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Abstract

Person re-identification is a challenging task of matching a query person across mul-

tiple person’s images or videos captured from different camera views. Recently, deep

learning based approaches have showed promising performance on this task. In this

thesis, initially we propose an image based person re-identification approach with Spa-

tial Transformer Networks. Most previous deep learning based approaches use whole

image features to compute the similarity between images. This is not very intuitive

since not all the regions in an image contain information about the person identity.

Hence, we introduce an end-to-end Siamese convolutional neural network that firstly

localizes discriminative salient image regions and then computes the similarity based

on these image regions. Furthermore, we propose an efficient attention based model

for person re-identifying from videos. Our method generates an attention score for

each frame based on frame-level features. The attention scores of all frames in a video

are used to produce a weighted feature vector for the input video which is refined it-

eratively for re-identifying persons from videos. Extensive experiments on different

datasets show that the proposed models provide an effective way of re-identifying

person from images as well as videos.
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Chapter 1

Introduction

Person re-identification is the problem of recognizing a specific person in a system

of non-overlapping camera views. It is an important problem in many real-world

applications, such as video surveillance, human computer interaction, police investi-

gation and so on. It is a very challenging problem due to the complex variations in

viewpoints, poses, lighting, illuminations, blurring effects, and image resolutions. The

intra-person variations can even be larger than inter-person variations in this task [1].

Backgrounds and occlusions also create challenges in person re-identification.

In this thesis, we consider two person re-identification problems. One is image

based person re-identification and another one is video based person re-identification.

The goal of image based person re-identification is to identify a specific person in

an input image (known as the probe image) from a set of images (known as gallery

set) captured by non-overlapping and different cameras. Sometimes small objects or

regions convey important information about the person identity in an image. Humans

can recognize person identity based on these salient regions. For example, in Fig.1.1,

1



2 Chapter 1: Introduction

Figure 1.1: Some examples of pedestrian images for image based person re-
identification from CUHK01 train dataset. Each pair represents the same person
from different camera views. The bounding box on each image shows the discrimina-
tive region localized by our proposed approach.

person (a) carries a backpack, person (b) wears a white jacket, person (c) holds

an orange colored jacket in his hand and person (d) holds a file in her hand. These

distinctive regions can be used to identify one person from others. Usually, if an object

is salient in one camera view, it remains salient in another camera view too [2] even

though there are variations in view points. In addition to salient objects, body parts

as well as clothing can also be considered as informative region for identifying persons.

Although salient regions in an image play a vital role in person re-identification for

humans, most existing approaches in person re-identification do not capture this

information. Most of the existing approaches [3; 4; 5; 6; 7] compute the similarity

between two images based on whole image features.

In this thesis, we propose a new person re-identification technique by explicitly

localizing salient regions. In particular, we use Spatial Transformer Network (STN)

[8] to localize the discriminative regions in the input images. Our multichannel CNN

model then computes the similarity of the input images based on these discriminative

regions in conjunction with whole image features.
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Most of the earlier work (e.g. [9; 10; 11; 12; 13; 14; 15; 16]) focuses on the image

based re-identification. Recently, video-based person re-identification is receiving

increasing attention (e.g. [17; 18; 19; 20; 21; 22; 23; 24]). Compared with static

images, video-based person re-identification is a more natural setting for practical

applications such as video surveillance.

In this thesis, we also consider the problem of video-based person re-identification.

Given a video containing a person, the goal is to identify the same person from other

videos possibly captured under different cameras. A common strategy for person re-

identification is to formulate it as a metric learning problem. Given the query video

and a candidate video, the goal is to develop algorithms to compute the distance

between these two videos. If the distance is small, it means the two videos likely

contain the same person. See Fig. 1.2 for an illustration.

Previous work (e.g. [21; 23]) has made the observation that not all frames in a

video are informative. For example, if the person is occluded in a frame, ideally we

would like the feature representation of the video to ignore this frame and focus on

other “useful” frames. A natural way of solving this problem is to use the attention

models [25; 26; 27] that have been popular in visual recognition recently. In [21; 23],

RNN is used to model the temporal information of the frames and generate the

attention score for each frame for person re-identification.

In this thesis, we propose a new attention model for video-based re-identification.

Compared with previous works [21; 23], our model has several novelties. First, instead

of using RNN, we directly produce the attention score of each frame based on the

image feature of this frame. Since the attention score of each frame is calculated
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Figure 1.2: Illustration of the video-based person re-identification problem. In this
case, our goal is to identify person A from two video sequences in the second row.
If two videos contain the same person, we would like the distance between them to
be small. Otherwise, we would like the distance to be large. Some frames in a video
sequence may be affected by occlusions and are not informative about the person’s
identity. In this thesis, we use an attention model to focus on informative frames for
re-identification.

based on the frame, the computation of attention scores over all frames can be easily

made parallel and take full advantage of the GPU hardware. Second, the work in

[21; 23] only calculates the attention scores once. Here, we introduce a new method

to refine the attention scores based on the whole video features. We show that this

attention refinement can improve the performance of our model.

1.1 Contributions

Our contributions include:

• We integrate attention-based STN in the image based person re-identification
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framework. This allows our model to focus on discriminative regions in the

input images when computing their similarity. Moreover, we integrate global

image features with the discriminative regions to produce final feature repre-

sentation for person re-identification. To the best of our knowledge, this is the

first CNN-based architecture that performs person re-identification by localiz-

ing discriminative image regions. Our model can be trained end-to-end and it

does not require supervision or any prior knowledge about the discriminative

regions.

• A new attention mechanism for video-based person re-identification. Unlike

previous work (e.g. [23]) that uses RNN to generate the attentions, our model

directly generates attentions based on frame-based features. As a consequence,

the computation of the attentions is much simpler and can be easily parallelized.

In contrast, RNN has to process frames in a sequential order, so the computation

cannot be made parallel. Despite of its simplicity, our model outperforms the

more sophisticated RNN-based attention mechanism in [23]. We also introduce

an iterative refinement process to further improve the attentions. This allows

the model to refine the attention scores over time. We show that this attention

refinement improves the performance of the final model. In addition, we also

study the effect of iterative refinement on the performance.

1.2 Thesis Organization

The remainder of the thesis is organized as follows: First, in Chapter 2, we review

the related works and the literature. In this chapter, we briefly describe previous
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approaches and techniques used for both image and video re-identification. In Chap-

ter 3, we describe image based person re-identification by localizing discriminative

regions. We show that discriminative regions in the input images can play vital role

for re-identification. Hence, we introduce a Siamese convolutional neural network to

localize discriminative salient regions and later use that regions in conjunction with

the whole image to re-identify person. In Chapter 4, we develop deep learning ar-

chitectures to address video re-identification. Here, we propose an attention based

architecture that generate attention scores for frame level features. Unlike most ex-

isting deep learning methods that use global or spatial representation, our approach

focuses on attention scores. We also propose an iterative refinement approach and

show that this attention refinement improves the performance of the final model.

Finally, we conclude this thesis in Chapter 5.



Chapter 2

Related Work

Previous work in person re-identification falls into two broad categories: image-

based re-identification and video-based re-identification. In this Chapter, we briefly

describe some previous approaches that are related to re-identifying person from both

images and videos.

2.1 Image-based Person Re-identification

There has been extensive work on person re-identification from static images.

Early work in this area uses hand-crafted feature representations [28; 29; 30; 31; 32].

Most of these methods involve extracting feature representations that are invariant

to viewpoint changes, then learning a distance metric to measure the similarity of

two images.

Deep learning approaches, in particularly deep convolutional neural networks

(CNNs), have achieved tremendous successes in various visual recognition tasks [33].

7
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In many areas of computer vision, CNNs have replaced hand-engineering feature rep-

resentations with features learned end-to-end from data. Recently, CNNs have been

used for image-based person re-identification [9; 10; 11; 12; 13; 14; 15; 16]. These

methods use deep network architecture such as Siamese network [34] to map images to

feature vectors. These feature vectors can then be used for re-identification. Hence,

previous work on person re-identification can be classified into two broad groups:

non-deep learning methods and deep learning methods.

Non-Deep Learning Methods: Most of the person re-identification methods con-

sist of two components: (1) a method to extract features from the input images,

and (2) a way of computing a similarity metric to decide whether the images be-

long to same person or not. Much of the previous research focuses on either im-

proving feature extraction method [35; 36; 37; 38], or robust similarity metric learn-

ing [39; 40; 41; 42; 36], or their combination [3; 43; 44; 45]. Although these approaches

are promising, their performance is limited due to the heavy reliance on handcrafted

features. In contrast, our approach is based on deep learning which simultaneously

learns the feature representation and a similarity metric to optimize the performance.

Deep Learning Methods: In recent years, deep neural networks have significantly

improved the state-of-the-art in many computer vision tasks such as image classifi-

cation and object detection. There are a few previous works that use deep learning

for person re-identification problem in the literature. Our work is mostly related

to the work by Yi et al. [46], Li et al. [47], Ahmed et al. [5], and Subramaniam et

al. [7]. Yi et al. [46] propose a Siamese convolutional network for re-identification.

Their network takes a pair of images as its input to which three stages of convolution
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are performed followed by a fully-connected operation that outputs a vector for each

input image. Lastly, cosine similarity function is used to compare the two output

vectors. Li et al. [47] use a two-input network architecture that firstly performs a

set of convolutions to the inputs and then multiplies the convolution feature maps

at different horizontal offsets. This is followed by a max-out grouping which filters

out the highest response from horizontal strips to which another convolution and

max pooling operation is done. Finally, the output is used to compute the similarity.

Ahmed et al. [5] introduce a deep architecture that contains two new layers: cross-

input neighborhood layer and patch summary layer. Cross-input neighborhood layer

is used to learn the relationship between feature maps of two input images. Patch

summary layer is responsible for summarizing the neighborhood maps by analysing

the differences in each 5× 5 block, which are then used to measure the similarity of

two input images. Our image based re-identification model is motivated by recent

work in [7] which extends the work of [5]. The work in [7] uses a fused network that

performs inexact matching through a novel layer called Normalized X-Corr whose

output assists the subsequent layers in making decision on whether the two input im-

ages are similar or not. The main difference between these previous approaches and

ours is that, instead of using only whole image feature maps to compare the two input

person images similarity, we firstly localize discriminative regions in the images and

then forward their feature maps in addition to the global images to subsequent layers

for similarity computation. Our work is driven by the intuition that the input images

contain a lot of background pixels which are irrelevant for person re-identification.

Our work is also related to the recent work on localizing and ranking visual at-
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tributes given a pairwise image comparison [48]. This work uses STN to localize the

image regions that are relevant for the visual attribute. Similar to [48], we also incor-

porate STN to localize discriminative regions in images that are relevant for person

re-identification.

2.2 Video-based Person Re-identification

Although the performance of image-based person re-identification has increased

significantly, this is not a very realistic setting for practical applications. To address

the limitation of image-based re-identification, a lot of recent work has began to ex-

plore video-based re-identification [17; 18; 19; 20; 21; 22; 23; 24] since it is closer to

real-world application settings. Compared with static images, videos contain tempo-

ral information that is potentially distinctive for differentiating a person’s identity.

Some prior work has explored ways of incorporating temporal information in deep

convolutional neural network for re-identification. For example, McLaughlin et al.

[19] use CNN on each frame in a video and incorporate a recurrent layer on the CNN

features. Temporal pooling is then used to combine frame-level features into a single

video-level feature vector for re-identification.

One work is also related to a line of research on incorporating attention mechanism

in deep neural networks. The attention mechanism allows the neural networks to focus

on part of the input and ignore the irrelevant information. It has been successfully

used in many applications, including machine translation [25], image captioning [27],

visual question answering [26], etc. In video-based re-identification, the attention

mechanism has also been explored [21; 23]. The intuition is that only a small portion



Chapter 2: Related Work 11

of the video contains informative information for re-identification. So the attention

mechanism can be used to help the model focus on the informative part of the video.

The work in [23] is the closest to ours. It uses an RNN to generate temporal

attentions over frames, so that the model can focus on the most discriminative frames

in a video for re-identification. In this thesis, we uses temporal attentions over frames

as well. But instead of using RNN-based models to generate attentions [23], we

directly calculate the attention scores based on frame-based features. This makes the

model much simpler and the computation of attention scores can be easily parallelized

over frames. We also propose an attention refinement mechanism to iteratively refine

the attention scores. We demonstrate that this attention refinement improves the

performance of the final model.



Chapter 3

Person Re-Identification by

Localizing Discriminative Regions

We formulate person re-identification as a binary classification problem given two

input images. Our proposed model learns a function f that maps an image pair (I1,

I2) to a score that indicates how likely these two images correspond to the same

person. During training, our network takes an image pair (I1, I2) and a binary label

L indicating whether the images are similar or not. During testing, the input is an

image pair (Itest1, Itest2) and the network uses the learned function f with parameters

w to predict the similarity score f(Itest1, Itest2) between the image pair.

Figure 3.1 shows the overall architecture of our model. Our model is based on the

Siamese network [49]. It has two Siamese networks whereas each network contains two

branches with shared parameters. There are two main components in the network:

(a) Spatial Transformer Network (SN) and (b) Fused Network (FN). The STN is

used to learn to localize the discriminative region in an image and generate a feature

12
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Figure 3.1: Overall architecture of our network. It takes two person images (I1, I2)
as its input. Each image is forwarded to two Siamese-CNN architecture whereas
one contains a Spatial Transformer Network (STN) with a Fused Network (FN) and
another contains only fused network. The model finally produces two outputs/scores
(v1, v2) indicating similarity strength of two input person images which is later fed
to a loss function to update the parameters of the network.

representation based on this region. The FN is used to combine the features of

discriminative regions in both input images and output a similarity score.

3.1 Spatial Transformer Network

Previous work on person re-identification typically compares the similarity of two

images based on features extracted from the entire image. We believe this is not

optimal, since an image usually contains a lot of pixels (e.g. background pixels) that

are irrelevant for person re-identification. Humans usually differentiate between a pair

of images by focusing on certain distinct regions/parts of the person in the image (see

Fig. 1.1). In our work, we develop a model that has the same capability. In our

model architecture, we incorporate STN for localizing discriminative regions that are
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relevant for person re-identification. STN is a fully-differentiable module that can

learn spatial transformations, such as scaling, rotation and translation without any

additional supervision.

We incorporate STN in our network so that it can focus on discriminative regions

which would be used for subsequent parts of the network. The output of STN will

simplify the task of Fused network (FN) as it can be optimized efficiently over the

localized discriminative regions for a given pair of images.

As outlined in [8], there are three main components in STN (see top of Fig. 3.2):

i) Localization network, which takes the input image and produces the transformation

parameters θ; ii) Grid generator, which generates a sampling grid using the transfor-

mation parameters. The sampling grid is a set of points where the input feature map

should be sampled to produce the transformed output; and iii) Sampler, which uses a

bilinear interpolation kernel to produce the output image. In this work, we use STN

that has three transformation parameters θ = [s, tx, ty], where s, tx and ty represent

isotropic scaling, horizontal and vertical translation respectively. This transformation

parameters are constrained for attention [8], and the point transformation is

 xi
in

yi
in

 =

s 0 tx

0 s ty




xi
out

yi
out

1

 (3.1)

Here, xi
in and yi

in represent coordinates of the input image, whereas xi
out and yi

out

represent output image coordinates at the i-th index. The localization network within

the STN can take any form of convolutional network or fully-connected network, but

finally it should include a regression layer that generates transformation parameters



Chapter 3: Person Re-Identification by Localizing Discriminative Regions 15

θ [8]. In this thesis, we follow their localization layer architecture which uses STN

for digit localization in images. A convolutional layer with 20 filters of size 5 × 5

and two fully-connected layers are added towards the end. The first fully-connected

layer takes 6120 values as its input and produces 20 output values, whereas the

second one takes 20 input values and produces 2 transformation parameters (tx, ty)

as output. Here the network is not learning scaling parameter (s) as we fix it to 0.5.

These parameters are used to generate the transformed output image patch through

the sampling mechanism. Figure 3.3 shows the STN’s localization behavior during

training.

3.2 Fused Network

The input images and the output of STN are fed to the Fused Network (FN)

[7]. In our model, we use two fused networks separately. One of them takes a

pair of image patches as its input whereas another one considers a pair of whole

input images. Finally these two fused network outputs the similarity score indicating

whether two image belong to the same person or not. The fused network is also a

Siamese network where each branch contains two stage of convolutions (with shared

parameters) and pooling layers. These convolution layers take input image of size

60× 160× 3 and generate 25 feature maps of dimension 12× 37 which is fed to the

normalized correlation and the cross-input neighborhood layers. Given two feature

maps, the normalized correlation layer [7] computes the correlation between every pair

of 5× 5 patch matrices. For given matrices X and Y , the Normalized Correlation is

defined as [7]:
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Figure 3.2: Detailed architecture of our proposed network. The network takes a
pair of image as input. Each image goes through the spatial transformer network
(STN), which localizes the discriminative image region. The output of STN is fed to
Fused network which generates two linear layers with 500 output values as features
of the discriminative region. At the same time, the input images go through another
fused network which also produces two linear layers of 500 output values as global
image features. The features from the localized regions and the global images are
concatenated and finally used to compute the similarity score of the two input images.

normCorr(X, Y ) =
ΣN

i=1(Xi − µX)(Yi − µY )

(N − 1).σX .σY
(3.2)

Here, µX and µY are the mean values for two matrices X and Y respectively.

Cross-input neighborhood layer [5] computes the difference between feature maps

produced by the convolution layers of two branches of the Siamese network. The

output of normalized correlation and the cross-input neighborhood are fed to separate
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Figure 3.3: STN’s localization behavior during training on CUHK01 dataset. Each
row shows the localized image patch (in the red box) by STN for different training
iterations. We find that STN converges to distinctive image regions after certain
iterations.

cross patch feature aggregation layers which incorporate the contextual information

and summarizes it. The feature aggregation layer is composed of two convolutions

followed by max-pooling layer, and the output is 25 feature maps of size 5× 17. The

output feature maps are then fed to fully-connected layers of 500 hidden units. The

fully-connected layers (one for patch image and another for global image) for each

images are joined together with two softmax units. The output of the first softmax

represents the likelihood that two images are same, and the other one represents the
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likelihood that the images are different. To train our network, we use the standard

cross-entropy loss and optimize the network parameters using the Stochastic Gradient

Descent (SGD) algorithm.

Figure 3.2 shows the detailed architecture of our proposed network. Subramaniam

et al. [7] also use FN for person re-identification. But the model in [7] computes the

similarity of two input images only from the whole image features. In contrast,

our proposed model first uses STN to localize the discriminative regions from the two

input images, then the similarity score is computed based on these regions in addition

to the whole images.

3.3 Experimental Evaluation

In this section, we firstly introduce the datasets used in our experiments (see

Sec. 3.3.1). After that we describe network training strategies (see Sec. 3.3.2) and

evaluation protocol (see Sec. 3.3.3). Finally we present our experimental results in

Sec. 3.3.4.

3.3.1 Datasets

We conduct experiments on two benchmark datasets: CUHK01 [3] and CUHK03

[47] .

CUHK01 Dataset: This dataset consists of 3,884 images of 971 people [3].

For each person (or identity), there are 4 images captured from 2 different cameras.

Following Subramaniam et al. [7], we conduct experiments in two different settings.

In the first setting, we use 871 identities for training and the remaining 100 identities
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for testing. In the second setting, we use 485 identities for training and the remaining

486 identities for testing.

CUHK03 Dataset: This is one of the largest benchmark dataset for person re-

identification. It consists of 13,164 images of 1,360 pedestrians captured by 6 different

surveillance cameras [47]. Each person is observed by 2 disjoint camera views. The

dataset contains two different types of pedestrian bounding boxes – one as a result of

manually labeling (referred as Labeled dataset) and the other that is algorithmically

generated (referred as Detected dataset). In this work, we conduct experiments on

both types. Again, we follow the experiment protocol of Subramaniam et al. [7] by

randomly picking 1,260 identities for training and the rest for testing.

3.3.2 Network Training Strategies

We treat person re-identification as a binary classification problem. So we train

the network using pairs of similar (i.e. positive pair) and dissimilar (i.e. negative pair)

images. There exists data imbalance in the datasets – there are more negative pairs

than positive pairs. Following previous work [7], we perform data augmentation to

deal with the data imbalance. For every training set image of size W ×H, we sample

several image patches (2 image patches for CUHK03 and 5 image patches for CUHK01

Dataset) around the image center and then apply random 2D translation drawn from

a uniform distribution within the range of [−0.05W, 0.05W ]× [−0.05H, 0.05H]. This

data augmentation strategy alleviates the training data imbalance issue across the

datasets.

We implement our network using Torch 7 [50]. We train our network with mini-
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batch of size 128. We use 0.9 as momentum and 0.05 as initial learning rate. Learning

rate decay and weight decay are set to 1 × 10−4 and 5 × 10−4 respectively. We also

fix the scaling value to 0.5 in the Spatial Transformer Network and learn translation

parameters (tx and ty) only. Due to the data imbalance in most of the person re-

identification dataset, after certain iteration the STN begins to consider whole image

as patch. To mitigate this issue, we use fix scaling value to learn STN which gives

better result along with the global image.

3.3.3 Evaluation Protocol

We present a comprehensive evaluation of our proposed method by comparing it

with several state-of-the-art methods on CUHK01 and CUHK03 datasets. Following

previous work, we rank the images present in the gallery image set based on the

similarity with a probe image. Note that both the gallery images and the probe

images are from test set. The intuition of this type of ranking is that the ground-

truth matching gallary image should have the highest rank in the ideal case. In our

experiments, we randomly select one image for each person/identity in the test set

as a probe image and consider the remaining images as gallery images. For a probe

image of a person, there is exactly one match in the gallery images. We perform 10

test trials on every probe image and report the averaged results in the tables along

with several baselines. Note that the comparison with Subramaniam et al. [7], Ahmed

et al. [5], and Li et al. [47] is of particular interest to us since they use similar deep

learning architectures.
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3.3.4 Results

CUHK01 Dataset: Table 3.1 and 3.2 summarize the experimental results on the

CUHK01 dataset with 100 and 486 test identities. Our model outperforms the state-

of-the-art method by nearly 5% in terms of the rank-1 accuracy. We believe that this

performance gain is due to the discriminative regions learned by our network that is

able to effectively distinguish between similar and dissimilar person images. Moreover,

we train our network from scratch rather than pre-training it on a larger CUHK03

Labeled dataset, which is done by the state-of-the-art method in [7]. Note that the

method in [7] is equivalent to our model without localizing the discriminative regions.

Our model outperforms [7] by a large margin. This demonstrates the advantage of

localizing discriminative regions in images for person re-identification.

Method Rank-1 Rank-10 Rank-20

eSDC[43] 22.84 57.67 69.84

LDML[39] 26.45 72.04 84.69

KISSME[40] 29.40 72.43 86.07

Li et al.[47] 27.87 73.46 86.31

Ahmed et al.[5] 65.00 93.12 97.20

Wang et al.[51] 71.80 – –

Subramaniam et al.[7] 81.23 97.39 98.60

Ours 86.67 99.17 99.87

Table 3.1: Performance of different methods at ranks 1, 10, and 20 on CUHK01 with
100 test IDs.

CUHK03 Dataset: Table 3.3 and 3.4 summarize the experimental results on the

CUHK03 Labeled and Detected datasets, respectively. Our model outperforms the
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Method Rank-1 Rank-10 Rank-20

Mid-Level Filters [36] 34.30 65.00 74.90

Mirror-KFMA [52] 40.40 75.30 84.10

Ahmed et al.[5] 47.50 80.00 87.44

Ensembles [53] 51.90 83.00 89.40

CPDL[38] 59.50 89.70 93.10

Subramaniam et al. [7] 65.04 89.76 94.49

Ours 71.35 93.08 96.80

Table 3.2: Performance of different methods at ranks 1, 10, and 20 on CUHK01 with
486 test IDs.

state-of-the-art [7] method by nearly 2% in terms of the rank-1 accuracy. Figure 3.4

shows some qualitative retrieval results on this dataset.

Method Rank-1 Rank-10 Rank-20

eSDC [43] 8.76 38.28 53.44

LDML [39] 13.51 52.13 70.81

KISSME [40] 14.17 52.57 70.03

Li et al. [47] 20.65 68.74 83.06

LOMO+XQDA [44] 52.20 92.14 96.25

Ahmed et al. [5] 54.74 93.88 98.10

LOMO+MLAPG [54] 57.96 94.74 98.00

Ensembles [53] 62.10 92.30 97.20

Subramaniam et al. [7] 72.43 95.51 98.40

Ours 77.80 98.49 99.52

Table 3.3: Performance of different methods at ranks 1, 10, and 20 on the CUHK03
Labeled dataset.
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Figure 3.4: Qualitative retrieval results of our approach on CUHK03 dataset. The
first column in each row represents a probe image. The remaining columns represent
the retrieved results. The column highlighted in green is the ground-truth match.

Method Rank-1 Rank-10 Rank-20

eSDC [43] 7.68 33.38 50.58

LDML [39] 10.92 47.01 65.00

KISSME [40] 11.70 48.08 64.86

Li et al. [47] 19.89 64.79 81.14

LOMO+XQDA [44] 46.25 88.55 94.25

Ahmed et al. [5] 44.96 83.47 93.15

LOMO+MLAPG [54] 51.15 92.05 96.90

Subramaniam et al. [7] 72.04 96.00 98.26

Ours 74.48 96.16 98.28

Table 3.4: Performance of different methods at ranks 1, 10, and 20 on the CUHK03
Detected dataset.
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Figure 3.5: Some failure cases of our approach. (a) image pairs of the same person: our
method incorrectly predict them as being dissimilar due to the lack of discriminative
regions in these images; (b) image pairs of different persons: our method incorrectly
recognize them as the same person, possibly because the localized discriminative
regions in these image pairs have similar appearance.

Figure 3.5 shows some typical failure cases of our approach.



Chapter 4

Video-based Person

Re-identification Using Refined

Attention Networks

In this chapter, we propose a new attention based approach for re-identifying per-

son from videos. Figure 4.1 shows the overall architecture of our proposed approach

based on the Siamese network [34]. The input to the Siamese network is a pair of

video sequences corresponding to the query video and the candidate video to be com-

pared. The output of the Siamese network is a scalar value indicating how likely these

two videos contain the same person. Each video goes into one of the two branches of

the Siamese network. Each branch of the Siamese network is a Convolutional neu-

ral network used to extract the features of the input video. The parameters of two

branches of the Siamese network are shared. Finally, the features from the two input

videos are compared to produce the final output.

25
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When a video goes through one of the two branches of the Siamese network, we

first extract per-frame features on each frame of the input video. Then we compute

an attention score on each frame indicating how important this frame is for the re-

identification task. The intuition is that not all frames in a video are informative.

The attention scores enable our model to ignore certain frames and only pay attention

to informative frames in the video. The attention scores are then used to aggregate

per-frame visual features weighted by the corresponding attention score to form a

feature vector for the entire video sequence. We also propose an iterative refinement

mechanism that uses the feature vector of the video to further refine the attention

scores. Here the intuition is that the initial attention score of a frame is computed

purely based on the frame. It does not take into account of other frames in the video.

Since the feature vector of the entire video encodes contextual information of the

whole video sequence, we can use this feature vector to further refine the attention

scores. We can repeat this process for several iterations (see Sec. 4.5.4), where each

iteration produces attention scores that focus more on the informative frames. Finally,

the features of two input videos are compared to produce the output.

4.1 Frame-Level Features

Similar to [19], we extract frame-level features using both RGB color and optical

flow channels. The colors contain information about the appearance of a person, while

the optical flows contain information about the movement of the person. Intuitively,

both of them are useful to differentiate the identity of the person. As a preprocessing

step, we convert all the input images (i.e. video frames) from RGB to YUV color
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Figure 4.1: Overall architecture of our proposed Siamese network. It takes two input
video sequences and pass to the Convolutional Neural Network (CNN) to extract
features on each frame. The output from the CNN is fed to the attention module
and generate an attention score for each frame. These attention scores combined
with frame-level feature vectors to form a feature vector (i.e. temporal pooling) for
the whole video. The video-level feature vectors are compared to decide whether the
videos contain the same person

.

space. We normalize each color channel to have a zero mean and unit variance. The

Lucas-Kanade algorithm [55] is used to calculate both vertical and horizontal optical

flow channels on each frame. We resize each frame to have a spatial dimension of

56 × 40. The optical flow field F of the frame is split into two scalar fields Fx and

Fy corresponding to the x and y components of the optical flow. In the end, each

frame is represented as a 56 × 40 × 5 input, where the 5 channels correspond to 3

color channels (RGB) and 2 optical flow channels (x and y).

We fine-tuned CNN architecture of [19] to extract frame-level features for an input

video. Note that we replace the fully connected in the end by two new fully connected

layers that produce 1024 and 128 dimensional feature vectors respectively. Given an

input video with T frames, we apply the CNN model in Fig. 4.2 on each frame of

the input video. In the end, each frame xi (i = 1, 2, ..., T ) is represented as a 128

dimensional feature vector, i.e. xi ∈ R128.
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Figure 4.2: Our ConvNet architecture for extracting frame-level features. The Con-
vNet process a frame (both RGB channels and optical flow channels) using a series
of layers. Each layer is composed of convolution, maxpooling and hyperbolic-tangent
(Tanh) activation-function. The convolution uses 5x5 kernel with 1x1 stride and 4x4
zero padding. The output from the third convolution layer is fed to two fully con-
nected layers which generate feature vectors of length 1024 and 128 respectively to
represent this frame.

4.2 Temporal Attention Network

Motivated by the recent success of attention based models [25; 56; 27; 57], we pro-

pose an attention based approach for re-identifying person from videos. The intuition

behind the attention based approach is inspired by the human visual processing [21].

Human brains often pay attention to different regions of different sequences when

trying to re-identify persons from videos. Based on this intuition, we propose a deep

Siamese architecture where each branch generates attention scores of different frames

based on the frame-level CNN features. The attention score of a frame indicates the

importance of this frame for the re-identification task.

As shown in Figure 4.1, each input video sequence (sequence of frames with optical

flow) is passed to the CNN to extract frame-level feature maps. Using fully connected

layers, CNN generates feature vector for each video frame. The sequence of feature



Chapter 4: Video-based Person Re-identification Using Refined Attention Networks29

vectors are passed to the attention network to generate attention scores. More specif-

ically, for each feature vector xi corresponding to the i-th frame, we compute an

attention score αi indicating the importance of this frame. The attention score is

obtained by applying a linear mapping followed by a sigmoid function. Here,we are

use the same parameters for the linear mapping on all frames. Let θ be the vector

of parameters for the linear mapping. Now the attention score αi is calculated using

the following equations:

zi = θTxi (4.1a)

αi =
1

1 + exp(−zi)
, where i = 1, 2, ..., T (4.1b)

We have also tried using softmax instead of sigmoid function in Eq. 4.1 and found

that it does not perform as good as the sigmoid function. Previous work [58] has

made similar observations. Once we have obtained an attention score αi for each

frame in the video, we can then combine the attention scores αi (i = 1, 2, ..., T ) with

frame-level feature vectors to create a weighted feature vector f as follows:

f =
T∑
i=1

αixi, where i = 1, 2, ..., T (4.2)

where f can be seen as a feature vector for the entire video which takes into account

the importance of each frame in the video.

4.3 Attention Refinement

In principle, we can directly use the video-level feature vector in Eq. 4.2 for person

re-identification, e.g. by comparing the feature vectors of two videos. But one possible
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limitation is that the attention score in Eq. 4.1 is calculated on each frame in the video

separately. In other words, the attention scores for frames in a video are independent

of each other. This is not very intuitive – the attention score of a frame should depend

on the visual information of the video, which in turn depends on all frames in the

video. In this section, we introduce a strategy to refine the attention scores so that

they are all coupled together in the end. In the experiment section, we will show that

this attention refinement improves the performance of our model.

The basic idea of the attention refinement is to use the video-level feature vector

f (Eq. 4.2) as one of the input to re-compute the attention score on each frame in

the video. Since the video-level feature vector f depends on all frames in the video,

the new attention score on a frame will implicitly depend on all frames in the video

as well. The new attention scores can then be used to update the video-level feature

vector. This process can be repeated for multiple iterations. Let us define α′i as to be

the new attention score. In this work, we simply concatenate f to each frame-level

feature xi, then apply a linear mapping as follows:

z′i = θ′
T

concat(xi, f) (4.3a)

α′i =
1

1 + exp(−z′i)
, where i = 1, 2, ..., T (4.3b)

where concat(·) means the concatenation of two vectors. Then the new video-level

feature vector f ′ can be computed as:

f ′ =
T∑
i=1

α′ixi, where i = 1, 2, ..., T (4.4)

We alternate between updating attention scores (Eq. 4.3) and updating video-level

feature vector (Eq. 4.4) for several iterations. Empirically, we have found 3 iterations
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Figure 4.3: Illustration of our proposed refined attention network architecture. The
input is a feature matrix of dimensions N × d where N is the number of frames in
the sequence and d is the dimension of frame-level features. We generate N atten-
tion scores by applying linear mapping on the feature vectors followed by a sigmoid
function. These attention scores are combined with frame-level features via temporal
pooling to form a feature vector for the entire video. We use the video-level feature
vector as one of the inputs to further refine the attention score on each frame. We
then compute a new video-level feature vector using the new attention scores.

give the best performance (see Sec. 4.5.4). Figure 4.3 shows the architecture of this

attention refinement.

4.4 Model Learning

Our model is a form of the Siamese network (Fig. 4.1). It has two identical

branches with shared parameters. The detail architecture of each branch is shown

in Fig. 4.3. Each branch takes a video as its input and produces a feature vector

of the video according to Eq. 4.4. Let f ′1 and f ′2 be the feature vectors of the two

input videos to the Siamese network. We use Y1 and Y2 to denote the identity of
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the person in these two videos. Similar to [19; 21], we calculate Euclidean distance

between these two feature vectors and use the following squared hinge loss(Hloss) as

the loss function to train our network:

Lhinge =


1
2
‖f ′1 − f ′2‖

2, Y1 = Y2

1
2
[max(0,m− ‖f ′1 − f ′2‖)]2, Y1 6= Y2

(4.5)

where m is a hyper-parameter that represents the margin of separating the two classes

in Lhinge. By minimizing this squared hinge loss, the distance between feature vectors

will be small if the two videos contain the same person (i.e. Y1 = Y2). The distance

will be large if the two videos contain two different persons (i.e. Y1 6= Y2).

We also use a standard binary cross-entropy (Lsim) that classifies the input videos

to be same or different. For this, we firstly compute the inner product I of the

video features and then perform a signed square-root step (i.e. s ← sign(I)
√
|I|).

The resulting output is followed by a l2 normalization (N ← s
‖s‖2

) and a softmax

operation.

Following [19], we add an additional loss in each of the two branches of the Siamese

network to predict the person’s identity. Each branch uses the feature vector for the

input video extracted from the network and applies a linear classifier to predict one of

the K identities of the person. We use the softmax loss for the person identification

classification. Let Lid1 and Lid2 be the loss functions of the two branches. The final

loss function is the combination of the two identify classification losses, similarity loss

and the squared hinge loss.

Lfinal = Lid1 + Lhinge + Lsim + Lid2 (4.6)
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The network is trained end-to-end by optimizing the loss function in Eq. 4.6 using

stochastic gradient descent. Following [19], we remove both classification losses, the

squared hinge loss and similarity loss from the network after training is done. During

testing, we only use the feature vectors generated by the two branches of the Siamese

network and directly compare their distance for re-identification.

4.5 Experimental Evaluation

In this section, we firstly introduce the datasets used in our experiments (Sec. 4.5.1).

We then describe the experimental setup and some implementation details (Sec. 4.5.2).

We present the results of experiment in Sec 4.5.3 and Sec 4.5.4.

4.5.1 Datasets

We conduct experiments on three benchmark datasets: iLIDS-VID [20], PRID-

2011 [59] and MARS [60].

iLIDS-VID Dataset: This dataset consists of video sequences of 300 persons

where each person is captured by a pair of non-overlapping cameras. The length of

each video sequence varies from 23 to 192 frames with an average of 73 frames. The

dataset is quite challenging due to lot of occlusions, illumination changes, background

clutters and so on.

PRID-2011 Dataset: This dataset contains video sequences of 749 persons.

For the first 200 persons (or identities), there are two video sequences captured by

two different cameras. The remaining persons appear in only one camera. Each

sequence contains between 5 to 675 frames, with an average of 100 frames. Compared
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with iLIDS-VID, the PRID-2011 dataset contains less occlusions since the videos are

captured in a relative simple environment.

MARS Dataset: The Motion Analysis and Re-identification Set (MARS) is

the largest video-based person re-identification dataset that contains 1,261 different

pedestrians. Each pedestrian is captured by at least two cameras. DPM detector

and GMMCP tracker are used to generate the tracklets. There are, on average, 13.2

tracklets for each pedestrian. Table 4.1 shows the summary of these three benchmark

datasets.

Dataset iLIDS-VID PRID-2011 MARS

Total no. of id. 300 749 1,261

No. id in multiple cameras 300 200 1,261

No. track-lets 600 400 21K

No. of boxes 44K 40K 1M

Image resolution 64x128 64x128 128x256

No. of camera 2 2 6

Detection procedure hand hand algorithm

Evaluation metric CMC CMC CMC

Table 4.1: Summary of basic information of the three datasets used in our
experiments.

4.5.2 Setup and Implementation Details

We follow the experiment protocol of McLaughlin et al. [19]. On each of the

two datasets (iLIDS-VID and PRID-2011), we randomly split the dataset into two

equal subsets where one subset is used for training and remaining one for testing. For
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evaluating our proposed method, we use the Cumulative Matching Characteristics

(CMC) curve which is a ranking based evaluation metric. In the ideal case, the

ground-truth video sequence should have the highest rank. For each dataset, we

repeat the experiment 10 times and report the average result over these 10 runs.

In each run, we randomly split the dataset into training/test sets. Standard data

augmentation techniques, such as cropping and mirroring, are applied to increase

the amount of training data. We initialize the weights in the network using the

initialization technique in [61]. For training our network, we consider equal numbers

of positive and negative samples. We set the margin in the hinge loss (Eq. 4.5) as

m = 2. The network is trained for 1000 epochs with a batch size of one. The learning

rate in the stochastic gradient descent is initially set to be 1e−3. We decrease the

learning rate by a factor of 10 after 300 and 600 on the PRID-2011 dataset. Due to

the variable-length of video sequences in both datasets, we use sub-sequences of 16

consecutive frames (T = 16) during training. Sometimes, this length is greater than

the real sequence length. In that case, we consider the whole set of images (frames)

as the sub-sequence. A full epoch consists of a pair of positive and negative sample.

During testing, we consider a video sequence captured by the first camera as the probe

sequence and a video sequence captured by the second camera as a gallery sequence.

We use at most 128 frames in a testing video sequence. Again, if the length is greater

than the real sequence, we consider the whole set of images as the video sequence.

Similar strategies have been used in previous work [19]. For the MARS dataset, we

follow the experimental protocol of state-of-the-art method by Xu et al. [21].
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4.5.3 Results

We present the results on the three benchmark datasets and compare with other

state-of-the-art methods in Table 4.2 and Table 4.4. From the CMC rank, we see that

our method with attention refinement outperforms all other state-of-the-art methods

by nearly 2% and 3% in terms of rank-1 accuracy on the iLIDS-VID and PRID-2011

dataset, respectively. On the MARS dataset, we outperform the state of the art by

a big margin of 18% on rank-1 accuracy. Figure 4.4 shows some qualitative retrieval

results after applying our proposed method on the challenging iLIDS-VID dataset.

iLIDS-VID

Method Rank-1 Rank-5 Rank-10 Rank-20

Ours 64 88 96 98

Xu et al. [21] 62 86 94 98

Zhou et al. [23] 55.2 86.5 - 97.0

McLaughlin et al. [19] 58 84 91 96

Yan et al. [22] 49.3 76.8 85.3 90.1

STA [18] 44.3 71.7 83.7 91.7

VR[20] 35 57 68 78

SRID[62] 25 45 56 66

AFDA[63] 38 63 73 82

DTDL[64] 26 48 57 69

Table 4.2: Comparison of our proposed approach with other state-of-the-art methods
on the iLIDS-VID dataset in terms of CMC(%) at different ranks.
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PRID-2011

Method Rank-1 Rank-5 Rank-10 Rank-20

Ours 82 97 99 99

Xu et al.[21] 77 95 99 99

Zhou et al.[23] 79.4 94.4 - 99.3

McLaughlin et al.[19] 70 90 95 97

Yan et al. [22] 58.2 85.8 93.7 98.4

STA [18] 64.1 87.3 89.9 92

VR[20] 42 65 78 89

SRID[62] 35 59 70 80

AFDA[63] 43 73 85 92

DTDL[64] 41 70 78 86

Table 4.3: Comparison of our proposed approach with other state-of-the-art methods
on the PRID-2011 dataset in terms of CMC(%) at different ranks.

Method Rank-1 Rank-5 Rank-10 Rank-20

Ours 62 85 93 95

Xu et al.[21] 44 70 74 81

McLaughlin et al. [19] (obtained from [21]) 40 64 70 77

Table 4.4: Comparison (CMC(%)) of our proposed approach with previous methods
on the MARS dataset.

4.5.4 Effect of Iterative Refinement

We conduct empirical study on the training set of the iLIDS-VID and MARS

dataset to analyze the effect of the attention refinement (i.e. number of iterations) on

the overall performance of the proposed network. We randomly divide the training
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Figure 4.4: Qualitative retrieval results of our proposed method on the challenging
iLIDS-VID dataset. The first column represents the probe video sequence. The
remaining columns correspond to retrieved video sequences sorted by their distances
to the probe video sequence. Here, we use a single image to represent each retrieved
video sequence. The green boxes indicate the ground-truth matches. We can see that
the ground-truth matches are ranked very high in the list.

data of iLIDS-VID as well as MARS into two parts: one for learning the model

parameters and the other one for validation. We select 110 persons for training the

model and the remaining 40 persons for validation from iLIDS-VID dataset. For

MARS dataset, we select 400 identities for training and the remaining 225 identities

for validation purpose. We train the model on the training videos and report the

performance (CMC(%)) on the validation set for different number of iterations in

Table 4.5 and Table 4.6. We observe that the performance gradually improves until

iteration 3. After that, the performance starts to drop. Based on this empirical result,



Chapter 4: Video-based Person Re-identification Using Refined Attention Networks39

we choose 3 iterations in our experiments.

iLIDS-VID

# iterations Rank-1 Rank-5 Rank-10 Rank-20

0 (No iteration) 60 92 97 100

1 (1 iteration) 70 95 97 100

2 (2 iterations) 62 95 97 100

3 (3 iterations) 77 97 97 100

4 (4 iterations) 70 97 97 100

5 (5 iterations) 65 97 97 100

Table 4.5: Validation performance for different number of iterations on the iLIDS-VID
dataset.

MARS

# iterations Rank-1 Rank-5 Rank-10 Rank-20

0 (No iteration) 56 80 87 89

1 (1 iteration) 57 80 87 89

2 (2 iterations) 56 80 86 90

3 (3 iterations) 56 80 88 90

4 (4 iterations) 58 78 87 90

5 (5 iterations) 58 79 87 89

Table 4.6: Validation performance for different number of iterations on the MARS
dataset.
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Conclusion and Future Work

In this thesis, we have presented deep learning based methods to re-identify person

from images and videos. We have proposed two novel approaches in the field of person

re-identification. First, we proposed an end-to-end deep neural network architecture

that localizes discriminative image regions for person re-identification. The novelty

of this thesis is that firstly it localizes discriminative salient image regions and then

computes the similarity based on these image regions in conjunction with the whole

image. Second, we have proposed an attention-based deep architecture for video-

based re-identification. The attention module calculates frame-level attention scores,

where the attention score indicates the importances of a particular frame. The output

of the attention module can be used to produce a video-level feature vector which can

be refined iteratively to generate rich feature information. In addition, we show that

this attention refinement increase the performance of our proposed method.

Currently, our image based person re-identification network only localizes one

discriminative region in each image. We plan to extend our model to localize multiple

40
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discriminative regions by using more than one Spatial Transformer Network in the

model which can be an interesting and important direction for future work. The

intuition is that a person can posses multiple discriminative regions which can be

useful for re-identification. For each discriminative region, we have to add a Siamese

network where each branch will share parameters and extract discriminative region.

The pair of discriminative region will feed to the fused network and finally generate

two similarity scores representing a measurement of how similar two images are.

Moreover, in future we can also consider spatial attention with the conjunction of

temporal attention for video based re-identification.
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