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ABSTRACT

This thesis deals with complexity reduction of Continuous Phase Modulation (CPM)
receivers. Complexity reduction is vital for the implementation of the most power- and
bandwidth-efficient CPM schemes as optimal detection is too expensive. Both the filter
bank and the sequence estimation algorithm are considered.

First, CPM signal sets are decomposed to allow complexity reduction of the matched
filter bank, the first stage in the receiver structure. A simple method for calculating the
dimensionality of CPM signal sets is presented and it is shown that virtually all CPM
schemes given in the literature need fewer matched filters for optimum detection than
previously thought. Several schemes which require a small number of filters are presented
and are shown to perform poorly compared to schemes with more complex signal sets. A
suboptimal filter bank for these more complex schemes is developed.

The second stage of the receiver structure is the sequence estimation algorithm.
Here a sequential algorithm, namely the Stack Algorithm, is applied to search the CPM
state transition graph. This algorithm performs as well as the maximum likelihood Viterbi
Algorithm in terms of error performance while requiring much less time to search the
graph. However, simulations show that the Stack Algorithm is sensitive to adjacent
channel interference and that care must be taken to model the channel properly.
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CHAPTER 1. INTRODUCTION

Continuous phase modulation (CPM) has been an area of intense research over the
past decade. CPM schemes are more power- and bandwidth-efficient than their predecessors.
and because of the many different possible configurations, there has been no lack of
research topics. At the same time, the field has matured to a stage where the advantages
and disadvantages of CPM have been recognized. The advantages of choosing a CPM
modulation over one of the fundamental modulations, for example binary phase shift
keying (BPSK) or quadrature amplitude modulation (QAM), are due to the restriction of
phase continuity.

The most obvious advantage of phase continuity is bandwidth efficiency. Because
CPM signals have smooth phase transitions from one symbol interval to the next, their
bandwidth requirements are dramatically reduced from those digital modulations which
allow discontinuities. A further advantage is power efficiency. Phase continuity can be
considered a type of coding performed on the information to be transmitted, and the
memory introduced by this "coding" can be exploited to achieve more noise immune
schemes. Moreover, CPM signals have a constant envelope which enables the receiver to
use a cheaper, more power efficient nonlinear amplifier. Thus, phase continuity enhances
both the power and bandwidth characteristics of a modulation. The price paid for these
advantages is implementation complexity at the transmitter and, more importantly, at the
receiver.

The primary disadvantage of CPM is that the complexity of the optimal receiver
becomes impractical for the most efficient schemes. The reason for this is that, because
phase continuity introduces memory into the modulating process, the receiver must take
this memory into account. This is done by using a graph search technique such as the
Viterbi Algorithm to search the state transition graph defined by the CPM process (assuming
maximum likelihood sequence estimation is desired). Moreover, because CPM schemes
are nonlinear in general, the optimal receiver may require a large filter bank to obtain the
necessary statistics for detection. Such factors will usually require the system designer to
use a suboptimal detection scheme, both in terms of the filter bank and the graph search
technique, but before becoming immersed in such detail, a brief historical introduction is

given.



1.1. BACKGROUND

Continuous phase modulated schemes were introduced before 1963 at which time it
was already well-known that CPM was more bandwidth efficient than non-continuous
modulations [8]. However, it was not realized that knowledge of phase continuity should
be used in designing the receiver. Ie. the signal was only observed over one symbol
interval, thereby not using the full potential of phase continuity. This was discovered by de
Buda [9] who also presented a simple receiver structure for a particular CPM scheme.
Further work in designing more bandwidth efficient schemes and a practical transmitter
and receiver was done by de Jager and Dekker [25]. Soon thereafter, many different
approaches appeared (multi-h [3], partial response [14] and Aulin et al. [6] who analyzed
CPM schemes in great detail). This led to the publishing of the text Digital Phase Modulation
[1] in 1986, a book which is the standard reference in the area of CPM. The large
bibliographies at the end of each chapter of this text bear witness to the huge amount of
work done up to 1986. Since then, research has begun to focus more on implementation
issues [5,23,24,35] and coding [17,22,29,33,34,39,46].

Complexity reduction for CPM modulations, both in terms of hardware and
computations, is a crucial issue because optimal detection requires complex receivers. In
[1, Chapter 8] simpler schemes for both the matched filter bank and the detection algorithm
are presented. Some of these approaches yield excellent results and are useful for
implementation. At the same time, there are still many open questions regarding CPM.
For example, the signal set of the most power- and bandwidth-efficient schemes is very
large and not much is known about its properties. Also, the suboptimum detection schemes
are known to work well in the additive white Gaussian noise channel, but less is known
about their performance under more severe and realistic channel impairments such as
adjacent channel interference (ACI). These questions are addressed in the sequel, but first
the communications mode] is introduced.

1.1.1. Models

The communications model considered here is given in its most general form in
Figure 1.1. The sender transmits digital information, ¢, via a modulator through a channel
which corrupts the transmitted signal, s(t). The corrupted signal, r(t), is received by the
demodulator and the information is estimated based on r(t) and knowledge of the modulation
process. The estimated information, o, will in general be different than the input data




stream and it is the receiver's job to ensure that o is as close as possible to the transmitted

information, based on some measure of closeness.

s(t) r(t)

o
| Modulator | gl Channel | ____ g lDemodulator| g

Figure 1.1. The communications model.

In designing and analyzing modulation schemes for this type of model, it is imperative
that one choose a channel model which is both practical and easy to analyze. The model
most widely used for this purpose is, of course, the Additive White Gaussian Noise
(AWGN) channel. The received signal is given by: r(t) = s(t)+n(t) where n(t) is a white
Gaussian stochastic process with spectral height N /2. Under this type of noise, signals
can be analyzed using Euclidean space geometric concepts. This is further developed
below, once the CPM model is introduced.

The CPM Model
The equations defining a CPM signal are:

s(t) = '\/ % cos(2nfct + ¢(oc,t))

(1.1)
n
o(out) =2mh Y o; q(t4T) , nT<t< (+D)T
i=0
where: E is the energy of s(t) per symbol interval, T,

f. is the carrier frequency,

h is the modulation index,

o; € {-M-1), -(M-3),...,.M-1},

M is the size of the input symbol alphabet and
q(t) is the phase pulse.

The above equation, by itself, does not yet define a continuous phase modulated signal; to
do so one must restrict q(t) to be a continuous function of time. The phase response is

usually further restricted:



/o <0

q® = (1.2)
\12 ,t=LT

where L is the length of the frequency pulse, f(t), which is simply the derivative of q(t). If
L=1, the CPM scheme is termed full-response and if L>1 itis called partial response. The
restrictions of equation (1.2) are applied to maintain causality and to normalize q(t). Note
that the phase pulse is not finite. Modulation schemes with this property (and the property
that £(t) is finite) are sometimes referred to as frequency modulations, whereas schemes
with finite q(t) are referred to as phase modulations.

Examples of often used phase pulses are shown in Figure 1.2. The motivation for
choosing pulses of this kind is as follows:

1) The rectangular phase and frequency pulses, termed REC or LREC, are the
simplest CPM schemes. The REC phase pulse is also the scheme with the
smallest maximum slope, a property which translates into a small main lobe in
its power spectral density (PSD). At the same time, the frequency pulse is
discontinuous which adversely affects the asymptotic spectral performance.

2) The raised cosine phase and frequency pulses, termed RC or LRC, are smoother
than REC. Because of this, an RC pulse yields good asymptotic spectral
performance. However, the maximum slope of the RC phase pulse is twice as
large as that of REC, a property which degrades main lobe performance.

These two points have described some aspects of the bandwidth properties of REC
and RC schemes. Other important properties include the error performance and receiver
complexity; these factors are considered in detail in Chapter 3.

State Representation

The receiver must estimate the transmitted data based on the corrupted signal, r(t).
To do this it is useful to have a state representation of the modulating process at the
transmitter. Consider again equation (1.1). Based on the restrictions of equation (1.2) one

can write:
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Figure 1.2. RECtangular and Raised Cosine pulses.




ooty = ZTChi o; q(t-iT)

i=0
n-1 n-L
= 2mhog(t-nT) + 2nh Y, o q(t+iT) + whY, oy (1.3)
i=n-L+1 i=0
= Oc(0n,t) + Ocp(x,t) + B cr)

where:
0(0tn,t) is the phase due to the current symbol. »
Ocp{ct,t) is due to q(t) extending over more than one symbol interval. The

vector of L-1 symbols determining Oy is called the correlative phase
state.

0p(t) is termed the phase state and is due to q(t) being semi-infinite.

The above decomposition allows one to represent a CPM signal by a state transition
sequence where the actual states are defined by the correlative phase state and the phase
state, as determined by the vectors:

Xep = [aﬂ-l’ 0Ln~2""’0‘n-1..+1:| and

(1.4)
Xp= [OhLs OpL 15e5Cl0)

respectively. Thus, the transmitter follows a path through a graph where the next state is
determined by the present state and the next symbol. Considering a CPM signal in this
fashion is extremely useful in designing the receiver; to sequentially estimate the transmitted
information the receiver should try to find the path followed by the transmitter. The
manner in which this is done depends to a certain degree on the modulation index, h.

When h is irrational, the number of possible 8(ct) grows indefinitely as n increases.
In this case a tree graph search technique must be employed. When h is rational, one can
write h=k/p, where k and p are relatively prime and the number of possible 6(ct) is limited
to p and 2p if k is even and odd, respectively. In this case the graph collapses into a trellis
and a trellis search technique such as the Viterbi Algorithm can be used. Rational modulation
indices are used throughout the rest of this chapter.




An Alternate Representation

More insight into the nature of a CPM signal is gained by allowing the use of an
M-ary alphabet different than the one given in equation (1.1). Suppose the information
symbols to be transmitted are U; € {0,1,...,M-1}. These symbols can easily be accommodated
in equation (1.1) by a simple substitution: o; = 2U; - (M-1). The phase in equation (1.1)
then becomes:

O(U,1) = 2nhi [2U; - (M-1)] g(t4T)

i=0
= 4nhi U; q(tiT) - 21th(M—1)i q{t4T) (1.5)
i=0 i=0

= Yinfo(U,1) + W (t)

The second term above, y(t), is independent of the information sequence and can
be ignored in the ensuing discussion. Further, one can write ;¢ (U,t) as in equation
(1.3):

n-1 n-L
Vinto(U,t) = 4nhUng(t-nT) + 4nh~ >, Uig(tiT) + 2nh Y, U;
i=n-L+1 i=0

(1.6)
= 0(Un,t) + 04U, 1) + 0,(U)

Now if h=k/p there are only p possible 9;,(U) regardless of k. This is actually consistent
with the above where, even though 2p 8y(a) are possible for odd k, only p 6,(ct) are
possible in any given symbol interval. This was developed by Rimoldi [38]. Using this
fact, the number of states in a CPM scheme with rational modulation index can be enumerated.
There are p possible phase states and, since the correlative phase state is defined by a vector
of L-1 M-ary elements, there are M possible correlative phase states. Combining these
two numbers, the total number of states is pM™" (it is implicitly assumed that the information
symbols are statistically independent and that every symbol is equally likely in each symbol
interval; if the symbols are correlated, as in the case of coded information symbols, then the
number of states may be smaller [46]).

This alternate representation is adopted at times rather than the natural one of
equation (1.1), as it lends itself readily to the determination of the dimensionality of CPM
signal sets. More on this in Chapter 2, but consider now the CPM receiver.



1.1.2. The Optimal CPM Receiver

The optimal CPM receiver (optimal in terms of error performance) performs a
maximum likelihood sequence estimation (MLSE) on the received signal. In the AWGN
channel case, the MLSE detector can be described using well-known Euclidean geometric
concepts [43]. Every signal can be thought of as a point in a higher dimensional space and
the receiver simply locates this point, r(t), in this space. Since one is working in Euclidean
space, the maximum likelihood sequence is the one which corresponds to that transmitter
signal, s,(t), which is closest to r(t) in the squared distance or Euclidean norm sense; in

other words minimize:

fﬁ@ﬂ@%ﬁfﬁ%ﬂ#@&d{ﬂmmm (1.7)

0

with respect to all sequences, where N is the total number of symbols transmitted. Since
CPM signals have a constant envelope, the first integral in equation (1.7) is the same for all
sequences (up to double frequency terms) so that minimizing the squared distance is
equivalent to maximizing the correlation between 1(t) and s,(t). Furthermore, this correlation

can be written:

NT N-1 j @+1)T
fmwm=2d r(t) s;(t) dt (1.8)

n=0 T

so that sequence estimation can be performed on parts of the signal before the transmitter
finishes transmitting. To accommodate this, the estimation process is split up into two
parts: the matched filter bank which performs the symbol interval correlations and the
sequence estimation algorithm which combines these correlations to form the total correlation
of equation (1.8) (Figure 1.3).

Sufficient N
(0 Matched Statstics Sequence o
[RRU——— . . R i . N SO
Filters Estimation

Figure 1.3. The CPM receiver.



The Matched Filter Bank

Since CPM is in general a nonlinear modulation process, the most general receiver
will require as many filters as the size of the signal set. The transmitter can send out pM*
signals in any symbol interval (pM"" states and M symbols per state), so that not more than
pML filters are needed with each filter matched to, or performing the correlation for, one of
the signals in the signal set. However, some reduction is possible since the factor p comes
from the term 8p(at) in equation (1.1) which is a constant phase offset over a given symbol
interval. The set of p signals equal up to a constant phase offset lies in at most 2
dimensions so that not more than 2M" matched filters are needed for optimum detection of
any CPM scheme.

The filter bank will normally be implemented using baseband components so that a
baseband representation of equation (1.1) is useful:

S(t) = cos(znfct)[ e cos(q>(oc,t))] - sin(2nt,g) 4/ = sin((b(oc,t))]

= cos(2nf,t) I(a,t) - sin(2nf,t) Q(out) (1.9)

At the receiver, 1(t) is converted to baseband using phase synchronized quadrature product
detectors and a pair of low pass filters (Figure 1.4) [1].

1w
— & LPF o
() 2 cos (2xf,)
—_—
- 2 sin(2nf 1)
Qw
LPF |——p

Figure 1.4. The quadrature baseband receiver.




The baseband matched filters perform their correlation operations on the noisy
baseband components:

G+OT G+1T
C; = f 2r(t) syt dt = j [f Lt + Q) Qi(t)] dt

iT iT

- cosoy) |

iT

G+1)T G+1)T

1)) cos(B,+6p) dt - sin(6,,) f T sin(0,+6,,)dt  (1.10)

G+DT G+1T

+ sin(ep) Q) cos(ec+ecp) de + cos(ep) Q) sin(9c+ecp)‘dt

jT iT

where the approximation is due to ignoring the double frequency terms and the notation of
equation (1.3) has been adopted. The interval correlations in the j'th symbol interval, c;;,
are called branch metrics and are fed to the sequence estimation algorithm. Based on
equation (1.10), four baseband matched filters are required for each set of p signals. Two
of these filters are redundant due to the symmetry of the input symbol alphabet, so that one
is left with 2M" baseband matched filters, the same number as that needed for the high-
frequency filters. Because this number is the same, no distinction is made between these

two filters banks in the ensuing discussion and only the signal sets themselves are considered.

The Sequence Estimation Algorithm

Maximum likelihood sequence estimation is performed via the Viterbi Algorithm
which is really a brute force search through the trellis. The number of states is pM"! which
grows exponentially with the length of the frequency pulse, L. There are M branches
leaving and entering each state, only one of which can represent the maximum likelihood
path. Of all paths entering a state, only the one with the largest metric is kept; the other
paths are discarded. This algorithm and various issues concerning its implementation have
been widely studied (see [2,16,19], to name a few).

The primary disadvantage of the Viterbi Algorithm is the exponential growth in
complexity with L. Furthermore, the most power- and bandwidth-efficient CPM schemes
are those with large M and L. For these schemes the Viterbi receiver is too expensive. To
alleviate this problem, reduced complexity search techniques need to be employed. This is
further developed in Chapter 5.

10



1.2. SCOPE OF THESIS

Based on the above discussion, a vital issue in the practical implementation of CPM
receivers is how to attain near optimal performance with simple receivers. However,
before such receivers can be designed, the modulation process must be well understood.
Therefore, this thesis deals first with optimal receivers and the underlying signal set.
Chapter 2 analyzes the CPM signal set in some detail and leads to a broad discussion of
special phase pulses in Chapter 3. The second section of the thesis, chapters 4 and 5, deals
with suboptimal receivers. Chapter 4 addresses complexity reduction of the filter bank,
whereas Chapter 5 is concerned with sequential sequence estimation.
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CHAPTER 2. CPM SIGNAL SETS

This chapter focuses on CPM signal sets. The goal is to determine the dimensionality
of these signal sets since it is the dimensionality which determines the number of matched
filters required for optimum detection. For example, amplitude shift keying (ASK) has a
one dimensional signal set which can be demodulated with one matched filter, while
quadrature amplitude modulation (QAM) spans two dimensions and hence requires two
matched filters. In general, one matched filter will be required for each dimension.

A CPM signal set consists of pM" signals. The factor p is due to the constant phase
offsets which define the phase states, so that the maximum number of dimensions required
to represent any CPM signal set is 2M", where the extra factor of 2 comes from the
in-phase and quadrature components needed to obtain all phase offsets. However, for
virtually all CPM phase pulses given in the literature, the dimensionality of the signal set is
actually smaller than 2M". To show this, a subset of the signal set called the dynamic
signal set, as defined in section 2.1, is utilized. In section 2.2, the dimensionality of the
REC class of phase pulses is obtained and is found to increase only linearly with the length
of the frequency pulse, L. In section 2.3, the ideas of section 2.2 are generalized to other
CPM schemes. The results lead to a general classification of CPM pulses and to schemes
which require a small amount of hardware at the receiver (Chapter 3). Moreover, the
results lead naturally to a suboptimal reduced-complexity detection scheme, as discussed in
Chapter 4.

2.1. THE DYNAMIC SIGNAL SET

The pM" possible signals which the transmitter can send out during any symbol
interval can be subdivided into M" classes where each class contains p signals identical up
to a constant phase offset. For example, consider the duobinary (M=2, L=2) rectangular
frequency pulse scheme with h=1/2 (so that p=2). There are then pM"=8 signals in the
signal set, with M"=4 classes containing two signals each (Figure 2.1). Thus, for this
particular CPM scheme 2M"=8 matched filters are needed, one set of matched filters for

each class.
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Figure 2.1. Phase of the binary 2REC, h=1/2 signal set.

Based on the above discussion, in a given symbol interval any CPM signal can be
represented in the 2M" dimensions (using equation (1.5)):

L1
Dy, = cos (Z‘Irfct +y(t) + 4nhz U,;q(t-iT) + DZL) 2.1
i=0

where U is one of the M" M-ary vectors of length L and n=0,1. However, the simplification
need not stop here. It turns out that the sum in this equation contains many redundant
terms; the problem is in determining how this redundancy comes about. To do this,
partition the CPM signal set into a set of classes for which each class contains @/l of the
signals identical up to a constant phase offset. Define this set of classes as the dynamic
signal set, S; each class is represented by that signal which starts at zero phase. The size of
the matched filter bank for optimum detection is therefore determined by the size of the
dynamic signal set. In the next section, the number of such classes is counted for rectangular
frequency pulse CPM schemes.
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2.2. REC SCHEMES

A REC phase pulse is given by:
0 ,t<0
={_t_ 0<
q(t) AT 0<t<LT (2.2)
1/2 ,t=2LT

This class of pulses includes CPFSK (L=1) and MSK (M=2, L=1, h=1/2). The phase
state independent portion of the phase of a REC signal is given by:

. L-1
8(U,) = 4mh Y, Upq(tHT-nT)  ,nT<t< (n+1)T (2.3)
i=0

Inserting (2.2) into (2.3) yields an equation with two distinct parts:

i L-1 L-1 .
8(U,t) = 6,(U,t) + 0,(U) = 4xh Q—LITL;O Un_i] +4mh [Z{) U, %} (2.4)

The first term in the above equation defines the dynamic signal set, whereas the second
term is a "static” constant phase offset. This implies that the number of dimensions needed
to represent the signal set will not be more than twice the number of possible 6,(U,t). But

L-1
this is just twice the number of different values which the sum z U, ; in equation (2.4)
=0
L-1 '
can take on, and since 2 U_; € {0, 1,..., L(M-1)}, there are only IS| = L(M-1)+1 different
i=0

0,(a.,t). For example, consider again the duobinary CPFSK signal set. From Figure 2.1 it
is immediately apparent that there are only L(M-1)+1=3 distinct slopes in the signal set, as
opposed to M"=4. Thus, only six matched filters, rather than eight, are needed for
optimum detection. Such decreases in dimensionality were noticed by several authors
[1,14,22] and are consistent with results from partial response signaling [26].

The above indicates that the number of matched filters needed for optimum detection
of REC CPM schemes is 2IS| = 2[1L.(M-1)+1], a number which increases linearly with both
M and L and not exponentially as for general CPM schemes. Thus, optimal detection does
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not require a prohibitively large bank of matched filters, even for relatively large M and L.
For example, for M=4 and L=3 only 20 matched filters are needed instead of the 128 for
general schemes (it should be noted that REC schemes with M=2, L>3 and M>2", n>1,
L>1 exhibit undesirable distance properties; this is discussed in more detail in Chapter 3).

Since q(t) is a linear function, the REC dynamic signal set is particularly nice and
consists of L(M-1)+1 equally spaced frequencies:

=f, + %{-L(M-l) +2n] ,n=0,1,.., L(M-1) (2.5)
Other CPM pulses do not have as nice a representation. However, for most schemes,

some simplification is still possible.

2.3. OTHER CPM SCHEMES

The approach for REC can be generalized to other phase pulses. In the ensuing
discussion, a simple bound for the dimensionality of any CPM scheme is derived, as well
as results for particular schemes.

We reiterate that to obtain the number of dimensions spanned by a CPM signal set it
is necessary to count the number of different dynamic phase transitions possible over one
symbol interval. To do this, one must consider the individual "chips" of the CPM phase
pulse. This is illustrated with the following example.

2.3.1. An Example: The 4RC Pulse
The 4RC pulse has four unique chips, ignoring constant phase offsets (Figure 2.2).
Time translating each chip into the interval 0 <t/ T <1 yields:

= 1 Tt _t 1 Tt
Qo = ST v Sm(ZT)’ 10 =57 4nC°S(2T) 2.6
1 Tt - 1 Tt ’
QW) = g5+ 5,51 2T) BO = g5+ 4 COS(ZT)
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Figure 2.2. Chips of the 4RC pulse.

These four chips, however, are linearly dependent and can be expressed as:

L m
qo(®) 101 2™ ZT)
_la®m | o1 1yl 1 mt
Q) = g =QsBO=| | o |l "= cos(zT) Q2.7
q3() 0-11 Tt
. 8T

This expression is simply the representation of the 4RC chips by a linearly independent set
of chips which span the dynamic signal set, S, and thus B(t) forms a basis for the linear
space spanned by the elements of S. Of course, this basis is not unique. For example, one

could write:
[t 1 gfmt) ]
1 0 01| 8T 4= Sm(zT)
= = 010 ¢ _ 1 =&t
Q) =QgB®) 10 1|l 37 m COS(ZT) (2.8)
0-11 t
L 4T _
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It turns out that this second representation is more suited for our purposes.
The signal sent out in the n'th interval is:

et(t) 2[ U, Upg Upy Un-3] Q)

~ 2.9)
=U- Qg B(®)
Using the representation of equation (2.8), one obtains:
8,0 =UQg- B(1)
' B 2.10)

=[ Un - Un-2 Un-l - Un-3 Un-2 + Un-3 ] : B(t)

The actual number of signals possible is the number of unique vectors which U Qp
can become. This is just the size of the space generated by the rows of the 4x3 matrix Qg
when scalar multiplications by only the M-ary data symbols are allowed. For example, if
M=2 there are 2*=16 possible U but only 15 possible ﬁQB. Thus, the representation of
equations (2.7) and (2.8) gives us a straightforward approach to counting the number of
signals in the dynamic signal set.

Counting the number of unique U Qg is a brute force approach to counting the
number of possible signals. However, a simple upper bound can be obtained by noticing
that each element of U Qg can take on only 2(M-1)+1 values. Since each element represents
the contribution of one of the linearly independent portions of the dynamic signal set, the
size of this signal set, IS, cannot be more than:

ISI<[2(M-1) +1]3 =(2M - 1)3 (2.11)

This equation is only an upper bound because it is based on the assumptions that each
position in U Qg is independent and that all values between 0 and 2(M-1) can occur. The
former assumption is obviously not true here.

Equation (2.11) tells us that IS! increases asymptotically as 8M® and not as M*=M?*,
as for general CPM signals. It is now also clear why the second basis in equation (2.8)
gives a better upper bound on the size of the 4RC dynamic signal set. If the basis and
representation of equation (2.7) had been used and the same assumption of independence
had been made, the upper bound would have been: ISI<[2(M-1) + 1]2[4M-1) + 1]. In
general, the fewer and the smaller in magnitude the number of nonzero positions in Qp, the
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tighter the upper bound. For 4RC, the actual signal set size and the upper bound of
equation (2.11) for various M are given in Table 1 (for information regarding the software
written for this thesis, see Appendix C). Notice that the actual size of IS is not much less
than M* for small M, and that the 4RC dynamic signal set is quite large.

Table 1. Size of the 4RC dynamic signal set.

M M =M* Eqn. (2.11) Actual Size
(2M-1p

2 16 27 15
4 256 343 175
8 4096 3375 1695
16 65 536 29791 14 911

2.3.2. General Schemes
In the same manner as in the above example, one can obtain the size of the dynamic

signal set of arbitrary CPM schemes. The procedure is:

1) Obtain a basis for the space spanned by the chips of the CPM phase pulse.
From this form the basis vector B (t).

2) Find the matrix Qg, as in equation (2.7), which defines the phase pulse chip
vector, Q(t), via the basis vector B (t).

3) Find the number of unique U Qg by counting.

Instead of brute force counting of the number of unique U Qpg, one can assume that
every position in U Qg is independent to obtain an upper bound on the number of possible
signals. This upper bound can be obtained as follows:

1) Find the sum of the magnitudes of the numbers in each column of Q.
2) Multiply each sum by (M-1) and then add 1.
3) Multiply all the resulting numbers together.

The above procedure allows one to easily obtain upper bounds to the number of
signals in the signal set of any CPM scheme. For example, consider the class of frequency
pulses for which the second half of the pulse is a linearly dependent version of the first half
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raised up by some constant frequency. This class includes RC and can be represented by a
basis which has a maximum of [L/2] +1 elements, expressed as in equation (2.8) with two
numbers of magnitude one in the first [L/2] columns and [L/2] ones in the last column.

Thus, an upper bound to ISl is:

ISl <[20M-1) + Y2 L2101 + 1)

< {sz/ﬂ [le]} ML21+1 (2.12)

so that the size of the dynamic signal set increases exponentially as [L/2] + 1, and not as L
(in general, the exponential increase is simply the number of basis elements in B(t)). Asis
evident from Table 1, however, these reductions only become significant when ISl is large.
Thus, for schemes like RC where the basis actually has [L/2] +1 elements, the number of
matched filters needed for optimum detection, 2IS|, is prohibitively large even for small
values of M and L.

The construction of the signal set vector Q(t) from the basis vector B (t) suggests
that if one wants to optimally detect a CPM scheme with a reasonable number of matched
filters, the number of signals in the basis vector, B(t), should be kept small. Indeed, for
REC CPM the basis vector has one element: B (t)=t/2LT. In other words:

qo(t) 1
Qo=| 1Y |-QgBwm=| ! | (2.13)
qr1(0) 1

In this case the upper bound obtained by the method described above becomes exact since
the assumption of independence becomes valid: ISI=L(M-1)+1.

A simple generalization of REC is now possible: as long as IBl=1 (where |B]is the
number of basis elements), no matter what B (t) actually is, one will obtain ISI=L(M-1)+1
and therefore require only 2[L(M-1)+1] matched filters for optimum detection. This class
of phase pulses is called single basis phase pulses. It is reasonable to predict that a
judicious choice of basis B (t) other than that of equation (2.13) can yield better spectral and
distance properties than those of REC CPM. The design and performance of these schemes
is considered in the next chapter.

19




CHAPTER 3. SCHEMES WITH A SMALL FILTER BANK

The single basis phase pulses described in Chapter 2 have the advantage of requiring
a small number of matched filters for optimum detection. In this chapter, various CPM
schemes are considered based on the complexity of the matched filter bank when optimum
detection is desired. The schemes are compared in terms of their error performance and
spectral properties. In section 3.1, these performance measures are explained. The rest of
the chapter is organized in terms of the complexity of the matched filter bank: in section
3.2 single basis phase pulses and in section 3.3 double basis phase pulses are considered.
The results show that schemes with a small filter bank for optimum detection do not
perform as well as those schemes which have a more complex dynamic signal set. Detection
of the more power- and bandwidth-efficient schemes is considered in Chapters 4 and 5.

3.1. PERFORMANCE MEASURES

To compare the many CPM schemes considered in this chapter one needs certain
performance criteria. The performance measures basic to any modulation scheme are error
performance and spectral occupancy, both of which are considered in some detail here. Of
course, an equally important criterion is cost of implementation of the CPM system. The
many facets of cost, however, make it somewhat difficult to analyze, with engineering
issues ranging from circuitry and hardware to choice of carrier frequency and synchronization,
all of which are interrelated. One must, therefore, focus on a specific implementation issue
which in this chapter is the complexity of the analog portion of the receiver, viz. the
matched filter bank. The complexity of the digital portion of the receiver, the detection
algorithm, is considered in Chapter 5. (The issue of synchronization is not addressed here,
see [1,24,35].)

Error Performance

The error performance of any modulation scheme over the AWGN channel can be
analyzed using the concepts of Euclidean signal space [1,43]. The standard approach for
measuring error performance is briefly developed below, following the discussion in [1,
Chapter 2].

Assuming that all possible data signals, s;(t), are equally likely, the maximum
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likelihood receiver will choose that signal which is closest to the received noisy signal, r(t),
in terms of Euclidean distance. Since the noise, n(t), is a Gaussian stochastic process, the
probability of choosing signal s;(t) when s;(t) was sent is:

P (s;(t) chosen| s;(t) sent) = ﬁ V’y}lﬁ; exp(- N’%) dx (3.1)

1/2
where d;; = { f [sj(t) - si(t)]2 dt} is the Euclidean distance between the two signals, R is
IR
the region over which s; and s; are nonzero and N_/2 is the spectral height of the noise.

The total probability of error is then:

P, = Z P{s;(t) sent} P{error | s;(t) sent}

dx (3.2)

V&N,

< Z P{s;(0) vsent} {2 f 1 exp(— —I)\—{I—z—
i # /i °

d..
~ 1 R
= E [Number of s;()] E Q(ﬁN_o )

where the union bound was used, all signals s;(t) were assumed equally likely and Q is the

familiar Q-function: Q(x) = v——z—i—_ exp(- y2/2) dy. At high signal to noise ratios, P, will
Tc X
be dominated by the term dpyn = min dj; so that:
1#]
4 dz . )
~ —min
P.=K N, (3.3)

where it is assumed that every signal has K other signals a distance d,;, away. Experience
has shown that Equation (3.3) is a reasonable approximation even for moderate values of
signal to noise ratio (SNR) and because of the simplicity of this expression, dp;, (or drznin)
is commonly used as a performance measure. Further, this measure can be applied to
sequences to determine the probability of an error event occurring; an error event occurs

when the detection algorithm releases a path section not belonging to the transmitted path
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and ends when the transmitted path is reentered. The probability of error event is the
measure of performance for the simulation results presented in Chapter 5.

Normalizing the energy/bit to 1/2, dfmn for CPM signals is the minima of all (see
Equation 1.1):

& = f 80 - s dt = 19%2,—-1\4- f [1-cosfao )] et (3.4)
R R

i#]

where the high frequency terms were discarded and Ady(t) = Os,(t) - Os(1). Thé calculation
of drznin can be accomplished using a search procedure described in Appendix A of [1]. The
results of section 3.2 were obtained in this manner.

Spectral Properties

The spectral performance of a modulation scheme is measured by the amount of
bandwidth the scheme occupies. Since bandwidth is limited, it is important to use up as
little of it as possible. There are many different definitions for bandwidth, some of which
are listed in [12, p. 104]. A definition used by many (cf. [1,12,39]) is the frequency band
in which 99% of the total power resides.

Another important factor to consider is the adjacent channel interference (ACI)
caused by a particular modulation scheme. ACI is measured by the average power of the
modulation scheme in adjacent channels, so that some indication of ACI is given by the
asymptotic decrease in the level of the power spectral density (PSD).

In section 3.3, both the PSD and out-of-band power are considered as measures of
spectral performance. Both of these can be evaluated numerically using methods described
in [1,21,27]. The autocorrelation method given in [1, Chapter 4] was used here.

Energy-Bandwidth Comparison

Up to this point, the error and spectral performance have been considered separately.
It is easier to compare different modulation schemes by considering these two criteria
simultaneously in the energy-bandwidth plane [1]. The advantages and disadvantages of
the various schemes discussed in this chapter become more readily apparent using such an

approach.

Detection Complexity
The measure of cost used in this chapter will be the size of the matched filter bank
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for optimum detection. Other important measures of detection complexity are the amount
and type of hardware required for the detection algorithm (Viterbi Algorithm if optimal
detection is desired) and synchronization circuitry, as well as speed (computational
complexity). Some of these issues are dealt with in Chapter 4 and Chapter 5..

The next section deals with single basis CPM schemes since these have the simplest
signal set and the smallest matched filter bank. Itis shown that this simplicity comes at the
cost of both error- and spectral-performance.

3.2. SINGLE BASIS PHASE PULSES

In the previous chapter it was shown that, for optimum detection, single basis
phase pulses require only a linearly increasing number of matched filters with L, the length
of the frequency pulse. It was also mentioned that a proper choice of basis could possibly
yield better power and spectral properties than the REC scheme. The design of single basis
phase pulses is based on the following observations:

1) The REC basis, B(t)=t/2LT, yields a phase response, q(t), which is not smooth
at t=0 and t=LT. This causes the power spectral density (PSD) of this
scheme to fall off at a relatively slow rate asymptotically.

2) The distance properties of REC pulses are generally poorer than those of RC at
low modulation indices (h<1/2). However, one usually needs to use low
modulation indices to obtain good power-bandwidth properties.

The first observation suggests that choosing a basis, B(t), that produces a phase
response which is smooth everywhere should yield good spectral properties. For example,
one can choose a basis of the RC type (Figure 3.1):

Bre() = 51 - 727 st inf224) (3.5)
This phase pulse has the same degree of smoothness as does the usual RC pulse (although
the higher order derivatives are somewhat larger). Thus, one would expect that the PSD of
this pulse should decrease asymptotically at the same rate as RC pulses [7]. At the same
time, Bp(t) is very similar to the REC pulse and one would therefore expect the distance
properties of these two schemes to be very similar. The distance and bandwidth properties
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of the By ~(t) pulse are discussed in the next section.'

The second observation is concerned with error performance. It suggests that if
one could shape the REC pulse so that it more closely resembles the RC pulse, perhaps
better distance properties could be achieved. The shaping can be easily accomplished by
weighting each chip of the phase pulse (this is called partial response FM in [14]). For
example, the phase pulse vector for L=4 could become:

1
QM) = g B(1) (3.6)
1

This type of pulse is a reasonably good fit to the 4RC pulse and should yield similar
distance properties (or error performance). Using the results of section 2.3.2, this scheme
will require 2[8(M-1)+1] matched filters for optimum detection (note that, from equation
(2.12), 4RC requires on the order of 16M* matched filters). Weighted pulses of this type
are considered in section 3.2.2.

0.6
Eﬁ g //
@
=
%
= ya
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t

Figure 3.1. Single basis RC phase pulse.

' The properties of this particular phase pulse have been examined by Deshpande and
Wittke in [14], who found that the out-of-band power of such a scheme is rather large.
Nevertheless, we feel that the discussion of this phase pulse is necessary, especially in
light of the findings of Chapter 2.
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3.2.1. Single Basis RC

The error and spectral performances of the single basis RC pulse (abbreviated
SB-RC below) are now considered. As representative cases, results for M=2 and L=3,4
for different observation intervals are plotted in Figures 3.2 to 3.5 (the observation interval,
Nogs» is defined as the number of symbol intervals the receiver observes the received
signal; for example, for symbol-by-symbol detection the observation interval is 1). Recall
that the number of matched filters needed for optimum detection of these schemes is
2[L(M-1)+1] as opposed to 2M" for general CPM schemes.

Error Performance
From the minimum Euclidean distance plots (Figures 3.2 and 3.3) the following
observations can be made:

1) Both Figures: the distance profile of SB-RC follows very closely that of REC,
both for L=3 and L=4. This was expected, since these pulses are very similar,

especially for larger L.
4 : .
3 N
SN
d%nin 2
0.5 1.0 1.5

Modulation Index, h

Figure 3.2. d2;,for M=2,L=3 (N5 = 8).
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Figure 3.3. d2;,for M=2, L=4 (N5 = 10).

2) Figure 3.2: the RC pulse yields better distances at low modulation indices (h =
0 to 0.5). For example, at h = 0.5 the RC pulse is about 0.95 dB more power
efficient than either the REC or SB-RC pulses. This suggests that weighting
the pulse chips so that the resulting pulse is similar to RC will improve error
performance (see section 3.2.2). The price paid for such pulse shaping is an
increase in the number of matched filters required for optimum detection, as
mentioned above.

3) Figure 3.3: the REC and SB-RC pulses seem to perform much worse than the
RC pulse. The reason for this degradation is that there exist specific sequences
whose Euclidean distance from the correct sequence does not increase with
time. This effect occurs for M=2 when L>3 and for M=2" when n>1 and L>1.

The effect described in the third observation is not really as bad as it seems. In fact,
the distances given in Figure 3.3 come from the difference sequence +2,-2,-2,42,42,-2,-
2,42.... or -2,42,+2,-2,-2,+2,+2,-2,... (a difference sequence is the symbol-by-symbol
difference between two data sequences and is used in equation (3.4) to find d2.). Since
M=2, these two difference sequences can occur only if the data stream is -1,+1,+1,-1,-1,...
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or +1,-1, -1,+41,+1,..., respectively. The probability of either of these two sequences
occurring is, of course, vanishingly small. In practice the effect of such sequences depends
on the observation interval length, Nogs. The longer N 4 is, the less probable an error
event of this nature is. Thus, a better indication of the performance of such schemes, at
least for small modulation indices, is the distance of those paths which, after diverging
from the correct state, meet in the same state after the smallest number of symbol intervals,
namely N=L+1 (for larger modulation indices some minimum distance paths can meet
some multiple of 21t away in phase) [1]. Nevertheless, the effect of these sequences is not

desirable.

Spectral Properties
The spectral properties of the SB-RC pulse are compared with the REC and RC
schemes in Figures 3.4 and 3.5. From these figures:

SB-RC
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Figure 34. PSD’s for M=2, L=3, h=1/2.
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Figure 3.5. PSD's for M=2, L=4, h=1/2.

1) Asexpected, the PSD of the SB-RC pulse decreases at the same asymptotic rate
as the RC pulse. This statement, namely that the asymptotic decrease in PSD of
the single basis pulse is the same as that pulse from which it was derived, is
true for other single basis schemes. At the same time, the SB-RC PSD is larger
than the RC PSD at high frequencies, a consequence of the larger higher order
derivatives of the SB-RC's phase pulse.

2) The main lobe of SB-RC is much wider than that of either REC or RC. This is
caused by both the increase in maximum slope of the SB-RC pulse over REC
and the periodicity of the SB-RC pulse (the sum of the pulse chips is not a
linear function; see [38]). Again, this carries over to other single basis schemes
so that REC has the best main lobe performance of all single basis schemes.

From the PSD's of the SB-RC schemes, one would expect that their out-of-band
power performance is quite poor also. This is certainly the case (Figure 3.6). In Figure
3.6, B refers to the one-sided bandwidth containing 99% (and later 99.9%) of the in-band
power and T, is the time per bit. For this particular scheme (M=2, L.=3) the bandwidth of
SB-RC is much larger than that of REC at 99% in-band power (-20 dB out-of-band power)
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and becomes better only at 99.997% in-band power (-45 dB out-of-band power). Therefore,
single basis pulses other than REC may only be useful for such channels where a large
main lobe is acceptable, but it is important to avoid adjacent channel interference (note that
the RC scheme performs better than REC and SB-RC but requires more matched filters for
optimum detection). The poor performance of the SB-RC scheme becomes even more
apparent in the energy-bandwidth plane.

Energy-Bandwidth Comparison

The energy-bandwidth characteristics of the L=3 schemes discussed in the above
section are compared below (Figure 3.7); the results for L=4 are similar. The minimum
distance is normalized by that of MSK (dfnin=2) and the bandwidth for 99% in-band power
is considered.

The graph shows that the SB-RC pulse performs much worse than either REC or
RC in the energy-bandwidth plane at 99% in-band power. This is, of course, due to the
main lobe characteristics of the PSD's. The energy-bandwidth properties of REC and RC
are similar at 99% in-band power but if more in-band power is considered, RC performs
better than REC since the asymptotic spectral performance is better.
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Figure 3.6. Out-of-band power for M=2, L=3, h=1/2.
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Figure 3.7. Energy-bandwidth characteristics of SB-RC, L=3 (99% in-band power).

The poor performance of the single basis pulses somewhat tempers the results of
Chapter 2. The reduction in dimensionality of the single basis schemes is offset either by
poor asymptotic spectral performance as for REC, or by a much widened main lobe as for
SB-RC. This being the case, a natural question to ask is whether allowing a slight increase
in the size of the dynamic signal set over single basis pulses (without going to large
exponential increases as for RC) allows significant performance improvement. The answer
to this question is the focus of section 3.3, but before leaving single basis phase pulses,
consider weighted single basis pulses.

3.2.2. Weighted Single Basis Pulses
From the above, there are two reasons for considering weighted single basis phase

pulses:
1) One would like to shape the phase pulse in the form of an RC pulse to improve

error performance at low modulation indices.
2) One would like to prevent distance effects like those of Figure 3.3 from occurring.
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Consider weighted pulses of the REC type (called correlative encoded FM with
rectangular pulse shaping in [14]). One can shape the REC pulse to closely match the RC
pulse shape (Figure 3.8). The chip weights used are (1,3,3,1) as in equation 3.2 and the
basis vector must be modified to normalize the final phase pulse height to 1/2:

B() = t =—1t (3.7)
2:(143+3+1)-T 16T

The distance properties for this pulse with M=2 are shown in Figure 3.9. As expected, the
weighted REC pulse's asymptotic error performance is similar to that of RC. However,
there is a further advantage: the effects of Figure 3.3 which occur for unweighted 4REC
have been eliminated. As mentioned above, the price paid for such improvements is a
slight increase in number of matched filters for optimum detection, namely 2[8(M-1)+1]
matched filters rather than 2[4(M-1)+1].

Weighted and unweighted REC schemes have similar spectral properties ([14, Table
I, rows 8 and 20] and Figure 3.10) so that one need concentrate solely on error performance
and receiver complexity. (This seems at odds with statements made above, but in this case
increasing the maximum slope does not greatly affect the PSD; smoothness of the phase
pulse is the critical parameter here.)
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Figure 3.8. Weighted REC (1,3,3,1) fit to 4RC.
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Figure 3.10. PSD's of REC-type schemes (M = 2, L=4).
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The same type of shaping just described using REC can also be done using other
single basis pulses. The results are exactly as one might expect: the error performance of
such weighted single basis schemes is similar to that of RC, while the main lobe of the
PSD is much widened over that of REC or RC. Therefore, it seems that larger signal sets
than single basis must be used for good energy-bandwidth performance.

3.3. DOUBLE BASIS PHASE PULSES

The same analysis done for single basis phase pulses is repeated here for schemes
which have two element bases (and are thus termed double basis phase pulses). The
motivation for analyzing these types of pulses is apparent from the results of section 3.2.1:
it may be possible to improve spectral performance over single basis pulses significantly
without dramatically increasing the number of matched filters for optimum detection. As
shown in the sequel, certain double basis schemes do just that. The first double basis pulse
examined is a natural extension of the SB-RC pulse (section 3.3. 1) whereas the second one
is a smoothed REC pulse (section 3.3.2).

3.3.1. Double Basis RC
The double basis RC pulse (DB-RC) is limited to even L and has a phase pulse
vector of the form (Figure 3.11):

10
01| 55" 271.14 sin (7"%)
QW =QgBW)= 1 0 (3.8)
; L 4+_L gin (&)
: AT 2L ™M

0 1

The rationale for choosing such a pulse is that the same asymptotic spectral performance as
RC or SB-RC can be expected without the much widened main lobe, since this scheme
does not show the periodicity of the SB-RC pulse (linearity of the sums of pulse chips).
Further, the number of matched filters for optimum detection will be 2 l:% M-1) + 1]2,
which increases asymptotically as (LM)* and not as M*.
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Figure 3.12. PSD of DB-RC (M=2, L=4, h=1/2).
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As one might expect, the distance properties of DB-RC fall between that of REC
and RC and are not shown here. Itis the spectral properties of such pulses that are more
interesting. The PSD for a DB-RC pulse with M=2 and L=4 is plotted in Figure 3.12,
along with the corresponding SB-RC and RC PSD's. It is apparent from the figure that the
DB-RC scheme does not improve much over the SB-RC scheme in terms of main lobe
performance, and for this reason the energy-bandwidth performance of DB-RC is not much
better than SB-RC either. A better choice of basis is possible.

3.3.2. Smoothed REC

A good phase pulse, as far as bandwidth performance is concerned, would exhibit a
small PSD main lobe and good asymptotic spectral performance. The PSD main lobe is
affected by the phase pulse's maximum slope and periodicity (in the manner described in
[38]). The REC pulse has the smallest maximum slope of any CPM scheme and therefore
also the smallest main lobe. However, due to the discontinuities at the edges of the pulse
(Ie. at t=0 and t = LT), the asymptotic spectral performance is poor. A logical remedy to
this is to choose a pulse which is REC except smoothed at the edges. The Smoothed REC
pulse considered here is (Figure 3.13):
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Figure 3.13. Smoothed REC pulse (L=4).
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This scheme will require less than 2 [2(M-1)+1] [@L-1)(M-1)+1] filters for optimum detection.
The error performance of this pulse is, just as SB-RC, very similar to that of REC. One
notable difference is that, due to the nonlinear terms, the effect of weak sequences is
diffused from that of REC.

The PSD of this scheme is shown in Figure 3.14 where the tight main lobe of
Smoothed REC is apparent. The asymptotic spectral performance of this pulse is very
similar to that of DB-RC. The advantages gained by this pulse over DB-RC become clear
in the energy-bandwidth plane for 99% in-band power (Figure 3.15). However, the
99.9% in-band power performance of Smoothed REC is not nearly as good as RC and
therefore not much advantage in error or spectral performance is gained by using either
double basis pulse presented here.

Smoothed REC
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......
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Figure 3.14. PSD of Smoothed REC (M=2, L=4, h=1/2).
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Figure 3.15. Energy-bandwidth characteristics of DB-RC and Smoothed REC, L=4
(99% in-band power).

3.4. SUMMARY

The discussion above has focussed on schemes which require a comparatively
small number of matched filters for optimum detection. The single basis schemes require
only a linearly increasing number of matched filters with L and M but yield poor bandwidth
performance. The double basis phase pulses perform somewhat better but require more
matched filters. None of these schemes can match the error and spectral performance of the
RC phase pulse and it seems that a direct trade-off between the dimensionality of the signal
set and performance exists.

The tacit assumption in this chapter was that the receiver must perform an optimal
detection of the CPM signal. An important question which arises at this point is whether
optimum detection is necessary. Perhaps suboptimum detection suffices for most situations.
This question is addressed in the next chapter.
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CHAPTER 4. SUBOPTIMUM DETECTION: THE FILTER BANK

The prohibitive size of the matched filter bank for optimum detection of CPM has
led to the development of several suboptimum schemes which sacrifice error performance
for reduced receiver complexity [1,23]. The need for reducing the complexity of the filter
bank was disputed by the results of Chapter 2, where it was shown that single basis CPM
pulses require many fewer matched filters than general schemes. However, the bandwidth
performance of single basis schemes is disappointing; either the asymptotic spectral
performance is poor (REC) or the main lobe is excessively wide (SB-RC). One would
therefore want to send information via multiple basis pulses like RC, but now one must
return to suboptimum receivers. The goal is to keep the filter bank as small as possible
without sacrificing error performance.

This chapter is organized as follows. In section 4.1, a suboptimal technique based
on single basis pulses is proposed. It is shown that little degradation in error performance
is possible even when few filters are used. This scheme, however, does not perform as
well as a recent approach proposed by Huber and Liu in [23] and reviewed in section 4.2.
In fact, based on simple arguments, the approach of [23] is likely the best way of reducing
the size of the filter bank. Some of the ideas of the first section are therefore applied to
Huber and Liu's approach.

4.1. PIECEWISE LINEAR DETECTION

The principles of the Piecewise Linear Detector (PLD) are illustrated via Figure 4.1.
The multiple basis chips (in this case RC) are approximated by linear chips so that the
approximating pulse is piecewise linear and therefore single basis. Such a pulse requires
only a linearly increasing number of matched filters with the length of the frequency pulse.
The principles of this receiver are similar to that of the Reduced Complexity Viterbi Detector
described in [1, section 8.1]. The difference is that no state reduction is attempted here,
only reduction in the size of the filter bank (note that, if the Reduced Complexity Viterbi
Detector in [1] is based on REC pulses, the size of its filter bank is further reduced so that
the complexity reduction factor for the receiver filters on p. 281 of [1] may be as much as

WM——KHT and not just MLr-L&); the actual reduction depends on the choice of slopes of

the REC scheme, as explained below).
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Figure4.1. The Piecewise Linear Detector.

It remains to choose the slopes and initial phases of the piecewise linear sections. A
good criterion for doing this is minimization of the loss in dfnin, but this is rather difficult
[1, Chapter 8]. A simpler approach is to choose the chips in such a way that, given the
same symbols transmitted for both the smooth and piecewise linear schemes, the distance

between the smooth and PLD signals is minimized. Ie. Minimize (equation (3.4)):

2 logM ““’T[l ( )
- - cos{§p(t,00) - Og(t,00))] dt

et 4.1
log-M [ [vT]
- 0%12" \1 i Cos(znh > oy[qrT) - qR(t-i”D])} dt
i=0

where qr(t) is the transmitter phase pulse (usually RC) and qgr(t) is the piecewise linear
phase pulse, assumed to be at the receiver. Equivalently, one could minimize the distance
between the two signals in any given symbol interval. If the term in the cosine of equation
4.1 is small, which will occur if qgr(t) is properly chosen, then the goal becomes minimization
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of | using cos x = 1 —5—):
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2
, logM [or(t,00) - Or(t,00)
d? = —=— 1-11- 5 dt
T
(@+)T (4.2)
n 2
- 1°§%M [Znh Y o AqTR(t-iT)} dt
i=0

oT

The minimization should take place over all particular transmitted sequences. However,
this is not readily possible, and a simpler approach is to take an average over all possible

sequences. In other words, minimize:

(o 1)T

I 2 n 1
L3 (2rh? Y of (AqrrT)) +2Y) Y ovo Aqrr@t-iT) Aqre(-iT) |dt (4.3)
M" o i=0 i=0 =0
nT 1 # J

The second term in equation (4.3) will disappear since the o; are symmetric about 0,
leaving only a minimization of the sum of (AqTR(t-iT))Z over multiple symbol intervals.
This is the same as minimizing the mean square error between qr(t) and qgr(t) for any given
symbol interval. Thus, the final conclusion is that a good way, although not the best way,
of choosing the piecewise linear sections is to minimize the mean square error between the
transmitter and receiver phase pulses.

Another factor to keep in mind when choosing slopes for the PLD is that the
number of filters required depends directly on the number of slopes (or frequencies) the
receiver scheme can take on. The slopes should be chosen as integer multiples of each
other using integers as small as possible, so that the size of the dynamic signal set is kept
small. In fact, it may be prudent to choose some slopes to be zero, so that fewer filters are
needed. For example, consider again Figure 4.1. The pulse vector is given by:

1
Q) { 3 } B(t) 4.4)
1
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and requires 2[5(M-1)+1] filters for detection (optimal detection if this was the scheme
used at the transmitter). Instead, one could choose the PLD of Figure 4.2, which has a

phase pulse vector:

0
Q® { 1 } B(t) (4.5)
0

and therefore requires only 2M filters for detection. Of course, this second scheme will not
perform as well as the first.

The minimum squared Euclidean distance for the PLD can be calculated in the
manner described in [1, sections 8.1.2. and 8.1.3.]. The results are presented below
(Figures 4.3 and 4.4). As shown in Figure 4.4, using the PLD of Figure 4.1 limits the
loss in d2,;,, to 0.1 dB for small modulation indices; the loss tends to increase for larger h.
Based on the figures, the PLD detector seems to perform reasonably well and when
compared to the schemes of [1, Chapter 8], the results are encouraging. However, in

comparison with more recent schemes, the results pale somewhat.
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Figure 4.2. A simpler PLD.
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Figure 4.4. Loss in d%;, due to using PLD's (M = 2, 3RC, Ny = 6).
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4.2. H+L DETECTION

In [23], Huber and Liu proposed two detectors based on signal space approaches.
The first approach, called the Gram-Schmidt Approach here, involves a Gram-Schmidt
orthogonalization on all of the signals in the signal set. Huber and Liu argue that only
those four to six filters which correspond to the first four to six orthogonal dimensions of
the Gram-Schmidt procedure are actually needed to capture most of the energy of any
signal in the signal set. Their arguments are based on results from Landau and Pollak [28]
and the performance of this approach is good, but they subsequently proposed a more
practical receiver.

The second approach, here termed H+L Detection, is based on practical considerations,
viz. a filter bank which is easy to build. The idea is to simply project every signal in the
CPM signal set onto two (or three) frequencies, namely fo + Af (or f; and f. & Af),
resulting in four (or six) baseband filters (four filters per frequency, with symmetry reducing
this number by 1/2). This approach could also be generalized to more frequencies with a
corresponding increase in the number of filters.

H+L Detection with six filters yields excellent results. For most schemes studied in
[23], the loss in dfnin is limited to less than 0.1 dB, even with dynamic signal set sizes of
64. As a comparison, results for quaternary 3RC (M=4, L=3) are shown in Figure 4.5.
The H+L Detector outperforms the Piecewise Linear Detectors, even with a smaller number
of filters.

The results of Figure 4.5 are to be expected. Given any number of filters, the best
representation of any signal in the signal set is its Euclidean projection (at least for the
AWGN channel) onto the space defined by those filters. Thus, the approach of Huber and
Liu is the method of choice for building a practical receiver for CPM signal sets.

4.2.1. Multiple Receiver Chips / Transmitted Chip

Based on the results, it seems that the discussion about the Piecewise Linear Detector
is somewhat superfluous. However, these ideas point to further improvements of the
simple H+L detector of the previous section. For example, a simple extension of the PLD
is to use more than one receiver pulse chip per transmitter pulse chip, as shown in Figure
4.6.
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Figure 4.5. PLD’s vs. Huber and Liu’s filtering scheme (M=4, 3RC).
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Figure 4.6. Multiple receiver chips | transmitter chip.
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This approach will improve the receiver performance at the expense of requiring
faster circuitry. For example, in Figure 4.4 the loss in error performance at h=1/2 for the
(0,1,0) scheme is 0.17 dB while for the scheme of Figure 4.6 it is 0.07 dB. Thus, for this
particular case, an improvement of 0.1 dB is gained by using 2 receiver chips for each
transmitter chip. Both schemes require 4 filters but the second scheme must sample each
filter output twice every symbol interval rather than just once.
| ' Instead of applying this idea to the PLD, we know from the results of Huber and
Liu that projecting the partial-chips (in Figure 4.6 they are half-chips) onto the space
generated by the filters will better represent the partial-chip signal set than the PLD receiver
can. This approach will improve the performance of the H+L scheme and it may in fact be
more practical to use multiple receiver chips / transmitter chip than increasing the number of
filters.

Distance calculations for the multiple receiver chips / transmitter chip method combined
with Huber and Liu's approach have not been done here. This is left for future work.
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CHAPTER 5. SEQUENTIAL SEQUENCE ESTIMATION

The previous three chapters concentrated on the filter bank which supplies the
detection algorithm with statistics. This chapter deals with the detection algorithm itself
which processes these statistics so as to minimize the probability of an error occurring. A
Sequential Algorithm is considered for the detection of CPM modulated data sequences.
The motivation for this is that the most power- and bandwidth-efficient CPM schemes have
a complex state representation and optimum detection with the Viterbi Algorithm is expensive.
The size of the state representation becomes even larger if factors such as bandlimiting,
fading and coding are added to the channel model. A reduction in the computational
complexity of the detection algorithm is therefore of great interest.

A large assortment of techniques for reducing the computational complexity of the
detection algorithm have been proposed. Some of the earlier schemes, from Sequential
Algorithms to the M-Algorithm, are reviewed in [2,4] while the more recently developed
schemes such as Reduced State Sequence Estimation (RSSE) are listed in {2, Chapter 6].
Several of these techniques have already been applied to CPM detection/decoding [1,23,40].
The results have been both encouraging and disappointing. For example, in Simmons and
Wittke [40], a limited search algorithm is used to detect CPFSK signals by pursuing only
two paths through the trellis and this simple approach performs essentially as well as the
Viterbi Algorithm at moderate and high SNR's. However, when k in the modulation index
h=k/p is allowed to become larger than unity, catastrophic effects occur, viz. error events
tend to become extremely long because the detection algorithm plunges into a false lock
[40]. This false-lock phenomenon necessitates extra processing which slows down detection.
Another example, also from a study by Simmons [41], is that although the M-Algorithm
and RSSE perform well for the AWGN channel, performance is seriously degraded over a
more realistic channel with adjacent channel interference (ACI). Given these problems, it
seems prudent to try other computationally efficient algorithms for CPM and test their
response to different channel impairments.

The algorithm applied to CPM in this chapter is the Sequential Stack Algorithm. A
sequential algorithm is chosen because of its wide range of applicability -- it has been
extensively studied and successfully applied for the decoding of convolutional codes
[18,31,44] and more recently it has been shown to yield excellent results when applied to
channels with severe impairments [13,36,45]. Sequential algorithms can also be applied to
the decoding of block codes [42]. Of the many sequential algorithms that exist, the one
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used here is the simplest, the Stack Algorithm. Apart from its simplicity, another reason
for choosing the Stack Algorithm is that there exists a simple architecture for its implementation,
called the Systolic Array Architecture [10]. This architecture further reduces the computational
complexity of the Stack Algorithm by only partially sorting the stack of paths. This is
discussed in more detail in the sequel.

This chapter is organized as follows. In section 5.1 the Stack Algorithm and
Systolic Array Architecture are described. The advantages and pitfalls inherent to sequential
sequence estimation/detection/decoding are also discussed here. Finally, the performance
of the algorithm, as tested via software implementations, is presented in section 5.2 (see
also Appendix C). Measures of performance include error probability, computational
complexity and sensitivity of performance to inaccurate channel parameter estimation and to
channel impairments.

5.1 THE STACK ALGORITHM

The Stack Algorithm (hereafter called SA) falls into the class of backtracking and
metric-first algorithms [2]. In other words, when searching the CPM tree/trellis, the
algorithm is allowed to move both backwards and forwards and the determining factors for
movement are the metrics of the paths under consideration. The motivation for choosing
the SA over the Viterbi Algorithm is that the more power- and bandwidth-efficient CPM
schemes have a large number of states, making Viterbi detection infeasible. The SA can
handle many states, so that the effects of coding, fading or even irrational modulation
indices (requiring a tree graph) can be included in the channel model. It is desirable to
include such effects so that good error performance can be achieved.

The motivation for choosing the Stack Algorithm over other sequential algorithms,
such as the more popular Fano algorithm, is threefold. First, the SA is faster than the Fano
algorithm at communication rates approaching the computational cutoff rate, R, [11].
Secondly, the principal disadvantage of the SA relative to the Fano algorithm is the memory
required by the stack, but since memory has become a much less expensive commodity and
because speed is our primary goal, this factor is not as important as it once was. Finally,
the problem of reordering of the stack, also considered a debilitating factor of the SA, is
solved by sorting with parallel architectures.
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Figure 5.1. The Stack Algorithm.

The basic SA can be described by just one step: extend the best path in the stack
one step further into the CPM tree/trellis, where "best" refers to the path with the largest
metric (or smallest, depending on the definition of the metric used) (Figure 5.1). The
metric generally used is the Fano Metric, suggested by Fano in [15] and shown by Massey
[32] to be the metric which identifies the path most likely followed by the transmitter given
the information available. Of course, to find the path with the largest metric, some type of
sorting must be performed and it is the sorting which slows down the SA. Thus, care must
be taken in choosing a sorting procedure; indeed, many different procedures have been
suggested. Eg. Merge and bucket sorting. However, the assumption here is that the
sorting must be done sequentially rather than in parallel. Recently, a parallel sorting
approach for the SA has been suggested which speeds up the sorting procedure at the
expense of hardware. This is discussed next.

Systolic Array Architecture

A hardware implementation of the SA which performs sorting in parallel has been
given in [10] (see also [2] where other parallel architectures are described). In this
implementation, the paths under consideration are stored in a systolic priority queue (Figure
5.2), and are reordered in a fixed and short period of time without completely reordering
the stack. The operation of the systolic priority queue is as follows:
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Figure 5.2. The Systolic Priority Queue

1) The top path (the one with the best metric) is deleted and the adjacent pairs of
paths are ordered by swapping. This swapping is performed in parallel and
only a comparison and path exchange (if necessary) takes place.

2) The deleted path is extended to its M new paths. These paths are fed into the
queue sequentially. After every insertion into the queue, adjacent pairs of paths
are again compared and reordered.

Chang proves in [10] that by using the above procedure, the path remaining in the
top stack entry will always be the path with the best metric. Since the SA only requires that
the best path be known, this approach is much more efficient than a complete sort (note that
many comparisons are performed for the extension of a single path, but the parallel processing
of this architecture alleviates this problem). Moreover, this architecture is easily implemented
in hardware.

The problem of sorting for the SA is therefore not as bad as it may otherwise seem.

However, the other pitfalls inherent to sequential algorithms remain.
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Pitfalls

In addition to the sorting issue specific to the stack algorithm, a problem inherent to
all sequential algorithms is that the number of path extensions required to move one level
further in the tree/trellis is a random variable and not a constant as for breadth-first searches
such as the Viterbi Algorithm. If the noise local to a few symbol intervals is severe then the

 sequential algorithm is forced to take up much time searching for the best path. This can

occur, for example, in a bursty channel; or it could happen in the AWGN channel if the
sample noise function (from the ensemble of noise functions) is large over several symbol
intervals.

The result of such variability in computations is that one will need to buffer the
incoming data while the detection algorithm is searching, and if the delay becomes too
long, stack overflow occurs. In fact, beyond a certain SNR limit given in terms of the
computational cutoff rate, R, the number of computations increases rapidly with the severity
of the noise [11]. To overcome these effects, one possible approach is to force a decision
before the algorithm has finished its search; of course, this will increase the error probability.
Moreover, such early decision techniques are plagued by the type of problems described
earlier for limited search algorithms (Eg. the false lock problem).

An alternative solution is possible if the communication system has automatic repeat
request (ARQ) capability. In this case, the problem of stack overflow can be dealt with by
sending packets of information and allowing erasures. Such issues and further practical
problems related to sequential algorithms have been analyzed in great detail in many texts
and papers (see [11, Chapter 7] and [2, Chapter 6]). Here, only two of these issues are
investigated.

The first problem considered is that, for the AWGN channel, the receiver must
know the noise strength, N, to calculate the Fano Metric. This problem arises because
paths of different lengths are being considered. Thus, measurement of the channel noise is
required for the SA, and if this measurement is inaccurate, performance is degraded. The
sensitivity of the SA's performance to incorrect estimation of N_ is examined in the simulations.

The second issue investigated is the sensitivity of performance to adjacent channel
interference. The impetus for this is that a recent study showed that the M-Algorithm and
RSSE perform much worse than the Viterbi Algorithm in high levels of ACI [41]. The
explanation given for this was that the early decision mechanism of these algorithms was to
blame. It seems possible that the SA will overcome this problem, as it does not make the
same kind of rash decisions as RSSE or the M-Algorithm.
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5.2. PERFORMANCE

Performance of the SA for the detection of CPM modulated sequences is measured
via error performance and computational complexity. In addition, the robustness of the SA
to poor estimation of channel parameters, namely the sensitivity to poor estimation of the
channel noise N, and to the effects of adjacent channel interference, is analyzed.

The parameters of the SA used in the simulations were as follows:

1) The Fano Metric, as derived in Appendix A, was used as the path metric.

2) The length of the stack was set at 1000 paths.

3) The observation interval length (the depth of the tree examined before a symbol
was put out) was set at 100.

4) The simulation was continued until 100 error events had occurred or 2x10° bits
had been sent.

5) Buffer overflow was handled by simply overwriting (erasing) the paths at the
bottom of the stack.

6) No regeneration of the root-node of the graph (also called an ambiguity check in
[4]) was undertaken. When root-node regeneration was performed for some
data points the results were similar. In general, using a non-regenerative algorithm,
as done here, will improve error performance at the expense of memory since
paths are not discarded early [20].

Omissions of certain practical aspects deserve to be mentioned:

1) The symbols used in the simulations were not split up into frames or packets, as
would usually occur in practice. However, this should not affect the results
since the frames are usually long enough that "long-term” averages apply.

2) No absolute time limit was set for forcing the algorithm to put out a symbol.
For example, it could happen that the first symbol took thousands of time
intervals to be put out while the second symbol was put out immediately after
the first. Even though the probability of such an event occurring is very small
for large signal to noise ratios, this is the most serious omission of the simulation
model. Practically, some kind of check and recovery procedure must be
implemented for such situations. The actual error performance will therefore be
slightly worse than that presented.

3) The systolic priority queue could not be implemented in its parallel form with
the computers and software available. Thus, no indication of the performance
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speedup as compared to the Viterbi Algorithm could be gleaned from the results,
other than the average number of branch extensions per symbol transmitted.

The SA's performance is compared to that of the Viterbi Algorithm and the M-
Algorithm. For both of these breadth-first algorithms the observation interval length was-
set at 30 symbol intervals and the number of paths followed by the M-Algorithm was set at
My.a150= 8- The M-Algorithm was implemented without state checking and without root-node
regeneration (results of simulations performed with regeneration proved similar to the
results shown here).

It now remains to choose specific CPM schemes for simulation. It is generally
accepted that a quaternary symbol alphabet (M=4) with a raised cosine phase pulse is best
for uncoded CPM schemes [1]. Further, to allow comparison with the Viterbi Algorithm,
the modulations chosen should not have too many states or else the simulations cannot be
performed in a reasonable amount of time. The size of the matched filter bank is not of
great concern due to the results of Huber and Liu (Chapter 4). The two CPM schemes
investigated here have the following parameters:

1) M=4, L=3, RC with h=1/3. This scheme has pMI-! = 3.42 = 48 states. The
bandwidths containing 99% and 99.9% of the power are 2B T}, = 0.63 and
0.82, respectively; in comparison, the corresponding MSK bandwidths are
1.18 and 2.72. The asymptotic power gain over MSK is -0.78 dB.

2) M=4, L=3, RC with h=3/4. This scheme has pML! = 4.42 = 64 states. The
99% and 99.9% bandwidths are 1.26 and 1.48 respectively and the asymptotic
power gain over MSK is 4.28 dB.

Note that the SA can handle a much larger number of states than these two schemes
have. The first scheme was chosen to allow comparison with previous results {41] whereas
the second scheme was chosen to illustrate the large amount of power gain possible in the
same 99% bandwidth as MSK.

5.2.1. Error Performance and Computational Complexity
Scheme 1: h=1/3, 48 States

The error performance (in terms of the probability of an error event occurring) of
the 3RC scheme with 48 states is shown in Figure 5.3. The SNR is normalized to E,/N,

/ E ,
d"xzninN_z'
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Figure 5.4. Computational complexity for M=4, 3RC, h=1/3.
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The results are as expected: in terms of error performance all three algorithms
perform similarly. The difference between these schemes lies in their computational
complexities as measured in terms of the average number of branch extensions per output
symbol (Figure 5.4). The SA extends a much smaller number of paths than either the
Viterbi or M-Algorithms; the performance improvement factor is 27 and 5, respectively.
The SA actually needs to perform more complex calculations than the other two algorithms
but the savings are still noteworthy (one estimate gives the SA's performance as 10 times
slower than the Viterbi Algorithm [30]; however, this estimate was based on a serial
implementation and not a parallel one like the systolic array.).

The SA's performance also has a limit. Near a SNR of 1 dB the computational
complexity of the SA blows up. This is because the computational cut-off rate, R , for this
particular scheme has been reached [11]. Care must be taken not to operate below this
SNR or else stack overflow will occur often and error performance becomes poor. Fortunately,
this limit is not reached until the error performance for the MLSE Viterbi Algorithm is also
poor.

Scheme 2: h=3/4, 64 States

The error performance and computational complexity of the 64 state scheme are
shown in Figures 5.5 and 5.6, respectively. The results are similar to those of the 48 state
scheme. However, a subtle difference between the Stack- and M-Algorithms appears if the
bit error probabilities are considered (Figure 5.7). The bit error probability for the M-Algorithm
is unusually larger than its error event probability and upon closer examination of the error
events, it was found that long error events tended to occur (at a SNR of 4 dB the average
length of the 100 observed error events was 18 symbols). This did not occur for the
M-Algorithm with the h=1/3, 48 state scheme.

The effect described above is the same as that found by Simmons to occur generally
for schemes with modulation index h=k/p when k > 1 [40]. It turns out that due to the
early decision mechanism of the M-Algorithm, the algorithm tends to lock onto paths which
are located 27 + A@ away in phase, where A@ is a small phase offset. The M-Algorithm
has no way of getting out of such a false lock other than more noise pushing it back into the
correct state. Inevitably, long error events with multiple symbol errors occur. One can
combat this by introducing extra processing rules, as Simmons did in [40]. However, the
extra computations required by such an approach slow down the algorithm by a factor of
two to three; clearly this is undesirable.
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The SA does not suffer from this problem (at 4 dB the average length of the error
events was less than 6 symbols). The delayed decision mechanism under which the SA
operates neutralizes the false lock phenomenon. Thus, for most modulation indices (those
where k > 1 for h=k/p) the SA offers the additional advantage of keeping the length of the
error events small, thereby also keeping the bit error probability low.

5.2.2. Sensitivity to N,

The SA performs well under the conditions given in the above section, namely that
the channel is AWGN and the noise level is known. Knowledge of the noise level is
important for the SA, since N, must be known to calculate the Fano Metric. In this section
the sensitivity of the SA's performance to poor estimation of N is considered. The results
are shown in Figures 5.8 and 5.9. _

The error performance seems relatively insensitive to poor estimation of the signal-
to-noise ratio. Even when the SNR estimation is =3 dB off (double and half the actual
SNR), the SA performs near the level of accurate estimation. Less degradation occurs for
the case -3 dB, so that it seems better to underestimate the noise rather than overestimate it.

This philosophy, however, is misleading.
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The real difference between the various levels of poor estimation is shown in Figure
5.9. When underestimating the noise, the receiver tends to search more; this is the actual
reason for the good error performance shown in Figure 5.8. Furthermore, the limits where
the number of computations becomes large (the SNR where the computational cut-off rate,
R, is reached) becomes worse the poorer the estimation of N_; the computational performance
is also worse for underestimation of the noise than it is for overestimation. The lowest
limit actually occurs when the correct Fano Metric is used. These results indicate that if one
is operating near R, then care must be taken to properly estimate the noise level. On the
other hand, if operation is well outside this range, poor estimation of N, has little impact on
performance (as long as the estimate of SNR is not way-off, of course).

5.2.3. ACI Susceptibility

Real channels tend to have more impairments than white noise, and in this section
the performance of the SA under the additional effects of adjacent channel interference
(ACD) is considered. The effects of ACI on CPM receiver performance were studied in
[37]; Viterbi detection was assumed there. More recently, the performance of the M-Algorithm
and RSSE-type algorithms was examined by Simmons [41]. He found that under high
levels of ACI the early decision property of these two algorithms severely degrades
performance as compared to the Viterbi Algorithm. It was therefore hoped that the Stack
Algorithm could overcome these problems just as for the bit error vs. error event problem.
However, the results were disappointing, as described below.

The channel model used in this section assumes that a wide filter is placed around
the desired signal's channel, allowing all of the two adjacent channels' signals to interfere
(see Figure 5.10 where 3 dB of ACI for the M=4, 3RC, h=1/3 PSD's are shown). Further
parameters of the channel model are:

1) The interfering signals are 2/T away in bandwidth. ;

2) The data sequences in all three channels are independent and uniformly distributed.

3) Packets of symbols of size 448 to 576 (512 * 64) are sent by both interfering
channels.

4) After a packet is sent, the corresponding signal is resynchronized to random
time and phase offsets (uniform distribution for both timing and phase).

5) The power levels in the adjacent channels are both equal and constant.

6) The receiver accurately estimates the noise level, N,.
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Figure 5.10. ACI model (PSD's for M=4, 3RC, h=1/3 and 3 dB ACI).

The first three parameters are chosen to make the interfering signals look as random
as possible to the desired signal, as would realistically be the case. Nevertheless, the above
model contains several unrealistic assumptions which must be considered when analyzing

the results. Some problems with the model are:

1) The assumption that both interfering signals are completely passed through the
bandpass filter is unrealistic for two reasons: i) the interfering signals’ PSD
extends to infinity in both directions so that a bandpass filter would certainly cut
off some of the interfering power; ii) the bandpass filter will usually be narrow
enough to filter out much of the adjacent channels’ power. These inaccuracies
are allowed to keep the programming simple.

2) The power levels in the adjacent channels will usually fluctuate.

3) The receiver will normally not get a good estimate of the SNR if there is
additional interference.

The definition of ACI used here is the interferer- to desired-signal power ratio in the
bandpass filter's bandwidth. This is not a standard definition, but we are only interested in

a sensitivity comparison of the different algorithms' performances.
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Figure 5.11. Sensitivity of error performance to moderate levels of ACI.

All algorithms were operated as if no ACI was present. Thus, neither the Viterbi
Algorithm nor the SA are actually performing MLSE. This should be kept in mind when
analyzing the results. The CPM scheme chosen for simulations is the 48 state scheme
given above. This allows comparison with the results of [41].

The sensitivity of the error performance of the Stack, Viterbi and M-Algorithms to
moderate levels of ACI is shown in Figure 5.11. All algorithms perform reasonably well
up to ACI levels of 3 dB or double the interferer power to desired signal power. The
computational complexity of the SA is still low for 3 dB ACL

The results for high levels of ACI are shown in Figure 5.12. The Viterbi Algorithm's
performance gracefully degrades as the ACI levels increase. In contrast, both the Stack and
M-Algorithms' performance abruptly degrades; the poor behavior of the SA is in fact more
pronounced than that of the M-Algorithm, an odd result considering the early-decision
mechanisms responsible for the M-Algorithm's performance degradation are not present for
the SA. A graph of the computational complexity of the SA under ACI makes this
impetuous behavior even more apparent (Figure 5.13). The SA and the Fano metric seem
to be very sensitive to correlated interference of the kind discussed here.
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Figure 5.13. Sensitivity of computational complexity to ACI (SNR = 10 dB).
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Based on Figures 5.12 and 5.13, it seems possible that the poor performance of the
SA may be solely due to the exaggerated level of searching causing stack overflow. It was
hypothesized that perhaps if the SA was forced forward by some exira mechanism both the
error performance and computational complexity would return to their more usual values.
Of course, forcing the algorithm forward is synonymous with making early decisions, just
the type of operation one wants to avoid. Nevertheless, to force the SA forward, two
parameters were modified: 1) the receiver's estimate of N /2 was increased and ii) a
positive bias was added to the metric to force the SA through the graph. Neither of these
measures improved performance to better that of the M-Algorithm, although changing N
did improve both the error performance and computational complexity somewhat.

Another possible approach for combatting the poor performance of the SA is to
incorporate the ACI model into the metric. Such an approach should also improve the
Viterbi- and M-Algorithms' performance. However, the complete CPM channel model will
become unwieldy theoretically so that some simplification is required. One possible approach
is to assume the interfering signals are tone interferers with a random phase offset (Figure
5.14). The MLSE metric for this simplified channel model is relatively easy to obtain and
could prove useful. This approach was not tested here.

Desired Signal
s S(f) (dB)
A T A
-10 +
Tone T Tone
Interference 230 + Interference
V -l w\\’
70 4
I i 1] [
-3 -2 -1 0 1 2 3
f- Ty

Figure 5.14. A simplified ACI model.
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Yet another approach is to consider all three channels together as a vector channel
and estimate the incoming data in both of the interfering channels along with the desired
information; in effect, one is receiving the signals of all three channels simultaneously. The
drawback with this approach is that the receiver becomes three times as costly since all
three sequences must be estimated.

The most straight-forward solution to the problem of ACI is, of course, to use a
good filter.

5.3. SUMMARY

The conclusions extracted from the simulation results are summarized below:

1) The Stack Algorithm outperforms both the Viterbi and M-Algorithms over the
AWGN channel. The option of being able to detect schemes with a large state
representation (large p, M, and L) is particularly desirable as the most power-
and bandwidth-efficient CPM schemes can be utilized. Moreover, the SA does
not suffer from the bit error vs. error event problem of the M-Algorithm.

2) The Stack Algorithm is not overly sensitive to poor estimation of the SNR.
However, one must be cautious when operating near R .

3) The Stack Algorithm performs well for moderate levels of ACI but poorly for
higher levels of ACI, even in comparison with the M-Algorithm . Thus, a good
channel model or narrow bandpass filters are a necessity when using the SA to
estimate the transmitted sequence under such conditions.
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CHAPTER 6. CONCLUSIONS

The two basic building blocks of a CPM receiver, the matched filter bank and the
detection algorithm, were investigated. The matched filter bank, in an abstract sense,
creates a space onto which the received signal can be projected and from which sufficient
statistics for maximum likelihood sequence estimation can be obtained. Thus, for optimal
detection, the number of matched filters depends directly on the number of dimensions
which the signal set encompasses. In Chapter 2, it was shown that the dimensionality of
CPM signal sets is related to the linear dependence of the phase pulse chips and can be
determined by finding a basis for the space spanned by these chips. The larger the number
of elements in the basis, the more matched filters are needed.

Chapter 3 explored the impact of the results of Chapter 2. Schemes which require a
small filter bank were investigated; both single- and double-basis phase pulses were
considered. It was found that these small basis pulses perform poorly in comparison with
pulses with a large basis (Eg. RC) and this led to the investigation of suboptimal receivers.

Again using the results of Chapter 2, in Chapter 4 a suboptimal receiver with a
small filter bank, the Piecewise Linear Detector (PLD), was developed. The PLD approximates
a smooth CPM pulse by piecewise linear sections and since the dimensionality of the
piecewise linear signal is relatively small, a reduction in the number of matched filters
results. It was found that, while the PLD's performance was good, an approach proposed
earlier by Huber and Liu was superior. A further improvement to Huber and Liu's receiver
was suggested using the concepts of the PLD, namely using multiple receiver chips /
transmitter chip.

Chapter 5 investigated sequential sequence estimation of CPM modulated data
sequences via the Stack Algorithm (SA). Performance was measured in terms of error
probability, computational complexity, sensitivity to estimation of channel parameters and
sensitivity to adjacent channel interference. Comparisons with the Viterbi and M-Algorithms
were made. It was found that, over the AWGN channel, the SA outperforms both the
Viterbi and M-Algorithms; the SA performs essentially MLLSE with many fewer computations.
The performance of the SA is also insensitive to estimation in SNR, unless one is operating
near the computational cutoff rate. In this case, care must be taken to estimate the SNR
accurately.

All algorithms operate well in moderate levels of ACI, up to 3 dB for the model
presented here. However, when ACI is further increased, the SA's performance degrades
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sharply, even more rapidly than the M-Algorithm; the Viterbi Algorithm's performance

degrades gracefully. The simulations suggest that the SA metric is sensitive to such

changes in channel parameters. Therefore, a good channel model and accurate parameter

estimation or a narrow bandpass filter is vital when using the SA in an interferer rich

environment.

Future Work
Several issues addressed in the thesis were left incomplete and deserve further

attention:

1

2)

3)

4)

5)

Using mualtiple receiver chips / transmitter chip was suggested as a further
improvement for the Huber and Liu receiver. The performance gains of such an
approach need to be determined and the trade-offs (performance vs. complexity)
should be examined in more detail.

The ACI simulations were performed by simply applying interference and letting
the graph search algorithms run as if no ACI was present. A better method is to
include the effects of ACI in the channel model to obtain the MLSE metric for
this channel. Some approaches for doing this were suggested in Chapter 5 and
deserve to be investigated.

In Appendix A, techniques for making the Fano Metric calculation simpler are
suggested. These must be tested.

Some of the results presented in Chapter 5 are applicable to coding. For
example, sequential algorithms are well suited for decoding large constraint
length codes which have a large state representation. These codes could be
further investigated for CPM.

Recent work by Yang and Taylor [46], building on results from Rimoldi [38,39]
and Morales-Moreno and Pasupathy [33], shows that it is advantageous to use
codes over rings to improve CPM error performance and simultaneously keep
the number of states small. It turns out that by using such codes, spectral
performance can be improved. Some indication of the bandwidth improvement
can be obtained using the results of Chapter 2; this is further developed in
Appendix B.
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APPENDIX A. THE FANO METRIC FOR CPM

For sequential detection one wants to extend the maximum a posteriori (MAP)
sequence. To do this, one must find the sequence which maximizes the conditional probability

density function:
Pr(r,o)

Pr(alr) = =0

(A1)

where:

o = [0y, O1, ..., ON-1] is a sequence of symbols with o; € {-(M-1), -(M-3), ..., M-1},

r = [rg, Ty oo Tyl =L @530t oo (k178 15---T R )] are the sufficient statistics
for sequence estimation, and

D is the number of orthogonal dimensions needed to represent the signal set. (Note that
for CPM: D < 2M*, where L is the length of the frequency pulse).

Since Pr(r) is the same for all sequences, maximizing Pr(or) with respect to o, is equivalent
to maximizing Pr(r,o) with respect to . For the purpose of the discussion below, identify

r(t) with r so that Pr(r(t)lo) = Pr(rlo). Further, consider 1(t) as a sequence of chips:
N-1
() = Y, 1;(t) wherery(t) =0, te [iT,(+1)T).
1=0
' Now assume that r(t) has been observed over the first N symbol intervals and the
path under consideration has length n < N. Let o = [a,t] where: a = [¢tg, O1,...,05-1] and
t = [, Opsls..s0N-1]. One now wants to extend the MAP path of all paths under

consideration. This is the path, a, which maximizes:

n-1 N-n-1
Pr(z(t),a) = Pr(a) Pr(r(t)la) = Pr(a) [H Pr(ri(t)lao,...,ai)] { 11 Pr(rjm(t)la)} (A.2)

i=0 =0

The second product in (A.2) contains observations which occur after the n'th
symbol interval. One would like to eliminate this term so that constant updating of every
path metric after a new chip is received is unnecessary. However, due to the memory of
the modulation scheme, this cannot be done without making some simplifying assumptions.

The Fano Metric for decoding convolutional codes is based on the assumption that
tail symbols are statistically independent of the prior symbols. This assumption is unnecessary
for the uncoded CPM case; instead, assume the signal chip tails are independent of the prior
signal chips:
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Pr(rj+n(t)[a) = Pr(t;,, (V) , j=0.1,...,N-n-1 (A.3)

In other words, all ri(t) are assumed possible for any a in the symbol intervals beyond the
n'th. In effect, one is adding random tails to the received signal r(t).

The above is somewhat different than adding random tails to the received sequence,
as is done in sequential decoding of convolutional codes [32] or block codes [42] over a
discrete memoryless channel. In these cases the tail symbols are assumed statistically
independent, even though the future symbols must be dependent due to the code. Thus,
the simplifying assumption stated above is needed in either case, just in a different form.
(Note that if sequential detection/decoding of a coded CPM scheme is desired, both the
signal and the symbol tails must be assumed independent of each other, even though the
future signal chips and symbols are actually dependent).

Using the simplification of (A.3), equation (A.2) yields:

n-1 N-n-1
Pr(x(t),a) = Pr(a) l:H Pr(ri(t)!ao,...,ai):| [ I Pr(rjm(t))ji (A.4)
. i=0 =0

Maximizing (A.4) with respect to a is equivalent to maximizing:

n-1
. gggt_),_;ﬁ_ e [Pr(a) H Pr(rilnga,).)..,ai)} (A.5)
H Pr(r,(1)) -
i=0

with respect to a, where:
Pr(r;(1) = Y. Pr(ry(t)Io) Pr(c) (A.6)
[¢]

and the sum runs over all pM" possible phase transitions, ©, in a symbol interval (assuming
a finite state representation is possible; irrational modulation indices are treated below). In
the case where k (in h=k/p) is odd, the sum could also be made to run over all 2pM" phase
transitions in all symbol intervals ; by doing this, the same sum generating circuit can be
used for each symbol interval.

Using (A.5), the metric for a specific path in the tree becomes:
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C®’A T (Prdlag,...a)) | 1
- 2 {log{ Prr(0) +510g(Pr(a))} (A7)
and the branch metric is:
_ Pr(r,.1(Dlag,...,a.1) | | 1
Ana = log{ Iir(rn_lo(t)) 121+ Liog{Pr(a)) (A.8)

which is almost identical to the Fano metric for the decoding of convolutional codes over
the discrete memoryless channel [32], except that the received chip is also dependent on all
prior symbols and not just the present one.

The AWGN Channel
Over the AWGN channel:

D
' =1  exn!. 1 - \
Pr(n(t)la)—(TcNo)D/2 { N LZ sk) } ’

(A9)

i
— 1 f 1 \
"o U N [r(®) - s, dt ;

where N /2 is the spectral height of the white noise. Inserting equations (A.6) and (A.9)
into (A.8) yields (ignoring double frequency terms):

(+1)T
Aq = |2-log(e) f 1(t) $,,(t) dt}
’ NO nT

(A.10)

f o+ 1T \\
- log [Z exp \ I%I 1(t) sg(t) dt; £, / G(G):l =log{fy(a))}

0JnT

In most cases, both the symbols a and the transitions ¢ can be assumed to be uniformly
distributed. Including these assumptions in (A.10) gives the final form of the Fano metric
for CPM and the AWGN channel:
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(@+1)T
Apg = {-2- log(e) f 1(t) $o(t) dt}
' NO nT
(A.11)

NO nT

- log [Z -1 exp

@+1)T \
2 f (1) s(t) dt j} - log(M)

c pNIL /

Irrational Modulation Indices and Complexity Reduction
To calculate the branch metric for a given interval, the second term of equation
(A.11) requires one to obtain all pM" sufficient statistics. This is disadvantageous for two
reasons: i) all branch metrics, and not only the one of interest, are needed and ii) when p,
M and L are large, as for the more power and bandwidth efficient CPM schemes, calculation
of the Fano Metric becomes computationally intensive. To avoid this, one can simplify the
Fano Metric in equation (A.11) by using the Fano Metric for irrational modulation indices.
For irrational h, Pr{r;(t)) becomes:

2n
Pr (1;(H) = >, —-13 { L Pr(r;(t)I6,8,) Pr(0p,0,) 6, (A.12)

Cep

where G, represents the MP" phase state independent classes of signals in the signal set and
6., represents the phase state (note that one could actually sum over the signal elements of
the dynamic signal set instead of O,; for the sake of clarity this approach is avoided).
Over the AWGN channel, the integral in (A.12) can be reduced to (again keeping only the
cross-product term, dropping terms which cancel with the numerator of (A.5), and converting
to baseband as in equation (1.10)):

2n ()T
517? J; exP{ﬁl‘; f ) [Kt)lwcp,ep,t)+Q(t)Q(ocp,ep,t>] dt)de, (A.13)

where (normalizing the symbol power, E/T = 1/2):

I(Gep:Bp:) = cos (9(1) + 6,)

and  ¢(1) = 0+ Oy (D) (A.14)
Q(Gcp,B,0) = sin (0(0) + 6,

73




Inserting these expressions into (A.13) and expanding out the cosine and sine terms yields:

2n

L | explA cos(8,)+ B sin(6, )] d6

27 )y p

2
_ 1 NIy -1B
—-Ej(; exp{ A“+B COS(ep - tan K)] dep (A.lS)
- 1[VA%B?)

where:

A

(@+1)T
NL j [ cos o(t) + Qo) sin o(p)] i
0 JnT

(A.16)
B

(n+1)T
ﬁ1_ f [- 19 sin ¢(t) + Q) cos o(t)]

T

and I; is the modified Bessel function of the first kind of order 0. The branch metric of
equation (A.11) is then:

N, p

(n+ 1T
Ana = {L log(e)f (1) $6,(1) dt}—log [Z L 1, (Va2 +B2)} “logM) (A.17)
nT M

cp

From equation (A.17) it is apparent that to evaluate the Fano Metric for schemes
with irrational modulation index, only one function evaluation is needed for each phase
state independent class of signals. This is a reduction by a factor of p over schemes with
modulation index h=k/p.

To achieve the same reduction for rational modulation indices, one can simply use
the Fano Metric of equation (A.17). In this way, one modified Bessel function evaluation
replaces p exponential function evaluations. This approach should work well for well for
large p (and for small p it is unnecessary).

Further Complexity Reduction

Reducing the number of function evaluations from pM" to M" will not be significant
if p is small and M and L are large. To further reduce the number of evaluations, recall that
the terms in the exponentials are just the correlations of the received signal with the
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transmitter phase functions. The phase functions are evenly spread out over the time
interval [0,T) and baseband frequency interval [-(M-l) b, (M-1) h/2T), and the term we
are concerned with here (equation (A.6)) is simply an average. Thus, it should be possible
to use just a few representative phase functions to get a good approximation to (A.6). For
example, one could use the six filters (which cover three dimensions) of Huber and Liu's
matched filtering scheme to obtain a good "mix" of phase functions. This reduces the
number of function evaluations from M" to three (it may, of course, be necessary to use a
few more signals than just the three frequencies).

Although this approach and its effect on performance has not been investigated in
this thesis, it should work well since the primary function of the term in equation (A.6) is
to perform an averaging of sufficient statistics. It seems natural to expect that only a few
representative signals give a good approximation to this average, especially for signal sets
which are localized in time and frequency as CPM signal sets are.
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APPENDIX B. CODING FOR BANDWIDTH PERFORMANCE

The reason for placing a convolutional coder in front of a CPM modulator is
normally to improve error performance. Here, the effects of the coder on bandwidth are
also considered. The approach is not the same as that of Ho and McLane [21] where the
PSD's of various coded CPM schemes are calculated. Rather, some simple assumptions
about the bandwidth are made based on the probability distribution of the signals in the
dynamic signal set. The validity of these assumptions has not been tested; as such, the
discussion below serves solely to stimulate further research.

REC CPM

To introduce the measure of bandwidth used here, consider the REC phase pulse.
Optimum detection of REC CPM schemes requires a linearly increasing number of matched
filters with M, the size of the signalling alphabet and L, the length of the frequency pulse.
This is, of course, due to the single basis nature of rectangular pulses and during any
symbol interval, the CPM transmitter sends one of the frequencies (see equation (2.5)):

f, =1+ éﬁ[-L(M—I) +2n] ,n=0,1,.,LM-1) B.1)
As such, REC CPM is nothing more than a FSK scheme with a convolutional encoder
placed in front which controls the pattern of frequency hopping and maintains phase
continuity [38] (the condition of phase continuity will, of course, increase the size of the
signal set via constant phase offsets, but for the following discussion only the frequencies
are considered). When L > 1, the following effects of partial response signaling [26] will
apply to the frequencies of equation (B.1):

1) The probability distribution of the allowable frequencies changes.
2) The size of the frequency hops is limited.

For example, consider binary signaling (M=2) and enumerate the possible frequencies
from O to L. Then the probability distribution of frequencies is binomial and the maximum
size of hop is £ 2 (see Figure B.1, where the weight distribution for L=3 is given; the
weight distribution is simply the probability distribution normalized to integer values).
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3 - 3 3 Max. Size of Hop
. 2 -
Weight 1 1
1+ = B
0

i ]
0 1 2 3
Frequency

Figure B.1. Frequency weight distribution of SREC frequencies.

The effect of the partial response coding is apparent from the distribution of frequencies
in Figure B.1; better bandwidth performance is achieved because the center frequencies
(frequencies #1 and #2) tend to occur more often. In this sense, partial response signaling
performs a bandwidth shaping by changing the probability distribution of the frequencies
of the REC scheme. Limiting the frequency hops will also reduce bandwidth. The same
type of effect occurs for larger signaling alphabets, although now the distribution is not
binomial and larger frequency hops can occur.

The results stated above apply to other CPM single basis phase pulses. The only
difference is that now no simple frequency domain description is possible as for REC. It
may even be possible to generalize to multiple basis CPM using the vector and matrix
representations of Chapter 2, but this was not attempted. In the following, only REC

schemes are considered.

An Assumption About Bandwidth

In the following, coded CPM schemes are considered and a simple measure of their
bandwidth is presented; the bandwidth measure used here will simply be the weight distribution
of the frequencies. For example, if a coded CPM scheme has the same frequency weight
distribution as in Figure B.1, it is assumed that the bandwidth of this CPM scheme is the
same as 3REC (assuming the same separation between frequencies, of course). This
measure is not completely accurate, as the size of the frequency hops and the correlations
between the hops will also affect bandwidth. However, it seems intuitive that the probability
distribution of the frequencies will play the major role in determining bandwidth.
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Coding

Several coding schemes for CPM have been proposed. One approach is to simply
encode the incoming data sequence and then pass the coded symbols on to the CPM
modulator [29,34]. Two of the more recent approaches are those given by Rimoldi [39]
and Yang and Taylor [46], both of which are briefly reviewed below.

Rimoldi's coder is based on increasing the size of the signaling alphabet and then
using set-partitioning principles to improve error performance. The bandwidth is kept the
same as uncoded schemes by using modulation indices of the form h = 1/M [39]. Such
modulation indices also make the structure of the CPM encoder more amenable to analysis.
A skeletal block diagram of Rimoldi's encoder is given in Figure B.2. The complete
encoder consists of two parts. The first block is a binary (or 2™-ary) rate 1/2 (or rate
m/m+1) encoder. The encoded sequence is then mapped to a 4-ary (or 2™-ary) data
sequence which is sent to the CPM modulator. Note that the combination of these two
blocks does not affect the data rate, as the mapper is a rate 2 (or rate 1 + 1/m) encoder.

>

Binary Coder Mapper Quaternary

Data 1 Gae 12) rae2) [ >  Daun
——>> (to CPM modulator)

Figure B.2. Rimoldi's encoder.

Yang and Taylor's encoder reverses the order of the blocks of Rimoldi's encoder.
Instead of coding first, the binary data is mapped to a 4-ary sequence which is subsequently

- encoded. Another subtle but important difference is that encoding is done over rings [46].

%2‘?&?’ — Mapper M=4 Coder — M =4
(M=2) (rate 2) ——3>1  OVer rings
e (rate 1/2) > M =4

Figure B.3. Yang and Taylor's encoder.
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It should be noted that both of the above encoders were applied specifically to
CPFSK (L=1), so that no partial response bandwidth shaping (in the sense of Figure B.1)
ought to occur; this is indeed the case for Rimoldi's encoder. However, in the case of
Yang and Taylor's encoder (abbreviated by Y+T), the ring structure causes changes in the
frequency weight distribution. Thus, in the ensuing discussion we concentrate on Y+T's
encoding structure. To illustrate these ideas, consider a specific example.

A Good Code For CPFSK ,

Table 2 in [46] lists several of the best codes found for the case of 4-ary, h=1/4
CPEFSK. The simplest encoder listed there is a 4 state encoder with a 3.15 dB power gain
over MSK. This encoder is shown in Figure B.4 (note that the mapping from binary to
quaternary data has already been achieved; since the input binary data is assumed i.i.d.
with a uniform distribution, the structure of this mapper is not important). All operations
take place over the ring of integers modulo 4. The output symbols of the encoder are fed
into the CPFSK modulator and effectively choose the frequency (labeled as in Figure B.1)
which is to be transmitted. The combination of this convolutional encoder with the CPFSK
modulator results in 4 states [46].

M =4 »é
U, e {0,123} \

to CPFSK
modulator

Figure B4. A good encoder for M=4, h=1/4 CPFSK (operations over the ring of
integers mod 4).
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An interesting effect occurs with this encoder. Because the first encoded symbol of
every pair of output symbols is multiplied by 2, this first symbol can only take on the
values 0 and 2. The reason for this is that the first multiplier effectively forms the ideal
{0,2} in the ring of integers modulo 4. In contrast, the second data symbol can take on
any of the values 0,1,2 or 3. The impact of this structure is that, if the coded data symbols
are mapped onto the four frequencies as in Figure B.1, the frequency weight distribution
becomes as in Figure B.5. For the ensuing discussion, we abbreviate this distribution as
(3,1,3,1).

The (3,1,3,1) frequency distribution will have a different PSD and bandwidth than
the M=4, h=1/4 scheme. For one thing, the PSD will become skewed to a lower frequency
and may actually require less bandwidth (based on calculations for an M=4, h=1/4 scheme
with an input data distribution of (3,1,3,1) the bandwidth is actually smaller [47]; however,
this calculation is not completely accurate since the coded symbols are not independent).
Another factor which will affect the bandwidth is the size of the frequency hops; for the
encoded scheme discussed here the maximum frequency hop allowed is + 4. Nevertheless,
if the bandwidth is actually smaller than the M=4, h=1/4 CPFSK scheme, then both power-
and bandwidth-performance improvement has been achieved.

The type of frequency distribution shaping which goes on here applies generally for
encoders over rings if ideals are generated by one of the encoder outputs. For example, if
M=6 then a multiplication by two would generate the ideal {0,2,4} and a multiplication by
3 would generate the ideal {0,3}. Rings other than those over the integers modulo some
composite number can, of course, also have this property. However, this effect does not
occur for codes over fields (such as the integers modulo a prime).

3 3 3 Max. Size of Hop
Weight 2 1 1 1
1 -
- -
0 I
0 1 2 3
Frequency

Figure B.5. Frequency weight distribution for the encoder of Figure B 4.
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We concentrate on rings over the integers modulo some composite number, c.
When ideals are generated for such rings, they will occur in multiples of one of the divisors
of ¢, labeled d. Because the ideals are staggered (le. {0,d,2d,...,(c-d)}), the frequency
distribution will also be staggered and not "bell-shaped" as for partial response CPM
(Figure B.1). Staggered distributions will tend to have a larger bandwidth than the binomial
distributions. This can be corrected by using a different symbol-to-frequency mapper than
the one used for the encoder above. For example, by mapping the 0's to frequency #1 and
the 1's to frequency #0, the (3,1,3,1) frequency distribution will become (1,3,3,1) and the
resulting PSD will be similar to that of 3REC. In this way, the combination of the encoder
over rings and the second mapper performs a bandwidth shaping of the CPM signal. Of
course, this combination's error performance is not as good as the original scheme's.

The above discussion has shown that both the error and bandwidth performance
must be taken into account when designing encoders for CPM. It may, in fact, be possible
to find combinations of encoders and mappers which simultaneously yield good error and
bandwidth performance. This and other avenues which can be explored are:

1) The above has been a rather ad hoc discussion on the bandwidth of coded CPM
schemes. A more general and rigorous theoretical analysis should be performed;
first and foremost, the assumption that coded CPM schemes with equal frequency
weight distributions have similar bandwidths needs to be verified.

2) The above ideas have counterparts in the area of shaping gain for constellations’,
and it would certainly be advantageous if the power gain and (bandwidth)
shaping of the codes described above could be separated in the same way as is
done for constellation codes. This, however, does not seem possible since the
frequency weight distribution and coding gain are directly related.

3) The discussion about the Y+T encoder was applicable to full response CPM
modulators (CPFSK here). The results can be generalized to partial response
CPM.

4) Rings other than the ones over the integers modulo some composite number can
be used (even non-commutative rings).

5) Convolutional encoders over groups could be investigated®.

' G.D. Fomey, "Trellis shaping," IEEE Trans. Inform. Theory, vol. 38, pp- 281-300,
March 1992,

2 H-A.Lsliger, "On Euclidean-Space group codes," D.Sc. dissertation, Swiss Federal
Institute of Technology, Ziirich, 1992.
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APPENDIX C. PROGRAM LISTINGS

Software written to:

i) calculate the size of the dynamic signal sets,

ii) calculate the minimum squared Euclidean distances for optimal and suboptimal
detection,

iii) calculate the PSD's and out-of band power,

iv) implement the Stack Algorithm in AWGN and AC], and

v) implement the Viterbi- and M-Algorithms in AWGN and ACI,

can be obtained by contacting:

Professor Ed Shwedyk

Department of Electrical & Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

R3T 2N2

All programs were written in C.
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