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Abstract 

Introduction: Gastric cancer (GC) is one of the deadliest diseases as most of the cases are 

diagnosed at late stages, thereby making treatment almost impossible. GC incidence in North 

America has been reported to be decreasing over the years. Nevertheless, the primary concern is 

whether the decrease is valid for all communities? 

Purpose and Objectives: The purpose of this study is to identify high-risk GC hotspots in 

Manitoba and investigate factors associated with GC in Manitoba. The objectives were to (1) 

describe and investigate the geographical variation of GC incidence in Manitoba; (2) explore 

factors influencing the geographic change of GC incidence in Manitoba, and (3) investigate the 

geographical variation of GC incidence over time in Manitoba. 

Methods: This research study adopted an ecological design. A spatial Poisson regression model 

was used to address research objectives (1) and (2), and a Spatio-temporal Poisson regression 

model was used to address research objective 3. 

Results: SESI was significantly associated with cardia gastric cancer (CGC) and marginally 

associated with non-cardia gastric cancer (NCGC), while the Indigenous population proportion 

was marginally associated with CGC. In specific, 1 unit increase in SESI reduces the risk of CGC 

by 14% (IRR= 0.859; 95% CI: 0.780 - 0.947) and the risk of NCGC by approximately 10% (IRR 

= 0.898; 95% CI: 0.812 – 0.995); 1% increase in regional Indigenous population proportion 

reduces the risk of CGC by 1.4% (IRR = 0.986; 95% CI: 0.978 – 0.994). Also, 1 unit increase in 

SESI reduces the risk of CGC among women by 26.2% (IRR = 0.738; 95% CI: 0.618 – 0.879), 

and a 1% increase in Indigenous population proportion reduces the risk of CGC among women by 

1.9% (IRR = 0.981; 95% CI: 0.966 – 0.996).  
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Conclusion: This study has demonstrated the existence of regional variation of GC incidence risk 

with temporal pattern in Manitoba.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Cancer is one of the deadliest non-communicable diseases, formed as a result of uncontrollable 

cell division in the body. According to a recently published article by World Health Organization 

(WHO), 18.1 million new cancer cases were diagnosed in 2018, and 9.6 million deaths related to 

cancer were estimated worldwide (WHO, 2018). Similarly, the Canada Statistics sheet fact showed 

that cancer is the leading cause of death in Canada, accounting for approximately 30% of all deaths 

(Canadian Cancer Statistics, 2017). This finding was bolstered up by Canadian Cancer statistics, 

which also estimated 206,200 new cancer cases and 80,800 deaths in 2017 (Canadian Cancer 

Statistics, 2017). These estimates are expected to rise by 80% by the year 2030, despite the 

significant advancement in cancer care and treatment in Canada (Bray et al., 2018). The advances 

made in cancer care across Canada have contributed immensely to the country’s steady decrease 

in both incidence and mortality rates over three decades. However, the occurrence of new cases 

has increased over the years, an increase that can be linked to the growing and aging population of 

Canada (Canada Cancer Statistics, 2018), which also varies by province.  

One of the cancers that has consistently contributed to the global burden of cancer is Gastric Cancer 

(GC). It is the fifth most diagnosed cancer worldwide, which accounts for 6.1% of all cancer cases 

for both sexes globally. It stands as the fourth most diagnosed cancer in men accounting for 7.8% 

of whole cancer affecting men globally and the seventh most diagnosed cancer in women 

accounting for 4.3% of entire cancer affecting women globally (Bray et al., 2018). 

The GC belongs to a family of gastrointestinal (GI) because it is one of the accessory organs of 

digestion. Almost half (43.5%) of all the GC cases are diagnosed at an advanced stage (stage IV), 

where cancer has metastasized to other parts of the body (Canada Cancer Statistics, 2018). Studies 
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in the United States (USA) have shown that approximately 36% of GC occurrence is diagnosed 

after it has spread to other parts of the body. And 33% of all GC diagnosed cases live beyond five 

years, which is one of the lowest cancer survival rates (American Cancer Society, 2019; SEER 

cancer statistics review, 2019).  

In Manitoba, Cancer has been reported as the second leading cause of death as it accounts for 

27.1% of all deaths in the province trailing after circulatory diseases (27.7%) (Annual Statistics, 

2016). Statistics have shown that Manitoba has the second-highest age-standardized GC incidence 

risk for men (13.5 per 100,000) trailing after Newfoundland & Labrador (20.7 per 100,000), and 

the fifth-highest for women (5.6 per 100,000) with Newfoundland & Labrador retaining the first 

position (Canada Cancer Statistics, 2017). The occurrence of GC has been found to exhibit both 

geographical variation and temporal pattern over the years in some parts of the world (Mohebbi et 

al., 2011; Mahar et al., 2016), with little or no information about the geographical variation in 

Canada.  

  

1.2 Research Aim and Objectives 

The purpose of this study is to examine the effect of area-level risk factors on the incidence of GC, 

across the 96 regional health authority districts (RHADs) in Manitoba using twenty-five years 

(1992-2016) Canadian Cancer Registry (CCR) dataset. The following objectives will guide us in 

achieving the study aim: 

1. Describe and investigate the geographical variation of GC incidence in Manitoba 

2. Explore factors influencing the geographic difference of GC incidence in Manitoba 

3. Investigate the geographic changes of GC incidence over time in Manitoba  
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1.3 Research Contribution 

As at the time this project was conceived, the epidemiology of GC both in space and time in 

Manitoba was not well documented and has not been explicitly investigated. Hence, this study is 

the first of its kind to examine the geographical variation of GC in Manitoba. Map of the incidence 

(either standardized or crude) may not show sufficient information on its own about the latent risk 

factors driving the rate. However, combined with spatially varying factors could provide robust 

information about how the underlying factors influence the incidence in different locations. This 

study will, therefore, offer a comprehensive description of GC spatial epidemiology in the 

province, thereby serving as a means of education to the public. It will also enable public health 

agencies (especially those with a keen interest in cancer surveillance) such as CancerCare 

Manitoba (CCMB) and other public health agencies, including Manitoba Health to have a clear 

picture of the spatial variation of GC in Manitoba. An understanding that could serve as a tool in 

prioritizing intervention strategies/programs as a measure of eradicating GC. 

  

1.4 Ethics 

All required ethical conditions by the research data center (RDC), where my data was housed, 

were satisfied, and approval was granted. As part of the condition required in carrying out research 

using the RDC dataset, I have completed the Tri-Council Policy Statement Ethical Conduct for 

Research Involving Humans Course on Research Ethics (TCPS 2: CORE). 
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Chapter 2: Literature Review 

2.1 Gastric Cancer: Risk and Protective Factors 

Most previous studies on the epidemiology of GC considered individuals as the unit of 

measurement (You et al.,2000; Go 2002; Parkin et al., 2002; Tsugane and Sasazuki 2007; Carrasco 

and Corvalan 2013; Davies 2013; Polinkevych and Pikas 2014; Watari et al., 2014). This 

consideration played a vital role in the discovery of factors that are associated with GC, which 

have been broadly categorized into environmental and genetic factors. 

  

2.2 Environmental Risk Factors 

Epidemiological studies of GC have suggested the existence of geographical variation in the 

incidence of GC across the continent. However, this geographic variation depends mainly on 

environmental factors (Chiu et al., 2011; Fitzmaurice et al., 2013; Liao et al., 2014), which is 

broadly categorized into a lifestyle (such as food) (Haenszel & Kurhara, 1960; Haenszel et al., 

1972). Haenszel and Kurhara (1960), in their study of Japanese immigration from a region of high 

GC risk (Asia) to an area of low GC risk (United States), found that early subjection to 

environmental factors, such as lifestyle, play a vital role in GC incidence and mortality rate. A 

comparative study of three different Japanese populations, Japanese immigrants in Hawaii (USA), 

Sao Paulo (Brazil), and Japanese in Japan, revealed that lifestyle (especially diet) is associated 

with GC (Tsugane et al., 1990). 

Significant documentation from various studies has shown that food is one of the major 

environmental factors associated with the etiology of GC globally (Kono & Hirohata 1996; 

Joossens et al., 1996; Shikata et al., 2006; Tsugane & Sasazuki 2007; Peleteiro et al., 2011). The 

influence of food on GC has been documented to exhibit a dyadic nature, causing it to either 
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function as a risk or protective factor. Evidence from ecological studies across the globe has 

identified and associated high intake of salt and salt-preserved food with increased risk of overall 

GC (Kneller et al., 1992; Joossens et al., 1996; Park et al., 2011; Watanabe et al., 2012; D’Elia et 

al., 2014; Umesawa et al., 2016). The high intake of salt in some parts of the world, especially 

developing countries, can be attributed to its use as a cheap means of food preservation (Kono & 

Hirohata 1996). This high intake has also been suggested to be responsible for the high incidence 

and mortality of GC in such regions (Kneller et al., 1992; Joossens et al., 1996; Tsugane & 

Sasazuki 2007).  

Studies have also identified the consumption of vegetables, fruits and food containing high fiber 

content to be associated with overall GC (Jedrychowski et al., 1986; Riboli & Norat 2003; Larsson 

et al., 2006; Lunet 2007; Tsugane & Sasazuki 2007; Washington 2007; Liu and Russell 2008). 

Some of these studies showed a significant reduction in the risk of GC relative to fruit and 

vegetable consumption (Lunet et al., 2005; Gonzalez et al., 2006; Larsson et al., 2006; Tsugane & 

Sasazuki 2007). While some studies identified vegetables only as a significant protective factor 

against GC, some identified a non-significant association between GC and fruit intake (Larsson et 

al., 2006). More so, dietary fiber has been identified as a protective factor against overall GC, 

where studies have demonstrated that dietary fiber (e.g., cereal fiber) is significantly associated to 

a decrease in GC (Gonzalez et al., 2006; Ma et al., 2007; Zhang et al., 2013). An in vitro study by 

Moller et al. (1988) revealed the role of dietary fiber as a nitrate purifier. An attribute that offset 

the effect of a carcinogenic substance called N-nitroso compounds that can be obtained from the 

diet, tobacco smoking, and environmental sources (Moller et al., 1988). 

Smoking is another environmental factor that has been associated with GC (Tredaniel et al., 1997; 

Smoke and Smoking, 2004; Ladeiras-Lopes, 2008). It has been shown to possess over 5000 
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chemical substances most of which are harmful to the body, and responsible for development of 

diverse kinds of cancer (Gonzalez et al., 2003; Munafo et al., 2012; Ferreccio et al., 2013; 

Aggarwal et al., 2014; Tang et al., 2014). Studies have associated smoking with an increase in the 

risk of GC, which was more prominent among men compared to women (Tredaniel et al., 1997; 

Nishino et al., 2006). 

Studies have also shown that alcohol is directly associated with the overall GC (Barstad et al., 

2005; Tramacere et al., 2012; Wang et al., 2018). With variability in individual alcohol 

consumption level and type of alcohol consumed, some researchers investigated the association 

between alcohol consumption level, type of liquor, and GC. The results of which show no 

association between total alcohol consumption and GC, a significant association between alcohol 

type and overall GC, and an association between daily use of wine and overall GC (Barstad et al., 

2005). Another showed no association between moderate alcohol drinking and overall GC, while 

heavy alcohol drinkers are at higher risk (Tramacere et al., 2012; Wang et al., 2018). These studies, 

however, showed an inconsistent and unclear result about the association between alcohol and 

overall GC. 

Obesity has also been documented to be associated with overall GC (Yang et al., 2009; Olsen et 

al., 2011; Turati et al., 2013; Lauby-Secretan, 2016) where the definition of obesity varies from a 

minimum body mass index of 25 𝑘𝑔/𝑚2(BMI ≥ 25 𝑘𝑔/𝑚2 ) to a minimum body mass index of 

30 𝑘𝑔/𝑚2 (BMI≥ 30 𝑘𝑔/𝑚2 ), with equal likelihood of risk among both men and women. An 

increase in the strength of association between GC and obesity was also found to be related to 

increased BMI. However, there is insufficient information on the etiology of noncardia gastric 

cancer (NCGC), as reported by a group of IARC (Lauby-Secretan 2016). Socioeconomic status 

(SES) has also been linked with the etiology of overall GC, with an inconsistency in results 
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reported. Some of the studies identified a relationship between SES and GC (Nagel et al., 2007; 

Wu et al., 2014; Dong et al., 2017), while some did not identify any association (Loon et 

al., 1998). In a bid to further understand the epidemiology of GC and SES, researchers also 

partitioned GC into cardia and non-cardia GC. A typical study in this area was carried out in the 

United Kingdom (UK), which revealed an increasing incidence of Cardia GC among the 

professional class SES (Powell & McConkey 1990). A similar study in the USA partitioned their 

study population into SES group using two different criteria: average family income or housing 

rental and occupation. Their study recorded a higher incidence of GC among the low SES 

population for both sexes of the white race (Haenszel 1958).  

  

One of the widely investigated and consistent factors associated with mostly overall GC 

is Helicobacter Pylori (H. Pylori) infection (Parkin et al.,2002; Carrasco and Corvalan 2013; 

Watari et al., 2014). While studies have shown that  H. Pylori is associated with GC, it was also 

revealed that the impact of H. Pylori on the overall GC may be confounded by other factors such 

as salt/salty food consumption (Tsugane et al., 1994; Fox et al., 1999; Lee et al., 2003; Machida-

Montani et al., 2004; Shikata et al., 2006; Polinkevych and Pikas 2014) and SES (Klein et 

al., 1991; Go 2002). This is also supported by statistics that show that 2% of the world’s 50% 

population infected with H. Pylori end up having GC (Maev et al., 2014). The infection rate of H. 

Pylori has been documented to be more pronounced in developing countries while in most 

developed countries, the rate of H. Pylori is high among the Indigenous communities and 

immigrants from countries with high incidence rates such as Japan, Korea, and China (You et 

al.,2000; Go 2002).  
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The continuous enrichment of the Manitoba population with immigrants from countries with a 

high rate of H. Pylori could be partially responsible for the occurrence of GC in the regions where 

they are more dominant. Studies have investigated the existence of a relationship between 

immigration status and GC occurrence in different countries (Tsugane et al.,1990; Kamineni et 

al., 1999; Lee et al., 2007; Mousavi et al.,2011). The results of which are inconsistent, as some of 

the studies identified immigration status as a risk factor for GC, others showed no significant 

association. This may be due to other factors such as lifestyle and diet confounding the effect of 

immigration, as studies have shown that lifestyle and food are also factors associated with GC. 

Another essential factor of interest that has not been extensively researched in the epidemiological 

study of GC in Canada is the Indigenous population (Roder & Currow 2009; Arnold et al., 2014; 

Moore et al., 2015; Coloquhoun et al., 2019). Most studies about the incidence and risk of overall 

GC among the Indigenous people across different countries suggest that Indigenous people are at 

more risk compared to their non-Indigenous counterparts (Roder & Currow 2009; Arnold et al., 

2014). The term Indigenous refers to a group of people who are the original occupants of a 

particular area, region, or country. Most Indigenous populations across the globe share similar 

characteristics features, such as poor living lifestyles due to marginalization. A study combining a 

group of Indigenous people from Australia, New Zealand, USA, Chile, circumpolar region carried 

out by Melina et al., showed a higher increase of risk in GC among the Indigenous people 

compared to their non-Indigenous counterparts (Arnold et al., 2014). A similar study considering 

the Indigenous people in the Amazon of Ecuador revealed that the risk of GC among the 

Indigenous men and women is significantly lower than the non-Indigenous people (Sebastian et 

al., 2004). 
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Colquhoun et al. (2019), in their bid to bridge the paucity of information on overall GC in northern 

Canada, showed that the burden of overall GC in the Indigenous subpopulation is higher compared 

to non-Indigenous. Similarly, a study by Arnold M et al. (2013) revealed the presence of 

significance higher overall GC incidence in the Indigenous population relative to non-Indigenous. 

However, the classification of the overall GC by topographical subsite may provide more useful 

information regarding the influence of the Indigenous people on the risk of partitioned 

topographical subgroups. 

 

2.3 Genetic Risk Factors 

Similar to environmental factor, researchers have also shown that genetical factors such as blood 

group, familial predisposition and hereditary play essential roles in the etiology of overall GC 

(Aird et al., 1953; Hoskins et al., 1965; Langman 1998; Edgren et al., 2010; Oliveira et al., 2015; 

Van der Post et al., 2015). A population-based study carried out in Sweden using the Scandinavian 

donation and transfusion database identified a higher risk of overall GC among individuals with 

blood group A compared to other blood groups (Edgren et al., 2010). Similarly, studies have also 

shown that some types of cancer such as gastric adenocarcinoma and proximal polyposis of the 

stomach (GAPPS), and familial intestinal gastric cancer are hereditary (Oliveira et al., 2015). 

This study focuses more on environmental factors, though drawing a clear distinction between 

environmental and genetic factors may be almost impossible as they are interwoven.  
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Chapter 3: METHODS 

3.1 Research Design 

We adopt an ecological research design method, which enables us to quantify our measures 

(dependent and independent variables) of interest. For this study, we extracted all GC patients in 

Manitoba, diagnosed between 1992 - 2016 from the National Cancer Registry database.  

  

3.2 Study Area 

The province of Manitoba is the study region in this research, and based on the 2016 population 

census, approximately 1,278,365 people are living in Manitoba, with 631,400 (49.39%) being 

male, and 646,965 (50.61%)  being female. Winnipeg is the capital of the province which houses 

more than half (55.96%) of the entire Manitoba population. The province of Manitoba is bordered 

on the east by Ontario, on the west by Saskatchewan, on the north by Nunavut territory, northeast 

by Hudson Bay and south by the United States’ Minnesota and North Dakota. It is seated on a 

647,797 square km land with an approximate 107,966 square km (one-sixth) of inland water. The 

Province is enriched with immigrants from different countries, making it a diversified multi-

cultural ethnic province and home to Indigenous peoples who have occupied the land for over a 

thousand years (Bumsted et al.,2019). The Province has five regional health authorities (RHAs) 

created from the initial eleven RHAs in 2012.  

These RHAs across the Province are tasked with overseeing health services, both acute and 

community-based care. As a result of the requirement for improving the health service quality of 

individuals in each RHA, the RHAs were further sub-divided into districts, the Regional Health 

Authority Districts (RHADs), with the primary objective of fostering a heterogenous population 

via partitioning into homogenous populations (Fransoo et al., 2005). For more information 
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regarding the creation of the RHADs, readers can visit the Manitoba center for health policy 

(MCHP) website. The RHADs, as described in Figure 3.1 below, was adopted in this study as the 

area-level aggregate point. This is because it divides the provinces into smaller homogenous 

populations, and also oversees the health activities of communities under its jurisdiction. As at the 

time of this study, the province is divided into 96 RHADs, forming the unit analysis in this study. 

 

Figure 3.1: Map of five Regional Health Authorities and their corresponding Regional Health 

Authority Districts in Manitoba 
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3.3 Data 

All Manitoba population was considered in this study, while the cases of GC used in this study 

was from 1992 -2016 as there was no proper documentation of cancer diseases before 1992 

(Statistics Canada, 2019). The universal disease classification code, as defined by the international 

classification of disease for oncology third edition (ICD-O3), is a hospital abstract data system for 

coding diseases and procedures (Fritz et al., 2000). The ICD-O3 assigns codes C160 – C169 to all 

topographical subsites of GC, which was used to extract all GC cases, as shown in Table 3.1 

below.  

 

Table 3.1: Description of all GC topographies using ICD-O3 

ICDO-O3 code Topography subsite 

C160 

C161 

C162 

C163 

C164 

C165 

C166 

C168 

C169 

Cardia 

Fundus 

Body 

Antrium 

Pyloric 

Lesser curvature of the stomach 

Greater Curvature of stomach 

Overlapping lesion of the stomach 

Stomach unspecified 

 

This information combined with three data files, Canadian Cancer Registry (CCR), Canada 

Census, and postal code conversion file (PCCF), was used to create an area-level dataset, which is 

the required first step in this study. 

 

3.3.1 Canadian Cancer Registry (CCR) 

The CCR consists of comprehensive information on people diagnosed with any form of cancer in 

the 13 provinces/territories in Canada. We accessed the file from the Research Data Centre (RDC) 

repository located at the University of Manitoba campuses (Bannatyne and Fort Gary). The CCR 
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is a census of respondents residing in any of the thirteen provinces/territories in Canada, either as 

a temporary or permanent resident who have been diagnosed with any form of cancer. The CCR 

dataset is a national collection of cancer patient records from multi-channel sources such as clinic 

files, radiotherapy, and hematology reports, documents from in-patient hospital stays, out-patient 

clinics, private hospitals, pathology, and other laboratory/autopsy reports, radiology and screening 

program reports, reports from physicians in private practice, medical billing and hospital discharge 

administrative databases, and reports on cancer deaths from Vital Statistics registrars as stated in 

the Canadian Cancer registry codebook. The ICD-O3, as described in Table 3.1 combined with 

the provincial code (46), and date of diagnosis was used to extract all GC patients who resided in 

Manitoba between 1992 to 2016 from the CCR. This extract represents our outcome (dependent 

variable) of interest in this study. Alongside the GC case extraction, we also extracted other 

variables of interest, e.g., demographic variables (the age when diagnosed with GC and sex). These 

demographic variables enable us to adjust for the influence of sex and age disparities across the 

RHADs to avoid spurious estimates. 

  

3.3.2 Census Data 

The Census data is the compiled census information of all people living in Canada in a particular 

Census year. The 2016 Census data was used in this study because it was the closest census to the 

upper limit time frame for the duration considered (1992 – 2016); we also assumed that the 

population of Manitoba was steady with no significant change (1.1 million – 1.2 million) within 

this period. This assumption also extends to the fixed covariates extracted from the Census data 

and the population size across the RHADs. The variables of interest relevant to this study obtained 



 

 

14 | P a g e  

 

from the Census data were household income, Indigenous status, immigrant status, post-secondary 

education, and employment status. The covariates were aggregated and geocoded into 96 RHADs.  

We extracted a total of six covariates from the Census data described below: 

 

Immigration status 

The immigrant variable as used in this study is the population of individuals who identified 

themselves as an immigrant within the study period. The proportion of the people belonging to 

this group was used as a surrogate to represent area-level immigrants.  

Indigenous status 

The Indigenous variable represents the sub-population of Manitoba who identifies as First Nation, 

Metis, and Inuit in Manitoba 

• First Nation (North American Indian): this includes registered, status/non-status, 

treaty/non-treaty Indians, no Inuit. Presently, Manitoba has five First nation groups – Cree, 

Ojibway, Dakota, dene, and Oji-Cree. 

• Metis: this includes Manitobans from a mixed-race, which are partly First nation and 

European or Canadian. 

• Inuit: this consists of people from the arctic region in Manitoba. A typical town in Manitoba 

is Churchill, as it is located along the Hudson Bay at the peak of the Churchill River along 

the coast of the arctic ocean. 

 

Socioeconomic status (SES) 

As a result of collinearity between unemployment, income, and post-secondary school education, 

exploratory factor analysis (EFA) was carried out to create a linear combination of these three 
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variables using their shared variance to create a factor that was labeled socioeconomic score index 

(SESI). Two widely used methods in the creation of SES indices are factor analysis (FA) and 

Principal component analysis (PCA) (Pampalon and Raymond 2000; Salmond and Crampton 

2002; Messer et al.,2006; Holt and Lo, 2008; Krishnan, 2010; Vincent and Jason 2013). The FA 

method as used by Abdul and Abd (Abdul and Abd, 2018) was adopted in creating our SESI; the 

procedure is described in the three steps below:  

 

Step 1:  Variable standardization (𝒛𝒊𝒑) 

Three variables that have been consistently used in the creation of SES indices creation are income, 

education, and unemployment (Salmond, Crampton and Sutton, 1998; Abdul and Abd, 2018). 

These three variables are also used in our creation of the SESI. The variables are standardized to 

have data ranged between 0 and 1. The standardization is as follows 

 

𝒛𝒊𝒑 =
𝑥𝑖𝑝 −𝑚𝑖𝑛(𝑥𝑖𝑝)

𝑚𝑎𝑥(𝑥𝑖𝑝) –𝑚𝑖𝑛(𝑥𝑖𝑝)
 

where 

 𝑥𝑖𝑝: actual covariate 𝑝 at region 𝑖 

𝑧𝑖𝑝 : standardized covariate 𝑝  at region 𝑖 

𝑚𝑖𝑛(𝑥𝑖𝑝): the minimum value of actual covariate 𝑝 at region i 

𝑚𝑎𝑥(𝑥𝑖𝑝): the maximum value of actual covariate 𝑝 at region i 
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Step 2:  Weighted correlation matrix (𝒘𝒑𝒇) 

We obtained the weighted matrix by multiplying the correlation of the actual (unstandardized) 

variables with the loading of the variables on the factor extracted from the factor analysis. We 

computed the weighted correlation matrix as follows: 

𝒘𝒑𝒇 = 𝑅𝑝𝑝
−1 × 𝑆𝑝𝑓 

where 

             𝑅𝑝𝑝
−1: inverse correlation matrix of the actual covariates 

             𝑆𝑝𝑓: loadings of the covariate on SESI factor extracted 

 

Step 3:  Socioeconomic score index (SESI) 

We computed the SESI score for each RHAD by weighing the standardized covariates by the 

weighted matrix, i.e.  

𝑆𝐸𝑆𝐼𝑖 = 𝑧𝑖𝑝 ×𝑤𝑝𝑓 

The choice of the variable used is mostly dependent on the available information at the researchers’ 

disposal and the need for creation. Hence there is no rule of thumb as to the number of variables 

required to create an SES score index. Researchers have measured SES using single variable such 

as education level (Pukala and Teppo 1986; Ferraroni et al., 1989; Van Loon et al., 1998), 

occupation (Palli et al., 1992; Faggiano et al.,1994; Van Loon et al., 1998) and income (Pukala 

and Teppo 1986; Brown et al., 1994) with a cautious interpretation during inferences.  
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3.3.3 Postal Code Conversion File (PCCF) 

PCCF is the last piece of the data file that is linked with CCR and Census data to create an area-

level dataset that we used in this study. The PCCF provides a correspondence between the 

Canadian six-alphanumeric postal code and Statistics Canada’s standard geographic areas. The 

variables of interest in the PCCF consist of postal code, disseminated area code, RHADs name, 

district ID, and district code.  

The area-level dataset (geocoding) which formed the basis of our study, is developed in three 

stages: 

1.     Creation of regional GC dataset from CCR  

2.     Creation of area-level covariates and population from Canadian Census data 

3.     Merging of area-level GC and covariate dataset 

 

3.3.4 Creation of Regional GC Counts from the Canada Cancer Registry 

The variables of interest at this stage are GC count, geographical variable (postal code), age of the 

patient, and year of diagnosis. These variables we extracted from CCR conditioned on 

correspondents living in Manitoba (using the provincial code 46). The correspondents were 

grouped into age categories using a class interval of four. We then linked the dataset to the PCCF 

which is also linked to RHADs and the disseminated area code, hence enabling us to connect it to 

the covariates. This linkage allows for us to geocode the GC cases and aggregate them into the 96 

RHADs. 
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3.3.5 Creation of Regional Covariates from Census Data 

 The covariates that we extracted from the Census data are linked to the PCCF. This linkage allows 

us to aggregate over the 96 RHADs and relates it to the GC cases. We used the area-level 

population from the Census data to estimate the rate in each RHAD, and adjust for the disparities 

in age and sex distributions across the RHADs. The whole essence of this is to be able to estimate 

the expected count of GC assuming the age and sex distributions are uniform across the RHADs.  

 

3.3.6 Merging of Regional GC and Regional Covariate Dataset  

The merging is the stage where the regional GC dataset created from the CCR and area-level 

covariates created from the Census data are combined to form a single area-level dataset. The 

merged dataset is an overall summary dataset on which all other estimates and adjustments are 

carried out before modeling. The modeling aspect of the research is done using spatial and spatio-

temporal models that are widely used to model areal-level data (Torabi and Rosychuk, 2011; 

Torabi, 2014; Torabi et al., 2014).  

 

3.4 Statistical Analysis  

3.4.1 Poisson Regression Model 

As part of the preliminary exploratory analysis, we fitted a log-linear model to establish a 

relationship between the covariates and GC count across the 96 RHADs. This procedure is required 

to achieve a parsimonious model and also avoid type I or type II statistical error. We considered 

only the independent variables that were found to be significantly associated with overall GC (at 

the significance level of 0.05) and kept the variables for further analysis. This step enabled us to 

examine how each covariate influences the GC independently. We then proceed to fit a 

multivariable Poisson regression model to assess how the multiple variables affect GC and also 
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determine the model fit for the introduction of a spatial component. We evaluated the model 

goodness-of-fit via deviance information criteria (DIC). 

Let  𝑦𝑖𝑗𝑘; 𝑖 = 1,… ,96; 𝑗 = 1,2; 𝑘 = 1, . . ,12 represents the GC count in RHAD 𝑖, sex group 𝑗 and 

age group 𝑘 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 35, 35 − 39, 40 − 44,… , 85 + ; 𝑦𝑗𝑘 is the GC count in sex 𝑗 and age 

group 𝑘 ; 𝒚𝒊 ; I =1,...,96 be the RHAD GC count; 𝑛𝑖𝑗𝑘 be the population of people in RHAD 

𝑖 belonging to sex group 𝑗 and age group 𝑘; 𝑛𝑗𝑘is the population of in sex 𝑗 and age group 𝑘 ;𝑥𝑖 be 

the RHAD covariates (SESI, the proportion of Indigenous, the proportion of immigrants), and 

assuming the total number of cases of GC in each RHADs follows a Poisson distribution, i.e.  𝑌𝑖 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝐸𝑖), where 𝜆𝑖 is risk and 𝐸𝑖 is the expected number of GC count in RHAD 𝑖. The log-

linear model is defined as  

 

                                     𝑙𝑜𝑔(𝜆𝑖) = 𝛼 + 𝛽𝑥𝑖                                            (3.1) 

                                                        𝑌𝑖 =∑∑𝑦𝑖𝑗𝑘

12

𝑘=1

2

𝑗=1

                             (3.2) 

                                                    𝐸𝑖 =∑∑
𝑦𝑗𝑘

𝑛𝑗𝑘
× 𝑛𝑖𝑗𝑘

12

𝑘=1

2

𝑗=1

                        (3.3) 

where 𝛼 and 𝛽 are mean ratio (intercept) and regression coefficients, respectively. The age and 

sex adjustment were essential as they enable us to eliminate the potential error of wrongly ascribing 

high/low risk to RHADs based on age/sex distribution, thereby concealing the real RHADs risk.  

We partitioned the overall dataset by both sex and Topographical sub-sites of GC, as shown in 

Figure 3.1 below. To each of these sub-group datasets, we fitted both spatial and spatio-temporal 

models discussed in subsequent sections. 
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Figure 3.2: Schematic flowchart of data partitioning 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Spatial Poisson Regression Model 

The use of spatial regression model in epidemiological studies is to examine how a set of covariates 

affects the incidence of disease, while also adjusting the model to account for regional dependence 

in the dataset (Banerjee et al., 2014). This modeling approach is robust because most conventional 

regression models assume that observations are independent. This assumption is not often valid in 

spatially collected data. As a result of this assumption, spatial models draw their strength from 

relying on neighboring regions for a more reliable estimate. According to Tobler’s first law of 

geography which states that “Everything is related to everything else, but near things are more 

related than distant things” (Tobler 1970; Sui 2004); regions that are close together get a higher 

weight compared to areas that are far apart. This ideology is often incorporated into the spatial 

regression model via the autoregressive model mechanism (Lawson 2013; Banerjee et 

al., 2014). Before using a spatial model in real-life applications, its suitability is often assessed and 

justified via both exploratory and confirmatory analysis. 

Overall GC cases 

Topographical 

sub-site 

 Cardia GC 

Non-cardia GC 

Sex 

Male 

Male 

Male 

Female 

Female 

Female 
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The most applied confirmatory test used to investigate and ascertain the spatial dependency of an 

event in spatial studies is the Moran I statistics. The method determines spatial dependence by 

measuring the spatial auto-correlation of events and testing the statistical significance of the 

statistic (autocorrelation) estimated. The Moran’s I statistic is given by 

 

                                𝑀𝐼 =
𝐼

𝑆0
(
∑ ∑ 𝑤𝑖𝑗(𝑦𝑖 − 𝑦̅)

𝐼
𝑗=1 (𝑦𝑗 − 𝑦̅)

𝐼
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2
𝐼
𝑖=1

)                                    

 

where 𝑦𝑖  as used in this study represents the region 𝑖 count of GC cases; 𝑦̅ represents the average 

count of GC cases; 𝑤𝑖𝑗   represents the weight matrix obtained assuming a neighborhood structure 

where regions share a direct boundary; 𝐼  is the number of RHADs (I = 96);  𝑆0 = ∑ ∑ 𝑤𝑖𝑗
𝐼
𝑗=1

𝐼
𝑖=1   

is the aggregate weight. The range of MI is between -1 and 1, where -1 denotes a perfect clustering 

of different values (perfect dispersion), 0 denotes perfect randomness (no correlation), and 1 

indicates an ideal clustering of similar values. 

Using a similar notation described in sub-section 3.4.1 above, let 𝜆𝑖 be the relative GC risk 

observed for each 𝑖 , assuming 𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝐸𝑖),   then we define the modified Poisson 

regression model as: 

                                 𝑙𝑜𝑔(𝜆𝑖) = 𝛼 + 𝛽𝑥𝑖 + 𝜙𝑖                                     (3.4) 

 

where 𝜆𝑖 = 𝐸[𝑌𝑖|𝛽𝑖, 𝜃𝑖 , 𝜙𝑖] /𝐸𝑖 is the (conditional) risk, and 𝜙𝑖 is the heterogeneity in the dataset 

In this study, the 𝜙𝑖 was partitioned into two random effects 𝜂𝑖 and 𝑢𝑖, accounting for spatially 

correlated and uncorrelated heterogeneity, respectively (Besag et al., 1991; Knorr‐Held & 

Richardson, 2003; Torabi, 2014; Torabi et al., 2014; Sharafi et al., 2018; Torabi et al., 2019). The 
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𝑢𝑖 , 𝑢𝑖~𝑁(0, 𝜎𝑢
2), is the unstructured heterogeneity, “noise,” which materializes from our dataset 

that we cannot account for, while 𝜂𝑖  is the structured heterogeneity described by a Gaussian 

conditional autoregressive (CAR) distribution. Given  𝒩(𝑖) , 𝑖 = 1, … , 96,  to be the set of 

neighbors(s) to a specific RHAD which can be defined in different ways such as proximity or 

boundary sharing between regions (Waller and Gotway, 2004). The neighborhood as used in this 

study is defined as two regions sharing boundaries, and  𝑤𝑖𝑗 represents the relationship between 

any two regions ( 𝑖, 𝑗), which is defined as 

 

𝑤𝑖𝑗 = {
1, 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑠
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

then, the conditional distribution of spatial random distribution 𝜂𝑖|𝜂𝑗,   𝑖 ≠ 𝑗 is given as 

 

                𝜂𝑖|𝜂𝑗,   𝑖 ≠ 𝑗, 𝜏𝜂 ~ 𝑁 (
1

 𝒩(𝑖)
∑𝑤𝑖𝑗𝜂𝑗

𝑛

𝑗~𝑖

 ,
𝜎𝜂
2

 𝒩(𝑖)
),                                 (3.5) 

 

where  𝒩(𝑖) is the number of neighbors to region 𝑖 and 𝜎𝜂
2 is the spatial dispersion of region   𝑖. 

Considering the above modification to the conventional Poisson regression model, the spatial 

model considered in this study is defined as 

 

                                 𝑙𝑜𝑔(𝜆𝑖) = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖 + 𝜂𝑖                                     (3.6) 
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where 𝛼 is the common intercept (mean ratio) for the entire region, and 𝛽  is the effect of covariate 

 𝑥 in region  𝑖. The use of CAR described in equation (3.5) provides the means of weighing the 

spatial random effect locally considering the neighbors to the specific region of interest. This 

mechanism allows the district to borrow strength locally (Besag et al., 1991), and the number of 

parameters and hyperparameters to be estimated are  𝜃 = (𝛼, 𝛽) and 𝜓 = ( 𝜏𝑢 , 𝜏𝜂 ) respectively, 

with 𝜏 =  
1

𝜎2
 representing the precision of the estimated parameter. 

 

3.4.3 Spatio-temporal Poisson Regression Model 

In most epidemiological studies, a spatially-attributed disease is simultaneously attributed to a time 

point, which calls for the modification of the spatial model described in equation (3.6) to account 

for the time effect explicitly.  

Let 𝑦𝑖𝑡 be the count of GC cases aggregated over space and time which is assumed to follow a 

Poisson distribution 𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑡𝐸𝑖𝑡), then equation (3.6) can be extended to accommodate the 

temporal effect which is given as 

 

                                 𝑙𝑜𝑔(𝜆𝑖𝑡) = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖 + 𝜂𝑖 + 𝛾𝑡 + 𝜑𝑡                                  (3.7) 

 

 where the additional two components (𝛾𝑡 , 𝜑𝑡) represent the unstructured and structured temporal 

effects. The structured temporal effect, 𝜑𝑡, is modeled by imposing a random walk of order one, 

RW (1), a distribution which is defined as a step function given as 

𝜑𝑡|𝜑−𝑡~

{
 

 
𝑁𝑜𝑟𝑚𝑎𝑙 (𝜑𝑡+1, 𝜏𝜑), 𝑓𝑜𝑟 𝑡 = 1

𝑁𝑜𝑟𝑚𝑎𝑙 (
𝜑𝑡−1 + 𝜑𝑡+1

2
,
𝜏𝜑

2
) , 𝑓𝑜𝑟 𝑡 = 2,… , 𝑇 − 1

𝑁𝑜𝑟𝑚𝑎𝑙 (𝜑𝑡−1, 𝜏𝜑) , 𝑓𝑜𝑟 𝑡 = 𝑇
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and an exchangeable prior 𝛾𝑡~ (0, 𝜏𝛾) is imposed on the unstructured temporal effect. The number 

of parameters and hyperparameters to be estimated are 𝜃 = (𝛼, 𝛽 ) and 𝜓 = ( 𝜏𝑢 , 𝜏𝜂 , 𝜏𝛾, 𝜏𝜑  ) 

respectively. Extending equation (3.7) to allow accounting for spatio-temporal interaction effect 

leads to  

 

                                 𝑙𝑜𝑔(𝜆𝑖𝑡) = 𝛼 + 𝛽𝑥𝑖 + 𝑢𝑖 + 𝜂𝑖 + 𝛾𝑡 + 𝜑𝑡 + 𝛿𝑖𝑡                                  (3.8) 

 

where 𝛿𝑖𝑡, 𝑖 = 1,… , 𝐼; 𝑡 = 1,… , 𝑇, is the spatio-temporal interaction which can be modeled in four 

different ways depending on the assumption imposed on the form of spatial and temporal 

component (structured or unstructured) interaction (Knorr-Held, 2000). The interaction 𝛿𝑖𝑡 is often 

defined by the precision matrix  given as 𝜎𝛿
2ℝ𝛿 which under the assumption of separability can be 

separated into a product that is exclusively spatial and temporal components (i.e., 

𝐶𝑜𝑣(𝑦𝑖𝑖′ , 𝑦𝑡𝑡′) =  𝐶𝑜𝑣(𝑦𝑖𝑖′)𝐶𝑜𝑣(𝑦𝑡𝑡′)), and ℝ𝛿  is the structure matrix, representing the kind of 

time or space dependency between the elements of 𝛿 . The matrix of ℝ𝛿  is obtained as the 

Kronecker product between the space structure matrix and time structure matrix (Clayton, 1996; 

Knorr-Held, 2000). All possible forms of interaction described in the following section are 

considered in this study, where the one that best fits the model is judged using the DIC. 

 

The interaction I: unstructured spatial and temporal interaction 

This interaction assumption partitions the structure matrix ℝ𝛿   into unstructured spatial component 

ℝ𝑢 and temporal component ℝ𝛾 with an exchangeable prior which when combined via Kronecker 

product yields an interaction effect with an identity structure matrix i.e. 
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ℝ𝛿 = ℝ𝑢  ⊗ ℝ𝛾 = 𝐼 

 

The main idea behind this interaction model is the assumption of no spatial or temporal structure 

which translates into a normal distribution i.e. 𝛿𝑖𝑡 ~ 𝑁(0, 𝜎𝛿
2). 

 

Interaction II: unstructured spatial and structured temporal interaction 

Under this interaction assumption, a structured temporal effect ℝ𝜑assuming a first-order, second-

order random walk or autoregressive order one distribution is combined with an unstructured 

spatial effect ℝ𝑢 with an exchangeable distribution, i.e. 

 

ℝ𝛿 = ℝ𝑢  ⊗ ℝ𝜑 

 

The resulting structure matrix ℝ𝛿  from the above, Kronecker product follows the assumed 

distribution choice (RW (1), RW (2), or AR (1)). 

 

Interaction III: structured spatial and unstructured temporal interaction 

This interaction assumption combines a structured spatial effect ℝ𝑠assuming a CAR distribution 

with an unstructured temporal effect ℝ𝛾 with an exchangeable prior, i.e. 

 

ℝ𝛿 = ℝ𝑠  ⊗ ℝ𝛾 

 

The resulting structure matrix ℝ𝛿  from the above, Kronecker product assumes a CAR distribution.   
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Interaction IV: structured spatial and temporal interaction 

This interaction assumption combines a structured spatial effect ℝ𝑠 assuming a CAR distribution 

with a structured temporal effect ℝ𝜑  assuming any choice of RW (1), RW (2) or AR (1) 

distribution, i.e. 

 

ℝ𝛿 = ℝ𝑠  ⊗  ℝ𝜑 

 

The resulting structure matrix ℝ𝛿  from the above, Kronecker product follows a complex 

distribution.   

 

3.4.4 Bayesian Inference Framework 

A Bayesian hierarchical model algorithm was used in this study. This approach was used because 

of its ability to handle a complex model like a spatial and spatio-temporal model with ease of 

computation and implementation via available statistical software like Bayesian Using Gibb’s 

Sampling (BUGS) and or the window version WinBUGS. The Bayesian approach is a well-

established method that has been increasingly used in spatial epidemiology over the last decade 

(Torabi et al., 2014; Torabi, 2014). The Bayesian model treats the parameter vector to be estimated 

as a random variable rather than a fixed variable and allows for its randomness via the assignment 

of a prior distribution (Carlin and Xia, 1999a; Lawson 2013).  

Let 𝒚  represents the dataset which consists of 𝑦𝑖 𝑡ℎ𝑒 response variable, which in our case is the 

spatial GC counts for 96 RHADs and X is 𝑛 × 𝑝 matrix of covariates.  Let 𝜽 be a 𝑝 × 1 vector of 

the parameter to be estimated and 𝑃(𝜽) be the prior distribution of the parameter vector 𝜽, and let 
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𝑃(𝒚|𝜽) be the likelihood of obtaining data 𝒚 given the unknown parameters 𝜽, then the joint 

distribution of the data 𝒚 and parameter 𝜽 can be expressed as 

 

                                                                      𝑃(𝜽, 𝒚) = 𝑃(𝒚|𝜽) × 𝑃(𝜽)                                                 (3.9) 

 

using Bayes’ theorem, the posterior distribution can be expressed as 

 

                                                 𝑃(𝜽|𝒚) =
𝑃(𝜽, 𝒚)

𝑃(𝒚)
=
𝑃(𝒚|𝜽) × 𝑃(𝜽)

𝑃(𝒚)
                                               (3.10) 

 

where  

                                                       𝑃(𝒚) = ∫ 𝑃(𝒚|𝜽) × 𝑃(𝜽)𝒅𝜽                                                        (3.11) 

 

Equation (3.11) is often considered as a constant since it is independent of the parameter of interest; 

hence the posterior is directly proportional to the product of the likelihood and the prior 

distribution, which is given as 

 

                                                              𝑃(𝜽|𝒚) ∝ 𝑃(𝒚|𝜽) × 𝑃(𝜽)                                                  (3.12) 

 

As a result of the complexity of equation (3.10) due to equation (3.11), which in our case requires 

integration over a parameter vector 𝜽, for 96 RHADs, a closed solution may not be feasible. Hence 

a numerical integration approach is used to obtain the needed parameter estimates via Integrated 

Nested Laplace Approximation (INLA) using   Monte Carlo Markov Chain (MCMC) numerical 

algorithm. 
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The MCMC is a numerical method used for calculating numerical approximations of multi-

dimensional integrals. The main objective of using an MCMC is to draw samples from the 

probability distribution randomly. This method is integrated into Bayesian inference via the use of 

Gibbs sampling or Metropolis-Hasting scheme in WinBUGS software; some readily available 

packages created in R programming language was used during the model fitting and exploratory 

analysis. 

 

3.4.4.1 MCMC Convergence Diagnostics 

As a result of the mechanism involved in the parameter estimation, which is done via an MCMC 

sampling, we require a stationary point where further iteration via Gibbs sampling will not improve 

the parameter estimates. It is at this optimum point that we can draw reliable estimates that can be 

used for the inferential purpose about the influence of the predictors on the risk of GC incidences. 

Four methods – time series plot, Gelman Rubin statistic, auto-correlation plot, and the comparison 

between the process error and adjusted standard deviation (5% of the parameter estimates’ standard 

deviation) – are used to assess the convergence of parameter estimates.    

 

Time series plot 

This exploratory analysis shows how the parameter estimates behave over time, and to determine 

if there is a wide inconsistent dispersion in the estimation procedure. A good practice is to use 

more than one chain and then look for disparity or variation in the chain pattern; a distinct contrast 

stipulates non-convergence of the Gibbs sampler, which leads to an unreliable and misleading 

inference. 
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Gelman Rubin statistic 

This method was used to examine the convergence of multiple sequences simultaneously by 

comparing the within-sequence variance and between-sequence variance ratio (𝑅̂𝑐) (Gelman and 

Rubin 1992). The (𝑅̂𝑐) (potential scale reduction factor) is computed as follows 

                                                                            𝑅̂𝑐 =
𝑑 + 3

𝑑 + 1

𝜎̂𝑝
2

𝜎𝑤2
                                                            

                                                                 𝜎̂𝑝
2 =

𝐿 − 1

𝐿
𝜎̂𝑤
2 +

𝑚 + 1

𝑚𝑙
𝜎̂𝑏
2                                                 

                                                                   𝜎̂𝑤
2 =

1

𝑀
∑ 𝜎̂𝑚

2

𝑀

𝑚=1

                                                                   

                                                         𝜎̂𝑏
2 =

1

𝑀 − 1
∑(𝜃𝑚 − 𝜃)

2
𝑀

𝑚=1

                                                        

                                                                       𝜃 =
1

𝑀
 ∑ 𝜃𝑚

𝑀

𝑚=1

                                                                 

where 𝑑  is the degree of freedom; 𝜎̂𝑝
2  is the pooled variance under the analysis of variance 

(ANOVA) assumption of the equality of variance; 𝜎̂𝑤
2  is the within-chain variance; 𝜎̂𝑏

2  is the 

between-chain variance; 𝜃is the overall sample posterior mean; 𝜎̂𝑚
2  is the sample variance of the 

𝑚𝑡ℎ chain; 𝜃𝑚  is the sample mean for the 𝑚𝑡ℎ chain; 𝑀 and 𝐿 are the numbers of chains and 

length of the chain respectively. 

 The rule of thumb according to Gelman and Brooks 1997 is that an (𝑅̂𝑐) < 1.2 is an indication of 

convergence that requires no further iteration. 
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Autocorrelation 

The autocorrelation was used to show that the estimates obtained from a sampling process are 

independent. Since the process of getting the posterior distribution depends on iterative sampling 

via Gibbs sampler, the dependency of subsequent sampling estimate on the previous sampling 

estimate implies that the current parameter estimate is not different from the past. The recurring 

evaluation could be seen as the process been stocked in a repetitive loop without a new informative 

estimate. The general idea is to observe that as the process lag increases, the autocorrelation 

decreases.  

  

Markov chain error 

The idea here is to compare the Markov chain error (MC Error) with 5% of the standard deviation 

and ensure that the MC error is less than 5% standard error to support convergence.  

 

3.4.4.2 Prior Sensitivity Analysis 

Sensitivity analysis is often carried out in a Bayesian modeling approach due to the mechanism of 

the model construct. One primary concern in the Bayesian modeling approach is the influence of 

prior on the posterior estimates, which could lead to a spurious inference. In order to ascertain that 

the choice of our priors does not influence the parameter estimates, four variants of minimally 

informative priors were imposed on all models. The marginal plots of the distributions of the fixed 

effect parameter estimates and variance of each of the models under these four different prior 

assumptions are examined for any significant difference. 
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3.5 Research Scope 

Before addressing the first research objective, an analysis was carried out to examine the existence 

of spatial dependency in GC risk ratios across the 96 RHADs. The assessment of spatial 

dependence was done by displaying the residual GC risk ratios graphically to find any systematic 

pattern or clusters, which was followed by a confirmatory significance test using Moran I statistic.  

Upon the establishment of spatial dependency, a spatially smoothed GC incidence risk ratio was 

examined via a spatial regression model. The result of which is graphically explained via the aid 

of the map after adjusting for age and sex population difference across the 96 RHADs. 

This procedure paved the way for addressing the second research objective, which was done by 

examining the effect of the covariates discussed above on the risk of GC. 

Lastly, the third research objective was addressed by incorporating a time component variable into 

the spatially smoothed model used in addressing the second research objective. The inclusion of 

the temporal component enables us to investigate both the impact of time on the risk of GC and 

change in GC risk ratio across the 96 RHADs. This was achieved by looking at the effect of the 

temporal component and the interactive impact of spatial component and time component. 
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Chapter 4: RESULTS 

4.1 Descriptive Results 

In this section, we explore the dataset using both graphical and numerical analysis to adjust for 

any inherent distortion present in the dataset. This procedure helps us to eliminate any recurrent 

errors that may affect our overall judgment. A total of 3172 cases of GC in Manitoba were 

extracted from the CCR, where 980 (approximately 31%) were cardia GC, and 2192 

(approximately 69%) were non-cardia GC. The number of cases reported here spans over 25 years 

(1992 − 2016). To have a prior idea of the pattern of the distribution of the GC in the province to 

guide the analytical process, we categorized the GC cases into sub-groups (age-groups, sex, and 

year of diagnosis). The trend plot in Figure 4.1 shows an irregular pattern (which could be random 

or statistically significant) over the 25-years, with the two highest peak crude rates in 1993 and 

2007, where the 1993 peak could be due to including prevalent cancer cases.  

Figure 4.1:  Plot of time trend of Gastric Cancer Crude rate (per 100,000 population) in Manitoba 

over 25 years (1992-2016) 
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Overall, we observe a steady trend over time in the incidence of GC in the province.  

Based on prior knowledge about the distribution of GC, which suggests that the main population 

at-risk are the adults and that the variation in population distribution could lead to a distorted risk 

estimate, an adjustment for age-group and sex was done to produce a standardized risk estimate.  

The standardization helps to reduce the distorting effect of the difference in age-sex population 

distribution on the estimated rate, as shown in Figures 4.2 - 4.4 below. Figure 4.2 (a-b) represents 

the spatial distribution of GC cases (counts). The map does not reveal much information in most 

regional health authorities (RHAs) (Figure 4.2a), except for WRHA (Figure 4.2b). The 

distributional pattern exhibited by WRHA can be attributed to its dense population compared to 

other RHAs. 

Figure 4.2:  Map of GC counts across the 96 RHADs in Manitoba and Winnipeg; numbers in the 

map are the district number from 1 to 96. 

             
        (a)                                                                (b)                                                           
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This effect of population variation was adjusted by computing the crude rate, which is the 

measurement of GC incidence relative to each district’s population, as shown in Figure 4.3 (a-b). 

The map shows that some of the districts have a higher risk of GC compared to the inaccurate GC 

incidence risk displayed in Figure 4.2, which was not adjusted by the population size in each 

district.  

 

Figure 4.3: Map of   GC crude rate across the 96 RHADs in Manitoba and Winnipeg; numbers in 

the map are the district number from 1 to 96. 

 

                 

 

However, RHADs GC incidence risk ratio comparison based on the crude rate estimated in Figure 

4.3 may still be misguided. This is because districts with a high population may have a high number 

                 (a)                                                                   (b)                                                        
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of cases, as shown in Figure 4.2b. This led to using the age and sex to adjusting for RHADs 

population difference with the result in Figure 4.4 (a - b). The adjusted risk ratio is defined as  

                                             𝑆𝐼𝑅 =
𝑦𝑖
𝐸𝑖
                                           (4.1) 

 

where 𝑦𝑖 is the observed GC cases and 𝐸𝑖 is the expected GC cases as defined in Chapter 3.  

 

Figure 4.4:  Map of age-sex adjusted incidence ratio of GC across the 96 RHADs in Manitoba 

and Winnipeg; numbers in the map are the district number from 1 to 96. 

 

                         
 

 

 We also provided the maps of GC for age-adjusted, sex-stratified incidence ratio and age-sex 

adjusted incidence ratio for GC by topographical subsites (cardia and non-cardia) (Figures 4.5 - 

4.12). 

        (a)                                                              (b)                                                        
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The result of the age-adjusted, sex-stratified GC risk ratio for men in Figure 4.5 below identified 

that men in four districts (Winnipeg Churchill in Northern RHA, Beausejour in Interlake Eastern 

RHA, Gods Lake Narrows in Northern RHA and Bay Line in northern RHA) had a risk value 

between 3.66 – 11.98. Also, men in eleven districts (Dauphin in Prairie mountain health RHA, 

Roland/Thompson in southern health RHA, Arborg in Interlake Eastern RHA, little grand rapids 

in Interlake Eastern RHA, The Pas in Northern RHA, Brandon East end in Prairie mountain RHA, 

Downtown East in Winnipeg RHA, Point Douglas South in Winnipeg RHA, Point Douglas North 

in Winnipeg RHA, River East South in Winnipeg RHA, and Lac Brochet in Northern RHA) were 

identified with GC risk between 1.70 – 3.65. 

Figure 4.5: Map of age-adjusted, sex-stratified incidence ratio of GC for males across the 96 

RHADs in Manitoba and Winnipeg; numbers in the map are the district number from 1 to 96.    

 

        (a)                                                                              (b)                                                        
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From Figure 4.6, women in four districts (Beausejour in Interlake Eastern RHA, Grand Rapids in 

Northern RHA, Gods Lake Narrow in Northern RHA, and Bay Line in Northern RHA) were 

identified with GC risk between 3.66 –11.98.  

Also, women in 9 districts (Gimli in Interlake Eastern RHA, Winnipeg Churchill in Northern RHA, 

Powerview in Interlake Eastern RHA, Lac Brochet in Northern RHA, Island Lake in Northern 

RHA, Brandon East end in Prairie mountain health RHA, The Pas in Northern RHA, River East 

South in Winnipeg RHA, and River East North in Winnipeg RHA) were identified with a GC risk 

between 1.70 – 3.65 

 

Figure 4.6: Map of age-adjusted, sex-stratified incidence ratio of GC for females across the 96 

RHADs in Manitoba and Winnipeg; numbers in the map are the district number from 1 to 96. 

                   
         (a)                                                                         (b)                                                        
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The result of CGC from Figure 4.7 below identified one district (Lac Brochet in Northern RHA) 

with risk of CGC between 3.66 – 11.98, and 5 districts (Souris River in Prairie mountain Health 

RHA, Little Saskatchewan in Prairie mountain health RHA, Red river south in southern health 

RHA, Gimli in Interlake eastern RHA, and Brandon east end in Prairie mountain health RHA) 

with cardia GC (CGC) risk between 1.70 – 3.65. 

 

Figure 4.7: Map of age-sex adjusted incidence ratio of cardia GC across the 96 RHADs in 

Manitoba and Winnipeg; numbers in the map are the district number from 1 to 96. 

 

          

 

 

        (a)                                                                           (b)                                                        
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The result of non-cardia GC (NCGC) in Figure 4.8 identified one district (Gods Lake Narrow in 

Northern RHA) with NCGC risk between 3.66 – 11.98 and nine districts  (Souris River in Prairie 

Mountain Health RHA, Winnipeg Churchill in Northern RHA, Grand Rapids in Northern RHA, 

Little Grand Rapids in Interlake Eastern RHA, Rural East in Southern Health RHA, The Pas in 

Northern RHA, Downtown East in Winnipeg RHA, Point Douglas South in Winnipeg RHA and 

River East South in Winnipeg RHA) with NCGC risk between 1.70 – 3.65. 

 

Figure 4.8: Map of age-sex adjusted incidence ratio of non-cardia GC across the 96 RHADs in 

Manitoba and Winnipeg; numbers in the map are the district number from 1 to 96. 

           

 

These observed variations in risk for all data subsets across the province have been shown in the 

literature to be influenced by either environmental factors or genetic factors. As a result of this, 

        (a)                                                                   (b)                                                        
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our study aims to investigate the etiology of GC relative to environmental factors, which also 

exhibit spatial variation, as shown in Figures 4.9 – 4.14 below.  

One of the environmental variables of interest studied in this study used in the creation of the 

district level SES is the median household income, which has been aggregated into the 96 RHADs 

Figure 4.9 (a – b). 

 

Figure 4.9: Map of median annual income across the 96 RHADs in Manitoba and Winnipeg; 

numbers in the map are the district number from 1 to 96. 

  

 

Figure 4.9 (a – b) represent the map of household income across the 96 RHADs in Manitoba and 

the 25 RHADs in Winnipeg RHA. We calculated the RHADs household income using the regional 

median as the measure of central tendency since we are dealing with income data, which tends to 

be skewed. The plot shows that more districts in the north have a median annual income less than 

                 (a)                                                                                       (b)                                                        
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$21,841 compared to other districts in the province, as 6 RHADs out of the 7 RHADs with a 

median yearly income less than $21,841 were located in the northern region of the province. The 

result also shows that the minimum median income in Winnipeg RHA was between $21,841 - 

$43,648, and the maximum was between $87,681 – $129,056. Also, 5 RHADs out of the 12 

RHADs (42%) with the highest income were located in WRHA, an indication that Winnipeg is 

among the highest-paid RHAs. This result shows the variation in income distribution in the 

province, which could partially be responsible for the difference in GC risk across the province.  

Another varying geographical factor that could also influence GC risk across the 96 RHADs is the 

Indigenous population. Indigenous Peoples are densely residents in the northern region of the 

province. Figure 4.10(a - b) shows that more than 50% of the majority of the districts in the north 

were made up of Indigenous Peoples. Note that 11 RHADs out of the 14 RHADs (78%) with 

70.1% - 99% Indigenous population were located in the north, while very few resided in WRHA. 

The highest Indigenous population settlement in WRHA was between 19.4% - 43%  located in 4 

RHADs. 
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Figure 4.10: Map of Indigenous People population across the 96 RHADs in Manitoba and 

Winnipeg; numbers in the map are the district number from 1 to 96. 

  
 

Unemployment is another variable that could influence the GC incidence rate. The highest 

unemployment rate was estimated to be 11.1%. The unemployment map presented in Figure 4.11 

(a – b) reveals that there were more unemployed people in the northern region compared to the 

southern part of the province. Note that 6 RHADs out of the 9 RHADs (66.7%) with the highest 

unemployment population were located in the northern RHA. The highest unemployment rate in 

WRHA (Figure 4.12) was 6.3%, and 4 RHADs were found in this category (4.5% - 6.3%). 

Generally, more RHADs in WRHA had a lower unemployment rate (between 0% - 4.4%). The 

majority of the RHADs in northern RHA had a high percentage of the unemployment rate (6.34% 

- 11.12%) compared to other RHAs in southern Manitoba, where the unemployed percentage 

population ranged between 3.31% to 4.45%. 

 

                 (a)                                                             (b)                                                        
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Figure 4.11: Map of the unemployment rate across the 96 RHADs in Manitoba and Winnipeg; 

numbers in the map are the district number from 1 to 96. 

 

  

 

We also looked at the distribution of no post-secondary education in association with the GC 

incidence rate in Manitoba. This distribution, as shown in Figure 4.12 (a – b), showed that the 

majority of the northern and eastern regions did not have post-secondary education. In specific, 20 

out of 96 RHADs had a percentage between 48.9 – 55.1 of their populations having no post-

secondary school education. One RHAD (Point Douglas South) in WRHA was detected in the 

category with a high percentage of no post-secondary school education. Apart from Point Douglas 

south in WRHA, the majority of the districts in WRHA had a low rate of no post-secondary school 

education. Note that 22 RHADs out of 25 RHADs in WRHA had between 0 and 44.3% of no post-

secondary education. 

 

                 (a)                                                                              (b)                                                        
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Figure 4.12: Map of people with no post-secondary education across the 96 RHADs in Manitoba 

and Winnipeg; numbers in the map are the district number from 1 to 96. 

 

  

 

Similarly, we considered the distribution of immigrants across the 96 RHADs in Figure 4.13(a – 

b). We observed that the majority of the immigrant resided in the southern part of the province, 

where 9 RHADs had a high percentage between 27.4 – 53.9% of its population being immigrants. 

Only one RHAD (district 01) in the northern RHA had between 2.6 – 8.2% of its population to be 

immigrants, as shown in Figure 4.13a. WRHA had between 2.6 - 8.2% of its population to be 

immigrants, as shown in Figure 4.13b. 

 

 

  

                 (a)                                                                                  (b)                                                        
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Figure 4.13: Map of immigrants across the 96 RHADs in Manitoba and Winnipeg; numbers in 

the map are the district number from 1 to 96. 

 

  

 

Finally, we examined the distribution of socioeconomic score index (SESI) created by exploratory 

Factor analysis described in Chapter 3 using the most recent 2016 Census data. The result from 

the Factor analysis showed that the extracted factor (labeled SESI) accounts for 58% of the 

variation in the three variables. We also observed that the income variable was the most associated 

variable to SESI (highest loading value), and employment was the least associated variable to 

SESI. We also deduced that SESI captured 73 % of the variation in income, 60 % of the variation 

in education, and 41% of the variation in employment. The map of the SESI is represented in 

Figure 4.14 (a – b).  

                 (a)                                                                              (b)                                                        
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Figure 4.14: Map of socioeconomic status score index across the 96 RHADs in Manitoba and 

Winnipeg; numbers in the map are the district number from 1 to 96. 

 

  

 

The SESI value ranged from 0.643397 to 9.4163, where a higher score implies a better 

socioeconomic status. Note that 15 RHADs had high SES score index; 8 RHADs (Fort Garry 

south, St. vital south, Assiniboine south, Fort Garry north, River height west, St. Boniface, River 

east north, and Seven Oaks north) were from Winnipeg RHA, 4 RHADs (MacDonald, Notre 

Dame/ St. Claude, Cartier/SFX, and Tache) from Southern health RHA, and 3 RHADs (District 

02, Springfield, and District 03) from Interlake Eastern RHA. Most of these districts were located 

in the urban municipalities and majorly found in the southern part of the province. 

 

 

                 (a)                                                                              (b)                                                        
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4.2 Confirmatory Results 

4.2.1 Poisson Regression Model 

As part of the preliminary model, a Poisson regression model was fitted using the Bayesian 

approach, and the final summary is shown in Table 4.1. An initial univariate Poisson regression 

was fitted to determine the relationship between the independent variables (IV) and the GC risk. 

The result of this procedure, reported in   Table 4.1, showed that all the 3 independent variables 

are significantly associated with the GC risk. This result suggested that each of the IVs was a 

potential candidate for inclusion in the final model. All MCMC convergence diagnostic conditions 

discussed in the method section (sub-section 3.4.4.) were satisfied. 

 

Table 4.1: Incidence risk ratio (IRR) and 95% credible interval for  

overall GC dataset using univariate Poisson regression model  

Parameter Incidence Risk Ratio (95% credible interval) 

Immigrant  1.65 (1.2289, 2.2155) 

Indigenous  1.62 (1.3134, 1.9991) 

SESI 0.90 (0.8742, 0.9226) 

 

 

This result was followed by a manual forward stepwise regression model procedure to determine 

the most parsimonious log-linear model. The initial non-spatial model derived from this procedure 

is given as: 

                  𝑙𝑜𝑔(𝜆𝑖) = 𝛼 + 𝑠𝑒𝑠𝑖𝑖 ∗ 𝛽1 + 𝑖𝑚𝑚𝑖𝑔𝑟𝑎𝑛𝑡𝑖 ∗ 𝛽2 + 𝑖𝑛𝑑𝑖𝑔𝑒𝑛𝑜𝑢𝑠𝑖 ∗ 𝛽3                      (4.21) 

The model was fitted using R-INLA default prior settings assuming a less informative prior for 

the parameters to be estimated, to give the model more power to rely on the data. In specific, we 
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assumed a uniform prior distribution with a broad range (i.e., 𝛼~ 𝑈(−∞,+∞)) for intercept and 

a normal prior distribution with mean zero and a large variance (i.e., 𝛽~ 𝑁(0,   1000) where  

𝜎2 = 𝜏−1). The results are presented in Table 4.2 below. 

 

Table 4.2: Incidence risk ratio (IRR) and 95% credible interval for  

overall GC dataset using saturated Poisson regression model  

Parameter 

Incidence Risk 

Ratio  

 

95% Credible Interval 

(Lower, Upper) 

SESI 0.9039 (0.8694,   0.9399) 

Immigrant  1.0101 (1.007,    1.0131) 

Indigenous 1.003 (1.000,   1.006) 

 

 

The result presented in Table 4.2 is a preliminary procedure, which is one of the exploratory 

analyses. The interpretation herein is for exploratory purposes only which differs from our final 

confirmatory analysis in later sections. The result showed a significant association between 

socioeconomic status, immigrant and risk of overall GC as the 95% credible interval does not 

contain the null hypothesis and a merely significant association between Indigenous population 

and risk of overall GC 

(𝐻0: 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 = 1).  

It can be deduced from the result summary in Table 4.3 that a unit increase in RHADs 

socioeconomic score index reduces GC risk by 9% while adjusting for immigrant and Indigenous 

variables. Also, a 1% percent increase in the proportion of immigrants in a specific RHAD 
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increases the RHAD GC risk by approximately 1% while adjusting for the effect of socioeconomic 

score index and Indigenous effect. 

We obtained a similar result for the male GC population (Table 4.3), where the socioeconomic 

score index and the immigrant population were significantly associated with the risk of GC in 

males. In specific, a unit increase in socioeconomic score index decrease the risk of GC in men 

population by approximately 10%. 1% increase in the proportion of immigrants reduces the risk 

of GC in the men by less than 1% while the Indigenous proportion was not significantly associated 

with the risk of GC in the men population. 

 

Table 4.3: Incidence risk ratio (IRR) and 95% credible interval for  

men GC dataset using saturated Poisson regression model  

Parameter 

 Incidence Risk     

       Ratio 

 

95% Credible Interval 

(Lower, Upper) 

SESI 0.8994 (0.8573,   0.9436) 

Immigrant  0.991 (0.955,    0.997) 

Indigenous 0.998 (0.994,   1.006) 
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Table 4.4: Incidence risk ratio (IRR) and 95% credible interval for  

female GC dataset using saturated Poisson regression model  

Parameter 

 Incidence Risk 

Ratio 

 

95% Credible Interval 

(Lower, Upper) 

SESI 0.9021 (0.8403,   0.9646) 

Immigrant  1.008 (1.003,    1.1503) 

Indigenous 1.005 (0.999,   1.0111) 

 

Considering the risk of GC in the women population (Table 4.4), we observed a similar result 

where only the SESI and the immigrant population proportion were significantly associated with 

the risk of GC in the women population. Table 4.4 shows that a unit increase in SESI reduces the 

risk of GC in the women population by approximately 10%. A 1% increase in the proportion of 

immigrants increases the risk of GC in the women population by approximately 1%. 

 

Table 4.5: Incidence risk ratio (IRR) and 95% credible interval for  

CGC dataset using saturated Poisson regression model  

Parameter 

 Incidence Risk 

Ratio  

 

95% Credible Interval 

(Lower, Upper) 

SESI 0.8564 (0.7993,   0.9185) 

Immigrant  1.005 (0.99,    1.0101) 

Indigenous 1.0131 (0.9812,   1.0182) 
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For CGC (Table 4.5), only the SESI index showed a significant relationship with the risk of CGC 

as a unit increase in the socioeconomic score index decreases the risk of CGC by 14%. We also 

obtained a similar result for NCGC (Table 4.6), where the SESI reduced the risk of NCGC by 

10%. 

 

Table 4.6: Incidence risk ratio (IRR) and 95% credible interval for  

NCGC dataset using saturated Poisson regression model  

Parameter 

Incidence 

Risk Ratio 

 

95% Credible Interval 

(Lower, Upper) 

SESI 0.8994 (0.8741,   0.9436) 

Immigrant  1.009 (1.006,    1.0131) 

Indigenous 1.002 (0.998,   1.005) 

 

However, the estimated parameters may be overestimated. This issue was addressed by 

introducing a spatial component effect in the model, which among other benefits, adjusts the 

variance via the introduction of the spatial dependence variance-covariance matrix discussed in 

the method section (Chapter 3).   

The next phase of this study was the incorporation of an extra-Poisson component into the Poisson 

regression model (equation 4.21) to describe the structured spatial effect on GC risk. To do this, 

we examined the distribution of the unexplained variation across the RHADs and also determined 

the spatial dependence of GC occurrence using the Moran’s I statistic. 
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4.2.2 Spatial Dependence Assessment 

 In this sub-section, apart from the fact that our response of interest is spatially aggregated which 

suggests the use of the spatial model as the appropriate analytic tool, we also justify the reason for 

including a spatial component into our model. We adopted both exploratory and confirmatory 

analyses to support our decision. 

Firstly, we plot the unexplained variation (residuals) in GC risk to show that the unexplained 

variation differs across the 96 RHADs (Figure 4.15). The map shows the existence of unaccounted-

for spatial variation by the Poisson regression model. This result supports our decision to include 

an extra-Poisson component into the model to describe this variation. 

 Also, we discovered that some RHADs had similar unexplained variation (clusters), which 

suggested similarity in GC risk among these districts. 

Also, a Moran’s I value of 0.1563 (p-value = 0.007) was obtained, indicating the presence of 

spatial dependence (clusters). These tests confirmed the presence of spatial correlation in GC cases 

and are addressed in the subsequent sections. 
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Figure 4.15: Map of unexplained variation in 96 RHADs in Manitoba and Winnipeg; numbers in 

the map are the district number from 1 to 96. 

 

  

 

4.2.3 Spatial Result: Ecological Regression Model 

In order to address our second research objective, an ecological regression model was fitted using 

R-INLA for all data subset extracted from the parent data and the results were shown in Table 4.7.  

We imposed an ICAR on the spatial effect via Besag York Mollie (BYM), and minimally 

informative priors were imposed on all parameters as follows. A uniform prior distribution was 

assumed for the intercept 𝛼~ 𝑈(−∞,+∞) , a normal prior distribution for the slopes 

𝛽~ 𝑁(0,   1000) , and a log Gamma prior for both spatially structured and unstructured precision 

log 𝜏 ~ log𝐺𝑎𝑚𝑚𝑎 (0.1,   0.01).  

                 (a)                                                                              (b)                                                        
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Table 4.7: Incidence risk ratio (IRR) and 95% credible interval for overall,  

male and female GC dataset using spatial Poisson regression model 

Parameter Overall population Male population Female population 

IRR 95% Credible 

Interval 

(Lower, Upper) 

IRR 95% Credible 

Interval 

(Lower, Upper) 

IRR 95% Credible 

Interval 

(Lower, Upper) 

SESI 

Immigrant 

Indigenous 

0.9213 

1.003 

1.001 

(0.836, 1.013) 

(0.992, 1.014) 

 (0.994, 1.008) 

0.916 

1.004 

1.000 

(0.833, 1.008) 

 (0.993, 1.014) 

 (0.992, 1.007) 

0.906 

1.003 

1.004 

(0.814, 1.010) 

 (0.992, 1.014) 

 (0.961, 1.012) 

 

From Table 4.7, it can be seen that the covariates did not significantly predict the risk of GC for 

the overall GC dataset and the sex-stratified GC dataset.  

 

Table 4.8: Incidence risk ratio (IRR) and 95% credible interval for cardia  

and non-cardia GC dataset using spatial Poisson regression model 

Parameter 

Cardia GC Non-cardia GC 

IRR 
95% Credible 

Interval 

(Lower, Upper) 
IRR 

95% Credible 

Interval 

(Lower, Upper) 

SESI 

Immigrant 

Indigenous 

0.859 

0.994 

0.986 

(0.780, 0.947) 

(0.983, 1.003) 

(0.978, 0.994) 

0.898 

1.002 

1.000 

(0.812, 0.995) 

(0.990, 1.014) 

(0.990, 1.007) 

 

Table 4.8 represents the CGC and NCGC stratified dataset. Unlike the overall result, SESI was a 

significant factor associated with CGC. A unit increase in SES score decreases the risk of CGC by 

14%, and the risk of NCGC by 10%. The risk of CGC among the Indigenous People, which was 
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marginally significant, is reduced by 1.4% compared to the rest of the population, while that of 

NCGC among the Indigenous was not significant.  

Table 4.9: Incidence risk ratio (IRR) and 95% credible interval for  

cardia GC dataset stratified by sex using spatial Poisson regression model 

Parameter 

Male Female 

IRR 
95% Credible 

Interval 

(Lower, Upper) 
IRR 

95% Credible 

Interval 

(Lower, Upper) 

SESI 

Immigrant 

Indigenous 

0.930 

1.003 

1.010 

(0.827, 1.012) 

(0.986, 1.006) 

(0.982, 1.049) 

0.738 

0.994 

0.981 

(0.618, 0.879) 

(0.979, 1.009) 

(0.966, 0.996) 

Further stratification of CGC by sex, as shown in Table 4.9, revealed no significant impact of 

SESI, immigrant and Indigenous variables on the risk of CGC for the men population. A different 

result for the women population was observed, where a unit increase in district SES score decreases 

the risk of CGC among the women population by a significant 26.2%, and the risk of CGC among 

Indigenous women population is reduced by 1.9% compared to the general population. The result 

of the non-cardia GC sex-stratified spatial model displayed in Table 4.10 showed no significant 

impact of the covariates on the risk of NCGC. 

Table 4.10: Incidence risk ratio (IRR) and 95% credible interval for  

 non-cardia GC dataset stratified by sex using spatial Poisson regression model 

Parameter Male Female 

IRR 95% Credible 

Interval 

(Lower, Upper) 

IRR 95% Credible Interval 

(Lower, Upper) 

SESI 

Immigrant 

Indigenous 

0.910 

1.010 

1.001 

(0.811, 1.022) 

(0.997, 1.022) 

(0.992, 1,010) 

0.922 

1.001 

1.004 

(0.819, 1.040) 

(0.987, 1.014) 

(0.995, 1.013) 
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Table 4.11: Variance estimates, 95% credible interval, and percent of spatial variation explained 

for overall, male, female, cardia and non-cardia GC dataset using spatial Poisson regression 

model 

Model Spatial variance 

(95% Credible 

Interval) 

Non-spatial variance 

(95% Credible Interval) 

 Spatial variation 

explained (%) 

Overall 

population 

0.013 (0.004, 0.090) 0.106 (0.062, 0.1937) 11 

Male 

population 

 

0.015 (0.004, 0.102) 0.079 (0.039, 0.170) 16 

Female 

population 

0.014 (0.004, 0.102) 0.060 (0.023, 0.181) 19 

Cardia 
0.028 (0.003, 0.084) 0.014 (2.99E-05, 0.020) 67 

Non-cardia 
0.042 (0.014, 0.188) 0.074 (0.035, 0.201) 36 

 

Table 4.11 shows that 11% of the variation in overall GC dataset was explained by spatial 

component, 16% of the variation in men stratified GC dataset was explained by spatial component, 

19% of the variation in women stratified GC dataset was explained by spatial component, 67% of 

the variation in cardia CG was explained by spatial component, and 37% of the variation in Non-

cardia CG was explained by spatial component. To further understand spatial variation of GC, 

CGC, and NCGC across the 96 RHADs, the corresponding smoothed spatial maps were plotted as 

shown in Figures 4.16 – 4.20. 
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Figure 4.16: Map of standardized incidence ratio of overall GC for 96 RHADs in Manitoba and 

Winnipeg using spatial Poisson regression model; numbers in the map are the district number from 

1 to 96. 

 

                      

 

 

The spatial map of SIR of overall GC after adjusting for the effect of SES, Indigenous population, 

and immigrant population displayed in Figure 4.16 (a – b) identified a total of 25 districts with a 

higher overall GC risk compared to the rest of the population. Note that 11 (44%) out of the 25 

districts with high overall GC were located in WRHA central. One district (District 06) in Interlake 

eastern RHA had the highest risk compared to the rest of the population (3.66 – 11.98). Three 

districts (Winnipeg Churchill in Northern RHA, district 12 in northern RHA, and Brandon east 

end in Prairie mountain RHA) had a higher risk than the rest of the population (1.70 – 3.65).  

 

                 (a)                                                                                  (b)                                                        
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Figure 4.17: Map of standardized incidence ratio of male overall GC for 96 RHADs in Manitoba 

and Winnipeg using spatial Poisson regression model; numbers in the map are the district number 

from 1 to 96. 

 

        
 

The result of the spatial variation of GC stratified by sex for men population displayed in Figure 

4.17 (a – b) identified 22 districts with GC incidence risk ratio greater than the rest of the 

population. Note that 7 RHADs out of the 22 RHADs (i.e., 32%) had a high GC incidence risk 

ratio relative to the rest the population which were located in WRHA. Five districts (Winnipeg 

Churchill in the northern RHA, Brandon East end and Dauphin in Prairie Mountain RHA, and 

downtown East & Point Douglas North in Winnipeg RHA) had the highest risk ratios between 

1.70 – 3.65. 

 

                 (a)                                                                                  (b)                                                        
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Figure 4.18: Map of standardized incidence ratio of female overall GC for 96 RHADs in Manitoba 

and Winnipeg using spatial Poisson regression model; numbers in the map are the district number 

from 1 to 96. 

               

 

For the women GC sub-population, a total of 16 RHADs were identified with a high GC incidence 

risk ratio relative to the rest of the population. Note that 10 out of the 16 RHADs (i.e., 63%) were 

located in WRHA. No district was found in the highest risk range, one RHAD (district 06 in 

Interlake RHA) was identified with the highest GC incidence risk ratios (Figure 4.18). 

 

The result of CGC spatial variation in Figure. 4.19 identified 11 RHADs with a high CGC 

incidence risk ratio relative to the rest of the population. Note that 6 out of the 11 RHADs (i.e., 

55%) were located in WRHA.  

 

                 (a)                                                                          (b)                                                        
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Figure 4.19: Map of standardized incidence ratio of CGC for 96 RHADs in Manitoba and 

Winnipeg using spatial Poisson regression model; numbers in the map are the district number from 

1 to 96. 

 

             

 

The result of the NCGC in Figure 4.20 identified 27 RHADs with a higher risk of NCGC relative 

to the rest of the population. Note that 11 out of the 27 RHADs (i.e., 41%) with a high NCGC 

incidence risk ratio were located in WRHA. Similar to CGC, no RHAD was found in the highest 

risk class interval where 4 RHADs (Souris River in Prairie Mountain RHA, Winnipeg Churchill 

in northern RHA, Rural East in Southern Health RHA, and Point Douglas South in Winnipeg 

RHA) were identified with the highest NCGC incidence risk ratios.  

                (a)                                                                          (b)                                                        
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Figure 4.20: Map of standardized incidence ratio of NCGC for 96 RHADs in Manitoba and 

Winnipeg using spatial Poisson regression model; numbers in the map are the district number from 

1 to 96. 

 

             

 

4.2.4 Spatio-temporal Regression Result 

In order to address the third research question, the ecological regression model was modified by 

adding temporal random effect and interaction effect between temporal random and spatial random 

effects. Due to the rareness of GC, the twenty-five-time frame was compressed into five time 

periods as follows: 

Period 1: summation of GC cases from 1992 – 1996 

Period 2: summation of GC cases from 1997 – 2001 

Period 3: summation of GC cases from 2002 – 2006 

                 (a)                                                                                  (b)                                                        
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Period 4: summation of GC cases from 2007 – 2011 

Period 5: summation of GC cases from 2012 – 2016 

A combination of three smoothers (RW(1), RW(2) and AR(1)) for the temporal random effect was 

applied on the four types of spatio-temporal interaction discussed in the method section (Chapter 

3) using R-INLA. The model that best fits the data was selected using the DIC (Appendix I). 

 

Figure 4.21: Marginal temporal random effect and 95% credible interval plot for overall GC, male 

GC, female GC, NCGC, and CGC 

                     

 

              

(a) Overall GC                                                    (b) Male GC                                                        

        (c) Female GC                                                                       (d) NCGC                                                        
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The results of marginal temporal effect plots, reported in Figure 4.21 (a – e), showed a steady non 

increasing or decreasing trend for overall GC (a), male GC (b), female GC (c) and NCGC (d), 

while a decreasing trend is observed for CGC (e). However, the steadiness of the overall GC, male 

GC, female GC, and NCGC did not hold for all districts as some districts like Porcupine Mountain 

in Prairie Mountain Health RHA, Pinawa in Northern RHA, Lac Brochet in Northern RHA, and 

Winnipeg Churchill in Northern RHA exhibited an increased risk of overall GC while The Pas 

from northern RHA exhibited a decrease in overall GC risk compared to the rest of the population 

(Figure 4.22). 

 

 

 

 

 

(e) CGC                                                            
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Figure 4.22: Temporal random effect and 95% credible interval plot of overall GC for Porcupine 

Mountain, Pinawa, Lac Brochet, The Pas and Winnipeg Churchill district 

      
 

 

                   
 

 

Lastly, we examined the spatio-temporal random effect for overall GC, male GC, female GC, 

CGC, and NCGC, which showed spatial variation in risk over time. 

 

 

 

 

 

 

     (a) Porcupine Mountain                   (b) Pinawa                              (c) Lac brochet                                                     

              (d)  The Pas                    (b) Winnipeg Churchill                                                      
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Figure 4.23: Maps of standardized incidence ratio of overall GC for 96 RHADs in Manitoba and 

Winnipeg for five time periods using spatio-temporal Poisson regression model; numbers in the 

map are the district number from 1 to 96. 

 

 
 

 

 

We considered several spatio-temporal models with different temporal smoothers and various 

interactions between space and time, as described in Chapter 3.  The model with RW (1) smoother 

for the structured temporal random effect and RW (1) for the structured temporal effect and 

unstructured spatial random effect in the space-time interaction effect were adjudged the best with 

the DIC value of 2202.78 (Appendix 1). Figure 4.23(a - j) above, demonstrated the presence of 

geographical variation of overall GC incidence risk across the 96 RHADs over time.  

Similarly, for the male strata, the spatio-temporal model with RW (1) smoother for the temporal 

random effect, and AR (1) for the structured temporal random effect in the spatio-temporal 

interaction effect and the unstructured spatial random effect were adjusted the best model based 

 (a)                               (b)                          (c)                        (d)                            (e) 

 (f)                               (g)                          (h)                        (i)                            (j) 
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on the DIC value 1992.44 (Appendix 1).  An increasing trend over time was observed across most 

of the RHADs, especially in the northern region of the province. 

 

Figure 4.24: Maps of standardized incidence ratio of overall male GC for 96 RHADs in Manitoba 

and Winnipeg for five time periods using spatio-temporal Poisson regression model; numbers in 

the map are the district number from 1 to 96 

 

 

 

The result presented in Figure 4.25 showed the spatio-temporal model for female GC strata. The 

spatio-temporal model with AR (1) smoother for the temporal effect and AR (1) for the structured 

temporal random effect in the spatio-temporal interaction and the unstructured spatial random 

effect were adjudged the best model, having the smallest DIC value 1559.08 (Appendix 1). We 

observed a steady risk of GC for women across most RHADs. 

 

 

 (a)                               (b)                          (c)                        (d)                            (e) 

 (f)                           (g)                          (h)                           (i)                          (j) 
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Figure 4.25: Maps of standardized incidence ratio of overall female GC for 96 RHADs in 

Manitoba and Winnipeg for five time periods using spatio-temporal Poisson regression model; 

numbers in the map are the district number from 1 to 96 

 
 

 

 

The spatio-temporal result for CGC was based on the spatio-temporal model with RW (2) 

smoother for the temporal random effect, and an AR (1) smoother for the structured temporal effect 

in the spatio-temporal interaction and the unstructured spatial random effect (Appendix 1). Figure 

4.26 shares a very close pattern with that of the women GC with almost steady risk over time and 

a little variation in Prairie Mountain and Winnipeg RHA. 

 

 

 

 (a)                               (b)                          (c)                        (d)                            (e) 

 (f)                           (g)                          (h)                        (i)                          (j) 
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Figure 4.26: Maps of standardized incidence ratio of CGC for 96 RHADs in Manitoba and 

Winnipeg for five time periods using spatio-temporal Poisson regression model; numbers in the 

map are the district number from 1 to 96 

 
 

 

 

Lastly for the NCGC, the spatio-temporal model with RW (1) smoother imposed on the temporal 

random effect, and RW (1) smoother imposed on the structured temporal effect in the spatio-

temporal interaction and unstructured spatial random effect were adjudged the best model with the 

smallest DIC value of 1987.02 (Appendix 1). The result revealed a significant variation in the risk 

NCGC across the RHADs in Manitoba over time, as almost all the RHA showed some variations 

over time, as shown in Figure 4.27. 

Figure 4.27: Maps of standardized incidence ratio of NCGC for 96 RHADs in Manitoba and 

Winnipeg for five time periods using spatio-temporal Poisson regression model; numbers in the 

map are the district number from 1 to 96 

 (a)                               (b)                          (c)                        (d)                            (e) 

 (f)                           (g)                          (h)                        (i)                          (j) 
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4.2.5 Prior Sensitivity Analysis Result 

A sensitivity analysis was done using four types of minimally informative prior: log gamma (0.1, 

0.01), log gamma (1, 0.0001), INLA default prior log gamma (1, 0.0005), and Uniform prior 

(0.001, 100). The result presented in Figure 4.28 (a – e) representing the sensitivity analysis for 

the overall model showed a consistent distribution of marginal posterior for both fixed-effect 

parameters and variance components. The analysis was done for all models and similar results 

were obtained.  

 

Figure 4.28: Posterior density plot for fixed effect estimates and variance of random effect 

estimates 

 (a)                               (b)                          (c)                        (d)                            (e) 

       (f)                           (g)                          (h)                           (i)                          (j) 



 

 

70 | P a g e  

 

   
 

     

 

                (a) SESI                                                                     (b) Immigrant                                                        
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The result showed consistency in marginal posterior estimates as there was no significant 

differences in the parameter estimates generated via these four priors. Also, the marginal posterior 

of the spatial random effect under these priors were plotted in a map where an identical result was 

obtained as shown in Appendix 2. 

 

 

 

 

 

 

 

 

 

(e) Variance of structured                                                                                             

         random effect 
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Chapter 5: Discussion and Conclusions 

5.1 Discussion 

We used the Bayesian hierarchical spatial and spatio-temporal models, which were implemented 

in R-INLA, to describe the risk of GC in 96 RHADs in Manitoba. The result of which was broadly 

categorized into a spatial and spatio-temporal model is discussed below. 

 

5.1.1 Spatial Model 

Using the ecological regression model, we observed no significant relationship between SES, 

immigrant population proportion, and Indigenous population proportion and overall GC even 

when we stratified by sex. However, a marginal difference in the association of the covariates with 

GC risk was noticed when the overall GC was stratified by the topographical subset. A significant 

association between SES and CGC, and a marginally significant association between Indigenous 

population proportion and CGC was observed, where they both covariates decreased the risk of 

CGC. This result is partly supported by literature as some studies also suggest a decrease in the 

risk of GC among both sexes of the Indigenous people (Sebastian et al., 2004). A possible 

suggestion regarding this could be confounding of the Indigenous variable by the lifestyle and 

dietary pattern, which has been documented to also be a risk factor of GC (Tsugane et al., 1990). 

We observed a marginally significant association between SES and NCGS. Further partitioning of 

CGC by sex showed that the effect of SES on women was more than that of men, and the risk of 

CGC among Indigenous women was reduced by 1.9% compared to the rest of the population.  

Despite all the identified RHADs with a higher risk of GC relative to the rest of the population, 

across all data partitions, five RHADs were identified in all data sub-groups. Little Saskatchewan 

and Brandon East End in Prairie Mountain RHA and Point Douglas North, Downtown East, and 
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St. Boniface West in WRHA all exhibited a high risk of overall GC, GC for both sexes, for CGC, 

and NCGC. Combining all cases of GC, the districts identified with a high risk of GC shared 

similar environmental characteristics such as low median annual income, a high proportion of 

Indigenous People, low to a medium proportion of immigrants, and a high percentage of people 

with no post-secondary school education. The two districts in the North, Winnipeg Churchill and 

district 12, had the highest risk of GC and were predominated by Indigenous people (the 

Chipewyan and Cree natives). These above-identified RHADs were also among the RHADs with 

the highest risk of GC for the men population. They were also associated with high percentage of 

no post-secondary school education people (35.7% - 48.8%), unemployment (6.4% - 11.1%), a 

low income ($21,841 - $43, 648), and moderate proportion of immigrants (27.3%). District 06 was 

identified with a high risk of overall GC for both sexes. The district had a high income ($67,841 - 

$87,680), high unemployment (4.5% - 6.3%), high uneducated people (35.7% - 40.5%), but had 

an average SES score index (4.2471 – 6.0063). Consistent identification of districts in Northern 

RHA, which were predominated by Indigenous People with a high risk of GC, is supported in the 

literature (Salmond et al., 1998; Sebastian & Hurtig, 2004). 

 

5.1.2 Spatio-temporal Model 

We also observed a provincial overall steady risk of GC, male GC, female GC, CGC, and NCGC 

over time from our smoothed temporal random effect. However, this trend did not hold for most 

of the RHADs in the province. The spatio-temporal result presented in Figures 4.23 – 4.27 

demonstrated an apparent change in the color gradient for each map replicated over time, 

suggesting changes in the risk of GC across the RHADs over time. This finding enabled us to 

identify RHADs with an increase in GC incidence risk over time, a useful tool for disease 
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surveillance and or monitoring. Few of these identified RHADs (Porcupine Mountain, Pinawa, 

Lac Brochet, The Pas, and Winnipeg Churchill) were extracted, and the risk of GC for those 

RHADs over time was plotted. The plot (Figure 4.22) revealed an increasing trend as against the 

provincial steady risk rate. This information can be used by any organization interested in Cancer 

care (e.g., CancerCare Manitoba) to identify RHADs in need of urgent intervention programs.  

 

5.2 Strengths and Limitations 

One of the main strengths of this study is that it is based on population data and therefore not 

subject to selection bias. This study has demonstrated the use of a more confiscated method in the 

estimation of reliable and stable risk for area-level data by including a geographical variation of 

data into the model. In addition to obtaining a reliable estimate, the method simultaneously 

identified districts within the province with significantly different risks compared to the rest of the 

population.  

The inclusion of time random effect helped us to acknowledge and account for time effect, thereby 

adjusting the variance-covariance matrix to avoid over-estimation which could lead to a wrong 

judgment regarding the significance of the parameter estimate and study biasedness. The time 

effect also helped us to investigate the trend of the disease over time which is a vital tool in disease 

surveillance and intervention as a recent report released by Canadian Cancer Statistics 2019 has 

estimated that approximately 50% of the incidence of GC can be prevented given the right tools. 

Though the absolute risk of GC was small, a consideration to put in place screening facility to 

enable early detection of GC may be considered after a thorough review of the financial 

implication as such a project may require a considerable budget. A possible initial solution may 

be the establishment of such a screening facility in districts which a consistent increase in the risk 
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of GC over time. Programs that can improve socioeconomic status in districts with a high risk of 

GC should be considered.  

However, this study is limited to the fact that we were unable to adjust for several other factors 

such as smoking, obesity, lifestyle, Helicobacter pylori, and food, which are important risk factors 

associated with the etiology of GC.  Some of these factors that were not accounted for may be 

confounders to some of the factors considered. Also, we used data from the 2016 census to 

determine a set of fixed covariates used in the spatio-temporal model, whereby a time changing 

covariate might explain how changes in the covariates over time influence the variation in GC over 

time. Another significant limitation of this study involves the grouping of unspecified GC with the 

non-cardia GC, which may also affect the findings relative to non-cardia GC.  

 

5.3 Future Research 

Based on the limitation of this study, we suggest further study on the investigation of risk of GC 

at the districts by adjusting for more factors such as lifestyle, diet and helicobacter pylori. These 

factors may serve as confounders for some of the factors considered in this study. Also, we suggest 

the use of time changing covariates for the spatio-temporal Poisson regression model, which could 

lead to a more insightful finding of how changes in factors over time influence changes in risk of 

GC over time. Similarly, we recommend the separation of unspecified GC from noncardia GC for 

a more accurate result about the variation of noncardia GC. Finally, we suggest further study in 

the districts that have been found to show a high risk of GC, especially those that had a consistent 

increase over time to identify underlying causes which are responsible for the rise in those districts. 
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5.4 Conclusions 

In conclusion, our study has demonstrated that the incidence risk of GC varied across the province 

and that the overall incidence risk of GC at the provincial level was steady. However, this is not 

valid for all districts within the province and as such, measures should be taken to address the risk 

in these identified districts. The identified districts with increasing high risk of GC over time can 

be further studied for possible prevention. Also, we showed that area-level SES affected GC 

stratified by topographical sub-site. We were also able to identify 25 districts with a high risk of 

overall GC, 22 districts with a high risk of overall GC for men, 16 districts with a high risk of 

overall GC for women, 11 districts with a high risk of cardia GC, and 27 districts with a high risk 

of non-cardia GC. We also observed that Brandon East End district in Prairie Mountain RHA, and 

Point Douglas North, River East South, Downtown East, and St. Boniface West districts in 

Winnipeg RHA all exhibited a consistent high risk across all data subgroups. Finally, we 

demonstrated that spatial and spatio-temporal regression models were robust for the analysis of 

datasets collected over space and time, and their usages in addressing more complex data health 

problems are encouraged.    
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Appendices 

Appendix I: Deviance information criteria (DIC) for the all fitted models  

Model code Overall 

model  

Male strata  Female strata  Cardia strata  Non-cardia strata 

 

1. Temporal 1 2531.33 2244.43 1607.8 2531.33 2251.36 

2. Temporal 2 2530.23 2530.23 1608.8 2530.23 2251.20 

3. Temporal 3 2531.85 2531.85 1607.95 2531.85 2251.72 

4. Mod.st2a 2233.31 2008.84 1575.58 1557.06 2005.52 

5. Mod.st2b 2234.52 2008.76 1576.12 1555.25 2006.16 

6. Mod.st2c 2233.30 2008.59 1574.96 1556.27 2004.96 

7. Mod.st3a 2202.78 1993.01 1568.74 1565.07 1987.02 

8. Mod.st3b 2203.22 1993.42 1569.37 1564.61 1987.63 

9. Mod.st3c 2202.86 1993.07 1568.9 1565.19 1987.12 

10. Mod.st4a 2233.95 2032.83 1640.68 1632.37 2031.43 

11. Mod.st4b 2233.94 2032.87 1640.7 1632.18 2031.43 

12. Mod.st4c 2234.09 2032.95 1641.46 1632.56 2031.57 

13. Mod.st5a 2208.57 1992.44 1559.34 1547.31 1988.16 

14. Mod.st5b 2208.04 1992.59 1560.27 1546.99 1989.03 

15. Mod.st5c 2208.38 1992.74 1559.08 1548.13 1988.12 

16. Mod.st6a 2257.42 2045.57 1589.76 1553.0 2033.56 

17. Mod.st6b 2255.22 2046.90 1589.76 1553.59 2032.51 

18. Mod.st6c 2256.34 2046.49 1590.23 1554.39 2033.18 

 

• Temporal 1: RW (1) smoother for structured temporal effect with no spatio-temporal 

interaction 

• Temporal 2: RW (2) smoother for structured temporal effect with no spatio-temporal 

interaction 

• Temporal 3: AR (1) smoother for structured temporal effect with no spatio-temporal 

interaction 

• Mod.st2a: Unstructured spatial and temporal random interaction effects with RW (1) for 

temporal structured effect 

 

• Mod.st2b: Unstructured spatial and temporal random interaction effects with RW (2) for 

temporal structured effect 

• Mod.st2c: Unstructured spatial and temporal random interaction effects with AR (1) for 

temporal structured effect 
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• Mod.st3a: RW (1) temporal random and unstructured spatial random effects in the 

interaction effect with RW (1) for temporal structured effect 

• Mod.st3b: RW (1) temporal random and unstructured spatial random effects in the 

interaction effect with RW (2) for temporal structured effect 

• Mod.st3c: RW (1) temporal random and unstructured spatial random effects in the 

interaction effect with AR (1) for temporal structured effect 

• Mod.st4a: RW (2) temporal random and unstructured spatial random effects in the 

interaction effect with RW (1) for temporal structured effect 

• Mod.st4b: RW (2) temporal random and unstructured spatial random effects in the 

interaction effect with RW (2) for temporal structured effect 

• Mod.st4a: RW (2) temporal random and unstructured spatial random effects in the 

interaction effect with AR (1) for temporal structured effect 

• Mod.st5a: AR (1) temporal random and unstructured spatial random effects in the 

interaction effect with RW (1) for temporal structured effect 

• Mod.st5b: AR (1) temporal random and unstructured spatial random effects in the 

interaction effect with RW (2) for temporal structured effect 

• Mod.st5c: AR (1) temporal random and unstructured spatial random effects in the 

interaction effect with AR (1) for temporal structured effect 

• Mod.st6a: Unstructured temporal random and conditional autoregressive (CAR) spatial 

random effect in the interaction effect with RW (1) for temporal structured effect 

• Mod.st6b: Unstructured temporal random and conditional autoregressive (CAR) spatial 

random effect in the interaction effect with RW (2) for temporal structured effect 
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• Mod.st6c: Unstructured temporal random and conditional autoregressive (CAR) spatial 

random effect in the interaction effect with AR (1) for temporal structured effect 

 

Appendix II: Deviance information criteria (DIC) for Poisson and spatial regression model 

Model Poisson model Spatial model 

Overall GC 817.35 645.48 

Male GC 698.92 597.90 

Female GC 554.14 519.36 

Cardia GC 492.84 478.06 

Noncardia GC 748.77 602.59 

Cardia male 465.67 452.10 

Cardia female 265.15 261.39 

Noncardia male 622.39 538.97 

Noncardia female 534.37 491.91 
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Appendix III: Map of the GC risk ratio for uniform and log gamma prior distributions for variance 

components  

 

(a) Uniform prior    (b) log gamma prior 

 
Appendix IV: Model diagnostics using probability integral transform (PIT) 

        
           cardia PIT        female   male 

      
Non- cardia                                 overall 
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Appendix V: list of identified districts with high risk ratio of GC 

• Northern regional health authority 

Gods Lake Narrows 

Winnipeg Churchill 

• Interlake regional health authority 

Beausejour 

Lac Brochet 

Nelson House 

The Pas 

Stonewall/Teulon 

• Prairie mountain regional health authority 

Riding Mountain 

Dauphin 

Spruce wood 

Brandon east end 

• Southern health regional health authority 

Carman 

Notre dame 

Red river south 

• Winnipeg regional health authority 

Seven oaks east 

Point douglas north 

River east west 

Point douglas south 

River east south 

Downtown east 

St. Boniface west 

Downtown west 

River height east 

River height west 

St. vital north 

 

 

 

• Northern regional health authority 

Gods Lake Narrows 

Winnipeg Churchill 

The pas 

 

 

Appendix VI: List of districts identified with high risk of Men GC (22 districts) 
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• Interlake regional health authority 

Thompson/Mystery Lake 

The pas 

Nelson House 

Gillam/Fox Lake 

• Prairie mountain regional health authority 

Asessippi 

Brandon east end 

Riding mountain 

dauphin 

• Southern health regional health authority 

Louise 

Carman 

cartier 

Niverville/Richot 

• Winnipeg regional health authority 

Point douglas south 

River east south 

Downtown east 

St. Boniface west 

Downtown west 

River height east 

Point douglas north 

 

 

 

Appendix VII: List of districts identified with high risk of women GC (16 districts) 

• Interlake regional health authority 

Stonewall/Teulon 

Lac brochet 

Gillam/Fox Lake 

• Prairie mountain regional health authority 

Souris  

Brandon east end 

Riding mountain 

• Winnipeg regional health authority 

River east north 

Seven oaks east 

River east west 

Point douglas north 

River east south 

Inkster west 
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Downtown east 

St. Boniface west 

River height west 

St. vital north 

 

 

Appendix VIII: List of districts identified with high risk of cardia GC (11 districts) 

• Northern regional health authority 

Winnipeg churchill 

• Prairie mountain regional health authority 

Souris  

Brandon east end 

Riding mountain 

Dauphin  

• Winnipeg regional health authority 

Seven oaks west 

Point douglas north 

Downtown west 

Downtown east 

St. Boniface west 

St. vital north 

 

 

Appendix IX: List of districts identified with high risk of non-cardia GC (27 districts) 

• Northern regional health authority 

Grand rapids 

• Interlake regional health authority 

The pas 

Eriksdale/Ashen 

Nelson House 

• Prairie mountain regional health authority 

Souris  

Asessippi 

Riding mountain 

Brandon east end 

Spruce wood 

Dauphin  

Swan river 

Porcupine mountain 

 

• Southern health regional health authority 

Carman 

cartier 

Red river south 

Rural east 
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• Winnipeg regional health authority 

Seven oaks west 

River east west 

Inkster east 

Point douglas north 

Point douglas south 

River east south 

Downtown west 

Downtown east 

St. Boniface west 

River height west 

St. vital north 

 

 

 

Appendix X: Code 

 

SAS Code for extracting gastric cancer cases from Cancer registry 
/* code for extracting manitoba dataset */ 

libname gbenga 

'Z:\CCR_RCC\CCR_RCC_IARC_1992_2016_v1\data_donnees\data\sas_en'; 

options nofmterr; 

/* subset all interested variables*/ 

data predictors; 

set gbenga.ccr_iarc_1992_2016_incid_f1_v1 (keep = PERSON_ID PSEX 

PDATBIR PDCCRNBRTMRS TREPPROV TPIN TPLACRES TPOSTCOD TDATDIAG TICD_O2T 

TDCCRAGEDIAG TDCCRAGEGRP); 

if TREPPROV = 46; 

run; 

proc export data = work.predictors outfile = 'P:\Fakanye_5646\misc\new-

datasets\gc_2016' dbms = xlsx replace; 

sheet = 'gc16'; 

newfile = yes; 

run; 

 
 
 
R code for data cleaning, partition and analysis 
 
#------- changing my path 

mypaths <- 

.libPaths("P:/AA_RESEARCHER_TRAINING_INFORMATION/R_packages/June

_2018") 

mypaths <- 

.libPaths("P:/AA_RESEARCHER_TRAINING_INFORMATION/R_packages/July

2019") 

# getting working directory and setting work directory 
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getwd() 

setwd("P:/Fakanye_5646/New folder/R code") 

#===============================================================

================== 

# loading 2016 CCR dataset 

rdata <- read.csv("P:\\Fakanye_5646\\New folder\\rawdata.csv", 

sep=",") 

 

#extrcating stomach cancer cases 

data.gc <- subset(rdata, ccr$TICD_O2T == 'C160'| ccr$TICD_O2T == 

'C161'| ccr$TICD_O2T =='C162'|ccr$TICD_O2T =='C163'|ccr$TICD_O2T 

=='C164'|ccr$TICD_O2T =='C165'|ccr$TICD_O2T 

=='C166'|ccr$TICD_O2T =='C167'|ccr$TICD_O2T 

=='C168'|ccr$TICD_O2T =='C169') 

write.csv(data.gc, file = "data-gc16.csv") 

#renaming variables 

names(data.gc) <- c('id', 

'pr','tpin','location','postcode','dod','year','gc_code','stage_

cat1','stage_cat2','stage_cat3','age','agegrp','number','sex','d

ob') 

 

# subsetting datasets by sex, cancer type 

data.male <- subset(data.gc, sex == 1) 

data.female <- subset(data.gc, sex == 2) 

data.cad <- subset(data.gc, gc_code == "C160") 

data.ncad <- subset(data.gc, gc_code == "C161"| gc_code == 

"C162" | gc_code == "C163" | gc_code == "C164" | gc_code == 

"C165" | gc_code == "C166"| 

gc_code=="C167"|gc_code=="C168"|gc_code=="C169") 

#---------------------------------------------------------------

---------- 

#extracting required variables 

data.cad <- data.cad[,c(4,5,7,12,13,15)] 

data.ncad <- data.ncad[,c(4,5,7,12,13,15)] 

data.male <- data.male[,c(4,5,6,7,12)] 

data.female <- data.female[,c(4,5,6,7,12)] 

data.gc2 <- data.gc[,c(4,5,6,7,12)] 

 

#stratification of cardia and non-cadia by sex 

m_cardia <- subset(data.cad, sex ==1) 

m_ncardia <- subset(data.ncad, sex ==1 

f_cardia <- subset(data.cad, sex ==2) 

f_ncardia <- subset(data.ncad, sex ==2) 

#---------------------------------------------------------------

--------- 
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# extracting cases by year and age group and aggregating by 

postcode 

library(tidyverse) 

#1. overall data 

data.gc2_pc <- summarise(group_by(data.gc2, postcode), cardia = 

sum(gc_code == "C160"), Noncardia = sum(gc_code != "C160"),x1992 

= sum(year == "1992"),x1993 = sum(year == "1993"),x1994 = 

sum(year == "1994"),x1995 = sum(year == "1995"),x1996 = sum(year 

== "1996"),x1997 = sum(year == "1997"),x1998 = sum(year == 

"1998"),x1999 = sum(year == "1999"),x2000 = sum(year == 

"2000"),x2001 = sum(year == "2001"),x2002 = sum(year == 

"2002"),x2003 = sum(year == "2003"),x2004 = sum(year == 

"2004"),x2005 = sum(year == "2005"),x2006 = sum(year == 

"2006"),x2007 = sum(year == "2007"),x2008 = sum(year == 

"2008"),x2009 = sum(year == "2009"),x2010 = sum(year == 

"2010"),x2011 = sum(year == "2011"),x2012 = sum(year == 

"2012"),x2013 = sum(year == "2013"),x2014 = sum(year == 

"2014"),x2015 = sum(year == "2015"),x2016 = sum(year == "2016"), 

"below 30" = sum(age.grp == 1|age.grp ==2|age.grp ==3|age.grp 

==4|age.grp ==5|age.grp ==6), "30-34" = sum(age.grp == 7),"35-

39" = sum(age.grp == 8), "40-44" = sum(age.grp == 9),"45-49" = 

sum(age.grp == 10), "50-54" = sum(age.grp == 11), "55-59" = 

sum(age.grp == 12),"60-64" = sum(age.grp == 13),"65-69" = 

sum(age.grp == 14),"70-74" = sum(age.grp == 15),"75-79" = 

sum(age.grp == 16),"80-84" = sum(age.grp == 17),"85-89" = 

sum(age.grp == 18),"90 +" = sum(age.grp == 19 |age.grp==20)) 

 

#2. male 

data.male_pc <- summarise(group_by(data.male, postcode), cardia 

= sum(gc_code == "C160"), Noncardia = sum(gc_code != 

"C160"),x1992 = sum(year == "1992"),x1993 = sum(year == 

"1993"),x1994 = sum(year == "1994"),x1995 = sum(year == 

"1995"),x1996 = sum(year == "1996"),x1997 = sum(year == 

"1997"),x1998 = sum(year == "1998"),x1999 = sum(year == 

"1999"),x2000 = sum(year == "2000"),x2001 = sum(year == 

"2001"),x2002 = sum(year == "2002"),x2003 = sum(year == 

"2003"),x2004 = sum(year == "2004"),x2005 = sum(year == 

"2005"),x2006 = sum(year == "2006"),x2007 = sum(year == 

"2007"),x2008 = sum(year == "2008"),x2009 = sum(year == 

"2009"),x2010 = sum(year == "2010"),x2011 = sum(year == 

"2011"),x2012 = sum(year == "2012"),x2013 = sum(year == 

"2013"),x2014 = sum(year == "2014"),x2015 = sum(year == 

"2015"),x2016 = sum(year == "2016"), "below 30" = sum(age.grp == 

1|age.grp ==2|age.grp ==3|age.grp ==4|age.grp ==5|age.grp ==6), 

"30-34" = sum(age.grp == 7),"35-39" = sum(age.grp == 8), "40-44" 

= sum(age.grp == 9),"45-49" = sum(age.grp == 10), "50-54" = 

sum(age.grp == 11), "55-59" = sum(age.grp == 12),"60-64" = 
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sum(age.grp == 13),"65-69" = sum(age.grp == 14),"70-74" = 

sum(age.grp == 15),"75-79" = sum(age.grp == 16),"80-84" = 

sum(age.grp == 17),"85-89" = sum(age.grp == 18),"90 +" = 

sum(age.grp == 19 |age.grp==20)) 

 

#3. female 

data.female_pc <- summarise(group_by(data.female, postcode), 

cardia = sum(gc_code == "C160"), Noncardia = sum(gc_code != 

"C160"),x1992 = sum(year == "1992"),x1993 = sum(year == 

"1993"),x1994 = sum(year == "1994"),x1995 = sum(year == 

"1995"),x1996 = sum(year == "1996"),x1997 = sum(year == 

"1997"),x1998 = sum(year == "1998"),x1999 = sum(year == 

"1999"),x2000 = sum(year == "2000"),x2001 = sum(year == 

"2001"),x2002 = sum(year == "2002"),x2003 = sum(year == 

"2003"),x2004 = sum(year == "2004"),x2005 = sum(year == 

"2005"),x2006 = sum(year == "2006"),x2007 = sum(year == 

"2007"),x2008 = sum(year == "2008"),x2009 = sum(year == 

"2009"),x2010 = sum(year == "2010"),x2011 = sum(year == 

"2011"),x2012 = sum(year == "2012"),x2013 = sum(year == 

"2013"),x2014 = sum(year == "2014"),x2015 = sum(year == 

"2015"),x2016 = sum(year == "2016"), "below 30" = sum(age.grp == 

1|age.grp ==2|age.grp ==3|age.grp ==4|age.grp ==5|age.grp ==6), 

"30-34" = sum(age.grp == 7),"35-39" = sum(age.grp == 8), "40-44" 

= sum(age.grp == 9),"45-49" = sum(age.grp == 10), "50-54" = 

sum(age.grp == 11), "55-59" = sum(age.grp == 12),"60-64" = 

sum(age.grp == 13),"65-69" = sum(age.grp == 14),"70-74" = 

sum(age.grp == 15),"75-79" = sum(age.grp == 16),"80-84" = 

sum(age.grp == 17),"85-89" = sum(age.grp == 18),"90 +" = 

sum(age.grp == 19 |age.grp==20)) 

 

#4. Cardia 

data.cad_pc <- summarise(group_by(data.cad, postcode), x1992 = 

sum(year == "1992"),x1993 = sum(year == "1993"),x1994 = sum(year 

== "1994"),x1995 = sum(year == "1995"),x1996 = sum(year == 

"1996"),x1997 = sum(year == "1997"),x1998 = sum(year == 

"1998"),x1999 = sum(year == "1999"),x2000 = sum(year == 

"2000"),x2001 = sum(year == "2001"),x2002 = sum(year == 

"2002"),x2003 = sum(year == "2003"),x2004 = sum(year == 

"2004"),x2005 = sum(year == "2005"),x2006 = sum(year == 

"2006"),x2007 = sum(year == "2007"),x2008 = sum(year == 

"2008"),x2009 = sum(year == "2009"),x2010 = sum(year == 

"2010"),x2011 = sum(year == "2011"),x2012 = sum(year == 

"2012"),x2013 = sum(year == "2013"),x2014 = sum(year == 

"2014"),x2015 = sum(year == "2015"),x2016 = sum(year == "2016"), 

"below 30" = sum(age.grp == 1|age.grp ==2|age.grp ==3|age.grp 

==4|age.grp ==5|age.grp ==6), "30-34" = sum(age.grp == 7),"35-

39" = sum(age.grp == 8), "40-44" = sum(age.grp == 9),"45-49" = 
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sum(age.grp == 10), "50-54" = sum(age.grp == 11), "55-59" = 

sum(age.grp == 12),"60-64" = sum(age.grp == 13),"65-69" = 

sum(age.grp == 14),"70-74" = sum(age.grp == 15),"75-79" = 

sum(age.grp == 16),"80-84" = sum(age.grp == 17),"85-89" = 

sum(age.grp == 18),"90 +" = sum(age.grp == 19 |age.grp==20)) 

 

 

 

 

 

#5. Non-Cardia 

data.ncad_pc <- summarise(group_by(data.ncad, postcode), x1992 = 

sum(year == "1992"),x1993 = sum(year == "1993"),x1994 = sum(year 

== "1994"),x1995 = sum(year == "1995"),x1996 = sum(year == 

"1996"),x1997 = sum(year == "1997"),x1998 = sum(year == 

"1998"),x1999 = sum(year == "1999"),x2000 = sum(year == 

"2000"),x2001 = sum(year == "2001"),x2002 = sum(year == 

"2002"),x2003 = sum(year == "2003"),x2004 = sum(year == 

"2004"),x2005 = sum(year == "2005"),x2006 = sum(year == 

"2006"),x2007 = sum(year == "2007"),x2008 = sum(year == 

"2008"),x2009 = sum(year == "2009"),x2010 = sum(year == 

"2010"),x2011 = sum(year == "2011"),x2012 = sum(year == 

"2012"),x2013 = sum(year == "2013"),x2014 = sum(year == 

"2014"),x2015 = sum(year == "2015"),x2016 = sum(year == "2016"), 

"below 30" = sum(age.grp == 1|age.grp ==2|age.grp ==3|age.grp 

==4|age.grp ==5|age.grp ==6), "30-34" = sum(age.grp == 7),"35-

39" = sum(age.grp == 8), "40-44" = sum(age.grp == 9),"45-49" = 

sum(age.grp == 10), "50-54" = sum(age.grp == 11), "55-59" = 

sum(age.grp == 12),"60-64" = sum(age.grp == 13),"65-69" = 

sum(age.grp == 14),"70-74" = sum(age.grp == 15),"75-79" = 

sum(age.grp == 16),"80-84" = sum(age.grp == 17),"85-89" = 

sum(age.grp == 18),"90 +" = sum(age.grp == 19 |age.grp==20)) 

#8. male cardia  

mcardia_pc <- summarise(group_by(m_cardia, postcode), "1992" = 

sum(year == "1992"),"1993" = sum(year == "1993"),"1994" = 

sum(year == "1994"),"1995" = sum(year == "1995"),"1996" = 

sum(year == "1996"),"1997" = sum(year == "1997"),"1998" = 

sum(year == "1998"),"1999" = sum(year == "1999"),"2000" = 

sum(year == "2000"),"2001" = sum(year == "2001"),"2002" = 

sum(year == "2002"),"2003" = sum(year == "2003"),"2004" = 

sum(year == "2004"),"2005" = sum(year == "2005"),"2006" = 

sum(year == "2006"),"2007" = sum(year == "2007"),"2008" = 

sum(year == "2008"),"2009" = sum(year == "2009"),"2010" = 

sum(year == "2010"),"2011" = sum(year == "2011"),"2012" = 

sum(year == "2012"),"2013" = sum(year == "2013"),"2014" = 

sum(year == "2014"),"2015" = sum(year == "2015"),"2016" = 

sum(year == "2016"), "below 35" = sum(agegrp == 1|agegrp 
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==2|agegrp ==3|agegrp ==4|agegrp ==5|agegrp ==6|agegrp==7), "35-

39" = sum(agegrp == 8), "40-44" = sum(agegrp == 9),"45-49" = 

sum(agegrp == 10), "50-54" = sum(agegrp == 11), "55-59" = 

sum(agegrp == 12),"60-64" = sum(agegrp == 13),"65-69" = 

sum(agegrp == 14),"70-74" = sum(agegrp == 15),"75-79" = 

sum(agegrp == 16),"80-84" = sum(agegrp == 17),"85 +" = 

sum(agegrp == 18| agegrp == 19 |agegrp ==20)) 

 

 

 

#9. female cardia  

fcardia_pc <- summarise(group_by(f_cardia, postcode), "1992" = 

sum(year == "1992"),"1993" = sum(year == "1993"),"1994" = 

sum(year == "1994"),"1995" = sum(year == "1995"),"1996" = 

sum(year == "1996"),"1997" = sum(year == "1997"),"1998" = 

sum(year == "1998"),"1999" = sum(year == "1999"),"2000" = 

sum(year == "2000"),"2001" = sum(year == "2001"),"2002" = 

sum(year == "2002"),"2003" = sum(year == "2003"),"2004" = 

sum(year == "2004"),"2005" = sum(year == "2005"),"2006" = 

sum(year == "2006"),"2007" = sum(year == "2007"),"2008" = 

sum(year == "2008"),"2009" = sum(year == "2009"),"2010" = 

sum(year == "2010"),"2011" = sum(year == "2011"),"2012" = 

sum(year == "2012"),"2013" = sum(year == "2013"),"2014" = 

sum(year == "2014"),"2015" = sum(year == "2015"),"2016" = 

sum(year == "2016"), "below 35" = sum(agegrp == 1|agegrp 

==2|agegrp ==3|agegrp ==4|agegrp ==5|agegrp ==6|agegrp==7), "35-

39" = sum(agegrp == 8), "40-44" = sum(agegrp == 9),"45-49" = 

sum(agegrp == 10), "50-54" = sum(agegrp == 11), "55-59" = 

sum(agegrp == 12),"60-64" = sum(agegrp == 13),"65-69" = 

sum(agegrp == 14),"70-74" = sum(agegrp == 15),"75-79" = 

sum(agegrp == 16),"80-84" = sum(agegrp == 17),"85 +" = 

sum(agegrp == 18| agegrp == 19 |agegrp ==20)) 

 

#10. male non-cardia  

mncardia_pc <- summarise(group_by(m_ncardia, postcode), "1992" = 

sum(year == "1992"),"1993" = sum(year == "1993"),"1994" = 

sum(year == "1994"),"1995" = sum(year == "1995"),"1996" = 

sum(year == "1996"),"1997" = sum(year == "1997"),"1998" = 

sum(year == "1998"),"1999" = sum(year == "1999"),"2000" = 

sum(year == "2000"),"2001" = sum(year == "2001"),"2002" = 

sum(year == "2002"),"2003" = sum(year == "2003"),"2004" = 

sum(year == "2004"),"2005" = sum(year == "2005"),"2006" = 

sum(year == "2006"),"2007" = sum(year == "2007"),"2008" = 

sum(year == "2008"),"2009" = sum(year == "2009"),"2010" = 

sum(year == "2010"),"2011" = sum(year == "2011"),"2012" = 

sum(year == "2012"),"2013" = sum(year == "2013"),"2014" = 

sum(year == "2014"),"2015" = sum(year == "2015"),"2016" = 
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sum(year == "2016"), "below 35" = sum(agegrp == 1|agegrp 

==2|agegrp ==3|agegrp ==4|agegrp ==5|agegrp ==6|agegrp==7), "35-

39" = sum(agegrp == 8), "40-44" = sum(agegrp == 9),"45-49" = 

sum(agegrp == 10), "50-54" = sum(agegrp == 11), "55-59" = 

sum(agegrp == 12),"60-64" = sum(agegrp == 13),"65-69" = 

sum(agegrp == 14),"70-74" = sum(agegrp == 15),"75-79" = 

sum(agegrp == 16),"80-84" = sum(agegrp == 17),"85 +" = 

sum(agegrp == 18| agegrp == 19 |agegrp ==20)) 

 

 

#11. female non-cardia  

fncardia_pc <- summarise(group_by(f_ncardia, postcode), "1992" = 

sum(year == "1992"),"1993" = sum(year == "1993"),"1994" = 

sum(year == "1994"),"1995" = sum(year == "1995"),"1996" = 

sum(year == "1996"),"1997" = sum(year == "1997"),"1998" = 

sum(year == "1998"),"1999" = sum(year == "1999"),"2000" = 

sum(year == "2000"),"2001" = sum(year == "2001"),"2002" = 

sum(year == "2002"),"2003" = sum(year == "2003"),"2004" = 

sum(year == "2004"),"2005" = sum(year == "2005"),"2006" = 

sum(year == "2006"),"2007" = sum(year == "2007"),"2008" = 

sum(year == "2008"),"2009" = sum(year == "2009"),"2010" = 

sum(year == "2010"),"2011" = sum(year == "2011"),"2012" = 

sum(year == "2012"),"2013" = sum(year == "2013"),"2014" = 

sum(year == "2014"),"2015" = sum(year == "2015"),"2016" = 

sum(year == "2016"), "below 35" = sum(agegrp == 1|agegrp 

==2|agegrp ==3|agegrp ==4|agegrp ==5|agegrp ==6|agegrp==7), "35-

39" = sum(agegrp == 8), "40-44" = sum(agegrp == 9),"45-49" = 

sum(agegrp == 10), "50-54" = sum(agegrp == 11), "55-59" = 

sum(agegrp == 12),"60-64" = sum(agegrp == 13),"65-69" = 

sum(agegrp == 14),"70-74" = sum(agegrp == 15),"75-79" = 

sum(agegrp == 16),"80-84" = sum(agegrp == 17),"85 +" = 

sum(agegrp == 18| agegrp == 19 |agegrp ==20)) 

 

# merging cases (gc_by_pcode) with RHDA (96) using postal code 

rhda <- read.csv("P:\\Fakanye_5646\\New folder\\R 

code\\rhda.csv", sep=",") 

data.gc_rh <- merge(rhda, data.gc2_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

data.male_rh <- merge(rhda, data.male_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

data.female_rh <- merge(rhda, data.female_pc, by.x = "pcode", 

by.y = "postcode", all.y = TRUE) 

data.cad_rh <- merge(rhda, data.cad_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

data.ncad_rh <- merge(rhda, data.ncad_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 
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mcardia_rh <- merge(rhda, mcardia_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

fcardia_rh <- merge(rhda, fcardia_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

mncardia_rh <- merge(rhda, mncardia_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

fncardia_rh <- merge(rhda, fncardia_pc, by.x = "pcode", by.y = 

"postcode", all.y = TRUE) 

 

 

#saving in .csv file, the rhad datat; so we can manually adjust 

for regions that are not matched 

write.csv(data.gc_rh, file = "data.gc_rh.csv") 

write.csv(data.male_rh, file = "data.male_rh.csv") 

write.csv(data.female_rh, file = "data.female_rh.csv") 

write.csv(data.cad_rh, file = "data.cad_rh.csv") 

write.csv(data.ncad_rh, file = "data.ncad_rh.csv") 

write.csv(mcardia_rh, file = "mcardia_rh.csv") 

write.csv(fcardia_rh, file = "fcardia_rh.csv") 

write.csv(mncardia_rh, file = "mncardia_rh.csv") 

write.csv(fncardia_rh, file = "fncardia_rh.csv") 

#---------------------------------------------------------------

------- 

# Aggregating the merged gc cases data by RHDA 

#loading manually edited aggregated data by postcode  

o.rhad <- summarise(group_by(data.gc_rh, id, District), cardia = 

sum(cardia), Noncardia = sum(Noncardia),"1992" = 

sum(x1992),"1993" = sum(x1993),"1994" = sum(x1994),"1995" = 

sum(x1995),"1996" = sum(x1996),"1997" = sum(x1997),"1998" = 

sum(x1998),"1999" = sum(x1999),"2000" = sum(x2000),"2001" = 

sum(x2001),"2002" = sum(x2002),"2003" = sum(x2003),"2004" = 

sum(x2004),"2005" = sum(x2005),"2006" = sum(x2006),"2007" = 

sum(x2007),"2008" = sum(x2008),"2009" = sum(x2009),"2010" = 

sum(x2010),"2011" = sum(x2011),"2012" = sum(x2012),"2013" = 

sum(x2013),"2014" = sum(x2014),"2015" = sum(x2015),"2016" = 

sum(x2016), "below 30" = sum(below.30), "30-34" = 

sum(X30.34),"35-39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" 

= sum(X45.49), "50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-

64" = sum(X60.64),"65-69" = sum(X65.69),"70-74" = 

sum(X70.74),"75-79" = sum(X75.79),"80-84" = sum(X80.84),"85-89" 

= sum(X85.89),"90+" = sum(X90..)) 

 

male.rhad <- summarise(group_by(data.male_rh, id, District), 

cardia = sum(cardia), Noncardia = sum(Noncardia),"1992" = 

sum(x1992),"1993" = sum(x1993),"1994" = sum(x1994),"1995" = 

sum(x1995),"1996" = sum(x1996),"1997" = sum(x1997),"1998" = 

sum(x1998),"1999" = sum(x1999),"2000" = sum(x2000),"2001" = 
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sum(x2001),"2002" = sum(x2002),"2003" = sum(x2003),"2004" = 

sum(x2004),"2005" = sum(x2005),"2006" = sum(x2006),"2007" = 

sum(x2007),"2008" = sum(x2008),"2009" = sum(x2009),"2010" = 

sum(x2010),"2011" = sum(x2011),"2012" = sum(x2012),"2013" = 

sum(x2013),"2014" = sum(x2014),"2015" = sum(x2015),"2016" = 

sum(x2016), "below 30" = sum(below.30), "30-34" = 

sum(X30.34),"35-39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" 

= sum(X45.49), "50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-

64" = sum(X60.64),"65-69" = sum(X65.69),"70-74" = 

sum(X70.74),"75-79" = sum(X75.79),"80-84" = sum(X80.84),"85-89" 

= sum(X85.89),"90+" = sum(X90..)) 

 

female.rhad <- summarise(group_by(data.female_rh, id, District), 

cardia = sum(cardia), Noncardia = sum(Noncardia),"1992" = 

sum(x1992),"1993" = sum(x1993),"1994" = sum(x1994),"1995" = 

sum(x1995),"1996" = sum(x1996),"1997" = sum(x1997),"1998" = 

sum(x1998),"1999" = sum(x1999),"2000" = sum(x2000),"2001" = 

sum(x2001),"2002" = sum(x2002),"2003" = sum(x2003),"2004" = 

sum(x2004),"2005" = sum(x2005),"2006" = sum(x2006),"2007" = 

sum(x2007),"2008" = sum(x2008),"2009" = sum(x2009),"2010" = 

sum(x2010),"2011" = sum(x2011),"2012" = sum(x2012),"2013" = 

sum(x2013),"2014" = sum(x2014),"2015" = sum(x2015),"2016" = 

sum(x2016), "below 30" = sum(below.30), "30-34" = 

sum(X30.34),"35-39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" 

= sum(X45.49), "50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-

64" = sum(X60.64),"65-69" = sum(X65.69),"70-74" = 

sum(X70.74),"75-79" = sum(X75.79),"80-84" = sum(X80.84),"85-89" 

= sum(X85.89),"90+" = sum(X90..)) 

 

cad.rhad <- summarise(group_by(data.cad_rh, id, District), 

"1992" = sum(x1992),"1993" = sum(x1993),"1994" = 

sum(x1994),"1995" = sum(x1995),"1996" = sum(x1996),"1997" = 

sum(x1997),"1998" = sum(x1998),"1999" = sum(x1999),"2000" = 

sum(x2000),"2001" = sum(x2001),"2002" = sum(x2002),"2003" = 

sum(x2003),"2004" = sum(x2004),"2005" = sum(x2005),"2006" = 

sum(x2006),"2007" = sum(x2007),"2008" = sum(x2008),"2009" = 

sum(x2009),"2010" = sum(x2010),"2011" = sum(x2011),"2012" = 

sum(x2012),"2013" = sum(x2013),"2014" = sum(x2014),"2015" = 

sum(x2015),"2016" = sum(x2016), "below 30" = sum(below.30), "30-

34" = sum(X30.34),"35-39" = sum(X35.39), "40-44" = 

sum(X40.44),"45-49" = sum(X45.49), "50-54" = sum(X50.54), "55-

59" = sum(X55.59),"60-64" = sum(X60.64),"65-69" = 

sum(X65.69),"70-74" = sum(X70.74),"75-79" = sum(X75.79),"80-84" 

= sum(X80.84),"85-89" = sum(X85.89),"90+" = sum(X90..)) 

 

ncad.rhad <- summarise(group_by(data.ncad_rh, id, District), 

"1992" = sum(x1992),"1993" = sum(x1993),"1994" = 
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sum(x1994),"1995" = sum(x1995),"1996" = sum(x1996),"1997" = 

sum(x1997),"1998" = sum(x1998),"1999" = sum(x1999),"2000" = 

sum(x2000),"2001" = sum(x2001),"2002" = sum(x2002),"2003" = 

sum(x2003),"2004" = sum(x2004),"2005" = sum(x2005),"2006" = 

sum(x2006),"2007" = sum(x2007),"2008" = sum(x2008),"2009" = 

sum(x2009),"2010" = sum(x2010),"2011" = sum(x2011),"2012" = 

sum(x2012),"2013" = sum(x2013),"2014" = sum(x2014),"2015" = 

sum(x2015),"2016" = sum(x2016), "below 30" = sum(below.30), "30-

34" = sum(X30.34),"35-39" = sum(X35.39), "40-44" = 

sum(X40.44),"45-49" = sum(X45.49), "50-54" = sum(X50.54), "55-

59" = sum(X55.59),"60-64" = sum(X60.64),"65-69" = 

sum(X65.69),"70-74" = sum(X70.74),"75-79" = sum(X75.79),"80-84" 

= sum(X80.84),"85-89" = sum(X85.89),"90+" = sum(X90..)) 

 

mcardia.rhad <- summarise(group_by(mcardia_rh, id, District), 

"1992" = sum(X1992),"1993" = sum(X1993),"1994" = 

sum(X1994),"1995" = sum(X1995),"1996" = sum(X1996),"1997" = 

sum(X1997),"1998" = sum(X1998),"1999" = sum(X1999),"2000" = 

sum(X2000),"2001" = sum(X2001),"2002" = sum(X2002),"2003" = 

sum(X2003),"2004" = sum(X2004),"2005" = sum(X2005),"2006" = 

sum(X2006),"2007" = sum(X2007),"2008" = sum(X2008),"2009" = 

sum(X2009),"2010" = sum(X2010),"2011" = sum(X2011),"2012" = 

sum(X2012),"2013" = sum(X2013),"2014" = sum(X2014),"2015" = 

sum(X2015),"2016" = sum(X2016), "below 35" = sum(below.35), "35-

39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" = sum(X45.49), 

"50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-64" = 

sum(X60.64),"65-69" = sum(X65.69),"70-74" = sum(X70.74),"75-79" 

= sum(X75.79),"80-84" = sum(X80.84),"85 +" = sum(X85..)) 

 

fcardia.rhad <- summarise(group_by(fcardia_rh, id, District), 

"1992" = sum(X1992),"1993" = sum(X1993),"1994" = 

sum(X1994),"1995" = sum(X1995),"1996" = sum(X1996),"1997" = 

sum(X1997),"1998" = sum(X1998),"1999" = sum(X1999),"2000" = 

sum(X2000),"2001" = sum(X2001),"2002" = sum(X2002),"2003" = 

sum(X2003),"2004" = sum(X2004),"2005" = sum(X2005),"2006" = 

sum(X2006),"2007" = sum(X2007),"2008" = sum(X2008),"2009" = 

sum(X2009),"2010" = sum(X2010),"2011" = sum(X2011),"2012" = 

sum(X2012),"2013" = sum(X2013),"2014" = sum(X2014),"2015" = 

sum(X2015),"2016" = sum(X2016), "below 35" = sum(below.35), "35-

39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" = sum(X45.49), 

"50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-64" = 

sum(X60.64),"65-69" = sum(X65.69),"70-74" = sum(X70.74),"75-79" 

= sum(X75.79),"80-84" = sum(X80.84),"85 +" = sum(X85..)) 

 

fncardia.rhad <- summarise(group_by(fncardia_rh, id, District), 

"1992" = sum(X1992),"1993" = sum(X1993),"1994" = 

sum(X1994),"1995" = sum(X1995),"1996" = sum(X1996),"1997" = 
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sum(X1997),"1998" = sum(X1998),"1999" = sum(X1999),"2000" = 

sum(X2000),"2001" = sum(X2001),"2002" = sum(X2002),"2003" = 

sum(X2003),"2004" = sum(X2004),"2005" = sum(X2005),"2006" = 

sum(X2006),"2007" = sum(X2007),"2008" = sum(X2008),"2009" = 

sum(X2009),"2010" = sum(X2010),"2011" = sum(X2011),"2012" = 

sum(X2012),"2013" = sum(X2013),"2014" = sum(X2014),"2015" = 

sum(X2015),"2016" = sum(X2016), "below 35" = sum(below.35), "35-

39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" = sum(X45.49), 

"50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-64" = 

sum(X60.64),"65-69" = sum(X65.69),"70-74" = sum(X70.74),"75-79" 

= sum(X75.79),"80-84" = sum(X80.84),"85 +" = sum(X85..)) 

 

mncardia.rhad <- summarise(group_by(mncardia_rh, id, District), 

"1992" = sum(X1992),"1993" = sum(X1993),"1994" = 

sum(X1994),"1995" = sum(X1995),"1996" = sum(X1996),"1997" = 

sum(X1997),"1998" = sum(X1998),"1999" = sum(X1999),"2000" = 

sum(X2000),"2001" = sum(X2001),"2002" = sum(X2002),"2003" = 

sum(X2003),"2004" = sum(X2004),"2005" = sum(X2005),"2006" = 

sum(X2006),"2007" = sum(X2007),"2008" = sum(X2008),"2009" = 

sum(X2009),"2010" = sum(X2010),"2011" = sum(X2011),"2012" = 

sum(X2012),"2013" = sum(X2013),"2014" = sum(X2014),"2015" = 

sum(X2015),"2016" = sum(X2016), "below 35" = sum(below.35), "35-

39" = sum(X35.39), "40-44" = sum(X40.44),"45-49" = sum(X45.49), 

"50-54" = sum(X50.54), "55-59" = sum(X55.59),"60-64" = 

sum(X60.64),"65-69" = sum(X65.69),"70-74" = sum(X70.74),"75-79" 

= sum(X75.79),"80-84" = sum(X80.84),"85 +" = sum(X85..)) 

 

#---------------------------------------------------------------

-------------------- 

# merging the gc cases with covariates 

cov.rhad<- read.csv("P:\\Fakanye_5646\\New 

folder\\cov.rhad.csv", sep=",") 

#1. Overall 

overall <- merge(cov.rhad, o.rhad, by.x = "OBJECTID", by.y = 

"id", all.x = TRUE) 

#2. male 

male <- merge(cov.rhad, male.rhad, by.x = "OBJECTID", by.y = 

"id", all.x = TRUE) 

#3. female 

female <- merge(cov.rhad, female.rhad, by.x = "OBJECTID", by.y = 

"id", all.x = TRUE) 

#4. cardia 

cardia <- merge(cov.rhad, cad.rhad, by.x = "OBJECTID", by.y = 

"id", all.x = TRUE) 

#5. Noncardia 

noncardia <- merge(cov.rhad, ncad.rhad, by.x = "OBJECTID", by.y 

= "id", all.x = TRUE) 



 

 

106 | P a g e  

 

 

#8. male cardia 

mcad.data <- merge(cov.rhad, mcardia.rhad, by.x = "OBJECTID", 

by.y = "id", all.x = TRUE) 

 

#9. female cardia 

fcad.data <- merge(cov.rhad, fcardia.rhad, by.x = "OBJECTID", 

by.y = "id", all.x = TRUE) 

 

#10. male non-cardia 

mncad.data <- merge(cov.rhad, mncardia.rhad, by.x = "OBJECTID", 

by.y = "id", all.x = TRUE) 

 

#11. female non-cardia 

fncad.data <- merge(cov.rhad, fncardia.rhad, by.x = "OBJECTID", 

by.y = "id", all.x = TRUE) 

 

#---------------------------------------------------------------

----------------- 

 

#final output data 

write.csv(overall, file = "overall.csv") 

write.csv(male, file = "male.csv") 

write.csv(female, file = "female.csv") 

write.csv(cardia, file = "cardia.csv") 

write.csv(noncardia, file = "noncardia.csv") 

write.csv(mcad.data, file = "male_cardia.csv") 

write.csv(fcad.data, file = "female_cardia.csv") 

write.csv(mncad.data, file = "male_ncardia.csv") 

write.csv(fncad.data, file = "female_ncardia.csv") 

 

            ############################################## 

            #         temporal dataset extraction       # 

            ############################################# 

male.st1 <- read.csv("P:\\Fakanye_5646\\New folder\\inla-

folder\\male-st1.csv", sep=",") 

female.st1 <- read.csv("P:\\Fakanye_5646\\New folder\\inla-

folder\\female-st1.csv", sep=",") 

 

#cecking for linearity of the continuous covariates and the log 

of response 

#1. imigrant 

imigrant <- overall[,c(6,10,11)] 

imigrant$y <- imigrant$cardia + imigrant$Noncardia 

quantile(imigrant$imigp, na.rm = T) # min = 0, Q1 = 3.375539, Q2 

= 7.415129, Q3 = 17.482804, max = 53.918346 

imigrant$q1 <- 0 
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imigrant$q2 <- 0 

imigrant$q3 <- 0 

for(i in 1:nrow(imigrant)){ 

  ifelse(imigrant$imigp[i] <= 3.375539, imigrant$q1[i] <- 1, 

imigrant$q1[i] <- 0)  

  ifelse(imigrant$imigp[i] > 3.375539 & imigrant$imigp[i] <= 

7.415129, imigrant$q2[i] <- 1, imigrant$q2[i] <- 0)  

  ifelse(imigrant$imigp[i] > 7.415129 & imigrant$imigp[i] <= 

17.482804, imigrant$q3[i] <- 1, imigrant$q3[i] <- 0)  

  } 

 

#poison egression 

mod <- glm(y ~ q1 + q2 + q3, data = imigrant, family = 

poisson(link = log)) 

 

#2. indigenous 

indi <- overall[,c(7,10,11)] 

indi$y <- indi$cardia + indi$Noncardia 

quantile(indi$indip, na.rm = T) # min = 1.171, Q1 = 9.3, Q2 = 

15.11, Q3 = 31.19, max = 98 

indi$q1 <- 0 

indi$q2 <- 0 

indi$q3 <- 0 

for(i in 1:nrow(indi)){ 

  ifelse(indi$indip[i] <= 9.3, indi$q1[i] <- 1, indi$q1[i] <- 0)  

  ifelse(indi$indip[i] > 9.3 & indi$indip[i] <= 15.11, 

indi$q2[i] <- 1, indi$q2[i] <- 0)  

  ifelse(indi$indip[i] > 15.11 & indi$indip[i] <= 31.19, 

indi$q3[i] <- 1, indi$q3[i] <- 0)  

} 

 

#poison egression 

mod <- glm(y ~ q1 + q2 + q3, data = indi, family = poisson(link 

= log)) 

 

#--------------Exploratory Analysis-----------------------------

-# 

#a. Income 

plot(mydata$income, mydata$sir,xlab = "Median Income", ylab = 

"GC incicende ratio", col='blue') 

lines(lowess(mydata$income, mydata$sir), col = "red") 

 

#---------------------------------------------------------------

------------------------- 

# model fitting 

# POISSON MODEL 

#1. empty model 
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mod1 <- glm(y ~ 1, data = mydata, family = poisson(link = log)) 

 

#2. checking association between the independent variable and 

the dependent variable 

#Univariate model 

mod1.1 <- glm(y ~ offset(log(E)) + income, data = mydata, family 

= poisson(link = log)) 

mod1.2 <- glm(y ~ offset(log(E)) + npsedup, data = mydata, 

family = poisson(link = log)) 

mod1.3 <- glm(y ~ offset(log(E)) + aborp, data = mydata, family 

= poisson(link = log)) 

mod1.4 <- glm(y ~ offset(log(E)) + imigp, data = mydata, family 

= poisson(link = log)) 

mod1.5 <- glm(y ~ offset(log(E)) + vismp, data = mydata, family 

= poisson(link = log)) 

mod1.6 <- glm(y ~ offset(log(E)) + unempp, data = mydata, family 

= poisson(link = log)) 

mod1.7 <- glm(y ~ offset(log(E)) + agricp, data = mydata, family 

= poisson(link = log)) 

mod1.8 <- glm(y ~ offset(log(E)) + mingp, data = mydata, family 

= poisson(link = log)) 

#---------------------------------------------------------------

------------------------- 

#---------------CREATING SES INDEX SCORE------------------------

--------# 

mydata1 <- read.csv("P:\\Fakanye_5646\\R code\\data_2016.csv", 

sep=",") 

# recoding variable and standardization 

mydata <- mydata1[, -c(1:17,26:50)] 

mydata$popp <- mydata1$tpop/sum(mydata1$tpop) 

mydata$Edu <- 1 - mydata$npsedup 

mydata$Empl <- 1 - mydata$unempp 

#================================== 

 

# standardizing the predictors 

mydata$simig <- (mydata$imigp- 

min(mydata$imigp))/(max(mydata$imigp) - min(mydata$imigp)) 

mydata$sabor <- (mydata$aborp- 

min(mydata$aborp))/(max(mydata$aborp) - min(mydata$aborp)) 

mydata$svism <- (mydata$vismp- 

min(mydata$vismp))/(max(mydata$vismp) - min(mydata$vismp)) 

mydata$sunemp <- (mydata$unempp- 

min(mydata$unempp))/(max(mydata$unempp) - min(mydata$unempp)) 

mydata$sedu <- (mydata$npsedup- 

min(mydata$npsedup))/(max(mydata$npsedup) - min(mydata$npsedup)) 

mydata$sming <- (mydata$mingp- 

min(mydata$mingp))/(max(mydata$mingp) - min(mydata$mingp)) 
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mydata$sfarm <- (mydata$agricp- 

min(mydata$agricp))/(max(mydata$agricp) - min(mydata$agricp)) 

mydata$sincome <- (mydata$income- 

min(mydata$income))/(max(mydata$income) - min(mydata$income)) 

mydata$spopp <- (mydata$popp- 

min(mydata$popp))/(max(mydata$popp) - min(mydata$popp)) 

mydata$sEmpl <- (mydata$Empl- 

min(mydata$Empl))/(max(mydata$Empl) - min(mydata$Empl)) 

mydata$sEdu <- (mydata$Edu- min(mydata$Edu))/(max(mydata$Edu) - 

min(mydata$Edu)) 

 

        #----------- Factor Analysis --------------------# 

#EFA with income, education and employment 

sdata2 <- sdata[,c(11,13,14)]# standardized data 

udata2<- mydata[,c(1,9,10)]# unstandadrdized data 

 

# correlation matrix 

udata_cor <- cor(udata2) 

inv_cor <- 1/udata_cor 

fa <- factanal(sdata2, factors =1, rotation = "varimax", scores 

= "regression") 

 

# factor loadings as matrix data 

skf <- as.matrix.data.frame(fa$loadings) # rotated 

component/loadings 

skfmat <- as.matrix(skf) 

 

# inverse correlation matrix of unstandardized data 

cor <- cor(udata2) 

rkk <- as.matrix(1/cor) 

 

# weighted correlation matrix 

wkf <- as.matrix(round(rkk%*%skfmat, 4)) 

 

#===============================================================

================ 

# index computation 

zik <- as.matrix(sdata2) 

ses <- zik%*%wkf 

mydata1$sesi <- ses 

write.csv(mydata1, file = "data_sesi.csv") 

 

      #----------- investigating spatial dependency using 

Moran's I ---------# 

library('spdep') 

library('rgdal') 
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shp <- readOGR(dsn = 

"P:\\Fakanye_5646\\dat\\geoshape3\\geodashp3.shp", layer = 

"geodashp3") 

queen.nb <- read.gal("queen.gal", region.id = shp$OBJECTID) 

moran.test(as.numeric(shp$field_3), nb2listw(queen.nb), 

length(shp$OBJECTID)) # GC count 

#moran.test(as.numeric(shp$field_4), nb2listw(queen.nb), 

length(shp$OBJECTID)) # crude rate 

 

#============================= 

# multicolinearity assessment 

#============================= 

x <- cbind(data$medcome,data$imigp, data$aborp, data$vismp, 

data$unempp, data$agricp, data$mingp, data$npsedup) 

xcor <- cor(x) 

xcor2 <- cor.test(x) 

write.csv(xcor, file = "cor.csv") 

#===============================================================

========================= 

 

 

 

            #------ computing of fixed-effect model Residual----

------# 

            

#=========================================================# 

# log(mu) = log(E)+ beta0 + beta1*sesi + beta2*immigration + 

beta3*indigenous 

#log(mu) = log(E) + 0.9658 + (-0.1161)*sesi + 0.691*immigration 

+ 0.02497*indigenous 

data <- read.csv("P:\\Fakanye_5646\\R code\\data_sesi.csv", 

sep=",") 

lge <- log(data$E) 

 

b1x1 <- data$sesi*(-0.1161) 

b2x2 <- data$imigp*0.691 

b3x3 <- data$aborp*0.02497 

 

xbtotal <- 0.6418 + b1x1 + b2x2 + b3x3# total 

lambda <- exp(xbtotal) # rate 

mu <- lambda*data$E # predicted count 

#residual 

data$residual <- data$y - mu 

 

#standardised residual 

data$sresid <- scale(data$residual, center = TRUE, scale = TRUE)  

data$smooth_SIR <- mu/data$E  
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write.csv(data, file= "data-wit-residual.csv") 

 

#1. residual plots 

data2 <- read.csv("P:\\Fakanye_5646\\R code\\data-wit-

residual.csv", sep=",") 

#a. SESI 

plot(data2$smooth_SIR, data2$sesi,xlab = "smoothed risk", ylab = 

" Socioeconomic score index", col='blue') 

lines(lowess(data2$smooth_SIR, data2$sesi), col = "red") 

 

#c. indigenous proportion 

plot(data2$smooth_SIR, data2$aborp,xlab = "smoothed risk", ylab 

= " Indigenous proportion", col='blue') 

lines(lowess(data2$smooth_SIR, data2$aborp), col = 'red') 

 

#e. Imigrant proportion 

plot(data2$smooth_SIR, data2$imigp, xlab = "smoothed risk", ylab 

= "immigrant Proportion", col='blue') 

lines(lowess(data2$smooth_SIR, data2$imigp), col='red') 

 

#----------- Model fitting --------------------------------#                                                                                                         

setwd("P:\\Fakanye_5646\\New folder\\inla-folder") 

mypaths <- 

.libPaths("P:/AA_RESEARCHER_TRAINING_INFORMATION/R_packages/Ju

ne_2018") 

mypaths <- .libPaths("P:/Fakanye_5646/INLA_19.09.03") 

#--- load required packages ------# 

library(sp) 

library(maptools) 

library(Matrix) 

library(spdep) 

library(rgdal) 

library(parallel) 

library(ggplot2) 

library(INLA) 

#-- Prepare the map --# 

#Import the data 

data <- read.csv("overall-ST.csv") 

mb <- readOGR("shp96.shp") 

data.mb = attr(mb, "data") 

 

#Create the graph for adjacencies in INLA                      

z2 <- poly2nb(mb) 

nb2INLA("mb.graph", z2) # output spatial neighbours for INLA 

(mb.graph is file where adjacency matrix will be stored) 

#this create a file called "mb-INLA.adj" with the graph for 

INLA 
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mb.adj <- paste(getwd(),"/mb.graph",sep="") 

#--Transform the data to be in the right format for INLA--# 

y.vector <- as.vector(as.matrix(data[,11:15]))#by column 

E.vector <- as.vector(as.matrix(data[,16:20]))#by column 

x1 <- data$ses 

x2 <- data$imigp 

x3 <- data$indip 

year <- numeric(0) 

for(i in 1:5){  

  year <- append(year,rep(i,dim(data)[1])) 

} 

rhad <- as.factor(rep(data[,1],5)) 

 

data2<- data.frame(y = y.vector, E= E.vector, x1 = x1, x2 = 

x2, x3 = x3, ID.area1 = as.numeric(data$OBJECTID), ID.area2 = 

as.numeric(data$OBJECTID), year = year, 

                   ID.year1 = year, ID.year2 = year, 

ID.area.year = seq(1,length(rhad))) 

 

# Poisson model without spatial component    # 

# model = alpha + x1 + x2 + x3               # 

data.s <- read.csv("S-overall.csv") 

data.st <- read.csv("data2.csv") 

data.ns<- data.frame(y = data.s$y, E= data.s$E, x1 = 

data.s$ses, x2 = data.s$imigp, x3 = data.s$indip) 

formula.ns <- y ~ 1 + x1 + x2 + x3 

mod.ns <- inla(formula.ns, family = "poisson", data = data.ns, 

E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#spatial model                              

# model = alpha + x1 + x2+ x3 + u_i + s_i  

data.s2 <- data.frame(y = data.s$y, E= data.s$E, x1 = 

data.s$ses, x2 = data.s$imigp, x3 = data.s$indip, ID.area1 = 

as.numeric(data.s$OBJECTID), ID.area2 = 

as.numeric(data.s$OBJECTID)) 

formula.s1 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym",  

graph = mb.adj, scale.model = TRUE,  

hyper = list(prec.unstruct = list(prior = "loggamma",  

param = c(0.1, 0.01)), 

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) 

mod.s1 <- inla(formula.s1, family = "poisson", data = data.s2, 

E = E, control.predictor = list(compute = TRUE), 

              control.compute = list(dic = TRUE, cpo = TRUE)) 

 

# less informative prior for precision parameter 
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formula.s2 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, 

hyper = list(prec.unstruct = list(prior = "loggamma",  

param = c(1, 0.001)), 

prec.spatial = list(prior = "loggamma", param=c(1,0.001)))) 

mod.s2 <- inla(formula.s2, family = "poisson", data = data.s2, 

E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

formula.s3 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE) 

mod.s3 <- inla(formula.s3, family = "poisson", data = data.s2, 

E = E, control.predictor = list(compute = TRUE), 

   control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#spatial and temporal effect model without interaction        # 

# model = alpha + x1 + x2+ x3 + u_i + s_i + phi_t + psi_t     # 

data.st<- data.frame(y = y.vector, E= E.vector, x1 = x1, x2 = 

x2, x3 = x3, ID.area1 = as.numeric(data$OBJECTID), ID.area2 = 

as.numeric(data$OBJECTID),ID.year1 = year, ID.year2 = year) 

 

#1. RW(1) prior for temporal effect 

formula.t1 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE,  

hyper = list(prec.unstruct = list(prior = "loggamma",  

param = c(0.1, 0.01)), 

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) + 

f(ID.year1, model = "rw1") + f(ID.year2, model = "iid") 

mod.t1 <- inla(formula.t1, family = "poisson", data = data.st, E 

= E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#2. Rw(2) prior for temporal effect 

formula.t2 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, 

hyper = list(prec.unstruct = list(prior = "loggamma", param = 

c(0.1, 0.01)),prec.spatial = list(prior = "loggamma", 

param=c(0.1,0.01)))) + 

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") 

mod.t2 <- inla(formula.t2, family = "poisson", data = data.st, E 

= E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#3. AR(1) prior for temporal effect 

formula.t3 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)), 
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prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +                                      

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") 

mod.t3 <- inla(formula.t3, family = "poisson", data = data.st, E 

= E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

# model including spatial and temporal interaction   # 

#Interaction I: excahangeable prior 

#model =  alpha + x1 + x2 + x3 + u_i + s_i + phi_t + psi_t + 

delta_it 

#2a rw(1) prior for temporal effect 

 

formula.st2a <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)), 

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +                         

f(ID.year1, model = "rw1") + f(ID.year2, model = "iid") + 

f(ID.area.year, model = "iid") 

mod.st2a <- inla(formula.st2a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#2b rw(2) prior for temporal effect 

formula.st2b <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +                             

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") +                            

f(ID.area.year, model = "iid") 

 

mod.st2b <- inla(formula.st2b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#2c ar(1) prior for temporal effect 

formula.st2c <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)), 

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +                             

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") +                            

f(ID.area.year, model = "iid") 

mod.st2c <- inla(formula.st2c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#3. Interaction II: RW1 prior 
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# Model =  alpha + x1 + x2 + x3 + u_i + s_i + phi_t + psi_t + 

delta_it 

ID.area.int <- data.st2$ID.area1 

ID.year.int <- data.st2$ID.year1 

 

#3a. rw1 prior for temporal effect and rw(1) for interaction 

effect 

formula.st3a <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                     

prec.spatial = list(prior = "loggamma", param=c(0.1, 0.01)))) +                       

f(ID.year1, model = "rw1") + f(ID.year2, model = "iid") +                       

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw1")) 

mod.st3a <- inla(formula.st3a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#3b. rw2 prior for temporal effect and rw(1) for interaction 

effect 

formula.st3b <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)), 

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +  

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") + 

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw1")) 

mod.st3b <- inla(formula.st3b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

  control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#3c. ar(1) prior for temporal effect and rw(1) for interaction 

effect 

formula.st3c <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw1")) 

mod.st3c <- inla(formula.st3c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#4. Interaction II: RW2 prior 

# Model =  alpha + x1 + x2 + x3 + u_i + s_i + phi_t + psi_t + 

delta_it 



 

 

116 | P a g e  

 

ID.area.int <- data.st2$ID.area1 

ID.year.int <- data.st2$ID.year1 

 

#4a. rw1 prior for temporal effect and rw(2) for interaction 

effect 

formula.st4a <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                           

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "rw1") + f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw2")) 

mod.st4a <- inla(formula.st4a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#4b. rw2 prior for temporal effect and rw(2) for interaction 

effect 

formula.st4b <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE,hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw2")) 

mod.st4b <- inla(formula.st4b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#4c. ar(1) prior for temporal effect and rw(2) for interaction 

effect 

formula.st4c <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="rw2")) 

mod.st4c <- inla(formula.st4c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

 

 

#5. Interaction II: AR1 prior 

# Model =  alpha + x1 + x2 + x3 + u_i + s_i + phi_t + psi_t + 

delta_it 
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ID.area.int <- data.st2$ID.area1 

ID.year.int <- data.st2$ID.year1 

 

#5a. rw1 prior for temporal effect and ar(1) for interaction 

effect 

formula.st5a <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                        

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "rw1") +   f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="ar1")) 

mod.st5a <- inla(formula.st5a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#5b. rw2 prior for temporal effect and ar(1) for interaction 

effect 

formula.st5b <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") +   

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="ar1")) 

mod.st5b <- inla(formula.st5b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#5c. ar(1) prior for temporal effect and ar(1) for interaction 

effect 

formula.st5c <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") +  

f(ID.area.int, model = "iid", group = ID.year.int, control.group 

= list(model="ar1")) 

mod.st5c <- inla(formula.st5c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#6. Interaction III: CAR prior 

# Model =  alpha + x1 + x2 + x3 + u_i + s_i + phi_t + psi_t + 

delta_it 

ID.area.int <- data2$ID.area1 

ID.year.int <- data2$ID.year1 
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#6a. CAR for interaction and rw1 for temporal 

formula.st6a <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE,hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +  

f(ID.year1, model = "rw1") + f(ID.year2, model = "iid") +  

f(ID.year.int, model = "iid", group = ID.area.int, control.group 

= list(model="besag", graph = mb.adj)) 

mod.st6a <- inla(formula.st6a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

#6b. CAR for interaction and rw2 for temporal 

formula.st6b <- y ~ 1 + x1 + x2 + x3 +f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0001)),                                                

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +  

f(ID.year1, model = "rw2") + f(ID.year2, model = "iid") +  

f(ID.year.int, model = "iid", group = ID.area.int, control.group 

= list(model="besag", graph = mb.adj)) 

mod.st6b <- inla(formula.st6b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

 

 

 

#6c. CAR for interaction and ar1 for temporal 

formula.st6c <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE, hyper = list(prec.unstruct = 

list(prior = "loggamma", param = c(0.1, 0.01)),                                                      

prec.spatial = list(prior = "loggamma", param=c(0.1,0.01)))) +   

f(ID.year1, model = "ar1") + f(ID.year2, model = "iid") +  

f(ID.year.int, model = "iid", group = ID.area.int, control.group 

= list(model="besag", graph = mb.adj)) 

mod.st6c <- inla(formula.st6c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE),                 

control.compute = list(dic = TRUE, cpo = TRUE)) 

 

# Interaction IV: RW1 distribution delta_it ( alpha + u_i + s_i 

+ phi_t + psi_t + delta_it) 

ID.area.int <- data2$ID.area1 

ID.year.int <- data2$ID.year1 

 

#7a. rw1 for temporal structured interaction 
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formula.st7a <- y ~ 1+ x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj) + f(ID.year1, model = "rw1") +  

  f(ID.year2, model = "iid") + 

  f(ID.year.int, model = "rw1", group = ID.area.int, 

control.group=list(model = "besag", graph = mb.adj)) 

 

mod.st7a <- inla(formula.st7a, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

                control.compute = list(dic = TRUE, cpo = 

TRUE)) 

 

#7b. rw2 for temporal structured interaction 

formula.st7b <- y ~ 1+ x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj) +  

  f(ID.year1, model = "rw2") +  

  f(ID.year2, model = "iid") + 

  f(ID.year.int, model = "rw1", group = ID.area.int, 

control.group=list(model = "besag", graph = mb.adj)) 

 

mod.st7b <- inla(formula.st7b, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

                control.compute = list(dic = TRUE, cpo = 

TRUE)) 

 

#7c. ar1 for temporal structured interaction 

formula.st7c <- y ~ 1+ x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj) +  

  f(ID.year1, model = "ar1") +  

  f(ID.year2, model = "iid") + 

  f(ID.year.int, model = "rw1", group = ID.area.int, 

control.group=list(model = "besag", graph = mb.adj)) 

 

mod.st7c <- inla(formula.st7c, family = "poisson", data = 

data.st2, E = E, control.predictor = list(compute = TRUE), 

                 control.compute = list(dic = TRUE, cpo = 

TRUE)) 

 

 

#Put the temporal effect  (gammaj+phij) on the natural scale 

temporal<-lapply(model.ST1$marginals.lincomb.derived, 

function(X){ 

  marg <- inla.marginal.transform(function(x) exp(x), X) 

  inla.emarginal(mean, marg) 

}) 

 

# extracting the spatial component from the model with best fit 

#1. spatial model overall (mod.s2) 
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zeta.o <-  lapply(mod.s1$marginals.random$ID.area1[1:96], 

function(x) inla.emarginal(exp,x)) 

zeta.m <- lapply(mod.ms$marginals.random$ID.area1[1:96], 

function(x) inla.emarginal(exp,x)) 

zeta.f <- lapply(mod.fs$marginals.random$ID.area1[1:96], 

function(x) inla.emarginal(exp,x)) 

zeta.c <- lapply(mod.cs$marginals.random$ID.area1[1:96], 

function(x) inla.emarginal(exp,x)) 

zeta.nc <- lapply(mod.ncs$marginals.random$ID.area1[1:96], 

function(x) inla.emarginal(exp,x)) 

 

#-- transforming the derived temporal effect into natural scale 

---# 

#------ overall temporal effect: oTemp1 = structured -------# 

oTemp1 <- lapply(mod.st3a$marginals.random$ID.year1,  

           function(X){marg <- inla.tmarginal(function(x) 

exp(x), X)  

                  inla.emarginal(mean, marg) 

                }) 

# male temporal effect 

mTemp1 <- lapply(mod.mst5a$marginals.random$ID.year1,  

          function(X){marg <- inla.tmarginal(function(x) 

exp(x), X)  

                  inla.emarginal(mean, marg) 

                }) 

#-------- female temporal effect -----------------------# 

fTemp1 <- lapply(mod.fst5c$marginals.random$ID.year1,  

          function(X){marg <- inla.tmarginal(function(x) 

exp(x), X)  

                  inla.emarginal(mean, marg) 

                }) 

#--------- Cardia temporal effect --------------------------# 

cTemp1 <- lapply(mod.cst5b$marginals.random$ID.year1,  

          function(X){marg <- inla.tmarginal(function(x) 

exp(x), X)  

                  inla.emarginal(mean, marg) 

                }) 

#----------- non-cardia temporal effect ------------------------

# 

ncTemp1 <- lapply(mod.ncst3a$marginals.random$ID.year1,  

           function(X){marg <- inla.tmarginal(function(x) 

exp(x), X)  

                   inla.emarginal(mean, marg) 

                 }) 

 

#----------- extraction of temporal effect -----------------# 

otemp <- mod.st3a$summary.random$ID.year1 
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mtemp <- mod.mst5a$summary.random$ID.year1 

ftemp <- mod.fst5c$summary.random$ID.year1 

ctemp <- mod.cst5b$summary.random$ID.year1 

nctemp <- mod.ncst3a$summary.random$ID.year1 

 

#------ plot of temporal effect with confidence interval -------

# 

tempo_o <- read.csv("temporal_O.csv") 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(tempo_o$sir, col = 1, lty = 1) 

lines(tempo_o$lbound, col = 1, lty = 2) 

lines(tempo_o$Ubound, col = 1, lty = 2) 

 

tempo_M <- read.csv("temporal_M.csv") 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(tempo_M$sir, col = 1, lty = 1) 

lines(tempo_M$lb, col = 1, lty = 2) 

lines(tempo_M$ub, col = 1, lty = 2) 

 

tempo_f <- read.csv("temporal_F.csv") 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(tempo_f$sir, col = 1, lty = 1) 

lines(tempo_f$lb, col = 1, lty = 2) 

lines(tempo_f$ub, col = 1, lty = 2) 

 

tempo_c <- read.csv("temporal_C.csv") 

plot(seq(1,5),seq(0.4,2.0,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(tempo_c$sir, col = 1, lty = 1) 

lines(tempo_c$lb, col = 1, lty = 2) 

lines(tempo_c$ub, col = 1, lty = 2) 

 

tempo_nc <- read.csv("temporal_NC.csv") 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(tempo_nc$sir, col = 1, lty = 1) 

lines(tempo_nc$lb, col = 1, lty = 2) 

lines(tempo_nc$ub, col = 1, lty = 2) 

 

#separate plot of temporal effect 

#1. overall 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(unlist(oTemp1), col = 4, lty = 3) 
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abline(h=1, lty = 1) 

 

#2. male 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(unlist(mTemp1), col = 2, lty = 3) 

abline(h=1, lty = 1) 

 

#3. female 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(unlist(fTemp1), col = 3, lty = 3) 

abline(h=1, lty = 1) 

 

#4. cardia 

plot(seq(1,5),seq(0.8,1.2,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(unlist(cTemp1), col = 6, lty = 3) 

abline(h=1, lty = 1) 

 

#5. noncadia 

plot(seq(1,5),seq(0.8,2.0,length=5),type="n",xlab="5-years 

period",ylab=expression(exp(gamma[t]))) 

lines(unlist(ncTemp1), col = 8, lty = 3) 

abline(h=1, lty = 1) 

 

#----------- space-Time interaction ------------------------# 

#1. extracting the results for each data subset 

o_int <- 

data.frame(round(mod.st3a$summary.random$ID.area.int[,1:6],4)) 

# overall population 

m_int <- 

data.frame(round(mod.mst5a$summary.random$ID.area.int[,1:6],4)

) # male population 

f_int <- 

data.frame(round(mod.fst5c$summary.random$ID.area.int[,1:6],4)

) # female population 

nc_int <- 

data.frame(round(mod.ncst3a$summary.random$ID.area.int[,1:6],4

)) # non-cardia population 

c_int <- 

data.frame(round(mod.cst5b$summary.random$ID.area.int[,1:6],4)

) # cardia population 

 

#--------- extracting the spatial effect over time -------------

---# 
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delta <- data.frame(year=ID.year1, ID.area =ID.area.int, 

overall = o_int[,2], male=m_int[,2], 

female=f_int[,2],ncardia=nc_int[,2], cardia=c_int[,2]) 

#------------ improving the CPO and PIT estimates ------------

--# 

 

 

# sensitivity analysis 

UN.prior1 <- "expression: 

a = 0.001; 

b = 100; 

dens = 0-log(sigma*sigma) - log(b-a); 

return(dens);" 

formula.s4 <- y ~ 1 + x1 + x2 + x3 + f(ID.area1, model="bym", 

graph = mb.adj, scale.model = TRUE,  

hyper = list(prec.unstruct = list(prior = UN.prior1), 

prec.spatial = list(prior = UN.prior1))) 

mod.s4 <- inla(formula.s4, family = "poisson", data = data.s2, E 

= E, control.predictor = list(compute = TRUE), 

      control.compute = list(dic = TRUE, cpo = TRUE)) 

#---------------------------------------------------------------

---- 

#posterior of spatial random effect variance marginal plot 

marg.s1 <- inla.tmarginal(function(x) 1/x, 

mod.s1$marginals.hyperpar$`Precision for ID.area1 (spatial 

component)`) 

marg.s2 <- inla.tmarginal(function(x) 1/x, 

mod.s2$marginals.hyperpar$`Precision for ID.area1 (spatial 

component)`) 

marg.s3 <- inla.tmarginal(function(x) 1/x, 

mod.s3$marginals.hyperpar$`Precision for ID.area1 (spatial 

component)`) 

marg.s4 <- inla.tmarginal(function(x) 1/x, 

mod.s4$marginals.hyperpar$`Precision for ID.area1 (spatial 

component)`) 

plot(seq(-0.1,.5, 0.1),seq(0,60,10),type="n",xlab= 

expression(sigma[s]^2), ylab = expression(tilde(p) 

(paste(sigma[s]^2,"|",y)))) 

lines(marg.s1, lty=2, col= 1) 

lines(marg.s2, lty = 3, col=2) 

lines(marg.s3, lty = 1, col=3) 

lines(marg.s4, lty = 5, col=4) 

legend("topright", c("loggamma(0.1, 0.01)", 

"loggamma(1,0.0001)", "INLA default prior", "uniform(0.001, 

100)"), cex = 0.6, lty = c(2,3,1,5)) 
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#---------------------------------------------------------------

---- 

# posterior of non-spatial random effect marginal plot 

marg.ns1 <- inla.tmarginal(function(x) 1/x, 

mod.s1$marginals.hyperpar$`Precision for ID.area1 (iid 

component)`) 

marg.ns2 <- inla.tmarginal(function(x) 1/x, 

mod.s2$marginals.hyperpar$`Precision for ID.area1 (iid 

component)`) 

marg.ns3 <- inla.tmarginal(function(x) 1/x, 

mod.s3$marginals.hyperpar$`Precision for ID.area1 (iid 

component)`) 

marg.ns4 <- inla.tmarginal(function(x) 1/x, 

mod.s4$marginals.hyperpar$`Precision for ID.area1 (iid 

component)`) 

plot(seq(-0.05,0.30, 0.05),seq(0,14,2),type="n",xlab= 

expression(sigma[epsilon]^2), ylab = expression(tilde(p) 

(paste(sigma[epsilon]^2,"|",y)))) 

lines(marg.ns1, lty=2) 

lines(marg.ns2, lty = 3) 

lines(marg.ns3, lty = 1) 

lines(marg.ns4, lty = 5) 

legend("topright", c("loggamma(0.1, 0.01)", 

"loggamma(1,0.0001)", "INLA default prior", "uniform(0.001, 

100)"), cex = 0.58, lty = c(2,3,1,5)) 

#---------------------------------------------------------------

---- 

#1. marginal posterior plot of SES fixed effects 

marg.ses1 <- mod.s1$marginals.fixed$x1 

marg.ses2 <- mod.s2$marginals.fixed$x1 

marg.ses3 <- mod.s3$marginals.fixed$x1 

marg.ses4 <- mod.s4$marginals.fixed$x1 

plot(seq(-0.6,0.4, 0.2),seq(0,10,2),type="n",xlab= 

expression(beta[1]), ylab= 

expression(tilde(p)(paste(beta[1],"|",y)))) 

lines(marg.ses1, col =1, lty = 2) 

lines(marg.ses2, col = 1, lty = 3) 

lines(marg.ses3, col = 1, lty = 1) 

lines(marg.ses4, col = 1, lty = 5) 

legend("topright", c("loggamma(0.1, 0.01)", 

"loggamma(1,0.0001)", "INLA default prior", "uniform(0.001, 

100)"), cex = 0.58, lty = c(2,3,1,5)) 

 

#2. marginal posterior plot of immigrant fixed effects 

marg.imig1 <- mod.s1$marginals.fixed$x2 

marg.imig2 <- mod.s2$marginals.fixed$x2 

marg.imig3 <- mod.s3$marginals.fixed$x2 
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marg.imig4 <- mod.s4$marginals.fixed$x2 

plot(marg.imig1, col =1, lty = 2) 

plot(seq(-0.04,0.06, 0.02),seq(0,100,20),type="n",xlab= 

expression(beta[2]), ylab= 

expression(tilde(p)(paste(beta[2],"|",y)))) 

lines(marg.imig1, col =1, lty = 2) 

lines(marg.imig2, col = 1, lty = 3) 

lines(marg.imig3, col = 1, lty = 1) 

lines(marg.imig4, col = 1, lty = 5) 

legend("topright", c("loggamma(0.1, 0.01)", 

"loggamma(1,0.0001)", "INLA default prior", "uniform(0.001, 

100)"), cex = 0.58, lty = c(2,3,1,5)) 

 

#3. marginal posterior plot of indigenous fixed effects 

marg.indi1 <- mod.s1$marginals.fixed$x3 

marg.indi2 <- mod.s2$marginals.fixed$x3 

marg.indi3 <- mod.s3$marginals.fixed$x3 

marg.indi4 <- mod.s4$marginals.fixed$x3 

plot(marg.indi1, col =1, lty = 2) 

plot(seq(-0.04,0.08, 0.02),seq(0,120,20),type="n",xlab= 

expression(beta[3]), ylab= 

expression(tilde(p)(paste(beta[3],"|",y)))) 

lines(marg.indi1, col =1, lty = 2) 

lines(marg.indi2, col = 1, lty = 3) 

lines(marg.indi3, col = 1, lty = 1) 

lines(marg.indi4, col = 1, lty = 5) 

legend("topright", c("loggamma(0.1, 0.01)", 

"loggamma(1,0.0001)", "INLA default prior", "uniform(0.001, 

100)"), cex = 0.58, lty = c(2,3,1,5)) 

 

 

 

 


