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ABSTRACT

This thesis presents a new and flexible procedure for
analyzing stable crack growth in ductile materials. The
analysis is based on an elastic-plastic finite element
method which calculates the stress and displacement fields
in the vicinity of a growing crack under monotonically
increasing loads. A special type of element known as a
‘breakable element' together with a nodal force relaxation
technique has been incorporated into the usual finite
element program in order to simulate stable crack growth.
The effective strain value at the crack tip is used as a
fracture criterion, and subsequently for mixed mode crack
problems is further utilized to assess the direction of

crack extension.

An experimental program which generated applied stress
vs stable crack growth curves for center-cracked aluminum
sheets was undertaken to verify the numerical results.
Experiments were conducted for both the mode I and the

mixed mode loading conditions.

Numerical studies verified that the proposed algorithm

successfully both modelled the stable crack growth and



ii

predicted unstable crack growth. Varying stress and strain
distributions in the region of the crack tip were analyzed
phenomenologically, and various crack tip parameters were

evaluated and assessed as fracture criteria.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A well known fact in the engineering field is that
many structures contain flaws or cracks, either from the
time of fabrication or due to adverse loading conditions
in service. A major concern for design engineers is the
potential growth of these flaws or cracks which may, under
particular Toading conditions, trigger a catastrophic failure.
A useful design methodology for the assessment of such
structural integrity and materials selection problems is

the engineering science of fracture mechanics [1, 2]+.

During the past decade, the Tinear elastic fracture
mechanics (LEFM) approach has attained a high level of
sophistication and acceptance by design engineers for the
analysis of brittle fracture problems, in which the onset
of crack growth is usually tantamount to crack instability
and structural failure. However, there existsa large class
of fracture problems involving the fracture of ductile

materials which cannot be characterized completely by LEFM.

+Numbers in the bracket denote the references at the end of
the thesis.



Consider a large sheet of ductile material with a
through-the-thickness crack subjected to a monotonically
increasing load. The plate of width, W, illustrated in
Fig. 1.1(a) contains a central crack of length 2a,. The axial
tensile load, P, produces a uniform stress, o, at some
distance far from the crack. The initial crack of half
length, ags at a particular load will undergo an extension
to a new stable length, aoi-Aa. As the load increases further,
this process of 'stable crack growth' may be repeated several
more times. Finally, a combination of applied stress and
crack length is reached such that stable crack growth
continues without a further load increase. This transition,
the onset of rapid crack growth, generally leads to complete

fracture of the sheet.

This experiment shows that under a monotonically
increasing load to failure ductile materials experience
considerable plastic deformation at the crack tip and a
significant amount of stable crack growth prior to the onset
of unstable fracture. Thus, a substantial margin of safety
may still exist even when the onset of crack growth is
imminent. As a consequence of this high resistance to
catastrophic failure, ductile sheet materials are used
widely in the aerospace and other industries. The obvious

requirement for rigorous design safety in these industries
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demands both a detailed understanding of the mechanism of
stable crack growth, and an accurate procedure for predicting

unstable fracture.

Attempts at extending the LEFM approach into the stable
crack growth regime are precluded by its inability to treat
the inelastic effects arising from large scale plasticity
and material unloading. In recent years the increasing
sophistication of digital computers has enhanced the selection
of numerical solution procedures as an alternative to the
mathematical complexities inherent in the continuum description
of a growing crack. Chief among these numerical techniques
is the finite element method, a powerful and widely used
technique for elastic-plastic stress analysis problems.

This method has been used to obtain useful information such
as the stress, strain distribution about the crack tip and the
fracture criterion governing the crack tip. While some
recent attempts at predicting the uﬁstab]e fracture of
ductile materials have been made, to date no reasonable
correlation has been observed between numerical and

experimental results under plane stress conditions.



1.2 Objective of Thesis

This thesis describes a research effort leading to
an elastic-plastic fracture mechanics methodology designed
to treat large-scale yielding and stable crack growth
problems. Due to slant-type fracture, the fracture of sheet
material is a three-dimensional problem. However, for
simplicity a two-dimensional model has been assumed. An
elastic-plastic stress analysis based on the finite element
variational technique was used to determine the distribution
of the stress and deformation fields associated with an
extending crack tip under plane stress conditions. The key
element of the research is the development of a numerical
technique which simulates stable crack growth in ductile
materials. The proposed rupture strain criterion is suit-
able not only for mode I fracture problem but also for
determining the direction of crack propagation in the mixed

mode fracture problem.

1.3 Scope of Thesis

The thesis is divided into eight chapters.

Chapter 1 is an introduction to the field of stable

crack growth.



Chapter 2 is a general review of the development of
fracture mechanics concepts and computational fracture

mechanics.

Chapter 3 describes the finite element formulations in

elastic-plastic stress analysis.

Chapter 4 presents a numerical modelling technique

for stable crack growth.

Chapter 5 is devoted to a description of the
experimental program which was carried out to check the

accuracy of the numerical analysis.

Chapter 6 presents the results of the case study for

mode I fracture problem.

Chapter 7 presents the results of the case study for

mixed mode fracture problem.

Chapter 8 is the conclusions and recommendations

for further study.

A bibliography is presented at the conclusion of

the thesis.



CHAPTER 2

REVIEW ON FRACTURE MECHANICS CONCEPTS
AND COMPUTATIONAL FRACTURE MECHANICS®

2.1 Introduction

The mechanisms of fracture which may be encountered
in engineering structures can be classified into two general
groups. The first category is termed 'brittle fracture',
which occurs in brittle materials such as glass, or in mild
steel at very low témperature. Brittle fracture may also
occur in most other engineering materials under very high
loading rates or under the 'plane strain' conditions
encountered in heavy sectioned structural parts where the
dimensions of the original defect are small compared to the
characteristic dimensions of the part. This type of fracture
is associated with relatively low fracture energy (i.e. the
input energy required to propagate the crack) and small
plastic deformation prior to and during crack extension.
The second type of fracture falls into the general category

of 'ductile fracture' or high energy fracture+, and usually

+The term 'high energy' refers to the high input energy
required to propagate the crack (usually dissipated as
heat), and should not be confused with the high time
rate of energy input as occurs in dynamic fracture.



occurs in non-brittle materials under 'plane stress'
conditions. For example, thin-walled tubes and shell
structures, composed of materjals with high ductility,
would be expected to undergo Targe plastic deformation

prior to and during a rupture process.

Research in the field of fracture mechanics was
initially concerned with investigating brittle fracture
problems, since these types of failures are of more
disastrous consequences and easier to analyze than ductile
fracture cases. In this chapter, the concept of linear
elastic fracture mechanics (LEFM) is briefly described,
and the current level of development of elastic-plastic
fracture mechanics is also discussed. A review of the
literature on the application of the finite element method
to fracture mechanics problems is presented at the end of

this chapter.

2.2 Linear Elastic Fracture Mechanics

The linear elastic fracture mechanics approach to
evaluating stresses and displacements associated with
each fracture mode follows the Griffith-Irwin theory [1, 2].
In this approach, the general stress field near a crack tip

can be expressed as the superposition of stress fields due



to the three modes of fracture, each mode associated with

a kinematic movement of two crack surfaces relative to each
other. These deformation modes, illustrated in Fig. 2.1
are denoted as the opening mode, the edge sliding mode and
the tearing mode.

- The opening mode (mode I) is associated with
local displacementsin which the crack surfaces
move apart in a direction perpendicular to these

"""" surfaces (symmetric with respect to the x-y and
z-x planes).

- The edge sliding mode (mode II) is characterized
by displacements in which the crack surfaces
slide over one another and remain perpendicular
to the leading edge of the crack. (symmetric
with respect to the x-y plane and skew-symmetric
with respect to the z-x plane).

- The tearing mode (mode III) is defined by the
crack surfaces sliding with respect to one
another parallel to the Teading edge of the

crack. (skew-symmetric with respect to the x-y

and x-z planes).

Griffith theory [4], first proposed in 1921, was
based on the assumption that incipient fracture in ideally

brittle materials occurs when the magnitude of the elastic
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(c)

Fig. 2.1 Three Modes of Fracture
(a) Mode I (b) Mode II

“(¢c) Mode III
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energy supplied to the crack tip during an incremental
increase in crack length exceeds the magnitude of the energy
required to create the new crack surface during the same
incremental increase in crack length. This strain energy
release rate G, or the elastic energy made available per

unit extension of the crack area, is:
G = « o= (2.1)

where U is the potential energy of the structure and

A is the cracked area.

In 1956, Irwin [5] developed the analytical basis
of the elastic crack tip stress field theory, which in
turn was the starting point of modern fracture mechanics.
In his theory the stress intensity factor+, K, is extracted
from the solutions for stresses and displacements near the
crack tip and is a combination of applied load P, crack

length a and specimen configuration.

K = P-f (a, geometry) (2.2)

K is said to be the controlling parameter of a crack tip

field, because stresses and displacements are proportional

¥ .
KI’ KII and KIII are defined as mode I, mode II and

mode III stress intensity factors,respectively.

11



to this factor. In general, the stress and displacement

fields can be expressed mathematically as follows:

K

Gij = ;? fij (8) + ... (2.3a)
u; = Kv/r 95 (8) + ... (2.3b)

where r, 6 is a polar coordinate system at the crack tip
shown in Fig. 2.2. The truncated terms of equation (2.3)
are the terms with higher order in r, and for small radius
of r (i.e. very close to the crack tip),'on1y the first
term is significant. Crack extension will occur when the
intensity of the stress field in the close vicinity of the
crack tip reaches a critical value. This means that
fracture must be expected to occur when K reaches a critical
value, Kc'
Irwin et al [67 also showed that there exists a unique

relationship between K and G as follows:

G = + (2.4)

H

in which EO E (plane stress)

E/(1-v) (plane strain)

where E is a Young's modulus and

v is Poisson’'s ratio.

Thus the consistency of the two theories, Griffith theory

and Irwin theory, was apparent.

12
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-Leading Edge of
the Crack

Fig. 2.2 Coordinate System at the Crack Tip.



Due to the singular nature of the equation (2.3a),
a plastic zone is always formed at the crack tip where
the stress field exceeds the yield strength of the
material. Since equation (2.3) is based on the theory
of elasticity, K has significance only when the
geometry of the crack or remaining ligament exceeds the
plastic zone size by a factor of about 50 [1]1, a criterion
which is met by the plane strain condition. 1In order to
use an experimentally determined plane strain fracture
toughness KIC value as a fracture criterion, the American
Society for Testing and Materials (ASTM) specifies the
following thickness requirement.

KZ
B > 2.5 —LC (2.5)

2
o}
)

where B is the thickness of the specimen and

Oys is the yield strength of the material.

2.3 Elastic Plastic Fracture Mechanics

Most of the large complex engineering structures
such as airplane frames, ships, pipelines, etc. have such
small wall thickness that plane stress conditions prevail.
Also, these structures are usually composed of ductile
materials. Thus for many structural applications, the

linear elastic analysis used to calculate the stress

14
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intensity factor K, is invalidated by the formation of
lTarge plastic zones around the crack tip. Currently, much
effort is being devoted to the development of elastic-
plastic fracture mechanics analysis as an extension of
LEFM [1, 2]. Among the various techniques the following

approaches are most popular:

Plastic zone corrections.

)
(2) Crack opening displacement.
) J-integral.

)

Crack growth resistance R-curve.

The above techniques hold considerable promise for appraising
structural integrity in terms of an allowable loading or
crack size. The engineering significance of each technique

is reviewed in the following sections.

2.3.1 Plastic Zone Corrections

The first attempt in extending fracture mechanics
beyond the LEFM limits involved a correction to the crack
length to account for the effect of the plastic zone while
continuing to use the LEFM approach. This procedure,
proposed by Irwin [6], involved moving the crack tip to

the center of the plastic zone, a distance ry, i.e.

+ . 2.6
a > atr, (2.6)



The distance ry is evaluated as:

K2
r, = 35— E%— (plane stress)
ys
K2 (2.7)

= é%~5;£ (plane strain)

ys
Although Irwin's plastic zone correction gives consistent
results for small scale yielding, the 1imits of its

applicability are uncertain.

A more rigorous correction for the plastic zone size
was proposed by Dugdale [7]. He assumed that yielding
occurs in a thin strip-like zone at the crack tip, extending
the crack by a distance c-a (Fig. 2.3). The stresses in
this yielded zone are considered to be a continuous
distribution of point loads, which act to restrain the crack
from opening. An expression for the restraining stress
intensity factor can then be obtained by integrating from

a to ¢ with the appropriate Westergaard stress function as:

1
2

K = 2 (%) cos™! (%) . (2.8)

s
The size of the plastic zone is obtained by equating

the restraining stress intensity factor (2.8) with the K

value for the opening of the crack, K = ov/mc .

16



Fig. 2.3 Dugdale Model.

17



Thus

_ o K?
Y‘y = T'G—‘OT;—-S- . (2.9)

The plastic zone size calculated by equation (2.9) 1is
about 20% bigger than that calculated by equation (2.7)

for the plane stress case.

2.3.2 Crack Opening Displacement

Wells [8] proposed that the fracture behavior in
the vicinity of a crack could be characterized by the
opening of the crack faces - namely the crack opening dis-
placement (COD), as shown in Fig. 2.3. Furthermore, he
showed that the COD concept was analogous to the G value,
thus the COD value could be related to the plane-strain
fracture toughness KIC' Since COD measurement can be made
when there is considerable plastic flow around the crack
tip, this technique gives useful information for elastic-

plastic fracture analysis.

An extension of the Dugdale analysis yields an
expression for the crack opening displacement normal to

the crack plane at the crack tip, §:

3|00

o
—%5 a 2n [sec % 59—] (2.10)
ys

18
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which for o/oyS << 1 reduces to

= 5 E . . (2.11)

Equation (2.11) implies that at the onset of crack instability,
where KI reaches KIC’ the COD value reaches a critical value
GC. Under plane strain conditions, unstable fracture will

occur upon crack initiation, and thus 51 = § Like K

c’ IC?

a GC value under plane strain conditionsis a material property,
and is independent of specimen geometry. However, under plane

stress conditions, stable crack growth can occur after the COD

value reaching 61. The COD value will rise to a value designated as

Smax (> 61), upon which unstable crack extension will occur.
Under plane stress conditions, values of 61 and Smax are

dependent on specimen geometry.

2.3.3 J-Integral

Rice [9] proposed a path-independent contour integral,
the J-integral, for a two-dimensional deformation field,
evaluated over the contour T in a counter-clockwise direction,

as illustrated in Fig. 2.4,

Ju.
J = j (wdy - T, 733:" ds) (2.12)
T



Crack

Fig.

2.

4

J-Integral.
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where w is the strain ehergy density function,
Ti is the surface traction vector (= 05 5 nj),

us 1s the displacement vector and

ds is adifferential element of an arc length along T.

The J-integral, derived under the assumption of non-
Tinear elastic material benavior, is defined as the elastic
energy release rate (per unit crack extension) to the crack
tip. Since Rice [9] proved J to be path independent, one
may evaluate J remote from the crack tip, where a well defined
elastic field prevails, and use this value of J to represent
the energy release rate to the crack tip, that is, paths
adjacent to or remote from the crack tip produce the same
result. This scheme is suitable in the case of small scale
yielding, for which the concept of path independence of
energy release rate to the crack tip is assumed to remain

valid.

Just as K was found to describe the elastic crack tip
stress field inthe LEFM approach, Hutchinson [10] and Rice and
Rosengren [11] showed that the stress-strain field at the

crack tip may be expressed as

1
- (dyn+]
G]J - (Y') f]J (esn) +
n (2.13)
- ¢dyn+t
81\] = (F) 9.“] (esn) +



where r and 6 are polar coordinates centered at the crack
tip and n is the power hardening coefficient in the assumed
uniaxial stress-strain law, which is of the form ¢ « o

For the linearly elastic case, n=1, equation (2.13) reduces

to LEFM equations with J = KZ/EO.

Just as the plastic zone size governs the validity of
LEFM, so the size of the intensely non-linear zone restricts
the application of J-integral approach. According to Paris
[12], if the analysis using J is to be relevant, the size

of this zone, I, must satisfy

I =2 gi— << planar dimensions. (2.14)

ys
Further, if plane strain behavior is to be maintained, the
thickness B must satisfy

J
B > 25 —— . (2.15)

ys

This restriction is an order of magnitude less severe than

the corresponding LEFM requirement in equation (2.3).

2.3.4 Crack Growth Resistance R-Curve

The COD and J-integral methods described previously

relate their values at crack initiation to KIC under plane

22
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Strain conditions. These values may not be applied to
determine the fracture toughness under plane stress conditions.
The plane stress fracture toughness KC’ is generally 2-10

times larger than KIC and varies with specimen thickness.

Representation of the fracture toughness of
thin sheet materials by a resistance curve has been
attempted by a number of scientists [13-16], and is still
under development. The concept of the crack growth
resistance R-curve is based on the observation that during
the fracture process of most sheet materials, the unstable
fracture is always preceded by a certain amount of stable

crack growth under a monotonically rising load.

Fig. 2.5 illustrates a typical R-curve with the crack
Tength as the abscissa and the crack growth resistance as
the ordinate. The curve Tabeled KR is the R-curve, determined
from experiment, with the stress intensity factor KR at any
crack length a being that required to propagate the crack
from Tength a to a. The first stage of the R-curve is a
vertical Tine representing a 'no crack growth' situation.
The point where the R-curve deviates from a vertical Tline
- 1s the initiation of 'stable crack growth'. As the crack
extends, the crack growth resistance also increases. This
increased crack growth resistance is due to the increased size

of the plastic zone and work hardened material ahead of

the crack tip, which increases the amount of work required
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to move the crack tip. Finally, a stage is reached on the
R-curve where no increased crack growth resistance
accompanies crack growth, where the effects of increased
crack length and decreased ligament size overcome the

effect of work hardening ahead of the crack tip.

The fracture criterion in the R-curve concept is that
for a given initial crack length ags failure will occur
when the stress intensity factor from the applied loading,

known as the crack driving force KG,equals K Note that

R*
this condition must be fulfilled at the same instantaneous
crack length a. Thus a family of KG curves is drawn at
various applied stress levels 9y1s Oy etc. The KG curve
that fulfills the fracture criterion is tangent to the KR
curve at the critical point. The stress corresponding to
this KG curve will be the critical failure stress for an

initial crack length a Instability occurs since at the

0
point of tangency of KG curve will always exceed tangency of KR
curve for further crack extension.

BKG BKR

Analytical studies on stable crack growth [17, 18] have
indicated that the strain field ahead of an extending crack
is governed by a Tlogarithmic singularity rather than the

stronger inverse square root singularity as in the stationary
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case. This weaker singularity is due to the extension of
the crack into the zone where the material is less
plastically deformed, thus preventing complete refocusing of
the strain field at the tip of the extended crack. This
reduction in strain concentrations accompanying the crack

tips may be one of the main reasons for stable crack growth.

2.4 Application of the Finite Element Method to
Fracture Mechanics

Due to’mathematica1 complexities, only a few crack
problems, encompassing simplified boundary conditions have
been solved analytically. However, the finite element
method has been widely emplcyed to solve a large variety
of fracture problems. This well known numerical technique
is capable of performing an elastic or elastic-plastic
stress analysis to any two-or three-dimensional crack problem.
Stress intensity factors under complicated geometry and
loading conditions have been obtained using the linear
elastic finite element method. Stress analysis, the determination
of fracture criteriaandthe prediction of fracture instability
have been attempted using the elastic-plastic finite element

method.
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2.5.1 Computation of Stress Intensity Factors

Kobayashi et al [19] and Chan et al [20] were the
first to use the finite element method to calculate the
stress intensity factor. Once the numerical values of the
nodal displacements and the element stresses near the crack
tip are obtained, the K value can be calculated using
equation (2.3) at several points. The K value at the crack
tip is evaluated by extrapolating these va]ues>to the crack
tip and by disregarding the first few points very close to

the crack tip.

Watwood [21] calculated the K value by computing the
strain energy release rate G. The total strain energy of
the structure, calculated for a given crack length, may be
Tacking in accuracy for a certain finite element mesh.
However, there is a cancellation of these erroré when taking
the difference in strain energy for two different crack
lengths, so reasonable accuracy is obtained with a

relatively coarse mesh.

A number of special singular elements (Wilson [227,
Byskov [23], Hilton and Sih [24], Tracey [25]) have been
presented to accommodate the singularity at the crack tip.
These elements are the result of incorporating both the
eigen-function expansions for the crack tip field conditions

and the finite element method. The theoretical background
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of this approach is based on the mathematical properties

of the two numerical techniques employed, i.e. the asymptotic
expansion becomes increasingly more accurate as one approaches
the crack tip, while the finite element method is very

accurate everywhere except near the crack tip.

Another class of special singular elements is the
quarter point element, used in conjunction with the standard
isoparametric element. The Jacobian transformation from
physical to isoparametric coordinates will produce spatial
derivatives (i.e. strains) which are singular at the crack
tip, if nodal points along the sides of the element are
positioned in a certain way. Henshell [26] and Barsoum [27,
28] perceived that by moving the middle nodal point of a
quadratic isoparametric element to the quarter point closest

to the crack tip, the strain singularity is achieved.

2.5.2 Elastic-Plastic Analysis of a Stationary Crack

Swedlow et al [29-31] and Marcal and King [32]
pioneered the application of elastic-plastic finite element
analysis to ductile crack problems. They analyzed edge- and
center-cracked plate under plane stress and plane strain
conditions, and reasonable agreement was obtained between
the numerical and experimental results. Since then the

numerical accuracy of these predictions has been improved



through the better description of elastic-plastic material

behavior and improved computing capability.

Miyamoto et al [33] presented results for two- and
};{ﬁj three-dimensional analyses of cracked plates and also showed
results for cyclic loading, although not accurate enough
for useful application. A more accurate analysis has been
performed by Larsson and Carlsson [34] by which crack tip

plastic zones are assumed to respond only to an elastic

outer field of the singular stress field.

Precise stress analyses at the crack tip have been
attempted by Rice and his co-workers [35-39]. Solutions
for small scale yielding of plane strain cases have been
obtained for non-hardening material [35, 367 and also for
hardening material [37]. These investigations have been
further extended to the analysis of large crack tip geometry

change by using the finite strain theory [38].

Wells [40] and Turner and Cheung [41] calculated the COD
value by the finite element method and showed that the
crack initiation may be characterized by the critical value

of COD.

Sumpter and Turner [42], Parks [43] and Miyamoto and
Kageyama [44] showed that the finite element method can be
used to calculate the path-independent J-integral and the
crack initiation can be characterized by the critical

value of the J-integral.
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2.5.3 Elastic-Plastic Analysis of a Growing Crack

Kobayashi et al [45] and Anderson [46] proposed a
nodal force relaxation technique simulating crack growth
in the finite element model. Hsu and Bertels [47] also
proposed the breakable element concept which can model the
crack growth. Since then the finite element method has
been used to investigate stable crack growth behavior for
plane stress [48-53] and plane strain [54-60] cases under

monotonically increasing loading condition.

Sorensen [56, 59] investigated stable crack growth
of anti-plane shear and plane strain cases under an arbitrary
loading history. His results showed that while the stress
distribution ahead of a growing crack was found to be nearly
the same as that ahead of a stationary crack, the strain

values were lower for a growing crack.

Shih et al [57] and Kanninen et al [58] investigated
several fracture criteria characterizing stable crack
growth by using the experimentally obtained applied load
vs stable crack growth curve as input information. The
fracture criteria examined in their studies include the J-
integral, its rate of change during crack growth dJ/da, the
crack tip opening angle (CTOA), the energy release rate G

and the crack tip force F.
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d'Escatha and Devaux [60] evaluated stable crack
growth based on microscopic development, i.e. void nucleation,
void growth and coalescence. The purpose of this model was
to predict the fracture properties of a material during the
process of crack initiation, stable crack growth and crack
instability. Various parameters used to correlate stable
crack growth were evaluated by this model, including CTOA,

the J-integral and F.

Lee and Liebowitz [54] used the applied load vs crack
growth curve as an input information, to produce a linear

relationship between the plastic energy and crack growth.

Newman [61] performed finite element analyses using
one of the fracture criteria to determine applied load vs
crack growth behavior and instability for a given specimen
geometry. He studied the effects of various parameters
such as mesh size, strain hardening and critical strain on
finite element fracture predictions for both monotonic and
cyclic loading conditions. While some interesting
observations were made, no attempts were made to correlate

the predictions with actual material behaviour.

Varanasi [49] used ultimate tensile strength as a
fracture criterion to predict the unstable crack growth.
Belie and Reddy [53] used critical strain as a fracture

criterion and adopted the 'zero modulus-unload reload' scheme
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as a technique for crack growth modelling. Even though
some comparisons were made between experimental results
and numerical results in these two papers, the accuracy was

very crude due to their unrealistic computational method.

The elastic-plastic finite element method was also
used to investigate crack growth under cyclic loading

conditions with simplified assumptions [61=63].
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CHAPTER 3

FINITE ELEMENT FORMULATIONS FOR ELASTIC-PLASTIC
STRESS ANALYSIS

3.1 Introduction

The finite element method is a versatile numerical
technique for the determination of forces and displacements in
a structure. This method offers generous flexibility for
the incorporation of non-linear material behavior (plasticity)
and changing boundary conditions (crack growth). Presented
in this chapter are the finite element formulations for
elastic-plastic stress analysis of planar type structures,
which were subsequently used for the analysis of stable

crack growth in ductile materials.

3.2 Basic Matrix Formulations

The basis of the method is in the division of the
structure into a finite number of discrete parts (elements)
which interconnect at their apexes (nodes) and form an
idealized structure system as shown in Figure 3.1. The
displacements at the nodes are normally chosen to be primary
unknown quantities, while the displacements in the elements
are commonly assumed to vary according to some simple polynomial
functions, called shape or interpolation functions. The displace-

ments are usually continuous across the element boundaries.



34

i,j,m:NODES

Fig. 3.1 Discretization of a Structure.



The governing matrix formulations for the finite
element analysis have been well documented [64, 65] and are

briefly reviewed below.

Element Interpolation Function:

+

{u} = [N]{u}€ (3.1)

where {u} is the displacement vector for any point within
an element,
[N] is the matrix containing the interpolation (or
shape) function and

{u}e is the vector made up of the nodal displacements.

Strain-Displacement Relation:

{e} = [B] {ul (3.2)

where {e} is the strain vector and
[B] is the strain-displacement transformation matrix
containing spatial derivatives of the

interpolation function.

Stress~Strain.Relation:

{o} = [CI{e} (3.3)

TA e superscript denotes the element.
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where {o} is the stress vector and

[C] is the stress-strain constitutive matrix.

Element Stiffness:

[x1® = j (817 [CI[BT dv (3.4)
v
where [KI® is the element stiffness matrix and
v ~ denotes the volume of the element.
Global Stiffness:
[K1{u}® = {Q} (3.5)

where [K] is the global stiffness matrix and

{Q} is the global vector of applied nodal forces.

The global stiffness matrix [K] is formed as an
assemblage of the stiffness matrices of each individual
element in the finite element mesh. Equation (3.5) can
be used to solve for the unknown dispiacements'{u}e after
applying appropriate boundary conditions. Strain and
stress components for each element are then subsequently

calculated using equations (3.2) and (3.3).

+A 'T' superscript denotes the transpose of a matrix.
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3.3 Elastic-Plastic Analysis

A number of finite element computer codes based on
elastic-plastic stress analysis have been reported in
the literature [66-72]. Among them, two major approaches
are commonly used, namely the initial stress/strain and
the incremental strain methods. The latter approach is
adopted in this analysis since it is more practical to use
for the analysis of crack growth. This method is essentially
a step-wise linear incremental analysis to simulate the non-
linear elastic-plastic material behavior. The derivations
presented here are based on the works of Ueda [66], Yamada

et al [67], Hsu et al [71] and Wu [72].

If the existence of incremental stationarity of the
potential energy in a system of finite elements at a
linearly approximated stress-strain state is postulated,
the incremental stiffness equation of the structure is

obtained as:

[K1, {au}, = {aQ}, (3.6)

where [K]Q is the variable stiffness matrix,
{Au}z is ‘the incremental displacement vector and
'{AQ}X is the incremental global load vector for

the loading step 2.



The variable stiffness matrix [K]2 in equation (3.6)
may be updated after each load increment to account for the
change in the stress-strain relations of equation (3.3)
due to the elastic-plastic effects. For the elastic
situation the procedure is simply a step-wise summation of
the incremental elastic strains, {6e°}, with the stiffness
matrix unchanged. When the stress level of one or more of
the elements of a structure exceeds the yield strength of
the material, these elements are said to have deformed
plastically. Such plastic material behavior can be
accounted for by the formulation of [K]e in equation (3.4).
In addition to the elastic components, the total strain at

this step should also include the plastic component {seP}:
{se} = {6e®) + (8P . (3.7)
To complete the elastic-plastic stress analysis,

it is necessary to have:

(1) A yield criterion to ascertain the state of stress

at which initial yielding is considered to begin.

(2) A flow rule relating the plastic strain increments

to the stresses and stress increments.

(3) A hardening rule to establish conditions for subsequent

yielding from a plastic state.
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Because of the complexity associated with plastic deformation,
no universally applicable Tlaws characferizing the material
behavior in the plastic range have yet been developed. Thus
any attempt to predict analytically the behavior of

structures in the plastic range must begin with a choice

among the several available plasticity theories of one which
successfully combines mathematical simplicity with a
reasonably faithful representation of experimentally observed

material behavior.

3.3.1 Von Mises Yield Criterion

The Von Mises yield criterion is considered to be
the most practical and reliable of the numerous yield
criteria. It is based on the theory that yielding of a
material 1s initiated when the distortion energy of the
material reaches a certain critical value. This is equivalent
to a combination of the principal stresses reaching a critical
value, so as to form a locus called the yield surface. For
an isotropic material, the yield surface is defined by:

s g ]

F=4Jd, -1 = J

1 2
2 ys 2 = 3 9ys (3.8)

second deviatoric stress invariant

1

1
Z %3 %ij

in which J2
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Q
1

deviatoric stress components

T 995 7 %%kOij

0 (i #J)

Kronecker delta = 1 (i

i

S. . .
iJ = )

and Tt o are the experimentally determined yield stresses

ys? “ys
in pure shear and in uniaxial tension respectively.

This criterion further implies that if the state of
stress is such that F <0 then the material is in the elastic
region, i.e. {sePy = 0, while if F =0 a plastic state has

been attained and plastic behavior must be taken into account.

3.3.2 Prandtli-Reuss Flow Rule

The incremental Prandtl-Reuss flow rule assumes that
the incremental plastic strain components are a function
of the current stress state, the strain increments, and
work hardening parameter k, which is a function of the plastic
deformation:

(dePr = {dePy ({0}, (de}, k) . (3.9)

Now, equation (3.7) can be written in the incremental

form:



{de} = {de®} + {dePy (3.

in which from incremental form of equation (3.3)

(de®) = [¢®717! (dor . (3.

From equations (3.10) and (3.11), it can be shown that:

{do} = [€®] ({de} - {deP}) (3.

which may be rewritten as

{do} = [C®P7] {de} (3.

where [CeP] ijs called the elastic-plastic matrix and is

expressed as

[c®P1 = [c®7 - [cP] (3.

in which [Ce] is the elastic matrix and
[Cp] is the plastic matrix.
Equation (3.14) indicates that the plastic deformation

reduces the strength of the material by reducing the

magnitudes of the parameters in the [Ce] matrix.
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10)

11)

12)

13)

14)

To derive the [Cep] matrix, it is necessary to obtain

both the slope (H') of the tangent to the effective stress -

effective plastic strain (o - Ep) curve, and the flow rule
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description of the differential changes in the plastic strain
component {dePy as expressed in equation (3.9). It is

apparent from Fig. 3.2 that

H'deP = dg (3.15)

in which effective stress o and effective plastic strain

increment deP are defined as:

- 3,
- __]_, _ 2 2 2 2 L
= — [(OXX Oyy) ol *t Oy + 6 Oxy] (3.16)
/2
-P_ (2 4.P P 1k
de (3 deij Eij)

_ Y2 P P y2 p P y2
=3 [(de de® )2 + (deyy - dezz)

p P y2 P2q%
+ (ds:ZZ deXX) + 6 dexy] (3.17)

The Prandtl-Reuss flow rule representation with isotropic
hardening states that the plastic strain component increments
are proportional to the deviatoric stress components (o')

[67], or:

{deP} = (o'} da (3.18)

where dA is a proportionality factor.



Fig.
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EFFECTIVE STRESS, o)

EFFECTIVE PLASTIC STRAIN, €

Effective Stress-Effective Plastic Strain Curve.
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3.3.3 Isotropic Hardening Rule.

The general yielding criterion which takes only the
current stress state {o} and hardening parameter k into

account, is

F ({c}, k) =0 (3.19)

and its differential form is:

.
dF = {g%} {do} + %E dk (3.20)

Equation (3.20) can be expressed as follows when the

plastic strains are introduced:

dF = (251 qdoy + 20 (K4 gy (3.21)
ok 5 p

€
Substituting equations (3.12) and (3.18) into equation

(3.22), one obtains:

T

e . oF ok
{~g} [CT] ({de} - {a'} dr) + K {—=

S} {o'} da= 0 . (3.22)
o€

Solving for dX using equation (3.22), the following equation

is obtained:
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T
(251 [e®1 tae
dx = T . . (3.23)
3F e . oF 3k )
{56-} [C ] {o'} - W {B—EB} {o }

Substituting equation (3.23) into equation (3.18), one

obtains:

{dep} = {o'} dx

= S {de} (3.24)

boLe] foty - 2 Ky oy (3. 25)

Comparison between equations (3.12), (3.14) and equation (3.24)

yields: -
[c®] (o'} €251 [c®
[cPy] = = (3.26)
The elastic-plastic matrix [Cep] can be expressed as:
[c®P] = [c®] - [cPy
[c®T to'y 25y [c®y
= [c®7] - — : - (3.27)

It is also shown [67] that:
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oF o % H (3.28)

The elasticity matrix [Ce] for plane stress case takes

the form:
H v 0
[c®] = —-§~;— 1 0 . (3.29)
T - v
'sym. 1 év
Thus
, 3
011 T Voo,
T
e oF _ 3E 1 1
[CT] {80} = 25 (1 -9 Jvoqy t 05,0 . (3.30)
(1 - v) 910
and

;
[c®1 125y 125y e

(o7 * Vo) (o] +vog,)(voyy + 0h,) (1 - vlogylogy + voy,)

i 9
162 (1 - v?)?

. 2 3 t 1
(vojq + 05,) (1 - v)og,lvogy +05,)

2 12
(1 -v)c]2

(3.31)




Let

S, = (cly + vol,)
1 (1 - v2) 11 22

' E

S, = (v o7y + at,)
2 ('I - \)2) -1] 22

E

S, = o,

3 1 + v 12

e 2
S1 3152
T
e, (oF 9F e = 2
[C7] (557 {55+ [c7] e s
sym
and
BFT e 3F 9
{—8-’5} [c™] {5—07 = ;;7—2— [G-”S] + 0'2252 + 20

Substituting equations (3.29), (3.33) and (3.34) into

equation (3.27), it can be derived that:

rq2
1
1 v 0 0
[cEPT = _E 1 0 -
]“‘\)2 ']_\)
sym. 5
L sym.

2531

(3.32)
5,S
5,9 (3.33)
2
$3 |
(3.34)
5150 3933
S0 30
5, 555,
h fo
53
S0 |

(3. 35)
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with

—i-ZI X t 1 1
SO =g o® H' + (S1 017 * S, 05p * ?S ) (3.36)

in which S], 52 and 53 were defined in equation (3.32).

3.4 Material Constitutive Relation

In the present analysis, experimentally determined
elastic-plastic constitutive relations of o and ¢ are
approximated by a generalized family of continuous functions

[71, 737:

Qi
il

(3.37)

1

in which E = T ) and

. 3
E' = 3 - (= 2vE,
E

Ero= Lim

-0

where

5

Oy is auxiliary stress close to the elastic-plastic
transition (as shown in Fig. 3.3) and
n is a factor which determines the abruptness of

the transition.
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Fig. 3.3 Polynomial Approximation of Stress-Strain
Relations.
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The value H', which was defined in equation (3.13) as

He = 49
dep

may be approximated by

1

HY = —1
3:P/30

ile

ilo

(3.38)

From equation (3.37), Et can be calculated by the following

relation:

n+]
E<1 + Ee El
i (1-2) &, + B¢ E
E :g_g_.= E )
t de . nwﬂ%l
1 + Ee
3 ==l [
¢ - —) g, + E'e
1 e K

(3.39)



CHAPTER 4

NUMERICAL MODELLING OF STABLE CRACK GROWTH

4.1 Introduction

Stable crack growth preceding fracture instability
in ductile materials may occur when the plastic zone size
at the crack tip is large as compared to the thickness of
the material. The problem is of particular theoretical
interest since the plastic zone behind the extending crack
tip is unloaded to an elastic state, while that portion of
the plastic zone ahead of the crack tip expands. The
variation of the crack tip parameters during this crack
extension process yields useful information which may lead
to a fracture criterion in the presence of large scale

yielding.

In order to accomplish this, proper implementation

of the fracture criterion and the crack growth simulation

algorithm is necessary. This chapter describes the proposed

numerical technique that simulates stable crack growth 1in

the finite element model.
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4.2 Fracture Criterion

The continuum equations governing the stress-strain
field near a growing crack tip may not be expected to
account for the microstructural phenomenon of separation
inherent in the fracture process. The same is true in the
finite element modelling of a growing crack tip, but for
this analysis the difficulty is usually obviated through
the use of a fracture criterion based on some macroscopic
field quantity. Extensive research to this point has
identified nine possible requirements [57] which must be
fulfilled by a candidate fracture criterion. However, an

acceptable fracture criterion still remains open to discussion.

Schaeffer et al [74], Gavigan et al [75] and Evans
et al [76] attempted to measure the strain field around the
crack tip. Their results indicated that the strains at a
small distance away from the crack tip are independent of
geometry and, to a lesser extent, of material. As a
consequence of this it is postulated that a rupture surface
exists as an extension of the von Mises yield surface [771.
Fracture is assumed to occur when the state of strain at
the crack tip has reached the rupture surface; the
corresponding value of the effective strain is used as a

fracture criterion. This value is calculated by numerically



modelling a stable crack growth experiment. The effective
strain corresponding to the maximum applied load with no
crack extension is designated as the effective rupture
strain, ¢

rup.’

4.3 The 'Breakable Element'

The 'breakable element' concept is based on the
successive reduction of the stiffness matrix of the crack
tip element during the simulated crack growth. One stiffness
reduction scheme that has been used in the past to treat
crack propagation in concrete structures [78] consisted of
setting Young's modulus to zero. Another procedure [79] used
a zero Young's modulus for the crack tip element to achieve

the singularity present in elastic crack analysis.

In 1976, Hsu and Bertels [47] proposed the stiffness
reduction scheme to model crack growth, referred to as the
‘breakable element'. However, in their case study breakable
elements were skipped during crack growth. After a similar
attempt to model crack growth by a simple reduction of the
stiffness matrix [80], the author found that the computational
accuracy can be further improved by creating a pseudo nodal
point in the breakable element used in the stiffness

reduction scheme. This pseudo nodal point moves through the
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breakable element as the crack tip extends, producing

smoother crack growth.

In this analysis breakable elements are positioned
along the expected crack path. (Fig. 4.1(a)). The
following steps are then employed to simulate crack growth

in the finite element model at any given load step.

Step 1: Upon completion of the stress analysis at any
load step, the effective strains in the breakable elements
are extrapolated as a smooth curve toward the crack tip
using a least squares curve fitting technique [81]. The
best numerical results were obtained by extrapolating the
average efféctive strains at the centroids of the first
four elements immediately in front of the crack tip. The
distribution of the effective strain ahead of the crack tip
can be expressed as:

X + a

g(x) = a]x3 + a2x2 + a (4.1)

3 4

where x denotes the distance from the crack tip along the
crack path and

a1585535 and a, are constants derived from the least squares
analysis of the average strains at the element

centroids (x], Xos Xg5 x4).
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If the extrapolated strain at the crack tip, ¢ (e(0.0)),

ext.

does not exceed the assigned fracture criterion, Erup s

then the stress analysis proceeds with the app]icatibﬁ'ofA‘”

the next load increment.

Step 2: If Eext. exceeds Erup.,the crack growth process
begins. Fig. 4.1(b) illustrates schematically the start of
crack growth at load step i. The strains in the propoertional
length Ax of the breakable element adjacent to the crack tip
(crack tip element) are estimated to have exceeded grup.' o
Thus the portion Ax of the element is deemed to have
fractured and become incapable of carrying any load. The
amount of crack extension, Ax, is evaluated by solving for

the value of x in equation (4.1) at which e(x) = érup .

Step 3: For the next lToad step i+1, the [K]e matrix of

the crack tip element is evaluated with a proportionately

reduced volume. The original nodal points at the crack tip

are shifted by the amount Ax to the positions of the

pseudo nodal points, which specify the current location of
the crack tip. This nodal point shift changes the [B]
matrix, which in turn reduces the [K]e matrix in equation

(3.4) as:

(c1® = [ re1T el fe01 av: (4.2)
v
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where [K']e is the reduced [K]e matrix,
[B'] is the [B] matrix after the nodal point shift and

v' is the reduced volume of the crack tip element.

Obviously the nodal point shift in the [B] matrix results

in larger strain and stress increments in equations (3.2)

and (3.3) respectively.

At this load step an additional portion, Ax', may be
found to exceed Erup . This is dealt with similarly as
outlined in step 2.

Step 4: The shifting to the new pseudo nodal points at

each Toad step continues so long as gext. exceeds érup.'

When the aspect ratio of the remaining ligament of the crack
tip element reaches a critical value, the pseudo nodal points
are considered to have reached the next nodal points, thereby
maintaining numerical stability. In this manner, the whole
element is gradually broken and simultaneously its stiffness

progressively reduced to and then maintained as a zero

stiffness element.

4.4 Nodal Force Relaxation

Once the crack front has passed through a crack tip

element, a nodal force relaxation procedure is implemented



in order to redistribute the stress field previously
supported by the crack tip element before the element
breaks. The following algorithm was developed for this

purpose.

Step 1: The nodal reaction force of the 'broken' crack
tip element (say element No. 1 in Fig. 4.2) is calculated

from the accumulated stress before the element breaks:

(F) =j 817 (o} dv . (4.3)
)

Step 2: Since relaxation occurs in the direction normal
to the crack growth path, only the loading direction
components of the reaction forces at nodes 18 and 19 as
illustrated in Fig. 4.2 are applied over five+ equal
incremental loading steps. A stress analysis on the whole
structure is performed with these nodal reaction forces,
while the external load remains constant. The increments
of displacements and stresses so derived are added to the

accumulated displacements and stresses of the structure.

*1t was found that increasing the number of loading
steps beyond five provided only a minimal improvement
in the results for a significant increase in the
computational expense.
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Step 3: The amount of crack extension due to the nodal
force relaxation is determined after the fifth relaxation
step using the extrapolation scheme outlined inthe previous
section. If the extended crack tip exceeds the next nodal
point (i.e. node 3 in Fig. 4.2), continuous nodal force
relaxation of the subsequent element (i.e. element No. 2

in Fig. 4.2) must also be carried out. Otherwise, a further
load increment is necessary in order to increase the strain

distribution ahead of the crack tip.

In step 2, the stress analysis for the entire structure
requires routines which change the element stiffness according
to the incremental theory of plasticity, since the relaxation
technidue results in simultaneously unloading of the newly
created crack surface behind and loading of the region ahead
of the crack tip. Thus the [K]e matrix is calculated using
the [Ce] and [C®P] matrices for the unloading and loading

elements respectively.

The determination of element loading or unloading 1is
done iteratively using a trial application of Step 2.
Initially all elements are assumed to continue Toading.
Equation (3.6) is solved and the incremental stresses due to
the trial load step are added in the usual manner. For each

element the effective stress (52) for the trial Toad step is
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compared with the effective stress (5]) prior to the application
of the trial step. The loading and unloading elements are
determined for 52 > 81 and 82 < 5] respectively (Fig. 4.3).

The stress state prior to the trial step is then re-

established and the crack is extended as outlined above

with the loading and unloading elements now identified.

4.5 Computer Code 'TEPSCA'

A finite element computer code TEPSA [71] (Thermal
Elasto-Plastic Stress Analysis), has been employed in this
investigation for the numerical modelling of stable crack
growth. The TEPSA code was originally developed to model
the thermomechanical behavior of CANDU nuclear fuel elements
(axisymmetric analysis), and features linear di%p]acement
triangular and quadrilateral simplex elements. A plane stress
version following the formulations in Chapter 3 was implemented
and verified by the author wifh a number of case studies.

In general the numerical results from the TEPSA plane stress
version were in excellent agreement with both analytical
solutions and results from other computér codes. The crack
growth modelling scheme as described in this chapter was

subsequently implemented to form a new version, TEPSCA.



4.3 Determination of Loading or Unloading in an Element.
(a) Loading (b) Unloading
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CHAPTER 5
EXPERIMENTAL TESTING PROGRAM

5.1 Introduction

This chapter describes the experimental testing program,
the objective of which was to obtain the applied stress vs
stable crack growth curves for center-cracked aluminum sheets
subjected to a monotonically increasing load. The
experiments were conducted under both mode I and mixed mode
loading conditions. In addition to observing the crack
growth behavior, strains were measured at various locations

on the specimens over the course of the tests.

5.2 Experimental Program

5.2.1 Test Specimens

The specimens were machined from 0.064 in. (1.6 mm )
thick 2024-T3 alclad aluminum sheet. This ductile alloy
exhibits very little anisotropy in sheet form. The nominal
chemical composition and mechanical properties are given

respectively in Tables 5.7 and 5.2.

Two types of specimens were employed, namely those

for the mode I and mixed mode (45° inclined crack)
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Table 5.1

Chemical Composition of 2024-T3 Alctad ATuminum Alloy

Cu 4.5%

Mg 1.5%

Mn 0.6%
Table 5.2

Mechanical Properties of 2024-T3 Alclad Aluminum Alloy

Yield Strength 45 ksi (312 MPa)
Ultimate Tensile Strength 65 ksi (450 MPa)

% Elongation 18%

6

Modulus of Elasticity 10.6x10% psi (7.3x10%

MPa)
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specimens. Details of the shape and dimensions of each
specimen are presented in Fig. 5.1. The specimens were
oriented such that the rolling direction was aligned
parallel to the loading direction. As well, they were
prepared in batches to minimize the effects of the
preparation procedure of individual specimens on the

experimental results.

A 1/4 in. (6.35 mm) diameter hole was drilled through
the center of each specimen. From the hole, two symmetric
cuts, each 0.012 in. (0.305 mm) wide and up to 5.4 1in.
(13.72 cm) long were made. In an attempt to simulate more
éccurate]y a crack in the specimen, the end of each saw cut
was then lengthened and tapered using a flat sharp
jeweller's file, leaving the overall length of each cut
at 6 in. (15.24 cm). It has been demonstrated that there
is Tittle difference in the fracture reistances of a
fatigue crack tip and that of a 0.001 in. (0.0254mm) radius
crack tip [14]. Accordingly, a razor blade was subsequently
used to produce a 0.001 in. (0.0254 mm) radius at the tip

of the simulated crack.

5.2.2 Test Equipment

ATl of the tests were carried out in the Metallurgical

Science Laboratory of the Department of Mechanical Engineering,

66



b— 30.48 cm— - —30.48cm —,

| )
! |
! l"\\ ROLLING /"\i !
DIRECTION
| |
fe—lS.Z‘&cm-u‘
e s~ —| 9|44 M 91.44 cm
‘I
|
|
|
|
|
(a) (b)
FIGURE 5.1
SHAPE AND DIMENSIONS OF SPECIMENS
{a) MODE | (b) MIXED MODE (45° INCLINED)

L9



68

The University of Manitoba, using an Instron servohydraulic
material testing system (Model 1332). This apparatus is
capable of applying axial loads to a static rating of

+ 55 kips (244.64 KN) and a fatigue rating of + 27.5 kips
(122.32 KN), under load control, strain control or stroke
control, in a variety of waveforms at frequencies up to

1,000 Hz.

tach end of the specimen was clamped in a jointed
grip, which was fabricated according to the ASTM R-curve
recommendations [82] and reference [83]. 1In order to
maintain loading symmetry, each grip consisted of two stiff
Jjaws joined to a fork-like mounting bolt at the machine end.
Each end of the specimen was fixed in the grips by using
24 bolts tightened to 100 ft-1bs of torque, ensuring

adequate grip/specimen clamping.

Buckling of the central portion of the specimen had
been observed during preliminary testing. To avoid this
problem, rigid face plates were affixed adjacent to the
central portion of the specimen. Lubrication was also
provided between the face plates and the specimen. The
initial clamping force between opposing face plates was

only a few pounds, insufficient to alter the test results

significantly.
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Fig. 5.2 Experimental System.
(a) Instron Fatigue Testing System.




Experimental System.

Fig. 5.2

Clamping System.

(b)
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-A set-up of the testing machine loaded with a

speﬁimen is presented in Fig. 5.2(a). A closer view of

the clamping system is shown in Fig. 5.2(b).

5.2.3 Test Procedure

The tests were performed under Toad controlled conditions,
with the load increasing monotonically from zero until the
fracture of the specimen. A series of crack Tength measure-
ments were takeh over the course of each test. The machine
was halted at various load lTevels and the crack length was
measured using an X-Y vernier microscope with a magnification
of 30x. Measurements were taken only after sufficient time
had elapsed for the crack to stabilize. Although most
cracks stabilized within seconds of halting at a particular
lToad, near the instability condition several minutes were

allowed for the position of the crack tip to stabilize.

A constant cross-head speed was maintained throughout
all the tests, while the Toad-displacement curve was recorded

on a Riken Denshi X-Y plotter (Model D-72 BP).

Strain values were obtained from electrical resistance
strain gauges attached at eight locations to the specimen
(Fig. 5.3) for both a mode I and a mixed mode test run.

The strain gauges used were precision strain gauges of type
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- CEA-13-250UW-350, manufactured by Micro-Measurements (M-M).

- They were 0.25 in. (6.35 mm) long, with a strain 1imit of

5%.

5.3 Experimental Results

5.3.1 Crack Developments

As it was difficult to photograph the crack profile
through the microscope during the test, plastic tape was
used to replicate the crack path using the following

procedure.

A small amount of acetone was first used to soften
the tape before it was attached to the specimen surface.
The tape was removed when dry, carrying with it a replica
of the crack path. To improve the reflection and contrast
of the replica, powdered chromium was sprayed onto the tape
surface. A photograph of this tape was then taken through

a microscope.

Fig. 5.4(a) is a photograph showing a replica of the
crack profile while Fig. 5.4(b) presents a closer view of

the bent crack region for a mixed mode specimen.

Fig. 5.5 shows a photograph of a section from a
fractured mode I specimen. As expected, the crack path

was perpendicular to the loading plane. It was also
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(b)

Fig. 5.4 Replica of the Crack Profile for the Mixed Mode Specimen.
“(a) Overall view (b) Bent region




Fig. 5.5 Fractured Mode I Specimen After the Test.
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observed that the crack surface through the thickness was
at a 45° angle to the plane of the specimen, a typical
fracture mode of thin sheet. A definite explanation for
the 45° slant fracture has not been found, but it obviously
is associated with the maximum shear stresses occurring at
the 45° angle in the strip necking zone. This mechanism
produces a three-dimensional plasticity effect ahead of the

crack tip.

Fig. 5.6 is a photograph of a section from a fractured
mixed mode specimen. In this specimen, the through-the-
thickness slanted fracture surface produced different crack
initiation angles for the front and back surfaces. However,
after a short distance of oblique crack propagation, the
crack path quickly changed to the crack path for a mode I

specimen, i.e. perpendicular to the loading plane.

5.3.2 Applied Load vs Stable Crack Growth

A series of curves of the monotonically increasing
Toad plotted against stable crack growth length are presented
in Fig. 5.7. Crack length {n this figure was measured in a
direction perpendicular to the loading direction. For the
mode I specimen, crack initiation occurred at a stress level

of 13.8 ksi (95.2 MPa). After approximately 0.18 - 0.21 in.

(4.57 - 5.33 mm) of stable crack growth had taken place,
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Fractured Mixed Mode Specimen after the Test.

5.6

Fig.

Front Surface (b) Back Surface
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" unstable crack propagation began at a stress level of 21.5
ksi (148.2 MPa). 1In the mixed mode specimen, crack
initiation was observed at a higher stress level of about
20.8 ksi (143.4 MPa). Prior to unstable crack propagation
at 28.0 ksi (193.1 MPa), approximately 0.25 - 0.28 in.
(6.35 - 7.11 mm) of stable crack growth had been observed.

These results show that ductile materials exhibit a
significant amount of stable crack growth prior to unstable
crack propagation. The amount of stable crack growth in
the mixed mode case was far larger than that in the mode I

case.

5.3.3 Variation of Strain Distribution

A plot of the normal strain, Eyy’ for the mode I

specimen under an increasing stress is shown in Fig. 5.8

(for the Tocations of the strain gauges, refer to Fig. 5.3).

Three pairs of strain gauges, No's 1 & 3, 4 & 6 and 7 & 8
were each mounted at the same vertical location on either
side of the vertical centre line of the specimen to check
the loading symmetry. The symmetric loading condition was
well maintained as is evident from Fig. 5.8. In addition,

the following items were observed for the mode I specimen.

(1) The normal strain increments from all of the strain

gauges were linear with respect to the applied stress prior
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to crack initiation.

(2)_ Strain gauges No's 2 and 5, lTocated along the vertical

centre line of the specimen, displayed a decrease in the L
strain increments after crack initiation, while the remaining o
gauges showed an increase. This can be attributed to the

fact that in the region near the growing crack the remaiﬁing

specimen ligament carries more load, an effect that spreads

to regions farther from the growth area. Thus the specimen

carries more load near its edges than along the centre line,

and consequently the strains at strain gauges No's 2 and 5

--were always lower than those at the other gauges for any

given 1load.

(3) Strain gauges No's 7 and 8 located closest to the
crack tip on each side of the symmetry line, showed the
greatest strain increments with the approach of the crack

tip.

The variation of Eyy for the mixed mode specimen is

plotted in Fig. 5.9. Items (1) and (2) documented for the jff;ff
mode I specimen were also observed in this case. In addition,

the followings were observed for the mixed mode specimen.

(1) Strain gauges No's 1, 4 and 7, located on the left side

of the specimen, showed higher strains than their counterparts
on the right. This was a consequence of the highly stressed

crack tip being positioned much closer to the strain gauges
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on the Teft side than those on the right side.

(2) As the crack propagated, the strain values at strain
gauge No. 8 surpassed those at strain gauge No. 7, since the

latter was within the region of load redistribution.
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CHAPTER 6

FINITE ELEMENT ANALYSIS OF MODE I FRACTURE

6.1 Introduction-

The TEPSCA finite element computer code with the
numerical modelling technique described in Chapter 4 was
used in a mode I type crack case study of 2024-T3 aluminum
sheet. The numerical predictions of stable crack growth are
compared with those previously obtained experimentally.
Variations of the strains and stresses obtained during the
numerical simulation of stable crack growth are presented,
and crack tip parameters such as the crack opening dis-
placement, crack opening angle, crack tip opening angle and
nodal reaction force are discussed. The chapter ends with a

discussion of the development of the plastic zone size.

6.2 Finite Element Modelling of the Mode I Specimen

As mentioned previously, there is a stress/strain
singularity at the crack tip. However, in this analysis
singular crack tip elements have not been used, since the
finite element modelling of crack growth would require a
complicated algorithm to migrate the singular element to the

tip of the extended crack.




In modelling the crack tip using non-singular type
elements, it is essential to incorporate a large number of
degrees of freedom. With this in mind and in view of the
computational costs involved, a mesh size varying gradually
from very fine at the crack tip to coarse away from the

crack tip was chosen for the finite element discretization.

A finite element model of the mode I specimen is shown
in Fig. 6.1(a), with the details of the refined mesh
surrounding the crack tip given in Fig. 6.1(b). Due to
symmetric boundary conditions, only the first quadrant of
the specimen was analyzed. A total of 358 elements were
used together with 269 nodes representing 496 degrees of
freedom. In order to minimize the possible discretization
effects on crack growth, elements of relatively small size
were distributed uniformly in the vicinity of the crack tip.
A layer of identical quadrilateral elements representing
the breakable elements was placed along the projected crack
path. The length of each breakable element was 0.02 in.
(0.508 mm), that 1is T%ﬁ a - This fine mesh was capable of
producing an elastic stress concentration factor (the ratio

of the normal stress, o to the applied stress, o) of

yy’®
19.94 at the crack tip element, thus approaching the

theoretical singularity.
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_Fig. 6.1 Finite Element Model: Mode I.
(b) Crack Tip Region.

L8



In addition to the material properties listed in
Table 5.2, the following material properties were also

= 45 ksi (310.3 MPa), E'

used in the computations: Oy

206 ksi (3.55 GPa) and n = 10.

6.3 Computation of the Fracture Criterion

In order to investigate numerically stable crack growth
in ductile materials under increasing loads, a fracture
criterion must first be established. The effective rupture

strain, » was the fracture criterion used in this

grup.
investigation, and was determined by the strain extrapolation
technique previously described in section 4.3. The elastic-
plastic stress analysis outlined in section 3.2 was performed
until the onset of stable crack growth for the mode I

specimen, occurring at the experimentally determined applied

stress of 13.8 ksi.

Since the incremental stiffness theory was used
throughout the elastic-plastic stress analysis, small Tload
increments were required in order to follow sufficiently
closely the stress-strain curve of the material. A total
of 55 loading steps ranging from 0.1 - 0.3 ksi (0.69 - 2.07
MPa) were used to reach the point of crack initiation. An

Erup value of 11.5% was obtained from the cubic strain
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extrapolation scheme using the first four breakable elements.

The effect of the finite element mesh size on Erup

value was further tested for two more breakable element sizes

l_d

1
(Tﬁﬁ-a and

o 3 ao). As shown in Fig. 6.2, the numerical

- D

study with 00 2o resulted in €rup. = 11.3% while the case with

1 - _ o . . -
300 %o produced Erup.“]]ﬁé' These results indicate that erup.
based on the strain extrapolation scheme is relatively
insensitive to a range of crack tip element sizes, provided
that the mesh is reasonably fine to accommodate the strain

concentration at the crack tip.

6.4 Prediction of Stable Crack Growth

A simulation of stable crack growth was performed by

using a value of 11.5% for ¢ in the previously described

rup.
breakable element concept and nodal force relaxation
algorithm. Again, small Toad increments were utilized in
order to follow the stress-strain curve, a total of 70

Toading steps being used from the point of crack initiation

until unstable crack growth.

Fig. 6.3 shows the close agreement between the numerical
and experimental results. The sloped part of the dotted line
indicates crack growth due only to load increments. The

slope decreasing (with increasing crack growth) is explicable
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from a physical point of view, since the same load increment
should cause a larger crack extension as the width of the
remaining ligament decreases.  The Tlength of the horizontal
portion of the dotted line, indicating the amount of crack
growth due to the nodal force relaxation, also increased
consistently. As can be seen from this figure, the first
nine elements were broken through stable crack growth.
Numerical instability was observed at the next load increment
of 21.6 ksi (148.9 MPa) at which point unstable crack growth

occurred.

It was observed that the applied stress at-the onset
of unstable fracture was about 56.5% higher than the applied
stress at crack initiation. In addition, the total amount
of stable crack growth prior to unstable fracture was about
7% of the original crack length. These factors indicate
the margin of safety for ductile fracture after crack
initiation.

The numerical sensitivity of crack growth to a change
in the rupture strain was tested. The applied stress vs

stable crack growth curves for two £ values (11% and 12%)

rup.
are shown in Fig. 6.4. Crack initiation occurred at 13.5
ksi (93.1 MPa) and instability was observed at 21.0 ksi

(144.8 MPa) for 11% rupture strain, with corresponding
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values of 14.4 ksi (99.3 MPa) and 21.9 ksi (151.0 MPa) for
12% rupture strain. Thus, these two case studies predicted
stress levels for crack initiation and instability within

+ 3% of those predicted using 11.5% as the rupture strain.

As described in the experimental results, the fracture
mode for the so-called 'plane stress' structure is in fact
a 45° through the thickness slant-type fracture, and is thus
a complicated three-dimensional problem. However, as
demonstrated above, the current algorithm with the simplying
two-dimensional assumption can simulate stable crack growth
and closely reproduce the applied stress vs stable crack
growth curve. The generally good agreement obtained between
the numerical and experimental results provides confirmation
that the numerical techniques used in this analysis give
realistic estimates of the elastic-plastic stress-strain
fields occurring in the test specimens. These reasonable
results were generated despite the fact that the stress-
strain fields in the imhediate vicinity of the crack tip
were not very accurate, since the small strain assumptions
meant that the large deformation producing crack tip blunting

could not be modelled exactly.
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6.5 Variation of the Strainand Stress Distributions

6.5.1 Strain Distribution

Fig. 6.5 illustrates the variation of the loading
direction strain component, €yy’ at the eight locations
where strain gauges were mounted on the mode I specimen.

The figure shows that the numerical results are in geheral
well correlated with the experimental measurements. Some
discrepancies are to be noted with increased crack growth,
especially at strain gauge No's 7 and 8. This is attributed
to the fact that experimentally the crack path was not

exactly perpendicular to the loading plane, which was

assumed in the finite element analysis. In addition, there
was a slight difference between the numerically and
experimentally obtained crack lengths. The maximum difference
between the experimental and numerical results is + 0.5%

before crack initiation and + 2% after crack initiation.

In this analysis the amount of crack growth is determined
by the distribution of the effective strain, £, ahead of the
crack tip. Fig. 6.6 shows the e distribution in the break-
able elements ahgad of the crack tip for the mode I specimen
immediately before and after the nodal force relaxation of

each breakable element. The crack tip element attained an
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e value of approximately 12.5% before the nodal force
relaxation. The marked points in this figure were used

for the strain extrapo]ation.  Looking at fixed points,

the redistribution of the accumulated stress from the

broken element increases the strain distribution at each
position ahead of the crack tip. However, using the moving
crack tip as the reference position after each nodal force
relaxation, there is a reduced strain value at Tocations
measured relative to the crack tip. This is a characteristic
of stable crack growth [18]. Thus, in order to reach the

fracture criterion, ¢ additional load increments are

rup.’
required to increase the & distribution ahead of the crack
tip.

Since the € value at the crack tip element continuously
increases immediately following each nodal force relaxation,
it is evident that a progressively smaller load increment
is required for subsequent crack growth. Eventually, after
the nodal force relaxation of the ninth element, the strain
distribution ahead of the crack tip is sufficient to promote
further crack propagétion without any further load increment.

This implies that the instability condition has been reached.

From the numerical results, it was also noticed that

the element strain value in the crack 1ine direction, gxx’
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was much smaller than that in the thickness direction, €, -

The €, value results in necking and may be the main source

for the 45° slant-type fracture,

6.5.2 Stress Distribution

Fig. 6.7 shows the distribution of the effective stress,
o, in the breakable elements ahead of the crack tip for the
mode I specimen immediately before and after the nodal force
relaxation of each breakable element. This figure illustrates
that the o distribution ahead of the growing crack tip is
invariant with the position of the crack. As might be
inferred from the = distribution, the o distribution at
locations measured relative to the moving crack tip drops
immediately after the nodal force relaxation. However,
comparing the € distributions immediately after each nodal
force relaxation, they increased consistenly as succeeding
elements were broken. Finally the state was reached where
the o distribution immediately following the ninth nodal
force relaxation was in fact greater than just before
the first nodal force relaxation. This again corresponded

to the instability condition.

The stress histories for the three selected elements

A, B and C shown in Fig. 6.1 are presented in Fig's 6.8



Fig.

* Number Denotes Droken Elements

————— BEFORE RELAXATION
AFTER RELAXATION

—
ol —_—
o

—_—
—
—
e
e ey
Ny
=

v
—
—
g ey

—_—

6.

7

0.02 0.04 0.06 0.08 0.10 0.12 0.14
DISTANCE FROM INITIAL CRACK LOCATION {(d/a,)

Effective Stress Distribution Ahead of the Crack Tip: Mode I.

001



101

through 6.10. As can be seen in these figures, the loading

direction stress component, o increases and becomes the

yy?
dominating component for all three elements as the crack tip
approaches. This stress value is reduced drastically during
the nodal force relaxation, and approaches zero some time
after the crack tip has passed. This certainly indicates a
correct simulation of the crack growth process, since the
traction-free boundary condition imposed on the open crack
face requires that the ny value be zero (assuming negligible

deviation of the stress calculation points from the crack

surface).

The specimen width direction stress component, Ty ?
for an element ahead of the crack tip is initially tensile
and approximately one-half of the ny value, becomes
compressive during nodal force relaxations. This indicates
that for stable crack growth there are high compressive
stresses along the newly created crack surface in the crack

Tine direction, representing a residual compressive stress

in a plastically deformed wake region.

The shear stress component, ¢ initially a small

Xy’
positive value, becomes slightly negative as the crack tip

approaches, and vanishes after the crack tip has passed.
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A similar variation in therXX, Oyy and ny
distributions has been reported by de Koning et al [50] for
the plane stress case. This description of the stress
history at particular locations on the specimen reinforces
the previously made point that the elements surrounding the

growing crack tip experience essentially the same stress

field as those surrounding the stationary crack.

6.6 Variation of Crack Tip Parameters

Fig. 6.11 shows four stages of the crack face profile
of the mode I specimen: in the elastic regime, at the
onset of crack growth, and before and after the nodal force
relaxation of the first breakable element. This figure
illustrates the consequences of the strain singularities
associated with the crack face profiles under monotonically
increasing loads. The elastic crack face has a sharp

profile, indicating the r /2

strain singularity which
dominates at the crack tip, while the plastic strain
singularity during crack growth results in a more blunted

profile.

The crack face profiles of the mode I specimen at
various stages of crack growth are presented in Fig. 6.12.

As shown in this figure, the crack face profile becomes
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sharper after crack initiation, suggesting the possibility
of a change in the order and nature of the strain singularities
at the tip of an extending crack. During stable crack growth,

the crack face maintains the same profile.

Several crack tip parameters such as the crack opening
displacement (COD), crack opening angle (COA) and crack tip
opening angle (CTOA) have been evaluated from the numerical

results.

Fig. 6.13 shows the variation of the COD, 60, which
is defined as an opening displacement at the location of the
original crack tip. As shown in this figure, the COD value

increases linearly as the crack extends.

Fig. 6.14 presents the variations of the COA and the
CTOA at various stages of crack growth. The value of the

COA, Gy o is defined as

where 601 denotes the opening displacement at crack
initiation and

Aa is the amount of crack extension.

The value of the CTOA, « is defined as the angle formed

/Q;’
between the opposing crack faces at the extending crack tip.
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Fig. 6.14 shows that the CTOA becomes constant after a
certain amount of crack growth, while the COA decreases
consistently. The high CTOA value at crack initiation may
be attributed to the crack blunting.phenomenon of ductile
materials. As pointed out by Andersson [46], crack
initiation may be governed by the COA value, and the
subsequent crack growth controlled by the constancy of the
CTOA. This constancy of the CTOA has been observed
previously in plane stress analysis by de Koning [50].
Sorensen's study [59] of a plane strain analysis, however,

indicated that the CTOA is strain-hardening dependent.

Fig. 6.15 presents the variation of the nodal reaction
force, F, which was used to redistribute the accumulated
stress of a broken element to the surrounding elements
during the relaxation steps. The F values are constant
within a few percent, similar to the results produced by

Kanninen et al [58].

6.7 Development of the Plastic Zone

In finite element computations, plasticity 1is defined
by the ratio of the effective stress to the yield strength
of the material. Areas in which this value exeeds unity are

denoted in Fig. 6.16 as the plastic zone for various stages
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of crack growth of the mode I specimen. This plastic zone
initially expands more rapidly in the crack Tine direction.
However, the maximum zone eventually is positioned at

approximately 45° to the crack line direction as the crack

extends.

As the crack extends under monotonically increasing
loads, the region of the plastic zone behind the crack
tip unloads to an elastic state, while that portion of the
zone ahead of the crack tip expands. This phenomenon results
- in the translation of the plastic zone ahead of the crack
tip while leaving a wake of permanently strained material
(that is, residual plastic deformation) behind the moving
crack tip. As the crack grows, the plastic zone spreads
over a continually larger area, finally reaching a state of

gross plasticity.

The wake of residual plasticity behind an extending
crack is directly related to the stress history, ductility
and strain hardening characteristics of the material. For
more ductile materials, it is likely that this wake zone will
be larger and the difference in applied load level between
crack initiation and instability greater. Thus it may be
pointed out that‘the stable crack growth behavior of a material
can be attributed directly to its ability to form a permanently

strained zone behind an extending crack.
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CHAPTER 7

FINITE ELEMENT ANALYSIS OF MIXED MODE FRACTURE

7.1 Introduction

The Griffith-Irwin theory described in Chapter 2 was
developed primarily for mode I fracture problems. However,
for engineering fracture problems of a practical nature,
the existing cracks quite often are situated at an angle
to the applied load, resulting in mixed mode+ fracture
conditions. As a consequence of this, mixed mode fracture
has recently received considerable attention from investigators

in the field of fracture mechanics.

To predict mixed mode crack growth it is necessary
to determine both a fracture criterion and the crack path.
Various methods may be used in an attempt to determine the
crack path. The crack path can be predicted by analyzing
local field quantities in the crack tip region such as stress,
strain and strain energy density. Alternatively the crack

rath may be predicted by analyzing the variation of the total

+Defined in this thesis as a combined effect of mode I
and mode II fracture



elastic energy of thé structure with respect to a small
extension of the crack. Originally these criteria were
proposed primarily to predict only the crack initiation
angle in the fracture of brittle materials. However, with
the aid of the finite element method, these techniques have
been extended beyond the initial crack tip region to predict

the total crack path.

This chapter begins by reviewing the various criteria
used for predicting the crack path in the fracture of
brittle materials. The feasibility of extending these
criteria to the fracture of ductile materials is discussed.
In addition, a new criterion, which is based on the effective
strain at the crack tip, is proposed. Stable crack growth
in a mixed mode fracture problem is subsequently analyzed
following the same procedure used in the previous mode I

case study.

7.2 Review of the Prediction of Crack Path in Brittle Material

7.2.1 Maximum Tangential Stress Criterion

Erdogan and Sih [84] have analyzed the crack extension
in a plate with a central crack of length 2a, inclined at an
angle B to the direction of the axially applied uniform stress

o (Fig. 7.1). The stress intensity factors K. and K for

I Il
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this mixed mode fracture problem are:

Ky = o/ma sin?g
(7.1)
KII = ovYma singcosg .

They had assumed that the crack would propagate in the

radial direction at which the tangential stress at the crack
tip (distributed with respect to local coordinate 8) is
maximum. That is the crack propagates in the direction at
which the stress component tending to open the crack tip

is a maximum. The angle of this direction, measured relative
to the initial crack line direction, is designated as 60

(see Fig. 7.1), where:

KI sineo + KII (3coseO - 1) =0 . (7.2)
By using equation (7.1), K; and KII can be eliminated from
equation (7.2) to give:

sing, + (3 cosg - 1) cotB =0 . (7.3)
Equation (7.3) is valid provided 8 is non-zero (8 = 0 gives

a trivial solution for equation (7.2)). There are two

solutions of %, for each given value of 8 (0 < B < w/2);
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one is a positive value which is valid when the applied
stress is compressive, and the other is negative, valid
when the applied stress is tensile. Since equation (7.3)
does not contain any elastic constants, this implies that
the initial angle of crack growth is independent of material
properties. It should be noted that equation (7.3) may also
be obtained by equating the shear stress to be zero, since
zero shear stress and maximum tangential stress necessarily

occur at the same angle.

The maximum tangential stress criterion was verified
experimentally by Williams and Ewing [85]. Maiti and Prasad
[86, 87] used the finite element method to determine the
crack path in a perspex sheet having either a central crack
or an edge crack. In Fig. 7.2(a) Q1 is the point within the
crack tip zone at which the tangential stress is a maximum.
QQ] therefore represents the direction of crack extension,
and this extension occurs when the maximum tangential stress
at Q] reaches a critical value. They predicted the crack
path QQ1QZQ3Q4 by tracing the locus of the point of maximum
tangential stress for the stress field that was present just
prior to the onset of crack growth. Excellent agreement with

an experimentally determined crack path was .observed.



This criterion is based on two basic hypotheses [88]:
1) the crack will spread in the radial direction along
which the strain energy density is a minimum, and
2) the onset of fracture is determined when a critical

value of the minimum strain energy density is reached.

Kipp and Sih [90] numerically employed the minimum

strain energy density criterion to determine the crack path

in a brittle material. In this case QQ1Q2Q3Q4.. in Fig. 7.2(a)

is the locus of the minimum strain energy density pre-
determined by the entire stress field existing just prior to
the onset of crack growth. Mau and Yang [91] deferminéd the
crack path by using a similar procedure to that of Kipp and
Sih. In addition, they applied a step-by-step analysis to
redistribute the stress field due to an infihitesima] crack

extension. At each step, the crack was considered to extend

in the direction of minimum strain energy density (QQ1Q2Q3Q4..

in Fig. 7.2(b)). There was negligible difference between

these two procedures, with both showing good agreement with
the experimentally determined crack path. Maiti and Prasad
[86] have reported that although the minimum strain energy

- density criterion is useful for predicfing the crack path for

an internal crack, it is unsuitable for an edge crack problem,
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7.2.2 Minimum Strain Energy Density Criterion

In numerous publications [88 - 90] Sih has advocated
the idea that the local strain energy density factor near
the crack tip, S, should be the governing quantity for the
fracture process. The strain energy density factor at the
crack tip can be calculated by substituting the Williams-
Irwin asymptotic stress field [2] into the standard formula

for the strain energy denéity of an elastic solid, giving:

= 2 2
S = agKy + 2a0,K Ky + a0k (7.4)
where
_ 1
a1 * Ten (1 + COS@)‘(K - cos8)
ayp = iﬁ%?(z coso - (k - 1)] (7.5)
355 = T%ﬁ{(K+ 1) (1 - cos®) + (1 + cos®) (3 coso -'1)]
u = shear modulus
kK = 3 -4v (plane strain)
-3 -y (plane stress)
1 V- P

Thus, S is a function of the angle 6 through the coefficients

255 and therefore gives a description of the local strain

energy density for any radial ray intersecting the crack tip.



7.2.3 Maximum Energy Release Rate Criterion

Hussain et al [92], and Palaniswamy and Knauss [93]
calculated the released strain energy assuming a small
extension of the crack at various angles to the initial
crack. In order to predict the direction of the crack
propagation, it is then hypothesized that:

1) the crack will propagate in the radial direction along
which the elastic energy release per unit crack
extenéion is a maximum, and

2) the onset of fracture is determined by some critical

value of the energy release rate.

This criterion leads to results identical with those
obtained by using the maximum tangential stress criterion,
since the direction in which the maximum tangential stress
occurs is also the direction causing the maximum energy
release rate. As well, the criterion depends on a global
energy change rather than the near-tip field values required

for the two previous criteria.

Hellen [94] applied this criterion in a step-by-step
procedure to study the problem of fatigue crack growth with
the aid of the finite element method. 1In this case
QQ1Q2Q3Q4.. in Fig. 7.2(b) is the Tocus of the maximum energy
release rate, computed by assuming small extensions of the

crack. The numerically predicted crack path shows good
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agreement with the experimental one.

7.3 Prediction of The Crack Path in Ductile Materials

As described in the previous section, various methods
for predicting the crack path in brittle materials under
mixed mode loading conditions have been proposed. In order
to predict the crack path in ductile materials, a minimum
effective strain criterion is proposed. This criterion is
based on two hypotheses, which are consistent with those of

the previously mentioned criteria:

(1) the crack will propagate in the radial direction along
which the effective strain obtains a minimum value, and
(2) the onset of fracture is determined when a critical

value of the minimum effective strain is reached.

Hypothesis (1) is justified by considering that the
crack will propagate in the direction of least distortion
energy (plastic work) [89], and that £ is proportional to this
distortion energy. Hypothesis (2) is equivalent to the
rupture strain concept used in the mode I fracture analysis
in Chapter 6. With these two hypotheses, € can be used to
predict not on]y‘the load at which crack growth occurs, but

also the direction of crack growth.
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The minimum strain energy density and maximum tangential
stress criteria were also considered for predicting the crack
path in ductile material. The strain energy density in the

elastic-plastic range was calculated as:
€
W = J 955 deij . (7.7)

although included elastic-plastic work, elastic strain energy
was a univalued function of the total work. The maximum

energy release rate criterion has, however, not been implemented
since it requires excessive computational costs to calculate

the released strain energy for every angle of a given small

crack extension.

Finite element investigations were performed to test
the various proposed theories. The mixed mode experimental
specimen, with a 45° inclined crack as described in Chapter
5, was modelled using the finite element mesh illustrated
in Fig. 7.3(a). The details of the refined mesh surrounding
the crack tip are given in Fig. 7.3(b). The radial lines
emanating from the crack tip are uniformly spaced at 10
degree intervals in the 6-coordinate. Since the methods
for determining the crack path require the distribution of
field values at equal distances from the crack tip, the
finite element mesh was completed by imposing concentric

circular lines around the crack tip. Conditions of line symmetry
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are non-existent in the mixed mode case, and accordingly
it was necessary to model the entire specimen.

Since the effect on the crack path of the stress re-
distribution due to crack growth ha; been found to be insignificant
[92], this uneconomical step-by-step procedure to readjust
the crack path was not adopted in this analysis. That is,
it was assumed the field conditions at the onset of crack
growth pre-determined the entire crack path through the

specimen.

Fig. 7.4 shows the variation of the effective strain
with respect to the angle 6 at a few selected radii from the
crack tip at the onset of crack growth. The crack path was
subsequently determined by tracing the locus of the minimum

value of each curve.

A similar procedure was performed using the previously
mentioned criteria. Crack paths were determined by tracing
the lToci of the maximum values of the tangential stress
distribution curves (Fig. 7.5); the zero values of the shear
stress distribution curves (Fig. 7.6); and the maximum
values of the work (performed on an element per unit volume)

distribution curves (Fig. 7.7).

Fig. 7.8 illustrates the numerically predicted crack

paths together with the experimentally determined paths
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(see Fig. 5.6). Two experimental curves ‘appear since the
crack paths on the front and back faces of the specimen were
different due to the fracture surface angling through the
specimen thickness. The numerically predicted

crack paths 1ie between the upper and lower bounds of the

experimental crack paths.

The maximum tangential stress criterion, equation (7.2),
yields a crack initiation angle of 60 = - 53°, while the
minimum strain energy density criterion, equation (7.4),
prédicts 60 = - 51°. Note that the negative sign implies that
the crack propagation is in a direction which is clockwise,
measured relative to the initial crack Tine directicn
(Fig. 7.1). These equations are strictly valid only for the
initiation angle of brittle fracture. However, the trend
that %)from the maximum tangential stress criterion is greater
than 80 from the minimum strain energy density criterion is
evident throughout the predicted crack path even for this
ductile fracture. The crack path determined by the minimum
effective strain criterion also provides an accurate

prediction of the crack path.

In summary, all of the above mentioned numerical methods
for predicting the crack path produced similar results.

However, the zero shear stress criterion is the simplest to
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employ. This method requires only the determination of the
angle of zero shear stress, whichMis a more accurate
interpolation procedure than that required to estimate the

peak positions of the other curves.

7.4 Prediction of Stable Crack Growth

Once the crack path was pre-determined, a finite
element analysis was performed to predict the stable crack
growth behavior of the mixed mode specimen. Breakable
elements were arranged along the pre-determined crack path,
as shown in Fig. 7.9. A rupture strain of 11.5%, which was
obtained from the mode I analysis, was adopted here as the

fracture criterion.

Fig. 7.10 presents the numerically computed applied
stress vs stable crack growth curve for the mixed mode
specimen, along with the experimentally obtained curve.
This figure shows that crack initiation occurred at an
applied stress of 20.6 ksi (142.0 MPa), far higher than the
stress of 13.8 ksi (95.2 MPa) observed from the mode I
analysis. This expected resu}t is due to the fact that the
component of the applied stre;s acting to open the crack
faces is only a.fraction of the total applied stress. Once
the crack growth had initiated, the mixed mode specimen

displayed a higher rate of crack growth with respect to the
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applied stress than did the mode I specimen. The reason
for this higher crack growth rate will be discussed in

the next section.

The first six breakable elements were broken by load
increments in conjunction with the nodal force relaxation.
However, the seventh element was broken solely as a
consequence of the nodal force relaxation of the sixth
element, that is without any further applied load increment.
Additional load increments subsequently broke the eighth
element, while the ninth element again was broken solely as
a consequence of the nodal force relaxation of the eighth
element. A chain reaction of crack extensionswas then
initiated when the crack growth due to the nodal force
relaxation exceeded the right-edge nodal point of each
subsequent breakable element, resulting in unstable crack
growth. Thus, at the instability load of 26.3 ksi (181.3

MPa) €axt, WAS always greater than €prup. *

Using Erup. value from the mode I analysis, the finite
element analysis for the mixed mode specimen predicted the
applied stress at crack initiation within 1% of the experimental
results and the applied stress at instability within 6%. ST

The applied stress at the onset of unstable fracture was

about 23% higher than that at the onset of stable crack
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growth, with the total amount of stable crack growth being
roughly 10% of the initial crack length. These results
imply that the mixed mode specimen has a slightly smaller
safety margin than the mode I specimen in terms of the
'"leak before break' concept. However, the mixed mode
specimen sustained much higher applied stress values and

exhibited longer stable crack growth.

7.5 Variation of Strain and Stress Distributions

7.5.1 Strain Distribution

Fig. 7.11 shows both the experimentally and numerically
obtained variations of strain at the eight strain gauge
lTocations on the mixed mode specimen (see Fig. 5.3). As
was observed with the mode I specimen, the two sets of
results correlate quite well. Strain gauges nos. 7 and 8
exhibited some discrepancies (less than 5%) mainly due to the
slight difference in the crack lengths used in the numerical

analysis and the experimental measurement.

Fig. 7.12 shows the effective strain distribution
ahead of the growing crack tip in the mixed mode specimen,
before and after the nodal force relaxation of each breakable
element. Because of the less severe strain concentration
at the crack tip, the mixed mode specimen displays a flatter

strain profile than the mode I specimen and also requires a
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higher applied stress Tlevel to reach the fracture criterion,
Erup. than does the mode I specimen. Because of these two
effects the second breakable element of the mixed mode
specimen attained a higher strain value prior to the fracture
of the first element than did the second breakable element

of the mode I specimen. Thus, a smaller load increment than
was necessary for the mode I specimen was required for the
second breakable element of the mixed mode specimen to reach
the fracture criterion. This would account for the higher
crack growth rate with respect to applied stress for the

mixed mode specimen following crack initiation than that

observed for the mode I specimen.

7.5.2 Stress Distribution

The effective stress distribution ahead of the growing
crack tip for the mixed mode case at various stages of
crack growth is presented in Fig. 7.13. As observed in the
mode I case, the effective stress distribution ahead of the
crack tip drops after application of the nodal force
relaxation. However, the magnitude of this drop is less than
that for the mode I case. This may be a further explanation
of the smaller margin of safety for the mixed mode case

following crack initiation.
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Figs. 7.14 through 7.16 present the stress histories
for the three selected elements A, B and C located at the
same positions on the specimen (relative to the crack tip)
as in the mode I case (Fig. 6.1(b)). These figures show
that the material adjacent to the crack path experiences a
similar stress history as that for the mode I case. The
ny stress component is the dominating stress component
ahead of the crack tip, and diminishes rapidly after the
crack tip has passed. This behavior indicates that the crack
growth simulation was executed properly for the mixed mode

analysis.

The Ty stress component is roughly one-half of ny
ahead of the crack tip, and becomes negative once the crack

tip passes.

The ny stress component also displays similar behaviour
to that observed for the mode I analysis. However, element A
displayed high shear stress after the crack tip had passed,

likely due to the geometrical influence of the dog-Tleg.

7.6 Variation of Crack Tip Parameters

The profiles of the crack face in the elastic regime,
at the onset of crack growth, and immediately before and

after the nodal force relaxation of the first breakable
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element are shown in Fig. 7.17. The profile of the crack
face in this figure is defined as the distance between the
upper and lower crack faces. This figure illustrates that
the mixed mode crack face has a more blunted profile than

has the mode I crack face.

Fig. 7.18 presents the profiles of the mixed mode
crack faces at various stages of crack growth. The slope
discontinuity of the crack face profiles at the initial
crack tip location arises due to the singularity associated
with the sudden change 1in crack growth direction at the
corner of the dog-leg. Although the initial crack face
exhibits a more blunted profile in the mixed mode case than
the mode I case, the subsequent crack growth produced profiles
in the extended crack portion which displayed a similar shape

for both cases.

The COD, COA and CTOA crack tip parameters are
evaluated according to the same definitions used in the

mode I analysis.

Fig. 7.19 presents the variation of the numerically
computed COD with crack extension for the mixed mode specimen.
This figure shows that the COD for the mixed mode specimen
increases consistently as the crack extends, attaining a
value s1ightly less than that for the mode I specimen.

Obviously. this is due to the less severe stress concentration
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at the mixed mode crack tip.

The variations of COA and CTOA with crack extension
are shown in Fig. 7.20. As observed in the mode I case,
the COA decreases consistently with crack growth. After a
small amount of crack extension (Aa/a0 = 0.025) the CTOA
Tevels off, and remains relatively constant at approximately
0.073 radians during the subsequent crack growth. This
value is roughly 10% lower than that observed in the mode I

situation.

The variation of the nodal reaction force, F, of the
crack tip element is shown in Fig. 7.21. This figure shows
that F attains a value of about 5.2 Newtons, the same as in

the mode I case.

From these observations on the various crack tip
parameters, the CTOA and F show promising signs for use as
fracture criteria. However, the F value appears to be more

independent of the type of fracture mode.

7.7 Development of the Plastic Zone

The boundary of the numerically computed plastic
zone at various étages of crack growth in the mixed mode

specimen is plotted in Fig. 7.22. As observed for the mode I
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case, the plastic zone boundary translates as the crack
extends, with the most prominent direction of development
occurring at 8 ~ 0°. Due to the influence of the inclined
crack configuration, the upper half of the plastic zone was

larger than the Tower half of the plastic zone.
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CHAPTER 8

- CONCLUSTONS AND RECOMMENDATIONS

8.1 Conclusions

An experimental and elastic-plastic finite element
investigation has been conducted to analyze stable crack
growth in a center-cracked specimen subjected to
monotonically increasing loads. An improved'breakab]e
element concept coupled with a nodal force relaxation
technique was used to simulate the crack growth process.
Although nine different requirements including geometry
and computer model independence have been identified, a
universally acceptable criterion for elastic-plastic
fracture remains open to discussion. The present investigation
has demonstrated that the effective strain value can be used
not only as a fracture criterion for the mode I case but

also as a direction criterion for the mixed mode case.

As shown in Figs. 6.3 and 7.10, the numerical and
experimental results were in good agreement for both the
mode I and mixed mode cases. Unstable fracture was deemed
to occur in this analysis when a chain reaction in the crack
extension process was initiated without further external
load increments. The finite element results also elucidated

the varying distributions of the stress and strain components
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as the crack extended. Crack tip parameters such as CTOA

and F were found to be fairly constant during crack growth.

The proposed technique has several advantages. It is
completely general, so that it can be used with different
types of elements for simulating the crack growth. By
incorporating the present algorithm into any finite element
program, a gradual advance of the crack within an element
may be achieved without having to re-arrange the grid of the
finite element model. The use of the strain extrapolation
scheme allows a relatively larger element size in the
vicinity of the crack tip. Finally the adoption of the
effective strain (a scalar quantity) as the fracture criterion

makes it suitable for all modes of fracture analysis.

8.2 Recommendations

Results from this study were encouraging. With this
experience in hand, the following reéommendations with regard

to further work in this area are in order.

(1) An in-depth study on the rupture strain value for a
variety of geometries would establish firmly the

validity of using grup as a fracture criterion.



Although quite complicated and expensive, it would
be most desirable to develop a three-dimensional
elastic-plastic stress analysis program, which would
permit more precise analysis of slant-type fracture

problems.

A more precise model for stable crack growth could

be achieved by refining both the strain extrapolation
scheme and the nodal force relaxation technique.
Further precision may be attained through the

implementation of an automatic load selection scheme.

A step-by-step analysis using the nodal grafting
technique [95] would determine the crack path

under varying loading conditions.

Finally, the implementation of creep analysis into
the current program would establish a computational
model for low-cycle fatigue in structures of complex

geometry subjected to general loading conditions.
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