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Abstract
It is well known that teams of agents in a multi-agent system often perform better

than individual agents working alone. Most research in muìti-agent systems has

made the assumption that teams are pre-formed, and has focused on improving the

performance of the existing teams. There has been far less research done on the

process of coali,ti,on formati,on - the process by which agents are grouped into teams

that can be successful in a given domain. Addtionatly, research that has been done in

the area of coalition formation has made several key assumptions that, while making

either implementations or analyses easier, are generally not true of more realistic

domains. This limits the applicability of current approaches to environments with a

high degree of realism. In this thesis I examine existing coalition formation algorithms,

enumerate common restrictive assumptions, and propose a nev/ coalition formation

algorÍthm that avoids these assumptions. I will also present an implementation of

this new approach, and evaluate it against a baseline implementation in a sofbware

simulation.



Contents

Abstract ii
Table of Contents iii
Ackno'¡¡ledgments v
Dedication vi

Introduction
1.1 Motivation
L2 Terminology
1.3 Method
1.4 Research Questions
1.5 Summary
1.6 Thesis organization

Related Literature
2.I Game Theory
2.2 Search Strategies & Coalition Structures
2.3 Learning
2.4 Coalition Formation and the Electronic Marketplace .

2.5 Dutta and Sen's Partnership Implementation
2.6 Other Implementations
2.7 Summary

Realistic Coalition Formation
3.1 Package Delivery Domain
3.2 The vandeVijsel Agent Model

3.2.I Movement Phase
3.2.2 Encounter Phase

3.2.3 Coalition Maintenance Phase
3.2.4 Complexity
3.2.5 Summary

3.3 Baseline Approach

1

5

h

9

11

11

T2

t4
15

18

23

28

40
45

50

51
52

59

61

68

75

77
78

79

llt



IV Contents

3.3.1 Movement Phase
3.3.2 Encounter Phase
3.3.3 Coalition Maintenance Phase
3.3.4 Summary
Implementation
Summary

Evaluation
4.I ExperimentalSet-up
4.2 Comparison of the Two Approaches
4.3 Result Files
4.4 Experiment Structure
4.5 Results and Analysis

4.5.7 System Throughput . . .

4.5.2 Coalition Stability
4.5.3 Additional Results

4.6 Summary

Conclusion
5.1 Findings and
5.2 Future Work

Analysis

5.3 Summary

Bibliography

3.4
9tr
tJ.d

8i
82
87
87
88

92

94
95

95

99

103

r04
104
118

t22
724

L25
126

127

130

t32



Acknowledgments

I would like to begin by thanking Dr. John Anderson for his support, criticism,

and above all, patience. He has given me space when necessary, helpfut advice when

requested, and the occasional kick in the pants when most needed. I would also like

to thank my parents, Art and Christine van de Vijsel and my sister, Lyndsay van de

Vijsel, for always being there to support me when it felt like this project would never

be completed. Finally, I would like to thank the people at the Winnipeg branch of

Sierra Systems Group, as well as the various clients I have worked for over the last

few years, for allowing me to have a flexible schedule and supporting me in many

different ways. It has been a long road, but you have aìl helped me see it through,

and I thank you deeply.



This thesis is dedi,cated to my wi,fe Jody, for her neuer-endi,ng support

and loue, especially when times are tough.

V1



Chapter 1

Introduction

It has been illustrated repeatedly that agents in a multi-agent system will perform

better when working as a group than when working alone [Weiss, 1999; Anderson

et aÌ., 2004; Russell and Norvig, 1995; Lerman and Shehory, 2000; Sen and Dutta,

20021. These improvements manifest themselves in many different \Ã/ays: achieving

goals faster or at a lower cost, delivering a higher quality of result, or having a larger

number of agents work together at an acceptable rate of performance.

However, most existing research has assumed the existence of agent coalitions, or

teams, and examined how those teams can work towards improving their performance

[Fontan and Mataric, 1996; Balch, 1999; Anderson et al., 2002; Veloso and Stone,

1998]. There has been far less work done in the area of coali,ti,on formation - an

examination of how individual, self-interested agents can work together in order to

improve their own performance by forming groups dynamically.

Tosic and Agha [2004] identify two broad classes of agents in multi-agent system

(MAS) research - agents used in Distributed Problem Solving (DPS) and agents that
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are self-interested. Tosic and Agha characterize these two groups of agents by how

they handle their individual goals. DPS agents share common goals, and they work

together to find a solution, without any regard to individual payoff or utility. DPS

agents could therefore be considered cooperati,ue agents. Self-interested agents do

not necessarily share their goals, and each agent may have its own agenda. Coali-

tion formation approaches are applicable to both types of agents, albeit in different

manners.

In DPS systems (i.e. multiagent systems that are composed of DPS agents),

coalition formation research tends to be focused on partitioning the population of

agents into a set of disjoint coalitions (referred to as a coaliti,on structure) in such a way

that each group has sufficient resources to work on a portion of the problem efficiently

[Sandholm et al., 1998]. Once the coalition structure is formed, each coalition can

then be optimized individually to solve its part of the problem. Multi-agent systems

consisting of self-interested agents, on the other hand, take a different approach to

coalition formation. They focus on how groups can form dynamically even though

agents are only concerned with maximizing their own utility [Tosic and Agha, 2004].

The development of coalition formation approaches in systems of self-interested

agents has been an active area of research of late [Abdallah and Lesser ,2004; Breban

and Vassileva,2002; Chalkiadakis and Boutilier, 2004; Mason et al., 2004]. However,

these approaches have not been successfully applied to situations that display similar

characteristics to those found in the real worid. This is due either to their complexity

[Axtell, 2002; Tohme and Sandholm, 1999] - often due to their roots in game theory

- or by the simplifying assumptions that are made about either the agent model or
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the domain for experimentation [Breban and Vassileva,2002; Cornforth et al., 2004;

Brooks and Durfee, 2002].

Most of the existing methods assume, for example, that all members of a coalition

are equal, and that one agent will bring the same amount of value to a group as an-

other fTsvetovat and Sycara, 2000; Brooks and Durfee,2002; Yamamoto and Sycara,

2001]. In more realistic settings, however, coalition formation approaches must deal

wilh agent heterogeneity - the idea that group members are likely to be different in

terms of strengths and shortcomings, to a degree that will affect group participation

significantly. In a more realistic scenario, a group may have to work around an infe-

rior member, or decide to hand off essential tasks to only the most capable members.

These inter-group dynamics are ignored in most coalition formation approaches.

As well, it is often assumed that being part of a coalition is always a good thing

fBreban and Vassileva, 2002; Lerman and Shehory, 2000] - that all agents want to

be part of a group if possible. This is not always the case - agents should have

the ability to decide if a particular group fits with their own needs and reject or

accept an invitation to join the group accordingly. Conversely, current members of

a group should have the ability to decide if a new agent warrants an invitation to

the group. Current research also often assumes that an existing coalition represents

the same value to each of its members lYamamoto and Sycara, 200I; Asselin and

Chaib-draa, 20031. Actual group members may belong to the group for completely

different reasons - a weaker agent may be in the group simply to receive aid from

stronger agents, while stronger agents may join a group in order to foster relationships

with others. Even more restrictive is the common assumption that agents may only
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be part of a single $oup at a time [Breban and Vassileva,2002; Brooks and Durfee,

2002] - obviously not the case if we are attempting to model more realistic scenarios.

Finally, the assumption is generally made that agents begin with perfect infor-

mation about the domain, about the other agents in the domain and about all tasks

that are assigned to them or will be assigned to them in the future [Pechoucek et al.,

2000; Contreras and Wu, 1999]. It is easy to envision scenarios where agents would

begin with very little, if any, information about their domain or other agents, and

would have to learn these concepts as they move about the domain and encounter

other agents. Any type of expioration domain, for example, where the goal of each

agent is to uncover properties and information about its surroundings, would exhibit

such characteristics.

The focus of this thesis is to provide an overview of the state of the art in coalition

formation research, to examine the shortcomings of the existing approaches when

applied to more realistic applications, and to propose a new strategy that attempts

to overcome these shortcomings.

This introductory chapter begins with an identification and explanation of the

terminology used in discussions of multi-agent systems in general, and coalition for-

mation specifically. I then outline my motivation for pursuing this topic, and the

methods used in undertaking this research. I will then outline the questions this re-

search will attempt to answer, and provide an outline of the remainder of this thesis.
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1.1 Motivation

The utility of coalition formation research lies not only in getting teams of software

agents or physical robots to work together, but also in understanding the methods

in which human groups are formed and maintained [Anderson et al., 2004]. People

are forming groups all the time - "frequent buyer" clubs that reward participation

with incentives, societies or classes where everyone shares cornrnon interests, or simple

cliques where members enjoy each others' company, just to name a few.

These real-world groups, the people in these groups, and the environments in

which these people interact all display a set of traits that can be used to characterize

realistic scenarios:

o People generally have many different tasks to perform, which may conflict with

each other, and they often use the group to help them out in completing these

tasks

o People are not restricted to a single Broup, but may belong to many different

groups at the same time

o People make individual decisions to join groups based on perceived benefits to

them -joining a group is not forced on anyone

o People observe the behaviour of others, and learn their tendencies over time,

which helps them interact successfully with others

o People are not all the same - everyone has distinct personalities that cause them

to interact in different \4/ays, and everyone has different abilities that affect the
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ease with which they can complete their tasks

ø Because of the previous point, certain people contribute more to a group than

others, and may be more highly valued as members of the group

Thus, improving the realism of existing approaches by encompassing these charac-

teristics will not only allow these approaches to be applied to more complex domains,

they will also allow exploration and provide insight into groups that human beings

form in their daily lives.

L.2 Terminology

In order to provide meaningful discussion on the concepts and issues that will

arise in this thesis, I must first ensure that all terms are properly defined, to establish

a cornmon base of understanding.

I will start by defining the term agent. In general terms, an agent is an entity

that possesses certain goals and is able to act autonomously in pursuit of those goals

within the constraints of its environment [Russel] and Norvig, 19gb; Weiss, 1999].

This definition is broad enough to encompass both hardware agents in a physical

environment as well as software agents running in a simulated environment. For this

work, I am dealing solely with software agents - I will therefore restrict the term

agent to mean software agent, and will use the term robot to designate a hardware

or physical agent. Nothing in this work prevents the approach from being applied to

a robotic implementation, but the introduction of a physical domain adds additional

challenges and issues that are behind the scope of this thesis.
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Ã multi,-agent system is a system in which multiple agents reside. These can be

cooperative agents that are all pursuing the same goal (normally seen in distributed

problem-solving systems) or self-interested agents that are attempting to maximize

their own utility. The latter may consist of agents that compete with one another, or

agents that are completely unarvare of one another,s presence.

The next term that requires definition is coaktion This term has been defined in

many different ways by different researchers, depending on their perspective. Shehory

and Kraus [1998] defines a coalition as "a group of agents that have decided to cooper-

ate and [agree on] how the total benefit should be distributed among them" (p. 170).

Breban and Vassileva [2001] defines the term as "[a group of] agents that agree to

cooperate to execute a task or achieve a goal" (p. 0) Sen and Dutta [2000] says that

a coalition is formed when agents "'join hands' to take advantage of complementary

capabilities) resources and expertise" (p. 2BT).

tr'or the purposes of this thesis, I will define a coalition as a group of agents

that have expressed a willingness to help each other (immediately or in the future).

Coalitions are formed when two or more agents share a formal or informal agreement

to provide assistance in completing a task or achieving a goal. They can grow as

additional agents express a willingness to render aid, and they can shrink, either

when a single agent withdraws its offer of help to the other group members, or when

other group members withdraw their willingness to help a single agent. A coalition

is dissolved when it has been reduced to a single member.

Existing research also provides subtle variations on coalitions, such as congrega-

ti'ons [Brooks et al., 2000] and teams [Weiss, 1999]. These variations are often based
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on intention and/or perspective of the agents in the group. Teams generally consist

of non-self-interested agents that work solely for the benefit of the group. Congrega-

tions, as defined by Brooks and Durfee [2003], are more simply an informal grouping

of agents that have similar interests but do not necessarily share specific tasks or

goals. Agents may also have differing perspectives on the coalition itself - one agent

may be using the coalition for a different purpose than another. For example, one

agent may join a coalition to receive aid in its goals, while another may join the same

coalition to increase its network of known agents in order to gather information.

I must also define the term domain as it relates to this thesis. A doma,in is an

environment in which an agent finds itself, and in which it has goals it must pursue.

Domains can be physical or may exist only in software. The term goal is defined as a

task or objective the agent is attempting to achieve. Agents will either be given goals

before the simulation starts (for example, in the case of a soccer domain, an agent

knows before it begins playing that its main goal is to put the ball in the opposing

net), or they can be assigned goals as they move around their domain (for example, in

the package delivery domain of Sen and Dutta 120021, agents receive packages during

the simulation that must be delivered to a particular location).

Finally, I will provide a definition of a reali,stic domain or scenario. For the

purposes of this thesis, I will define a realistic scenario as one that exhibits the

characteristics that have been outlined in Section 1.1. It should be noted that due

to the complex nature of the real world, there will be many characteristics of such

domains that are not covered by this definition. This thesis attempts to cover those

characteristics that I have identified as lacking in existing literature, to provide a
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reasonable scope for this type of research.

1-.3 Method

I have developed a new coalition formation approach that encompasses all the

characteristics of realistic scenarios, as described in Section 1.1. My approach em-

bodies these characteristics in the following ways:

o Agents are heterogeneous) with varying abilities and attributes that determine

how effective they can be within their domain

My chosen domain provides agents with multiple, potentially conflicting goals

at any given time. Agents must determine how to best approach their current

set of goals in order to maximize their own performance.

Agents can be part of several coalitions at the same time. Agents are invited

to join an existing coalition or to form a new one, and may accept or reject the

invitation depending on their evaluation of the coalition and the inviting agent.

As coalitions are formed and their members explore the domain, the perfor-

mance of members is continually tracked, allowing agents to learn about the

tendencies of others. An agent's continued membership in the coalition is based

on their performance as it benefits the coalition, and the group may remove

the agent from the coalition if its performance over time is worse than other

coalition members. Other research has focused on exclusion of agents from

a coalition [Anderson et al., 2004], or on agents removing themselves from a
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coalition [Breban and Vassileva, 2002]. This issue will be explored further in

Chapter 3.

Two of the key indicators that have ofben been used to measure system perfor-

mance in coalition formation research are throughput and coalition stabili.ty [Sen and

Dutta,2002; Lerman and Shehory,2000; Brooks et aÌ.,2000]. Throughput is defined

as the number of tasks completed or goals achieved in a given time frame, which is

an important measure of performance as it illustrates the amount of work an agent is

able to complete in a given time. Coalition stability can be looked at in two different

"¡/ays 
- the total number of coalitions in the system, and the total number of mem-

bership changes (agents joining or leaving a coalition) over time. Stability is also a

key performance measure as it determines the efficacy of the gïoups being created. If

the membership in a group is constantly changing, then the group is not providing

benefits to its members - otherwise they would remain in the group.

To measure the effectiveness of my coalition formation approach, a baseline mea-

sure is needed against which to compare. After evaluating existing approaches (out-

lined in Chapter 2), I have chosen the partnership formation approach outlined by

Dutta & Sen [Dutta and Sen, 2003]. Of all the existing approaches studied, the

Dutta/Sen approach has made the most strides in removing the artificial constraints

imposed on coalition formation systems. Chapter 2 wilt provide more details on the

Dutta/Sen approach.

In order to be able to draw comparisons between the two agent models, a domain

is required in which the agents will reside. To this end, I have adapted the package

delivery domain described in [Sen and Dutta, 2002) to an implementation that has
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more realistic characteristics. I will gather results from the execution of the two agent

models in this environment and compare them using the indicators I have described.

A more detailed description of the adapted domain can also be found in Chapter 3.

L.4, Research Questions

This thesis addresses the following research questions:

1. Can a coalition formation approach be designed that is applicable to realistic

scenarios as defined in Section 1.1?

2. How would the throughput of such a coalition formation approach compare with

an approach reflecting the current state of the art?

3. How would the coalition stability of such a coalition formation approach com-

pare with an approach reflecting the current state of the art?

This thesis will describe a new coalition formation approach to suffice as an answer

to the first of these questions. It will then evaluate this approach against a baseline

approach in order to answer questions 2 and 3.

1.5 Summary

This chapter has introduced the concept of coalition formation in multi-agent

systems, and briefly described the many restrictive assumptions that exist in much

of the current research in this area. I have described how I intend to illustrate

that my proposed coalition formation approach removes these assumptions and is

l1
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still successful in a more realistic environment, and indicated the coalition formation

approach that I intend to use as a baseline for comparison. The last section of this

chapter will outline the structure of the remainder of the thesis.

1.6 Thesis organization

The remainder of this document is organized as follows:

e Related Literature

o Realistic Coalition Formation

e Evaluation

o Conclusion

Chapter 2: Related Literature

This chapter presents a review of the background literature that exists in coalition

formation research. Various approaches are discussed from areas such as game theory,

electronic commerce and information marketplaces, among others. The assumptions

and constraints inherent in each approach are also outlined. Special attention is given

to the Dutta/Sen approach that has been implemented as a baseline for this thesis.

Chapter 3: Realistic Coalition Formation

This chapter discusses my proposed coalition formation approach, as well as a

detailed description of the environment that I have implemented for experimentation.
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Chapter 4: Evaluation

Chapter 4 evaluates the results of the experiments executed with the two agent

models and coalition formation approaches, and answers the research questions posed

in Section 1.4.

Chapter 5: Conclusion

Chapter 5 provides a summary and additional discussion of the experimental re-

sults, and outlines future work that can be done to extend and enhance the proposed

approach.

13



Chapter 2

Related Literature

This chapter provides an overview of existing coalition formation research as it

relates to the issues discussed in this thesis. Coalition formation is a topic that spans

many areas of research, including game theory, cooperative distributed problem solv-

ing and multi-agent systems. This research topic is still in its infancy, and therefore

many different protocols and methods for forming and maintaining coalitions have

been proposed, and some terminology differs between researchers.

This section will describe the state of the art in coalition formation by outlining

prior and current research in the following areas:

o Game Theory

o Coalition Structures

o Learning

o Coalition Formation and the Electronic Marketplace

T4
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I will then describe in detail the approach of Dutta and Sen [2003], as this approach

will form the baseline for the evaluation of my own coalition formation approach.

Finally, I will discuss applications in a small number of other domains that have

benefitted from coalition formation research, and illustrate that existing methods are

able to work adequately in these domains, since their focus is narrow and they still

contain many restrictions.

2.L Game Theory

One of the first areas of research to explore coalition formation was garne theory.

According to Rapoport and Zwick [2000], game theory is "a branch of mathematics

concerned with the analysis of the behaviour of decision makers (called 'players')

whose choices affect one anothe." (p. 424). Researchers in this field use mathematics

to attempt to describe and predict interactive behaviours among multiple parties.

Whenever we have multiple entities interacting, there exists the possibility of a

subset of those entities banding together to attempt to gain more than any of them

could individually. This realization planted the initial seeds of coalition formation

concepts in this area.

While game theory was originally proposed as a way to model psychological sys-

tems, its application to areas such as economics and, eventually, distributed artificial

intelligence was soon recognized. Researchers began to explore how multiple agent

behaviours in an artificial system could be explored and predicted via game-theoretic

concepts [Banerjee et al., 1999].

A detailed explanation of game-theoretic concepts as they relate to all of multi-

l5
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agent systems is beyond the scope of this thesis. However, it is worth examining some

of the mathematical approaches to coalition formation that have been proposed in

game theory research, and analyzing why their applicability to more realistic scenarios

(as defined in Section 1.2) is limited.

Shehory and Kraus [1999] note that coalitions formed by a group of autonomous,

self-interested agents can still be beneficial to all members of the group, even if those

agents are acting only to maximize their own expected utility. Their research out-

lines two separate algorithms of differing computational complexity that are appli-

cable to non-super-additive environments (meaning that two separate coalitions are

not necessarily best served by merging into a single coalition). The first, called

DEK-CFM (Distributed, Exponential, Kernel-oriented Coalition Formation Model)

is a Pareto-optimal algorithm (indicating that there exists no alternative solution

that would be preferred by any of the agents in the system) that remains exponen-

tially complex. Their second proposed algorithm, called DNPK-CFM (Distributed,

Negotiation-based, Polynomial, Kernel-oriented Coalition Formation Model), is of

polynomial complexity, making it more feasible for implementation. However, the

algorithm requires that information about all agent resources and payofl functions,

as well as all agent tasks, must be accessible to all other agents before cooperation

can occur. These restrictions make it infeasible for an environment in which agents

do not have perfect information about others.

Tohme and Sandholm [1999] propose another algorithm for coalition formation

among agents that are self-interested. Their algorithm introduces the concept of

revision of beliefs among agents. Their agents track conditional probabilities of the
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various potential outcomes of the coalition formation process and attempt to calculate

expected payoff based on their incomplete knowledge of other agents. While this is a

step towards incorporating realistic aspects into a game-theoretic approach, Tohme

and Sandholm also acknowledge that "[although] this coalition structure supports

a Pareto optimal outcome...the price paid is tractability: the computation of the

optimal coalition formation process can be exponential in the number of agents and in

the length of the negotiation process" (p. +) This complexity makes implementation

in a multi-agent system an unfeasible task.

Axtell 12002) goes one step further in his analysis of the application of game

theory to non-cooperative agents. His research postulates that conventional game

theory is unsuited to determining adequate solutions for implementations of multi-

agent systems, and argues that a more evolutionary approach is required. In his

conclusions, he writes:

Conventional game-theory is ill-suited to studying the kinds of meta-
stable structures that emerge and transiently survive in [dynamic team
formation] ... to limit the focus of one's analysis [of multi-açnt systems] to
equilibria, while certainly augmenting mathematical tractability, is both
highly restrictive and unrealistic, and tikely to render the resulting models
empirically false and operationally brittle. (p. 10gZ)

There continues to be significant research done in game-theoretical aspects of

multi-agent systems and coalition formation [Maheswaran and Basar, 2003; Dang

and Jennings,2004; Caillou et al., 2002], mainly because of the appeal of the rigour

inherent in the approach. However, all of these approaches suffer from either exponen-

tial complexity or restrictive assumptions on information required for the algorithm

to operate. This makes them more suited towards applications such as DpS systems

that require a rigourous calculation of one-time coalition structures.

T7
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2.2 search strategies & coalition structures

Early work in multi-agent systems made note of the fact that cooperation between

autonomous, self-interested agents could still exist and be mutually beneficial to the

cooperating agents [Shehory and Kraus, 1995; Ketchpel, 1994]. Initially, coalition

formation in multi-agent systems was part of a three-step process for cooperative,

distributed problem solving [Sandholm et al., 1998]:

1. Coalition Structure Generation: Agents are partitioned into a set of disjoint

coalitions, inside of which agents coordinate their actÍvities towards the achieve-

ment of a common goal or set of goals. This set of disjoint coalitions is commonly

referred to as a coakt'ion stracture.

2. Solving the Optimization Problem: The coalition must determine how best

to pool the tasks and resources of the member agents to solve the problems

presented.

3. Dividing the Reward: The agents in the coalition receive a reward or payoff for

achieving their goal(s), and must determine how to divide the reward among

the member agents.

While the second and third items above would often fall into the realm of mathe-

matical or game-theoretic proofs, the Coalition Structure Generation step became an

active area of research. The probìem of how best to partition a group of agents is at

its heart a combinatorial problem with an exponential search space [Sen and Dutta,

2000] and there have been many proposed solutions. These are referred to as search

strategi,es and have spawned a large amount of research.
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Sen and Dutta [2000] have implemented an order-based genetic algorithm ap-

proach to quickly determine a structure for a given problem. Their approach is

scalable and is an anyt'ime algorithm - it can be interrupted at any point, and it will

provide the best solution it has discovered so far. The algorithm uses genetic selection

and recombination operators to generate new populations of candidate coalition struc-

tures, and then evaluates the resulting structures to determine the best so far. This

continues until the algorithm is stopped or until a time limit is reached. Due to the

algorithm's genetic nature, the optimality of the selected coalition structure cannot

be guaranteed, but Sen and Dutta's experiments show a significant improvement over

their chosen baseline algorithm. Their experiments were also able to handle larger

search spaces that their baseline was not able to handle due to the exponentially

increasing computational costs.

Sen and Dutta's algorithm shows good results for problems requiring disjoint

coalitions, and domains in which it is possible to accurately measure and compare

the utility of coalition structures. In realistic problems, however, this is often not the

case. Agents should be able to join multiple groups at a time, and the value of those

groups is ofben not calculable a pri,ori - it must be observed over time. Thus, Sen

and Dutta's approach will be applied most successfully to cooperative environments

with well-defined utility functions in which the restriction of one group per agent can

be safely made.

Tosic and Agha [2004] propose a graph-based algorithm for partitioning a given

set of agents into coalitions. Their maximal clique-based distributed algorithm is

based on the concept that, in a domain where self-interested agents are required to
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cooperate and coordinate in order to complete tasks, agents will prefer to join a group

containing agents with which they can communicate directly. Thus, these groups are

cli,ques (defined as complete subgraphs) of the $aph representing the communication

Iinks between the agents. While finding a maximal clique in an arbitrary graph is

an NP-complete problem [Garey and Johnson, 1979; Cormen et al., 1gg0], Tosic and

Agha illustrate that if the process of finding the degree of an arbitrary graph node (in

this case, the number of other agents with which an agent can communicate directly)

is computationally small (i.e. O(1)) then finding the maximal cliques of the graph

is a computationally feasible task. The algorithm proposed is a fully distributed

algorithm that places a small computational burden on a single agent, and works

most efficiently when the communication graph is sparse - that is, when each agent

can communicate directly with only a small number of other agents.

While Tosic and Agha [2004] do not perform an evaluation of the proposed al-

gorÍthm against existing methods, their search strategy of using a graph-theoretic

approach is a novel one. However, the approach stiil has several drawbacks. It re-

quires an attribute (in this case, cornmunication tinks) on which to base the formation

of coalitions, and if this attribute is not easily attainable, then the approach has no

basis on which to execute. Agents in a realistic scenario may not have such an at-

tribute available to them - they may simply be acting "in the dark" until other agents

are encountered directly. In addition, Tosic and Agha's approach is most applicable

when conditions are rapidly changing, and more transient coalitions are required (i.e.

a coalition is in existence for a short time, until the agents have moved in such a

way that the coalition is no longer usefut). While there are certainly environments in
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which this is the case, a more common occurrence is the establishment of longer-term

coalitions that provide lasting benefit to their members.

Scully et al. [2004] examine optimal coalition formation in a marketplace domain.

The problem their work aims to address is one encountered in Sen and Dutta [2000]

- the problem of coalition valuation. There are many different metrics that can be

used to measure the value of a specific coalition (Scully et al. [2004] mention cost,

reliability, quality and dependability as several examples). The chosen metrics are

not only unlikely to be of equal importance, but may actually conflict (e.g. an agent

may want to minimize both cost and time, but a lower-cost solution will take longer,

and a faster solution will cost more). Scully et al. have proposed a multi-objective

evolutionary algorithm (or MOEA) in which coalitions are individual members that

are evolved over time. Their approach is from the perspective of an individual agent

- they specifically state that they are not evaluating overall system performance and

they make no assumptions about the coalition formation strategies for any of the

other agents in the system. In their marketplace domain, a task is submitted to the

marketplace that is comprised of subtasks, and agents must form coalitions which

will then compete to be awarded the task. Their objective is to calculate the optimal

coalition for an individual agent to propose in order to maximize its probability

of being awarded the task. The agent must be able to evaluate the other agents

in the system in terms of their abilities, in order to be able to calculate the value

of potential coalitions during the coalition formation process. Their evolutionary

algorithm evolves a set of coalitions which approaches optimality the longer it is

allowed to execute.
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once the MOEA returns a set of coalitions, the agent then selects one coalition

from the set, and proposes this coalition as its contribution to the marketplace bidding

process' Scully et al. use an instance-based learning algorithm to ]et the agent learn

which of the coalitions is successful at receiving bids, and tailor its choice of coalitions

based on its experience.

Scully et al''s algorithm indirectly raises the issue of agent heterogeneity - agents

can have differing abilities that will drive how coalitions are formed. This is a key

issue in the real world - we must be able to accurately determine the abilities of
an individual, in order to make an informed decision about whether to join a gïoup

containing that individual. Additionally, the concept of group evaluation is also

a crucial one' Not only does it provide information allowing comparisons between

groups' it also lets potential members gauge the abitity of the group, as well as

letting the group compare its collective abilities against those of potential members.

These pieces are important for measuring group dynamics.

However, Scully et al.'s marketplace domain is suited towards single-cycle, tem-

porary coalitions that exist for a single task and are then disbanded. Their approach

requires prior knowledge of all agents in existence wiihin the system, and an ability

to accurately estimate their abilities in order to determine reasonable values for the

metrics being used. A coalition is disbanded once the task is complete, as it may not

be suitable for the next task. These restrictions on the algorithm do not fit with the

definition of a realistic scenario as defined in chapter 1.

Search strategies, as outlined in this section, are most useful when certain strict

assumptions about coalitions are inherent in the domain. They work well when
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the domain requires transient or short-lived coalitions, when agents have ø pri,ori,

knowledge about each other or are able to provide accurate estimates about each

other's abilities, or when the domain requires a disjoint coalition structure for a

divide-and-conquer approach to solving a problem. In a realistic scenario, agents

do not always have enough information about each other to enumerate the possible

coalitions in order to construct a search space. Even if this were possible, there would

not necessarily exist enough information available to support accurate evaluation of

the relative utility of potential coalitions. This limits the applicability of search-based

approaches to more realistic probiems.

2.3 Learning

Learning is relatively a common component of coalition formation research [Scully

et al., 2004; Dutta and Sen, 2003; Abdallah and Lesser,2004; Anderson et al., 2004],,

both in terms of the general idea of gathering information over time, and in the sense

of employing formal machine learning algorithms. Agents in a realistic scenario will

often have to start out with no knowiedge (or sparse and inaccurate knowledge) of

their environment or the other agents in the system, and will be required to learn

about these elements over time. Despite the commonality of learning as a system

component, however, there are relatively few studies that have learning as the primary

focus.

Chalkiadakis and Boutilier 12004] have focused on Bayesian reinforcement learning

as a tool to handle uncertainty regarding the abilities of other agents. They argue

that existing coalition formation approaches require a significant amount of a priori
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knowledge about other agents in the system in order for the algorithm to be successful

(also noted in the previous section). It would be more realistic to assume that agents

have little information about others before a task begins, and what information they

do have Ís likely to be inaccurate. Thus, they propose a Bayesian reinforcement

learning scheme to combat this uncertainty inherent in a realistic scenario.

The learning algorithm assumes that the system is comprised of a set of agents,

each with its own abilities. Each agent has a set of beliefs that represent its current

estimate of the abilities of others. The model calculates the value of a coalition by

estimating the sum of the rewards of each potential action by the coalition, given the

agent's current set of beliefs about the coalition members. It then uses calculations

of expected payoffs to suggest changes to the existing coalition structure among the

agents. This scheme results in each agent proposing what it feeis is the optimal

coalition structure at each time cycle and the action that the coalition should take,

based on its uncertain beliefs at the time.

Chalkiadakis and Boutilier's agents then apply a Bayesian reinforcement learning

algorithm to attempt to reduce the uncertainty about beliefs in the abilities of others.

This is done through repeated coalition formation - agents propose their current belief

as to the optimal coalition structure and/or the action that should be taken. The

agents vote on the proposed structure and the action to take, and if all agents in the

coalition agree, the structure is adopted and the action is taken. A new system state

results from the action, and payoffs are generated. Agents observe the new system

state and the generated payoffs and compare them to the estimated payoffs that were

used when proposing the coalition structure and the action to take. Based on the
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accuracy of their estimates and the generated payoffs, the uncertainties in their beliefs

are updated. The entire process then begins again, with new coalition structures and

actions being proposed and voted on by the coalition members.

Chalkiadakis and Boutilier evaluate their coalition formation approach using a

small number of agents (3 in one experiment and 5 in another). The agents were

evaluated to determine if they could correctly learn the abilities of the other agents in

the system, and converge on the optimal set of coalitions (referred to as the Bayesian

core) given the tasks provided. Their evaluation was reasonably successful - the

generated coalition structures converged to the optimal structure in between half and

two-thirds of the cases.

This Bayesian reinforcement learning approach has strong applicability to realistic

applications. Chalkiadakis and Boutilier realize that agents in a realistic system are

likely to be heterogeneous and with no significant prior knowledge about other agents

in the system. However, their scheme still requires accurate estimation of future

actions by a coalition in order to estimate coalition value. Without knowledge of

rewards and the ability to estimate coalition value, the algorithm runs into difficulties

calculating optimal coalition structures. ln addition, their evaluation used a very

small number of agents - it remains to be determined if this approach will scale to

tens or hundreds of agents.

Sun and Sessions [2000] have also utilized reinforcement learning, in this case in

a bidding algorithm for coalition formation. In their approach, agents are working

together in a team, to accomplish a single task. Each agent is represented by two

modules - the Q module, which selects actions at each time cycle, and the CQ module,
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which determines if the agent should relinquish control of the system. Only one agent

is making decisions for the team at a time, and the agent's CQ module must determine

if it is more beneficial to continue to take actions and observe the results, or if it would

be more beneficial to the team if another agent were to take control and begin taking

action.

Every time cycle, the CQ module of the agent that currently has control of the

team determines if it will take action during this time cycle. If so, the e module

determines the action to take, the action is performed, and the resulting state is

observed. The active agent receives reinforcement based on its action, which is applied

to both the Q and CQ modules. The cycle then continues.

Once the CQ module of the active agent determines that it would be beneficial to

relinquish control and allow another agent to take action, a bidding process begins

among all the other agents. An agent observes the current state, and if it feels it

knows what to do in such a state, it will bid highly to take control. If an agent

does not recognize the current state, then it will not bid highly and wait for a more

recognized state.

Sun and Sessions's experimental domain is a set of mazes through which the agents

must travel. In these mazes, many of the states (or locations in the maøe) appear to

be identical' Agents must learn that states that appear identical represent difierent

places in the maze. This learning is based on the actions and observations of the

other agents on the team.

Their approach provides reasonable performance but assumes that the coalition

structures are defined before the system begins. That is, the agents coordinating
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amongst themselves are part of a single coalition, pre-defined before the system begins

to execute. The reinforcement learning algorithm allows the agents to determine the

abilities and location of each other in order to complete the given tasks.

Anderson et al. [2004] have applied reinforcement learning and coalition formation

to the domain of robotic soccer. In their work, agents are part of a robotic soccer team

where each agent has differing abilities, and no agent begins with an understanding

of each other's abilities. They postulate that informal, dynamic coalitions within

a team of soccer agents will allow "good" agents to realize that they can work well

together, and exclude the "bad" agents from having a significant impact on the team's

performance. This mirrors quite well the approach of human soccer teams, especially

in situations like children's sports, where there is a significant diversity in player skill.

Poor players will be excluded while the skilled players play mostly among themselves.

Anderson et al. use the Qlearning approach [Sutton and Barto, 1gg8] to have

the agents learn estimates of the skill of other players through observing episodes of

behaviour. This allows the development of the reputation of observed agents over

time. They also allow an agent's reputation to be unaflected by occasional errors in

judgment or poor decisions. Consistently repeated errors, however, will eventually

damage an agent's reputation. They then introduce a simple, informal coalition

formation technique to allow the agents to decide from whom to learn. By limiting

learning to only the good agents, and avoiding reinforcement of poor habits from the

bad agents, the overall performance of the system improves significantly.

This research provides an interesting approach, using coalition formation to con-

trol the direction of reinforcement learning. However, it has only been applied to
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smalì numbers of agents, such as a single soccer team, so the scalability of this ap-

proach has not been demonstrated. Coalitions in this approach are implicit - each

agent has its own idea of the abilities of others, and while some of that information is

shared between agents, this is only done to facilitate learning. In addition, the agents

in this work are not self-interested - all agents have the same goal, to put the ball in

the opposing net. There are no conflicting goals to consider - the only conflict is the

determination of the action to take that will move the team closer to its collective

goal.

2.4 Coalition Formation and the Electronic Mar-

ketplace

In addition to the approaches outlined in the previous sections, which focused on

a particular aspect of the coalition formation process (e.g. learning, searching), there

have been many other proposed approaches that have been evaluated in numerous

domains. There have been a significant number of coalition formation approaches

that have focused on the electronic marketplace.

The electronic marketplace is a domain in which buyer agents attempt to purchase

goods or information from seller agents. Typically, buyer agents can benefit from

coalition formation because the purchase of larger quantities of items from a seller

means that the seller can provide a lower price per item (e.g. wholesale purchasing)

[Tsvetovat and Sycara, 2000]. Seller agents can also benefit from coalition formation

approaches - a group of seller agents will be able to sell to more buyer agents than
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a single seller agent [Yamamoto and Sycara, 2001]. In these types of approaches,

coalitions are viable if the cost of maintaining the coalition is less than the discount

received by buying large quantities at reduced prices. I have chosen to discuss these

electronic marketplace approaches together, as they share many of the same concepts

and use much of the same terminology.

For example, the coalition formation approach of Yamamoto and Sycara [2001] is

concerned with large groups of buyers, such as might be found on commercial web

sites. They correctly note that existing coalition formation schemes cannot handle

extremely large groups of agents due to their computational complexity.

Their domain is a reverse auction system where buyers group together and pool

their demand, and sellers bid discounted prices to the groups of buyers. In this

domain, buyer agents create groups based on a particular product category (e.g.

cameras). Anyone wishing to purchase an item in the specified category becomes part

of the buyer group for that category, and then can post the items they are interested

in. Postings can be made as single or multiple items, as well as OR postings - an

agent can say that they would like to buy item A for price X OR item B for price Y.

Once all buyer agents have made their postings, a leader agent (simply assigned

by the system in the described implementation, but open to future work for leader

elections) conducts an auction with the seller agents to get the best price for the

quantity desired. Once the auction is closed, the leader agent splits the buyer group

into coalitions, assigns one or more selling agents to each coalition, and calculates

the price that each buyer will pay. If other buyer groups for the same category have

secured a lower price for the same item, then the leader agent will tell the coalition
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to join another buyer group to get a better price.

The core of the system is the way that the leader agent of the buyer group parti-

tions the group into coalitions. Yamamoto and Sycara use set theory to outline their

algorithm, which is summarized by simply maximizing the utility of the largest and

most valuable coalition first, then the next largest and most valuable, etc. until alÌ

coalitions have been formed.

Yamamoto and Sycara's algorithm is a good approach for large-scale marketplace

domains, as it can handle large numbers of buyer and seller agents. It would work

well on an internet commerce site where significant numbers of transactions were

taking place. However, it assumes that coalitions only exist for a single transaction,

and that agents only have a single goal (to purchase or sell goods of a particular

category). In addition, there is no heterogeneity in agent abilities. These factors

make this approach unsuitable to realistic scenarios.

Lerman and Shehory [2000] have proposed another electronic market approach to

coalÍtion formation. Their approach is also intended to scale to thousands of agents,

and is intended for internet-based marketplaces.

In order to keep complexity down and allow for scalability, their approach uses a

very simple buyer agent model. In this model, implicit coalitions arise as emergent

behaviour from a simple set of rules for each buyer, rather than have explicitly created

coalitions. This simple model requires some relatively strict assumptions. All agents

in the system are homogeneous - they have a specifrc product that they continually

purchase, and they follow the same coalition formation strategy. Their encounters

with other agents are random, and their strategy is completely driven by conditions
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local to their environment - no learning or history is used in making decisions. Once

an agent is part of a coalition, it may leave the coalition with a pre-defined probability

- this is a random act and is not a decision made by the agent. Lerman and Shehory

have also placed a maximum limit on the size of a coalition, reasoning that selling

agents have physical limits of the amount of product that they can selÌ, so if every

agent in the system were to purchase from a single seller, it would not be able to

fulfill the order.

The system works by starting an "order-placing" cycle that remains open for a

period of time. During this cycle, agents are provided random encounters with other

agents or coalitions. The agent evaluates encounter in turn, deciding to stay with the

coalition (or form a new one with another single agent) by placing an order for its

product. At any time, it can withdraw this order, leaving the coalition and beginning

its search for another one.

Once the order-placing cycle is complete, the agents have their placed orders

filled by the marketplace, and the price the agent pays is based on the size of the

coalition that it has joined. Another order-placing cycle begins, in which the agent

can withdraw its order and change coalitions, or remain where it is.

Lerman and Shehory present some interesting results. They find that while there

are some small utility gains made when no coalition detachment is allowed (i.e. once

agents choose a group, they remain there), introducing even a tiny detachment rate

(..S. a 10-5 probability that an agent will leave its current coaìition) more than

doubles the overall utility achieved in the system. However, the higher the detachment

rate, the longer the system takes to stabilize, even though the utility remains high.

31



32 Chapter 2: Related Literature

As with other marketplace implementations, the restrictions placed on the agents

work well for the domain in question, but cause significant problems when applied to

other, more realistic domains. Agents are restricted to a single coalition, have only a

single goal to pursue and display no heterogeneity - all agents behave in the same way.

In this work, these restrictions were conscious choices made to increase the scalability

of the approach by keeping the agent model simple. Even though these restrictions

improve scalability, however, they limit the approach's applicability to more complex

situations.

Tsvetovat and Sycara [2000] have also examined coalition formation as it relates

to the information marketplace. They outline two classes of coalition formation

approaches for an information marketplace - pre-negotiation approaches and post-

negotiation approaches. In a pre-negotiation approach, a single agent negotiates a

price with a buyer or seller. Once the price has been secured, it advertises this price

and invites other agents to join a coalition to receive the price. If the coalition ends

up being too large, then the agent could have negotiated a lower price due to more

quantity being purchased or sold. If the coalition ends up being too small, the buyer

or selier makes less profit on the deal and will be less inclined to deal with the nego-

tiating agent again. Thus, the pre-negotiation strategy carries significant risk due to

the uncertain coalition size when negotiating.

In the post-negotiation approach, the coalition is formed first, and then a single

agent does the negotiations for the group. This diminishes the uncertainty when

negotiating, but adds the additional complexity of trust in a leader, as well as the

entire leader election process. A collective negotiation strategy would also be possible,
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but has not been performed.

Ultimately, the applicability of this approach to realistic scenarios hinges on the

long-term nature of the coalitions. The research implies that the created coalitions

are only temporary, and exist for a single transaction before being disbanded. Agents

have only a single focus - buying or selling goods - and do not have conflicting goals

or decisions to make about joining multiple coalitions in a time cycle.

An interesting variation on coalitions is provided by Brooks and Durfee [Brooks

et al., 2000; Brooks and Durfee, 2002,20031. Their approach creates teams of agents

called congregations, specifically intended to model how humans organize themselves,

indicating that clubs, churches, marketplaces and departments can all be considered

types of congregations. Their distinction lies in the perceived formality of coalitions,

where every agent has a distinct role or specific types of tasks they are suited for. A

congregation, by contrast, is an informal structure where agents are loosely coupled,

and when aid is required from a congregation member, the requesting agent can search

for or look up an agent that might be helpful. Since congregating agents are expected

to have long lives, their roles and suitable tasks may change over time, leading to a

more fluid, dynamic group.

Brooks et al. [2000] present the following characteristics of congregations:

e Agents are individually rational and self-interested, but congregations do not

have "group rationality." The group as a whole is not concerned with rewards

that must be split among its members - any rewards that are generated are for

individual agents only.

o Agents may be part of many different congregations, and may join or leave any

ùù
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of them voluntarily at any time.

ø An agent's satisfaction with its membership in a congregation is dependent

upon the members of that congregation. If an agent does not have the ability

to achieve certain goals, it will prefer to congregate with those agents that help

it achieve those goals.

o An agent's existence is long-term, and therefore it will have repeated interac-

tions with other agents in the system. History is important here - these are not

transient relationships that have no subsequent value.

o There is a cost associated with searching for partners to interact with, as well as

to advertise the agent's own abilities and availability. One of the main functions

of congregations is to reduce the cost of finding suitable interaction partners.

In order to facilitate congregating among their agents, Brooks et al. create loc'i, or

places where agents can congregate. They also have additional agents, called labellers,

that place particular labels on loci in order to attract congregating agents to those

places. Agents are placed into "affinity groups" ',¡/here agents share characteristics

and preferences. The goal is to see if the agents will be able to find the members of

their affinity group by congregating in appropriately labelled loci.

Subsequent research [Brooks and Durfee, 2002] applies the concept of corrgrega-

tions to electronic markets. In this research, the loci become marketplaces where

agents congregate to buy and sell types of goods. Each agent has a price it is willing

to pay for goods, and certain preferences - it will pay more for types of goods it

prefers. Agents choose a marketplace, an auction is conducted for the buying and
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selling of goods, and then agents are free to remain in the marketplace they are in

(e.g. keep their current congregation) or change to another market.

This implementation has restricted the agents to a single congregation at a time -
if an agent is receiving good value, they will stay; if they are unhappy with their profit,

they will leave for another congregation. As well, agents have no real conflict in terms

of tasks to be performed - in both the affinity group domain and the marketplace

domain, the only required action causing any conflict is whether to remain in the

current congregation or try another one. In Brooks and Durfee [2003], they also

note that "the affinity group is a useful domain for studying congregating, but it

is considerably more simple than real-world problems." Congregations are useful

concepts, and approach the concept of a coalition that this thesis is exploring, but the

implementation remains restricted by assumptions that limit its realistic applications.

Breban and Vassileva [2001, 2002] have created a coalition formation approach that

is based on long-term coalitions and trust relationships between agents, rather than

local, temporary coalitions. They also focus on the electronic marketplace, but rather

than focus on the utility of the coalition or on maximizing individual interactions,

they turn to trust as a key factor in creating coalitions.

A key differentiator in their research is the inclusion of trust relationships between

agents. They have adopted a formal model of trust that essentially keeps a balance

of the interactions between two agents, much as Dutta and Sen [2003] have done

(discussed in Section 2.5). When two agents interact, each agent evaluates their

impression of the interaction. If the interaction is deemed a positive one, then the

trust balance kept by the agent is increased. If the interaction is negative, then the
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trust balance is reduced. The authors also add an inflation factor which discounts

past interactions in favour of more recent ones. This can be considered analogous to

a learning mechanism for determining the agents that have compatible beliefs to our

own.

The domain used by Breban and Vassileva is that of an information-trading mar-

ketplace, populated by both vendor (i.e. selling) agents and customer (i.e. buying)

agents. They assume that interactions between customer and vendor agents is pro-

vided by an outside party - a matchmaking agent, or some mechanism for exploring

the agent space of the system. In their coalition formation approach, there are two

phases to every interaction between two agents:

c Negotiation

o Coalition Reasoning

Once two agents begin an interaction, the negotiation phase begins. In this phase,

the customer and vendor attempt to agree on a price for the item being exchanged.

This interaction assumes that end users (for whom each of the agents is working)

have specified preferences for items, maximum/minimum prices for negotiations, etc.

These preferences are critical for evaluating the interaction once the transaction has

been completed, and can include such items as minimum price to sell/maximum

price to buy a particular item, time constraints for executing the transaction, the

importance of money to the agent's user, risk factors, etc.

At the end of the negotiation phase, a price is agreed upon. This price may

then be discounted if the vendor and customer agents are part of the same coalition.
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This compìetes the transaction between the two agents, who now (both customer

and vendor) evaluate the interaction from their own perspective. A transaction is

classified as a rejection (and therefore a negative experience) if a deal could not be

reached between the buying and selling agent. A rejection occurs when the user

preferences of the customer and vendor agents reflect some incompatibility between

their respective users, and indicate a lower likelihood that agents representing these

two users will interact successfully in the future. A successful transaction, on the

other hand, translates into a positive experience.

The agents take their evaluations of the interaction and update their trust balances

in each other, applying the discount factor for previous encounters so that more recent

encounters hold more weight than encounters from long ago.

Once both the agents' trust relationships have been updated, the agents then

proceed individually to the coalition reasoning phase. In this phase, the agent makes

a decision to either change coalitions or remain in the current coalition. In order

to do this, the agent must first classify all its current trust relationships, and order

them from most to least trusted. Once this ordering has occurred, the agent can then

update its current coalition status based on the results.

Breban and Vassileva present three strategies for performing this coalition update:

ø ind: individually oriented strategy in which the agent will always prefer to be

in the same coalition with the single agent in whom in has the most trust.

soc-l: socially oriented strategy in which the agent will always prefer to be in

the coalition with which it has the largest summative trust value for all of its

member agents.

Õl
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ø soc?: socially oriented strategy in whích the agent will always prefer to be in the

coalition with which it has the most positive trust values for all of its member

agents.

The agent ensures it is in the correct coalition (according to the strategy it is

assigned) by either joining an existing coalition or forming a new one. Once the

coalition reasoning phase is complete, the agents are given new agents with which to

interact, and the cycle begins anew.

Breban and Vassileva ran three separate experimental setups - a si,mple setup in

which there were no additional factors other than what has been described, a costs

setup, where agents must pay a cost for leaving a coalition, and a prob setup, in

which a customer agent has a higher chance of interacting with a vendor agent from

its current coalition than with a vendor agent from outside its coalition.

The results from the experimentation show that in most cases, the number of

coalitions increases quickly, then decreases as coalitions begin to merge. In many

cases, the number of coalitions decreased to 1, which provides global utility gain for

the customers, but means that all vendors are selling at a discount, which is not

a sustainable state. The authors conclude that lhe soc? strategy is the preferred

strategy for both system stability and individual gain, followed by the i,nd stralegy.

This coalition formation approach from Breban and Vassileva, along with Brooks

and Durfee's congregating modei, provides significant steps towards creating a real-

istic model of coalition formation. Coalitions are now being considered as long-term

groups, rather than transient relationships forgotten once the next time cycle begins.

Agents are learning about the preferences and abilities of other agents in the system,
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and are using this knowledge to drive the formation of coalitions that are mutually

beneficial.

However, these approaches still have signiflcant limitations with regards to appli-

cability in domains that exhibit realistic characteristics. In Breban and Vassileva's

model, agents have no conflicting goals or decisions to make about how to achieve

them - they are simply purchasing items. Agents are also restricted to a single coali-

tion * which works in this domain, since the agents are also restricted to a single goal.

Once multiple, potentially conflicting goals are introduced, participation in multiple

coalitions helps significantly. Another assumption made in Breban and Vassileva's

work is the global availability of coalition memberships. Without the knowledge

of all the coalitions in the system and their memberships, their coalition formation

strategies are not possible, as agents will not know in which coalitions their most

trusted agents reside. In a realistic scenario, it is rare that memberships are made

public - the managers of the coalition may know who is part of the group, but agents

at large will likely have no idea.

These electronic marketplace implementations have made strides in recent years

towards a more realistic approach. Recent implementations have begun to move

towards more long-term coalitions that are mutually beneficial to both buyers and

sellers. However, as outlined in this section, there are still steps to be taken before

these approaches can be implemented in a realistic scenario.
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2.5 Dutta and Sen's Partnership Implementation

In order to evaluate the coalition formation approach proposed in Chapter 3, a

baseline implementation is needed. This approach should reflect the most realistic

approach available that is implementable in the chosen experimental domain.

For this purpose, I have chosen the partnership formation approach described

by Dutta and Sen [2003]. This approach allows for long-term partnerships between

agents, as well as learning about the abilities of others. Agents are heterogeneous,

and have expertise in a given type of task that others may not possess. They interact

with reciprocity - help rendered by one agent to another increases the likelihood

of the second agent returning the favour in the future. The results show that such

reciprocative behaviour overcomes selfishness in their chosen domain. These are all

qualities that realistic approaches should exhibit.

In Dutta and Sen's approach, agents are assigned tasks of different types. Each

agent is given an "expertise" in a particular task type, meaning that it can complete

tasks of that type faster and with higher quality than a non-expert couid. Every task

in the system has an associated cost, which is proportional to the time that it takes

to complete the task, and inversely proportional to the quality of the completion of

the task.

Their method of determining if an agent will help another is based on probabilistic

reciprocity. When an agent requests assistance from another agent that it has never

met before, the probability of the other agent agreeing is 50%. As further interac-

tions between these two agents occur, the agent requesting assistance will remember

interactions where it has received a savings, and maintain a positive balance with the
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assisting agent. This increases the likelihood that the asking agent will reciprocate in

the future when help is requested from it. Thus, the more often agent A helps agent

B and provides a savings to agent B, the more likely that agent B will help agent A

when asked. Conversely, the assisting agent incurs a cost when providing aid to the

asking agent. This cost affects the saving balance being maintained by the helping

agent. If the requesting agent continues to ask for help and does not provide any aid

in return when asked, then the helping agent's chances of continuing to provide help

are decreased.

This reciprocal relationship is defined by the equation:

Pr(i,,k, ¡¡ : cF.-B*cf,on-oeu
r+erp r

(2.1)

where:

" Cfi is the cost incurred by agent k to complete task 7 for agent i

e p is a term used to set the initial cost that an agent is willing to incur when a

previously unknown agent has requested help

" Ct n is the average cost of all tasks performed by agent k

ø o n is the balance of past help that agent k currently has with agent i

o ¡ is a term used to set the shape of the sigmoidal probability curve

When the simulation begins, agents are assigned a set number of tasks - the same

number of tasks for each agent. Agents then have the opportunity to ask each other

for help. An agent will only agree to help tf a cooperation possibi,lity exists - that is,

4I
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when the cost of the helping agent completing the task is less than the cost of the

asking agent.

In Dutta and Sen's approach, agents begin in an exploratory mode, in which they

do not attempt to choose the best agent from which to request assistance - they simply

ask agents at random that they have not yet encountered, ensuring that they get a

reasonable understanding of all agents in the system. Without accurate experience

on which to draw, it would not be possible to make informed decisions about which

agent can help with a particular task. Thus, the implementation attempts to ensure

that all agents interact with all other agents at least once for each task type in the

system, to have some gauge of the expertise of all the other agents. This exploratory

phase is similar to the exploration vs. exploitation balance that is common in machine

learning [Sutton and Barto, 1998].

The exploratory phase ends once each agent has completed a specific number of

tasks. Agents then determine which agent to ask for help by sorting the agents they

have interacted with in descending order of cost for the given task type. Each agent

will choose that agent with which it has had the most successful interaction in the

past. If this agent does not agree to provide aid, then it will move to the next agent

on the list, and so on, until either all agents have been asked and have turned the

agent down, or one of the agents accepts. If no agent accepts, then the agent will

perform the task on its own.

In order to accurately determine if a cooperation possibility edsts for a given

task, agents must be able to estimate the cost of completing the task, both on its own

and with aid from a speciflc agent. This is accomplished via a simple reinforcement
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learning scheme. After an agent completes a particular task of a specified type for

a requestor, the requestor updates its time and quality estimates for that particular

agent and task type. This will allow the requestor to more accurately determine the

expertise of that agent in future.

An interesting wrinkle in this approach is that agents are not explicitly aware

of their own expertise - they also learn which tasks they are good at by completing

various tasks themselves and seeing which tasks they can complete faster and of higher

quality.

If a cooperation possibility exists, then the helping agent uses Equation 2.1 to

determine if it will render aid when asked. Initially, agents will have an even chance

of helping, since the OP¿ term will be zero. The more an agent owes to another agent,

the larger the OP¿ term becomes, increasing the probability that the agent wiìl assist

the other agent when asked. If the agent has already offered significant assistance

without receiving savings in return, then the OP¿term will be smalìer or negative,

decreasing the probability of aid being rendered.

One additional note on Dutta and Sen's approach - reciprocative agents can re-

quest third party opinions on an agent asking them for assistance. Thus, if agent A

asks agent B for help with a task, agent B can in turn ask agents C, D, E and F

about Agent A, to gauge their opinions of Agent A before responding. The sum of

the opinions of agents C, D, E and F would comprise Lhe OP" term in Equation 2.1.

When evaluating their approach, Dutta and Sen employ two different types of

agents - a reciprocative agent (as outlined above) and a selfish agent. A seifish agent

will not help other agents - it will only ask for help from others. If asked about
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another agent, a selfish agent will negate its opinion of that agént if the opinion is

positive. Thus, selfish agents deliberately damage the reputation of helpful agents,

while reporting truthfully on non-helpful agents.

The experiments run by Dutta and Sen first examine the relative performance of

reciprocative and selfish agents, and show that selfish agents are outperformed signifi-

cantly by reciprocative agents as the number of tasks increases. For small numbers of

tasks (less than 300), selfish agents are able to complete their tasks more quickly (by

taking advantage of helpful agents while not providing aid to anyone). However, as the

number of tasks increases, reciprocative agents learn about the tendencies of selfish

agents and actively avoid them, resulting in help being provided and task times being

reduced. Similar results are obtained when examining the quality of performance -
selfish agents exhibit poor quality, while reciprocative agents' quality increases with

an increase in the number of tasks.

Another interesting result shows that agents with complementary expertise exhibit

greater cost savings when interacting with each other than agents with matching

expertise. This makes sense - if agent A is expert in task type A, it makes more sense

for it to receive help on tasks of type B (in which agent A does not have expertise)

than it would for tasks of type A. Thus, complementary agents work well together in

this approach.

Dutta and Sen's reciprocative model provides many of the pieces of realistic ap-

plications. Agents can be part of multiple partnerships, and are heterogeneous - each

agent has a differing expertise. Each agent has multiple goals to complete, of varying

types, and learns about the abilities of other agents over time. However, there are still
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items missing from their approach. While agents do have multiple goals of differing

types, there is no conflict between the goals. An agent must eventually complete

them all, and there is no penalty for putting one goal aside to complete another. In

addition, there is no explicit coalition formation in Dutta and Sen's approach. Agents

use implicit coalitions to determine the likelihood of cooperation - an agent that has

a high opinion of another will be more likely to interact with that agent than another

agent of which it has a lower opinion.

However, Dutta and Sen's approach is the most realistic of the evaluated ap-

proaches, in that it avoids more of the restrictive assumptions outlined in Chapter

1 than others. Even though this approach was designed for the accomplishment of

abstract tasks with no element of space, it has been adapted to include a spatial

element, showing further versatility [McGrath et al., 2005]. For these reasons, I have

chosen the Dutta and Sen approach as a baseline evaluation for my proposed coali-

tion formation approach. The implementation and adaptation of this approach in my

chosen domain can be found in Chapter 3.

2.6 Other Implementations

In addition to the other works described in this chapter, there have also been a

small number of efforts involving the implementation of coalition formation strategies

in physical environments. These are promising results as they show that coalition

formation approaches can be successful in real-world environments. This section

outlines these implementations.
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Pechoucek, Marik, and Stepankova [2000] have developed a multi-agent system

called ProPlanT (Production Planning Tool) that supports the production planning

process at a manufacturing plant that produces television transmitters for a Czech Re-

public television station. This plant has no assembly line and no formal organization

- they have a number of independent projects that are assembled according to unique

documentation. There is little planning or simulation built into the manufacturing

process.

The ProPlanT system provides plans for producing specified products by using

a collaborative set of agents in a structured community. There are several different

agent types, responsible for various tasks in the environment. The ProPlanT system

maintains three separate knowledge bases about the agents in the system:

c Cooperator base: stores permanent knowledge about the collaborating agents'

abilities

c State base: stores transient information about agents' current agendas and

loads

o Task base: stores a set of pre-prepared plans on how to decompose and delegate

potential requirements

Agents form coalitions based on the knowledge of the task at hand and the stored

knowledge in the various knowledge bases. These coalitions are intended to balance

out the load of the various tasks being completed at the same time by the system,

and to ensure that the correct agents are available to complete subtasks as they come

up.
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While this system is quite efficient and effective in their manufacturing domain, it

requires a significant amount of a priori knowledge about the agents in the system,

and requires other, non-coalition agents to monitor the performance of the system and

update the knowledge base as tasks get completed. Agents are designed for a single

type of task and cannot complete other types of tasks - those must be deiegated to

other agents. These assumptions would not hold in a scenario filled with uncertainty

and varying, conflicting tasks.

Pechoucek, Marik, and Barta [2002) have implemented a separate system called

CPlanT that has been developed for humanitarian purposes, to provide planning for

relief operations to war-stricken areas. The agents in their system represent phys-

ical resources, humanitarian organizations and places in need of aid. Each agent

has characteristics that provide details about the agent: their location, abilities or

requirements, and constraints on mobility, for example.

The system then organizes these agents into coalitions. This is done according

to the resources required by a location in need of aid, and by the humanitarian

organization that can best provide those resources. The coalition becomes the plan

for the method by which the agents should work together to provide aid to the affiicted

location. Other inputs for this process are existing alliances (certain aid groups have

pledged to work together and share resources where possible) and barriers that inhibit

communication between agents.

The research again requires a significant amount of up-front knowledge about

the system in order to work accurately. As well, agents of a particular type are

all essentially homogeneous - when groups are negotiating for resources, leaders re-
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sponsible for the negotiations are simply elected randomly from the group, since all

agents have the same capabilities. These constraints prevent the system from being

a general-purpose approach to coalition formation for realistic problems.

Contreras and Wu [1999] have built a coalition formation system to aid in the plan-

ning of transmission line expansion in a deregulated electricity industry. They define

three types of agents in their system: a generator agent, a load agent and a third-party

agent. Generator agents provide electricity to the system. Load agents represent the

demand for electricity in the system. Third-party agents are independent companies

that own transmission lines required to get electricity to the demanding areas.

In their implementation, a coalition must consist of at least one agent of each of

the three types - otherwise, a key element is missing that would prevent transmission

of electricity. Each agent has a cost associated with its activity, and the coaiitions are

calculated using game-theoretical concepts to minimize the cost while still ensuring

that all electricity demands are met. This cost allocation is at the heart of their work.

The approach is tailored speciflcally to cost-allocation domains where agents at-

tempt to minimize costs while maximizing throughput. However, the many con-

straints placed on the agent and the system (such as the specific agent types and

requirements for coalitions and the pre-knowledge of all costs to perform the tasks)

limits the applicability of the approach.

A final implementation is worth mentioning because it is in quite a different vein

than the others. Mason et al. [2004] have created a multi-agent system using coalition

formation to produce drawings in the style of the artist Piet Mondriaan. This abstract

painter produced grid-style paintings with segments of the grid filled in different
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colours. The system consists of agents that have specific rules for how the agent

expresses itself artistically. This may be by creating lines on a canvas, or filling

certain segments of the canvas with a particular colour.

Agents form coalitions as they discover that they may share certain goals with

other agents, and that by helping each other they might increase their own internal

"happiness". For example, a "line coalition" can be formed by agents that separately

understand about line width, orientation and offsets from other lines. "Fill coalitions"

are formed when two line coalitions merge with a colour agent, putting that colour

into the area bordered by the two line coalitions. The system continues until all agents

have merged into the "grand coalition" called the gestalt The resulting picture is then

complete, unless the artist decides to break certain coaiitions and cause the system

to continue drawing.

\Mhile the coalition formation approach here is obviously tailored to the environ-

ment, the authors feel it can be applied to other artistic domains such as writing and

music, and potentially other domains. These approaches do not carry the complexity

of other more realistic approaches, but certainly show that coalition formation can

be applied to many different domains with some creativity.

All of these physical implementations use coalition formation to varying degrees.

However, the domains to which these approaches have been applied all exhibit a nar-

row focus and contain restrictions that allow the chosen coalition formation strategies

to work adequately.
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2.7 Summary

This chapter has summarized the current state of coalition formation research,

and has illustrated that many of the existing approaches make significant assump-

tions or place constraints on their domains that make the approaches unfeasible for

realistic scenarios. The next chapter outlines the new coalition formation approach

I have developed in order to remove these restrictive assumptions, while keeping the

approach as generally applicable as possible.



Chapter 3

Realistic Coalition Formation

The previous chapter outlined the most significant recent work in coalition for-

mation. Of these, only a small number of approaches had even some of the necessary

characteristics to be applicable in a more realistic scenario. This chapter proposes a

new coalition formation mechanism that avoids the assumptions and constraints that

have held back previous methods from being adopted in realistic applications.

I will first outline the experimental domain for the evaluation of my approach,

which is based on the package delivery domain described in Sen and Dutta [2002], in

order that the coalition formation approach can be described with examples. I will

then discuss the agent model (called the uandeVijsel agentt) and the coalition for-

mation approach that I have designed, followed by its implementation in the package

delivery domain. I will then describe my implementation and adaptation of Dutta

and Sen's partnership formation algorithm in this domain (referred to here as the

Dutta/Sen agent), and illustrate how it will be used as a baseline for evaluation pur-

poses. Finally, I will provide a brief description of the implementation of the Coalition
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Formation Simulator that I have constructed as part of this work.

3.1 Package Delivery Domain

The domain for this research is an adaptation of the package delivery domain

used by Sen and Dutta 12002]. This particular paper does not deal with coalition

formation explicitly, but is the precursor to the research discussed in Section 2.5 and

introduces a multi-agent domain to allow the display of reciprocity among agents

through evolving cooperation.

Sen and Dutta's package delivery domain is represented as a central depot and a

series of radial fins. Agents are responsible for picking up packages from the depot,

and delivering them to addresses located on one of the radial fins, at a particular

distance from the depot (see Figure 3.1).

Agents begin in the central depot, and are assigned a specific number of packages

to deliver. They must travel along the radial fins to the specified delivery address

of the package, and cannot move between fins - once on a fin, they can only move

toward or av/ay from the package depot. Once they arrive at the delivery address,

they deliver the package and return to the package depot. Sen and Dutta calculate

the cost of delivering a package as twice the distance between the depot and the

delivery address, since the agent will simply travel up the fin to deliver the package,

and then travel back.
lMost coalition formation or partnering approaches are unnamed. Since I have been referring to

those approaches by author name, I will continue to do so for my own.
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Package Delivery Addresses

Figure 3.1: Sen and Dutta's package delivery domain

When agents are at the package depot, they can ask other agents for help delivering

a package addressed to a location on a particular fin, as long as the other agent will

be travelling along the same fin. Agents can only carry their own package plus one

additional package, and they incur an additional unit of cost for each unit travelled

carrying two packages.

I have extended Sen and Dutta's package delivery domain for this research in

several important wâys, in order to make it more reflective of the realistic conditions

outlined in Chapter 1. The intent is to simulate a courier service that bears some
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of the characteristics of a real world environment from the standpoint of coalition

formation, with agents acting as package couriers between addresses. One of the

main points in my definition of a realistic scenario is the requirement for agents to

have multiple, potentially conflicting goals. This requires supplying the agent with

decisions to make, forcing it to determine which of several actions is potentially the

most beneficial. To support this requirement, I have allowed agents to be assigned

multiple packages upon arrival at a depot. These packages can have delivery addresses

in opposite directions, providing the agent with conflicting possibilities about what

action to take next. In order to implement this realistically, agents must have a

greater freedom of movement through their environment. For this reason, I have

moved away from the radial fin topology of Sen and Dutta and towards a grid-based

implementation. Agents are allowed to move horizontally and vertically on the grid,

but not diagonally.

I have also allowed for a variable number of package depots to be scattered

throughout the grid. Thus, when packages are assigned to an agent, the delivery

address will be another package depot somewhere else on the grid. Upon delivery of

the package, the agent may receive or select additional packages for delivery to other

depots (using the policy for package assignment that has been determined by the

implementation of the agent model). It must then make the determination of which

of its current packages it would be most advantageous to deliver next. When the

grid is first created, depots will be placed randomly. However, there will be a speci-

fied minimum distance between the depots, to avoid clustering depots in a particular

section of the grid.
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Each package will have an initial payoff assigned to it, and the actual payoff of

the package will diminish by one unit for every time cycle that passes. The initial

payoff for a packaEe, p¿n¿t, is calculated as:

pin¿t: di,st(s,d) x a

where:

ø s is the grid coordinate of the source depot for the package p

ø d, is the grid coordinate of the destination depot for the package p

ø di,st is a function that calculates the Manhattan distance between two coordi-

nates

o a is the system payoff factor

The initial payoff should reflect the amount of effort that it will take to deliver

this package. Since the effort to deliver a package is directly related to the distance

an agent must travel in order to complete that delivery, the initial payoff is thus

a function of the distance between the source and destination coordinates for the

package.

The payoff factor, a, is an additional factor to increase the overall payoff of the

packages. This multiplication factor is required because a factor of one does not

ultimately result in a positive payoff due to the diminishing return over time. With a

factor of one, moving one unit of distance during each time cycle matches the payoff

decrease precisely, ultimately making the payoff zero for every delivery. In addition,

if the agent is carrying multiple packages at once, any other packages the agent was
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carrying would then provide a negative payoff. Thus, an additional factor is required

in order to provide reasonable positive payoffs for package deliveries.

a should be set so that, regardless of the grid size, the agents are receiving good

positive payoffs for packages delivered promptly, and reasonable negative payoffs for

packages that are not delivered immediately. In order for this to occur, I have set the

value of a to be a function of the grid dimensions. Via experimentation, I have found

that setting the payoff factor to the sum of the grid X and Y dimensions multiplied

by a factor of three, provides reasonable payoff values for package deliveries.

If a package is not delivered to a depot, for whatever reason (as we will see in

Section 3.2,it' is possible to lose a package), a penalty is assigned. This is intended to

penalize the agent for non-delivery of the package, but should not completely wipe out

an agent's currency unless it happens repeatedly. In an actual courier scenario, the

loss of a single package for an experienced agent would likely mean a warning or other

such sanction (perhaps paying for the replacement of the package). Repeated loss of

packages, however, mighi be enough to warrant the loss of a job. In this simulation,

repeated loss of packages will simpiy mean the agent's performance statistics will be

lowered, likely causing the agent to be unwelcome in any group.

When a package is delivered to a depot by an agent, the payoff for that package

at the time of delivery is always assigned to the agent that originally received the

package for delivery) even if the original agent was not the one to deliver it (due

to receiving aid from other agents). The domain allows for a package to be passed

on to multiple agents if desired, although neither the vandeVijsel agent model (see

Section 3.2) nor the Dutta/Sen agent model (see Section 3.3) allows this. The original
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agent receives notice from the simulation that their package was delivered by another

agent, allowing the original agent to track the aid rendered by the delivering agent.

If so desired, the original agent can then provide some remuneration to the delivering

agent, although this is not required by the domain itself.

When the simulation begins, agents are randomly placed on the grid. During each

time cycle, the simulation progresses through three separate phases:

ø Movement Phase

o Encounter Phase

o Coalition Maintenance Phase

During the movement phase, agents are required to decide in what direction they

will move during this particular time cycle, and inform the simulation of the coordi-

nate to which they are moving. The agents are free to use whatever information they

have at their disposal to make this decision. For details on how the vandeVijsel and

Dutta/Sen agents make this decision, refer to Sections 3.2.1 and 3.3.1, respectively.

Once the agents have made their decision, they relay that information to the simula-

tion and they are moved appropriately. Once the agents have moved locations, if they

happen to be occupying the same grid location as a package depot, then any packages

that are assigned to be delivered to that depot are removed from the agent's payload.

The simulation will then assign a random number of new packages to the agent. An

agent may receive between zero and three new packages from a depot during a given

iime cycle.
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During the encounter phase, agents are given a list of other agents that currently

occupy the same grid location as they do. This is how coalitions are formed in this

scenario * agents can only interact with other agents that they encounter on the grid,

although this could easily be changed to inform agents about others within a spe-

cific distance. During these encounters, agents can discuss joining existing coalitions,

forming new coalitions or receiving aid for any current packages being carried - in

short, the domain allows any communication between the agents that can be imple-

mented in the agent model. Again, for details of how the vandeVijsel and Dutta/Sen

agents handle the encounter phase, refer to Sections 3.2.2 and 3.3.2, respectively.

Finally, the coalition maintenance phase exists for any actions required by a coali-

tion that do not arise from direct encounters between agents. Certain agent models

may not require any additional processing outside of these parameters, while others

might. Coalitions have no direct physical presence on the grid (other than the indi-

vidual presences of their members), and yet there may be a requirement for activity

within a coalition, such as voting among members on an issue of interest. For exam-

ple, the vandeVijsel agent approach uses this phase to evaluate the performance of

each coalition's members, ensure that all members are performing as expected, and

remove any members that are not contributing to the coa.lition (see Section 3.2.3).

Once the three phases have been completed, the simulation updates certain statis-

tics reflecting what occurred during the previous time cycle (number of packages de-

Iivered / handed out, current time cycle etc.) and then either the next time cycle

begins or the simulation ends.

This domain provides enough richness to allow for significant agent experimenta-
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tion while allowing the more realistic issues in coalition formation outlined in Section

1.1 to be supported. The domain provides for multiple, potentially conflicting goals,

fulfilling part of the definition of a realistic scenario proposed in Chapter 1. The

remaining parts of this definition will be fulfilled by the agent model.

I will now provide details about the vandeVijsel agent model, and how it behaves

in the context of this domain.

3.2 The vandeVijsel Agent Model

The vandeVijsel agent model comprises an agent with realistic limitations and a

coalition formation approach that avoids many of the assumptions made in previous

approaches and domains that limit applicability to the real world.

The first issue that must be addressed is agent heterogeneity. In order for this

to be considered a realistic scenario, agents must differ in abilities. If all agents are

identical, then there is nothing to differentiate them, and so choosing partners for

coalitions becomes arbitrary.

To this end, I have put four separate attributes in the vandeVijsel agent model.

These attributes are assigned random values between 1 and 10 when an agent is

created, and they are unchanging throughout the lifetime of the agent. The four

attributes are:

c Speed: A high speed value means the agent will be able to move through ihe grid

at a faster rate than an agent with a low speed value. Since the courier business

is highly dependent on speed, this will prove to be an important attribute for a

vandeVijsel agent.
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o tust: An agent with a high trust value will be more likely to let other agents

help with their package delivery. An agent with a low trust value will be more

protective of its packages, preferring to deliver them itself.

ø Memory: An agent with a high memory value will retain a large portion of its

information, such as the locations of package depots (or any such key point in

its environment) and the packages it currently has to deliver. An agent with a

low memory value will occasionally forget the locations of package depots, and

will also occasionally lose packages, triggering the lost package penalty to be

assigned to the package's original agent.

e Honesty: An agent with a high honesty vaiue will always portray itself accu-

rately to other agents. An agent with a low honesty value will exaggerate its

own abilities, in order to gain membership into groups that would not normally

accept it as a member.

These attributes display two elements of agent heterogeneity. The first is hetero-

geneity in ability, represented by the speed and memory attributes. Low values for

these attributes will directly affect an agent's ability to complete their tasks. The

second element is heterogeneity in cooperation, represented by the honesty and trust

elements. These are almost like elements of an agent's personality - low values for

these attributes will affect an agent's ability to make groups and maintain relation-

ships. For these reasons, agent heterogeneity is a key factor when considering the

realism of the vandeVijsel agent model.

Since an actual courier would have physical limitations as to the number of pack-

ages he or she could carry, I have also implemented a maximum payload capacity
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for the vandeVijsel agent. I have set this value to 10. Agents carrying 10 packages

cannot accept any more packages for delivery until they have reduced their payioad,

either by delivering a package or by losing one due to forgetfulness. This limitation is

an improvement in realism over the Dutta and Sen [2003] approach, where agents can

perform one of their own tasks each time cycle, but could also accept and perform

many tasks from other agents in that time cycle.

The next few sections outline the behaviour of the vandeVijsel agent during each

of the three simulation phases.

3.2.L Movement Phase

During the movement phase, the simulation requires a decision from the agent

regarding its movement during this time cycle. The agent can move vertically and

horizontally, but not diagonally. It is important to note that the processing in the

movement phase is largely domain-dependent. If implemented in a different domain,

appropriate movement logic would need to be developed for that domain. How-

ever, the coalition formation logic (described in Section 3.2.2), is much more domain-

independent.

Before the vandeVijsel agent can decide about how it will move, however, it must

first take its speed attribute into account. The lower the speed attribute, the slower

the agent. This is implemented by restricting the movement of the agent based on its

speed attribute. I had originally simply chosen a random number between 1 and 10,

and allowed the agent to move if the speed attribute is greater than or equai to that

number. However, this resulted in too great a difference between agents with a speed
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attribute of 1 (who would only get to move I0To of the time) and agents with a speed

attribute of 10 (who would always get to move). As well, this seemed to go against

the courier scenario that I am attempting to model. It would not make sense to find

one courier that could deliver its packages 10 times faster than another. To remedy

this situation, I instead implemented a rule that allows the agent to be able to move

40% of the time, to never be allowed to move 20% of the time, a¡rd to use its speed

attribute to determine its movement 40% of the time. Thus, the agent generates a

random number between 1 and 20. 
^ 

result between 1 and 8 results in guaranteed

movement, and a result between 17 and 20 results in no movement. A result between

9 and 16 indicates another random number to be generated between 1 and 10, with

movement being allowed if the agent's speed attribute value is greater than or equal

to this second number. This allows for reasonable movement while still giving the

speed attribute a significant effect on an agent's ability.

The speed attribute determines the likelihood of movement during a particular

time cycle. However, since each agent is only able to travel one grid location during a

time cycle, the speed attribute ultimately determines the agent's movement rate over

a large number of time cycles. For example, an agent with a speed value of 10 will be

able to move during 80% of the time cycles (40% gtaranteed by the agent model, plus

the full 40% determined by the speed attribute). Over time, an agent with a speed

value of 10 (abie to move 80% of the time) will move 20To further over the same time

period than an agent with a speed value of 5 (able to move 60% of the time). Thus,

the speed attribute also determines the effective movement rate of the agent.

If the above rules have determined that the vandeVijsel agent cannot move during
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this time cycle, then nothing else happens during the movement phase - the agent

remains where it is and waits for the encounter phase to begin.

If the agent is allowed to move, however, then it must decide in which direction

to move. Since this is a self-interested agent, its movements should have the ultimate

goal of maximizing the payoffs that it will receive from the current set of packages

it is carrying. Thus, in order to determine the direction in which to move for this

time cycle, it must have selected a package to deliver. The agent does have some

information available to it - it knows the destination locations of all the packages in

its payload, and so it can estimate the payoff to be received from them. However, it

should be noted that these are only estimates, as it cannot guarantee that it will be

able to move on every time cycle, based on the rules outlined above.

In order to maximize the payoff for a single package, it could choose the package

that currently has the largest payoff, and deliver that one. However, this would simply

result in the agent delivering the package that is furthest away at each time cycle,

since package payoff is a function of effort required for delivery. This would mean the

agent turns down many of the easy payoffs that are closer, which cumulatively may

provide a larger payoff than the single package that is far away.

To take this into account, the agent instead chooses a package for delivery by

cycling through all the packages in its payload, and choosing the package that not

only has the maximum payoff, but maximizes the sum of the remaining packages'

payoffs if they were delivered from the package's destination point. In pseudocode:

for all packages p in agent's payload do

pay off : çurrentP ay off (p )
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for all packages q in agent's payload do

ifp#qthen

paAoff l: CurrentPayoff(q) - dist(p.src, p.dest) - dist(p.dest, q.dest)

end if

end for

if MarPayoff < payoff then

MarPayoff : paAoff

end if

end for

Select package with MarPayoff

The agent will then choose and remember the destination location of this package,

and travel towards that grid coordinate until it reaches it, or until some other factor

changes its payload (e.g. it loses a package or it hands off or receives a package from

another agent). It does not recalculate its destination at every time cycle, as things

should not change from one cycle to the next, unless it gains or loses packages.

It should be noted that this is not an algorithm that is guaranteed to optimize

payoffs over a set of packages - it is a heuristic approach that attempts to select

the best package based on the knowledge available at the time the decision is made.

When conditions change that may affect the decision that has been made (such as

a change in the current payload of packages) then the decision is revisited and the

algorithm is repeated.

There is an exception to the algorithm provided above. If an agent is carrying

a package for another agent, the carrier will choose delivery of thai package before
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selecting a package of its own. As I will describe in Section 3.2.7, an agent will

only accept a package from another agent if it is within 10 units from its current

destination. So, once the package the agent was delivering has been delivered, it

would not make sense to go off in a completely different direction without delivering

the other agent's package, since this location is in its vicinity. Thus, when choosing

a new package for delivery, an agent will give preference to another agent's package

since the delivery location should be nearby. If an agent is carrying multiple packages

for others, it will deliver them in order of proximity to its current location.

This covers the decision process that an agent uses when it has one or more

packages in its payload. If it currently has no packages to deliver, then it travels

to the nearest package depot that it has previously encountered (and remembered).

Note that an agent begins with no knowledge of the layout of its domain (e.g. the

Iocation of the package depots) - it must learn these locations over time. If an agent

currently has no memory of any package depots (due to forgetfulness, or to not having

encountered aty yet), then it has no information on which to base its decision, and so

it moves randomly. It has a 60% chance of moving in the same direction as it did the

previous time cycle, and a 10% chance of moving in any of the four directions. It will

continue to move randomly until it finds a package depot and receives packages to

deliver, or it encounters another agent, forms a coalition with the agent, and decides

to help the agent deliver a package. On the agent's very first move) it chooses one of

the four directions equally.

Once an agent has decided in which direction to move, it updates its own under-

standing of where it is on the grid. Once it does this, if it finds itself at a package
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depot, then it has several tasks to perform:

The agent must add the depot to its list of encountered depots, if it is not

already on the list

The agent cycles through its payload of packages, and delivers any packages

that are addressed to this depot

o The agent asks the depot for any new packages it can deliver, if it has room in

its payload

The package delivery process involves calculating the current payoff of the package,

which is given by the formula:

pcu,, : (di,st(s, d) x a) - (t¿ot¿r.r.¿ - torr¿en.a)

Thus, the current payoff is the initial payoff minus the time that it took to deliver

the package. This value is credited (or debited, if the payoff is negative) to the agent

that was originally assigned the package for delivery. If this is different than the agent

that performed the delivery, then this package is considered an assi,sted, package, since

the delivery agent was different from the agent originally given the package.

When an assisted package is delivered, additional updates are made to any coali-

tions shared by the two agents. This will be discussed further in the next section.

At the end of the movement phase, vandeVijsel agents may forget pieces of in-

formation that they have stored. The first item that may be forgotten is a package

that requires delivery. Since this occurs every time cycle, having even more than



Chapter 3: Reali,sti,c Coali.ti,on Formati,on

a slight chance of losing packages can have a monumental effect on an agent's cu-

mulative payoff. Also, forgetting to deliver a package that we have been assigned

should be a relatively rare event no matter how poor our memory is, since delivering

packages is the primary function of the agent. Thus, the system generates a random

number between 1 and 10000, and if (10 minus the agent's memory attribute) is less

than this value, then the agent will lose a package this time cycle. This allows for a

reasonable frequency of package loss without crippling an agent's payoff values. This

calculation provides agents with an extremely low memory attribute to lose a package

approximately once every 1000 time cycles.

Forgetting a package triggers the same process as delivering a package, except that

the forgotten package results in the lost package penalty instead of the regular payoff

for the package. It also triggers updates of the agent's statistics in any coalitions of

which it is a member.

In addition to forgetting a package, there is an additional effect of memory - the

loss of information about the location of package depots. In a realistic scenario, this

would occur more frequently than forgetting package delivery, especially if the agent

was in a large grid with a iarge number of depots. The system generates a random

number between 1 and 1000, and uses the same calculation as above to determine if

an agent will forget about a package depot. If an agent is to forget a depot, one is

removed from its list of depots at random.

This concludes the vandeVijsel agent processing for the movement phase. Agents

have now moved to their next location, delivered packages if possible, and any pro-

cessing as a result of poor memory has been done. The next section outlines what
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occurs during the encounter phase.

3.2.2 Encounter Phase

The encounter phase is the phase where the coalition formation process occurs.

Recall that during the encounter phase, agents are given a list of others that occupy

the same grid location as they do. In my approach an agent considers all encoun-

tered agents individually from the standpoint of forming or extending coalitions. In

order to alleviate confusion in describing this process, I will refer to the agent doing

the processing simply as the agent and the agent that has been encountered as the

encountered agent.

First, I will outline the structure of a coalition of vandeVijsel agents. Coalition

valuation has been a significant issue in previous research [Scully et al., 2004; Sen

and Dutta, 2000; Chalkiadakis and Boutilier, 20041. The value of coalitions in my

approach is determined by the membership of the coalition. Thus, each coalition

maintains coaliti,on attributes - values for speed, memory, trust and honesty that are

calculated as the average attribute values of its membership. Whenever an agent joins

or leaves the coalition, these attributes (which are available to coalition members, if

desired) are updated. Thus, it is a simple matter to determine the value of the

coalition once it has been created.

In additÍon, some members provide different value to the coalition than other

members - another significant issue in current research (e.g. Anderson et al. [200a]).

Thus, whenever an assisted package is delivered for a coalition, the payoff generated

by the delivery is tracked by the coalition. Every coalition maintains a ìist of its
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members' average payoffs and delivery times for assisted packages, which are also

available to coalition members if desired. This helps keep track of which coalition

members are contributing to the well-being of the coalition, and which are dragging

the other members down. Agents that are not contributing to the coalition may be

required to forfeit their membership, as discussed in Section 3.2.3.

At the beginning of the encounter phase, the agents are provided with a list of

agents that currently occupy the same grid location as they do. This is provided

by the software simulation - in a physical environment, there would be the need for

some sort of sensory perception here to identify and communicate with agents that

are nearby.

For each encounter, the agent first determines if it currently shares a coalition

with the encountered agent. The agent knows of which coalitions it is a member,

and as a member it is allowed to check membership of other agents, although this

information is not available to non-coalition members. If the two agents already share

a coalition, then they have gained the benefit of being able to ask each other for aid

delivering packages. The agent will not attempt to recruit the encountered agent to

any coalition, nor form a new coalition, since it already has the ability to interact

satisfactorily. If, in future encounters with the agent, things have changed and the

two agents do not find themselves sharing a coalition, recruitment or new coalition

formation could ensue.

If the agents find they do not share a coalition, then the agent will evaluate the

encountered agent against all coalitions of which it is currently a member, to deter-

mine the encountered agent's suitability for each of them, based on initial knowledge
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of the encountered agent. This suitability is determined by the following:

1. An agent must have the sum of its reported attribute values be no more than 5

points below the attribute values of the coalition

2. An agent must not have an individual attribute value be more than 5 points

below the value of that attribute for the coalition

Once the agent has determined the coalitions that appear suitable for the en-

countered agent, it must then order the list of suitable coalitions by the difference

calculated in item 1 above, and ask the encountered agent to join each coalition in

that order. It makes the most sense, from a standpoint of self-interest, for the en-

countered agent to be asked to join the coalition where the difference in attributes

is most significantly in favour of the encountered agent. If the encountered agent

has significantly more ability than the other members of the coalition, and it agrees

to join, that will increase the potentiai of the coalition. Thus, the agent orders the

suitable coalitions based on the difference between the encountered agent attributes

and the coalition average. Once the encountered agent accepts an offer to join a coali-

tion, then the process stops - once the two agents share a coalition (as mentioned

above), there is no need to get the encountered agent into additional coalitions with

the agent.

Determining the attributes of an encountered agent is an especially significant

aspect of evaluating coalition suitability. In previous research [Dutta and Sen, 2003;

Chalkiadakis and Boutilier, 2004] it has been shown that determining the abilities

of others can be a significant challenge, requiring learning algorithms or other prob-

abilistic measures. In the package delivery domain, the abilities of other agents are
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determined by the sharing of attribute values between agents. This sharing provides

self-interested agents the means to gain access to additional resources, since the ac-

curacy of the shared attributes depends on the honesty attribute value of the agent.

When an agent is asked to provide its attribute values for the purposes of evalu-

ating coalition suitability, it will exaggerate its own attributes based on its honesty

value. Of course, too large of an exaggeration would not go unnoticed - if an agent

indicated it had a speed attribute of 10 and then only moves every third or fourth time

cycle, other agents q¡ould realize it had not been honest. But a stight exaggeration,

to allow it to join coalitions it would not normally be asked to join, could provide

access to coalition members that it would not be able to access otherwise. Again, this

is realistic from the standpoint of agent self-interest.

Thus, when a vandeVijsel agent is created, the system assigns its real attributes,

which I will refer to as its pri,uate attributes. The agent then inflates these randomly

based on its honesty value, creating its publi,c attributes - those it shares with other

agents. This inflation is done by dividing (10 minus the agent's honesty score) by

3, in order to get a value between 0 and 3. A random number between 0 and this

calculated factor is then added to each of the agent's private attribute scores in order

to create its public attributes. These public attributes are always provided when

another agent is doing an evaluation of coalition suitability. They are created and

stored so that an agent doesn't always give a different set of attributes every time it

is asked - otherwise it would be obvious that the agent is not being truthful.

füom the opposite standpoint, when the encountered agent is asked to join a

coalition, it must determine if the coalition is suitable to its needs. Self-interest
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precludes an agent from wanting to be in a coalition with agents of significantly less

skill than itself. On the other hand, it would want to be in a coalition with agents

of significant'Iy more skill, as it will gain benefits from highly skilled agents helping

it with package delivery. The ideal situation from the point of self-interest would be

to have everyone do work for the agent, while the agent itself does nothing. Such an

agent would be referred to as a leech in a peer-to-peer application. Mechanisms must

be in place to ensure that such a purely self-interested state cannot occur, and these

will be explained in section 3.2.3.

When asked to join a coalition, the encountered agent evaluates the coalition in

much the same way as the coalition evaluates the agent. It uses the same two criteria

enumerated above, but from the opposite viewpoint. The sum of the coalition's

attributes must be no more than 5 points less than the sum of the agent's attributes

(using its real, private attributes this time, since it is making an internal decision for

itself), and none of its individual attributes can be more than 5 points higher than

any of the coalition's attributes.

There is one additional condition to be satisfled before the encountered agent will

agree to join the coalition. An agent will feel less inclined to join another coalition if

it is in a number of them already. The more coalitions an agent is in, the more agents

it is agreeing to help when asked, and an agent may want to limit the amount of help

it will provide, due to its self-interested nature. The granting of aid is not mandatory,

but is dependent upon certain conditions, as discussed below. In addition, continued

membership in a coalition is based on an agent's performance when helping other

coalition members, as discussed in Section 3.2.3. Being in too many coalitions at the
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same time may make it difficult to maintain an adequate level of performance for all

of them.

Thus, before agreeing to join the coaÌition, the agent will check how many coali-

tions it is in, and agree based on a sliding scale of 100% (if the agent is in 0 coalitions)

down to 20% (if the agent is in 10 or more coalitions). If this final condition is sat-

isfied, the encountered agent will then be added to the coalition. This completes the

coalition recruitment process.

After the agent has considered the encountered agent for all of its coalitions,

they may or may not share a coalition. That is, none of the agent's coalitions may

be suitable for the encountered agent, or the encountered agent may not find the

coalitions suitable for it. If the agents still do not share membership in any coalition,

there is the possibility of creating a new coalition with the two agents as the charter

members. This process follows the same procedure as above, except that the agents

evaluate each other instead of the coalition. Thus, the agent will agree to form a new

coalition with the encountered agent if the sum of the agent's (public) attributes are

within 5 points of the sum of the agent's (private) attributes, and no single attribute

is more than 5 points below its own attribute value, and vice versa.

At this point in the encounter phase, the coalition formation process has either

been bypassed (if the two co-located agents already shared a coalition) or compieted (if

the agents did not share a coalition, and evaluated the possibility of joining an existing

coalition or forming a new one). If the two colocated agents now share a coalition,

the agent can ask the encountered agent for help delivering any of its packages. It

does this by ordering its packages in descending order of payoff remaining, and asking
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the encountered agent if ii will deliver each package in turn. Only packages that were

originally given to this agent are considered for help requests - the agent will not ask

the encountered agent to help deliver a package that was not assigned to the agent

initially. Once the encountered agent accepts the delivery of a package, the agent will

not ask about any other packages - one accepted offer of aid is enough.

The encountered agent wili agree to deliver a package on behalf of another agent

on two conditions:

1. It has empty space in its payload

2. Its current destination is within a specified number of units (Manhattan dis-

tance) of the delivery location of the package being handed off.

I have experimented with several different values for the specified number of units

in the second condition above, and found that 10 units provides a reasonable proximity

to the agent's current destination while also ensuring that agents are not sent too far

out of their way to render aid to another agent.

If these two conditions are satisfied, the agent takes over possession of the pack-

age, and will deliver it once its current package has been delivered. As mentioned

previously, the encountered agent will deliver the agent's package as soon as it has

delivered its current package, giving preference to this package over any of its own

packages rather than leave the area of the package's destination before delivering it.

This entire process is repeated for every encounter that occurs on the grid. Note

that when two agents are co-located, an encounter will be generated for each of them -
the implementation of the algorithm must ensure that the coalition formation process
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be treated as an atomic piece of code, so that if agent A forms a coalition with agent

B, agent B is not attempting to form a coalition with agent A at the same time.

Once all encounters have been processed, the encounter phase of the time cycle

comes to a conclusion. The next section describes the final phase in the time cycle,

the maintenance phase.

3.2.3 Coalition Maintenance Phase

Any system based on reciprocative behaviour must ensure that safeguards exist

that prevent agents from simply taking advantage of others. Preventing exploitation

can be handled in many different ways.

In the approach of Dutta and Sen [2003], for example, agents maintain a balance

of savings incurred from interactions with others. If an agent helps another agent

repeatedly, then the likelihood of continuing to help that agent goes down until some

reciprocative behaviour is displayed. This prevents agents from simply having others

do all their work, and forces agents to provÍde aid before additional aid can be received.

In the vandeVijsel coalition formation approach, the coalition maintenance phase

exists to allow the system to perform actions at the coalition level that are not directly

related to occurrences on the simulation grid. This is where the vandeVijsel approach

handles the issue of leeching agents. A seÌf-interested agent will want to remain in

a coalition for as long as possible, as there is currently no cost to remaining in a

coalition (this is left for future work). Thus, the only way for an agent to leave a

coalition is to have its membership revoked.

This will occur if the agent's performance over time is significantly below the
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âverage performance of the rest of the coalition members. An agent will not be

evaluated for this purpose until it has assisted in delivering 10 packages for other

coalition members, giving it a chance to prove itself. Agent payoffs and delivery

times are recorded every time an assisted package is delivered, and so it is a simple

matter of comparing the agent's average payoff on assisted packages to the coalition

average. Ifthe agent's average (on at least 10 packages) is more than a constant factor

below the coalition average, the agent's membership in the coalltion wiil be revoked.

However, the agent's history with the coalition will be retained, so if it attempts to

join the coalition again, the average payoff for the coalition will have to have come

down to such a level that the agent's average payoff is within acceptable limits again,

otherwise the agent will be refused membership. In this way, the agent acquires a

lifelong reputation, that can only be altered if the agent ever does manage to join the

coalition again.

The constant factor for comparison is once again based on the size of the grid.

Since payoffs are directly related to delivery distance, the larger the grid, the more

leeway an agent will receive. Through experimentation, I have found that the sum

of the X and Y dimensions of the grid provides a reasonable constant factor when

performing coalition maintenance.

Since the coalition maintenance phase occurs every time cycle, and is concerned

with items occurring outside of direct grid interactions, it is also an ideal place for

any additional processing that may be required by an agent model, that does not

result from grid encounters.
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3.2.4 Complexity

Since the overall algorithm is split into three separate phases, a discussion of com-

plexity can consider these phases independently. The movement phase is straight-

forward, with complexity o(n')where n is the size of the agent,s payload. When

caìculating the package that will maximize future payoffs, the agent must iterate

through the list ofpackages, and for each package, iterate again through the packages

to determine their remaining payoffs if the original package was chosen for delivery.

This complexity, however, is a result of the chosen method for making decisions on

movement in the package delivery domain. Other domains may require a less complex

(or more complex) algorithm for making this decision.

In the encounter phase, a single encounter between two agents results in a decision

process that has linear complexity O(n) where n is the number of coalitions of which

the agent is a member. The agent must iterate through its list of coalitions, and.

determine the suitability of the encountered agent for each of them. Of course, once

a suitable coalition is found, the process can be abandoned. This process is domain-

independent and would likely be of similar complexity in any domain in which this

approach was implemented, as the complexity arises from the decision process of

joining coalitions and not from any domain elements.

Similarly, the decision to request aid for a package is linear in the number of

packages, as the agent must iterate through each package and request aid individually.

However, this is domain specific, and agents in another domain may have a less

complex (or more complex) decision process when it comes to requesting aid from

another agent.
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One other item of note is the number of interactions that are possible on a grid

Iocation, which can make for complex negotiations between agents. If n agents all

meet at a single grid location, then there are n2 encounters that must be processed

before the encounter phase can be completed. However, this is once again a function

of the domain and not necessarily of the algorithm itself - certainly the algorithm

can be applied to other domains where such interactions occur more infrequently.

3.2.5 Summary

This section has described the agent model and coalition formation approach

for the vandeVijsel agent. This approach displays improved realism over other ap-

proaches, as it satisfies the criteria outlined in the definition in Chapter 1:

o Agents are heterogeneous - all agents have differing abilities and attributes

that change their performance in the domain and their ability to cooperate

successfully with others

o Agents have multiple, conflicting goals that force them to decide between several

potentially beneficial courses of action

o Agents can belong to several coalitions at the same time, and make decisions

to join those coalitions independently

c The importance of agents to a coalition depends on their abilities - not all

agents have the same value to the group

o Agents learn about the abilities of others over time, by comparing their per-

formance against other coalition members. Agents that have exaggerated their
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abiiities are removed from a coalition when their performance is significantly

below the other members.

The next section discusses the adaptation of Dutta and Sen [2003]'s partnership

formation algorithm to this package delivery domain, as a baseline approach for eval-

uation purposes.

3.3 Baseline Approach

In order to evaluate the proposed coalition formation approach, a baseline for

performance is required. I have chosen the partnership formation approach of Dutta

and Sen [2003] as a baseline. Details of this general approach are provided in Section

2.5. This section focusses on the adaptation of this approach to a more realistic

domain, as well as issues in reimplementing this approach.

I chose the approach of Dutta and Sen [2003] as a baseline approach because

it encompasses many of the factors that characterize a realistic approach (outlined

in Section 1.1). As discussed in Section 2.5, the approach provides agents that are

heterogeneous in abilities, and allows them to learn about the abilities of other agents

over time. Agents can also participate in many different groups. Originally, this

approach was implemented in a different domain, so some changes are required to

allow accurate comparisons to my own approach.

Dutta and Sen's agents require expertise in particular types of tasks that sets

them apart from the other agents in the system. In order to implement this aspect of

the approach, I have given each Dutta/Sen agent expertise in a particular quadrant of

the grid. This can be equated to the real-world scenario of particular couriers having
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expert knowledge of roadways in a particular section of their city. They are capable

drivers in all other areas of the city, but they know their area of the city so well that

they tend to be faster in that area than other drivers. Thus, when a Dutta/Sen agent

is created, it is assigned an enpert'ise quadrant from 0 to 3, with 0 being the top left

quadrant of the grid, 1 in the top right, 2 in the bottom lefb and 3 in the bottom

right. This separation in expertise provides agent heterogeneity, analogous to the

agent attributes in the vandeVijsel agent (see Section 3.3.1for the effect of expertise

on an agent's movement).

Another modification is the calculation of cost. In Dutta and Sen's original ap-

proach, the cost of a task was proportional to both quality and time metrics. In the

package delivery domain, time is the only factor that determines the cost of a deliv-

ery - there is no quantitative concept of quality that could be assigned to a package

delivery. Either the package is delivered, or it is lost. Thus, the calculation of cost

becomes equivalent to the delivery time for a package. The higher the delivery time,

the higher the cost and the lower the payoff.

One final addition is that of agent performance tracking. An agent must learn the

expertise of other agents as it receives aid, so that it can estimate the cost of another

agent delivering a package in a given quadrant, which is similar to the vandeVijsel

agent learning about the abilities of others. The type of a task in Dutta and Sen

[2003] is equivalent to the delivery quadrant in my package delivery domain. Thus,

an agent will track the savings generated for each task type (i.e. each quadrant) from

a given agent. This will allow it to learn the expertise quadrant of another agent over

bime.
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3.3.1 Movement Phase

The movement phase for a Dutta/Sen agent is very similar to the movement

phase for a vandeVijsel agent (see Section 3.2.1) with some small differences. The

first difference is the use of the agent's expertise quadrant. With the vandeVijsel

agent model, an agent was occasionally restricted from moving based on its speed

value. In the Dutta/Sen agent model, an agent will also be restricted from moving,

based on its expertise quadrant, in order to facilitate a fair comparison between the

two. If an agent is inside its expertise quadrant on the grid, it will be able to move

on every time cycle. If the agent is outside its expertise quadrant, then the agent will

only be able to move on even-numbered time cycles. Thus, in order to maximize their

performance, agents will have to learn each other's expertise quadrants and match

up appropriate package delivery destinations when asking other agents for help. This

stays true to Dutta and Sen's work when adapted to this model - the key feature is

learning about other agents' expertise.

The addition of the expertise quadrant adds an additional complexity to the Man-

hattan distance calculation. In the vandeVijsel agent model, it is a simple matter to

calculate the distance between two points, with the understanding that this calcula-

tion may not accurately reflect the time it takes to traverse the distance, due to the

effects of the speed attribute. However, in the Dutta/Sen agent model, it is necessary

to be able to factor in the agent's expertise, since this could significantly change the

time required to travel between two points. To accommodate this, the distance cal-

culation can optionaìly take the expertise quadrant as a parameter, and will double

any parts of the distance that are outside the expertise quadrant. Agents will have a
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predisposition to move towards their expertise quadrant if possible - so, since there

are two Manhattan routes between two points (horizontally, then vertically, or verti-

cally, then horizontally), the agent will always choose the route that passes through

their expertise quadrant if possible.

Other than this implementation of the expertise quadrant, there are no differences

movement phase logic between the vandeVijsel agent model and the Dutta/Sen agent

model. As mentioned at the beginning of Section 3.2.7, this logic is largely dependent

on the domain, and since the two agent models share the same domain, there is no

need to make any significant changes to the process.

3.3.2 Encounter Phase

The encounter phase for the Dutta/Sen agent model follows the approach outlined

in Dutta and Sen [2003], with some small modifications to adapt it to the more realistic

package delivery domain. As in Section 3.2.2, a Dutta/Sen agent is provided with a

list of agents currently occupying the same grid location, and will deal with each one

in turn. I wiil continue to use the terms agent and encountered, agent in this section.

Since coalitions are not explicit in Dutta and Sen [2003], agents are willing to

ask any other agent for help with a package, as long as they estimate that there is

some gain to be had by receiving help. Even if no gain is realized, the agent gains

information about the abilities of the other agent. In Dutta and Sen's original model,

agents were unaware both of their o'ù/n expertise and of the expertise of all the other

agents. In my adaptation of this model, I have provided the agent with knowledge

of its own expertise. My rationale for this is that in a real-world package delivery
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scenario, a courier would be aware of the area of the environment that it knew best, so

it would make sense for the agent to be aware of its own expertise quadrant. However,

the areas of expertise of other agents must still be learned.

Agents will help each other when cooperation possibilities exist, as per the original

approach of Dutta and Sen. The existence of a cooperation possibility in this domain

is based on the agent's estimation of the cost to deliver a package itself (C1, using

Dutta and Sen's terminology), and its estimation of the cost for the encountered agent

to deliver the package (C2). These are difficult estimates to calculate accurately, since

there are so many factors involved. When will the agent get a chance to deliver this

package? If the package is handed over to the other agent, will it deliver the package

immediately? What is the other agent's expertise quadrant, and will that affect the

estimate?

To answer these questions, the agent will make some logical assumptions to allow

a reasonable estimate to be produced. First, when calculating the cost estimate if it

delivered the package itself, it will assume that the package in question will be the

next package chosen for delivery (once its currently selected package is delivered).

It will also consider its own expertise quadrant when calculating this cost estimate.

Thus, the cost estimate Cl is:

C 7 : di,st (her e, c't Lr r ¿4¿, erp) * d'i st (cur r ¿."t, p ¿, 
"t, 

€fr p)

where:

o here is the current grid location

c cllrrd, ¿ is the agent's current destination
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ø erp is the agent's expertise quadrant

@ Pd,.rt is the destination location of the package whose cost is being estimated

di'st is the distance calculation function that takes expertise quadrants into

consideration

It is more difficult to estimate C2,the encountered agent's cost for delivering the

package, since the agent has no information about when the encountered agent might

make the delivery. However, the agent can assume (for estimation purposes) that

the encountered agent will only accept the delivery of the package if it is within a

reasonable distance of its current location. Therefore, the calculation used for C2,

the estimate of the encountered agent doing the work, is:

C2: dist(here,p¿.st,erpust) I "'l

where:

ø here, p¿""¡ and di,st are defined as before

erp""t is the estimated expertise quadrant for

available, then a worst-case estimate is used

through its expertise quadrant)

this agent (if no estimate is yet

where the agent does not travel

c 7 is a proximity factor for estimation

I have set 7 to 10 - this indicates that the agent assumes that the encountered

agent will not agree to deliver the package unless it is within 10 units of its current
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destination. This is in fact the same value used by the encountered agent ín actuality,

but does not have to be the case.

When the agent is processing an encounter, it calculates Ci and C2 as above,

and determines if a cooperation possibility exists. If so, it asks the agent for help

delivering the package.

Recall that Equation 2.1 determines the probability of one agent helping another

in Dutta and Sen's approach. The encountered agent uses this probability equa-

tion to determine if it will render aid. The equation and its terms, defined for this

implementation, are:

Pr(i,k, j): cf.,- g^cþon-o eo

Ilerp .
where:

Cfris the estimated cost for the encountered agent (,k) to complete the delivery

of the requested package (j) for the original agent (z). This is analogous to

the calculation of C2, above, but the expertise quadrant is no longer estimated

because the encountered agent is performing this calculation, and it is aware of

its own expertise.

B is a term used to set the initial cost that an agent is willing to incur when a

previously unknown agent has requested help

C!,n is the average cost of all tasks performed by the encountered agent (k).

The encountered agent tracks its average payoff as it delivers packages.

O P, is the balance of past help that the encountered agent currently has with

the requesting agent (z). Since agents track help received from other agents by

85



86 Chapter 3: Realisti,c Coali,ti,on Formati,on

task type (i.e. delivery quadrant) of the package, this term is calculated as the

sum of the balances for all four quadrants.

c r is a term used to set the shape of the sigmoidal probability curve

For this implementation, p is set to 0.75 and r is set to 25. The high value for r
reflects the large costs/payoffs that occur on a large grid, and provides a reasonable

probability curve for this domain. The original work by Dutta and Sen does not

indicate values that were used for these parameters, so the chosen values were selected

based on experimentation.

This equation defines the nature of reciprocity in Dutta and Sen's approach -
agents are more likely to accept help when the requesting agent has helped them out

in the past. If the probability function indicates that the encountered agent will help,

then the encountered agent assumes responsibility for the package. Once the package

is actually delivered by the encountered agent, the original agent receives notice that

the package was delivered, and updates its balances of payoffs for the encountered

agent on that type of task. It can then use this updated knowledge the next time it

is calculating a cooperation possibility for this agent and type of task.

One significant difference between my implementation of this approach and the

one outlined in Dutta and Sen [2003] is the lack of an exploratory phase in my

implementation. In Dutta and Sen's work, agents could request aid from any agent

at any time, so that a significant volume of the space of possible agents was explored

before beginning to exploit this knowledge. In my domain, agents are restricted to

requesting aid from those agents they encdunter on the grid. There is still expìoration

in this domain, but it is based on the physical movements of the agents. There is
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never a choice from among a set of agents when requesting aid - there is simply the

question of whether to request aid from a particular agent. For this reason, agents

are always learning and updating their estimates - their exploration is continual, but

not as extensive as in Dutta and Sen's approach.

This completes the processing of an encounter. AII encounters are processed in

the same manner, and then the agent moves on to the next time cycle.

3.3.3 Coalition Maintenance Phase

Since the coalitions in the Dutta/Sen agent model are implicit, agents are never

removed from a coalition in the sense they are in the vandeVijsel approach. The

Sroup of other agents with whom an agent is likely to cooperate wilì change, but

this is internal to the agent and is not reflected in any external change2. Protection

against leechers is built into the reciprocity model that Dutta and Sen have proposed.

Thus, there is no need for any processing in the coalition maintenance phase for the

Dutta/Sen agent model. The simulation stiil triggers this phase, but no processing

occurs.

3.3.4 Summary

This section has described the implementation of the partnership formation ap-

proach developed by Dutta and Sen [2003], and the required changes to adapt the

approach to the package delivery domain. The next section wilt briefly describe the

implementation of the Coalition Formation Simulator.

nl

2The nature of a Dutta/Sen coalition wiìl become important in Chapter 4.
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3.4 trmplementation

The Coalition Formation Simulator (see Figure 3.2) is an object-oriented imple-

mentation using the Java programming language. The system has been developed

using the IntelliJ IDEA 3.0.5 programming environment and the Java Development

Kit (JDK) version 1.4.2.

The architecture ofthe system provides several abstract classes that allow for sub-

classing in order to provide customized functionality. For example, abstract classes

exist for Agent and Coalition that allow future implementations to provide their

own logic behind these classes. Currently I have implemented three subclasses of

Agent: vandeVijselAgent, which encapsulates the logic described in Section 3.2;

DuttaSenAgent, which encapsulates the logic described in Section 3.3; and a Ran-

domAgent class, which simply moves about randomly, that was designed for testing

purposes.

Each instance of Agent or a subclass of Agent is modelled as an independently

executing Java thread. Thus, when the system begins, it creates and starts a new

thread for as many agents as requested by the user. While the computational resources

required by an agent have to do with the specific agent implementation, I have been

able to run 500 separate agents of either type on a Pentium III-800 MHz machine

with 512M8 of RAM.

ln addition, the system creates two additional threads. One is in control of the

animation of the Simulation Grid, if that option is turned on. The second thread man-

ages the simulation itself, and is an instance of the SimulationManager class. This

thread controls the simulation phases - the movement phase, the encounter phase,
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Figure 3.2: Screen shot of the Coalition Formation Simulator. Package depots are
seen on the grid as lighter dots, while agents are displayed as darker dots.

and the maintenance phase. When the agent threads begin executing, they wait for

the system to move into the Movement Phase state. When the SimulationManager

moves the system into this state, the agents are free to do their required processing to

determine their movements (see Sections 3.2.1 and 3.3.1). The SimulationManager
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thread requires all agents to report that they have completed their movement phase

processing. Once all agents have reported, the SimulationManager then moves

the simulation to the Encounter Phase state, and all agents begin processing their

encounters (see Sections 3.2.2 and 3.3.2). Again, all agents must report that they

have completed their processing. Once this is complete, the system moves into the

Maintenance Phase state, and any processing that must occur in this phase begins.

When the Maintenance phase is complete, the SimulationManager advances the

time cycle ahead, and moves back to the Movement Phase state. The cycle then

begins again.

There are several features built into the Coalition Formation Simulator that facil-

itate experimentation. A number of parameters are available for entry by the user,

to customize lhe simulation:

c Number of Agents: controls how many agents are created for this simulation

c Number of Cycles: controls how long the simulation will run for

c Number of Tri,als: controls how many trials the system will run. Each trial lasts

for the specified number of cycles.

ø Number of Depots: controls how many package depots are placed on the grid.

o Mi,n Distance Between Depots: the minimum distance placed between depots.

The system will alert the user if it cannot create the specified number of depots

on the grid and maintain this minimum distance.

o Delay Between Cycles: if displaying the Simulation Grid, this delay smooths
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out the display of the agents' movement if the number is non-zero. However,

the simulation will run more slowly.

ø Di,splay Simulati,on Gri,d?: turns the display of the grid on or off for this simu-

lation.

ø Use Coaliti,ons?: determines if the agents will attempt to form coalitions. If

this flag is not set, the encounter phase for the agent will not be triggered.

ø Keep Agent Setup?: if multiple trials are being executed, this determines if

the agents return to their original locations with the same attributes after each

trial, or if new agents are created.

o Use Memory?: this turns the use of memory in the vandeVijsel agent on or off.

ø Type of Agent: selects the type of agent to simulate. Valid types are vande-

Vijsel agent, Dutta/Sen agent and Random Agent (which simply moves about

randomly with no logic - used for testing purposes).

o Grid Di,mensi,ons: determines the size of the grid.

There are also statistics that are displayed as the simulation runs. These are:

ø Curcent Trial: the current trial number being run.

o Current Ti,me Cycle: the current time cycle of the simulation.

c Mar Ti,me Cycles: the maximum number of time cycles to be executed for this

trial.
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ø Current Number of Coalitions: the number of coalitions that currently exist in

the system.

ø Packages Handed Out: the total number of packages assigned to agents for

delivery so far.

ø Packøges In Play: the total number of packages currently being carried by

agents.

ø Packages Handed Off: Lhe total number of packages assigned by one agent to

another for delivery.

Packages Deli,uered: the total number of packages delivered by all agents.

Packages Lost: the total number of packages lost due to forgetfulness.

Every 1000 time cycles, the system will generate several comma-delimited files,

providing experimental results. These include aggregate statistics, agent-level statis-

tics and coalition-level statistics. In addition, another file is produced that shows all

coalition membership changes over the entire run of the simulation. These allow the

gathering of throughput and stability information as described in Chapter 1, and will

be further discussed in Chapter 4.

3.5 Summary

This section has described in detail the implementations of the vandeVijsel agent

model and coalition formation algorithm, and the baseline implementation of the

Dutta/Sen partnership algorithm. I have also outlined the implementation of the
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system in Java. The next section provides the results of experimentation and evaluates

the vandeVijsel agent model against the baseline approach.
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Evaluation

The goals of the research presented in this thesis were to answer the three questions

noted in Section 1.4:

1. Can a coalition formation approach be designed that is applicable to realistic

scenarios as defined in Section 1.1?

2. How would the throughput of such a coalition formation approach compare with

an approach reflecting the current state of the art?

3. How would the coalition stabiiity of such a coalition formation approach com-

pare'with an approach reflecting the current state of the art?

In Chapter 1, I indicated the emphasis that has been place d on system throughput

and coalition stabi,l'ity as measures of performance in previous research [Sen and Dutta,

2002; Lerman and Shehory,2000; Brooks et a1.,2000]. In this chapter, I will be

using these two factors to evaluate the performance of the vandeVijsel agent model

(see Section 3.2) in the package delivery domain (see Section 3.1). To facilitate this
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evaluation, I will also be measuring these two factors for the baseline approach of

Dutta and Sen (see Section 3.3) and comparing the performance of my approach

against this baseline.

4.L Experimental Set-up

To gather the results for the experiments in this chapter, the Coalition Formation

Simulator described in Section 3.4 was run on a Pentium III - 800 Mhz processor, with

512 MB of RAM, running Windows 2000 Professional Service Pack 4. To improve

performance, the simulator was run without the display of the simulation grid.

4.2 Comparison of the Two Approaches

This chapter is concerned with evaluating the vandeVijsel agent model against

the Dutta/Sen agent model from the perspectives of system throughput and coalition

stability. However, in order to make valid comparisons between the two approaches,

I must ensure that the results being compared represent similar concepts in both

approaches.

Fbom a system throughput perspective, the comparison is relatively simple. Through-

put is defined as the number of tasks completed or goals achieved in a given time

frame. For the package delivery domain used in this thesis, completing a task is rep-

resented by the delivery of a package. So throughput in this domain is represented

by the number of packages delivered in a given time span. This can be represented

either at an aggregate level, showing the total number of packages delivered by all
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agents in the system, or at an agent level, examining the average number of packages

delivered by a single agent.

FYom a coalition stability perspective, the comparison between the two approaches

is more complicated. Coalition stability can be considered in two different ways.

First, we can measure coalition stability by examining the total number of coalitions

that have been created in the system. The purpose of this measure would be to

illustrate that agents are not simply creating new two-agent groups every time they

meet someone ne'ù/ - they are attempting to integrate new encounters into existing

groups, to keep the number of groups stable. Second, we can measure coalition

stability by examining the rate at which agents are joining or leaving coalitions. If

the number of coalitions remains relatively stable, but agents are constantly joining

or leaving those coalitions, then this is a sign that the coalitions are still unstabie.

Some variation in coalition membership will likeiy always occur, since agents have the

freedom to join coalitions as they choose, and coalitions have the freedom to revoke

membership of agents.

When discussing coalition stability in the vandeVijsel agent model, it is straight-

forward to determine the number of coalitions in the system, the membership of

those coalitions, and the rate at which agents are joining or leaving coalitions. This

is because coalitions are explicit - agents make a conscious decision to join a coali-

tion, and the members of a coalition make a conscious decision to revoke an agent's

membership.

In Dutta and Sen's approach, however, it is less straightforward, because coalitions

are not explicit. Dutta and Sen's approach incorporates learning about the expertise
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of other agents, and so a Dutta/Sen agent determines the expertise of the agents it

encounters, given repeated interactions with those agents. With this knowledge, it

more âccurately estimates the cost savings to be realized when working with specific

agents, and thus develops high opinions of those agents with whom it is advantageous

to cooperate. Over time, every Dutta/Sen agent will have high opinions of a specific

group of agents, and it will be more likely to cooperate with agents from that group.

It will be less likely to cooperate with agents from outside that group, as its opinion

of those agents will be lower. Therefore I can consider a Dutta/Sen agent to be in a

coalition with the group of agents that it is most likely to cooperate with. In order

to specify this more concretely, I must define specific criteria to determine the set of

agents in the coalition. To do this, I use the opinion values that are tracked by the

Dutta/Sen agent (see Section 3.3 for details). The lack of an opinion (i.e. when the

Dutta/Sen agent has no information about another agent) is treated as an opinion

value of zero. Therefore, a positive opinion between agents is one that has gone up

since the agents met, while a negative opinion is one that has gone down. For this

reason, a Dutta/Sen agent has a larger likelihood of interacting with an agent with a

positive opinion than with an agent it has not met before, so I can define the criteria

for membership in an agent's coalition as the set of agents with which it has a positive

opinion.

I must also establish criteria as to what constitutes a membership change in a

coalition. Since the Dutta/Sen coalition for a single agent is made up of agents

thought of positively by that agent, tracking changes in an agent's opinion from

positive to negative would indicate a change in coalition membership. However, using
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such a measure would be misleading. Since a Dutta/Sen agent uses reciprocity as a

tool for cooperationT once an agent cooperates with another agent, it is less likely to

cooperate with that agent again until it receives help in return. Its opinion of the

other agent represents a savings balance that it has maintained over its interactions

with the other agent. If agents are continuously being reciprocative to each other,

then it is possible for their opinions to be constantly reversing polarity - the agent's

opinion is positive when it receives help, then becomes negative once it gives help,

then becomes positive again. This oscillation would overinflate membership changes

if it were used directly as a definition.

However, over time, the savings between two agents of complementary expertise

should both become positive as each agent realizes gains from being helped by the

other. Thus, examining the number of positive relationships at specific time intervals

in the Dutta/Sen agent model will provide an accurate picture of the change in

coalition membership for a given agent. Averaging these values out over the entire

agent population will give an indication of the stability of coalition membership in

the Dutta/Sen approach.

One additional item of note is that dishonest agents in the vandeVijsel approach

are actively deceiving their coalition partners about their own skill sets, a realistic

factor that is not considered in the Dutta/Sen approach (or many others). The

degree of this deception depends on the agent's honesty value. Thus, I would expect

to see less stability from the vandeVijsel agents relative to the Dutta/Sen agents,

as vandeVijsel coalition members realize which agents have been exaggerating their

abilities. An agent that has a low honesty value and therefore significantly exaggerates
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its abilities will join a coalition, be discovered and removed from the coalition, join

another coalition, get removed from that one, etc. So dishonest agents will likely

follow a pattern of jumping from one coalition to the next, until they have been part

of every coalition that they are deemed suitable for, which could take some time given

the number of coalitions generated in the simulation. This dishonesty will result in

higher occurrences of membership changes, but the rate of such changes should be

relatively constant.

4.3 Result Files

During the execution of the Coalition Formation Simulator (described in Section

3.4), experimental data is written to a set of comma-delimited result files every 1000

time cycles.

Data for experimental trials are recorded as follows.

Aggregate Statistics

o paclcages deliuered: the total number of packages delivered (up to the current

time cycle) by all agents in the system

ø packages i'n play: the total number of packages currently being carried by agents

ø number of coali'ti,ons: the current number of coalitions in the system (only

output for vandeVijsel agent simulations, as Dutta/Sen agents do not have

expiicit coalitions but instead maintain a list of positive-opinion agents)
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Agent Statistics

For each agent in the systeml:

ø agent ID: an identifying number for this agent

ø agent type: the current agent type

ø agent speed: the value of the agent's speed attribute (oniy output for vandeVijsel

agents)

ø agent rnernorA: the value of the agent's memory attribute (only output for

vandeVijsel agents)

ø o,gent honesty: the value of the agent's honesty attribute (only output for van-

deVijsel agents)

o o,gent trust: the value of the agent's trust attribute (only output for vandeVijsel

agents)

c enpert'ise quadrant: the agent's quadrant of expertise (only output for Dutta/Sen

agents)

ø currency: the total payoff accumulated by the agent

ø nurnber of coali,ti,ons: the total number of coalitions of which the agent is a

member (output only for vandeVijsel agents)

o number of opini,ons: the total number of opinions the agent has about other

agents (only output for Dutta/Sen agents)

lSome of these attributes are noted as being recorded only for one agent type. This is because
they are unique to that agent. See Sections 3.2 and 3.3 for explanations of each of these.
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ø packages deli,uered: the total number of packages the agent has successfully

delivered (includes assisted packages delivered for other agents)

ø packages lost: the total number of packages the agent has lost

ø assi,sted packages: the total number of packages the agent has delivered for other

agents

ø auerage payoff: the average payoff value this agent has received for all its pro-

cessed packages

ø auerage deli,uery ti,me: the average delivery time this agent has achieved for all

its delivered packages (an agent's averâge delivery time is not updated for lost

packages)

vandeVijsel Coalition Statistics

For vandeVijsel coalition purposes, statistics are tracked only for packages that are

delivered by a coalition member on behalf of another member (i.e. assisted packages).

For each coalition currently in existence:

o coaliti,on ID: an identifying number for this coalition

. auera,ge speed: the average speed value of all coalition members

c o,uerage menxory: the average memory value of all coalition members

a auerage trust: the average trust value of all coalition members

e auerage honesty: the average honesty value of all coalition members
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ø number of members: the total number of agents in the coalition

ø packages del'iuered: the total number of assisted packages delivered by coalition

members

ø auerage payoff: the average payoffvalue for assisted packages delivered by coali-

tion members for other members.

ø auerage deli,uery time: lhe average delivery time for assisted packages

Dutta/Sen Coalition Statistics

For the definition of a Dutta/Sen coalition, refer to Section 4.2.

6 o,gent ID: Lhe agent ID of the agent that has formed the opinion

ø opi,nion of agent ID: the agent ID of whom this agent has an opinion

ø payoff balance: the savings balance for this opinion (refer to Section 3.3 for

discussion on Dutta/Sen opinions)

vandeVijsel Coalition Membership File

Note that records in this file, unlike the other result files, are written whenever a

change to the membership of a vandeVijsel coalition membership is made (as opposed

to every 1000 cycles for the other files).

o Ad,d/Delete: whether this is an addition to a coalition or a removal

o coaliti,on ID: the coalition ID being modified

. agent ID: lhe agent ID being added or removed
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4.4 Experiment Structure

In order to generate the experimental data, I ran 10 trials of 50,000 time cycles for

both the vandeVijsel and Dutta/Sen agent types, as defined in Sections 3.2 and 3.3,

respectively. Only a síngle agent type was present in the simulation world at a time -
the agent types were never combined. The trials were run using 500 separate agents

executing on a 100 X 100 grid with 100 package depots. The minimum distance

between each package depot was set to 5 units. On the hardware described in Section

4.I, a trial of 50,000 time cycles took 2.5 hours on average.

The agent setup was randomìy generated for the first trial, and then retained

for all subsequent trials with that agent type. On subsequent trials (i.e. trials afber

the first), agents were returned to their initial starting locations and their payoff

totals, package payloads, and memory of package depots and of other agents were

all wiped clean. AII coalitions were deleted, and the system began as if the previous

trial had not happened. Thus, all trials were kept as homogeneous as possible. The

more homogeneous the trials, the more accurate averages between the trials will be,

especially for the purposes of analyzing coalition stability. If all agents remain the

same across all the trials, then the resulting coalitions should also be relatively similar,

and the stability between trials should be comparable.

The following section describes and analyzes the experimental results gathered

from the perspectives of system throughput and coalition stability.
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4"5 Results and Analysis

4.5.L System Throughput

In the package delivery domain, system throughput is defined as the number of

packages delivered. This can be described at an aggregate level, showing how many

packages were delivered over the time span of each trial, or from an agent average

perspective, showing how many packages were delivered on average by an agent of

either type, given these experimental conditions.

Fbom an overall system perspective (Figure 4.1), the Dutta/Sen agents delivered

a total average of 311410.9 packages over the 10 experimental trials, with a stan-

dard deviation of 3150.17 packages. The vandeVijsel agents delivered an average of

430400.3 packages over the 10 experimental trials with a standard deviation of 1808.98

packages. This represents an increase of 38To. The standard deviation numbers show

consistent performance by the simulation over the 10 trials.

Figure 4.2 shows the overall average agent throughput for the vandeVijsel agent

and the Dutta/Sen agent. Individual vandeVijsel agents averaged 860.80 packages

delivered over the 10 trials, with a standard deviation of 178.57 packages. This

standard deviation shows a reasonable difference in the individual agent averages

over the 10 trials. On the other hand, individual Dutta/Sen agents averaged 622.82

packages delivered over the 10 trials, with a standard deviation of 52.82 packages,

showing more consistency between the agents. Since Dutta/Sen agents are more

homogeneous, differing only in quadrant of expertise, more consistency in agents

should be expected.
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System Throughput - Aggregate
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Figure 4.1: Comparison of overall system throughput for the vandeVijsel agent and
Dutta/Sen agent, averaged over 10 trials

Table 4.1: Average Dutta/Sen Throughput by Expertise Quadrant after 50000 Time
Cycles

0

1

2

ó

617.99
623.15
629.56
621.10

This point is further illustrated in Table 4.1, showing that there is no signifi-

cant difference in averâge throughput for the different expertise quadrants in the

Dutta/Sen agent model. The difference between the highest and lowest throughput

value is less than 2%.
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System Throughput - Overall Agent Average
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Figure 4.2: Comparison of average agent throughput for the vandeVijsel agent and
Dutta/Sen agent, over 10 trials

Figures 4.1 and 4.2 show that the throughput of vandeVijsel agents is consistently

higher than the throughput of the Dutta/Sen agents. Since the parameters of the

domain are identical, the source of this increase must iie in an inherent difference

between the approaches. The two major differences between the vandeVijsel agent

model and the Dutta/Sen model (as discussed in Sections 3.2 and 3.3) are the abilities

of the two agents and the respective coalition formation approaches. Although the

Dutta/Sen agents are heterogeneous in that they each have expertise in different types

of tasks (i.e. quadrants in the grid, as opposed to attribute-based heterogeneity in

the vandeVijsel agents), Table 4.1 indicates that there is no significant difference in
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throughput based on the expertise of the agent (i.e. the quadrant specialization). An

agent's expertise affects performance on individual tasks, not aggregated performance.

The heterogeneity inherent in the vandeVijsel agent, on the other hand, does affect

the throughput for individual agents. By quantifying the effect that the difference in

abilities has on the throughput of the vandeVijsel agent, and removing it from the

throughput totals, I can conclude that any remaining gains in throughput are due to

the coalition formation approach of the vandeVijsel agent.

In order to quantify the effect ofthe attribute differences on the throughput ofthe

agent, I must first determine if there exists a relationship between each of the four

vandeVijsel agent attributes and the throughput of the agent. If no such relationship

exists, then the attribute in question does not affect throughput, and can be removed

from the analysis (just as I have illustrated that agent expertise in the Dutta/Sen

model has no direct impact on throughput). If, however, a relationship does exist,

then I must attempt to determine its impact on throughput. Any remaining difference

in throughput, once all four attributes have been accounted for, must be a result of

the vandeVij sel coalition formation approach.

I will begin by examining the trust attribute. Figure 4.3 shows the average

throughput for all agents, broken down by their trust attribute value. That is, the

first data point shows the average throughput for aJI agents with a trust value of

one, the second data point for all agents with a trust value of two, etc. The graph

indicates that there is no direct relationship between the trust attribute of the agent

and the throughput that agent will achieve.

In Figure 4.4, we see an analogous set of data showing the average throughput

107
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Average Agent Throughput - Trust Breakdown
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Figure 4.3: Average vandeVijsel Throughput by Tlust Value after 50000 Time Cycles

for all agents in the system, broken down by agent honesty values. Once again, the

graph shows no correlation between the honesty value of an agent and its resulting

throughput. This is a promising result - it shows that dishonest agents do not have

an advantage over honest agents from the perspective of throughput. The gains they

receive from joining coalitions that they do not deserve to join are offset by their

removal from those coalitions once agents learn that their actual abilities do not

match those that were advertised.

Figure 4.5 provides the average agent throughput, broken down this time by agent

memory attribute values. The graph again shows a lack of correlation between mem-
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Average Agent Throughput - Honesty Breakdown
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4.4: Average vandeVijsel Throughput by Honesty Value after 50000 Time

Table 4.2: Lverage Packages Lost by Memory Value

Lost Packages

30.63
28.80
24.48
2r.76
16.86

13.91

10.05
6.98

3.65
0.00

1
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Average Agent Throughput - Memory Breakdouvn
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Figure 4.5: Average vandeVijsel Throughput by Memory Value after 50000 Time
Cycles

ory and throughput. Memory does have some impact on throughput (as shown in

Table 4.2) - a low memory score translates into a higher number of packages lost, and

only packages that are successfully delivered are included in the throughput totals.

However, since the chance of losing a package has been set to quite a low value, the

number of lost packages is not enough to cause a significant impact to the throughput

of an agent. Agents average only 15.71 lost packages per trial. Having a larger chance

of forgetting a package would change this relationship, as more lost packages would

translate into lower throughput.

Figures 4.3,4.4 and 4.5 show that there are no direct correlations between through-
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Average Agent Throughput - Speed Breakdown
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Figure 4.6: Average vandeVijsel Throughput by Speed Value after 50000 Time Cycles

put and trust, honesty or memory. Speed, however, has an obvious (and intuitive)

impact, as seen in Figure 4.6. This graph provides a measure of the average through-

put for all agents in the system, broken down by agent speed attribute values. The

graph shows an obvious linear relationship - the slower an agent is, the fewer packages

it can deliver. The faster the agent, the greater the throughput. Again, intuitively

this makes sense - if one agent can cover ground at a greater rate than another, it

will deliver more packages.

Determining the impact of speed on throughput requires some discussion on the

nature of speed in each of these models. As discussed in Section 3.2.I, a vandeVijsel
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agent uses its speed value to determine its rate of movement on the grid. An agent

will always be allowed to move 40% oÍ the time, and will not be allowed to move

20% of the time. The other 40% of the time, the agent generates a random number

between 1 and 10, and if the agent's speed attribute value is greater than or equal to

this random number, then the agent gets to move. So an agent with a speed attribute

of 1 will have a 40To chance of moving (guaranteed) plus 7lI0 of the 40% chance that

is determined by the speed attribute, for a total chance of moving of 44To. An agent

with a speed attribute of 10, on the other hand, will have a 40% chance of moving

(guaranteed) plus the full 40% determined by the speed attribute, for a total chance

of moving of 80%.

The vandeVijsel agent, therefore, has a worst-case likelihood of moving on a given

time cycle of 44To, and a best-case likelihood of moving on a given time cycle of 80%,

and these percentages are derived from its speed attribute. Over a large number of

time cycles, this likelihood of movement effectively becomes the movement rate of the

agent, since an agent can only move one grid location per time cycle. An agent with

a speed value of 10 has a movement rate of 80% over a large number of time cycles.

Over a specific length of time, this agent will move approximately 20Yo farther than

an agent with a speed value of 5, which has a movement rate of 60%. This is because

at every time cycle, the agent with a speed of 10 has a 20To greater chance of being

able to move one grid location than the agent with a speed of 5.

The Dutta/Sen agent also has its movement restricted, using its expertise quad-

rant. As discussed in Section 3.3.1, a Dutta/Sen agent moves 50% of the time (i.e.

every even-numbered time cycle) when it is outside its expertise quadrant, and 100%
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of the time when it is inside its expertise quadrant. Because of this spatial variability,

a Dutta/Sen agent's movement rate is not constant - it depends on the grid location

of the agent. However, determining the proportion of time an agent spends inside its

expertise quadrant will allow the effective movement rate to be determined.

In order to determine this effective movement rate for a Dutta/Sen agent, I ran

a separate experiment. This experiment consisted of four trials, and was run to

gather the number of time cycles that a Dutta/Sen agent spends inside its expertise

quadrant, and the number of time cycles it spends outside its expertise quadrant.

These additional trials indicate that, out of 50000 time cycles, the Dutta/Sen agent

spends an average of 22402.18 time cycles þr a5%) within its expertise quadrant,

and an average of 27597.82 time cycles (or 55%) outside of its expertise quadrant.

While the proportion of time spent in the agent's expertise quadrant seems low, it

is important to note that an agent outside of its expertise quadrant moves twice as

slowly, and so it only makes a movement decision on half of the time cycles it spends

in this quadrant. Thus, the agent is making a movement decision 22402 times in its

expertise quadrant, and only 13798 times outside of its expertise quadrant, which are

reasonable numbers with respect to expected proportions.

In addition, aDuttafSen agent that must venture outside of its expertise quad-

rant (because it no longer has any packages to deliver inside its expertise quadrant)

must deiiver at least one package outside of its expertise quadrant. Agents choose a

package for delivery based on estimated payoffs, and then deliver that package to its

destination. They do not choose another destination until either they receive a new

package for delivery, or they deliver their package. When travelling towards a desti-
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nation outside of their expertise, it is unlikely that they will take on packages from

other agents. Recall from Section 3.3.1 that an agent only renders aid if the assisted

package's destination is within 10 units of their current destination. Since packages

that are to be delivered within 10 units of a location outside of their expertise are

likely to also be outside of their expertise, it is unlikely that a cooperation possibility

will exist in this scenario. It is more likely the case that the agent will accept ad-

ditional packages on its way back to its expertise quadrant. Thus, the ratio of 45%

inside its expertise quadrant to 55% outside its expertise quadrant is not unexpected.

Since the movement rate of a Dutta/Sen agent is 100% inside its expertise quad-

rant (where the additional trials indicate it spends approximately 45To of its time)

and 50% outside of its expertise quadrant (where the trials indicate it spends ap-

proximately 55To of its time), this translates to an overall effective movement rate of

72.5%.

It is interesting to examine the change in the effective movement rate of a Dutta/Sen

agent over time. Figure 4.7 shows the effective movement rate for each 1000-time cycle

interval for the Dutta/Sen agents (averaged over the 4 trials). This is not a cumu-

lative total, but rather the rate that the agent experienced in that 1000-time cycle

interval. The graph shows a low starting point, followed by agents learning relatively

quickly that ihey should attempt to use their own quadrant as much as possible, and

some small fluctuations over time after that.

VandeVijsel agents have a movement rate of between 44% and 80%, depending on

their speed attribute. The rate climbs linearly, based on the speed attribute, between

44To and 80%, with each additional unit of speed accounting for an additional 4%
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Effective Movement Rate of Dutta/Sen Agents

OJ

o
d,

OJ

E
OJ

o
e

73

I ¿.5

7')

71.5

71

/0.5

70

69.5

69

,*-+. ^r-s-,*.{- t 
t-"- 

-¡r ¡*-+-rr't¡ff* v

I

"ds d 
^ós "d" 

-s'^ 
"s" .S".rd "rf" C uS ",f. +d ¡w' -d *d _d'

Time Cycle

Figure 4.7: Effective movement rates for 1000-time cycle intervals for Dutta/Sen
agents

rate of movement. If the Dutta/Sen agent moved as a vandeVijsel agent did, then

40% of this 72.5% effective movement rate would be guaranteed, and the remainder

would be determined by its speed attribute. By removing the guaranteed 40To from

the effective movement rate, we are left with 32.5%. Since each unit of speed is

worth 4To movement rate, dividing 32.570 by a% provides the effective speed value

for the Dutta/Sen agent of 8.125. In other words, a speed attribute value of 8.125

in a vandeVijsel agent would result in the same effective movement rate that we

observe experimentally for a Dutta/Sen agent. Therefore, if the coalition formation
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Figure 4.8: Effective speed values for 1000-time cycle intervals for Dutta/Sen agents

approaches were working with identical efficacy (i.e. if the effect of the coalition

formation approach were to be identical in both agent models), then I would expect

the Dutta/Sen agents to display the same throughput as a vandeVijsel agent with a

speed attribute of 8.12b2.

Figure 4.9 shows that this is clearly not the case. In fact, the Dutta/Sen agents

display similar average throughput to a vandeVijsel agent with a speed attribute

overtheentireIengthoftheexperiment.Figure4'8shows
the effective speed values of the Dutta/Sen agents in 1000-time cycle intervals, sho-wing a similar
paütern to the movement rate illustrated in Figure 4.7.
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System Throughput - Comparison of
Effective Speed Attribute Values
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Figure 4.9: Comparison of actual throughputs for those vandeVijsel agents with Speed
values 1 and 8, and all Dutta/Sen agents

value of one, despite their effective movement rate that translates to a value of 8.125.

Therefore, the coalition formation approach used by the vandeVijsel agent (which is

the only remaining variable that has not yet been accounted for) allows a vandeVijsel

agent with a speed attribute of one (the worst case for a vandeVijsel agent) to perform

as well as a Dutta/Sen agent with an effective speed attribute of 8.12b. This also

puts the results shown in Figure 4.1 in perspective. Not only are the vandeVijsel

agents attaining higher throughput, but they are doing so while moving more slowly,

on average, than the Duita/Sen agents.

In summary, I have shown that the only contributing factors to the difierence

in throughput between the two agent models are the coalition formation approaches
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and the difference in movement rates for the two agents. By determining the effective

movement rate of the Dutta/Sen agents, I have shown that the coalition formation

approach used by the vandeVijsel agent model is giving vandeVijsel agents with an

effective movement rate of 44% the same throughput as a Dutta/Sen agent with an

effective movement rate of 72.5%.

4.5.2 Coalition Stability

As mentioned in Section 4.2, lhe vandeVijsel and Dutta/Sen agent models have

different concepts of coalitions. The vandeVijsel model uses explicit, closely-knit

coalitions, and a single agent can be in many different coalitions. The Dutta/Sen

agent uses opinions to define loose groups of agents that present a larger likelihood

of cooperation. As indicated in Section 4.2, for the purposes of this analysis I will

consider each Dutta/Sen agent to define its own coalition, and that coalition will

consist of other agents for whom the agent currently maintains a positive opinion.

Section 4.2 described two distinct measures of coalition stability - the total number

of groups in the system, and the rate of change in the membership of those groups.

When discussing the total number of groups, it is difficult to make a fair comparison.

Initially, I attempted to define a Dutta/Sen coalition as a pair of agents that share

a positive opinion about each other. This approach provides an unfair comparison,

however, because this definition restricts a Dutta/Sen coalition to two members (i.e.

a partnership), while the vandeVijsel approach is stilt considering much larger groups.

Adjusting the vandeVijsel approach to consider partnerships is also unfair, because

the number of effective partnerships increases combinatorially when a single agent is
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Coalition Stability - Rate of Change of Number of Groups
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Figure 4.10: Rate of change of the aggregate number of groups for the vandeVijsel
and Dutta/Sen agents

added to a coalition.

Additionally, if we use the definition of a Dutta/Sen coalition as outlined in Section

4.2, then each agent maintains one coalition of agents of which it has a positive

opinion. This definition gives us a constant number of Dutta/Sen groups in the

system, equal to the number of agents, which is not useful for comparative purposes.

Instead of examining the actual number of groups in the system, another approach

that was considered was examining the rate of change of the number of groups. Figure

4.10 shows this rate of change, considering a Dutta/Sen coalition to be a pair of

agents that share a positive opinion about each other. (Using the definition from
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Section 4.2 would result in a rate of change of zero for the Dutta/Sen agent, since the

number of groups would always equal the number of agents.) However, every time the

Dutta/Sen agent receives help from a new agent, it may form a new partnership, and

as agents learn about each other's abilities, more and more positive partnerships will

be created' On the other hand, in the vandeVijsel approach, new groups are rarely

required between agents after a certain amount of time, since it is highly likely that if
two agents do not share a coalition after some length of time, one agent or the other

will have knowledge about a group for which both agents will be suitable. Thus this

comparison does not treat the Dutta/Sen approach fairly.

Because of these issues, I have chosen to focus my analysis of coalition stability

on the rate of change of group membership in the system. Section 4.2 outlines the

method used for calculating the rate of coalition membership change for the two

approaches.

There is one additional barrier to making a reasonable comparison between these

two approaches. The potential dishonesty of vandeVijsel agents will likely cause addi-

tional coalition membership changes, as coalitions learn about the dishonest agent,s

true abilities (see Section 4.2). However, the dishonest vandeVijsel agent can join

multiple coalitions at the same time, presumably causing instability in each coalition.

In the Dutta/Sen approach, interactions between two agents are localized to only

those two agents, and no other agents' opinions are afiected. When a Dutta/Sen

agent determines that another agent is not useful to it, its opinion of the other agent

is reduced, and a single coalition membership change results. So a single vandeVijsel

agent will result in numerous coalition membership changes, simply by the nature
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Figure 4.11: Rate of change of coalition membership by time cycle for Dutta/Sen and
vandeVijsel agents

of the vandeVijsel agent model because of one of the realistic factors it incorporates

which the Dutta/Sen approach does not.

To allow for accurate comparisons between the stability of the two approaches,

therefore, I have calculated the coalition membership changes divided by the number

of coalitions in which the agent currently participates. For the Dutta/Sen approach,

the number of coalitions in which the agent participates is one, by definition - every

agent maintains its own coalition. For the vandeVijseÌ approach, the number of

coalitions varies from agent to agent.

Figure 4.11 shows the rate of change in coalition membership per coalition (as
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defined above) for both the Dutta/Sen and vandeVijsel approaches. This graph rep-

resents the average number of coalition changes for a single coalition over time. Both

the vandeVijsel and Dutta/Sen approaches reach a stable state relatively quickly,

where there are generalty a fi-xed number of changes every 1000 time cycles.

The vandeVijsel agent model exhibits a slightly higher rate of change in coalition

membership due to the point raised above - it must contend wiih dishonest and fallible

agents in its coalitions. In the Dutta/Sen approach, there is no such dishonesty -
the observations of the agent are all it uses to determine usefulness, an¿ so it makes

sense that there are fewer membership changes over time. However, both approaches

do reach a reasonable level of stability within approximately 10000 time cycles, and

do not waver significantly from that level for the remainder of the simulation.

4.5.3 Additional Results

In addition to the data captured on system throughput and coalition stability, I

have analyzed two more aspects of the behaviour of the vandeVijsel and Dutta/Sen

agents.

First, I have examined the number of packages, on average, that agents are carry-

ing at any given time. These results are shown in Figure 4.i2. As discussed in Section

3'2, agents are only able to carry a maximum of 10 packages at a time. Figure 4.IZ

shows that, after only a few thousand time cycles, agents are carrying close to their

maximum capacity of packages most of the time. Thus, every time they choose to

deliver a certain package from their payload, they must select one out of 9 or 10

possibilities. Since an agent is often carrying its maximum payload of packages, its
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Figure 4.L2: Ãvetage number of packages being carried by vandeVijsel and Dutta/Sen
agents, over time

ability to help other agents deiiver packages is reduced as it will likely not have the

capacity to take on another package from another agent.

I have also examined the number of vandeVijsel coalitions created, on average.

These results can be found in Figure 4.13. Since the agents do not have the ability to

merge coalitions, there are a large number of coalitions formed in the initial phases of

the simulation. Coalitions between agents of average abiliiy will grow in size, while

coalitions between "fringe" agents (agents of unusually high or low abilities) will tend

to remain small.
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Average Number of van de Vijsel Coalitions
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Figure 4.13: Average number of vandeVijsel coalitions created, over time

4.6 Summary

This chapter has outlined that the vandeVijsel approach provides significant gains

in throughput for the package delivery domain, while resulting in comparably stable

coalitions when evaluated against the baseline approach of Dutta and Sen. The

following chapter will summarize this research and outline future work.
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Conclusion

In this thesis, I have presented a new coalition formation approach that avoids

many of the restrictive assumptions that prevent other coalition formation approaches

from being applicable to more realistic problems. The agent model I have described

encompasses many factors that increase the realism of the approach:

o Agents are heterogeneous in their abilities

r Agents can have multiple, potentially conflicting goals

o Agents can be part of multiple coalitions at the same time

e Coalitions learn about the actual abilities of their members over time, exposing

dishonest agents that have exaggerated their capabilities and removing them

from the group

Based on a review of eústing coalition formation research, I have identified the

approach that is the most realistic - that is, the approach that avoids more of this

r25
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restrictive assumptions than other approaches. I have implemented both my approach

and this baseline approach in a package delivery domain, and evaluated my approach

against the baseline using the measures of system throughput and coaliti,on stabi,lity.

5.1 Findings and Analysis

System throughput was 38% higher in my approach as compared to the Dutta/Sen

approach. However, there were two differences in the approaches that could have given

rise to this difference - the difference in agent ability and the coalition formation

approach itself.

I was able to determine that the expertise quadrant in the baseline approach had

no effect on the throughput of the agent - all agents displayed comparable throughput

regardless of their expertise quadrant. Similarly, I found no correlation between the

throughput of a vandeVijsel agent and the agent's trust, memory or honesty values.

However, there was a definite correlation between the speed attribute of a vandeVijsei

agent and its throughput. Examining how much time a Dutta/Sen agent spent in and

out of its area of expertise allowed the calculation of the effective speed attribute of a

Dutta/Sen agent, allowing a direct speed comparison to my agents. This comparison

showed that Dutta/Sen agents were effectively faster than mine. The improvement

in throughput shown by my approach is even more positive in this light.

There were two different measures that could be taken to compare the coalition

stability of the two approaches - the rate of change in the number of coalitions in the

system, and the rate of change in the membership of those groups. I concentrated on

examining stability from the standpoint of the rate of membership change, because



Chapter 5: Conclus'ion

this factor could be examined more effectively despite the differences in the nature

of a coalition between these two approaches. In examining the rate of change in a

Dutta/Sen coalition and comparing it to the vandeVijsel approach, adjusting for the

number of coalitions, the rate of membership change in the two approaches was shown

to be similar.

Overall, my approach showed greater productivity as a result of forming coalitions,

as shown by throughput, while still producing stable coalitions.

5.2 Future Work

The goal of ihis thesis was to define and evaluate a coalition formation approach

that encompassed a number of important characteristics of the real world. While this

work has encompassed many such characteristics, there are other enhancements that

could still be made to increase the realism of the approach.

For example, the system currently wo¡ks with a fixed number of agents. In a real-

world scenario, this would not be the case - there would always be new agents being

added to any environment, and there would also be agents leaving an environment.

Adding this element to the described approach would be an interesting line of future

research. Since the agents currently make no assumptions about the total number

of agents in the system, the addition of new agents should not afiect the results

significantly - an individual agent has no way of knowing whether another agent it

has just met is new to the system or not. The departure of agents, however, would

be a larger issue to handle, especially if the agents were to leave the system without

notification. Coalitions of which the agent \¡/as a member might assume it is still

727
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active, even though it is no longer contributing, and additional maintenance to the

groups (such as removing agents that have not assisted on any coalition packages

over a certain time frame) might be required. There may also be new schemes for

deception that could be perpetrated if agents could depart without notice as well.

Another significant topic of future research would be the potential variability of

agent attribute values. Currently, these values are fixed for the life of the agent. In a

real-world environment, these could be variable. A person could increase their speed

by working out, losing weight, or purchasing a faster vehicle. A person,s memory

could improve by using some sort of recording system to counteract the effect of

forgetting things. Attributes that are reflective of a person's personality, such as

trust and honesty, could be changed simply by making a decision to attempt to be

more honest or trustworthy. Conversely, ail these items could be decreased using

analogous scenarios.

The effects of such variability in attribute values would be interesting. Changes

in the ability-based attributes of speed and memory would not only result in changes

in the agent's throughput, but also their value to any coalitions of which they are

members. Coalitions may decide to re-evaluate members periodically to see if their

attributes have changed, changing their suitability for the coalition. There are many

different factors that could be explored if attribute variability is introduced into the

agent model.

Another item that was not introduced in this research is the cost of participating

in a coalition. Currently, an agent can join a coalition and remain in the coalition for

an indefinite period of time without incurring an explicit cost. There are costs such
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as the responsibilities of being asked to help fellow members, but there are no explicit

costs such as membership fees. An agent is also removed from the coalition without

penalty (other than the implicit penalty of losing the potential aid of the coalition

members). Evaluating the effects of such costs on agent performance would provide

interesting results.

There has also been no exploration of the financial aspects of the package delivery

domain. Agents receive payoffs for delivering packages, and receive penalties for

losing them. Agents with higher attribute values should have more accumulated

currency than agents with low values. An analysis of effects of agent attributes on

the accumulated payoffs of agents would give further insight into the effectiveness of

the approach. Since we have gathered data on financial aspects, immediate future

research includes analyzing this data for interesting phenomena and designing future

experiments based on the results of this.

Another interesting path of future research would be the possibility of allowing

coalition mergers, almost like an additional level of coalition formation between coali-

tions. The model allows for multiple coalitions to emerge that have similar values -
that is, the average attribute values of its members are simiiar. It would be useful

to explore how those coalitions could merge into a single groüp, and if this would

increase the performance of agents in the system. There are many facets of this issue

to explore - how would agents identify a merger possibility? Would a vote or approval

from the member agents be required? Would agents be able to opt out of joining the

merged coalition? This scenario can be compared to a corporate merger in the real

world, and many of the issues in such a scenario could be explored from a coalition
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perspective.

The applicabiliiy of this approach would also be enhanced by implementation in

several other realistic domains. While the coalition formation approach discussed

in this thesis works well for the package delivery domain, and it encompasses many

different aspects of realistic scenarios, additional research is required to ensure that

the approach will work equally well when applied to other domains.

Along the same lines, it would be interesting to see the creation of a physical

domain with agents that have an actual physical presence (i.e. robots) and that em-

ploy this coalition formation approach. Currently, the Coalition Formation Simulator

provides a small amount of infrastructure that allows the agents to access the informa-

tion they require - for example, the simulator provides a list of encountered agents at

every time cycle. Implementation into a physical domain would pose challenges, but

could provide interesting results that would further serve to illustrate the approach's

potential in realistic scenarios.

5.3 Summary

In this thesis, I have made the argument that existing coalition formation ap-

proaches do not adequately handle many of the issues that occur in more realistic

scenarios. Coalition formation research is still in its infancy, as evidenced by the

fact that there is no strong agreement in the field on any one particular approach.

As multi-agent systems become more and more prevalent in real-world applications,

flexible and computationally tractabie coalition formation approaches will be required

to handle the inevitable demands that agents work together to achieve their goals.
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The approach described in this thesis makes strides in this direction, by providing an

agent model with heterogenous abilities, multiple goals and the ability to form mul-

tiple groups, whiìe learning about the abilities of others and attempting to determine

the degree to which agents have been dishonest.

However, there still remains much work to be done to provide a generalized ap-

proach that will be applicable to a large number of domains. I have outlined several

directions for future research that will make this approach more applicable to other

areas. \.Vith the incredible popularity of distributed computing via the Internet, end

users will begin to use agents as their representatives more often, and the public de-

mand for approaches that allow agents to work together to achieve their goals while

protecting their own interests will grow. I believe that coalition formation research

will prove to be one of the fastest-growing areas of artificial intelligence research over

the coming years, and my hope is that this thesis, and the future work it may inspire,

can aid in the realization of a generaiized approach applicable to any realistic domain.
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