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ABSTRACT

This thesis presents an evaluation of a numerical method for predicting flow
characteristics over a sphere. This numerical method, which is proposed by Birouk
and Abou Al-Sood (2007), is a Cartesian based-grid which employs a blocked-off
treatment of the sphere to solve for the surrounding flow. The steady-state three-
dimensional continuity and momentum equations are solved. Closure for the
turbulence stress terms in the flow momentum equations are handled by using the
standard 4-¢ model or shear stress transport (SST) model. To evaluate the accuracy
of this method, its predictions are compared with those obtained by using a different
numerical approach, which is a conventional method implemented in the CFD code
Fluent. Note that the only difference between these two numerical methods is the
way the sphere is treated in the computational domain. The sphere surface profile
appears as step stairs with the Cartesian grid-based blocked-off technique, whereas
the profile of the sphere surface is nearly preserved when using the conventional
method. The two different methods are found to produce similar predictions, which

1s an indication of the ability of the new method for generating quality data.

1i



ACKNOWLEDGEMENTS

I would like to deeply thank the various people who, during this endeavor of this
thesis, provided me with usefu] and helpful assistance. Without their care and
consideration, this thesis would likely not have matured. I would like to express my
profound gratitude to my supervisor, Dr. Ma_djid Birouk, who stood by me all the
time and guided and encouraged me to the achievement of this work. His unending
concern for through job and sustained guidance and encouragements are greatly
appreciated.

My thanks also go to my research group: Maher Abou Al-Sood, Kevin Khadami,
Mohamed Zakaria, and Christopher Iyogun who spent considerable time helping
with Gambit, Fluent, and giving constructive criticisms. T heir help through this
work has been valuably productive. 1 would like finally to thank the Libyan

Embassy for the support that has been granted to me during the whole time of my

research.

111



TABLE OF CONTENTS

ABSTRACT. ..o 1
ACKNOWLEDGEMENTS....................._.... 111
TABLE OF CONTENTS........ ... ... v
LISTOFFIGURES. ..o Vi
MSTOFTABLES ... viii
NOMENCLATURE. ... X
Chapter 1
INTRODUCTION. ..o 1
Chapter 2
LITERATUREREVIEW ... ... ... 4
Ci]elpter 3
PROBLEM DESCRIPTION AND MAT HEMATICAL FORMULATION...... . 12
31 Description of the Physical Problem....... ... . 12
3.2 Governing Equations.. ........... e 13
3.3 RANS Turbulence Closure Models................._ . 15
3.4 Two-Equation Turbulence Closure Médels ..................................................... 16
a. Two-Equation Standard & - & model...............__ 17
b. Two-Equationk — » Shear stress transport (SST) model..................... 18
3.5 Freestream Conditions and Wall Boundaries....................._ 20
Chapter 4
SOLUTION ALGORITHM 22
4.1 Cartesian-Grid Based Blocked-off Technique ... 22

v



4.1.1 Numerical Approach...........ccvvrrioo 22

4.1.2 Treatment of a Sphere in the Calculation Domain..................... 24
4.1.3 Grid generation and results independency....................._ 26
4.2 Conventional Technique.......... 27
4.2.1 Grid Generation and Resulis Independency.................... 28
4.2.2 Numerical App1oach30
Chapter 5
RESULTS AND DISCUSIONS ..o 32
51 Laminar Flow Results...........ooooe 33
5.2 Turbulent Flow Result338
Chapter 6
CONCLUSIONS oo 46
APPENAIX A 47

\Y



LIST OF FIGURES

Figure 3.1 Schematic of a stationary sphere, of radius F, exposed to a cross
airstream
Figure 4.1 The Cartesian-based blocked-off treatment of a sphere immersed in the

computational domain..................... 25

Figure 4.4 A cross-section of the computational domain in the V-z

Figure 5.1 The predicted drag coefficient versus Reynolds number for fine,
medium, and coarse gr1d34
Figure 5.2 Local wall pressure coefficient versus azimuthal angle for a typical

Reynolds number of 100.. ..o 34

Figure 5.3 Comparison of the sphere mean drag coefficient between the present

predictions (new method and Fluent) and published experimental

Figure 5.4 The predicted wall pressure coefficient over the sphere for different

Reynolds numbers..........ooo 36

Figure 5.5 The predicted local skin friction coefficient over the sphere for the

different Reynolds numbers as predicted by the conventional

Figure 5.6 Predictions of the wall pressure coefficient versus azimuthal angle for

Re =10 and I..= 30% by using the standard k-emodel........__ 39

Vi



Figure 5.7 Predictions of the wall pressure coefficient versus azimuthal angle for
Re =100 and I..= 30% by using the standard k-e model.......... . 40
Figure 5.8 Predicted local skin friction coefficient versus the azimuthal angle Re =
10 and /.= 30% by using the standard k-emodel ... 40
Figure 5.9 Predictions of the skin friction coefficient versus azimuthal angle for Re
= 100 and 7..= 30% by using the standard k-emodel..............__ 41
Figure 5.10 Predictions of the wall pressure coefficient versus azimuthal angle for
Re =10 and /.= 30% by using the SST model..... ... 41
Figure 5.11 Predictions of the wall pressure coefficient versus azimuthal angle for
Re =100 and /.= 30% by using the SST model..........oooooo 42
Figure 5.12 Prediction of the skin friction coefficient versus versus the azimuthal
angle for Re = 10 and /.,= 30% by using the SST model...................... 42
Figure 5.13 Prediction of the skin friction coefficient versus versus the azimuthal
angle for Re = 100 and /..= 30% by using the SST model................._. 43
Figure 5.14 Sphere mean drag coefficient (based on the standard k-& model) versus
the airstreafn turbulence intensity for different Reynolds numbers........ 44
Figure 5.15 Sphere mean drag coefficient (based on the SST model) versus the
awrstream turbulence intensity for different Reynolds numbers.............. 45
Figure 5.16 Lvaluation of the grid effect on the predicted drag coefficient versus

the turbulence intensity at various Reynolds numbers...........................45

vii



LIST OF TABLES

Table 4.1 Grid independency for the blocked-off technique

Table 4.2 Sensitivity of present model predictions to the chosen grid

Viii



NOMENCLUTURE

ROMAN LETTERS

¢, pressure coefficient
C,  dragcoefficient
C,  constant
C. empirical constant
d diameter
S damping function
I turbulence intensity (u /U, )
k turbulence kinetic energy
L integral length scale
[, mixing length scale
P pressure
r radius
n normal direction to the wall
Re Reynolds number
Se source term (S, =S5+ S @)
U mean-velocity component in x-direction
u fluctuation velocity component in x-direction
uu, Reynolds stresses
Vv mean-velocity in y-direction
\Y% volume
W mean-velocity in z-direction
X coordinates
GREEK LETTERS
¢  azimuthal angle
®  diffusion parameter (u, v, w, p, k. &, »)
p  density
w  dissipation per unit turbulence kinetic energy
v kinematic viscosity
. eddy viscosity
4 molecular viscosity
7 shear stress
7, shear stress tensor
I'  generalized diffusion coefficient
¢  turbulence dissipation rate
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M, turbulence viscosity
5. Kronecker delta

i

SUBSCRIPTS

bottom (7, j, &-1) node
east (i+1, J, k) node
north (i,j+1,k) node
center (4, j, k) node
south (7, j -1, k) node
top (4,7, kK +1) node
w west (7 -1, j, k) node
freestream
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Chapter 1

INTRODUCTION

Flow over a spherical object, whether an evaporating droplet or a non-
evaporating droplet (solid sphere or particle), is a phenomenon encountered in
numerous industrial fluid flow processes. This would include the vaporization and
combustion of spray, air cleaning devices, centrifugal or sedimentation separators,
fluidized-bed reactors, etc. Therefore, knowledge of the overall dynamics of the
flow around a spherical object is essential for the design and performance of such
industrial processes. Details/knowledge of the flow field can in general be gained
by performing a physical experiment or a numerical simulation. Unlike the
experiment, the numerical simulation if validated is generally cost effective in terms

of time and required recourses.

Some numerical studies employed the assumption of axisymmetric flow over a
sphere; see for example, Fornberg (1988), although the flow is three-dimensional
(3D). This assumption is particularly due to difficulties in creating a 3D
computational grid especially in spherical coordinates. However, in recent years
several attempts have been made to overcome this difficulty; see, for example,
Johnson and Patel (1999), Constantinescu and Squires (2004), Niazmand and
Renksizbulut (2005), Kim er al (2001), and Abou Al-Sood (2006). This is
achieved, for example, by transforming Navier-Stokes equations coordinates from

spherical into another type of simpler coordinates (&, 7, and ¢) which enable using



Cartesian grid (Johnson and Patel, 1999). This approach, in fact, makes the
discretization process (the transformation of governing flow differential equations
mto algebraic form) quite complicated when using finite-volume scheme. Other
approaches use imme;'sed-boundary fitted method, which is based on introducing a
virtual body into the flow field of interest (e.g., Kim et al, 2001). The use of a
virtual body, which is a sort of momentum forcing in the Navier-Stokes equations,

allows employing Cartesian or cylindrical grid.

Recently, Birouk and co-workers attempted, for the first time, to employ a much
simpler method (Birouk and Abou Al-Sood, 2007; Abou Al-Sood, 2006; Abou Al-
Sood and Birouk, 2008). It is termed blocked-off techmque. It consists of using a
calculation Cartesian grid-based domain that includes both the gas and non-gaseous
(sphere or liquid droplet) phases, in which the solution is obtained by blocking off
the control volumes of the inactive phase when solving for the active phase. It is
important to mention that the blocking-off procedure was first developed to
compute flows i curvilinear geometries with a regular grid, as well as to solve
conjugate heat transfer problems in ducts (e.g., Patankar, 1978 and 1991). It was
successfully extended to solve radiative heat transfer problems in irregular two-
dimensional geometries using Cartesian coordinates (e.g., Chai er al., 1993; Kim et
al., 2001; Byun er al., 2003). It is only recently that it has been used to solve ﬂoW
problems in enclosures with obstacles that are three-dimensional problems (e.g.,

Coelho ez al., 1998; Borjini ef al., 2003; Consalvi et al., 2003).

The blocked-off method may be considered advantageous over the

aforementioned techniques due to its simplicity, and easiness for grid generation



and implementation compared to unstructured or multi-block grid generation, while
it still able to produce quality predictions. Although the recent work showed that
this relative simple procedure cannot capture the exact/real surface profile of the
spherical object (as it can be seen in chapter 3), reasonably good predictions were
obtained when compared to experiments (Birouk and Abou Al-Sood, 2007). This,
m fact, is achieved by using a very fine grid, which of course would increase the
CPU time. However, the degree of Inaccuracy of this method is still unknown, as
several parameters depend upon the shape of the spherical object surface. The
present work aims at verifying the accuracy of the predictions of this method. This
is achieved by employing another different independent numerical technique that is
capable of preserving the real sphere surface profile. The full thesis will present and
discuss, as example, the mean drag coefficient of sphere in laminar and turbulent

flows, as predicted by both different methods.

The thesis is organized as follows. The pertinent literature survey Is presented in
the next chapter, followed by the mathematical formulation of the numerical
models. Results and discussion are presented in chapter 5, and a short conclusion is

provided in chapter 6.



Chapter 2

LITERATURE REVIEW

Various numerical techniques have been used to study the behaviour of a flow
over a sphere (e.g., Fornberg, 1988: Johnson and Patel, 1998; Satoshi er al., 1999;
Constantinescu and Squires, 1999; 2003; 2004; Fadlun ef al., 2000; Kim er al.,
2001; Constantinescu er al., 2002; Gilmanov ef al., 2003; Bagchi and Balachandar,
2003; Constantinescu et al, 2003; Wang and Kannan, 2005; and Birouk and Abou
Al-Sood, 2007). Although, the flow field around a sphere is known to be complex
and possesses several features that are difficult to capture, the majority of these
techniques produced results that are in agreement with one another, as well as with
published experimental data (e.g., Torobin and Gauvin, 1961; Clamen and Gauvin,
1969; Uhlherr and Sinclair, 1970; Ross and Willmarth, 1971; Zarin and Nicholls,
1971; Anderson and Uhlherr, 1977; Schiichting, 1979; Neve, 1986; Ruddolff and
Bachalo, 1988; Clift and Grace, 1989; Gore and Growe, 1990; Wamica et al.,

1995a; Yusof, 1996; and Brucato et al., 1998).

Fornberg (1988) developed a numerical technique to study the flow oifer al mm
diameter sphere at high Reynolds numbers up to 5000. His technique was based on
conformal mapping. It maps the computational domain for the  physical
(X =x+ z'y)—plane to a rectangular (Z =&+ in)—p}ane. Fomberg (1988) used
centered-order finite differences (Newton's method) to approximate the governing

equations for all inner points of the computational domain.



Johnson and Patel (1998) investigated numerically steady and unsteady laminar
flow of incompressible viscogs fluid past a sphere at Reynolds numbers ranging up
to 300. Their grid was an O-O type where the numerical coordinates (5,77,{) lie
along the standard spherical coordinates(@gxﬁ,r). Dual-time-stepping and local
pseudo-time stepping formulations were mcorporated. They used a four-stage
Runge-Kutta method to solve the momentum equations in pseudo-time. Also, a
pressure Poisson equation was formulated to satisfy the continuity equation. By
following a spherical coordinate system, the sphere lends itself naturally to the

generation of the numerical grid.

Satoshi er al. (1999) developed a new numerical scheme for the use of direct
numerical simulation to study a laminar flow over a sphere. The sphere was several
times larger than the spacing of the computational domain. They used finite-
difference method to simulate the flow field with a fixed grid system Cartesian
coordinates. The basic equations (mass, conservation equation and Navier-Stokes
equations) were discretized by employing a staggered arrangement on the grid
system in Cartesian coordinates. The grid spacing in each direction of the field was
uniform but it was not a condition of the scheme. In the region close to the particle
(1e. sphere), they used a third order interpolation (i.e. Cubic-Interpolated Pseudo-
Particle (CIP) method). However, the calculation of the transport equation for

velocity gradient was reduced in order to minimize the computing resources.

Constantinescu and Squires (1999) applied Large Eddy Simulation (LES) and
Detached Eddy Simulation (DES) to investigate a turbulent flow around a Sphere at

a Reynolds number Re = 10°. They performed their calculations in the sub-critical



regime (laminar boundary layer separation) by using a mesh of an O-type. The flow
governing equations were solved using the partial transformation approach. Using a
fully-implicit fractional-step algorithm, the momentum and turbulence-model
equations were integrated over a pseudo-time approach. Fifth-order upwind
difference method was used to discretize the convective terms in the momentum
and turbulence transport equations near the sphere surface, while a second-order

central difference method was used in the sphere wake region.

Fadlun et al. (2000) used the immersed-boundary technique to simulate unsteady
three-dimensional incompressible flows in complex geometries including sphere.
This was achieved by using boundary body forces that allow the imposition of the
boundary conditions on a given surface not comciding with the computational grid.
A regular mesh was used 1o solve the discretized goveming equations. Two
different forcings were tested and it was shown that the quality of the results didn"t
change in both cases. One of the disadvantages of this method is that the

mterpolation of the forcing over the grid determines the accuracy of the scheme.

Kim et al. (2001) developed an immersed-boundary method for simulating flows
over complex geometries (i.e. sphere and circular cylinder) where they introduced a
mass source as well as a momentum forcing. A finite-volume approach 1s applied
on a staggered mesh together with a fractional-step method. To satisfy the no-slip
boundary condition on the immersed boundary, both momentum forcing and mass
source were applied on the body surface or inside the body. The reason for that was
to satisfy the continuity of the cell containing the immersed boundary. They applied

momentum forcing when the forcing point coincides with the immersed boundary



so that the velocity is considered to be zero at that point. However, they applied the
momentum forcing when the forcing point exists inside the body so that the velocity
is the opposite of that outside the body for both velocity components (the wall-
normal and tangential). In this method, the body in the flow field was considered as
a kind of momentum forcing in the Navier-Stokes equations rather than a real body.
Therefore, flow over complex geometries can easily be handled by using orthogonal
(Cartesian or cylindrical) grids which generally do not coincide with the body

surface.

Constantinescu et «l. (2004) applied Detached-Eddy Simulation (DES) to
mnvestigate turbulent flow around sphere over a range of Reynolds numbers ranging
from 10° to 1.1x10° A modification of the Spalart-Allmaras one-equation model
was used to develop their formulation. It is reported that Detached-Eddy Simulation
1s a technique that is computationally feasible when predicting the flow for high
Reynolds numbers (Constantinescu er al., 2004). It also has the ability to resolve
time dependent and three-dimensional turbulent motions. In their study, DES was
applied to predict a flow around a sphere for both sub-critical and super-critical
regimes (i.e. laminar and turbulent layer boundary separation, respectively). The
mitial and boundary conditions of the simulations were used to specify the laminar
or turbulent boundary layer. A fractional step method was used to compute the
mcompressible flow over the sphere. The momentum and turbulence transport
equations were discretized using fifth-order accurate upwind differences for the
convective terms. All other operators were discretized using second-order central
differences. The numerical method was fully implicit and the equations were solved

on a simple O-O grid with the radial, polar, and azimuthal directions in a domain



that extended from » = 0.5D (where D is the sphere diameter) to 10 diameter in the

radial direction.

Gilmanov er al. (2003) Investigated incompressible flow with complex immersed
boundaries by using a general reconstruction algorithm in Cartesian grid. They used
an unstructured triangular mesh to disctretize the three-dimensional solid surface
that is immersed in the fluid. They were able to identify all the Cartesian grid nodes
near the interface. The reconstruction of the solution in these nodes was obtained
via linear interpolation along the local normal to the body, in a way that the desired
boundary conditions for both pressure and velocity fields were enforced. On non-
staggered grids, the three-dimensional, incompressible Navier-Stokes equations
were solved using a second-order, finite difference approach. The three-point
central differencing method was used to discretize the governing equations. The
second-order accurate QUICK upwind scheme was used for the convective terms.
They used the second-order accurate, dual time stepping, artificial compressibility

approach for integrating the discrete equations in a time-accurate manner.

Bagchi and Balachandar (2003) applied a direct numerical simulation (DNS) to
study the effect éf freestream isotropic turbulent flow on the drag and hft forces of a
micro (spherical) particle. Their test conditions include a Reynolds number ranging
from 60 to 600 and freestream turbulence ntensity from 10 to 25%. They solved the
governing '(continuity and Navier-Stokes) equations by a direct numerical
simulation in a spherical domain attached to the particle. A Fourier-Chebyshew
collocation scheme in spherical coordinates was used for the spatial discretization.

Also a two-step time-split scheme was used for the temporal discretization, and a



non-reflecting boundary condition was used at the outflow boundary of the
spherical domain. No-slip and no-penetration conditions were satisfied on the
surface of the particle. The distribution of the grid points in the domain was
nonuniform, that is clustered near the surface of the particle and in the wake region.
The gnid generated was adequate to resolve the thin shear layers and the wake

structures generated by the particle.

Constantinescu et al. (2003) studied the incompressible flow over a sphere by
applying unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The
predictions of URANS were obtained by using two layer k — ¢,k -, 1> -/, and

the Spalart-Allmaras model. In their study, a fractional step method was used to
compute the flow around the sphere. They transformed the governing equations to
the generalized curvilinear coordinates with the primitive velocities and pressure
were both kept as the dependent variables. The momentum and turbulence model
equations were integrated in pseudo time using a fully implicit algorithm. In the
first step of the fractional step method, an intermediate velocity field was obtained
by advancing the convection and diffusion terms. That was done by using an
alternate direction implicit approximate factorization scheme. The intermediate
field was obtained with the current pressure field and does not satisfy the continuity
equation. Therefore, a Poisson equation was solved for the pressure, for which the
resulting solution was used to update the intermediate velocities to satisfy the
continuity equation. Local time-stepping techniques were used to accelerate the
convergence of the resulting system of equations. The source terms in the

turbulence-model equations were also treated implicitly.



Wang and Kannan (2005) used an overset adaptive Cartesian/prism grid method
to compute the moving boundary flow over a sphere. Their technique enabled
avoiding grid remeshing when dealing with moving boundary flow problems. They
used an adaptive Cartesian grid for moving boundary problems as the Cartesian
cells are more efficient in filling space than triangular/tetrahedral. Also, solutions
based on geometry-based grid adaptations are straightforward to carry out. In their
method, body-fitted prism grids were generated first near solid bodies to resolve
viscous boundary layer. Whereas an adaptive Cartesian grid is used to cover the
outer domain and serve as the background grid for bridging the gaps between the
prism grids. The prism grids are used to generate holes in the adaptive Cartesian

grid to facilitate data communications.

Birouk and Abou Al-Sood (2007) developed a simple numerical technique to
investigate numerically the effect of freestream turbulence mtensity on the drag
coefficient of a sphere immersed in a turbulent airstream for Reynolds numbers
ranging between 10 and 250 and freestream turbulence intensity up to 60%. The
three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with
mass conservation were solved in Cartesian coordinates by using a blocked-off
method. Although this method is very simplistic compared to all techniques
mentioned above, it generated results that are fairly comparable with published
data. The only disadvantage of this technique is its inability to configure the exact
shape of the sphere (discussed in the next chapter). However, turbulence results
appeared to depend upon the RANS turbulence closure models, for which their
predictions are thought to be possibly related to the step stairs shape of the sphere

which is imposed by this technique. Therefore, the ultimate objective of this thesis

10



1s to use a different/independent technique which enables capturing the exact sphere

surface shape to evaluate the degree of accuracy of the predictions of the blocked-

off technique.
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Chapter 3
PROBLEM DESCRIPTION AND MATHEMATICAL

FORMULATION

3.1 Description of the Physicai Probiem

A stationary sphere of Imm radius immersed into a turbulent freestream of
infinite expanse is considered. The freesteam is prescribed by a mean-velocity, U,
a turbulence intensity, /_, a pressure P, a kinetic energy, k., and a turbulence
dissipation rate, ¢, or turbulence dissipation rate per unit of turbulence kinetic
energy, @, . The flow over the sphere is assumed to be steady, turbulent with no
heat transfer from/to the sphere, and the sphere remains stationary all the time. The

stationary sphere of a radius of 1 mm exposed to turbulent airstream is

schematically shown in Figure 3.1.

Fig. 3.1 Schematic of a stationary sphere, of radius 7, exposed to a cross airstream



3.2. Governing Equations

The governing equations (which are the steady state, three dimensional, mass
conservation and Reynolds-Averaged Navier-Stokes (RANS) equations) for a

turbulent flow over a sphere can be written as

~

0
~—(pU,) =0, _ (3.1)
Ox,

O % ol —
PN L L L (3.2)

Ox, ' ox, ox |" au, '

where
£ = density

4= dynamic viscosity
U;= mean-velocity components
p = pressure

u,= fluctuating velocity component.

e, = Reynolds stresses

The "bar" in equation 3.2 denotes the average value and the subscripts i and j
denote the three instantaneous velocity components in the three flow directions.
These equations can be used with approximations based on knowledge of the

properties of flow turbulence to give approximate averaged solutions.

Averaging Navier-Stokes equations results in six additional unknowns which are
referred to as Reynolds stresses, in addition to three original velocity and pressure
components. Consequently, the number of the unknowns exceeds the number of
equations. Therefore, solving these averaged equations can only be possible by

adding additional equations. This exercise is termed as "closure problem". The

13



turbulent stresses u,u . are assumed to act like viscous stresses that are proportional

to the mean velocity gradient. This assumption is made by Boussinesq who
mtroduced "turbulent” or "eddy" viscosity concept in 1877. This concept assumes
that the turbulent (Reynolds) stresses are proportional to the mean velocity

gradients and can be expressed as follows:

— G U
— uluj = 1/[ aU, -+ ! 5‘ %(/{ + V[ ’%‘j‘]é‘% (33)

T8 pn T 1 ]
ox, 0ox ox,

where v, is the eddy viscosity, and 8, is the Kronecker delta (which equal 0 if
1# jand 1 1f i = j). In contrast to the molecular viscosity v, the eddy viscosity v,
1s ot a fluid property and it depends strongly on the state of the flow. It may vary

significantly from one point to another in the flow, and it may vary from flow to

another. The eddy viscosity can be modeled as (Pope, 2000)

k’
%=Qﬂ;m (3.4)
i
or vo=1 - (3.5)
w

where C, is a constant which depends on the turbulence closure model being
used, f, is a damping function employed to compensate for Reynolds number

effect in the near wall regions, & is the turbulence kinetic energy, £ is the
dissipation rate of the turbulence kinetic energy, and @ is the dissipation rate per
unit of turbulence kinetic energy. The turbulence terms k, and €, or @ can be

obtained by introducing the transport equation of RANS turbulence closure models.

14



3.3 RANS Turbulence Closure Models

A turbulence closure model is prescribed by a set of equations (algebraic or

differential) which determine the transport terms (u,'u;. ) in the mean flow equations

and thus close the system of equations. They are based on hypothesis about
turbulent processes and they require empirical input in the form of constants or
functions. They do not simulate the details of the turbulent motion but only the
effect of turbulence on the mean-flow behavior (Pope, 2000). Turbulent transport
processes are strongly problem-dependent. For example, they depend on
geometrical conditions (wall shape or roughness), on viscous and swirl effects, and
buoyancy. Therefore, turbulence models can only give approximate description and
are only valid for a certain flow with a particular set of empirical constants (Pope,
2000).

One way of classifying turbulence models would be according to whether (or
not) the models use the eddy viscosity concept. Turbulence models can be classified
mto (Pope, 2000): (1) Eddy viscosity models, (11) Reynolds stress models and, (iii)
Large-Eddy Simulation (LES) models. Experience has shown that the turbulence
models can be classified according to the number of transport equation used for the
turbulence quantities. They are zero, one-, and two-equation models. The zero-
equation model is widely used in practical engimeering CFD codes (Pope, 2000).
The one-equation model is widely emp}o.yed m early stages of turbulence modeling
and it still in use but for limited flow regi‘ons such as the near-wall sublayer where
this model is much simpler to use than the other complicated models (Pope, 2000).
The two-equation model is employed when additional details of turbulence
quantities are required (Pope, 2000). Only two equation eddy-viscosity turbulence

models were tested in the present thesis.

15



3.4 Two-Equation Turbulence Closure Models

In the one-equation models it is difficult to specify empirically the length scale
L, m the case of more complex flows (Pope, 2000). In attempt to eliminate the need
for specifying . as a function of position throughout the flow, the two-equation
models are developed (Pope, 2000). The length scale L, characterizing the large

eddies contains much of the turbulence energy that is subjected to transport
processes In a manner similar to the energy k. Two Important processes that
mfluence this length scale are the dissipation, which destroys the small eddies and
thus effectively increase the eddy size; and vortex shedding connected with the
energy cascade, which reduces the eddy size (Pope, 2000). The balance between

these processes can be expressed by using transport equation forL, to find its
distribution throughout the flow (Pope, 2000). The L, transport equation must be

solved alongside a transport equation for the velocity scale V, i.e. k-equation. The

length scale equations are a combination in the form (Kantha 2004)
Z=k"L (3.6)

The most common combinations which have been proposed are

Dissipation rate (Harlow and Nakayama, 1967) £ o k
5
Frequency (Kolmogorov, 1942) o= 7
. .. . — k
Turbulence vorticity (Spalding, 1972) W= 3
Rotta (1951) kL

16



The transport equations for some of the above quantities can be obtained by
manipulating Navier-Stokes equations with additional assumptions associated with
each model. The general transport equation for all variables can be written as

following (Mathieu and Scott, 2000)
(
(——'— —?‘C:I—P?*C'SEZ*L——FS, (37)

where o, ¢, and ¢, are empirical constants, P is the production of kinetic
energy, and S is the sccondary source term which depends on the choice of Z. The
different two-equation models are, Standard k —¢ model, Low-Reynolds number
k — ¢ model, Low-Reynolds number # — o model, &k —@ Baseline (BSL) model,
and k - Shear stress transport (SST). model.

The two models used in this study are briefly described below

a. Two-Equation Standard k- Model

The transport equations for the turbulent quantities for k-¢ two-equation mode] of

Jones and Launder (1972) are

~ r/ A A aU A7 172 2
Dpk :—g-t /z+fi)gkﬁ + 4, o, | o, —+—2L1-2u “ - pe (3.8)
Dt ox, | o, )ox, Ox, | Ox, ox, Ox
Dpe 0 fr‘/ s Y Be g@U ]
=— {/Hh——J“ + /iC 0, — . l
Dt ox, o, )0x, k ox,
(3.9)
-C.,f, p~—+pEj
and the eddy viscosity is defined as
/ 2
v, =C,f, (3.10)
£
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where the model constants are given as

C, =009 0,=10 o, =13

(3.11)
C,=144 C_,=192
with the damping functions as
Ju=t=1 ‘—‘11
(3.12)
g

b. Two-Equation k- Shear Stress Transport (SST) Model

Following the k-@ model proposed by Wilcox (1988), which has the
disadvantage of being highly sensitive to @ in the freestream region, Menter (1994)
proposed an improved version of k-w, which is called shear stress transport (SST)
model. The SST model is a combination of the ko model of Wilcox (1988), which
1s recommended to solve for flow in the inner region of the boundary layer, and the
standard /-¢ for the outer boundary region, as well as the freestream region. The k-¢
model is then transformed into k- formulation along with the introduction of the
blending function £,. This function is given a value equal to | near the wall and
zero far from the wall. The difference between the SST model and k- model 1s the
appearance of a cross-diffusion term in the @ equation and also the cbnstants are

different. The transport equations for the SST model of Menter (1994) are

a ’\U» 6U ) ja .
Dok = 4, A AR (o) ok - B pok (3.13)
Dt Ox, { ox, Oox, Ox, Ox;
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) ) ) aU ~ r »
M:_}:gi OU’ + I +—_.O__§I(lu+o'm#l)§_a)_
Dt pox. | ox . Ox x| Ox
' ' (3.14)
2 -0 Ok Oow
= Bpa* +2p(1 - F)=e2 X O©
w 0Ox, Ox
The constants for the outer region are:
o, =0.5 c,, =05 B, =0.0750
. . ) : (3.15)
£ =0.09 =041 Ya =510 o,k
The constant for the inner region are
o, =0.85 o, =05 B, =0.0750 a, =031
. 5 , . (3.16)
£ =0.09 x=0.4] n=p16 -,k I\B
and the eddy viscosity is now defined as
/
e LI (3.17)
max(a,w; QF),)
‘where O 1s the absolute value of vorticity, which is defined as
Q-9% U (3.18)
ox,  Ox,
and F is given by
F, = tanh(arg?), (3.19)
with
ko 5000 )
Vi 500y (3.20)

arg, =max| 2 S5 |-
: ( 0.090y  y’w

The constants for the model employed for the inner region of the boundary layer,
1e. In the vicinity of the wall, denoted by a symbol ¢, and the conditions for the

model used to solve for the outer region of the boundary layer as well as the



freestream region, denoted by @2, are related together by a function called “blending

function F,”. The latter provides the constants, ¢, for the BSL mode] as

0 =Fo, +(1-F)o, (3.21)
where
F = tanh(argf) (3.22)

and

( Vi 500v _4,00‘(32/(1 (3.23)
L 0.09y° _yzw/’CDmﬁJ ’

arg, = min{max

The symbol y is the distance to the wall and CDy 1s the positive portion of the

cross-diffusion term in the w-equation, which is given as

_ , Ok © -
cD,, :max[2p&;§—(~-gﬁ)~; 10 'OJ (3.24)
o Ox, Ox,

Freestream Conditions and Wall Boundaries

The freestream mean velocity components, pressure, and turbulence quantities at

the inlet of the computational domain are taken asu=U_,v=0, w=0,p= Pos
k=k,and w=0w,. The freestream ke €, and w.. are estimated by using the
following  relations (Menter, 1994; Karel, 1998): &k, =15 ([w xU, )2,
e,=c,f,pRek’/u_  and o, =p,(k, /0, N, /1) where U, is the
freestream turbulent viscosity which is approximated as H,, ~(0.1-10)u . The

existence of a solid boundary (wall) induces considerable changes in the flow and
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turbulence structure as compared to the turbulent freestream away from the wall.
Therefore, the flow conditions at the wall must be defined. The no-ship boundary
conditions are used for velocities, however, zero gradients are used for pressure as
follows U, =V, =W =0 and 8p,/8n=0 where n is the normal direction onto
the wall. For turbulence quantities, i.e., kinetic energy k, viscosity u, dissipation g,

specific dissipation @, and their values at the wall are set as k,=0, g . =0,

2 coa s ) , .
£,=0, and o, =800y, / pu,(Ayl) where Ay, is the distance to the next node

away from the wall (Kral 1998, Menter 1994).
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Chapter 4

SOLUTION ALGORITHM

In the present thesis, two different numerical approaches are used. One is a
Cartesian based-grid blocked-off technique, and the other is the conventional
technique implemented in Fluent software. The former is a new method developed
by Birouk and Abou Al-Sood (2007) to solve for the flow characteristics around a
spherical object, for which details are provided below:. However, the latter is a
conventional method employed by the commercial software Fluent, which is

different than the former one.

4.1. Cartesian-Grid Based Blocked-off Technique

The grid generation, treatment of the sphere in the calculation domain, and

independency of the results on the grid are discussed below.

4.1.1 Numerical approach.

Fmite-volume approach (Patankar 1980) with staggered gnid 1s used to solve the
complex nonlinear and strongly coupled set of governing transport equations
described in chapter 3. The gdveming differential equations are integrated over
discrete volumes in Cartesian coordinates resulting in a set of algebraic equations of

the following general form
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(aE tay +ay +ag+a, O +a, —-SPAxAyAz)CDP =a, P, +a,d,
ay D, +a;Ds +a, D +a,d, + S .AxAyAz

+
(4.1)

where ap ar aw. ay ag ar, ag. and bg are coefficients and their expressions are
reported elsewhere (Aboul Al-Sood, 2007; Birouk and Abou al-Sood, 2007). Sp and
Sc are the two terms of linearized source term Se, and Ax, Ay, and Az are the control
volume lengths in the direction of x, y, and z coordinates respectively. A schematic

of the CVs 1s presented in Figure 4.1.

The absence of an explicit equation for pressure when working numerically with
the so-called primitive variables U, ¥, W and p, presents a real difficulty which is
overcome by using the SIMPLEC approach (Van Doormall and Raithby, 1984).
This approach allows developing an expression in the form of Eq. (4.1) for the
pressure through a combination of the continuity and momentum equations. The
objective is to develop a pressure field such that the resulting velocity field satisfies
the continuity equation for every control volume in the calculation domain. The
solution of the set of linearized algebraic equations, which are resulted from the
application of Eq. (4.1) to each control volume in the computational domain, is
accomplished by using a three-dimensional Strongly Implicit Procedure (S1P)
developed by Leister and Peri¢ (1991). The SIP is chosen as a solver because it
takes less number of iterations for convergence compared to other solvers, such as
point Successive Over Relaxation (SOR) or Line Successive Over Relaxation
(LSOR). Details of SIP, SOR and LSOR are reported elsewhere (Abou Al-Sood,
2006). The iterative procedure sweeps the solution domain until either the assigned

maximum number of iterations is exceeded or the range-normalized relative errors
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(Eq. 4.2) of the diffusion parameters (U, ¥, W, p, k, and & or w) are satisfied for

each control volume.

{ n+l _ n |
| @ O] <6
!(]) )

max min

@ (4.2)

+ . . .
where @""" and @" are the new and previous values of the diffusion parameter
. . . . 1']
D. Dpax and D,y are the maximum and minimum value for the entire @/ field

and O, is taken to be 10™ for all quantities.

4.1.2 Treatment of a Sphere in the Calculation Domain.

The sphere is treated, in the computational domain, by employing the blocked-off
treatment. This treatment is achieved by blocking-off the! control volumes (CVs)
that form the sphere (i.e. the nactive CVs) so that the remaining active control
volumes form the desired domain (i.e., the surrounding gaseous phase). It 1is
obvious that the sphere is approximated by a series of rectangular or/and square
CVs. Although the computation is executed for the entire domain, only the solution
within the active control volumes is meaningful. The simplest way in which the
desired values of these parameters could be obtained in the inactive control
volumes (1.e. sphere) is by assigning a large source term in the discritized equation.

That is setting S, and §, in Eq. (4.1) for the inactive zone as follows:

S. =10,

P desired

and S, =-10% (4.3)
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where 10°° is a number large enough so that the other terms in the discritized

equation become negligible. Therefore, Eq. (4.1) for the sphere (inactive CVs)

becomes

S(- + S‘/)(Dl’ = O . (4’4)
and hence
(D/) = S(‘/‘SV/’ - (D[’_vdu.\u'wl . (45)

In case of a solid stationary sphere, the desired values (@ ) for all

Podesired
parameters (i.e. pressure, velocity components and turbulence quantities) are set
equal to zero. Note that this technique makes the surface of the sphere looks like
stair steps as illustrated in Fig. 4.1. This approximation induces some calculation

errors which can be minimized by using a very fine grid in the droplet domain.

+ = Gas-phase -+

phere)

d; '

Fig. 4.1 The Cartesian-based blocked-off treatment of a sphere immersed in the
computational domain
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4.1.3 Grid generation and results independency.

For the Cartesian based blocked-off technique, the calculation domain, which is a
cube of 32r x 32r x 32r length, where r is the sphere radius, was divided into
several control volumes and the sphere is fixed at the centre of the cube. This
choice is based on the suggestions made by Sundararajan and Ayyaswamy (1984)
who recommended that the freestream inflow and boundary conditions must be
takeﬁ at a distance from the centre of the sphere that is at least ten times greater than
the sphere radius. The boundary conditions for the computational domain are taken
as follows: The left and right faces are considered inflow and outflow boundary
conditions, respectively; whereas for the other faces, north, south, top and bottom,
are taken as the wall boundary conditions. In the present analysis, the Cartesian grid
in the calculation domain consists of 60x60x60. Since the gradients around the
sphere are large, a very fine grid 40x40x40 is used in the domain of 4r, i.e. 2r from
the sphere centre in all directions, as shown schematically in Fig. 4.2. This number
of grids is found to be the optimum number that provides stable results with an
acceptable computational time. Coarser grids, such as 40x40x40 for the entire
‘calculation domain and 30x30x30 for the domain of 4r have also been tested.
However, their outcome showed, for example, that the laminar drag coefficient, at a
typical Reynolds number Re =100 is lower than its experimental counterpart by
about 20%. To eliminate the dependence of the results on the grid, other very fine
grids have also been tested such as, for example, 80x80x80 for the entire
computation domain and 50x50x50 for the 4» domain but the computational time is
extremely long. This exercise is continued until the grid dependency is practically
eliminated. A summary of the sensitivity of the present model predictions on the

chosen grid is given in Table 1. Finally, it is important to point out that Fig. 4.2
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does not show the complete computational grid but only an 1llustration to provide a
general idea. On the other hand, this figure shows that the uniform grid is fine in the

4r region, which is twice the size of the sphere, and coarse outside of this region.

Table 4.1
Grid independency for the blocked-off technique

Domain Grid
32rg 40x40x40 60x60x60 80x80x80
(see Fig. 4.2)
4y 30%30%30 40x40x40 50x50%50
(see Fig. 4.2)
Laminar flow 1.3547 1.1384 1.1099
(Re=100) (19.23%) (-—-) (2.50%)
Turbulent flow (k-& model) 1.4912 1.2006 1.2731
Cp  (Re=100, 1,=20%) (24.20%) (----) (6.04%)
Turbulent flow (SST 2.1147 1.1614 1.1882
model) (82.09%) (=) (2.31%)

(Re=100, 1,720%)

* The error is based on the optimum grid 60x60x60 in the whole domain with
40x40%40 mn the 4r domain

4.2. Conventional Technique

The set of equations describing the flow over sphere with the boundary
conditions reported previously in Chapter 3 are solved numerically using Fluent
6.1.22 which is based on finite volume formulation. The computational domain was
subdivided into a number of small control volumes by creating a computational grid
that consists of tetrahedral-shaped cells. The details of grid generation and the

numerical approach are provided below.
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Fig. 4.2 Schematic of the computational Cartesian grid

4.2.1 Grid Generation and Results Independency

Gambit was used to generate the computational grid for the domain around the
sphere. The sphere was fixed in the center of a 12 mm radius spherical domain. The
spherical domai‘n, which has a radius of 12 mm, was then divided into two domains.
The first domain, which surrounds the sphere, (referred to in this chapter as the
inner domain) extends from » = 1 mm to 3 mm. The outer do-main, which is referred
to in this chapter as the outer domain, extends from » = 3 mm to 12 mm. The choice
of a computational domain with a radius of 12 mm is based on the recommendation
of Sundararajan and Ayyaswamy (1984), who suggested that the freestream inflow

and boundary conditions must be taken at a distance from the center of the sphere
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that is at least ten times greater than the sphere radius. Both inner and outer
spherical domains were then subdivided into a number of small control volumes of
tetrahedral-shaped type. In order to have a very fine grnid in the immediate
surrounding of the sphere, the control volumes of the inner domain were chosen to
be much smaller than those of the outer domain. Spacings of 0.06 and 0.5 were used
for the inner and outer domain, respectively, which resulted in a domain of
2,555,146 tetrahedral cells. This grid was found to be the optimum that provides
stable results with an acceptable computational time. Figure 4.4 shows a cross-
section of the computational domain. The grid independency was successfully
achieved when the results of the last grid agreed fairly well with those obtained by
the coarser grid that has spacings of 0.08 and 0.6 for both inner and outer domains,
respectively. Also, much coarser grid with spacings of 0.15 for the inner domain
and 0.8 for the outer domain is tested and the difference in the results between this
grid and the finest grid is noticeable. For example, at Re = 200 (Iaminar flow) the
predicted drag coefficient is found to be higher that that obtained by the finest grid
by approximately 8%. A typical assessment of the sensitivity of the model
predictions to the chosen grid is shown in Table 4.2 for a typical Reynolds number
Re =100 and a turbulence intensity I = 30%. The error is based on the predictions
of the optimum (fine) grid. More information about grid-independency is provided

in the next chapter.
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Table 4.2
Sensitivity of present model predictions to the chosen grid (the error is calculated
with respect to the fine grid predictions)

. Coarse Medium . .

Domain Grid Grid Fine Gnid
12r 0.8 0.6 0.5
3r 0.15 0.08 0.06
Laminar flow 1.22174 1.13164 1.1105967
(Re =100) (9.92%) - (1.8%) (=)

Turbulent flow (£ — £ model) 1.423017 1.26787 1.236107

Cp (Re =100, 1= 30%) (15.13%) (2.51%) [—

Turbulent flow (SST mode]) 1.34317 1.17401 1.14612
(Re =100, 1= 30%) (17.54%) (2.44%) (-----)
J

* The Reynolds number is based on the sphere diameter and the air-freestream
mean-velocity upstream the sphere. The relative intensity of the turbulence is

definedas 7, =u /U .

4.2.2 Numerical Approach

The commercial software, Fluent version 6.1.22, which is based on finite volume
formulation is employed to solve the governing equations described in chapter 3.
Details about the solution algorithm are provided in appendix A.

The simulation was carried out using QUICK (Quadratic Upwind Interpolation)
for momentum, turbulence kinetic energy, and turbulence dissipation rate. PRESTO
(PRESsure STaggering Option) was used for pressure 1interpolation. PISO
(Pressure-Implicit with Splitting of Operators) was used for Pressure-Velocity
Coupling. The solution convergence is assumed when all of the residuals

parameters fall below 0.5 x107°,
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z Sphere (r = 1mm)

A
r = 3mm

r = 12mm

Figure 4.4 A cross-section of the computational domain in the y-z plane



Chapter 5

RESULTS AND DISCUSIONS

"The main results presented in this chapter concern the numerical predictions of
the mean drag coefficient of a sphere exposed to a turbulent airstream. The ultimate
objective is to assess the level of accuracy of the predictions of the Cartesian grid-
based blocked-off technique (termed hereafter as the new method) by comparing its
predictions with their counterparts’ obtained by using a conventional method
implemented in the CFD software Fluent (referred hereafter as the conventional
method). Comparisons include, in addition to the sphere drag coefficient, the local
pressure and shear stress (i.e. skin friction) coefficients. Note that the calculation of
the sphere mean drag coefficient is simply the summation of the integrals of the
wall pressure and shear stress coefficients over the surface area of the sphere, which

1s expressed as

by

j 7, (1-cos(2¢))d¢ (5.1)

C, = |C sin(2d)dd +
, Ofpsmww =

2
o

= pressure drag coefficient + viscous drag coefficient

where
¢ = The azimuthal angle

PP

~pl?
2,0 o

C, = The wall pressure coefficient =
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. 8U, oU, ) 2(61.1/)
7, = The shear stress = 4 Ly L= 5:/
ox, ox ) 3\, )

It is 1mportant to mention here that all the predictions presented below are
obtained with the corresponding optimum grid (referred to here as fine grid) for
each method (the predictions are no longer grid dependent or the variation of the

predictions is insignificant).

5.1 Laminar Flow Results

The computétiona] results of the sphere drag coefficient obtained by using a fine,
medium, and a coarse grid and presented in Figure 5.1 over wide range of Reynolds
numbers. Figure 5.2 displays a comparison of the local wall pressure coefficient as
predicted by the new method (i.e. blocked-off technique) and Fluent, as well as with
published data (Kim er al, 2001). It is important to point out that all the three
predictions are produced by three different numerical methods. The comparison
made in Fig. 5.2, which is for a typical Reynolds number of 100, shows only
unnoticeable difference between the present predictions (both methods) and
published data of Kim (2001). There is only a shight difference which is can be seen
between two azimuthal positions along the periphery of the sphere, i.e. between 30°
and 70° and, between 100° and 150°, respectively. Within these regions the
maximum difference between the present predictions and published data quoted in
Fig. 5.2 is less than around 10% which can be due to computational error.
Nevertheless, the comparison made in Fig. 52 shows an excellent agreement

between the two methods employed in the present study, as well as with the data of

Kim et al. (2001).

33



5 } i ) 1 1
i Fine Gnid
~~~~~ Medium Grid
4 — —— — Coarse Grid
3 —_ L
b’? B L
2 .
S
e e
. \\\\\k\: - ‘
e |
0 | 1 ' ! '
0 50 100 150 200

Re,

Fig. 5.1 The predicted drag coefficient versus Reynolds number for fine

and coarse grid

i : ! : !

Re = 100
———— Conventional Method (Fluent)
- - - -~ Birouk and Abou Al-Sood (2007)
— — — Kimmetal (2001)

|

30 60 90 120 150 180
Azimuthal angle ¢ (degree)

, medium,

Fig. 5.2 Local wall pressure coefficient versus azimuthal angle for a typical

Reynolds number of 100
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The predicted sphere mean drag coefficient over a wide range of Reynolds
number Is reported in Fig. 5.3. Note that the Reynolds number is based on the
freestream velocity and sphere diameter. This figure illustrates also a comparison
between the two methods employed in the present study as well as against the
experimental data of Roos and Willmarth (1977). The comparison made in Fig. 5.3
clearly demonstrates an excellent agreement between the two different numerical
methods employed here. It shows also that these numerical predictions agree very

well with the experimental data.

6 ! | ! L !
e Conventional Method (Fluent)
T Numerical (Birouk and Abou Al-Sood 2007)
5 o Experimental (Roos and Willmarth 1971) —

STy
0 ' ! ‘ | ! 1
0 50 100 150 200

Fig. 5.3 Comparison of the sphere mean drag coefficient between the present

predictions (new method and Fluent) and published experimental data

35



Figure 5.4 shows the variation of the wall pressure coefficient with the azimuthal
angle, obtained by Fluent, for different Reynolds numbers that are ranging from 50
to 200. This figure shows that the local wall pressure coefficient is noticeably
different for different Reynolds numbers in the range of the azimuthal angle

between 50 and 180 degree here it increases with Re. Whereas, for ¢ < 45° the

local pressure coefficient decreases slightly with increasing Re.

0 30 60 90 120 150 180
Azimuthal angle ¢ (degree)

Figure 5.4 The predicted wall pressure coefficient over the sphere for different

Reynolds numbers
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Figure 5.5 shows the distribution of the sphere surface local skin friction
coefficient over a wide of Reynolds numbers (Re = 50, 100, 150, and 200). This
figure shows that the local skin friction decreases with increasing Reynolds number
n the range when the azimuthal angle is less than approximately 135°. Beyond this
angle the local skin friction coefficient is almost vanished due to the separatioin of
the boundary layer, and therefore, this angle is called the separation angle. We can
also observe that the local skin friction coefficient reaches its peak when the

azimuthal angle is around 60° independently on Re.

I i

0() i ! { ! ! i i
—ee—— Re = 50
————— Re=100
— Re =150
N — =

0.4 — Re =200 |
C0.2 — —
0 - -

02 | T T
0 30 60 90 120 150 180

Azimuthal angle ¢ (degree)
Figure 5.5 The predicted local skin friction coefficient over the sphere for the

different Reynolds numbers as predicted by the conventional method
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5.2 Turbulent Flow Results

Turbulent flow results of the sphere mean drgg coefficient and its components
(i.e. local pressure and skin friction coefficients) obtained by the eddy-viscosity
turbulence models, the standard k—¢ model and k—w shear stress transport (SST)
model are presented below. Three typical Reynolds numbers (10, 50, and 100) are
chosen with turbulence intensities ranging between 10 and 60%.

Figures 5.6 and 5.7 present the turbulent (based on k-& vmodel) local variation of
the wall pressure coefficient predicted by using the standard k-e model for a typical
turbulence intensity of 30% and two typical Reynolds numbers of 10 and 100,
respectively. These figures show that there is a fair agreement between the
predictions of the new method and those by Fluent. Only slight differences is fouﬁd
at a Re = 10 where the difference in the predictions between the two methods is less
than 9%. Figures 5.8 and 5.9 present a comparison of the local variation of the
sphere skin friction coefficient between the prediction of the new method and those
by using Fluent. These predictions are obtained by using the standard k- model for
the same conditions of Figs. 5.6 and 5.7. Similarly to the turbulent local sphere wall
pressure coefficient, the comparison_ between the two methods of the sphere skin
friction 1s very good, especially for Re = 100. Figures 5.10-5.13 present the
variation of the local sphere wall pressure and skin friction coefficients, as predicted
by using the SST model, for the same flow conditions of Figs. 5.6 — 5.9. These
figures reveal that the predictions of the two different methods are overall in
reasonable agreement. Based on the observations in Figures 5.6 through 5.13, it can
be concluded that the predictions of the new method are reproduced by using a
completely different method (Fluent), although slight differences are observed

particularly at very low Reynolds number. This is an indication that the Cartesian
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grid-based technique (i.e. new method) is deficiency although the exact sphere
surface profile is not captured by this methods, as it looks like step stairs. However,
the use of extremely fine grid for the calculation domain in the vicinity of the

sphere makes it possible to approach the real sphere.

2 i ! i { ! l { [ 1

k-8 model (Re =10, 1= 30%)
- —— Conventional Method (Fluent)
- - = -~ New method (Birouk and Abou Al-Sood) |

-2 i I H ] T ! T I T ] T ‘j“‘
0 30 60 90 120 150 180
Azimuthal angle.¢ (degree)

Fig. 5.6 Predictions of the wall pressure coefficient versus azimuthal angle for Re =

10 and 7.= 30% by using the standard k-¢ model
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-0.8 1 [ T ] T H T 1 H 1 T
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Fig. 5.7 Predictions of the wall pressure coefficient versus azimuthal angle for Re =

100 and /.= 30% by using the standard k-& model
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]8 5 { i : 1 ‘ 1 i i | i
k-€ Model (Re = 10, 1 = 30%)

***** — Conventional Method (Fluent)

15— o= New Method (Birouk and Abou Al-Sood) ™

-0.3 T T 7 T T I T I T E T
0 30 60 90 120 150 180

Azimuthal Angle ¢ (degree)

Fig. 5.8 Predictions of the skin friction coefficient versus azimuthal angle for Re =

10 and /.= 30% by using the standard k-£ model
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Fig. 5.9 Predictions of the skin friction coefficient versus azimuthal angle for Re =

100 and /.,= 30% by using the standard &-& model
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Fig. 5.10 Predictions of the wall pressure coefficient versus azimuthal angle for Re

=10 and /.= 30% by using the SST model
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Fig. 5.11 Predictions of the wall pressure coefficient versus azimuthal angle for Re

= 100 and /.,= 30% by using the SST model
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Fig. 5.12 Prediction of the skin friction coefficient versus the azimuthal angle for Re

= 10 and /.= 30% by using the SST model
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Fig. 5.13 Prediction of the skin friction coefficient versus versus the azimuthal

angle for Re = 100 and /.= 30% by using the SST model

Figures 5.14 and 5.15 display the variation of the sphere mean drag coefficient
with the airstream turbulence intensity for three typical Reynolds numbers (10, 50
and 100). The predictions of the standard k-¢ and SST models are presented in Figs.
5.14 and 5.15, respectively. Both figures reveal that the freestream turbulence
intensity does not have an effect on the sphere drag coefficient, as reported in
Birouk and Abou Al-Sood (2007) and Abou Al-Sood (2007). These figures show
also that the SST model is capable of reproducing similar data to the sphere
standard drag coefficient regardless of the magnitude of Reynolds number.
Whereas, the ‘standard k-& model, which is also capable of reproducing the sphere
standard drag coefficient at relatively high Reynolds number of approximately 100

or greater, 1s deficient at relatively lower Reynolds numbers.
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It 1s important to point out here that these conclusions apply to both numerical
methods, i.e. the new method and that employed by Fluent. It is, therefore, plausible
to conclude that the fact that the standard k-& model is deficient at low Reynolds
numbers is not a consequence of to the new method (i.e. the Cartesian grid-based
blocked-off technique) developed for the first time by Birouk and Abou Al-Sood
(2007) to study a flow over a spherical object. Although, Figs. 5.14 and 5.15 still
show slight discrepancy in the predictions between the two numerical methods (1e.
new method and that employed by Fluent commercial code), these slight
discrepancies are not significant and thus cannot be the reason for the deficiency of
the k-¢ model in reproducing the sphere standard drag coefficient at low Reynolds
numbers. The computational results for the drag coefficient for both fine and
medium grid are presented in Figure 5.16 and 5.17 for more verification on the

accuracy of the grid.
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Fig. 5.14 Sphere mean drag coefficient (based on the standard k-& model) versus the

alrstream turbulence intensity for different Reynolds numbers
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Fig. 5.15 Sphere mean drag coefficient (based on the SST model} versus the

airstream turbulence intensity for different Reynolds numbers
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Fig. 5.16 Evaluation of the grid effect on the predicted drag coefficient versus the

turbulence intensity at various Reynolds numbers
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Chapter 6

CONCLUSIONS

A newly developed numerical method, which is developed for solving
laminar/turbulent flow over a sphere has been evaluated. This method is based on
solving the mass and momentum conservation equations in Cartesian coordinates
by using a blocked-off technique. Although this new numerical method cannot
capture the exact/real surface profile of the spherical object, reasonably good
predictions for laminar flow are obtained when compared to experiments. For
turbulent flow, the predictions of the numerical model are shown to depend much
on the turbulence é]OSLlre model. For example, the SST model is shown to
successfully predict correct data while the standard k-& model fails especially in the
low range of Reynolds numbers. An independent method (1.e. a conventional
method implemented in Fluent) is employed to verify the degree of the prediction
accuracy of the new numerical method. The outcome is that both numerical
methods are able to reproduce nearly identical predictions demonstrating the ability
of the new technique in generating quality predictions. Finally, it is important to
point out that the new numerical method is simple, easy to implement and cost
effective in comparison with any published numerical method for studying a flow

over sphere.
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Appendix A

A SHORT DESCRIPTION OF THE FLUENT SOLVER

This appendix will only discuss the numerical scheme applied in the present
ca]cu.]ations by using FLUENT (version 6.1.22). This software has been used in this
study to solve the governing equations of the flows described in chapters 3. This
code employs finite volume formulation. With the control-volume-based technique
used in Fluent, the governing equations are converted into algebraic equations.
Subsequently, these produced algebraic equations are solved numerically. About
each control volume, the governing equations are mtegrated in order to produce
discrete equations. These discrete equations conserve each quality on a control-
volume basis. The description of all options available in Fluent is not the task of
this thesis. More information can be found in (Fluent, 2001), however, an overview

of the methods used in the present study is provided below.

Segregated Solver

In the present calculations, the governing equations are solved sequentially by
using the segregated solution method together with the implicit linearization
method. Because the governing equations are non-linear and coupled, several
iterations must be performed before a converged solution is obtained. The update 1s
based on the current or the initialized solution depending on the iteration run. The

segregated solution method is outlined in the flow chart shown in Figure A.1.
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Update properties.

A

A4

Solve momentum equations.

Y

Solve pressure-correction (continuity) equation.
Update pressure, face mass flow rate.

y

Solve turbulence equations.

A

Figure A.1 Overview of the Segregated Solution Method (Fluent, 2001)

Implicit Linearization

Implicit formulation of the linearization means that for the calculation of a given
variable both known and unknown values from the ﬁeigﬁboring cells are used. This
results in each unknown value appearing in more than one equation in the system so
that the equations have to be solved simultaneously for all cells to give the unknown
values. In other words, all cells are considered at the same time when solving for a
single variable field. Then, the next variable field is determined by again considering
all cells at the same time. This process continues until updated values for all variables

are obtained.

49



Discretization

Discretization is the process of finding a solution for a general variable ¢ by
considering a set of values of the dependent variable at discrete locations instead of
1ts continuous exact solution. For this, the calculation domain is divided into cells
(control volumes) which together make up the computational grid. The solution at any
one grid point is assumed to be an algebraic function of the solution at its neighboring
gnid points. Grid points correspond to cell (or face) centers in FLUENT. Discretizing the
governing equations can be illustrated, for example, by considering steady-state
conservation equation for transport of a scalar quantity ¢. A writlen equation in
integral form for an arbitrary control volume V is used to demonstrate the

discretization as follows:

ppo-dd=qr,v, -ai+ [ s,av (A1)
where

p = density

= velocity vector

A = surface area vector

I', = diffusion coefficient for ¢

¢

V., = gradient of ¢

.

S, = source of ¢ per unit volume

Equation A.2 is applied to each control volume in the computational domain and

its discretization on a given cell yields:
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Nﬁm'\ — — N foces .
2P0 A= DT (VH), A 45,V
] I

where

N e = number of faces enclosing cell

Jaces

¢, = value of ¢ convected through face /
Py Z), -;4‘,, = mass flux through the face

,—41 = area of face f
(V¢), = magnitude of V¢ normal to face f

V = cell volume

(A2)

For the convective term (the one on the left hand side), the face values of ¢ have

to be known. However, only the values at the cell centers (c0 and c1 in Figure A.1)

are stored by FLUENT. The face values have to be interpolated from the cell

values. They are derived from the corresponding “upwind” values, i. e. from the cell

values in an upstream direction to the face relative to the direction of the normal

velocity. Hence, the approach is known as the upwind scheme.

Figure A.2: Part of a computational grid to illustrate the discretization of the general

¢ equation (Fluent, 2001).
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In general, the linearized form of (A.2) can be written as

a/)¢/1 + Zazzl7¢nl) - b_/: (A3)

ni;
Here, the subscript nb denotes neighboring cells, the subscript p refers to the values in

the cell considered, ay and a,y, are the linearized coefficients of ¢p and @, and the

nh
addend b arises from the linearization of the source term. The form of the linearized
coefficients depends on the scheme used to mterpolate the face values. FLUENT offers
different discretization schemes — first-order upwind, second-order upwind, power law,
and QUICK. Only QUICK scheme has been applied in the present runs (the interested
reader is referred to Fluent (2001) for additional information about the different

discretization schemes).

Discretization of the Momentum Equation

An interpolation scheme is required to compute the face values of pressure from
the cell values. In the present work, the PRESTO method is used for the pressure
discretization. The PRESTO (PREssure ST aggering Option) scheme uses the
discrete continuity balance for a "staggered" control volume about the face to

compute the "staggered" (i.c., face) pressure

Pressure-Velocity Coupling

Pressure-velocity coupling is achieved by deriving an equation for pressure from
the discrete continuity equation. The SIMPLE, SIMPLEC, and PISO pressure-
velocity coupling methods are available in FLUENT. In the present work, the PISO
method is applied for the pressure-velocity coupling. The Pressure-Implicit with

Splitting of Operators (PISO) pressure-velocity coupling scheme, part of the
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SIMPLE family of algorithms, is based on the higher degree of the approximate
relation between the cormrections for pressure and velocity. Details of this method

can be found in (Fluent, 2001).
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