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ABSTRACT

In the last few years there has been a tremendous

increase 1n focus towards nonlinear control systems, and

the number of methods suggestéd to deal with these problems
is rapidly increasing.
One of the most common methods, to be found in almost

any modern textbook dealing with control systems, is the

describing funotidn‘method.

Some of the suggested techniques dealing with non-
linear elements incorporating hysteretic phenomena (i.e.
double valued nonlinearities) are herein reviewed; and an
attempt 1s made to extend the analytical techniques to
physical elemenfs (magnetic cores).

A set of measurements i1g then made to determine
deviations between the measured describing function of such
elements and the calculated one. It is found that the
analytical techniques do not, in some cases, yield satisfactory
results, and therefore, it might be better to obtain for
symmetric multi-valued polynomial nonlinearities (such as
hysteresis loops for magnetic materials) special results for
speclal cases, since a general ahalysis'appears hopelessly
unwieldy.

An attempt to verify these conclusions 1s made by means
of an analog computer study. A number of practical applications

for the type of elements being studied is then pointed out.
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CHAPTER T

INTRODUCTION

The describing function method of analyzing nonlinear

. systems 1is based on three assumptions:

(1) 'There 1s only one nonlinear element in the system.

(11) The output,of the nonlinear element depends only

on the present value and past history of the input. No time-
'jvarying characteristics are included in the nonlinear elements.
(1ii) If the input of the nonlinear element is a sinusoidal
signal, only the fundamental component of the output is |
considered. |

Independent developments of essentihlly the same methods

were made by R. J. Kochenburger (1) in the U.S.A., by
L. C. Goldfarb (2) in the U.S.S.R., by A. Tustin (3) in Great
Britain, by‘W. Oppelt (4) in Germany, and by J. R. Dutimh (5)
in France. E. C. Johnson (6) applied the sinusoidal method

of analysis tolstudy the free play of backlash in servomechan-

isms.
The describing function method has been given in many
standard textbooks (7; 8 and 9), and need not be given in detail

". here,

In this thesis we are concerned only with the applica -
tion of the Fourier describing function method to systems with
hysteresis type nonlinearities, and especially to those

eincorporating'the-magnetic or dlelectric hysteresis phenomenaQ
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When dealing with physical nonlinear elements, the degree

of success from a practical point of view 1s usually determined"

by the nature.of the assumptions that are made in the attempt ;fv?:fﬁ
to obtaln a tractable answer. 'However, workable solutions A
can be obtained within certain classes of the problem.
For example, when the nonlinear characteristic is
single valued, the input -- output relationship can bé expressf
' ed analytioally in the following ways:
(1) as piece wise linear
(11) as a polynomial
(i11) as a transcendental function.
To obtain the describing function for such nonlinear
elements, one ﬁeeds to evaluate én integral which determines
the fundamental coefficient of a Fourier series. The derivation
of certain describing functions derived from the piecewise
expression 4g well known.
Those'derived'from the polynomial expressions are in
the forms of gama functions (8). When the nonlinearity is
expressed by a transcendentallfunction, say, a segment of a
sine wave for the case of saturation, the corresponding
describing function fbrmula is in.terms of Bessel functions (8),
There,ére some disadvantages in the analytical,techniquek

mentioned above:



(1) Many times it is necessary to assume unrealistic

approximations when the actual nonlinearity 13 neither piece-
wise linear, an exact polynomial nor, a transcendental
function
(11) In-uslng certain mathematical formulae, one is apt to
lose sight of the physical picture‘ihvolted in the nonlinearity.
However, these disadvantages are comparatively less
serious ih the case of single valued nonlinearities than the
difficulties encountered in the case of doﬁble valued (or
multiple-valued)nonlinearities such as hysteresis loops and
backlashes. | |
In addition, complexity also arises In the nature of
the applied signal. If, for example, a sufficilently large‘
driving signal is applied, the character of the steady state
solution usually becomes a strong function of the initial
“econdition. Thus it becomes difficult to predict the resultant
operation accurately. This 1s particularly true when the non-
’linearity 1s also multivalued, e.g., the B-H characteristic
of magnetic’material. | | o
'As mentioned previously, the purpose of this thesls is
~ to review some of the most common techniques which are used
to derive‘the describing functioﬁ for double valued nonlinear-
ities and to point out the deviations in actual results while
dealing with bhysical elements, as compared to theoretical
results which were obtained under the assumptions mentioned

later.



Chapter IT outlines some of the techniques used to

evaluate the describing function for doublevvalued nonl;near-
itles, and points out some conslderations that should be
taken into account while dealiﬁg with physicai nonlinear
elements. o ‘ |
Chapter III presents the théory of magnetic materials
in order to evaluaté the approximations which were used to
‘represent hysteresis loops.
‘ Chapter IV discusses some attempts which were made to
evaluate thé déécribing function for nonlinear elements 1n‘
more complete: form.
Chapter V investigates the actual behaviour of hysteresis
type elements (magnetic cores) by a series of experiments. An |
attempt to verify the results thus obtained is made thrdugh

- the use of an analog computer study.

Chapter Vvaresents practical applications and conclusionsv

of this work.




CHAPTER II

TECHNIQUES CONCERNING THE DERIVATION OF THE DESCRIBING

FUNCTION FOR DOUBLE VALUED NONLINEARITIES

Thisvchapter presents some of the techniques which are

used while dealing with multi-valued nonlinearities. - An

evaluation of these methods in view of experimental results

is made later.

S IIL1 Sources of Hysteresis in ControlFSystems

Consider a simple electromechanical servo control

system as shown in Fig. 2.1,

Motor ‘ Coupling

Feedback
Element

Fig. 2.1. Basic components of a simple control system.

The basic components of this system are:
(1)  the error sensing unit

(11) the controller amplifier unit

(11i) the motor.
(iv) the output coupling unit.

One or more of these units generally has a hysteresis-

- type nonlinearity, whose source could be:



(1) Backlash in the output coupling unit.

(11) The controller in a contactor system which incorporates
a contactor, e.g., a bipolarized (electromagnetic) relay,
possessing hysteresis. ' ;( |
(111) Field controlled electromagnetic devices such as
amplidyne generators in the controiler unit, field controlled
- motors, magnetic amplifiers or any other type of saturable
reactor transductor, dielectric amplifier, etec.

- That hysteresis might arise from sources (11) or (111)
‘,is evident. Backlash in the output coupling produces an
hereditary effect when the load has negligible inertia and
damping, equal to or greater than eritical (3). |

The functional characteristics arising from such a
nonlinearity in different cases are 111ustrated in Figs. 2. 2(a)
through 2.2(f).

Performance of the system shown 1n Flg., 2.1 1s difficult
to analyze when more than one form of hysteresis occurs
simultaneously. Analysis of individual effects of these non-
linearitiee has,. however, been made.

| 'Thekfrequency response approach, in which the nonlinearity’
i1s replaced by its describing funcfion, has been found most
convenlent for stability analysis of nonlinear systems,

The describing‘functions for double valued nonlinear
elements whose characteristics are observed in Figs. 2.2(a),
2.2(b) and 2.2(f) have been discussed in published literature,
(10, 11 and 12). |
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Fig. 2.2 Most encountered forms of hysteresis loops in control

" systems



Although these functions differ in detailed properties, a

common feature is the'predominance of nonlinear effects at
comparatiVely‘small signal amplitudes, where a reduction in
the magnitude of transfer gain‘is produced, together with a
lagging phase”shift. ‘Both effects increase as the signal
amplitude approaches the hysteresis,width,

The phase lags cause the system?s stability to be
impaired at small signal levels, produéing sustained osclllations
of‘essentially small amplitude in an otherwise stable system.

In order to derive the describing function for the
nonlinear characteristics shown in Fig; 2.2(e) through Fig.
2.2(e), 1t is required that the hysteresils characteristics
woﬁld be expressible by convenlent mathematical relationships.
The forms of Figs. 2.2(ec) through 2.2(e) require quite a
complicated mathematical relationship (14) to describe them.
A simplification; to be found in most of the books dealing
with this subJeét (8, 9, 10 and 11), is obtained by assuming
a hystereéis curve shown in Fig. 2.2(f).

.The analysis of this appréximation, which corresponds
to the}shape of the hysteresls loop presented in Fig. 2.2(f)
is iIntroduced first, due to the fact that thié model might be
Improved upoh in order to represent behaviour of hysteresis

loops of the types shown in Figs. 2.2(c), 2.2(d) and 2.2(e).
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IT.2 Derivation of Describing Function for Hysteresis Type

Nonlinearity, Using a Piece Wise Linear Approximation

K piece wise linear approximation for a hysteresis loop

is shown in Fig. 2.3. The relation between the input and the

output, Vout’ is Shown in Fig. 2.3

Fle. 2.3; Pilece wise linear model for hysteresis nonlinearity.
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The equivalent gain: "Keqﬁ of such a nonlinear component
might be given in cartesian co-ordinates by: Keq = G(A) + JB(A)

where G(A) and B(A) are the normalized Fourier coefficients

and may be given by:
m

2 :

G(A) = ?%Ki[ vf(A sin ©) sin © d6, in phase component (2.1)
° orr |

B(A) = T%Kf[ (A sin 6) cos 6 do, quadrature component (2.2)
o

In.our own case, if we put X=A sin U and write the integral as

a sum of integrals arising from each segment, we get:
21 '

ff(A sin U) sin U QU =

1
G(A) ==
O.
Us
1 . : -
.'ﬁTfK(A sin U - b) sin U dU +
S .
7-U;
+ 1 |
’ﬁTjK(A-b) sin U dU +
LU

T +U2

+ 1
| Tfﬁ—j‘K(A sin U + b) sin U 4&U +

T-Uy
| z‘iT-Ul
" -ﬁ:—L—A—IK(A-b) sin U dU +
TT+Us
21 -
+ 1 | |
TE K(A sin U-b) sin U dd. (2.3)
27T-U1 ' .
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Because of ‘symmetry éondi%ions in the shape of the wave form

going out of the nonlinear element (f£(U) = -f(-U) ), we can
integrate only over a half—period. Thus, we get:
s P2 S
G(A) = ,TA’j K(A sin U - b) sin U dU +
o)
7T-U1‘
5 '
+ “ﬁm—JPK(A - b) sin U 4U +
U2
T
2
+ 775 [ K(A sin U + b) sin U 4U,
Uy '

This can be worked out into:

(2.4)

_ K[ : ). 2b
G(A) = "fr{fUl f Uz) + Z(sin 2U; - sin 2U,) + = (cos U, - cos Ul),+

+ %% (cos Uy, + cos Ul{]'
‘Referring to Fig. 2.3 one can see that Uy = arc sin

Up = arc sin %g, C= (bp-b) K= (A sin Uy - D)K, b, = A sin

2
and b = 2(b2-b1)—2(A sin Uy - A sin Uq).

Substituting into (2.5) we get:
K
G(A) =———[? + U2 +- ésin 2U1 + $sin 2U2]
we can similarly derive the expression for B(A)
U
2

2 |K(A sin U - b) cos U dU +

B(A) 7TA

i

+ 77—grc ¢cos U 4U +

+ TTK K(A sin U + b) cos U 4U.
Uy

Thus, after carrying out the same procedure as before, we get

(2.5)

U2

(2.6)

(2.7)
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-K 2 2 '
B(A) = 3 -
(8) = (sin U, - sin Ul). (2f8)

The above expressions for G(A) and B(A) were derived under

the assumption of saturation conditions. If, however,

saturation is nqt present, then we have the condition as shown

in Fig. 2.4,

Fig. 2.4: Piece wise linear model for hysteresis when

saturation is not present.

Thus U2 becomes‘edual to—gl s

U, becomes egual to arc sin A-2b

A 2

and

C Dbecomes equal to (A-b)K.



And

and G(A) which were derived before,.

13
Let us substitute these conditions into the equations of B(A)

The form of G(A) when saturation 1is present is given by:

G<A£t TT (U

+U2

4sin 2U; + $sin 2U2).

Substituting the new relations yilelds:

K
Géé)sﬁt.ﬁr (Uy

The form of B(A) when saturation is present is given -

by

-K 2
B(A) =
é T (sin® U

l

Substituting the new relations yields: .

Ao)sat T

2

Using the'relatiOns

A-2b

sin Ul = =i

= 21‘29

2

A

¢os U, = l-sin Ul =

1

+ %4sin 2U1).

2
l—sin U [ R
( ) 7

|
5

sin2

-K

3

4p
-5 -

u,)

cos

4b2)
I

2

U L]
1

substituting (2.12) into (2.10) we get:

~-l4Kb
Ao)sét TR E

1-b)
A)

|Keq| =[§(A)2 + B(A)é]%

And the phase shift of the nonlinear element is given by:

te J(A) = %%%%

SD(A) = arc tg

- or

B

L~~~

A)

e

1The equivalent gain in its absolute value is glven by:

(2.9)

(2.10)

(2.11)

(2.12)

u(2.13)

(2.14)

(2.15)
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It should be noted, that throughout the entire derivation,

the width of the hysteresis loop (b) was assumed constant,

and that the formulae_are not valid for A<b, since then the

output is actually zero.

The equivalent gain and phase for‘both cases 1s shown

in Figs. 2.5 and 2.6.

KGQ/C K=1 KGQ/C K=1
3 b=1 1
0.8 A¥b =2
0.6 | 2
(a)
0.4 L
0.2
! 1 | { I ! H 1 11
2 4 6 8 10 12 14
iy
10° F | | 10° -
-10° | -10" |
-20° T A7D,=2 -20° -
_300 - - -30°
(v) {b)
-40° + -140° -
-50° + -50° -
L -
Fig. 2.5: Describing funection Fig. 2.6: Describing function

when saturation occurs,
(a) magnitude - (b) phase.

when saturation does not occur,

(a

) magnitude - (b) phase shift.
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II.3 Additional Methods Available for Determining The

Describing Function of Double Valued Nonlinearities

In this section, less common methods for deriving the S
describing function for hysteresis type nonlinearity willl be
mentioned briefly.

II.3.1 Polynomial Curve Fitting Method

This method was proposed by C. Lakshmi-Bai in 1960 (15).
According to this method, a simple transformation is advanced
fof correlating the characteristic of a non;inear element
with the harmonic content in its frequengy'response to sinusolidal
inputs. Byva'process of curve ritting, the characteristic is -
represented by a polynomial, The frequency response to
sinusoidai inputs 15 represented as a Fourier series. The
polynomialband the Fourler series are related by means of the
simple transformation:

X = sin © | S18x<41 . (2.16)

The nonlinear characteristic is‘represented‘aé a
polynomial in X (and therefore in sin ©) by virtue of equation
(2.16), and by using simple trigonometric identities, it is
possible to calculate the harmoniclcontent_in the response of
the nonlinear element. This method is limited only to sinusoidal
Inputs, . |

Although'fhié technique yields better results in |
comparison to other techniques; 1t is obvious that it is
1useless'when thé width of the hysteresis loop is a functidn

of the input signal.
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I1.3.2 Graphic Method

| This method was proposed by Y. H., Ku and C. F. Chen in
1962 (16) for evaluating the describing function of hysteresis
type nonlineariﬁies.} Accérdiné to this method, a circle with
radius A is constructed to represent sinusoidal input A sin 6,
where © = wt. Then, output contour C with area ﬁ_and output
contour CY¥ with area Bl are constructed. To simplify, the
amplitude of the sinusoidal input signal 1s taken as unity.
The area of the input unit circle then becomes T7.

ﬁﬁlso, the output contour C has its area given by
Al ;jgf(g) sin © 4o , (2.17)

~where £(6) denotes the output as a function of © = wt. The

ratio of the area A. to the area of the unit circle is given

A , pRll :
by: a; =_7T_ = 7 £(@) sin © do . (2.18)

Thus, Aliis the Fourier coefficlent for the fundamental
sine component of the output wave £(©). Similarly, the output -

contour C' has its area given by:
21T '

By =[ £(Q) cos ¢ a6 . o (2.19)
O

The ratio of the area B1 tolthe area of the unit circle

is given by:

- 27 -
. | . v
bl = l = -/ r(0) cos 6 de. (2.20)




17

Thus, bl is the Fourier coefficient for the fundamental

cosine component of the output wave £(6).
The amplitude of the fundamental component of the out-

put wave is given by

1 2 z
Cl--\/(a.l + by )
and the phase shift is:'given by

.=l (by) ,
fi=te [E (2.22)

As with the previous method, so this one too cannot be

, ' | ‘ (2.21)

used when the width of the hysteresis loop is a function of

the input signal.

I1I1.3.3 Block Diagram Method

The following method, presented by A. K. Mahalanobis (18)
~and A. K. Nath is based on the fact that generally it is
possible to.specify any double valued nonlinearity by three
or four different entities. These ére:
(1) the amount of hysteresis width,
(11) the number.of plece wise linear segments along with
thelir slopes, and,
(1ii) the saturation level.

In addition, there may also be a dead-band width, as -
in the case of three position relays.

For a»double valued nonlinear element which might be

specirfied in terms of the four entities stated above, 1t is
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possible to represent the double valued nonlinearity by a

combination of elements, as shown in Fig. 2.7.

The first element is a dead-band type nonlinearity with

the same width as found in the'original nonlinearity and the

slope of the segments 1s unity.

Proportional
Element

—i Deadband

Clivper b

a/dt +b

la/at] :

FPig. 2.7: Resolving multi-valued nonlinear elements into single
valued nonlinear elements. '

Following thils element are two branches - the upper

being a simple proportional element with a constant of pro -

portionality equal to one, while the lower branch gives an
output of f (half the hysteresis width), the sign being de -

~termined by that of the input derivétive. Following these

elements 1is another element of the limiter type with slope and
limiting level equal to that of the actual nonlinearity. The
dead-band and the limiting effect might be eliminated, depending

on the actual type of double valued nonlinearity under discussion.
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The result 1s that a double valued nonlinearity, N(i), is

resolved into two simple nonlinearities.

_ (ai/at) . | :
R v (2.23)

Where both N1 and N2 represent a single valued non-
linearity to which the conventional method of deriving the
describing function is applicable, what is now needed is
knowledge of the equivalent gains of. two or three single
valued nonlinearities and of the rules of computing the
effective gain of these in series or in parallel. The former
are available from the literature, and as to the latter, it
can be proved that the effective equivélent gain of two non-

linearities with individual gains N " and N2 in the minimum

1
R.M.S. sense is:
when they are in cascade; and
Np = Ny + N, | (2.25)

when they are in parallel.

This method 1s invaluable in simulating double valued
nonlinearitles, and also in compensating hysteresis effects
in control systems by simulating with the proposed block
dlagram a positive hysteresis which would cancel the effects
of the usual one by connecting 1t into the system (19).

It is readily seen that for cases in which the width
of the hysteresis loops depend upon the input amplitude, this

technique has no advantage over the one proposed in Sec. II.2.
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II.4 Validity of Previously Stated Methods

All the techniques discussed thus far might yield

relatively reasonable results when applied to certain types

of systems incorporating doublé valued nonlinearities.

However, a clear distinction must be made as to which
double valued nonlinear elements the results derived under
~ the preceding techniqués might be applied.

It is a common practice in most of the available texts - -
to mention the phenomena of hysteresis and backlash and to
apply the same describing function to any nonlinear element
“Incorporating either of these phenomena.

The word hysteresis is derived from the Greek meaning
"to lag behind" (20). Therefore, any.element which would
cause the output to lag behind the input might actually be
classified as a hysteretic element.

There are, however, some basic differences among all
these types of nonlinearities which do not allow us to apply
indiscriminately the results which were obtained under 4
previous assumptions.

| Comparison of a backlash characteristic (Fig. 2.2(a) )
with either one Qf the hysteresis éharacteristics shown in
Fig. 2.2(c) through Fig. 2.2(e) shows-that the fundamentél
difference between the two types of characteristics is in the
dependence of the x and y intercepts upon the magnitude of the

input signalvand in the presence of saturation effects.
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While the methods discussed thus far might cope with
backlash characteristics or with a combined effect of backlash
and saturation or any type of double valued nonlinearity having ” Lﬁf
a constant yidth; only the firgt method (Seec. II.2) and to
some extent the fourth method (Seec. II.3.3) might partially -
be put to deal with a hysteresis type nonlinearity in which
the width of the hystefesis loop is a function of the input
signal.

Due to ﬁhe comp1exity involved in the mathematical
description of this phenomena, very few attempts were made to
represent the mathematical model needed for the evaluation of
the describing function for this type of nonlinearity. Only
three attempts in this direction have actually been made,
the first by L. M. Vallese (21 and 22) who studied the effects
of a.hysteresis nonlinearity on the operation of a second

order servomechanism by applying the method of Kryloff and

Bogoliouboff to make an approximate time domain analysis of

the systen.

Addltlonal work done by A. K. Mahalanobis (23) as well
as C. B, Neal and D. B. Bunn (24) assumed a linear relationship.
between the width of the hysteresis 1qop and the input signal.

These publications referred to magnetic hysteresis as
| being the most important and the most encountered type of
hysteresis in control systems. Needless to say, there are

also other elements involved in the operation of control
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systems that might present the same type of phenomena, i.e.,
dielectric capacitors and mechanical transducers.

| However, by analyzing the behaviour of the magnetic
elements, one can extend %the résults to different types of
elementsy due to'similarities in the nature of the involved
pPhenomena. |

Before presenting or evaluéting the aforementioned

publications, it is necessary to reviewvsome of the propertiles
of magnetic materlals in connection with the theory of

hysteresis loops.




CHAPTER TITIT

THECRIES CONCERNING THE BEHAVIOUR OF

MAGNETIC MATERIALS

This chapter presents some theories regarding the
behaviour of magnetic materials, to the extent which they

are needed for the purposes of our discussion.

III.1 The Magnetization Curve

A typical magnetization curve, showing the relation

between B the induction and H the field strength, in a specimen
initiaily unmagnetized, is shown in Fig. 3.1.
v In the first region, the curve starts from the origin
with finite slope dB/dH%/UO and rises so that it is concave
pward, usually following the Raylelgh relation (25).
—//o OH | (3.1)
wherellis the normal permeability in the field H,.U=—§AL and |

has a constant value anq/&g is the initial permeability. Also,

B =AH “Aw )R, (3.2)

The initial portilon of the curve is said to be reversible,

that is, the magnetization curve 1s approximately retraced

when the magnetizing field is diminished; thereby not giving
rise to a hysteresis loop.

In the reversible region, we have %%73/0} where
/&% ;/Alreversible region.

In the second portion of the curve, %% might be one

hundred times larger than/&}. This portion is not reversible,
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i.e., when the field is diminished, we woﬁld no longer retrace
the original curve. |

Above the knee, or in the third portién, we use the
formula given by Fridelich and Kénnelly - :%7-§'a+bH, where

a and b are constanfs, depending upon the material at hand

(26 and 27).
: ST T T i e

y |

4 L |

: (2) éE'is large
/S /) dH g

7 |
— oo L.. o ?37

CVREE

¥ .:_H

Fig. 3.1: Three sections of the magnetization curve.

The correspondence between these three regions of the
magnetization curve and the hysteresis loop is shown in Plg. 3.2.
The process which occurs during the magnetization of the
specimen may be classified as irreversible or reversible,
according to whether or not the energy dissipated in heat is
a relatively large or small fraction of the potential energy.
Considering these ciasSifications, the three main parts of the
magnetization curve may be identified with the processes as

follows:
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(1) . reversible boundary -displacement,
(2) irreversible boundary displacement, and,
(3) reversible rotation.

Induction in Gausses

3
107 x8 T
‘ Rotation

Irreversible

Boundary
-~ Disgplacement
-
-6
Rotation

u il
C{QS 2o CK{S H (Oersted)

Fig. 3.2: Relation between magnetization curve and hysteresis
loops for 4-79 Permalloy.
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dysteresis Loop When the Applied Fileld

Py

the

III.2 The Shape o

is of Low Magnitude

An experimental formula for the initial portion of the
magnetization curve was given Ey Lord Raylelgh, and was
previocusly presented in section III.1.

From (3.1) we can see that by this formula/Ui/é when H

becomes zero. A {typical relation between/ﬁ&and H is shown in

Figc 303. /a

20 -

Co 179 ?ermalloy

10 - - :

| u5'?erma110y
5 - .
H
0.01 0.02 0.03 0,04 0.05 Oersted

Fig. 3.3: Variation of permeability with the applied field.

One of the questlons to be answered when deriving the
describing function is: what are the shapes of hysteresis
loops for low excitations, and how'do they shrink when the
field is diminished? |

Rayleigh proposed a model which quite agrees with .

experiments done later by Ellwood (28).
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- According to Rayleigh, the hysteresis loops for low

{
X |

excitation are in the shape of parabolic segments. This
parabola can be.represented by a straight line with positive
correction for theAupper branch and negative correction for

the lower one. The corrective terms must be equal to zero at
H= T Hﬁ s Where Hﬁ is the maximum amplitude of the épplied
field. Also, the initial slope of the parabolic curves as

they leave the tips should be/éff- The same as the initial slope
of fhe magnetization curve. .Uhder these assumptions, it

follows that

B = 4*H + K(B °-H2), (3.3)
where/a* 5/Uo + DH@, and X is a proportional;ty constant.

In order to evaluate K, we take the derivative of B with

respect to H,

OB _ s ow |

,573; —/j 2KH3 . } (3°4)
For H=Hm, we requlre that the sliope of the upper branch will.be
A= 2Ky = U, | (3.5)
Therefore, '
K = Ao

K=o,

JE8s .
and the general equation would be:

B~ 4'H f/.‘_’f;,;{én:"& (H? - 1), (3.6)

s Bm )
Recall P N
soall Misg= = 4+ di

and by substituting it into (3.6), we get
Y
' 2

B= (M + IH) £t ) (22 LR, » o B7)
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The slope of the lower branch is

d — [ ' T ! =
ol V!O -+ bl{fn + ViH;

and 1t is easily seen that Tor H=Hﬁ this slope would be equal to
. T
. N _ .
/UO -+ \)H:m -+ ‘v‘ﬂm =/<’!O + EQHﬂlo _ (3;8)

III.3 Residual Tnduction

Under the foregoing assumptions:
2 2
B = 9Aé +.3ﬂm) htégg (Hm - H7).

Setting H=0 into the above expression, we get

(3.9)




/ curve,

N
} Slope =/%

Theoretical curve

Gauss according to the

B

{a

above model,

N4
N

xperimental curve

fter Ellwood)

= 7
-0.4& -0.05 0] 0.05 1 (Oe sted)

Fig. 3.5: Proposed shape of the hysteresis loop for low inputs
according to Rayleigh.

III.4 The Coercive Force Under the Foregoing Assumptions

Setting B=0 in the general equation, we geét for the

lower branch(see equation 3.7):

, 2 2
(U VEL) Hy - —— (B~ - H) =0,

2
.;%— H, o+ (4 +-5Hﬁ) H, S B =0

Normal magznetization




ITI.5 Apprcximation for Small Slcﬂal

Input

o

For very small loops, i.e. for a very low Hm, we

mighr® also use the following approximation:

s 4§l__ the loop becomes very narrow, then the relation

between HC and Bf is given by the slope of the ax1é/x that

DHm

The reason for this approximation is shown in Fig. 3.6,

Fig. 3.6: Relation between B, and H,

for small signal input.

(3.10)

(3.11)




ITI.6 Experimental Tesgts of Rayleigh's Assumptions

Since Reyleigh's experiments, the mos

t careful

3

1
S

measurements on the size and shape of hysteresis loops and. also

on the/Aland H curves were done by Ellwood (28). The shape

of the loops thus obtained were somewhat different, but within

ct
1

he 1imits of experimental errors. Comparison between

Ellwood's results and Rayleigh's results are shown in Fig. 3.5,

p. 29.

III.7 The Relation Between Coercive Force, Residual Induction

and The Applied Field

From the theory presented thus far, we can conclude

that in weak fields, the coercive force and residual induction

are proportional to the square of the maximum field strencth
2 ; S

2
Hﬁ . (See Sec. III.3, p.28)

However, in strong fields, they approach limiting

values which are called "‘the Coercivity"” and "The Retentivity"

An exhaustive set of experiments done by Sanford and Cheney

(29 and 30) illustrates that the curves showing the relation

between HC (the coercive force) and Hm; and Br (the remnant
i

induction) and are similar tc the normal masnetization
Y (o]

curve.

The major difference between the above mentioned curves

‘and the normal magnetization curve is that %

ot

hey start

from the

origin with an initial slope egual to zero,

while the

magnet-

gual to/uo.

e
®

izat

on curve starts with slope
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Uhile for low values of H, we use the mﬁé@w presented

by Rayleigh, SBanford and Cheney found thab 3 The upper povbion
of these eumrwes might be represeuted aulte a&&%%g by %:zi@
following enalyticel wepressions, which slosely resemble the
ezpression first proposed by Frolich and Keunelly for the
upper portlon of the novmal magnebizabion curve:

HBoffl, =8y * by By {3.22)

= Ry * bg My {3.13)
whewe @y and &, are consbante, %3*3 Ls the coereivity and

by"t the vetentivity,

Typical values of &, and of the voerclvity i,
some materislis are shows in Table 3.1.

T3

Su8h .73 a7

Mild Blesl G BC ba2 23

Honda 8teel 0.4 22

Table 3.1 Velue of constants in relation H, Hy 8 + B :z‘%a - g

ealeulated field wequived for B, o be 0,55 of ibe ?é.mmmg; value,
Typioal graphe showing the cosreive forpe Zov stoo

ookt Bels Be33e

materials are plotted in Ov
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III.8 The Influence of Working Frequency on The Shape of The

Hysteresis Loop

So far, no attempt has been made to take frequency into
account when deriving the deséribing function for nonlinear
magnetic or dielectric elements.

It is a well known fact that losses in such materials
increase xrapidly with frequency; and also that sald losses
are proportional to the area traced by the B-H (or D-E where
U‘is electric displacement, and E is the field strength) |
characteristics of such materials. This fact suggests a
relatlon between the frequency of the applied signal and the
width of the hysteresis loop (whioh, of course, is proportional
to the area of the loop).

Although thefe are many experimental formulae relating
losses in the core to frequency (27 and 30), no expression
relating the width of the loop to the frequency is available.

If we assume operation in a constant or very narrow band
of frequencies, it is legitimate to assume that the loop
shape would not be appreciably changed with frequency, thus
eliminating this factor from our calculations.

However, while trying to predict a limit cycle in a
control system, one‘must Take into account the fact that
Instability might occur for more than one freqﬁency, or for
quite a wide band of frequencies, depending upon the system's

gain,
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The experimental results which are shown later clearly

prove that frequency must be accounted for. Most texts
concerned with the describing function do not discuss

frequency dependent nonlinearities. Nevertheless, sometimes,
by transformétion of the frequency dependent nonlinearity
into a frequency independent nonlinearity and linear Storage
element, one can derive the describing function in the conven-
tional manner.

The first step in using such a method is to determine
how the nonlineaf element behaves through frequency changes,
and this, of course, brings us back to the problem mentioned
before. |

ITII.9 Proposed .Relation Between Frequency and Coercive Force

The following derivationsbwere not checked experiment-
ally due to the complexity involved in such measurements, and
thelr purpose is to present the problem rather than solve it.

It is well known that losses in magnetic materials are
mainly due to two factors:

(1) Iron losses were given exXperimentally by Steinmetz as
wh =‘than watts, where Kh is thg-characteristic constant of
the core, f 1s the frequency, Bm maximum induction and n the
experimental factor which‘varies bet&een 1.5 and 2.

(2) Eddy current losses are given experimentally by

2, 2
P, = K f By watts, K, 1s another characteristic constant.
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The total losses due to both factors would therefore

be:

n 2, 2
Wy = WptPg = thBm + K 7B . . (3.14)

This value should be proportional to the area of the,

hysteresis loop. The area of the loop may be found by
evaluating the integral S = |BdH, ' (3.15)

Usually, graphical methods are used to evaluate this

integral; however, an approximate mathématical formula might
be derived (32 and 33)vby harmonic analysis.

| For exampie, the hysteresis loop can be represented by
the followlng parameliric equations:

B=B_ sin wt. (3.16)

m
H = H1 sin w§‘+dHi cosS wt + H3 sin 3 wt + |
+ Hé cos 3wt + H5 sin 5wt + Hé cos 5wt --- _ (3.17)

The absence of even harmonics follows from the stip-

ulation that the bottom half of the loop be symmetrical to

the top half reversed. Differentiation of (3.17) and sub-
stitution of 1t along with (3.16) into (3.15) yields:

S = wBy Hy fsin wt cos wt dt - wB_ Hif sin® wt dt +

+ 3wBp, Hy [ sin wt cos 3wt dt - 3wB H, [sin wt . 8in 3wt dt + ---

o~
Integration from t = 0 to t = T (where T =_§%L_) - all terms

but the secogd produces zero and we ére left with

1 2 ,
S = WBm Hlo/sj.n wt dt = ﬁBmHi . : ' (3.18)
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By combining Trigonometrical identities, the value of

1

1 might be given as Hi =_L/6 (HO +y 3 H5o + Hgg.6),  (3.19)

where Ho, H5d and H86;6 represent values of H corresponding to

H

B=0, B= 0.5B, and B = O.866Bm. This is shown in Fig. 3.7.

4

B
} 86% Bm m
el
w H > Ja—
© ' H
Fig. 3.7: Parameters used to estimate loop area.
Therefore, the area would be ~
gy ' :

S= - (B /T LB + fgeg) By, (3.20)

and the losses would be
W= jg; (Hb+'/P§~__ » Hg F Hgg 6) Bm lO_8vJou1es per cubic (3.21)
inch per cycle. o

If the loop 1s square enough‘(compare with Fig. 2.2(4),
2.2(e) , p.7 ; and Photo 6, for Deltamax characteristics), we
can assume Hé%H5O§H86,6, so that (3.21) can be written as

W = KL-Bm'Hcynwhere Hc is the cqercive force.'
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When equating the two expressions arrived st for the-

losses for a particular value of Bm,'we get

Ki-f + K2f2 KH- " : V (3.22)
This means ‘that the relation between H and the frequency -

for a particular 1nput amplitude might be approximated by

H, = af + b2, | v (3.23)

For each input amplitude, one first has to use graph |
3.1, p.33, to find the value of H cofresponding to this am -
Iiitude, then, to calculate a; and an and to add the correction
for T,

It is easlly seen that due to the extreme differences
between the types of materials being used, 1t becomes useless
to adopt this fermula generally. On the other hand, the
formula shows that the frequency should be accounted for. The
only way to cope with this problem is to obtain particular
results for particular types of nonlinear elements.

ITI.10 Summary

From the theory presented thus far, the following con-
clusions concerning the behaviour of the hysteresis loop in
magnetic materials should be noted.

(1) For low fields the magnetization curve 1is approximately
retraced when the field is diminished, thus not giving rise to
a hysteresis loop.

(2) For low fields both H, and B are approximately pro -

portional to Hme.
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- (3) For low fields the loop may be approximated by parabolic

segments.,
(4)  Por intermediate filelds thé relation between HC and Hm
may be taken as linear. '
(5) There are saturation values for HC and,Br known as
"coercivity" and "retentivity'.
(6) The value of HC depends upon the frequency and increases
rapldly with- increases in frequency.

It is obvious that when forming models, it is impossible
to account for all these factors together.

The next chapter will present some attempts to derive
the describing function by considering some of these properties.
As can be expected, these functions will yield satisfactory

'results only where these assumptions hold.




CHAPTER IV

_EXTENSION OF DESCRIBING FUNCTION TECHNIQUES TO
GENERALIZED FORMS OF HYSTERESIS NONLINEARITY

From the theory that-wés previously'presented, itvig
.obvious that a more complete model for magnetic hysteresis
should be used in order to obtain satisfactory résults. In
this chapter, models of hysteresis nonlinearity are presented,
and their validity is later checked by experiments.

IV.1 Piece Wise Linear Model in Which The Width of The Loop is

Linearly Proportional to The Input Signal

The model itself is basically the same as shown in
Fig. 2.3, p.9, the only difference being that the width b
- depends 1ihearly upon the input amplitude A (23 and 24).
This relation ﬁay be represented as a straight line. (Seew
Fig._a.if |

. A
width b

-
input ampli€ude A

Fig. h,1: - The variation of the width of the hysteresis loop
with amplitude




%

41

The élope 'm! might have anylpositive value and depends
on the nonlinear element under discussion. Under this
assumption, the»hysteresis loop begins from a mere point
located at the origin with a zéro input amplitude and expands
linearly with the input signal. That this model does not
represent the actual behaviour of magnetic material can easily
be seen by comparingwthe straight line approximation (Fig. 4.1}
wilth the curves representing the relation between Hc’and Hm
(Graph 3.1, p.33). The main differences are:

(1) The actuél curve starts with a zero slope, 1.e. there _
is a region in which the hysteresis loop has no wildth, thét is,

the nonlinear element actually behaves as a 1inear elemént

. dB .
having the gain ag = -+ 2ﬁs}L ' (4.1)

which 1s equal tQ/Ub for H= 0,

(11) The coercive force reaches.a saturation value and does
not increase significantly for signals exceeding the saturation
level. This is aiso illustrated in Graph 3.1, p.33.‘ That is
to say, the relation between the coercive force and the input
amplitude is not_linear, at least, not near the origin or beyond
the saturation knee.

Although these facts suggest a rejection of the linear
model, 1t is proved in experiments to follow that under certain
conditions, there is ample justification to allow for the use
of this model within a certain amplitude.range of the input
signal. |
CALEDN
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Therefore, we will again adopt the model used in
Section II.2, p;9, and substitute into (2.6) and (2.8) the
relation b = mA. . | (5.2)
Some doubt may ariée éoncerning the Iegitimacy of this
procedure, since, in the integrals which wefe derived in Sec. II.2,,
p. 9, b was assumed as oonstant;'whilé now 1t is a variable;
and that therefore the validity of the previously derived exp-
ression is not,‘in this case, consisteht. However, referring
to the principles upon which the describing function technique
is based; we becéll that time varying elements are not included
in the noniinear charactaristic. Therefore, in order to
perform the integration in the first case, we used the assumption -
upon which the technique of Krylov and Bogoliubov is based -
that A, the amplitude, is a slowly varying function of time
which may be considered to be constant.at its average value
over a single cycle. But, if A 1s constant, it implies also
that b 1s constant over one cycle. Hence, we can modify the
previous formulae using the relation (4.2).

Assuming that saturation does exist, we previously

found that:

G(A) = £4U4,Up)
and

B(A) = fg(Ul,Ug),
where

. : b )
U, = arc sin _%~ U~ = arc sin b2

2 = 5
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and
b. = Cobk c+bk
If we now substitute mA for b, we get A
U, = arc sin (c/kA-m), U2 = arc sin (c/kA+m). (4.3)

Thus, the describing function becomes a function of the

input amplitude A and the slope of Fig.'u.l, p. 40; that is,

of m.

Rather intereéting results occurred while checking the
behaviour of our model when saturation ié not present. Under
this assumption, we previously had (2.9) and (2.13). These
now become: ‘

G(A) = 7%~[éro sin (1-2m) + /2 + & sin 2(arc sin (1-2m) )]. (4.4)
B(a) = ZBkm g py, | (4.5)

qr
It i1s now evident that the describing function is not

1l

dependent upon the input amplitude. That is, the describing

funetion shrinks into a point in the Nyquist plane. This

point changes its position according to variations of the

slope m in'Fig. 4,1, p. 40. This is a rather interesting

result which clearly utiliées the distinction which should be

made between various types of hysteresis nonlinearities.

Digital computer® evaluation of the formulae (4.4) and

(4.5) resulted in graphs 4.1, p.44, and 4.2, p.45. The critical
loci for both cases is shown in Graph 4.3, p. 46. In obtaining
these fesﬁlts, the gain of the pilecewise linear model was, for
the sake of convenlence, taken as k=1 with a saturation value

of c=5H,

* The computer used is the I.B.M. 1620.
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b
Graph 4.1,'p. 4L, gives the variation of the describing

function together with its real part, imaginary part, and

phase, as functions of the pafameter m. The amplitude A is '
not present, since it has no éffect on the describing function
in this range.

If should be noted that when m=0, we have a simple case
of linear gain, and the describing function is represented
by 1{0 as can be seen from graph 4.1, p.44, or directly from
formulae (4.4) and (4.5).

Graph 4,2, p.45, presents the situaﬁion when saturation
does occur. The describing function now varies with the 1npﬁt
amplitude as previously shown. For any value of m, the desc-
ribing function begins from an inifial value given in graph
4.1, p.44, The representation of this value on graph 4.2,-p.45
1s actually a straight horizontal line, due to the fact that
the independent variable is now A rather than m. As the input
amplitude reaches saturation value, (this value depends upon

k
the value of m, and may be calculated by: Asat.= i-m ), the

galn of the nonlinear element is reduced according to the illus-
trated curve., It is interesting to note that the phase shift
remains relatively constant throughout amplitude changes.

In this case, by letting m=0, we get the known describ-
ing function for simple saturation nonlinearity with gain

equal to 1.
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. The resulté of these graphs are combined in graph 4.3,

p.46, which 1llustrates the critical loci for the nonlinear
element in the Nyquist plane. The describing function remains
as a polint for amplitudes lowér than the saturation value.
Once the input amplitude exceeds the saturation value, the
polnts would move along the lines in the direction indicated
by the arrows.

Another model using the same relationship between b and
'H% might also be used. The necessity for §uch a model arises
because of the differences between typical hysteresis loops
of differentimaterials. While the first model might adequately’
represent the hysteresis loop for Deltamax, it does not, for
example, represent the true behaviour of the Supermalloy loop.
The latter may be represented in a better way by either us&ng
ellipses or parabolae as approximations (21, 25 and 32) whiech .
would yleld unwieldy algebraic expressions, or, by other plece
wise llinear approximations as shown in Fig. 4.2,

Using the same method as before, we arrive at the

following expressions for this model, when saturation is present:

G(A) = .?/./%_Bl é'lin.n_vﬁ U+ (sin U,-m) cos Ul‘] . (4.6)
-2

B(A)

]
=]

7 *sin Uy | (4.7)

If saturation 1s not present, we get:
2 ar
A) = - 1/ = 1-
G(A) X7 ] (1-m) /2 ’ l-m,

B(A) = lﬂ' em




Fig. 4.2: Piece wise linear approximation for hysteresis loop.

Comﬁaring these results with the previously derived
expression, we see that for amplitudes lower than the saturation
amplitude, tﬁis model ylelds a describing function which is
also a mere point in the Nyquist plane. However, for values
exceeding saturation value, the behaviour i1s somewhat difﬂéfent,
see Graph 4.5, p. 51. Because the slope of the segment O - S
in Fig. 4.2 1is I—me this model yilelds impractical results
_ for m>»0.5. Also, for m = 0.5, thils model coincides exactly
with the previous model, and by comparing 4.1, p.44 and 4.4,

p. 50, we see that fhe describing function for this case is
the same for both models. (The describing function for this

model was obtained from the computer as shown in graphs 4.4

and 4.5).
* For AS b,
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IV. 2 Piecewlse Linear Model in Which the Width of the Loop

I3 a Nonlinear Function of the Qutput Sighal

From the theory previously presented, we concluded
that the coercive force’behavés in the following manner:
(1) H, 1s zero for very low amplitudes.
(2) - H, is proportional to Ho 2 for low amplitudes.
(3) ; H increases 1inear1y with H for mid-range amplitudes.
(4 HC behaves according to Kennelly formulae when approach-
ing ﬁhe "knee"

(5) H, depends on the frequency of the input signal.

It‘is impractical to consider all these facts together.
Instead, one can try to represent the curves of graph 3.1,p.33
mathematically, and then substitute this relation into
previous formulae. This particular type of analYtical
representation permits tﬁe utilization of known results of
nonlinear analysis. |

It should be noted that formula (3.12), which may be
Hp

ap + by Hy 7

falls to represent the HC curve for negative values of Hﬁ.

wrltten as Hc = 1s empirical, 1In addition, it
In order to represent these curves analytically, we first
observe that the actual curves of H; and H_ (Graph 3.1, p.33)
show that the dependence between H, and H, (excluding the
low values of Hm) may be represented by an odd function.

'Therefore, generally one could write:

o SocH_ ZBH’“ +arH + - o (4.7)
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To simplify, we use only the first two terms, and arrive at:
H, SolH —}BHmB. ) (4.8)
This analytical representation 1s also an empirlical approx-
imation which might be used té obtain the "best fit" to the
experimental curve 1n the region of interest.

The coefficients&(and}gnmy'be evaluated In terms of the
Kennelly formulae; this can be done for a glven range of
values as an' approximation. For example, we note:
dHc - an
Sy e
From this we see that if Hh = 0, the slope will be l/ag and
if Hm = ®, the slope will be zero. On. the other hand,
differentiatingv(4.8) we have dHe

o 2
dHTn _d-BP}ITn .
For H, = 0, the slope is .
Thus, using& = 1/a2'wou1d give the same initial slope.

Also, H, can be written as

¢
H = 1/a, H - P2 4
e 2 “n H s (32_,_*02 Hm) Hm < .9)

m

If the maximum possible value of Hﬁ in a certain problem is

H max., we can substitute forlB in (4.8) the value

18 H max asr (as + b H, max) ° (4.10)
Using these values of‘O(and]B, the two approximations
wlll have the same initial slope and the same amplitude for

m
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In order to check the behaviour of the describing

functlon under such relations between HC and Hh, an exper-

imental curve showing the relation between HC and Hm for K - S
‘magnet steel, as shown in Graph 4.6 was chosen. This curve

was approximated by use of the following three relations:

(1) Hy =0 for K_< 0.5,
~ . -3 53 < <
(2) B, F0.6H -03-7.510383 05¢y <5,
(3)  Hy=0.04H +1.6 55 g, (4.11)

The coefficients for these expressions were calculated
experimentally to achieve the "best fit" with the experimental
curve. The experimental curve and the approximated curve are
shown in Graph 4.6.

Relations (4.11) were substituted into equétions (4.6
and 4.7) and represent the dependence of b upon A. The results
which were obtained by the compﬁter are shown 1n Graph 4.7.

It should be noted that any type of H, - Hm curve might be

applied for this check, noting that relations (4.11) should.

. be changed accordingly.

As may be predicted, the describing function depends
upon the amplitude for allregions'in which the width of the
loop 1s not linearly proportional to the input amplitude.

By setting Hc = 0 for all input amplitudes, we will again
arrive at the describing funct;on for single value saturation

nonlinearity.
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Although this model is more complete than previous
models, it does not hold for the whole range of input signals,
due to the fact that the input 1s not sinusoidal for large
input signals.\' '

In order to check the validity of the proposed models,
we can use elther an analog computer simulation for such
nonlinearity or actual physical elements.

An experimental analog computer set-up i1s shown in

Vout

4

/;-:
g— ©
X g

|

Fig. 4.3.

LimitTs Vbug

e

>
- [ o BV UV B X )+
/ AV -p1n”) ]

7

X

-

A
t

=
(DL
=

1 oy S @
2?/ o> Van T

I = F/ O(Vin—}BVin

I .
“aVin Multi~_ V.3

(6 &)

e

Fig. 4.3: Analog computer set-up for simulating general
forms of hysteresls nonlinearity.
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This set-up can be adjusted to the shape of any of the

models previously used. However, from a practical point of
view 1t 1s preferred to perform experiments on actual elements
rather than on simulated ones; For this reason, three magnetic

cores were chosen., The experiments are described in the

- following chapter.




CHAPTER V

EXPERIMENTAL DERIVATION OF THE DESCRIBING FUNCTION FOR

NONLINEAR MAGNETIC CORES

This chapter presents a series of experiments which
were carried out in order to determine the actual describing
function for nonlinear magnetic cores. The difference
between the actual resul?s and the éalculated results is then
pointed out and the reasons for these deviations are explained.

V.1l The Nature of The Chosen Cores

Three typlcal high permeabillity cores were chosen for
the experiment. These cores are uéually used for magnetic
amplifiers, and therefore may be found in numerous instruments,
i.e., instrument amplifiers, control relays, modulators,
voltage regulators, frequency meters, magnetometers, light
dimmers, speed control systems, etc. The materials used for
each of the three cores were:

(1) Deltamax.. A 50% nickel-iron alloy having a rectangular
hysteresis loop. This material is widely known for its use
in saturable core reactors, and particularly in magnetic amp -

liflers.

Heretofore, very little a;é. data on this material has ‘
been published. The Deltamax characteristics shown in Figs. 5 .1
and 5.2 were selected from measurements made on many different
samples, and represent what may be expected as average for

Deltamax.
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All the a.c. data was taken under conditions of sinusoidal
exciting current with a peak magnetizing force slightly greater
than that required to reach saturation in the core material.
Underftest condiltions of sinuéoidal flux 1In the core, the
hysteresis loop would appear substantially narrower than those
shown. Fig. 5.1 shows the family of hysteresis lobps for
Deltamax measufed at various values of peak magnetizing force.
Comparison of this family of loops with the curves for 4-79 Mo
Pérmalloy, shown in Fig. 5.3, merely accentuates the rectangular-
1ty of the Deltamax hysteresis loop.

(2) 4L-79 Mo Permalloy. This alloy has found'many applica -

tlons where high permeabilities at moderate to low magnetizing
fields are required. The material consists of approximately
L% molybdenum, 79% nickel, and the balance is iron. Similar
data representative of the average properties of this alloy
are shown in Figs. 5.3 and 5.4.

(2) supermalloy. This alloy 1s closely related to 4-79 Mo

Permalloy in chemilcal composition, exhibits the highest initial
and maximum permeability.of any known commercially availlable
material, and has the lowest hysteresis loss.,

The cores are of the tape wound variety and are readily

available under the manufacturer'!s designation of

4178-34 Supermalloy,
4178-P1 4-79 Mo Permalloy,
and L168-D2 Deltamax.

The actual cores installed for testing are shown in Photos

3 and 43p6g3ee Appendix A for technical data.)
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V. 2 Set-Up of The Cores for Testing

64

A transfer function analyzer¥* was used in order to

find the first harmonic of the output signal from the core.

This instrument operates in a manner similar to that of a

conventional wave analyzer, but,

in addition,

supplies infor-

mation concerning the phase shift between the first harmonic

component of the 6utput slgnal and the input signal. - Also,

it incorporates an internal computing device which gives

direct indication of the value of the square root of the in-

phase component squared plus the quadrature component squared.

A schematic of the set-up used is shown 1in Fig. 5.5, and the

actual set-up 1s shown in Photo 1, p. 65.

Scope
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Fig. 5.5:

function for the cores.
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Experimental set-up for derivation of the describing

*¥The transfer function analyzer is manufactured by Boonshaft

and Fuchs Inc.. Hatboro.

Pennsvivania.



Instrument Set-Up for

Testing Cores

PHOTO #2
D, C. Bilas Effect on The

Cores




V. 5 Mests ThaﬁuM§y be Performed
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A variety of tests were made on the cores, due to the

fact that a plot of B vs. H is not acompletedescription of

the magnetic characteristic of the cores for all modes of

eperation,

In linear systems, it is sufficient to know the response

to a sinusoidally applied signal in order to determine the

behaviour of another arbitrary wave form. However, for mag-

netic material, the losses are so dependent upon the amplitude

and frequency of thedriving signal, that generally, many sets

of curves of B vs. H are needed in order to form a clear

picture of the magnetic behaviour.

For example, Fig. 5.6 is

a typical hysteresis loop occurring when the flux density B

1s maintalned sinusoidal throughout the entire cycle. PFig. 5.7

1s a plot of the hysteresis loop when the current is maintained

as a square wave. The loop in the second case appears to

have become more "squared".

B .

Fig. 5.6: Magnetic hysteresis
loop.

e

"

Fig. 5.7: Hysteresis loop
obtained under square<wave
current drive.
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Under certain conditions, the current might have a

sinusoidal wave shape or square wave shape (compare photos

7, p. 70and 12, p. 72).

Another example which demonstrates the changes a

static square hysteresis loop might undergo when different

driving signals are applied is shown in Figs. 5.8 and 5.9.

The effect of sinusoidally applied voltage and sinusoildally

applied current is evident.

B

A o D S NN USRI U R RS VORI IR A OS I UPD unrgy oS £ g

Fig. 5.8: Loop distortion with
sinusoldal applied voltage.

FPilg. 5.9: Loop distortion with
sinusoldal applied current.




PHOTO #3
4r4178-84 Installed for

Testing

PHOTOW 4
4T4168-D2 Installed for

Testing
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Therefore, while testing the cores, the following
guestions arise:

How 1is the describing fuhction going to be measured -

(2) as a ratio of output voltage to input voltage?

(b) as a ratlo of flux density to‘input current?

(c) . as a ratlo of output voltage to input current?

(d)  as a ratio of output current and input voltage?

It 1s obvious that each of these measurements would yield
completely different results. Moreithan this, at times we
cannot measure certain t&pes of transfer functions due to
there not being enough cases in which we can force the current
Through the core to be sinﬁsoidal. In actual application, it
1s usually far from being sinuso¥dal. (See Photos 8 - 13,
pp. 71, 72.)

Thus, 1t becomes meaningless to define a describing

function for a nonlinear element of this kind without clearly

stating for which type of driving signal it was calculated.
From a practical viewpoint, we chose the describing .
function for the above mentioﬁed cores under the conditions
of sinusoidally applied voltage meésured between the input
voltage and the output voltage, since this situation is the

most frequently encountered in actual control systems.



PHOTO #5
Dynamic hysteresis loops

for Supermalloy. f=30 c¢/s

PHOTO #6
Dynamic Hysteresis lLoop

for Deltamax f = 20 ¢/s

PHOTO #7
Input Current (Smaller)and

Voltage to Deltamax Core
for Low Signals. 20 o/s/




HOTQ#8
Input Voltage (sin) and
Input Current for Deltamax

PHOTO # 9
Input Voltage and Input
Current for Deltamax, for
Large Signal.

No. Resis. in Series)

PHOTO#10
dubput Voltage (Lower) and

Input Current for Permalloy
for 20 o/s




PHOTO #11 :
Input Voltege (Lower) and

Input Current for Permalloy

for 30 ¢/

PHOTO #12 : :
Input Voltage (Lower) and
Input Current for Permalloy

for 40 ¢/s

PHOTO # 13
Ccurrent through Permalloy

Core (wp) and flux
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V. 4 Describing Function Measurements Under Sinusoidal

Applied Voltage to Cores

V. 4.1 Tests on 3T4178-P1

Tests conducted on thié speclimen yilelded the results
shown in Graph 5.1, p. 75. (See Appendix B for numerical
data.) It should be noted that it is impractical to normalize
the input voléage with respect to the loop width, since the
latter does not remain constant, but changes according to the
aﬁplitude and frequency of the input signal as shown in
Graph 5.2, p. 76 . Measurement of this curve cannot be per-
formed with sufficient accuracy to justify normalization with
reépect to the loop width.

Normalization of the input signal can be performed with
respect to the saturation voltage. However, it should be
noted that this voltage is linearly dependent upon the frequency
of the input signal as shown in Graph 5.3, p. 77. Normalization
with respect to this guantity 1s made later. Because the
actual results obtained for the cores under test cannot be
applied to any other magnetic core, it was preferred to
calibrate the graphs in terms of actual input voltages. This
calibration proves extremely useful in checking the results
obtained by means of an analog computer, as in this manner,
the amplitude of the oscillation may readily be predicted.

Graph 5.1, p. 75, presents the phase and magnitude

of the describing function for three different frequencies.



Th
It may be seen that no similarity exists between these curves

and the curves to be found in many textbooks dealing with hysteresis

type nonlinearities, (See Fig. 2.5, p. 14).

On the other hand, theré is, to some extenﬁ, agreement
between the experimental and theoretical results. Comparing
Graph 5.1, p.75 with Graphs 4.2, p. 45 and 4.4, p. 50 (which
were obtained through‘digital computer calculations of the
theoretical models), it is seen thatlfor fluxes less than the
sa%uration value, the describing function remains constant
In amplitude and phase (excluding very low fields), as was
predicted by these models. However, over the saturafion
point, the first two models do not vield satisfactory results,
but the third model (in which the relation between the
coercive force and applied field approximates the actual
experimental curve), predicts quite similar behaviour, but
not accurately enough to be used in practical application.

The reason for the similarity and dissimilarity between

calculated and measured results is given below.
For low input signals, the input current remains
sinusoidal (see Photo 7, p. 70), hence satisfying one of the

assumptions under which the describing function was calculated;

while for large signals the input current ceases to be
sinusoidal (see Photos 8 through 13, pp. 71 and 72). Hence,
our model is no lbnger valld, since for its derivation we

assumed a sinusoidal input signal.



,\,_h

¥

90

e
L Ly
-t
O
(&8
‘\

L

J
)
d

¥4t

/> S 5 W

|
1}
i

¢

—4

i

B L NUD T W S

NAILONA B oNIF 1999

g
a.
-

A,(ruwl.lerA ESTESY




P77,6

el

]

o |

]

)
O
N

N

ol

L dl

Gl

Aetedend -

RS Sy SR NS

=

-
ar

>3

1

gl

4 et
-
Ny

O

e

It

N

3

PRI S




g

D4t

o
[i+]

3D

O] 4 r
ESINAle

£l

[}
L 60 ]

Mo S

ol
I

Tl




78

Concerning the mid-range of input signals, althbugh the
current 1is not purely sinusoidal (See Photo 15, p.79), there
is still reasonable agreement between the theoretical and the
~experimental models, that 15,.the describing function remains
constant. The reason for this is illustrated in Graph 5.2,p.76.
This graph shows the ratio between the maximum induction and |
the coercive force as a function of the input amplitude for
various frequencies.

It 1s seen that these curves agsume approximately
constant valués for certain ranges. In these ranges, the
ratlo of the applied'field to the coercive field 1is constant,

l.e.; the coercive force changes linearly with the input
amplitude. Examination of Graph 5.1, p. 75, reveals that the
'describing function remains constant only within this range.
This colncides with the theoretical results.

It should be noted that our third model, eq.(4.6)and(4.7)
should be properly adJusted 1n order to obtain the best results;
that 1s, the relation between Hc and Hm should be as close as
possible to the H, vs. H curve of the actual core under test.

The effect of frequency on the propertieé of the non-"
linear element is gshown in Graphs.S.l through 5.3, pp. 75 - 77.
One can try to normalize graphs 5.1 and 5,2 with respect to
frequency, in order to exclude the linear frequency dependent
element, (the self-inductance of the coil) from the nonlinear

element.
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Analog Computer Se

PHOTO # 16

Limit Cycle with Deltamax
Core.

Current through core (up)

PHOTO # 15

Limit Cycle with Deltamax
Core.

Source Impedence £00 ohms

Gain = 7200
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(50 ms/cm)
Current (Smaller) 1 miA/cm
Voltage 2 V/em
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However, as will later be shoﬁn, it is unfortunate
that the self-inductance of the coil depends on input
amplitude'and thus cannot be separated from the hysteresis
nonlinearity. h '

As previously mentioned (Section II.4), a hysteretic
element tends to cause a lag in the phase of the output
component. All the methods and techniques previously desc-
ribed give the phase shift of the hysteresis element as a
laé. ‘This hol® true when dealing with mechanical hysterésis
" and measurement of the transfer function is made between the
'1nput and output positions, but, is not the case when dealing
with nonlinear‘elements having characteristics similar to those
of magnetic cores,

| A phase diagram illustrating what actually takes place
whlle driving the cores is shown in Fig. 5.10.

|
Output voltage from coil.

(Secondary)
out

: %L'Phase lead angle.
. input voltage to
coil,

Viq (Primary)

Input current to coil,
I;, (Primary)

Fig. 5.10: Phase shift between lnput voltage and output voltage.
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It is evideht that whille the current lags behind the
input voltage, the output voltage leads the input voltage, (or,
1ﬁ the lossleSs case where the coil 'is a pure inductor in the
same phase as the input Voltaée). Thus, the critical locus
is not in the third quadrant as would normally be expected,
but is in the second quadrant. The critical loci are shown

in Graph 5.4, p. 82.

V. 4.2 Tésts on 4T4162-D2

Up to this point, we have seen that to some extent
both theory and practical application have been in agreement
with one another, but, from this point and continuing onward
we unfortunately find increasing differences between theory
and practice; theée'will be discussed on the following pages.

The behaviour of the Deltamax specimen is shown in |
Figs. 51, p.59, and 5.2, p.60, as well as Photo 6, p.70. The
resulté of the measurements in this specimen are illustrated
in Graph 5.5, p. 83. (See Appendix B for numberical data.)

The behaviour of the describing function for this case
differs conslderably from either the‘describing funetion of
4-79 Mo Permalloy or the theoretical results obtained in
Chapter IV, because the describing function starts from zero,
rather than from its maximum value, reaches a peak value, and
‘decreases again. These differences lie in the characteristic

behaviour of the individual speclilmens under examination.
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The gain In the reversible region is given by’

%% f/“o + VH.

That is, for H=0, the gain 15/10. By looking at Figs. 5.2, p.60

and 5.4, p. 63, it is seen that while the magnetization curve

for Permalloy has/b%:$20,000 (Supermalloy hag/“o:éloo,ooo)

Deltamax has an initial permeability og/nggl,ooo.' This

means that while the hysteresis loop for Permalloy and Super-

malloy begins to build up as shown in Fig. 5.11(a), the

Deltamax loop begins as shown in Fig. 5.11(b).

Thus, there is a range for which there is no output

for a given input.

B B

///7 7T TN

; / (AR B \

4 / {7 \\

yare, 1=y

/ / H \—..—.’/

A"’/ \\__./
-

(a) Permalloy and Supermalloy

Fig. 5.11: Benaviour of hysteresis

~

(b) Deltamax

loops near the origin.
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That 1is, there is‘a kind of backlash effect for small
amplitudes, and therefore, in the initial range the shape of
the describing function fof such cores would be similar to
the describing function derivéd for backlash. The behaviour
of this core for intermediate and large signals is similar to
Permalloy. Graph 5.5, p. 83 also presents the relation between
Hc and Hm. The describing function remains approximately

constant over the range in which g@ = const., that is,
c

Hc = mHﬁ (excluding of course the region near the origin).

The critical loei for this core are shown in Graph 5.6, p.86.

V.5 Source Impedance Influence on The Derivation of The

Describing Function

It was previously mentioned that for most applications,
the transfer function in which we are malinly interested should
be measured between the input and output voltage. |

Prevlious experiments show that when the input voltage
is sinusoidal, the theoretical models yield satisfactory
results (some types of cores only) for inputs which were beyond
the saturation level. However, magnetic nonlinear elements
usually have low input impedance (1.e. generators, motors,
amplidynes, tranaformers) and therefore require a larger
current drive."_If the driving generator has no internal
impedance the‘input voltage to the nonlinear element would

remain sinusoidal, although the current supplied by the generator

—~
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is not sinusoidal, also, no attenuation in the magniﬁude of
the applied voltage would take place between the generator

and the driven element.

On the other hand, if the source does have an output
impedance, the applied voltage would no longer be sinusoidal
due to non-sinusoidal voltage drop across this 1mpédanée.
Also, due to the formation of a voltage divider between the
internal impedance of the source and the input impedance of
the nonlinear element,attenuatioﬁ'between the driving and
driven element will occur.

Unfortunately, the attenuation of this voltage divider
1s not a constant quantity that can readily be accounted for,
but rather chénges in an intricate manner. Obviously, under
such conditions the describing function would differ consider-
ably from the describing function measured before.

The problem is of great importance in cases when one

tries elther to limit the current through nonlinear elements

having low input impedance by placing a resistor in series,

or, while using-driving generators of high output impedance

in order to obtain sinusoidal current drive,
When dealing with control systems, one should be oo

aware thét when placing impedance in series with such elements,

the stability of the system may be affected.
In order to predict operation under such conditions,

a serles resistance of 600 ohms was placed 1n series with the

coils (thus representing an artificial source impedance).

This value was chosen because it is a typlcal output impedance
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]

of many standard sources. Results of these experiments are
shown on the following pages.

V. 5.1 Tests on 3IT4178-P1

Graph 5.7,.p.A89, showé the shape of the describing
function for varidas frequencies. (See Appendix B for data
corresponding to this graph.) Comparison with Graph 5.1, p. 75
~accentuates the differences between the two. The phase shift
for low input signals is much larger than previously, and while
the previous describing functioﬁ began from its maximum value,
it now begins from a lower value. The effect of frequency on
the describing function is much more noticeable, and for low
frequencies the gailn of the nonlinear element is considerably
decreased. ' )

A plot of the input voltage required to drive ﬁhe
core into saturation vs. the frequency, and maximum equilvalent
gain of the nonlinear‘element vs. frequency are shown in
Graph 5.3, p. 77. It is seen that the saturation value vafies
linearly with frequency. Thus, normalization with respect
to this value is actually the same as normalizing the curves
from a frequency point of view.

If, by so doing, all the curves shown in Graph 5.8, p.90
were to coincide, this would prove that the nonlinear element
could be separaﬁed into a linear storage element (self-inductance

of the coil) whose impedance linearly increases with frequency,
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and a hysteretic nonlinearity having an output dependent
only on the amplitude of the input signal.

Graph 5.8, p. 90 shows the normalized curves from which
it is seen that such an assumption (found in most textbooks) |
is, in this case, not valid. Graph 5.8 also shows that the
effect of frequency on the cores isespecially noticeable for

Inputs below the saturation level. For high frequencies the
describing function becomes similar to the describing function
of the theoretical models.

_ Let us examine the reasons for these deviations more
closely. As mentloned before, one of the reasons for the
discrepancy between the two series of tests i8 due to the
presence of a“nonlinear voltage divider between the driving
generator and the non linear element. Graph 5.9, p. 92
shows curves for input impedance of the coil vs. input amplitude
for various frequencies. (The input impedance was calculated
by dividing the input amplitude (R.M.S.) by the first
harmonic of the input current.)

From these curves 1t 1s seen that for low signal inputs
the impedance 1s very low because.the permeability of the core
in this region is low. Thus, muéh of the applied voltage
appears across the 600 ohm resistance and the Input to the
coll is very_low. Increasing the input amplitude moves the -
working point into the high permeability region, thus increas-

Ing the coil impedance.
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Hence, the value of the describing function is
increased. Once the saturation point is exceeded, the

permeability of the core becomes very low and its impedance

drops considerabiy. As a reéult, the value of the describing
function is rapidly decreased. Using Graph 5.9, p. 92 and

the value of the source impedance, it is possible to construct
an attenuation curve which will show the attenuation for

each frequency and input amplitude. Then, by multiplying
Graph 5.1, p. 75 by the attenuation curve‘shown in Graph 5.9,
p. 92, one arrives at a corrected form for the describing
function. (See Graph 5.10, p. 94.)

It 1s shown that the original graph and the corrected
graph do not completely overlap. This is because Introducing
reslistance in series also changes the current wave shape.

(See Photos 8 and 9, p. 71.)

The describing function and the factors affecting it
are shown 1q Graph 5.11, p. 95, and it is thus shown that the
describing function is more or less constant where Hm/HC """"
assumes a constant value. Its maximum value and rate of

increase or decrease depend closely upon the input impedance

and variations of coil impedance with amplitude and frequency.

Graph 5.12, p. 96 shows the critical locus for this new
- case. Comparison with Graph 5.4, p. 82 shows that it is not
difficult to arrive at a system which would be stable in the

one case and unstable in the other.
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V. 5.2 Tests on 4Th178-5L

A similar set of tests was conducted on Supermalloy.
Bécause of the similar behaviour of these two materials, the
results obtained are much the.same as for 4-79 Mo Permalloy.
These results are displayed in Graphs 5.13 through 5.15, pp.

98 - 100. The data for these graphs is given in Appendix B. S
V. 5.3 Tests on 4T4168-Dp2

Somewhat different results were obtained for Deltamax.
Aé mentioned before, the initial slope of the magnetization
curve for this material is relatively low. Hence, for a
certain range of input amplitudes there is actually no output.
As a result, this element acts much the same as a backlash-
nonlinearity. |

Verification of this conclusion may be obtained by
examination of Graph 5.16, p. 101 (See Appendix B for data),
where the combined effects of series resistance are added. o
As expected, thé‘curves develop from zero gain due to "backlash"
effects and the high attenuation which 1s caused by the nonlinear
voltage divider.

Normalization of these curves with respect to saturation
amplitudes (i.e. with respect to frequency) and to the
maximum gain is given in Graph 5.17, p. 102. It is again
seen that any attempt to deliverately separate the linear

storage device from the nonlinear characteristic would not

yield satisfactory results.
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The inpﬁt impedance for this material is given in
Graph 5.18, p. 104 . Again we can form an attenuation curve
by using these graphs with the value of input impedance from
which one set of curves may be derived from the other set.
(Although the derived curve and the measured curve do not
coincide with eachother completely, still, this curve can be
employed 1f one wishes to take into account the influence of
source impedance.) Graph 5.19, p. 105 shows the two sets of
measured curves - the attenua tion curve and a derived curve
for 6_and 10 cps.

Graph 5.20, p. 106 shows the critical locus for this

case. It 1ls seen that the relative location of these loci

is approximatély the same as previously, however, the amplitude

scallng is different. Also, in this case, a stable system
may become unstable when source impedance is varied.

V. 6 Analog Computer Verification of The Results

In order to verify the results for the measurements

referred to in previous chapters, a typilcal control system

was simulated on an analog computer*. A transfer function of

& voltage regulator having as its elements an amplidyne and
generator was chosen, and the cores were inserted in series

wlth the system as shown in Fig. 5.12, p. 107.

*The computer used was: Pace TR-10, Electronics Associates, Inc.

Long Branch, New Jersey, U,S.A.
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10 uF | 10 uF 10 4
I
— i 1}
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o o 100k| 100k | 25k | 100.q.

308Q

Fig. 5.12: Simulated control system.
Tests were carried out for the Permalloy and Deltamax

cores, and the gain of the system was varied in order to

obtain a limit cycle within the closed loop. The transfer

‘function of the linear elements is

G(s)

_ K __
— (1+S) (1+0.258) (1+1.1I35)
The Nyquist diagram for thils function is plotted in

Graphs 5.21, p. 108, and 5.22, p. 109, together with the

critical locl for Permalloy and Deltamax respectively.

It is ciearly seen that intersection between the
critical locl and transfer loci occurs in the second quadrant
rather than in the third, due to phase lead rather than phase

lag of the outpUt voltage from the nonlinear elements.
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By comparing Tables 5.1 and 5.2, pp. 110 and 111, which
represent results obtained from the computer, with Graphs 5.21
and 5.22, pp. 108 and 109 respectively, it is seen that the
predicted results conform witﬁ the measured results. .Slight
differences occur due to the fact that the input to the non-
linear element 1s not purely sinusoidal; and also because for

~each 1limit cycle frequency we must use a critical locus
corresponding to this frequency. This can be done only by
the "cut.and try" method.

The effect of the source impedance on the stability of the
system is also i1llustrated in Graphs 5.21 and 5.22, pp. 108

and 109.
Oscillations
System Gain Amplitude Frequency ¢/s w_rad/sec.
Source Impedance = 600 Ohms
2500 ' 3.17 Volts 3.58 22.5
2000 2.65 3.33 20.9
1500 2.16 3.12 19.6
1000 1.7 2.86 17.9
500 1.06 2.38 14.9
| Source Impedance = O Ohms
675 2.65 Volts 2.78 17.4
500 2.27 ‘ 2.63 16.5
© 350 1.77 ' 2.38 14.9
250 1.43 2.28 : 14.3
200 1.23 2.08 13
150 1.06 1.92 12
100 .706 1.79 ' 11.2
50% : .354 - - - -

* Oscillations die out.

‘Table 5.1: Frequency and Amplitudé of Limit Cycle for Permalloy
Core.



%-Oscillations
Amplitude

System Gain

7520
6250
5000
3750
2500
1250
1000

750

500

375

250%

1250
1125
1000
875
750
625
500
375
250
125
100
75

50%*

P R EREDDDDWEUTONOY

N A

Source Impedance

.55 Volts
.37 '
.65
.95
.89
A48
.12
.9

A2
.2l

Source Impedance

77 Volts
7
.7
.59
A3

* QOscillations die out.

Table 5.2: Frequency and Amplitude of Limit Cycle for Deltamax

Core.

critical locus, one needs to simulate a transfer function
which would intersect the locus in the manner shown in

Fig. 5.13, p.ll2.

In order to check the low amplitude branch of the

Frequency c¢/s w rad/sec.

600 Ohms

FHOMPDMODDWWWW =

FHEEFEEDMDMDNDND D DWWW
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Fig. 5.13: The requirements for low amplitude limit cycle.

Locus (1) may be simulated by a transfer function of
the type.__gg__., locus (2) by inverting locus (3) which is
the locus of an R-C lag network. |

| By simulating these models, oscillation took place in
the'system; however, the results were not in complete
agreement with those predicted, as it is difficult to
synthesize a transfer function which woﬁld intersect the
critical locus exactly at the frequency for which this
locus was derived. Photo 14, p. 79 shows the computer set-
up, and Photos 15 and 16, p. 79, show oscillation when

there 1s a limit cycle in the system.



CHAPTER VI

CONCLUSION

It was shown that the theoretical models representing

hysteretic elemenfs would not'yield satisfactory results when
used generally, and without distinction, to derive the |
describing function fog hysteresis nonlinearities. -
A common misconception is to identify a hysteresis
nonlinearity with a backlash nonlinearity. This cannot be
done in cases where the width of the hysteresis loop is
dependent upon the input signal.
Although only magnetic elements were considered in
this thesis, it should be noted that the concept of hysteresis
covers a multitude.of sins in other areas as well. For
example, there is the known mechanical hysteresis phenomenon
which is to be found in transducer components such as springs

Oor pressure capsules and which arises from the imperfect

response of the microscopic crystal grains integrated over the

macroscopic dimensions of the strained transducer elements.

When load-cycling a steel spring for instance, it is observed

that lIncreasing numbers of distorted and partly dislocated

crystals do not return to their ofiginal shape and position

after the load has been restored. The magnitude of the

~'resldual deformation depends on the maximum stress applied,

but, is independent of time (frequency)(48).
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The load deformation diagram is shown in Fig. 6.1.

)\ Load

~
Deformation

s

Y

Fig. 6.1: Mechanical hysteresis for a steel spring.

It can be shown that the area of the loop represents
the energy dissilpated in heat. Another example can be
teken from the area of ferro-electric materials which are
the dielectric analog of ferromagnetic materials, (that is,
they have a high dielectric oonstént and electrostriction
‘similar to highvpermeabil;ty and magﬁetostriction, ete.).
Thus, their uses are also parallel to those of magnetic materials,
and they can be used for électrostrictive transducers, dielectric

amplifiers and storage devices.
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Ferro-electric materials are dielectrics which

exhibit a hysteresis type relation between the applied field

and the electrical displacement. (See Fig. 6.2.)

F-L_j
[,_J
o
-t
o
w
ct
}—\
o
o

Fig. 6.2: . Hysteresis Ioop for dielectric materials.

The quantity Ec is a function of E, and also, in this

case, of the frequency. The area of the loop 1s again pro-
portional to the heat loss (49).

Thus, 1t is seen that treatment of such elements by
use of the conventional describing function (2.5, 2.8) cannot
be Justified, since this does not take into account either
the relationship between input voltage and input current for

example, or the losses which occur in the material.
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In order to modify the above mentioned function, one
should first derive eguivalent parameters which reflect the

fundamental nonlinear properties of the element in question.

These parameters may depend upon amplitude as well as
frequency, and must be found experimentally for the interval
of interest, since pure theoretical assumptions do not yield

satisfactory results. When investigating the system over

wide frequency ranges, it may be advantageous to introduce a
éuitable number of sub—fanges within which the frequency may

be taken as a constant. The derived theoretical models

(Chapt. IV) would yield satisfaotory results only 1f the
element 1In question were to behave according to the assumptions
made while deriving these models. Since the materials that
incorporate the hysteretic phenomena differ greatly from one
ahother, it is felt that rather than meke a generalilzed
analysls, a particular analysis for each element in question

is required.
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ALPPENDIX B

Numerical Data for Graphs

Table B.l: Data for Graph 5.1, p. 75
Input Voltage 1st Harmonic Qutput Phase Lead D, B.%
=3 ¢/s8
0.05 Volts 0.014 volts 22 Deg. 0.922
0.25 0.704 L 0.930
0.5 1.42 1 0.935
O.75%™ 2.14 3 0.940
0.80 2.25 4 0.925
0.85 2.35 7 0.910
0.9 2,44 10 0.895
0.95 2.45 13 0.850
1 2.50 15 0.825
T =6c¢/s
0.1 0.029 8 0.955
0.25 0.072 4.5 0.950
0.5 0.143 2 0.945
0.75 0.216 1 0.950
L#% 0.285 0 0.940
1.5 0.426 1 0.930
f = 10 ¢/s
0.1 0.029 7 0.955
0.25 0.072 L 0.950
0.5 0.143 2 0.942
0.75 0.215 1 0.945
1.25 0.36 1 0.95
1.5 0.435 5 0.955
1.75 0.501 1 0.945
2 0.575 1 0.947
2,25%% 0.65 1 0.955
2.5 .72 1 0.950
2.75 0.753 4 0.905

* = In order to obtain the describing function (D.F
t

The 1st harmonic output by the turns ratio(1250); then divide by
the input voltage. y

%% = Saturation.

v

.), multiply




Takle B.1l: (Continued)

Input Voltage lst Harmonic Output Phase Lead D, F.*
£ =20 ¢/s

0.01 Volts 0.003 Volts 6 Deg 0.99

0.03 0.0088 o 0,970

0.05 0.015 3 0.99

0.2 0.06 2 0.99

0.4 0.12 2 0.99

0.5 0.15 2 0.99

1.5 0.45 0 0.99

2.5 0.73 1 0.982

3.5 1.05 1.5 0.99

L g 1.38 1.5 0.99

5 1.35 2 0.98
* = In order to obtain the desceribing function (D.F.), multiply
the 1st harmonic output by the turns ratio ( ; then divide by
the input voltage. (517

*¥* = Saturation.
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Table B.2: (Continued)

128

Input Voltage 1st Harmonic Output Phase Lead D.RLF
£ =10 ¢/s
1.1%% Volts 0.245 Volts 1 Deg 0.935
1,2 0.273 1 0.955
1.3 0.285 6 0.92

o= T

In order to obtain the describing function (D.F.), multiply

the lst harmonic output by the turns ratio (2000); then divide by

the input voltege.

*% = Sagturation.

(5007
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Table B.4: Data for Graph 5.13, p. 98

nput Voltage 1st Hermonic Output Phase Lead D.F.*
f =3 ¢/s
0.1 Volts 0.04 Volts 66 Deg. O.4
0.2 0.11 Lo 0.5
2.35 0.25 20 0.71
0.5 0.39 12 0.78
1% 0.77 21 0.77
1.5 0.90 36 0.60
2 0.94 43 o0.h7
2.5 0.97 Lg 0.39
3 0.99 55 0.33
3.5 0.99 56 0.28
4 0.99 60 0.26
4.5 0.99 60 0.23
5 - 0.99 6L 0.21
£ =6 ¢/s
0.1 0.045 54 0.45
0.2 0.12 30 0.60
0.35 0.27 20 .77
0.5 0.42 14 0.89
1 0.93 6 0.93
1.5%% 1.4h2 6 0.94
2 1.74 17 0.87
2.5 1.87 28 0.75
3 1.96 34 0.65
3.5 2.00 38 0.57
4 2.03 Lo 0.50
4.5 2.05 45 0.45
5 2.07 48 0.41
£ = 10 ¢/s
0.1 0.075 39 0.75
0.25 0.21 20 0.84
O.4 0.34 14 0.86
0.5 0.43 12 0.87
1 0.96 L 0.96
1.5 1.45 L 0.97
2% 1.96 4 0.97
2.5 2.49 4 0.99
3 2.88 10 0.96
* = In order to obtain the describing function (D.F.), divide

The 1st harmonic output by the input voltage.

*% = Saturation.




132

Teble B.L: (Continued)
Input Voltege 1st Harmonic Quiput Phage Lea D.F.#
r = 10 ¢/s
3.5 Volts 3,06 Voits 18 Deg. 0.87
= 3.18 ok 0.78
L5 3.27 28 0.72
5 3.31 31 0.66
£ =30 ¢/s
0.2 0.165 17 0,325
0.35 0.3 11 0.855
0.5 0.45 S 0.9
1 0.975 5 0.97
1.5 1.47 4 0.97
2 1.96 . 3 0.97
3 3 2 1
5 5 2 1
7 7 1 1
G 8 2 1
8.5 8.5 U 1
9 8.9 5 .99
S.5 9.2 8 0.97
10 9.35 10 0.935
= 50 ¢/s
0.2 0.161 13 0.805
0.35 0.3 9 0.855
0.5 0.455 7 0.91
1 0.95 5 0.95
2.5 2.49 3 0.99
5 5 1 1
8 8 0 1
14 14 2 1
15 14.9 I 0.99
16 15.5 6 0.98
* = In order to obtain the describing function (D.F.), divide

the 1st harmonic output by the input voltage.

3%

= Saturation.



Data for Graph 5.10,

In order to obtain the
the Ist harmonic output by

= Saturation.

Input Voltage 1st Earmonic Output Phase LB,
£ =3¢/s
0,1 0 Vol%s 58 Deg. 0
0.2 . 42 0.1
0.3 . 23 0.26
0.5 . 12 0.h2
Q.7%% . 10 0.50
0.9 0.37 24 0.41
1 ©0.38 28 0.38
1.5 0.42 Lo 0.28
2 0.42 49 0.21
2.5 0.42 52 0.16
3 0.42 56 0.14
3.5 C.h2 &0 0.12
i 0.42 61 0.10
4.5 0.42 63 0.09
.8 0.42 63 0.08
f =6 ¢/s
0.1 0 49 O
0.2 0.021 43 0.105
C.4 0.147 19 0.36
0.6 0.29 5 0.49
0.8 0.46 5 0.57
1%% 0.61 5 0.61
1.5 0.7S 21 0.52
2.0 0.82 33 0.41
3 0.84 Lo 0.28
3.5 0.84 L8 0.24
4 0.84 50 0.21
L.,5 0.86 54 0.19
f =

0.2 c.021 Ll 0.1
0.4 0.126 13 0.31
0.6 0.294 39 0.4g
0.8 0.460 35 0.57
1 0.63 30 0.63
1.5% 1.02 23 0.68
2 1.24 i2 0.62

unction (D.F.), divide
voltage.
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Table B.5: (Continued)

nput Voltage 1st Hermonic Output Phase Lead D.F.®
£ = 50 ¢/s
.2 Volts 0.0L2 Volts L9 Deg 0.21
0.4 0.126 20 0.31L
0.6 0.273 6 0.455
0.8 0.4k 3 6.55 .
1 0.61 0 0.61
1.5 0.01 0 0.672
2 1.45 0 0.725
2.5 0.85 @ 0.74
3 2.25 0 0.75
. 3.5 2,64 0 0.775
I 3.1 0 0.775
L.,5 3.5 0 C.777
5 3.92: 0 0.782
5.5 L .32 0 0.785
5 L7k 0 0.79
6.5  5.16 0 0.795
7 5.56 0 0.795
7.5%% 5.56 0 0.785
8 6.12 0 0.765
g 6.42 6 0.715
9.8 6.55 10 0.667

* = In order to obtain the describing function (D.F.), divide
the 1st harmonic output by the input voltage.

wH

= Saturation.




