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ABSTRACT

The angular distributions of the scattering of alpha
particles at 65 Mev have been fitted‘using SakonhWoods and
derivative Saxon-Woods form factors for the real and imaginary
bparts of the optical potential respectively. The analysis
yielded a series of potentials. The lack of uniqueness was due
to two types of parameter-ambiguity. The first type was that
the optical parameters were allowed to vary, with the quantity
Vri kept constant. It was found that the potentials of this type
generated same number of half-waves inside the nucleus. The
second type was that the parameters could be adjusted so that
they produce one or more integral multiple half-waves inside
the nucleus such that the corresponding wavefunctions far away

from the nuclear field were the same.

This analysis defined the optical potential for the

alpha particles fairly well near the surface,
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CHAPTER I

1-1 INTRODUCTION

There is a current interest in applying the distorted-wave-
Born-approximation (DWBA) method to analyzing nuclerr
reactions. lowever, the distorting potentials in the en-
trance énq/or exit channels must be known. These arc
represented by the saw-toothed lines in Diag. 1. a and b
are thelpartiélés in the entrance channel, and ¢ and d, the
particles in the exit chanﬁel° They may be in the excited
states. It is difficult, in the pioneering days of searching
the nuclear forces, to obtain the exact interacting potentials
wihilch may consist of the central, spin-orbit, éxchange, and
tensor compbnembs° The many-body effects come into play if
the interaction involves complex particles rather than singlef
nucleons. Fortunately, a phenomenological two-body optical
model potential can be found by analyzing the: experimental .
elastic scattering data for the relevant particles at the
required energies. Such a potential will describe the
averaged behaviour of the interactimg.particleso Tﬁis is the
initial stisvlus of the thesis. Since it is impossiblé at
present lo prepare a target in a definite excited state,

the optical model potential obtainable are only between




ground states.

Diag. 1.

7)

16 at 65 MeV  will be

(0(;0{)016

presented in Chapter 2. The results can be used in the

The detailed analyses of O

reaction, say 016(0(,p)Fl9 (8)0

The initial work of the optical model was due to Fernbach,

1)

Serber, and Taylor™’,and later, was developed by LelLevier

and Saxonz) in 1952, and Feshbach, Porter, and Weisskopfz)
in 1954 by the important stimulation of Barschall's slow-

neutron experiments.

‘The simplest potential describing. the nucleon-nucleus inter-
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action was Bethe's real well potential,

’ o
-V, r>R

o, r >R

This simple model was unable to interpret the experimental
results at low energies, such as large capture cross-sections,
sharp resonance spacings, and the sensitiveness of the cross-
sections to energy. It is because, at low energies (<10 Mev),
the many-body effect is predomiant. Bohr's compound nucleus
model successfully described these phenomena. This model
considers the nuclear reactions in two steps. In the first
step, the target nucleus absorbs the incident particle to
form a compound nucleus state which lives a relatively longer
life than the nucleon transit time. In the second step, the
compound nucleus decays. The processess are described by the

following diagrams.

<

or C

a/ \A

atA —C
C — b+B, C = a+A (compound elastic).
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The compound elastic scattering might occur. This is experi-
mentally indistinguishable from the shape elastic scattering.
Only shape elastic scattering will be considered throughout

the thesis,.

At energies above about 10 Mev, the compound nucleus effects

1)

are greatly reduced. Fernbach et al thus proposed a complex
potential model. Their initial idea was that the nucleon-
nﬁcleus elastic scattering could be approached by the scatter-
ing of a wave by a refracting and absorbing sphere., It is
well-known in optics that the process can be described by
means of a complex index of refraction. The imaginary part
accounts for the absorption. They used WKB approximation

and related the imaginary part to the mean free path of the
incident nucleon inside the target nucleus. This enabled

them to reproduce the angular distributions for the small-

angle scattering,
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1-2 PHYSICAL ASPECT OF OPTICAL MODEL

The optical model potential may be defined as the complex
potential which represents the energy-averaged behaviour of
the nuclear system in the direct interaction process., The
possibil{ty of taking the average is limited by the energy

of the incident particles, i.e,, the resonance energy ES

is larger than the spacings rz between levels, From the
experimental point of view, the optical model description

is satisfactory when the resolving power of the detector is
low, and when the energy width of the incident beam is larger
than the individual level spacings. Therefore the opticel
model is applicable for energies of about 10 Mev in light
nuclei, in which the level spacing is of the order of

[~ 0.1--0.5 Mev for incident energy E<5 Mev. The optical
model is more successful when it is applied to heavy nuclei,
even when the energy of the incident particle is lowered to a

few Kth).

Now we apply the above idea to the average cross-sections,
The energy-average of a cuantity f(E) is defined by

F = -3 |f(E")aE, (1-1)
Ak

where 4 E includes many individual resonance levels,




(6)
The scattering amplitude for spinless particles is

e AN Y . : .
o= i) (2441)(1- Q,,)Pq(cose)c (1~2)
2 X A .
When only short range forc¢es are considered so that the
Coulomb force is neglected the sum has a finite number of
terms. The scattering matrix elements Y], are related to the
phasze shifts . Sgby

¢
‘il\( = e2lO'Q . ] (1_3)

The elastic scattering cross-section is then given Dby

i

& =7;(2£+1) -l (-

elastic

e

The energy-average of & is

7t _ [ .
-~ - HiA )+ l H -‘/‘a )12 —
Oclastic 12 ,Z:K24' Lz ;gl yl TaE
=f—-2_/(2,r2+ 1)11-@{2
— )
= 'T{. 73 - ‘:' 2 — _\”\ 2 ‘
2 L(zb.— 1) [[1 oV ;% e

N, is obtained from the optical model calculation. The

first term in Eq.{1l-5) represents the optical elastic
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. = "2 e m
scattering. \WQ'QJ = ‘Qll*f‘bl is the mean-square
2 ‘ 2

fluctuation of 7, about its average. We thus define

o) = - 2L+ - (1-6)

as the fluctuation cross-sections,
Carrying out -the energy-average for the. reaction cross-

section, we obtain

___:__ ,0‘2\
or 77 ;wﬁl) 21 )

_ﬂ___ / ! - 2 . 2 \[
- - ;<22+ 1) -T2 - (=P |
(1-7)
The quantity
& __f,';f o i} , ___2
&ébsorption T2 Zy(z'ﬁ + 1) (1~ ]Qd )

is the optical model absorption cross-section.

Eq.(1-5) and (1-7) can be written

Vegd . 'R

Selastic = Copt. ey

-

= 0. "6’
T absorpiion 1 e

&l

These suggest that 6}1 is due to compound elastic
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scattering. At low energies it is possible to detect the
fluctuations by means of a high resolving power detector.
At higher energies the resonance levels crowd together,
and only the averaged cross-section is observed. The

fluctuation is reduced to negligible values,

The optical model can also be applied to high energy

(<200 Mev) scattering such as nucleon-nucleus and pion-
nucleus elastic scatterings. Special approximation method
should be used. High energy nucleon-nucleus scattering, for
instance, may be approached by Watson's two-body multiple

9)

scattering”’.

The detailed mathematical treatments concerning the foundations
of the optical model were given in the review article by
Feshbach (1958) and in the nuclear reaction theory by Humblet
and Rosenfeld (1961),
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1-3 THE PHENOMENOLOGICAL OPTICAL POTERTIAL
The forces bhetween a nucleon (or a complex particle) and &a

nucleus are of the two types, Coulomb and nuclear.
& ?

TV(r) =V, vV

The Coulomb potential is well xnown and can be calculated
from the charge distribution of the target nucleus. In the
'fdllowing analyses of the elastic scattering between two
magic nucleil X+ 016, the charge of «(-particle will be
considered as a point charge, and the charge of oxygen
nucleus is uniformlj distributed throughout a sphere of
radius ch

2 .2

7% r R
“r (- ) for r& R
Ve = ) (1-8)
L 2Z'e
r for I">RCo

We relate Rc to the atomic mass nuwmber A by

r Al/é;
c

j=s)
i

Nuclear forces are represented by the optical potential

Vn(r) = Uf(r) + iWg(r) +

(B2 (u_ oz + v .
He’ S0” 80 'sogso39‘_'{\_7.

(1-9)
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For the o ~particle scattering the spin-orbit term is omitted.
Eq.(1-9) becomes

Vn(r) = Uf(r) + iWg(r), (1-9)1
where U and W are constants or 'potential depths'. £(r)
and g(r), which determine the form of the nuclear potential
and are functions of several variable parameters, are called
form factors of the optical potential. There is an ambiguity
of choosing the form factors. At least ten different functions

5). At medium high

have been used by the previous authors
energies (<100 MeV) the form factors should satisfy the
following standards so that its parameters will have

physical meaning and be comparable with the nucléar data .
obtained from different ekperiments. Otherwisevthg phenomeno-
logical optical potential will become merely a parametrization

6)

of the experimental daté ’s.The real form factor f(r) should
characterize tﬁe following quclear properties: (1) all the
nuclgar forces fall off expénentially at large distances;
(2) inside the nucleus; owing to the short-range character

of the nuclear forces, the net force on the incident

particle is approximately zero. The Saxon-Woods form factor

1 .
£ (r) = (1-10)
SW. 1 + exp(r‘;R)

meets the requirements. f_ (r) is nearly constant when r<R,

SW
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and falls off quickly at r~R. For heavy nuclei, this corres-
ponds approximately to the region where the density of the
nuclear matter is falling rapidly. R is thus recognized as
the nuclear radius, and related to the atomic mass number A
in the usual way
l/3
R=1rA .
o}

The radius parameter r, has been obtained from other

sources of the nuclear data, ry, = 1.3 - 1.7 fermis.

The interaction is essentially surface for light nuclei.

This is shown in the Fig. 1 and Fig. 2,

The function f(r) falls sharply or gradually around r=R
according to the value of a is large or small. a is referred
to as the surface diffuseness parameter or the thickness

of the surface layer,

It is relatively difficult to choose a function for the
form factor g(r). The Saxon-Woods (volume absorption) and
- the derivative of the Saxon-Woods form factors have been
used in the present analysis. Both of them give good fits
to the experimental data according to the 7ﬁ2 standard.
The derivative Saxon-Woods form seems more favorable, and
gives better account for the third bump of the ansular

distribution at large angles. The normalized gsw(r) is
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given by

Lexp (=R

g, (r) = = (1-11)

(1+exp (X5H))*

gsw(r) has a maximum at r=R (Fig. 2). The physical basis of
using this form factor for the imaginary part is that the
incident particle interacts more strongly with the surface
nucleons than with the nucleons inside the nucleus due to

the Pauli exclusion principle. The imaginary part is thus

not proportional to the nucleon density. Joneslo) has calculated
the radial dependence of the imaginary part of the optical
potential using Fermi-Thomas approximation which assumes that
a Fermi energy can be defined as a function of nucleon density
and hence of radial position r. The calculation revealed that
the imaginary part of the optical potential was maximum at

the nuclear surface. The effectiveness of the exclusion
principle dimimishes as the energy of the incident particle

increases. The requirement that g(r) should be surface peaked

is removed.,




Fig. 1

Real Part of Optical Potentials
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Fig, 2

The imaginary vart (surface absorption) of

the optical potentials,
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CHAPTER IT

THE OPTICAL MODEL ANALYSIS OF 016(e¢,« )00

2=1 Theory of Optical Model Elastic Scattering and Programming
The differential cross-sections can be obtained by solving

the Schroedinger equation if the interacting potentisl is
given. However, the process is not reversible. One thing we

can do is to optimize the parametersof the phenomenological
optical potential which will give good fit to the experimental
data. The quantity we choose to measure the goodness-of-fit

is X,z which is a measure of the difference between the

experimental and theoretical distributions,

s/

%szj(QNC”'ngz)
=t N

-

where/W;Land/VQ? are the theoretical and experimental

numbers of counts respectively for the ith measurements,

In the present case only differential cross-sections sre
considered. The number‘/%géis proportional to the differential
cross-section 5;(@0 measured at the centre-of-msss ~ngle

Gi. We have

6&(9) = qui, 6}(9i) = qA/%, and JA6£(91) = 9/2;%:
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where '56£;is the standard deviation in statistics.~The’
proportional constant ¢ characterizing the absolute norma--
lization has a deviation which can be derived from the above
relations,

2
(§07)

c=

where we have put 6&_::6% for ‘a good fit.

Now consider :<2 as a function of the optical parameters
which are involved implicitly through 0&. The search routine
will vary these pargﬁeters automatically until a'satisféctory
minimum Of‘f{z is obtained. The searchvroutine will be dis-

cussed in the7f0110wing section,

The elastic scattering routine (ELSCAT) will calculate the
cross sections 6}(61). All the calculations are performed
in the centre-of-mass system, in which a two-body problem

can be reduced to a one-body problem.
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We start from the Schroedinger equation

[— -sz‘/;-vz + V(r)}]ﬂ/f(;:)'= EY(x). (2-1)
The'relative'motion of ﬁhe two pérﬁicles is described
completely by this equation aloﬁngith the relevant boundary
conditions. In the present situation the boundary conditions
will be (1) that asymptotically at large_distances the wave
function should consistlof a COuloﬁb-distortéd plane wave
and 6utgoihg'8pherical waves, and (2) thét‘ﬁhe radial'
wave functions vanish at the origin.
Expandf}ﬂ(z)”in terms’bf the spberical harménicé-

LT U,Q(k,r) Y

Yz = e SRR, (2-2)

,m

‘ | . | ,
where‘ﬁ2k2=2/lE, and k and T are unit vectors.along the

directions k and r respectively. Substitute (2-2) into

(2-1), one obtains the radial wave_equatibns;

2 .
e, [aupy) - ALy 1) } =0. (2-3)
o {1'12 S " ’

Rewrite this equation by introducing the dimensionless



quantities
2
uZz-Zre :
Y= —51—, and = kr.
kh |
One has
d%y, VlP) ValP) e
dr°2'+ (g5 - PR Jg = 0. (2-3)

The numerical integration of this equation iscarried out to
nax where the nuclear potential is negligible.

some distance r
Outside of this region the interaction is the Coulomb force

only. Eq.(2-3) becomes the well-known Coulomb wave equations

Fa 2

d .
:i_f;;£+ (1 - 2{3/‘ __ f(?gl))uﬂ‘ = O, | . (2-1,)

which are satisfied by the regular and irregular Coulomb
functions Eﬂ(77,§°) and QL(7*,f ). They have the following

asymptotic forms at large values of £

(2-5)




- .or

(19)

The Coulomb phase shift g, is defined such that F,=0 at

f =0, and satisfies the recursion relation

.1, 7
o= Gy - va( 7). (2-6)
The combinations
Sl f -7in2p - 2E 4 )
GZ - iFﬂ— = e

(2-7)

represent the incoming and outgoing waves respéctively. The
'solutions of Eq.(2-4) can be written |

-~

u'ﬁ =.%‘((G‘(- ILFz) -YIQ,(G-Q + lFl)] ’
uﬁ' =&%CF£ + i6Q(GL + lFﬂ)j 3

where :
20 = 1 -My- _

The scattering matrix elements @Qare obtained by joining

the solutions of (2-3) and (2-4). Let 53&' be the solution
of Eq.(2-3), which is calculated by numerical integration

of Eq.(2-3).
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At matching radius r, one has

Firn) = G [rgtry) + 1B(0ur,) + 1F40x))]
. - | (2-8)
| L?JZ(I‘I-HS) g[ (r -d) + 1;32 r =$) »(rm-X))] ,
‘where § is a small radial increment, ﬁﬂlﬁ obtalned by
solving the two equations. The dlfferentlal cross-sectlons

i

are then given by

a6 I'I(e)lz,

-d---.m

- where I(6) is scattering amplltudell)

~

1(e) = £, (e) + Z (24+ 1)6*1%4, P2 (cos6).  (2-9)
fcis the same as the.Rutherford scatpering amplitude

f£f (0) = - __Jz;ﬁ—n exp(Ziq: - 2ifinsin%);

N‘GD

The behaviour of the Coulomb wave functions Fz(if,(°) and
(¥,F ) are quite'differenﬁ at different regions of (7,f)

space, especially, wheny and fare small.
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7)

Different approximations should be used for different regions

60 |

40 ¢

30 ¢

10

i i i i

10 20 30 L0 50 60 7080 f

. -+ Regions in which different asymptotic
formulae should be used,

For the purpose of simplifying the programming and for the

present problem, only method B 7) will be used. 2/L= 0.63

1 16

and k = 2.83 fm ~ for the &—0 scattering. In order

to avoid getting into the square regions, the numerical

o
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integration of Eq;(2-3) is carried out to a large matching
radius, r = 20 fm. That corresponds to f = 56.6. This point
is in the B-region in the, previous diagram.

‘Since Fy and Gy are solutions of the same differential

equation, they obey the same recurrence relation

~&f2+(/€+l)2

S Fea (f) + = g, (f)
L= (2f+l)(£‘m + PJ;)F@ ()o)’
or | -
\~‘ Bep = (BeFp - A@@-l)/gm o (2-9)

where

A, AL+ L2 , and B, = (24~ 1)[——47—/—;— +.-l—].

L

Fy is calcﬁlatédcin the downward order of . by Miller's
method. Since Fi' has the characteristic that when _¢ is
larger than some'value,z, the function decreases rapidly

with increasing ¢ , we thus start from

°€Z+l= 0.

(In the program this is set cﬁz4l=l.0*10'70.)
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Then CEE = £, € is a small number and the normalization

factor c can be determined by using Eq.(2-9), it is

-1 ,
‘Al(FoGl-FlGo) e

C ==

The starting valus of ¢ is calculated as follows:

F; _ 1
Set E ., T 10 at the first run.

The recursion formula Eq.(2-9) gives

) 2.2
F- NAL o 7, _
RN N 10 .
Frq B; 20 (=5 + 5-)

Solving for'[ , one obtains

,f_‘—{25 -~+10/—f,31-% +6}

To check on the error, ./ is then replaced by /Z/== am 10,
and repeat the célculation. If the difference between the

ratios F]/Fo is less than 0.0l%, then the last cFé' value
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will be used in the following calculations. Otherwise the
program will repeat the previous procedure again and increases

4 by 10 each time until a satisfactory value of _¢ is

obtained.

The irregular Coulombvwave function‘Gz_ is caiculated by
recursioh upward in £ and inward in r. The values of GO
and Gl arg obtained asymptotically at large f’7).»
Define

{

(2n+1) 5 o (L +1)on(n+l)+p?

== —_—

~ P 2ma)f ] n 2(n + 1) f ¥

They satisfy the relations

0
Sp1” DpSp- Bty ,

(2-10)
t 'Dntn+'EnSn,

n+l

“with the initial conditions S = 1l and toé 0.

Puﬂ
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The summations of these divergent series are cut off after
a suitable number of terms (n=15). The asymptotic formulae

of Coulomb wave functions are

.Fz= tcosek+ slsinQQ |
(2-11)

‘q£= secosOy~ t-sing; , -

where = 8= f - .7 1n2f - 5=+t 6 .

To check the dependability of the calculation, set Vn=0,

the radial wave functions are then the linear combinations

N~

of the Coulomb functions.

Eq.(2=3) 1is integrated numerically by employing the quad=- ’

ratic interpolation and the Schroedinger equation

[é; r+5 25; r) +é; r-§ ]/g 2-12)
N[& r+J) +lO§ (r) +§r-$)]/12 |

Put Q,(r) =1 + Ig'[kz-“§%V(r) - —4é§i——] ,  (2-13)
: o . . r

where V(r)= V +V . Combine Eq.(2-3), (2-12), -and (2-13),
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one obtains the recursion formula

Fi(e+d)= [ (12100, ()] (r)-Ql(r-J)éz(r-Jy/ Q, (r+d).

(2-14)

The normalization factor CE% of <§%k is not important,
because the first equation of Eq. (2-8) is divided by the second
one and 29% is cahicelled out. The recurrence in Y.~

is started from the following values:

F (=8 =0, Qi-§) =0, F0) = s (1 4 1),
¢ ’e A
0,10} = 0.

These are to satisfy the second boundary condition of

qu (2-1)0
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2-2 AUTOMATIC SEARCH ROUTINE

(A) Normal Equation Method |

The search routine is designed to find the optiéal parameters
which correspond to good fit to the experimental angular
distributions. This is to minimize the quantity )iz. In

order to standardizé‘this quantity, we then divide jh? by

N, the total number of experimental points.,

(8,)

T~z Op(0;) - Gloy)

x= ) ). (2-15)

| : 36, |
| A , 1

Put ‘X?= f(xl,xz,.....), Wwhere xi's represent the optical = .

Pparameters to be determined. Assume f has a minimum at

xi(I\/I)== xi(O) +tax; , o (i=1,2,....)

where M indicates the minimum, and O, the starting point
in the parameter space. The sufficient conditions for a

minimum are.

- af o |
3z, 0w O | » - (2-16)
From Eq.(2-16) a set of linear equations of x. can be

deduced by assuming that the startihg point O is sufficientiy

near the minimum M.,
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T~ O e
(gx Iy = (ax )x x5(0)+ x; - ZZ((Q%) (a,t:)
- 2 z: {Z oy)o + X ) ax )
Kk

20
(5 ) < )2} 0,

(;j=l,2,...-) / (2"17) :

+ (2nd order terms of a x{]~

Neglecting the second-order terms,lEq.(2~l7) can be

rewritten as

’ N - .
a o o
1 T T
—_—s (===)n" + (6 = 6.) | (=—= ) 0,
= (5073)2& e B o) 2xg

(3=1,2,000e)0  (2-18)

Eq.(2-18) provides a set of simultaneous equations which
can be solved for ax, The derivatives are obtained numerically

by the approximations

95 Ga(x.tdx.) - Ooix.) '
/ax'-?: T .]JX.T | (2-19)
i *3
56

All ( T)M are replaced by. gﬂz?)o ; because 0 is assumed

to.be at the nelghborhood of M. "The rest of the problem is
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to solve the simultaneous ecuations (2-18). This cam be

done by using IBM library subroutine.

It is apparent that the normal equation method is valid
only when the starting point O is reasonably near the
minimum. Otherwise the search becomes unstable, This is
illustrated in Fig. 3. The initial values of the prrameters
are r=r'=1.20 fm, a=a'=0.30 fm, U=150.0 Mev, WV=16.O Mev,
and WS=O.O Mev. The search Jjumped to the negative parsmeter

space from the second to eleventh cycles,

To test the dependability of this program a different
automatic search program illustrated in the next section
was used to do the search starting from the same values of
parameters. The differences between the optimum values of

the optical parameters were within 2%,

r=r'fm | a=a'fm |U(Mev) Wv(Mev).ﬁg. at 32.3829

A,
Normal Equation
Method 1.327 0.56 |251.16 | 88.L46 22,19
Pehl-WilKins
Method 1.308 | 0.57 [251.24 | 88,31 32,02

Starting 1.316

Values 0.54 250,93 90,00
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Fig. 3

Unstable Three Parameter Search.
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(B) Pehl and Wilkins Method

It is difficult in computer programming to find a proper
increment 4 x for evaluation of the derivatives of a

particular function f,

9f __ f{x+ax) - f(x)

——

'3x ax

If ax is too small, the calculated g% will not be correct

due to the errors generated by the computer itself, and it
might cause computer'ovérflow. ?ehl and Wilkins tried to
free_from.these troubles by using the followiﬁg procedure:
Define | |

~o f(xi+Axi)- f(xi) Afﬁxi)

Gy= 70 R { FIO R

The direction toward the minimum is determined by the sign

of o
, 1 Af(xi) .

- f ax. ’ ( £>0°).
i 4

The lengﬁh of a step for the variable xi is

In our modification of the program, since convergence was
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very slow, suitable increments were estimated at the start.

If during five iterations the sign of % 5§ remains the same
the increment is doubled. Conversely, once the derivative
changes its sign, the increment is reduced by half so that
the search will converge right at the bottom of the valley.
The computer stops searching for the optimum value of X5

when

The search is considered complete when all the parameters
satisfied this requirement. The standard may be changed to

meet the demand of a particular problem,

This automatic search routine does not involve the assumption
that the starting point should be near the minimum. It will
converge to the nearest minimum if the calculation is started
with markedly different values of optical parameters. This

is very helpful for the systematic analysis of parameter
ambiguities. Oﬁe of the convergence searches is shown

in Fig. b.
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CHAPTER III

OPTICAL MODEL POTENTIALS AND PARAMETER AMBIGUITY

3-1 (-0 Optical Model Potentials
The experimental differential cross-sections have been fitted
using surface absorption term for the imaginary part of the
potential. The program was normally run for around 30 cycles
to satiéfy the conditions for}convergence. This depends on the
separations between the stafting values and the optimum values
of the optical parameters, The Coulomb radius parameter r,
was fixed at 1.4 fm. The sen51t1veness of the calculated
differential cross-sections to the variation of rc will be
dlscussed later, Primary searches were started from various
points in the parameter space to obtain the whole set of
minima of :XZ corresponding . to good fit, In order to get‘the
approximate separation between the successive minima, the
starting values were as follows: | |

the real depth V=6O to 300 Merwith 10 MeV spacing,

aﬁd the'geometrieal parameters are

ro=r)=1.2 fm, a=a' = 0.6 fm, W = 20 MeV.
The parameters representing all the converged searcﬁes are
llsted in Table 2, There are gaps between V—249 MeV and 198

Mev, and V=136 and 75 MeV. The searches were very unstable




Vv
(Mev)

305.2
288.0
R7542
256.9
249.1
(gap)
198.3
172.6
135.8
(gap)

75.0

1.177
1.209
1,258
1.320

1.355

lczl&h
1.385
1.251

1.420

Table 2.

o<__016

(35)

a=a'

(fm)

0.625
0.618
0.598
0,572

0.559

0.645
0,586
0,705

0.668

(Mev)
29.4
27.1
26,2
25.8

25,0

224
20,3
18,2

16.9

34
27
30
35
39

L2
47

88

Optical Potentials.

Vr

423 7

422

435 > I

LL7

457 4

307 )
+ II
331 |

212 III

151 IV
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Fig. 5

Optical Model Fit Using Volume Absorption.
W = 88,5 Mev,
v
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Fig. 6

Optical Model Fit Using Surface Absorption

r=1r'"=1.177 fm
a=a' = 0.625 fm
V = 305.2 Mev
W_= 29.4 Mev
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Fig. 7

Optical Model Fit, V=288.0 Mev, W =27.1 Mev, It gives
excellent fit to the experiment=l point at 2ngles

around h50.
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Fig, 8

Optical Model Fit, V = 275,2 Mev, W = 26,2 Mev,
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Fig., 9

Optical Model Fit, V = 256,9 Mev, W = 25.8 Mev,
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Fig. 10

Optical Model Fit, V =249.1 Mev, W_ = 25.0 Mev.,
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Fig. 11

Optical Model Fit, V = 198.3 lev, W =22,.36 mev.
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Fig. 12

Optical Model Fit, V = 172.6 Mev, W = 20.26 Mev.
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Fig, 13

Optical Model Fit, V = 135,8 Mev, W = 18,2 Mev,
The fitting is relatively poor at large angles

using a shallow potential,
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and no minima had been found within these gaps.The fittings

are shown in Fig, 5-12.

Thé arguements and moduli of"')?4 corfesponding'to the conver-:
gent searches are shown in Fig. 13 and 1l4. All the magnitudes
of 7, converge to unity around £ =20, This indicates that

the partial waves with 4 >20 are not important; The number

of partial waves taking into consideration was set equal

to 25 throughout the analyses.

The radial wavéfuncpions for £=0, 1, and 2 corresponding to

the potentials (1) and (2) in Table 2 are plotted in Fig.l5"

and Fig. 16. It can be expected that the amplitudes of the
wavefunctions inside the nucleus should be larger for smaller
absorptions, i.e.,.for smaller value of W. According to the
model, a nucleus acts partiy as a particle-sink, the probability
density of the‘incideht parﬁicle inside the nucleus is thus

larger for smaller absorptions..

The fittings are good to about 6_ = 50°, The deviations
" between the theory and the experiment increase after

edn= 50° partly due to increasing statistical errors at

large angles. The scattering seems to be in favor of the

potential with deeper wells., The potentials (2) to (5) ih
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Table 2 give better overall fits, while the deepest and
shallowest give poorer fits, We thus expect that there will
be no optimun point in the parameter space outside of this

region,

Fig. 5 shows one of the fittings using volume absorption

term for the imaginary part of the potential. The feature of
fitting illustrates that the optical model potentials

with volume absorption are not able to reproduce the damped
oscillation of the angular distributions around Ocm= Lho,

and give relatively‘poor fit at large angles. Only the surface
absorption gives good account for these regions. This indicates
that the interactions near the nuclear surface are more important

for the o -particle elastic scattering,

The Coulomb radius parameter r, is varied from 0.1 to 2.0 fm,
There is no practical change in the differential cross-
sections, This is shown in Fig. 20, r, is thus fixed at

lo4 fm in the actual calculation,
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Fig. 1L - B

The Phase of Yl

L



(48)

SHEMOTA NI 'W. d0 ESVH

1O
N
(r.nw.. ’
2 .
. w
K = o
iy N
o~ 0
L] [ 3
wn\ un\
o A e
o —~ o~
i o
&> = o
~i
. \v
. ! \\
~ 0 . y NO
. ¢ 4
. ¢
o \A\
V4
s l.liw..
V4 1
/,
£
~,
A ~
M- o o
- ol l
L Tnzae :
L il 2
l..l.l.l\.l..l.lu.lul
S e T !8
lllll o>
- \\\-\
‘‘‘‘‘‘ o
\\\’\“\
S P
lllll sz
\\\\
el i
.“:.MA\.I.\.I
A ! —— T | o]
Q o o o . @]
(@) wn\ (Yo O
~— 1 1u

Fig. 14-13



Fig. 15

I

The Amplitudes of the Radial Wavefunctions for ,€=O, 1, and 2.
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Fig. 16

The Amplitudes of the Radial Wavefunctions., V = 198,3 Mev,
WS= 22,4 Mev,
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3-2 Optical-Parameter Ambiguities

The potential obtained by the optical model énalysis is not
unique. All the botentials listed~iﬁ Table 2 reproduce the
experimental differential crbss-seciions reésonably well.
The systematic behaviour of the ?arameters will be discﬁssed'

in the following;

The radial wavéfunctions for,ﬁhe s-wave corresponding the
optimum potentials are shown in Fig. (17), (18), and (19).

All of them have 'similar ampiitudes and phasés outside of

' 'thevhuclear fiéld./In fact, from Section (2-1), the scattering
matrix elemgnts @Q 6orresponding to different potentials

will be the same so long as they reproduce the séme asymptotic
Wavefunctions, regardless of the details of the wavefunctions
inside the nuclear field. Thus, which potentigl represents
the actual interaction is not Wusoivable solely by means of

the elastic scattering experiment.,

The systematicé of the variation of the parémeters can be
divided'into,twobéategoriés; The first one is the continuous
type. That is, a small variation of a parameter may be

~ compensated by the variations of othgr parameters. If we use
a set of optimum parameters as a starting point for the

search routine, it might converge t6 a slightly different

>
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point in the parameter space leaving j(z practically
unchanged. The second one is the discrete type. Only certain
sets of parameters can give the correct angular distributions.
This type of parameter ambiguity will be discussed in the

following scetions.,

3-2.1 Vrg Ambiguity

The potentials in Table 2 can be divided into four groups
according to the values of Vrg. The first five potentials
have approximately the same Vrg. They form a group. The

groups with deeper wells have more elements than those of

the shallower ones,

V-ro invariance becomes clear if one examines the wavefunctions.
All the radial wavefunctions corresponding to the potentials

of the same group have the same number of oscillations inside
the nucleus. In other words, V and r, are allowed to vary

in such a way that the number of waves inside the nucleus

is kept constant. Since the wavelength-- A for a particular
partial wave is approximately the same inside the well,

we can write

R
—— = const., (3-1)
A
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where R =r A 3. Neglecting the absorption term, Eq. (3-1)

is equivalent to

R / E+V = const. (3-2)

For deep wells, V>>E, Eq. (3-2) becomes

R2V = const. (3-3)

In this case, n is equal to Z.
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Fig., 17

The Amplitudes of the Radial Wavefunctions RO.
They all have the sa2me number of oscill-tions inside the

nucleus for the potentials in a group,.
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Fig, 18

The Amplitudes of the Radial Wavefunctions Ro.
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3-2.2 Potential Depth Ambiguity

If we examine further the radial wavefunctions of the optimum
potentials, it is clear they differ in that the wavefunctions
corresponding to the potentials of the same group have one
half-wave more inside the nucleus than the next shallower
group. The same kind of ambiguity has been found by Drisko

et al*) in 1963 when they did the optical model fit to the
o(-Ni58 elastic scattering at 43 Mev., Austern interpreted
this type of ambiguity by employing WKB approximation.

He expressed scattering matrix elements for each partial
wave as the sum of two terms, one due to the absorption in
the nuclear surface and the other due to the angular
momentum barrier and the absorption in the nuclear interior,
From Fig. 14 we can see that low partial waves with /<13

are strongly absorbed. The higher partial waves are mainly
affected by the nuclear surface, while the lower ones
penetrate further into the nuclear interion., For low partial

waves the scattering coefficients can be written

1,2 o21 ddr), (3-4)

%) R, M., Drisko, G. R. Satchler, and R. H. Bassel, Phys. Lett.

5 (1963) 347.
#%)N, Austern, Ann Phys. 15 (1961) 299.
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where the phases <%(r) are related to the potential

depths by

| 1 24 li+1) Y V-
- U S (BaV (r)= - S <
Sy ) = Co L =5 BV ()T, ()= 25 ]7% ax.
i

(3-5)

Cypis a constant independent of the potential depth and e is
the classical turning point, i.e., & = V(ry). This type of
parameter ambiguity can be understoqd from Eq. (3=4) and
(3-5). If a series of potentials with different depth are
such that they generate the phases Jp which differ

by an integral'multiple of W, then W:s are the same.

This type of parameter ambiguily is not important. for elastic
scattering since 1t is determined only by the asymptotic
wavefunctions and these are the same for all the‘potentials
in the series. However, the DWBA calculation;?of crosé-
sections for nuclear reactions involve.the integrations of
the wavefunctions throughout space and are Cleariyisensitive
to the number of oscillations of the Wavefuﬁctions inside

the nuclear interior., It is important in this case to know

which potential is physically correct,.
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3-3 The Surface Region of -—O16 Optical Fotenti=l

Although the optical parameters cannot be determined
uniquely by the present analysis, it does define the optical
potential as a whole fairly well near the nuclear surface.
This is shown in Fig. 1 and 2, All the real parts of the
optimum potentials have the same type of surfaces. The
imaginary parts also resemble each other near the nuclear
surface. These give another evidence that the intersctiont
of -pa:-ticle with the target nucleus is more imvortant

on the surface, although, as already stated in the n»revious
section, the nuclear volume also influences the angular

distributions through the low partial waves.

3-4 Summary and Conclusion

The optical model analysis has become = standard method to find
out the nucleon-nucleus potentials. They have been used
successfully in the DWBA calculations of nuclear reactions,

The present work is to determine the —016 optical potential

in an sttempt to extend the optical analysis to the interactions
involving composite particles. The applicability of this

method to the double magic helium nuclei can be expected,
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The optical analysis of the & --O16 exnerimental deta yields
a set of complex potentisls. All of them can reproduce
cuite well the angular distributions, Which one of these
potentials is physically correct cannot be determined by the
elastic scattering measurements only. Since the actusl
calculations of the elastic cross-sections merely use the
asymptotic wavefunc ions, that is, 211 the potentisls
which can reproduce the same wavefunctions outside the
nuclear field will have the same angular distributions,
However the DWBA calculations involve the integrstion of the
wavefunctions through space. It provides a way of judging

the potentials determined by the present aneslysis,

Two types of parameter ambiguity have been found for the
0(-016 optical notentials, The first type is that the
optical parameters are allowed to vary, with the cuzntity
Vrg kept constant. The potentials belonging to this category
are listed in groups in Table 2, V—ro invariance can be
understood by examining the wavefunctions. The amplitudes

of the tadial wavefunctions for a given }FcorreSponding

to the potentials in a group have the same number of hslf-

waves inside the nucleus. The second type is that the
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parameters can be adjusted so that they produce one or more
integral multiple half-waves inside the nucleus such that
the corresponding amplitudes of the wavefunctions far away
from the nuclear field are the same. This is the formation
of the different groups of potentials on Table 2. Each

group has one more half-wave than the next shallower one,

Although the optical potential is not uniquely determined

by the p esent analysis, it defines the nhenomenologicsl
potential quite well near the surface. This gives an evidence
that the interaction of alpha particles with the target

nucleus is more important on the nuclear surface,
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