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This thesis deals with complexity reduction of Continuous Phase Modulation (CPM)

receivers. Complexity reduction is vitai for the implementation of the most power- and

bandwidth-efficient CPM schemes as optimal detection is too expensive. Both the frlter
bank and the sequence estimation algorithm a¡e considered.

Fi¡st, CPM signal sets are decomposed to allow complexity reduction of the matched

filter bank, the first stage in the receiver structure. A simple method for calculating the

dimensionality of CPM signal sets is presented and it is shown that virtually all CPM
schemes given in the literature need fewer matched filters for optimum detection than

previously thought. Several schemes which require a small number of filters are presented

and are shown to perform poorly compared to schemes with more complex signal sets. A
suboptimal filter bank for these more complex schemes is developed.

The second stage of the receiver structure is the sequence estimation algorithm.
Here a sequential algorithm, namely the Stack Algorithm, is applied to search the CPM
state transition graph. This aigorithm performs as well as the maximum likelihood Viterbi
Algorithm in terms of error performance while requiring much less time to search the
graph. However, simulations show that the Stack Algorithm is sensitive to ad.jacent

channel interference and that care must be taken to model the channel properly.

ABSTRACT
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CI{ÊIPTER r. INT'RODIJCTIÕru

Continuous phase modulation (CPM) has been an ilea of intense research over the
past decade. CPM schemes are more power- and bandwidth-efficient than theirpredecessors

and because of the many different possible configurations, there has been no lack of
resea¡ch topics. At the same time, the field has matu¡ed to a stage where the advantages

and disadvantages of CPM have been recognized. The advantages of choosing a CPM
modulation over one of the fundamental modulations, for example binary phase shift
keying (BPSK) or quadrature amplitude modulation (QAM), are due to the restriction of
phase continuify.

The most obvious advantage of phase continuity is bandwidth efficiency. Because

CPM signals have smooth phase transitions from one symbol interval to the next, their
bandwidth requirements are dramatically reduced from those digital modulations which
allow discontinuities. A further advantage is power efficiency. Phase continuity can be

considered a t)?e of coding performed on the information to be transmitted, and the
memory introduced by this "coding" can be exploited to achieve more noise immune
schemes. Moreover, CPM signals have a constant envelope which enables the receiver to
use a cheaper, more power efficient nonlinear amplifier. Thus, phase continuity enhances

both the power and bandwidth characteristics of a modulation. The price paid for these

advantages is implementation complexity at the transmitter and, more importantly, at the
receiver.

The primary disadvantage of CPM is that the complexity of the oprimal receiver
becomes impractical for the most efficient schemes. The reason for this is that, because

phase continuity introduces memory into the modulating process, the receiver must take

this memory into account. This is done by using a graph search technique such as the

Viterbi Algorithm to sea¡ch the state transition graph defined by the CPM process (assuming

maximum likelihood sequence estimation is desired). Moreover, because CPM schemes

a¡e nonlinear in general, the optimal receiver may require a large filter bank to obtain the

necessary statistics for detection. Such factors will usually require the system designer to

use a suboptimal detection scheme, both in teñns of the filter bank and the graph sea¡ch

technique, but before becoming immersed in such detail, a brief historical introduction is
given.



'I .1 . BACKG ROUhID

Continuous phase modulaæd schemes were introduced before 7963 at which time it
was already well-known that CPM was more bandwidth efficient than non-continuous

modulations [8]. However, it was not realized that knowledge of phase continuity should

be used in designing the receiver. Ie. the signal was only observed over one symboi

interval, thereby not using the full potential of phase continuity. This was discovered by de

Buda [9] who also presented a simple receiver structure for a parricular CPM scheme.

Further work in designing more bandwidth efficient schemes and a practical transmitter

and receiver was done by de Jager and Dekker [25]. Soon thereafter, many different

approaches appeared (multi-h [3], partiat response [14] and Aulin et al. [6] who analyzed

CPM schemes in great detail). This led to the pubüshing of the text Digiøl Phaçe Modllarion

[1] in 1986, a book which is the standard reference in the area of CPM. The large

bibliographies at the end of each chapter of this text bear witness to the huge amount of
work done up to 1986. Since then, research has begun to focus more on implementation

i s s ue s 15,23,24,351 and codin g 177,22,29,33,3 4,39,46).

Complexity reduction for CPM modulations, both in terrns of hardware and

computations, is a crucial issue because optimal detection requires complex receivers. In

[1, Chapter 8] simpler schemes for both the marched frlter bank and the detection algorithm

are presented. Some of these approaches yield excellent results and are useful for
implementation. At the same time, there are still many open questions regarding CPM.

For example, the signal set of the most power- and bandwidth-efficient schemes is very

large and not much is known about its properties. Also, the suboptimum detection schemes

a¡e known to work well in the additive white Gaussian noise channel, but less is known

about their perfonnance under more severe and ¡ealistic channel impairments such as

adjacent channel interference (ACI). These questions are addressed in the sequel, but first

the communications model is introduced.

1.1.1. Models
The communications model considered here is given in its most general form in

Figure 1.1. The sender transmits digital information, cr, via a modulator through a channel

which corrupts the transmitted signal, s(Ð. The comrpted signal, r(t), is received by the

demodulator and the information is estimated based on r(t) and knowledge of the modulation

process. The estimated information, â, will in general be different than the input data
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stream and it is the receiver's job to ensure that cr is as close as possible to the transmitted

information, based on some measure of closeness.

Modulator

In designing and alalyzing modulation schemes for this type of model, it is imperative

that one choose a channel model which is both practical and easy to analyze. The model

most widely used for this purpose is, of course, the Additive White Gaussian Noise

(AWGN) channel. The received signal is given by: r(t) = s(t)+n(Ð where n(t) is a white

Gaussian stochastic process with spectral height N"/2. Under this type of noise, signals

can be analyzed using Euclidean space geometric concepts. This is further developed

below, once the CPM model is introduced.

The CFM Model

The equations defining a CPM signal are:

Figure 1.1. The communications model.

s(Ð = \tT.or(2nf", + Q(cr,t))

where:

Q(cr,t) = zrrirÐ o¡ q(t-ir), nT<t< (n+1)T
i=0

E is the energy of s(t) per symbol interval, T,
f" is the carrier frequency,
h is the modulation index,

cr1 e {-(M-i), -(M-3),...,M-1},
M is the size of the input sl.rnbol alphabet and
q(t) is the phase pulse.

The above equation, by itself, does not yet define a continuous phase modulated signal; to

do so one must restrict q(t) to be a continuous function of time. The phase response is

usu ally fu¡ther restricted :

3
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where L is the length of the frequency pulse, f(t), which is simply the derivative of q(t). If
L= 1 , the CPM scheme is termed full-response and if L> 1 it is called p artial response . The
restrictions of equation (1.2) are applied to maintain causality and to normalize q(t). Note
that the phase pulse is not finite. Mod.ulation schemes with this property (and. the properry

that f(t) is finite) are sometimes referred to as frequency modulations, whereas schemes

with finite q(t) are referred to as phase modulations.

Examples of often used phase pulses a¡e shown in Figure 1.2. The motivation fo¡
choosing pulses of this kind is as follows:

1) The rectangular phase and frequency pulses, termed REC or LREC, are the
simplest CPM schemes. The REC phase pulse is also the scheme with the
smallest maximum slope, a properry which translates into a small main lobe in
its power spectral density (PSD). At the same time, the frequency pulse is
discontinuous which adversely affects the asymptotic spectral performance.

2) The raised cosine phase and frequency pulses, termed RC or LRC, are smoother
than REC. Because of this, an RC pulse yields good asymptotic spectral
performance. However, the maximum slope of the RC phase pulse is twice as

large as that of REC, a property which degrades main lobe performance.

These two points have described some aspects of the bandwidth properries of REC
and RC schemes. Other important properries include the error performance and receiver
complexiry; these factors are conside¡ed in detail in Chapter 3.

State Representation

The receiver must estimate the transmitted data based on the comrpted signal, r(t).
To do this it is useful to have a state representation of the modulating process at the
transmitter. Consider again equation (1.1). Based on the restrictions of equation (1.2) one
can write:

q(t) = lo
\ rrz

,t<0
,t>LT

(r.2\
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Q(cr,Ð = zænf crl q(t-ir)
i=0

where:

n-l n-L

= 2nhanq(t-nT) + 2æh X a¡ q(t-iT)+ æhf, cr1

i=n-L+l i=0

= 0"(an,t) + O"fcx,t) + elcr)

O.(crr,,Ð is the phase due to the current symbol.

O"fø,t)is due to q(Ð extend.ing over moro than one symbol interval. The

vector of L-l symbols determining 0"n is called the correlative phase

state.

0n(o)is termed the phase støte wtd is due to q(t) being semi-infinite.

The above decomposition allows one to represent a CPM signal

sequence where the actual states are defined by the correlative phase

state, as detennined by the vectors:

X"p =[Crr,-t, C[n-2,...,C[n-¡."1] and

Xp = [Cln-L, Crn-¡-1,...,C[6]

respectively. Thus, the transmitter follows a path through a graph where the next state is

determined by the present state and the next symbol. Considering a CPM signal in this

fashion is extremely useful in designing the receiver; to sequentialiy estimate the transmitted

information the receiver should try to find the path foliowed by the transmitter. The

manner in which this is done depends to a certain degree on the modulation index, h.

When h is irrational, the number of possible 0p(cr) grows indefinitely as n increases.

In this case a tree graph search technique must be employed. When h is rational, one can

write h=L/p, where k and p are relatively prime and the number of possible 0n(o)is limited

to p and 2p if k is even and odd, rcspectively. In this case the graph collapses into a trellis

and a trellis search technique such as the Viterbi Algorithm can be used. Rational modulation

indices are used throughout the rest of this chapter.

(1.3)

by a state transition

state and the phase

(1.4)
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,4.n .4lternate Representation

More insight into the nature of a CPM signal is gained by allowing the use of an

M-ary alphabet different than the one given in equation (1.1). Suppose the information

s¡nnbols to h uansmitted are Ui e {0, 1,...,M- 1 }. These symbols can easily be accommdated

in equation (1.1) by a simple substitutionr o¡ = 2Ui - (M-i). The phase in equation (1.1)

then becomes:

sGJ,Ð = znnf l:2u¡-(M-l)l q(t-ir)
i=0

The second term above, V(t), is independent of the information sequence and can

be ignored in the ensuing discussion. Further, one can write ry¡,¡o(Ll,t) as in equation

(1.3):

= ¿nhX U¡ q(t-ir)- 2æ(M-1)L q(t-ir)
i=0 i=0

= Vinfo(U,t) + V(t)

n-l n-L

Vinro(Ij,t) = 4nhu,,9(t-nT)+ aæh X, uiq(t-iT)+ 2æhf u1
i=n-L+l i=0

= OdUn,t)+ O"n(U,t) + 0o(U)

Now if h=ldp there are only p possible ep(U)regardless of k. This is actually consistent

with the above where, even though 2p Oo(cr) are possible for odd k, only p 0o(cr) are

possible in any given symbol interval. This was developed by Rimoldi [38]. Using this

fact, the number of states in a CPM scheme with rational modulation index can be enumerated

There are p possible phase states and, since the correlative phase state is defined by a vector

of L- 1 M-ary elements, there are MLl possible correlative phase states. Combining these

rwo numbers, the total number of states is pMLl (it is implicitly assumed that the information

symbols a¡e statistically independent a¡rd that every symbol is equally likely in each symbol

interval; if the symbols are correlated, as in the case of cded information symbols, then the

number of states may be smaller [46]).

This alternate representation is adopted at times rather than the narural one of
equation (1.1), as it lends itself readily to the determination of the dimensionality of CPM

signal sets. More on this in Chapter Z,but consider now the CPM receiver.

7
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1"1.2. The Optimal ePtuT Receiver
The optimal CPM receiver (optimal in terms of error performance) performs a

maximum likelihood sequence estimation (h4LSE) on the received signal. In the AWGN

channel case, the MLSE detector can be described using well-known Euclidean geometric

concepts [43]. Every signal can be thought of as a point in a higher dimensional space and

the receiver simply locates this point, r(t), in this space. Since one is working in Euclidean

space, the maximum likelihood sequence is the one which corresponds to that transmitter

signal, s,(t), which is closest to r(t) in the squared distance or Euclidean nonn sense; in

other words minimize:

/*,.u, 
- si(t)12 d, = 

I 
[,2(Ð + si2(t)] ., 

{ 
r(t) s¡(t) dt

with respect to all sequences, where N is the total number of symbols transmitted. Since

CPM signals have a constant envelope, the first integral in equaúon (1.7) is the same for all

sequences (up to double frequency terms) so that minimizing the squared distance is

equivalent to maximizing the correlation between r(t) and s,(t). Furthermore, this correlation

can be written:

so that sequence estimation can be performed on parts of the signal before the transmitter

finishes transmitting. To accommodate this, the estimation process is split up into two

pafts: the matched filter bank which performs the symbol interval correlations and the

sequence estimation algorithm which combines these correlations to form the total corelation

of equation (1.8) @igure 1.3).

{-
r(t) s¡(t) dt = ä 

/d:.'".{Ð,rarot}

(r.7)

Figure 1.3. The CPM receiver.

Matched
Filters

Sufficient
Statistics

( 1.8)



The Matched Filter tsank

Since CPM is in general a nonlinear modulation process, the most general receiver

will require as many filters as the size of the signal set. The transmitter can send out pML

signals in any symbol interval (pMt-t states and M symbols per state), so that not more than

pML filters a¡e needed with each filter matched to, or performing the correlation for, one of
the signals in the signal set. However, some reduction is possible since the factor p comes

from the temr Oo(a)in equation (1.1) which is a constant phase offset over a given symbol

interval. The set of p signals equal up to a constant phase offset lies in at most 2
dimensions so that not more than 2ML matched filters a¡e needed for optimum detection of
any CPM scheme.

The fiiter ba¡k will normally be implemented using baseband components so that a

baseband rcpresentation of equation (1.1) is useful:

s(t) = 96112*"Ð l1/+-.or(q1a,t¡)] - sin(2æf"g 
I

= cos(2nfct) I(cr,Ð - sin(2æf"t) Q(cr,t)

At the receiver, r(t) is converted to baseband using phase synchronized quadrature product

detectors and a pair of low pass filters (Figure 1.4) t1l.

^IE\iT sin(qqcr,t¡)]

2 cos (2æf"t)

- 2 sin (Znf"t)

Figure 1.4. The quadrarure baseband receiver.

(1.e)
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The baseband matched filters perform their correlation operations on the noisy

baseband components:

r,r= f:
= cos(op)1,t."'tn, .or(e"*e"o)at - sin(eo)y'o"'' T19 sin(e"+e"o)ot

2 r(t) s;(t) dt

+ sin(eo),[n."' Uu ,or(o"*e"o)at * .or(er)f, rtg ,in(o"*o"o)ot

where the approximation is due to ignoring the double frequency terms and the notation of

equation (1.3) has been adopted. The interval correlations in the j'th symbol interval, c,,,

are called branch metrics and are fed to the sequence estimation algorithm. Based on

equation (1.10), four baseband matched fiiters are required for each set of p signals. Two

of these filters are redundant due to the symmeh-y of the input syrnbol alphabet, so that one

is left with 2ML baseband matched filters, the same number as that needed for the high-

frequency filters. Because this number is the sarne, no distinction is made between these

two f,rlters banks in the ensuing discussion and only the signal sets themselves are considered.

The Sequence Estimation Algorithm
Maximum likelihood sequence estimation is performed via the Viterbi Algorithm

which is really a brute force search through the nellis. The number of states is pML-l which

grows exponentially with the length of the frequency pulse, L. There are M branches

leaving and entering each state, only one of which can represent the maximum likelihood

path. Of all paths entering a state, only the one with the largest metric is kept; the other

paths are disca¡ded. This algorithm and various issues concerning its implementation have

been widely studied (see [2,16,19], to name a few).

The primary disadvantage of the Viterbi Algorithm is the exponentiai growth in

complexity with L. Furthermore, the most power- and bandwidth-efficient CPM schemes

are those with large M and L. For these schemes the Viterbi receiver is too expensive. To

alleviate this problem, reduced complexity search techniques need to be employed. This is

further developed in Chapter 5.

= 
f,'.'"

lîc,l r,ro + õ(r) ettll¿t

(1.10)
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1"2" SCOPE OF T¡-IESIS

Based on the above discussion, a vital issue in the practical implementation of CPM

receivers is how to attain near optimal performance with simple receivers. However,

before such receivers can be designed, the modulation process must be well understood.

Therefore, this thesis deals first with optimal receivers and the underlying signal set.

Chapter 2 analyzes the CPM signal set in some detail and leads to a broad discussion of

special phase pulses in Chapter 3. The second section of the thesis, chapters 4 and 5, deals

with suboptimal receivers. Chapter 4 addresses complexity reduction of the filter bank,

whereas Chapter 5 is concerned with sequential sequence estimation.

11



çHAPTHM 2. CPfuT SlGruAL SETS

This chapter focuses on CPM signal sets. The goal is to determine the dimensionality

of these signal sets since it is the dimensionaliry which determines the number of matched

filters required for optimum detection. For example, amplitude shift keying (ASK) has a

one dimensional signal set which can be demodulated with one matched filter, while

quadrature amplitude modulation (QAM) spans two dimensions and hence requires two

matched filters. In general, one matched filter will be required for each dimension.

A CPM signal set consists of phrP signals. The factor p is due to the constant phase

offsets which define the phase states, so that the maximum number of dimensions required

to represent any CPM signal set is 2ML, where the extra factor of 2 comes from the

in-phase and quadrature components needed to obtain all phase offsets. However, for

virtually ail CPM phase pulses given in the literature, the dimensionality of the signal set is

actually smaller than 2À*. To show this, a subset of the signal set called the dynamic

signal set, as defined in section 2.1, is utilized. In section 2.2, the dimensionality of the

REC class of phase pulses is obtained and is found to increase only linearty with the length

of the frequency pulse, L. In section 2.3, the ideas of section 2-Z are generalized to other

CPM schemes. The results lead to a general classiñcation of CPM pulses and to schemes

which require a small amount of hardware at the receiver (Chapter 3). Moreover, the

results lead natu¡ally to a suboptimal reduced-complexity detection scheme, as discussed in

Chapter 4.

2.1. T'h¡F ÐVSüAMIC S¡GN.¡AL SET

The pML possible signals which the transmitter can send out during any symbol

interval can be subdivided into ML classes where each class contains p signals identical up

to a constant phase offset. For example, consider the duobinary (M=2,I-2) rectangular

frequency pulse scheme wíthh=U2 (so that p=2). There are then pML=8 signals in the

signal set, with MrL-4 classes containing two signals each (Figure 2.1). Thus, for this

particular CPM scheme 2MrL=B matched filters are needed, one set of matched f,lters for

each class.

T2



x: Urr=O, ur,-r=o

0

3:

2: Urr=O, Ur,_t=1

T

Ur=1, Urr_t=0

0

4z

T

Ur=1, Urr_t=1

Based on the above discussion, in a given symbol interval any CPM signal can be

represented in the 2ìvIL dimensions (using equation (1.5)):

ØnG) =flu^+ un_11 r

+l un-1 + ep

Figure 2 .I . P hase of the binary 2REC , h= I /2 signal set.

where {"J is one of the Mt M-ury vectors of length L and n=0,1. However, the simplification

need not stop here. It turns out that the sum in this equation contains many redundant

ierrns; the problem is in determining how this redundancy comes about. To do this,

partition the CPM signal set into a set of classes for which each class contains all of r}re

signals identical up to a constant phase offset. Define this set of classes as the dynamic

signal ser, S; each class is represented by that signal which stafts at zero phase. The size of
the matched filter bank for optimum detection is therefore determined by the size of the

dynamic signal set. ln the next section, the number of such classes is counted for rectangular

frequency pulse CPM schemes.

0P=0

oP=fi

Du.,, = cos (27rf"t + \¡(Ð
L-l \

+ aæh) u"-¡q(t-ir) .T) (2.1)
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2.2. REC SC!-TEMES

A REC phase pulse is given by:

This class of pulses includes CPFSK (L=1) and MSK (M=2,L=7,h=UZ).

state independent portion of the phase of a REC signal is given by:

L-1

O(U,t) = +æhÐ Un-iq(t+iT-nÐ ,rT(t< (n+1)T
i=0

Inserting (2.2) nto (2.3) yields an equation with two distinct parts:

,,r={

o ,t<o
t

zLT

1/2

,0<t<LT

,t>LT

0({r,t) = o,({J,t) + 0"(u) = 4tth#[ã u" 
| 

. *, 
[å 

u",(|1)2L 
]

The first term in the above equation defines the dynamic signal set, whereas the second

term is a "static" constant phase offset. This impiies that the number of dimensions needed

to represent the signal set wili not be more than twice tne numbelo_rf possible Or(U,t). But

this is just twice the number of different values which the sum X U"-, in equation (2.4)

L-r i=o

can take on, and since f Ur,-i € {0, 1,..., L(M-1)}, there are only lSl = L(lvI-1)+l different
i=0

O,(a,t). For example, consider again the duobinary CPFSK signal set. From Figure 2.1 it
is immediately apparent that there are only L(M-1)+i=3 distinct siopes in the signal set, as

opposed to ML=4. Thus, only six matched filters, rather than eight, are needed for
optimum detection. Such decreases in dimensionality were noticed by several authors

lL,I4,22l and a¡e consistent with results from partial response signaling [26].

The above indicates that the number of matched filæn needed for optimum detection

of REC CPM schemes is 2lSl = 2[L(M-1)+1], a number which increases linearly with both

M and L and not exponentially as for general CPM schemes. Thus, optimal detection does

74

(2.2)

The phase

(2.3)

(2.4)



not requte a prohibitively large bank of matched filters, even for relatively large M and L.

For example, for M=4 and L=3 only 20 matched filters are needed instead of the 128 for

general schemes (it should be noted that REC schemes with M=2, L>3 and M)2n, n>1,

L>1 exhibit undesirable distance properties; this is discussed in more detail in Chapter 3).

Since q(t) is a linear function, the REC dynamic signal set is pafücularly nice and

consists of L(N4-1)+1 equally spaced frequencies:

Other CPM pulses do not have as nice a representation. However, for most schemes,

some simplification is still possible.

fr, : f" +ãH-L(M-l) + 2n], D = 0, 1,"', L(M-l)

2.3" OThIER CPruT SC¡{EMFS

The approach for REC can be generalized to other phase pulses. In the ensuing

discussion, a simple bound for the dimensionality of any CPM scheme is derived, as well

as results for particula¡ schemes.

We reiterate that to obtain the number of dimensions spanned by a CPM signal set it
is necessary to count the number of different dynamic phase transitions possible over one

symbol interval. To do this, one must consider the individual "chips" of the CPM phase

pulse. This is iilustrated with the following example.

2.3.1, An Example: The 4RC Pulse

The 4RC pulse has four unique chips, ignoring constant phase offsets (Figorc 2.2).

Time translating each chip into ttre interval 0 < t / T < 1 yields:

(2.s)

qo(r) =#-#,*[ä) ,

sz(r) = ¡i. #""{#)

q1(t)=# #"'(#)
,q¡(r)=fr+#"'(#)
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q)

U

These four chips, however, are linearly dependent and can be expressed as:

Figure 2.2. Chips of the 4RC pulse.

[qo(,)l l- 1 o 1l

e(t)=l Ulll l=o,uc,r=l î å ll
Lq:(t)J L o-1 rl

This expression is simply the representation of the 4RC chips by a linearly independent set

of chips which span the dynamic signal set, S, and thus E(t) forms a basis for the linear

space spanned by the elements of S. Of course, this basis is not unique. For example, one

could write:

Q(t)=q"nr,i=[ ö i ilÉÐ_ \_/ 
| _1 0 1l
L 0-1 lt

af ".{ff)
-#..'(#)

t
8T

# #""(#)
E, #.",(flr)

t
4T

(2.7)
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It turns out that this second representation is more suited for our purposes.

The signal sent out in the n'th interval is:

0r(t) =[ U,,, Ur,-r Ur,-z Ur,-s]' Q(t)

=û.Qnn(t)

Using the representation of equation (2.8), one obtains:

The actual number of signals possible is the number of unique vecto$ which t Qn
can become. This is just the size of the space generated by the rows of the 4x3 matrix QB

when scala¡ multiplications by only the M-ary data symbols a¡e allowed. For example, if
M=2 there a¡e 2a=16 possible Ù but only 15 possible t Qn. Thus, the representation of
equations (2.7) and (2.8) gives us a straightforward approach to counting the number of
signals in the dynamic signal set.

Counting the number of unique t Qs is a brute force approach to counting rhe

number of possible signals. However, a simple upper bound can be obtained by noticing

that each element of Û qg can take on only 2(N4-1)+1 values. Since each element represenrs

the contribution of one of the linearly independent portions of the dynamic signal set, the

size of this signal set, lSl, cannot be more than:

0,(t)=tQe'ts(t)
= | Ur, - Un-z Ur,-r - Ur,-¡ Ur,_z * U"_¡ ]. E(t)

This equation is only an upper bound because it is based on the assumptions that each

position m t q" is independent and that all values between 0 and 204-1) can occur. The

former assumption is obviously not true here.

Equation (2.11) tells us that lSl increases asymptotically as 8M3 and not as ML=M4,

as for general CPM signals. It is now aiso clear why the second basis in equation (2.8)

gives a better upper bound on the size of the 4RC dynamic signal set. If the basis and

representation of equation (2.7) had been used and the same assumption of independence

had been made, the upper bound would have been: lsl<12(M-1) + ll2 [a(Xa-l) + 1]. In
general, the fewer and the smaller in magnitude the number of nonzero positions in Qg, the

17
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lsl <[2(M-1) + 1]3 =(2M- 1)3

(2.10)
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tighter the upper bound. For 4RC, the actual signal set size and the upper bound of
equarion (2.1I) for various M are given in Table 1 (for information regarding the software

written for this thesis, see Appendix C). Notice that the actual size of lSl is not much less

than Ma for small M, and that the 4RC dynamic signal set is quite large.

M
Table 1. Size of the 4RC dvnamic sisnal set.

z

N¡É = Ma

4

2.3.2. General Schemes

I

In the same manner as in the above example, one can obtain the size of the dynamic

signal set of arbitrary CPM schemes. The procedure is:

i) Obtain a basis for the space spanned by the chips of the CPM phase pulse.

From this form the basis vector B (t).

16

16

256

Eqn. (2.11)

(2M-1)3

4096

6s 536

27

343

2)

3 375

Acnral Size

Find the matrix Qs, as in equation (2.7), which defines the phase pulse chip

vector, Q(t), via the basis vector B (t).

Find the number of unique Û Qs by counting.

29 791

lnstead of brute force counting of the number of unique t Qe, one can assume that

every position in Û Qr is independent to obtain an upper bound on the number of possible

signals. This upper bound can be obtained as follows:

3)

15

175

1 695

L4 911

1)

2)

3)

Find the sum of the magnitudes of the numbers in each column of Qe.
Multiply each sum by (M-1) and then add 1.

Multiply all the resulting numbers together.

The above procedure allows one to easily obtain upper bounds to the number of
signals in the signal set of any CPM scheme. For example, consider the class of frequency

pulses fo¡ which the second half of the pulse is a linearly dependent version of the first half

18



raised up by some constant frequency. This class includes RC and can be represented by a
basis which has a maximum of lU2l +1 elements, expressed as in equation (2.8) with two
numbers of magnitude one in the first lU2l columns andlU?-1ones in the last column.

Thus, an upper bound to lSl is:

so that the size of the dynamic signal set increases exponentially as lfnl + 1, and not as L
(in general, the exponential increase is simply the number of basis elements in B(t)). As is

evident from Table 1, however, these reductions only become significant when lSl is large.

Thus, for schemes like RC where the basis actually haslU2l +1 elements, the number of
matched filters needed for optimum detection, 2lSl, is prohibitively large even for small

values of M and L.

The construction of the signal set vector Q(t) from the basis vecto¡ E (t) suggests

that if one wants to optimally detect a CPM scheme with a reasonable number of matched

filters, the number of signals in the basis vector, B(t), should be kept small. Indeed, for
REC CPM the basis vector has one element: B(t)=t/2Uf. In other words:

lsl < [2(M-1 ) + r[trz1 (fUz1Crvr-r) + r ]
< (zl r rzl ¡Ur,) l,4l vzì * t

In this case the upper bound obtained by the meihod described above becomes exact since

the assumpúon of independence becomes valid: lSl = L(M-1)+1.

A simple generalizaúon of REC is now possible: as long as lE l=1 (where lBl is the

number of basis elements), no matter what E (t) actually is, one witl obtain lSl=L(M-1)+1

and therefore require only 2[L(M-1)+1] matched filters for optimum detection. This class

of phase pulses is called single basís phase pulses. It is reasonable to predict that a

judicious choice of basis ts (t) other than that of equation (2.I3) can yield better specrral and

distance properties than those of REC CPM. The design and performance of these schemes

is considered in the next chapter.

Q(t) =

qo(t)
qr(t)

9l--r(t)

(2.12)

= Q"E(t) =

1l

f ltø-rt
1l

(2.t3)
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EHAPTER 3. SGþ{EMES W¡Tg.{ A SMALL FILTËR EANUK

The single basis phase pulses described in Chapær 2have the advantage of requiring

a small number of matched filters for optimum detection. In this chapter, various CPM

schemes are considered based on the complexity of the matched filter bank when optimum

detection is desired. The schemes are compared in terms of their error performance and

spectral properties. In section 3.1, these performance measures are explained. The rest of
the chapter is organized in terms of the complexity of the matched filter bank: in section

3.2 single basis phase puises and in section 3.3 double basis phase pulses are considered.

The results show that schemes with a small filter bank for optimum detection do not

perform as well as those schemes which have a more complex dynamic signal set. Detection

of the morc po'vr/er- and bandwidth-efficient schemes is considered in Chapters 4 and 5.

3.1. PERFORA'I,qN{CE MEASUHES

To compare the many CPM schemes considered in this chapter one needs ceftain

performance criteria. The performance measures basic to any modulation scheme are error

performance and spectral occupancy, both of which are considered in some detail here. Of
course, an equally important criterion is cost of implementation of the CPM system. The

many facets of cost, however, make it somewhat difficult to analyze, with engineering

issues ranging from circuitry and hardware to choice of carrier frequency and synchronization,

all of which are interrelated- One must, therefore, focus on a specif,rc implementation issue

which in this chapter is the complexity of the analog portion of the receiver, viz. the

matched filter bank. The complexity of the digital portion of the receiver, the detecrion

algorithm, is considered in Chapter 5. (The issue of synchronization is not addressed here,

see [1,24,35].)

Error Ferformance

The error performance of any modulation scheme over the AV/GN channel can be

analyzed using the concepts of Euclidean signal space [1,43]. The standard approach for

measuring error perforrnance is briefly developed below, following the discussion in [1,
Chapter 21.

Assuming that all possible data signals, s¡(t), are equally likely, the maximum
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likelihood receiver will choose that signal which is closest to the received noisy signal, r(t),

in terms of Euclidean distance. Since the noise, n(t), is a Gaussian stochastic process, the

probability of choosing signal s¡(t) when s¡(t) was sent is:

where a, = 
{Å 

[s¡(t) - si(t)]2 ur]t" is the Euclidean distance between the two signats, 9Ì is

the region over which s1 and sj are nonzero and N"/2 is the spectral height of the noise.

The total probabiliry of error is then:

r"(s¡(t)chosen I s(t) sent) = 
l,, æ*{ #J *

P" = I P{s¡(t) sent}P{enor I s¡(t) sent)
i

= X n{,,(,) sent} 

{p {,,Ë.^'( fl *}

where the union bound was used, all signals s¡(t) were assumed equally likely and Q is the

familiar Q-function: Q(x) =#l^- "*p(- 
vzlz)dy. At high signal to noise ratios, P" will

be dominated by the term dmin = i1r 
UU so that:

_T
¿-¿
i lñ"-be. ofifÐT

(3.1)

where it is assumed that every signal has K other signals a distance d-i,, awa!. Experience

has shown that Equation (3.3) is a reasonable approximation even for mode¡ate values of
signal to noise ratio (SNR) and because of the simplicity of this expression, dmin (ot (in)
is commonly used as a performance measure. Further, this measure can be applied to

sequences to determine the probability of an error event occurring; an error event occurs

when the detection algorithm releases a path section not belonging to the transmitted path

2I

ä'f-"'-J

o"=o{ 4"
2No

(3.2¡

(3.3)



and ends when the ffansmitted path is reentered. The probability of error event is the

measure of performance for the simulation results presented in Chapter 5.

Normaiizing the energy/bit to 1/2, &infor CPM signals is the minima of all (see

Equation i.1):

where the high frequency terms were discarded and ÂQ¡(t) = Qsr(t) - 0r¡(Ð. The calculation

of 4i' can be accomplished using a search procedure described in Appendix A of [1]. The

results of section 3.2were obtained in this manner.

Spectral Froperties

The spectral performance of a modulation scheme is measured by the amount of
bandwidth the scheme occupies. Since bandwidth is limited, it is important to use up as

little of it as possible. There are many different definitions for bandwidth, some of which

a¡e listed in 112, p. 1041. A definition used by many (cf .lI,I2,39l) is the frequency band

in which 99Vo of the total power resides.

Another important factor to consider is the adjacent channel interference (ACI)

caused by a particular modulation scheme. ACI is measured by the average power of the

modulation scheme in adjacent channels, so that some indication of ACI is given by the

asymptotic decrease in the level of the power spectral density (PSD).

In section 3.3, both the PSD and out-of-band power are considered as measures of
spectral performance. Both of these can be evaluated numerically using methods described

inlI,27,27l. The autocorrelation method given in [1, Chapter 4] was used here.

Energy-Bandwidth Comparison

Up to this point, the enor and spectral performance have been considered separately.

It is easier to compare different modulation schemes by considering these two criteria

simultaneously in the energy-bandwidth plane [1]. The advantages and disadvantages of
the va¡ious schemes discussed in this chapter become more readily apparent using such an

approach.

Ðetection Complexity
The measure of cost used in this chapter will be the size of the matched filter bank

22
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for optimum detection. Other important measures of detection complexity are the amount

and type of hardwa¡e required for the detection algorithm ffiterbi Algorithm if optimal

detection is desired) and synchronization circuitry, as well as speed (computational

complexity). Some of these issues are dealt with in Chapter 4 and Chapter 5..

The next section deals with single basis CPM schemes since these have the simplest

signal set and the smallest matched filter bank. It is shown that this simplicity comes at the

cost of both error- and spectral-performance.

3.2. S!NG!.E tsASlS PF{ASE PULSES

In the previous chapter it was shown that, for optimum detection, single basis

phase pulses require only a linearly increasing number of matched filters with L, the length

of the frequency pulse. It was also mentioned that a proper choice of basis could possibly

yield better power and spectral properties than the REC scheme. The design of single basis

phase pulses is based on the following observations:

1) The REC basis, B (t)=l2LT, yields a phase response, q(t), which is not smooth

at r = 0 and r = LT. This causes the power spectral density (PSD) of this

scheme to fall off at a relatively slow rate asymptotically.

The distance properties of REC pulses are generally poorer than those of RC at

low modulation indices (h<112). However, one usually needs to use low
modulation indices to obtain good power-bandwidth properties.

2)

The f,rrst observation suggests that choosing a basis, B (t), that produces a phase

response which is smooth everywhere should yield good spectral properties. For example,

one can choose a basis of the RC type (Figure 3.1):

This phase pulse has the same degree of smoothness as does the usual RC pulse (although

the higher order derivatives are somewhat larger). Thus, one would expect that the PSD of

this pulse should decrease asymptotically at the same rato as RC pulses [7]. At the same

time, ts¡ç(t) is very similar to the REC pulse and one would therefore expect the distance

properries of these two schemes to be very similar. The distance and bandwidth properties
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of the BRC(t) pulse are discussed in the next section.t

The second observation is concerned with error perforrnance. It suggests that if
one could shape the REC pulse so that it more closely resembles the RC pulse, perhaps

better distance properties could be achieved. The shaping can be easily accomplished by

weighting each chip of the phase pulse (this is cailed partial response FM in [14]). For

example, the phase pulse vector forL=  could become:

This type of pulse is a reasonably good fit to the 4RC pulse and should yield similar

distance properties (or error performance). Using the results of section 2.3.2, this scheme

will require 218(M-1)+1] matched filters for optimum detection (note that, from equation

(2.I2),4RC requires on the order of 16M3 matched filters). Weighted pulses of this type

are considered in section 3.2.2.

t-11

e(,) =L 

il-,,

0.6

êo U.4
e)

q)
v)

åd 0.2

,{
0.0

0.0 1.0 2.0
tlT

Figure 3.1. Single basis RC phase pulse.

(3.6)

' The properties of this particular phase pulse have been examined by Deshpande and
'Wittke in [I4], who found that the out-of-band power of such a scheme is rather large.
Nevertheless, we feel that the discussion of this phase pulse is necessary, especially in
light of the findings of Chapter 2.
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3.2.1. Single Easis HC

The error and spectral performances of the single basis RC pulse (abbreviated

SB-RC below) are now considered. As representative cases, results for M=2 andL=3,4

for different observation intervals are plotted in Figures 3.2 to 3.5 (the observation interval,

Nour, is defined as the number of symbol intervals the receiver observes the received

signal; for example, for symbol-by-symbol detection the observation interval is 1). Recall

that the number of matched filters needed for optimum detection of these schemes is

2iL(M-1)+11 as opposed to 2ML for general CPM schemes.

Error Ferformance

From the minimum Euclidean distance plots (Figures 3.2 and 3.3) the following
observations can be made:

1) Both Figures: the distance profile of SB-RC follows very closely that of REC,
both for L=3 and L=4. This was expected, since these puises are very similar,
especially for larger L.

Modulation Index, h

Figure 3.2. fi¡rfor M=2, L=3 (Nons= 8).

0.0 0.5
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Figure 3 .3. dz^,rfor M=2, L=4 (N ons = l0).
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2) Figure 3.2: the RC pulse yields better distances at low modulation indices (h =

0 to 0.5). For example, at h = 0.5 the RC pulse is about 0.95 dB more powel

efficient than either the REC or SB-RC pulses. This suggests that weighting

the pulse chips so that the resulting pulse is similar to RC will improve error

performance (see section 3.2.2). The price paid for such pulse shaping is an

increase in the number of matched fiiters required for optimum detection, as

mentioned above.

Figure 3.3: the REC and SB-RC pulses seem to perform much worse than the

RC pulse. The reason for this degradation is that there exist specific sequences

whose Euclidean distance from the correct sequence does not increase with

time. This effect occurs for M=2 when L>3 and for M=2n when n>1 and L>1.

0.5
h

1.0

3)

The effect described in the third observation is not really as bad as it seems. In fact,

the distances given in Figure 3.3 come from the difference sequence +2,-2,-2,+2,+2,-2,-

2,+2,... or -2,+2,+2,-2,-2,+2,+2,-2,... (a difference sequence is the symbol-by-symbol

difference between two data sequences and is used in equation (3.4) to find dfi,"). Since

M=Z,these two difference sequences can occrr only if the data stream is -1,+1,+1,-1,-1,...
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or +1,-1, -1,+1,+1,..., respectiveiy. The probability of either of these fwo sequences

occurring is, of course, vanishingly small. In practice the effect of such sequences depends

on the observation interval length, No"r. The longer No", is, the less probable an emor

event of this nature is. Thus, a better indication of the performance of such schemes, at

least for small modulation indices, is the distance of those paths which, after diverging
from the correct ståte, meet in the same state after the smallest number of symbol intervals,

namely N=L+1 (for larger modulation indices some minimum distance paths can meet

somemr:ltipleofZnawayinphase)[1]. Nevertheless,theeffectofthesesequencesisnot

desirable.

Spectral Properties

The spectral properties of the SB-RC pulse are compared with the REC and RC
schemes in Figures 3.4 and 3.5. From these figures:

(â

-40

-120

Ftgure 3.4. PSD's for M=2, L=3, h=112.

2
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Figure 3J. PSD's for M=2, L=4, h=112.

1) As expected, the PSD of the SB-RC pulse decreases at the same asymptotic rate

as the RC pulse. This statement, namely that the asymptotic decrease in PSD of
the single basis pulse is the same as that pulse from which it was derived, is
true for other single basis schemes. At the same time, the SB-RC PSD is larger
than the RC PSD at high frequencies, a consequence of the larger higher order
derivatives of the SB-RC's phase pulse.

The main lobe of SB-RC is much wider than that of either REC or RC. This is
caused by both the increase in maximum slope of the SB-RC pulse over REC
and the periodicity of the SB-RC pulse (the sum of the pulse chips is not a

linear function; see [38]). Again, this carries over to other single basis schemes

so that REC has the best main lobe performance of all single basis schemes.

2

f'T¡

2)

From the PSD's of the SB-RC schemes, one would expect that their out-of-band

power performance is quite poor also. This is certainly the case figure 3.6). In Figure

3.6, B refers to tho one-sided bandwidth containing 997o (andlater 99.9Vo) of the in-band

power and To is the time per bit. For this particular scheme Qr4=2, L=3) the bandwidth of
SB-RC is much larger than that of REC at99Vo in-band power (-20 dB out-of-band power)
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and becomes better only at 99.997Vo in-band power (-45 dB out-of-band power). Therefore,
single basis pulses other than REC may only be useful for such channels where a large
main lobe is acceptable, but it is important to avoid adjacent channel interference (note that
the RC scheme performs better than REC and SB-RC but requires more matched filters for
optimum detection). The poor performance of the SB-RC scheme becomes even more
apparcnt in the energy-bandwidth plane.

Energy-tsandwidth Comparison
The energy-bandwidth characteristics of the L=3 schemes discussed in the above

section are compared below (Figure 3.7); the results forL=4 a¡e similar. The minimum
distance is normalized by that of MSK (û,'¡r=Z) and the bandwid.th for 99Vo in-band power
is considered.

The graph shows that the SB-RC pulse performs much worse than either REC or
RC in the energy-baldwidth plane at 997o in-band power. This is, of course, due to the
main lobe characteristics of the PSD's. The energy-bandwidth properties of REC and RC
are similar at 997o in-band power but if more in-band power is considered, RC performs
better than REC since the asymptotic specÍal performance is better.

-20tr
q)

€ -40

I

J -60

-80

Figure 3.6. Out-of-band power for M=2, L=3, h=I /2.
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Fígure 3.7. Energy-bandwidth characteristics of SB-RC, L=3 (99Vo in-band. power).

The poor performance of the single basis pulses somewhat tempers the results of
Chapter 2. The reduction in dimensionality of the single basis schemes is offset either by
poor asymptotic spectral performance as for REC, or by a much widened main lobe as for
SB-RC. This being the case, a natrual question to ask is whether allowing a slight increase

in the size of the dynamic signal set over single basis pulses (without going to large
exponential increases as for RC) allows significant performance improvement. The answer

to this question is the focus of section 3.3, but before leaving single basis phase pulses,

consider weighted single basis pulses.

3.2.2" Weighted $ingle tsasis Fr¡tses
From the above, there are two reasons for considering weighted single basis phase

pulses:

2ts. Tb

1) one would like to shape the phase pulse in the form of an RC puise to improve
error perfonnance at low modulation indices.

One would like to prevent distance effects like those of Figure 3.3 from occurring.2)

30



Consider weighted pulses of the REC type (called correlative encoded FM with

rectangular pulse shaping in [14]). One can shape the REC pulse to closely match the RC

pulse shape (Figure 3.8). The chip weights used are (1,3,3,1) as in equation 3.2 and the

basis vector must be modified to normalize the final phase pulse heightto U2:

The distance properties for this pulse with M=2 are shown in Figure 3.9. As expected, the

weighted REC pulse's asymptotic error performance is similar to that of RC. However,

there is a further advantage: the effects of Figure 3.3 which occur for unweighted 4REC

have been eliminated. As mentioned above, the price paid for such improvements is a

slight increase in number of matched fiiters for optimum detection, namely 48(M-1)+1]
matched filters rather than 2[4(M-1)+1].

Weighted and unweighted REC schemes have similar spectral properties ([14, Table

II, rows 8 and 20] and Figure 3.10) so that one need concentrate solely on error performance

and receiver complexity. (This seems at odds with staæments made above, but in this case

increasing the maximum slope does not $eatly affect the PSD; smoothness of the phase

pulse is the critical parameter here.)

ts(t)= - t
2.(1+3+3+1).T 16.7

0.6

-e, 
^Að¡ v'r

C)

q)
V)

Ê< 0.2

(3.7)

Figure 3.8. Weighted REC (1,3,3,1)Íit to 4RC.
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Figure 5.9. firnfor weighted REC (1,3,3,1) (M = 2,Nons= IA).
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The same type of shaping just described using REC can also be done using other

single basis pulses. The results are exactly as one might expect: the error performance of
such weighted single basis schemes is simila¡ to that of RC, while the main lobe of the

PSD is much widened over that of REC or RC. Therefore, it seems that larger signal sets

than single basis must be used for good energy-bandwidth perfomrance.

3.3. DOUBLE tsAS¡S P¡.¡ASE PUI.SES

The same analysis done for single basis phase pulses is repeated here for schemes

which have two element bases (and are thus termed double basís phase pulses). The

motivation for analyzing these types of pulses is apparent from the results of section 3.2.1:

it may be possible to improve spectral performance over single basis pulses significantly
without dramatically increasing the number of matched filters for optimum detection. As

shown in the sequel, certain double basis schemes do just that. The fi¡st double basis pulse

examined is a natural extension of the SB-RC pulse (section 3.3.1) whereas the second one

is a smoothed REC pulse (section 3.3.2).

3.3.1. Double tsasis RC

The double basis RC pulse (DB-RC) is limited to even L and has a phase pulse

vector of the form (Figure 3.1 1):

f å:ll* #*"(i) IQ(t)=q'ur'r=L ' ilL* .-#,'"ìË)-l

The rationale for choosing such a pulse is that the same asymptotic spectral performance as

RC or SB-RC can be expected without the much widened main lobe, since this scheme

does not show the periodicity of the SB-RC pulse (iinearity of the sums of pulse chips).

Further, the number of matched filters for optimum detection will O" ,lrß4-1) * ,f',
which increases asymptotically as (LM)'and not as ML.

(3.8)
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Ftgure 3 .11 . Double basis RC phase pulse.
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As one might expect, the distance properties of DB-RC fall between that of REC
and RC and are not shown here. It is the spectral properries of such pulses that are more
interesting. The PSD for a DB-RC pulse with M=2 andL-4 is plotted in Figure 3.12,
along with the corresponding SB-RC and RC PSD's. ft is apparent from the figure that the
DB-RC scheme does not improve much over the SB-RC scheme in terms of main lobe
performance, and for this reason the energy-bandwidth performance of DB-RC is not much
better than SB-RC either. A better choice of basis is possible.

3.3,2. Smoothed HEC

A good phase pulse, as fa¡ as bandwidth performance is concerned, would exhibit a

small PSD main lobe and good asymptotic spectral performance. The PSD main lobe is
affected by the phase pulse's maximum slope and periodicity (in the manner described in

[38]). The REC pulse has the smallest maximum slope of any CPM scheme and therefore
also the smallest main lobe. However, due to the discontinuities at the edges of the pulse
(Ie. at t = 0 and t = LÐ, the asymptotic spectral performance is poor. A logical remedy to
this is to choose a pulse which is REC except smoothed ar the edges. The Smoothed REC
pulse considered here is (Figure 3.I3):

-C 
^/làD v'r

q.)

q)
rt)

ê* 0.2

Figure 3.13. Smoothed REC pulse (L=4).
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e(t) = a,r(,) =[ å i lF- a;"tÐ,'" (-r)l

Lti]L ærlr l

This scherrp willrequire less than 2l2}vl-l)+1] [(L-1XM-1)+1] f,lærs foroptimumdeæction.
The error performance of this pulse is, just as SB-RC, very similar to that of REC. One
notable difference is that, due to the nonlinear terms, the effect of weak sequences is
diffused from that of REC.

The PSD of this scheme is shown in Figure 3.14 where the tight main lobe of
Smoothed REC is apparent. The asymptotic spectral performance of this pulse is very
similar to that of DB-RC. The advantages gained by this puise over DB-RC become clear
in the energy-bandwidth plane for 997o in-band power (Figure 3.15). However, the
99.97a in-band power performance of Smoothed REC is not nearly as good as RC and
therefore not much advantage in error or spectral performance is gained by using either
double basis pulse presented here.

^ -20

€ -¿o
(n

(3.e)

Figure 3.14. PSD of Smoothed REC (M=2, L=4, h=I/2).
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Figure 3 .15 . Energy-bandwídth characteristics of DB-RC and Snnothed REC, L=4
(99Vo in-band power).

3.4. SUfuINñARV

The discussion above has focussed on schemes which require a comparatively
small number of matched filters for optimum detection. The single basis schemes require
only a linearly increasing number of matched filters wirh L and M but yield poor bandwid.th
performance. The double basis phase pulses perform somewhat better but require more
matched filters. None of these schemes can match the error and specral performance of the
RC phase pulse and it seems that a di¡ect trade-off between the dimensionality of the signal
set and performance exists.

The tacit assumption in this chapter was that the receiver must perform an optimal
detection of the CPM signal. An important question which arises at this point is whether
optimum detection is necessary. Perhaps suboptimum detection suff,rces for most situations.
This question is addressed in the next chapter.
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28.Tb
7.25 r.75
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ChüAPTER 4. SUEOPTåMIJIM ÐËTËÇTIOF{: TFåË ffiãLTFm EAFüK

The prohibitive size of the matched filter bank for optimum detection of CPM has

led to the development of several suboptimum schemes which sacrifice error performance

for reduced receiver complexity 17,231. The need for reducing the complexiry of the filter
bank was disputed by the results of Chapter 2, where it was shown that single basis CPM
pulses require many fewer matched filters than general schemes. However, the bandwidth

performance of singie basis schemes is disappointing; either the asymptotic spectral

performance is poor (REC) or the main lobe is excessively wide (SB-RC). One would
therefore want to send information via multiple basis pulses like RC, but now one must

return to suboptimum receivers. The goal is to keep the filter bank as small as possible

without sacrificing error performance.

This chapter is organized as follows. In section 4.I, a suboptimal technique based

on single basis pulses is proposed. It is shown that little degradation in error performance

is possible even when few filters a¡e used. This scheme, however, does not perform as

well as a recent approach proposed by Huber and Liu in [23] and reviewed in section 4.2.

In fact, based on simple arguments, the approach of [23] is likely the best way of reducing

the size of the filter bank. Some of the ideas of the first section are therefore applied to

Huber and Liu's approach.

4.1. PIECEWISE ¡.¡NEAR ÐET'ECT'IOTU

The principles of the Piecewise Linear Detector (PLD) are illustrated via Figure 4.1.

The multiple basis chips (in this case RC) are approximated by linear chips so that the

approximating pulse is piecewise linear and therefore single basis. Such a pulse requires

only a linearly increasing number of matched filters with the length of the frequency pulse.

The principles of this receiver a¡e simiiar to that of the Reduced Complexity Viterbi Detector

described in [1, section 8.1]. The difference is that no state reduction is attempted here,

only reduction in the size of the filter bank (note that, if the Reduced Complexity Viterbi
Detector in [1] is based on REC pulses, the size of its filter bank is further reduced so that

the complexity reduction factor for the receiver filters on p. 281 of [i] may be as much as

il#ftT and not just N,lL'- t^); the actual reduction depends on the choice of slopes of

the REC scheme, as explained below).
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It remains to choose the slopes and initial phases of the piecewise linear sections. A
good criterion for doing this is minimization of the loss in dflin, but this is rather difficult

[1, Chapter 8]. A simpler approach is to choose the chips in such a way that, given the

same symbols transmitted for both the smooth and piecewise linear schemes, the distance

between the smooth and PLD signals is minimized. Ie. Minimize (equation (3.a)):

\
Piecewise linear
approximation

.PÆ

1.0 2.0

u, =tot|*,[^'''

=ln?ul*'" {, *,(rr:=Ë: 
",rqr(t-iÐ c.arrr)}a,

3.0

where er(t) is the transmitter phase pulse (usually RC) and qB(t) is the piecewise linea¡

phase pulse, assumed to be at the receiver. Equivalently, one could minimize the distance

between the two signals in any given symbol interval. If the term in the cosine of equation

4.1 is small, which will occur if qn(Ð is properly chosen, then the goal becomes minimization

39

lr - .or(+rft,o) - Qp(t,ø))] dt

(4.1)



or ( usins cos x = , *),

u, =ror+* 
Í:'"

The minimization should take place over all particular transmitted sequences. However,

this is not readily possible, and a simpler approach is to take an average over all possible

sequences. In other words, minimize:

_ logzM
2T

'{'
[Or(t,o) - qn(t,cr)]2

f 
(n+1)T

* X I ,rlrnfl) af (aq-¡p1t-ir¡)2 + tå Ë chct¡ Âqrn(t-ir) Âq.¡p(t:rll
r'Yr cr 

J^, L'=o 
t=,0*50 l

l-slz
Lrnn,à 

ori ÂqrR(t-ir)l at

The second term in equation (4.3) will disappear since the cx.i are symmetric about 0,

leaving only a minimization of the sum of (Aqpçt-iT)f over multiple symbol intervals.

This is the same as minimizing the mean square error beween qr(t) and qp(t) for any given

symbol interval. Thus, the final conclusion is that a good way, although not the best way,

of choosing the piecewise linear sections is to minimize the mean square error between the

transmitter and receiver phase pulses.

Another factor to keep in mind when choosing slopes for the PLD is that the

number of filrers required depends directly on the number of slopes (or frequencies) the

receiver scheme can take on. The slopes should be chosen as integer multiples of each

other using integers as small as possible, so that the size of the dynamic signal set is kept

smail. In fact, it may be prudent to choose some slopes to be zero, so that fewer filters are

needed. For example, consider again Figure 4. i. The pulse vector is given by:

)u,

(4.2)

e(,)=[i]-,,,

dt (4.3)
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and requires 45G¡-t)+1] filters for detection (optimal detection if this was the scheme

used at rhe transmitter). Instead, one could choose the PLD of Figure 4.2, which has a

phase pulse vector:

and rherefore requires only 2M filærs for detection. Of course, this second scheme will not

perform as well as the first.

The minimum squared Euclidean distance for the PLD can be calculated in the

manner described in [1, sections 8.1.2. and 8.1.3.]. The results are presented below

(Figures 4.3 and 4.4). As shown in Figure 4.4, using the PLD of Figure 4.1 limits the

loss in dfii' to 0.1 dB for small modulation indices; the loss tends to increase for larger h.

Based on the figures, the PLD detector seems to perform reasonably well and when

compared to the schemes of [1, Chapter 8], the results are encouraging. However, in

comparison with more recent schemes, the results pale somewhat.

Q(,) =[:]-,'

-Ç 
^/1

-ð¡ v'-
q)

q)
V)

å- rl.)

(4.s)

Figure 4.2. A simpler PLD.
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4.2. [-{+!- DETECT'IOh¡

In [23], Huber and Liu proposed two detectors based on signal space approaches.

The first approach, called the Gram-Schmidt Approach here, involves a Gram-Schmidt.

ofihogonalization on all of the signals in the signal set. Huber and Liu argue that only

those four to six filters which correspond to the first four to six orthogonal dimensions of

the Gram-Schmidt procedure are actually needed to capttrre most of the energy of any

signal in the signal set. Their arguments are based on results from Landau and Pollak [28]

and the performance of this approach is good, but they subsequently proposed a more

practical receiver.

The second approach, here ærmedH+LDetection, is based on practicai considerations,

viz. a filter bank which is easy to build. The idea is to simply project every signal in the

CPM signal set onto two (or three) frequencies, namely f" + Âf (or f" and f" + Af),

resulting in four (or six) baseband filters (four filters per frequency, with symmetry reducing

this number by l/2). This approach could also be generalized to more frequencies with a

corresponding increase in the number of filters.

H+L Detection with six filters yields excellent results. For most schemes studied in

[23], the loss in 41,,, ir limited to less than 0.1 d"B, even with dynamic signal set sizes of

64. As a comparison, results for quaternary 3RC (M=4, L=3) are shown in Figure 4.5.

The H+L Detector ouçerforms the Piecewise Linear Detectors, even with a smaller number

of filters.

The results of Figure 4.5 ne to be expected. Given any number of fr.lters, the best

representation of any signal in the signal set is its Euclidean projection (at least for the

AWGN channel) onto the space defined by those filters. Thus, the approach of Huber and

Liu is the method of choice for building a practical ¡eceiver for CPM signal sets.

4,2.1. Multiple Receiver Chlps / Transmitted Chip
Based on the results, it seems that the discussion about the Piecewise Linear Detector

is somewhat superfluous. However, these ideas point to further improvements of the

simple H+L detector of the previous section. For example, a simple extension of the PLD

is to use more than one receiver pulse chip per transmitter pulse chip, as shown in Figure

4.6.
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This approach will improve the receiver performance at the expense of requiring

faster circuiury. For example, in Figure 4.4 the loss in error perfoÍnance at h=1/2 for the

(0,1,0) scheme is 0.17 dB while for the scheme of Figure 4.6 it is 0.07 dB. Thus, for this

particular case, an improvement of 0.1 dB is gained by using 2 receiver chips for each

transmitter chip. Both schemes require 4 filters but the second scheme must sample each

filter ouçut twicç-every symbol interval rather than just once.

Instead of applying this idea to the PLD, we know from the results of Huber and

Liu that projecting the partial-chips (in Figure 4.6 they are half-chips) onto the space

generated by the filters will better represent the partial-chip signal set than the PLD receiver

can. This approach will improve the performance of the H+L scheme and it may in fact be

more practical to use multiple receiver chips / transmitter chip than increasing the number of
filters.

Distance calculations for the multiple receiver chips / transmitær chip rnethod combined

with Huber and Liu's approach have not been done here. This is left for future work.
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CI.IAPTFR 5. SEEIJENïIAL SEQI,'ERüCË ËST'IMATgOTV

The previous three chapters concentrated on the filter bank which supplies the
detection algorithm with statistics. This chapter deals with the detection algorithm itself
which processes these statistics so as to minimize the probability of an error occurring. A
Sequential Algorithm is considered for the detection of CPM modulated data sequences.

The motivation for this is that the most power- and bandwidth-efficient CPM schemes have
a complex state representation and optimum detection with the Viterbi Algorithm is expensive.
The size of the state representation becomes even larger if factors such as bandlimiting,
fading and coding are added to the channel model. A reduction in the computational
complexity of the detection algorithm is therefore of great interest.

A large assortrnent of techniques for reducing the computational complexity of the
detection algorithm have been proposed. Some of the earlier schemes, from Sequential
Algorithms to the M-Algorithm, are reviewed in 12,41while the more recently developed
schemes such as Reduced State Sequence Estimation (RSSE) are listed in [2, Chapter 6].
Several of these techniques have already been appüed to CPM detection/decoding f1,23,401.
The results have been both encouraging and disappointing. For example, in Simmons a¡d
Wittke [40], a limited search algorithm is used to detect CPFSK signals by pursuing only
two paths through the trellis and this simple approach performs essentially as well as the
Viterbi Algorithm at moderate and high SNR's. However, when k in the mdulation index
h=k'/P is allowed to become larger than unity, catastrophic effects occur, viz. error events
tend to become extremely long because the detection algorithm plunges into a false lock
[40]. This false-lock phenomenon necessitates extra processing which slows down detection.
Another example, also from a study by Simmons [41], is that although the M-Algorithm
and RSSE perform well for the AWGN channel, performance is seriously degraded over a

more realistic channel with adjacent channel interference (ACI). Given these problems, it
seems prudent to try other computationally efficient algorithms for CPM and test their
response to different channel impairments.

The algorithm applied to CPM in this chapter is the Sequenrial Stack Algorithm. A
sequential algorithm is chosen because of its wide range of applicabitity -- ir has been
extensively studied and successfully applied for the decod.ing of convolutional codes

[\8,31,44] and more recently it has been shown to yield. excellent results when applied to
channels with severe impairments [13,36,45]. Sequential algorithms can also be appiied to
the decoding of block codes 1421. Of the many sequential algorithms rhar exisr, the one
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used here is the simplest, the Stack Algorithm. Apart from its simplicity, another reason

for choosing the Stack Algorithm is that there exists a simple archiæcnue for its implerræntation,

called ttre Systolic Array Archiæcture t101. This architecture furtherreduces the computational

complexity of the Stack Algorithm by only parrially sorting the stack of paths. This is
discussed in more detail in the sequel.

This chapter is organized as follows. In section 5.1 the Stack Algorithm and

Systolic Array Architecture are described. The advantages and pifalls inherent to sequential

sequence estimation/detection/decoding a¡e also discussed here. Finally, the performance

of the algorithm, as tested via softwa¡e implementations, is presented in section 5.2 (see

also Appendix C). Measures of performance include effor probability, computational
complexity and sensitivity of performance to inaccurate channel parameter estimation and to

channel impairments.

5..1 ThËE STACK ALGOR¡T'F{M

The Stack Algorithm (hereafter called SA) falls into the class of backtracking and

metric-first algorithms [2]. In other words, when searching the CPM tree/trellis, the

algorithm is allowed to move both backwards and forwa¡ds and the deærmining factors for
movement are the metrics of the paths under consideration. The motivation for choosing

the SA over the Viterbi Algorithm is that the more power- and bandwidrh-efficienr CPM
schemes have a large number of states, making Viterbi detection infeasible. The SA can

handle many states, so that the effects of coding, fading or even irrational modulation
indices (requiring a tree graph) can be inciuded in the channel model. It is desirable to

include such effects so that good error performance can be achieved.

The motivation for choosing the Stack Algorithm over other sequential algorithms,

such as the more popular Fano algorithm, is threefold. First, the SA is faster than the Fano

algorithm at communication rates approaching the computational cutoff rate, R. [111.

Secondly, the principal disadvantage of the SA relative to the Fano algorithm is the memory

required by the stack, but since momory has become a much less expensive commodity and

because speed is our primary goal, this factor is not as important as it once was. Finally,
the problem of reordering of the stack, also considered a debilitating factor of the SA, is

solved by sorting with parallel architectures.
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STACK

The basic SA can be described by just one step: extend the best path in the stack

one step further into the CPM tree/trellis, where "best" refers to the path with the largest

metric (or smallest, depending on the definition of the metric used) (Figure 5.1). The

metric generally used is the Fano Metric, suggested by Fano in [15] and shown by Massey

l32l to be the metric which identifies the path most likely followed by the transmitter given

the information available. Of course, to find the path with the largest metric, some type of

sorting must be performed and it is the sorting which slows down the SA. Thus, care must

be taken in choosing a sorting procedure; indeed, many different procedures have been

suggested. Eg. Merge and bucket sorting. However, the assumption here is that the

sorting must be done sequentially rather than in parallel. Recently, a parallel sorting

approach for the SA has been suggested which speeds up the sorting procedure at the

expense of hardware. This is discussed next.

Systolic Array,A,rchitecture
A ha¡dware implementation of the SA which performs sorting in parallei has been

given in [10] (see also [2] where other parallel a¡chitectures are described). In this

implementation, the paths under consideration are stored in a systolic priority queue Gigure

5.2), and are reordered in a fixed and short period of time without completely reordering

the stack. The operation of the systolic priority queue is as follows:

Figure 5.1. The Stack Algorithm.

Path 1

Path2

Path 3
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Extend oath with+Ð
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Delete path 6

Compare and Swap

Step L: Extend Best-Eath

Insert new path

PathZ

Sten 2: trnsert New Paths lperforrn M times)

Path 5

Compare and Swap

Path 3 Pat}t4

i) The top path (the one with the best metric) is deleted and the adjacent pairs of
paths are ordered by swapping. This swapping is performed in parallel and
only a comparison and path exchange (if necessary) takes place.

2) The deleted path is extended to its M new paths. These paths are fed into the
queue sequentially. After every insertion into the queue, adjacent pairs of paths

are again compared and reordered.

Chang proves in [10] that by using the above procedure, the path remaining in the

top srack entry wiil always be the path with the best metric. Since the SA only requires rhat

the best path be known, this approach is much more efficient than a complete sort (note that

many comparisons are performed for the extension of a single path, but the parallel processing

of this a¡chitecture alleviates this problem). Moreover, this a¡chitectu¡e is easily implemented

in hardware.

The problem of sorting for the SA is therefore not as bad as it may otherwise seem.

However, the other pifalls inherent to sequential algorithms remain.
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Fitfalls
In addition to the sorting issue specific to the stack algorithm, a problem inherent to

all sequential algorithms is that the number of path extensions required to move one level
further in the tree/nellis is a random variable and not a constant as for breadth-fi¡st seatches

such as the Viterbi Algorithm. If the noise local ¡o a few symbol intervals is severe then the

sequential algorithm is forced to take up much time searching for the best path. This can

occur, for example, in a bursty channel; or it could happen in the AWGN channei if the

sample noise function (from the ensemble of noise functions) is large over several symbol
intervais.

The result of such variability in computations is that one will need to buffer the
incoming data while the detection algorithm is searching, and if the delay becomes too
long, stack overflow occurs. In fact, beyond a cartain SNR limit given in terms of the
computational cutoff rate, Ro, the number of computations increases rapidly with the severity

of the noise [11]. To overcome these effects, one possible approach is to force a decision

before the algorithm has finished its search; of course, this will increase the error probability.

Moreover, such early decision techniques are plagued by the type of problems described

ea¡lier for limited search algorithms (Eg. the false iock problem).

An altemative solution is possible if the communication system has automatic repeat

request (ARO capability. In this case, the problem of stack overflow can be dealt with by
sending packets of information and allowing erasures. Such issues and further practical
problems related to sequential aigorithms have been analyzed in great detail in many texts

and papers (see [11, Chapter 7] and [2, Chapter 6]). Here, only rwo of these issues are

investigated.

The first problem considered is that, for the AV/GN channel, the receiver musr
know the noise strength, No, to calculate the Fano Metric. This problem a¡ises because

paths of different lengths are being considered. Thus, measurement of the channel noise is
required for the SA, and if this measurement is inaccurate, performance is deggaded. The
sensitiviry of the SA's performance to incorrect estimation of N. is examined in the sim¡lations.

The second issue investigated is the sensitivity of performance to adjacent channel
interference. The impetus for this is that a recent study showed that the M-Algorithm and

RSSE perform much worse than the Vite¡bi Algorithm in high levels of ACI t4ll. The
explanation given for this was that the early decision mechanism of these algorithms was to
blame. It seems possible that the SA will overcome this problem, as it does not make the

same kind of rash decisions as RSSE or the M-Algorithm.
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5.2. PEHFORMAT\¡CE

Performance of the SA for the detection of CPM modulated sequences is measured

via error performance and computational complexity. In addition, the robustness of the SA

io poor estimation of channel pÍrfirmeters, namely the sensitivity to poor estimation of the

channel noise N" and to the effects of adjacent channel interference, is analyzed.

The parameters of the SA used in the simulations were as follows:

1)

2)

3)

The Fano Metric, as derived in Appendix A, was used as the path metric.

The length of the stack was set at 1000 paths.

The observation interval length (the depth of the tree examined before a symbol

was put out) was set at 100.

The simulation was continued until 100 error events had occurred or 2x106 bits

had been sent.

Buffer overflow was handled by simpiy overwriting (erasing) the paths at the

bottom of the stack.

No regeneration of the root-node of the graph (also called an ambtguity check n
[4]) was undertaken. When root-node regeneration was performed for some

data points the results were similar. In general, using a non-regenerative algorithm,

as done here, will improve error performance at the expense of memory since

paths are not disca¡ded early [20].

4)

s)

6)

Omissions of certain practical aspects deserve to be mentioned:

1) The symbols used in the simulations were not split up into frames or packets, as

would usually occur in practice. However, this should not affect the results

since the frames are usually long enough that "long-term" averages apply.

No absolute time limit was set for forcing the algorithm to put out a symbol.

For example, it could happen that the first symbol took thousands of time
intervals to be put out while the second symbol was put out immediately after

the fi¡st. Even though the probability of such an event occurring is very small

for large signal to noise ratios, this is the most serious omission of the simuiation
model. Practically, some kind of check and recovery procedure must be

implemented for such situations. The actual error performance will therefore be

slightly worse than that presented.

The systolic priority queue could not be implemented in its parallel form with
the computers and software available. Thus, no indication of the performance
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speedup as compared to the Viterbi Algorithm could be gleaned from the results,

other than the average number of branch extensions per symbol transmitted.

The SA's performance is compared to that of the Viterbi Algorithm and the M-
Algorithm. For both of these breadth-first algorithms the observation interval length was

set at 30 symbol intervals and the number of paths followed by the M-Algoritirm was set at

M*-^ro= 8. The M-Algorithm was implemenæd without state checking and without root-node

regeneration (results of simulations performed with regeneration proved similar to the

results shown here).

It now remains to choose specific CPM schemes for simulation. It is generally

accepted that a quaternary symbol aiphabet (M=4) with a raised cosine phase pulse is best

for uncoded CPM schemes [1]. Further, to allow comparison with the Viterbi Algorithm,

the modulations chosen should not have too many states or else the simulations cannot be

performed in a reasonable amount of time. The size of the matched filter bank is not of
great concern due to the results of Huber and Liu (Chapter 4). The two CPM schemes

investigated here have the following parameters:

l) M=4, L=3, RC with h=1/3. This scheme has pML-t = 3.42 = 48 states. The

bandwidths containing 997o and 99.97o of the power are 28.T6 = 0.63 and

0.82, respectively; in comparison, the corresponding MSK bandwidths are

1.18 and 2.72. The asymptotic power gain over MSK is -0.78 dB.
M=4, L=3, RC with h=3/4. This scheme has pML-l = 4.42 = 64 states. The

99Vo and99.97o bandwidths arc I.26 and i.48 respectively and the asymptotic
power gain over MSK is 4.28 dB.

2)

Note that the SA can handle a much iarger number of states than these two schemes

have. The first scheme was chosen to allow comparison with previous results [41] whereas

the second scheme was chosen to illustrate the large amount of power gain possible in the

same 99Vo bandwidth as MSK.

5,2.1" Frror Ferformance and Computational CompleNity
Scheme n: h-X13, 48 States

The error performance (in terms of the probability of an error event occurnng) of
the 3RC scheme with 48 states is shown in Figure 5.3. The SNR is normalized to E"/l{.

and the bound in the figure is the curve a(fflr;ff1
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The results are as expected: in terms of error performance all three algorithms

perform similarly. The difference between these schemes lies in their computational

compiexities as measured in tenns of the average number of branch extensions per output

symbol (Figure 5.4). The SA extends a much smaller number of paths than either the

Viterbi or M-Algorithms; the performance improvement factor is 27 and 5, respectively.

The SA actually needs to perform more complex calculations than the other two algorithms

but the savings are still noteworthy (one estimate gives the SA's performance as L0 times

slower than the Viterbi Algorithm [30]; however, this estimate was based on a serial

implementation and not a parallel one like the systolic array.).

The SA's performance also has a iimit. Nea¡ a SNR of I dB the computational

complexiry of the SA blows up. This is because the computational cut-off rate, R", for this

particulil scheme has been reached [11]. Care must be taken not to operate below this

SNR or else stack overflow will occur often and errorperformance becomes poor. Fornrnately,

this limit is not reached until the error performance for the MLSE Viterbi Algorithm is also

poor.

Scheme 2: h=314, 64 States

The error performance and computational complexity of the 64 state scheme are

shown in Figures 5.5 and 5.6, respectively. The results are simila¡ to those of the 48 state

scheme. However, a subtle difference between the Stack- and M-Algorithms appears if the

bit error probabilities a¡e considered Gigure 5.7). The bit error probabiliry for the M-Algorithm

is unusually larger than its error event probability and upon closer examination of the error

events, it was found that long error events tended to occur (at a SNR of 4 dB the average

Iength of the 100 observed error events was 18 symbols). This did not occur for the

M-Algorithm with the h=1/3,48 state scheme.

The effect described above is the same as that found by Simmons to occur generally

for schemes with modulation index h=k/p when k > I [40]. It turns out that due to the

early decision mechanism of the M-Algorithm, the algorithm tends to lock onto paths which

are located 2n + Lg away in phase, where Ag is a small phase offset The M-Algo¡ithm

has no way of getting out of such a false lock other than more noise pushing it back into the

correct state. Inevitably, long error events with multiple symbol errors occur. One can

combat this by introducing extra processing rules, as Simmons did in [40]. However, the

extra computations required by such an approach slow down the algorithm by a factor of
two to three; clearly this is undesirable.
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The SA does not suffer from this problem (at 4 dB the average length of the error

events was less than 6 symbols). The delayed decision mechanism under which the SA

operates neutralizes the false lock phenomenon. Thus, for most modulation indices (those

where k > 1 for h=k/p) the SA offers the additional advantage of keeping the length of the

error events small, thereby also keeping the bit error probability low.

5.2.2. Sensitivity to h¡o

The SA performs well under the conditions given in the above section, namely that

the channel is AWGN and the noise level is known. Knowledge of the noise level is

important for the SA, since No must be known to calculate the Fano Metric. In this section

the sensitivity of the SA's performance to poor estimation of No is considered. The ¡esults

are shown in Figures 5.8 and 5.9.

The error performance seems relatively insensitive to poor estimation of the signal-

to-noise ratio. Even when the SNR estimation is +3 dB off (double and half the actuai

SNR), the SA performs near the level of accurate estimation. Less degradation occurs for

the case -3 dB, so that it seems better to underestimate the noise rather than overestimate it.

This philosophy, however, is misleading.
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The real difference between the various levels of poor estimation is shown in Figure

5.9. When underestimating the noise, the receiver tends to search more; this is the actual

reason for the good emor performance shown in Figure 5.8. Furtherrnole, the limits where

the number of computations becomes large (the SNR where the computational cut-off rate,

Ro, is reached) becomes worse the poorer the estimation of N"; the computational performance

is also worse for underestimation of the noise than it is for ove¡estimation. The lowest

limit actually occurs when the correct Fano Metric is used. These results indicate that if one

is operating near Ro then care must be taken to properly estimate the noise level. On the

other hand, if operation is well outside this range, poor estimation of No has little impact on

performance (as long as the estimate of SNR is not way-off, of course).

5.2.3. ACI Susceptibility
Real channels tend to have more impairments than white noise, and in this section

the performance of the SA under the additional effects of adjacent channel interference

(ACI) is considered. The effects of ACI on CPM receiver performance were studied in

[37]; Viærbi detection was assumed there. More recently, the performance of the M-Algorithm

and RSSE-type algorithms was examined by Simmons [41]. He found that under high

levels of ACI the early decision propefiy of these two algorithms severely degrades

performance as compared to the Viterbi Algorithm. It was therefore hoped that the Stack

Algorithm could overcome these problems just as for the bit error vs. error event problem.

However, the results were disappointing, as described beiow.

The channel model used in this section assumes that a wide filter is placed a¡ound

the desired signal's channel, allowing all of the two adjacent channels' signals to interfere

(see Figure 5.10 where 3 dB of ACI for the M=4, 3RC, h:1/3 PSD's are shown). Further

parameters of the channel model are:

1) The interfering signals ueZflaway in bandwidth.

2) The data se,quences in all tlree charnels are independent a¡rd uniforrnly distributed.

3) Packets of symbols of size 448 to 57 6 (512 ! 64) are sent by both interfering
channels.

4) After a packet is sent, the corresponding signal is resynchronized to random
time and phase offsets (uniform distribution for both timing and phase).

5) The power levels in the adjacent channels are both equal and constant.

6) The receiver accurately estimates the noise level, No.
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Desked Signal

-J

f' T¡

Figure 5.10. ACI model (PSD's for M=4, 3RC, h=ll3 and 3 dB ACI).

The first three parameters are chosen to make the interfering signals look as ra¡dom

as possibie to the desired signal, as would realistically be the case. Nevertheless, the above

model contains several unrealistic assumptions which must be considered when analyzing

the results. Some problems with the model are:

1) The assumption that both interfering signals are completely passed through the

bandpass filter is unrealistic for two reasons: i) the interfering signals' PSD

extends to infinity in both directions so that a bandpass filter would certainly cut

off some of the interfering power; ii) the bandpass filter will usually be narrow

enough to filter out much of the adjacent channels' power. These inaccuracies

are allowed to keep the programming simple.

2) The power levels in the adjacent channels will usually fluctuate.

3) The receiver will normally not get a good estimate of the SNR if there is

additional interference.

The definition of ACI used here is the interferer- to desired-signal power ratio in the

bandpass filter's bandwidth. This is not a standard definition, but we are only interested in

a sensitivity comparison of the different algorithms'performances.
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All algorithms were operated as if no ACI was present. Thus, neither the Viterbi

Algorithm nor the SA are actually performing MLSE. This shouid be kept in mind when

analyzing the results. The CPM scheme chosen for simulations is the 48 state scheme

given above. This allows comparison with the results of [41].
The sensitivity of the error performance of the Stack, Viterbi and M-Algorithms to

moderate ievels of ACI is shown in Figure 5. i i. All algorithms perform reasonably weil

up to ACI levels of 3 dB or double the interferer power to desired signal power. The

computational complexity of the SA is still low for 3 dB ACI.

The results for high levels of ACI are shown in Figure 5.12. The Viterbi Algorithm's

performance gracefully degrades as the ACI leveis increase. In contrast, both the Stack and

M-Algorithms'performance abruptly degrades; the poor behavior of the SA is in fact more

pronounced than that of the M-Algorithm, an odd result considering the eariy-decision

mechanisms responsible for the M-Algorithm's performance degradation are not present for

the SA. A graph of the computational complexity of the SA under ACI makes this

impetuous behavior even more apparent (Figure 5.13). The SA and the Fano metric seem

to be very sensitive to correlated interference of the kind discussed here.
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Based on Figures 5.1'2 and 5.13, it seems possible that the poorperformance of the

SA may be solely due to the exaggerated level of searching causing stack overflow. It was

hypothesized that perhaps if ihe SA was fo¡ced forwar-d by some exü'a mechanism both the

error perforrnance and computational complexity would return to thei¡ more usual values.

Of course, forcing the algorithm forward is synonymous with making early decisions, just

the type of operation one wants to avoid. Nevertheless, to force the SA forward, two
parameters were modified: i) the receiver's estimate of N/2 was increased and ii) a

positive bias was added to the metric to force the SA through the graph. Neither of these

measures improved performance to better that of the M-Algorithm, although changing N"
did improve both the error performance and computational complexity somewhat.

Another possible approach for combauing the poor perfonnance of the SA is to
incorporate the ACI model into the metric. Such an approach should also improve the

Vite¡bi- and M-Algorithms'performance. However, the complete CPM channel model will
become unwieldy theoretically so that some simplification is required. One possible approach

is to assume the interfering signals are tone interferers with a random phase offset (Figure

5-I4). The MLSE metric for this simplified channel model is relatively easy ro obtain and

could prove useful. This approach was not tested here.

Desired Signal

Tone
lnterference

s(f) (dB)

-3-2-1 0

f' Tn

Figure 5.14. A simplified ACI model.
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Yet another approach is to consider all three channels together as a vector channel

and estimate the incoming data in both of the interfe¡ing channels aiong with the desired

iniormation; in eäect, one is receiving the signais of aii three channels simultaneously. The

drawback with this approach is that the receiver becomes three times as costly since all
three sequences must be estimated.

The most straight-forward solution to the problem of ACI is, of course, to use a

good f,rlter.

5.3. SUMMAHV

The conclusions extracted from the simulation ¡esults are summarized below:

i) The Stack Algorithm outperforms both the Viterbi and M-Algorithms over the
AWGN channel. The option of being able to detect schemes with a large state

representation (large p, M, and L) is particularly desirable as the most power-
and bandwidth-efficient CPM schemes can be utilized. Moreover, the SA does

not suffer from the bit error vs. error event problem of the M-Algorithm.
2) The Stack Algorithm is not overly sensitive to poor esúmation of the SNR.

However, one must be cautious when operating near Ro.

3) The Stack Algorithm performs well for moderate levels of ACI but poorly for
higher levels of ACI, even in comparison with the M-Algorithm. Thus, a good

channel model or narrow bandpass filters are a necessity when using the SA to
estimate the tansmitted sequence under such conditions.
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Cl-lÅPTFR 6. CO$\¡CLUS|O$'¡S

The two basic building blocks of a CPM receiver, the matched filter bank and the

detection algorithm, were investigated. The matched filter bank, in an abstract sense,

creates a space onto which the received signal can be projected and from which sufficient

statistics for maximum likelihood sequence estimation can be obtained. Thus, for optimal

detection, the number of matched filters depends directly on the number of dimensions

which the signal set encompasses. In Chapter 2, it was shown that the dimensionaliry of
CPI{ signal sets is related to the linear dependence of the phase pulse chips and can be

detennined by finding a basis for the space spanned by these chips. The larger the number

of elements in the basis, the more matched filters are needed.

Chapter 3 explored the impact of the results of Chapter 2. Schemes which require a

small filter bank were investigated; both single- and double-basis phase pulses were

considered. trt was found that these smail basis pulses perform poorly in comparison with

pulses with a large basis (Eg. RC) and this led to the investigation of suboptimal receivers.

Again using the results of Chapter 2, in Chapter 4 a suboptimal receiver with a

small filter bank, the Piecewise Linear Detector (PLD), was developd The PLD approximates

a smooth CPM pulse by piecewise linear sections and since the dimensionality of the

piecewise linear signal is relatively small, a reduction in the number of matched filters

results. It was found that, while the PLD's performance was good, an approach proposed

earlier by Huber and Liu was superior. A further improvement to Huber and Liu's receiver

was suggested using the concepts of the PLD, namely using multiple receiver chips /
ransminer chip.

Chapter 5 investigated sequential sequence estimation of CPM modulated data

sequences via the Stack Algorithm (SA). Perfonnance was measured in terrns of error

probabiliry, computational complexity, sensitivity to estimation of channel parameters and

sensitiviry to adjacent channel interference. Comparisons with the Viærbi and M-Algorithms

were made. It was found that, over the AWGN channel, the SA outperforms both the

Viterbi and M-AJgorithms; the SA performs essentially MLSE with many fewer computations.

The performance of the SA is also insensitive to estimation in SNR, unless one is operating

near the computational cutoff rate. In this case, care must be taken to estimate the SNR

accurately.

All algorithms operate well in moderate levels of ACI, up to 3 dB for the model

presented here. However, when ACI is further increased, the SA's performance degrades

64



sharply, even more rapidly than the M-Algorithm; the Viterbi Algorithm's performance

degrades gracefully. The simulations suggest that the SA metric is sensitive to such

changes in channel parameters. Therefore, a good channel model and accurate parameter

estimation or a narrow bandpass filter is vital when using the SA in an interferer rich

environment.

Future lffork
Seve¡al issues addressed in the thesis were left incomplete and deserve further

attention:

l) Using multiple receiver chips / transmitter chip was suggested as a further

improvement for the Huber and Liu receiver. The performance gains of such an

approach need to be determined and the rade-offs þerformance vs. complexiry)

should be examined in more detail.

The ACI simulations were performed by simply applying interference and letting

the graph search aigorithms run as if no ACI was presenl A better method is to

include the effects of ACI in the channel model to obtain the MLSE metric for

this channel. Some approaches for doing this were suggested in Chapter 5 and

deserve to be investigated.

In Appendix A, techniques for making the Fano Metric calculation simpler are

suggested. These must be tested.

Some of the results presented in Chapter 5 are applicable to coding. For

example, sequential algorithms are well suited for decoding large constraint

length codes which have a large state representation. These codes could be

further investigated for CPM.

Recent work by Yang and Taylor [46], building on ¡esults from Rimoldi [38,39]

and Morales-Moreno and Pasupathy [33], shows that it is advantageous to use

codes over rings to improve CPM error performance and simultaneously keep

the number of states small. It turns out that by using such codes, spectral

performance can be improved. Some indication of the bandwidth improvement

can be obtained using the results of Chapter 2; this is further developed in

Appendix B.

2)

3)

4)

5)
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AFPEN..üDIX A. TF{E FANüO fuTETRIG FOR GPM

For sequential detection one wants to extend the maximum a posteriori (MAP)

sequence. To do this, one must find the sequence which maximizes the conditional probability

density function:

where:

c[ = [o0, cf,1,..., cr¡r-r] isasequenceof symbolswithoie {-(M-1), -(M-3),..., M-1},

r = [16, 11, ..., h¡-r] = [(rfr,rfr,...,r&), ... ,(ri,-r,tfr-r,.'.,t¡B-r)] are the sufficient staústics

for sequence estimation, and

D is the number of orthogonal dimensions needed to represent the signal set. (Note that

for CPM: D < 2ML, where L is the length of the frequency pulse).

Since Pr(r) is the same for all sequences, maximizing h(crlr) with respect to ct, is equivalent

to maximizing Pr(r,cr) with respect to ct,. For the purpose of the discussion below, identify

r(t) with r so rhar Pr(r(Ðlcr) = P¡(rlcr). Further, consider r(t) as a sequence of chips:
N-1

r(t) = I r1(t) where r1(t) = 0, t É [iT,(i+i)T).
i=0^ ñow assume that r(Ð has been observed over the fi¡st N symbol intervals and the

path under consideration has length n < N. Let Cr = [a,t] where: â = [C[0, C[,1,...,Cr¡-1] and

t = [cxr,, crn+1,...,c[N-1]. One now wants to extend the MAP path of all paths under

consideration. This is the path, a, which maximizes:

Pr(crrr)=H#

Pr(¡(t),a) : Pr(a) Pr(r(t)la) =

The second product in (4.2) contains observations which occur after the n'th

symbol interval. One would like to eliminate this term so that constant updating of every

path metric after a new chip is received is unnecessary. However, due to the memory of

the modulation scheme, this cannot be done without making some simplifying assumptions.

The Fano Metric for decoding convolutional codes is based on the assumption that

tail syrnbols are statisticaliy independent of the prior symbols. This assumption is unnecessary

for the uncoded CPM case; instead, assume the sígnal chip níls are independent of the prior

signal chips:
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In other words, all r,(t) are assumed possible for any a in the symbol intervals beyond the

n'th. In effect, one is adriing ¡andom tails to the received signal r(t).

The above is somewhat different than adding random tails to the received sequence,

as is done in sequential decoding of convolutional codes [32] or block codes l42f over a

discrete memoryless channel. In these cases the tail symbols are assumed statistically

independent, even though the future symbols must be dependent due to the code. Thus,

the simplifying assumption stated above is needed in either case, just in a different form.
(Note that if sequential detection/decoding of a coded CPM scheme is desired, both the

signal and the symbol tails must be assumed independent of each other, even though the

future signal chips and symbols are actually dependent).

Using the simplification of (4.3), equation (4.2) yields:

Pr(r¡*n(t) la¡ = Pr(ri+r,(t)), j=0, 1,...,N-n- 1

Maximizing (4.4) with respect to a is equivalent to maximizing:

Pr(r(t),a) = pr(a) 
[ii r,o,,t) r as,...,a¡)] 

[E' 
p,(,j."(,))]

with respect to a, where:

Pr(ri(t))

'-l

(4.3)

Pr(r(Ð,a)
N-1

m
i--0

and the sum runs over all pML possible phase transitions, o, in a symbcl interval (assuming

a finite state representation is possible; irational moduiation indices are treated below). In
the case where k (in h=ldp) is odd, the sum could also be made to run over al1 2pl.dt pfrase

transitions in all symbol intervals ; by doing this, the same sum generating circuit can be

used for each symbol interval.

Using (4.5), the metric for a specific path in the tree becomes:

Pr(ri(t))

I- n-l
= rog 

[nr"r 
l-I

Pr(r¡(t)1a6,...,ai) I---P'6Gr-l

=x
o

Pr(ri(Ðlo) Pr(o)

(4.4)

(4.5)
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Â,'" = g t"'{-*fr"t}. #"rt*c"rr ]

and the branch metric is:

which is almost identical to the Fano metric for the decoding of convolutional codes over

the discrete memoryless channel [32], except that the received chip is also dependent on all

prior symbols and not just the present one.

The AWGN Channel

Over the AWGN channel:

Àn," = "r{ffi} * f, rog1P,'c"l¡

Pr(ri(Ðra) = 
o*J-r, 

*, 
{ ü [å,

=^þu".0{+tl;'

where N"/2 is the spectral height of the white noise.

into (4.8) yields (ignoring double frequency terms):

(4.7)

l- ¡(n+t¡r I
À,',u = lrt 

rcsr'l.f , (Ð s'(t) atl

(4.8)

In most cases, both the symbols a and the transitions o can be assumed to be uniformly

distributed. Including these assumptions in (4.10) gives the finai form of the Fano metric

for CPM and the AWGN channel:

'* ,Ðl)

I (A.e)

r(t) - sa(Ð12 dr 
)

Inserting equations (4.6) and (4.9)

-r*[ä 
".0 {-*"{j ,,,,,"r0 at}r".,]+f,rog(r"(a)) 

(A'10)
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| ¡(n+l)r I

= 
Lfr 

roe(") 1", r(Ð s'(t) dtl

'", [ä æ 
.-'{*rl],,,, *u, .,}]

Irrational Modulatïon Indices and Complexity Reduction
To calculate the branch metric for a given interval, the second term of equation

(4.11) requires one to obtain a1l pML suffrcient statistics. This is disadvantageous for two

reasons: i) allbranch metrics, and not only the one of interest, a¡e needed and ii) when p,

M and L are large, as for the more power and bandwidth efficient CPM schemes, calculation

of the Fano Metric becomes computationally intensive. To avoid this, one can simplify the

Fano Meric in equation (4.11) by using the Fano Metric for irrational modulation indices.

For i¡rational h, Pr(ri(t)) becomes:

where ocp represents the ML phase state independent classes of signals in the signal set and

0o represents the phase state (note that one could actually sum over the signal elements of
the dynamic signal ser instead of o"o; for the sake of ciarity this approach is avoided).

Over the AWGN channel, the integrai in (4.12) can be reduced to (again keeping only the

cross-product term, dropping terms which cancel with the numerator of (4.5), and converting

to baseband as in equation (1.10)):

p. (.i(Ð)= 
ä # {f" 

n.,r,,t)to"n,0o) n{o"o,eo) oeo}

- log(Tr1)

(A.11)

+ [r" 
*{*r,{:."'lï1eI1o*,e0,Ð + 8{t)e(o*,0n,t)] o,) oe,

where (normalizing the symbol power, E[f = I/2):

I(o"o,Oo,t) =.or (O{Ð * Oo)

e(o*,00,t) = sin (o(Ð + ep) 
and 0(t) = 0"(t)+ e"p(Ð

(4.12)

ti

(4.13)
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Inserting these expressions into (4.13) and expanding out the cosine and sine terms yields:

+ fr" "*{e .o,(eo) + n sin(en)] aen

where:

r2nr-
= + j;- ..{/Ã'.Bt.o,(eo - tan-r *)] ut,

= r"(y'a4nt)

and Io is the modified Bessel function of the first kind of order 0. The branch metric of
equation (4.11) is then:

^=ü ,{,.

" 
=ü 

,{,.

1)r

iÎqr¡ .or 0(Ð + 8(t) rin Oft>]¿t

1)T

[- îqt¡ rin Q(t) + Q(t) cos Ofti]¿t

Àr,," = lfr 
tog(e),{:."' r(t) so(t) u,] -,"rtA *

From equation (4.17) it is apparent that to evaluate the Fano Metric for schemes

with irrational modulation index, only one function evaluation is needed for each phase

state independent class of signals. This is a reduction by a factor of p over schemes with

modulation index h=ldp.

To achieve the same reduction for rational modulation indices, one can simply use

the Fano Metric of equation (4.17). In this way, one modified Bessel function evaluation

replaces p exponential funcúon evaluations. This approach should work well fo¡ well for

large p ( and for small p it is unnecessary).

F urther Complexity R.eduction

Reducing the number of function evaluations from pML to ML will not be significant

if p is small and M and L are iarge. To further reduce the number of evaluations, recall that

the terms in the exponentials are just the correlations of the received signal with the
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transmitter phase functions. The phase functions are evenly spread out over the time

interval [0,T) and baseband frequency interval [-On-rl 
hln, (M-l)hlzr), undthe term we

are concerned with here (equation (4.6)) is simply an average. Thus, it shouid be possibie

to use just a few representative phase functions to get a good approximation to (4.6). For

example, one could use the six filters (which cover three dimensions) of Huber and Liu's

matched filtering scheme to obtain a good "mix" of phase functions. This reduces the

number of function evaluations from ML to three (it may, of course, be necessary to use a

few more signals than just the three frequencies).

Although this approach and its effect on performance has not been investigated in

this thesis, it should work well since the primary function of the term in equation (4.6) is

to perform an averaging of sufficient statistics. It seems natural to expect that only a few

representative signals give a good approximation to this average, especially for signal sets

which are localized in time and frequency as CPM signal sets are.
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APPEhIT}¡X B. CODING FÕR BÅh¡MW¡ÐT!"¡ PEHFORMATSCE

The reason for placing a convolutional coder in front of a CPM modulator is

normally to improve error perforrnance. Here, the effects of the coder on bandwidth are

also considered. The approach is not the same as that of Ho and Mclane l21l where the

PSD's of various coded CPM schemes are calculated. Rather, some simple assumptions

about the bandwidth are made based on the probability distribution of the signals in the

dynamic signal set. The validity of these assumptions has not been tested; as such, the

discussion below serves solely to stimulate further research.

REC CPM

To introduce the measure of bandwidth used here, consider the REC phase pulse.

Optimum detection of REC CPM schemes requires a linearly increasing number of matched

filters with M, the size of the signalling alphabet and L, the length of the frequency pulse.

This is, of course, due to the single basis nature of rectangular pulses and during any

symbol interval, the CPM transmitter sends one of the frequencies (see equation (2.5)):

As such, REC CPM is nothing more than a FSK scheme with a convolutional encoder

placed in front which controls the pattern of frequency hopping and maintains phase

conrinuiry [38] (the condition of phase continuity will, of course, increase the size of the

signal set via constant phase offsets, but for the following discussion only the frequencies

are considered). When L > 1, the following effects of partial response signaling [26] will

apply to the frequencies of equation (8.1):

1) The probability distribution of the allowable frequencies changes.

2) The size of the frequency hops is limited.

fr, = f" + tH-L(M-1) + 2n] ' rl = 0, 1,"', L(M-l)

For example, consider binary signaling (IvI=2) and enumerate the possible frequencies

from 0 ro L. Then the probability distribution of frequencies is binomial and the maximum

size of hop is +2 (see Figure 8.1, where the weíghtdistribution forL=3 is given; the

weight distribution is simply the probability distribution normalized to integer values).

(8.1)
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Weight

The effect of the partial response coding is apparent f¡om the distribution of frequencies

in Figure 8.1; better bandwidth performance is achieved because the center frequencies

(frequencies #i and #2) tend to occur more often. In this senss, paftial response signaling

performs a bandwidth shaping by changing the probability distribution of the frequencies

of the REC scheme. Limiting the frequency hops will also reduce bandwidth. The same

type of effect occurs for larger signaling alphabets, although now the distribution is not

binomial and larger frequency hops can occur.

The resuits stated above apply to other CPM single basis phase pulses. The only

difference is that now no simple frequency domain description is possible as for REC. It
may even be possible to generalize to multiple basis CPM using the vector and matrix

representations of Chapter 2, but this was not attempted. In the following, only REC

schemes a¡e considered.

An ,A.ssurnption Abouf tsandwidth

In the following, coded CPM schemes are considered and a simple measure of their

bandwidth is presented; the bandwidth measure used he¡e will simply be the weight disnibution

of the frequencies. For example, if a coded CPM scheme has the same frequency weight

distribution as in Figure 8.1, it is assumed that the bandwidth of this CPM scheme is the

same as 3REC (assuming the same separation between frequencies, of course). This

measure is not completely accurate, as the size of the frequency hops and the correlations

be¡ween the hops will also affect bandwidth. However, it seems intuitive that the probability

distribution of the frequencies will play the major role in determining bandwidth.

Figure 8.1. Frequency weíght distribution of 3REC frequencíes.

Max. Size of Hop
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Coding
Several coding schemes for CPM have been proposed. One approach is to simply

encode the incoming data sequence and then pass the coded symbols on to the CPM

moduiator 129,341. Two of the more recent approaches are those given by Rimoldi [39]

and Yang and Taylor [46], both of which are briefly reviewed below.

Rimoldi's coder is based on increasing the size of the signaling alphabet and then

using set-parcitioning principles to improve error performance. The bandwidth is kept the

same as uncoded schemes by using modulation indices of the form h = 1/lv1 [39]. Such

modulation indices also make the structu¡e of the CPM encoder more amenable to analysis.

A skeletal block diagram of Rimoldi's encoder is given in Figure 8.2. The complete

encoder consists of two parts. The first block is a binary (or 2'-ary) rate 7/2 (or rate

V**r) encoder. The encoded sequence is then mapped to a 4-ary (or 2-*1-ary) data

sequence which is sent to the CPM modulator. Note that the combination of these two

blocks does not affect the data rate, as the mapper is a rate 2 (or rate 1 + l/rn) encoder.

Binary
Data

Coder

(rate l/2)

Yang and Taylor's encoder reverses the order of the blocks of Rimoldi's encoder.

Instead of coding first, the binary data is mapped to a 4-ary sequence which is subsequently

encoded. Another subtle but important difference is that encoding is done over rings [46].

Figure 8.2. Rimoldi's encoder.

Binary
Data

(M=2)

Mapper

(rate 2)

Figure 8.3. Yang andTaylor's encoder.

Mapper

(rate 2)

Quaternary
Data

(to CPM modulator)

Coder

over rings

(rate U2)
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It should be noted that both of the above encoders were applied specifically to

CPFSK (L=1), so that no partial response bandwidth shaping (in the sense of Figure 8.1)

ought to occur; this is indeed the case for R.imoicii's encoder. Fiowever, in the case of
Yang and Taylor's encoder (abbreviated by Y+T), the ring structure causes changes in the

frequency weight distribution. Thus, in the ensuing discussion we concentrate on Y+T's

encoding structure. To illustrate these ideas, consider a specific example.

,& Good Code For CFFSK

Table 2 in [46] lists several of the best codes found for the case of 4-wy, h=1./4

CPFSK. The simplest encoder listed there is a 4 state encoder with a 3.15 dB power gain

over MSK. This encoder is shown in Figure 8.4 (note that the mapping from binary to

quaternary data has already been achieved; since the input binary data is assumed i.i.d.

with a uniform distribution, the structure of this mapper is not important). All operations

take place over the ring of integers modulo 4. The output symbols of the encoder are fed

into the CPFSK modulator and effectively choose the frequency (labeled as in Figure 8.1)
which is to be transmitted. The combination of this convolutional encoder with the CPFSK

modulator results in 4 states [46].

M=4
Ui e { 0,1,2,31

Figure 8.4. A good encoderfor M=4, h=l14 CPFSK (operations over the ríng of
integers mod 4).

to CPFSK
modulator
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An interesting effect occrirs with this encoder. Because the first encoded symbol of
every pair of output symbols is multiplied by 2, this first symbol can only take on the

values 0 and 2. The reason for this is that the first muitiplier effectiveiy forms the ideal

{0,2} in the ring of integers modulo 4. In contrast, the second data symbol can take on

any of the values 0,1,2 or 3. The impact of this structure is that, if the coded data symbols

are mapped onto the four frequencies as in Figure 8.1, the frequency weight distribution

becomes as in Figure 8.5. For the ensuing discussion, we abbreviate this disnibution as

(3,1,3,1).

The (3,1,3,1) frequency distribution will have a different PSD and bandwidth than

the M=4, h=L/4 scheme. For one thing, the PSD will become skewed to a lower frequency

and may actually require less bandwidth (based on calculations for an M=4, h=U4 scheme

with an input data distribution of (3,1,3,1) the bandwidth ¿s actually smaller [47]; however,

this calculation is not completely accurate since the coded symbols are not independent).

Another factor which will affect the bandwidth is the size of the frequency hops; for the

encoded scheme discussed here the maximum frequency hop allowed is + 4. Nevertheless,

if the bandwidth is actually smaller than the M=4, h=U4 CPFSK scheme, then both power-

ond bandwidth-performance improvement has been achieved.

The type of frequency distribution shaping which goes on here applies generally for

encoders over rings if ideals are generated by one of the encoder outputs. For example, if
M=6 then a multiplication by two would generate the ideal {0,2,4) and a multþlication by

3 would generate the ideal [0,3J. Rings other than those over the integers modulo some

composite number can, of course, also have this property. However, this effect does not

occrr for codes over fields (such as the integers modulo a prime).

a
J

,)

Weight
1

Figure B 5 . Frequency weight distribution for the encoder of Figure 8.4.

80

Max. Size of Hop

I2
Frequency



We concenffate on rings over the integers modulo some composite number, c.

When ideals are generated for such rings, they will occur in multiples of one of the divisors

of c, labeled d. Because the ideals are sraggered (Ie. {0,d,2d,...,(c-d)}), the frequency
distribution will also be staggered and not "bell-shaped" as for paftial response CpM
(Figure 8.1). Staggered distributions will ænd to have a larger bandwidth than the binomiat

distributions. This can be corrected by using a different symbol-to-frequency mapper than

the one used for the encoder above. For example, by mapping the 0's to frequency #1 and

the 1's to frequency #0, the (3,1,3,1) frequency distribution will become (1,3,3,1) and. the

resulting PSD will be similar to that of 3REC. In this way, the combination of the encoder

over rings and the second mapper performs a bandwidth shaping of the CPM signal. Of
course, this combination's error performance is not as good as the original scheme's.

The above discussion has shown that both the error and bandwidth performance

must be taken into account when designing encoders for CPM. It may, in fact, be possible

to find combinations of encoders and mappers which simultaneously yield. good enor and.

bandwidth performance. This and other avenues which can be explored are:

1) The above has been a rather ad hoc discussion on the bandwidth of coded CPM
schemes. A more general and rigorous theoretical analysis should be performed;
fi¡st and foremost, the assumption that coded CPM schemes with equal frequency
weight distributions have simila¡ bandwidths needs to be verified.

2) The above ideas have counterparts in the a¡ea of shaping gain for constellationsl,
and it would certainly be advantageous if the power gain and (bandwidth)
shaping of the codes described above could be separated in the same way as is
done for constellation codes. This, however, does not seem possible since the
frequency weighr distribution and coding gain are directly related.

3) The discussion about the Y+T encoder was applicable to full response CPM
modulators (CPFSK here). The results can be generalized to pafiial response
CPM.

4) Rings other than the ones over the integers modulo some composite number can
be used (even non-commutative rings).

5) Convolutional encoders over groups could be investigatedz.

9rD.-FgT_"y, "Trellis shaping," IEEE Trans.Inform.Theory, vol. 38, pp. 281-300,
March 1992.

H-4. ldliger, "On Euclidean-Space group codes," D.Sc. dissertation, Swiss Federal
Instirute of Technol ogy, Zünch, 1992.
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APPEND¡X G. PMÕGRAM LIST¡A{GS

Software written to:

Ð
ü)

üi)
iv)
v)

calculate the size of the dynamic signal sets,

calculate the minimum squared Euclidean distances for optimal and suboptimal

detection,
calculate the PSD's and out-of band power,
implement the Stack Algorithm in AWGN and ACI, and

implement ttre Viterbi- and M-Algorithms in AWGN and ACI,

can be obtained by contacting:

Professor Ed Shwedyk
Deparrnent of Electrical & Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada

R3T 2N2

All programs were written in C.
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