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Abstract

Privacy is a fundamental aspect of modern distributed systems. The data collection

mechanism and subsequent analysis often reveals private information about individ-

uals. This is especially true when designing contact tracing systems to combat a

pandemic. Contact tracing systems collect vital information about individuals such

as their social interaction graph, their frequently visited places, and other sensitive

information. Majority of the proposed systems use centralized architecture and pop-

ulation wide deployment. Such macro-level design perspective is prone to privacy and

scalability issues. In the first part of the thesis, we address the problems in recently

proposed contact tracing systems. We propose a micro-level system design instead

of a macro level system design. We propose a system that can be implemented at

organizational level and can be scaled without any steep infrastructure cost. Privacy

considerations are baked into the system design. The system only stores strictly nec-

essary information from the user and the data never leaves the organization premises.

Our proposed system can be scaled up rapidly without the requirement of population

wide adoption.
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Abstract iii

Subsequent data analysis from the aggregate statistics of the raw data collected by

our proposed system is performed in a privacy-preserving manner. In the field of

epidemiology and clinical modeling, summary of raw biomedical data are used to fit

or train disease-specific specialized models. Generalized Linear Mixed Model is one

such widely used model. Training such models on sensitive data in a collaborative

setting often entails privacy risks. Standard privacy preserving mechanisms such as

differential privacy can be used to mitigate the privacy risk during training the model.

However, experimental evidence suggests that adding differential privacy to the train-

ing of the model can cause significant utility loss which makes the model impractical

for real world usage. Therefore, it becomes clear that generalized linear mixed models

which lose their usability under differential privacy requires a different approach for

privacy preserving model training.

In the second part of the thesis, we propose a value-blind training method in a fed-

erated setting for generalized linear mixed models. In our proposed training method,

the central server optimizes model parameters without ever getting access to the raw

training data or intermediate computation values. Intermediate computation values

that are shared by the collaborating parties with the central server are encrypted us-

ing homomorphic encryption. We formally prove the security of our proposed model.

Experimentation on multiple datasets suggests that the model trained by our pro-

posed method achieves very low error rate while preserving privacy. To the best of

our knowledge, this is the first work that performs a systematic privacy analysis of

generalized linear mixed model training in federated setting.
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Chapter 1

Introduction

Proliferation of distributed systems have given rise to a data-centric society. A lot of

activities we perform on day-to-day basis rely on digital platforms and data collec-

tion is an inherent feature of these platforms. The usual working principles of these

systems are that they collect a lot of data from users by their collection systems and

afterwards, they analyze that data to extract value. Therefore, broadly speaking,

majority of commercial distributed systems can be segmented into two sections: data

collection and data analysis. To prevent sensitive personal identifiable information

(PII) leak and corporate surveillance, it is imperative that privacy is taken into ac-

count in the design of both phases of the system. Consequently, privacy-aware data

collection and privacy-preserving data analysis are two of the most prominent research

directions in recent times. In the first part of this thesis, we propose a privacy-aware

data collection system for indoor contact tracing. In the later part, we design a

privacy-preserving data analysis model to learn insights from the collected data.

1
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Motivation for Privacy-Preserving Data Collection. Pandemics often spread

by contact events and therefore, require contact tracing by government or public

health officials to mitigate the spread of the pandemic. Contact tracing system is

an umbrella term for a range of techniques that are used by health-care officials to

trace the individuals who came in contact with an infected person within a specific

time frame. Digital contact tracing is the latest addition to these techniques. It

refers to the idea of tracing people’s interaction (i.e., contact events) with infected

person via digital devices (i.e., smartphones, tabs etc.). Such systems require huge

investments in infrastructure (i.e., storage and software) and widespread adoption to

be successful. Basic working principles of these systems follow the pattern of large

scale real-time data collection and subsequent post processing. Singapore was the

first nation to adopt such technology to curb the spread of Covid-19. Some other

prominent instances are South Korea, China and India. In most of these deployed

systems, the users were to exchange some kind of pseudo-random tokens (i.e., strings

of unicode characters) via Bluetooth of their smartphone or mobile devices. These

tokens would be later used to determine whether the user in question have been in

contact with someone who were positively diagnosed for the disease.

Development of a large scale data collection system such as contact tracing comes

with its own set of challenges. Especially, the privacy of the individual data contrib-

utors must be preserved. Any leakage of information can lead to severe consequences

for the individual involved. For instance, the data leak from the South Korea’s con-

tact tracing system led to people being ostracized from their close friends and had
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adverse effect on their interpersonal relationships. In the words of Lee Su-Young, A

Psychiatrist at Myongji Hospital in South Korea, “[Some of my patients] were more

afraid of being blamed than dying of the virus” [1]. This quote portrays that social

stigma due to perceived privacy loss can have adverse effect on interpersonal dynam-

ics. Therefore, it is imperative to bake privacy in the design of any contact tracing

system. The privacy requirements are two fold in this case. Firstly, the system will

collect only strictly “necessary and sufficient” information about the users. It will

not collect irrelevant but available information to extract additional knowledge from

the interaction graph of the users. Secondly, the collected data should go through

privacy-preserving data analysis. At any point of the data analysis, sensitive informa-

tion about individuals should not be revealed to any stakeholder. The second privacy

requirement brings us to the motivation of the second part of this thesis.

Motivation for Privacy-Preserving Data Analysis. The data collected by

any contact tracing system is protected by HIPAA and therefore, can not leave the

premises of the organizations. However, statistics from the raw data can be leveraged

for analysis. Therefore, we require to design an analysis scheme for geographically

distributed summary statistics of raw data. This is achieved by leveraging Federated

Learning (FL) process.

Federated Learning is a machine learning (ML) training paradigm which allows mul-

tiple parties to train a ML model without having to share their data. A central server

synchronizes this collaboration among parties. Models trained in federated setting
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are more robust compared to centrally trained models. However, FL is not completely

private [2, 3]. Prior works have shown that malicious collaborating party or server or

can compromise the data privacy of honest collaborating parties. Therefore, feder-

ated training often takes place in conjunction with different other privacy-preserving

mechanism (i.e., differential privacy, homomorphic encryption) [4, 5, 6]. This is an

active research area and a large body of work is available in literature which inves-

tigates various aspects and use cases of privacy-preserving federated learning. We

noted during literature review that majority of the prior works in privacy-preserving

federated learning demonstrated the effectiveness of their methods on a few specific

class of models such as deep neural network, support vector machine, decision tree and

regression [7, 8, 9]. This trend is understandable from a comparison perspective as

it simplifies the benchmarking process among the proposed methods. Consequently,

some popular machine learning models such as distribution modeling by maximum

likelihood estimation, Bayesian optimization are mostly absent from the current lit-

erature. Some of these absent models are widely used in domain specific cases such as

infectious disease modeling in epidemiology [10]. Therefore, privacy analysis of these

overlooked models is an interesting research question.

One such overlooked model is Generalized Linear Mixed Model (GLMM). It is one of

the most common statistical models used in medical and epidemiology research. For

instance, if a new diagnostic test is designed for rapid Covid-19 testing, the efficacy

of the test is determined by a GLMM over the data from clinical trials [11]. The wide

adoption of GLMM can be attributed to the interpretability of maximum likelihood
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estimation [12]. Although prevalent in medical and epidemiology research, GLMM

has wide applicability in other disciplines as well [12]. To the best of our knowledge

no prior work have performed a systematic privacy analysis of GLMM models. This

acted as the primary motivation for second part of this thesis.

Objective. Based on the background and motivation, our objective in this thesis is

to design an end-to-end privacy preserving data collection and analysis pipeline for

structured biomedical data. The research challenges to overcome for achieving this

objective are:

• How to design a contact tracing system that preserves the data locally? Every

action in this system should go through privacy-preserving primitives such as

private set intersection, secure multi-party computation or similar cryptographic

primitives.

• How to formulate a federated learning algorithm that works on private data? By

private data, we refer to homomorphically encrypted data. Subsequently, how to

design a training system to implement and evaluate the algorithm performance?

Contribution. In the first part of this thesis we propose the design of a privacy-

aware indoor contact tracing system. It can be implemented at organizational level

without substantial change in the existing infrastructure. It ensures the data privacy

in two ways. Firstly, the collected data never leaves the storage. Secondly, the system

can never know about data collected from the user unless the user self-reports the

case of being infected. Our key design contributions are listed as follows:
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• We designed PAARS (Privacy Aware Access Regulation System), an efficient

indoor contact tracing system that provides strong privacy guarantee while

considering existence of semi-honest adversary in our threat model. The semi-

honest entity in our model does not have access to any sensitive information

that will allow it to deduce social interaction graph of any user or link any of the

information available to itself to any particular user without the user’s explicit

consent.

• Our system design for PAARS requires minimal infrastructure addition. It

works on existing infrastructure available within the organization.

• We designed a novel probability calculation scheme to determine the positive

diagnosis probability of the user. Our scheme uses the state of the art epidemi-

ological models available in literature to calculate the disease exposure score of

an user which is then used to calculate the probability of the user being posi-

tively diagnosed for the disease. The whole process for calculation of probability

and query result release to the user is differentially private which preserves each

user’s privacy from any other users or attackers.

It is important to understand that due to the pandemic and lockdown, it was

not feasible for us to implement PAARS and deploy in a closed setting to evalu-

ate the performance. Therefore, we focused on the privacy-preserving data analysis

part of contact tracing system design. Longitudinal literature review suggested that

privacy-preserving data analysis requires the sharing of aggregate information from

locally-stored data. Raw data should never leave the premises of the organizational

boundary. This insight led us to work on privacy preserving data analysis on aggre-
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gate data (i.e., summary statistics of raw data). For this purpose we chose Federated

Learning as our privacy-preserving data analysis method.

In the second part of the thesis, we proposed and evaluated a framework for privacy-

preserving GLMM training. The reason of choosing GLMM is two-fold. Firstly,

GLMM is widely used in medical domain and therefore, has direct relevance to epi-

demiological data analysis. Given that aggregate statistics from contact tracing data

is primarily used for epidemiological modeling, GLMM is a natural choice. Secondly,

to the best of our knowledge, the privacy aspect of GLMM training is not investigated

in literature. Therefore, it is an interesting research question. The summary of the

contributions from the second part is listed below:

• To the best of our knowledge, this is the first work that performs a systematic

privacy analysis of federated training of GLMM.

• We propose and implement FedGLMM, a privacy-preserving scheme for GLMM

training in federated setting. We leveraged homomorphic encryption and grid

based parameter search technique for implementing FedGLMM.

• We prove the security of our proposed scheme in semi-honest trust setting.

• We evaluate the performance of FedGLMM over multiple datasets. Experimen-

tal results show that FedGLMM achieves less than 5% error-rate for distribution

modeling tasks in both real world and synthetic datasets.

Organization. The thesis is organized in the following manner. Chapter 2 contains

the background of privacy preserving techniques used in this thesis. Chapter 3 de-
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scribes the literature review, design, and implementation strategy of PAARS. This is

the indoor contact tracing system we designed for privacy preserving data collection.

Chapter 4 describes FedGLMM, a federated learning algorithm for generalized linear

mixed model training. We present a literature review, system design, security analy-

sis and experimental evaluation for FedGLMM. Chapter 5 concludes the thesis.

Two publications have resulted from this work:

• Anjum, Md Monowar, and Noman Mohammed. ”PAARS: Privacy aware ac-

cess regulation system.” 2020 11th IEEE Annual Ubiquitous Computing, Elec-

tronics & Mobile Communication Conference (UEMCON). IEEE, 2020.

• Anjum, Md Monowar, Noman Mohammed, Wentao Li, and Xiaoqian Jiang.

”Privacy preserving collaborative learning of generalized linear mixed model.”

Journal of Biomedical Informatics 127 (2022): 104008.



Chapter 2

Background

2.1 Differential Privacy

Differential privacy is a framework proposed by Dwork et al. to measure the pri-

vacy leakage of randomized algorithms [13]. It requires that two datasets differing

by at most one data point produce statistically indistinguishable query result to an

external viewer. An adversary observing the outputs of the queries can guess about

the properties of the data points within a bounded probability. Formally, we have

the following definition.

Definition (Differential Privacy). A randomized mechanismM with domain D and

range R satisfies (ϵ, δ) differential privacy if for any subset S ∈ R and for datasets

d, d̄ where |d− d̄| ≤ 1 the following inequality holds:

Pr[M(d) ∈ S] ≤ eϵPr[M(d̄) ∈ S] + δ (2.1)

9
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In our experimentation, we used the Laplace mechanism to ensure differential

privacy.

Definition (Laplace Mechanism). Laplace mechanism is one of the most popular

mechanism for adding differentially private noise to query results. Consider a function

f defined on a dataset X , which can be written as f : N|X | −→ Rk. This function f

essentially maps queries on dataset X to k real numbers. Given such a function f ,

the Laplace mechanismML is defined as follows:

ML(x, f(.), ϵ) = f(x) + (Y1, Y2, · · · , Yk) (2.2)

where (Y1, Y2, · · · , Yk) are independently drawn random variables from a Laplace dis-

tribution with scale (∆f
ϵ
). Here ∆f stands for the l1-sensitivity of the function.

2.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows algebraic computa-

tion on encrypted data without the need to decrypt them first. Let us assume that S

is a set of cleartext messages. E is an encryption scheme and D is the corresponding

decryption scheme. E is considered homomorphic if for any message m1,m2 ∈ S the

following holds: D(E(m1)⊙E(m2)) = m1⊙m2 where ⊙ is an algebraic operation. A

lot of such homomorphic encryption scheme have been proposed and used for different

kind of applications.

There are two distinct types of homomorphic encryption scheme: partially ho-

momorphic encryption (PHE) and fully homomorphic encryption (FHE). In partial

homomorphic encryption scheme only a few specific algebraic operations are possible
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on encrypted data. For instance unpadded RSA and El-Gamal cryptosystem can com-

pute multiplication over encrypted data. Paillier cryptosystem can compute addition

operation over encrypted data. On the other hand, in fully homomorphic encryp-

tion scheme addition, multiplication as well as bitwise operations can be computed

directly on encrypted data. Gentry et al. proposed GSW cryptosystem [14] which

is a faster FHE scheme compared to the previous ones. In this work, we use Paillier

cryptosystem described in [15] which facilitates addition and subtraction during the

model training period.

2.3 Generalized Linear Mixed Model

This section contains the elements of statistical modeling that are required to

understand the problem formulation and subsequent solutions presented to solve the

problem. In this work, we will focus on a simplified but highly practical GLMM. This

model determines whether a diagnostic test can be used to either confirm or rule out

a disease. For the rest of the paper, we will use the term GLMM and model inter-

changeably. This subsection consists of the objectives, terminologies, assumptions

and training operations (pre, during, post) of the model. Additionally, a high level

summary of the model is presented at the end to help the reader gain an overview of

the model.

Objective of the GLMM. In a clinical setting, the utility of a diagnostic test

to confirm a disease or health condition is determined by Positive Predictive Value

(PPV). The higher the PPV, the more confidence the clinicians have to confirm the
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disease or the health condition based on that test’s result. Similarly, the utility of

a diagnostic test to rule out a disease or health condition (e.g. detecting covid-19

with a new test) is determined by Negative Predictive Value (NPV). The higher the

NPV, the more confident the clinicians are in using that test’s result to rule out that

disease or health condition. The GLMM proposed by Chen et al. in [11], determines

the PPV and NPV of a diagnostic test from the experiment data of multiple parties.

In this paper, we will use this GLMM as reference to demonstrate our contributions.

Terminologies. Before we describe the GLMM specifications, let us define the ter-

minologies used in the subsequent discussion.

• D0, D1 stand respectively for the event of not having the disease and having the

disease (ground truth label).

• T0, T1 stand respectively for the event of being diagnosed negative and positive

for the disease by the diagnostic test.

• π is the prevalence of the population sample on whom the diagnostic test is

conducted ( D1

D1+D0
).

• Se is the sensitivity of the population sample on whom the diagnostic test is

conducted (T1
⋂

D1

D1
).

• Sp is the specificity of the population sample on whom the diagnostic test is

conducted (T0
⋂

D0

D0
).

• n is the number of participants in the study.



Chapter 2: Background 13

Before Training GLMM. Let us assume that multiple parties intend to determine

the level of effectiveness of a clinical diagnostic test T for detecting or ruling out

the disease D. In other words, the parties want to know the PPV and NPV of test

T for D. There are N parties involved in this process, each denoted as Pi where

i ∈ (1, 2, · · · , N).

Each party Pi performs a study (i-th study) which consists of ni participants. In

each of these studies, the party uses diagnostic test T to detect the state of the disease

D in each participant. After each party finishes their respective studies, they have

access to the local information presented in table 2.1. This local table contains infor-

mation regarding the state of the disease distribution in the test population. Previous

studies have shown that information from such local table can be exploited to perform

reconstruction attack that can leak personal information [16, 17]. Consequently, the

information presented in this table is sensitive and parties do not want to share this

information with the server or the other parties.

Table 2.1: Possible Data Outcomes for Study i

D1 (Disease) D0 (Non-Disease)
T1 (Positive) ni11 ni10

T0 (Negative) ni01 ni00

Total ni1 ni0

Training the GLMM. Now, all the parties collaboratively want to compute the

parameters they need to determine the PPV and NPV of the test T for disease D.

In order to accomplish this without any local bias, they need to collaboratively build
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a statistical model M which maximizes the log likelihood function in Equation 2.3.

log{LC(θ0, θ1, θ2)} = log{L0(θ0)}+ log{L1(θ1)}+ log{L2(θ2)} (2.3)

where,

log{L0(θ0)} =
N∑
i=1

∫ (
n

n1

)
πi

n1(1− πi)
n−n1ϕ(πi; θ0)dπi (2.4)

log{L1(θ1)} =
N∑
i=1

∫ (
n1

n11

)
Sei

n11(1− Sei)
n1−n11ϕ(Sei; θ1)dSei (2.5)

log{L2(θ2)} =
N∑
i=1

∫ (
n0

n00

)
Spi

n0(1− Spi)
n0−n00ϕ(Spi; θ2)dSpi (2.6)

Interested readers can refer to [11] for the derivation of these equations. For the

current discussion purpose, let us denote the left hand side of the Equation 2.3 as final

likelihood (FL) value. Each component of the right hand side of the Equation 2.3

is denoted as partial likelihood (PL) value. Let us annotate them as PL0, PL1 and

PL2 respectively. It is the central server’s objective to find a set of parameters that

maximize the value of PL0, PL1 and PL2. Let us call these parameters as θ0, θ1, θ2
1.

In each training iteration, the server selects a new set of θ0, θ1, θ2 that aims to get

higher PL values than previous iterations.

Equation 2.3 represents the core essence of any GLMM training. PL0, PL1 and

PL2 represents the log-likelihood of three distributions. For example, PL0, PL1 and

PL2 can represent the likelihood of a normal distribution, laplacian distribution and

binomial distribution respectively. The GLMM is adding them up in Equation 2.3

which makes this a linear combination where data distributions are being mixed.

Let us show a concrete example of the training process. For the sake of simplicity,

1θ0, θ1, θ2 stands for prevalence, sensitivity and specificity respectively.
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Table 2.2: Illustrative example of GLMM training

Private Data of Alice and Bob

Alice Bob
D1 D0 D1 D0

T1 (Positive) 19 3 95 5
T0 (Negative) 3 62 0 150
Total 22 65 100 150
Private Value
(π)

22/87 = 0.2528 100/250 = 0.4

Partial Log-Likelihood Equations Used by Alice and Bob
Alice Computes Bob Computes
CA = f(a) · N (a; θ0); a stands for the private
value of Alice

CB = f(b) · N (b; θ0); b stands for the private
value of Bob

f(a) = Binomial distribution parametrized by
a.

f(b) = Binomial distribution parametrized by
b

N (a; θ0) = Logit-Normal distribution
parametrized by a and θ0. θ0 contains
the mean (β0) and standard deviation(τ0) of
N .

N (b; θ0) = Logit-Normal distribution
parametrized by b and θ0. θ0 contains
the mean (β0) and standard deviation(τ0) of
N

Training iterations
Iteration
Number

Server Sends Alice Com-
putes

Bob Computes Server Receives Increase/
Decrease
Compared
to previous
iteration

n θ0 CA CB CA + CB +/−
1 0.0, 0.1 0.02781 0.071874 0.099684 +
2 0.25, 0.1 0.01259 0.05563 0.06822 -
3 -0.25, 0.1 0.04612 0.0187 0.06482 -
4 -0.75, 0.05 0.1887 0.5795 0.7682 +
5 -0.75, 0.06 0.1371 0.6495 0.7866 +
6 -0.8, 0.06 0.2100 0.9195 1.1295 +
7 -0.85, 0.06 0.3901 1.4333 1.8234 +
8 -0.9, 0.06 0.4026 1.6184 2.0210 +

...
...

...
...

...
...

we shall present an example where the server is trying to optimize the parameter θ0 for

PL0 and the process involves two parties (Alice and Bob) only. Table 2.2 shows the

training process iteration by iteration. It can be seen that after a few initial iterations,

the server is consistently updating the parameter to increase the CA + CB value

compared to the previous iteration (fifth column). The server continues updating the

parameters in this manner until the CA + CB value stops increasing (reached global
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optimum) or the iteration limit is reached.

One detail that we have not described yet is the process through which the server

selects the next set of parameters in each iteration. The server uses Bayesian opti-

mization algorithm to select the parameters for the next iteration [18]. For this, the

server first creates a surrogate function. Then it samples parameters and calculates

the expected values of the actual objective function from the surrogate function. The

parameter associated with highest expected value is selected for the next iteration

and shared with the parties.

2.4 Understanding the GLMM

Let’s consider logistic regression as a Linear Model. Lets assume the input points

have 2 predictor features X = {x1, x2}. The output is a single scalar response Y =

{y}. The final equation of the logistic regression will be:

y =
1

1 + exp−Σ(β0+β1·x1+β2·x2)
(2.7)

Therefore, logistic regression models the joint distribution of X. In other words,

linear models such as logistic regression does not have any way to model if predictor

variables are actually independent and follows different distributions from each other.

Now consider the case of GLMM. Instead of assuming that all predictor variables

follow the same distribution and can be modeled by a joint distribution, GLMM

makes the assumption that each predictor variable or confounding variables follow

their own distributions. Therefore, the final output should be a linear combination

of variable distributions.
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Figure 2.1: Difference Between Linear Model and Generalized Linear Mixed Model.
No matter how many predictor variables you have, linear models always model the
optimization space as a single distribution. Generalized Liner Mixed Models treat
each predictor variable with respect to their own distributions.

For example, consider the predictor variable x1 in the example above follows a

Gaussian distribution and predictor variable x2 follows a skewed Cauchy distribu-

tion. A generalized linear mixed model can model two variables with two different

distributions and then optimize based on the linear aggregation result of them. Fig-

ure 2.1 shows the difference of optimization process between logistic regression (LM)

and GLMM.

Getting back to Equation 2.3, it is evident how the GLMM we described follows

this principle. Log-Likelihood can be interpreted the measure of a goodness of fit

of observations to a distribution. So, Each party collaboratively computes the log-

likelihood of a single predictor variables. The server selects the final distribution for

that predictor variable which has the highest log-likelihood value. Since there are 3

predictor variables (π, Se, Sp), the server follows the same process 3 times to find out

the parameters of 3 distributions associated with 3 predictor variables. If there were

n number of predictor variables, the server would have followed the process n times

to determine the parameters of n distributions.
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This is why GLMM’s have been adopted widely in real world scenarios. In real

world use cases predictor variables often do not conform to the assumption of i.i.d

(independent and identically distributed) which is made by standard linear mod-

els. This robust modeling capacity of GLMM combined with collaborative nature of

training GLMM’s over distributed data inspired us to take a look at it from privacy

perspective. Moreover, during our literature review we found out that in majority of

the use cases GLMM is trained over clinically sensitive data. This was another reason

for us to perform a systematic privacy analysis of GLMM.

2.5 Federated Learning

Federated learning is a ML technique by which a model can be trained on mul-

tiple hosts or devices using their own dataset. FL allows multiple parties to build

a shared ML model without sharing the data and thereby addressing issues such as

data privacy, data security and data access control. Each host runs the model on

their own dataset and shares the parameters or intermediate results.
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Privacy preserving Indoor Contact

Tracing

3.1 Literature Review

Recent works on contact tracing have focused heavily on privacy issues of the

underlying principles of contact tracing. Epione [19] is a lightweight contact tracing

system proposed by Trieu et. al. which relies on faster private set intersection cardi-

nality method to achieve efficiency over other similar methods. Their work specifically

focuses on the case of matching between large scale contact database and small input

queries. DP-3T [20] is one of the most prominent one among the recent works on

proximity tracing. This proposed system uses a decentralized model and provides

robust privacy guarantees. PEPP-3T [21] is another similar protocol with centralized

design instead of decentralized. Centralized systems offer more useful data which can

be used by health authorities to make effective decisions however, numerous scholars

19
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believe that this approach might be harmful as it can become a mass surveillance

tool for governments. EPIC [22] is another similar scheme which provides a prox-

imity tracing scheme by using hybrid wireless and localization technology. However,

this system has scalability issues as noted in [23].

There are multiple real world implementations of the contact tracing protocols.

South Korean Government implemented their own contact tracing system which is

reported to have widespread privacy issues [24]. Tracetogether [25] is an adoption

of the contact tracing protocol by the government of Singapore. It is a centralized

system which stores the user phone number, identifying information and a randomized

token. It does not store gps locations of the user. However, being a centralized system

it is vulnerable to multiple security and privacy risks. Moreover, the slow adoption

rate among the population also hinders it’s applicability and effectiveness to a certain

extent. In addition, Bluetooth based systems suffer from security vulnerabilities and

privacy issues. Sophisticated GPS based solutions exist as noted in [26] by Berke et.

al. However, the computational overhead of this system prevents implementation by

hindering scalability due to the fact that MPC (multi party computation) is used to

preserve privacy of this system.

Private Kit [1] is another protocol proposed by Raskar et. al. which is a privacy-

first contact tracing protocol by design. It provides a mix of voluntary sharing and

unicasting which eliminates the need of a central monitoring entity. PACT [27] is

another example of similar protocol with improvements over the earlier versions of

contact tracing protocols available at the beginning of the pandemic. Technology

industry leaders Apple and Google proposed their joint collaborative contact tracing
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protocol for smartphone devices which ensures strong privacy [28]. However, we are

yet to witness any major government taking their services to combat the pandemic.

COVI [29] is another contact tracing framework which attracted a lot of attention

from academia. This work is different from the aforementioned ones in the sense

that it contains discussion and mitigation strategy for ethical and privacy issues.

Moreover, it also contains guidelines for secure data collection as well as using them

for machine learning models which makes it the most complete and robust privacy

preserving data collection and analysis framework for contact tracing data till date.

3.2 PAARS design

While designing PAARS our key motivation was to ensure maximum data security

and privacy. In the meantime the utility of the system was also not to be compromised

by design issues or slow adoption rate among users. Keeping these in mind, we took a

novel approach in PAARS system design principles compared to already implemented

systems. Instead of token exchange between users to detect proximity, we use the

existing wireless network present in an organization for token exchange between users

and the server which can be later used to detect contact between users. In addition

to that, our system does not require any additional infrastructure or collaboration

with any third party. Therefore, the scalability and adoption among users are easier

than the existing approaches.
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3.2.1 Detection of Contact Event between Two User

We assume that a network consisting of wireless network access points (e.g. routers)

is present in the organization environment. We denote this network as a set of access

points R = {R1, R2, R3, · · · , Rn}. We assume that at any given time all elements

in R simultaneously broadcast a single pseudo-random number which we denote as

Knet. This pseudo-random Knet changes over time. The time difference between each

new pseudo-random number broadcasted by the central network is denoted by the τ .

According to Center for Disease Control guideline, a contact event between two

individuals is defined as the individuals being in 2 metres of each other for more than

15 seconds [30]. Taking this definition into account, our system divides the system

environment in GPS co-ordinate blocks. A GPS co-ordinate block in our system

contains co-ordinates that are within maximum 2 meters. Every co-ordinate block

is assigned an unique identifier by the system. When an user enters into the system

environment, the smartphone of the user connects to the network of the environment

and starts exchanging tokens with the system. In order to generate a token and

exchange it with the system, the user performs the following computation on the

smartphone. Let’s assume that the current time interval is τk. Firstly, it takes the

unique identifier of the GPS co-ordinate block it is currently located in. We call

it Cτk
gps. Secondly, it takes the pseudo-random number generated by the wireless

access point covering that GPS co-ordinate block at that time which we denote as

Kτk
net. The token ID generation process consists of concatenating these two and then

passing them through SHA-256 hash function.

ID← SHA256(C
τk
gps||K

τk
net)
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Figure 3.1: Userx and Usery is in the same GPS co-ordinate block. They connect with
the same wireless access point which provides them Cτk

gps and Kτk
net. Userx generates a

random number Randτkx and Usery generates a random number Randτky . Both users
concatenate the parameters sent by the server with the network address of the access
point and pass them to a hash function to generate a hashed token. Both users upload
their generated random numbers and hashed tokens to the server. The server stores
the hashed tokens and the random values sent by the users in a database to later use
them for contact detection.

Therefore, it can be ensured that at a given time τk, if two users are in the same block

of GPS co-ordinates, they will generate the same token which will indicate a contact

event between them. The user also generates a pseudo-random number Randτkuser.

The user then sends this pseudo-random number along with the hashed token to the

server. The server stores the hashed token, pseudo-random number , time , current

infection status of this user and the probability value of being infected (initialized

with value 0) in a database table. The server does not store any other persistent

information about the user that might compromise the anonymity of the user. The

user also stores the hashed tokens and the pseudo-random numbers sent to the servers

on his/her device.

In the server database, a contact event between two users will be registered as
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Table 3.1: A sample contact event in the contact database. Both entries have same
hashed token value but different user generated pseudo-random number entry.

Hashed Token Randuser Time Status Probability
FF56182345FA6BF7 18728712789 6:32 N/A 0
FF56182345FA6BF7 74826390017 6:32 N/A 0

having same hash token values with different Randτkuser value.

Figure 3.2: Workflow of the system once an user reports to be positively diagnosed
and chooses to share the hashed tokens and pseudo-random numbers generated during
the contact detection period of the system.

Once an user tests positive for the infectious disease, that user can choose to

share the hashed tokens and the random tokens generated during the contact de-

tection phase with the system server. The integrity of the claims of positive test

diagnosis can be ensured by secure methods. For instance, public health authority

may provide each positively diagnosed user with an unique identifier or secure login

methods to verify the claim of the user being positively diagnosed. After the authen-

ticity of the claim of being positively diagnosed is confirmed, the user can voluntarily

share the hashed tokens and the random numbers generated by the user with the



Chapter 3: Privacy preserving Indoor Contact Tracing 25

Table 3.2: Updated contact database entries when an user reports being infected and
chooses to share relevant information with the server.

Hashed Token Randuser Time Status Probability
FF56182345FA6BF7 18728712789 6:32 TBD TBD
FF56182345FA6BF7 74826390017 6:32 Infected 1

system server. The system server performs a series of operations after receiving the

tokens and random numbers from the user. The system updates the matching entries

for the contact database where it sets the value of Status as “Infected” and value of

probability as 1. Moreover, for the matching entries of same hash tokens of other

users we set the status column and probability value as “TBD”. This workflow is

shown in figure 3.2.

Referring back to table 3.1, let’s assume that an user whose claim of being pos-

itively diagnosed has been validated by the system, chose to share his/her hashed

tokens and pseudo-random numbers generated with the system server. The server

received all these and updated the database accordingly. Moreover, let’s assume that

among the contact event entries uploaded by the user, there is a contact event entry

with hashed token value of “FF56182345FA6BF7” and Randuser value of “74826390017”.

After the database is updated, the relevant contact entries will be as in table 3.2.

After updating the database entries, the server retrieves the updated entries and

calculates probability of being positively diagnosed for the users who have had a

contact event with the infected user. To calculate this probability we formulated a

novel probability calculation model which depends on state of the art epidemiological

models available in the literature such as variations of Susceptible-Infected-Removed

(SIR) model [31] while taking in account factors such as temporal shedding nature
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of the viral transmission [32]. The details of this probability calculation model is

described in the following subsection.

3.2.2 Mathematical Model for Probability of an User Being

Positively Diagnosed

Let’s assume the event of being tested positive at time t is denoted by λ(t) which

is a binary random variable which takes the value 0 if the user is tested negative

and 1 if tested positive. We denote the contact database entries for an user u up to

time t as Ct
u. We intend to find out P(λ(t) = 1|Ct

u) which is the probability of being

positively diagnosed of an user for the disease given the contact database entries of

the user. Let’s assume that Ct
u is a set of contact entries which contains contact event

entries that coincides with both infected and non-infected users. Therefore, this can

be written as a set, Ct
u = {C+

v + C−
v } where v ∈ V . V denotes the set of users who

had contact events with user u and the + and − superscript denotes whether the user

v is diagnosed as being positively infected or not. The set of all positively diagnosed

users are denoted as D+. Therefore, we can write the intended probability function

of being infected as:

P(λ(t) = 1|Ct
u) = f(P(λ(t) = 1|C+

v ));∀v ∈ (V ∩D+) (3.1)

To calculate our intended probability function f , we need to find the average of the

probability of each individual contact event with user v who were positively diagnosed

for the disease. This is due to the fact that each contact event with a positively diag-

nosed user v ∈ V can contribute to the user u in question to be positively diagnosed.



Chapter 3: Privacy preserving Indoor Contact Tracing 27

Moreover, we assume that each contact event between two users are independent of

any prior contact events between any two users. Therefore, it is possible to view

each individual contact events between users as independent events. Therefore, the

equation 3.1 can be written as:

P(λ(t) = 1|Ct
u) =

1

N

N∑
i=0

P(λ(t) = 1|C+
v );∀v ∈ (V ∩D+)

where,N = |(V ∩D+)|

(3.2)

In order to understand how our system calculates the individual probability of each

contact event contributing to the total probability we would like to draw attention

to the [31] which shows how a variant of widely used Susceptible-Infectious-Removed

(SIR) model was used to mathematically model the recent COVID-19 pandemic out-

break in Italy. In this work, the authors noted that transmission of the disease from

one individual to another can depend on multiple factors. However, the most impor-

tant factors are the time duration of a contact event between two individuals and the

viral shedding factor of the infected individual. The later one can be described as the

rate at which the infected individual is spreading the virus within a certain distance

[30]. We take these two important aspect into account and design our probability

calculation method accordingly.

We define Ev
u(t) as the exposure score of the contact event between user u and

v at time t which we calculate from the work described in [33]. In this work, the

authors design multiple models to determine the severity of a contact event between

two individuals. In our particular case, we will use the sigmoid model developed

by the authors to determine the severity of a contact event. This model takes the
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duration of a contact and the distance between two individuals during the contact

as input of the model and produces a scalar value which is the severity score of the

contact event.

We define Sv(t) as the viral shedding rate of the infected user at time t. This

can be directly determined by using the work described in [32]. In this work, the

authors drew the temporal relation between the days of infection and viral shedding.

According to this work, for the first few days after being infected, the viral shedding

of an infected person is significantly higher than the subsequent days. We can get

Sv(t) from this model by inputting the number of days when the contact event took

place.

Therefore, we can derive the probability of being positively diagnosed from each

contact event by using the following formulation:

P(λ(t) = 1|C+
v ) =

Ev
u(t) ∗ Sv(t)

max(Ev
u(t) ∗ Sv(t))

(3.3)

Using equation 3.3, we can calculate the probability of being positively diagnosed

for each contact events and average them to get absolute probability score for an user

being positively diagnosed. However, there is a caveat in the above formulation which

is privacy breach. A malicious user may track the differences between the updates

of his/her probability score and might attempt to infer which contact event caused

the update of the probability score. Therefore, we attempt to mitigate this problem

by using differential privacy. After calculation of the left hand term in 3.3, we add a

noise to it which is from Laplace distribution. Then equation (3.3) becomes:

P(λ(t) = 1|C+
v ) =

Ev
u(t) ∗ Sv(t)

max(Ev
u(t) ∗ Sv(t))

+ L(0, α
N
) (3.4)
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where α is the regularization parameter for the noise and the mechanism is N
α

dif-

ferentially private. The accuracy analysis of this noise addition mechanism will be

discussed in the utility analysis section.

Using equation 3.4 for all the contact events between the user in question u and

the infected users v, we can derive noisy probability scores for each contact event. We

input these noisy probability scores in equation 3.2 and calculate the final probability

score of an user being positively diagnosed given the contact events in the contact

database.

3.2.3 Privacy Aware User Alerting System

The server has a set of hashed tokens Hsys which contains the hashed tokens that

have positive probability scores. Let’s assume user u wants to access his/her prob-

ability score from the system. In order to do that, the user uses Hu which is the

relevant hashed tokens within the time period which is generated by the user and

have been shared to the server. The server and the user performs a PSI (private set

intersection) as described in the work of [19]. The result of PSI(Hsys, Hu) is shared

to the user u. If the result returns a non-empty set, the user u makes a request to the

server which contains the result of the PSI(Hsys, Hu) and the Randτkuser associated

with each elements in the result of PSI(Hsys, Hu). The server receives the request

and sends back the probability scores associated with the query. The user receives the

result and based on the result the user can decide to self-isolate, quarantine or seek

medical help from professionals. It is important to note that the user gets the prob-

ability scores associated with the entries in the result of PSI(Hsys, Hu) and his/her
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generated Randτkuser only. Therefore, he/she does not have access to the probability

scores calculated for the other users with the same hashed token values.

3.3 Utility Analysis

3.3.1 Building Occupancy Level Determination

PAARS can automatically calculate the building occupancy level in real time by

analyzing the number of active connections sending in hashed tokens in every wireless

access point within the system environment. Based on the level of occupancy at a

given time, it can alert the authorities if maximum occupancy level set by health

professionals are being violated.

3.3.2 Error Estimation of the Probability Calculation Model

In order to calculate the accuracy of the noisy probability scores in subsection

3.2.2, we adopt the accuracy analysis method presented in the work of [34] and [35].

Let’s assume Pactual is the actual probability and Pnoisy is the calculated noisy prob-

ability. According to [35], the error of a differentially private mechanism output is

determined by the variance V (P ) = E[(Pnoisy−Pactual)
2]−E[(Pnoisy−Pactual)], where

E is the mathematical expectation. Referring to equation 3.4, (Pnoisy−Pactual) in this

case is L(0, α
N
) which has variance of 2α2

N2 . Therefore, each term on the right hand

side in equation 3.2 is expected to add 2α2

N2 error to the final output. Accordingly, the
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final expected accumulated error is:

error =
1

N

N∑
i=0

2α2

N2
=

2α2

N2
(3.5)

3.4 Security Analysis

To analyze the security of the system firstly we consider a set of parties and a

few protocols. We assume that in our proposed system there is a set of parties who

have agreed to perform some computation. Moreover, the parties have consented to

release the final result of the computation to a specific party and nothing else will be

released from any other parties, not even the computational process used. There are

two classical security models in this case:

• Semi-Honest Model: This type of adversary is someone who is presumed to

follow the execution protocol. However, it attempts to obtain extra information

from the execution protocol.

• Malicious Model: This type of adversary may attack the system using any pos-

sible strategy i.e. brute force attack, side channel attack, supplying inconsistent

output or trying to infer information about system data or execution process of

the computation involved.

In this work, we define three individual entities: The user group U , the semi-honest

system server S and malicious adversary A who would try to attack the system

using any possible method that is executable in polynomial time. Attacker A can

be a malicious user or someone outside the system environment. For simplicity, we
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assume that the no entity is colluding with one another. Moreover, we assume that

all communications between the user U and the server S are securely authenticated

(i.e. TLS).

The robustness of all proposed decentralized solutions so far relies on the fact that

individual user identities are not linkable to the pseudo-random tokens they generate.

However, the exchange of these pseudo random tokens between users still poses some

security threats such as possibility of identifying positively tested users in case of a

single contact event in the given time period. In the following paragraphs we will

show that our proposed system prevents majority of the security risks of the previous

approaches while ensuring privacy.

• Positively tested user identification attack: In this attack a malicious

user tries to identify a positively tested user by matching the tokens exchanged

between them. Most of the proposed contact tracing/proximity monitoring

systems have token exchange as a core part of their functionality. However, in

our proposed system there is no token exchange between two users. Therefore,

this attack is not feasible in our system.

• False positive reporting attack by user: In this attack a malicious user Umal

tries to generate false alarm, by reporting him/her self as positively diagnosed

with the disease to the server S. This attack could cause erroneous computation

on the server and result in confusion and panic among users. However, in our

proposed system, this attack is not possible as every claim made by any user of

being positively diagnosed for the disease is verified with the proper authority.

• Impersonation attack by user: This attack is aimed at faking a person’s
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presence when that person was actually not present there. The attacker A

gathers exchanged tokens from other users and broadcasts them. If any of those

tokens are later marked as tokens from an individual who has been positively

diagnosed with the disease, a number of users may be falsely alerted of being in

contact with that person while in reality they never had any contact with that

positively diagnosed person. In our proposed system this attack is not possible

as individual users do not exchange tokens with each other.

• Exposure of Social Interaction Graph of the user by the server: One of

the major privacy issues for any contact tracing or access monitoring/regulations

system is that there are inherent risks of the server S associating an user U with

a set of users Ucontacts where each member of the set Ucontacts is the ones who

were in proximity of U . In our proposed system, the server S does not keep any

persistent identifier of any user U and the user U never shares any persistent

identifier of him/her to the server S. The server S only receives the securely

hashed values from the user U which can not be linked back to individual users.

Therefore, in our proposed system this attack is not possible.

• Track user’s location by the server: This attack is performed by the server

to use the shared tokens to track the location of any individual user. Theoreti-

cally speaking, any system where the user U exchanges some kind of token with

the server S , it is possible for the server S to track the user by using passive

packet sniffer. In our proposed system we assumed the server to be semi-honest

entity which does not employ any such malicious tactics. Therefore, it is not

possible for the server S in our proposed system to track the users movement
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since the exchanged tokens contain no persistent identifier and they change over

time based on user’s location.

3.5 Discussion of Design Decisions

3.5.1 Decentralized Data Storage

One of the key differences between PAARS and the existing approaches is the fact

that PAARS enables decentralized data storage. Each organization implements their

own version of PAARS and stores the data locally. Therefore, it is not feasible for

an adversary to compromise all different data storages residing in different organiza-

tions at once and get a complete picture. On the contrary, majority of the existing

approaches that rely on ephemeral token exchange between users store these tokens

from all users in large central databases. Therefore, a data breach in these systems

from the inside or the outside can bear catastrophic effect in terms of privacy.

3.5.2 Differential Privacy

To the best of our knowledge, no work in literature yet addressed the user side

privacy issues in contact tracing/access monitoring systems by incorporating differ-

ential privacy. Most of these work rely on using homomorphic encryption or private

set intersection (PSI) method [19] which is computationally costly. In our work, we

use efficient PSI for once in the user query only. The rest of the privacy is guaranteed

by differential privacy.
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3.5.3 Infrastructure Requirement

PAARS do not require any significant addition in the infrastructure available

in the environment. This is a major advantage over existing systems or the ones

being implemented. For instance, every organization has wireless network now a

days and majority of the population has access to smartphones. Therefore, deploying

and maintaining PAARS is easy and adoption should be fast. On the contrary,

implementing PAARS architecture in city-wide scale would require a singular network

which has city-wide coverage. Cell service providers are capable of providing such

network. However, to collaborate with them to build and deploy a system like this

would require a lot of time and effort, whereas, PAARS can be deployed quickly in

organizational level.

3.5.4 GPS accuracy

GPS accuracy can be perceived as a technical issue in PAARS system design.

However, using other sensors (i.e. magnetometer and accelerometer and IMU) avail-

able in smartphones, the accuracy issue can be effectively resolved [36] .



Chapter 4

Privacy-Preserving Generalized

Linear Mixed Model

4.1 Literature Review

4.1.1 Homomorphic Encryption for Privacy Preserving ML

model Training.

Privacy preserving machine learning or statistical model training is one of the most

widely investigated topic in literature. Homomorphic Encryption (HE) is one of the

most popular privacy preserving tool used for this purpose. Prior works in [37, 38, 39,

40, 41] have focused on training logistic regression model in a federated setting using

HE. Logistic Regression model is a linear model. However, it does not take random

effects into account and therefore, can not be directly termed as a GLMM.HE have

been used in deep learning model training [6, 42, 43, 44]. However, efforts to use HE

36
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in federated learning over large datasets are rare. Majority of the work in this domain

have focused on making deep learning on encrypted data more robust and efficient.

Apart from logistic regression and deep neural networks, HE have found appli-

cations in a myriad of statistical modeling in medicine and genomics (e.g. Naive

Bayes Classifier, Decision Tree etc.) [45]. These algorithms are computationally less

intensive compared to deep learning models when the input dataset is encrypted.

Although direct comparison is not possible for the GLMM used in this paper, our

proposed method also appears to be computationally expensive than HE based Naive

Bayes or Linear Regression models. The reason behind this is Naive Bayes or Linear

Regression models usually take place in a single round while our proposed method

performs optimization on multiple rounds.

4.1.2 Statistical Attack On Private Dataset.

Statistical Attack for dataset reconstruction is widely investigated in the litera-

ture. Homer et. al. proposed a famous attack where individual identity could be re-

solved from sensitive genomic data microarrays [46]. Subsequent works in this domain

extended on Homer’s attack to propose newer and more sophisticated attacks [47].

Another well known attack is membership inference attack on deep learning mod-

els [3]. In this attack, an attacker tries to infer whether a data point was part of

the training set that is used to train the model. Membership inference attack heavily

relies on gradient information. This served as the inspiration in our attack described

in Section 4.3.
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4.1.3 Generalized Linear Mixed Model in Medical Domain.

In the introduction, we mentioned that GLMM is one of the most widely adopted

class of statistical models in medical domain. GLMM is first introduced as a likeli-

hood based approach in [48]. Maximum Likelihood estimation is the most common

objective function for GLMM [49]. In epidemiology research, GLMM is regularly used

to model specificity and sensitivity [50]. Clinical trial results of new drugs or treat-

ment methods are also modeled using GLMM [51]. An extensive analysis of use cases

of GLMM in medical domain can be found in [52]. The robustness and the predictive

power of GLMM in medical use cases is presented in [53].GLMM is also used widely

in data modeling tasks involving sensitive genomic data. Wang et al. used GLMM

to study the problem of genome wide association [54]. Recent works on genome wide

association mapping have focused on the use of GLMM to tackle the scalability issues

associated with the problem [55]. Song et al. introduced a GLMM based ensemble

predictor in [56] for cancer genome prediction. Similar approaches have been used for

predicting late stage Alzheimer disease based on Bayesian GLMM [57].

4.2 Problem Formulation

4.2.1 Threat Model

We propose a scheme where n parties jointly train a GLMM model M using

FL. There is a central server and a crypto service provider in this scheme. The
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central server is called the aggregator and the crypto service provider is called csp.

Our proposed scheme is designed to withstand four type of potential adversaries:

1. aggregator 2. csp 3. collaborating parties 4. outsiders

Honest-But-Curious Aggregator and CSP

Honest but curious setting (also known as semi-honest adversarial model) is widely

adopted in secure multiparty computation protocol design since it’s inception [58, 59].

In this setting, the adversary follows the protocol correctly but will try to infer private

information from the collaborating parties. Therefore, in our case, the aggregator or

the csp will not deviate from the predetermined ML model execution. However, they

will try to infer additional private information from all the data that can be accessed

during the scheme execution. Our proposed scheme does not consider collusion be-

tween aggregator and csp.

Honest-But-Curious Collaborators

Our proposed scheme also considers the threat from honest but curious collabo-

rating parties. Honest but curious collaborating parties stay honest during the ML

model execution scheme. After the completion of the training process, they try to

gain additional private information regarding the other honest parties by using the fi-

nal model and the data collected during the execution. We consider collusion among

collaborating parties themselves. However, our scheme does not consider collusion

among parties, aggregator and csp.
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Malicious Outsiders

We designed our proposed scheme to be resilient against outsiders. We consider

any user of the final model as potential adversary who would want to infer private

information about the data used to train the model. Moreover, any observer who is

monitoring the communication of the parties, csp and aggregator during the training

scheme execution time is also considered as potential adversary. We assume that

all communication among parties, aggregator and csp are encrypted which prevents

outsiders from injecting their own input in the execution process.

4.2.2 Problem Statement

Let’s consider that there are n parties in the execution environment. Moreover, an

aggregator A and a csp λ is also present. Parties P1, P2, · · · , Pn has access to dataset

D1, D2, · · · , Dn. They want to use a distribution learning algorithm fM which will

produce a final output model M where fM(D1⊕D2⊕· · ·⊕Dn) = M and ⊕ indicates

concatenation. The problem is to propose a solution model that can protect against

the following threats:

Inference During the Learning Process

Inference during the learning process refers to any Pi,A, or λ learning about

other parties private dataset using the data exchanged (i.e. gradients, log-likelihood,

weights) for training (execution of fM). Let us assume that fM is a collection of

steps s. Each step is a computational operation which is preceded by a query Qs

from A. During the execution of fM , each party Pi must respond to the query Qs by
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performing some computation on the private dataset Di. The types of these queries

are fM specific in nature. For instance, in the case of building a decision tree, the

Qs will be number of rows in the Di which matches a certain criteria. In case of a

distribution modeling, Qs will be the partial log-likelihood values computed on rows

of Di. To build a privacy-preserving FL system, one must account for the risk of

inference over the responses of query Qs provided by the parties.

Privacy-preserving FL systems usually mitigate this risk by using Secure Multi

Party Computation (SMPC) protocols. SMPC allows multiple parties to obtain the

output of a function without revealing the party-specific input data. SMPC also

prevents the leakage of any other information apart from the output. However, prior

works have shown that the output can also be used to make inference about private

dataset [3]. Therefore, we must also consider the possibility of inference over outputs.

Inference over the Output of the Learning Process

This refers to the predictive model M which is the output of fM . Recent works

have shown that black-box access to model M is enough for an attacker to infer

private training data. Any privacy-preserving FL system must consider this kind of

outside threat and take steps to mitigate these. Prior works have used differential

privacy to mitigate this risk [4]. In this work, we will not adopt differential privacy to

mitigate the risk of inference over output. The rationale for this decision is discussed

in Section 4.7.
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4.3 Privacy Leakage of GLMM training in Feder-

ated setting

Let us demonstrate how the server can compromise the private information of

collaborating parties by a motivating example. Referring to Table 2.2, we can see

that Bob holds private value 0.4. In this example, we shall demonstrate how the

server can reach the conclusion that Bob’s private value is 0.4. Before diving into the

example, let us formalize a few notations first. We assume that during the training,

the server and Bob exchanged K intermediate computation values (i.e. the server

updated the parameters K times and Bob shared the computed value in response for

K times). We also assume that server can guess with reasonable confidence that it is

maximizing log-likelihood for a GLMM.

In order to gain access to the private information, the server leverages the widely

used concept of “Rainbow Table” which was proposed by Oechslin et al. in [60].

This concept is widely used in cryptanalysis to crack passwords. This table contains

billions of password and salt combinations hashed in all possible hash formats such

as MD5 and SHA-256. In order to crack a password, a malicious actor just has to

map the salted hash of the password to an entry value in the table. We borrow this

concept of rainbow table and modify it according to our attack policy.

Let us assume that on training iteration 1, the server sends the parameter θ0 =

{0.0, 0.5} to Bob. Bob receives the parameter and computes N (0.4; θ0) = 0.37201.

Bob also computes f(0.4) = 0.05144. In both computations, Bob uses his private

value 0.4. After that, Bob computes CB = N (0.4; θ0) × f(0.4) = 0.01914. Bob

1For Definition of N and f , refer to Table 2.2
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shares this CB value with the server. The server divides the received CB value

with N (0.1; θ0),N (0.2; θ0),N (0.3; θ0), · · · ,N (0.6; θ0) and stores the division results

in a row of the table.

On training iteration 2, the server sends the parameter θ0 = {0.1, 0.4} to Bob. Bob

then follows same pattern as the previous iteration and computes CB = N (0.4; θ0)×

f(0.4) = 0.00508. The server receives the shared CB value from Bob and divides

the received value with N (0.1; θ0),N (0.2; θ0),N (0.3; θ0), · · · ,N (0.6; θ0). The server

stores the division results in the table. The server continues this process in each

training iterations. There are two important aspects to be noted here:

• The server tries to perform the division process for as many parametrized dis-

tributions as possible (i.e. Gaussian, Laplacian, Cauchy, Gamma etc.)

• The server tries to use as many sample values as possible for each distributions.

In the example above, the server uses only 6 sample values (0.1 to 0.6). In

practical scenario, the server can use hundreds of sample values to improve

accuracy.

The stored values by server are shown in the table 4.1. After the training iterations

are complete, the server computes standard deviation for each column of the table.

The sample value that is represented by the column with least standard deviation

value is the private value of Bob. Referring to table 4.1, it is evident that the column

that represents 0.4 has the least standard deviation. Therefore, the server concludes

that the private value being used by Bob is 0.4. This indeed turns out to be the case

(Referring to table 2.2).
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Table 4.1: Division Results computed by Server to determine the private value held
by Bob

Iter. Distribution sample values used by server

count 0.1 0.2 0.3 0.4 0.5 0.6

1 1.06E+101 2.73E+39 1.205E+13 5.14E-2 1.1E-10 3.64E-16

2 1.20E+23 1.95E+8 1.13E+2 5.14E-2 5.46E-4 3.36E-5

3 8.76E+8 4.65E+2 1.18E+0 5.14E-2 8.53E-3 2.96E-3

4 7.51E+8 4.31E+2 1.14E+0 5.14E-2 8.74E-3 3.1E-3

5 3.47E+8 2.93E+2 9.74E-1 5.14E-2 9.9E-3 3.88E-3

6 3.37E+5 1.85E+1 3.68E-1 5.14E-2 1.78E-2 1.01E-2

7 2.58E+3 2.57E+0 1.81E-1 5.14E-2 2.77E-2 2.1E-2

8 1.00E+2 6.95E-1 1.14E-1 5.14E-2 3.69E-2 3.37E-2

9 5.07E+1 4.93E-1 9.86E-2 5.14E-2 4.18E-2 4.12E-2

10 6.04E+0 2.13E-1 7.35E-2 5.14E-2 4.9E-2 5.46E-2

Std.

Dev.

3.2E+100 8.2E+38 3.62E+12 7.60E-

18

1.67E-2 1.87E-2

We experimented with the algorithm on a real-world dataset. The secret value

in this case was the disease prevalence value of the test population of the parties.

The experimental results are shown in the Figure 4.1. The server determines the

prevalence of the parties with high accuracy when the number of samples tried by the

server is comparatively higher. Moreover, the server can also perform this division

process multiple times while each time computing on a stricter boundary with low

standard deviations. This is an interesting avenue of approach which we intend to

pursue further in the future.

4.4 Proposed Solution

We propose FedGLMM, a novel GLMM training method in FL setting that pro-

tects against both type of security threats specified in the problem statement. In our

proposed method, the aggregator receives homomorphically encrypted log-likelihood

values from the collaborating parties. While this preserves the privacy of the collab-
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Figure 4.1: The top figure shows our attack algorithm’s performance when the rain-
bow table has only 5 sample values per distribution. Some of the prediction points
have high error margin. The bottom figure shows the performance of same attack
algorithm when the rainbow table has 10 samples per distribution. The attack accu-
racy improvement is clearly visible in this occasion.

orating parties, it opens up the aggregator to a particularly challenging problem.2

How to optimize on Encrypted Data? Consider a maximization objective func-

tion F(θ, x) where θ is the learnable parameters of the function and x is the input.

2Like majority of the distributed statistical model training process, GLMM training in CL setting
is a server-side objective function optimization (maximize or minimize) process. Therefore, for the
rest of this work we use the term optimization and training interchangeably to mean the same
process.
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Any aggregator that tries to iteratively maximize F , will have to compare the output

between iterations to choose the parameters (θ) for further optimization. Specifically,

an optimizer has to derive a numeric value for F(θi, x) − F(θi−1, x) to choose θi+1.

Let us call this numeric value ∆Fi.

Generally, the aggregator chooses the parameters of next training iteration based

on the scale and sign of ∆Fi. In a federated setting, if the aggregator receives ∆Fi

in encrypted form, then it can not directly choose the parameters as the scale or sign

of ∆Fi can not be inferred from its encrypted form. This is where FedGLMM comes

in. FedGLMM performs optimization on encrypted ∆F by incorporating both an

aggregator A and a csp λ. A synchronizes the training and selects parameters in

each training step while λ assists A with the optimization.

We will describe the FedGLMM design now. During the initialization of the

FedGLMM scheme, collaborating parties and A agree on modeling a distribution

based on their private datasets (i.e., normal, cauchy, laplacian etc.). The csp λ

generates a public key, private key pair (Pk, Sk) for Paillier cryptosystem. λ shares

the Pk with the collaborating parties and A and keeps the Sk to itself.

FedGLMM divides the training process on aggregator in phases. Each phase

contains these steps: 1 construction of parameter space, 2 select parameter samples

and send to parties, 3 aggregation of encrypted result from parties and 4 select

next set of candidates for parameter space. We describe these steps with illustrative

examples.
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Figure 4.2: Aggregator’s view of phase execution of FedGLMM in the case of 2
dimensional parameter optimization. Note that the parameter space shrinks phase
by phase (comparison between the first figure and the last one).

4.4.1 Construction of Parameter Space

Each phase begins with construction of the n-dimensional parameter space. GLMM

is essentially a distribution modeling problem. Therefore, the parameter θ of the

objective function F has two components in this case (i.e., mean and standard de-

viation). We refer to each component as a dimension. Therefore, θ is a parameter

with 2 dimensions (a row vector with length 2). Let’s denote the first dimension of

θ as d1 (mean) and the second one as d2 (standard deviation). The range of d1 and

d2 (the limit, in which the aggregator will search for suitable values) is provided to

the aggregator A during the initialization of the FedGLMM. Assume that d1’s range

is [−2, 2] and d2’s range is [0, 1]. Therefore, in phase 1, A has 4 points to construct a



48 Chapter 4: Privacy-Preserving Generalized Linear Mixed Model

parameter space, namely (−2, 0), (2, 0), (−2, 1), (2, 1). A uses these points to form a

convex hull3. The points within this convex hull represents a parameter space (step 1

in Figure 4.2). In FedGLMM scheme, A samples candidate parameters for optimiza-

tion from this parameter space and shares with the collaborating parties. It is to be

noted that the formation of parameter space by leveraging d1 and d2’s range is only

limited to phase 1 (initial phase of the training). Starting from phase 2, the most

promising parameter samples from the previous phase are used to form the convex

hull. This means that phase 2 will use the most promising points from phase 1 to

construct the parameter space, phase 3 will use the most promising points from phase

2 and so on4.

4.4.2 Selecting Parameters in Parameter Space

A selects parameters within the parameter space by sampling along each dimen-

sion in specific intervals (red circles in step 2 of Figure 4.2). After that, A shares the

selected parameters with the collaborating parties. The parties use these parameters

to compute the log-likelihood values based on their privately held dataset. After the

computation, the parties encrypt the log-likelihood values using Pk from csp λ and

send it back to A.

To illustrate this. step, let us continue the example from 4.4.1. In that example,

3Imagine that there are n points in 2-d space. Now, the smallest convex shape that holds all the
n points within the perimeter of the shape is drawn. This perimeter is called the convex hull of the
points.

4One can think of the parameter space as the collection of probable parameters (points) which
can result in the optimization of the objective function. So the aggregator searches for parameters
in that space. In each phase the aggregator reduces the size of that space. Therefore, at the end
of all the phases, the aggregator is left with a very small parameter space where all the parameters
have very high likelihood of best optimizing the training objective.
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d1 has a range of [−2, 2]. Let us assume, sampling interval for d1 is 1. Therefore, d1

can take 5 possible values in phase 1. They are {−2,−1, 0, 1, 2}. Similarly d2 has

range of [0, 1]. Let’s assume that sampling interval for d2 is 0.5. Therefore, d2 can

have 3 possible values {0, 0.5, 1}. Combining d1 and d2 creates 5 × 3 = 15 possible

values for parameter θ. They are marked as red circles in the step 2 of Figure 4.2.

Each possible parameter value is assigned a unique index by A. Referring to step

2 of Figure 4.2, θ = (−2, 1) is assigned index 1, θ = (−2, 0.5) is assigned index 6,

θ = (0, 0.5) is assigned index 8 and so on.

It is important to note that the sampling interval for any specific dimension is

a hyperparameter of FedGLMM scheme. Sampling interval controls how many

points are sampled and tested by A in each phase. Therefore, sampling interval also

indirectly determines how much time a phase would require to be completed. For

example, consider d2’s sampling interval as 0.25 in the previous paragraph. Then,

the possible values of d2 will be {0, 0.25, 0.5, 0.75, 1}. The possible number of values

for θ will be 5 × 5 = 25. This means in phase 1, parties will have to compute 25

log-likelihood values instead of 15. This will result in increase of computation time

for both the collaborating parties and the aggregator.

4.4.3 Aggregating Encrypted Computation from Parties

In this step, A aggregates the Paillier encrypted results sent by the collaborating

parties for each possible parameter samples selected by A in the prior step. Let’s

assume, a possible value of the parameter θ is mapped to index i. Then the sum of

the encrypted log-likelihood values received from the parties is stored in the server as
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ΣHi. This is illustrated in the step 3 of Figure 4.2. For instance, step 2 of Figure 4.2

shows that θ = (0, 0.5) is mapped to index 8. Consequently, the encrypted sum of

the log-likelihood values computed by parties for this particular value of θ is stored

as ΣH8 (step 3 of Figure 4.2).

4.4.4 Selecting Next Set of Candidates for Parameter Space

In this step, A compares the output of all the parameters it sent to the collabo-

rating parties. After comparison, A chooses the parameters with the highest outputs

to construct the parameter space of the next phase.

Let’s continue with the example from Figure 4.2. In A’s view, parameter θ =

(0, 0.5) is mapped to 8 and θ = (−2, 1) is mapped to 1. Now, A has to figure out

whether ΣH8 is greater than ΣH1 or the opposite. Therefore, A subtracts ΣH8 from

ΣH1. A sends this subtraction result to the csp λ and queries about the sign of the

subtraction result. λ decrypts the result (since λ has private key Sk) and responds

to the query with the sign of the decrypted subtraction result. Based on the query

response from λ, aggregator A formulates an optimization strategy. It is important to

note that this strategy is value-blind. A only knows about the sign of the decrypted

subtraction result. A does not know anything about the numerical value of the sub-

traction result of ΣH8 and ΣH1. The detailed execution of this step is described in

the following paragraphs.

Creating Comparison Matrix. Let us assume that A selected K possible candi-

date parameters for θ in a particular phase. A initializes a K×K matrix. We denote



Chapter 4: Privacy-Preserving Generalized Linear Mixed Model 51

this matrix as comparison matrix, C. For the phase shown in Figure 4.2, A selected

15 possible candidate parameters for θ. Therefore, the size of the comparison matrix

is 15× 15 for this phase which is shown in step 4(a) of Figure 4.2. This comparison

matrix allow the server to identify which are the most promising points for construc-

tion of the parameter space in the next phase. The entries of the comparison matrix

are determined by Equation 4.1.

Cij =



1, if i ̸= j and ΣHi ≥ ΣHj

−1, if i ̸= j and ΣHi < ΣHj

0, if i = j

(4.1)

Populating Comparison Matrix. To populate an entry Cij in the comparison

matrix, first A subtracts ΣHi from ΣHj. A sends the subtraction result to csp λ and

queries about the sign of the subtraction result. λ decrypts the subtraction result and

responds toA’s query with the sign (positive or negative) of the decrypted subtraction

result. Based on the response and Equation 4.1, A populates the Cij. A performs

this operation for all entries in C.

For example, A wants to populate C12. A computes (ΣH1 − ΣH2). A makes a

query to λ regarding the sign of (ΣH1−ΣH2). λ responds that the sign is positive. A

correlates the response with Equation 4.1 and sets C12 to 1 (Since positive sign means

ΣH1 is greater than ΣH2). Next, A wants to populate C34. A computes (ΣH3−ΣH4)

and repeats the query to λ with (ΣH3 − ΣH4). λ responds with negative. A then

sets C34 to −1. A repeats this process for all entries in C.
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Algorithm 1 FedGLMM: Secure Federated Training of GLMM

Require: Di is dataset held by party i. (Pk, Sk) is the Paillier encryption key gen-
erated by csp λ at the initialization.

1: function SecureTraining(Ω)
2: f, Pk, Sk, n, d,Θ0, χ ← initialize ▷ χ is the finishing condition
3: i ← 1 ▷ n is # of parties, d is sampling interval, f is distribution to model
4: while χ is false do ▷ Ω is adaptive shrinking parameter
5: ∆̄← SampleParams(Θi−1, d)
6: Σ̄← SecureAggregate(∆̄, n)
7: C̄ ← CreateComparisonMatrix(Σ̄, length(Σ̄))
8: Θi ← NextParamCandidates(C̄, length(Σ̄),Ω)
9: i← i+ 1
10: if Ω ≥ 0.1 then
11: Ω← Ω− 0.1 ▷ Reducing parameter space shrink rate by 10%
12: else
13: Ω← 0.1 ▷ Keeping the shrink rate fixed otherwise
14: end if
15: χ← check finishing condition
16: end while
17: end function

18: function SecureAggregate(Θ, N)
19: Σ ← ∅ ▷ Θ is the set of candidate parameters
20: for all i, θ in Θ do ▷ N is number of parties.
21: S ← 0 ▷ i is candidate parameter index.
22: for all j in N do
23: S ← S + EncryptedLikelihood(f, θ) ▷ Party #j
24: end for
25: Σ[i]← S
26: end for ▷ This function is called by A
27: return Σ
28: end function

Selecting Points for Next Phase. A needs to find the candidate parameters

which resulted in higher objective function output among the all candidates of θ

selected for a phase. In order to do that, A adds up the values in each row after

populating the comparison matrix (score column of step 4(a) in Figure 4.2). Each
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Algorithm 2 FedGLMM: Secure Federated Training of GLMM (Continued)

29: function SampleParams(Θ, d)
30: □← Construct a convex hull from points in Θ
31: h, l← get max and min of all dimensions in □
32: ∆← Sample points evenly for d interval between h and l
33: return ∆
34: end function

35: function CreateComparisonMatrix(Σ, K)
36: C ← ∅
37: for all i in K do
38: for all j ̸= i in K do
39: C[i][j] = sign(Σ[i]− Σ[j]) ▷ Resolved by λ
40: end for ▷ This function is called by A
41: end for
42: return C
43: end function

44: function NextParamCandidates(C,K, k)
45: S ← ∅
46: for all i in K do ▷ K is # of parameters in C
47: S[i]← sum(C[i]) ▷ Scores for candidate parameters.
48: end for
49: S ← sort(S)
50: S ← top k% of S ▷ Keeping the top k% adaptively.
51: return S ▷ This function is called by A
52: end function

53: function EncryptedLikelihood(f, θ)
54: l ← 0 ▷ f is the pdf of the distribution
55: for all di in D do ▷ θ are the parameters of pdf
56: l← l + likelihood(f, θ|di) ▷ D is the private dataset
57: end for ▷ This function is called by parties
58: return Encrypt(l, Pk)
59: end function

row represents a candidate parameter. For example, row 1 represents the candidate

parameter mapped to index 1, row 2 represents the candidate parameter mapped to

index 2 and so on.
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The rows are then sorted by A based on the score column (descending sort).

A selects the top k% of the candidate parameters for construction of parameter

space in the next phase. For example, let’s refer to the step 4(b) of Figure 4.2. A

selects top 60% parameters from these phase for parameter space construction in

next phase. The parameters that are selected are (−2, 1), (−2, 0.5), (−1, 0.5), (−1, 1),

(0, 1), (0, 0.5), (1, 0.5), (1, 1), (2, 1). The resulting parameter space in the next phase

is shown in the last step of Figure 4.2.

It is important to understand the role of k as a hyperparameter in FedGLMM. k

controls how the parameter space shrinks phase by phase. If k is too small (e.g. 10%),

then the parameter space shrinks too rapidly. This can cause poor generalization and

high error rate. On the other hand, if k is too large (e.g. 80%), then the parameter

space shrinks too slow. This can result in slow convergence and higher computation

time and cost.

In order to mitigate these effects, we propose a phase by phase adaptive update of

k. We linearly reduce k in each phase until k reaches a threshold value. For example,

in phase 1, we select k = 60% candidate parameters for phase 2. In phase 2, we select

k = 50% candidate parameters for phase 3 and so on. We stop reducing k once it

reaches 10%. For the remaining phases, k remains at 10% until the training process

terminates.5

5To get a high level overview, consider this: FedGLMM is a multi phase process. In each phase, a
grid search is performed (The grid is a convex hull in our case). However, instead of plain numerical
values, the grid search is performed on encrypted values. Therefore, FedGLMM is a value-blind
optimization process.
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4.4.5 Termination

There are two terminating conditions in FedGLMM scheme.

• The training process found the optimum parameter (An indication of this is

when the l2 distance between candidate parameters selected for next phase is

close to zero.).

• The parameter space has become very small. (e.g., less than 1% of the parameter

space of the initial phase)

In both cases, A follows the procedure described in 4.4.4. First, A creates a com-

parison matrix. Then A populates it and sorts them. Instead of selecting a set of

parameter samples, A selects a singular parameter sample that is at the top of the

sorted order. After that, A shares this selected candidate parameter with the col-

laborating parties and the training terminates. Algorithm 1 presents the complete

execution process of FedGLMM scheme.

4.5 Security Analysis

We can prove the security of our proposed scheme by designing a soundness game

which can be shown to have negligible probability (in a security parameter) of being

won by an adversary.

Definition 1 (Soundness). Let us define a game SOUND[ρ] between adversary

A and challenger C. The role of A can be assumed by any one of the following:

aggregator, csp, subset of collaborating parties. The role of C is assumed by the
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honest collaborating parties. ρ is a security parameter. The steps of the game are as

follows:

• The csp generates homomorphic public key-private key pair (Pk, Sk) and shares

Pk with aggregator and the parties.

• Adversary A stores all the intermediate data during the execution of fM and

the final model M .

There are two ways where the adversary wins the game.

• If the adversary A is either the aggregator or the csp, then A can win the game

if it can infer any point or statistics of the dataset Di held by party Pi.

• If the adversary A is a subset of the collaborating parties, then A can win the

game if it can infer any any point or statistics of the dataset Di of Pi where Pi

does not belong in the subset of the parties who are adversary.

We say a training scheme is sound if no probabilistic polynomial time adversary

can win the SOUND[ρ] game described above with greater than negligible probabil-

ity in the security parameter ρ.

Claim. FedGLMM scheme is sound.

Proof. The soundness proof follows closely from the construction of the FedGLMM

protocol. We consider two cases. The first case is the execution period of fM in

FedGLMM.



Chapter 4: Privacy-Preserving Generalized Linear Mixed Model 57

• If the adversary A is aggregator A, then the adversary receives the encrypted

intermediate log-likelihood values from the parties. Adversary also receives the

sign of the values of comparison matrix from the λ. Note that our threat model

assumes no collusion betweenA and λ. Therefore, to retrieve the private dataset

Di or related statistics which are used to compute the log-likelihood value, A

has to correctly guess the private key Sk (held by csp λ). The probability of

correctly guessing a ρ bit private key is 2−ρ. We set the key size in FedGLMM

scheme to be multiple of ρ. Let’s assume the multiplication factor is m ∈ N.

Therefore, probability of guessing the private key correctly is 2−mρ which is

negligible6.

• If the adversary A is csp λ, then the adversary can decrypt the aggregated

intermediate log-likelihood values sent by the parties which it receives from the

aggregator A. Recall that our threat model has no collusion between A and λ.

Consequently, to retrieve the private dataset Di or related statistics which are

used to compute the log-likelihood value, λ has to correctly guess the parameters

of the distribution. The probability of correctly guessing n parameters of the

distribution is 2−nρ, which is negligible7.

Now, we move to the second case, which is after the end of fM execution. In this

case, the adversary have access to both the data collected during fM execution and

final output M . The two arguments above (adversary is either A or λ) also hold in

this case. However, there is an additional adversary case here. We have to consider

6In our instantiation of FedGLMM we used 128 bit key where the ρ = 64 and m = 2.
7In our instantiation of the FedGLMM scheme the parameters are mean and standard deviation,

which amounts to n = 2 and ρ = 64. We set ρ to the precision of the floating point number used in
implementation for convenience.
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the case where the adversary A is a subset of collaborating parties {P1, P2, · · · , Pj}

where, j ∈ [1, n− 1] or outsiders.

• Let’s assume that there are n collaborating parties and adversary A controls (n−

1) of them. The party Pn is honest. Based on M , adversary A has to compute

the parameters of a specific probability distribution function f(Dn) such that

superposition of f(D1⊕D2 · · ·⊕Dn−1) and f(Dn) satisfiesM . This problem does

not have any known analytical solution. Therefore, from adversarial perspective,

A has to accurately guess the parameters of f(Dn). The probability of correctly

guessing n parameters of the distribution is 2−nρ, which is negligible.

• Let us assume that the adversary A is a malicious outsider. A intercepted

the encrypted log-likelihood values sent to A by Pi. To infer the data in Di,

adversary A must decrypt the encrypted log-likelihood values. To accomplish

this, A must guess the Sk held by λ. The probability of A accurately guessing

Sk is 2−mρ which is negligible.

Thus the adversary can only win the game during execution of fM or after the exe-

cution of fM with a negligible probability in ρ. Therefore, the soundness of FedGLMM

scheme is proven.■
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4.6 Experimental Results

In this section, we investigate the experimental performance of FedGLMM. It is

important to understand that GLMM is universally used in clinical and biomedical

domain. Therefore, our analysis will take clinical utility into account. Clinical utility

is different than statistical utility which we discuss more in Section 4.7. We aim to

address the following research questions:

Q1. Does FedGLMM achieve clinically acceptable low error-rate under different hy-

perparameter settings? How do different hyperparameter settings affect error

rate of FedGLMM execution?(section 4.6.2)

Q2. What is the distribution of execution time of FedGLMM? How do different

hyperparameter settings affect the execution time?(section 4.6.3)

4.6.1 Dataset and Execution Environment

We experimented on the performance of FedGLMM on two datasets. The first

one is a real world dataset. It contains the clinical trial data for testing a cancer

detection method from 103 hospitals (parties). The second one is a synthetic dataset.

We generated this dataset to have different distribution of prevalence, sensitivity and

specificity than the real world dataset. It contains the data sample from 500 hospitals

(parties). We denote the real world dataset as Dr and the synthetic dataset as Ds.

Table 4.2 shows the overview of the datasets. In both cases, parties try to model a

GLMM on logit-normal distribution in a distributed manner.

The machine used for experiment is a MacOS Mojave machine with intel core-i7
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Table 4.2: Overview of the Datasets Used in Experiment

Data # of prevalence sensitivity specificity
set parties mean std.dev mean std.dev mean std.dev

Dr 103 0.38 0.25 0.69 0.3 0.88 0.14
Ds 500 0.41 0.46 0.52 0.31 0.70 0.24

processor (clock speed 2.66 GHz) and 8 gigabytes of memory. The hospitals (parties)

were simulated by python clients. Since the server and parties were situated in the

same machine, the communication latency between server and parties were minimal.

4.6.2 Error Percentage

In this section we vary the hyperparameters of FedGLMM and observe the effect

on the error percentage of FedGLMM output. We show that FedGLMM achieves

very low error rate (less than 5%) in both datasets.

Phase Count. We observe the effect of phase count variation in FedGLMM. The

results are shown in Figure 4.3. During experimenting with phase count variation, we

fixed the k to adaptive setting and initial parameter space was set to optimal setting.

Both of these are explained in later parts of this section.
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Figure 4.3: Error Distribution in our proposed training method for different number
of phases
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We divide our experiments in 3 classes: When the training completes within 5

phases, within 10 phases and within 20 phases. When the training finishes too early

for the Dr (within 5 phases), the average error rate is around 3%. On the other

hand when the training ends within 10 phases, the error rate is slightly above 2%.

If the training goes up to 20 phases, the average error does not change significantly.

Experiments on Ds shows similar pattern of low error rates.

Variation of k. In section 4.4.4, we stated that k is a important hyperparame-

ter in FedGLMM. k controls the reduction of parameter space in the beginning of

each phase. We experimented FedGLMM by setting very high k = 80%, very low

k = 15% and adaptive k adjustment starting at 50% and reducing by 10% in subse-

quent phases. The effect of each setting on the error percentage is shown in Figure

4.4. From the Figure 4.4, we can observe that the proposed adaptive k adjustment
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Figure 4.4: Error Distribution in our proposed training method for different settings
of k

mechanism outperforms both high k and low k settings for this experiment (less than

2% error). When the k is low, FedGLMM converges prematurely for both datasets.

This premature convergence results in very high error rate which is clinically not
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acceptable. On the other hand, when k is high, the error is acceptable (marginally

above 2%). However, it takes a long time for the training process to reach that low

error rate which is computationally costly.

Initial Parameter Space Construction. An important hyperparameter of our

proposed approach is initial the parameter space construction. If the initial parameter

space is too big, A will have to run more phases to reach the optimization objective.

On the other hand, if the initial parameter space is too small, Amay generalize poorly

and have high error rates.

To demonstrate this, we run our experiment with 3 different settings. In the

first setting, we set the range of d1 to [−4, 4] and d2 to [0, 1]. In the second setting,

we set the range of d1 to [−2, 1] and d2 to [0, 0.5]. Finally, in the third setting,

we set the range of d1 to [−1, 0.5] and d2 to [0, 0.1]. The first, second and third

settings correspond to big, optimal and small initial parameter space respectively.

The experiment results are shown in Figure 4.5.

Figure 4.5: Error Distribution in our proposed training method for different settings
of initialization

We observe that error rate remains under 5% (clinically acceptable) for settings

1 and 2. Settings 1 required more phases than settings 2 for converging to the op-

timized objective function. Therefore, settings 1 required more computational cost.

On the other hand, settings 3 unperformed in all of our experiments. FedGLMM

generalized very poorly for settings 3 and sometimes resulted in high error rate as

much as 20% which is completely unacceptable in clinical setting. We conclude that
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settings 2 is the best candidate for initial parameter space construction. Note that,

settings 2 is optimal only for this particular distribution modeling (logit-normal). If

a different distribution was chosen, the outcome could be different. Therefore, the

aggregator A will have to explore the initial parameter space a few times to get the

idea of optimality.

Other Factors. Another hyperparameter involved in our proposed training method

is the sampling interval (4.4.2). Variation in sampling interval did not have any effect

on the error percentage of our experiments. However, it did have effect on the total

execution time of a phase which is discussed in the next subsection.

4.6.3 Execution Time

We observed that there are two hyperparameters in our proposed training method

which have effect on the total execution time of the optimization. They are phase

count and sampling interval.

Phase Count. The greater the number of phases required to optimize the function,

the greater the required execution time in FedGLMM. Figure 4.6 shows the exper-

iment results when FedGLMM phase count varies. During these experiments the

initial parameter space was set to setting 2 (optimal) and k was reduced linearly as

described in Section 4.4.4. Figure 4.6 shows that our proposed method takes orders

of magnitude more time compared to the baseline with no privacy. As number of

phases increase, the time required also increases monotonically.
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Figure 4.6: Execution Time (in seconds) required for various phase counts in our
experiments. Phase count 0 stands for the time required for federated GLMM training
without any privacy preserving method which is our baseline.

It is interesting to note that Ds is almost 5 times bigger than Dr in terms of

the number of entries (Table 4.2). However, they take almost similar amount of

time to complete training process. This can be attributed to the parallelized nature

FedGLMM. The calculation of log-likelihood values by parties is a parallel process.

All parties receive the parameters, compute the log-likelihood and send the encrypted

result back at the same time period. Additionally, the populating the comparison ma-

trix is also a parallel process. A makes a single query with all encrypted subtraction

results to λ and λ can reply back in a single query. A and λ both internally em-

ploys vectorized calculation to compute respective parts. This is the reason why two

datasets have the similar distribution of execution time for different phase counts

while having different number of parties.

Sampling Interval. The sampling interval (Section 4.4.2) plays an important role in

determining the total time required for a phase execution. This is because sampling

interval determines how many possible candidate parameters are shared with parties

in a phase. To demonstrate this, we fixed a phase and a specific dimension d1 of θ
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(Section 4.4.2). After that we tried different sampling intervals for d1 and recorded

the respective time required to complete that specific phase execution. The results

are presented in Figure 4.7. It shows that as sampling interval becomes smaller,

the required execution time of the phase goes higher. This can be attributed to the

fact that when sampling interval becomes smaller, the number of possible parameters

within the parameter space becomes higher. This causes A requiring more time

to compute the sum of encrypted partial log-likelihood values as well as populating

comparison matrix 8.
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Figure 4.7: Time (in seconds) required for different sampling intervals in our experi-
ments.

4.6.4 Additional Results

We chose 100 random subsets of 10 parties from both the synthetic and real-world

datasets. The results of the experiments are shown in Figure 4.8. We can see that the

results are consistent with the full dataset experiment with phase count 5 achieving

higher error rate for poor generalization, phase count 10 achieving the least error

and phase count 20 has comparable error margin with phase count 10. However, we

8Figure 4.7 is represented as a bar plot because, the data had too low standard deviation to be
plotted as box plot (e.g. the time intervals for multiple runs were very close).
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noticed an interesting phenomenon in the synthetic dataset experiment. The results

have very low standard deviation for the synthetic dataset. The real world dataset

has comparatively higher standard deviation for experimental error rate. This can be

attributed to the fact that the real-world dataset has different distribution of values

than the synthetic dataset. Since we are taking a small subset of just 10 parties, this

distributional difference is being reflected in the experimental result.
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Figure 4.8: Experiment on 10 randomly selected parties from the dataset.

Similar to the above experiment, we chose 100 random subsets of 20 parties from

both synthetic and real world datasets. The result of this experiment is shown in

Figure 4.9. The outcomes of these experiments are consistent with the full dataset

experiment. We note that experiments have a similar standard deviation. However,

the synthetic dataset has a slightly higher error rate than real world dataset.

We performed the same experiment with 100 random subsets of 50 parties from

both real world and synthetic datasets. The result of this experiment is shown in

Figure 4.10. Similar to the prior experiments, the experiments with a subset of 50

parties have shown consistent results. In all cases, the optimal error rate is achieved
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Figure 4.9: Experiment on 20 randomly selected parties from the dataset.

at phase count 10.
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Figure 4.10: Experiment on 50 randomly selected parties from the dataset.

To summarize, the new experiments have shown that the results obtained by

experimenting on a subset of the datasets are consistent with the results from the

whole datasets. Therefore, our proposed method is effective for both small and large

number of parties.

4.7 Discussion of Design Decisions

In this section, we further elaborate on FedGLMM design decisions. Specifi-

cally, why SMPC was chosen as underlying protocol instead of differential privacy for
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FedGLMM design.

4.7.1 Statistical utility does not always translate to clinical

utility

. In privacy preserving machine learning, the model training needs to be performed

in a way that utility is preserved as well. The metric of utility is usually domain-

specific. For instance, deep learning models trained on MNIST dataset can achieve

upto 99% accuracy [61]. However, when privacy preserving mechanisms (i.e., feder-

ated learning, differential privacy) are applied on the training process, accuracy drops

to some extent [62, 63]. These accuracy drops or error rate increase is acceptable in

many real-life use cases such as (i.e., object-recognition, speech transcription). How-

ever, in sensitive application domains such as clinical and biomedical decision making

algorithms, the acceptable margin of error induced by privacy preserving mechanisms

is very low. Therefore, the utility metric of FedGLMM is to achieve as low as possi-

ble error rate to be clinically acceptable. Specifically, we consider the performance of

FedGLMM to be clinically acceptable if it achieves less than 5% error rate, compared

to the non privacy-preserving training scheme.

Let’s elaborate this with a motivating example. Consider a GLMM for predicting

the efficacy of a clinical test to determine cancer. The clinical test data are fit to

distributions. Based on the distribution fit, it is decided whether the test can be

used to rule out cancer or not. Let’s assume that without any privacy preserving

mechanism in place, the GLMM in question have 95% accuracy. If we use local
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Figure 4.11: Experimentation with differential privacy as privacy preserving mecha-
nism for FedGLMM.

differential privacy to train the same model, the accuracy can drop below 80% [64].

In other words, private GLMM modeling have 15% more error rate compared to the

non-private counterpart. For highly sensitive medical applications, sometimes 15%

error rate is above the acceptable margin of error.

4.7.2 Local Differential Privacy does not meet the utility re-

quirement for federated GLMM training.

While designing FedGLMM, we had to make an important design choice. We

needed to decide whether to use secure multi-party computation (SMPC) or local

differential privacy (LDP) as the privacy-preserving mechanism. Initially, we experi-

mented on FedGLMM using LDP. The error rate was very high in this case. We ex-

perimented with different ϵ ∈ (0, 10] values for different number of parties n ∈ (0, 100].
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The experimentation result is depicted in Figure 4.11. There are two observations

that stand out in the result.

1 Increase in ϵ did not result in the decrease of error-rate. As the epsilon values

increased steadily, the distribution of errors did not decrease uniformly. Instead, the

distribution of errors was lower at ϵ = {4, 7, 10} than the neighbors (Figure 4.11, bot-

tom row, first column). Even at ϵ = 10, the error rate was around 21% which is above

the threshold of acceptable error for a number of clinical applications. This was one

of the major reasons we preferred SMPC over LDP for FedGLMM design. This high

error rate is rooted in the working principle of GLMM. In the parameter optimization

part, GLMM uses bayesian optimization algorithm to find the next parameters. How-

ever, bayesian optimization technique is extremely sensitive to noise [65]. Therefore,

the large noises injected by LDP quickly adds up which misleads the optimization

and reduces utility of the model. Moreover, GLMM training is a communication in-

tensive process. In our case, the synthetic dataset had very high variance and often

required more than 100 rounds to converge. Therefore, the privacy budget ran out

very quick. To have a GLMM training converge appropriately with LDP, the privacy

budget would have to be significantly higher. At that point, LDP offers little to

no meaningful privacy. This reinforces our observation that it is difficult for LDP to

preserve the privacy-utility trade-off for a noise sensitive process like GLMM training.

2 When greater number of parties are involved in GLMM training with LDP, the

error rate steadily increase (Figure 4.11 column 2,3,4). This phenomenon can also
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be attributed to the fact that increase in parties cause increase in dataset variance,

which results in more communication rounds for the training to converge. More

communication rounds translate to more LDP noise injected in the GLMM training

and eventually the utility of the trained model is depleted. This again proves that

LDP is not a suitable choice for privacy preserving GLMM training in federated

setting. It is desirable that any privacy preserving GLMM training scheme should

accommodate any number of collaborating parties in the training. The observations

from Figure 4.11 suggest that LDP can not satisfy this property. Interestingly, [64]

also faced similar phenomenon for healthcare data and drew similar conclusion.

Based on these observations, we decided to use SMPC for designing FedGLMM. It

is important to note that we are not comparing SMPC and LDP as privacy-preserving

approach. Both have specific use cases where they excel. We just presented our ratio-

nale for choosing SMPC as the privacy-preserving mechanism. It might be possible

to construct special LDP mechanism that can achieve clinical utility as well as mean-

ingful privacy. We will investigate this research direction in our future works.

4.7.3 Scalability of FedGLMM design.

Grid search is often prohibitively expensive when a fine grained resolution is

considered [66]. Therefore, the choice of grid (convex hull) based optimization in

FedGLMM can raise concern regarding scalability. We address this concern by adap-

tively shrinking the grid over each iteration. As iterations progress, we increase the

granularity of our search. In other words, we start with large parameter search space
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with sparse sampling. As phases progress, we gradually progress from sparse sampling

to dense sampling. This prevents FedGLMM from getting stuck in local minima or

from being computationally expensive.

4.7.4 Appropriate Use Case(s) of FedGLMM

It is important to understand that our proposed method provides rigorous security

for any number of participants who want to learn a generalized linear mixed model

on private datasets. However, there are cases where there is no need for such a strict

security model, and in those cases, the assumptions can be relaxed. For instance,

Table 1 contains aggregate statistics of clinical studies related to a specific disease.

There can be two cases here.

The first case is where the disease or clinical condition in question is rare, and

there is no auxiliary information here to mount homer’s attack on the dataset from

aggregate statistics. In this case, aggregate statistics is relatively secure in terms

of leakage. Therefore, in these cases, secure training methods like ours may not be

necessary. However, in the second case, secure training is absolutely necessary.

The second case is where there is auxiliary information available for inferring

patient level data from aggregate statistics. This is demonstrated by Wang et al.

in [47] for sporadic postmenopausal breast cancer. They have shown that given

auxiliary information, they can effectively extract patient-level SNP information from

published aggregate statistics. This is an example of an appropriate use case of our

proposed secure training method.
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Conclusion

In this thesis we proposed and designed an end-to-end privacy preserving contact

tracing data collection and analysis framework. We designed the framework in a way

that takes privacy into account in every single design decisions. Experimental eval-

uation on real-world and synthetic datasets suggest that our proposed framework is

robust and accurate to be useful in real-world application scenario. This two step

framework with privacy-aware design is widely applicable to numerous real-world

problem instances. We believe that our work in this domain will inspire researchers

to further work on these problem that involve privacy-aware solution design. How-

ever, there are some limitations of this thesis which requires deeper exploration. For

instance, the prevalence of GLMM as an algorithm is limited to biomedical data

analysis. Several other domain-specific algorithms exist. Each of these algorithms

warrant their own systematic privacy analysis. This is an interesting research direc-

tion that we intend to further explore in future. Another interesting problem is the

adversarial robustness of these privacy-preserving measures. How much resilient to
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adversarial manipulation they are and what are the possible preventive measures? A

probable way to approach this problem will be to generate adversarial perturbations

to the input and quantifying the output degradation. Lastly, this thesis uses secure

multi-party computation and homomorphic encryption as the building block of pri-

vacy preserving mechanisms. However, these blocks are computationally expensive.

On the other hand, differential privacy is a robust privacy-preserving mechanism with

possible degraded utility. It remains an interesting research question whether it is pos-

sible to design specialized differentially private mechanism to achieve the same level

of utility as secure-multi-party computation. We intend to explore this particular

problem in future as well.
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