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Abstract 

Background:  Network analysis, a technique for describing relationships, can provide insights into patterns of co-
occurring chronic health conditions. The effect that co-occurrence measurement has on disease network structure 
and resulting inferences has not been well studied. The purpose of the study was to compare structural differences 
among multimorbidity networks constructed using different co-occurrence measures.

Methods:  A retrospective cohort study was conducted using four fiscal years of administrative health data (2015/16 
– 2018/19) from the province of Manitoba, Canada (population 1.5 million). Chronic conditions were identified using 
diagnosis codes from electronic records of physician visits, surgeries, and inpatient hospitalizations, and grouped into 
categories using the Johns Hopkins Adjusted Clinical Group (ACG) System. Pairwise disease networks were separately 
constructed using each of seven co-occurrence measures: lift, relative risk, phi, Jaccard, cosine, Kulczynski, and joint 
prevalence. Centrality analysis was limited to the top 20 central nodes, with degree centrality used to identify poten-
tially influential chronic conditions. Community detection was used to identify disease clusters. Similarities in commu-
nity structure between networks was measured using the adjusted Rand index (ARI). Network edges were described 
using disease prevalence categorized as low (< 1%), moderate (1 to < 7%), and high (≥7%). Network complexity was 
measured using network density and frequencies of nodes and edges.

Results:  Relative risk and lift highlighted co-occurrences between pairs of low prevalence health conditions. Kulc-
zynski emphasized relationships between high and low prevalence conditions. Joint prevalence focused on highly-
prevalent conditions. Phi, Jaccard, and cosine emphasized associations involving moderately prevalent conditions. 
Co-occurrence measurement differences significantly affected the number and structure of identified disease clusters. 
When limiting the number of edges to produce visually interpretable graphs, networks had significant dissimilarity in 
the percentage of co-occurrence relationships in common, and in their selection of the highest-degree nodes.

Conclusions:  Multimorbidity network analyses are sensitive to disease co-occurrence measurement. Co-occurrence 
measures should be selected considering their intrinsic properties, research objectives, and the health condition 
prevalence relationships of greatest interest. Researchers should consider conducting sensitivity analyses using differ-
ent co-occurrence measures.
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Background
Multimorbidity, the co-existence of two or more 
chronic health conditions within an individual, where 
none are considered more central than the others, is 
becoming increasingly common in populations world-
wide [1–3]. Those living with multiple chronic condi-
tions tend to experience poorer quality of life, have 
increased disability and mortality, and face many chal-
lenges accessing healthcare services including receiv-
ing conflicting medical advice and duplicative testing, 
experiencing drug interactions, and managing a heavy 
treatment burden [3–6]. Multimorbidity also places 
a strain on healthcare systems since individuals with 
multiple chronic conditions have higher healthcare uti-
lization and costs [7–9].

Network analysis, the study of relationships amongst 
connected entities, is commonly used to examine 
social relationships but has only recently been pro-
posed as a method to shed light on population-level 
multimorbidity patterns. Network analysis models 
disease co-occurrence using graph structures charac-
terized by nodes (e.g., diseases) and connecting edges 
(i.e., relationships or interactions). Several recent stud-
ies applied network analysis to electronic health data, 
to examine associations among co-occurring health 
conditions at the population level [10–25]. Network 
analysis is appealing for multimorbidity research, in 
part because of its reliance on graphical techniques 
to present disease associations, which can efficiently 
convey information in a non-technical manner to cli-
nicians, patients, and healthcare system decision mak-
ers. Along with data visualization, network analysis 
also supports 1) centrality analysis for the detection 
of important nodes or hubs, that is, diseases that may 
be influential in a population or among a set of other 
diseases; 2) the identification of community structure, 
that is, clusters of highly-connected diseases; and 3) 
comparisons between population subgroups by con-
trasting network properties such as density and com-
plexity measures. Although the practical implications 
of multimorbidity network analyses have not been 
fully explored, data-driven patient profiles built using 
network analysis can be used by healthcare provid-
ers and policy makers to organize healthcare delivery 
services to reduce the treatment burden of multimor-
bidity, reduce healthcare costs, and improve patient 
outcomes. Community structure can be used to iden-
tify sets of co-occurring conditions that may benefit 

from a coordinated and multidisciplinary approach 
to healthcare delivery, while centrality analysis can be 
used to target conditions that may benefit from inter-
ventions aimed at prevention.

Measuring disease association, or co-occurrence, is 
foundational for constructing the links that form the 
structure of disease networks. There are several co-
occurrence measures available and studies conducted 
to date have used a variety of different measures to 
construct disease networks [10, 11, 18–22]. While the 
intrinsic properties of co-occurrence measures have 
been examined [26, 27], the effect that choice of co-
occurrence measure has on disease network structure 
and any resulting inferences has not been well stud-
ied. Substantial variation in research methods has 
been observed among multimorbidity studies, which 
challenges the comparability of research findings 
[28, 29]. Research comparing different methodologi-
cal approaches, for studying patterns of multimorbid-
ity, has been recommended to improve study validity 
and generalizability [29]. Comparing techniques for 
constructing multimorbidity networks could aid in 
determining how different techniques affect our under-
standing of population-level chronic disease patterns. 
Therefore, the purpose of this study was to assess the 
effect that choice of co-occurrence measure has on 
network analyses of co-occurring chronic conditions. 
Using administrative health data with excellent popu-
lation coverage, separate chronic disease networks 
were constructed using seven co-occurrence measures. 
Descriptive methods were used to compare networks 
in terms of node centrality, community structure, and 
density; network edges were compared using catego-
rized prevalence of co-occurring disease pairs.

Methods
This retrospective cohort study was conducted using 
four fiscal years (April 1, 2015 – March 31, 2019) of de-
identified administrative health data from the Manitoba 
Population Research Data Repository at the Manitoba 
Centre for Health Policy in the province of Manitoba, 
Canada. Manitoba has a universal healthcare system, 
therefore almost all contacts with the healthcare system 
for the entire population are captured in administrative 
health data. The provincial population is approximately 
1.3 million according to the most recently-available Sta-
tistics Canada Census data.

Keywords:  Administrative health data, Association rule mining, Chronic disease, Disease co-occurrence, 
Multimorbidity, Network analysis
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Data sources
Study data sources included the Manitoba Health Ser-
vices Insurance Plan Registry (Population Registry), the 
Hospital Abstracts Database, and the Medical Services 
Database. These data sources were linked using a unique 
personal health identification number.

The Population Registry captures information on 
healthcare coverage for all insured Manitobans, and was 
used to determine eligibility for study inclusion. The 
Registry also includes demographic information used 
to characterize the study cohort.  The Registry does not 
provide information about an individual’s gender, which 
is a sociological construct; it only provided information 
about biological sex. Individuals may change their bio-
logical sex designation.

Chronic condition diagnoses were obtained from the 
Hospital Abstracts Database, which contains information 
on discharges from hospitals, and the Medical Services 
Database, which records information on ambulatory 
services provided in physician offices. Diagnoses within 
hospital discharge abstracts are coded using ICD-10-CA 
(International Statistical Classification of Diseases and 
Related Health Problems, 10th Revision with Canadian 
Enhancements), while Medical Services diagnoses are 
coded with up to five digits using ICD-9-CM (Interna-
tional Statistical Classification of Diseases and Related 
Health Problems, 9th Revision, Clinical Modification).

Cohort development
The study cohort included all Manitoba residents with 
complete or partial Manitoba Health insurance cover-
age during the study observation period. Individuals 
entered the study on April 1, 2015 or the date that cover-
age started, and were followed until the end of the study 
period or until their insurance coverage ceased (e.g., due 
to death, migration out of province). Based on informa-
tion about biological sex recorded in the Population Reg-
istry, males with female-specific conditions and females 
with male-specific conditions were excluded (n = 15); 
the presence of these potential inconsistencies could 
suggest errors in the recording of diagnostic or demo-
graphic information, and it was not possible to verify the 
reasons for these potential inconsistencies. Since disease 
networks were formed from disease co-occurrence rela-
tionships, the network analysis was limited to individuals 
with diagnoses recorded for at least two chronic health 
conditions during the study observation period.

Disease ascertainment
Chronic conditions were ascertained using diagnoses 
identified from inpatient discharge records in the Hospi-
tal Abstracts Database and from physician visit records 

in the Medical Services Database. Surgeries recorded in 
both data sources were also included. Prenatal and preg-
nancy-related records were excluded to minimize over-
stating disease co-occurrence among females.

A single diagnosis code was used to ascertain whether 
an individual was considered as having a specified condi-
tion in the study observation period. Individual diagnosis 
codes were grouped into 201 Expanded Diagnostic Clus-
ters (EDC) and 27 higher-level Major Expanded Diag-
nostic Clusters (MEDC) using the Johns Hopkins 
Adjusted Clinical Group (ACG) System [30]. Diagno-
ses were loaded into the Johns Hopkins ACG System as 
World Health Organization (WHO) ICD-9 or ICD-10 
codes. Five-digit ICD-10-CA codes from the Hospital 
Abstracts Database were truncated to the first four digits 
to improve compatibility with the Johns Hopkins System, 
which supports the WHO ICD system but not the Cana-
dian revision. There were 49 unique Canadian-specific 
ICD-10-CA codes relevant to chronic disease status that 
were not captured by the Johns Hopkins System. These 
49 Canadian-specific diagnosis codes were first trans-
lated to WHO ICD-10 codes for inclusion. An addi-
tional 17 Canadian-specific ICD-10-CA codes were not 
captured; however, they were irrelevant to disease sta-
tus since they indicated location of occurrence or activ-
ity engaged in during occurrence. Chronic conditions 
classified as separate EDC categories based on severity 
or presence of complications were combined into sin-
gle disease categories including asthma with or without 
asthmaticus, hypertension with or without complica-
tions, type 1 diabetes with or without complications, and 
type 2 diabetes with or without complications. As well, 
25 EDC categories that were non-descriptive, or referred 
to non-chronic medical conditions or to the neonatal 
period were removed. Two categories indicating sever-
ity of malignant neoplasms, already classified elsewhere, 
were also excluded. Since co-occurrences with frequen-
cies less than 15 were excluded from the association 
analysis to minimize statistical errors, seven EDC catego-
ries with low frequencies were excluded: heart murmur, 
lymphadenopathy, thrombophlebitis, tuberculosis infec-
tion, sinusitis, other inflammatory conditions of skin, and 
other female gynecologic conditions. After 34 EDC cat-
egories were excluded, 167 EDC categories remained for 
the network analysis.

Disease co‑occurrence measures
Disease co-occurrence was defined as two or more 
chronic health conditions recorded at any time during 
the four-year study observation period (April 1, 2015 – 
March 31, 2019) for the same individual. The four-year 
study period was selected because it was the available 
time frame in which diagnoses in the Medical Services 
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dataset were coded to five digits; this detailed level of 
diagnostic coding was important for identifying distinct 
health conditions.

Disease association was measured using seven different 
co-occurrence measures: lift (Eq. 1), relative risk (Eq. 2), 
phi (Eq.  3), Jaccard (Eq.  4), cosine (Eq.  5), Kulczynski 
(Eq. 6), and joint prevalence (Eq. 7) [31–37]. Phi and rela-
tive risk are two of the most commonly used measures in 
disease network analysis, while lift is commonly used in 
conjunction with association rule mining. Jaccard, cosine, 
and Kulczynski are null-invariant measures that have 
been suggested for use with sparse data such as disease 
status datasets [26]. Joint prevalence was included due to 
its ease of interpretation. These measures are defined for 
two health conditions (i.e., x and y; see Fig. 1) as:

Lift [31] n
a

(a+b)(a+c)
(1)

Relative risk [32] a(c+d)
c(a+b)

(2)

Phi (φ) [33] ad−bc√
(a+b)(a+c)(b+d)(c+d)

(3)

Jaccard [34] a

(a+b+c)
(4)

Cosine [35] a√
(a+b)(a+c)

(5)

Kulczynski [36] 1

2

[

a

(a+b)
+ a

(a+c)

]

(6)

Joint prevalence [37] a

n
(7)

where a, b, c, d, and n are defined from the elements of a two-way contingency 
table.

Statistical significance of disease associations was 
assessed using the chi-square test when expected fre-
quencies were greater than five, while Fisher’s exact test 
was used when the chi-square assumption did not hold. 
Associations that were not statistically significant using 
α = 0.01 were excluded. Since the focus of this study was 
on co-occurring disease, the analysis was limited to posi-
tive associations. Given that RR is an asymmetric meas-
ure of association, the maximum of the two RR measures 
was used.

The association analysis was limited to disease dyads. 
Disease association was computed using association 
rule mining by applying the widely-used Apriori algo-
rithm [38]. Minimum joint frequency (called support in 
association rule mining) was limited to 15 to minimize 

statistical errors, and the minimum confidence param-
eter of association rule mining was left unbounded. Data 
preprocessing was conducted using SAS (v9.4), while R 
and the arules package (v1.6-7) was used to perform the 
association analysis [39].

Covariates
The study cohort was characterized using age, biologi-
cal sex, number of chronic conditions, residence location 
(urban or rural), and income quintile, an area-level meas-
ure of socioeconomic status based on average household 
income from the most recently-available (i.e., 2016) Sta-
tistics Canada Census [40]. Birthdate and biological sex 
were extracted from the most recent insurance coverage 
period, while socioeconomic and urban/rural status were 
based on the latest residence recorded during the study 
period. Age was calculated at exit date (i.e., the study 
index date) and categorized as < 20, 20-39, 40-59, 60 +.

Network analysis
Weighted, undirected pairwise disease networks were 
separately constructed using each of the seven co-occur-
rence measures. Disease networks were stratified by the 
number of associations (i.e., edges) included: (a) all asso-
ciations, (b) strongest 50% of associations, and (c) strong-
est 200 associations. Networks based on the strongest 
200 associations were used to examine differences in 
networks that have higher visual interpretability, while 
networks based on the strongest 50% cut-off were used 
to examine how network similarity changes when a larger 
number of associations are included. Effect size estimates 
were used as edge weights and were bounded between 0 
and 1 for networks measured using phi, Jaccard, cosine, 
and Kulczynski association measures, and unbounded for 
lift, relative risk, and joint prevalence.

Community structure was identified using a 
weighted and non-overlapping community detection 
algorithm developed by Blondel et  al. [41]. This algo-
rithm was chosen due to its computational efficiency 
on large networks and because it is widely used in 
applied network studies. Central nodes were identi-
fied using degree centrality and the centrality analysis 
was limited to the top 20 central nodes. Degree cen-
trality was chosen because it has a clear interpretation 
in the context of disease co-occurrence networks (i.e., 
number of co-occurrence relationships) and the appro-
priateness of other centrality measures for use with 
disease co-occurrence networks is uncertain. Disease 
networks were visualized using the Fruchterman-Rein-
gold force-directed layout algorithm constrained to the 
strongest 200 associations to improve interpretability 

Fig. 1  Two-way contingency table used to measure health condition 
associations



Page 5 of 16Monchka et al. BMC Medical Research Methodology          (2022) 22:165 	

[42]. Networks were visualized using Gephi (v0.9.2) 
and analyzed with Java and Gephi Toolkit (v0.9.2).

Evaluating and comparing disease networks
Disease networks constructed using different co-occur-
rence measures were compared on their community 
structure, central nodes, common edges, network com-
plexity, and in terms of the joint prevalence and preva-
lence difference distributions of their network edges.

Community structure similarity was calculated using 
the adjusted Rand index (ARI) with the R package ari-
code (v1.0.0) [43]. Community structure was also char-
acterized by the number of communities identified and 
modularity, where higher modularity values indicate 
more distinctive communities. Important nodes, iden-
tified using degree centrality, were compared across 
networks by calculating their agreement, as a percent, 
on the top 20 central nodes. Edge similarity was calcu-
lated using the percent of edges in common between 
network pairs. Across all networks, overall similarity of 
community structure, and central node and edge agree-
ment, was quantified using the median and the 25th 
(Q1) and 75th (Q3) percentiles.

Network edges were compared using categorized 
prevalence of co-occurring disease pairs. Based on the 
prevalence distribution across all 167 Johns Hopkins 
disease categories, disease prevalence was categorized 
as low (< 1%), moderate (1 to < 7%), and high (≥7%). 
The percent of edges in each category was used to 
describe the tendencies of the co-occurrence measures 
in estimating association strength. Joint prevalence 
and prevalence difference distributions were described 
using the median and Q1-Q3 range.

Network complexity was characterized using density 
(i.e., the ratio of the number of edges present in a net-
work to the number of possible edges between all node 
pairs), and frequencies of nodes and edges.

Results
Cohort
Out of 1,510,678 Manitoba residents with Manitoba 
Health insurance coverage between fiscal years 2015/16 
and 2018/19, 610,427 (40.4%) had no chronic disease 
diagnosis recorded, 282,340 (18.7%) recorded a single 
chronic condition diagnosis, and 617,911 (40.9%) had 
two or more chronic condition diagnoses and were 

Table 1  Characteristics of Manitoba residents with multimorbidity (n = 617,911), 2015/16-2018/19

Characteristics were measured at study exit date

Characteristic N (%)

Sex

  Male 283,674 (45.9)

  Female 334,237 (54.1)

Age group (years)

   < 20 43,072 (7.0)

  20-39 102,750 (16.6)

  49-59 189,300 (30.6)

  60+ 282,789 (45.8)

Residence location

  Rural 221,923 (35.9)

  Urban 395,907 (64.1)

  Unknown 81 (< 0.1)

Income quintile

  Q1 (lowest) 120,654 (19.5)

  Q2 121,899 (19.7)

  Q3 127,697 (20.7)

  Q4 119,901 (19.4)

  Q5 (highest) 115,384 (18.7)

  Unknown 12,376 (2.0)

Chronic conditions

  2-3 304,084 (49.2)

  4-5 150,938 (24.4)

  6+ 162,889 (26.4)
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included in the network analysis (Table  1, Fig.  2). The 
median age of individuals with multimorbidity was 
considerably higher (57 years, Q1-Q3: 41-70) than indi-
viduals with one chronic condition (33 years, Q1-Q3: 
18-49) or without any chronic disease (24, Q1-Q3: 
11-37). There were a higher percentage of females 
(54.1%) and urban residents (64.1%) with multimor-
bidity than without (47.1% female, 61.3% urban). There 
were only minor differences in the distribution of soci-
oeconomic status (income quintile) between those with 
and without multimorbidity.

The five most prevalent MEDC categories in the 
study cohort were cardiovascular (29.1%), psychosocial 
(17.0%), endocrine (17.0%), musculoskeletal (12.7%), and 
allergy (9.4%). Hypertension was the most prevalent EDC 
category (22.5%), followed by depression (11.1%), disor-
ders of lipid metabolism (9.8%), degenerative joint dis-
ease (9.1%), type 2 diabetes mellitus (9.0%), and asthma 
(9.0%). Hypertension was the most prevalent EDC cate-
gory among both males (22.2%) and females (22.9%). Fol-
lowing hypertension, the most prevalent EDC categories 
among males were disorders of lipid metabolism (10.5%), 
type 2 diabetes (9.4%), asthma (8.2%), depression (7.7%), 

Fig. 2  Study flow diagram
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and degenerative joint disease (7.5%); while depres-
sion (14.4%), degenerative joint disease (10.7%), asthma 
(9.9%), disorders of lipid metabolism (9.1%), and hypo-
thyroidism (8.9%) were the next most prevalent condi-
tions among females.

Disease association analysis
Out of 9138 pairwise disease co-occurrences with joint 
frequencies ≥15, 1293 (14.1%) were excluded due to 
being either non-significant (i.e., p-value > 0.01) or non-
positive (i.e., phi < 0). After exclusions, 7845 associations 
remained for the analysis. Since network density is not 
modified by edge weight, network density was constant 
(0.57) for all seven networks constructed with different 
co-occurrence measures when all edges (n = 7845) were 
included (N nodes = 166).

Networks constructed by limiting the number of 
associations differed in their density and number of 
nodes (Table  2). For pairwise networks constructed 
using the strongest 200 associations, the network with 
the least number of nodes (n = 56 for joint prevalence) 
had the highest network density (0.13), while the two 
networks with the greatest number of nodes (n = 114 
for relative risk; n = 123 for Kulczynski) had the low-
est network density at 0.03. As more associations were 
included, variation in the number of nodes and net-
work density decreased between the networks. For the 
pairwise networks constructed with the strongest 50% 
of associations (i.e., n = 3922 associations), the number 
of nodes ranged from 150 to 166 and network density 
varied between 0.29 and 0.35.

Network visualization
Including all statistically significant pairwise associations 
produced dense network visualizations that were diffi-
cult to interpret (Supplementary Fig 1, Additional File 1). 
Reducing complexity by selecting the strongest 200 

EDC associations produced more interpretable net-
work diagrams (Figs.  3 & 4; Supplementary Figs.  2-6, 
Additional  File  1). Visual interpretability of the disease 
networks limited to the top 200 associations varied 
depending on the association measure used to construct 
the network.

Co‑occurrence relationships characterized by disease 
prevalence
Different co-occurrence measures estimate higher asso-
ciation strengths for different types of relationships, 
in terms of the prevalence difference between disease 
pairs. These preferences by association measures result 
in certain pairwise chronic disease relationships being 
emphasized more than other combinations, when limit-
ing networks to the strongest associations. Differences 
based on disease prevalence were more pronounced 
between networks when using a smaller number of 
the strongest associations and decreased when includ-
ing 50% (n = 3922) of all statistically significant asso-
ciations (Table  3, Fig.  5; Supplementary Figs.  7 & 8, 
Additional File 1).

Networks based on lift and relative risk accentuated co-
occurrence relationships between pairs of low prevalent 
(< 1%) conditions, at 72.5 and 59.0% respectively (Table 3, 
Fig.  5). The percentage of edges highlighting co-occur-
rences between two low prevalent conditions in the other 
five networks ranged from 0% (joint prevalence) to 9.5% 
(phi). Lift and relative risk also highlighted a higher pro-
portion of relationships between moderately prevalent (1 
to < 7%) and low prevalent conditions, compared with the 
other co-occurrence measures.

Relationships between two moderately prevalent con-
ditions were emphasized by phi, Jaccard, and cosine 
based networks: 36.5, 46.0, and 30.0%, respectively. 
Phi, Jaccard, and cosine also emphasized relationships 
between highly and moderately prevalent diseases: 27.5, 

Table 2  Global properties for multimorbidity networks constructed with select association measures

a Disease network was limited to the 200 strongest associations (i.e., largest effect size)
b Disease network was limited to the strongest 50% (n = 3922) of all statistically significant associations

Association 
measure

Top 200 associationsa Top 50% of associationsb

N nodes Density Modularity N communities N nodes Density Modularity N communities

Lift 108 0.04 0.72 13 165 0.29 0.30 6

Relative risk 114 0.03 0.60 13 166 0.29 0.43 5

Phi 87 0.05 0.43 17 164 0.29 0.19 4

Jaccard 72 0.08 0.37 14 150 0.35 0.16 5

Cosine 73 0.08 0.37 11 161 0.31 0.15 4

Kulczynski 123 0.03 0.37 8 166 0.29 0.14 5

Joint prevalence 56 0.13 0.08 3 151 0.35 0.07 2
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28.5, and 39.5%, respectively. The majority of the edges in 
the Kulczynski-based network represented relationships 
between conditions of high and low prevalence (40.0%), 
and between highly prevalent and moderately prevalent 
conditions (28.5%). Relationships between conditions of 
high and low prevalence only constituted up to 4.0% of all 
edges in the other six networks.

Measuring co-occurrence using joint prevalence 
resulted in the highest percentage of edges connecting 
highly prevalent and moderately prevalent disease nodes 
(69.5%). Joint prevalence and Jaccard produced networks 
with the most connections between two highly prevalent 
conditions (7.5%). Correspondingly, the joint prevalence 

network had the highest median joint prevalence (0.7%, 
Q1-Q3: 0.6-1.2%). Lift and relative risk based networks 
did not contain any edges between two highly prevalent 
disease nodes, while associations between pairs of highly 
prevalent conditions accounted for 3.0 to 6.5% of the 
edges in networks built using phi, cosine, and Kulczynski.

The median difference in prevalence between pairs of 
co-occurring conditions was lowest for lift (0.3%, Q1-Q3: 
0.1-0.8%) and relative risk (0.4%, Q1-Q3: 0.1-1.3%); 
and highest for Kulczynski (17.9%, Q1-Q3: 3.6-22.0%) 
(Table 3). There was less variation in the distribution of 
prevalence differences among the seven co-occurrence 

Fig. 3  Multimorbidity network with associations measured using relative risk, limited to the 200 strongest associations. Node diameter and font size 
are proportional to prevalence, edge weight (thickness) is proportional to effect size, and node and edge color indicate community structure (i.e., 
disease clusters). ESRD = end-stage renal disease, HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome
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measures when 50% of all statistically significant associa-
tions were included.

Network edge similarity
Disease networks constructed using different co-occur-
rence measures were dissimilar in terms of the edges 
included in the top 200 associations (Fig.  6), with edge 
agreement (percentage of co-occurrence relationships in 
common) ranging from 1.5% for lift and joint prevalence 
to 86.5% for lift and relative risk. Phi- and Jaccard-based 
networks had moderate agreement with the cosine-based 

network (83.0 and 79.5%). Phi and Jaccard had moderate 
agreement (78.0%), while the remaining network pairs 
had lower agreement with a range from 5.0 to 63.5%. 
Median agreement (37.0%, Q1-Q3: 20.0-53.5%) among 
the network pairs was much lower when limited to the 
200 strongest associations, than when the top 50% of all 
statistically significant associations were used to con-
struct the networks (68.5%, Q1-Q3: 58.7-83.9%; Supple-
mentary Fig. 11, Additional File 1).

Fig. 4  Multimorbidity network with associations measured using phi, limited to the 200 strongest associations. Node diameter and font size are 
proportional to prevalence, edge weight (thickness) is proportional to effect size, and node and edge color indicate community structure (i.e., 
disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease
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Community structure
Community structure differed considerably amongst 
networks constructed using different co-occurrence 
measures. The number of communities detected had 
the largest range (3 to 17) between networks limited 
to 200 strongest associations (Table  2). However, net-
works also had considerable dissimilarity in the number 

of communities detected when all statistically signifi-
cant associations were included (3 to 7) and when lim-
ited to the strongest 50% of all statistically significant 
associations (2 to 6). Modularity, a measure of how well 
a network separates into communities, also widely var-
ied between networks limited to the 200 strongest asso-
ciations (0.08 to 0.72) but variation decreased when 

Table 3  Joint prevalence and prevalence difference distributions among multimorbidity networks constructed with select association 
measures

Data are presented as median (Q1-Q3), where Q1 = 25th percentile and Q3 = 75th percentile

Joint prevalence and prevalence difference measured between disease node pairs
a Disease network was limited to the 200 strongest associations (i.e., largest effect size)
b Disease network was limited to the strongest 50% (n = 3922) of all statistically significant associations

Association measure Top 200 associationsa Top 50% of associationsb

Joint prevalence Prevalence difference Joint prevalence Prevalence difference

Lift 0.0 (0.0-0.0) 0.3 (0.1-0.8) 0.0 (0.0-0.0) 0.9 (0.4-1.9)

Relative risk 0.0 (0.0-0.1) 0.4 (0.1-1.3) 0.0 (0.0-0.0) 1.0 (0.4-2.1)

Phi 0.4 (0.2-0.9) 2.2 (0.6-6.3) 0.0 (0.0-0.1) 1.4 (0.6-3.4)

Jaccard 0.5 (0.3-1.1) 2.0 (0.5-5.0) 0.0 (0.0-0.1) 1.1 (0.4-2.4)

Cosine 0.6 (0.3-1.2) 3.2 (1.1-7.7) 0.0 (0.0-0.1) 1.5 (0.6-3.8)

Kulczynski 0.4 (0.1-0.9) 17.9 (3.6-22.0) 0.0 (0.0-0.1) 2.3 (1.1-4.7)

Joint prevalence 0.7 (0.6-1.2) 6.8 (3.4-12.9) 0.0 (0.0-0.1) 1.7 (0.7-4.1)

Fig. 5  Percent of the 200 strongest associations characterized by prevalence, among select association measures. Prevalence was categorized as 
low (< 1%), moderate (1 to < 7%), and high (≥7%)
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networks included the top 50% of all significant asso-
ciations (0.07 to 0.43). When all statistically significant 
associations were included, modularity ranged from 0.07 
(joint prevalence) to 0.36 (relative risk).

Community structure similarity, as measured using 
the ARI, was strongest between phi and cosine in net-
works limited to the top 200 associations (ARI = 0.68) 
(Fig. 7), and between relative risk and lift (ARI = 0.49) 
and phi and cosine (ARI = 0.48) among networks 
limited to the top 50% of all significant associations 
(Supplementary Fig. 12, Additional File 1). Overall, co-
occurrence measurement differences resulted in poor 
community structure similarity: the median ARI was 
0.08 (Q1-Q3: 0.06-0.24) for networks including the top 
200 associations and the median ARI was 0.26 (Q1-Q3: 
0.24-0.32) for networks consisting of the top 50% of 
associations.

Nodes of importance
Since degree centrality is a non-weighted measure, net-
works that included all statistically significant edges with-
out limiting inclusion by effect size had identical degree 
distributions. When including all statistically significant 
associations, the five chronic condition categories with 
the highest degree centrality were: other endocrine dis-
orders, depression, major depression, sleep apnea, and 
asthma.

The selection of the top 20 disease categories with 
the highest degree centrality varied amongst networks 
constructed using different co-occurrence measures. 
Networks had a median agreement of 55.0% (Q1-Q3: 
25.0-75.0%) when limited to the top 200 co-occur-
rence relationships (Fig.  8; Supplementary Table  1, 
Additional  File  1) and a median agreement of 55.0% 
(Q1-Q3: 30.0-75.0%) when limited to the strongest 
50% of all significant associations (Supplementary 
Fig. 13, Additional File 1). When limited to the top 200 

Fig. 6  Percent of the 200 strongest associations in common between networks constructed using different association measures
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co-occurrences, agreement ranged from 5% between 
lift and joint prevalence to 95% between Jaccard and 
cosine. Agreement between two of the most com-
monly used measures among disease network studies, 
relative risk and phi, agreed on only 30% of the top 20 
central nodes. When 50% of all statistically significant 
associations were included, agreement was strongest 
between Kulczynski and joint prevalence (95% agree-
ment), and weakest between lift and Kulczynski (20%) 
and between lift and joint prevalence (20%).

Discussion
Measuring disease co-occurrence is essential when con-
structing multimorbidity networks to determine the con-
necting links between disease nodes and the strengths of 
these co-occurrence relationships, which serve as edge 
weights. Different association measures highlight dif-
ferent co-occurrence relationships, in terms of disease 
prevalence, based on which relationships are assigned 

higher association estimates. In weighted disease net-
works where effect size estimates are used as edge 
weights, differences in co-occurrence measurement 
influence community detection algorithms and node 
centrality measures that use edge weights in their calcu-
lations. Unweighted measures such as network density 
and degree centrality are not affected by the choice of co-
occurrence measures unless network links are excluded 
based on effect size cut-offs. When limiting the number 
of edges in a network by effect size, to produce a visually 
interpretable diagram, choice of co-occurrence measure 
can have a significant impact on network structure and 
network analysis inferences. Evaluating the accuracy 
or validity of a network requires a ground truth against 
which to compare network structure. Since there is no 
ground truth for a chronic disease co-occurrence net-
work, this study used descriptive methods to highlight 
the impact that co-occurrence measurement has on net-
work analysis.

Fig. 7  Community structure similarity between multimorbidity networks limited to the 200 strongest associations. Community structure similarity 
was measured using the adjusted Rand index (ARI)
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This study showed the majority of the highest associa-
tions measured using lift and relative risk pertained to 
co-occurrence relationships between pairs of low preva-
lence conditions. In contrast, the strongest associations 
in the joint prevalence network included highly-prevalent 
conditions, while the Kulczynski measure emphasized 
relationships between high and low prevalence condi-
tions. Phi, Jaccard, and cosine emphasized associations 
with moderately-prevalent conditions. Comparing Jac-
card and cosine, Jaccard tended to prefer co-occurrence 
relationships between diseases of similar prevalence, 
while cosine assigned slightly less emphasis to events of 
similar frequency.

The results from the current study concur with Hidalgo 
et  al., who compared disease co-occurrence networks 
constructed using RR and φ and found the network 
constructed with RR to have a greater number of low 
prevalence conditions and the φ-based network to be 
characterized by more prevalent conditions [10]. In 

addition to describing network edges by disease preva-
lence, the current study also showed the impact that 
disease co-occurrence measurement has on community 
structure and node centrality—items not discussed previ-
ously in literature. Along with contrasting RR and φ, this 
study also compared disease networks constructed using 
lift, a measure commonly used in conjunction with asso-
ciation rule mining, and null-invariant measures (cosine, 
Jaccard, and Kulczynski), which have been suggested 
for use with sparse data such as disease status matrices 
[26]. The differences amongst the null-invariant meas-
ures observed in the current study agree with Wu et al., 
who described the preference of Jaccard for relationships 
between events of similar frequency, Kulczynski for rela-
tionships between frequent and rare events, and cosine as 
being situated between these two in terms of the relation-
ships that receive the highest association estimates [27].

Although there has been only limited research about 
the effect that the choice of association measure has on 

Fig. 8  Agreement on the 20 most central nodes between networks limited to the 200 strongest associations. Node centrality was measured using 
degree centrality
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disease network structure, some studies have exam-
ined the intrinsic properties of association measures 
including the inversion invariance and null invariance 
properties, which are important considerations when 
choosing an appropriate measure of association [26, 27]. 
The inversion invariance property refers to stable asso-
ciation estimates when events (i.e., presence of disease) 
and non-events (i.e., values indicating absence of disease) 
are flipped [26]. Association measures that are inver-
sion invariant, such as φ, assign equal importance to co-
presence and co-absence and their association estimates 
remain constant when disease status is inversed. Asso-
ciation measures that are not inversion invariant may be 
better suited for asymmetric binary data, such as disease 
co-occurrence data, where absence of disease outweighs 
the number of positive cases [26]. Null invariance refers 
to constant effect estimates when there is an increase in 
the total number of records with neither event of interest 
(i.e., an increase in the number of disease-free individu-
als). Cosine, Jaccard, and Kulczynski are null-invariant 
measures of association, while φ violates the null invari-
ance property. Lift, RR, and joint prevalence are neither 
inversion invariant nor null invariant. Like inversion 
invariance, null invariance is an important considera-
tion for disease co-occurrence analysis since disease sta-
tus matrices typically contain a large proportion of null 
transactions (observations that do not contain any of the 
events of interest) [27]. However, assessing the appropri-
ateness of an association measure is still difficult even 
after an examination of its intrinsic properties. By outlin-
ing the tendencies of association measures to emphasize 
certain types of co-occurrence relationships, our study 
provides an additional empirical basis to aid researchers 
in selecting an appropriate co-occurrence measure.

The current study has a number of strengths. Extract-
ing diagnoses from both hospital and physician data 
aids in providing a comprehensive picture of chronic 
disease patterns in the Manitoba population [44]. 
Furthermore, the administrative health data used in 
this study had excellent population coverage since the 
data are based on a single public insurer that effec-
tively captures healthcare system encounters for all 
Manitoba residents, with few exceptions—resulting in 
excellent generalizability of the observed chronic dis-
ease patterns at the population level. Utilizing precise 
ICD diagnostic codes (i.e., up to five digits) minimized 
misclassification errors and allowed for the defini-
tion of certain disease categories that cannot be dis-
tinguished from one another when only using 3-digit 
codes. Finally, the large number of chronic condition 
categories under analysis facilitated the examination of 
many potentially interesting disease patterns that are 

obscured when using a more limited number of catego-
ries based on a comorbidity index.

Despite the strengths of this study, there are some 
limitations. The true distribution of chronic disease in 
the underlying population can differ significantly from 
disease patterns observed within administrative claims 
data. Since chronic conditions were defined through 
contact with the healthcare system, disease information 
may have been inadequately captured for individuals 
with limited access to healthcare services or for condi-
tions which individuals are less likely to seek treatment. 
Consequently, there will be missing links or underesti-
mated edge weights for relationships involving under-
reported health conditions within the structure of the 
disease co-occurrence networks. To increase diagnos-
tic precision, this study was constrained to the 4-year 
period when diagnoses in physician billing claims were 
coded with up to five digits; but in doing so this study 
did not capture diagnoses that were only recorded in 
earlier time periods. This reduced observation period 
may have resulted in understating co-occurrence for less 
prevalent conditions or conditions that are infrequently 
documented in billing claims. All diagnoses observed 
during the 4-year study period for a specific individual 
were treated as persisting during the entire time period, 
which may have resulted in overstating certain co-
occurrence relationships since diseases that may have 
been in remission were still considered as co-occurring 
with other conditions after the point of remission. Due 
to the relatively large number of chronic condition cat-
egories under consideration, it was not feasible to use 
complex case definitions to ascertain disease status 
based on diagnosis code counts. Simplified case defini-
tions based on single diagnosis codes were used to mark 
disease status and misclassification may have occurred 
due to diagnostic coding errors. Finally, the constructed 
disease networks can be useful for generating hypoth-
eses and visualizing disease patterns; however, disease 
progression was not considered in this study and net-
work properties, such as node centrality, should not be 
used for causal inference [45].

Researchers must make several methodological 
choices when seeking to conduct a multimorbidity net-
work analysis. In addition to choosing a measure of 
association, researchers must choose from many differ-
ent community detection techniques, and node central-
ity and network complexity measures. While this study 
discusses approaches to choosing an association meas-
ure, researchers seeking to conduct a disease co-occur-
rence network analysis will also benefit from future 
studies that develop guidelines on choosing from these 
other network methods. Administrative health data are 
available in many jurisdictions and the methodology 
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used in the current study can be applied to compare 
population-level chronic disease patterns across juris-
dictions and between population sub-groups defined by 
determinants of health such as region of residence or 
socioeconomic status.

Conclusions
The choice of co-occurrence measure affects our inter-
pretation of population-level multimorbidity patterns 
obtained using network analysis by influencing which 
diseases co-occur with many other conditions within a 
population (i.e., node centrality), how disease clusters are 
defined (i.e., network community structure), and network 
complexity estimates (i.e., network density). Compar-
ing networks constructed using different co-occurrence 
measures, many of the diseases that clustered together 
were similar but clusters differed by size and in terms of 
the nodes that were central to the clusters. Although the 
selection of a co-occurrence measure can be challeng-
ing given the lack of a ground truth to evaluate against, 
knowing the tendencies of different co-occurrence 
measures allows researchers to make informed choices 
based on their research goals. Co-occurrence measures 
should be selected considering their intrinsic properties, 
research objectives, and the health condition prevalence 
relationships of greatest interest. Researchers should 
consider conducting sensitivity analyses using different 
co-occurrence measures.
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