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Abstract 

Big data on product sales are an emerging resource for supporting modular product design to meet diversified cus-
tomers’ requirements of product specification combinations. To better facilitate decision-making of modular product 
design, correlations among specifications and components originated from customers’ conscious and subconscious 
preferences can be investigated by using big data on product sales. This study proposes a framework and the associ-
ated methods for supporting modular product design decisions based on correlation analysis of product specifica-
tions and components using big sales data. The correlations of the product specifications are determined by analyz-
ing the collected product sales data. By building the relations between the product components and specifications, 
a matrix for measuring the correlation among product components is formed for component clustering. Six rules 
for supporting the decision making of modular product design are proposed based on the frequency analysis of the 
specification values per component cluster. A case study of electric vehicles illustrates the application of the proposed 
method.

Keywords  Modular product design, Customer preference, Product specifications, Correlation analysis, Big sales data, 
Electric vehicle

1  Introduction
Innovative product design is essential for global competi-
tion among manufacturers because the lifecycle perfor-
mance of a product is highly influenced by the quality of 
product design solutions [1, 2]. Compared with the tech-
nology-driven mode of product design based on manu-
facturers’ technical abilities, the market-driven mode of 
product design can rapidly respond to market changes 
with the required product specifications [3–5].

The required changes in product specifications and 
their combinations can be achieved through adaptations 
of the physical components. In the past decades, vari-
ous types of product structures have been proposed to 
develop modular products to satisfy the changing mar-
ket requirements, such as mass manufactured products, 
mass customized products, reconfigurable products, 
upgradeable products, open architecture products, and 
adaptable products [6–8]. A comparison of the differ-
ent types of products is presented in Table 1 [8]. It was 
observed that these modular products consist of the fol-
lowing modules and interfaces.

•	 Common module: Common modules are designed 
and manufactured by manufacturers using mass 
production methods [9, 10]. Those shared by differ-
ent products are typically considered platforms in a 
product family.

•	 Customized module: Customized modules are 
designed and manufactured by the original equip-
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ment manufacturer (OEM) using mass customiza-
tion methods for customer choice during the pur-
chasing process [11].

•	 Personalized module: Personalized modules are 
designed and manufactured to satisfy the personal-
ized requirements of the customers. They can be 
designed by customers and/or purchased from a 
third-party vendor.

•	 Adaptable interface: Adaptable interfaces are compo-
nents and their relationships to the interface can be 
easily adapted in the product operation stage to sat-
isfy different requirements [12, 13].

To better satisfy the changing customer/market require-
ments of product specifications, there is a need to support 
the design decisions of common, customized, and per-
sonalized modules and their interfaces. In the past dec-
ades, many research efforts have been devoted to modular 
design methods (such as module-based product family 
design, platform design, and modular design for mass cus-
tomization) for better product variety, reduced produc-
tion costs, and shortened lead time. Different approaches, 
such as the design structure matrix method and modular 
function deployment method, have been proposed for 
product modularization. Various metrics (such as the 
component shape, materials, and manufacturing capa-
bility) for modularity evaluation have been proposed for 
modular product design [14]. To identify common mod-
ules shared by a product family, platform and product 
family design have been proposed by researchers. Meth-
ods for customized module determination have also been 
developed in modular design for mass customization.

Despite progress in modular product design, it was 
observed that most of the existing methods focused on 
identifying common (platform) and customized mod-
ules. Few studies have been conducted on the identifica-
tion and design of personalized modules and adaptable 
interfaces for connecting personalized modules. In addi-
tion, existing methods tend to use independence and/or 
similarity based on considerations of component geom-
etry, materials, assembly, disassembly, etc. for product 
modularity. Unambiguous functional correlation analy-
sis among components remains a less regarded topic in 
product modularization [15]. It was observed that the 
prediction and incorporation of diversified market pref-
erences on product specification combinations have 
rarely been studied to support modular design decisions.

Customers and markets have different preferences for 
product specification combinations. Design decisions on 
different types of modules (i.e., common, customized, 
personalized modules) and their interfaces to satisfy vari-
ous customer requirements need to be carried out based 
on market preference analysis. The correlations between 

specifications can effectively reflect customer and market 
preferences for product specification combinations. Gen-
erally, relationships among product specifications may 
have three categories: Independent, normal, and strong. 
These relationships are illustrated in Figure 1.

To better facilitate the design of different types of 
modular products to satisfy diversified changeable 
requirements, specification correlations originating from 
customer/market preferences should be investigated for 
design decision-making of physical components by con-
sidering specification-component relationships [16]. 
However, there is a lack of research on the correlations 
between product specifications for product modularity 
[17, 18]. Although existing methods for customer prefer-
ence analysis (such as individual judgment, expert meet-
ing, brainstorming, Delphi method, and Kano method) 
have been widely used, owing to their strong applicability 
and good interpretability, the following limitations have 
been observed:

•	 The dataset used is not large enough because only a 
limited number of customers can participate in the 
interview, and only parts of the customers provide 
useful feedback or comments on the product. This 
results in an insufficient reflection of customer pref-
erences in the marketplace.

•	 Product specification correlations originating from 
both conscious and subconscious customer pref-
erences were not fully considered. Because most 
existing methods focus on analyzing customer pref-
erences for certain functions and/or features of a 
product, few studies have investigated specification 
correlations originating from customer preferences 
and their combinations.

Big data on product sales are valuable sources for min-
ing relationships among product specifications. Speci-
fication relations originating from customers’ conscious 
and subconscious preferences are embedded in big data 
on product sales. Related research has demonstrated 
that sales data can provide critical guidance for product 
design and development [16, 19]. This study proposes a 
method for the correlation analysis of product specifi-
cations and components using big sales data to support 
modular product design. In this study, the sales data of 
target products are collected and used to reflect customer 
preferences. Specification correlations were obtained 
according to the sales and specification values. Addition-
ally, four types of relations between specifications and 
components were defined so that designers could catego-
rize these relations according to different design require-
ments. According to the correlations of the product 
components, different combinations of components were 
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obtained using a hierarchical clustering algorithm. Com-
ponent combinations are used to support design decision 
making for the updating/development of products.

2 � Proposed Method
Product specifications in the functional domain were 
designed to meet customer requirements. The physical 
components are designed to support the specifications 
required by customers. Correlations among product 
specifications are the basis of component design and 
reconfiguration. According to statistical analysis based 
on the collected product data, a method for measuring 
correlations among product specifications is proposed 
based on the following assumptions:

(1)	 Product sales data, such as the number of product 
sales and combinations of product specifications, 
can be obtained through market surveys.

(2)	 Correlations among product specifications can 
originate from the customers’ conscious and sub-
conscious preferences.

(3)	 The correlations among product specifications orig-
inating from customer preferences are embedded in 
the product sales data.

Based on these three assumptions, a framework is 
proposed for modular product design decision support 
through the quantification of correlations among product 
specifications, as shown in Figure 2.

The method associated with this framework is illus-
trated in Figure 3. The proposed method comprises five 
phases. In Phase 1, the sales data, product specifications, 

and their values are obtained through a market sur-
vey, and these data are processed to support the search 
for specification correlations. In Phase 2, a specification 
correlation matrix is formed to measure the correla-
tions among product specifications. The matrix reflects 
customer preferences when searching using sales data. 
In Phase 3, four relations between product components 
and specifications are identified to satisfy different design 
requirements. Based on the relations between specifica-
tions and components, the correlations of product com-
ponents are determined in Phase 4. Using the component 
correlations, the components are clustered into different 
groups using a hierarchical clustering method in Phase 5. 
Additionally, a frequency analysis of the corresponding 
specification values per component cluster is conducted 
to obtain the characteristics of each cluster. Finally, rules 
for supporting the decision making of modular product 
design are formed based on the component clustering 
results.

2.1 � Data Collecting and Preprocessing
In this step, a market survey is conducted to acquire rel-
evant data for each product instance. The market survey 
was implemented by accessing the official websites of 
these products and other database platforms. The survey 
output included various products and their sales data, 
specifications, and values.

Following data collection, the data were preprocessed. 
Screening of non-relevant specifications can be per-
formed manually to meet the scope and objectives of the 
investigation. Consequently, the redundant specifications 
can be removed. Furthermore, a dimensionality reduc-
tion operation may be performed by removing entries in 
product instances and specifications to reduce the large 
amount of useless data [20, 21].

In this study, supposed m product instances are col-
lected, and the sales number of products is modelled as 
follows:

where Ni represents the sales of the ith product and i =1, 
2, …, m.

Within the collected datasets, it is assumed that n spec-
ifications are considered for the correlation analysis, and 
the specifications can be modelled as follows:

where Si (i=1, …, n) denotes the ith specification.
To simplify the calculation, the values of each product 

specification need to be digitized/discretized in the data 
preparation for correlation searching. For example, for 

(1)N = [N1, . . . ,Nm],

(2)S = [S1, . . . , Sn],

Figure 1  Relationships among specifications

Figure 2  Framework of the proposed method
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battery cell shapes (Si), a value of 1 or 2 can be assigned to 
represent the shape of a cylinder or square, respectively.

2.2 � Correlations among Product Specifications
In this step, correlations among product specifications 
are calculated using the collected big sales data. Gener-
ally, correlations between two specifications originating 
from customers’ conscious and subconscious preferences 
can be linear or nonlinear.

The correlation between two variables can be described 
using correlation coefficients. The Pearson correlation 
coefficient [22] and Spearman rank correlation coeffi-
cient [23] are commonly used to measure the linear and 
nonlinear relationships between two variables, respec-
tively. The values of the correlation coefficient varied 
between −1 and 1.

In this study, correlation coefficients are required to 
measure correlations between specifications, considering 
customer preferences through big data on product sales. 

The correlations among all the n specifications can be 
obtained using the following matrix MS:

where ρSiSj is the correlation between Si and Sj, i, j = 1, 2, 
…, n. n is the number of product specifications.

2.3 � Specifications and Components Relations
Product specifications are physically realized by the com-
ponents. The relationships between the components and 
specifications of a product are required for the investiga-
tion of component correlations.

In logic and mathematics, necessary and sufficient are 
used to describe the conditional relationship between the 
two statements. If the truth of statement A guarantees 
the truth of statement B, then A is sufficient to B, and B 
is necessary for A. On this basis, four types of relations 

(3)MS =







1 ρS1S2 . . . ρS1Sn
ρS1S2 1 . . . ρS2Sn
. . . . . . . . . . . .

ρS1Sn ρS2Sn . . . 1






,

Figure 3  Five phases of the proposed method
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between product specifications and components are con-
sidered, as follows.

(1)	 Neither sufficient nor necessary. The component is 
relatively independent of the specification, which 
means that specification changes do not cause com-
ponent changes, and component changes do not 
cause specification changes.

(2)	 Sufficient and unnecessary. The component is 
affected by multiple specifications, which means 
that specification changes will cause a component 
change, but the component change does not neces-
sarily cause a specification change.

(3)	 Necessary but not sufficient. The specification is 
affected by multiple components, which means that 
specification changes do not cause a component 
change; however, component changes will cause a 
specification change.

(4)	 Sufficient and necessary. The specification only 
affects the component, and the component is only 
affected by the specification.

To achieve different design requirements or objectives, 
the above four types of relations between product speci-
fications and components must be transferred into influ-
ential (I) and non-influential (N). The following three 
scenarios related to the design objective were considered 
for the relationship transformation:

(a)	 Scenario 1: The design objective is to minimize the 
number of changing components while satisfying 
the specification changes. For example, the modu-
lar design of an open architecture product satisfies 
changeable specification requirements. In this situ-
ation, the relations of types 2 and 4 are defined as 
influential (I), whereas 1 and 3 are non-influential 
(N) when changes in specifications are known. This 
scenario is applicable to the condition that the pri-
ority target is to meet the changeable requirements 
of the product specifications.

(b)	 Scenario 2: The design objective is to minimize the 
number of specifications that could be influenced 
by the required adaptations of the components. 

For example, the modular design of products for 
upgrading or replacing required components. In this 
situation, the relations of types 3 and 4 are defined 
as influential (I), whereas 1 and 2 are non-influential 
(N) when changes in components are known. This 
scenario is applicable under the condition that the 
priority target is to facilitate the required upgrading 
or adaptations of certain product components.

(c)	 Scenario 3: The design objective is to maximize the 
adaptation capability to satisfy unknown changes 
in both the specifications and components. For 
example, the modular design of adaptable products 
satisfies potential changes in both product specifi-
cations and components. In this situation, the rela-
tions of types 2, 3, and 4 are defined as influential 
(I) and type 1 as non-influential (N) when changes 
in the components and specifications are unknown. 
This scenario is applicable under the condition that 
potential changes in both specifications and com-
ponents should be considered.

The relation transfers based on different design objec-
tives and their application conditions are summarized in 
Table 2.

In this study, a matrix MR is proposed to model the 
transferred relations of the product specifications and 
components as follows:

where rij represents the relationship between the ith spec-
ification and jth component. rij uses I and N to represent 
the influential and non-influential relationships between 
the ith specification and jth component, respectively.

2.4 � Correlations among Product Components
Component correlations matrix MC can be formed based 
on the correlations of specifications MS and specifica-
tion-component relations MR. A computational method 
is proposed to map specification correlations in the cus-
tomer domain to component correlations in the physical 
domain. Component correlations can be used for deci-
sion making in the design of physical product structures.

(4)MR =
[

rij
]

m×n
,

Table 2  Relation transfer based on different design objectives

Scenario Design objectives Processing Condition of application

1 Minimize the number of changing components while satisfy-
ing the specification changes

2&4→I
1&3→N

Satisfy changeable requirements of product specifications

2 Minimize the number of specifications influenced by required 
changes of components

3&4→I
1&2→N

Facilitate required component upgrading or adaptation

3 Maximize the adaptation capability to satisfy unknown 
changes of specifications and components

2&3&4→I
1→N

Satisfy potential changes of both specifications and 
components
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In this study, we assume that t is the number of compo-
nents considered in the design, and specifications Sp, …, Sq 
are influenced by components Cx, x=1, …, t, p≠q, p, q∈ [1, 
n]. Specifications Su, …, Sv are influenced by physical com-
ponents Cy, y=1, …, t, u≠v, u, v∈ [1, n].

The correlations between components Cx and Cy can be 
determined based on the correlations among specifica-
tions Sp, …, Sq and Su, …, Sv. In this study, the correlations 
between components Cx and Cy are defined by the mean 
values of the correlations among related specifications Sp, 
…, Sq and Su, …, Sv. Therefore, the correlations between 
the components Cx and Cy can be determined by

where x, y=1, …, t, p≠q, u≠v, p, q, u, v = 1, 2, …, n; n 
denotes the number of specifications considered in the 
design.

According to Eq. (5), the correlation among the com-
ponents can be modelled by the correlation matrix MC as 
follows:

Obviously, the matrix has the following properties:

•	 It is a symmetric matrix, which indicates non-direc-
tion in the component correlations.

•	 The values of the diagonal elements are equal to one, 
which reflects the correlations between the compo-
nents themselves.

2.5 � Components Clustering and Frequency Analysis
Product components can be clustered to obtain rules 
and implications for design decisions using the formed 
matrix of the product component MC. The clustering 
results formed the component groups.

In this step, a hierarchical clustering method is used 
to cluster the components. Hierarchical clustering is 
an unsupervised learning method that supports data 
clustering without the target attributes. The data were 
evaluated to determine some intrinsic structures of the 
data. Hierarchical clustering hierarchically decomposes 
a given dataset into a tree using two schemes: Cohesive 
and split. Aggregated hierarchical clustering is a bottom-
up approach. Split hierarchical clustering is contrary to 
agglomerated hierarchical clustering [24, 25].

The result of hierarchical clustering is a set of com-
ponents as a significant basis for product design 

(5)ρCxCy =

∑v
j=u

∑q
i=p ρSiSj

(q − p)× (v − u)
,

(6)MC =







1 ρC1C2
. . . ρC1Ct

ρC1C2
1 . . . ρC2Ct

. . . . . . . . . . . .

ρC1Ct ρC2Ct . . . 1






,

reorganization. Components can be designed in the 
same module when their correlations are high, for a 
convenient solution for design improvement. For con-
vincing design decision support, clustering results 
should be analyzed to meet the scope of applications.

In the frequency analysis, a specification group i (Fig-
ure 4) can be obtained according to the clustering result 
and specification/component relations, which is a set of 
all specifications related to the components in cluster i.

Frequency analysis searches for each specification 
in cluster i according to the collected data. Kurtosis 
is used to measure the degree of data aggregation to 
reflect the distribution of the specification values. The 
kurtosis of each specification can be obtained through 
frequency analysis. A large kurtosis value means that 
the specification values are relatively concentrated, 
which can be considered a dominant specification. 
However, a small kurtosis value indicates a high diver-
gence in the specification values. In this sense, medium 
and small kurtosis values should be considered for cus-
tomized and personalized modules, respectively.

Using this concept, two thresholds t1 and t2 are 
empirically defined based on the designers’ experience, 
where t1 > t2. Clusters can then be defined for different 
types based on the following rules.

(1)	 If all kurtosis in this cluster is larger than a prede-
fined threshold value t1, the cluster can be consid-
ered a common module.

(2)	 If the kurtosis in the cluster has a value among the 
predefined threshold values t1 and t2, the cluster 
can be considered a customized module.

(3)	 If the kurtosis in the cluster has a value less than 
the predefined threshold value t2, the cluster can be 
considered a personalized module.

2.6 � Rules for Supporting Decision‑Making of Modular 
Product Design

A product module forms a unit of components with a 
particular function [26]. In other words, some elements 
of a product are combined to realize specific functions. 

Figure 4  Searching for specification groups
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Customized modules can be changed according to cus-
tomer requirements, but the options are limited. For a 
personalized module, users can add modules accord-
ing to their personalized requirements. Open adapt-
able interfaces allow third-party modules from different 
sources to meet the customers’ changeable requirements 
[13].

Components with different characteristics should be 
structured into different modules [27]. Therefore, differ-
ent design decisions can be made for the components in 
each cluster according to the kurtosis of all the specifica-
tions in different clusters.

In this study, the following rules are proposed to sup-
port modular design decisions based on the clustering 
results.

a)	 Components in the same cluster are recommended 
to be grouped into one module.

b)	 Components in different clusters are recommended 
not to be grouped into the same module.

c)	 If all kurtosis in a cluster is larger than a predefined 
threshold value t1, the cluster should be formed as a 
common module.

d)	 If the kurtosis in the cluster has a value between the 
predefined threshold values t1 and t2, it is suggested 
that the cluster form a customized module.

e)	 If the kurtosis in the cluster has a value less than the 
predefined threshold value t2, the cluster is suggested 
to be a personalized module.

f )	 Adaptable interfaces are suggested to connect cus-
tomized and personalized modules with the common 
module.

Considering the diversity of products in the market, the 
proposed rules can be used to support the design deci-
sions for different types of products as shown in Figure 5.

3 � Case Study
Electric vehicles (EVs) have attracted significant attention 
worldwide in the application of green technology. In recent 
years, a significant number of EVs has emerged in the mar-
ket. Although EVs show promise in the automotive market, 
increasing demand and fast upgrades cause chaotic chal-
lenges in the EV market. For design upgrading, the lack of 
consideration of customer preferences is a concern, and it 
is particularly important to build upgrading rules of EVs 
based on customer preferences. In this research, the pro-
posed method is used for the update of EV components to 
support design decision-making in EV renewal.

A typical structure of an EV is shown in Figure 6, which 
illustrates the functional modules of the vehicle [28]. To 

meet diversified customer requirements, EVs should be 
well designed with adaptability using a modular or open 
architecture. The design support of EVs based on the cor-
relations among the product specifications is illustrated 
using the proposed method.

3.1 � Data Collection and Preprocess of EVs
Using an online search, 31 different types of EVs were 
identified. Data including sales and specification values of 
the EVs were collected. It should be noted that only sales 
in the Chinese market in 2018 were recorded. The data 
were obtained from the official websites of these prod-
ucts. Some of the collected datasets are listed in Table 3.

The specifications of EVs were then obtained by eval-
uating and analyzing the existing EVs in the market. 
Considering that partial specifications have the same 
characteristics without details of the data, 15 were 
selected after data preprocessing for analysis. Addition-
ally, as listed in Table 4, the values of the 15 specifications 
were discretized.

Figure 5  Applications of the rules

Figure 6  Typical structure of EVs
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Table 3  Collected data sets

ID Sales in 2018 Specifications

Price (×1000 
CNY)

Electric 
mileage
(km)

Total power 
(kW)

Total torque 
(N·m)

Energy density 
(W·h/kg)

Quick charge 
time (h)

Battery 
capacity 
(kW·h)

1 46213 23.07 400 160 310 160.8 1.5 60.48

2 43634 27.41 350 160 310 140.97 1.5 61.9

3 35699 9.99 305 160 310 146.27 0.5 43.2

4 31426 23.83 400 120 250 135.4 0.5 52

5 27870 17.19 200 41.8 150 140.91 0.5 23.6

6 16102 20.29 318 80 230 122.68 0.5 48

7 15336 5.98 255 30 90 150 0.5 27

8 10329 18.98 401 90 276 144.05 0.5 54.3

9 8852 24.65 410 132 290 212 0.5 54.75

10 7484 14.58 353 120 250 142.07 0.5 52

Table 4  Product specifications and values

ID Specification Values ID Specification Values

S1 Price (×1000 CNY) [0,10];
(10,20];
(20,30];
(30,40];
(40,+∞);

S2 Electric mileage
(km)

[0,200]; 
(200,300]; 
(300,400]; 
(400,500]; 
(500,+∞);

S3 Engine type (horsepower) [0,90];
(90,120];
(120,150];
(150,180];
(180,210];
(210,+∞);

S4 Weight (kg) [0,1000];
(1000,1300];
(1300,1600];
(1600,1900];
(1900,2100];
(2100,+∞);

S5 Motor power (kW) [0,50];
(50,100];
(100,150];
(150,200];
(200,+∞);

S6 Top speed(km/h) [0,100];
(100,120];
(120,140];
(140,160];
(160,+∞);

S7 Total motor torque (N·m) [0,100];
(100,200];
(200,300];
(300,400];
(400,500];
(500,+∞);

S8 Electricity of 100 km (kW·h) [0,11];
(11,13];
(13,15];
(15,17];
(17,19];
(19,+∞);

S9 Energy density(W·h/kg) [0,135];
(135,145];
(145,155];
(155,165];
(165,+∞);

S10 Quick charge time (h) [0,0.5];
(0.5,1];
(1,1.5];
(1.5,+∞);
No;

S11 Battery capacity (kW·h) [0,25];
(25,40];
(40,55];
(55,70];
(70,+∞);

S12 Size of central console screen (inch) [0,5];
(5,7];
(7,9];
(9,11);
(11,+∞);

S13 Cell model Cylindrical;
Square;

S14 GPS Yes;
No;

S15 Power sunroof Yes;
No;
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3.2 � Calculation of Specification Correlations
In this study, the specification distributions and cor-
relations were obtained according to the collected data 
described in Section  3.1. Pairwise correlations among 
the 15 specifications were calculated in a 15×15 matrix 
Ms as partially shown below for specifications S1 to S15. 
As shown in Ms , for example, the correlation between S2 
and S6 is 0.93, which means that the probability of S2 and 
S6 changing together is very high, according to the cus-
tomer preferences.

(7)Ms =
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1 0.40 0.74 0.45 0.27 0.48 0.48 0.38 0.01 0.18 0.61 0.18 0.27 0.13 0.19

0.40 1 0.55 0.55 0.62 0.93 0.63 0.39 0.30 0.04 0.75 0.30 0.03 0.27 0.56
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3.3 � Relation Modeling of Specifications and Components
The major components considered in this design are 
listed in Table 5. A list of components is formed by ana-
lyzing the structures of the sample EVs. The characteris-
tics of each component are then analyzed to identify the 
relationships between the components and specifica-
tions, as shown in Table 6. In this case study, Scenario 2, 
which is summarized in Table 2, was considered. There-
fore, the transferred relation matrix MR can be obtained 
from Table 6.
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1 0.61 0.62 0.62 0.62 0.67 0.67 0.67 0.63 0.64 0.64 0.64 0.64 1 0.68 1 1 1 0.64 0.64 0.64 0.64 0.62 0.62

0.61 1 0.67 0.67 0.67 0.66 0.66 0.66 0.65 0.64 0.64 0.64 0.64 0.61 0.57 0.61 0.61 0.61 0.64 0.64 0.64 0.64 0.67 0.67

0.62 0.67 1 1 1 0.67 0.67 0.67 0.66 0.65 0.65 0.65 0.65 0.62 0.58 0.62 0.62 0.62 0.65 0.65 0.65 0.65 1 1
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3.4 � Component Correlations
The component correlations are searched based on the 
specification correlation matrix MS and relation matrix 
MR.

In this case, 24 components were identified, and the 
correlation matrix of the components MC (as shown in 
Eq. (8)) was obtained using Eq. (6). The results of the 
component correlations provide a basis for component 
clustering. The values in MC reflect the probability 

of the clustered components based on the customer 
preferences.

3.5 � Component Clustering and Frequency Analysis
Hierarchical clustering was conducted based on the cor-
relation matrix, MC. In this process, every item in the 
matrix is replaced by the difference between the original 
value and 1.

Table 5  Components of an EV

ID Component ID Component ID Component

C1 Chassis C2 Drive motor C3 Motor controller

C4 Central control unit C5 BMS C6 Gear lever

C7 Accelerator pedal C8 Brake pedal C9 Battery pack

C10 Front mounting C11 Front wheel C12 Front wheel brake

C13 Steering gear C14 Car body C15 Body adornment

C16 Car door C17 Seat C18 Body shell

C19 Rear Suspension C20 Rear wheel C21 Rear wheel braking

C22 Transmission shaft C23 Differential mechanism C24 Reducer

Table 6  Specifications-components relation matrix

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

C1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1

C2 3 3 3 3 4 3 4 1 1 1 1 1 1 1 1

C3 3 3 1 3 1 3 1 1 1 2 1 1 1 1 1

C4 3 3 1 3 1 3 1 1 1 2 1 1 1 1 1

C5 3 3 1 3 1 3 1 1 1 2 1 1 1 1 1

C6 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

C7 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

C8 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

C9 3 3 1 3 1 3 1 3 2 2 4 1 2 1 1

C10 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C11 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C12 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C13 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C14 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1

C15 3 1 1 1 1 1 1 3 1 1 1 2 1 2 2

C16 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1

C17 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1

C18 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1

C19 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C20 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C21 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C22 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1

C23 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1

C24 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1



Page 12 of 15Zhang et al. Chinese Journal of Mechanical Engineering           (2023) 36:17 

As shown in Figure 7, different component clusters can 
be obtained when different thresholds are selected. Con-
sidering the existing product structure, when the thresh-
old is lower than 0.5, the clustering results can satisfy the 
physical constraints of the product components to the 
greatest extent. When the threshold is greater than 0.5, 
C2 (drive motor) and C9 (battery pack) are clustered into 
the same cluster. This is inconsistent with the existing 
design. Therefore, in this case study, the threshold is set 
to 0.4. The clustering results and corresponding specifi-
cation groups are listed in Table 7.

As illustrated in Table  7, high correlations among the 
components were observed in the same cluster. In Clus-
ter 1, the results showed that C10, C11, C12, C13, C19, C20, 
C21, and C22 should be formed in a module. However, in 
the existing design of EVs, C10, C11, C12 C13, are struc-
tured in a module, and C19, C20, C21, and C22 are designed 
in a module. This is because the correlations among the 
specifications were not properly evaluated in the original 
design. In cluster 2, C3, C4, C5, C23, and C24 can form a 
module. From Table  7, it can be observed that C23 and 
C24 should be separated from this cluster when consider-
ing the physical structure. In cluster 3, C1, C14, C16, C17 
and C18 were physically related. This demonstrates the 
rationality of the existing design of EVs.

In Figure 7, the distances between the components in 
clusters 1, 2, 3, and 4 are zero, which means that these 

components should not be clustered into different clus-
ters, regardless of the threshold. In industry, sufficient 
specification data must be collected for product design 
to improve the accuracy of the proposed method. To bet-
ter support the design decision, a specification frequency 
analysis was conducted as shown in Figure 8. In this anal-
ysis, the number of samples was determined based on the 
sales of different types of products.

The kurtosis of the 15 specifications is obtained as 
shown in Figure 9. For the clusters, if all kurtosis values 
in a specification group are larger than t1, the compo-
nents in this cluster should be designed as a common 
module. If there is kurtosis in the specification between t1 
and t2, the components in this cluster can be designed as 

Figure 7  Results of component clustering

Table 7  Component clusters of EVs

Clusters Components Specification groups

Cluster 1 C10, C11, C12, C13, C19, C20, C21, C22 S1, S2, S4

Cluster 2 C3, C4, C5, C23, C24 S1, S2, S4, S6

Cluster 3 C1, C14, C16, C17, C18 S1, S4

Cluster 4 C6, C7, C8 S6

Cluster 5 C2 S1, S2, S4, S6, S7

Cluster 6 C9 S1, S2, S4, S6, S8

Cluster 7 C15 S1, S8

Figure 8  Part of specification frequency analysis

Figure 9  Kurtosis of all specifications



Page 13 of 15Zhang et al. Chinese Journal of Mechanical Engineering           (2023) 36:17 	

a customized module. If the kurtosis of the specification 
is less than t2, the components in this cluster should be 
designed as personalized modules.

3.6 � Modular Design Decision Support of EVs
According to the cluster analysis results in Section  3.5, 
the clusters of the components were divided into three 
categories: Common, customized, and personalized 
modules as illustrated in Table  9. Additional modular 
product design recommendations of EVs are presented in 
Table 10.

From Table  10, it can be observed that recommenda-
tions 1, 2, 4, and 6 are consistent with the existing design, 
which proves the effectiveness of the proposed method. 
However, it is obvious that recommendation 3 does not 
fit the existing design of EVs, because C6, C7, and C8 are 
not designed as common components. Based on the 
analysis results, C6, C7, and C8 should be redesigned as 
common components or grouped into a common mod-
ule. Compared with the existing design of EVs that does 
not include a personalized module, recommendation 5 
suggests that a personalized module should be designed 
to satisfy the personalized requirements of the vehicle in 
the marketplace.

It is worth mentioning that the design recommenda-
tions summarized in Table  10 may be unsuitable for 
the design modifications of a specific existing product 

because the physical constraints of the manufacturer 
technique capability also need to be considered. Addi-
tionally, metrics related to the component geometry, 
materials, assembly, and disassembly should be consid-
ered for product modularity evaluations in real modular 
product design practices. Integrations of the newly pro-
posed method with existing modular design methods 
must be carried out for modular product design.

4 � Discussions and Conclusions
Increasing market driving and technology development 
require a rapid response of products to meet market 
and customer requirements through product specifica-
tion combinations. Specification relations originating 
from customer conscious and subconscious preferences 
can be embedded in the big sales data. To better facili-
tate various types of modular product designs to satisfy 
the changeable market/customer requirements, relations 
among product specifications should be evaluated using 
big data on product sales. In this study, a framework and 
associated method were proposed to support modular 
product design decisions based on the correlation analy-
sis of product specifications and components using the 
big sales data. Correlations among product specifications 
were identified by analyzing product sales data. By con-
sidering the components and specification relations, a 
matrix for measuring the correlation among the product 
components was formed for component cluster analysis. 
Frequency analysis of the corresponding specification 
values per component cluster was performed to evalu-
ate the dominance of the component clusters. Six rules 
for supporting the decision making of modular product 
design were proposed based on the frequency analysis 
results. A case study of EVs was used to illustrate the pro-
posed method. The contributions of this study are sum-
marized as follows.

•	 The newly proposed specification correlation can 
reflect customer conscious and subconscious prefer-

Table 9  Cluster analysis results

Clusters Components Types of modules

Cluster 1 C10, C11, C12, C13, C19, C20, C21, C22 Personalized

Cluster 2 C3, C4, C5, C23, C24 Personalized

Cluster 3 C1, C14, C16, C17, C18 Personalized

Cluster 4 C6, C7, C8 Common

Cluster 5 C2 Personalized

Cluster 6 C9 Personalized

Cluster 7 C15 Customized

Table 10  Decision support of modular EV design

ID Modular product design decision recommendations Rules

1 Components in the same cluster are recommended to be grouped into the same module (e.g., C6, C7, C8 are recommended to be grouped 
into the same module)

a

2 Components in different clusters are recommended not to be grouped into one module (e.g., C2 and C9 are not recommended to be 
grouped into the same module)

b

3 Components in cluster 4 are recommended to be designed as common components or modules. (e.g., C6, C7, and C8 are recommended to 
be designed as common components or being grouped into a common module)

c

4 Values of S8 are alternatives and limited, thus cluster 7 in which C15 is located should be designed as a customized module d

5 Values of S4 have a large number of alternatives, thus cluster 1 should be designed as a personized module e

6 Adaptable interfaces are proposed to connect components in different clusters f
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ences for product specification combinations using 
big sales data.

•	 The correlations of components originating from 
customers/market preferences with product speci-
fications are identified by defining the relationship 
between specifications and components.

•	 The proposed method can accurately and compre-
hensively determine the correlation degree of prod-
uct specifications and components from big sales 
data analysis, rather than defining the correlation 
degree using small amounts of data from experts 
and/or customers.

•	 The six rules proposed for supporting design deci-
sion marking can potentially facilitate axiomatic 
design, adaptable design, product family design, 
product platform design, and open architecture 
product design.

Although the effectiveness of the newly proposed 
method has been illustrated using a case study of EVs, 
in addition to specification correlations, other metrics 
such as the size, shape, and materials of components for 
product modularity evaluations should be considered 
for industrial applications. Additionally, the accuracy of 
the design recommendations provided by the proposed 
method is highly influenced by the following factors, 
which should be considered.

(1)	 Quality of collected data. For a given category of 
products with certain similarities, a comprehensive 
market survey should be conducted to obtain the 
number of product sales and combinations of prod-
uct specifications.

(2)	 Calculation of correlation coefficients. The rela-
tionships among product specifications due to cus-
tomer preferences could be linear and nonlinear. 
Both linear and nonlinear correlation coefficients 
should be considered in practice for the correlation 
analysis of the product specifications.

(3)	 Design objection-related scenario selection. The 
selection of the three types of design scenarios pro-
vided in Section 2.3 should be conducted based on 
specific design objectives for the relation transfor-
mation.

(4)	 The determination of thresholds t1 and t2 in Sec-
tion  2.5. In the proposed work, two thresholds, 
t1 and t2, were defined empirically based on the 
designers’ experience. Inappropriate value determi-
nation of t1 and t2 can lead to inappropriate recom-
mendations for common, customized, and person-
alized modules.

Nevertheless, this work provides the first attempt at 
specification analysis using big sales data to support 
modular product design decisions. More research and 
application efforts are necessary to facilitate further 
product design using big sales data. Future research 
activities in this research scope include but are not lim-
ited to the followings:

•	 Investigation of evolution trends of product specifi-
cations in the market using historical data on prod-
uct sales.

•	 Calculating functional correlations among product 
specifications to better facilitate decoupling strategy 
planning for a complex product or system.

•	 The effects of physical constraints of both the com-
ponent features and manufacturer technique capa-
bility make the proposed method more specific for 
design decision support.
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