-order reduction technique to improve the iterative convergence

of the FVFD algorithm presented in Chapter 11 is critical for making the FVFD

algorithm applicable to real-world problems.

• Frequency-Domain Subcell Models: Developing the appropriate theory to

solve the coupled circuit-thin-wire-field equations in the frequency domain would

make an FVFD a suitable forward-solver for inverse imaging applications in

Microwave Tomography [91].

• Global Boundary Condition Acceleration: The use of time-domain acceler-

ation techniques such as the plane-wave time-domain (PWTD) method [92, 32]

could be used to accelerate the evaluation of the global mesh truncation scheme.
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12.3 Future Work: Algorithmic Considerations

At the fundamental level this work has assumed an upwind and flux-split FVTD for-

mulation. The most stringent limitation imposed by such an approach is that upwind

solutions for hyperbolic systems are inherently dissipative [11]. While this problem

can, to some extent, be dealt with by using a sufficiently fine discretization of the com-

putational domain, a MUSCL FVTD algorithm does not seem to be the appropriate

way to solve electromagnetic problems involving very large electrical scales (either the

geometry itself or the distance between disjoint geometries). “For problems of this type

the (upwind FVTD methods) may not be appropriate... (as) they have a high cost

per grid cell relative to simpler finite difference methods” [11]. While it has already

been established in Chapter 1 that there is still a large amount of real-world problems

that are solved efficiently by FVTD, higher-order approaches, algorithmic modifica-

tions and/or hybrid methods are required to solve electrically large problems. Recent

developments in higher-order FVTD using either ENO or WENO reconstructions may

resolve some of these issues [26, 20]. Alternative FVTD implementations that do not

require upwinding such as the leap-from scheme presented in [16, 93] may also be of

interest, although they appear to suffer from grid-decoupling problems [17] (and also

witnessed first-hand in a preliminary implementation for scattered fields). Finally, the

Discontinuous Galerkin Time-Domain (DGTD) method, which attempts to balance

the benefits of FETD and FVTD in a higher-order framework [10], has recently been

shown to have great potential [94, 95, 96]. Ultimately, however, it is likely that the

most robust numerical solvers will incorporate a hybrid combination of available time-

domain techniques: accurate geometric modeling can be achieved using unstructured

algorithms such as FVTD, while long propagation distances can be efficiently com-

puted by means of Huygens’ surface boundary conditions or computationally effective



12.3 Future Work: Algorithmic Considerations 198

finite-difference schemes [97, 98].



APPENDIX



A

Derivation Details for the

Conservative Form of Maxwell’s

Equations

The purpose of this appendix is to derive equation 2.17 from equation 2.8. The notation

and formulation is close to that in [9]. Equation (2.8), is repeated here for convenience:

¯̄α(~r) · ∂t ~U(t, ~r) + ~K(t, ~r) = ¯̄σ(~r) · ~U(t, ~r) + ~S(t, ~r). (A.1)
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Re-writing the quantity ~K(t, ~r) as:

~K(t, ~r) = ∂x
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= ∂x ~Gx(t, ~r) + ∂y ~Gy(t, ~r) + ∂z ~Gz(t, ~r)

(A.2)

for the source-free and lossless case we get

∂t

(
¯̄α(~r) · ~U(t, ~r)

)
+ ∂x ~Gx(t, ~r) + ∂y ~Gy(t, ~r) + ∂z ~Gz(t, ~r) =

∂t

(
¯̄α(~r) · ~U(t, ~r)

)
+∇ · ~G(t, ~r) = ~0

(A.3)

The divergence is to be taken across each row of ~G(t, ~r) = [~Gx
~Gy

~Gz]. Inside a

finite-volume with constant material parameters we may write

∂t ~U(t, ~r) +∇ · ~F(t, ~r) = ~0 (A.4)

where the flux ~F(t, ~r) = ¯̄α−1 · ~G(t, ~r).

As in Section 2.5 we introduce a set of M unit-vectors ~m0, ~m1, . . . , ~mM−1 that span R3

such that |~m0| = |~m1| = . . . = |~mM−1| = 1. We allow the set {~mk}, k = 0, 1, . . . ,M−1

to be linearly dependent (thus it may not be a minimal spanning set, or basis, for R3).

Any point ~r ∈ R3 can be written as a linear (though not necessarily unique) combi-

nation of the set {~mk}. Then, for some set of parameters (ξ0, ξ1, . . . , ξM−1) ∈ RM we
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have the following non-unique mapping:

(ξ0, ξ1, . . . , ξM−1) ∈ RM 7−→ ~r =
M−1∑

k=0

ξk ~mk ∈ R3. (A.5)

It is clear from the definition of this mapping that the coordinates x, y and z are

functions of the coordinates ξk:

x = x(ξ0, ξ1, . . . , ξM−1)

y = y(ξ0, ξ1, . . . , ξM−1)

z = z(ξ0, ξ1, . . . , ξM−1)

(A.6)

such that we may write partial derivatives with respect to the coordinates x, y and z

via the chain rule for partial differentiation:

∂

∂x
=
∂ξ0

∂x

∂

∂ξ0

+
∂ξ1

∂x

∂

∂ξ1

+ . . .+
∂ξM−1

∂x

∂

∂ξM−1

∂

∂y
=
∂ξ0

∂y

∂

∂ξ0

+
∂ξ1

∂y

∂

∂ξ1

+ . . .+
∂ξM−1

∂y

∂

∂ξM−1

∂

∂z
=
∂ξ0

∂z

∂

∂ξ0

+
∂ξ1

∂z

∂

∂ξ1

+ . . .+
∂ξM−1

∂z

∂

∂ξM−1

.

Geometrical considerations can be used to show that:

~r =
M−1∑

k=0

ξk
∂~r

∂ξk
, (A.7)

from which we can show that:

∂~r

∂ξk
=
∂ξk
∂~r

= ~mk. (A.8)
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Using the partial differentials defined in (A.7) we write the divergence of ~G(t, ~r) as

∇ · ~G(t, ~r) =
∂ ~Gx

∂x
+
∂ ~Gy

∂y
+
∂ ~Gz

∂z

=
M−1∑

k=0

(
∂ ~Gx(~U)

∂ξk

∂ξk
∂x

+
∂ ~Gy(~U)

∂ξk

∂ξk
∂y

+
∂ ~Gz(~U)

∂ξk

∂ξk
∂z

)

=
M−1∑

k=0

(
∂ ~Gx(~U)

∂ξk
mkx + +

∂ ~Gy(~U)

∂ξk
mky +

∂ ~Gz(~U)

∂ξk
mkz)

Noting that

∂

∂ξk
~Gx(~U(t, ~r)) =

∂ ~Gx

∂ ~U
· ∂
~U

∂ξk
, (A.9)

allows us to rewrite (A.9) as:

∇ · ~G(t, ~r) =
M−1∑

k=0

(
∂ ~Gx(~U)

∂ ~U
mkx +

∂ ~Gy(~U)

∂ ~U
mky +

∂ ~Gz(~U)

∂ ~U
mkz) ·

∂ ~U
∂ξk

. (A.10)

The vector derivative ∂ ~Gx/∂ ~U is defined in the usual fashion as:

∂ ~Gx

∂ ~U
= ((

∂

∂ ~U
)T · ~Gx

T
)T

=




∂~Gx1

∂ ~U 1

∂~Gx1

∂ ~U 2

∂~Gx1

∂ ~U 3

∂~Gx1

∂ ~U 4

∂~Gx1

∂ ~U 5

∂~Gx1

∂ ~U 6

∂~Gx2

∂ ~U 1

∂~Gx2

∂ ~U 2

∂~Gx2

∂ ~U 3

∂~Gx2

∂ ~U 4

∂~Gx2

∂ ~U 5

∂~Gx2

∂ ~U 6

∂~Gx3

∂ ~U 1

∂~Gx3

∂ ~U 2

∂~Gx3

∂ ~U 3

∂~Gx3

∂ ~U 4

∂~Gx3

∂ ~U 5

∂~Gx3

∂ ~U 6

∂~Gx4

∂ ~U 1

∂~Gx4

∂ ~U 2

∂~Gx4

∂ ~U 3

∂~Gx4

∂ ~U 4

∂~Gx4

∂ ~U 5

∂~Gx4

∂ ~U 6

∂~Gx5

∂ ~U 1

∂~Gx5

∂ ~U 2

∂~Gx5

∂ ~U 3

∂~Gx5

∂ ~U 4

∂~Gx5

∂ ~U 5

∂~Gx5

∂ ~U 6

∂~Gx6

∂ ~U 1

∂~Gx6

∂ ~U 2

∂~Gx6

∂ ~U 3

∂~Gx6

∂ ~U 4

∂~Gx6

∂ ~U 5

∂~Gx6

∂ ~U 6



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For each of the three components ~Gx, ~Gy and ~Gz, we can explicitly write the partial

derivatives with respect to the generalized vector ~U as:

∂ ~Gx

∂ ~U
=




0 0 0 0 0 0

∂Hz

∂Ex

∂Hz

∂Ey

∂Hz

∂E z

∂Hz

∂Hx

∂Hz

∂Hy

∂Hz

∂Hz

-∂Hy

∂Ex
-∂Hy

∂Ey
-∂Hy

∂E z
-∂Hy

∂Hx
-∂Hy

∂Hy
-∂Hy

∂Hz

0 0 0 0 0 0

- ∂E z

∂Ex
-∂E z

∂Ey
-∂E z

∂E z
- ∂E z

∂Hx
- ∂E z

∂Hy
- ∂E z

∂Hz

∂Ey

∂Ex

∂Ey

∂Ey

∂Ey

∂E z

∂Ey

∂Hx

∂Ey

∂Hy

∂Ey

∂Hz




∂ ~Gy

∂ ~U
=




-∂Hz

∂Ex
-∂Hz

∂Ey
-∂Hz

∂E z
- ∂Hz

∂Hx
-∂Hz

∂Hy
-∂Hz

∂Hz

0 0 0 0 0 0

∂Hx

∂Ex

∂Hx

∂Ey

∂Hx

∂E z

∂Hx

∂Hx

∂Hx

∂Hy

∂Hx

∂Hz

∂E z

∂Ex

∂E z

∂Ey

∂E z

∂E z

∂E z

∂Hx

∂E z

∂Hy

∂E z

∂Hz

0 0 0 0 0 0

-∂Ex

∂Ex
-∂Ex

∂Ey
-∂Ex

∂E z
- ∂Ex

∂Hx
- ∂Ex

∂Hy
- ∂Ex

∂Hz




∂ ~Gz

∂ ~U
=




∂Hy

∂Ex

∂Hy

∂Ey

∂Hy

∂E z

∂Hy

∂Hx

∂Hy

∂Hy

∂Hy

∂Hz

-∂Hx

∂Ex
-∂Hx

∂Ey
-∂Hx

∂E z
-∂Hx

∂Hx
-∂Hx

∂Hy
-∂Hx

∂Hz

0 0 0 0 0 0

-∂Ey

∂Ex
-∂Ey

∂Ey
-∂Ey

∂E z
- ∂Ey

∂Hx
- ∂Ey

∂Hy
- ∂Ey

∂Hz

∂Ex

∂Ex

∂Ex

∂Ey

∂Ex

∂E z

∂Ex

∂Hx

∂Ex

∂Hy

∂Ex

∂Hz

0 0 0 0 0 0




Equation (A.1) can be interpreted as a conservation law on a finite-volume with con-

stant material parameters. In this case, Maxwell’s equations satisfy the wave equation

and the field components become uncoupled. This means that the above partial dif-
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ferential matrices may be simplified to:

∂ ~Gx

∂ ~U
=




0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 -1 0

0 0 0 0 0 0

0 0 -1 0 0 0

0 1 0 0 0 0




∂ ~Gy

∂ ~U
=




0 0 0 0 0 -1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

-1 0 0 0 0 0




∂ ~Gz

∂ ~U
=




0 0 0 0 1 0

0 0 0 -1 0 0

0 0 0 0 0 0

0 -1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0




Therefore:

∂ ~Gx

∂ ~U
mkx =




0 0 0 0 0 0

0 0 0 0 0 mkx

0 0 0 0 -mkx 0

0 0 0 0 0 0

0 0 -mkx 0 0 0

0 mkx 0 0 0 0



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∂ ~Gy

∂ ~U
mky =




0 0 0 0 0 -mky

0 0 0 0 0 0

0 0 0 mky 0 0

0 0 mky 0 0 0

0 0 0 0 0 0

-mky 0 0 0 0 0




∂ ~Gz

∂ ~U
mkz =




0 0 0 0 mkz 0

0 0 0 -mkz 0 0

0 0 0 0 0 0

0 -mkz 0 0 0 0

mkz 0 0 0 0 0

0 0 0 0 0 0




.

Noting that

∂ ~U

∂ξk
=
∂ ~U

∂~r
· ∂~r
∂ξk

=
∂ ~U

∂~r
· ~mk ≡

∂ ~U

∂mk

and using the previously derived matrices of partial derivatives we re-write (A.10) as

∇ · ~G(t, ~r) =
M−1∑

k=0

¯̄L(~mk) ·
∂ ~U(t, ~r)

∂mk

(A.11)

where the matrix ¯̄L(~mk) ∈ R6 × R6 is defined as:
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¯̄L(~mk) ,




0 0 0 0 mkz -mky

0 0 0 -mkz 0 mkx

0 0 0 mky -mkx 0

0 -mkz mky 0 0 0

mkz 0 -mkx 0 0 0

-mky mkx 0 0 0 0




(A.12)

allowing us to re-write the conservative form of Maxwell’s equation in terms of the

selected basis {~mk} on the finite-volume Vi with material parameters ¯̄αi as

∂

∂t
~U(t, ~r) +

M−1∑

k=0

¯̄Ai(~mk) ·
∂ ~U(t, ~r)

∂mk

= ~0 (A.13)

where ¯̄Ai(~mk) = ¯̄α−1 · ¯̄L(~mk). This is precisely the form of equation (2.17).



B

Time Domain Integral Solutions To

Maxwell’s Equations

In this chapter, integral forms of Maxwell’s Equations in the time-domain are devel-

oped. The theory primarily follows that presented in D. S. Jones classic text [33].

B.1 The Vector and Scalar Potentials

In the absence of magnetic sources, Maxwell’s Equations are:

∇× ~H(t, ~r) =
∂

∂t
~D(t, ~r) + ~J (t, ~r) (B.1a)

∇× ~E(t, ~r) = − ∂

∂t
~B(t, ~r) (B.1b)

∇ · ~D(t, ~r) = ρe(t, ~r) (B.1c)

∇ · ~B(t, ~r) = 0 (B.1d)
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where the electric conduction current is included in ~J (t, ~r). As the magnetic flux

~B(t, ~r) is source free and can be written as the curl of the vector potential ~A(t, ~r):

~B(t, ~r) = ∇× ~A(t, ~r) (B.2)

Substituting this relationship into Faraday’s Law (B.1b) relates the electric field to

~A(t, ~r) as:

∇× ~E(t, ~r) +∇× ∂

∂t
~A(t, ~r) +∇×∇φ(t, ~r) = 0

where the addition of ∇×∇φ(t, ~r) does not contribute to the equality. This equality

is zero for all space and time provided that

~E(t, ~r) = − ∂

∂t
~A(t, ~r)−∇φ(t, ~r) (B.3)

where φ(t, ~r) is the scalar potential. The equations (B.2) and (B.3) relate the field

quantities ~B(t, ~r) and ~E(t, ~r) to the potentials. These relationships are not unique. If

we consider the following potentials:

~A0(t, ~r) = ~A(t, ~r)−∇ψ(t, ~r)

φ0(t, ~r) = φ(t, ~r) +
∂

∂t
ψ(t, ~r)

(B.4)



B.1 The Vector and Scalar Potentials 210

for some sufficiently differentiable scalar function ψ(t, ~r), then upon substitution into

(B.2) and (B.3) we get:

~B(t, ~r) = ∇× ( ~A(t, ~r)−∇ψ(t, ~r))

= ∇× ( ~A(t, ~r))

~E(t, ~r) = − ∂

∂t
( ~A(t, ~r)−∇ψ(t, ~r))−∇φ(t, ~r))−∇

(
φ(t, ~r) +

∂

∂t
ψ(t, ~r)

)

= − ∂

∂t
( ~A(t, ~r) +

∂

∂t
∇ψ(t, ~r)−∇φ(t, ~r)−∇ ∂

∂t
ψ(t, ~r)

= − ∂

∂t
~A(t, ~r)−∇φ(t, ~r)

(B.5)

Therefore, the potentials (B.4) also satisfy Maxwell’s Equations and we say that

Maxwell’s Equations are invariant under the gauge transformation (B.4).

If we now assume that the magnetic and electric properties of the medium are simple

and stationary for all ~r of interest such that ~D(t, ~r) = ε~E(t, ~r) and ~B(t, ~r) = µ ~H(t, ~r),

then Ampéres law (B.1a) can be written in terms of the potentials as:

∇×∇× ~A(t, ~r) = µε
∂

∂t
~E(t, ~r) + µ ~J (t, ~r)

= −µε ∂
2

∂t2
~A(t, ~r)− µε∇ ∂

∂t
φ(t, ~r) + µ ~J (t, ~r)

= − 1

c2

∂2

∂t2
~A(t, ~r)− 1

c2
∇ ∂

∂t
φ(t, ~r) + µ ~J (t, ~r)

(B.6)

where the velocity c2 = (µε)−1. This provides three equations in the four unknown

potential quantities. We will obtain a fourth equation shortly. In the meantime, the

Lapacian operator in Cartesian coordinates can be written as:

∇2 ~A(t, ~r) = x̂
∂2

∂x2
Ax(t, ~r) + ŷ

∂2

∂x2
Ay(t, ~r) + ẑ

∂2

∂x2
Az(t, ~r)

≡ ∇(∇ · ~A(t, ~r))−∇×∇× ~A(t, ~r)

(B.7)
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Using (B.7) in (B.6) gives:

∇(∇ · ~A(t, ~r))−∇2 ~A(t, ~r) + µε

(
∂2

∂t2
~A(t, ~r) +∇ ∂

∂t
φ(t, ~r)

)
= µ ~J (t, ~r)

As we have only specified the curl of ~A(t, ~r) we are free to choose its divergence. By

choosing:

∇ · ~A(t, ~r) = −µε ∂
∂t
φ(t, ~r) (B.8)

we arrive at:

∇2 ~A(t, ~r)− µε∂tt ~A(t, ~r) = −µ ~J (t, ~r) (B.9)

and we see that the vector potential satisfies the vector wave equation.

We now seek a fourth equation relating the vector and scalar potentials. Substituting

(B.3) into Gauss’s law gives:

−∇ · ∂
∂t

~A(t, ~r)−∇2φ(t, ~r) =
ρe(~r)

ε
(B.10)

Interchanging the temporal and spatial derivatives of the vector potential and substi-

tuting for the divergence of ~A(t, ~r) from (B.8) we obtain:

∇2φ(t, ~r)− 1

c2
∂ttφ(t, ~r) = −ρe(~r)

ε
(B.11)

and so the scalar potential satisfies the scalar wave equation.

In Cartesian coordinates the three components of the vector wave equation for simple,

stationary media, (B.9), leaving three equations of the form (B.11). Therefore we seek

the solution to (B.11). It can be shown that the causal impulse response of this PDE
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due to a point charge at (t′, ~r ′) , i.e.:

∇2G(t, ~r ; t′, ~r ′)− 1

v2
∂ttG(t, ~r ; t′, ~r ′) = −δ(t− t′)δ(~r − ~r ′) (B.12)

is equal to:

G(t, ~r ; t′, ~r ′) =
δ(t− t′ − |~r − ~r ′|/c)

4π|~r − ~r ′| (B.13)

where δ(ξ) is the Dirac delta function. G is often refereed to as the scalar Green’s

function for homogeneous and stationary media and can be verified by direct substi-

tution into (B.12) . The notation “;” should be interpreted as denoting that G(t, ~r) is

due to a source at (t′, ~r ′)

If all sources are inside some volume V then, from the definition of the delta function,

we have:

ρ(t, ~r) =

∫∫∫

V

∞∫

−∞

ρe(t
′, ~r ′)δ(t− t′)δ(~r − ~r ′)dt′dV ′

and therefore the solution to the scalar wave equation (B.11) can be written as:

φ(t, ~r) =
1

ε

∫∫∫

V

∞∫

−∞

G(t, ~r ; t′, ~r ′)ρ(t′, ~r ′)dV ′

=
1

4πε

∫∫∫

V

∞∫

−∞

δ(t− t′ − |~r − ~r ′|/c)
|~r − ~r ′| ρe(t

′, ~r ′)dt′dV ′

=
1

4πε

∫∫∫

V

ρe(t− t′ − |~r − ~r ′|/c, ~r ′)
|~r − ~r ′| dV ′

=
1

4πε

∫∫∫

V

[[ρe(t, ~r
′)]]

|~r − ~r ′| dV
′

(B.14)

where the notation [[ · ]] is used to denote temporal evaluation at the retarded time
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t = t′−|~r−~r ′|/c. In a completely analogous manner for the vector potential we obtain:

~A(t, ~r) =
µ

4π

∫∫∫

V

[[J(t, ~r ′)]]

|~r − ~r ′| dV
′ (B.15)

where once again all sources lie on the interior of V .

B.2 The Kirchoff Solution of the Scalar Wave Equation

For a sufficiently smooth spatial vector field the divergence theorem hold:

∫∫∫

V

∇′ · ~a(~r ′)dV ′ =

∫∫

S

~a(~r ′) · ~n(~r ′)dS ′ (B.16)

where ~n(~r ′) is the outward normal to the boundary S of the volume V . The notation

∇′ denotes that the operator is with respect to the primed position ~r ′. We consider

the following vector quantities:

~a(t′, ~r ′) = G(t, ~r ; t′, ~r ′)∇′φ(t′, ~r ′)

~b(t′, ~r ′) = φ(t′, ~r ′)∇′G(t, ~r ; t′, ~r ′)
(B.17)

with divergences:

∇′ · ~a(t′, ~r ′) = ∇′G(t, ~r ; t′, ~r ′) · ∇′φ(t′, ~r ′) +G(t, ~r ; t′, ~r ′)∇′2φ(t′, ~r ′)

∇′ ·~b(t′, ~r ′) = ∇′φ(t′, ~r ′) · ∇′G(t, ~r ; t′, ~r ′) + φ(t′, ~r ′)∇′2G(t, ~r ; t′, ~r ′)
(B.18)
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Substituting the difference of these divergences into the divergence theorem (B.16) and

integrating with respect to t′ gives:

∫∫∫

V

∞∫

−∞

(
G(t, ~r ; t′, ~r ′)∇′2φ(t′, ~r ′)− φ(t′, ~r ′)∇′2G(t, ~r ; t′, ~r ′)

)
dt′dV ′ =

∫∫

S

∞∫

−∞

(G(t, ~r ; t′, ~r ′)∂n′φ(t′, ~r ′)− φ(t′, ~r ′)∂n′G(t, ~r ; t′, ~r ′)) dt′dS ′

(B.19)

where ~r ′ ∈ V and where ∂n′φ(t′, ~r ′) , ∇′φ(t′, ~r ′) · ~n(~r ′). Within this context the

space-time source location of for the Green’s function is considered variable. The first

term in the surface integral is:

I1(t, ~r) ,
∫∫

S

∞∫

−∞

G(t, ~r ; t′, ~r ′)∂n′φ(t′, ~r ′)dt′dS ′

=
1

4π

∫∫

S

[[∂n′φ(t, ~r ′)]]

|~r − ~r ′| dS ′
(B.20)

due to the sifting property of the impulse function.

The second surface integral is the negative of:

I2(t, ~r) ,
∫∫

S

∞∫

−∞

φ(t′, ~r ′)∂n′G(t, ~r ; t′, ~r ′)dt′dS ′ (B.21)

So we must evaluate the derivative:

4π∂n′G(t, ~r ; t′, ~r ′) = ∂n′
δ(t− t′ − |~r − ~r ′|/c)

|~r − ~r ′|

= − 1

c|~r − ~r ′|δ
′(t− t′ − |~r − ~r ′|/c)∂n′ |~r − ~r ′|

+ δ(t− t′ − |~r − ~r ′|/c)∂n′
1

|~r − ~r ′|

(B.22)
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so the integral (B.21) becomes:

I2(t, ~r) ,
∫∫

S

∞∫

−∞

φ(t′, ~r ′)∂n′G(t, ~r ; t′, ~r ′)dt′dS ′

=
1

4π

∫∫

S

(
[[φ(t, ~r ′)]]∂n′

1

|~r − ~r ′| −
1

c|~r − ~r ′| [[∂tφ(t, ~r ′)]]∂n′ |~r − ~r ′|
)
dS ′

(B.23)

and the surface integral in (B.19) can now be written as:

IS(t, ~r) , I1(t, ~r)− I2(t, ~r)

=
1

4π

∫∫

S

(
[[∂n′φ(t, ~r ′)]]

|~r − ~r ′| − [[φ(t, ~r ′)]]∂n′
1

|~r − ~r ′| +
1

c|~r − ~r ′| [[∂tφ(t, ~r ′)]]∂n′|~r − ~r ′|
)
dS ′

(B.24)

We now seek to simplify the volumetric integral in (B.19). From the definition of the

Green’s function (B.12) it can be shown by direct evaluation that

∇′2G(t, ~r ; t′, ~r ′) =
1

c2
∂t′t′G(t, ~r ; t′, ~r ′)− δ(t− t′)δ(~r − ~r ′)

while from the definition of the scalar potential we have:

∇′2φ(t′, ~r ′) =
1

c2
∂t′t′φ(t′, ~r ′)− ρe(t

′, ~r ′)

ε
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and the volumetric part of (B.19)

IV (t, ~r) ,
∫∫∫

V

∞∫

−∞

(
G(t, ~r ; t′, ~r ′)∇′2φ(t′, ~r ′)− φ(t′, ~r ′)∇′2G(t, ~r ; t′, ~r ′)

)′
dt′dV ′

=

∫∫∫

V

∞∫

−∞

G(t, ~r ; t′, ~r ′)

(
1

c2
∂t′t′φ(t′, ~r ′)− ρe(t

′, ~r ′)

ε

)
−

∫∫∫

V

∞∫

−∞

φ(t′, ~r ′)

(
1

c2
∂t′t′G(t, ~r ; t′, ~r ′)− δ(t− t′)δ(~r − ~r ′)

)
dt′dV ′

This temporal integration above can be evaluated directly by noting that due to the

derivative and sifting properties of the delta function the second order time derivates

cancel in the evaluation of the integral and therefore:

IV (t, ~r) = φ(t, ~r)− 1

4πε

∫∫∫

V

[[ρe(t, ~r
′)]]

|~r − ~r ′| dV
′

(B.25)

where, finally, equating IV (t, ~r) and IS(t, ~r) from equations (B.25) and (B.24) according

to (B.19) gives:

φ(t, ~r) =
1

4πε

∫∫∫

V

[[ρe(t, ~r
′)]]

|~r − ~r ′| dV
′+

1

4π

∫∫

S

(
[[∂n′φ(t, ~r ′)]]

|~r − ~r ′| − [[φ(t, ~r ′)]]∂n′
1

|~r − ~r ′| +
1

v|~r − ~r ′| [[∂tφ(t, ~r ′)]]∂n′|~r − ~r ′|
)
dS ′

(B.26)

and we arrive at an integral formula for the scalar potential. The physical interpreta-

tion of this equation is as follows: charges inside the volume V contribute to the scalar

potential from the volume integral as the scalar potential for a domain V containing

all sources internal to V given in in (B.14) is identical to the volume integral in (B.26).

Therefore, the surface integral must be the contribution to the potential due to sources
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outside of V .

B.3 Time-Domain Integral Field Solutions

The fact that the electric field ~E(t, ~r) satisfies the vector wave equation in simple,

stationary media, can easily be deduced from Maxwell’s Equations (B.1a)-(B.1d) by

taking the curl of Faraday’s law (B.1b):

∇×∇× ~E(t, ~r) = −∂t
(
∇× ~B(t, ~r)

)

= −µ∂t
(
∇× ~H(t, ~r)

)

= −µ∂t
(
ε∂t~E(t, ~r) + ~J (t, ~r)

)

= −µε∂tt~E(t, ~r)− µ∂t ~J (t, ~r)

(B.27)

and applying the Cartesian definition of the Laplacian we have:

∇(∇ · ~E(t, ~r))−∇2~E(t, ~r) = −µε∂tt~E(t, ~r)− µ∂t ~J (t, ~r)

so by re-arranging and applying Gauss’s Law we arrive at:

∇2~E(t, ~r)− 1

c2
∂tt~E(t, ~r) =

∇ρe(t, ~r)
ε

+ µ∂t ~J (t, ~r) (B.28)

Because the three components of the Laplacian are independent the solution for each

of the vector components is independently of the form (B.26) (where the source term
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is modified accordingly) giving:

~E(t, ~r) = − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′) + µ∂t ~J (t, ~r ′)]]

|~r − ~r ′| dV ′+

1

4π

∫∫

S

(
[[∂n′ ~E(t, ~r ′)]]

|~r − ~r ′| − [[~E(t, ~r ′)]]∂n′
1

|~r − ~r ′| +
1

c|~r − ~r ′| [[∂t
~E(t, ~r ′)]]∂n′ |~r − ~r ′|

)
dS ′

= − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′) + µ∂t ~J (t, ~r ′)]]

|~r − ~r ′| dV ′+

1

4π

∫∫

S

(
(~n′ · ∇′)[[~E(t, ~r ′)]]

|~r − ~r ′| − [[~E(t, ~r ′)]]∂n′
1

|~r − ~r ′| +
2c−1

|~r − ~r ′| [[∂t
~E(t, ~r ′)]]∂n′ |~r − ~r ′|

)
dS ′

(B.29)

by means of the identity:

[[∂n′ ~E(t, ~r.′)]] = [[(~n′ · ∇′)~E(t, ~r ′)]]

= (~n′ · ∇′)[[~E(t, ~r ′)]] +
1

c
[[∂t~E(t, ~r ′)]](~n′ · ∇′)|~r − ~r ′|

where the last equality can be shown to hold by summing the differentials of each

argument of the field. The surface integral hten involves a term of the form:

∫∫

S

(~n′ · ∇′)[[~E(t, ~r ′)]]

|~r − ~r ′| dS ′

As the surface is closed, for arbitrary vector ~a(~r ′) we have:

∫∫

S

((~n′ · ∇′)~a(~r ′) + ~n′ ×∇′ × ~a(~r ′)− ~n′∇ · ~a(~r ′)) dS = 0
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and so we let ~a(t, ~r ′) = [[~E(t, ~r ′)]]/|~r − ~r ′| to get:

∫∫

S

(
1

R
(~n′ · ∇′)[[~E ]] +

(
~n′ ×∇′ 1

R

)
× [[~E ]] +

1

R
~n′ ×∇′ × [[~E ]]− 1

R
~n′∇′ · [[~E ]]

)
dS ′ = 0

(B.30)

where ~E = ~E(t, ~r ′) and where R = |~r−~r ′|. This provides an expression for the surface

integral of (~n′ · ∇′)[[~E ]]/R which can be substituted into (B.29) to give the following

for the surface integral contribution to (B.29) (the first equality is simply the surface

integral in (B.29) repeated).

IES(t, ~r) ,
∫∫

S

(
(~n′ · ∇′)[[~E ]]

R
− [[~E ]]∂n′

1

|~r − ~r ′| +
2

cR
[[∂t~E ]]∂n′R

)
dS ′

=

∫∫

S

(
1

R
~n′∇′ · [[~E ]]

−
(
~n′ ×∇′ 1

R

)
× [[~E ]]− 1

R
~n′ ×∇′ × [[~E ]]− [[~E ]]∂n′

1

R
+

2

cR
[[∂t~E ]]∂n′R

)
dS ′

(B.31)

We now use the two following differential/time-retardation relationships:

∇′ · [[~E ]] = [[∇′ · ~E ]]− 1

c
[[∂t~E ]] · ∇′R

∇′ × [[~E ]] = [[∇′ × ~E ]]− 1

c
∇′R× [[∂t~E ]]

(B.32)
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which can be obtained by adding the contribution of the spatial differentials of each

argument of [[~E ]]. Therefore IES can be written as:

IES(t, ~r) =
∫∫

S

(
~n′

R
∇′ · [[~E ]]

−
(
~n′ ×∇′ 1

R

)
× [[~E ]]− 1

R
~n′ ×∇′ × [[~E ]]− [[~E ]]∂n′

1

R
+

2

cR
[[∂t~E ]]∂n′R

)
dS ′ =

∫∫

S

(
~n′

R
[[∇′ · ~E ]]− ~n′

cR

(
[[∂t~E ]] · ∇′R

)
−
(
~n′ ×∇′ 1

R

)
× [[~E ]]

− 1

R
~n′ × [[∇′ × ~E ]] + ~n′ ×

(
1

cR
∇′R× [[∂t~E ]]

)

− [[~E ]]

(
~n′ · ∇′ 1

R

)
+

2

cR
[[∂t~E ]] (~n′ · ∇′R)

)
dS ′

(B.33)

By the vector triple product:

−
(
~n′ × [[~E ]]

)
×∇′ 1

R
= ∇′ 1

R
×
(
~n′ × [[~E ]]

)

=

(
∇′ 1
R
· [[~E ]]

)
~n−

(
∇′ 1
R
· ~n
)

[[~E ]]
(B.34)

while

−
(
~n′ ×∇′ 1

R

)
× [[~E ]] = [[~E ]]×

(
~n′ ×∇′ 1

R

)

=

(
[[~E ]] · ∇′ 1

R

)
~n−

(
[[~E ]] · ~n

)
∇′ 1
R

= −
(
~n′ × [[~E ]]

)
×∇′ 1

R
+

(
∇′ 1
R
· ~n
)

[[~E ]]−
(

[[~E ]] · ~n
)
∇′ 1
R

(B.35)
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Substituting this last result into (B.33) gives:

IES(t, ~r) =

∫∫

S

(
~n′

R
[[∇′ · ~E ]]− ~n′

Rc

(
[[∂t~E ]] · ∇′R

)
−
(
~n′ × [[~E ]]

)
×∇′ 1

R

−
(

[[~E ]] · ~n
)
∇′ 1
R
− 1

R
~n′ × [[∇′ × ~E ]] + ~n′ ×

(
1

cR
∇′R× [[∂t~E ]]

)

+
2

cR
[[∂t~E ]] (~n′ · ∇′R)

)
dS ′

(B.36)

Similarly the triple product

~n′ ×
(

1

cR
∇′R× [[∂t~E ]]

)
=
(
~n′ · [[∂t~E ]]

) 1

cR
∇′R−

(
1

cR
~n′ · ∇′R

)
[[∂t~E ]] (B.37)

can be substituted into (B.36) to give:

IES(t, ~r) =

∫∫

S

(
~n′

R
[[∇′ · ~E ]]− ~n′

Rc

(
[[∂t~E ]] · ∇′R

)
−
(
~n′ × [[~E ]]

)
×∇′ 1

R

−
(

[[~E ]] · ~n
)
∇′ 1
R
− 1

R
~n′ × [[∇′ × ~E ]] +

(
~n′ · [[∂t~E ]]

) 1

cR
∇′R

+
1

cR
[[∂t~E ]] (~n′ · ∇′R)

)
dS ′

(B.38)

A final triple product:

1

cR
∇′R×

(
~n′ × [[∂t~E ]]

)
=

~n′

Rc

(
[[∂t~E ]] · ∇′R

)
−
(

1

cR
~n′ · ∇′R

)
[[∂t~E ]] (B.39)

simplifies (B.38) further to:

IES(t, ~r) =

∫∫

S

(
~n′

R
[[∇′ · ~E ]] +

1

cR

(
~n′ × [[∂t~E ]]

)
×∇′R−

(
~n′ × [[~E ]]

)
×∇′ 1

R

−
(

[[~E ]] · ~n
)
∇′ 1
R
− 1

R
~n′ × [[∇′ × ~E ]] +

(
~n′ · [[∂t~E ]]

) 1

cR
∇′R

)
dS ′

(B.40)
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The term involving the curl of ~E can be re-written in terms of the magnetic field from

Faraday’s law:

~E(t, ~r) = − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′) + µ∂t ~J (t, ~r ′)]]

R
dV ′ +

1

4π

∫∫

S

~n′

R
[[∇′ · ~E ]]dS ′

+
1

4π

∫∫

S

(
1

cR

(
~n′ × [[∂t~E ]]

)
×∇′R−

(
~n′ × [[~E ]]

)
×∇′ 1

R
−
(

[[~E ]] · ~n
)
∇′ 1
R

+
µ

R
~n′ × [[∂t ~H]] +

(
~n′ · [[∂t~E ]]

) 1

cR
∇′R

)
dS ′

(B.41)

The divergence of ~E can be re-written as a volume integral using Gauss’s Law and the

gradient theorem such that:

1

4π

∫∫

S

~n′

R
[[∇′ · ~E ]]dS ′ =

1

4πε

∫∫

S

~n′

R
[[ρe]]dS

′

=
1

4πε

∫∫∫

V

1

R
∇′[[ρe]]dV ′

And we have:

~E(t, ~r) = − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′)]] + [[µ∂t ~J (t, ~r ′)]]− ε−1∇′[[ρe]]
R

dV ′

+
1

4π

∫∫

S

(
1

cR

(
~n′ × [[∂t~E ]]

)
×∇′R−

(
~n′ × [[~E ]]

)
×∇′ 1

R
−
(

[[~E ]] · ~n
)
∇′ 1
R

+
µ

R
~n′ × [[∂t ~H]] +

(
~n′ · [[∂t~E ]]

) 1

cR
∇′R

)
dS ′

(B.42)
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While further simplification of the volumetric integral is possible we will omit it here.

Instead we evaluate the R derivatives by using the following equalities:

∇′R = −
~R

R
∇′ 1
R

=
~R

R3
(B.43)

where ~R , |~r − ~r ′| equation (B.33) we arrive finally at:

~E(t, ~r) = − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′)]] + [[µ∂t ~J (t, ~r ′)]]− ε−1∇′[[ρe]]
R

dV ′

+
1

4π

∫∫

S

(
− 1

cR

(
~n′ × [[∂t~E ]]

)
×
~R

R
−
(
~n′ × [[~E ]]

)
×

~R

R3
−
(

[[~E ]] · ~n
) ~R

R3

+
µ

R
~n′ × [[∂t ~H]]−

(
~n′ · [[∂t~E ]]

) 1

cR

~R

R

)
dS ′

(B.44)

Collecting like terms we get:

~E(t, ~r) = − 1

4π

∫∫∫

V

[[ε−1∇′ρe(t, ~r ′)]] + [[µ∂t ~J (t, ~r ′)]]− ε−1∇′[[ρe]]
R

dV ′

+
1

4π

∫∫

S

(
− ~n′ ×

(
[[~E ]] + c−1R[[∂t~E ]]

)
×

~R

R3

−
(
~n ·
(

[[~E ]] + c−1R[[∂t~E ]]
)) ~R

R3
+
µ

R
~n′ × [[∂t ~H]]

)
dS ′

(B.45)

Finally, if we have no sources inside V then the electric field inside V is completely

specified by the surface fields:

~E(t, ~r) =

+
1

4π

∫∫

S

(
− ~n′ ×

(
[[~E + c−1R∂t~E ]]

)
×

~R

R3

−
(
~n ·
(

[[~E + c−1R∂t~E ]]
)) ~R

R3
+
µ

R
~n′ × [[∂t ~H]]

)
dS ′

(B.46)
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A corresponding integral solution to Maxwell’s Equations can be obtained for ~H(t, ~r)

when V is source-free by duality:

~H(t, ~r) =

+
1

4π

∫∫

S

(
− ~n′ ×

(
[[ ~H + c−1R∂t ~H]]

)
×

~R

R3

−
(
~n ·
(

[[ ~H + c−1R∂t~E ]]
)) ~R

R3
− ε

R
~n′ × [[∂t~E ]]

)
dS ′

(B.47)
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