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Abstract

A clinical trial is an experiment on human subjects designed to evaluate the safety

and efficacy of a new drug or medical intervention. There are four phases of a

clinical trial. Phase I trial is the first step to determine the maximum tolerated

dose (MTD) to be used in the subsequent trials. Phase II trial examines the

new drug’s short-term efficacy based on the MTD identified in Phase I. It is also

the proof-of-concept trial for Phase III. If the drug shows potential efficacy for

the larger population, we can move onto a Phase III trial. Phase III trial is an

expensive and long-term trial before the approval for marketing the new drug. It

concerns about the long-term efficacy and safety of the new drug. If the new drug

is approved for marketing, the Phase VI trial is the post-marketing surveillance

trial that reports side effects of the new drug after marketing.

My Ph.D. research is focused on proposing and evaluating statistical designs of

Phase I clinical trials. Currently there are three classic parametric designs available

in the literature for Phase I clinical trials. The commonly used parametric design

is the continual reassessment method (CRM). This method assumes a parametric

statistical model to describe toxicity probability at each dose level. However, this

parametric model has unknown parameters. These unknown parameters follow

prior distributions under the Bayesian approach. After treating patients in the

trial, we observed outcomes which are either toxic or nontoxic. Observations



of patients’ outcomes are used to update posterior mean toxicity probabilities.

The MTD is identified as the dose whose posterior mean toxicity probability is

closest to the target toxicity probability, say 33%, after all patients in the trial

are treated. The objective of a Phase I trial is to determine the MTD to be used

in the subsequent clinical trials.

Three classic parametric models are normally used with the CRM, namely

the power, logistic and hyperbolic tangent models. They use respectively the

power, logistic and hyperbolic tangent functions. These functions are used to

define the increasing relationship between toxicity probabilities and different dose

levels.

In this thesis, we use the CRM with a new class of parametric functions. This

class is based on the cumulative distribution function of the normal distribution.

A major advantage is that we can choose different values of the mean and variance

of the normal distribution to change the location and shape of the dose toxicity

probability curve so we can flexibly model different shapes of the dose toxicity

probability relationship. We conduct simulation studies and compare our new

design with the existing designs, for one drug or the combination of two drugs. We

investigate the performance of our new design when we assume that the variance

is unknown, and the performance of the Bayesian model averaging CRM design.

Finally we derive asymptotic statistical inference of the unknown parameter. We

introduce some new performance criteria and compare different models based on

“BEARS”: Benchmark, Efficiency, Accuracy, Reliability, Safety.

In summary, Our designs performs well by choosing the appropriate values of

α, β, the mean and variance in our model under criteria BEARS.
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Chapter 1

Introduction

1.1 Introduction

Clinical trials are designed experiments on human subjects and are typically

characterized by the tension between collective and individual ethics. In a clinical

trial, we hold dual responsibilities to current and future patients. Collective ethics

requires that we, as scientists, conduct scientifically valid clinical research to

advance medical knowledge so future patients benefit. Individual ethics dictates

that we, as medical care providers, must ensure safety to each individual patient

in the trial and provide the best possible treatment available based on current

information.

Phase I clinical trial is the first stage of a drug tested in human beings before

its approval of U.S. Food and Drug Administration (FDA). The overarching goal

of a phase I clinical trial is to identify the maximum tolerated dose (MTD). Other

goals include minimizing the overall risk of toxicity and treating as many patients

1
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as possible at the therapeutic MTD. Phase I clinical trials are fundamentally

important for the proof-of-concept phase II and confirmatory phase III clinical

trials and play critical roles in cancer research and treatment (Weber et al., 2015),

because we need to recommend the MTD to Phase II and Phase III clinical trials.

If the MTD is over-estimated, patients may be exposed to a fatal treatment in

following trials. If the MTD is under-estimated, the treatment may be ineffective.

Trade-off between efficacy and toxicity of the new drug is our goal in all phases of

clinical trials, but Phase I trial is only focused on the maximum tolerated dose that

patients are not able to tolerate any more. Generally speaking, a Phase I clinical

trial needs 15 to 30 patients (MDAnderson, Accessed 2019-05-13). Furthermore,

the trial starts with a very low and safe dose. Patients are treated in cohorts,

with a particular cohort size. The first cohort is treated at a starting dose. If a

large number of patients in this cohort experience toxicity, the next cohort may

be treated at a lower dose. Otherwise the next cohort may be given a higher

dose. The dose with an estimated toxicity probability nearest to a pre-specified

target dose limiting toxicity (DLT) rate is chosen as the MTD. We typically

assume that toxicity and efficacy probabilities increase with increasing dose levels.

Phase I clinical trials are also called dose finding trials. We expect to observe

toxicity immediately for decision making. We face survived data when we need to

determine whether or not to escalate or de-escalate the dose level for the next

cohort, which the toxicity response is delayed.

As we know, the goal of a Phase I clinical trial is to identify the MTD for
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later phase studies. Some important issues of this trial must be taken into account:

ethical concerns, the starting dose, the speed of dose escalation, the sample size

of patients, and the target toxicity probability. These issues have direct impact

on the efficiency of Phase I trial design and the accuracy of the identified MTD.

Dose finding designs for phase I clinical trials are broadly classified into two

groups: nonparametric (or algorithm-based) and parametric (or model-based).

Such designs are often adaptive in the sense that selecting the next dose depends

on the current dose and toxicity response. Nonparametric designs include the 3+3

method and its extensions (Storer, 1989), the accelerated titration design (Simon

et al., 1997), the biased coin design (Durham et al., 1997), the group up-and-down

design (Gezmu and Flournoy, 2006)), and the interval design (Ivanova et al.,

2007). Nonparametric designs are easy to implement but not necessarily optimal,

because they do not specifically target the MTD and there is no comprehensive

understanding of the operating characteristic of the design.

A parametric design assumes an explicit statistical model of dose toxicity

probability over the set of all possible dose levels. This approach is holistic

because each assigned dose and the toxicity response are used to update the entire

statistical relationship. The updated relationship is then used to identify a dose

for the next patient. This model-based approach is introduced by O’Quigley

et al. (1990) who propose the continual reassessment method (CRM). The CRM

design specifies the dose toxicity probability by a parametric statistical model with
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unknown parameters. The other parametric designs include the Escalation with

Overdose Control (EWOC) (Babb et al., 1998), and Bayesian decision-theoretic

approaches (Whitehead and Brunier, 1995).

1.2 Nonparametric methods

1.2.1 3+3 Methods and extension

The challenge of Phase I trial is to find the MTD subject to safety and efficiency.

That means we need to avoid toxic doses higher than the MTD in treating patients

and also ensure that the design is effective so that doses lower than the MTD are

not frequently applied to patients.

The 3+3 design is a standard and classic method in finding the MTD with

a targeted toxicity probability. Storer (1989) shows that in such a design, the

toxicity probability is less than 33%. In a real clinical trial, the 3+3 design is

widely used because of its easy implementation. We assume a pre-specified toxicity

probability pi which is increasing in dose level di. The cohort size is 3 and the

first 3 patients are treated at the lowest starting dose level. The process of 3+3

design is described as follows:

(1) Treat three patients at the current dose level i.

(2) If no patient is toxic, escalate to the next higher dose level i+ 1, and go back

to step (1).
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(3) If one patient is toxic, then three more patients are treated at this same

dose level i and we observe dose limiting toxicity (DLT) of the total of six

patients. If only one of the group of six patients experiences toxicity, we

move to the next higher dose level i+ 1. If two of six patients are toxic, the

trial is terminated and the next lower dose level i− 1 is considered as the

MDT. If more than two patients of these six patients are toxic, then the

current dose level i is higher than the MTD, and another three patients will

enter the treatment and be treated at the next lower dose level i− 1.

(4) If more than one patient is toxic at the lowest dose level, the trial will be

terminated and is said to be an inconclusive trial.

Although the 3+3 design is convenient to use, it has some problems that may

affect the estimation of dose-finding (O’Quigley and Chevret, 1991; O’Quigley

and Shen, 1996; Yin, 2012). First, the observation data is only associated with

the current dose level, and other dose levels are not considered. Second, the 3+3

design has poor statistical properties. Third, the 3+3 design only works for a

trial in which the target toxicity probability is smaller than 33%.

1.2.2 A+B Design

Procedures of A+B design are described as follows:

(1) Suppose that A patients are treated at the dose level i, and we observe the

outcome of toxicity.
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(2) If less than C patients of the total of A patients are observed toxic, we

escalate to the higher dose level i+ 1.

(3) If the number of toxic patients is between C and D, we stay at the same dose

level i where we will treat B more patients. If we observe that more than

E of A+B patients are toxic, de-escalate to the next lower dose level i− 1,

otherwise, we escalate to the next higher dose level i+ 1.

(4) If the number of toxic patients are greater than D, de-escalate to the dose

level i− 1.

As we know, the standard 3+3 design is a special case of A+B design when

A and B are 3 and C, D and E are 1. Lin and Shih (2001) extend the 3+3 design

to A+B design that is more general in practice. The significant difference from

the 3+3 design is that the cohort size may not be three.

1.2.3 Accelerated titration design

In a classic Phase I design, to be safe, we start with the very low dose level to

protect treated patients from toxicity, however, the determined MTD is usually

higher than the starting dose. To speed up the trial, Simon et al. (1997) develop

the accelerated titration design (ATD) instead of the traditional 3+3 design. The

first stage of the ATD is to treat only one patient at each sequential dose level until

observing toxicity, and add two more patients at this dose. Then we move onto

the second stage with the standard 3+3 design. These three patients are treated
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starting from the previous dose level. This procedure provides the opportunity to

save time at the beginning of the trial and to avoid a large number of patients

treated at a very low ineffective dose that is much lower than the MTD.

1.3 Parametric methods

1.3.1 Continual reassessment method

Rule-based methods to dose-finding only follow some pre-specified rules. We

collect information based on the current dose, and we do not collect information

on other doses. To overcome the problems of nonparametric methods, we use

model-based methods called parametric methods in Phase I trials. First, we

introduce the continual reassessment method (CRM), which is a commonly used

method in a dose-finding design.

O’Quigley et al. (1990) propose the CRM which connects the true toxicity

probabilities π1, π2, · · · , πJ with pre-specified toxicity probabilities p1, p2, · · · , pJ

at each dose by a parametric model with an unknown parameter α. So the dose-

finding decision making is based on the model that we define in the trial study.

In general, we assume that the true toxicity probability πi is a function of the

dose level di. Moreover, the pre-specified toxicity probability pi is monotonically

nondecreasing in the dose level di. That is, p1 < p2 < · · · < pJ . Let θ denote the

target toxicity probability. The CRM introduced in O’Quigley and Shen (1996)
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assumes the following model,

P (toxicity at dose level i) = πi = p
exp(α)
i ,

where α is the unknown parameter in the model.

There are some modifications of the CRM model. For example, a logistic

model or a hyperbolic tangent model is widely used in the literature. The CRM

initially introduced in O’Quigley et al. (1990) has been extended and improved in

many directions, often in terms of different dose-toxicity models. For example,

O’Quigley and Shen (1996) introduces a one-parameter logistic function

πi(α) =
exp(β + αdi)

1 + exp(β + αdi)
,

where β is a fixed constant and di is the standardized dose level i. In particular,

Yin (2012) applies a fixed constant β of −3. A hyperbolic tangent function,

πi(α) =

{
tanh(di) + 1

2

}α
=

{
(e2di − 1)/(e2di + 1) + 1

2

}α
,

was also introduced in O’Quigley et al. (1990).

The book by Cheung (2011) is a comprehensive study on CRM. The impor-

tant issue of escalation with overdose control (EWOC) is considered by many

authors, including Zacks et al. (1998), Babb et al. (1998), Tighiouart et al. (2005),

Tighiouart and Rogatko (2010) and Chen et al. (2012). Wheeler et al. (2017)

consider toxicity dependent feasibility bounds for EWOC. O’Quigley and Shen

(1996) consider the likelihood approach for CRM and Yin and Yuan (2009b) apply
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multiple CRMs to model the toxicity probability. Pan and Yuan (2017) introduce

a default method to specify the skeleton for the Bayesian averaging CRM and

Lee and Cheung (2009) consider model calibration. The potential problem of

model misspecification for CRM is investigated in Shen and O’Quigley (1996).

The stopping rule for CRM is studied in O’Quigley and Reiner (1998), and the

issue of early termination of CRM is considered in O’Quigley (2002). Leung and

Wang (2002) apply the decision theory to CRM.

A tutorial on CRM is given by Garrett-Mayer (2006). Sverdlov et al. (2014)

provide an excellent survey on phase I clinical trial designs, and Ratain et al.

(1993) describe many important issues and difficulties on using phase I designs.

Moreover, Rosenberger and Haines (2002) and Potter (2006) are excellent reviews

of various designs of phase I clinical trials. Finally, O’Quigley (1992) considers

the problem of statistical inference of the CRM design and Neuenschwander et al.

(2008) examine some critical aspects of the Bayesian approach to the design of

phase I clinical trials.

The performance of CRM is evaluated in different settings. For example,

Iasonos et al. (2008) compare the performance of CRM with the nonparametric

3+3 design. Most recently, Zhou et al. (2018) introduce performance measures of

accuracy, safety and reliability. Cheung (2014) introduces the benchmark measure

based on sample mean toxicity probabilities.

We can use frequentist or Bayesian approach to estimate the unknown pa-
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rameter α and then MTD toxicity. In this Chapter, we only focus on the Bayesian

method. Suppose that ni patients are treated at dose level i, for i = 1, 2, · · · , J ,

and yi patients of the total of ni patients experience toxicity. Assume that D is

the observed data set. The likelihood function is

L(D|α) ∝
J∏
i=1

{pexp(α)
i }yi{1− pexp(α)

i }ni−yi .

We assume that α follows a specified prior distribution, denoted by f(α). By

the Bayes’ theorem, the posterior mean toxicity probability at dose level i can be

estimated as

π̂i =

∫
p

exp(α)
i

L(D|α)f(α)∫
L(D|α)f(α)dα

dα.

After treating all patients, we can obtain the posterior mean toxicity proba-

bility at each dose level, and find the dose level whose posterior mean toxicity

probability is nearest to the target toxicity probability θ. Then this dose is the

MTD recommended for the Phase II trial.

1.3.2 Bayesian model averaging CRM

In the CRM, we try to model the true toxicity probability. If our pre-specified

toxicity probabilities are too far from the true toxicity probabilities, the estimates

may not be precise, and the design may not perform well. To find the MTD in the

Phase I trial, Yin and Yuan (2009b) apply multiple CRMs, each has a different

prior, to model the true toxicity probability. Hoeting et al. (1999) propose a

discrete prior probability to each CRM and assign each CRM model a weight
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called a Bayeasian model averaging (BMA) procedure. In practice, we may assign

a higher weight to the better fitted model and a lower weight to a poorer fitted

model. So the estimates of toxicity probabilities approach closest to the best

fitted model all over CRMs. In general the performance of BMA is better than a

single CRM.

The BMA-CRM design uses multiple CRM models. Suppose Mk denotes

the kth CRM model related to a toxicity probability set, called a skeleton,

(pk1, pk2, · · · , pkJ), where k = 1, 2, · · · , K, and K is the total number of CRM

models. Then the toxicity probability at di is

πki(αk) = p
exp(αk)
ki ,

where i = 1, 2, · · · , J , J is the total number of dose levels, and αk is the unknown

parameter related to CRM model Mk (Yin, 2012). Suppose that yi patients who

are treated over the total ni patients experience toxicity. Assume that D is the

observed data set. The likelihood function of CRM model Mk is

L(D|αk,Mk) ∝
J∏
i=1

{pexp(α)
ki }yi{1− pexp(α)

ki }ni−yi .

Then assume that the unknown parameter α follows a specified distribution,

denoted by f(αk|Mk), for the model Mk. The likelihood function of the model

Mk is

L(D|Mk) =

∫
L(D|αk,Mk)f(αk|Mk)dαk,
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and the posterior model probability for Mk is

P (Mk|D) =
L(D|Mk)P (Mk)∑K
i=1 L(D|Mi)P (Mi)

.

Finally, the toxicity probability at dose level j is estimated by the Bayesian

model averaging method as

π̄j =
K∑
k=1

π̂kjP (Mk|D), j = 1, 2, · · · , J.

Here,

π̂kj =

∫
p

exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)∫
L(D|αk,Mk)f(αk|Mk)dαk

dαk

is the posterior mean of the toxicity probability at dose level j, under the assump-

tion of model Mk.

So the Bayesian model averaging estimate of the toxicity probability is a

weighted average of the posterior means, where π̂kj is the weight of P (Mk|D).

After treating patients at dose level j, the decision of whether to escalate or

de-escalate depends on the value of π̄j. An important issue is to develop an

algorithm to find MTD that is closest to the prescribed target toxicity probability.

1.3.3 Escalation with overdose control

Babb et al. (1998) develop the escalation with overdose control (EWOC) design to

protect patients from overdose. Assume yi = 1 if the patient is toxic, and yi = 0

otherwise. Then the toxicity probability of dose level i is the function F of dose
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level. Define

P (toxicity probability of dose i) = P (yi = 1|dose = xi) = F (α + βxi),

where α and β are unknown parameters. Suppose there are n patients involved in

the trial study, and the observed data set is Y = {y1, · · · , yn}. Then the likelihood

function is given by

L(Y |α, β) =
n∏
i=1

{F (α + βxi)}yi{1− F (α + βxi)}1−yi .

Suppose M and θ denote the MTD and the target toxicity probability,

respectively. If x0 is assumed to be the lowest dose level, then

θ = P (yi = 1|dose = M) = F (α + βM),

and

π0 = P (yi = 1|dose = x0) = F (α + βx0).

So we can calculate α and β as follows:

β =
F−1(θ)− F−1(π0)

M − x0

,

α = F−1(π0)− βx0.

We can assume that F−1(x) is exponential, logistic or hyperbolic tangent

function. After assuming the prior distributions of M and π0, we can get the joint

posterior distribution of M and π0. Integrating out π0, the marginal distribution

of M , denoted as G(x|Y ), can be used to find the next dose level. We define

G(x|Y ) = P (M ≤ x|Y ).
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In the EWOC design, the minimal posterior expected loss is used to determine

the appropriate dose to allocate,∫
Lγ(x,M)dG(M |Y ),

where γ is a pre-specified threshold, and Lγ(x,M) is an asymmetric loss function

(Yin, 2012).

1.3.4 CRM with combination drugs

Applying only one drug may not be effective in treating such disease as cancer.

We need two or more drugs combined to treat patients. Yin (2012) extends one

drug CRM model to combination drugs. Patients are treated sequentially, one at a

time. Consider a combination of two drugs A and B. Drug A has K pre-specified

toxicity probabilities a1 < a2 < · · · < aK for K dose levels, and drug B has L

pre-specified toxicity probabilities b1 < b2 < · · · < bL for L dose levels. A new

CRM design with the following new model of dose toxicity probability, which

incorporates interaction between the two drugs, is introduced:

P (toxicity at dose levels (ai, bj)) = π(α, β, γ) =
exp(η + αai + βbj + γaibj)

1 + exp(η + αai + βbj + γaibj)
,

where η is taken as a constant, α, β and γ are unknown parameters, and γaibj is

the interaction term of two drugs.

For the purpose of simulation, assume that the parameters α, β and γ

are random but follows some prior distributions. The Bayesian approach is



CHAPTER 1. INTRODUCTION 15

applied to estimate the prior or posterior mean toxicity probability at each

combination of dose levels (i, j), i = 1, · · · , K; j = 1, · · · , L. Suppose patient

n, n = 1, 2, · · · , N , is treated at dose combination (a(n), b(n)) and toxicity outcome

yn is observed, where yn = 1 if the patient is toxic and yn = 0 otherwise. Let

Dn = {(a(1), b(1)), y1; (a(2), b(2)), y2; · · · ; (a(n), b(n)), yn} be the observed information

on dose combination and its corresponding toxicity of all previously treated

patients, and denote

πi = π(α, β, γ) =
exp(η + αa(i) + βb(i) + γa(i)b(i))

1 + exp(η + αa(i) + βb(i) + γa(i)b(i)))
, i = 1, 2, · · · , n.

The likelihood function is

L(α, β, γ|Dn) =
n∏
i=1

{πi}yi{1− πi}1−yi ,

With our new model, this likelihood function becomes

L(α, β, γ|Dn) =
n∏
i=1

{
exp(η + αa(i) + βb(i) + γa(i)b(i))

1 + exp(η + αa(i) + βb(i) + γa(i)b(i)))

}yi
×
{

1− exp(η + αa(i) + βb(i) + γa(i)b(i))

1 + exp(η + αa(i) + βb(i) + γa(i)b(i)))

}1−yi

.

To ensure that the toxicity probability is increasing in the dose level of one

drug when the dose level of the other drug is fixed, we assume that α, β, γ are

all positive. Suppose that α follows the prior distribution f(α), β follows the

prior distribution g(β), and γ follows the prior distribution h(γ). By the Bayes’

Theorem, after treating n patients, the posterior mean toxicity probability at dose
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level (ai, bj) is estimated to be

π̂(i, j) =

∫ ∫ ∫
exp(η + αai + βbj + γaibj)

1 + exp(η + αai + βbj + γaibj)

× L(α, β, γ|Dn)f(α)g(β)h(γ)∫ ∫ ∫
L(α, β, γ|Dn)f(α)g(β)h(γ)dαdβdγ

dαdβdγ.

The new challenge of finding dose combination level in two combination drugs

is as follows. In the combination drug trial, the toxicity order of two drugs is only

partially known. For example, there are two drugs, each has 3 dose levels, say

3× 3 combined dose levels. Combination dose of (3, 2) and (2, 3) are more toxic

than that of (2, 2), but we do not know between combination dose of (3, 2) and

(2, 3) which one is more toxic. If we observe that the drug combination (2, 2) is

nontoxic, should we move right to (3, 2) or move up to (2, 3)? So determining the

toxicity order of (3, 2) and (2, 3) is the important issue in dose movements.

1.4 Summary

In this chapter, we have reviewed basic ideas of some commonly used nonparametric

and parametric designs of Phase I clinical trials. To summarize, the goal of Phase

I clinical trial is to assess the toxicity of the new drug and identify the maximum

tolerated dose for later phases. Details of the continual reassessment method in

our new model are given in Chapter 2. The Bayesian model averaging model is

introduced in Chapter 3. In Chapter 4, an unknown parameter α and a constant β

in the basic model are all considered as constants, but the variance of the normal

distribution Φ(·) is unknown in the CRM model. We extend the one drug trial
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to combination drugs CRM for more complicated treatment in Chapter 5. In

Chapter 6, we introduce the statistical inference of the unknown parameter α in

CRM. In the last chapter, we conclude and discuss potential future work.



Chapter 2

The CRM with one drug in
Phase I trials

2.1 Introduction

This chapter is based on our paper Zhang et al. (2019) which has been accepted

for publication.

In the current literature, three models are used for the CRM: the power model,

logistic model and hyperbolic tangent model. See Chapter 1 for a summary.

In principle, any increasing function with the range of (0, 1) may be used

for the CRM. In this chapter, we introduce a new model with such a property.

This new function is constructed using the cumulative distribution of the normal

distribution, but extends the logistic model. It can be used to describe the dose

toxicity probability relationship.

In this chapter, we also introduce an efficiency measure and criteria BEARS:

18
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Benchmark, Efficacy, Accuracy, Reliability, Safety. We use BEARS to evaluate

the performance of our new CRM design and existing models.

2.2 A new design of CRM for one drug

Suppose that a new drug is investigated for its toxicity at K dose levels d1 < d2 <

· · · < dK , and pi, i = 1, 2, · · · , K, are some pre-speficied skeleton probabilities.

We introduce a new dose toxicity probability function by

πi = πi(α, β) =
2Φ(β + αdi)

1 + Φ(β + αdi)
= 2− 2(1 + Φ(β + αdi))

−1,

where Φ is the cumulative distribution function of the normal distribution N(µ, σ2).

The parameter β is positive and is assumed to be given, which determines the

location of the dose toxicity probability curve. However, the parameter α > 0

determines the shape of the dose toxicity probability curve. We consider the cases

of an unknown α in Chapters 2 and 3, and a known α in Chapter 4.

My motivation for introducing our new model is as follows. Currently available

models including the power function, logistic function and hyperbolic tangent

function all represent increasing functions with the range of (0, 1). Although we

can change the value of α to have different shapes of the dose toxicity probability

relationship based on the CRM model, these functions are restricted in particularly

forms (i.e., power, logistic and hyperbolic tangent). I wished to expand these

classes of CRM models.
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Our new model extends the logistic model by replacing the exponential

function with the cumulative distribution function of the normal distribution. The

advantage of our new model over the other models (power, logistic and hyperbolic

tangent) is that our new model is much more broad and allows more options to

model an increasing function with the range of (0, 1). The difference between the

logistic model and our model is that the dose toxicity probability relationship of

our model can be adjusted by not only parameters α and β but also µ and σ2.

In summary, both β and µ affect the location of the CRM model, and α and σ2

affect the shape of the CRM model.

By choosing different values of µ and σ2 of the cumulative distribution function

of the normal distribution, we are able to model more different shapes of the

increasing dose toxicity probability relationship than the three currently existing

models in the literature. At the beginning of the trial, the dose level is very low

and ineffective for patients. So the dose toxicity probability curve should be flat.

As dose level goes up, we hope that the dose toxicity probability curve is steep

since the toxicity probability increases more sharply in dose level. This means

that the toxicity probability is sensitive when the dose level is escalated. We focus

on the toxicity probabilities of all doses and subsequently determine the MTD. In

the latter stages of the trial, we hope that the dose toxicity probability curve is

flat because high dose levels can be fatal. A small increase in the dose level may

lead to death, so overdose control of high dosages is of significant concern. Hence

it is safer to patients if we model a flat dose toxicity probability curve at high
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dose levels. As a result, there is a small increase in toxicity probability when the

dose level is escalated.

Based on our model, we can model steeper or flatter dose toxicity probability

curves more flexibly with different values of µ and σ2, together with different

values of parameters α and β. Graphs (a) and (b) in Figure 2.1 show different

shapes of the dose toxicity probability curve for different values of σ2 and different

values of α. Graphs (c) and (d) in Figure 2.1 show different location of the dose

toxicity probability curve for different values of µ and different values of β.

The increasing monotonicity of the dose-toxicity probability function is easily

checked by its first derivative dπi
ddi

= 2αφ(β+αdi)
(1+Φ(β+αdi))2

> 0, where φ is the probability

density function of the normal distribution N(µ, σ2).

Furthermore, the probability of toxicity is increasing in the parameter α for

every given dose checked by its first derivative is also important in the CRM

formulation.

dπi
dα

=
2φ(β + αdi)di − 2Φ(β + αdi)φ(β + αdi)di

(1 + Φ(β + αdi))2

=
2φ(β + αdi)di(1− Φ(β + αdi)di)

(1 + Φ(β + αdi))2
> 0,

since the cumulative probability function Φ(β + αdi) is always less than 1.

The concavity of the dose toxicity probability function is determined by its

second derivative

d2πi
dd2

i

=
2α2φ(β + αdi)

′(1 + Φ(β + αdi))− 4α2φ(β + αdi)
2

(1 + Φ(β + αdi))3
,
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Figure 2.1: Various CRM functions based on our model
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which is positive if (1 + Φ)φ′ − 2φ2 ≥ 0. This is true if φ′

φ
≥ 2φ

1+Φ
. So, if

(lnφ)′ ≥ (2ln(1+Φ))′, the second derivative d2πi
dd2i

is positive. Because a logarithmic

function is a one-to-one and monotonically increasing function, this is true if φ
(1+Φ)2

is increasing in di. We have drawn the graphs of the dose toxicity probability

function for different values of µ and σ2, and observed that our new model depicts

a variety of dose toxicity probability relations, just like the power, logistic and

hyperbolic tangent functions.

As a function of the dose level, the new dose toxicity probability function

mimics that of the power, logistic and hyperbolic tangent functions, which is

clearly seen in Figure 2.2, which shows the increasing monotonicity (in the dose

level) of our new function and the power, logistic and hyperbolic tangent functions,

and the (increasing or decreasing) monotonicity (in the parameter α) of these

functions. The functions in Figure 2.2 (a) are 2Φ(−4+8x)
1+Φ(−4+8x)

(new), xexp(1) (power),

exp(−2+8x)
1+exp(−2+8x)

(logistic) and
(

exp(x)
exp(x)+exp(−x)

)4

(hyperbolic tangent). The functions

in Figure 2.2 (b) are 2Φ(−4+0.5x)
1+Φ(−4+0.5x)

(new), 0.5exp(x) (power), exp(−2+0.5x)
1+exp(−2+0.5x)

(logistic)

and
(

exp(0.5)
exp(0.5)+exp(−0.5)

)x
(hyperbolic tangent).

Dose-finding Algorithm

The CRM starts by treating the first cohort of patients at the safest dose. The

cohort size can be three or one, depending on the design. Dose escalation or

deescalation is determined by observed data and the posterior mean toxicity

probabilities at all doses. A non-toxic response usually results in the same dose
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True Toxicity Probabilities Skeleton Probabilities
Scenario 1 2 3 4 5 6 1 2 3 4 5 6 MTD

1 0.280 0.380 0.480 0.580 0.690 0.780 0.300 0.422 0.540 0.643 0.729 0.797 1
2 0.180 0.280 0.380 0.480 0.580 0.680 0.186 0.300 0.422 0.540 0.643 0.729 2
3 0.160 0.220 0.300 0.380 0.480 0.580 0.095 0.186 0.300 0.422 0.540 0.643 3
4 0.080 0.120 0.200 0.300 0.420 0.550 0.038 0.095 0.186 0.300 0.422 0.540 4
5 0.050 0.100 0.150 0.200 0.280 0.350 0.010 0.038 0.095 0.186 0.300 0.422 5
6 0.030 0.050 0.100 0.150 0.200 0.250 0.002 0.010 0.038 0.095 0.186 0.300 6

Table 2.1: Summary of simulation scenarios
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level or escalation, while a toxic response usually results in the same dose level or

deescalation. At the boundaries, dose escalation (at dK) or deescalation (at d1)

does not occur. The size of escalation or deescalation is determined by the dose

level whose posterior mean toxicity probability is nearest the target DLT rate. If

skipping is not allowed, escalation or deescalation occurs at most one step away

from the current dose.

When the mth patient is to be assigned a dose level, Each increasing or de-

creasing dose is determined by previous observations and obtained by the posterior

mean toxicity probabilities at all doses. Let D = {(d(1), y1), · · · , (d(m−1), ym−1)}

be the observed information when the mth patient is to be treated, where d(i) is

the dose applied to patient i = 1, · · · ,m− 1 and yi = 1 if toxicity is observed and

0 otherwise. The likelihood function becomes

L(D|α) ∝
m−1∏
i=1

{
2Φ(β + αd(i))

1 + Φ(β + αd(i))

}yi {
1− 2Φ(β + αd(i))

1 + Φ(β + αd(i))

}1−yi

.

We assume the positive α follows a prior distribution f(α). By the Bayes’

Theorem, the posterior mean toxicity probability π̂i at dose level di is estimated

to be

π̂i =

∫
2Φ(β + αdi)

1 + Φ(β + αdi)

L(D|α)f(α)∫
L(D|α)f(α)dα

dα.

After each cohort of patients is treated, we collect all toxicity data and calcu-

late the posterior mean toxicity probabilities at all dose levels, say π̂1, π̂2, · · · , π̂K .

The dose whose posterior mean toxicity probability is closest to the target θ but

still safe is applied to the next cohort of patients. The trial terminates when the
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toxicity probabilities converge and the MTD is determined.

The dose finding procedure by CRM follows the following rules (Yin, 2012):

(1) We treat the first cohort of patients at the starting dose or the lowest dose.

(2) Let the current dose level be icur, and denote the target toxicity probability

as θ. We can calculate the posterior means of the toxicity probabilities for

all the observations, that is, π̂1, π̂2, · · · , π̂K . We obtain the dose level i∗

whose toxicity probability closest to θ,

i∗ = argmin|π̂i − θ|,

If icur > i∗, de-escalate to the next lower level, and if icur < i∗, escalate to

the next higher level, otherwise, keep it at the same dose level.

(3) We determine the dose with the toxicity probability closest to θ as the MTD

when the maximum sample size is collected.

2.3 Simulation results and discussion

We compare the performance of the following CRM designs: (1) the new models

I(a) = 2Φ(−1+αpi)
1+Φ(−1+αpi)

, I(b) = 2Φ(−1.5+αpi)
1+Φ(−1.5+αpi)

and I(c) = 2Φ(−4+αpi)
−4+Φ(−1+αpi)

(representing

good fit in the simulation scenarios); (2) the power model II = p
exp(α)
i ; (3) the logis-

tic models III(a) = exp(−1+αpi)
1+exp(−1αpi)

, III(b) = exp(−2+αpi)
1+exp(−2αpi)

and III(c) = exp(−4+αpi)
1+exp(−4αpi)

(representing good fit in the simulation scenarios); and (4) the hyperbolic tangent

model IV =
(

exp(pi)
exp(pi)+exp(−pi)

)α
.
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The simulation setting is as follows: (1) the sample size is n = 30; (2) the

target DLT rate is θ = 0.3; (3) there are 6 dose levels and simulation scenarios are

given in Table 2.1, together with their skeletons from the getprior() function; (4)

the prior distribution for α is the gamma(x, 0.5, 0.5) distribution in R; (5) each

trial is simulated for 2,000 runs; and (6) the seed for the kth simulation run, where

k = 1, 2, · · · , 2000, is set to be 2018 + k to ensure repeatability and consistency

for all models.

The gamma(x, 0.5, 0.5) density function is symmetric and suitable for our

simulation. However, I have also run simulations with other prior distributions in-

cluding the normal and expontial distributions. Results for the gamma distribution

are the best and reoprted here.

Comparison of simulation results is based on criteria BEARS: Benchmark,

Efficiency, Accuracy, Reliability, Safety. The benchmark is proposed in Cheung

(2014), operating measures A1, A2, R1, R2, S1 and S2 are introduced in Zhou

et al. (2018), and all other measures are new in this paper. The endpoint A1 is

called the percentage of correct selection (PCS) in Zhou et al. (2018).
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Scenario Skipping is not permitted Skipping is allowed
(MTD) Model 1 2 3 4 5 6 1 2 3 4 5 6

1 I(a) 0.934 0.064 0.003 0 0 0 0.934 0.064 0.003 0 0 0
(1) II 0.538 0.361 0.078 0.020 0.003 0 0.521 0.366 0.091 0.018 0.004 0.001

III(a) 0.821 0.152 0.024 0.004 0 0 0.821 0.152 0.025 0.003 0 0
IV 0.751 0.196 0.047 0.007 0 0 0.752 0.200 0.043 0.007 0 0

2 I(b) 0.150 0.379 0.288 0.119 0.058 0.007 0.169 0.422 0.277 0.095 0.029 0.009
(2) II 0.001 0.556 0.339 0.075 0.026 0.005 0 0.498 0.376 0.103 0.013 0.010

III(b) 0.069 0.353 0.313 0.166 0.094 0.007 0.094 0.403 0.322 0.142 0.031 0.010
IV 0.318 0.401 0.207 0.066 0.008 0.001 0.326 0.396 0.209 0.060 0.009 0.001

3 I(b) 0.020 0.179 0.347 0.291 0.143 0.022 0.021 0.179 0.393 0.270 0.091 0.047
(3) II 0.001 0 0.607 0.319 0.059 0.015 0 0 0.552 0.324 0.083 0.041

III(b) 0.002 0.091 0.336 0.334 0.196 0.042 0.005 0.115 0.377 0.306 0.152 0.047
IV 0.193 0.290 0.305 0.158 0.052 0.004 0.202 0.268 0.304 0.174 0.048 0.005

4 I(c) 0.020 0 0.065 0.487 0.168 0.261 0.020 0 0.065 0.487 0.168 0.261
(4) II 0.001 0 0 0.707 0.266 0.027 0.001 0 0 0.630 0.263 0.107

III(c) 0.004 0 0.065 0.407 0.406 0.119 0.001 0 0.050 0.413 0.408 0.130
IV 0.048 0.093 0.245 0.396 0.193 0.026 0.046 0.107 0.220 0.404 0.201 0.023

5 I(c) 0.001 0 0.008 0.168 0.467 0.358 0.001 0 0 0.034 0.543 0.433
(5) II 0.001 0 0 0 0.598 0.402 0.001 0 0 0 0.481 0.519

III(a) 0.002 0.001 0.171 0.401 0.314 0.113 0 0 0.087 0.428 0.345 0.141
IV 0.023 0.037 0.090 0.208 0.325 0.318 0.025 0.019 0.114 0.177 0.350 0.317

6 I(c) 0.001 0 0 0.008 0.174 0.819 0.001 0 0 0 0.107 0.893
(6) II 0.001 0 0 0 0 0.999 0.001 0 0 0 0 1

III(c) 0.001 0 0 0 0.065 0.935 0.002 0 0 0 0.053 0.946
IV 0.021 0.011 0.036 0.068 0.166 0.7 0.020 0.001 0.019 0.096 0.178 0.687

Table 2.2: Simulated values of Benchmark. Bold values are highest in each group.
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 I(a) 0 NAN (NAN) 0.897 0.971 (0.082) 0.997 0.001 0 0.104 0.006 (0.034)
(1) II 0 NAN (NAN) 0.651 0.470 (0.328) 0.480 0.427 0.270 0.350 0.106 (0.139)

III(a) 0 NAN (NAN) 0.755 0.886 (0.174) 0.939 0.006 0 0.245 0.023 (0.065)
IV 0 NAN (NAN) 0.743 0.786 (0.262) 0.811 0.054 0.029 0.257 0.043 (0.095)

2 I(b) 0.158 0.172 (0.231) 0.493 0.362 (0.223) 0.304 0.073 0.243 0.350 0.117 (0.107)
(2) II 0 0.033 (0) 0.66 0.475 (0.334) 0.494 0.396 0.280 0.341 0.123 (0.159)

III(b) 0.073 0.093 (0.164) 0.493 0.327 (0.251) 0.299 0.138 0.360 0.435 0.145 (0.118)
IV 0.267 0.457 (0.286) 0.437 0.291 (0.179) 0.118 0.072 0.257 0.297 0.063 (0.111)

3 I(b) 0.210 0.119 (0.178) 0.456 0.317 (0.214) 0.224 0.074 0.305 0.335 0.149 (0.134)
(3) II 0 0.033 (0) 0.701 0.521 (0.339) 0.549 0.331 0.242 0.299 0.137 (0.184)

III(b) 0.122 0.071 (0.129) 0.448 0.294 (0.236) 0.239 0.124 0.390 0.431 0.188 (0.147)
IV 0.386 0.275 (0.210) 0.367 0.245 (0.177) 0.079 0.063 0.363 0.247 0.069 (0.122)

4 I(c) 0.067 0.028 (0.107) 0.595 0.397 (0.349) 0.453 0.37 0.402 0.339 0.26 (0.286)
(4) II 0 0.033 (0) 0.792 0.561 (0.299) 0.611 0.256 0.157 0.209 0.170 (0.199)

III(c) 0.074 0.047 (0.084) 0.475 0.234 (0.221) 0.140 0.464 0.501 0.452 0.313 (0.23)
IV 0.312 0.158 (0.125) 0.451 0.309 (0.171) 0.130 0.059 0.215 0.238 0.109 (0.145)

5 I(c) 0.176 0.069 (0.148) 0.594 0.371 (0.295) 0.394 0.320 0.386 0.231 0.355 (0.311)
(5) II 0 0.033 (0) 0.644 0.483 (0.333) 0.514 0.392 0.288 0.357 0.384 (0.333)

III(a) 0.385 0.170 (0.139) 0.380 0.244 (0.182) 0.088 0.011 0.340 0.236 0.076 (0.132)
IV 0.249 0.111 (0.100) 0.368 0.254 (0.174) 0.083 0.282 0.347 0.384 0.301 (0.290)

6 I(c) 0.177 0.060 (0.124) 0.823 0.698 (0.278) 0.821 0 0.131 0 NAN (NAN)
(6) II 0 0.033 (0) 1 0.833 (0) 1 0 0 0 NAN (NAN)

III(c) 0.067 0.041 (0.058) 0.934 0.798 (0.130) 0.941 0 0.007 0 NAN (NAN)
IV 0.173 0.080 (0.079) 0.827 0.598 (0.245) 0.707 0 0.095 0 NAN (NAN)

Table 2.3: Simulated values of EARS, not allowing skipping. Bold values are the
best in each group.
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 I(a) 0 NAN (NAN) 0.897 0.971 (0.082) 0.997 0.001 0 0.104 0.006 (0.034)
(1) II 0 NAN (NAN) 0.634 0.454 (0.328) 0.457 0.418 0.290 0.366 0.109 (0.138)

III(a) 0 NAN (NAN) 0.755 0.886 (0.174) 0.939 0.006 0 0.245 0.023 (0.065)
IV 0 NAN (NAN) 0.742 0.785 (0.263) 0.811 0.057 0.027 0.259 0.043 (0.096)

2 I(b) 0.162 0.187 (0.245) 0.506 0.372 (0.231) 0.318 0.085 0.230 0.332 0.110 (0.110)
(2) II 0 0.033 (0) 0.633 0.426 (0.335) 0.435 0.413 0.317 0.367 0.135 (0.156)

III(b) 0.095 0.111 (0.185) 0.492 0.334 (0.262) 0.297 0.160 0.331 0.414 0.139 (0.123)
IV 0.264 0.459 (0.285) 0.433 0.287 (0.177) 0.107 0.076 0.265 0.304 0.064 (0.111)

3 I(b) 0.225 0.113 (0.193) 0.456 0.335 (0.233) 0.275 0.108 0.287 0.320 0.146 (0.143)
(3) II 0 0.017 (0) 0.672 0.457 (0.345) 0.481 0.381 0.295 0.329 0.170 (0.184)

III(b) 0.125 0.065 (0.15) 0.467 0.303 (0.259) 0.261 0.179 0.391 0.408 0.189 (0.158)
IV 0.393 0.266 (0.210) 0.355 0.250 (0.181) 0.083 0.061 0.363 0.252 0.073 (0.125)

4 I(c) 0.067 0.028 (0.107) 0.595 0.397 (0.349) 0.453 0.370 0.402 0.339 0.260 (0.286)
(4) II 0 0.011 (0) 0.785 0.526 (0.304) 0.569 0.298 0.173 0.216 0.220 (0.202)

III(c) 0.056 0.022 (0.077) 0.526 0.238 (0.252) 0.171 0.499 0.489 0.419 0.348 (0.255)
IV 0.314 0.151 (0.122) 0.464 0.322 (0.17) 0.136 0.063 0.193 0.223 0.113 (0.145)

5 I(c) 0.035 0.016 (0.072) 0.700 0.425 (0.328) 0.473 0.447 0.326 0.266 0.513 (0.336)
(5) II 0 0.008 (0) 0.577 0.377 (0.336) 0.382 0.569 0.393 0.423 0.590 (0.336)

III(a) 0.368 0.165 (0.145) 0.401 0.251 (0.186) 0.096 0.026 0.331 0.232 0.088 (0.149)
IV 0.252 0.103 (0.099) 0.368 0.28 (0.175) 0.104 0.270 0.300 0.381 0.309 (0.294)

6 I(c) 0.110 0.025 (0.111) 0.891 0.876 (0.248) 0.894 0 0.067 0 NAN (NAN)
(6) II 0 0.007 (0) 1 0.967 (0) 1 0 0 0 NAN (NAN)

III(c) 0.058 0.014 (0.062) 0.942 0.93 (0.139) 0.959 0 0.003 0 NAN (NAN)
IV 0.192 0.074 (0.084) 0.809 0.630 (0.269) 0.697 0 0.088 0 NAN (NAN)

Table 2.4: Simulated values of EARS, allowing skipping. Bold values are the best
in each group.
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Scenario Skipping is not permitted Skipping is allowed
(MTD) Model 1 2 3 4 5 6 1 2 3 4 5 6

1 I(a) 0.897 0.096 0.005 0.003 0.001 0 0.897 0.096 0.005 0.003 0.001 0
(1) II 0.651 0.316 0.032 0.002 0 0 0.634 0.333 0.031 0.003 0 0

III(a) 0.755 0.214 0.025 0.005 0.001 0 0.755 0.214 0.025 0.006 0.001 0
IV 0.743 0.211 0.044 0.003 0 0 0.742 0.210 0.047 0.002 0 0

2 I(b) 0.158 0.493 0.280 0.057 0.01 0 0.162 0.506 0.262 0.056 0.011 0.005
(2) II 0 0.660 0.303 0.034 0.004 0 0 0.633 0.332 0.034 0.002 0

III(b) 0.073 0.493 0.345 0.074 0.013 0.004 0.095 0.492 0.336 0.064 0.012 0.002
IV 0.267 0.437 0.240 0.055 0.003 0 0.264 0.433 0.246 0.056 0.003 0

3 I(b) 0.013 0.197 0.456 0.248 0.062 0.026 0.019 0.207 0.456 0.248 0.051 0.022
(3) II 0 0 0.701 0.267 0.030 0.002 0 0 0.672 0.293 0.034 0.002

III(b) 0 0.122 0.448 0.329 0.080 0.023 0.001 0.124 0.467 0.320 0.067 0.022
IV 0.128 0.258 0.367 0.203 0.040 0.005 0.128 0.265 0.355 0.209 0.039 0.005

4 I(c) 0 0 0.067 0.595 0.034 0.305 0 0 0.067 0.595 0.034 0.305
(4) II 0 0 0 0.792 0.203 0.006 0 0 0 0.785 0.207 0.009

III(c) 0 0 0.074 0.475 0.346 0.106 0 0 0.056 0.526 0.302 0.117
IV 0.007 0.041 0.265 0.451 0.213 0.025 0.006 0.045 0.263 0.464 0.204 0.019

5 I(c) 0 0 0.004 0.172 0.594 0.231 0 0 0 0.035 0.700 0.266
(5) II 0 0 0 0 0.644 0.357 0 0 0 0 0.577 0.423

III(a) 0 0 0.055 0.330 0.380 0.236 0 0 0.054 0.314 0.401 0.232
IV 0.001 0.004 0.047 0.198 0.368 0.384 0.001 0.005 0.047 0.199 0.368 0.381

6 I(c) 0 0 0 0.004 0.173 0.823 0 0 0 0 0.110 0.891
(6) II 0 0 0 0 0 1 0 0 0 0 0 1

III(c) 0 0 0 0 0.067 0.934 0 0 0 0 0.058 0.942
IV 0 0.002 0.004 0.035 0.133 0.827 0 0.001 0.006 0.035 0.151 0.809

Table 2.5: Simulated percentages of MTD selection. Bold values are the highest
in each group.
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Figure 2.3: Comparison of density estimation of MTD allocation, scenarios 1 and
4, no skipping.
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Benchmark means using sample toxicity probabilities to choose the MTD.

• Performance measure: The dose with a sample mean toxicity probability

nearest to θ is chosen as the MTD. The higher the proportion of correctly

selecting the MTD, the better the design.

• Results: From Table 2.2, the new model performs the best when the MTD

is the lowest dose. In most other cases, the new model is the second best.

Overall the new design offers good benchmark.

Efficiency checks the avoidance of assigning patients to ineffective doses.

• Two performance measures: E1 reports the proportion of simulation

runs that assign patients to any dose lower than the MTD. The lower the

proportion E1, the better the design. E2 gives the mean and standard

deviation of the percentage of patients assigned to any dose lower than the

MTD. The lower the mean, the better the design.

• Results: From Tables 2.3 and 2.4, the new model gives the lowest or second

lowest values in many cases. Overall the new design is efficient.

Accuracy depicts the assignment of patients to the MTD.

• Three performance measures: A1 measures the proportion of simulation

runs that correctly select the MTD. The higher the proportion, the better

the design. A2 reports the mean and standard deviation of the percentage
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of patients assigned to the MTD. The larger the mean, the better the design.

A3 calculates the proportion of simulation runs with more than 50% of

patients assigned to the MTD. The higher the proportion, the better the

design.

• Results: From Tables 2.3 and 2.4, the new model gives either the highest

or second highest values in most cases. Overall the new design is accurate.

Reliability concerns the risk of severe overdosing.

• Two performance measures: R1 measures the proportion of simulation

runs that allocate more than 50% of patients to any dose higher than the

MTD. The lower the proportion, the better the design. R2 calculates the

proportion of simulation runs with less than one-sixth of patients at the

MTD. The lower the proportion, the better the design.

• Results: From Tables 2.3 and 2.4, the new model gives either the lowest

or second lowest values in many cases. Overall the new design is reliable.

Safety refers to the protection from overdosing.

• Two performance measures: S1 measures the proportion of simulation

runs that result in any dose higher than the MTD. The lower its value,

the better the design. S2 reports the mean and standard deviation of the

percentage of patients assigned to any dose higher than the MTD. The lower

the mean, the better the design.
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• Results: From Tables 2.3 and 2.4, the new model either gives the lowest

values in some cases or is reasonably small in other cases. Overall the new

design is safe.

Table 2.5 summarizes the distribution of the MTD whose last updated

posterior mean toxicity probability is nearest to the target DLT rate θ. In most

cases the new design gives either the highest or second highest proportion of

correct MTD identification.

Finally, Figure 2.3 compares the density estimation of the MTD selection out

of 2,000 simulation runs. The new design offers high frequencies of large MTD

allocations.

2.4 Application

We now illustrate the performance of our new model by a real application. This

example of a real clinical trial is taken from the publication Yin and Yuan (2009b).

This is a Phase I clinical trial for prostate cancer and was conducted at M.D.

Anderson Center. This clinical trial investigated six doses of 20, 25, 30, 35, 40 and

45 mg/m2 weekly for 4 weeks. The target toxicity probability was 40%. The true

toxicity probabilities of six dose levels were 0.01, 0.05, 0.20, 0.40, 0.60, 0.85. Three

skeletons of six dose levels were listed in Table 2.6. In Table 2.7, only skeleton

2 correctly selected the MTD as dose 4. 80% of total patients were assigned at

the MTD in our model which is the best. In scenario 1, 75.5% of total patients
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True Toxicity Probabilities Skeleton Probabilities
Scenario MTD 1 2 3 4 5 6 1 2 3 4 5 6

1 4 0.010 0.05 0.200 0.400 0.600 0.850 0.300 0.400 0.500 0.600 0.700 0.800
2 4 0.010 0.05 0.200 0.400 0.600 0.850 0.070 0.160 0.300 0.400 0.460 0.530
3 4 0.010 0.05 0.200 0.400 0.600 0.850 0.010 0.050 0.100 0.150 0.200 0.400

Table 2.6: True toxicity probabilities and skeletons for application

Scenario Skipping is not permitted
(MTD) Model 1 2 3 4 5 6

1 I 0.000 0.002 0.072 0.755 0.166 0.007
(4) II 0.000 0.001 0.183 0.664 0.150 0.003

III 0.000 0.002 0.082 0.698 0.210 0.009
IV 0.001 0.029 0.186 0.597 0.182 0.006

2 I 0.000 0.005 0.043 0.800 0.151 0.003
(4) II 0.001 0.000 0.000 0.628 0.358 0.014

III 0.000 0.000 0.048 0.736 0.209 0.008
IV 0.002 0.029 0.186 0.576 0.203 0.006

3 I 0.034 0.002 0.106 0.129 0.700 0.031
(4) II 0.830 0.007 0.000 0.000 0.000 0.164

III 0.003 0.000 0.055 0.234 0.680 0.029
IV 0.001 0.038 0.219 0.518 0.222 0.004

Table 2.7: Simulated values of Benchmark.

were assigned at the dose 4. But in scenario 1, dose 2 is the pre-specified MTD in

our initial guess. This means that we under-guessed the effective dose level. In

scenario 3, we assumed dose 6 is the MTD, but 70% of total patients were treated

at dose 4 in our model. This means that we over-guessed the MTD. In Table 2.8,

96.7% of total patients were truly treated at the MTD in our model in scenario

2, which is the best. Finally, in Figure 2.4, graphs (a), (b) and (c) compare the

density estimation of the MTD selection out of 2,000 simulation runs in three

scenarios.
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Figure 2.4: Comparison of density estimation of MTD allocation, scenario 1 to 3,
no skipping
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Scenario Skipping is not permitted
(MTD) Model 1 2 3 4 5 6

1 I 0.000 0.000 0.004 0.956 0.029 0.012
(4) II 0.000 0.000 0.241 0.622 0.138 0.000

III 0.000 0.002 0.034 0.917 0.046 0.003
IV 0.000 0.004 0.191 0.595 0.204 0.006

2 I 0.000 0.006 0.000 0.967 0.021 0.008
(4) II 0.000 0.000 0.000 0.671 0.329 0.001

III 0.000 0.000 0.016 0.956 0.031 0.001
IV 0.000 0.003 0.242 0.519 0.219 0.019

3 I 0.000 0.001 0.167 0.012 0.759 0.062
(4) II 0.000 0.000 0.000 0.000 0.000 1.000

III 0.000 0.001 0.101 0.156 0.737 0.006
IV 0.003 0.043 0.221 0.437 0.292 0.006

Table 2.8: Simulated values of Final MTD selection.

2.5 Conclusion

Phase I clinical trials are fundamentally important in drug development and

their common goal is to determine the maximum tolerated dose while exposing

fewer patients to toxic or ineffective doses. There are both nonparametric and

parametric approaches to designing phase I clinical trials and each design has its

own pros and cons. The performance of a parametric CRM design depends on

the dose toxicity probability function.

We introduce a new dose toxicity probability function for CRM and evaluate

its performance based on the template of BEARS (Benchmark, Efficiency, Accu-

racy, Reliability, Safety). The new CRM design behaves reasonably well overall

and achieves the important goals of reliably identifying the maximum tolerated

dose and safely minimizing risk.



Chapter 3

BMA-CRM

3.1 Introduction

Everyone’s eyes may have a different view of a statistical model, and every

statistician may choose a different skeleton. As we can see from the last chapter,

the skeleton plays an important role for the statistical design of Phase I clinical

trials. However, the pre-specified toxicity probabilities, called the skeleton, is

subjective and so different statisticians may have different choices of skeleton.

Since we may not know toxicity information of the new drug, how to choose a fitted

model becomes an important issue in Phase I clinical trials. If the pre-specified

toxicity probability deviates far from the true toxicity probability, the estimation

of true toxicity probability may not be accurate, and the performance of the

design may not be good. This may result in a wrong MTD. In practice, the true

toxicity probabilities are unknown to statisticians, so there is no information to

verify which skeleton is reasonable. To overcome this weakness and increase the

39
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reliability of the trial design, Raftery et al. (1997) and Hoeting et al. (1999) assign

each posterior probability a weight. Yin and Yuan (2009b) propose multiple CRM

models, each one with a different skeleton. Pan and Yuan (2017) address the

default method to specify skeletons for Bayesian model averaging (BMA). To

address the issue of skeleton specification in this chapter, we assign a discrete

prior probability to each CRM and estimate the toxicity and efficacy probabilities

using the BMA model.

The implementation of CRM depends of the choice of a skeleton which is

incorporated into the model. Lee and Cheung (2009) explore the issue of model

calibration in CRM. To reduce the sensitivity of CRM on its skeleton, Yin and

Yuan (2009b) introduce the Bayesian-model averaging CRM (BMA-CRM) by

applying Bayesian model averaging to CRM, and Pan and Yuan (2017) introduce

a default method to specify the skeletons for BMA-CRM. A thorough summary

and performance comparison of CRM designs is provided in Zhou et al. (2018)

and based on the performance metrics of MTD selection, patient allocation and

overdose control.

3.2 Bayesian Model Averaging-CRM

Yin and Yuan (2009b) address the Bayesian model averaging method under the

power model for the CRM. They introduce the BMA method to reduce dependence

between model estimates of the toxicity probabilities for each dose level and assign



CHAPTER 3. BMA-CRM 41

a weighted average toxicity probability among different models which can lead to

a prediction better than a single CRM model.

LetMn denote the nth CRM toxicity probability model, where n = 1, 2, · · · , N−

1, N . Here, we have N models. Let f(Mn) be the prior probability of model Mn

and f(Mn|D) be the posterior probability of the Mn given observed data set D.

So the posterior probability of Mn is given by

f(Mn|D) =
f(D|Mn)f(Mn)∑N
i=1 f(D|Mi)f(Mi)

.

where n = 1, 2, · · · , N − 1, N.

The marginal likelihood function under Mn is

L(D|Mn) =

∫
L(D|αn,Mn)f(αn|Mn)dαn

where f(αn|Mn) is the prior distribution of αn under the Mn, and αn is the

unknown parameter in the model Mn.

Given observation D, the BMA estimate of the toxicity probability at dose

level i is given by

π̄i =
N∑
n=1

π̂nif(Mn|D),

where i = 1, 2, · · · , k, and π̂ni, the posterior mean of the toxicity probability at

dose level i under Mn, is defined as

π̂ni =

∫
2Φ(βn + αnpi)

1 + Φ(βn + αnpi)

L(D|αn,Mn)f(αn|Mn)∫
L(D|αn,Mn)f(αn|Mn)dαn

dαn.
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where (p1, · · · , pk) is the skeleton. Therefore, π̄i is a weighted posterior toxicity

probability at dose level i for Mn. The BMA-CRM assigns a higher weight to

a better fitted model and assigns a lower weight to a less fitted model. The

escalation or de-escalation rule depends on not only the prior distribution but

also π̄i. The BMA-CRM design becomes a problem of how to identify the MTD

under the model fitting. This method can also be extended to combination drugs

by introducing

π̄ij =
N∑
n=1

π̂
(n)
ij f(Mn|D),

where π̄ij is the posterior mean of the toxicity probability at combination dose

(ai, bj) under Mn.

Dose-Finding Algorithm

Let θ be the target toxicity probability, say 30%. For the sake of safety to patients

in the trial, we treat the first patient at the the lowest dose, and escalate or

de-escalate only one dose level at one time. The dose-finding algorithm for our

BMA-CRM design is as follows:

(1) We treat the first cohort of patients at the lowest dose level.

(2) Let the current dose level be icur. We calculate the posterior means of all

toxicity probabilities under the BMA-CRM method , π̄i, i = 1, 2, · · · , K.

We decide the dose level i∗ whose toxicity probability is closest to θ. That
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is,

i∗ = argmin|π̄i − θ|,

If icur > i∗, we de-escalate to the next lower level. If icur < i∗, we escalate

to the next higher level. Otherwise, the dose level does not change.

(3) We determine the dose with its toxicity probability closest to θ as the MTD,

when the maximum sample size is collected.

3.3 Simulation Study

We compare the performance of individual CRMs with BMA-CRM under the

Bayesian Model Averaging procedure. The simulation setting is as follows: (1) the

sample size is n = 30; (2) the target DLT rate is θ = 0.3; (3) there are 6 dose levels

and 6 simulation scenarios, which are given in Table 3.1, together with 6 skeletons

indicating 6 different CRM models, which are named CRM1, CRM2, · · · , CRM6;

(4) the prior distribution for α is the gamma(x, 0.5, 0.5) distribution in R; (5)

each trial is simulated for 2,000 runs.

In Table 3.1, the true toxicity probabilities are listed in the 2nd column and

the bold value in each row is the MTD in each scenario. The skeletons are listed

in the 3rd column. The dose toxicity probabilities increase evenly in dose at first

two skeletons. For the third and fourth skeletons, toxicity probabilities increase

slowly at the first three doses. For the last two skeletons, the toxicity probabilities

are very low, even at the highest dose level. We have different characteristics in
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the six skeletons so that we expect to obtain the true toxicity probabilities more

effectively with BMA than with individual CRMs.

The last section shows that our new model performs better than the existing

models in the literature according to “BEARS”. In this section, comparison of

simulation results is also based on this criteria: Benchmark, Efficacy, Accuracy,

Reliability and Safety.

Benchmark means using sample mean toxicity probabilities to choose the

MTD. In Table 3.2, we compare benchmark of dose selection probability at the

MTD using posterior mean toxicity probabilities.

• Performance measure: The dose with a sample mean toxicity probability

nearest to θ is chosen as the MTD. The higher the proportion of correct

selection of the MTD, the better the design.

• Results: From Table 3.2, we see that the MTD is at dose level 1 in scenario

1. CRM1, CRM6 and BMA-CRM correctly identify the true MTD by

giving the highest percentages of benchmark, and CRM1 and BMA-CRM

correctly identify the true MTD by giving the highest percentages of final

MTD selection to dose 1. In scenario 2, only CRM2 correctly identifies the

true MTD of dose 2. CRM1, CRM3 and CRM4 instead identify dose 3

as the MTD. CRM5 and CRM6 identify dose 4 as the MTD. As a result,

BMA-CRM, which is the average of CRM1 to CRM6, is heavily affected

by the remaining CRMs and consequently misidentifies the true MTD. In
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scenario 3, CRM1, CRM 3 and BMA correctly identify the true MTD at

dose 3, and Benchmark and MTD selection percentages using BMA-CRM

are the highest among the seven models. In scenario 4, CRM2, CRM4,

CRM5 and BMA-CRM correctly identify the true MTD at the dose 4. CRM

6 is the worst MTD selection with 10.1% for Benchmark and 9.2% for the

final MTD selection. In scenario 5, CRM 1, CRM3 and CRM5 correctly

identify the true MTD at dose 5. The remaining CRMs misidentify the true

MTD. In particular, CRM2 and CRM4 are the worst two models, which

contribute more weight to BMA-CRM. Therefore, BMA-CRM dose not

perform well. In scenario 6, all of the 7 models perform well, and correctly

identify the true MTD at dose 6.

Efficiency checks the avoidance of assigning patients to ineffective doses.

• Two performance measures: E1 reports the proportion of simulation

runs that assign patients to any dose lower than the MTD. The lesser the

proportion E1, the better the design. E2 gives the mean and standard

deviation of the percentage of patients assigned to any dose lower than the

MTD. The lower the mean, the better the design.

• Results: From Tables 3.3, we see that BMA-CRM dose not give the lowest

values of E1 and E2. However, these values are relatively low. Therefore,

overall, the BMA-CRM design is efficient.
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Accuracy depicts the assignment of patients to the MTD.

• Three performance measures: A1 measures the proportion of simulation

runs that correctly select the MTD. The larger the proportion, the better

the design. A2 reports the mean and standard deviation of the percentage

of patients assigned to the MTD. The larger the mean, the better the design.

A3 calculates the proportion of simulation runs with more than 50% of

patients assigned to the MTD. The higher the proportion, the better the

design.

• Results: From Tables 3.3, BMA-CRM gives reasonably high values of

A1, A2 and A3 in all scenarios, and particularly in scenario 1, 3, 4 and

6. In scenario 2 and 5, BMA-CRM dose not seem perform very well. The

reason may be the same as that for the Benchmark and final MTD selection

percentage. Overall, BMA-CRM is accurate.

Reliability concerns the risk of severe overdosing.

• Two performance measures: R1 measures the proportion of simulation

runs that allocate more than 50% of patients to any dose higher than the

MTD. The lower the proportion, the better the design. R2 calculates the

proportion of simulation runs with less than one-sixth of patients at the

MTD. The lower the proportion, the better the design.

• Results: From Tables 3.3, BMA-CRM performs above average in all sce-
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narios. Particularly BMA-CRM is the second best design in scenario 1,

scenario 2 and scenario 3. Overall, the BMA-CRM design is reliable.

Safety refers to the protection from overdosing.

• Two performance measures: S1 measures the proportion of simulation

runs that result in any dose higher than the MTD. The lesser its value,

the better the design. S2 reports the mean and standard deviation of the

percentage of patients assigned to any dose higher than the MTD. The lower

the mean, the better the design.

• Results: From Tables 3.3, BMA-CRM performs the second best or third

best with similar values except for scenario 5. In scenario 5, BMA-CRM

seems performing not very well. The reason may be the same as that for the

Benchmark and final MTD selection percentage. Overall, the BMA-CRM

design is safe.

Putting all criteria “BEARS” together, the performance of the BMA-CRM

design is overall stable. This is particularly valuable when we have no idea about

which dose may be the true MTD. In such a case, the BMA-CRM design does

not depend on this knowledge and is robust.

Finally, Figure 3.2 compares the density estimation of the MTD selection out

of 2,000 simulation runs. The BMA-CRM design offers relatively high frequencies

of MTD allocations.
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Toxicity Probabilities Skeleton Probabilities
Scenario 1 2 3 4 5 6 1 2 3 4 5 6 MTD

1 0.280 0.380 0.480 0.580 0.690 0.780 0.300 0.422 0.540 0.643 0.729 0.797 1
2 0.180 0.280 0.380 0.480 0.580 0.680 0.186 0.300 0.422 0.540 0.643 0.729 2
3 0.160 0.220 0.300 0.380 0.480 0.580 0.095 0.186 0.300 0.422 0.540 0.643 3
4 0.080 0.120 0.200 0.300 0.420 0.550 0.038 0.095 0.186 0.300 0.422 0.540 4
5 0.050 0.100 0.150 0.200 0.280 0.350 0.010 0.038 0.095 0.186 0.300 0.422 5
6 0.030 0.050 0.100 0.150 0.200 0.250 0.002 0.010 0.038 0.095 0.186 0.300 6

Table 3.1: Summary of simulation scenarios

3.4 Conclusion

In practice, the performance of the CRM depends heavily on the choice of the

skeleton. However, the choice of the skeleton is often subjective and particular

choice is not necessarily the best. Therefore, the performance of the CRM may

not be robust.

In this chapter, we take the approach of the BMA-CRM and consider all

possible choice of the skeleton. This may avoid the possibility of the CRM

depending on the single skeleton. Simulation results demonstrate that the BMA-

CRM design is not only robust but also performing well.
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Scenario Benchmark MTD selection percentage
(MTD) Model 1 2 3 4 5 6 1 2 3 4 5 6

1 1 0.509 0.192 0.239 0.049 0.011 0.001 0.588 0.020 0.391 0.001 0.001 0
(1) 2 0.345 0.452 0.153 0.017 0.033 0.002 0.350 0.573 0.018 0.059 0 0

3 0.066 0.635 0.244 0.044 0.009 0.003 0.051 0.681 0.256 0.001 0.011 0
4 0.027 0.225 0.637 0.061 0.049 0.002 0.001 0.202 0.758 0.040 0.000 0.001
5 0.142 0.042 0.564 0.109 0.134 0.010 0.000 0.001 0.656 0.335 0.010 0
6 0.497 0.120 0.050 0.186 0.110 0.039 0 0 0.008 0.759 0.234 0

BMA 0.463 0.265 0.217 0.040 0.156 0.001 0.532 0.205 0.261 0.003 0 0

2 1 0.214 0.199 0.430 0.115 0.035 0.008 0.277 0.018 0.650 0.014 0.043 0
(2) 2 0.137 0.413 0.148 0.217 0.079 0.008 0.135 0.472 0.017 0.372 0.002 0.003

3 0.026 0.368 0.401 0.113 0.069 0.024 0.011 0.379 0.475 0.016 0.120 0
4 0.008 0.068 0.596 0.234 0.082 0.014 0 0.055 0.640 0.282 0.007 0.018
5 0.035 0.011 0.196 0.590 0.135 0.036 0 0 0.189 0.712 0.099 0
6 0.151 0.031 0.009 0.370 0.355 0.085 0 0 0 0.449 0.549 0.003

BMA 0.167 0.208 0.429 0.138 0.052 0.009 0.199 0.166 0.510 0.102 0.023 0.002

3 1 0.117 0.138 0.428 0.148 0.135 0.036 0.145 0.007 0.616 0.035 0.195 0.004
(3) 2 0.073 0.247 0.161 0.383 0.110 0.027 0.070 0.296 0.014 0.570 0.013 0.039

3 0.013 0.197 0.382 0.129 0.228 0.052 0.003 0.201 0.442 0.012 0.341 0.002
4 0.008 0.032 0.370 0.414 0.111 0.067 0 0.023 0.390 0.478 0.013 0.096
5 0.005 0.002 0.081 0.580 0.263 0.071 0 0 0.072 0.625 0.298 0.006
6 0.042 0.009 0.002 0.199 0.649 0.1 0 0 0 0.196 0.771 0.034

BMA 0.082 0.113 0.390 0.257 0.130 0.030 0.093 0.074 0.462 0.238 0.118 0.016

4 1 0.020 0.100 0.302 0.210 0.309 0.061 0.018 0.004 0.445 0.076 0.448 0.011
(4) 2 0.011 0.081 0.146 0.538 0.160 0.065 0.008 0.091 0.018 0.746 0.042 0.097

3 0.007 0.052 0.262 0.189 0.429 0.062 0.001 0.049 0.331 0.027 0.586 0.008
4 0.014 0.005 0.184 0.498 0.158 0.142 0 0.003 0.186 0.592 0.025 0.196
5 0.002 0 0.025 0.489 0.435 0.081 0 0 0.019 0.482 0.491 0.009
6 0.018 0 0.001 0.101 0.769 0.113 0 0 0 0.092 0.841 0.068

BMA 0.014 0.040 0.232 0.386 0.272 0.058 0.010 0.013 0.255 0.401 0.282 0.040

5 1 0.009 0.083 0.092 0.088 0.384 0.346 0.006 0.001 0.118 0.030 0.591 0.255
(5) 2 0.003 0.036 0.118 0.237 0.167 0.440 0.002 0.032 0.004 0.339 0.054 0.571

3 0.001 0.021 0.094 0.121 0.473 0.291 0 0.019 0.113 0.010 0.613 0.246
4 0.003 0.002 0.065 0.223 0.165 0.543 0 0 0.065 0.270 0.017 0.648
5 0.001 0 0.008 0.168 0.467 0.358 0 0 0.04 0.172 0.594 0.231
6 0.001 0 0 0.019 0.430 0.551 0 0 0 0.014 0.441 0.545

BMA 0.003 0.022 0.074 0.148 0.328 0.426 0.003 0.004 0.068 0.144 0.337 0.445

6 1 0.004 0.041 0.025 0.050 0.195 0.686 0.001 0 0.023 0.011 0.314 0.652
(6) 2 0.001 0.011 0.078 0.089 0.107 0.715 0 0.005 0.001 0.116 0.023 0.855

3 0.001 0.005 0.038 0.102 0.263 0.593 0 0.004 0.031 0.006 0.339 0.621
4 0.002 0.001 0.022 0.085 0.145 0.747 0 0 0.020 0.104 0.011 0.866
5 0.001 0 0.003 0.062 0.258 0.679 0 0 0.001 0.062 0.334 0.603
6 0.001 0 0 0.008 0.174 0.819 0 0 0 0.004 0.173 0.823

BMA 0.001 0.008 0.025 0.058 0.170 0.739 0 0 0.015 0.038 0.147 0.802

Table 3.2: Simulated values of Benchmark and MTD selection percentage
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Figure 3.2: Comparison of density estimation of MTD allocation, scenario 1 to 6,
no skipping
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 1 0 NAN (NAN) 0.588 0.482 (0.398) 0.531 0.395 0.405 0.413 0.104 (0.173)
(1) 2 0 NAN (NAN) 0.35 0.307 (0.389) 0.048 0.935 0.948 0.949 0.185 (0.226)

3 0 NAN (NAN) 0.051 0.074 (0.175) 0.939 0.006 0 0.245 0.023 (0.065)
4 0 NAN (NAN) 0 0.034 (0.005) 0 0.942 1 0.100 0.913 (0.213)
5 0 NAN (NAN) 0 0.034 (0.006) 0 0.924 0.999 1 0.193(0.219)
6 0 NAN (NAN) 0 0.033 (0) 0 0.937 1 1 0.913 (0.204)

BMA 0 NAN (NAN) 0.532 0.405 (0.383) 0.431 0.45 0.47 0.469 0.119 (0.182)

2 1 0.277 0.249 (0.345) 0.018 0.126 (0.143) 0.028 0.578 0.724 0.706 0.156 (0.190)
(2) 2 0.135 0.154 (0.293) 0.472 0.375 (0.360) 0.41 0.362 0.499 0.393 0.118 (0.186)

3 0.011 0.043 (0.087) 0.379 0.334 (0.392) 0.344 0.557 0.609 0.611 0.156 (0.214)
4 0 0.033 (0.002) 0.055 0.079 (0.184) 0.053 0.869 0.943 0.946 0.222 (0.253)
5 0 0.033(0.006) 0 0.034 (0.005) 0 0.921 1 1 0.233 (0.249)
6 0 0.033 (0) 0 0.033 (0.002) 0 0.931 1 1 0.0233 (0.242)

BMA 0.199 0.816 (0.309) 0.166 0.819 (0.258) 0.144 0.539 0.704 0.636 0.156 (0.203)

3 1 0.151 0.127 (0.218) 0.616 0.437 (0.336) 0.498 0.136 0.349 0.233 0.103 (0.156)
(3) 2 0.365 0.176(0.283) 0.014 0.117(0.134) 0.023 0.524 0.742 0.621 0.177 (0.224)

3 0.204 0.122 (0.240) 0.442 0.339 (0.342) 0.371 0.331 0.526 0.355 0.139 (0.207)
4 0.023 0.043 (0.089) 0.39 0.331 (0.380) 0.353 0.528 0.603 0.578 0.194 (0.241)
5 0 0.033(0.001) 0.072 0.088 (0.197) 0.066 0.848 0.927 0.928 0.282 (0.276)
6 0 0.033(0.003) 0 0.034 (0.004) 0 0.938 1 1 0.3 (0.259)

BMA 0.167 0.120 (0.221) 0.462 0.346 (0.329) 0.358 0.277 0.469 0.371 0.138(0.197)

4 1 0.466 0.154 (0.199) 0.076 0.141 (0.124) 0.006 0.289 0.623 0.459 0.199 (0.209)
(4) 2 0.116 0.085 (0.150) 0.746 0.501(0.298) 0.591 0.114 0.223 0.138 0.121 (0.178)

3 0.380 0.126(0.214) 0.027 0.133 (0.143) 0.034 0.529 0.696 0.594 0.245 (0.251)
4 0.188 0.084 (0.179) 0.592 0.420 (0.324) 0.483 0.219 0.374 0.221 0.164 (0.233)
5 0.019 0.039 (0.064) 0.482 0.372 (0.367) 0.407 0.482 0.513 0.500 0.256 (0.235)
6 0 0.033 (0.003) 0.092 0.100 (0.208) 0.085 0.842 0.903 0.908 0.400 (0.257)

BMA 0.277 0.115 (0.185) 0.401 0.298 (0.269) 0.272 0.25 0.444 0.322 0.178 (0.215)

5 1 0.155 0.083 (0.134) 0.591 0.301 (0.237) 0.247 0.337 0.380 0.255 0.367 (0.298)
(5) 2 0.376 0.113(0.170) 0.054 0.111 (0.106) 0.001 0.49 0.711 0.571 0.435 (0.352)

3 0.142 0.075 (0.139) 0.613 0.408 (0.304) 0.467 0.263 0.345 0.246 0.292(0.312)
4 0.335 0.095 (0.180) 0.017 0.116 (0.130) 0.019 0.601 0.734 0.648 0.505 (0.365)
5 0.176 0.069 (0.148) 0.594 0.371 (0.295) 0.394 0.320 0.386 0.231 0.355 (0.311)
6 0.014 0.036 (0.047) 0.441 0.329 (0.344) 0.370 0.579 0.548 0.545 0.525 (0.350)

BMA 0.218 0.087 (0.147) 0.337 0.246 (0.249) 0.217 0.435 0.527 0.445 0.406 (0.344)

6 1 0.349 0.078 (0.112) 0.652 0.610 (0.274) 0.694 0 0.116 0 NAN (NAN)
(6) 2 0.145 0.070(0.111) 0.855 0.648 (0.284) 0.777 0 0.137 0 NAN (NAN)

3 0.379 0.094 (0.147) 0.621 0.529 (0.332) 0.591 0 0.237 0 NAN (NAN)
4 0.135 0.065(0.118) 0.866 0.677 (0.280) 0.824 0 0.135 0 NAN (NAN)
5 0.397 0.083 (0.151) 0.603 0.584 (0.319) 0.659 0 0.184 0 NAN (NAN)
6 0.177 0.069 (0.124) 0.823 0.698 (0.278) 0.821 0 0.131 0 NAN (NAN)

BMA 0.199 0.073 (0.120) 0.802 0.636 (0.293) 0.747 0 0.143 0 NAN (NAN)

Table 3.3: Simulated values of EARS, allowing skipping.



Chapter 4

CRM without undue risk of
toxicity

4.1 Introduction

Over the past years, statistical properties, important issues and CRM performance

have been investigated, and many kinds of extensions in various directions have

been proposed. The book by Cheung (2011) is a comprehensive evaluation of CRM.

A review of CRM is provided by O’Quigley and Conaway (2010) who discuss both

frequentist and Bayesian approaches, large- and small-sample properties, and some

extensions. Garrett-Mayer (2006) provides a tutorial of CRM; Neuenschwander

et al. (2008) elaborate on some critical aspects of the Bayesian approach to

CRM; and Marchenko et al. (2013) provide an overview of several adaptive

designs of phase I clinical trials, covering statistical, practical and logistical issues.

Le Tourneau et al. (2009) discuss the pros and cons of different designs of phase

I clinical trials including CRM. Recently, Clertant and O’Quigley (2017) and

53
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Clertant and O’Quigley (2019) introduce semiparametric extensions of CRM.

Iasonos et al. (2008) systematically compare the performance of CRM with

nonparametric designs, and Iasonos and O’Quigley (2014) provide a comprehensive

review of CRM and its extensions in medical practice. Sverdlov et al. (2014)

comprehensively review various types of nonparametric and parametric designs,

and discuss important issues such as overdose control, the Bayesian decision

theoretical design and other optimal designs, and data analysis following adaptive

designs.

All medical studies are inevitably challenged by the delicate issue of ethics.

Particularly in any clinical trial of a new medical drug or intervention, we typi-

cally face conflict between individual ethics and collective ethics. Although the

overarching goal of a phase I clinical trial is to identify the MTD and assign as

many patients as possible to the MTD, ethical consideration dictates that we

maximize the number of patients assigned to doses that have potential therapeutic

or preventive benefits and at the same time prevent undue risk of toxicity to

patients in the trial. This latter ethical requirement is the primary concern of this

chapter, and in this chapter we propose a new CRM design which simultaneously

minimizes undue risk of toxicity and maximizes efficiency. This is demonstrated

by means of simulations in comparison with currently available CRM designs. In

fact, through simulations we have observed that given any MTD and based on

the skeleton suggested by the getprior() function from the dfcrm R package, no or

few patients are assigned to any dose level above the MTD, and the majority of
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patients are assigned to the MTD with our new CRM design.

This chapter proposes a CRM design with interesting properties and excellent

performance. The performance of a phase I clinical trial design can be assessed

by the same template consisting of several important and desirable performance

criteria: BEARS (Benchmark, Efficiency, Accuracy, Reliability, Safety)

4.2 The new CRM design

We assume that there are K dose levels d1, d2, · · · , dK to be investigated for their

toxicity probabilities. Associated with the doses are some pre-specified skeleton

probabilities pi, i = 1, 2, · · · , K, which are monotonically increasing in i. We wish

to investigate the true toxicity probabilities πi = πi(di) = π(pi) at all dose levels

linked by the skeleton. A common assumption is that πi is an increasing function

of pi, and this assumption defines a partial order over the set {d1, · · · , dk} of all

dose levels. In the CRM design, a form of the function π is assumed and involves

unknown parameters. Different forms of the function π give rise to different CRM

designs. To ensure safety of trial patients, a target DLT rate θ ∈ (0, 1) is specified

and ethically acceptable (such as 0.2 in this paper). In any CRM design, the goal

is to identify the MTD which is defined as the dose level d∗ with true toxicity

probability nearest to θ. That is, d∗ = arg min{|π(pi)− θ|, i = 1, 2, · · · , K}.

We introduce a new dose toxicity probability function πi = 2Φ(β+αpi)
1+Φ(β+αpi)

, where

Φ is the cumulative distribution function of the normal distribution N(µ, σ2)
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and α is positive. The partial derivative of the probability πi in pi is given by

∂πi
∂pi

= 2αφ(β+αpi)
(1+Φ(β+αpi))2

> 0, where φ is the probability density function of N(µ, σ2).

This shows that the dose toxicity probability function is monotonically increasing

in the dose level di for fixed values of other parameters.

The new CRM function involves the skeleton values pi, i = 1, 2, · · · , K, which

are obtained from the getprior() function in the dfcrm R package, β, α, and (µ, σ2)

for the cumulative function Φ. When µ and other parameters are fixed, changing

the value of σ2 corresponds to stretching or compressing the function Φ, and it

changes the dose toxicity probabilities when all other parameters are fixed. This

represents a class of CRM designs and is an extra benefit of our new model. This

is our advantage in the current paper. We fix all parameters β, α and µ = 0 and

allow the variance σ2 to be random and follow a certain prior distribution. As

shown in the next two sections, this new CRM design does not choose any dose

that is above the MTD (except for when the MTD is the lowest dose), and hence

avoids any potential overdosing. At the same time, the MTD is identified with

a high probability. As a result, the risk of overdosing is eliminated, while the

chance of better treatment at the MTD is maximized. This suggests that our new

CRM design achieves both individual ethics and collective ethics simultaneously.

Our new CRM function π(pi) = 2Φ(β+αpi)
1+Φ(β+αpi)

monotonically increases in the

dose level di (through pi) when the unknown parameter σ2 is fixed, and it is

monotonic in the unknown parameter σ2 at any fixed dose. Both monotone
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Figure 4.1: New CRM model π(pi) = 2Φ(−4+15pi)
1+Φ(−4+15pi)

as a function of pi (top) and σ2

(bottom)

properties are shown in Figure 4.1 for π(pi) = 2Φ(−4+15pi)
1+Φ(−4+15pi)

. The figure also shows

the effect of the value of σ2 on the behavior of the new model. The six curves on

the right correspond to taking pi in the skeleton (0.05, 0.11, 0.2, 0.31, 0.42, 0.53)

which is scenario 5 in the next section. In all cases, we take µ = 0.
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True Toxicity Probabilities Skeleton
Scenario 1 2 3 4 5 6 1 2 3 4 5 6 MTD

1 0.200 0.260 0.280 0.300 0.350 0.500 0.200 0.310 0.420 0.530 0.630 0.720 1
2 0.050 0.100 0.200 0.350 0.500 0.700 0.050 0.110 0.200 0.310 0.420 0.530 3
3 0.010 0.020 0.050 0.090 0.180 0.400 0.004 0.020 0.050 0.110 0.200 0.310 5
4 0.010 0.020 0.050 0.110 0.140 0.210 0.0004 0.004 0.020 0.050 0.110 0.200 6
5 0 0 0.160 0.300 0.350 0.400 0.050 0.110 0.200 0.310 0.420 0.530 3
6 0 0 0 0.230 0.300 0.350 0.020 0.050 0.110 0.200 0.310 0.420 4

Table 4.1: Summary of simulation scenarios

4.3 Simulation results and discussion

In this section, we introduce and discuss simulation results to compare the

performance of our new model with the existing CRM models. There are six

scenarios listed in Table 4.1 together with their respective MTDs. These scenarios

are taken from Clertant and O’Quigley (2017), in which the pre-specified target

DLT rate is θ = 0.2. The dose level with a final estimated toxicity probability

nearest to θ is set to be the estimated MTD. The parameter µ is 0, but the

parameters α and β are values that offer good models. Each trial is simulated for

1,000 runs.

Each simulation run starts with treating the first cohort of patients at the

lowest dose level. The cohort size is set to one. The decision of dose escalation

or de-escalation is determined by the accumulated data at that time and the

estimated toxicity probability curve. At the boundaries, dose escalation at dK

or de-escalation at d1 does not occur. The size of escalation or de-escalation is

determined by the dose level with an estimated toxicity probability nearest to the
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Scenario Skipping is not permitted Skipping is allowed
(MTD) Model 1 2 3 4 5 6 1 2 3 4 5 6

1 I(a) 0.704 0.296 0 0 0 0 0.704 0.296 0 0 0 0
(1) II 0.515 0.285 0.093 0.069 0.031 0.007 0.491 0.277 0.130 0.054 0.036 0.012

III 0.315 0.247 0.186 0.138 0.092 0.022 0.363 0.254 0.186 0.141 0.040 0.016
IV 0.761 0.148 0.060 0.025 0.006 0 0.762 0.147 0.059 0.026 0.006 0

2 I(b) 0.060 0.295 0.645 0 0 0 0.054 0.256 0.690 0 0 0
(3) II 0.015 0 0.758 0.198 0.023 0.006 0.020 0 0.739 0.223 0.017 0.001

III 0.018 0.114 0.543 0.238 0.085 0.002 0.031 0.130 0.560 0.234 0.042 0.003
IV 0.111 0.273 0.404 0.190 0.022 0 0.122 0.267 0.416 0.173 0.022 0

3 I(b) 0.022 0.014 0.043 0.221 0.700 0 0.018 0.002 0.011 0.197 0.772 0
(5) II 0.038 0 0 0 0.819 0.143 0.023 0 0 0 0.834 0.143

III 0.083 0.001 0 0.093 0.572 0.251 0.046 0 0 0.096 0.650 0.208
IV 0.063 0.005 0.040 0.220 0.539 0.133 0.06 0.002 0.038 0.225 0.572 0.103

4 I(c) 0.03 0.005 0.024 0.065 0.193 0.683 0.027 0 0.011 0.082 0.189 0.691
(6) II 0.031 0.001 0 0 0 0.968 0.01 0 0 0 0 0.990

III 0.018 0 0 0.003 0.053 0.926 0.011 0 0 0.001 0.060 0.928
IV 0.039 0.007 0.022 0.121 0.211 0.600 0.039 0.003 0.013 0.099 0.276 0.570

5 I(b) 0.026 0 0.974 0 0 0 0.026 0 0.974 0 0 0
(3) II 0.019 0 0.525 0.313 0.088 0.055 0.011 0 0.534 0.306 0.101 0.048

III 0.020 0 0.380 0.284 0.221 0.095 0.026 0 0.432 0.301 0.137 0.104
IV 0.053 0 0.532 0.294 0.102 0.019 0.049 0 0.527 0.303 0.104 0.017

6 I(b) 0.091 0 0 0.909 0 0 0.093 0 0 0.907 0 0
(4) II 0.023 0 0 0.581 0.268 0.128 0.006 0 0 0.528 0.272 0.194

III 0.055 0 0 0.398 0.299 0.248 0.051 0 0 0.440 0.268 0.241
IV 0.093 0 0 0.556 0.260 0.091 0.104 0 0 0.549 0.246 0.101

Table 4.2: Simulated values of Benchmark, with or without skipping. Bold values
are the highest in each group.
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target DLT rate and by whether skipping is permitted. Escalation or de-escalation

occurs one step away from the current dose at most if skipping is not allowed.

Suppose that m− 1 patients have been treated and

Dm = {(d(1), y1), · · · , (d(m−1), ym−1)}

is the observed information, where d(i) is the dose level applied to patient i =

1, · · · ,m−1, and yi is the patient toxicity response (1 for toxicity and 0 otherwise).

Suppose that π̂m(pi) is the estimated toxicity probability at dose level di when

the mth patient is to be assigned a dose level. Suppose that the index j minimizes

|π̂m(pi) − θ| over i ∈ {1, 2, · · · , K}. If dj = d(m−1), then the dose level d(m−1) is

allocated. If dj > d(m−1), the dose level dj is assigned if skipping is allowed, but

the dose level d(m−1) + 1 is assigned if skipping is not allowed and is subject to the

boundary rule. Similarly, if dj < d(m−1), the dose level dj is assigned if skipping is

allowed, but the dose level d(m−1) − 1 is assigned if skipping is not allowed and is

subject to the boundary rule. This process continues until a pre-specified number

of patients are treated, which is 30 in this paper. At the conclusion of the trial,

the final toxicity probabilities π̂(pi), i = 1, 2 · · · , K, are updated, and the dose

level with an estimated toxicity probability nearest to the target θ is chosen as

the MTD.

We follow the Bayesian approach to estimate π̂m(pi). After calculating the

likelihood function, the prior distribution is updated into a posterior distribution,

and the estimator π̂m(p) is given by the posterior mean toxicity probability of
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π(p) after treating m− 1 patients. The likelihood function is given by

L(σ2|Dm) =
m−1∏
i=1

{
2Φ(β + αp(i))

1 + Φ(β + αp(i))

}yi {
1− 2Φ(β + αp(i))

1 + Φ(β + αp(i))

}1−yi

,

where p(i) is the skeleton value associated with dose d(i). We assume that the

positive parameter σ2 follows a prior distribution f(σ2). The posterior mean

toxicity probability π̂m(pi) at dose level di is estimated to be

π̂m(pi) =

∫
2Φ(β + αpi)

1 + Φ(β + αpi)

L(σ2|Dm)f(σ2)∫
L(σ2|Dm)f(σ2)d(σ2)

d(σ2).

We simulate each CRM model under the same conditions; these conditions

include the same prior distribution of the unknown parameters and the same

seed for each simulation run. The prior distribution is the gamma distribution

gamma(x, 0.5, 0.5) from R software.

We systematically compare the performance of our new design against the

existing ones in the important BEARS operating criteria: Benchmark, Efficacy,

Accuracy, Reliability, Safety. The Benchmark criterion is introduced by Cheung

(2014) and ARS criteria are introduced by Zhou et al. (2018). We now introduce

the Efficacy criterion. Together, they serve as a template of BEARS for choosing

a CRM design that satisfies both individual ethics and collective ethics.

To save space in the tables, our models are summarized as follows, where p

represents the skeleton value at each dose, and x represents the unknown parameter.

The new models are I(a) = 2Φ(−2+5p)
1+Φ(−2+5p)

, I(b) = 2Φ(−4+15p)
1+Φ(−4+15p)

and I(c) = 2Φ(−4+3p)
1+Φ(−4+3p)

,

where the cumulative distribution function Φ is given by the normal distribution
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 I(a) 0 NAN (NAN) 0.741 0.702 (0.363) 0.716 0.278 0.162 0.259 0.060 (0.162)
(1) II 0 NAN (NAN) 0.600 0.451 (0.355) 0.450 0.357 0.338 0.400 0.110 (0.161)

III 0 NAN (NAN) 0.387 0.288 (0.301) 0.263 0.131 0.524 0.613 0.142 (0.129)
IV 0 NAN (NAN) 0.752 0.810 (0.268) 0.824 0.031 0 0.248 0.038 (0.091)

2 I(b) 0.341 0.204 (0.247) 0.659 0.592 (0.384) 0.646 0 0.263 0 0 (0)
(3) II 0 0.033 (0) 0.855 0.621 (0.263) 0.698 0.167 0.077 0.145 0.104 (0.136)

III 0.167 0.081 (0.128) 0.65 0.451 (0.193) 0.414 0.049 0.087 0.183 0.129 (0.102)
IV 0.312 0.250 (0.154) 0.495 0.307 (0.144) 0.065 0.023 0.161 0.193 0.064 (0.095)

3 I(b) 0.282 0.101 (0.160) 0.718 0.597 (0.352) 0.697 0 0.234 0 0 (0)
(5) II 0 0.033 (0) 0.872 0.600 (0.223) 0.681 0.150 0.051 0.128 0.267 (0.223)

III 0.158 0.052 (0.076) 0.560 0.344 (0.194) 0.224 0.389 0.213 0.282 0.449 (0.238)
IV 0.260 0.116 (0.076) 0.554 0.336 (0.134) 0.092 0.075 0.092 0.186 0.199 (0.177)

4 I(c) 0.317 0.075 (0.066) 0.683 0.626 (0.229) 0.706 0 0.044 0 NAN (NAN)
(6) II 0 0.033 (0) 1 0.833 (0) 1 0 0 0 NAN (NAN)

III 0.072 0.039 (0.046) 0.928 0.804 (0.106) 0.956 0 0.001 0 NAN (NAN)
IV 0.331 0.105 (0.077) 0.669 0.474 (0.244) 0.526 0 0.145 0 NAN (NAN)

5 I(b) 0.009 0.072 (0.075) 0.991 0.856 (0.106) 0.982 0 0 0 0 (0)
(3) II 0 0.033 (0) 0.636 0.430 (0.296) 0.425 0.347 0.264 0.364 0.168 (0.168)

III 0.034 0.047 (0.063) 0.478 0.305 (0.235) 0.240 0.176 0.365 0.488 0.200 (0.171)
IV 0.105 0.151 (0.084) 0.448 0.339 (0.156) 0.119 0.052 0.152 0.447 0.119 (0.120)

6 I(b) 0.057 0.080 (0.082) 0.943 0.760 (0.141) 0.915 0 0 0 0 (0)
(4) II 0 0.033 (0) 0.735 0.472 (0.3) 0.501 0.312 0.229 0.265 0.214 (0.210)

III 0.086 0.051 (0.071) 0.476 0.278 (0.219) 0.183 0.325 0.381 0.438 0.284 (0.222)
IV 0.157 0.126 (0.082) 0.534 0.328 (0.146) 0.085 0.070 0.150 0.309 0.147 (0.157)

Table 4.3: Simulated values of EARS, not allowing skipping. Bold values are the
best in each group.
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 I(a) 0 NAN (NAN) 0.741 0.702 (0.363) 0.716 0.278 0.162 0.259 0.060 (0.162)
(1) II 0 NAN (NAN) 0.589 0.437 (0.352) 0.439 0.367 0.346 0.411 0.113 (0.160)

III 0 NAN (NAN) 0.421 0.315 (0.312) 0.309 0.140 0.483 0.579 0.137 (0.129)
IV 0 NAN (NAN) 0.751 0.811 (0.266) 0.823 0.029 0 0.249 0.038 (0.091)

2 I(b) 0.305 0.182 (0.244) 0.695 0.637 (0.374) 0.680 0 0.237 0 0 (0)
(3) II 0 0.017 (0) 0.853 0.612 (0.259) 0.689 0.194 0.073 0.147 0.118 (0.139)

III 0.208 0.082 (0.152) 0.633 0.478 (0.207) 0.470 0.074 0.083 0.159 0.119 (0.106)
IV 0.308 0.254 (0.150) 0.497 0.302 (0.142) 0.055 0.027 0.164 0.195 0.064 (0.095)

3 I(b) 0.222 0.074 (0.155) 0.778 0.705 (0.343) 0.756 0 0.170 0 0 (0)
(5) II 0 0.008 (0) 0.886 0.658 (0.224) 0.768 0.179 0.040 0.114 0.308 (0.224)

III 0.149 0.032 (0.089) 0.605 0.401 (0.214) 0.340 0.395 0.151 0.246 0.469 (0.26)
IV 0.275 0.112 (0.076) 0.544 0.367 (0.137) 0.134 0.066 0.071 0.181 0.186 (0.175)

4 I(c) 0.317 0.065 (0.072) 0.683 0.675 (0.257) 0.715 0 0.022 0 NAN (NAN)
(6) II 0 0.007 (0) 1 0.967 (0) 1 0 0 0 NAN (NAN)

III 0.073 0.014 (0.055) 0.927 0.928 (0.125) 0.971 0 0.001 0 NAN (NAN)
IV 0.363 0.100 (0.079) 0.637 0.498 (0.261) 0.505 0 0.126 0 NAN (NAN)

5 I(b) 0.010 0.065 (0.083) 0.990 0.870 (0.117) 0.982 0 0 0 0 (0)
(3) II 0 0.017 (0) 0.668 0.426 (0.304) 0.455 0.348 0.249 0.332 0.177 (0.173)

III 0.025 0.032 (0.067) 0.516 0.329 (0.265) 0.304 0.232 0.338 0.459 0.203 (0.182)
IV 0.106 0.155 (0.078) 0.443 0.326 (0.151) 0.093 0.061 0.168 0.451 0.122 (0.121)

6 I(b) 0.049 0.071 (0.090) 0.951 0.788 (0.156) 0.917 0 0 0 0 (0)
(4) II 0 0.011 (0) 0.758 0.487 (0.312) 0.538 0.312 0.227 0.242 0.240 (0.218)

III 0.101 0.032 (0.079) 0.486 0.313 (0.259) 0.271 0.366 0.364 0.413 0.296 (0.246)
IV 0.162 0.125 (0.078) 0.526 0.330 (0.140) 0.070 0.081 0.140 0.312 0.147 (0.157)

Table 4.4: Simulated values of EARS, allowing skipping. Bold values are the best
in each group.
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Scenario Skipping is not permitted Skipping is allowed
(MTD) Model 1 2 3 4 5 6 1 2 3 4 5 6

1 I(a) 0.741 0.259 0 0 0 0 0.741 0.259 0 0 0 0
(1) II 0.600 0.252 0.081 0.048 0.019 0 0.589 0.269 0.076 0.046 0.019 0.001

III 0.387 0.338 0.143 0.072 0.032 0.028 0.421 0.313 0.153 0.069 0.026 0.018
IV 0.752 0.157 0.056 0.030 0.005 0 0.751 0.158 0.056 0.030 0.005 0

2 I(b) 0.011 0.330 0.650 0 0 0 0.013 0.292 0.695 0 0 0
(3) II 0 0 0.855 0.142 0.003 0 0 0 0.853 0.146 0.001 0

III 0 0.167 0.650 0.158 0.023 0.002 0.001 0.207 0.633 0.139 0.017 0.003
IV 0.068 0.244 0.495 0.179 0.014 0 0.068 0.240 0.497 0.178 0.017 0

3 I(b) 0 0 0.008 0.274 0.718 0 0 0.001 0.005 0.216 0.778 0
(5) II 0 0 0 0 0.872 0.128 0 0 0 0 0.886 0.114

III 0 0 0 0.158 0.560 0.282 0 0 0 0.149 0.605 0.246
IV 0 0.003 0.038 0.219 0.554 0.186 0 0.002 0.045 0.228 0.544 0.181

4 I(c) 0.009 0.013 0.028 0.052 0.215 0.683 0.030 0.012 0.030 0.043 0.202 0.683
(6) II 0 0 0 0 0 1 0 0 0 0 0 1

III 0 0 0 0.004 0.068 0.928 0 0 0 0.001 0.072 0.927
IV 0.003 0.007 0.026 0.079 0.216 0.669 0.007 0.002 0.037 0.084 0.233 0.637

5 I(b) 0 0.009 0.991 0 0 0 0 0.01 0.99 0 0 0
(3) II 0 0 0.636 0.317 0.038 0.009 0 0 0.668 0.289 0.036 0.007

III 0 0.034 0.478 0.319 0.094 0.075 0 0.025 0.516 0.308 0.077 0.074
IV 0 0.105 0.448 0.351 0.08 0.016 0 0.106 0.443 0.35 0.084 0.017

6 I(b) 0 0 0.057 0.943 0 0 0 0 0.049 0.951 0 0
(4) II 0 0 0 0.735 0.222 0.043 0 0 0 0.758 0.210 0.032

III 0 0 0.086 0.476 0.221 0.217 0 0 0.101 0.486 0.224 0.189
IV 0 0 0.157 0.534 0.224 0.085 0 0 0.162 0.526 0.238 0.074

Table 4.5: Simulated percentages of MTD selection, with or without skipping.
Bold values are the highest in each group.
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Figure 4.2: Comparison of density estimation of MTD allocation, scenario 5, no
skipping.

N(0, x). The power model is II = pexp(x), the logistic model is III = exp(−2+xp)
1+exp(−2+xp)

,

and the hyperbolic tangent model is IV =
(

exp(p)
exp(p)+exp(−p)

)x
.

We summarize some key observations as follows to demonstrate that our new

CRM design achieves individual and collective ethics simultaneously. Table 4.2

gives simulated values of the benchmark, and Table 4.3 and Table 4.4 (which are

similar) give simulated values of EARS.

Benchmark means using sample mean toxicity probabilities to choose the

MTD.

• Performance measure: The Benchmark provides the estimated distribu-

tion of the MTD, which is determined by the dose level with an observed
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sample mean toxicity probability nearest to the target θ. The higher the

proportion of correct selection of the MTD, the better the design.

• Results: We see from Table 4.2 that our new model performs excellent

overall, especially when all doses below the MTD have 0 toxicity probabilities.

In other cases, the Benchmark of the new model is not far behind that of

the best model.

Efficiency checks the avoidance of assigning patients to ineffective doses.We

would like to treat as many patients effectively as possible. This means treating

the least patients as possible on any dose lower than the MTD.

• Two performance measures: The Efficacy measure E1 calculates the

proportion of the simulation runs that assign patients to a dose lower than

the MTD. The lower the proportion E1, the better the design. E2 reports

the mean and standard deviation of the percentage of patients assigned to a

dose lower than the MTD. The lower the mean, the better the design.

• Results: From Table 4.3 and Tables 4.4, overall, our new design performs

well on Efficacy. Although our design assigns patients to either the MTD

or lower doses, it is highly efficient because the values of E1 and E2 are

reasonably low.

Accuracy depicts the assignment of patients to the MTD.
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• Three performance measures: A1 measures the proportion of the simu-

lation runs that identify the MTD. The higher the proportion, the better the

design. A2 calculates the mean and standard deviation of the percentage of

patients assigned to the MTD. The higher the mean, the better the design.

A3 gives the proportion of the simulation runs that assign more than 50%

of patients to the MTD. The higher the proportion, the better the design.

• Results: From Table 4.3 and Tables 4.4, overall, our new model is accurate.

All three measures are reasonably large in most cases.

Reliability concerns the risk of severe overdosing.

• Two performance measures: R1 measures the proportion of the simu-

lation runs that allocate more than 50% of patients to a dose higher than

the MTD. The lower the proportion, the better the design. R2 calculates

the proportion of the simulation runs with less than one-sixth (i.e., 5 in our

simulations) of patients at the MTD. The lower the proportion, the better

the design.

• Results: From Table 4.3 and Tables 4.4, our new model is the most reliable

overall. Not considering the boundary cases, our new design assigns no

patients to a dose greater than the MTD. Further, the value of R2 is

reasonably low.

Safety refers to the protection from overdosing.
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• Two performance measures: S1 measures the proportion of the simula-

tion runs that result in doses greater than the MTD. The lower its value,

the better the design. S2 calculates the mean and standard deviation of the

percentage of patients assigned to a dose greater than the MTD. The lower

the mean, the better the design.

• Results: From Table 4.3 and Tables 4.4, our model is the safest in almost

all cases! With our new design and ignoring the boundary cases, there are

no patients assigned to a dose greater than the MTD. In contrast, the power

model assigns patients to either the MTD or doses greater than the MTD.

The most distinguishing feature is that our new CRM design assigns no

patients to doses above the MTD, unless the MTD is the lowest dose. This is not

the case for any other design. In fact, the power model performs the opposite

way by assigning all patients to either the MTD or doses greater than the MTD.

Avoiding doses greater than the MTD is important for individual ethics to mitigate

potential harm of overdosing patients in the trial. Particularly when doses below

the MTD are completely non-toxic (i.e., with 0 toxicity probabilities), our new

design not only finds the MTD with almost certainty but also allocates almost all

patients to the MTD. The performance is truly remarkable. This means that our

new CRM design avoids the harm of overdosing and achieves an excellent balance

between individual ethics and collective ethics.

To further understand the advantage of our new CRM design, Figure 4.2
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shows the comparison of estimated density curves of the proportion of patients

allocated to the MTD based on 1,000 simulation runs. Our new design offers the

highest proportion of patients assigned to the MTD.

4.4 Conclusions

Although our new CRM design has the advantage of assigning zero patients to

overly toxic doses, it has the disadvantage of having only isolated information at

or below the MTD. This may lead to a weakness of estimating the overall dose

toxicity probability curve. However, as pointed out by O’Quigley and Conaway

(2010), such estimation is rarely a goal of the phase I clinical trial.

There is a famous saying that “All models are wrong, but some are useful”

(George Box). Our proposed model is not perfect, but it is useful to guide dose

escalation and de-escalation decisions in practical situations of treating patients in

a phase I clinical trial. We have identified functions with which the CRM design

completely avoids potential overdosing. However, for each scenario, if we change

the values of the parameters α and β, we could also observe different results.

Nevertheless, our model serves a purpose if we can identify good models.



Chapter 5

The CRM design with
combination drugs

5.1 Introduction

Recent years have seen significant interest and progress on personalized medicine,

molecularly targeted therapies and combination drugs. For cytotoxic treatment of

cancer, one particular drug may show effectiveness to destroy the cancerous cell,

but cellular heterogeneity may create a certain drug resistant disease (Marusyk

et al., 2012; Harrington et al., 2013). Because drug susceptibility varies among

cells and between patients, a combination of drugs can help achieve the desirable

treatment intensity and resistance, when the drugs have non-overlapping toxicities

and hence the combination is not overly toxic (Harrington et al., 2013; Dancey

and Chen, 2006). For example, combination drugs are shown to be effective in

enhancing survival in early stage and advanced stage cancer patients, and even

curative in testicular cancer patients (Harrington et al., 2013; Master and Köberle,

70
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2003).

When a combination of drugs is used, it is important to determine the

maximum tolerated dose combination for all drugs involved. This is not a simple

matter because the dose toxicity probability model may be significantly influenced

by the potential pharmacokinetic and pharmacodynamic interactions between the

drugs (Harrington et al., 2013). Furthermore, due to a two dimensional lattice

structure of dose combination levels, dose escalation and deescalation rules depend

on the partial order of the combination drug levels. Kramar et al. (1999) propose

the use of the continual reassessment method when the toxicity probabilities of the

dose combination can be ordered a priori. Wages et al. (2011) use the continual

reassessment method to estimate the MTD combination when the ordering of

the toxicity probabilities cannot be known a priori. Wages and Conaway (2013)

discuss the issues with choosing partial ordering for the combination drugs when

the power model is used with the continual reassessment method. Riviere et al.

(2015) compare the performance of different designs of Phase I clinical trials for

combination drugs, including the up-and-down designs, the continual reassessment

method with partial ordering, copula regression and the latent contingency table.

Further improvements of these methods are suggested in Yin et al. (2015) and

Wages (2015). Diniz et al. (2017) consider the continual reassessment method

under various model scenarios and misspecification. On the other hand, Yin

and Yuan (2009a) and Yuan and Yin (2011) use copula to describe stochastic

dependence in combination drug trials, and Bailey et al. (2009) apply logistic
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regression with covariates for the Bayesian design of phase I trial for combination

drugs.

Hamberg et al. (2010) discuss important issues and pitfalls in designing phase

I trials for combination drugs as well as methods to avoid bias due to imbalance in

observed background toxicity. Hirakawa et al. (2014) compare various model-based

designs, including the continual reassessment method and copula-based design,

for phase I combination drug trials. The Clinical Trial Design Task Force offers

useful recommendations on designing phase I trials for combination drugs (Paller

et al., 2014). Wages et al. (2016) provide an excellent review on three methods

for designing phase I trials of drug combinations and investigate their operating

characteristics. In an excellent survey, Sverdlov et al. (2014) provide significant

insight into the design of phase I drug combination trials. Sweeting and Pander

(2012) investigate the performance of different escalation strategies for Phase

I combination drug trials, and show that strategies allowing only non-diagonal

escalations are inefficient and identify fewer MTD combinations.

To improve, in my thesis, I set up a complete order of drug movement ahead

of time. we allow both diagonal and non-diagonal movements of dose escalation

and de-escalation based on the complete order. Furthermore, we introduce two

new complete orders.
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5.2 Model-Based Designs for Combination Drugs

We extend the CRM model to combination drugs. Patients are treated sequentially,

one at a time. We consider a combination of two drugs A and B. Drug A has K

dose levels and drug B has L dose levels. At dose combination (i, j), i = 1, 2 · · · , K

and j = 1, 2, · · · , L. The pre-specified toxicity probability is given by pij. We

introduce a new CRM design with the following new model of dose toxicity

probability:

P (toxicity at combination dose levels (i, j)) = π(α) =
2Φ(η + αpij)

1 + Φ(η + αpij)
,

where η is taken as a constant, and α is an unknown parameter, and Φ is the

cumulative distribution function of the normal distribution N(µ, σ2) with given

values of µ and σ2.

For the purpose of simulation, we assume that the parameter α is random but

follows some prior distribution. Different values of µ and σ2 can be set in the simu-

lation study, however from our simulation experience and our previous research, the

standard normal distribution N(0, 1) with µ = 0 and σ2 = 1 is a very good choice.

The Bayesian approach is applied to estimate the prior or posterior mean toxicity

probability at each combination of dose levels (i, j), i = 1, · · · , K; j = 1, · · · , L.

Suppose patient k, k = 1, 2, · · · , n, is treated at dose combination (i(k), j(k)) and

toxicity outcome yk is observed, where yk = 1 if the patient is toxic and yk = 0 oth-

erwise. Let Dn = {(i(1), j(1)), y1; (i(2), j(2)), y2; · · · ; (i(n), j(n)), yn} be the observed

information on dose combination and its corresponding toxicity of all previously
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treated patients. Denote

πk = π(α) =
2Φ(η + αpi(k), j(k))

1 + Φ(η + αpi(k), j(k))
,

Where πk is the toxicity probability at the treated patient k, k = 1, 2, · · · , n.

The likelihood function becomes

L(α|Dn) =
n∏
k=1

{πk}yk{1− πk}1−yk .

With our new model, this likelihood function is

L(α|Dn) =
n∏
k=1

{
2Φ(η + αpi(k), j(k))

1 + Φ(η + αpi(k), j(k))

}yk {
1−

2Φ(η + αpi(k), j(k))

1 + Φ(η + αpi(k), j(k))

}1−yk
.

Suppose that α is positive and follows the prior distribution f(α). By the

Bayes’ Theorem, after treating n patients, the posterior mean toxicity probability

at dose combination (i, j) is estimated to be

π̂(i, j) =

∫
2Φ(η + αpi(k), j(k))

1 + Φ(η + αpi(k), j(k))

L(α|Dn)f(α)∫
L(α|Dn)f(α)dα

dα.

The dose escalation or de-escalation procedure is sequential and the patient

cohort is one. After treating each patient, we collect the toxicity data and

calculate the posterior mean of toxicity probability at each combination of dose

levels, say π̂(i, j), i = 1, · · · , K; j = 1, · · · , L. The dose combination whose toxicity

probability is closest to the target toxicity probability θ is recommended to the

next patient. This target toxicity probability θ is regarded as the proportion

of trial patients permitted to experience the DLT, and is often set to be 0.33.
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The trial terminates when the sequence of toxicity probabilities converges or the

maximum sample size of patients is reached. MTD of the combination drug is

identified as the dose combination whose last updated posterior mean toxicity

probability is nearest to the target toxicity probability θ.

5.3 Possible dose-toxicity orders

The entire procedure of dose-finding trials with a single drug depends on the

monotonic relationship between dose and toxicity probability. In this case, each

dose-toxicity probabilities can be easily ordered. But for a combination of two

drugs, the ordering of toxicity probabilities of dose combination is unknown. For

example, for 3× 3 combination drug dose levels, the toxicity probability of dose

combination (3, 2) is greater than that of dose combination (2, 2), meanwhile, we

know the toxicity probability of dose combination (2, 3) is greater than that of dose

combination (2, 2). But we may not know whether the toxicity probability of dose

combination (3, 2) is greater than that of dose combination (2, 3). So specifying a

possible dose-toxicity ordering is a primary goal of CRM with combination drugs.

Suppose for a combination-drug trial, Drug A has 4 dose levels and Drug B has

3 dose levels. There is a total of 12 combinations, such as d11, d12, d13, · · · , d42, d43,

where dij represents dose combination (i, j), i = 1, 2, 3, 4 and j = 1, 2, 3. The

matrix of combination doses is described in Table 5.1

In order to implement CRM, it is important to define a complete order among
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Doses of B Simulation

A 1 2 3 1 2 3

4 d41 d42 d43 0.600 0.700 0.800

3 d31 d32 d33 0.380 0.450 0.520

2 d21 d22 d23 0.100 0.200 0.310

1 d11 d12 d13 0.010 0.040 0.070

Table 5.1: Combination dose levels of Drug A and B. Combination dose of (2, 2)
(say d22) is the MTD in the simulation.

d11, d12, d13, · · · , d42, d43. This can be done in different ways, depending on the

movement of escalation and de-escalation. For example, we can move across rows,

up columns, down columns or along diagonals. The following 6 possible orderings

of dose combinations are introduced by Wages and Conaway (2013).

• order = 1: Across rows

d11 ≤ d12 ≤ d13 ≤ d21 ≤ d22 ≤ d23 ≤ d31 ≤ d32 ≤ d33 ≤ d41 ≤ d42 ≤ d43

• order = 2: Up columns

d11 ≤ d21 ≤ d31 ≤ d41 ≤ d12 ≤ d22 ≤ d32 ≤ d42 ≤ d13 ≤ d23 ≤ d33 ≤ d43

• order = 3: Up diagonals

d11 ≤ d12 ≤ d21 ≤ d13 ≤ d22 ≤ d31 ≤ d23 ≤ d32 ≤ d41 ≤ d33 ≤ d42 ≤ d43

• order = 4: Down diagonals

d11 ≤ d21 ≤ d12 ≤ d31 ≤ d22 ≤ d13 ≤ d41 ≤ d32 ≤ d23 ≤ d42 ≤ d33 ≤ d43
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order
location

1 2 3 4 5 6 7 8 9 10 11 12

1 d11 d12 d13 d21 d22 d23 d31 d32 d33 d41 d42 d43

2 d11 d21 d31 d41 d12 d22 d32 d42 d13 d23 d33 d43

3 d11 d12 d21 d13 d22 d31 d23 d32 d41 d33 d42 d43

4 d11 d21 d12 d31 d22 d13 d41 d32 d23 d42 d33 d43

5 d11 d12 d21 d31 d22 d13 d23 d32 d41 d42 d33 d43

6 d11 d21 d12 d13 d22 d31 d41 d32 d23 d33 d42 d43

7 d11 d12 d21 d31 d13 d22 d23 d41 d32 d42 d33 d43

8 d11 d21 d12 d13 d31 d22 d41 d23 d32 d33 d42 d43

Table 5.2: Relationship between location and dose levels. Bolded value is MTD
in each order.

• order = 5: Alternating down-up diagonals

d11 ≤ d12 ≤ d21 ≤ d31 ≤ d22 ≤ d13 ≤ d23 ≤ d32 ≤ d41 ≤ d42 ≤ d33 ≤ d43

• order = 6: Alternating up-down diagonals

d11 ≤ d21 ≤ d12 ≤ d13 ≤ d22 ≤ d31 ≤ d41 ≤ d32 ≤ d23 ≤ d33 ≤ d42 ≤ d43

Now, we introduce two new complete orders:

• order = 7: Alternating down-up outer diagonals

d11 ≤ d12 ≤ d21 ≤ d31 ≤ d13 ≤ d22 ≤ d23 ≤ d41 ≤ d32 ≤ d42 ≤ d33 ≤ d43

• order = 8: Alternating up-down outer diagonals

d11 ≤ d21 ≤ d12 ≤ d13 ≤ d31 ≤ d22 ≤ d41 ≤ d23 ≤ d32 ≤ d33 ≤ d42 ≤ d43

In our simulation study, we check the performance of our new model with com-

bination drugs, using the above listed 8 complete orders. These 8 complete orders
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True toxicity probabilities for 12 combination dose levels

scenario
location

1 2 3 4 5 6 7 8 9 10 11 12

1 0.010 0.040 0.070 0.100 0.200 0.310 0.380 0.450 0.520 0.600 0.700 0.800

2 0.010 0.100 0.380 0.600 0.040 0.200 0.450 0.700 0.070 0.310 0.520 0.800

3 0.010 0.040 0.100 0.070 0.200 0.380 0.310 0.450 0.600 0.520 0.700 0.800

4 0.010 0.100 0.040 0.380 0.200 0.070 0.600 0.450 0.310 0.700 0.520 0.800

5 0.010 0.040 0.100 0.380 0.200 0.070 0.310 0.450 0.600 0.700 0.520 0.800

6 0.010 0.100 0.040 0.070 0.200 0.380 0.600 0.450 0.310 0.520 0.700 0.800

7 0.010 0.040 0.100 0.380 0.070 0.200 0.310 0.600 0.450 0.700 0.520 0.800

8 0.010 0.100 0.040 0.070 0.380 0.200 0.600 0.310 0.450 0.520 0.700 0.800

Table 5.3: True toxicity probabilities scenarios 1-8 for the combination dose levels,
bolded value is target toxicity probability in each scenario.

Skeleton probabilities for 12 combination dose levels

order
location

1 2 3 4 5 6 7 8 9 10 11 12

1 0.004 0.020 0.050 0.110 0.20 0.310 0.420 0.530 0.630 0.720 0.780 0.840

2 0.0004 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780

3 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780 0.840

4 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780 0.840

5 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780 0.840

6 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780 0.840

7 0.004 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780

8 0.0004 0.004 0.020 0.050 0.110 0.200 0.310 0.420 0.530 0.630 0.720 0.780

Table 5.4: Skeletons for 8 orders, bolded value is the MTD in each skeleton.

are listed in Table 5.2 and their corresponding scenarios are given in Table 5.3. All

scenarios are based on the same simulation data set in Table 5.1 We also introduce

the initial guess of toxicity probabilities, called skeleton values for 8 scenarios,

are provided in Table 5.4. The values are generated by “getprior(0.05,0.20,5,12)”

when the MTD is located at 5 and “getprior(0.05,0.20,6,12)” when the MTD is

located at 6.
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5.4 Simulation study

To extend the power, logistic and hyperbolic tangent models to the case of drug

combinations, we let η be a constant term in the logistic model, and α be positive.

Let pij be the joint probability of combination dose level (i, j), i = 1, 2, · · · , K for

Drug A and j = 1, 2, · · · , L for Drug B.

The power model at combination dose levels (i, j) is given by

P (toxicity at combination dose levels i, j) = p
exp(α)
ij .

The logistic model at combination dose levels (i, j) is given by

πi,j =
exp(η + αpij)

1 + exp(η + αpij)
.

The hyperbolic tangent model at combination dose levels (i, j) is given by

πi,j(α) =

{
(e2pij − 1)/(e2pij + 1) + 1

2

}α
.

Our new model at combination dose levels (i, j) is given by

πij =
2Φ(η + αpij)

1 + Φ(η + αpij)
.

After treating n patients in the trial and observing at least one toxic outcome,

if the data are analyzed under complete order s , then the likelihood function can

be written as

L(α|Dn) =
n∏
k=1

{πsij}yk{1− πsij}1−yk .
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Where k is the number of treated patients, k = 1, · · · , n. πsij is the joint toxicity

probability at combination dose level (i, j) under complete order s, i = 1, · · · , 4 ,

j = 1, 2, 3 and s = 1, · · · , 8 in our trial.

Suppose that α follows the prior distribution f(α), by the Bayes’ Theorem,

after treating n patients, the posterior mean toxicity probability at combination

dose level (i, j) is estimated to be

π̂(i, j) =

∫
2Φ(η + αpij)

1 + Φ(η + αpij)

L(α|Dn)f(α)∫
L(α|Dn)f(α)dα

dα.

In our simulation study, our goal is to compare the performance of our

new model with other three classic models in the literature listed above with

combination drugs under the performance criteria: BEARS. The simulation setting

is as follows: (1) the sample size is n = 30; (2) the target DLT rate is θ = 0.2; (3)

there are 12 combination dose levels and 8 simulation scenarios based on possible

complete orders are given in Table 5.3, together with 8 skeletons provided in

Table 5.4. Each skeleton indicates one movement of escalation-deescalation. Here,

we consider 8 possible orders of drug combinations. In our case, combination

dose levels d22 is the MTD in every scenario. Because of different movements, the

MTD is located at 5 in scenarios 1, 3, 4, 5 and 6, and the MTD is located at

6 in scenarios 2, 7 and 8, from Table 5.2; (4) the prior distribution for α is the

gamma(x, 0.5, 0.5) distribution in R; (5) each trial is simulated for 2,000 runs.

Benchmark means using sample mean toxicity probabilities to choose the

MTD. In Table 5.5, we compare benchmark with the dose selection probability at
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the MTD using sample mean toxicity probabilities. Similarly, in Table 5.6, we

compare final percentage MTD selection using posterior mean toxicity probabili-

ties.

• Performance measure: The dose with a sample (or posterior) mean

toxicity probability nearest to θ is chosen as the MTD. The higher the

proportion of correct selection the MTD, the better the design.

• Results: From Table 5.5 and Table 5.6, in scenarios 2, 6, 7 and 8, values of

Benchmark are greater than 50%, which means more than 50% patients are

truly treated at the MTD in our model. The benchmark is 61.8% in scenario

2, which is the highest value in all scenarios. In scenario 5, the benchmark of

the MTD is lower than that of the higher combination dose levels d23 in our

model and logistic model, which means we assign an overdose higher than

MTD to treat patients based on these two models. However, the benchmark

of the MTD is lower than that of the lower combination dose level d21 in the

hyperbolic tangent model, which means we assign an ineffective dose lower

than MTD to treat patients. Roughly speaking, the power model performs

the best, and our model performs almost the second best in 8 scenarios.

The reason may be that the more parameters in the model, the less robust

the performance of design. Similarly, in scenario 6, the proportion of MTD

selection is 74.8%, which is the highest in all scenarios. In scenarios 2, 6

and 7, values of the proportion of MTD selection are greater than 70% in
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our model.

Efficiency checks the avoidance of assigning patients to ineffective doses.

• Two performance measures: E1 reports the proportion of simulation

runs that assign patients to any dose lower than the MTD. The lesser the

proportion E1, the better the design. E2 gives the mean and standard

deviation of the percentage of patients assigned to any dose lower than the

MTD. The lower the mean, the better the design.

• Results: From Table 5.7, Although, our model does not give the lowest

values of E1 and E2, but relatively these values are around zero. Therefore,

overall, the our model is efficient.

Accuracy depicts the assignment of patients to the MTD.

• Three performance measures: A1 measures the proportion of simulation

runs that correctly select the MTD. The larger the proportion, the better

the design. A2 reports the mean and standard deviation of the percentage

of patients assigned to the MTD. The larger the mean, the better the design.

A3 calculates the proportion of simulation runs with more than 50% of

patients assigned to the MTD. The higher the proportion, the better the

design.

• Results: From Table 5.7, in all scenarios, our model gives reasonably high

values of A1, A2 and A3. values of A1 in scenarios 2, 6, 7 and 8 are higher
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than 70%. In scenarios 1 and 3, values of A1 are near 50%. Values of A3 are

higher than 50% in scenarios 2, 6, 7 and 8. Overall, Our model is accurate.

Reliability concerns the risk of severe overdosing.

• Two performance measures: R1 measures the proportion of simulation

runs that allocate more than 50% of patients to any dose higher than the

MTD. The lower the proportion, the better the design. R2 calculates the

proportion of simulation runs with less than one-sixth of patients at the

MTD. The lower the proportion, the better the design.

• Results: From Table 5.7, our model performs above the average in all

scenarios. Particularly in scenarios 2, 6 and 7, our model shows less than

20% of total patients being assigned to doses higher than the MTD. Overall,

our design is reliable.

Safety refers to the protection from overdosing.

• Two performance measures: S1 measures the proportion of simulation

runs that result in any dose higher than the MTD. The lesser its value,

the better the design. S2 reports the mean and standard deviation of the

percentage of patients assigned to any dose higher than the MTD. The lower

the mean, the better the design.

• Results: From Table 5.7, our model performs above the average in all
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scenarios. In scenarios 2, 6, 7 and 8, our model shows lower risk of overdosing.

Overall, our model design is safe.

Putting all criteria “BEARS” together, the performance of our design is

overall stable. But the power model shows the best performance. Lasonos et al.

(2016) indicate that the problem is caused by putting far more parameters into

the model than those can be estimated. To further understand the advantage of

our design, Figure 5.2 describes the comparison of estimated density curves of the

proportion of patients truly selected the MTD based on 2,000 simulation runs.

Our model performs well and stable.

5.5 Conclusion

In this chapter, we have extended our new model to the case of combination of two

drugs. One particular difficulty for combination drug Phase I trials is to define a

complete order among all drug combinations so that the escalation or de-escalation

rule is clear. However, given several dose levels for each drug, the total dose

combinations are complicated and there is no unique complete order available.

So the goal is to introduce a one-dimensional order for a two-dimensional data

structure.

Besides six complete orders in the literature, we introduce two new ones. We

compare the performance of our new model and existing models with combination

drugs. We have only included the interaction term. The marginal contributions
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Scenario Benchmark
(MTD) (Skipping is not permitted)

1
model

order
d11 d12 d13 d21 d22 d23 d31 d32 d33 d41 d42 d43

(2, 2) I 0.150 0.001 0.000 0.054 0.353 0.103 0.255 0.059 0.014 0.010 0.001 0.000
II 0.023 0.000 0.000 0.000 0.657 0.253 0.056 0.007 0.003 0.000 0.001 0.000
III 0.138 0.002 0.000 0.002 0.231 0.100 0.321 0.129 0.051 0.020 0.006 0.000
IV 0.048 0.018 0.054 0.217 0.368 0.195 0.084 0.015 0.001 0.000 0.000 0.000

2
model

order
d11 d21 d31 d41 d12 d22 d32 d42 d13 d23 d33 d43

(2,2) I 0.092 0.003 0.000 0.000 0.102 0.618 0.093 0.001 0.012 0.072 0.007 0.000
II 0.029 0.000 0.000 0.000 0.000 0.924 0.037 0.001 0.005 0.004 0.000 0.000
III 0.121 0.002 0.000 0.000 0.008 0.379 0.053 0.001 0.130 0.250 0.056 0.000
IV 0.180 0.292 0.183 0.018 0.028 0.253 0.043 0.002 0.001 0.000 0.000 0.000

3
model

order
d11 d12 d21 d13 d22 d31 d23 d32 d41 d33 d42 d43

(2,2) I 0.071 0.000 0.001 0.050 0.402 0.074 0.330 0.057 0.000 0.013 0.002 0.000
II 0.027 0.000 0.000 0.000 0.728 0.166 0.067 0.011 0.000 0.001 0.000 0.000
III 0.088 0.000 0.000 0.002 0.228 0.060 0.446 0.122 0.019 0.029 0.006 0.000
IV 0.061 0.024 0.058 0.167 0.457 0.117 0.095 0.021 0.000 0.000 0.000 0.000

4
model

order
d11 d21 d12 d31 d22 d13 d41 d32 d23 d42 d33 d43

(2,2) I 0.444 0.002 0.002 0.053 0.206 0.156 0.020 0.034 0.082 0.001 0.000 0.000
II 0.155 0.000 0.000 0.000 0.404 0.398 0.023 0.014 0.005 0.000 0.001 0.000
III 0.337 0.001 0.000 0.002 0.058 0.229 0.036 0.123 0.180 0.017 0.017 0.000
IV 0.267 0.094 0.109 0.146 0.099 0.245 0.034 0.004 0.002 0.000 0.000 0.000
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Scenario Benchmark
(MTD) (Skipping is not permitted)

5
model

order
d11 d12 d21 d31 d22 d13 d23 d32 d41 d42 d33 d43

(2,2) I 0.175 0.000 0.004 0.054 0.089 0.048 0.542 0.077 0.002 0.007 0.002 0.000
II 0.069 0.000 0.000 0.000 0.377 0.314 0.222 0.015 0.003 0.000 0.000 0.000
III 0.142 0.000 0.000 0.000 0.014 0.077 0.590 0.130 0.029 0.008 0.009 0.001
IV 0.145 0.061 0.243 0.100 0.085 0.153 0.196 0.017 0.000 0.000 0.000 0.000

6
model

order
d11 d21 d12 d13 d22 d31 d41 d32 d23 d33 d42 d43

(2,2) I 0.121 0.001 0.000 0.049 0.594 0.141 0.006 0.021 0.059 0.007 0.001 0.000
II 0.035 0.000 0.000 0.000 0.774 0.157 0.014 0.012 0.005 0.003 0.000 0.000
III 0.149 0.000 0.000 0.006 0.407 0.143 0.028 0.098 0.138 0.031 0.000 0.000
IV 0.080 0.013 0.023 0.203 0.514 0.152 0.013 0.000 0.001 0.001 0.000 0.000

7
model

order
d11 d12 d21 d31 d13 d22 d23 d41 d32 d42 d33 d43

(2,2) I 0.118 0.002 0.000 0.002 0.083 0.541 0.176 0.009 0.058 0.002 0.009 0.000
II 0.025 0.000 0.000 0.000 0.000 0.752 0.213 0.007 0.003 0.000 0.000 0.000
III 0.156 0.003 0.000 0.000 0.004 0.409 0.233 0.026 0.123 0.018 0.027 0.001
IV 0.085 0.053 0.124 0.033 0.126 0.356 0.205 0.017 0.001 0.000 0.000 0.000

8
model

order
d11 d21 d12 d13 d31 d22 d41 d23 d32 d33 d42 d43

(2,2) I 0.138 0.001 0.000 0.002 0.083 0.538 0.024 0.177 0.028 0.006 0.003 0.000
II 0.035 0.000 0.000 0.000 0.000 0.923 0.009 0.022 0.009 0.002 0.000 0.000
III 0.061 0.001 0.000 0.000 0.006 0.359 0.015 0.394 0.121 0.032 0.011 0.000
IV 0.148 0.028 0.047 0.238 0.185 0.279 0.017 0.054 0.004 0.000 0.000 0.000

Table 5.5: Simulated values of Benchmark from scenario 1 to scenario 8. The
MTD in each scenario is located at d22. Bold values are highest in each group.
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Scenario Proportion of MTD selection
(MTD) (Skipping is not permitted)

1
model

order
d11 d12 d13 d21 d22 d23 d31 d32 d33 d41 d42 d43

(2, 2) I 0.000 0.000 0.001 0.057 0.432 0.000 0.477 0.000 0.033 0.000 0.000 0.000
II 0.000 0.000 0.000 0.000 0.743 0.233 0.023 0.001 0.000 0.000 0.000 0.000
III 0.000 0.000 0.000 0.002 0.282 0.051 0.614 0.020 0.031 0.000 0.000 0.000
IV 0.003 0.006 0.042 0.232 0.440 0.224 0.047 0.006 0.000 0.000 0.000 0.000

2
model

order
d11 d21 d31 d41 d12 d22 d32 d42 d13 d23 d33 d43

(2,2) I 0.000 0.000 0.000 0.000 0.135 0.725 0.001 0.023 0.006 0.110 0.000 0.000
II 0.000 0.000 0.000 0.000 0.000 0.963 0.029 0.000 0.004 0.004 0.000 0.000
III 0.000 0.000 0.000 0.000 0.017 0.432 0.040 0.103 0.067 0.337 0.004 0.000
IV 0.163 0.050 0.313 0.037 0.111 0.271 0.053 0.000 0.001 0.001 0.000 0.000

3
model

order
d11 d12 d21 d13 d22 d31 d23 d32 d41 d33 d42 d43

(2,2) I 0.000 0.000 0.000 0.056 0.457 0.001 0.466 0.004 0.016 0.000 0.000 0.000
II 0.000 0.000 0.000 0.000 0.810 0.165 0.022 0.003 0.000 0.000 0.000 0.000
III 0.000 0.000 0.000 0.003 0.262 0.025 0.658 0.028 0.024 0.000 0.000 0.000
IV 0.002 0.011 0.036 0.224 0.501 0.166 0.048 0.012 0.000 0.000 0.000 0.000

4
model

order
d11 d21 d12 d31 d22 d13 d41 d32 d23 d42 d33 d43

(2,2) I 0.000 0.000 0.001 0.095 0.339 0.086 0.395 0.001 0.083 0.000 0.000 0.000
II 0.000 0.000 0.000 0.000 0.396 0.494 0.103 0.002 0.004 0.001 0.000 0.000
III 0.000 0.000 0.000 0.001 0.072 0.284 0.529 0.011 0.103 0.000 0.000 0.000
IV 0.022 0.022 0.205 0.205 0.082 0.315 0.143 0.004 0.002 0.000 0.000 0.000
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Scenario Proportion of MTD selection
(MTD) (Skipping is not permitted)

5
model

order
d11 d12 d21 d31 d22 d13 d23 d32 d41 d42 d33 d43

(1,2) I 0.000 0.000 0.001 0.107 0.122 0.001 0.747 0.006 0.016 0.000 0.000 0.000
II 0.000 0.000 0.000 0.000 0.361 0.383 0.248 0.008 0.000 0.000 0.000 0.000
III 0.000 0.000 0.000 0.000 0.016 0.044 0.893 0.027 0.020 0.000 0.000 0.000
IV 0.030 0.043 0.222 0.152 0.057 0.232 0.243 0.020 0.001 0.000 0.000 0.000

6
model

order
d11 d21 d12 d13 d22 d31 d41 d32 d23 d33 d42 d43

(2,2) I 0.000 0.000 0.000 0.055 0.748 0.007 0.121 0.001 0.068 0.000 0.000 0.000
II 0.000 0.000 0.000 0.000 0.869 0.121 0.003 0.002 0.003 0.002 0.000 0.000
III 0.000 0.000 0.000 0.008 0.517 0.068 0.306 0.010 0.090 0.001 0.000 0.000
IV 0.002 0.004 0.022 0.247 0.536 0.181 0.006 0.001 0.000 0.001 0.000 0.000

7
model

order
d11 d12 d21 d31 d13 d22 d23 d41 d32 d42 d33 d43

(2,2) I 0.000 0.000 0.002 0.001 0.091 0.708 0.018 0.172 0.002 0.006 0.000 0.000
II 0.000 0.000 0.000 0.000 0.000 0.835 0.162 0.003 0.000 0.000 0.000 0.000
III 0.000 0.000 0.000 0.000 0.003 0.548 0.148 0.292 0.006 0.003 0.000 0.000
IV 0.022 0.021 0.076 0.079 0.185 0.392 0.210 0.015 0.000 0.000 0.000 0.000

8
model

order
d11 d21 d12 d13 d31 d22 d41 d23 d32 d33 d42 d43

(2,2) I 0.000 0.000 0.001 0.002 0.172 0.561 0.000 0.247 0.000 0.017 0.000 0.000
II 0.000 0.000 0.000 0.000 0.000 0.958 0.027 0.012 0.003 0.000 0.000 0.000
III 0.000 0.000 0.000 0.000 0.013 0.399 0.007 0.551 0.018 0.012 0.000 0.000
IV 0.023 0.026 0.052 0.346 0.288 0.192 0.065 0.005 0.003 0.000 0.000 0.000

Table 5.6: Simulated percentages of MTD selection from scenario 1 to scenario
8. The MTD in each scenario is located at d22. Bold values are highest in each
group.
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Scenario Efficiency Accuracy Reliability Safety
(MTD) Model E1 E2 (s.d.) A1 A2 (s.d.) A3 R1 R2 S1 S2 (s.d.)

1 I 0.058 0.045 (0.090) 0.432 0.330 (0.346) 0.397 0.470 0.558 0.510 0.070 (0.139)
(2,2) II 0 0.033 (0) 0.743 0.507 (0.298) 0.539 0.213 0.187 0.257 0.051 (0.097)

III 0.002 0.034 (0.150) 0.282 0.174 (0.242) 0.166 0.471 0.721 0.716 0.099 (0.116)
IV 0.283 0.119 (0.082) 0.440 0.276 (0.146) 0.039 0.029 0.210 0.277 0.036 (0.071)

2 I 0.135 0.057 (0.117) 0.725 0.526 (0.312) 0.674 0.095 0.267 0.140 0.032 (0.088)
(2,2) II 0 0.033 (0) 0.963 0.774 (0.137) 0.938 0.006 0.011 0.037 0.010 (0.047)

III 0.017 0.035 (0.028) 0.432 0.278 (0.294) 0.333 0.084 0.561 0.551 0.091 (0.122)
IV 0.674 0.160 (0.107) 0.271 0.146 (0.181) 0.018 0.001 0.607 0.055 0.009 (0.039)

3 I 0.056 0.045 (0.088) 0.457 0.363 (0.358) 0.442 0.441 0.530 0.487 0.065 (0.137)
(2,2) II 0 0.033 (0) 0.810 0.562 (0.277) 0.623 0.125 0.135 0.190 0.044 (0.087)

III 0.003 0.034 (0.016) 0.262 0.173 (0.245) 0.169 0.491 0.733 0.735 0.099 (0.114)
IV 0.273 0.118 (0.080) 0.501 0.302 (0.148) 0.063 0.012 0.179 0.226 0.032 (0.067)

4 I 0.096 0.053 (0.120) 0.339 0.210 (0.271) 0.206 0.431 0.668 0.565 0.083 (0.137)
(2,2) II 0 0.033(0) 0.396 0.384 (0.383) 0.400 0.498 0.483 0.604 0.069 (0.125)

III 0.001 0.033 (0.007) 0.072 0.072 (0.143) 0.049 0.447 0.926 0.927 0.113 (0.131)
IV 0.454 0.149 (0.110) 0.082 0.094 (0.100) 0.002 0.131 0.799 0.464 0.044 (0.095)

5 I 0.108 0.056 (0.128) 0.122 0.115 (0.221) 0.107 0.699 0.874 0.770 0.095 (0.125)
(2,2) II 0 0.033 (0) 0.361 0.063 (0.380) 0.373 0.381 0.506 0.639 0.072 (0.126)

III 0 0.033 (0) 0.016 0.043 (0.067) 0.011 0.678 0.980 0.984 0.118 (0.098)
IV 0.447 0.149 (0.109) 0.057 0.081 (0.093) 0.002 0.053 0.826 0.496 0.046 (0.095)

6 I 0.055 0.044 (0.086) 0.748 0.523 (0.303) 0.651 0.184 0.239 0.197 0.043 (0.107)
(2,2) II 0 0.033 (0) 0.869 0.604 (0.248) 0.681 0.095 0.083 0.131 0.038 (0.079)

III 0.008 0.035 (0.024) 0.517 0.305 (0.288) 0.330 0.200 0.495 0.475 0.080 (0.113)
IV 0.275 0.122 (0.080) 0.536 0.328 (0.130) 0.070 0.010 0.095 0.189 0.026 (0.055)

7 I 0.094 0.047 (0.094) 0.708 0.473 (0.300) 0.580 0.157 0.276 0.198 0.049 (0.106)
(2,2) II 0 0.033 (0) 0.835 0.606 (0.270) 0.687 0.137 0.118 0.165 0.040 (0.097)

III 0.003 0.034 (0.015) 0.548 0.278 (0.262) 0.280 0.209 0.490 0.449 0.092 (0.111)
IV 0.383 0.120 (0.084) 0.392 0.229 (0.154) 0.013 0.014 0.338 0.225 0.029 (0.069)

8 I 0.175 0.059 (0.125) 0.561 0.446 (0.352) 0.562 0.233 0.410 0.264 0.043 (0.123)
(2,2) II 0 0.033 (0) 0.958 0.713 (0.170) 0.894 0.007 0.027 0.042 0.020 (0.051)

III 0.013 0.035 (0.027) 0.399 0.261 (0.289) 0.307 0.394 0.601 0.588 0.094 (0.116)
IV 0.735 0.148 (0.089) 0.192 0.172 (0.166) 0.038 0.001 0.548 0.073 0.015 (0.046)

Table 5.7: Simulated values of EARS, not allowing skipping.
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by each drug is not considered because the data structure dose not provide the

marginal distributions. This is an area that is worth further investigation.



Chapter 6

Statistical Inference

6.1 Introduction

In previous chapters, we have focused on introducing new designs of the continual

reassessment method (CRM) and evaluating their statistical performance. Our

new designs are based on the cumulative distribution function of the normal

distribution, and our new model involves one unknown parameter α in the basic

model with one drug.

Although our new designs identify the maximum tolerated dose (MTD) at

the end of trial, it is only a point estimation and from statistical point of view,

it is important to develop statistical procedures for the confidence interval and

hypothesis testing for the population MTD.

The fundamental goal of these statistical procedures is to establish the

sampling distribution of the statistic for the unknown parameter α. Since Phase

I clinical trials often involve small sample sizes, exact methods based on small

93
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sample sizes are often difficult to derive. Most statistical procedures are using

asymptotic statistical method.

This is the key point of this current chapter. In this chapter, using tools of

asymptotic statistical inference, we derive the asymptotic distribution of the sample

statistic a for estimating the population parameter α. This asymptotic distribution

forms the foundation for deriving the confidence interval and hypothesis testing

procedure for the unknown parameter α.

6.2 Maximum Likelihood Estimation

Harville (1977) indicates that model parameters can be estimated by generalized

least squares of α and restricted maximum likelihood estimation. Wooldridge

(2010) proposes the asymptotic normality and asymptotic variance estimation

under random sampling. To estimate unknown parameters by maximum likelihood

estimators (MLE), we start with the likelihood function. The likelihood function

is given by

L(α) = f(yi|di;α) =
n∏
i=1

{
2Φ(β + αdi)

1 + Φ(β + αdi)

}yi {
1− 2Φ(β + αdi)

1 + Φ(β + αdi)

}1−yi
,

where yi = 0, 1.
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The log likelihood function can be written as

l(α)

=
n∑
i=1

log {f(yi|di;α)}

=
n∑
i=1

yilog

{
2Φ(β + αdi)

1 + Φ(β + αdi)

}
+ (1− yi)log

{
1− 2Φ(β + αdi)

1 + Φ(β + αdi)

}
.

The range of 2Φ(·)
1+Φ(·) is between 0 and 1, which ensures that the log-likelihood

function is well defined. The MLE of α, denoted by α̂, maximizes the log-likelihood

function and is given by

α̂ = argmax log(α) = argmax
n∑
i=1

logf(yi|di;α).

As usual, the MLE of α does not have a closed form expression but can be

obtained by the Newton-Raphson algorithm. To calculate the MLE, we introduce

the score function

s(α)

=
n∑
i=1

si(α)

=
n∑
i=1

dlog {f(yi|di;α)}
dα

=
n∑
i=1

{yi + Φ(β + αdi)yi − 2Φ(β + αdi)}φ(β + αdi)di
Φ(β + αdi)(1− Φ(β + αdi))(1 + Φ(β + αdi))

=
n∑
i=1

φ(β + αdi)diZi
Φ(β + αdi)(1− Φ(β + αdi))

,

where Zi = yi − πi = yi − 2Φ(β+αdi)
1+Φ(β+αdi)

and yi is the toxicity outcome associated

with di for i = 1, 2, · · · , n. Now yi takes value 1 with probability πi and 0 with
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probability 1− πi. Since E(Zi|di) = 0, it follows that

E(si(α)|di)

=
{1 + Φ(β + αdi)− 2Φ(β + αdi)}φ(β + αdi)di
Φ(β + αdi)(1− Φ(β + αdi))(1 + Φ(β + αdi))

{
2Φ(β + αdi)

1 + Φ(β + αdi)

}
+

{−2Φ(β + αdi)}φ(β + αdi)di
Φ(β + αdi)(1− Φ(β + αdi))(1 + Φ(β + αdi))

{
1− 2Φ(β + αdi)

1 + Φ(β + αdi)

}
= 0.

Assuming that l(α) is a twice continuously differentiable function, the asymp-

totic variance of α̂ is given by

Hn(α) =
ds(α)

dα

=
n∑
i=1

d2logi(α)

dα2

= −
n∑
i=1

φ(β + αdi)
2d2
i

Φ(β + αdi)(1− Φ(β + αdi))

+Zi
d

dα

{
φ(β + αdi)di

Φ(β + αdi)(1− Φ(β + αdi))

}
.

The expected value of the asymptotic variance conditional on di is shown to

be

−E
{

1

n
Hn(α0)|di

}
=

{φ(β + α0di)}2 d2
i

Φ(β + α0di)(1− Φ(β + α0di))
,

because

E

{
Zi

d

dα

{
φ(β + αdi)di

Φ(β + αdi)(1− Φ(β + αdi))

}
|di
}

= E(Zi|di)
d

dα

{
φ(β + αdi)di

Φ(β + αdi)(1− Φ(β + αdi))

}
= 0.
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Let α0 be the true value of the parameter α. By the first order Taylor

expansion,

Sn(α̂) ≈ Sn(α0) +
dSn(ᾱ)

dα
(α̂− α0),

where ᾱ lies between α̂ and α0, hence, ᾱ converges to α0 in probability.

We multiply by 1√
n

on both sides, then

1√
n
Sn(α̂) ≈ 1√

n
Sn(α0) +

1

n

dSn(ᾱ)

dα

√
n(α̂− α0)

=
1√
n
Sn(α0) +

1

n
Hn(ᾱ)

√
n(α̂− α0).

If ᾱ
p−→ α0, then 1

n
Hn(ᾱ)

p−→ H(α0) and α̂ is the solution to Sn(α̂) = 0, so

1√
n
Sn(α0) +H(α0)

√
n(α̂− α0) + op(1) = 0.

It follows that

√
n(α̂− α0) = −H(α0)−1 1√

n
Sn(α0) + op(1).

We define

A = −E {Hi(α)}

= −E
{
d2logi(α)

dα2

}
= −E

{
φ(β + αdi)

2d2
i

Φ(β + αdi)(1− Φ(β + αdi))

}
,
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and

B = V ar

{
dlogi(α)

dα

}
= E

{
d2logi(α)

dα2

}
−
{
E

{
dlogi(α)

dα

}}2

= E

{
d2logi(α)

dα2

}
= E

{
si(α)2

}
= E

{
Z2
i φ(β + αdi)

2d2
i

Φ(β + αdi)2(1− Φ(β + αdi))2

}
.

Then

E

{
dlogi(α)

dα

∣∣∣∣di} =

∫
dlogi(α)

dα
f(yi|di;α)dy

=

∫
1

f(yi|di;α)

df(yi|di;α)

dα
f(yi|di;α)dy

=

∫
df(yi|di;α)

dα
dy

=
d

dα

∫
f(yi|di;α)dy

= 0.

By the law of total expection,

E

{
dlogi(α)

dα

}
= E

{
E

{
dlogi(α)

dα

∣∣∣∣di}} = 0,

so

E(si(α|di)) =

∫
si(α)f(yi|di;α)dy = 0.
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From the above identity, we take derivatives on both sides, we have

d

dα

∫
si(α)f(yi|di;α)dy =

∫
d

dα
si(α)f(yi|di;α)dy

=

∫ {
dsi(α)

dα
f(yi|di;α) + si(α)

df(yi|di;α)

dα

}
dy

=

∫
dsi(α)

dα
f(yi|di;α)dy +

∫
si(α)

df(yi|di;α)

dα
dy

=

∫
Hi(α)f(yi|di;α)dy +

∫
si(α)

dlogf(yi|di;α)

dα
f(yi|di;α)dy

= E {Hi(α)|di}+ E
{
si(α)2

∣∣di}
= 0.

Therefore,

−E {Hi(α)|di} = E
{
si(α)2

∣∣di} ,
and

−E {Hi(α)} = E
{
si(α)2

}
, which implies A = B.

For sufficiently large n,
√
n(α̂−α0)

d−→ N(0, A−1BA−1). For A = B,
√
n(α̂−

α0)
d−→ N(0, A−1), where A = −E {si(α0)}.

The asymptotic variance, denoted by AV ar(α̂), of α̂ is estimated as

AV ar(α̂) =

{
n∑
i=1

{φ(β + αdi)}2 d2
i

Φ(β + αdi)(1− Φ(β + αdi))

}−1

.

Therefore, α̂ asymptotically follows a normal distribution with mean α0 and

variance 1
n

ˆAV ar(α)
−1

, denoted by α̂
Asy.∼ N(α0,

1
n

ˆAV ar(α)
−1

).
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The (asymptotic) confidence interval of α is given by

α̂± Z∗

√√√√{ n∑
i=1

{φ(β + α̂di)}2 d2
i

Φ(β + α̂di)(1− Φ(β + α̂di))

}−1

,

where Z∗ is the upper critical value in the standard normal distribution.

On the other hand, the asymptotic statistic for testing the null hypothesis

H0 : α = α0 versus the alternative hypothesis Ha : α 6= α0 (α > α0 or α < α0) is

given by

Z =
α̂− α0√{∑n

i=1
{φ(β+α0di)}2d2i

Φ(β+α0di)(1−Φ(β+α0di))

}−1
,

which follows the standard normal distribution.

6.3 Numerical Illustration

We use the Newton-Raphson method to find the MLE of parameter α in the one

drug model discussed in Chapter 2. For example, the second row in Table 6.1

shows that in scenario 1, after 348 iterations, the Newton-Raphson procedure

stopped, and α̂ converged to 2.999996. The 95% asymptotic confidence interval of

α is calculated to be (1.07, 4.93). This suggests that we may use α = 3 in future

studies.

6.4 Conclusion

To follow up with our new proposed designs of the CRM, we develop the foundation

for statistical inference of our new designs. The center of this development is
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Scenario n.stop α̂ C.I.
1 348 2.999996 (1.07, 4.93)
2 209 2.999994 (0.00, 7.91)
3 203 2.999994 (1.09, 4.91)
4 197 2.999994 (0.00, 7.50)
5 133 2.999991 (0.00, 8.62)
6 16 2.999996 (0.00, 15.40)

Table 6.1: values of α̂ in scenarios 1 to 6

to derive the asymptotic distribution of the sample statistic a for the unknown

parameter α, and this is achieved in this chapter using techniques of asymptotic

statistical methods. Finally, we derive the asymptotic confidence interval and

hypothesis testing procedure for the unknown parameter α.



Chapter 7

Summary

In my PhD Thesis, I have introduced some new parametric designs of Phase I

clinical trials and evaluated their performance.

The new designs use the Continual Reassessment Method (CRM) but are

based on new parametric models depicting the toxicity probability function of

the dose level. The new function shows similar analytic properties of the existing

parametric functions in the literature that have been used with CRM. However,

our new function represents not just a single model but instead a class of models.

This allows the possibility of choosing the most appropriate model with this class.

We also introduce some new performance measures and summarize our

comparison criteria as BEARS: Benchmark, Efficiency, Accuracy, Reliability

and Safety. Such criteria allow us to systematically compare and evaluate the

performance of our new models and existing models.

In summary, simulation results show that our new designs perform relatively

102



CHAPTER 7. SUMMARY 103

good in comparison with currently available designs in the literature, based on the

criteria BEARS. Our new designs are potentially useful in the practice of clinical

trials, however, there may be still practical issues to resolve.

At the end, we obtain the asymptotic distribution of the unknown parameter

in our new model and construct the foundation for deriving the confidence interval

and hypothesis testing procedure for the unknown parameter.

In future, we will consider the overdose and ineffective dose controls in Phase

I. We will choose other cumulative distribution functions to replace the normal

distribution in our proposed model, and we can even use a semi-parametric model

to replace the normal distribution in Phase I. We will also consider the late-onset

toxicity in Phase I and late-onset efficacy in Phase II, or combined seamless

PhaseI/II clinical trials. Finally, we can investage theoretical properities of our

new models.
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