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AtsSTR.ACT

This thesis presents an evaluation of a numerical method for preclicting fìow
characteristics over a sphere. This numerical method, which is proposecl by Birouk
and Abou Al-Sood (2007), is a carresian based-grid which emproys a brocked-off.

treatment of the sphere to solve f-or the surounding flow. The steady-state three-

dimcnsional continLrily ancl rnomentLrm eqrrations are solved. closr-lre for the

turbulence stress tems in the flow momentum equations are handled by using tì-re

standarcl /r-¿ nrodel or shear stress rranspon (SSf) model, To evaluate the accuracy

of this method, its precìictions are compareclr,r,ith those obtained by using a iljfferent

nunlerical approach' rvhicir is a co'vertional nethoci implemented in the cFD cocle

Fluent. Note that the onl,v dif-ference between these tr>,,o numericai methods is the

way thc spltere ìs trcatecl in the conrputational domain. 1-he sphere surface profile

appears ¿ìs step staìrs *'ith the car-tesian gricl-basecl brocl<ed-of f techniç¡ue, whereas

the profììe of the sphere surface is nearly pr-escrved when using the conventional

method J-he tu'o dif ferent nrethods are f'ound to procluce similar predictions, whjch

is an irdication of the abitiry of trre ne' method for generating quarìty data.
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Chapter 1

NNTRODUCTION]

Flor,v over a spherical object- rvhether an evaporating droplet or a non-

evaporating droplet (so1id sphere or particle). is a phenomenon encorìnterefl in

rllltrerous industrial fluid flow processes. This would inclucle the vaporizarion and

combustion of spray, air cleaning devices, centrifugaì or sedimentation separators.

fluiclized-bed reactors, etc. Therefore, knowledge of the overall dynamics of the

flor,v around a sphericai object is essential for the clesign aucl perlonnance ofsuch

industrial processes. Details/knorvlecige of the florv field can in general be gai¡ed

by performing a physical experiment or a numericai simulation. Llnlikc the

experiment, the numerical simulation if validated is generally cost effective in terms

oftinle and required recourses.

Sotne numerical stLrdies employed the assumption of axisymmetric florv over a

sphere; see for example, Fonrberg (1988), although the flou'is three-dimensional

(3D) ]'his assumptìorr is particularly due to difficulries in creating a 3D

computational grid especially in sphericai coordinates. Florvever, in rece¡t years

several attempts have been made to overcome this difficulty, see, for example,

Johnson and Patel (1999), consrantjnescu and Squires (2004). Njaanand and

Renksizbulut (2005), Kim et al. (2001), and Abou Ar-Sood (2006).'I'his is

achievecl, for example, by tratrsforming Navier-Stokes equations coordinates from

spherical into another type of simpler coordinates ((, r7, and fl which enable ¡sing



caúesian grid (Johnson and patei, r 999). This approach, in fact. makes the

discretizatiot-ì process (the transformation of governing flow differential equations

into algebraic form) quite complicated when using finite-volume scheme. Other

approachcs use ilnmersecl-boundary fittecl methocl. which is based on introducing a

virtual boc'ly ìnto the flow fieid of interesr (e.g., Kirn et a1.,2001). The use of-a

virtual body' which is a sorl of momentum forcing in the Navier-Stokes e quatio¡s,

allorvs ernploying Cartesian or cyiindrìcal grid.

Recentl.v. Birouk and co-workers attempted, lor the first time, to employ a mucl.l

sinrpìer nrethod (Biroulc and Abor-r Al-Soocl, 2007; Abou Al-Sood, 2006; AboLr Aì_

Soocl ancl Birouk, 2008). It is terme<l blocked-off techniquc. lt consists of ¡si'g a

calcr'llation Cartesian grid-based domain tliat includes both the gas and non-gaseous

(sphere or liqLrid droplet) phases, in rvhich the soiutiori is obtained by blocking ofT'

the control t'olLlnles of the inactive phase rvhen solving for the activc pìrase. It is

important to mention that the blocking-off procedurc u,as first deyeloped to

coll-lpl"lte florvs in curvilinear geonretries with a rcguìar gricì. as rvell as io solve

conjugate heat transfer problems in clucts (e.g., patankar, l97g ancj l99l). .[t u,as

successfully extencled to soive radiative heat transfèr problerns in irregular two-

dinrensional geometries using cartesian coordinates (e.g., chai et ctl..1993; Kim el

al'.2001; Iìyr"ur et a1.,2003). It is only recently thal it has been used to solve flou,

problems in enclosures with obstacles that are three-dimensional problems (e.g..

Coelìro et tt|.,7998; Borjini et a\.,2003; Consalvi et at.,2003).

The blocked-off method may be considered advantageous over the

albrementioned techniques due to its simplicity, and easiness for grid generation



and implemcntation compared to unstructured or mr-rlti-bloch gricl generation, while

it still able to produce quality predictions. AlthoLrgh the recent u,ork showed that

this relative simple ptocedure cannot capture the exact/real surface profile of the

splierical object (as it can be seen in chapter 3), reasonably goocl preclictions rvere

obtained *'hen compared ro expedmenrs (Birouk and Abou Ai-Sood, 2007). .rhis.

in fact' is achieved by r-rsing a very fine grid. rvhich of course would increase the

CPU tinle' Flowever, the clegree of inaccuracy of this methocl is stiil Lrnkuow¡, as

several parameters depenci upon the shape of the sphericaÌ object surface. The

present u'ork aims at verifying the accuracy of the predictions of this method. 'Ihis

is acliievc'd by empìoying another different indepenclent numerical techniqr.re that is

cailzrble of presen'ing the real sphere s¡-rrface profile . The fuìl thesis il,ill present ancl

clisct-tss, as cxample. tlre mean drag coefficient ol sphere in laminar and turbuient

florvs, as predicted by both differeut methocls.

J'he tìlesis is organized as follows. The pertinent iiteraiure surucy is presented in

the next chapter, f-cllorved by the mathematical formulation of tlie nulrrei-ical

models- Rcsults and discussion are presented in chapter 5, ancl a short conclusion is

pror,idcd in chaprer ó.



Chapter 2

T-XTER.ATUR.E REVIEW

Various numerical techniques have been used to sludy the behaviour of a flow

over a sphere (e.g., I;ornberg, ì98g:.lohnson ancl patel. 199g, Satosl-i et al., 1999:

constantinescn and sqr,rires. 1999:2003;2004; Fadlun et cr|..2000; I(irn eÍ ctl.,

2001: constantinescu et a1.,2002. Gilmanov et a1.,2003;Bagchi ancl Balachandar,

2003; constantinescu et a\,2003; wa'g and Kaman,2005; and Birouk and Abou

Al-sood, 2001). Although. the flow field arouncl a sphere is knou,n to be complex

and possesses sever¿rl fèatures that are difficLrlt to captlìre, the majority of these

techniques produced results that are in agreement with one another-, as u,eli as with

prrbìishecl experimental clata (e.g., Torobin and Gauvin , l96l; Clamen and Gauvin.

1969; uhlherr and Sinclair. r970: Ross and wiilmarih, 19jr;'I.arin and Nicho¡s,

1971; Ancje'rson and uhìherr, i977; Schiichting, 1979; Neve. 19g6; lìu<idolff and

Baclralo. I98B: cilift and Grace. l9g9; Gore and Growe,1990; wamica et al..

1995a; Yusof, 1996: and lJrucato et ut.,199g).

Fornberg (1988) developed a numerical technique to study the flow overa I mm

diametet sphere at high Reylolds numbers Lrp to 5000. Flis technique \Ä,as based on

conformal mapping. It maps the computationar domain for the physicar

(x =, +ry)-plane ro a rectangurar (z = q +iz7)-pra'e. Fornberg (r9gg) use<i

centered-order finite differences (Newton's method) to approximate the goveming

equations for all inner points of the computational domain.



Johnson and Patel (1998) investigatecl numerically steady and unsteady Iaminar

flou' of incompressibìe viscous fl,id past a sphere at Reynolds *umr¡ers ranging up

to 300. Their grid \4'as an o-o rype u,ìrcre the nunrericar coordinates ({,r|.q) l;e

aìorrg the stanclard spherical coor<iinares (0,,/,r). Dual_time_stepping and local

pseudo-time stepping fonlulations were incorporated. They used a four_stage

Runge-Kutta method to solve the momentum equations in pseuclo_time. Also, a

pressure Poisson equatìon was f-ormulated to satisfy the continuity equation. By

following a spherical coordinate systeìlr, tìre sphere lends itself naturallv to the

generation of tlie nurnerical grid.

Satoshi et aÌ- (1999) cleveloped a nerv nunerical scheme fbr the 
'se 

of direcl

nrtnelical simulation to stLrdy a lanlinarflou, overa sphere. T'he sphere was several

times larger than the spacing of the comp'tatioral domain. They used finite_

difference method to simr-rlate the flou, lìeld with a fixed grid system Cartesìan

coordinates The basic equations (mass, conselation equation and Navier-Stokes

equatìons) were discretized by empìoyi'g a staggered arrangenlent on the grid

system in Caftesian coorclinates. thc'griil spacing in each clirection of the fielcl was

unifomr but it was not a contlition of thc scheme . ln the region close to the particle

(i'e' sphere), they userl a thircl order interpolation (i.e. Cubic-lnterpolated pseudo-

Particle (CIP) rnethocl)- Ilou'ever', tìrc calculation of the transport equation for.

'elocity 
gradient was reduced in order to nrìnimize the computirg resources.

constantinescu ard Sqr-rìres ( i 999) applied Large Eddy Sim'lation (LES) an<J

Detached Eddy Sirnulation (DES) to investigate a turbulent flow around a sphere at

a Reyrlolds number Re: l0a. They perf'onned their calculations i' the sub-critical



regrm., (iaminar bo,ndary layer separation) by ,sing a mesh of an o-type. The flow

govenling eqrtations were solved using the partial transformation approach. Using a

fully-implicit fractional-step algorithrn, the momentur¡ ard turbujence-model

equations were i'tegrated over a pseudo-time approach. Fifth-order upr,vincl

differellce nlethod u'as used to discretize the convective ter¡ls in the monìentrr-ì1

and turbulence transporl equations near the sphere surface. while a second-order

central difrerence method was nsed in tìre sphere u,ake regio'.

Fadlun et al- (2000) r-rsed the immersed-boundary technique to simulate unsteady

three-dimensionaj incornpressible floi¡.,s in cornplex geometries including sphere.

This was achieved by using boundary body forces that allow the irnposition of the

boundary conditions on a given surface not coinciding n,ith the computational grid.

A regular lnesh was usecl 1o solve the cliscretizeci govemirrg equations. 1wo

different forcings were testeci ancl i1 u,as shorvn thar the quality of tlie results didn,t

change in botli cases. One of the disadvantages of this methocl is that the

interpolation of the forcing over tlrc grid ,Jetei-mii¡es ihe accuracy of the scheme .

Kim e¡ al (2001) developed an irnmersed-bounclary method for siinulating flows

over complex geometries (i.e. sphere and circular cylinder) where they introcìuced a

mass source as well as a momenturn f-orcing. A finíte-volume approach is applied

on a staggered mesh together with a fractjonal-step rnethod. To satisfu the no-slip

boundary condition on the immersed boundary, both nromentum forcing and mass

source rvere applied on the body surface or inside the body. The reason for t¡at rvas

to satisfy the continuity of the celr containing the immersed boundary. They applied

momentulll forcing when the forcing point coincides with the immersed boundary



so tlrat the'elocity is consiclered to be zero aftrrat point. r{orvever, thet, appried the

momentum forcing when the forcing point exists insicle the body so that tlre velocity

is the opposite of that outsicre the body for both velocìry components (the wail_

nonrral arld tangential). In this method- the body in the ilow field u,as considered as

a kind of momenftim l'orcing in the Navier-Stokes equatìons rather than a real body.

Therefore. flor¡' ol'er complex geometries can easiry be handred by using orthogonal

(cartesian or cylindricaì) grids which generaily do not coincide u,ith the body

surface.

consrantinescu et ur- (2004) appried Detached-rrtìciy Sirnuration (DES) to

investigate tur-bulent flow around sphere over a r-ange of Reynokls nu¡rbers ranging

lronr l0o to l.lxl0('. A lnodilìcalion of'tlrc Spaìart-Allnlaras one-equation moclcl

rvas used to develop their fornlulation. 11 is reportecl that Detachecl-Ecldy Sirnulation

is a technique that is cornputationalJy feasible ilhen preclicting the fìow for high

lìeynoìds nunbers (constantinescu ¿1 ul., 2004).It also has the ability to resolve

time dependent and three-dimensional iurbulent iroiìons. in their stuciy. DES rvas

applied to predict a flow arouncl a sphere f-or both sub-critical and super-critical

regìmes (i.e. la'iinar and turbulent layer boundary separatio', respectively). The

initial and bour-rdary conditions of the simulations u,ere nsed to specifu the 1aniinar

or turbltlent boundary layer- A fi'actional step method rvas used to compute the

inconlpressible flou' over the sphere. The nlomentum ancl turbulence transport

equatiotts were discretized using fifth-order accurate upwind differences for the

convective terms' All other operators were discrerized using second-order central

differences' The numerical methocl r.vas fully implicit and the equations rvere solved

on a sinrple o-o grid with the radial, polar, and azimuthal directions in a domain



that extended from r: 0 5D (wlrere D is the sphere cìiarrreter) to l0 dianreter in the

radial direction.

Gilnranov et al' (2003) investigated incompressible florv with complex inmersed

boundaries by using a general reconstmction aìgorithm in Cartesian grid. 'fhe-v used

an unstructtlred triangular mesh to disctretize the three-dimensional solicl s'rface

that is immersed in the fluid. They rvere abìe to identify all the Cartesian grid 
'odes

near the interface. The reconstntction of the solution in these ,odes u,as obtainecl

via linear interpolation along the Iocal normaì to ihe body, in ¿r way that the clesired

boundary co'ditions for both pressure and velocity fields were enforced. on non_

staggered grids. the tht-ee-dirnensionai, incompressibie Navier-Stol<es ec¡uations

u'cre solVed using a second-orcìer, finite dil.ference approach- 1.he three_point

central differencing method was used to discretize the governing equatio's. The

seconcl-order accurate QUICI< upwincl scheme rvas usecl for the conr¡cctjve terms.

'ì-hey r"rsed the second-order accLlrate, dual time stepping, artiñcial compressibility

approzrch for integrating the discrete equations in ¿i ii¡iie-accuratc ma'Ìrer.

tsagchì and Balachancìar (2003) applied a direct numerical simulation (DNS) to

stucly the effect of freestream isotropic turbulent flou, on the clrag and lift f'orces of a

micro (spherical) particle. Their test conditions ìnclude a Reynolcis number ranging

from 60 to 600 and fi'eestream turbulence intensity from I 0 to25,%.They solved the

goveming (continLrity and Navier-stokes) equations by a direct nunrerical

simulation in a spherical domain attached ro the particle. A Fourier-Chebyshew

collocation scheme in spherical coordinates was used f'or the spatial discretization.

Also a fwo-step time-split scheme was used for the temporaì discretization. and a



non-reflecting boundary condition was usecl at the outflou, boundary of the

spherical domain. No-slip and no-penetration conditions were satisfied on the

surfàce of thc particle. T'he distribution of the grid points in the domain was

nonulliform' that is clustered nearthe surface of the parriclc ancl in tlie wake region.
'l'ìle grid generated was aciequate to resolve the thin shear lavers ancl the wake

strì.lctì"rres generated by the pafiicle.

clonstantinesc, ¿/ at. (2003) stucried the incompressibre flow over a sphere by

applving uusteady Reynolds-averaged Navier-Stokes (uRANS) eqr,rations. The

prcdictions of IJRANS were obtainedbyusing two layer k-e ,k*d¡,v2 -f .at-ñ

the Spalart-Aìlmaras mocÌei, In their study, a fractional step method r.r,as used to

colrpute the flow a¡onnd the sphere. They transformed the govenring equatio's to

the generalized ctlrvilinear coordinates rvith the primitive velocities and pressure

u'crc both kept as the clepencìent variables. l'he momentr¡m and turbulence model

equaiions rvere integr-atecl in pseudo time using a rully implicit algorith'r. In t¡e
t:--^- ^Ilrsi siep t-ri the Íiactionai step methoci, an intenledìate velocity fie¡J was obtainetl

by ad'ancing the con'ection and diffirsioìr terms. f'hat was clone by usrng an

alternate clirection implicit approximate factorization scheme. 'l-he intemrediate

fìeld rvas obtained rvith the current pressìrre field and does not satisfy thc co'tinuìty

eqLration' Therefore, a Poisson equation was solved for the pressLÌre, for which the

resulting solution r'vas used to update the intermediate velocities to satisfy the

continuity eqtlation. Local time-stepping techniques r.vere used to accelerate the

convergence of the resulting system of equations. The source terms in the

turbulence-model equations were also treated implicitly.



wang and Kannan (2005) used an overset adaptive cartesian/prisrn grid methocl

to compùte the moving boundary flow over a sphere. -rrreir 
technique enabied

avoiding grid rerneshing rvrren dearing with moving bo,ncrary fìow problems. They

used an adaptive crartesian grid for movi'g boundary probrems as the cartesian

cells are more efTicient in filling space than triangular/tetrahedral. Aìso, solutions

based on geometry-based gdd adaptations are straightfor'¡,ard to carry out. In their

method, body-fitted prism grids were generated fìrst near solid bodies to resol'e

viscotts bounclaty layer. Whereas an adaptive Cartesian gr-id is use¿ to cover the

outer domain and serve as the backgroLrnd grid f'or bridging the gaps betrveen the

prisrn grids' 'lhe prisrr grids are used to generate holes in the adaptive cartesian

gricl to facilitate data conrnrunications.

BiroLrl< ancl Abou Al-Sood (2001) cleveloped a simple numerical tech'ique to

investigate llurrericalll' the efrect of freestreanr turbulence intensity o' t¡e drag

coefficient of' zi sphcre itlltttcrsecl iu a tLlrbulent airstream for Reynolcls numbers

ra'gìng betu'een l0 anc 250 and freestream ftirbulence i'tensity up to 60%. T.he

three-dinlensional Rey'nolcls-Averaged Navier-Stokes (RANS) equations along rvith

llliìss collsertation u'el'e stllvcd in Carresian coordinates Lly rrsing a blocked-off

rnethod. Altlror-rgh this nrethod is very simplistic compared to ail technìques

mentioned above, it generated results that are fairly comparable u,ith published

data' The only disadvantage of this technique is its inâbjlity to confrgure the exact

shape of the sphere (discussed in the next chapter). Horve'er, turbulence results

appeared to depend upon the RANS turbulence closure moders, for which their

predictions are thought to be possibry rerated to the step stairs shape of the sprrere

which is imposed by thìs technique. Therefore, the ultimate objective of this thesis
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is to use a clifferent/indepencÌent technique which enables capturing the exact sphere

surface shape to evaluate the clegree of accuracy of the predictions of the bìocked-

off technique.
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Chapter 3

T'ROBX,EM DES CRTPTI TN AI\Ð MAT}IEMATICAI-

F'OR.MULATITN

3.i Ðescription oiihe Physicai probiem

A stationary sphere of lmnr raclius imrnersecl into a turbulent fi-eestream ol.

infinite expanse is considered. The freesteam is prescribed by a mean-r,elocity,,. u-.,

a turbulence intensity, /-, a prcssLrre p-. a kinetic energy, k^, and a turbulence

dissipation tale, t-, or turbulcnce clissipation rate per unit of turbulence kinetic

energ\¿. [o- .1-he flow over the sphere is assunred to be steady, turbulent ç,ith no

heat transfer fi-otl-l/to the sphere, and the sphere rernains stationarJ all the time. The

stationary sphere of a radius of I rnm exposed to turbulent airstream is

schelraticallv shown in FigLrre 3.1.

u-

P-

I-
€Ø or c0Ø

+

+

+

Fig- 3. I Schematic of a stationary sphere. of radius r. exposed to a cross airstream
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3.2. Governing Equations

The go'erning equations (u,hicir a¡e tlre steacly state, three

conservation and Reynolds-Averaged Navier_Stokes (RANS)

hrr-bulent flow over a sphere can be .uvritten as

o /^¡/\*^
^ \Pv,)-v.
ax.

ô

^ (pu,LJ
OX

- pLt iLr .j

/ --. oD ol O(/
) - ____, J _l ¡¿_t

^ltox. o.T I c(Jt .r \ l

dimensional, mass

equations) for a

(3 r)

(3 2)

rvhere

p: density

¡l : dl,narnic viscosity

U¡ : lnean-veloci ry components

P : pressure

zr, : fl uctuating velocity component-

_.-
Lt.Lt : lìeynolds stresses

'lhe "baL" in equation 3.2 denotes the average value and the sr-rbscripts i andT

denote the three instantaneous velocity componer.ìts in the three flow directions.

These equations can be used r,vith approximations based on knowledge of the

properties ol'flow turbulence to gi'e approxi'rate areraged solutious.

Averaging Navier-Stokes equatìons results in six additional unknowns r.vhich are

refer¡ed to as Reynolds stresses, in adclition to three original velocity and pressure

components- Consequently, the number of the unknowns exceeds the nuntber of

equations, Therefore, solving these averaged equatìons can only be possible by

adding additional equations. This exercise is termed as "closure problert',. The
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turbulent stresses ,,¡i or" assumed to actlike viscous stïesses that are proporlional

to the nteân velocity gradient- This assumption is marÌe b1, Boussinesq who

introdilced "tul-bulent" or "eddy" r,iscosi¡v concept in lTli. This conccpt assrnles

that the turbulent (lìeynolcts) stresses are propofiional to the ¡rea¡ velocitv

gradients and can be expressed as foilows:

*LlLl =l/rJ (3.3)

u4rere r', is the eddy viscosit-v, and ôu is the l(ronecker clelta (rvhich equal 0 if

i+jandlifi=r)-Incontrasttothemolecularviscosityv.theecldyviscosifyrr,

is not a flLrid properfy and it depencls strongly on the state of the flou,. It may vary

signifìcantly from one point to another in tjre florv, ancl it may vary from flor,r, to

another. 'l he eddy viscosily can be mocielecl as (pope . 2000)

(au ô¿l, ) 2( ôu )
'[ un 

* 
^ )- ] [t ", ôr,'- )ò,

l?

v =C tti,
I *Ir.tJt 

f. 
)

k
ll 

- 
_

a

(3.4)

(3 s)

where C,, is a constallt which depends on the turbulence cìosurc model being

used. /,, is a damping function employecl to conlpensate f'or Reynolds number

effect in tile near wall regions, /c is the turbulence kinetic energy, e is the

dissipation rate of the turbulence kinetic energy. and o is the dissipation rate per

unit of turbulence kinetic energy. The turbuleuce terms k, and t , or (ù can be

obtained by introducìng the transport equation of RANS turbulence cìosure models.
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3.3 RANS Turbulence Closure Models

A turbulence closure model is prescdbed by a set of equations (algebraic or

dilferential) r.vhich determine the transport telms (\\ ) in the mean flou, equations

and thus close the system of equatior-rs. 'fhey are basecl on hypothesìs about

ltlr-buìent processes and they require empirical input in the form of constants or

functions. Tirey do not simulate the detaiis of the turbulent motion br-rt only the

ellect of iurbulence on the mean-florv behavior (Pope, 2000). Turbulent transport

processes are strongìy problen -dependent. For example, they depend oll

geometrical conditiolls (wall shape or roughness). on viscous and swirl effects, ancl

buoyancy. Therefore, turbulence modeis can only give approximate description and

are only valid for a certain flow with a particular set of empirical constaìlts (pope.

2000)

Olle u'ay of classifying turbulence moclels would be according to whether (or

not) tl.ìe models use the eddy viscosity concept. Turbulence mocle ls can be ciassilied

inlo (Pope, 2000): (i) Eddy viscosity moders, (ii) Reynolds srress models and, (iii)

l-arge-lrddy Sirnulation (LES) models. Experience has shown that the rur-bulence

models can be classified according to the nurnber of transport equation used for the

lurbulence quantities. They are zero, one-, and rwo-equation models. 'rhe zero-

equation model is rvidely used in practical engineering CIìD cocles (Pope. 2000).

The one-equation model is wicÌely employecl in early stages of turbuìeuce ¡rodeling

and it stiìì in use but for limited f'low regions such as the near-r,vall snblayer rvhele

this model is much simpler to use than the other cornplicated moclels (pope, 2000).

1'he two-equation model is ernployed when additional derails of turbulence

cluantities are required (Pope, 2000). Only two equation eclcly-viscosity turbulence

models were tested in the present thesis.

15



3.4 Two-Equation Turbulence Closure Models

In the one-equation models it is difficult to specifu empirically the length scale

Z, itr the case of'moI-e complex flows (Pope, 2000). In attempt to eliminate the neecl

for specifying /,, as a functjon of position throughout the florv, the tr,r,o-equation

models are cle'elopcd (pope, 2000). The rength scare Z, characterizing the Iarge

eddies contains much of the furbr.rlence energy that is subjectecl to transport

pl'ocesses in e nlanner similar to ihe eririgy ,t. Trvo impor-rant processes that

inflttence thìs length scale are the dissipation, which destroys the small eddies and

thus effectively increase the eddy size; and vortex shedding connected with the

energy cascade, which reduces the eddy sìze (pope, 2000). f-he balance betrveen

these processes can be expressed by using transpoÍ equation forZ, to fìnd its

distribr-rtio'throughoul tlie flow (pope,2000). Thez, transport equation must be

solved alongside a tïanspoú equation for the velocity scaìe Iz, i.e. /r-equation. l-he

lcngth scaìe equatior.ìs are a combination in rhe fon, (Kanth a2004)

_/ I-Dl I ilL _l\ 1,

The most co'l1l1on conrbinatio's r¡,hich have been proposecr are

(i 6)

Dissipation rate (Harlo'uv and Nakayama. 1967)

Þ-requency (Kolmogoro v, I 9 42)

Êct
L

Iur-bulence vorricity (Spalding, 1 972)

Rotta ( ì 951)

l/,
t- /1

I

t_
K(ù=--
L'

KL
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The transport equations for some of the above quantities can be obtained by

manipr"riating Navier-Stokes equations with additional assumptions assocjated w.ith

each model T'he general transport equation for all variables can be written as

fbllowing (Marhieu and Scorr, 2000)

(3.1)

Ivlrere o,, c.t- and ¿:-, are empirical constants. P is the prodLrction of kinetic

energy, and S is the sccondary sourcç term which depends on the choice of Z. The

different tu,o-equation nrodels are, Standard À -e model, Low_Reynolds number

Æ-s nrodel, Low-Reynords number k-ø moder, k-a Baseline (BSL) moder,

and Æ - ¿-¡ Shear stress transport (SS1') moclel.

The two models used in this stLrdy are briefly described berow

a. Two-Equation Standard k-eModel

model of'

Dplr 
=

Dt (3.8)

(3 e)

and thc edd.v viscosit¡, is defined as

ôz ,, ôz e ( JnL az\ z .fi.
ôr 

+Lt' 
ua =^ 

[;;)-',, oaP-c'zZï*t,

L2
v =(' {t(

| " lJ p

l'he

Jones a

transporl equatio's for trre turbulent quantities for lc-ttwo-equation

ncl l-aunder (Jl)72) are

+i( ,,- 4lgl * ,,,g!,(au, *ur,l . rôÁ, 
, 
1'

ô", L['' o^ )ôx,] 
- 
"' u", I u\ * ô. )-'rl , ) - et

De! =-Ll í Lt * /r, ì ar I c au, ( au ,- uu, llD, 
: tlt ''*1)u\f+J'L'ttt' - r,, Ir", 

.ãi.,Jl

-2i
- e ,.f ,nl-* pE 

J

1l

(3. I 0)



where the model constants are giverr as

C,, = 0.09 or = 1.0 o,,

(l ,,=1.44 C,r=1.92

=trl

l
(3 r1)

r,r'ith the clamping fìnctions as

t-J'f./,,- Jt=Jt

E=0
(3.12)

b. Two-Equation fr-¿¡ shear stress Transport (ssr) Model

Iìollowing the Ic- at mode I proposed by wilcox ( r 9gg), which has rhe

disadvantage of being lrighìy sensitive to a.¡in the freestream region. Menter (1gg4)

proposed zrn improveci versìon of k-r¿. rvhich is callecl shear stress transport (SST)

nrodel. l'he SST model is a conrbination of the lc-amodel of Wilcox (i9gB). wfiich

is recommenclc'd to solve for ilo',r' in the inner region of tile boundary layer, a'cl the

standard lr-t; for the outer bounclary region. as r,vell as the freestream region. lhe /c-s

nrodel is ihen iransfoi¡ried trfto k-a lormulation along with the introduction of the

blending function tr7. "fhis llnction is given a value equal to I near the wall and

zertt far from the wall. 'Ihe clifference between the SST model and k-ømodel is the

appearance of a cross-diffìrsioll term in the a-l equation ancl also the constants are

diffèrent. l-l-re transpoÍ equations f'or the SST modet of Menter (1994) are

-'Ì

Dpk 
= ,,

Dt +(+ " +). +lu 
* c * /rl+]- þ^ p,,,k

l8
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Dpdt

Dt

Tlre conslants for the

otz =0.5

ß' = 0.09

with

= :+( +.+'1, +i ç, + o,ut,,)ylp ôx, lôx, ôx, ) .*, 1 ,r, )

- þp,' +zp(t - r)+##
(3 14)

(3.ls)

(3. I 6)

(3 11)

(3 I8)

(3. i e)

The constant for the inner region are

oo, = 0.85 o,, = 0.5 þt =0.0i'50 a, = 0.31'l

þ' =0.09 rc=0.41 Tt=þtl B" _o,u"rct/^[øl

and thc cdcly viscosiq, is now defined as

v' = -- 
cllk

ntax(ct,a¿ (ll;,)

rvhere O is the absolute 
'alue of 

'oflicity. 
u,hich is definecl as

t)=ôU'-ôUtô*, ôx,

and F.. is given by

{ = ranh(argj),

arg:
(3.20)

The constants for the model employed lor the inner region of the bor-r'dary ìayer.

i.e. in the vici'ity of the u,ail, denoted by a symbor e¡. and trre conditions for the

nodel used to solve for the outer region of the bou'dary layer as weil as the

(^ Jk
= maxl ¿_.

I o.o9r..ry '

500v )_t r l'
\''0 l

outer region are:

o,,,, = 0.5 þz = 0.0750 
I

¡'= 0.41 ),:, = þ.,' þ- 6,"2K2 /rl@ I
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freestream region, denoted by er, are related together

function Fi". t¡e latter provides the constants, rp. l.or

by a function calied ..blending

the BSL nrodel as

where

e=F,q, +(l-F,)p,

{ = tanhþrgi)

(3.2 1 )

(3.22)

and

ar8r
(3.23)

1'he symboì y is the clista

cross-diffusion telln in the

(:l) 
t,,u (3.24)

Freestrearn conditions and walr Boundaries

l'he fi'eestreanl nrean verocity components, pressure, and furburence quantities at

tlre inlet of the computational domain are taken as ¿/ = (J.,, r: 0, )4, =0, p = p_,

Jc = k-and a.¡ = a-. Tl'te fi'eestreant k- €n and r¿n are estinrated by lsing the

following relations (Menter, 1994; Karel, I 99g): lc- = 1 .S (I - x Il -), ,

€,. = c,,f ,,pRekj I p,- and o_ = p_(k.l p_)(,r,,- l p)-, where !u_ is rhe

t-eestream turbulent viscosity which is approximated as rt,- - (0.r -r0)p-. The

existence of a solid boundary (wall) induces considerable changes in the flow an6

= -in[,nu* 
( ^t¡

I ( 0.0eoy'

-\-l500v I .apo,,.k I

l lr ^ Iv'ø i CD, r,' I' / ^c'r J

nce to the rvall and CÐ¡.., is the

ra-equation. rvhich is givcn as

rll^ o.. ôh ôt- nraxl 2pt2! !!'- f-;lO to 
I

| (D oxrcrt 
-j

positive porlion of the
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tlrbulence strucillre as cornpared to the turbr-llent freestream arvay from the wall.

f'hercfore, the flow conditions at the wall must be defined. ll'he no-slip bor-rndary

conditions are ltsed for velocities, holever, zero gradients are usecl for pressure as

follows U,,,=V,,,=V/,, - 0 and ôp,, lôn=0 where n is the normal direction onto

the wall- For tuÏbulence quantities, i.e., kinetic energy /i, vìscosity ¡2,, clissrpation q

specìfic dissipation ru, and their values at the wall are set as /c,, = g, 
/1,.u, =0,

s,,, = 0 , and ro.. : 8c0¿2,, I p,,(t'y,)' rvÌrei-e Ây7 is iìre cristancc to tìle nexi nocje

arvay from the wall (lftal 1998, Menrer lg94).
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Chapter 4

SOI.UTNON AI-GORTTT{M

ln the present thesis, two different numerical approaches are ¡sed. Onc is a

Cartesian based-grid blocked-off technique, and the other is the conventjonal

teclrniqtte implernented in Fluent software. The former is a nerv method clevelopecl

by Birouk and Abou Al-Sood (2001) to solr¡e for the flow clraracteristics aronnd a

spherical object. for r.r4rich details are provided below. Florvever, the ]atter is a

converltional metlÍod employed by the commercial softrvare Fluent, u,hich is

different thau the fonrrer one.

4.1. Cartesian-Grid Based Blocked-off Technique

Tlie grid generation, treatment of the sphere in the calculation domain. and

independency of'the results on the grid are discussecl belor.r,.

4.1 .1 Nunlerical_approach.

Iinite-r'olume approacl, (Patankar l9B0) u,ith staggered grid is used to solve the

conlplex nonìilrear ancl strongly coupled set of goveming transport equalions

described in chapter 3. The goveming differential equations are integrated over

discrete volumes in Canesian coordinates resulting in a set of algebraic equations of

the follou,jng general form
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(a u + rr,r, + r¿r + cr, + a.,.Þ., * aa -S"Â-xAyÀzþ p = ere e + arr@,,, +

a*On, l- ardr, + ar@, + asþa + SrAxLyAz
(4 t)

wlrere QP. uE, CI¡4t. Q¡¡. cts. ct:', clp,.and b<p àre coefficients and their expressions are

reported elseu'here (Aboul AI-Sood, 2007; Birouk and Abou al-Sood, 200j). Sp and

,Sc are the tr,r,o temrs of linearized source term S,p, and ax. a,y, and Lz are the controj

volune lengths in the direction of -x. y, and z coordinates respectiveìy. A schernatic

of the C\¡s is presented in Þ-igure 4.I .

The absence of an explicit equation for pressure when working numericaìly with

the so-called prirnitive variables [J, V, W and p, presents a rea] diffìculty i.r,hich is

overconrc by using the SIMI,LEC approach (van Doormall and Raithby, l9g4).

This approach allor,vs developing an expression in the fomr of Eq. (4 I ) for the

pressure thror"rgh a combination oI the continuity and momentum equations. T'he

objective is to cier.'elop a pressure field such that the resulting velocity field satislìes

the continttity equation for- every control vohrme in the calculation dcmain. The

solirtion ol the set of hnearized algebraic equations, which are resuited f¡om the

application of Eq. (4.1) to each control volume in the computational donrain, is

accornplished by using a three-dimensional Strongly Implicit ProceclLrre (SIp)

developed by l-eister and Perió (1991). The SIP is chosen as a sojver because jt

takes less ttumber of iteratious for convergence compared to other solvers, sLrch as

point Successive Over- Relaxation (SOR) or Line Successive Over Relaxation

(l-soR). l)etails of SIP, soR and LSOR are reporred elsewhere (Abou Al-Sood,

2006). The iterative procedure sweeps the solution clomain Lrntil either the assigned

maxinlnm number of jterations is cxceedecl or the range-normalized relative errors
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@q. a.Ð of the diffusion

each control volume-

parameters (U, V, Ll/, p, k, and s or a) are satisfiecl for

(4.2)

rvhere cÞ"*i ancl (Þ" are the new and previous vaÌues of the diffusion parameter

@. cÞ,'n* and Õn';¡ ât-e the maximum and minimum value for the entire O"'/ fielcl

and Oa, is taken to be l0-a for all quantities.

4.l.2Treatment of a Sphere in the Calculation l)omain.

The spherc is treatecl. in the computational domain, by employing the blockecl-off

treatnerlt. This treatment is achieved by blocking-off the control volumes (CVs)

that fornl the sphere (i.e. the inactive CVs) so that the remaining active control

volurires form the desired domain (i.e., the surouncling gaseous phase). It is

obvious that the sphere is approximated by a series of rectangular or/and sqì.rare

CVs. Although the contputation is executed for the entire clonrain, only the solution

u'ithin the active control volumes is meaningful- The simplest way in which the

desired vaìttes of these parameters could be obtained in the inactive control

voÌurnes (i.e. sphere) is by assigning a large source tem in tlie discritized eqr.ration.

That is setting S. and So in Eq. (4.1) forthe inactive zone as follows:

Sp = - 10i0

I o'-' -Õ' It___-t <ô
id',,,,,r -q',,,,u1-'o'

Sc =10t0Õ¡.¿..r"¿ alld
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where ì 030 is a nunrber large enough so that the

equation become negligible. Therefore, Eq. (a.i)

becomes

other terms in the discritized

for the sphere (inactive CVs)

-F.5/,(Þ/, = 0 (4.4)

ancl hence

Õ, = - S, /.T,, = (Þ t,,¡,,,,",t (4.5)

In case of a solici stationary sphere. the clesired values (@ru",,,",,) for all

parameters (i-e. pressure, velocity conrponents ancl turbulence quantities) are set

eclual to zero. Note that this technique mal<es the surface of the sphere looks Iike

stair steps as illustrated in Fig.4.l. This approximation induces some calculation

errors r'r'hich can be minim jzed b1' Lrsing a ver\¡ fine grid in the clroplel domain.

Gas-nhase : -

Fig.4'1 The Canesiall-based blocked-off tì'eatrnent of a sphere immersed in the
coInpìitational doniain
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4.1.3 Grid generation and results indepenclenc-v.

For the Cartesian based blocked-off technìque. the calculation domain, which is a

cube of 32r x 3zr x 32r rength, u,here r is the sphere radius, was divided i'to
several control Volunles and the sphere is fixed at the centre of the cube. Thjs

choice is based on the suggestio's marie by Sundararajan anri Ayyaswamy (r9g4)

who reconlmencled that the freestream inflow and boundary conditions must be

talcen at a distance from the centre of the sphere that is at least ten times greater t¡au

the sphere radius. l-he boundary conditions for tlle computational domain are taken

as follows; The left and right faces are consiclered inflorv ancl outflow boundary

conditions, respectively; r,vhereas for the other faces. north, south, top and bottom,

are tal<en as the rvall botrndary conditions. In tìre present analysis, the Caftesian grid

in the caìculation domain consists of 60x60x60. Since the gradients aro¡nd the

splrerc are ìarge, a verJ fìne grid 40x40x40 is usecl in the domain of 4r, i.e. 2r from

the sphere cerltre in all clirections. as shown schematically in Fig.4.2. Thìs number

of grids is foLrnd to be the optimum nunlber that provides stable results with an

acceptable corïputational tirnc. Coai-ser grids. s'Lrcli as 40x40x40 for the entire

calcuiation domain and 30x30x30 for the domain ol 4r have also been tested.

Ilowever, tìreir outcome shor,ved, f'or example, that the laminar drag coefficie't, at a

typical Reynolds number Re :100 is lou,er than its experimental counterpart by

a'bottt20o/o' f'o eliminate the dependence of the resuits on the grid, other very fine

grids have also been tested sucrr as, for example. B0x80xg0 for the entire

corr-rputation domain and 50x50x50 for the 4r domain but the computational time is

extremely iong' This exercise is continued until the grid dependency is practically

eliminated. A summary of the sensitivity of the present model predictions on the

cìrosen grid is give'in Table t. Finally, it is important to point out thatFig.4.2
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does not show the complete computational grid but only an illustration to provide a

general idea. On the other hand, this figure shows that the unilorm grid is fine in the

4r region, which is t,r,ice the size of the sphere, and coarse outsicle of this region.

Table 4.1
Grid independency f'or tire blockecl-off technique

Domain Grid

40x40x40 60x60x60 B0x80xB0

4r
(see Fig. 4.2)

30x30x30 40x40x40 50x50x50

C¡

Laminar flow
(Re:100)

Turbulent 11su, (ft-e rnoclel)
(Re:i 00, I*:20o/o)

Tr:rbulent florv (SS1'
model)
(Re:l 00. I-:20o^)

1.3541
(le.23%)

1.4912
(24.20%)

2.1141
(82.0e%)

r.1384
(---. -)-

1.2006
(-----)

1.1614
( --- --)

1 .1 099
(2.s0%)

1.2131
(6.04%)

1.1 882
(2.31%)

'k The error is based on the optimLrm grid 60x60x60 in the
40x40x40 tn the 4r domain

whole domain with

4.2. Conventional Technique

The set of equations describing the flow over sphere u,ith the bo¡ndary

conditions repor-l.ed previously in Chapter 3 are solved nnrnericaily using Flue¡t

6.1-22 which is based on finite volume fomrulation. The cornputational clomain was

subdivided into a number of small control volunres by creating a computational grid

that consìsts of tetrahedraÌ-shaped cells. The details of grid generation and the

numerical approach are provided belor,l,.
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,x.)\

ltig.4.2 Schematic of'the computational Cartesian gr-id

4.2.1 Grid Generation and Ilesults Independency

Gambit was used to generate the computational grid f-or the clolnain around the

sphere. The sphere was f rxed in the center of a 12 mm radius spherical domain. l'he

spherical domain. which has a radius of l2 mrn, was then clividecl into trvo clomains.

The first clomain, whìch surrounds the sphere, (referred to in this chapter as the

inncl domain) extends from r : I rnrn to 3 mm. The outer dolnain. ,,vhich is refen-ed

to in this chapter as the outer dornain, extends from r : 3 mm to l2 mm.'fhe choice

of a computational domain with aradius of 12 mm is based on the recommendaiion

of Sundaral'ajan and Ayyaswarny (1984). who suggested that the fi'eestream inflow

and boundary conditions must be taken at a distance from the center of the sphere

10LA



that is at least ten times g,-eater than the sphere radius. Both inner and outer

spherical domains were then sul:dividecl into a number of small control volumes of

tetrahedral-shaped [pe. In order to har,e a 'ery fine grid in the immediate

surouncling of the sphere, the control volumes of the inner dornain w,ere chosen to

be nluch smallerthan those of the outerdonlaìn. Spacings of 0.06 and 0.5 were usecl

for the inner and outer domain, respectively, u,lrich resultecl in a domain of

2'555-146 tetrahedral cells. This grid r,vas founcl to be the optimum that provicles

stabie results with an acceptabie computational time. Figure 4.4 shorvs a cross-

section ol' the computational clomain. The grid inclependency \\,as successfllly

achieved rvhen the restllts of the last grid agreed fairly well with those obtai¡ed by

the coarser grid that has spacings of 0.08 and 0.6 for both inner and outer domains.

respectively. Also, much coarser grid with spacings of 0.15 for the inner ¿omai,

and 0 8 fbr the outer domain is tested and the cliflerence in the results between this

grid and the finest grid is noticeable. lìor example 
" 

aT Re:200 (laminar f'ìor.v) the

predicted drag coefficient is foun<l to be higher that that obtained by the fi¡esl gricl

b¡' appi-o;riirìately 8%. A iypicar assessment of the sensitivity of the model

predictiorrs to the chosen grid is shown in Table 4.2 ft¡r a tlpical Reyno¡1s number

Re: 100 and a ttlrbulence intensity l= 30%. The error is basecl on the preclictio's

of'the optimum (fine) grid. More information about grìd-inclependency is proyiclecl

in the nexl chapter.
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Table 4.2
Sensitivity of present moclel predictions to the chosen grid (the error is calculated

with respect to the fine grid predictions)

'" Tìle lleynolds nulrber is based on the splrere diameter and the air-fi.eestreanr
nean-velocity t-tpstream the sphere. The relatjve intensity of the turbulence is
de lìnecl as 1". = tt lU ,,. .

4.2.2 Nume'rical Approach

l'he commercial softu'are, Fiuent versiou 6.1.22^ which is based on finite volume

fomulation is employe<1 1o solve the governing equations describeci in chapter 3.

Details aboul the solution algorithm are providecr in appendix A.

'Ihe sinrulation u'as carried out using QtilCK (QLradratic Upwind Interpoìation)

f'or momentulr, trtrbuìence kinetic energy, and turbulence dissipation rate . pRESTO

(PRESsLrre STaggering option) was used for pressure inrerpoiation. pISo

(Pressure-lmplicit with Splitting of Operators) was used for pressure-Velociry

Coupling. The solution convergence is assumed rvhen all of the residuals

paraì'neters fall below 0.5 xl0-05.
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Chapter 5

RESUI-T'S ANÐ DISCUSXONS

The main results presented in this cliapter conceÌtl the numerical preclictions of

tire lnear-l drag coefficient of a sphere erposed to a turbulent airstream. f'he ultimate

objective is to assess the level of accuracy of the predictions of the Cartesian grid-

based blocl<ed-off techrique (termed hereafter as the new methocl) by cornparing its

predictions u'ith their counterparts' obtained by using a conventional method

implernented in the CFD software Fluent (referred hereafter as tìre conventional

rnethod). Comparisolrs include. in acldition to thc sphere drag coefficient. the local

pressure and shear stress (i.e. skin fìiction) coefficients. Note rhat the calculation of'

the spJrere mean drag coefficient is simply the sunrmation of the integrals ol. the

wall pressure and shcar stress coefficienls overthe surface area of the sphere, which

is expressed as

;.8

c, = 
lc,sin(zfi 

tr þ. #J',,,r - cos(zþ))crrþ

: pressure drag coefficjent + viscotis drag coefficient

(5 l)

where

þ =f'he azimuthal angle

C,, = The wall pressure coefficienl: Pr- P'

I Pu'"2'
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r,, = l he sheal- stresr 
( at I;:rl __r
\.r

ôu.) t(ô,, \
-- l+-l l¿)õx i 3lôx l"

'/ \ t.)

It is inrportant to mention here that all the predictions presented below are

obtained with the corresponding optimum grid (referred to here as fine grid) ftrr

each method (the predictions arr: no longer grid depenclcnt or the variation of the

predictions is insignif,rcant).

5.1 Laminar Florv R.esults

The complttational results of the sphere drag cocfficient obtained by r.rsing a fine,

medium,andacoarsegr-r'dandpresentedinFigr,rre5.l overwicle rangeofReynolds

nttrnbers' Iìigure 5-2 displays a comparison of the local wall pressure coefficient as

preclicted by the nelv method (i.e . blocketl-off technique) and Fluent, as r,r,ell as with

pLtblished data (Kim eI al-, 2001). It is importanr to poinr oLrt rhar all the three

preclictions are produced by three clifferent numerical nrellrods. The comparison

nrade in Fig- 5 -2, which is for a typrcal Reynolds 
'L*ber of I00, sl-rows only

unnotice able difference between tìre present predictions (both methods) a'd

pttblished data of Kim (2001). J'here is only a sìight difference which is can be seen

between tr¡,o azimuthal positìoils along the periphery of'the sphere, i.e. between 30o

and 70' and, between l00o and 150", respectively. within these regions the

maximum difference betvveen the present predictions and published data quoted in

!ig. 5.2 is less than around r0% which can be due to computational error.

Nevertheless, the comparison made ìn Fig. 5.2 shows an excellent agreement

between the two methods employed in the present study, as u,ell as with the data of

Kim et a/. (2001).
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Irig. 5.1 The predicted drag coeffìcient versus Reynoìds nnmber for fìne , medium,

and coarse grid
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Fig. 5.2 Local wall pressure coefficient versus azimuthal angle for a rypical

Reynolds number of 100
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The predictecl sphere mean drag coefficìent over a wide range of Reynoìds

ntlmber is reporled in Fig. 5.3. Note that the Reynolds number is based on the

Jì'eestream velocity and sphere diameter'. 'l'his figure iiìustrates also a comparison

betu'een the two methods employed in the present study as well as against the

experimental data of Roos and wilìmarth (1971). The comparison nade in Fig. 5.3

cleariy demonstrates an exceiient agreement betrveen the tr.vo different nnmerical

niethods employed here. It shows also that these numerical predictions agree r,ery

u,ell with the experimental data.

. ' l-- ,-.-._L_ , __ _L_ , _l_
Conventional Me rhod (I:lLrent) 

l

- Numerical (Bìrouli and Abou Al-Sood Z00:) 'a

o Experinrentaì (Roos ancl \Villnrarth l97l) i,
i

4

u"3

2

I

0

Re,

Fig. 5.3 comparison of the sphere mean drag coefficient belween the present

predictions (new method and Fluent) and published experimental clata
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Figure 5.4 shows the variation of the wall pressure coefficient with the azìmuthal

angle, obtained by Fluent, for different Reynolds numbers that are ranging from 50

to 200. This fìgure shows that the iocal u,all pressure coefficient is noticeably

dilÏèrent for different Iìeynolds nnmbers in the range of the azimuthal angle

betrveerr 50 and 180 clegree here it increases rvith Re. whereas, for þ < 450 , lhe

local pressure coefficient decreases slightly u,ith increasing Re.

t.5 r|,1,.-,l I-, I_r_L
Iìe = 50

- Re: 150

Re = 200

f

'.i-
i
I

I

I
I

r

-l

Figure 5.4

0 30 60 90 t20 150 t80
Azimuthal angle $ (degree)

The preclicted wall pressure coefficient over the sphere f'or different

Reynolds numbers

05

0

-0.5
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Figure 5.5 shows the distribution of tire sphere surface local skin friction

coefficient over a u,ide of Reynolds nurnbers (Re : 50, 100, 150, and 200). This

fìgure shou's that the local skin friction dec¡eases with increasing Reynolds number

in the range rvhen thc azirnuthal angle is less than approximately i35o. Beyond this

angle the local skin friction coefhcient is almost vanished clue to the separation of

the boundary Iayer. and therefore, this angle is called the separation angle. We can

also observe that the local skin friction coefficient reaches its peak lvhen the

azimuthal angle is around 60o independently on Re.

I It /- _ ,, \ IL t|2-', li/, .\'., \ .; !:'./ . 
\,. \. Iil'l\\ii ll' \\ \t t./r \ \ I

I .\'\ iii t",\ 
i

'I "')\ 
i,,-: o\_-_=_- 
i
i-lttllr

0 r -i-.---,--- - l-----'1-*---_-f---r-- i---,-*T-
0 30 60 90 120 ls(J t80

Azirnuthal angle $ (degree)

Figr"rre 5.5'l'he predicted local skin friction coeffìcient overthe sphere for the

different Reynolds numbers as predicted by the conventional method
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5.2 Turbulent FIow Results

Turbulent florx.' results of the sphere mean drag coefficient and its components

(i.e. local presstìre ancl skin friction coefficients) obtained by the eddy-viscosity

turbulence nlodels, the stand¿rr'd Æ-¿ model and k-c¡ shear stress transport (SST)

model are presented belou,. Three tlpical lìeynolds numbers (10,50, and 100) are

chosen with tr-ubulence intensities ranging between I0 ancl 60%.

Figr-rres 5.6 and 5.7 prescnt the turbulent (based on /t-smodel) local yariation of

the r'vall presstlre coeffìcient predjcted by using the standarcl k-e moclel f'or a typical

turbulence intensity of 30o/" and tu,o typical Reynolcls numbers of l0 and 100,

respectiveiy. 'Ihese figures show that there is a fair agreement between the

predictions of the rlew rletlrocl anci those by Fluent. Only slight differences is f'ouncl

at a Re: 10 r.r'here the dilference in the predictions between the two methods is ìess

fhan 9o/o. liigr-rres 5.8 and 5.9 present a comparison of the local variation of'the

sphere skin fiiction coefÏcient between the prediction of the neu, method and those

by using Fluent. Tìrese predìctrons are obtained by using the standard /c-amodel f'or

the same conditions of }ìigs. 5.6 and 5.7. Simiiarly to the trrrbulent local sphere walì

pressure coeffìcient, the comparison between the two methods of the sphere skin

fiiction is very good, especially for Re:100. Figures 5.10-5.13 present rhe

variation of the iocal sphere u,allpressure and skin f iction coefficients, as predicted

by r-rsing the sST nrodel, for the same flow conditions of Figs, 5.6 - 5.9. These

figures reveal that the preclictions of the two different methods are overall in

reasonable agreement. llased on the observations in Figr-rres 5.6 through 5.13, itcan

be concluded that the predictions of the ner¡, method are reproduce<1 by using a

cornpletely different nrethod (FlLrent), aìthough slight differences are observecl

paÍicularly at very low Iìeynolds number. This is an jndication that the Cartesian
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grid-based technique (i.e. new rnethod) is cleficiency although the exact sphere

surface profile is not capturecl by this methods, as it looks ìike step stairs. Horveyer,

the use of extremely fine gricì for the calculation domain in the vicinitv of the

sphere makes it possible to approach the real sphere.

i¡-e r¡odel (lìe = 10, I = 30%)
Conventional Method (Fluenr)

Neu'method (llirouk and Abou AI-Soocl)

u'0

-t_¿ -i- ---_r 
_,, ,____r-_ __ _r_ . l_ì

0 i0 60 90 t20 r-50 180
Azinrulhal angle.(r (degrce)

Fig. 5.6 Predictions of the wall pressure coefficient versus azimuthal angle for -Re

10 and I*:30,'/r, by using tlie stanclard /c_emodel
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Fig. -5.i3 Prediction of the skin friction coefficient versus verslrs the azimuthal

angle for Re: 100 and I-: 30yo by using the SST model

Figurcs 5.14 and 5.15 display the variation of the sphere mean drag coefficienl

rvlth the airstream turbulence intensity for three f,pical Reynolds numbers (10. 50

and 100). The predictions of the standard lc-e and SST models are presented in l-igs.

5'14 and 5.15. respectively. Both figures reveal that the fì-eestream turbr¡lence

intensity does not have an effect on the sphere drag coefficient, as reported i¡

Iliror"rk and Abou Al-Sood (200i) and Abou Ar-Sood (200i).l-hese figures sìrow

also that the SSI' model is capable of reproducing similar data to the sphere

standard drag coeffìcient regardless of the magnitude of lleynolds number.

Whel-eas. the standard /c-s model, whicll is also capable of reproducing the sphere

standard drag coeffìcient at relatively high Reynolds number of approxinlately 100

or greater. js deficient at relatively lower Reynolds nunibers.
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It is irnportant to point out here that these conclusions apply to both numefical

methods, i.e. the new method and that employed by Fluent. It is, therefore, plausibie

to conclucle that the fact that the standard /c-e model is deficient at low Reynolds

numbers is not a consequence of to the new method (i.e. tìre Cartesian grid-based

blocked-ofï technique) developecl fbr the first time by Ì3iroLrk and Abou Al-Sood

(2001) to stLrdy a flou'o\rer a spherical object. AltiroLrgh. Figs. 5.14 and 5.15 still

sirow slight discrcpancy irr the predictions betvveen the two numerical met¡ods (i.e.

new method and that employed by Fluent commercial code), these slight

discreparlcies are not significant and thus cannot be the reason for the deftciency of

llte lc-s model in reproclucing the sphere standard drag coefficieni at low Reynolcls

numbers. T'he computational results for the drag coefficient f-or both fine and

medium grid are presented in lìigure 5.16 and 5.17 for more verification on the

accuracy ofthe grid.

8

7

6

5

U4

3

2

I

0

-*i , I , I '_._l , l--L L, I ì,r

Iìe = l0

I

80t0 20 30 40 50 60 .70

f urbulence ìnrensit¡, /(%)

Fig. 5.14 Sphere nrean drag coefficient (based on the standard /c-emodel) versus the

airstream turbulence intensity for different Reynolds numbers

I

L
I

I

_.1t\l,I
i

t--
I,F'

i
i---
I

Ìr
l

t_
i
Ir
IL-
I

L
I

I

I

i

t-
I

I

I
l

r

(Irluent)

and Abou ,41-Socrd. 200

Conventional Melhod
Nerv \4e(hocl (Birouk
Lanr inar

/i-e Model

Re=50

lìe : 100

44



iìi
l{ - +_u_ L____t :

j - - - - Ncrv lvterhod (fìir.ouk and Abou Al_Soori.2007)
1

6 --j
.l

I5-j
l_,,- __, __,__!_ __-_^":_- __--: Re=10

(-)4-1
i

-1

I

3 -l
I

I)-l
*t-:=_- :=_=-=_ Iìe = 50-t

l------_-=:-_:: Re=100
Ì

o ],, ----- r
t0 20 :i0 40 50 ó0 70 80

'l.r¡rbulence 
I nrcnsit)' /(%)

Fìg. 5.15 Sphere mran drag coeff,rcient (based on the sST modei) versus the

airstream ftrrbulence intensity for different Reynolds numbers

:-i

7-
i
I-l
I6-j
I
I

i

-, Re: l05i
I
I

,i, I,i+ l
I

l
l

"li_l
_l

L

1 __l

Re: 50

l0 20 l0 40 50 60 10 80
Turbulcnce lntensity,¡(%)

Fig. 5.16 Evaluation of the grid effect on the predicted drag coefficient versus the

turbulence intensity at various Reynolds numbers

Method (Fluent)

k-e Model
Fine Grid
Mediunr Grid

t
i
I

l-

t-

45



s-f'--r- I I ---. -i- ' I ' I , I, 
-_=-*-f-N4entcr SSI- lvlodel

Fine Crid
Mcdir¡m Grid

Re: l0

-= Re = -i0

--- lle = 100

7

6

_5

(.r" ¿

J

7

I

I
I

i

l
L

i

I
t-

t

-l

.]
I

-]
1

--.1

i

I
II-f-
I

I-l
I

I

I-t

I

- t-

_.tt
^l T
0 -i --- : ---- l_ .-f---¡

r o 20 
ì-ln ,,.,lJ'. ,n,."ì1, ,1*¡u' 7o 80

Irig. 5.17 Evaluation of the grìd effecl on tl.ìe predicted drag coefficient versus the

turbulence intensity at various lìeylrolds nunlbers

46



Chapter 6

CO}{CL{JSIÛNS

A newly developed numericai method, '"vhich is developed for solving

laminar/tLtrbr:lent flor,v over a sphere has been evaluated. This nlethod is based on

solving the mass and momentum conserr¡ation equations in Car-tesian coorclinates

by r-rsing a blocked-ofT technique. Although this new numerical method cannot

capture the exact/real surface profile of the spherical object. reasonably good

predictions for lamittar flow are obtained u,lren comparecl to experiments. Iìor

turbulent flow, the predictions of the numerical model are shor.vlr to depend much

on the turbulence closrtre model. Iror example. the SS'f nrodel is shown to

successfully predict correct clata rvhile the stanclard /c-a model faiìs especially in the

iorv range of Reynolds numbem. An ìndependent method (i.e. a conventional

method implemented ir-r lìluent) is enrployed to verifi7 the degree of the prediction

accì-lracy of the new nllmerical methocl. The outcome is that both numerical

methods are able to reproduce nearly identicaì predictions demonstrating the ability

of the new technique in generating quality preclictions. Finally,. it is important to

point out that the ltew nllmerical method is srmple, easy to implement and cost

effective in comparison with any published nunrerical nrethod for studyi¡g a flow

over sphere.
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Appendix A

A SHORT DESCRIPTION OF THB FLLIEI\*T SOLVEIì

1'his appendix will only discr-rss the numerical scheme applied in tlie prese¡t

calculations by using FLUENT (version 6.1.22). This softu,are lras been usecl in this

study to solve the goveming equations of the flo'uvs described in chapters 3. 1'his

code ernploys fìnite vohitne fomulation With the control-volunre-based techniq¡e

used in Fluent, the governing equations are converted into algebraic equations.

Subsequently, these prodriced algebraic equations arc solved numerically. About

each control volttme, the governing equations are integr-ated in order to prodnce

discrete equations. These cliscrete ecluations consen/e each qualily on a control-

volume basis. The description of ali options available in FlLrent is not the task of

tlris thesis. More infolmation can be founcì in (Fluent, 2001). hou,evcr. au overview

of the methods usecl in the present stuciy is provided belorv.

Segregated Solver

In the present calculations, the governing equations are solved sequentially by

using the segregated solution method together rvith the implicit Iinearization

method' Because the governing equatìons are non-linear and coupled. several

iterations must be performed bel-ore a converged solution is obtainecl. The update is

based on the cun-ent or the initialized solution depending on the iteration run. The

segregated solution method is outlined in the flow chaÍ shown in Fisure A.1 .
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Update properries.

Solve momentum equations.

Solve pressure-con-ection (continr-rit1,) equatìon.
Update pressure, face mass flow rate.

Soìve turbulence equations.

t conu"rge¿i-

FigLr.e A.l over'iew of the Segregated Solution Method (Fluerrt. 200r)

Implicit I-inearization

Implicit fonnulation of the linearization means that for the calcr-llation of a given

va|iable both known arld unl<trown valucs fi'om the neighboring cells are r-rsecl. T'his

results in each unknowl.l value appearing in more than one equation i¡ the system so

that the eqltations l-ìave to be solved simultaneously lor all cells to give the unknown

valtles' in other words. all cells are considered at the same til-ne rryhen solving lor a

single variable field. Then. the next variable fieìd is determined by again considering

all cells at the same time. This process continues ur.ìtil updated values for all variables

are obtained.
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Discretization

Discretjzatìon is the process of finding a solution for a general variable / by

considering a set of values of the dependent variable at discrete locatjons instead of

its contillt-lolls exact solution. For this, the calculation dot'nair.l is dividecl iuto cells

(contlol volunles) r,vhich together make up tìre computational glid. The sol¡tio¡ at auy

one gr-id poirlt is assurlled to be an algebraic function of the soh-rtiou at its neighboriug

grid pornts. Grid points correspotrcl to cell (or face) centers in FLu¡Nr. Discretizing the

goveming equations can be illustrated, for example, by consideri¡g steady-state

conservation equation for transport of a scalar quantìty / . A wrinen equation in

integral form for an arbitrary control voiume V is used to demonstrate the

discrelization as follows:

{pør. d Å = {rro, . d ¿ + [s,av
rvhere

p = density

J = velocit-v vector

,,i = surface area vector

f¿ = diffusion coeffìcienr f-or /

V, = gradienLof þ

,S@ = source of þ per unit volume

Equation 4.2 is applied to each control volume

its discretizarion on a given cell yields:

(A l)
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I N""

pyDtó¡.At = IL(Vø),, .Å¡+SrV
J

(4.2)

where

N ¡o,"., = number of faces enclosing celì

þ t = value of / convected throLrgh face f

P, Lt,'ll = lnass flux through the läce

À¡ = at'eaof facc,/

(V,þ),, = magnitude of V þ normal to facef

V : ceilvolume

l-or the convective term (the one on the Ieft hand side), the fäce values of r/ l'tave

to be kttorvn. Horvever, onìy thc values at the cell centers (c0 and cì in FigLrre A.l)

are stored by FLTJEN'|. The face values have to be interpolated from the cell

values. 'l'he1, ¿¡c derived lroln the corresponding "upwind" values, i. e. lrom tlle cell

values in an upstream direction to the fàce relative to the direction of the normal

velocitl,'. Ì-lence, the approach is lcnorvn aslhe upv,irtd schente.

computational grid to illustrate the

91 equation (Fh-rent. 2001).
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hr generaì, the linearized fbn¡ of (A.2) can be nr.itten as

a rþ, +Ln,uØ,,' = h,, (4.3)

Here, the subsclipt n1: clenotes neighborrng cells. the subscriptp refèrs to the 
'alues 

in

the cell consldered, a,,and.,,t) are the linearìzed coefficienfs of þ,, and þ,,,. a'd the

acldend ó alises fi-om the linearizatiou of the source tern-ì. The form of the linearized

coefficients depends oll 1ìre schelne used to interpolate the face l,alues. FLUENT offers

dilfèrent discretization scherlres - first-orcler upr,r,ir.rcì. second-order upwind, pou,er law.

and QIJICK' only QUrCK scherne has been appliecl in the present runs (the i¡terestecl

reaclcr is referrecl 1o lrlltent (2001) for adclitional information about the clifferenr

di scretizati on scltemes).

Discretization of the Vlomentum Equation

An interpolation scheme is requirecì to compute the face values of pressure from

the celì r'alttes. In the present rvork. the PRI--STO methocl is used f'or the pressure

discretization. The PRESTO (pREssure STagger-ing option) schenre uses the

discrete continuity balance for- a "staggered" control volume about the face to

corltpute the "staggered" (i.e., face) pr-essure

Pressure-Velocity Coupling

Pressule-velocity cor'rpling is achieved by deriving an equation for pressure from

the discrete continuiry equarion. The slMpLE. SIMPLEC, and plso pressure_

velocity coupÌing methods are available in FLUENT. In the present work. the plSO

method is applied for the pressure-r,elociry coupling. The pressure-Implicit with

Splitting of operators (plSo) pressrire-r,elocity coupling scheme, part of the
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SIMPLE fämily of aigorithms, is basecl on the higher degree of the approximate

lelation betu,een the conections f'or pressure and velocity. Details of this method

can be found in (Fluent, 2001).
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