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Abstract

Multiple description coding is an emerging source coding based solution for packet loss prob-
lem in data communication networks. Transmission over a practical network also requires
such multiple descriptions to be channel coded to guard against random bit errors caused
by channel noise.' In this context, the redundancy introduced by both multiple description
source encoder and the channel encoder can be exploited in a joint source-channel decoder
to improve the overall reliability of the system.

The main objective of this thesis is to investigate the problem of joint source-channel
decoding in a system 4based on multiple description quantization and to develop efficient
decoding schemes. A review of the previously proposed joint decoding schemes is given
with an experimental evaluation of their performance. Subsequently, a system with two
channel multiple description quantization is considered in which the output of a quantizer
is convolutional encoded prior to transmission. Based on the idea of concatenated coding,
a joint decoding scheme that uses list Viterbi algorithm is presented. Experimental results
show that this scheme is capable of achieving a significant improvement in the error correct-
ing capability of the convolutional code at moderate complexities. A previously proposed
optimum trellis decoding scheme which performs decoding at symbol level is extended to a
bit level decoding scheme. It is shown that bit level decoding in this manner considerably
reduces the computational complexity. While this scheme is in general not optimal, it is
also shown that the scheme is indeed optimal when the convolutional encoder memory is
greater than a particular parameter related to both the number of bits used per description
and the temporal correlation of the multiple description quantizer output. Finally, a prelim-
inary investigation of the problem of designing a joint source-channel encoder in a multiple
description communication system is presented. In this context, a joint encoding procedure
which involves re-mapping the indices of a multiple description quantizer output to improve
the distance properties of a channel code is presented. It is shown experimentally that this

joint encoding procedure considerably improves the performance of the system.

il
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Chapter 1

Introduction

Transmission of information over a digital communication system in general involves four
basic operations, namely, source coding, channel coding, modulation and transmission as
depicted in Figure 1.1. The input to the source encoder can be either an analog or digital
signal. The source encoder generates an efficient digital representation of the input signal
usually in binary format. The main objective of source encoding is to obtain a representation
with as few symbols as possible (compression), which is done by removing the redundancy
present in the input signal. Source coding can be mainly categorized into two types as lossy
and lossless coding. The lossless coding preserves all the information in the input signal
while, as its name implies, lossy coding involves a loss of some information. The function
of the channel encoder is to add redundancy to its input in a controlled manner to achieve
robustness against the errors caused in the transmission channel. The added redundancy
helps the channel decoder to recover reliably the transmitted data. The channel usually
carries the information as an analog signal and hence it is needed to map the digital signal
at the channel encoder output into an analog signal, which is done by the modulator. The
function of demodulator, channel decoder and the source decoder is to estimate the digital
signal at the input of the respective encoder at the sending end. In some digital communi-
cation systems, data is transmitted in blocks called packets or frames. Data communication
networks, such as the Internet suffer from the problem of packet losses caused by congestion

1



' Source Channel
Source —P encoder —P encoder —9 Modulator
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Source Channel
User € decoder — decoder €—1 Demodulator |g———

Figure 1.1: A digital communication system.

in the network. In some situations, this problem can be solved by retransmission of lost
packets. However, this requires a feedback path to request retransmission and therefore
cannot be used in broadcast type communications. Retransmission may also not be possi-
ble in some real time communication systems (such as in audio and video communication),
where the allowable delay is limited. In case of transmission of an analog source over a
packet loss network, an emerging source coding based solution for the above problem is
Multiple description coding (MDC) where, several versions referred to as “descriptions” of
the same message are generated and transmitted such that, each describes the message with
a certain acceptable quality, and when more than one description is available at the receiver
they can be combined to reconstruct the message at a higher quality. The term “message”
may refer to one source sample or a group of source samples. Different descriptions of the
same message are transmitted over separate communication paths and hence it is less likely
to lose all of them simultaneously. Therefore, with this method a certain minimum quality
of service can be guaranteed at the receiver. Another application of MDC suggested in lit-
erature is in wireless mobile networks. In wireless mobile communication, the transmitted
signal arrives at the receiver over multiple paths. These multipath signals may, from time
to time, interfere destructively with each other, causing a weak signal level at the receiver.

This phenomenon is known as multipath fading. A frame under deep fading can be consid-



3

ered as lost and therefore multiple description coding can be used in this situation as well.
Recently, a significant amount of research has been done in MDC and many methods have
been developed to generate multiple descriptions from a source.

MDC, as explained in the next section, is mainly a source coding method since it per-
forms a lossy compression of the analog source signal. On the other hand, it also involves a
systematic addition of redundancy, which is a feature of channel coding to achieve reliability
over channel losses. Hereafter, we use the term channel erasure to refer to a channel loss.
On the other hand, the term channel error is used to refer to the random bit errors in
received symbols caused by channel noise. A coding scheme, which performs both channel
coding and source coding jointly, is known as a joint source-channel code and hence MDC
has some features of joint source-channel coding. However, in MDC, the redundancy is
added to guard against channel erasures and therefore it alone is not sufficient for correct-
ing the channel errors. Hence, in practice, it is required to use channel coding after MDC to
achieve reliability over channel errors. In this case, it would be possible to device a channel
decoding scheme which exploits not only the redundancy added by the channel coder but
also that added by the MD encoder to enhance the error correcting capability. We call such
a decoding scheme as joint source-channel decoding of multiple descriptions. This chapter

gives an introduction to MDC and joint source-channel decoding of multiple descriptions.

1.1 Multiple Description Coding

MDC was invented in the 1970s as a speech coding method for achieving reliability in
telephone networks. When a link fails in a telephone network the calls have to be diverted
to a standby link. These standby links add extra cost to the system. On the other hand
they are not used in the normal operation and therefore can be considered as a waste of
resources. The number of standby links can be greatly reduced if the information in a call
can be split into two streams and sent over two channels such that each independently gives
an acceptable quality. Jayant [1] developed odd-even sample separation based speech coding

techniques where the odd numbered voice samples and even numbered voice samples are
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send over two different channels. When both the channels work the speech is reconstructed
at a higher quality. On the other hand, when one fails, samples on the other channel are used
to reconstruct the voice at a lower quality. MDC was studied as an information theoretical
problem in late 1970s and early 1980s by several authors. El Gamal et al. in [2] provided
a rate distortion analysis of the MDC problem for a memoryless source and constructed
the achievable rate region. Ozarow [3] found the achievable rate region for a memoryless
Gaussian source for square error distortion measure and showed that it is the largest set
that can be obtained with the rate region derived in [2]. Some of Ozarow’s results will be
discussed at the end of this section. A good review on MDC can be found in [4].

Not much work was done in MDC until Vaishampayan [5] in 1993 provided the first
theor_etical framework for the practical implementation of multiple description scalar quan-
tizers (MDSQ). His method of MD generation consists of scalar quantization followed by
an indez assignment (IA). MDSQ will be discussed in more details in Section 1.1.1. Since
Vaishampayan’s initial work on MDSQ in 1993, several methods of MD coding have been
developed. Wang et al. [6] proposed a correlating transform based MDC technique where a
linear transform is applied on source vectors (an ordered tuple of source samples) to generate
correlated transform coeflicients. This method is based on the fact that, when some of the
coefficients are lost, they can be estimated from the available coefficients by exploiting the
correlation introduced by the linear transform. Goyal et al. [7] presented another transform
coding based MD coding method which uses the concept of frame expansion to generate

MD.

1.1.1 Multiple Description Scalar Quantization

In this section, we discuss in detail the MDSQ presented in [5]. Figure 1.2 shows two
channel MDSQ of a random variable X that has the probability density p(z). Assume that
the channels can deliver information at rates R; and Ry bits /source sample. Each channel
can be in one of two states. In one of the states, the channel delivers the information error

free while in the other state a complete loss of information (erasure) occurs. It is assumed
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Figure 1.2: Multiple description scaler quantization.

that the states of the channels are known to the decoder but not to the encoder. A two

channel MDSQ consists of
e a scalar quantizer (SQ) f: R — Q= {1,2,...,N}

e an index.assignment (IA)a:Q—TIx JwhereZ={1,2,..., M}, J ={1,2,... , My},

M, <21 M, < 282 and the mapping a is one-to-one

¢ two side decoders gy : T — C; = {21(1),£1(2),...,2:(M1)} and
g2: T — Co = {£2(1),£2(2) ..., 22(M2)}, where C; and Cs are the side codebooks

e the central decoder gg : § = Co = {Z0(1),£0(2),...,20(N)} where

S ={(3,7) : (4,7) = a(l),l € Q} and Cy is the central codebook

It should be noted that N may be less than (M x M>) and therefore some index pairs (3, j)
may not be assigned by the IA.

For each source sample z, the SQ generates an index [ € Q which is then assigned to
the indices (or descriptions) i € Z and j € J by the IA. The descriptions are sent over
two channels separately. When only one description is received, the corresponding side
decoder outputs an estimate (21 (i) or £2(j) depending on which description is received) of
the source sample z. On the other hand, when both descriptions are received, the central
decoder outputs a better estimate Zo(l). In the case where both descriptions are lost, it
is needed to use some other means such as using a pre-determined value as the output or

requesting a retransmission.



The SQ partitions the input space into cells A?j = {z:a(f(z)) = (3,7)} where
U 45 =R
tj

and

A (N Am =0  V(,m)# (7).

The MDSQ is completely determined by the encoder partition, IA and the decoder code-
books. Let d(z,%) denote the per letter distortion between the source sample z and its
estimate £. Then, the average distortion Dy at the output of the central decoder is given
by

Do= 3 [ d(z,2(i,))p(e) do (1.1)
(ij)es 4

where £o(4,7) £ #0(I) and (4,7) = ¢~ !(l). Similarly, the average distortions D; and Dy in

the respective side decoders are given by

D=3 / d(z,41(9))p(c) dz (1.2)
iez I A
and
Dy = Z/zd(m,i‘g(j))p(x) d (1.3)
jeg’4;
where
Ab = 4
jeg
and
Aiq = U ASJ
1€l

Let po be the probability that both descriptions are received by the decoder, u,, be the
probability that only the description m is received, where m =1,2 and p' be the probability

that both descriptions are lost. Let’s assume that the decoder output is £ when both
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descriptions are lost. Then, the total average distortion D of the MDSQ system is given by
D = poDy + p1 Dy + poDy + p'D’

where

D' = /oo d(z,2")p(z) dz

—c0
To find the optimum MDSQ, we have to find the encoder partition, IA and the decoder
codebooks that minimizes the total average distortion. However, it is difficult to find a
closed form solution to this problem. Instead, the generally used method is to find the
optimality requirements of each unit (encoder, IA and the decoder) separately assuming
the other units to be fixed and then to apply an iterative descent algorithm such as Lloyd

algorithm [8] to find an (possibly local) optimum solution.

Optimum Encoder

Finding the optimum encoder for fixed IA and decoder is equivalent to finding the partition

of the input space that minimizes the total average distortion

D= 3 [ dedei)ele) do+m Y /A d(z,51(0))p(z) do (1.4)

(i,5)es ¥ Aij i€T

w1y [ d@aipte) ds+ul [ de, (o) do

JjeJ
= / , {od(@, 20(i, 1)) + pd(z, £1(0)) + pad(z, 2(5)) + w'd(z, 3')}p(z) do
Ges A
It is clear that D is minimized if the term in the curly brackets inside the integration is
minimized for each z. Again, the term d(z,4') does not depend on the encoder partition

and hence does not affect the minimization. Therefore, the optimum encoder partition is



given by,

Agj = {l' : NOd(l‘,ﬁO(i,j)) +,u1d($, a“:l(z)) +/12d(.’17,.’f)2(j))
< pod(w, 20(1',5) + prd(z, 81()) + pad(z, 32(5)), Y@, 7') # (G, ), (@', §') € S}

(1.5)

For example let’s consider the square error distortion measure in which the distortion be-

tween the source sample z and its estimate # is given by

Using the square error as the distortion measure in (1.5)

Ay = {z: polz - 20li, 5))? +p1(z — £1())? + pa(z — £2(5))°
< po(@ = 201", 5))” + (e = 81())% + pa(z — 22(5))2, V(. §') # (i, 5), (i, 5) € S}
(1.6)
Let
aij = 2(poo (i, 7) + p1&1(2) + pada(j))
and
Bij = o255, 5) + 133(6) + pedd(j) i€Zandje g
Now, (1.6) can be further simplified to
AY = {z: a5z — By > ai gz — By g, V(i §') £ (i, 5), (@, ') € S} (L.7)

In this case, it can be shown that each cell A?j in the encoder partition is an interval.



Optimum Decoder

To find the optimum decoder, we have to determine the codebooks Cg, C1, and Cy that min-
imize the total average distortion for a fixed encoder and an IA. From (1.4), it is clear that
the minimum D can be achieved by minimizing the distortion in each decoder separately.

Re-organizing (1.1)

Dy = Y P(4Y) /A . d(z,izo(i,j))% dz

(&.4)es
= > P [ d(s306.9)p(e14) do (18)
(i)es 4

where

Pb) = [ pla) ds

ij
which is the probability that z € A?j and p(mlA?j) is the conditional probability density of z
given that z isin A?j. Therefore, to minimize Dy, it is sufficient to minimize the integration

term in (1.8). Hence, the optimum central codebook is given by

bo(id) = argmin [ doalaY de (i)
ij

= argmin E(d(z,z')|z € A) (G,7) e S (1.9)
z'€R
Similarly, the optimum side codebooks are given by
£1(4) = arg meiﬁ E(d(z,z')lz e A}) ieZ (1.10)
m/

and

#9(j) = arg min E(d(z,2)lee ) jeJg (1.11)
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For square error distortion measure, (1.9), (1.10) and (1.11) can be further simplified as

Zo(i,j) = argmin B((z - +')’s € AY)
= E(z|z € A)) (6,79) €S (1.12)
Similarly
£1(3) = E(z]z € A}) i€l (1.13)
and
#2(§) = E(z|z € A%) jeJg (1.14)

For a given IA the MDSQ can be designed using the Lloyd algorithm [8] as follows. First
select the initial codebooks. For the given IA and the codebooks find the optimum encoder
using (1.5). Now, use this encoder and the given IA to find the optimum decoder using
(1.9), (1.10) and (1.11). It should be clear that D must reduce or remain unchanged in
each of the two steps. These two steps are repeated until the difference in D in successive
iterations is smaller than a preset threshold. A stationary point would be obtained if the

iteration is carried out a sufficiently large number of times.

Index Assignment

The IA plays a key role in MDSQ. In this section, we assume that the square error distortion
measure is used and therefore the central partition consists of intervals. We further assume
that My = My = M. To illustrate the IA problem let’s consider R; = Ry =1 bits/source
sample MDSQ of a source uniformly distributed in the range (—v/3,v/3). Figure 1.3 shows 3
possible partitions and IAs. Tables 1.1 and 1.2 give the corresponding optimum codebooks
and the distortions. MDSQ in both (a) and (b) use all four index pairs (1,1), (1,2), (2,1)
and (2,2) while (c) uses only three out of them. The performance in case (a) is better
than that in case (b). However, in Both cases, one side decoder has poor performance with

distortion close to 1. Here, the source variance is also 1 and any decoder can achieve the
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©

Figure 1.3: Three designs of MDSQ encoder and IA for rate Ry = Ry = 1 bits/source
sample.

Table 1.1: Codebooks of MDSQs in Figure 1.3
£L‘0(1, 1) fL‘o(l, 2) :L'o(2, 1) :120(2, 2) .’171(1) .’E1(2) .’Eg(l) ) (2)
(a) -3v3/4 —V3/4 3/4 3V3/4 — /32 V3/2 —V3/4 V3/4
(b) —3v3/4 —v3/4 3/4 334 —V3/2 V3/2 0.0 0.0
() -2/v3 00 — 2/V3  —1/V3 2/vV3 —2/v3 1/V3

distortion equal to the source variance Jjust by using the mean value of the source as the
output all the time (i.e. with no information delivered from the source). MDSQ in (c)
has an increase in distortion of the central decoder and one of the side decoders. But, it
has the desirable feature that both side decoders achieve small distortion (i.e. an effective
information delivery has happened to each of the side decoders). From this example, it
is clear that the performance of MDSQ greatly depends on IA. The example also suggests
that, when all the description pairs are used, at least one side decoder would have very poor
performance.

Finding an optimum IA is a basic challenge in the design of an efficient MDSQ . An

exhaustive search is impractical for large M since there are Z%_f_l (M?)1/(M? - N)! possible
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Table 1.2: MSE distortions of MDSQs in Figure 1.3

Dy D, D,
() 1/16 174 13/16
(b) 1/16 1/4 1
(c) 1/9 1/3 1/3

IAs to consider and therefore a combinatorial optimization algorithm must be used.

Index assignment can be considered as an assignment of elements in a matrix of dimen-
sion M x M to the cells of the encoder partition. As an example, assigning the index pair
(2,7) can be considered as assigning the (4, j)-th element of an M x M matrix. Let’s assume
that the intervals in the encoder partition are numbered from left to right in ascending
order. When N < M, one of the best IAs would be ((1,1), (2,2),..., (N,N)) where the
k-th index pair corresponds to the k-th interval in the partition. In this case, the elements
assigned in the TA matrix lie in the main diagonal and the side decoders would have the
same distortion as the central decoder. When N=M all the elements in the main diag-
onals are assigned. Suppose that N = M + 1 and hence one more index pair has to be
assigned. To minimize the increase in side distortion, the next index pair would be of the
form (k, k+1) or (k + 1,k) and be assigned to the element next to the one assigned to
(k, k). This corresponds to the assignment of an element in a diagonal adjacent to the main
diagonal which is illustrated in Figures 1.4 and 1.5 for a MDSQ of a uniform source at rate
R; = Ry = 2 bits/source sample (i.e. M = 4 ). In this manner, we can argue that the
elements on the diagonals closer to the main diagonal have to be assigned before assigning
the elements on the diagonals further away from the main diagonal. Vaishampayan [5]
has presented two methods for constructing a good IA based on high rate analysis. The
two index assignment methods have optimum decay characteristics in the central and side
distortions as predicted by rate distortion theory at high rates (i.e. when R; and R, are suf-
ficiently large). Figure 1.6 shows an IA based on Vaishampayan’s nested index assignment
for Ry = Ry = 3 bits /source sample, where 5 diagonals are assigned.

The fraction of the elements assigned in the IA matrix determines the central and side
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00 11 22 33

-3 372 0 V312 V3

00 11 12 22 33
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3 3V35 A3/5 \3/5  3V3/5 \3

(b

Figure 1.4: Encoder partition and IA for Ry = Ry = 2 bits/source sample and (a) N = 4
(b) N =5.

distortions. When this fraction is increased, the central distortion decreases while the side
distortions increase and vice-versa. When the packet loss probability is zero, the end-to-
end distortion will be completely determined by the central distortion and therefore the
the optimum MDSQ in this case would have all the elements assigned in the TA matrix.
In fact, source coding in this case is essentially equivalent to the standard (single description)
scalar quantization. As the the packet loss probability is increased, it would be necessary
to decrease the number of elements assigned in the TA matrix to obtain the minimum end

to end distortion.

1.1.2 Multiple Description Vector Quantization (MDVQ)

A scalar quantizer is a mapping from the input (scalar) space to an index set (Q in section
1.1.1). Similarly, a vector quantizer is a mapping from the input vector space into an index
set [9]. The design of the encoder and the decoder in a MDVQ can be done in essentially the
same way as in MDSQ using an iterative algorithm. However, there is no natural ordering
in the cells of the encoder partition of MDVQ (remember, in MDSQ, the input space is

a subspace of the R and therefore the encoder cells can be ordered, as an example from
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Figure 1.5: TA matrices for MDSQ in Figure 1.4

9 11 15 17 19

13 16 20 21 23

18 22 25 26 28

24 27 30 32

29 31 33

Figure 1.6: Vaishampayan’s nested IA for R; = Ry = 3 bits/source sample and N=34.
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left to right) and therefore Vaishampayan’s method of index assignment cannot be applied.
Hence, the problem of IA in MDVQ has to be solved with a combinatorial optimization
technique such as deterministic annealing [10] and simulated annealing [11]. Hereafter, we

use multiple description quantization (MDQ) to refer to both MDSQ and MDVQ.

1.1.3 Rate Distortion Region for MD coding

let’s consider two channel MD coding of a source. Let R; and Ry be channel rates and Dy,
Dy, and Dj be central and side distortions respectively. Assume that MD coding is done
in vectors of n source samples. A quintuple (Ry, Ra, Dy, D1, Ds) is said to be achievable if,
for some positive integer n, there exist a MD coder with rates R; and Ry and distortions
Dy, Dy, and Dy. The rate distortion region for this MD coding is the closure of the set
of achievable quintuples (Ry, Ry, Do, D1, Dy). Ozarow [3] found the rate distortion region

for a memoryless Gaussian source of variance o2. In this case, the rate distortion region is

given by
D; > g% (1.15)
Dy > g?272R2 (1.16)
and
022~ A Ri+Rs) if Dy 4+ Dy > 02 + Dy
Dg > (1.17)

022~ 2(R1+Ry)
1—(/(1=D1)(1~D3)—/Dy Dy —2-2(R1 +R2))2

otherwise

This is the only case for which the rate distortion region is completely known.

1.2 Joint Source-Channel Decoding of Multiple Description

As already mentioned, MDC is a source coding method which also involves systematic
addition of redundancy to achieve ieliability over erasure channels. In (n channel ) MDQ,

the addition of redundancy is mainly done in the IA by assigning only a fraction of the
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Figure 1.7: Separate decoding of multiple description.

possible index n-tuples. In case of MD correlating transforms, the redundancy is added by
the linear transform which introduces an extra correlation. In any method of MD coding,
the added redundancy exists in the form of inter-description correlation.

Although the main consideration in MDC is channel erasures, the transmission over
practically available channels introduces random bit errors. Consider an n description MD
coded system which uses error control coding to combat random bit errors. The standard
way of channel coding in this situation is to encode the descriptions separately and to send
them over separate channels as shown in the Figure 1.7. At the receiver they are decoded
separately by respective decoders and passed to the MD decoder. Hereafter, we call this
method of decoding as separate decoding.

It is a well known fact that when there is redundancy present in the source encoder
output, it can be used to improve the error correcting capability of a channel code [12],
[13]. Therefore, when more than one description is received, it would be possible to decode
the channel codes of received descriptions jointly in a way that utilizes the inter description
correlation constructively to improve the error correcting capability. Moreover, MDC can be
considered as a joint source-channel code as explained previously. For example, we can view
the IA in a MDQ as a sort of error detecting code since it does not use all the index n-tuples
(in case of two channel MDQ), an invalid index pair at the channel output indicates an error)
When this joint source-channel code is combined with an additional level of error correction
coding, it would be possible to implement a decoder that uses the redundancy added by
both MD coding and channel coding to correct the errors introduced in the channel. This

problem, which we refer to as joint source-channel decoding of multiple description, is the
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main topic of this thesis. The objective of our work is to study this problem and to develop
efficient joint decoding techniques that can be applied in a MDC environment.

This thesis is organized as follows.
¢ The previous related work is discussed in Chapter 2.

o Chapter 3 presents a list Viterbi algorithm based Joint decoding scheme which is
capable of achieving a significant performance improvement over separate decoding

at a low complexity.

Chapter 4 discusses bit level joint trellis decoding which is an extension to the optimum

Joint trellis decoding presented in [14].

Chapter 5 focuses on the index reassignment problem in MDQ.

Chapter 6 gives a summary of the thesis, some conclusions and possible future work.




Chapter 2

Previous Related Work

In this chapter, we discuss previous work in joint source-channel decoding of multiple de-
scriptions. Joint decoding schemes (we use the term joint decoding to mean joint source-
channel decoding of multiple descriptions) can be categorized into two types as iterative
and non-iterative decoding. Sirinivasan et al. in [15] presented the first iterative type joint
decoding scheme which works in a manner similar to turbo decoding [16]. Similar, but
somewhat improved iterative decoding scheme can be found in [17] which uses the concept
of “extrinsic information” for exchanging information between constituent decoders. Ya-
hampath et al. in [14] presented two type of non-iterative decoding schemes which exploit
the inter-description correlation explicitly in the Viterbi decoding algorithm [18].

Section 2.1 and 2.2 discuss the iterative and non-iterative joint decoding schemes re-
speétively. An experimental evaluation of the schemes is given in Section 2.3 followed by a

comparison in Section 2.4.

2.1 Iterative Type Joint Decoding

Iterative type joint decoding schemes borrow their concept from turbo coding. Therefore,
a brief discussion of turbo coding would facilitate the understanding of the iterative joint

decoding schemes.

18
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Figure 2.1: A turbo encoder.
Figure 2.1 shows a turbo encoder. A length L input bit sequence u=(u1,uy, ..., u)

is encoded by two systematic feedback convolutional encoders (description of a systematic
feedback convolutional encoder can be found in Section 11.1 of [19]). The input u is directly
fed to the encoder 1 while an interleaved version u’ is fed to the encoder 2. Therefore, the
systematic parts vy and v} (each equal to the input of the respective encoder) are just
interleaved versions of each other and therefore, in general, only one of them (assume it to
be vq in this case) is transmitted. Figure 2.2 shows the turbo decoder for the encoder
in Figure 2.1. Let rg, r; and ry be the channel outputs for vy, v; and vy respectively.
The MAP decoders estimate the a posteriori log likelihood ratios of the input bits to the
corresponding encoders by using a posteriori probability estimation algorithm such as the
BCJR algorithm [20]. For example, the estimated a posteriori log likelihood ratio L; (ug) of
the input bit u; (at discrete time ¢) in the MAP decoder 1 is given by

P(u; = 1|rg,ry)
P(u; = 0|rg,r7)”

Ly(ut) = log (2.1)

where P(u; = jlrg,r1), j = 0,1, is the a posteriori probability of the event that the input
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Figure 2.2: Turbo decoder for encoder in Figure 2.1.

bit uy is equal to j given ro and r;. This is also called as a posteriori L-value of u;. The
calculation of (2.1) requires the priori log likelihood ratio L, (u¢), also called priori L-value

of ug, given by
P(ut = 1)

Bla =0 (2.2)

Lig(u) = log

where P(u; = 1) is the priori probability of the event that the input bit u; equals to 1. From
the a posteriori L-value in (2.1), the effect of the current input bit is subtracted to obtain
a quantity called eztrinsic information denoted by L$(u;). This represents the information
about the bit u; given by the other bits (due to parity constraints). Now, this extrinsic
information (with suitable interleaving) is passed to the MAP decoder 2 as its priori infor-
mation L, (ul). The extrinsic information obtained in the decoder 2 is, again, fed back to
the encoder 1 as its priori information. This process is carried out iteratively and it improves
the estimate of the input u in each decoder in successive iterations. However, the amount
of improvement achieved in an iteration diminishes very rapidly and finally it comes to a
point where no further improvement is possible. Therefore, the above procedure is iterated
only a limited number of times, i.e. until the improvement gained in one more iteration is

not worth the extra computational complexity needed. At this point, the encoder 2 input
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Figure 2.3: Channel coding of MDQ output for iterative decoding.

is estimated by the decoder 2 using

1 if Loy(u) >0

[y
b o3,
I

(2.3)
0 otherwise.

This estimated bit sequence is deinterleaved to obtain the estimate @ of the turbo encoder

input. Therefore, the basic idea behind turbo coding can be summarized as follows.

e Two correlated sequences are channel coded separately and transmitted.

e At the receiver, decoder 1 extracts the information about the input to the encoder 1
which is then used to derive information about the input to the encoder 2 (using the
correlation). This information is then passed as the priori information to the decoder 2
which in turn derives and pass the priori information to the decoder 1. This process

is carried out iteratively a pre-determined number of times.

We know that the descriptions generated by an MDC are correlated and therefore, when
those are separately channel coded before transmission, it would be possible to use an
iterative decoding scheme as in turbo decoding at the receiver. We first discuss the iterative
decoding scheme presented in [15]. Figures 2.3 and 2.4 show a 2 channel MDQ) system that
uses iterative decoding. Assume that R; = Ry = r bits/description. Let the source sequence
z¥ = (21, %2,...,21) be MD encoded and let (i¥, %) be the corresponding index sequences.
The sequences i1 and an interleaved version of 7% are then encoded by systematic feedback

convolutional encoder to obtain the channel input sequence vlL and w{’ . Note that, unlike
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Figure 2.4: Iterative decoder for encoding in Figure 2.3.

in turbo coding, the systematic parts of the channel coder outputs in this c‘ase are not
interleaved versions of each other. Let (ig1,%2,.--,%k) be the binary representation of the
index i, at time k. Consider the case where both r{ and s{ are received. From these received
sequences, the MAP decoders estimate the a posteriori log likelihood ratios (a posteriori
L-values). For example, the a posteriori L-value Ly (ig,) of the bit i,, which is estimated
by the MAP decoder 1, is given by

P(ign = 1jof)

Plign = Op0)" @4

Ll(ikn) = log

The calculation of the above a posteriori L-value requires the priori L-value Lg; (24,) of the
bit ix,. It is straight froward to calculate the a posteriori probability distribution P(ig,|vf)

from the a posteriori L-value calculated above. As an example,

Ly (in)
. Ly _ €
P(ign = loy) = 1 4 el1(ikn)”

Now, the a posteriori probability distribution of the description 1 at time k is calculated

using the relation

r
P(Zk = G,I'U{J) = H P(ikn = an]”f)’ ac I= {Oa 1) o 21‘ - 1} (25)

n=1
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where (a1, as,...,a,) is the binary representation of ¢. From the probability distribution
in (2.5) it is possible to calculate the a posteriori probability distribution of the description
2 at time k by using the relation

281

P(jk=b= > P(r=blix=a)Piy=a) beJ=1{0,1,... 2" — 1} (2.6)

a=0

The conditional probability P(jx = blix = a) in (2.6) mainly depends on the IA. Let
(b1,b2,...,b,) be the binary representation of the index b. From the probability distribution

of the description 2 at time £, the probability distribution of the bit Jkn is found as follows

P(jkn=1)= > P(js =b)
bibn=1

and

P(jkn =0) = 1= P(jn = 1),

Now, these probabilities are used as priori information for the MAP decoder 2 to calculate

the priori L-value Lgs(jin) as

P(jkn = 1)

P —o) (2.7)

Lo (Jkn) = log

In the same way, the a posteriori L-values estimated by the MAP decoder 2 are used to
obtain the priori L-values for the MAP decoder 1 and this process is iterated several times
as In turbo decoding. After a fixed number of iterations the bits ikn and jg, are estimated
using a posteriori L-values of the MAP decoders. For example, the bit i, is estimated as

R 1 i Li(ign) >0
tkn = " (2.8)

0 otherwise.

A careful analysis shows that the iterative decoding in [17] is very similar to that in [15).

The main difference is that [17] uses extrinsic information (L3 (in) and LE(jk,)) to calculate
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Figure 2.5: Non-iterative joint decoding.

the priori log likelihood ratios (La2(jkn) and (Lgy (igs)) while, as seen above, the iterative
decoding in [15] uses the a posteriori L-values directly to calculate the priori information.

The extrinsic information in [17] is calculated as follows.

L‘f(ikn) = Ll(ikn) - (Lal (ikn))prev (29)

Here, (La1(ikn))prev is the priori L-value estimated in the previous iteration using the extrin-
sic information from the MAP decoder 2. i.e it is the priori information used in estimating

Ly (ikn) in (2.9). Similarly

Lg(jkn) = LZ(jkn) - (LaZ(jkn))prev- (2.10)

2.2 Non-Iterative Joint Decoding

The iterative decoding algorithms discussed above require an interleaver which requires
modification to the encoder. On the other hand, non-iterative joint decoding algorithms
exploit the redundancy introduced by the MD coder without requiring any change at the
encoder side. Two methods of non-iterative joint decoding schemes, namely joint trellis

decoding and joint path metric decoding, are given in [14]. Figure 2.5 shows both joint trellis
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(JT) decoder and joint path metric (JPM) decoder in a single diagram. Let’s assume that
a two channel MDQ is used and each description is convolutional encoded separately by a
convolutional encoder where there is a one to one correspondence between the convolutional
encoder input and the MDQ output alphabets (i.e. if the MDQ has rates Ry = r; and Ry =
T2 bits/description, then the convolutional encoders need to have r1 and 79 bit inputs
respectively). A generalization to the joint trellis decoding is developed in Chapter 4,
which does not require this one-to-one correspondence. Let lf’ = (l1,ly,...,11) be the index
sequence for the source sequence xf' = (x1,%3,...,xr) and let (¥, 5L), (v, wl) and (], sE)

be corresponding description, channel input, and channel output sequences respectively.

Joint Trellis Decoding

In this method, the two convolutional encoders are viewed as a single super convolutional
encoder with the input (i, jx) and the output (v, wg). For this super convolutional coder,
a super-trellis (or joint trellis ) is built. A state S of the joint trellis is given by the pair of
states (51, 52) of the individual encoders. The Viterbi algorithm (see Appendix A) is used
to search this trellis to find the optimum sequence estimate (3L, 5L). We know that an
TA is a one-to-one mapping and hence the index pair (ig,jx) is equivalept to the index I.

Therefore, the MAP estimate of the sequence I} is given by

% = argmax Pt sF)
ll
= arg max P(i},;f|rE, sE) 2.11
1J11775 8%
Ge
P(rL oL ;L ;L
= arg max (’rl ’S};,ZlL,jl ) (212)
@ab)  P(rf,st)
= arg max P(r{,st,il, ) (2.13)
Gt a1)

"The simplification from (2.12) to (2.13) is due to the fact that the term P(rf, st is constant
given the particular channel output and does not affect the maximization in (2.12). We call

the above MAP sequence estimate as the JT-MAP estimate. Our objective here is to find
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the MAP sequence estimate given in (2.13) by using the Viterbi algorithm. For that, as
explained in Appendix A, we would have to use a monotonic function of P, Ji ,r{’ , %)
as the path metric which can be expanded into a summation of terms called branch metrics
that corresponds to individual branches of a path along the trellis. This can be achieved

first by expressing the probability P(i¥, &, ¥, sF) as a multiplication of probability terms

each related to a separate branch in the path and then taking the logarithm. We see that

P(T‘f’,sf,if,j{“) = P(T » 81 I'Ll’]l ) P("'%JlL)

= P(rPil)P(sE|5F) P(E, 1) (2.14)

= P(rfo})P(s}wl) PGE, j2) (2.15)
L

= ] P(riloe) P(sgwy) P(iF, 5T) (2.16)
k=1

ll
Mh

log P(if, 5 |rE, sF) log P(rlvg) + log P(sgfwy) + log P(i¥, 5F)  (2.17)

k=1
The step from (2.14) to (2.15) is possible since the input sequences i¥ and j§ uniquely
determine the encoder outputs v and wf respectively. The simplification in (2.16) is due
to the memoryless nature of the channel. To simplify P(if, 5F) further, we have to assume
a model for the source. For example, if the process {z;} is i.i.d., then the process {(ig, 7x)}

is also i.i.d. and the term log P(:¥, j£) in (2.17) can be expanded as
L
log P(ifjt') = log [| Pix, s)
k=1

L
Z log P (i, jix)- (2.18)

and therefore the branch metric (bmg)iid—gr—map used in the Viterbi algorithm in this

case is

(bm)isd—sT—prap =>10gP(Tk!Uk) + log P(s|wg) + log P(ig, ji)-



27

On the other hand, if the source sequence is correlated, a better model would be a Markov

process. If the process {x;} is first-order Markov, then

P(xg|%p-1,Xp—2,Xp—3...) = P(xg|x4_1) (2.19)
and
L
P(xy) = P(x1) [] Plxslxe_y). (220)
k=2

In this case, it is common to approximate the process {lx} also to be Markov. Therefore

L

log P(if', i) = > og P(ik, jilix—1, jk-1)
k=1

where

P(ik, jlik-1,k—1) = P(i1,51)  whenk =1

and the corresponding branch metric is given by
(bmi) ae—sr~sap = log P(rylvg) + log P(sy|wy) + log Pi, jilis_1, Jk=1)-
The ML estimate of the sequence ¥ is given by

i = argmp P(rE, o 1)
ll
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But

P(T1,51 lL) = (7'1a31 |21731L)
= P(r{|i{)P(s{if)
= P(r{|v{)P(s}|wf)

= | | Prelve)P(sk|w) (2.21)

Now, let’s take log P(r¥, sl'|if, 5%) as our path metric. Therefore, for any source model, the

branch metric used in the Viterbi algorithm is given by

(bmy)jr—mr = log P(riluk) + log P(sg|wy).

When this branch metric is used in the Viterbi algorithm to search the joint trellis, the

resulting scheme is called as the JT-ML algorithm.

Joint Path Metric decoding

In joint path metric decoding, a separate decoder is used in each channel. However, in order

to exploit the inter-description redundancy, the full channel output (r{' , sff ) is used in each

decoder in Viterbi sequence estimation. For example, the MAP estimate of the sequence zlL

given (rf,st) is obtained by

il = argmax P@LrE, 5

1
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which can be expanded as

argmax P(if|r{,s{) = argmax P(if,rf,sh)
L1

7y

= argmax P(r{,s7[if)P(i])
41

L
= argmax | | P(rg, sglix) P(L 2.22
g [] Plos o) P (222

We will refer to this as joint path metric MAP (JPM-MAP) estimate. In the case of an

i.i.d. source, the term P(i}) can be expanded as

L
P@r) = [[ Plir)
k=1

and therefore, taking log P(i¥|rf, st) as the path metric, we get the branch metric

(bmi)iid—gPr—map = log P(rg, sglix) + log P(iy).

If the source is correlated {i} can be approximated as first-order Markov. Then
L
P(ir) = [ Plilix-1)
k=1
where

P(iklik—l) = P('Ll) when k£ = 1.

Therefore, the branch metric in this case is given by
(bmg)m—sprv—map = log P(ry, sglix) + log P(ig|ix—1).
Given (rf, s¥), the ML sequence estimate of i} is obtained by

iy = argmax P(r{,s}|if).
4
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We will refer to this as joint path metric ML (JPM-ML) estimate. It can be shown that for

any source model, the branch metric for this estimation is given by
(bmi)spr—mr = log P(ry, siliz).

Separate Decoding

In this chapter and in succeeding chapters, the performance of joint decoding is compared
with separate decoding. In separate MAP algorithm, codewords in individual channels are
separately decoded with a Viterbi decoder to obtain the MAP estimates of the corresponding

index sequence. For example, the separate MAP estimate of the index sequence i} is given

by

4 = arg max P(i%rF)
(3]

which can be found by using the Viterbi algorithm as explained in Appendix A. Similarly,

separate ML algorithm finds the ML sequence estimate of the index sequence in each channel.

2.3 Simulation Results

Figures 2.6 and 2.7 are the experimental results presented in [14]. The non-iterative decod-
ing schemes presented in [14] and the iterative decoding scheme in [15] are experimentally

evaluated for an ii.d. gaussian source and a Gauss Markov (GM) source which is given by
T = 0921 + uy

where {w:} is a unit variance Gaussian random process and ¢ denotes discrete time. The
above GM source is a simple model for practical sources such as speech and image samples.
Source samples are MD coded at rate B; = Ry = 3 bits/description. MDSQ is designed as

described in chapter 1 with pg = 1 and p; = t2 = 0.005. The index assignment is given
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Figure 2.6: Performance variation of joint decoding and separate decoding with channel
bit error probability for an i.i.d. Gaussian source of unit variance. Curves marked with
IND-MAP and IND-ML denote separate MAP and separate ML respectively. The curves
marked with JP-MAP and JP-ML denote JPM-MAP and JPM-ML respectively.
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Figure 2.7: Performance variation of joint decoding and separate decoding with channel bit
error probability for a Gauss Markov source. Curves marked with IND-MAP and IND-ML
denote separate MAP and separate ML respectively. The curves marked with JP-MAP and
JP-ML denote JPM-MAP and JPM-ML respectively.
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in Figure 2.8. For the evaluation of non-iterative Joint decoding schemes, descriptions are
convolutional coded with a (4,3,2) (i.e. 4 outputs, 3 inputs and memory 2) code of constraint
length 6, which is obtained from Table V of [21]. A block of 128 MDSQ output indices (of
a description) is convolutional coded to obtain the 512 bit long channel codewords. For the
system with iterative decoding, rate 3/4 convolutional encoders are obtained by puncturing
arate 1/2 binary code with a constraint length of 6. An interleaver of length 1024 bits is used
on one of the MD channels prior to channel coding. Thus, from the channel coding point
of view, this system is comparable to the other systems considered here (except the delay
caused by the interleaver). We use as the figure of merit, the average signal to distortion
ratio

SDR = EX?/E(X — X)?

where X is the reconstruction of X at the decoder. To find the improvement achieved by
joint decoding, the performance of separate decoding is also evaluated (with both MAP
and ML sequence estimations). With all of the decoding algorithms, the mean value of the
source is selected as the output when the decoded index pair is invalid. The source statis-
tics required in the decoding schemes are empirically estimated from a training sequence.
We assume a binary symmetric channel (BSC) model in the experiment. Figures 2.6 and
2.7 show the variation of the performance of each decoding scheme with the channel bit
error probability for an i.i.d. source and a GM source respectively. It can be seen that
the joint decoding schemes achieve a significant improvement over separate decoding. The
results suggest that JT and iterative decoding schemes are very efficient in exploiting the
redundancy present in multiple descriptions. JPM decoding algorithms have significantly
lower performance than JT and iterative decoding in the case of an i.i.d. source. Therefore,
it can be concluded that JPM decoding algorithms are less efficient in exploiting the redun-
dancy in multiple descriptions. The JT-MAP algorithm has the best performance out of
all the joint decoding algorithms considered. It is observed that MAP decoding algorithms

always perform better than their ML counterparts. For an i.i.d. source this is due to the
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Figure 2.8: The IA matrix used in the experimental evaluation of joint decoding schemes.

redundancy caused by the non-uniformity in the MDQ output statistics. The performance

difference between MAP and ML decoding is considerably higher in the case of GM source,

since there is a large amount of redundancy in the source sequence in the form of temporal

correlation.

2.4 Comparison of Joint Decoding Schemes

In this section we compare the joint decoding schemes presented in this chapter. The main

considerations in the comparison are

e efficiency in exploiting the redundancy present in multiple descriptions

e computational complexity

e decoding delay

The iterative decoding schemes are highly efficient in exploiting the redundancy. How-

ever, they posses some disadvantages. For example, several iterations are required to decode

each bit and this can result in a high decoding delay. Furthermore, to obtain a good per-

formance, long interleavers must be employed and the longer the interleaver, the higher the
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decoding delay. As explained in Chapter 1, one of the main application for MDC is in real
time communication systems, where the allowable delay is restricted. In such systems, the
application of the iterative decoding may be restricted due to their longer delays. Another
disadvantage of using interleavers is that one has to modify the encoder.

Joint trellis decoding is an optimum sequence estimation algorithm and therefore, it is
very efficient in utilizing the redundancy present in descriptions to improve the performance.
With this algorithm, channel codewords can be decoded as they arrive, and therefore, there
is no increase in the decoding delay compared to separate decoding of the same code. The
main disadvantage in the joint trellis decoding is the increased computational complexity.
If the convolutional encoders have constraint lengths v; and vy respectively there can be
21172 states in the joint trellis whereas the separate trellises have only 2! and 2“2 states
respectively. This means that the number of states in joint trellis is the multiplication of
the number of states in separate trellises and therefore, one can expect a similar increase
in the computational complexity. However, the actual number of states in the joint trellis
s typically less than 217*2 since not all the index pairs (4, j ) are necessarily used in the
IA matrix. To make the analysis simple, assume that v; = Rym; and vy = Rymsy where
Ry, Ry are the number of inputs (which are also the rates of MDQ in bits/description) and
my, mg are the memory of the respective convolutional coders. In one extreme, when only
one diagonal is used in the IA matrix, the two descriptions will be identical and therefore
a state of the super convolutional coder is equal to the past n MDQ output indices of one
description where 7 = max(my,mz). In this case, there will be max(2"1,2"2) states in the
joint trellis. On the other extreme, when all the index pairs are used in the IA matrix, the
number of states in the joint trellis would be 2V1+¥2

Another disadvantage of the joint trellis decoding scheme is that its complexity increases
exponentially with the rates R; and Ry. Each state of the joint trellis has (2F1+82)¢ arriving
paths, where ¢ is the fraction of the index pairs used. If we assume c to be a constant, the
number of additions and (two-way) comparisons required in the Viterbi algorithm increases

exponentially with R; and R,. On the other hand, it would be impossible to have one-
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to-one correspondence between the convolutional coder input and MDQ output alphabets
for large description alphabets (description alphabet sizes in turn depend on the rates
R; and Ry), since it results in a large number of states in the trellises. In Chapter 4,
we introduce a bit level joint trellis decoding scheme which eliminates the requirement of
one-to-one correspondence between MDQ output alphabets and convolutional coder input
alphabets. It also eliminates the above mentioned exponential increase in the computational
complexity.

Finally, the JPM decoding is only slightly more complex than separate decoding and
the decoding delay is the same. However, it is suboptimal and therefore less efficient than
iterative decoding and joint trellis decoding in exploiting the redundancy in multiple de-

scriptions.



Chapter 3

List Viterbi Algorithm Based Joint

Decoding

Multiple description joint decoding techniques such as iterative decoding and joint trellis
decoding are very efficient in exploiting the redundancy introduced in the process of mul-
tiple description encoding. But, these schemes possess some drawbacks which restrict the
applicability in certain situations as pointed out in Chapter 2. On the other hand, the joint
path metric decoding is only little more complex than separate decoding and would have
less restrictions in the applicability. But at the same time it is significantly less efficient
than iterative decoding and joint trellis decoding. Therefore, there exists the challenge of
finding less compiex and fairly efficient techniques which can be used in applications where
other efficient schemes cannot be used. In this chapter, we study a list Viterbi algorithm
[22] based joint decoding scheme which can be combined with Joint path metric decoding
methods (described in Chapter 2) to enhance their performance [23].

A multiple description code generated by MDQ can be considered as a nonlinear error
detection code of rate log(Q)/2r [17] where r is the number of bits per description and Q is
the number of elements that are used in the IA matrix. As explained in Chapter 1, the index
assignment is analogous to channel coding since it uses only @ pairs out of 22" all possible

index pairs. Therefore, the channel coding of multiple descriptions for the transmission
37
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Figure 3.1: Concatenated coding based joint decoding of multiple descriptions

over a noisy channel can be considered as a sort of concatenated coding. As an example,
convolutional encoding of multiple descriptions can be viewed asa concatenated coding with
a error correcting inner convolutional code and a error detecting outer multiple description
block code. Therefore, following the same analogy, it would be possible to device some
concatenated decoding algorithm for jointly decoding the multiple descriptions as shown
in Fig 3.1. Concatenated coding has been widely used in digital communication and well
studied in coding theory. The inner code is usually decoded with soft decision decoding and
the outer code is decoded with hard decision decoding.

There are many decoding algorithms such as BCJR algorithm [20], soft output Viterbi
algorithm (SOVA) [24] and list Viterbi algorithm (LVA) [22] etc. that can be used in de-
coding the inner convolutional code. The BCJR, algorithm is an optimum decoding algo-
riﬁhm that gives the a posteriori probability of the source symbols. However, it requires
a whole codeword be received before decoding and therefore is not suitable for continuous
mode transmission. Various versions of the BCJR algorithm such as sliding window BCJR
algorithm has been found to facilitate continuous mode transmission at the expense of op-
timality. In SOVA a reliability indicator is given for each decoded bit which can be used
as a soft output in the subsequent decoding steps. However, this reliability indicator is
not in general equal to the a posteriori probability and hence the algorithm is suboptimal.
SOVA is a sequence estimation scheme whereas BCJR algorithm is a symbol by symbol
estimation algorithm. SOVA can be used in continuous mode transmission just like the
Viterbi algorithm. The LVA, on the other hand, is not a true soft decoding scheme since
it does not give a soft output for each symbol separately. Instead, it finds a list of best
estimates of the symbol sequence (and the reliability of each estimate if needed). There are

several versions of the LVA for different applications and complexity requirements. But in
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all those cases the main factor determining the complexity is the list size. For list size one,
the algorithm is essentially the Viterbi algorithm. Different versions of LVA can be found
in [22], [25] and [26] where the main usage illustrated is in concatenated coding with inner

error correction convolutional code and outer error detection code.

3.1 The List Viterbi Algorithm

The LVA is a generalization of the Viterbi algorithm to find a rank ordered list of L globally
best sequence estimates. There are basically two types of LVA: (1) Parallel LVA, (2) Serial
LVA. The parallel LVA finds L best sequence estimates simultaneously in a single trellis
search. At each decoding step, in the Viterbi algorithm the lowest cost path arriving at
each state is selected as a survivor and the final survivor (in case of a terminated code) is the
globally best path. In the parallel LVA, instead of keeping one survivor for each state, an
ordered list of L best paths arriving at the state are retained. It is clear that this gives the L
globally best paths in a terminated code. The computational complexity of the parallel LVA
is approximately L times that of the Viterbi algorithm. In the serial LVA, L best paths are
found iteratively such that the k-th best path is found by using the knowledge of previously
found k — 1 paths. The average computational complexity of the serial LVA is less than
that of the parallel LVA since it is not required to find the best L survivors for each state
in each decoding step. However, the algorithm requires the whole sequence before finding
the list of sequence estimates and hence is not suitable for continuous mode transmission.
More details of the serial LVA can be found in [22]. When LVA is used in decoding a
concatenated code with an inner convolutional code and an outer error detecting code, the
best L candidate sequences are found by decoding the inner code and then testing for the
outer code. The best candidate that satisfies the outer code is selected as the final output.
If there exist no sequence that satisfies the outer code in the list, an error is declared.

In our system, we use the LVA to decode the inner code since it is well suited to the
scenario considered, i.e. we have a concatenated code with an inner convolutional code and

an outer error detection block code. Our objective is to exploit this outer error detection
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code for obtaining a better estimate for the source sequence. LVA is also simpler compared
to other algorithms such as BCJR, algorithm and SOVA for small list sizes and it is possible

to have a performance-complexity compromise by changing the list size.

3.2 LVA Based Joint Decoder

Figure 3.2 shows a system which uses the LVA in Joint decoding the multiple descriptions.
Let If = (I1,ls,...,1z) be the index sequence for the source sequence =} = (71, z9,...,21)
and let (i,50), (vf,wl) and (rf,s¥) be corresponding description, channel input, and
channel output sequences respectively. Then, the MAP estimate of the sequence I} is given
by

Bt = arg max P(I{|r{,s}).
ll

From (2.11), (2.12) and (2.13)
argmax P(IF|rf,st) = arg max P(r{’,s%,if,jf) (3.1)
i Gff

and

L I . I . A
P(r,stsi1, 1) = P(ri, stlif, jb) P(iL, jF)

= P(r{[if) P(s7l5f) PGE,5F) (3:2)

— P('I‘L) P(sL) P(iLITL) P( -L!SL) P("fale)

= 1 1 1i71 J1 151 P(if) P(jf)
P(if, jf

I . . : )
arg max P(il, ;T ri,sk) = arg max P(E|rL P(5E|sky 121
('L{',JIL) 1+J1 I 1 1 (zf‘,]{‘) ( 1' 1) 1 I 1) P('LIL) P(]]]:’,)

= arg max log P(if|r{) +log P(jf |st)
e

+log P(if, j1') — log P(i¥) — log P(5L)  (3.3)

Note that the term P(il, 52)/(P(if) P(5F)) takes into account the inter-description corre-
lation while the terms P(i¥|rL) and P(5L|st) take into account the channel coding and the

temporal correlation in the descriptions.
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Figure 3.2: List Viterbi algorithm based multiple descriptions joint decoder

‘The brute force method of finding the MAP estimate of the sequence pair (iF, j¥) would
be to enumerate all the possible sequences if and j{“ and then to apply (3.3). However, this
is not practically feasible even for a moderate value of block length L, since 22" sequence
pairs have to be considered, where r is the number of bits per description. On the other
hand, many of those pairs would have a much smaller a posteriori probability compared to
the MAP sequence pair given by (3.3). Therefore, instead of considering all the possible
sequences, we propose to select a limited number of potentially good candidates for i¥ and

j¥ by using the LVA. The LVA based joint decoder works as follows:

e List Viterbi decoders 1 and 2 use the path metrics log P(it|rf) and log P(5£|st) to
find M best estimates for i¥ and jf respectively. From Appendix A, for an i.id source,

the corresponding branch metrics by and bmoy, of respective decoders are given by

bmyx = log P(rg|vg) + log P(ix)

by, = log P(s|wy) + log P(43)

where k denotes the time.

e From the resulting M x M sequence pairs (¢¥, L) the one that minimizes the cost

function

C = —{log P(if|r{) + log P(j{|s¥) + log P(:f, j) — log(P(iF) — log P(j%)}
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is selected by the path selection unit as the output. The log probabilities log P(@itirh)
and log P(jf|s}) are given by the preceding list decoding stage. For an i.i.d. source,

the remaining term is calculated by using the equation

L
log P(if', j1') — log(P(if) — log P(j{") = _ log P(ix, ji) — log(P(ix) — log P(j)
k=1

We call this algorithm standard path metric-list (SPM-list) decoding.

Though approached in a different way, the above joint decoding method is very similar to
the method of LVA based decoding of a concatenated code described in the Section 3.1. The
two convolutional coders and the list decoders form the inner coding and decoding stages
(we can consider two convolutional coders as a single convolutional coder with the input
(4,7)). The path selection unit in our scheme is equivalent to the outer (error detecting)
decoder. Here, the equivalent list size is M - M = M? and any candidate (¢¥,5F) that does
not satisfy the multiple description block code would have P(if, i) /(P(iF) P(5F)) equal
to zero and therefore not selected by the path selection unit. Out of the candidates that
satisfy the outer error detection multiple description block code, the one with the lowest
cost is selected as the output in our scheme. The only exception is that the outer code
probabilities are also included in the cost function. However, some modifications will be
introduced into the above joint decoding algorithm later to improve the performance and
to address some practical issues.

The basic challenge in this joint decoding scheme is selecting a limited number of poten-
tially good description sequence pairs. The main drawback of the above scheme is that it
does not consider inter-description correlation in any way in the list decoders and therefore
the best sequence pairs may not be included in the final list. One way of improving the
“quality” of the list is to use JPM decoding described in Chapter 2 in the list decoders.
The JPM-MAP and JPM-ML decoders exploit the correlation presents in the outputs of
the convolutional coders. This correlation may be much weaker than the inter-description

correlation as suggested by the weaker performance of the JPM algorithms compared to the
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joint trellis decoding in case of an i.i.d. source (see Figure 2.6). Therefore it can be expected
that the integration of the list decoding would improve the performance of JPM decoding.
In fact, as shown by the experimental results, this achieves an appreciable improvement.
The resulting joint decoding schemes are called JPM-MAP-list algorithm and JPM-ML-list

algorithm respectively. The JPM-MAP-list algorithm works as follows:

e List Viterbi decoders 1 and 2 use the path metrics log P(if|rf, sF) and log P@EirE, sh)
to find M best estimates for zf and le respectively. From Section 2.22, for an i.id
source, the corresponding branch metrics b, and brmngy of respective decoders are

given by

bmyg = log P(rg, sklvg) + log P(iy)

bmoy = log P(ry, splwg) + log P(j%)

where k denotes the time.

© From the resulting M x M sequence pairs (i¥, jF) the one that minimizes the cost

function

C = —{log P(r{i) +log P(s{|j{) + log P(if, £)}

L
= — Y log(P(rlix) + log P(sxjx) + log P(ix, i)
=1

is selected by the path selection unit as the output. It should be clear that minimizing

the above cost function is equivalent to maximizing the right hand side of (3.2)

The JPM-ML-list algorithm is very similar to the JPM-MAP-list algorithm above except
that the path metrics used are log P(rf, s|if) and log P(rL, sP15F). Accordingly, the priori
probability terms log P(ix) and log P(j;) do not appear in the branch metrics.

The computational complexity of the LVA based decoding increases approximately lin-

early with the list size. The number of computations in the branch metric calculation will
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not be increased by the list decoding. However, the list decoding will have an M fold
increase in the add, compare and select computations involved in extending and selecting
the survivors. At the path selection unit, there are approximately 3M2L additions and M2
comparisons (assuming that the log probability terms are available in lookup tables). If the
number of states in the state space is much larger than the list size the effect of the com-
putations in the path selection unit on the overall computational complexity is negligible.
Therefore, the LVA based joint decoding will have approximately M fold increase in the

computational complexity for small list sizes.

3.3 Experimental Results

LVA based joint decoding is experimentally evaluated for an i.i.d. Gaussian source of
unit variance. The MDSQ is designed as described in the Chapter 1 with o = 1 and
p1 = pg = 0.005. The index assignment used in this experiment is same as that used in
the experiment in Chapter 2 (which is given in Figure 2.8). Each description consists of
3 bits and therefore there are 64 elements in the IA matrix out of which 21 are assigned.
Descriptions are convolutional coded with the (4,3,2) code (rate 3/4 and constraint length
5) obtained from [21]. The list decoders are designed based on the parallel LVA in [22].
All the priori probabilities are evaluated empirically using a training sequence. We use the
same figure of merit, the average signal to distortion ratio defined in Section 2.3. In the
experiments, we do not reject invalid sequence pairs because, it is found that at high error
probabilities and small list sizes, almost all the candidate pairs in the list have one or more
invalid index pairs (an index pair that is not assigned in the IA matrix). Therefore, each
such invalid index pair is given a sufficiently small non zero probability value to ensure that
the selected sequence pair would have a smaller number of such index pairs.

Figure 3.3 shows the performance variation of LVA based Jjoint decoding schemes with
the channel error probability for a list size of 4. The SPM-list decoding achieves a maximum
gain of around 2.2 dB relative to separate MAP decoding described in Chapter 2. A higher

performance gain is achieved by JPM based list decoding where the maximum gain is around
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5.5 dB for the JPM-MAP-list decoding relative to separate MAP decoding. However, we
have to understand the fact that a part of this improvement is due to the superiority
of the performance of JPM decoding over separate decoding itself. The performance gain
achieved explicitly by list decoding is shown in Figures 3.4, 3.5 and 3.6. The JPM-MAP-list
decoding has the best performance gain for all the list sizes. It is observed that JPM-ML-
list decoding can even be worse than SPM-list decoding at high error probabilities. This is
because separate MAP decoding beats JPM-ML decoding at high error probabilities as seen
in Figure 2.6. Again, the (explicit) performance gain of the JPM-ML-list decoding is less
than that of the SPM-list decoding for the same list size. In all the cases, the performance
improves with the list size as expected. The highest performance is bounded above by that
of the optimum joint trellis decoding. It is evident that the incremental performance gain
decreases rapidly as the list size is increased. But the computational complexity increases
at least linearly with the list size and hence a suitable list size has to be decided considering
the performance gain and the complexity. We see that both SPM-list and JPM-MAP-list
decodings achieve a reasonably good compromise between the performance gain and the

computational complexity at list size 4.
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Chapter 4

Bit Level Joint-Trellis Decoding

As pointed out in Chapter 2, joint trellis decoding is an optimum sequence estimation
scheme. It is seen in Chapter 2 (see Figure 2.6) that this scheme even outperforms the
iterative decoding scheme presented in [15]. The main drawback of the scheme is its high
complexity. As explained in Chapter 2, One cause of the increased complexity is description
level encoding and decoding. The joint trellis decoding scheme in [14] requires a one-to-
one correspondence between the description alphabet and the convolutional encoder input
alphabets and this would result in a large state complexity for large description alphabets.
More importantly, given that the fraction of the elements assigned in the TA matrix is
constant, the computational complexity of the scheme increases exponentially with the
rate (in bits/source sample) of each of the MD encoder output channel. These causes of
the complexity can be eliminated by bit level encoding and bit level joint trellis (BLJT)
decoding. Bit level encoding here means the channel coding with a rate 1/2 convolutional
encoder (possibly with puncturing to achieve the required code rate) and bit level decoding
refers to the decoding of the channel code with bit level decisions rather than description
level decisions. In other words, the input to the convolutional encoder is considered as a
binary source with a particular correlation structure. As explained in Section 4.3, BLJT
decoding achieves a significant reduction of complexity over description level joint trellis
(DLJT) decoding. Our purpose here is to extend the description level correlation to the

50
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Figure 4.1: Two channel MDQ system with bit level joint trellis decoding.

bit level so that it can be used in a simpler bit level decision decoding scheme without
weakening the performance.

Figure 4.1 shows a two channel MDQ system with rate 1/2 convolutional coding and
BLJT decoding. The source vector x is vector quantized and the resulting index [ is assigned
to b ‘bit indices i=(%(1),(2),...,i(b)) and j=(j(1),7(2),...,j(b)), where i(k) and j(k),k <b
are the k-th bits of the binary representation of the indices i and 5. The binary words are
then parallel to serial converted to obtain the input bit stream to the convolutional encoder.
Let v=(v(1),v(2),...,v(b)) and w=(w(1),w(2),...,w(b)) be the output of the convolutional
encoders for description 7 and j where the (two bit) symbols v(k) and w(k) are the outputs
for the input bits 4(k) and j(k) respectively. Channel coding is done in blocks and when only
one codeword is available at the receiver it is decoded by the corresponding convolutional
decoder. On the other hand, when both codewords are available they are decoded by the

joint decoder.

4.1 Joint Trellis

The joint trellis is obtained by combining the individual trellises of the convolutional coders
as described in Chapter 2. Two convolutional coders are considered as a one super convo-
lutional coder with input (4, j) and output (v, w). A state SY of the joint trellis is given by
the pair of states (57, S2) of the individual encoders. Let convolutional coders 1 and 2 have

constraint lengths vy and v respectively. If ¢ and j can take any value then there would be
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Figure 4.2: A section of the joint trellis for 2 bits/description MDQ with IA given in Figure
4.3 and rate 1/2 convolutional encoders of constraint length 2. Time ¢ = 0 corresponds to
the beginning of a description period. Transition from ¢ = 0 to t = 1 is caused by the lower
order bits of the two descriptions and the transition from ¢ = 1 to ¢t = 2 is caused by the
higher order bits. '



53

0 1
2 3 5
4 6 7
8 9
Figure 4.3: An index assignment for two channel MDQ of ratess Ry = Ry =

2 bits/description.

2M1%%2 gtates in the joint trellis. However, the values that 7 and j can take are restricted by
the index assignment and hence, when not all the elements of the IA matrix are assigned,
some of the states will have zero probability. Therefore, the number of states in the joint
trellis with non zero probability will be less than 2¥11v2, Again, due to the same reason, the
bit patterns that can be contained in the two shift registers of the convolutional encoders
will change with time and hence the trellis will have a periodic time varying structure with
the periodicity equal to the number of bits used per description. Figure 4.2 shows a section
of the joint trellis for a 2 bits/description MDQ and rate 1 /2 convolutional coding with
constraint length 2. The corresponding IA matrix is given in Figure 4.3. A state is labelled
with the (binary) content of the convolutional coder shift registers. The two bits of the first
row in the state label gives the content of the encoder 1 shift register and the second row
gives the content of the encoder 2 shift register. We assume natural binary representation

of the descriptions.

4.2 MAP and ML Sequence Estimation

Let If = (I1,1s,...,11) be the index sequence for the source sequence x¥' = (x1,%s,...,xz)

and let (¢¥, ik, (vE, wlL) and (rf, s¥) be corresponding description sequence, channel input
sequence and channel output sequence respectively. We are interested in using the Viterbi

algorithm to obtain optimum sequence estimate for I¥. For example, the MAP estimate of
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the sequence lf is given by

It = argmax P(E|rE, sby.
From (2.11), (2.12) and (2.13)
argmax P(l‘r’lr1 731) = arg max P(ry ,3‘1’“,21 ,]1)
1 i 7-71

As explained in Section 2.2, to apply the Viterbi algorithm in this case, we would have to
use a monotonic function of P(i¥, jL, v, s7) as the path metric which can be expressed as

a summation of branch metrics. From (2.14), (2.15) and (2.16)

L

P(ri,styif,57) = [] Plrlok) P(selwg) PGE, 55) (4.1)
k=1

To simplify this further, we have to assume a model for the source. For example, if the
process {z} is i.i.d, then the process {(ix,4x)} is also i.i.d and the term P(if, 51) can be

expanded as

t~

P(Zl aJl H Zkv.?k (42)

However, we are working with a bit level trellis and therefore (4.1) and (4.2) has to be

expanded into bit level. We know

P(ik, jk) = P(ik(0), jk(8), i6(6 — 1), 5k (b — 1), ..., 3 (1), 5w (1))

b
n=1

where

Bij(kn) = P(ix(n), je(n)lie(n — 1), js(n = 1), i (1), (1)
_ PAn). () sl ~ 1) il ) isD40)
B Plig(n— 1), jk(n —1),...,ix(1), 55 (1))
_ Zigoen Plindt)
 Xlaioee Pl )

(4.4)
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Here £; = £(k, n) is the set of all possible index pairs (i, j;) whose first n bits are equal to
those of the (i, jx). Le.

i(q) =ik(g) Vg<n

and

jtl@) =3Jkl@) Vg<n

Similarly, £ = £(k,n — 1) is the set of all possible index pairs (i, j;) whose first n — 1 bits
are equal to those of the (i, jx). Therefore, for an i.i.d source, (4.1) can be expanded into

bit level terms as
L b

P(rt, 57,47, 58) = [[ [T P(re@m)oe(n)) P(sk(n)lwi(n)) Py(k,n) (4.5)

k=1n=1

Now, we define our path metric as log P(rf, s¥, L, j£). Then
1,51, 01

L b
log P(r{,sf,it, i) = =Y "log P(ri(n)|og(n)) +log P(sg(n)|wk(n))
k=1n=1
+log P;;(k,n)
L b
Z Z (bmin)iia—rrap (4.6)
where
(bmkn)isa—rrap = log P(ri(n)lvg(n)) + log P (sk(n)|w(n)) + log Py;(k, n) (4.7)

is the branch metric that we are going to use in the Viterbi algorithm.
As mentioned in the discussion in Section 2.2, the first-order Markov process is a widely
used model for some practical sources. Therefore, let’s consider the case where {xx} is

first-order Markov. In this case, making the same assumption as in Section 2.2 that the
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process {l} also is first-order Markov, we have
L
P(if,4{) = Pli1, 1) [ | PGk, dilin-1, 5k—1)
k=2

Here, the term P(i;,7;) can be expanded into bit level terms by using (4.3). The term

P(ig, jrlik—1, jx—1) can be expanded as

Pig, Jklik-1, k1) = P(ix(b), 5k (), ix(b — 1), jr(b — 1), ... 326 (1)s 3k (D) |5k —1, Jk—1)

= P(k,n) for2<k<L (4.8)

where
'P'L’J(k’ n’) = P(Zk(n)’Jk(n)lzk(n - l)ajk(n - 1)7 tet ’ik(l)ajk(l)’ik—l,jk—l)
- P(Zk(’n,),jk(n),?,k(n - 1)).7157(” — 1)a s 77:k(1)7jk(1)aik—17jk—1)
P(ig(n —1), jx(n —1),... 12k (1), k(1) tk—1, Jl—1)
— Z(it,jt),(it—l,jt—l)ef'l P((Z:ﬁj:t)’('&:t—la]:t—l)) for2<k<I (49)
2o dor)et, (885 30)s (o1, Ge-1))
Here

6 ={'(k,n)

where I'(k,n) is the set of all possible two consecutive index pairs {(44—1,j¢-1), (4, ¢)} such

that
(261, Jt-1) = (ig—1,45—1)
and
(i¢(9), 51(@)) = (ir(9),5x(a)) Vg<m
Similarly

ty =0 (k,n—1)
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Let

Pi’j(17 TL) = Bj(lv TL)

Following the same steps as (4.5)-(4.7) we obtain
(0rmkn ) mko—rrap = log P (r(n)|ug (n)) +log P(sk(n)|wi(n)) + log F/;(k,n) (4.10)

the branch metric for the MAP sequence estimation in case of a first-order Markov source.
Before going into details of the application of the Viterbi algorithm in MAP sequence es-

timations described above, it is required to analyze the properties of the process { (i (n),Jk(n)}

which is the input to the super convolutional encoder. In the case of an i.id source, the

index pair (i, j) is independent of previous index pairs. Therefore,

P(ie(n), je(n)ix(n — 1), ji(n — 1), .. (1), J(1), 881 (8), Ji—1(b),...) =
P(i(n), dr(n)lix(n — 1), jr(n = 1),. .., ix(1), (1))

(4.11)

Hence, the super convolutional coder input process {(i;(n),j:(n))} is a non stationary
Markov process whose order p changes periodically. Here, the largest value of p is b— 1. If

we further assume that {(ix, j;)} is first-order Markov, then

P((ir, i) G—1, 1), (tk-2,Jk—2),...) = P (it 1)l (ik=1, G5—1))

Therefore

Pig(n), je(n)lig(n — 1), jg(n — 1), ... s ik (1), e (1), 361 (), je—1(B),...) =
P(ir(n), jk(n)]ir(n — 1), jr(n — 1), ... s Uk—-1(1), Jx—1(1))

(4.12)
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In this case too, (i(n),j:(n)) is a non-stationary Markov process whose order p changes
periodically. The largest value of p is 2b — 1.

"To use the Viterbi algorithm in the MAP sequence estimations described above, it is
required that the (super) state process {S;} be first-order Markov [18]. The state S/
represents the bits that are stored in the super convolutional coder shift registers at time ¢.
To understand the requirements that has to be satisfied for {57} to be first-order Markov,

let’s consider a generic state process {s;} where
St = (@4-1,04-2, ..., Gt—rn,)
Assgme that {a;} is a Markov process of order ms. Then
P(atlat—1,a¢-9,...) = Platlat—1,a:-9,. .. Gty ) (4.13)

Now, we want to find the relationship between m; and mo when {s¢} is first-order Markov.

If {s¢} is first-order Markov, then
P(st]st—1,51-2) = P(s¢|st—1)
Therefore
Plat—1,... 00— m,|as_g, ... s Ot—mys Aty 1, --.) = Plag_y,..., Aty |@s—2, ..., Qtony 1)

Hence

P(at_llat_g, SRR (7 At—my—1, - - ) = P(at_llat_g, ceay at_ml_l) (414)

But, {a:} is my-th order Markov. Therefore

my > my (4.15)
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Now, we see that {5/} is analogous to {s;} and {a:} is analogous to the super convolutional
coder input process {(i(n), jx(n))}. Let m be the memory of the super convolutional coder

which is analogous to m; above. Therefore, applying the result in (4.15), the requirement

that has to be satisfied for {S} to be first-order Markov is
m 2 Pmaz (4.16)

where ppg; is the largest value of the order p of the non stationary Markov process
{(ik(n), jr(n))}. We saw that, when the MDQ output is i.i.d., pmes = b~ 1 and therefore,
the requirement that has to be satisfied to apply the Viterbi algorithm in MAP sequence

estimation which we described earlier in this section is

m>b—1. (4.17)
When the MDQ output is first-order Markov, the requirement is

m > 2b— 1. (4.18)

In joint trellis maximum likelihood (J T-ML) decoding, the sequence (IF) that maximizes
P(r{, st|if) is found by searching through the joint trellis that is described in section 4.1.

‘We see that

P(rlasl IZL) - (7‘1 » 51 Izl:]l)

= P(r{, stof, w)

= 1] Prs, sklow, we)
k=1

= H H P(ri(n), si(n)]vg(n), wy(n)) (4.19)

k=1n=1

let’s take log P(r{, sF|IF) as the path metric for this ML sequence estimation. The corre-
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Path 1
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encoder input (G (n—=1), j, (n-1) @, (n), j, (n)

Figure 4.4: A state in the joint trellis at the beginning of the n-th bit period of the k-th
index pair (i, jg) -

sponding branch metric is

(bmgn)mr = log P(re(n), sk (n)|ve(n), we(n))

Now we want to find whether there is any requirement that has to be satisfied to apply
the Viterbi algorithm in ML sequence estimation as described above. Figure 4.4 shows a
state Sy in the joint trellis at the beginning of the n-th bit period of the k-th index pair
(i, jk) (we denote this time position by ¢ = (k, n)). The Viterbi algorithm involves finding
the path that has the highest partial path metric (sum of the branch metric along the path
) for each state. Without loss of generality, assume that the path 1 has the largest partial
path metric (PPM) out of all the paths arriving at state SY. In the Viterbi algorithm, this
path is selected as the survivor path for the state SJ and the other paths are eliminated.
The argument here is that the globally best path (path with the largest path metric ) cannot
begin with any of the eliminated paths. Otherwise, we can replace its initial segment (path

segment up to state S7) with path 1 to get another path that has a higher path metric
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(this is a contradiction). One of the underlying assumptions in the above argument is that
the suggested replacement procedure results in a valid path. However, in the case of a joint
trellis, this may not always be true since some paths are invalid depending on the TA. The
requirement for above argument to hold in case of a joint trellis is that the previous bits
(26 (1), 5k (1), 2(2), 3k (2), - . . 3k (n — 1), jx(n — 1)) of the current description be same for all
the paths arriving at the same state. Otherwise, the paths arriving at the same state may
have different sets {(ix(n), jx(n)} of possible (next) input bit pairs (depending on the IA)
and therefore they may extend along different branches. If this happens, it is clear that, the
above path segment replacement process may result in an invalid path. To guarantee that
the previous bits of the current description be always the same for all the paths arriving at
the same state, it is required that

m>b—1 (4.20)

Therefore, this is the requirement that has to be satisfied in applying the Viterbi algorithm

for JT-ML sequence estimation.

4.3 Computational Complexity Comparison Between Description Level

Decoding and Bit Level Decoding

BLJT decoding has a reduced computational complexity compared to the DLJT decod-
ing for same convolutional coder constraint lengths. This reduction is very similar to that
achieved by a rate k/n convolutional code obtained by puncturing a rate 1/2 mother code
over a rate k/n k-ary input convolutional code [27]. In a rate k/n k-ary convolutional code,
there will be 2% branches arriving at each state in the trellis and therefore it would require
2¥ — 1 comparisons per state per £ input bits in finding the survivor and hence the com-
putational complexity is exponential in k. On the other hand, a rate k/n punctured binary
input convolutional code would require only & comparisons per state per & input bits. It is
clear that this achieves a significant reduction in computational complexity for large k. The

punctured convolutional code would have the same computational complexity if the sur-
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vivors are found after each k input bits. The complexity reduction is due to the elimination
of a path after each bit period for each state, which would otherwise grow exponentially as
in a binary tree. The same argument applies to the complexity comparison between BLJT
decoding and DLJT decoding. In case of DLJT decoding, number of comparisons needed
at a state is 226¢ where q is the fraction of elements used in the TA matrix and therefore,
if we assume ¢ to be constant, the computational complexity of the algorithm increases
exponentially with the description size. In case of BLJT decoding, there is no easy way to
find the exact number of comparisons required since the trellis has a time varying structure
which depends on the particular index assignment. In this case, there are at most 3 com-
parisons required at a state in the joint trellis per input symbol (i¢(m), j:(m)). For the same
constraint length, if survivors are found after each description period, decoding with the bit
level joint trellis would in general have the same order of computational complexity as the
DLJT decoding. Similar to the punctured convolutional code, the BLJT decoding achieves
a significantly reduced computational complexity by eliminating paths after each symbol
period, which would otherwise multiply to produced more paths. However, this multipli-
cation can be quaternary, ternary, binary or even unary depending on the particular path,
time position and the index assignment.

It is shown in Section 4.2 that optimum sequence estimation with the Viterbi algo-
rithm requires the convolutional coder memory to be greater than a parameter related to b.
However, the experimental results show that the BLJT decoding achieves a significant per-
formance improvement over the separate decoding even when the encoder does not satisfy

this memory requirement.

4.4 Experimental Results

BLJT decoding algorithm presented in this chapter is experimentally evaluated for differ-
ent settings to illustrate the performance improvement achieved and the effect of various

parameters on the performance. Simulations are done for an i.i.d Gaussian source with unit
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variance and a Gauss Markov source given by
zy = 09241 + wy

where {w;} is a zero mean unit variance i.i.d Gaussian process. This process is a simple
model for practical sources such as speech and images. The source is MD coded by a two
channel MDSQ designed as described in Chapter 1. The parameters used in the design are
po =1 and p; = pg = 0.05. The simulations are done for the binary symmetric channel
model. In case of BLIT MAP decoding, the priori probabilities are calculated empirically
using a training sequence. In the experiments, we consider only the case where both the
codewords are received by the decoder since, joint decoding affects only the performance of

the central decoder. We use as the figure of merit, the average signal to distortion ratio
SDR = EX?/E(X — X)?

where X is the reconstruction of X at the decoder.

Figures 4.5 and 4.6 show the variation of the SDR. with channel error probability for
an iid. source and GM source respectively. JT-ML and JT-MAP denote BLJT ML and
BLJT MAP decoding respectively. Separate-MAP and Separate-ML denote the MAP and
ML sequence estimation with separate decoding (as explained in Section 2.3) respectively.
The index assignment in Figure 2.8 is used in the MDSQ. Each description is of size 3
bits and 3 diagonals are used in the IA matrix. Descriptions are encoded with a rate 3/4
convolutional code obtained by puncturing the (2,1,6) (i.e. 2 outputs, 1 input and memory 6)
convolutional code in Table 12.4 (b) in [19]. Note in this case that the memory requirements
(4.17) and (4.20) are satisfied for the i.i.d. source. The memory requirements are satisfied
in case of the GM source too, If we approximate the MDSQ output as a first-order Markov
process. At low bit error probabilities, the channel code corrects almost all the errors and
therefore no noticeable difference exists in the performance between separate decoding and

joint decoding. However, as the bit error probability is increased, BLJT decoding achieves
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a significant performance improvement over separate decoding. Particularly, for both the
sources, BLJT decoding schemes correct almost all the errors in the received codewords up
to the channel bit error probability of 0.02 whereas the separate decoding loses about 8 dB
in performance. The MAP decoding performs better than the ML decoding as expected. In
case of the i.i.d source this is due to the redundancy present in the form of non uniformity
in the probabilities of the descriptions. MAP decoding achieves a considerably higher
performance than ML decoding for the GM source since it uses the redundancy present in
the form of strong temporal correlation in addition to the non uniformity of the description
probabilities. The strength of the BLJT ML decoding scheme is that it does not require
any knowledge of the source and in general would perform well irrespective of the source
that is being transmitted.

Figures 4.8 and 4.9 show the performance of the BLJT decoding and separate decoding
for a system with rate 4 bits/description MDSQ. The MDSQ outputs are channel coded
using rate 3/4:convolutional coders obtained by puncturing the (2,1,2) code obtained from
Table 12.4 (b) in [19]. The IA matrix used in the MDSQ is given in Figure 4.7. In the
IA matrix 5 diagonals are assigned and hence 74 out of 256 elements are used. Therefore,
the fraction of elements used in the IA matrix in this case is close to that of the systems
in Figures 4.5 and 4.6. Note in this case that (4.17) and (4.20) requires the convolutional
encoder memory of at least 3 bits for the iid source. For GM source, under the assumption
that MDSQ output is first-order Markov, the convolutional encoder memory requirement is
at least 7 bits. Therefore, the BLJT decoding may not result in optimum sequence estimates
in this case. Nonetheless, experimental results show that the scheme achieves a significant
performance improvement.

Finally, Figures 4.11, 4.12 and 4.13 show the variation of the performance of BLJT
decoding with the number of diagonals used in the A matrix. In all three cases, rate 3
bits/description MDSQ is used with rate 3 /4 convolutional code obtained by puncturing the
(2,1,3) convolutional code obtained from Table 12.4 (b) in [19]. Out of the 64 elements in

the TA matrix, 15, 21 and 34 elements corresponding to 2, 3 and 5 diagonals are used in the
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Figure 4.7: Index assignment for the simulation in Figure 4.8.
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Figure 4.10: Index assignment for the simulation in Figure 4.11.

three systems respectively. The TA matrix in Figures 2.8 and 1.6 are used for the simulation
in Figures 4.12 and 4.13 respectively. The IA matrices for the simulations in Figure 4.11 is
given in the Figure 4.10. As one would expect, the performance gain of the BLJT decoding

algorithm decreases with the decrease of the redundancy in the index assignment.
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Chapter 5

Index Re-Mapping

MDC can be viewed as a systematic addition of redundancy to guard against transmission
losses such as packet losses. On the other hand, in error control coding, redundancy is
added to guard against random bit errors. Broadly viewed, both error control coding and
MDC come under the common problem of systematic addition of redundancy to achieve
robustness against unreliable transmission. Therefore it can be expected that there may be
joint coding schemes to achieve the robustness over both random bit errors and transmission
losses which perform better than separate coding. So far, we considered only joint decoding
of separately encoded signals. In this chapter, we discuss a simple form of joint encoding,
which we call indez re-mapping.

In Chapters 2 and 4, we saw that joint trellis decoding achieves a significant improvement
over separate decoding. It is seen in Figures 4.11, 4.12 and 4.13 that this improvement
greatly depends on the number of elements assigned in the IA matrix. To gain more insight
into this phenomenon, let us consider an example system consisting of a two channel MDQ
of rate Ry = Ry = b bits /description followed by a convolutional encoder. Assume that N
out of M? elements are assigned in the IA matrix, where M = 2°. Let the source sequence
xt = (x1,%,,..., x1,) be MD coded into index sequence (iF,5F) and let (v, wk) and (rf, sh)
be the channel input sequence and’the channel output sequence respectively. Consider the

two convolutional encoders as a single super convolutional encoder with input (4, j¢). If the

74
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symbol (i, j;) has no constraint, there would be (M - M) = M2 number of possible length
L input sequences and therefore, we would have to consider a similar number of paths in the
Joint trellis However, the symbol (i, j;) is constrained by the IA and therefore, we would
have to consider only N paths in the joint trellis. In other words, out of M2L codewords
in the super convolutional code, only NZ will be valid in this case. For a given channel
output sequence (rF,sk), we select in joint trellis decoding the best estimate (9f,w]) of
the channel input sequence from these N sequences. In case of separate decoding, an
individual decoder is used on each channel to obtain the best estimate of the channel input
sequence fr<.)m MY possible sequences (let 3% and @ be the corresponding estimates).
Taken together, this is equivalent to selecting a codeword from M?2?L codewords in the super
convolutional code. To make this clearer, an example is considered after introducing some
basic concepts in channel coding such as Hamming distance and minimum distance.
Hamming distance between two symbol sequences is the number of symbol positions in
which they differ. Performance of a channel code is determined by its Hamming distance
properties. When codewords are farther apart, the channel code has a better error cor-
recting capability. The number of errors ¢ that a channel code can correct is determined
by a parameter called minimum distance, denoted by dpmin which is the minimum distance
between any two codewords of the code. Codewords that are most likely to be confused
at the channel output (due to channel errors) with a given transmitted codeword are its

neighbors at distance dpp. ¢ is related to dpy;pn by [19]
dmin 2 2q + 1.

Now, consider the BSC channel model and ML decoding. In this case, the joint trellis
decoding is equivalent to finding the sequence (4f,wF) from the valid codeword set such that
d(rf, L) + d(s¥, wE) is minimum where d(a,b) represents the Hamming distance between
the binary representation of the seqﬁences a and b. Separate decoding, in this case, involves

finding the sequences 171L and u"zf , each from the corresponding M’ possible sequences, such
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that d(r{,5) and d(sf, @) are minimum. It should be clear that this is equivalent to
finding the sequence (5F,w{) from the full codeword set of the super convolutional coder
such that d(rf,of) + d(s¥, w}) is minimum. Therefore, joint trellis decoding attains an

improvement in error correcting capability over separate decoding due to two reasons:

1. Separate Decoding may result in an invalid sequence pair whereas joint trellis decoding

always gives a valid sequence pair.

2. In joint trellis decoding, we consider a reduced set of codewords. Consider a transmit-
ted (hence, valid) super codeword ¢ = (v, wF). It can be expected that the number
of neighbors for ¢ at distance dy;,, , on the average, is less in the reduced codeword
set than that in the full codeword set. Hence, in case of joint trellis decoding, there

would be fewer codewords to be confused with ¢ at the channel output.

The distance properties of the subset of the super convolutional code, which we consider
in joint trellis decoding, can be further improved if we have the freedom to to select the
NT codewords from M?2L codewords. However, this cannot be done since, the possible
codewords are determined by the IA. But, still, we can change the valid codeword set
without changing the IA by re-mapping the indices. As an example, we can relabel the
indices in the IA in Figure 5.1 to get an equivalent IA shown in Figure 5.2. It is clear that
this does not change the basic structure of the MDQ and its properties (such as encoder
partition, decoder codebook, central and side distortions étc.).

To demonstrate how the index re-mapping can be used to improve the distance properties
of a channel code, let’s consider a simple example, where the outputs of a MDQ of rate
R; = Ry = 4 bits/description are channel coded with a (7,4) Hamming code given in Table
5.1. Assume that the IA given in Figure 5.3 is used. Let the indices 1z and j; be encoded into
codewords v; and w; respectively. Since we are interested in Jjoint decoding, let’s consider
the two codewords as a single super codeword ¢t = (v, wy). In the given Hamming code,
dmin = 3 and therefore, it is capable of correcting a single bit error in a channel output

codeword. Our objective in this case is to see how the index re-mapping can be used to
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Figure 5.1: An index assignment with natural numbering of the indices.
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Figure 5.2: An index assignment obtained by Re-mapping the indices in IA matrix in Figure
5.1.
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Figure 5.3: An index assignment for MDQ of rate 4 bits/description.
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Table 5.1: The Hamming (7,4) code
Message Decimal representation Codeword
of the Message

0000 0 0000000
0001 1 0001111
0010 2 0010110
0011 3 0011001
0100 4 0100101
0101 5 0101010
0110 6 0110011
0111 7 0111100
1000 8 1000011
1001 9 1001100
1010 10 1010101
1011 11 1011010
1100 12 1100110
1101 13 1101001
1110 14 1110000
1111 15 1111111

improve the distance properties of the valid codeword set of the super code. There are 256

codewords in the super code out of which only 46 (N = 46) are valid. Let cgl) = (vgl), wgl))

§2) = (2)

and ¢ vy ,W§2)) be the two (super) codewords assigned to the distinct index pairs

(i§1)>j§1)) and (iEQ) , jfz) ) respectively. We see that

d(ef?,¢?) = dv{V v?) + dw®, w®) (5.1)

Therefore, when igl) # z'gz) and j§1) # j§2) (i.e. when the index pairs are not in the same
row or column of the IA matrix)

Vgl) A V§2)

and

ng) 4 W£2)

Therefore

d(ci, %) > 6
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On the other hand, when the index pairs are in the same row or same column, one of the
component codeword of cgl) and c§2) are the same and therefore, d(cgl), c§2) ) can be as small

as 3. As an example if igl) = i£2) then

vl = V§2)

and

d(cM, ) = dw), w?)

Therefore, it is clear that the codewords should be assigned to indices in such a manner that
d(wgl) , w§2)) is as large as possible when vgl) = vgz) and vice versa. In the given Hamming
code, for each codeword, there are 7 codewords at distance 3, 7 codewords at distance 4
and one codeword at distance 7. Figure 5.4 shows the codewords that are assigned by
the Hamming code in Table 5.1 for natural numbering of the indices. In this case, there
are 40 valid (super) codeword pairs with Hamming distance 3. A few examples for such
codeword pairs are given in Table 5.2. Figure 5.5 shows codeword assignment after re-
mapping the indices in the IA in Figure 5.4 for improving the minimum distance between
valid codewords. In this case, there are only 4 pairs of valid codewords with Hamming
distance 3. They are given in the Table 5.3. Hamming distance of 36 codeword pairs in
Figure 5.4 is increased from 3 to 4 by the index re-mapping. Although this increase in
the distance does not improve the error correcting capability of the codewords (Hamming
distance of 4 can guarantee only the correction of single bit errors, similar to Hamming
distance of 3), the example demonstrates that the distance properties of the valid codeword
set can be improved by a proper index re-mapping.

In this example, the index re-mapping was obtained by searching through the (7,4)
Hamming code based on the argument that when one of the component codewords is same
in two super (valid) codewords, the other component codewords should be as far apart

as possible. However, this kind of search is impractical when the description alphabets

are large or the channel coding is complex. Therefore, some structured method has to be
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found for obtaining a good index re-mapping. The main challenge that has to be faced in
solving this problem is the non linearity of the valid codeword set. Therefore, some of the
well known techniques for designing and analyzing channel codes that are present in the
literature cannot be easily applied in this case since, those techniques are valid only for

linear codes.

5.1 Simulation Results

To find the performance improvement attainable with index re-mapping in joint trellis
decoding, a random search was carried out over 1000 possible index re-mappings. The basic
experimental setting is same as that in the simulation for Figure 4.12. From 1000 random
index re-mappings, the one giving the best performance improvement was found for each
of the decoding schemes separate-ML, JT-ML and JT-MAP and the results are shown in
the Figure 5.6. The curves marked as separate-ML, JT-ML and JT-MAP are obtained by
using the IA with natural numbering of the indices (same as in the simulation for Figure
4.12).

‘The MDSQ used in the experiment is of rate R; = Ry = 3 bits/description and hence,
each description alphabet size is 8. Therefore, there are 8! x 8! —1 ~ 1.6 x 10° possible index
re-mappings. Although, the search is carried out over a small fraction (around 1/1.6 x 10)
of all possible re-mappings, the performance improvement is significant. As explained at
the beginning of the chapter, the JT-ML decoding achieves an improvement over separate
decoding by only exploiting the improved distance structure in the valid codeword set.
On the other hand, the JT-MAP scheme gains an improvement by exploiting both the
improved distance structure in the valid codeword set and the redundancy present in the
index sequence in the form of non uniform probabilities. Therefore, the improvement caused
by the index re-mapping is higher in JT-ML decoding compared to JT-MAP decoding. It
can be seen that the performance of JT-ML decoding with index re-mapping even beats
that of the JT-MAP decoding with the original IA. The performance of separate decoding

also is improved by index re-mapping, since the end to end distortion in a vector quantizer
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Table 5.2: Some of the valid (super) codeword pairs in the Figure 5.4 with Hamming
distance 3

v wh) (v, w®)

(00000000001111) (00101100001111)
(00011110000000)  (00011110010110)
(00011110001111) (00011110010110)
)
)

(00011110001111)  (00101100001111
(00011110010110)  (00101100010110
(00101100001111)  (00101100010110)
(00101100001111)  (00101100011001)
(00011110010110)  (00110010010110)

‘Table 5.3: The four valid (super) codeword pairs in the Figure 5.5 with Hamming distance 3

(1) M 2 @

(v s wy’) (v, w)
(11010011101001) (00110011101001)
(11010010011001) (00110010011001)
(11010011101001) (11010010011001)
(00110011101001) (00110010011001)

system depends also on the assignment of channel codewords to quantizer output indices as
explained in [28]. Finally, the Figure 5.7 shows the performances obtained for the best IA
and the worst TA found in a 1000 random index re-mappings. It also shows the performance
obtained with the original IA. Tt is interesting to notice that the performance obtained with
the worst IA in this case is considerably better than the original IA. Therefore, in this
case, it can be concluded that an index re-mapping chosen at random would considerably

improve the performance with a high probability.



0000000 0
0001111 1
0010110

0011001

2

3
0100101 4
0101010 5
0110011 6
0111100 7
1000011 8

1001100 9

1010101 10
1011010 11
1100110 12
1101001 13
1110000 14
1111111 15

83

S - 23883538 5¢8¢823:2¢§ 8¢
(@] — o] - o ~ Q — @) — (@} — Q = o -
g8 8 3 3 2 & 2 Z &8 &8 3 3 2 & =& =
o =) Q o o o o} =] - ~ - — ~ ~— - —
o 1 2 3 4 5 6 7 & 9 10 1 12 13 14 15
0 1
2 3 5
4 6 7
8 9 il
10 12 13
14 15 17
16 18 19
20 21 23
22 24 25
26 27 29
28 | 30 | 31
32 33 35
34 36 37
38 39 41
40 42 43
44 45

Figure 5.4: Codewords assigned by the Hamming code in Table 5.1 for natural numbering

of the indices.
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Figure 5.5: Codewords assigned by the Hamming code in Table 5.1 for an IA obtained by
re-mapping the indices in Figure 5.4.
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Figure 5.6: Performance improvement obtained by index re-mapping. The basic experi-
mental setting is same as that in Figure 4.12.
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Figure 5.7: Performance obtained for the best and the worst in 1000 random index re-
mappings. The figure also shows the performance for the original IA. The basic experimental
setting is same as that in Figure 4.12.



Chapter 6

Conclusions and Suggestions for

Further Study

In this thesis, we focussed on the problem of joint source channel coding of multiple descrip-
tion. We presented a list Viterbi algorithm based joint decoder and a bit level extension
to the joint trellis decoder in [14]. We also introduced the problem of joint source channel
encoding with a simple, yet efficient joint encoding procedure known as index re-mapping.

The LVA based joint decoding scheme presented in Chapter 3 is capable of achieving
a significant improvement over separate decoding and JPM decoding at a moderate com-
plexity increase. This scheme is based on the idea that an MD code can be viewed as a
sort of error detection block code and hence the channel coding of an MD code gives rise
to a concatenated coding. We considered the scenario where MD coder outputs are con-
volutional encoded before the transmission. At the receiver, we used list Viterbi decoding
of the inner (convolutional) code. As mentioned in Chapter 3, it would be possible to use
other soft decoding algorithms such as BCJR algorithm and SOVA in decoding the inner
code. Therefore in a further study, it would be interesting to investigate how the other soft
decoding algorithms can be used in a joint decoder and what the achievable improvement
are.

Bit level joint trellis decoding scheme presented in Chapter 4 eliminates the requirement
87
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of one to one correspoﬁdence in the description alphabet and the convolutional coder input
alphabet in the description level joint trellis decoding algorithm in [14]. It also achieves
a considerable reduction in the computational complexity compared to description level
Jjoint trellis decoding, which is very similar to the reduction in computational complexity
achieved by a punctured binary input convolutional code over a same rate non binary input
convolutional code of the same constraint length. It was shown that bit level joint trellis
decoding algorithm is optimal if the convolutional coder memory is greater than a particular
value determined by the number of bits per description and the source temporal correlation.
Experimental results showed that the bit level joint trellis decoding achieves a significant
performance gain even when the optimality requirement is not satisfied. However, similar
to description level joint trellis decoding, bit level joint trellis decoding suffers from the
problem of high complexity caused by the trellis combining.

In Chapter 6 we presented the idea of joint source channel encoding of multiple descrip-
tions. With index re-mapping we showed that a joint encoding procedure would considerably
improve the performance compared to separate encoding. In the experiment in Chapter 6,
we obtained an improved index re-mapping by a random search. The problem of finding a
structured procedure for obtaining a good index re-mapping has to be addressed in a future
work. There would be many other ways to achieve joint encoding and this would be an

interesting topic for a future research work.



Appendix A

The Viterbi Algorithm

The ‘Viterbi algorithm (VA) provides an efficient way of finding optimal state sequence
estimate of a finite-state discrete time Markov process. This appendix discusses the appli-
cation of VA in decoding a convolutional code. Before presenting the VA, some concepts in
convolutional coding will be briefly introduced.

A convolutional encoder can be represented by a shift register circuit. For example,
Figure A.1 shows a (3,1,2) (i.e. 3 bit output, 1 bit input and memory 2) convolutional

encoder. The output v; = (vgo),vt(l),v§2)) of this encoder is related to its input u by

’U§0) = Ut D Uz—1

RN

147

b 4
F
RS
S
Y
+
<

Figure A.1: A (3,1,2) convolutional encoder.
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1/001

Figure A.2: State diagram for the convolutional encoder in Figure A.1.

”t(l) = Ut © uy—2

and

U§2) = Ut D U1 D U2

where, ut,ut_l,ut_g,vt(o),vgl) and vt@) are binary digits and @ represents the modulo-2
addition. This convolutional encoder can be represented by the state diagram in Figure A.2.
The state of the convolutional‘ encoder at time ¢ is the content (u;_1, ug—o) of its shift register.
Assume that the process starts and terminates at the all zero state So. Each branch of the
state diagram is labelled with the input bit causing the transition and the corresponding
three output bits. Figure A.3 shows a time expansion of the state diagram in Figure A.2,
which is called as trellis. In the trellis, each node corresponds to a distinct state at a given

time and each branch represents a transition to some new state at the next instant of time.

Now, assume that an information sequence uf = (u1,ug,...,uz), is encoded by a

(n,k,m) convolutional encoder. Here, uy is the % bit information symbol at time ¢. To
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Figure A.3: Trellis diagram for the convolutional encoder in Figure A.1.

drive the encoder into the all zero state at the termination, it is required to append another
m symbols to the information sequence such that each such symbol consist of all zero bits.
‘Therefore, the convolutional encoder input sequence is given by u{””n = (uy,U2,...,UL4m),
where u; = (0,0,...,0) when ¢ > L. Let wX*™ be the corresponding convolutional encoder
output sequence. Assume that this convolutional encoder output sequence is transmitted
over a discrete memoryless channel (A channel in which input and output are discrete and
the output at a particular time instant depends only on the input at the same time instant).
Let Sf+m be the corresponding channel output sequence. In this case, when ¢t < L, there
will be 2% paths going out from each state in the trellis. When ¢ < m, there will be only
one path arriving at each state. On the other hand, when ¢ > M, there will be 2¥ paths

arriving at each state. The MAP estimate of the encoder input sequence is given by

Wt = arg max P(uftm|gl+my (A.1)
w
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where u; = (0,0,...,0) when ¢t > L. We know that

L+ L
Pluftmisitm) - P08

P(s{*™)

Since the input-output mapping of a convolutional encoder is one-to-one, P(ulL+m, le+’”) =

P(witm, sF*™) and P(sF*™™) does not affect the result, (A.1) is equivalent to maximizing

log P(witm gl+my _ 10 P(sftm|witm) 4 log P(witm)

= log P(s/ ™ wE+™) 1 log P(ul+m)
L+m

= ) log P(s¢|w:) + log P(ul+m) (A.2)
t=1

The use of logarithm does not affect the maximization since it is a monotonic function. To
simplify the term log P(u{””m) further, it is required to know the statistical distribution of
the information sequence ulL . Let’s consider the case where u; is i.i.d when ¢ < L. In this

case,
L+m

log P(up*™) = » " log P(uy)
t=1
where P(u; = (0,0,...,0)) =1 when t > L. Therefore, (A.2) can be written as

log P(wi+m, sbtmy = ngmlog P(s¢|wy) + log P(u;). (A.3)
t=1

The term log P(wi+m s} is called the metric associated with the path (in the trellis)
or the path metric for the codeword wit™  The term log P(s|w;) + log P(u;) in the
summation in (A.3) is associated with a branch in the trellis and therefore called as branch
metric. The summation of the metrics of the first ¢ branches of a path is called as partial
path metric (PPM) of the path segment up to time £. Now, the VA can be used to search
the trellis for the path with the largest path metric. The VA involves finding the path with
the largest PPM arriving at each state in the trellis. This path is called as the survivor for

the corresponding state.
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The Viterbi Algorithm

Step 1 At time ¢ = m find the single path (hence the survivor) arriving at each state and
calculate the corresponding partial path metric. Store these paths with their partial

path metrics.

Step 2 Increase t by 1. For each state, find the PPM of each of the arriving paths by
adding the corresponding metric of the branch entering the state to the PPM of the
connected survivor at the previous time unit. For each state, find the path with the

largest PPM, store it with its PPM and eliminate all the other paths.

Step 3 If t <m + L go to Step 2. Otherwise stop.

At time ¢ = L + m, there is only one state in the trellis and hence one survivor. It can be
shown [19] that this survivor is the path with the largest metric. Therefore, in this case,

the VA results in the MAP estimate of the encoder input sequence.
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