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Abstract

Multiple description coding is an emerging source coding based solution for packet loss prob-

iem in data communication networks. Tbansmission over a practical network also requires

such multiple descriptions to be channel coded to guard against random bit errors caused

by channel noise. In this context, the redundancy introduced by both multiple description

source encoder and the channel encoder can be exploited in a joint sou¡ce-channel decoder

to improve the overall reliability of the system.

The main objective of this thesis is to investigate the problem of joint source-channel

decoding in a system based on multiple description quantization and to develop efficient

decoding schemes. A review of the previously proposed joint decoding schemes is given

with an experimental evaluation of their performance. Subsequently, a system with two

channel multiple description quantization is considered in which the output of a quantizer

is convolutional encoded prior to transmission. Based on the idea of concatenated coding,

a joint decoding scheme that uses list Viterbi algorithm is presented. Experimental results

show that this scheme is capable of achieving a significant improvement in the error correct-

ing capability of the convolutional code at moderate complexities. A previously proposed

optimum trellis decoding scheme which performs decoding at symbol level is extended to a

bit level decoding scheme. It is shown that bit level decoding in this manner considerably

reduces the computational complexity. While this scheme is in general not optimal, it is

also shown that the scheme is indeed optimal when the convolutional encoder memory is

greater than a particular parameter related to both the number of bits used per description

and the temporal correlation of the multiple description quantizer output. Finall¡ a preiim-

inary investigation of the problem of designing a joint source-channel encoder in a multiple

description communication system is presented. In this context, a joint encoding procedure

which involves re-mapping the indices of a multiple description quantizer output to improve

the disiance properties of a channel code is presented. It is shown experimentally that this

joint encoding procedure considerably improves the performance of the system.
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Chapter 1

fntroduction

Tlansmission of information over a digital communication system in general involves four

basic operations, namely, source coding, channel coding, modulation and transmission as

depicted in Figure 1.1. The input to the source encoder can be either an analog or digital

signal. The source encoder generates an efficient digital representation of the input signal

usually in binary format. The main objective of source encoding is to obtain a representation

with as few symbols as possible (compression), which is done by removing the redundancy

present in the input signal. Source coding can be mainly categorized into two types as lossy

and lossless coding. The lossless coding preserves all the information in the input signal

while, as its name implies, lossy coding involves a loss of some information. The function

of the channel encoder is to add redundancy to its input in a controlled manner to achieve

robustness against the errors caused in the transmission channel. The added redundancy

helps the channel decoder to recover reliably the transmitted data. The channel usually

carries the information as an analog signal and hence it is needed to map the digital signal

at the channel encoder output into an analog signal, which is done by the modulator. The

function of demodulator, channel decoder and the source decoder is to estimate the digital

signal at the input of the respective encoder at the sending end. In some digital communi-

cation systems, data is transmitted in blocks called paclc,ets or frames. Data communication

networks, such as the Internet suffer from the problem ofpacket losses caused by congestion



Figure 1.1: A digital communication system.

in the network' In some situations, this problem can be solved by retransmission of lost

packets. However, this requires a feedback path to request retransmission and therefore

cannot be used in broadcast type communications. Retransmission may also not be possi-

ble in some real time communication systems (such as in audio and video communication),

where the allowable delay is limited. In case of transmission of an analog source over a

packet loss network, an emerging source coding based solution for the above problem is

Multiple description coding (MDC) where, several versions referred to as ,,descriptions" of

the same message are generated and transmitted such that, each describes the message with
a certain acceptable qualit¡ and when more than one description is available at the receiver

they can be combined to reconstruct the message at a higher quality. The term ,,message,,

may refer to one source sample or a group of source samples. Different descriptions of the

same message are transmitted over separate communication paths and hence it is less likely

to lose all of them simultaneously. Therefore, with this method a certain minimum quality

of service can be guaranteed at the receiver. Another application of MDC suggested in lit-
erature is in wireless mobile networks. In wireless mobile communication, the transmitted

signal arrives at the receiver over multiple paths. These rnultipath signals may, from time

to time, interfere destructively with each other, causing a weak signal level at the receiver.

This phenomenon is known as multipath fad,ing. A frame under deep fading can be consid-
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ered as lost and therefore multiple description coding can be used in this situation as well.

Recentl¡ a significant amount of research has been done in MDC and many methods have

been developed to generate multiple descriptions from a source.

MDC, as explained in the next section, is mainly a source coding method since it per-

forms a lossy compression of the analog source signal. On the other hand, it also involves a

systematic addition of redundancy, which is a featu¡e of channel coding to achieve reliability

over channel losses. Hereafter, we use the term channel erasure to refer to a channel loss.

On the other hand, the term channel error is used to refer to the random bit errors in

received symbols caused by channel noise. A coding scheme, which perforrns both channel

coding and source coding jointly, is known as a joini source-channel code and hence MDC

has some features of joint source-channel coding. However, in MDC, the redundancy is

added to guard against channel erasures and therefore it alone is not sufficient for correct-

ing the channel errors. Hence, in practice, it is required to use channel coding after MDC to

achieve reliabiliiy over channel errors. In this case, it would be possible to device a channel

decoding scheme which exploits not only the redundancy added by the channel coder but

also that added by the MD encoder to enhance the error correcting capability. We call such

a decoding scheme as joint source-channel decodi,ng of multiple d,escri,pti,ons. This chapter

gives an introduction to MDC and joint source-channel decoding of multiple descriptions.

1.1 Multiple Description Coding

MDC was invented in the 1970s as a speech coding method for achieving reliability in

telephone networks. When a link fails in a telephone network the calls have to be diverted

to a standby link. These standby links add extra cost to the system. On the other hand

they are not used in the normal operation and therefore can be considered as a waste of

resources- The number of standby links can be greatly ¡educed if the information in a call

can be split into two streams and sent over two channels such that each independently gives

an acceptable quality. Jayant [1] developed odd-even sample separation based speech coding

techniques where the odd numbered voice samples and even numbered voice samples are
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send over two different channels. When both the channels work the speech is reconstructed

at a higher quality. On the other hand, when one fails, samples on the other channel are used

to reconstruct the voice at a lower quality. MDC was studied as an information theoretical

problem in late 1970s and early 1980s by several authors. El Gamal et al. in [2] provided

a rate distortion analysis of the MDC probiem for a memoryless source and constructed

the achievable rate region. Ozarow [3] found the achievable rate region for a memoryless

Gaussian source for square error distortion measure and showed that it is the largest set

that can be obtained with the rate region derived in [2]. Some of Ozarow's results will be

discussed at the end of this section. A good review on MDC can be found in [ ].
Not much work was done in MDC until Vaishampayan [5] in 1993 provided the first

theoretical framework for the practical implementation of multiple description scalar quan-

tizers (MDSQ). His method of MD generation consists of scala¡ quantization followed by

an'i,nder assignment, (IA). MDSQ will be discussed in more details in Section 1.1.1. Since

Vaishampayan's initial work on MDSQ in 1993, several methods of MD coding have been

developed. Wang et al. [6] proposed a correlating transform based MDC technique where a

linear transform is applied on source vectors (an ordered tuple of source samples) to generate

correlated transform coefficients. This method is based on the fact that, when some of the

coefficients are lost, they can be estimated from the available coefficients by exploiting the

correlation introduced by the linear transform. Goyal et al. [7] presented another transform

coding baseri MD coding method which uses the concept of frame expansion to generate

MD.

1.1.1 Multiple Description Scalar Quantization

In this section, we discuss in detail the MDSQ presented in [5]. Figure 1.2 shows two

channel MDSQ of a random variable X that has the probability density p(z). Assume that

the channels can deliver information at rates Ãr and .R2 bits/source sample. Each channel

can be in one of two states. In one of the states, the channel delivers the information error

free while in the other state a complete loss of information (erasure) occurs. It is assumed



Figure 1.2: Multiple description scaler quantization.

that the states of the channels are known to the decoder but not to the encoder. A two

channel MDSQ consists of

o a scalar quantizer (SQ) / : lR -+ Q: {L,2,...,N}

an indexassignment (IA) ø : Q -+ T x J whereZ : {1,2,..., Mt}, J : {L,2,. . ., Mz},

Mt 12Rr, Mz 12Rz and the mapping ¿ is one-to-one

two side decoders h :7 -è C1 : {âr(1), ût(2),. . . ,îúMù} and

gz: ,7 ) C2: {ûz(L),i'z(z) ...,ûz(Mz)}, where C1 and C2 are t]he si,d,e cod,eboolcs

o the central decoder 9o : ,S ) Cs : {øo(1), âo(2),. . . , âo(N)} where

.S: {(i, j) , (i, j): o(I),1 € QI and C6 is the central cod,ebook

It should be noted that l/ may be less than (Mt x M2) and therefore some index pairs (2, j)
may not be assigned by the IA.

For each source sample ø, the SQ generates an index I e Q which is then assigned to

the indices (or descriptions) i e. I and j e J by the IA. The descriptions are sent over

two channels separately. When only one description is received, the corresponding side

decoder outputs an estimate (â1(z) or â2ff) depending on which description is received) of

the source sample z. On the other hand, when both descriptions are received, the central

decoder outputs a better estimate ão(t). In the case where both descriptions are lost, it
is needed to use some other means such as using a pre-determined value as the output or

requesting a retransmission.
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and

Au¡ O A¿*: Ø V (t,m) + (i., j).

The MDSQ is completely determined by the encoder partition, IA and the decoder code-

books. Let d(r,ô) denote the per letter distortion between the source sample ø and its

estimate â. Then, the average distortion Ds at the output of the central decoder is given

by

(1.1)

where ão(i, j) ê t0(¿) and (2, j) : ¿-1(l). Similarly, the average distortions D1 and D2 in

the respective side decoders are given by

The SQ partitions the input space into cells Alr: {r : 
"U@D 

: ø, j)} where

Do : Ð [ ̂ " 
o(*,îs(i., j))p(r) d,r

(¿,i)es " ^ii

Dr : I [ ̂ ,d(*,î¡(i))p(r) 
d,r

¿€T " ni
(1.2)

and

d(r,û2(j))p(r) dr (1.3 )

where

II: U ¡?¡
jeJ

and

A? : 
\)_¡t,xtL

Let p,6 be the probability that both descriptions are received by the decoder, prn be the

probability that only the description rn is received, where m :L,2 and ¡,.be the probability

that both descriptions a¡e lost. Let's assume that the decoder output is ô, when both

U ¿ut
ij

,r:Ðl^,
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descriptions are lost. Then, the total average distortion D of the MDSQ system is given by

D: poDo* ptDt* pzDz+ p'D'

where

D' : [* d,(x,ã,)p(r) d,r
J_*

To find the optimum MDSQ, we have to find the encoder partition, IA and the decoder

codebooks that minimizes the total average disto¡tion. However, it is difficult to find a

closed form solution to this problem. Instead, the generally used method is to find the

optimality requirements of each unit (encoder, IA and the decoder) separately assuming

the other units to be fixed and then to apply an iterative descent algorithm such as Lloyd

algorithm [8] to find an (possibly local) optimum solution.

Optimum Encoder

Finding the optimum encoder for fixed IA and decoder is equivalent to finding the partition

of the input space that minimizes the total average distortion

D: (1.4)

: 
r,Ì" lo,{uoaç*,îo(i,i))-t 

p'1d.(r,¿,(i)) + p.2d.(r,î2(i)) + ¡.t'!d,(r,i;')}p(x) d,r

It is clear ihat D is minimized if the term in the curly brackets inside the integration is

minimized for each r. Again, the term d(r,ût) does not depend on the encod.er partition

and hence does not affect the minimization. Therefore, the optimum encoder partition is

lor,o{*,eoØ,i))p(r) 
d'r + t'rÐ loro{r,ît(i))p(r) d'r

loro{,,t2(i))e@) 
d,x * tt; llor",û')p(r) d,r

tto t
(¿,j)€s

+p,2Ð
jeJ



given by,

,a?¡ : {r : ¡L,sd,(r,î;o(i, j)) * ¡-r1d,(r,¡r(¿)) * ¡t2d,(r,tz(j))

< pod(r,i'o!', j')) * ¡t1d(x,eúà,)) t p2d(r,ãr(j,)),V(i,, j,) + (i,, j),(tt,¡,) e S|

(1.5)

For example let's consider the square error distortion measure in which the distortion be-

tween the source sample ¿ and its estimate â is given by

d(r,û):(n-û)2

Using the square error as the distortion measure in (1.5)

,al¡ : {r: ¡1,6(r-ûto(i,j))2 + p{r-î¡(i))2 * ptz(r_ ûr(j))2

<po(*-ão(i,,j,))r+pr(*-û{i,))r*pz(r_tz(j,))2,v(i,,j,)tQ.,j),(i,,¡,)eS}

(1.6)

Let

a¿¡ :2(¡r,sîo\, j) + ptûúi) + pzîz(j))

and

0Ø: ¡L,sûf;(i,j)+t',,¡,?(¿)+p2û3(Ð i,er and j e J

Now, (1.6) can be further simplified to

'q?¡ 
: {r : a¿¡r - þ¿¡ 2 ei,,j,t - þi,,j,,V(i', j') # (i,,j),(it, j') e E} (1.2)

In this case, it can be shown that each celt A!, in the encoder partition is an interval.
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Optimum Decoder

To find the optimum decoder, we have to determine the codebooks C6, C1, and.C2 that min-

imize the total average distortion for a fixed encoder and an IA. Fhom (1.4), it is clear that

the minimum D can be achieved by minimizing the distortion in each decoder separately.

Re-organizing (1.1)

Ds : 
r,ì" 

PØooì lor,o{''i'o(i'i))ffi o"

: Ð pt¿?) [ ^ 
oþ,ts(i,j))p(rle0,,) ar (1.8)

(i,j)€s 't Ai¡

where

P(A?): [^p@)d,r
L A?¡

which is the probability that r e Alt and p(rlAfr) is the conditional probability density of z

given that r is in,4$. Therefore, to minimize Ds, it is sufficient to minimize the integration

term in (1.8). Hence, the optimum central codebook is given by

î,0(i,i) : "ry¿ft,fn d.(x,r,)p(rlAl,) ar (i, j) e s

: ursy¿ft ø'(a6,r,)lr e Aoo,) (i, j) € s (1.e)

Similarly, the optimum side codebooks are given by

ûr(i): *sp¿R E(d(r,r')lx e Al) i er (1.10)

and

rz(i):u'sf¿ftÐ(d(x,r')lreAJ) jeJ (1.11)
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For square error distortion measu¡e, (1.9), (1.10) and (1.11) can be further simplified as

Similarly

and

î;o(i,i) : *sy¿ft E((" - *')2¡, e A?¡)

: E(rlx e Al¡) (i, j) e E

û{i): E(rlr e Al)

( 1.12)

i er (1.13)

jeJûz(i):E(rlre'+]) (1.14)

For a given IA the MDSQ can be designed using the Lloyd algorithm [8] as follows. First
seleci the initial codebooks. For the given IA and the codebooks find the optimum encoder

using (1.5). Now, use this encoder and the given IA to find the optimum decoder using

(1'9), (1.10) and (1.11). It should be clear that D must reduce or remain unchanged in
each of the two steps. These two steps are repeated until the difference in D in successive

iterations is smaller than a preset threshold. A stationary point would be obtained if the
iteration is carried out a suficiently large number of times.

Index Assignment

The IA plays a key role in MDSQ. In this section, we assume that the square error distortion
measure is used and therefore the central partition consists of intervals. We further assume

that M' - Mz - lt[- To illustrate the IA probrem ret's consider -r?1 : Rz:r bits/source
sample MDSQ of a source uniformly disiributed in the range (-r/B,r/r). rig*e 1.3 shows 3

possible partitions and IAs. Tables 1.1 and 1.2 give the corresponding optimum codebooks

and the distortions. MDSe in both (a) and (b) use a[ four index pairs (1,1), (r,2), (2,1)

and (2,2) while (c) uses only three out of them. The performance in case (a) is better
than that in case (b)' However, in both cases, one side decoder has poor performance with
distortion close to 1' Here, the source variance is also 1 and any decoder can achieve the
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Figure 1.3: Three designs of MDSe encoder and IA fo¡ rate Ar : Rz : 1 bits/source
sample.

Table 1.1: Codebooks of M in Fi
uo(1,1) r6(I,2) rs(2,I) 16(2,2)

"r(1)
*ú2) *z(7 ,z(2)

o ''ßt2

(a)

o .'ß/2

(b)

-^/:

(u)
(b)
(.)

-3\/3/4 -{s¡a
-3\/B/4 -,/-t¡+

0.0-2/J3

\/314 3\/314
,ß14 J\/-J1 

2l'/3

-\/3/2 \/3/2
{5lz

-\/314 314

-J-tlz
-1/'/B

0.0

-21,/32l'/g
0.0

I/,/S

distortion equal to the source variance just by using the mean value of the source as the
output all the time (i.e. with no information delivered from the source). MDSq in (c)

has an increase in distortion of the central decoder and one of the side decoders. But, it
has the desirable feature that both side decoders achieve small distortion (i.e. an effective

information delivery has happened to each of the side decoders). Ftom this example, it
is clear that the performance of MDSQ greatly depends on IA. The example also suggests

that, when all the description pairs are used, at least one side decoder would have very poor
performance.

Finding an optimum IA is a basic challenge in the design of an efficient MDSe . An
exhaustive search is impractical for large M since the¡e are ÐKlr4tr)l I (Mr_ ¡,,)! possible
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Table 1.2: MSE_distortions of MDSQs in Figu¡e 1.3
Ds D1 D,

(b) 1/16 1/4 1

(") Lle Ll3 L/3

IAs to consider and therefore a combinatorial optimization algorithm must be used.

Index assignment can be considered as an assignment of elements in a matrix of dimen-

sion M x M to the cells of the encoder partition. As an example, assigning the index pair

(i, j) can be considered as assigning the (i, j)-thelement of an M x M matrix. Let,s assume

that the intervals in the encoder partition are numbered from left to right in ascending

order. When N 1M, one of the best IAs would be ((1,1), (2,2),..., (¡4¡f)) where the

Æ-th index pair corresponds to the fr-th interval in the partition. In this case, the elements

assigned in the IA matrix lie in the main diagonal and the side decoders would have the

same distortion as the central decoder. When N:M all the elements in the main diag-

onals are assigned. Suppose that N : M * 1 and hence one more index pair has to be

assigned' To minimize the increase in side distortion, the next index pair would be of the

form (fr, ,b+1) or (k + r,fr) and be assigned to the element next to the one assigned to
(k,k)' This corresponds to the assignment of an element in a diagonal adjacent to the main

diagonal which is illusirated in Figures 1.4 and 1.5 for a MDSQ of a uniform source at rate

Rt : Rz : 2 bits/source sample (i.e. M : 4 ). In this manner, rr¡/e can argue that the

elements on the diagonals closer to ihe main diagonal have to be assigned before assigning

the elements on the diagonals further away from the main diagonal. Vaishampayan [5]
has presented two methods for constructing a good IA based on high rate analysis. The
two index assignment methods have optimum decay characteristics in the central and side

distortions as predicted by rate distortion theory at high rates (i.e. when ,81 and .Rz are suf-

ficiently large)' Figure 1.6 shows an IA based on Vaishampayan's nested index assignment

for -Rr - R2 :3 bits/source sample, where b diagonals are assigned.

The fraction of the elements assigned in the IA matrix determines the central and side
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-.lztz

-./¡ -z.llts -rllts ./¡is z.,lzts r/:

(b)

Figure 1.4: Encoder partition and IA for -R1 - Rz:2 bits/source sample and (a) N :4
(b) Ir : 5.

distortions. When this fraction is increased, the central distortion d.ecreases while the side

distortions increase and vice-versa. When the packet loss probability is zero, the end-to-

end distortion will be completely determined by the central distortion and therefore the

the optimum MDSQ in this case would have all the elements assigned in the IA matrix.
In fact, source coding in this case is essentially equivalent to the standard (single description)

scalar quantization. As the the packet loss probability is increased, it would be necessary

to decrease the number of elements assigned in the IA matrix to obtain the minimum end

to end distortion.

1.L2 Multiple Description Vector euantization (MDVe)

A scalar quantizer is a mapping from the input (scalar) space to an index set (O in section

1'1'1)' Similarly, a vector quantizer is a mapping from the input vector space into an index

sei [9]' The design of the encoder and the decoder in a MDVQ can be done in essentially the

same way as in MDSQ using an iterative algorithm. However, there is no natural ordering

in the cells of the encoder partition of MDVe (remember, in MDSe, the input space is

a subspace of the R and therefore the encoder cells can be ordered, as an example from

(a)
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(a) (b)

Figure 1.5: IA matrices for MDSQ in Figure 1.4

Figure 1.6: Vaishampayan's nested IA for Rt: Rz: 3 bits/source sample and .^/:84.
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left to right) and therefore Vaishampayan's method of index assignment cannot be apptied.

Hence, the problem of IA in MDVQ has to be solved with a combinatorial optimization

technique such as deterministic annealing [i0] and simulated annealing [11]. Hereafter, we

use multiple description quantization (MDQ) to refer to both MDSQ and MDVQ.

1.1.3 Rate Distortion Region for MD coding

Iet's consider two channel MD coding of a source. Let -rB1 and R2 be channel rates and D¡,

D1, and D2be central and side distortions respectively. Assume that MD coding is done

in vectors of n source samples. A quintuple (Ãr, Rz,Do,Dt,Dz) is said to be achievable if,

for some positive integer n, there exist a MD coder with rates .Rr and -R2 and distortions

Do, Dt, and D2. The rate distoriion region for this MD coding is the closure of the set

of achievable quintuples (.R1, R2,D0,DuDz).Ozarow [3] found the rate distortion region

for a memoryless Gaussian source of variance o2.In this case, the rate distortion region is

given by

Dt ) o22*2Èt

D2 ) 622-2R2

and

(1.15)

(1.16)

Do)
o22-2(tu+Rz) if Dl + Dz > o2 + Do

----------o".2- 

= 
( R, + R")

otherwise
(1.17)

This is the only case for which the rate distortion region is completely known.

1.2 Joint source-channel Decoding of Multiple Description

As already mentioned, MDC is a source coding method which also involves systematic

addition of redundancy to achieve reliability over erasure channels. In (n channel ) MDe,
the addition of redundancy is mainly done in the IA by assigning only a fraction of the
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Figure 1.7: Separate decoding of multiple description.

possible index n-tuples. In case of MD correlating iransforms, the redundancy is added by

the linear transform which introduces an extra correlation. In any meihod of MD coding,

the added redundancy exists in the form of inter-description correlation.

Although the main consideration in MDC is channel er¿6ures, the transmission over

practically available channels introduces rand.om bit errors. Consider an n description MD
coded system which uses error control coding to combat random bit errors. The standard

way of channel coding in this situation is to encode the descriptions separately and to send

them over separate channels as shown in the Figure 1.7. At the receiver they are decoded

separately by respective decoders and passed to the MD decoder. Hereafter, we call this
method of decoding as separate decodi,ng.

It is a well known fact that when there is redundancy present in the source encoder

output, it can be used to improve the error correcting capability of a channel code [12],

[13]' Therefore, when more than one description is received, it would be possible to decode

the channel codes of received descriptions jointly in a way that utilizes the inter description

correlation constructively to improve the error correcting capability. Moreover, MDC can be

considered as a joint source-channel code as explained previously. For example, we can view
the IA in a MDQ as a sort of error detecting code since it does not use all the index n-tuples
(in case of two channel MDQ, an invalid index pair at the channel output indicates an error)
When this joint source-channel code is combined with an additional level of error correction
coding, it would be possible to implement a decoder that uses the redundancy added by
both MD coding and channel coding to correct the er¡ors introduced in the channel. This
problem, which we refer to as joint source-channel decoding of multiple description, is the
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main topic of this thesis. The objective of our work is to study this problem and to develop

efficient joint decoding techniques that can be applied in a MDC environment.

This thesis is organized as follows.

¡ The previous related work is discussed in Chapter 2.

' Chapter 3 presents a list Viterbi algorithm based joint decoding scheme which is
capable of achieving a significant performance improvement over separate decoding

at a low complexity.

¡ Chapter 4 discusses bit level joint trellis decoding which is an extension to the optimum
joint trellis decoding presented in [1 ].

¡ Chapter 5 focuses on the index reassignment problem in MDe.

¡ Chapter 6 gives a summary of the thesis, some conclusions and possible future work.



Chapter 2

Previous Related \ilbrk

In this chapter, we discuss previous work in joint source-channel decoding of multiple de-

scriptions. Joint decoding schemes (we use the term joint decoding to mean joint source-

channel decoding of multiple descriptions) can be categorized into two types as iterative

and non-iterative decoding. Sirinivasan et al. in [15] presented the first iterative iype joint

decoding scheme which works in a manner similar to turbo decoding [16]. Similar, but

somewhat improved iterative decoding scheme can be found in [17] which uses the concept

of "extrinsic information" for exchanging information between constituent decoders. Ya-

hampath et al. in [14] presented two type of non-iterative decoding schemes which exploit

the inter-description correlation explicitly in the Viterbi decoding algorithm [18].

Section 2.1 and 2.2 discuss the iterative and non-iterative joint decoding schemes re-

spectively. An experimental evaluation of the schemes is given in Section 2.3 followed by a

comparison in Section 2.4.

2.I Iterative Type Joint Decoding

Iterative iype joint decoding schemes borrow their concept from turbo coding. Therefore,

a brief discussion of turbo coding would facilitate the understanding of the iterative joint

decoding schemes.

18
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Recursive, systematic conv. coder

vo= u

V¡

v'o = ut

Y2

Figure 2.I: A turbo encoder.

Figure 2.1 shows a turbo encoder. A length .[ input bit sequence u:(21, uz,...,ur)
is encoded by two systematic feedback convolutional encoders (description of a systematic

feedback convolutional encoder can be found in Section 11.1 of [19]). The input u is directly

fed to the encoder 1 while an interleaved version ui is fed to the encoder 2. Therefore, the

systematic parts v6 and v[ (each equal to the input of the respective encoder) are just

interleaved versions of each other and therefore, in general, only one of them (assume it to
be v6 in this case) is transmitted. Figure 2.2 shows the turbo decoder for the encoder

in Figure 2.1. Let 16, 11 and 12 be the channel outputs for v6, v1 and v2 respectively.

The MAP decoders estimate the a posteriori log likelihood ratios of the input bits to the

corresponding encoders by using a posteriori probability estimation algorithm such as the

BCJR algorithm [20]. For example, the estimated a posteriori log tikelihood ratio L1(u¿) of

the input bit z¿ (at discrete time ú) in the MAp decoder 1 is given by

h(u¡):lsg P(u, - 1116, ri)
(2.1)P(u¡ :0[16, 11) 

'

Recursive, systematic conv. coder

where P(u¿ :.?lro, rr), i : 0,1, is the a posteriori probability of the event that the input



20

Lu,

f1

f9

12

Figure 2.2: T\rrbo decoder for encoder in Figure 2.1.

bit u¿ is equal to j given 16 and 11. This is also called as a posteriori L-value of u¿. The

calculation of (2.1) requires the priori iog likelihood ratio Lu(ut), also called priori L-value

of ?r¿; given by

(2.2)

where P(u¿ :1) is the priori probability of the event that the input bit z¿ equals to 1. FYom

the a posteriori L-value in (2.1), the effect of the current input bit is subtracted to obtain

a quantity called ertri,ns'i,c i,nforrnati,on denoted by Li(u¿). This represents the information

about the bit z¿ given by the other bits (due to parity constraints). Now, this extrinsic

information (with suitable interleaving) is passed to the MAP decoder 2 as its priori infor-

mation Lz"(ui). The extrinsic information obtained in the decoder 2 is, again, fed back to

the encoder 1 as its priori information. This process is carried out iteratively and it improves

the estimate of the input u in each decoder in successive iterations. However, the amount

of improvement achieved in an iteration diminishes very rapidly and finally it comes to a

point where no further improvement is possible. Therefore, the above procedure is iterated

only a limited number of times, i.e. until the improvement gained in one more iteration is

not worth the extra computational complexity needed. At this point, the encoder 2 input

Ln(ut):,o*ffF#.
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Figure 2.3: Channel coding of MDQ output for iterative decoding.

is estimated by the decoder 2 using

û'i:
{:

if L2(ui) > 0

otherwise.
(2.3)

This estimated bit sequence is deinterleaved to obtain the estimate û of the turbo encoder

input. Therefore, the basic idea behind turbo coding can be summarized as follows.

o Two correlated sequences are channel coded separately and transmitted.

o At the receiver, decoder 1 extracts the information about the input to the encoder 1

which is then used to derive information about the input to the encoder 2 (using the

correlation). This information is then passed as the priori information to the decoder 2

which in turn derives and pass the priori information io the decoder 1. This process

is carried out iteratively a pre-determined number of times.

We know that the descriptions generated by an MDC are correlated and therefore, when

those are separately channel coded before transmission, it would be possible to use an

iterative decoding scheme as in turbo decoding at the receiver. We first discuss the iterative

decoding scheme presented in [15]. Figures 2.3 and 2.4 show a 2 channel MDQ system that

uses iterative decoding. Assume that -R1 - Rz : r bits/description. Let the source sequence

*l : (q, 12¡ . . ., ø¿) be MD encoded and let (i,! , j!) be the corresponding index sequences.

The sequences i,! and an interleaved version of jf are then encoded by systematic feedback

convolutional encoder to obtain the channel input sequence u! and. t f . Note that, unlike

Rec. systematic
Conv. coder
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Figure 2.4: Iterative decoder for encoding in Figure 2.3.

in turbo coding, the systematic parts of the channel coder outputs in this case are not

interleaved versions of each other. Let (i,¡r1,ikz,. .., i¿r) be the binary representation of the

index z¡ at time k. Consider the case where both rf and sf are received.. Fbom these received

sequences, the MAP decoders estimate the a posteriori log likelihood ratios (a posteriori

L-values). For example, the a posteriori L-value L{i*") of the bit 'i,¡n, which is estimated

by the MAP decoder 1, is given by

(2.4)

The calculation of the above a posteriori L-value requires the priori L-value Lo{i*r) of the

b\t i,¡n. It is straight froward to calculate the a posteriori probability distribution P(z¿rluf )

from the a posteriori L-value calculated above. As an example,

Lt(inò:r"f'ffi.

P(ikn:rlu!): #:H^
Now, the a posteriori probability distribution of the description 1 at time k is calculated

using the relation

P(i,k: alu!): ilr\o,: anlu!), a e L: {0,1, ...,2, -I]}
n=7

(2.5)
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where (ot,oz,---,ar) is ihe binary representation of ¿. Fbom the probability distribution

in (2.5) it is possible to calculate the a posteriori probability distribution of the description

2 at time fr by using the relation

P(ik : b) : P(jn : blik: a)p(t¡: q¡ b e J: {0,1, ...,2, - I}. (2.6)

The conditional probabiltty P(j¡, : blil : o) in (2.6) mainly depends on the IA. Let

(bt,bz, - - . ,br) be the binary representation of the index ô. Fbom the probability distribution

of the description 2 at time k, the probability distribution of the bit jpv is found as follows

P(in,-1): Ð rur:u)
b:bn-I

and

P(jn"-0) :L-P(jkn:I).

Now, these probabilities are used as priori information for the MAP decoder 2 to calculate

the priori L-value Loz(j*) as

2R-rt
a:o

Loz(irn):to*ff*+ (2.7)

(2.8)

In the same way, the a posteriori L-values estimated by ihe MAP decoder 2 are used to

obtain the priori L-values for the MAP decoder 1 and this process is iterated several times

as in turbo decoding. After a fixed number of iterations the bits e'¿r, and, j¡, are estimated

using a posteriori L-values of the MAP decoders. For example, the bit i¿,, is estimated as

úkn -
{;

fi L{ik") >0
otherwise.

A careful analysis shows that the iterative decoding in [17] is very similar to that in [i5].
The main difference is that [17] uses extrinsic information (Li(i*,) and, Lfi(j¡n)) to calculate
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JPM Viterbi decoder

Figure 2.5: Non-iterative joint decoding.

the priori log likelihood ratios (L"z(jxò and (Lo{i,¡rr,)) while, as seen above, the iterative
decoding in [15] uses the a posteriori L-values directly to calculate the priori information.

The extrinsic information in [12] is calculated as follows.

Lí(im): h(i*ò - (Lo{i¡n))e,", (2.s)

Here, ('Lo1('i¡n))pr", is the priori L-value estimated in the previous iteration using the extrin-
sic information from the MAP decoder 2. i.e it is the priori information used. in estimating

Líin") in (2.9). Similarly

Lï(j nò : Lz(j *n) - (Lo2(j ¡n))e,",. (2.10)

2.2 Non-Iterative Joint Decoding

The iterative decoding algoriihms discussed above require an interleaver which requires

modification to the encoder. On the other hand, non-iterative joint decoding algorithms
exploit the redundancy introduced by the MD coder without requiring any change at ihe
encoder side' Two methods of non-iierative joint decoding schemes, namely joint trelli,s
decodi'ng and joint path rnetric d,ecod,ing, are given in [1a]. Figure 2.5 shows both joint trellis
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(JT) decoder and joint path metric (JPM) decoder in a single diagram. Let,s assume that

a two channel MDQ is used and each description is convolutional encoded. separately by a

convolutional encoder where there is a one to one correspondence between the convolutional

encoder input and the MDQ output alphabets (i.e. if the MDe has rates Rt : ,t and. -R2 :
12 bits/description, then the convolutional encoders need to have 11 anð, 12 bit inputs

respectively). A generalization to the joint trellis decoding is developed in Chapter 4,

which does not require this one-to-one correspondence. Let l! : (h,lz,. . . ,Iy) be the index

sequenceforthesourcesequence*f : (*r, x2¡...,x¿) and let(i!, j!),(r!,w!) and(rf,r"r)
be corresponding description, channel input, and channel output sequences respectively.

Joint Trellis Decoding

In this method, the iwo convolutional encoders are viewed. as a single super convolutional

encoder with the input (i¡, j¡) and the output (ut,.n).For this super convolutional coder,

a super-trellis (or joint irellis ) is built. A state .9r of the joint trellis is given by the pair of

states (Sr,Sz) of the individual encoders. The Viterbi algorithm (see Appendix A) is used

to search this trellis to find the optimum sequence estimate (i,îL,jîL).we know that an

IA is a one-to-one mapping and hence the index pair (z¡, j6) is equivalent to the index /¡.

Therefore, the MAP estimate of the sequence /f is given by

t\t : u's"]p* P(Illrl,sl)

- ars ,ryry, P(i,!, jllrl,sl)
(ii,ii)

: arg max" (à!,il)
: arq max" (¿?,i!)

The simplification from (2.12) to (2.13) is due to the fact that the term p(rl,sf ) is constant

given the particular channel output and does not afect the maximi zationin (2.12). We call

the above MAP sequence estimate as the JT-MAP estimate. Our objective here is to find

P(r!, s!)
P(r!,"!,i,Lr,j!)

(2.11)

(2.12)

(2.i3)
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the MAP sequence estimate given in (2.i3) by using the Viterbi algorithm. For that, as

explained in Appendix A, we would have to use a monotonic function of P(i,!, j!,r!,tl)
as the path metri'c which can be expanded into a summation of terms called branch metrics

that corresponds to individual branches of a path along the trellis. This can be achieved

first by expressing the probabillty P(i!, j!,r!,"!) as a multiplication of probability terms

each related to a separate branch in the path and then taking the logarithm. We see that

P(rf,'!,¿?, i!) : P(rf, 
"!li.!, i!) 

pG!, i!)
: e @! ¡t!¡p G!l¡!) p (i.1, jf)
: P(rllu!)P(,!1.!) p(i!, j!)

-rL- I] p (r ¡lu ¡,) 
p (s ¡,lw ¡,) p (tLr, ¡ ! )

(2.14)

(2.i5)

(2.16)
k=L

tosp(i!, jllr!,"1) : f rog11" rlun) +togp(s¿ltr.,¡) + ros p(i.1, j!) (2.17)
È:1

The step from (2.14) to (2.15) is possible since the input sequences ,if and j! uniquely

determine the encoder outputs u! and tøf respectively. The simplification in (2.16) is due

to the memoryless nature of ihe channel. To simplify P(i,!, j!) further, we have to assume

a model for the source. For example, if the process {r¿} is i.i.d., then the process {(it", jn)}

is also i.i.d. and the term logp(i,!, j!) i" (2.12) can be expanded as

rosP(iLr, j!) : los fI ,rnn,rr,
fr=1

Log P (i,¡, j ¡) . (2.18)

and therefore the branch metric (b*ù¿.¿.¿-¡T-MAp used in the Viterbi algorithm in this

case is

L

=Ð
,b=1

(b^ *) ¿.¿.¿- ¡r - M A p : log P(rr lu¡ ) + log p (s ¡,lw ¡) * log p (i ¡,, ¡ ¡) .
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On the other hand, if ihe source sequence is correlated, a better model would be a Markov
process. If the process {x¿} is first_order Markov, then

P(x¡lx6-1, xk-2,xk-r. . .) : p(x¿lx¡_1) (2.1e)

Lp("!): p(xr) f[ p(x¿lx¿_1). 
e.2o)

h=2

In this case, it is common to approximate the process {l¡} also to be Markov. Therefore

.L
losP(i!, j!) : Ð tosp(i¡, jrlit t, jn_t)

&=l

, where

P(ik,iklik_t,in_t) : p(h,iù when k : 1

' and the corresponding branch metric is given by

(b^n) u-¡r_MAp: log p(r¡lu¿) + log p(s¡,lw¡) * log p(z¡, jt lin_t, jn_t).

I The ML estimate of the sequence lf is given by
1

il: utg max p(rl,tf|Ð.
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But

P (, !,' ! lt! ) 
:lr r,,t r,lrî ni), r,

= P(rllu!)P(s!lu?)
L

: If pþ¡lu¡)p('tl.n) (2.2r)
Ie:l

Now, let's take log P(r! , tll¿l , ¡!) as our path metric. The¡efore, for any source model, the

branch metric used in the Viterbi algorithm is given by

(b*ùn-¡rt¿ : log P(r¡,lu¡) + IogP(s¿ltr.'¿).

When this branch metric is used in the Viterbi algorithm to search the joint trellis, the

resulting scheme is called as the JT-ML algorithm.

Joint Path Metric decoding

In joint path metric decoding, a separate decoder is used in each channel. However, in order

to exploit the inter-description redundanc¡ the full channel output (r! , t!) is used in each

decoder in Viterbi sequence estimation. For example, the MAP estimate of the sequence if
given (rf , sf ) is obtained by

iIL : argryax e(t!lr!,s!)



which can be expanded as

arsT?x P(i!lr!,s!) : arsq?x p(t!,r!,s!)
ii i!

: argq?x P(rl,s!1tLr¡rçt!¡

L: arsq?x nr?u,s¡li¡) p(i,!) e.z2)zl 
È=1

We will refer to this as joint path metric MAP (JPM-MAP) estimate. In the case of an

i.i.d. source, the term P(i!) can be expand.ed as

Lp(il): fI "(,u)lc=L

and therefore, taking logP(l!lr!,sf) as the path metric, we get the branch metric

(b^*)¿.¿.¿-¡pM-MAp: Iog P(r¡, s¡lz¡) * log P(?6).

If the source is correlated {tr} can be approximated as first-order Markov. Then

L
pU.L) : ffeç,u¡t¡_r¡

k=1-

where

P(iklik_ù: P(ii) when k : 1.

Therefore, the branch metric in ihis case is given by

(b* *) ¡u _ ¡ p M _ M Ap : log p(r¿, s ¡li, ¡) + Iog p (i ¡li. ¡ _ù .

Given (rf , t!), the ML sequence estimate of if is obtained by

îl : ure\f P(,!,"lli,l).
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We will refer to this as joint path metric ML (JPM-ML) estimate. It can be shown that for

any source model, the branch metric for this estimation is given bv

(b*n) t p ¡,r - M L : log P(r¡, 
"r l¿r).

Separate Decoding

In this chapter and insucceeding chapters, the performance of joint decoding is compared

with separate decoding. In separate MAP algorithm, codewords in individual channels are

separately decoded with a Viterbi decoder to obtain ihe MAP estimates of the corresponding

index sequence. For example, the separate MAP estimate of the index sequence if is given

by

iiL : urlnaxe?,!lr!)

which can be found by using the Viterbi algorithm as explained in Appendix A. Similarly,

separate ML algori'thrn finds the ML sequence estimate of the index sequence in each channel.

2.3 Simulation Results

Figures 2.6 and 2.7 a¡e the experimental results presented in [1a]. The non-iterative decod-

ing schemes presented in [1a] and the iterative decoding scheme in [i5] are experimentally

evaluated for an i.i.d. gaussiarì. source and a Gauss Markov (GM) source which is given bv

rt:0.9rt-t:-'us¿

where {tl¿} is a unit variance Gaussian random process and ú denotes discrete time. The

above GM source is a simple model for practical sources such as speech and image samples.

Source samples are MD coded at rate Rt: Rz: B bits/description. MDSQ is designed as

described in chapter I with Lto : 1 and p4 : 1f,2 :0.005. The index assignment is given
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in Figure 2.8. For the evaluation of non-iterative joint decoding schemes, descriptions are

convolutional coded with a (4,3,2) (i.e. 4 outputs, 3 inputs and memory 2) code of constraint

Iength 6, which is obtained from Table V of [21]. A block of 128 MDSQ output indices (of

a description) is convolutional coded to obtain the 512 bit long channel codewords. For the

system with iierative decoding , nte 3f 4 convolutional encoders are obtained by puncturing

a rate L 12 l:inary code with a constraint length of 6. An interleaver of length 1024 bits is used

on one of the MD channels prior to channel coding. Thus, from the channel coding point

of view, this system is comparable to the other systems considered here (excepi the delay

caused by the interleaver). We use as the figure of merit, the average signal to distortion

ratio

SDR: EX2 IE6 _ X),

where -.;t ls the reconstruction of X at the decoder. To find the improvement achieved by

joint decoding, the performance of separate decoding is also evaluated (with both MAp
and ML sequence estimations). With all of the decoding algorithms, the mean value of the

source is selected as the output when the decoded index pair is invalid. The source statis-

tics required in the decoding schemes are empirically estimated from a training sequence.

We assume a binary symmetric channel (BSC) model in the experiment. Figures 2.6 and

2'7 show the variation of the performance of each decoding scheme with the channel bit
error probability for an i.i.d. source and a GM source respectively. It can be seen that

the joint decoding schemes achieve a significant improvement over separate decoding. The

results suggest that JT and iterative decoding schemes are very efficient in exploiting the

redundancy present in multiple descriptions. JPM decoding algorithms have significantly

lower performance than JT and iterative decoding in the case of an i.i.d. source. Therefore,

it can be concluded that JPM decoding algorithms are less efficient in exploiting the redun-

dancy in multiple descriptions. The JT-MAP algorithm has the best performance out of

all the joint decoding algorithms consid.ered. It is observed that MAp decoding algorithms

always perform better than their ML counterparts. For an i.i.d. source this is due to the
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Figure 2.8: The IA matrix used in the experimental evaluation of joint decoding schemes.

redundancy caused by the non-uniformity in the MDQ output statistics. The performance

difference between MAP and ML decoding is considerably higher in the case of GM source,

since there is a large amount of redundancy in the source sequence in the form of temporal

correlation.

2.4 Comparison of Joint Decoding Schemes

In this section we compare the joint decoding schemes presented in this chapter. The main

considerations in the comparison are

¡ efficiency in exploiting the redundancy present in multiple descriptions

o computational complexity

r decoding delay

The iterative decoding schemes are highly efficient in exploiting the redundancy. How-

ever, they posses some disadvantages. For example, several iterations are required to decode

each bit and ihis can result in a high decoding delay. Furthermore, to obtain a good per-
formance, long interleavers must be employed and the longer the interleaver, the higher the
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decoding delay. As explained in Chapter 1, one of the main application for MDC is in real

time communication systems, where the allowable delay is restricted. In such systems, the

application of the iterative decoding may be restricted due to their longer delays. Another

disadvantage of using interleavers is that one has to modify the encoder.

Joint trellis decoding is an optimum sequence estimation algorithm and therefore, it is

very efficient in utilizing the redundancy present in descriptions to improve the performance.

With this algorithm, channel codewords can be decoded as they arrive, and therefore, there

is no increase in the decoding delay compared to separate decoding of the same code. The

main disadvantage in the joini trellis decoding is the increased computational complexity.

If the convolutional encoders have constraint lengths z1 and z2 respectively there can be

2uttuz states in the joini trellis whereas the separate trellises have only 2rt anð.2/2 states

respectively. This means that the number of states in joint trellis is the multiplication of

the number of states in separate trellises and therefore, one can expect a similar increase

in the computational complexity. However, the actual number of states in the joint irellis

is typically less than 2uttuz since not all the index pairs (z,j) are necessarily used in the

IA matrix. To make the analysis simple, assume that u1 : Rrrn: and, u2 : R2m2 where

Rt, Rz are the number of inputs (which are also the rates of MDQ in bits/description) and

rfl'1, 'trl2 are the memory of the respective convolutional coders. fn one extreme, when only

one diagonal is used in the IA matrix, the two descriptions will be identical and therefore

a state of the super convolutional coder is equal to the past n MDQ output indices of one

description where n: max(mt,mz).In this case, there will be max(2rr,2u2) states in the

joint trellis' On the other extreme, when all the index pairs are used. in the IA matrix, the

number of states in the joint trellis would be 2ut*uz -

Another disadvantage of the joint trellis decoding scheme is that its complexity increases

exponentially with the rates .81 and,R2. Each state of the joint trellis has (2Ër+n2)c arriving
paths, where c is the fraction of the index pairs used. If we assume c to be a constant, the

number of additions and (two-way) comparisons required in the Viterbi algorithm increases

exponentially with -R1 and -t82. On the other hand, it would be impossible to have one-



36

to-one correspondence between the convolutional coder input and MDQ output alphabets

for large description alphabets (description alphabet sizes in turn depend on the rates

-R1 and -l?2), since it results in a large number of states in the trellises. In Chapter 4,

we introduce a bit level joint trellis decoding scheme which eliminates the requirement of

one-to-one correspondence between MDQ output alphabets and convolutional coder input

alphabets. It also eliminates the above mentioned exponential increase in the computational

complexity.

Finall$ ihe JPM decoding is only slightly more complex than separate decoding and

the decoding delay is the same. However, it is suboptimal and therefore less efficient than

iterative decoding and joint trellis decoding in exploiting the redundancy in multiple de-

scriptions.



Chapter 3

List viterbi Atgorithm Based Joint

Decoding

Multiple description joint decoding techniques such as iterative decoding and joint trellis
decoding are very efficient in exploiting the redundancy introduced in the process of mul-

tiple description encoding. But, these schemes possess some drawbacks which restrict the

applicability in certain situations as poinied out in Chapter 2. Onthe other hand, the joint
path metric decoding is only little more complex than separate decoding and would have

less restrictions in the applicability. But at the same time it is significantiy less efficient

than iterative decoding and joint trellis decoding. Therefore, there exists the challenge of
finding less complex and fairly efficient techniques which can be used in applications where

other efficient schemes cannot be used. In this chapter, we study a list Viterbi algorithm

[22] based joint decoding scheme which can be combined with joint path metric decoding

methods (described in chapter 2) to enhance their performance [28].

A multiple description code generated by MDQ can be considered as a nonlinear error
detection code of rate log(Q) /2r l17l where r is the number of bits per description and Ç is
the number of elements that are used in the IA matrix. As explained in Chapter 1, the index

assignment is analogous to channel coding since it uses only Q pairs out of 22, allpossible
index pairs' Therefore, the channel coding of multiple descriptions for the transmission

tn
d¡
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Figure 3.1: Concatenated coding based joint decoding of multiple descriptions

over a noisy channel can be considered as a sort of concatenated coding. As an example,

convolutional encoding of muliiple descriptions can be viewed as a concatenated coding with

a error correcting inner convolutional code and a error detecting outer multiple description

block code. Therefore, following the same analogy, it would be possible to device some

concatenated decoding algorithm for jointly decoding the multiple descriptions as shown

in Fig 3.1. Concatenated coding has been widely used in digiial communication and well

studied in coding theory. The inner code is usually decoded with soft decision decoding and

the outer code is decoded with hard decision decoding.

There are many decoding algorithms such as BCJR algorithm [20], soft output Viterbi

algorithm (SOVA) [24] and list Viterbi algorithm (LVA) [22] etc. that can be used in de-

coding the inner convolutional code. The BCJR algorithm is an optimum decoding algo-

rithm that gives the a posteriori probability of the source symbols. However, it requires

a whole codeword be received before decoding and therefore is not suitable for continuous

mode transmission. Various versions of the BCJR algorithm such as sliding window BCJR

algorithm has been found to facilitate continuous mode transmission at the expense of op-

iimality. In SOVA a reliability indicator is given for each decoded bii which can be used

as a soft output in the subsequent decoding steps. However, this reliability indicator is

not in general equal to the a posteriori probability and hence the algorithm is suboptimal.

SOVA is a sequence estimation scheme whereas BCJR algorithm is a symbol by symbol

estimation algorithm. SOVA can be used in continuous mod.e transmission just like the

Viterbi algorithm. The LVA, on the other hand, is not a true soft decoding scheme since

it does not give a soft output for each symbol separately. Instead, it finds a list of best

estimates of the symbol sequence (and the reliability of each estimate if needed). There are

several versions of the LVA for different applications and complexity requirements. But in
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all those cases the main factor determining the complexity is the list size. For list size one,

the algorithm is essentially the Viterbi algorithm. Different versions of LVA can be found

in 1221, [25] and [26] where the main usage illustrated is in concatenated coding with inner

error correction convolutional code and outer error detection code.

3.1 The List Viterbi Algorithm

The LVA is a generalization of the Viterbi algorithm to find a rank ordered list of .[ globally

best sequence estimates. There are basically two types of LVA: (1) Parallel LVA, (2) Serial

LVA. The parallel LVA finds tr best sequence estimates simultaneously in a single trellis

search. At each decoding step, in the Viterbi algorithm the lowest cost path arriving at

each state is selected as a survivor and the final survivor (in case of a terminated code) is the

globally best path. In the parallel LVA, instead of keeping one survivor for each state, an

ordered lisi of tr best paths arriving at the state are retained. It is clear that this gives the ,t

globally best paths in a terminated code. The computational complexity of the parallel LVA

is approximately L times that of the Viterbi algorithm. In the serial LVA, tr best paths are

found iteratively such that the ,t-th best path is found by using the knowledge of previously

found k - 1 paths. The average computational complexity of the serial LVA is less than

that of the parallel LVA since it is not required to find the best -L survivors for each state

in each decoding step. However, the algorithm requires the whole sequence before finding

the list of sequence estimates and hence is not suitable for continuous mode transmission.

More details of the serial LVA can be found in 122]. When LVA is used in decoding a

concatenated code with an inner convolutional code and an outer error detecting code, the

best ,L candidate sequences are found by decoding the inner code and then testing for the

outer code. The best candidate that satisfies the outer code is selected as the final output.

If there exist no sequence that satisfies the outer code in the list, an error is declared.

In our system, we use the LVA to decode the inner code since it is well suited to the

scenario considered, i.e. we have a concatenated code with an inner convolutional code and

an outer error deteciion block code. Our objective is to exploit this outer error detection
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code for obtaining a better estimate for the source sequence. LVA is also simpler compared

to other algorithms such as BCJR algorithm and SOVA for small list sizes and it is possible

to have a performance-complexity compromise by changing the lisi size.

3.2 LVA Based Joint Decoder

Figure 3.2 shows a system which uses the LVA in joint decoding the multiple descriptions.

Let l!: (h,lz,...,It) be the index sequence for the source sequence ,?: (*t,rz,...,rL)
and let (i,?,jl), (u!,.1) and, (r!,sf) Ue corresponding description, channel input, and

channel output sequences respectively. Then, the MAP estimate of the sequence /f is given

by

IIL : urslgx eQlV!,'!).

Fbom (2.11), (2.12) and (2.13)

"'sïp* 
p(I!lr!,'f) : u.r,är"i, P(rl, 

"!,¿!, i!) (3.1)

and

P(r! , "l ,¿! , j!) P (,1,'!là!, j!) p (i,!, j!)
P (rllà!) p Glt¡!) pU.!, j!)

: p(rÐp(rf) p(ill,!) p(jfl,Ð ##,
- ars 

ü?I)p(ill,!¡ 
rç¡!¡,!, ##

- ars.Tlï. los p(illrl) + tos pþr¿lsf 
)\ri,Ji)

+tosP(i!, jÐ - togp(if) - rogr(¡f) (8.3)

(3.2)

ars .ga1. 
p\l, j!lr!,sl)

\ti,Ji )

Note ihat the term P(i!,i!)l(P(i!) P(j!)) takes into accounr rhe inrer-descriprion corre-

lation while the te¡ms eQ'!lr!) and, P(jflsf) take into account the channel coding and the

temporal cor¡elation in the descriptions.
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Figure 3.2: Lisi Viterbi algorithm based multiple descriptions joint decoder

The brute force method of ûnding ihe MAP estimate of the sequence pair (if , jf ) would

be to enumerate all the possible sequences i,! and, j! and,then to apply (3.8). However, this

is not practically feasible even for a moderate value of block length .t, since 22'¿ sequence

pairs have to be considered, where r is the number of bits per description. On the other

hand, many of those pairs would have a much smaller a posteriori probability compared to

the MAP sequence pair given by (3.3). Therefore, instead of considering all the possible

sequences' we propose to select a limited number of potentially good candidates for if and

j! av using the LVA. The LVA based joint decoder works as follows:

o List viterbi decoders l and 2 use the path metrics logp(?flrf) and logpUflsf) to

frnd M best estimates for i'! andjr¿ respectively. Fbom Appendix A, for an i.id source,

the corresponding branch metrics bm1¡ and. bm2¡ of respective decoders are given by

bmu, - log P (r¡lu ¡) + log p(?¡)

bmzt - logP(s¡lu¿)+ togp(¡¿)

where ,t denotes the time.

Fbom the resulting M x M sequence pafts (i,Lr, j!) the one that minimizes the cost

function

6r: -{Iog p(illr!) + logp(jf lsi) + rosp(i,!, ji) _log(p(;f) _ rogp(¡r¿)}
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is selected by the path selection unit as the output. The log probabilitieslogP(i!lr!)

and log p(ifltf) are given by the preceding lisi decoding stage. For an i.i.d. solrce,

the remaining term is calculated by using the equation

rosP(i!, j!) - log(P(?i) - tos p(jf) IosP(i¡, j¡) - los(P(rr) - log P(jn)

we call this algorithm standard path metric-list (sPM-tist) decoding.

Though approached in a different way, the above joint decoding method is very similar to

the method of LVA based decoding of a concatenated code described in the Section 8.1. The

two convolutional coders and the list decoders form the inner coding and decoding stages

(we can consider two convolutional coders as a single convolutional coder with the input

(i,i)). The paih selection unit in ou¡ scheme is equivalent to the outer (error detecting)

decoder. Here, the equivalent iist size is M . M : M2 and any candidate (i,! , j!) that does

not satisfy the multiple descriprion block code would lnave p(i!, j!)/(p(il) p(jf)) equal

to zero and therefore not selected by the path selection unit. Out of the candidates that

satisfy the outer error detection multiple description block code, the one with the lowest

cost is selected as the output in our scheme. The only exception is thai the outer code

probabilities are also included in the cost function. However, some modifications will be

introduced into the above joint decoding algorithm later to improve the performance and

to address some practical issues.

The basic challenge in this joint decoding scheme is selecting a limited number of poten-

tially good description sequence pairs. The main drawback of the above scheme is that ii
does not consider inter-description correlation in any way in the list decoders and therefore

the best sequence pairs may not be included in the final list. One way of improving the

"quality" of the list is to use JPM decoding described in Chapter 2 in the list decoders.

The JPM-MAP and JPM-ML decoders exploit the correlation presents in the outputs of

the convolutional coders. This correlation may be much weaker than the inter-description

correlation as suggested by ihe weaker performance of the JPM algorithms compared to the

L:I
fr=1
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joint trellis decoding in case of an i.i.d. source (see Figure 2.6). Therefore it can be expected

that the integration of the list decoding would improve the performance of JpM decoding.

In fact, as shown by the experimental results, this achieves an appreciable improvement.

The resulting joint decoding schemes are called JPM-MAP-list algorithm and JpM-ML-list

algorithm respectively. The JPM-MAP-tist algorithm works as follows:

o List viterbi decoders 1 and 2 use the parh metrics log p(?f lrf , sf ) and log p (j! lr! , s!)
to find M best estimates for i,! and j! respectively. Fbom Section 2.22, for an i.id

source' the corresponding branch metrics bmg and bm2¡, of respective decoders are

given by

brn* - logP(r¡, snluù + log P(?¡)

bm2¡ : log P(r¡, s*lwù + log P(j¡)

where fr denotes the time.

Flom the resulting M x M sequence pairs (if,¡f) the one that minimizes the cost

function

6r : -{Iog p(r!li!) + log p(sf 
l ¡!) +tose(t!, ¡!)}

L
: -Ð log(P(r¡l?¡) +logP(s¿lj*) *tosp(ir,, j¡)

&=1

is selected by the path selection unit as the output. It should be clear that minimizing

the above cost function is equivalent to maximizing the right hand side of (8.2)

The JPM-ML-list algorithm is very similar to the JPM-MAP-list algorithm above except

that the path metrics used are tog p(rf 
, tlli!) and log p(r!, 

"!lj!) Accordinglg rhe priori
probability terms logP(i¡) and logp(i¡) do not appear in the branch metrics.

The computational complexity of the LVA based decoding increases approximately lin-
early with the list size. The number of computations in the branch metric calculation will
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not be increased by the list decoding. However, the list decoding will have an M fold,

increase in the add, compare and select computations involved in extending and selecting

the survivors. At the path selection unit, there are approximately 3M2L additions anð. M2

comparisons (assuming that the log probability terms are available in lookup tables). If the

number of states in the state space is much larger than the list size the effect of the com-

putations in the path selection unit on the overall computational complexity is negligible.

Therefore, the LVA based joint decoding will have approximately M fold, increase in the

computational complexity for small list sizes.

3.3 ExperimentalResults

LVA based joint decoding is experimentally evaluated for an i.i.d. Gaussian source of

unit variance. The MDSQ is designed as described in the Chapter 1 with /¿o : 1 and

pt : l-12: 0.005. The index assignment used in this experiment is same as that used in

the experiment in Chapier 2 (which is given in Figure 2.8). Each description consists of

3 bits and therefore there are 64 elements in the IA matrix out of which 2l are assigned.

Descriptions are convolutional coded with the (4,3,2) code (rate 314 and constraint length

5) obtained from [21]. The list decoders are designed based on the parallel LVA in [22].

All the priori probabilities are evaluated empirically using a training sequence. We use the

same figure of merit, the average signal to distortion ratio defined in Section 2.3. In the

experiments, we do not reject invalid sequence pairs because, it is found that at high error

probabilities and small list sizes, almost all the candidate pairs in the list have one or more

invalid index pairs (an index pair that is not assigned in the IA matrix). Therefore, each

such invalid index pair is given a sufficiently small non zero probability value to ensure that

the selected sequence pair would have a smaller number of such index pairs.

Figure 3-3 shows the performance variation of LVA based joint decoding schemes with
the channel error probability for a list size of 4. The SPM-list decoding achieves a maximum

gain of around 2.2 dB relative to separate MAP decoding described in Chap ter 2. A higher

performance gain is achieved by JPM based list decoding where the maximum gain is around
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5.5 dB for the JPM-MAP-list decoding relative to separate MAP decoding. However, r.ve

have to understand the fact that a part of this improvement is due to the superiority

of the performance of JPM decoding over separate decoding itself. The performance gain

achieved explicitly by tist decoding is shown in Figures 3.4, 3.5 and 3.6. The JPM-MAP-list

decoding has the best performance gain for all the list sizes. It is observed that JPM-ML-

list decoding can even be worse than SPM-list decoding at high error probabilities. This is

because separate MAP decoding beats JPM-ML decoding at high error probabilities as seen

in Figure 2.6. Again, the (explicit) performance gain of the JPM-ML-list decoding is less

than that of the SPM-list decoding for the same list size. In all the cases, the performance

improves with the list size as expected. The highest performance is bounded above by that

of the optimum joint trellis decoding. It is evident that the incremental performance gain

decreases rapidly as the list size is increased. But the computational complexity increases

at least linearly with the iist size and hence a suitable list size has to be decided considering

the performance gain and the complexity. We see that both SPM-tist and JPM-MAP-list

decodings achieve a reasonably good compromise between the performance gain and the

computational complexity at list size 4.
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Chapter 4

Bit Level Joint-Trellis Decoding

As pointed out in Chapter 2, joint trellis decoding is an optimum sequence estimation

scheme- It is seen in Chapter 2 (see Figure 2.6) that this scheme even outperforms the

iterative decoding scheme presented in [15]. The main drawback of the scheme is its high

complexity. As explained in Chapter 2, One cause of the increased complexity is description

Ievel encoding and decoding. The joint trellis decoding scheme in [1a] requires a one-to-

one correspondence between the descripiion alphabet and the convolutional encoder input

alphabets and this would result in a large state complexity for large description alphabets.

More importantly, given that the fraction of the elements assigned in the IA matrix is

constant, the computational complexity of the scheme increases exponentially with the

rate (in bits/source sample) of each of the MD encoder output channel. These causes of

the complexity can be eliminated by bit level encoding and bit level joint trellis (BLJT)

decoding. Bit level encoding here means the channel coding with a r:.ite Lf 2 convolutional

encoder (possibly with puncturing to achieve the required code rate) and bit level decoding

refers to the decoding of the channel code with bit level decisions rather than description

level decisions. In other words, the input to the convolutional encoder is considered as a

binary source wiih a particular correlation structure. As explained in Section 4.3, BLJT
decoding achieves a significant reduction of complexity over description level joint trellis
(DLJT) decoding. Our purpose here is to extend the description level correlation io the

50
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To conv. decoder I

To conv. decoder 2

Figure 4.1: Two channel MDQ system with bit level joint trellis decoding.

bit level so that it can be used in a simpler bii level decision decoding scheme without

weakening the performance.

Figure 4.1 shows a two channel MDQ system with rate 1/2 convolutional coding and

BLJT decoding. The source vector x is vector quantized and the resulting index / is assigned

to å bit indices i:('i(I),i(2),...,i(ö)) and j:(j(7),j(2),...,j(b)), where z(,k) and j(k),k < b

are the k-th bits of ihe binary representation of the indices i, and j. The binary words are

then parallel to serial converted to obtain the input bit stream to the convolutional encoder.

¡s¡ 2:(u(1),r(2),... ,u(b)) and u:(u.,(7),w(2),.. . ,r(b)) be the output of the convolutional

encoders for description i and j where the (two bit) symbols u(fr) and u(k) are the outputs

for the input bits i,(k) and j (h) respectively. Channel coding is done in blocks and when only

one codeword is available at the receiver it is decoded by the corresponding convolutional

decoder. On the other hand, when both codewords are available they are decoded by the

joint decoder.

4.L Joint Tbellis

The joint trellis is obtained by combining the individuat trellises of the convolutional coders

as described in Chapter 2. Two convolutional coders are considered as a one super convo-

lutionalcoderwithinpui(2, j) andoutput (r,*). Astate,SJof thejointtrellisisgivenby

the pair of states (Sr, Sz) of the individual encoders. Let convolutional coders 1 and 2 have

constraint lengths v1 a\d v2 respectively. If i and j can take any value then there would be
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f=0

Figure 4.2: A section of the joini trellis for 2 bits/description MDQ with IA given in Figure
4.3 and rate I f 2 convolutional encoders of constraint length 2. Time ú : 0 corresponds to
thebeginningofadescriptionperiod.Tlansitionfromú:0toú:liscausedbythelower
order bits of the two descriptions and the transition from ú : 1 to t : 2 is caused by the
higher order bits.

t=L
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Figure 4.3: An index assignment for two channel MDe of rates R1 : Rz :
2 bits/description.

2ut*uz states in the joint trellis. However, the values that i and j can take are restricted by

the index assignment and hence, when not all the elements of the IA matrix are assigned,

some of the states will have zero probability. Therefore, the number of states in the joint

trellis with non zero probability will be less thar-2vr+u2. Again, due to the same reason, the

bit patterns that can be contained in the two shift registers of the convolutional encoders

will change with time and hence the trellis will have a periodic time varying structure with

the periodicity equal to the number of bits used per description. Figure 4.2 shows a section

of the joint trellis for a 2 bits/description MDQ and rate 1/2 convolutional coding with

constraint length 2. The corresponding IA matrix is given in Figure 4.8. A state is labelled

with the (binary) content of the convolutional coder shift registers. The two bits of the first
row in the state label gives the content of the encoder 1 shift register and the second row

gives the content of the encoder 2 shift register. We assume natural binary representation

of ihe descriptions.

4.2 MAP and ML Sequence Estimation

LetI!:(li, /2,-.',1¿) betheindexsequenceforthesourcesequence*f:(*r,x2,...,x¿)

and let (i'!, i!), (r!,-l) and (rf , sf ) ue correspond.ing description sequence, channel input

sequence and channel output sequence respectively. We are interested in using the Viterbi
algorithm to obtain optimum sequence estimate for t!. For example, the MAp estimate of

0 I

2 5

4 6 7

8 9
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the sequence lf is given by

IiL : are\f P(t!lr!,s!).

Fbom (2.11), (2.12) and (2.18)

u.sïp* P(tllrl,'l) :u",äff, P(,!, 
"!,¿?, i!)

As explained in Section2.2, to apply the Viterbi algorithm in this case, we would have to

use a morotonic function of P(i'!, j!,r1,"!) as the path metric which can be expressed. as

a summation of branch metrics. Fbom (2.14), (2.15) and (2.16)

L
P (r!,'?, i!, j!) : fl r(r¿ lo¡ ) 

p (s ¡lw ¡) p (¿1, ¡ ! )
,k=1

To simplify this further, we have to assume a model for ihe source. For example, if the

process {r¡} is i.i.d, then the process {(in, jù} is also i.i.d and rhe term p(i.!, j!) can be

expanded as
L

p(il, j!) : [, p(¿r, jr)
ft=I

However, v/e are working with a bit lever trellis and therefore (a.1) and (4.2)

expanded into bit level. We know

where

P(in, j*) : p(ik(b), jk(b),ik(b - t), jt þ _ 1),.. . , iÈ(1), jÈ(1))
b: fI k¡@'n)

N:I

P¿¡(k,n) P(ik@), jk(n)li,¡(n - r), jn(r- 1),. . ., ii,(1), jr(i))
p(¿x@), jt@),¿n@ -)14"- 1),. ..,ikg), jk1))

P(i¡,(n - I), jn(, - 1),. .. ,in(I),jr(t))
Ðer,jr)r¿, P(it, iò

-

LG,,j,)e¿, P(it, jt)

(4.1)

(4.2)

has to be

(4.3)

(4.4)
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Here {.1: {.(lt,n) is the set of all possible index pairs (it, jt) whose first n bits are equal to

those of the (i¡, j*). I.e.

it(q):i*(q) vqln

and

j{ù:jxk) vqln

Similarly, lz: l(k,n-l) is the set of all possible index pairs (it, jt) whose first n- 1 bits

are equal to those of the (í*,j*).Therefore, for an i.i.d source, (4.I) can be expanded into

bit level terms as

Lb
p(r!,'1,¿"r, j!) : If fleþ¡@)lr*(")) p(s¡(n)lw¡(n)) p¿¡(k,n) (4.5)

k:L n=7

Now, we define our path metric as log p(rf,s!,1!,¡!¡.,tten

Lb
Ios P (r!,'!, i.?, j!) : Ð I tos p (r¡ (n) lu t @)) + rog p (s¿ ( n)lu ¡(n))

k=ln=I
*logP¿¡(h,n)

Lb
: I l(o*nòud-MAp (4.6)

k=Ln=l

where

(b*nò¿¿¿-t¡Ap : log P(r¡(n)lu¡(")) + togp(s¡(n)l-u@)) *tosp¿¡(k,n) (4.7)

is the branch metric that we are going to use in the viterbi algorithm.

As mentioned in the discussion in Section 2.2, the first-order Markov process is a widely

used model for some practical sources. Therefore, let's consider the case where {x¡} is

flrst-order Markov. In this case, making the same assumption as in Sectio n 2.2 that the
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process {l¡} also is first-order Markov, we have

L
P(i.!,i!) : p(ù,iùn rØu,inlàt _t,it _ù

Ic=2

Here, the term P(fi,j1) can be expanded into bit lever terms by using (4.3). The term

P(ik, jkli,k-u jn-t) can be expanded as

P(i,¡, jeli,¡_t, j*) -- p(ik(b), jk(b),ik(b _
b

= ff Pi,@,n)
n=7

r), jn(b - 1),. ..,in1), jn(I)li*q, jt _ù

for2(k<L (4.8)

where

Pitft,n)

Ð çr,¡ r¡,1u, - r,i t - ) et, r (Q t, i t), (i, -t, i r- ù)
D çtr,¡ r¡,1e, - r,j t - ù e(L P (f¿, t ¡t l¿ *, ¡ * ¡

for21k<L (4.9)

Here

where It(k,n)

that

and

Similarly

11 : {'(k,n)

is the set of all possible two consecutive index pairs {(ir-t, jt-t),(z¿, j¿)} such

(it-t, it-t) : (i *t, i n-t)

(it(q), it(q)) : (in(q), inkD V s <

lL: ('Ut,n - 1)
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Let

Pi¡G,n): P¿¡(1,,n)

Following the same steps as (4.5)_(4.7) we obtain

(brn¡n)^¡o-MAp:tosP(r¡(n)lu*(")) + logp(s¿(n)lue(n)) +tosplr(k,n) (4.r0)

the branch metric for the MAP sequence estimation in case of a first-order Markov source.

Before going into details of the application of the viterbi algorithm in MAp sequence es-

timations described above, it is required to analyze the properties of the process {(in@), in@)}
which is the input to the super convolutional encoder. In the case of an i.i.d source, the
index pair (i¿,i¿) is independent of previous index pairs. Therefore,

P(i,¡(n), j¡(n)li¡(n - I), jún - 1),. ..,in(I), jrG),irt(b), jt_r,(å),...) :
p(i¡(n), j¡(n)li¡(n _ r), jn(n _ 1), . . . ,ik!), jk0))

(4.11)

Hence, the super convolutional coder input process {(z¿(n), jr(r))} is a non stationary
Markov process whose order p changes periodically. Here, the largest value of p is ö- 1. If
we further assume that {(ik, jk)} is first_order Markov, then

P((¿r,iòl1t -t,it -),(it _2,it,-z),...) : p((¿*,in)l(,t _t,in_ù)

Therefore

P(i¡,(n), j¡(n)li,¡(n - I), jt(n- 1),. ..,i*(r), j*(L),it _úb), j*_r(ô),...) :

P(i.¡(n), j¡(n)li¡(n - I), j*(, - 1),. ..,ik_r (1), jr_i(1))

(4.12)



58

In this case too, (ãt(n),ir(")) is a non-stationary Markov process whose order p changes

periodically. The largest value of p is 2b - L.

To use the Viterbi algorithm in the MAP sequence estimations described above, it is

required that the (super) state process {,9rJ} be first-order Markov [18]. The state ,S/

represents the bits that are stored in the super convolutional coder shift registers at time f.
To understand the requirements that has to be satisfied for {^S/} to be first-order Markov,

let's consider a generic state process {s¿} where

St : (At-1, &t_2r. . ., At_*r)

Assume that {a¿} is a Markov process of order m2. Then

P (a¿la¿-1, at-2 t . . .) : P (ailat-r t at-2 ¡ . . ., at-*r) (4.13)

Now, we want to find the relationship between rn1 ald. rn2 whe\ {s¿} is first-order Markov.

If {s¿} is first-order Markov, then

P (s¿ls¿-1,s¿-z) : P(s¿ls¿-1)

Therefore

P(or-tr... ,at-,rntlor-zr...,at-tnt¡at-mt-t,...) : P(or-r.r... ,at--mtlor-'2,. .. ,at_mr-.t)

Hence

P(a¿-1la¿-2r... rat-tnttdt-mt-t,...) : P(a¿-1la¿_2r...,at_mt_r) (4.14)

But, {o¿} is rn2-th order Markov. Therefore

mt ) mz (4.15)
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Now, we see that iS/Ì it analogous to {s¿} and {a¿} is analogous to the super convolutional

coder input process {(i¡(n), jr("))}. Let m be the memory of the super convolutional coder

which is analogous to rn1 above. Therefore, appiying the result in (4.15), the requirement

that has to be satisfied for {,SrJ} to be first-order Markov is

ITL ) p^a, (4.16)

where P*o, is the largest value of the order p of the non stationary Markov process

{(in(n), jn(n))}. We saw that, when the MDe output is i.i.d., pmar:ó_ 1 and therefore,

the requirement that has to be satisfied to apply the Viterbi algorithm in MAp sequence

estimation which we described earlier in ihis section is

m)b-I.

When the MDQ output is first-order Markov, the requirement is

m22b-1.

(4.17)

(4.18)

In joint trellis maximum likelihood (JT-ML) decoding, the sequence (/f ) that maximizes

P('!,tlll!) is found by searching through the joint trellis that is described in section 4.1.

We see that

P(r!,'lVll : p(r!, rlli!, j!)
: p(r!, sfyu!,w!¡

L: fI p(r¡,s¡lu¡,u¡)
,t=1
Lb: fI f{ r(r¡(n) ,se(n)lu¡(n),rx@))

lc:ln=I
(4.1e)

let's take logP(r!,tl\Ð as the path metric for this ML sequence estimation. The corre-
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time

Super conv.
encoder input

Figure 4.4: Ã state in the joint
index pair (i¡r, j¡) .

Path I

Path2

Path 3

Path 4

(k,n-L)

(io@-r), jo@-t))

trellis at the beginning of

(k,n)

(io(n), j o@))

the n-th bit period of the k-th

sponding branch metric is

(b^nn) ¡r,t ¡,: log P ("r (n), s¡(n)lu¡(n), w¡(n))

Now we want to find whether there is any requirement that has to be satisfied to apply

the Viterbi algorithm in ML sequence estimation as described above. Figure 4.4 shows a

state SrJ in the joint trellis at the beginning of the n-th bit period of the k-th index pair

(ix,i*) (we denote this time position by ú: (k,n)).The Viterbi algoriihm involves finding

the path that has the highest partial path metric (sum of the branch metric along the path

) for each state. Wiihout loss of generality, assume that the path t has the largest partial

path metric (PPM) out of all the paths arriving at state .9rJ. In the Viterbi algorithm, this

path is selected as the survivor path for the state 
^9rJ and the other paths are eliminated.

The argument here is that the globaliy best path (path with the largest path metric ) cannot

begin with any of the eliminated paths. Otherwise, we can replace iis initial segment (path

segment up to state ,9/) with path 1 to get another path that has a higher path metric
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(this is a contradiction). One of the underlying assumptions in the above argument is that

ihe suggested replacement procedure results in a valid path. However, in the case of a joint

trellis, this may not always be true since some paths are invalid depending on the IA. The

requirement for above argument to hold in case of a joint trellis is that the previous bits

(ik(I),ik1),,ih?),ikQ),. .. ,i*(n - r),i*(, - 1)) of the current description be same for all

the paths arriving at the same state. Otherwise, the paths arriving at the same state may

have different sets {(ir(n),in@)} of possible (next) inpui bit pairs (depending on rhe IA)
and therefore they may extend along different branches. If this happens, it is clear that, the

above path segment replacement process may result in an invalid path. To guarantee that

the previous bits of the current description be always the same for all ihe paths arriving ai

the same state, it is required that

mlb-I (4.20)

Therefore, this is the requirement that has to be satisfied in applying the Viterbi algorithm

for JT-ML sequence estimation.

4'3 Computational Complexity Comparison Between Description Level
Decoding and Bit Level Decoding

BLJT decoding has a reduced computational complexity compared to the DLJT decod-

ing for same convolutional coder constraint lengths. This reduction is very similar io that
achieved by a rate le f n convo\utional code obtained by puncturing a rate 1/2 mother code

over a rate Icf n fr-ary input convolutional code [27]. In a rate kln k-ary convolutional code,

there will be 2fr branches arriving at each state in the trellis and therefore it would require

2k - l comparisons per state per fr input bits in finding the survivor and hence the com-

putational complexity is exponential in k. On the other hand, a rate fr/n punctured binary
input convolutional code would require only å comparisons per state per fr input bits. It is

clear that this achieves a significant reduction in computational complexity for large È. The
punctured convolutional code would have the same computational complexity if the sur-
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vivors are found after each A input bits. The complexity reduction is due to the elimination

of a path after each bit period for each state, which would otherwise grow exponentially as

in a binary tree. The same argument applies to the complexity compa.rison between BLJT

decoding and DLJT decoding. In case of DLJT decoding, number of comparisons need.ed

at a state is22bq where q is the fraction of elements used in the IA matrix and therefore,

if we assume q to be constant, the computational complexity of the algorithm increases

exponentially with the description size. In case of BLJT decoding, there is no easy way to

find the exact number of comparisons required since the trellis has a time varying structure

which depends on the particular index assignment. In this case, there are at most B com-

parisons required at a state in the joint trellis per input symbol (i,¿(m), j¿(m)). For the same

constraint length, if survivors are found after each description period, decoding with the bit
level joint trellis would in general have the same order of computational complexity as the

DLJT decoding. Similar to ihe punctured convolutional code, ihe BLJT decoding achieves

a significantly reduced computational complexity by eliminating paths after each symbol

period, which would otherwise multiply to produced more paths. However, this multipli-

cation can be quaternary, ternar¡ binary or even unary depending on the particular path,

time position and the index assignment.

It is shown in Section 4.2 that optimum sequerce estimation with the Viterbi algo-

rithm requires the convolutional coder memory to be greater than a parameter related to ó.

However, the experimental results show that the BLJT decoding achieves a significant per-

formance improvement over the separate decoding even when the encoder does not satisfy

this memory requirement.

4.4 ExperimentalResults

BLJT decoding algorithm presented in this chapter is experimentally evaluated for differ-

ent settings to illustrate the performance improvement achieved and the efiect of various

parameters on the performance. Simulations are done for an i.i.d Gaussian source with unit
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variance and a Gauss Markov source given by

rt:0.9rçt * ut¿

where {u.'¿} is a zero mean unit variance i.i.d Gaussian process. This process is a simple

model for practical sources such as speech and images. The source is MD coded by a two

channel MDSQ designed as described in Chapter 1. The parameters used in the design are

l¿o : l and p1 : þ2 :0'05. The simulations are done for the binary symmetric channel

model. In case of BLJT MAP decoding, the priori probabilities are calculated empirically

using a training sequence. In the experiments, we consider only the case where both the

codewords are received by the decoder since, joint decoding affects only the performance of

the central decoder- We use as the figure of merit, ühe average signal to distortion ratio

SDR: EX2IE(X _ X),

where Î is the reconstruction of X at the decoder.

Figures 4.5 and 4.6 show the variation of the SDR with channel error probability for

an i.id. source and GM source respectively. JT-ML and JT-MAP denote BLJT ML and

BLJT MAP decoding respectiveiy. Separate-MAP and Separate-Ml denote the MAp and

ML sequence estimation with separate decoding (as explained in Section 2.8) respectively.

The index assignment in Figure 2.8 is used in the MDSQ. Each description is of size B

bits and 3 diagonals are used in the IA matrix. Descriptions are encoded with arate Jf 4

convolutional code obtained by puncturing the (2,1,6) (i.e. 2 outputs, 1 input and memory 6)

convolutional code in Table 12.4 (b) in [19]. Note in this case thai the memory requirements

(4'LT) and (4.20) are satisfied for the i.i.d. source. The memory requirements are satisfied

in case of the GM source too, If we approximate the MDSQ output as a first-order Markov

process' At low bit error probabiliiies, the channel code corrects almost all the errors and

therefore no noticeable difference exists in the performance between separate decoding and
joint decoding. However, as the bit error probability is increased, BLJT decoding achieves
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a significant performance improvement over separate decoding. Particularly, for both the

sources, BLJT decoding schemes correct almost all ihe errors in the received codewords up

to the channel bit error probability of 0.02 whereas the separate decoding loses about g dB

in performance. The MAP decoding performs better than the ML decoding as expected. In

case of the i.i.d source this is due to the redundancy present in the form of non uniformity

in the probabiliiies of the descriptions. MAP decoding achieves a considerably higher

performance than ML decoding for the GM source since it uses the redundancy present in

the form of strong temporal correlation in addition to the non uniformity of the description

probabilities' The strength of the BLJT ML decoding scheme is that it does not require

any knowledge of the source and in general would perform well irrespective of the source

ihat is being transmitted.

Figures 4.8 and 4.9 show the performance of the BLJT decoding and. separate decoding

for a system with rate 4 bits/description MDSQ. The MDSQ outputs are channel coded

using rate 3/4'convolutional coders obtained by puncturing the (2,I,2) code obtained from

Table 12-4 (b) in [19]. The IA matrix used in the MDSQ is given in Figure 4.2. In the

IA matrix 5 diagonals are assigned and hence 74 out of 256 elements are used. Therefore,

the fraction of elements used in the IA matrix in this case is close to that of the systems

in Figures 4.5 and 4.6. Note in this case that (4.I7) and (4.20) requires the convolutional

encoder memory of at least 3 bits for the iid source. For GM source) under the assumption

that MDSQ output is first-order Markov, the convolutional encoder memory requirement is

at least 7 bits. Therefore, the BLJT decoding may not result in optimum sequence estimates

in this case. Nonetheless, experimental results show that the scheme achieves a significant

performance improvement.

FinallS Figures 4.I7, 4'I2 and 4.13 show the variation of the performance of BLJT
decoding with the number of diagonals used in the IA matrix. In all three cases, rate B

bits/description MDSQ is used with ¡ate 3/4 convolutional code obtained by puncturing the
(2,1,3) convolutional code obtained from Table r2.4 (b) in [1g]. out of the 64 elements in
the IA matrix, 15, 2l and 34 elements corresponding to 2, 3 and 5 diagonals are used in the
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Figure 4.5: Performance of BLJT decoding and separate decoding for i.i.d Gaussian source,
Rt : Rz: 3 bits/description, number of diagonals used : 3, convolutional coder mem-
ory- 6.

_l
1010-

Pe

\.

't'
:

\:

:

.;.
\:
+

:

:

\*

+.. .,..

it:\
It
:

i': ...

:

:

:

:

-+- Separate-Ml
-+- Separate-MAP
-O- JT-ML
-O- JT_MAP



66

24

c0Þ
É.o(i)

20

18

16

14

12

10

I

b

4

Figure 4.6: Performance of BLJT decoding and separate decoding for GM source, R1 :
Rz:3 bits/description, number of diagonals used : 3, convolutional coder memory: 6.
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Figure 4.7: Index assignment for the simulation in Figure 4.g.
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Figure 4.10: Index assignment for the simulation in Figure 4.11.

three systems respectively. The IA matrix in Figures 2.8 and 1.6 are used for the simulation

in Figures 4.L2 and 4.13 respectively. The IA matrices for the simulations in Figure 4.11 is

given in the Figure 4.10. As one would expect, the performance gain of the BLJT decoding

algorithm decreases with the decrease of the redundancy in the index assignment.
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Figure 4.12: Performance of BLJT decoding and separate decoding for iid Gaussian source,
Rt : Rz: 3 bits/description, number of diagonals used : 3, convolutional coder mem-
ory: 3.
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Chapter 5

fndex Re-Mapping

MDC can be viewed as a systematic addition of redundancy to guard against transmission

losses such as packet losses. On the other hand, in error control coding, redundancy is

added to guard against random bit errors. Broadly viewed, both error control coding and

MDC come under the common problem of systematic addition of redundancy to achieve

robustness against unreliable transmission. Therefore it can be expected that there may be

joint coding schemes to achieve the robustness over both random bit errors and transmission

losses which perform better than separate coding. So far, we considered only joint decoding

of separately encoded signals. In this chapter, we discuss a simple form of joint encoding,

which we call inder re-mapping.

In Chapters 2 and 4, we saw that joini trellis decoding achieves a significant improvement

over separate decoding. It is seen in Figures 4.L1, 4.I2 and 4.13 that this improvement

greatly depends on the number of elements assigned in the IA matrix. To gain more insight

into this phenomenon, let us consid.er an example system consisting of a two channel MDe
of rate Rt : Rz: ö bits/description followed by a convolutional encoder. Assume that N
out of M2 elements are assigned in the IA matrix, where M :2b. Let the source sequence

*l : (*r, x2t- - -, x¿) be MD coded into index sequence (i! , i!) and iet (u! ,.!) and (rf , sf )

be the channel input sequence and the channel output sequence respectively. Consider ihe

two convolutional encoders as a single super convolutional encod.er with input (it, jt).If the
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symbol (ü, jù has no constraint, there would be (M . M)L : M2L number of possible length

tr input sequences and therefore, v/e would have to consider a similar number of paths in the

joint trellis However, the symbol (it, jt) is constrained by the IA and therefore, we would

have to consider only .ôl¿ paths in the joint trellis. In other words, out of M2L codewords

in the super convolutional code, only i/¿ will be valid in this case. For a given channel

output sequence (rl,t!), we select in joint trellis decoding the best estimate (û!,út!) of

the channel input sequence from these -fy'¿ sequences. In case of separate decoding, an

individual decoder is used on each channel to obtain the best estimate of the channel input

sequence ftom ML possible sequences (let r! and tuf be the corresponding estimates).

Taken together, this is equivalent to selecting a cod.eword from M2L codewords in the super

convolutional code. To make this clearer, an example is considered after introducing some

basic concepts in channel coding such as Harnmi,ng d,,istance and, mini,rnum d,,istance.

Hamming distance between two symbol sequences is the number of symbol positions in

which they differ. Performance of a channel code is determined by its Hamming distance

properties. When codewords are farther apart, the channel code has a better error cor-

recting capability. The number of errors g that a channel code can correct is determined

by a parameter called minimum distance, denoted lJy d^¿n which is the minimum distance

between any two codewords of the code. Codewords that are mosi likely to be confused

at the channel output (due to channel errors) with a given transmitted codeword are its

neighbors at distance dm¿n. e is related to d,*¿n by [1g]

d*¿".)2qII.

Now, consider the BSC channel model and ML decoding. In this case, the joint trellis

decoding is equivalent to finding the sequenc e (ûf ,øf ) from the valid codeword set such that

d(rl,û!) + d(s!,,ri'f ) is minimum where d(a, b) represents the Hamming distance between

the binary representation ofthe sequences a and b. Separate decoding, in this case, involves

finding the sequences uf and w! , each from the correspond ing ML possible sequences, such
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that d(r!,of) and aþ!,ø!) are minimum. It should be clear that this is equivalent ro

finding the sequence (ù!,øf) from the full codeword set of the super convolutional coder

such that d(r!,a!) + d(s!,?rf) is minimum. Therefore, joint irellis decoding attains an

improvement in error correcting capabiiity over separate decoding due to two reasons:

1' Separate Decoding may result in an invalid sequence pair whereas joint trellis decoding

always gives a valid sequence pair.

2. In joint trellis decoding, we conside¡ a reduced set of codewords. Consider a transmit-

ted (hence, valid) super codeword. c: (u!,w!7. tt can be expected that the number

of neighbors for c at distance dmin , on the average, is less in the reduced codeword

set than ihat in the full codeword set. Hence, in case of joint trellis decoding, there

would be fewer codewords to be confused with c at the channel output.

The distance properties of the subset of the super convolutional code, which we consider

in joint trellis decoding, can be further improved if we have the freedom to to select the

Iy'¿ codewords from M2¿ codewords. However, this cannot be done since, the possible

codewords are determined by the IA. But, still, we can change the valid codeword set

without changing the IA by re-mapping the indices. As an example, we can relabel the

indices in the IA in Figure 5.1 to get an equivalent IA shown in Figure 5.2. It is clear that
this does not change the basic structure of the MDQ and its properties (such as encoder

partition, decoder codebook, central and side distortions etc.).

To demonstrate how the index re-mapping can be used to improve the distance properties

of a channel code, let's consider a simple example, where the outputs of a MDe of rate

Rt : Rz: 4 bits/description are channel coded with a (7,4) Hamming code given in Table

5'1' Assume that the IA given in Figure 5.3 is used. Let the indices i¿ and j¿ be encoded into
codewords v¿ and w¿ respectively. Since we are interested in joint decoding, Iet,s consider

the two codewords as a single super codeword. ct: (vt,w¿). In the given Hamming code,

dmin : 3 and therefore, it is capable of correcting a single bit error in a channel output
codeword' Our objeciive in this case is to see how the index re-mapping can be used to
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Figure 5.1: An index assignment with natural numbering of the indices.
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Figure 5'2; An index assignment obtained by Re-mapping the indices in IA mat¡ix in Figure
5.1.
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Figure 5.3: An index assignment for MDQ of rate 4 bits/description.
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Table 5.1: The Hammins lZ.4) code
lvtessage L)eclmalrepresentation Codeword

of the Message
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

i100
1101

1i i0
1111

0

1

2
Ð
t,

4

5

6

I

8

I
10

11

t2
13

T4

15

0000000
0001111
0010110
001 1001

0100101
0101010
011001 1

0111100
100001 I
1001100
1010101

1011010
1100110
1101001

1 1 10000

1111111

improve the distance properties of the valid codeword set of the super code. There are 256

codewords in the super code out of which only 46 (N : 46) are valid. Lei cÍl) : 1.,rjt), *jt))
and ci2) : (tÍ'),*i')¡ u" the two (super) codewords assigned to the distinct index pairs

øÍ') , jÍ')) and, Q[2) ,¡j2)) ,".p".rivety. We see thar

¿("Ít), 
"Í')) 

: ¿(uÍÐ ,,rj2)¡ + a1*j1), *j2)¡ (5.1)

Therefore, when ;fr) * i,l2) an¿ ¡lr)

row or column of the IA matrix)

+ jÍ') (i.e. when the index pairs are not in the same

(1) , o\vi' f vi'

w[t) ¡wl2)

and

Therefore

¿kÍ'),.ÍÐ) , a
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On the other hand, when the index pairs are in the same row or same column, one of the

component codeword of cÍi) and cj2) are the same and therefore, ¿þÍt) ,"f')¡ .u., be as small

as 3. As an example if ,iÍr) - aj2) tn"r,

vjl) : '"{z)

and

¿@Í'),.1') ) : a1*i'), *j2) ;

Therefore, it is clear that the codewords should be assigned to indices in such a manner that

¿(*Ít),*(z)¡ is as large as possible *herr rrfl) - uÍÐ and vice versa. In the given Hamming

code, for each codeword, there are 7 codewords at distance 3, 7 codewords at distance 4

and one codeword at distance 7. Figure 5.4 shows the codewords that are assigned by

the Hamming code in Table 5.1 for natural numbering of the indices. In this case, there

are 40 valid (super) codeword pairs with Hamming distance 3. A few examples for such

codeword pairs are given in Table 5.2. Figure 5.5 shows codeword. assignment after re-

mapping the indices in the IA in Figure 5.4 for improving the minimum distance between

valid codewords. In this case, there are only 4 pairs of valid codewords wiih Hamming

distance 3. They are given in the Table 5.3. Hamming distance of J6 codeword pairs in

Figure 5'4 is increased from 3 to 4 by the index re-mapping. Although this increase in

the distance does not improve the error correcting capability of the codewords (Hamming

distance of 4 can guarantee only the correction of single bit errors, similar to Hamming

distance of 3), the exampie demonstrates that the distance properties of the valid codewo¡d

set can be improved by a proper index re-mapping.

In this example, the index re-mapping was obtained by searching ihrough the (2,4)

Hamming code based on the argument that when one of the component codewords is same

in two super (valid) codewords, the other component cod.ewords should be as far apart

as possible. However, this kind of search is impractical when the description alphabets

are large or the channel coding is complex. Therefore, some structured method has to be
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found for obtaining a good index re-mapping. The main challenge that has to be faced in
solving this problem is the non linearity of the valid codeword set. Therefore, some of the

well known techniques for designing and analyzing channel codes that are present in the

literature cannot be easily applied in this case since, those techniques are valid only for

linear codes.

5.1 Simulation Results

To find the performance improvement attainable with index re.mapping in joint trellis
decoding, a random search was carried out over 1000 possible index re-mappings. The basic

experimental setting is same as that in the simulation for Figure 4.12. Fbom 1000 ¡andom

index re-mappings, the one giving the best performance improvement was found for each

of the decoding schemes separate-Ml, JT-ML and JT-MAP and the results are shown in
the Figure 5.6. The curves marked as separate-Ml, JT-ML and JT-MAp are obtained by

using the IA with natural numbering of the indices (same as in the simulation for Figure

4.r2).

The MDSQ used in the experiment is of rate Ã1 - Rz : B bits/description and hence,

each description alphabet size is 8. Therefore, there are 8! x 8!- 1 - 1.6 x 10e possible index

re-mappings' Although, the search is carried out over a small fraction (around l/i.6 x 106)

of all possible re-mappings, the performance improvement is significant. As explained at
the beginning of the chapter, the JT-ML decoding achieves an improvement over separate

decoding by only exploiting the improved distance structure in the valid codeword set.

On the other hand, the JT-MAP scheme gains an improvement by exploiting both the
improved distance structu¡e in the valid codeword set and the redundancy present in the
index sequence in the form of non uniform probabitities. Therefore, the improvement caused

by the index re'mapping is higher in JT-ML decoding compared to JT-MAp decoding. It
can be seen that the performance of JT-ML decoding with index re-mapping even beats

that of the JT-MAP decoding wiih the original IA. The performance of separate decoding

also is improved by index re'mapping, since the end to end distortion in a vector quantizer



Table 5.2:
distance 3

Some of the valid (super) codeword pairs in the Figure

82

5.4 with Hamming

Table 5'3: The four valid (super) codeword pairs in the Figure 5.b with Hamming distance 3

(0001 1 1 10000000) (0001 1 1 100101 10)
(00011110001111) (00011110010110)
(00011 11000i 1 1 1) (00101 i00001 1 1 1)
(0001 1 1 100101 10) (00101i000101 10)
(00101 100001 1 1 1) (00101i000101 10)
(00101 100001 1i 1) (00101 10001 1001)
(00011 1 100101 10) (001 100100101 10)

(11010010011001) (00i1001001100i)
(1 101001 1 101001) (1 101001001 100i)
(001 10011 101001) (001 1001001 1001)

system depends also on the assignment of channel cod.ewords to quantizer output indices as

explained in [2s]. Finall¡ the Figure 5.7 shows the performances obtained for the best IA
and the worst IA found in a 1000 random ind.ex re-mappings. It also shows the performance

obtained with the original IA' It is interesting to notice that the performance obtained with
the worst IA in this case is considerably better than the original IA. Therefore, in this
case, it can be concluded that an index re.mapping chosen at random would considerably

improve the performance with a high probability.
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Figure 5.4: Codewords assigned by the Hamming code in Table 5.1 for natural numbering
of ihe indices.
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Figure 5.5: Codewords assigned by ihe Hamming code in Table 5.1- for an IA obtained by
re-mapping the indices in Figure 5.4.
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Chapter 6

Conclusions and Suggestions for

Further Study

In this thesis, we focussed on the problem of joint source channel coding of multiple descrip-

tion. We presented a list Viterbi algorithm based joint decoder and a bii level extension

to the joint trellis decoder in [1a]. We also introduced the problem of joint source channel

encoding with a simple, yet efficient joint encoding procedure known as index re-mapping.

The LVA based joint decoding scheme presented in Chapter 3 is capable of achieving

a significant improvement over separate decoding and JPM decoding at a moderate com-

plexity increase. This scheme is based on the idea that an MD code can be viewed as a

sort of error detection block code and hence the channel coding of an MD code gives rise

to a concatenated coding. We considered the scenario where MD coder outputs are con-

volutional encoded before the transmission. At the receiver, we used list Viterbi decoding

of the inner (convolutional) code. As mentioned in Chapter 3, it would be possible to use

other soft decoding algorithms such as BCJR algoriihm and SOVA in decoding the inner

code. Therefore in a further study, it would be interesting to investigate how the other soft

decoding algorithms can be used in a joini decoder and what the achievable improvement

are.

Bit ievel joint trellis decoding scheme presented in Chapier 4 eliminates the requirement
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ofone to one correspondence in the description alphabet and the convolutional coder input

alphabet in the description level joint trellis decoding algorithm in [14]. It also achieves

a considerable reduction in the computational complexity compared to description level

joint trellis decoding, which is very similar to the reduction in computational complexity

achieved by a punctured binary input convolutional code over a same rate non binary input

convolutional code of the same constraint length. It was shown that bit level joint trellis

decoding algorithm is optimal if the convolutional coder memory is greater than a particular

value determined by the number of bits per description and the source temporal correlation.

Experimental results showed that the bit level joint trellis decoding achieves a significant

performance gain even when the optimality requirement is not satisfied. However, similar

to description level joint trellis decoding, bit level joint trellis decoding suffers from the

problem of high complexity caused by the trellis combining.

In Chapter 6 we presented the idea of joint source channel encoding of multiple descrip-

tions. With index re-mapping we showed that a joint encoding procedure would considerably

improve the performance compared to separate encod.ing. In the experiment in Chapter 6,

we obtained an improved index re-mapping by a random search. The problem of finding a

structured procedure for obtaining a good index re-mapping has to be addressed in a future

work. There would be many other ways to achieve joint encoding and this would be an

interesting topic for a future research work.



Appendix A

The Viterbi Algorithm

The Viterbi algorithm (VA) provides an efficient way of finding optimal state sequence

estimate of a finite-state discrete time Markov process. This appendix discusses the appli-

cation of VA in decoding a convolutional code. Before presenting the VA, some concepts in

convolutional coding will be briefly introduced.

A convolutional encoder can be represented by a shift register circuit. For example,

Figure 4.1 shows a (3,1,2) (i.e. 3 bit output, 1 bit input and memory 2) convolutional

encoder. The output r,: (rjO), rÍ'),uÍÐ) of this encod.er is related to its inpui u¿ by

,Ío):ut@ut-t

Figure 4.1: A (3,1,2) convolutional encoder.
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Figure 4.2: state diagram for the convolutional encoder in Figure A.1.

uÍ'):ut@ut-z

and

,['):ut@ut-t@ut-z

where, üt,,ttrt-L,ur-r,rÍo) ,rjt) ana utÐ ur" binary digits and O represents the modulo_2

addition. This convolutional encoder can be represented. by the state diagram in Figure 4.2.

The state of the convolutional encoder at time ú is the content (ur-t,z¿-2) of its shift register.

Assume that the process starts and terminates at the aII zero state,S¡. Each branch of the

state diagram is labelled with the input bit causing the transition and the corresponding

three output biis. Figure 4.3 shows a time expansion of the state diagram in Figure A.2,

which is called as trellis. In the trellis, each node corresponds to a distinct state at a given

time and each branch represents a transition to some new state at the next instant of time.

Now, assume that an information sequence uf : (ur,'2r...,u¿), is encoded by a
(n,k,m) convolutional encoder. Here, u¿ is the k bit information symbol at time ú. To
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Time 1

Figure 4.3: Ttellis diagram for the convolutional encoder in Figure 4.1.

drive the encoder into the all zero state at the termination, it is required to append another

zn symbols to the information sequence such that each such symbol consist of all zero bits.

Therefore, the convolutional encoder input sequence is given by ,ri** : (ur, tr2t. . . ¡ut +m),

where u¿ : (0,0, . . . ,0) when t > L. Let w!+* be the corresponding convolutional encoder

output sequence. Assume that this convolutional encoder output sequence is transmitted

over a discrete memoryless channel (A channel in which input and output are rliscrete and

the output at a particular time instant depends only on the input at the same time insiant).

Let sf+- be the corresponding channel output sequence. In this case, when ú ( -L, there

will be 2fr paths going out from each state in the trellis. When t 1m, there will be only

one path arriving at each state. On the other hand, when ú ) M, there will be 2k paths

arriving at each state. The MAP estimate of the encoder input sequence is given by

ùiL+rn - arsffH r('i+*lr!**) (4.1)
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r6ir+*ls!*-) : P(ul::,sl+^)
r - eþz+^' '

Since the input-outpui mapping of a convolutional encoder is one-to-one, p(ul**,"1**) :
P(*!**,"!**), and P(sf+*) does not affect the result, (4.1) is equivalent to maximizing

where u¿ : (0,0,... ,0) when t > L. We know that

logP(wf+*,"!+*) : Ios P G!L+^ l*! ** ) + tog p(wf +- 
)

ros P(sf+- l*!**) + tog p(uf+-)
Llm

Ð tor p(s¿lw¿) + iog p(uf+-)
t=L

The use of logariihm does not affect the maximization since it is a monotonic function. To

simplify the term logP(uf+-) further, it is required to know the statistical distribution of
the information sequence uf. Let's consider the case where u¿ is i.i.d when ú ( tr. In this
case,

L+m
togp(uf+-) : t togp(u¿)

t:I
where P(u¿: (0,0,...,0)) : 1 when t> L. Therefore, (A.2) can be written as

(,{.2)

(A.3)

Llrn
logP(wf+-,"f+-) : t logp(s¿lw¿) +togp(,r,).

t=1

The term logP(wf+-,sf+-) is called the metric associated with the path (in the trellis)
or the path metric for the codeword *t+*. The term logp(s¿lw¿) + togp(rrr) in the
summation in (A'3) is associated with a branch in ühe trellis and therefore called as branch
metric' The summation of the metrics of the first ú branches of a path is called as partial
path metric (PPM) of the path segment up to time ú. Now, the VA can be used to search

the trellis for the path wiih the largest path metric. The VA involves finding the path with
the largest PPM arriving at each state in the trellis. This path is called as the survivor for
the corresponding state.
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The Viterbi Algorithm

Step 1 At time t : rn find the single paih (hence the survivor) arriving at each state and

calculate the corresponding partial path metric. Store these paths with their partial

path metrics.

Step 2 Increase ú by 1. For each state, find the PPM of each of the arriving paths by

adding the corresponding metric of the branch entering the state to the ppM of the

connected survivor at the previous time unit. For each state, find ihe paih with the

largest PPM, store it with its ppM and eliminate all the other paths.

Step 3 If t < m * tr go to Step 2. Otherwise stop.

At time t: L *rn, there is only one state in the trellis and hence one survivor. It can be

shown [i9] that this survivor is the path with the largest metric. Therefore, in this case,

the vA results in the MAP estimate of the encoder input sequence.
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