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ABSTRACT

The numerical model presented in this thesis deals with condensation in a vertical tube in
the presence of a non-condensable gas. A vapor-gas mixture enters a tube of radius 7,
with a specified velocity wui,, pressure Py, gas mass fraction Wi, and temperature
difference AT, between the inlet and the wall. The temperature of the tube wall is
maintained lower than the inlet temperature resulting in steam condensation and a liquid
film of thickness & forming along the wall. The model is capable of handling both

turbulent and laminar flow conditions.

The model was derived from the full set of Navier-Stokes equations and the energy
equation applied to both the core and the liquid film. The r-z coordinate system defining
the problem was transformed into an 77—y coordinate system such that 7= 0 at the
centerline of the tube, 77 = 1 at the mixture-liquid interface, and 7= 2 at the tube wall.
The transformed governing equations were discretized using a finite volume method and
solved in a fully-coupled manner using a block tri-diagonal matrix algorithm. In order to
predict turbulence across both the core and the film, three different turbulence models
were used and were tested and compared with one another. Model 1 used a mixing
length model in both the core and the film, model 2 used a low Reynolds number &-¢
model in both the core and the film, and model 3 used the k-¢ model in the core and the

mixing length model in the film.
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Laminar results for steam-air mixtures were presented through velocity, temperature, and
gas mass fraction cross-sectional profiles, as well as film thickness and Nusselt number
axial distributions. A parametric study was done to determine the effects of inlet pressure
Py, inlet Reynolds number Rejy, inlet gas mass fraction Wi, and temperature difference
AT, on both the film thickness, and the local Nusselt number. From this study it was
found that the film thickness increased when either AT}, or Rey, increased or when Wi, or
P;, decreased and the Nusselt number increased with increasing Rey, or decreasing AT;, or

Win.

Fdr the case of turbulent flow, the local heat transfer coefficients resulting from the three
turbulence models were compared with the experimental results of Goodykoontz and
Dorsch (1966), Siddique (1992), and Kuhn (1995). Both models 2 and 3 compared well
with all three experiments but the best agreement was found when comparing model 2
with Kuhn’s data. In this case, 98% of the numerical results were within = 30% of

Kuhn’s experimental results.

Turbulent results were obtained for a variety of inlet conditions and a parametric study
was completed to determine the effects of the inlet parameters on both the film thickness
and the local Nusselt number. Results showed similar trends as those found for laminar
flow with the exception of the effect of inlet Reynolds number on the dimensionless film

thickness.
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CHAPTER 1

INTRODUCTION

Condensation is defined as the process of changing from a vapor to a liquid phase and
this process occurs when the temperature of the vapor is reduced below its saturation
temperature. This process often occurs when a vapor is brought into contact with a cool
surface resulting in either dropwise or filmwise condensation. The more common of the
two and the most relevant to this thesis is filmwise condensation. This occurs when a
condensed liquid film covers the entire surface and flows along the surface due to the
forces of gravity and vapor shear. The condensate film provides a resistance to heat
transfer between the vapor and the wall and therefore, a thinner film is more desirable to

promote heat transfer.

The study of film condensation is important due to its relevance in many industries
including refrigeration, chemical processing, and thermal power generation. The process
of condensation has been studied since 1916 when Nusselt developed an analytical
solution for vapor condensation along a vertical surface. Since then there have been
numerous studies done on both internal and external condensation for Various geometries.
These studies range from simple correlations to advanced numerical and experimental
models. More recently, for the case of internal film condensation, research has been done
to study the effects of a non-condensable gas on vapor condensation. It has been found
that the condensation rate drops substantially even when a small concentration of gas is

present.



The topic of steam condensation in the presence of gas is important to the nuclear
industry in the application of Passive Containment Cooling Systems (PCCS). In a PCCS,
steam is discharged into a containment building filled with gases during a loss of coolant
accident in a nuclear reactor. In order to condense this steam and reduce the pressure in
the containment building, it is important to be able to predict how the gases will affect the
condensation rate. The majority of theoretical studies on internal flow vapor
condensation with the effect of a non-condensing gas have been made with simplified
models while only a few were made with a detailed model based on the governing

differential equations.

The purpoée of the present study was to develop a numerical model from the full set of
governing equations for vapor condensation in a vertical tube in the presence of a gas. In
order to produce results for turbulent flow conditions, three different turbulence models
were employed and compared with each other. This thesis is an extension of the work
done by Siow (2001) who developed a numerical model for laminar film condensation
inside a two-dimensional, parallel plate channel in the presence of a gas. Siow’s model
was adapted such that a cylindrical coordinate system was used instead of a Cartesian
coordinate system. In addition to adjusting the geometry in the model, turbulence models

were added to both the core and the film.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The topic of film condensation has been studied since the beginning of the 19 century.
Nusselt (1916) analyzed film condensation of a pure vapor on a vertical surface and
developed solutions for the local and average Nusselt numbers. This was done by
neglecting the shear stress at the liquid-vapor interface, neglecting the advection terms in
both the momentum and energy equations, and assuming no pressure variation in the y
direction (perpendicular to the plate). The resulting equation for the average Nusselt

number on a plate of length L was:

@.1)

pLg(pL _pv)hfgL3 :llM

Nu, = 0.943{
IULA’L(Tsat - Twall)

Following his work, both external and internal flows with condensation have been
studied extensively for various geometries and vapors. In addition to pure vapor
condensation, numerous investigations have been done on the effect of a non-
condensable gas on the rate of condensation. A review of theoretical studies of laminar
film condensation on plates and tubes was reported by Rose (1988). For the purpose of
this thesis, the focus will be on condensation in vertical tubes with and without a non-
condensable gas present. This chapter will be separated into five sections: (1) numerical

studies on pure vapor condensation in vertical tubes, (2) numerical studies on



condensation with a non-condensable gas in vertical tubes, (3) experimental studies on
condensation in vertical tubes, (4) numerical models developed at the University of

Manitoba, and (5) a review of turbulence models.

2.2 Numerical Studies on Pure Vapor Condensation in Vertical Tubes
There have been a large number of techniques proposed to predict the heat transfer
coefficient for pure vapor condensation in vertical tubes. These techniques range from

simple empirical correlations to solutions involving a full set of governing equations.

Shaw (1979) developed a simple empirical correlation to predict the heat transfer
coefficient for forced convection condensation inside pipes. This correlation was based
on his earlier work for saturated boiling heat transfer and is capable of predicting the heat
transfer coefficient for a wide range of parameters. The correlation was developed by
analyzing data from horizontal, vertical up-flow, and vertical down-flow orientations and
finding an equation that applied to all these cases. Chen (1987) developed a general
correlation that can be used for both the case of a quiescent vapor (as in Nusselt’s
solution) and a vapor under forced convection conditions (as in Shaw’s correlation).
Chen’s correlation, based on analytical and experimental results, includes the effects of
interfacial shear stress, interfacial waviness and turbulent transport in the condensate
film. More recently, Kim and No (2000) developed a model for larger diameter tubes.
This model was based on the similarity between the single-phase turbulent convective

heat transfer and annular film condensation heat transfer.



In addition to the semi-empirical correlations discussed above, there have been several
solutions developed from approximations of the governing equations including
conservation of mass, momentum, and energy. Dobran and Thorsen (1980) modeled
laminar flow in both the vapor core and the liquid film. They performed an integral
analysis on the governing equations while assuming parabolic velocity and temperature
profiles across the film and a parabolic velocity profile in the core. Their focus was to
study the effect of the Froude-to-Reynolds number ratio, the Buoyancy number, the
vapor-to-liquid viscosity ratio, the liquid Prandtl number, and the Subcooling number.
Pohner and Desai (1989) developed a model for either a turbulent or a laminar vapor core
and a laminar film. Closure was obtained by assuming velocity and temperature profiles
in each phase. For the case of a turbulent core, the interfacial shear stress was defined
using a turbulent friction factor and the interfacial heat flux was evaluated using a
modified form of the Dittus-Boelter equation. Their turbulent core/laminar film model
showed good agreement with experimental results. Chen and Ke (1993) modeled
turbulent flow in the vapor with a laminar film near the entrance developing into a
turbulent film once a certain film Reynolds number was reached. The contribution of
their work was in proposing a new eddy viscosity model which was divided into three
regions: the inner region in the liquid condensate near the wall, the interface region
including both the liquid and the vapor, and the outer region for the vapor core.
Bellinghausen and Renz (1992) developed a model based on the conservation equations
of mass, momentum, and energy. The low Reynolds number k-¢ model of Jones and

Launder (1972) was applied to both the vapor and liquid film regions. In order to predict



the transition from laminar to turbulent film flow, a minimum value for the kinetic energy

was set to avoid a complete damping of turbulence.

Panday (2003) proposed a model for pure vapor condensation with turbulence in both the
liquid film and the core. In this model, Panday solved a full-set of parabolic governing
equations including the conservation of mass, momentum, and energy in both the liquid
film and the vapor core. Axial diffusion was neglected and the pressure gradient in the
radial direction was assumed to be zero. Turbulence was modeled in both regions using

Pletcher’s mixing length model for boundary layer flow with transpiration.

In a recent model proposed by Oh and Revankar (2005a), a simple condensation model
was developed to analyze complete condensation in a passive containment cooling
system condenser. The liquid film was assumed laminar with a parabolic velocity profile
and a linear temperature profile. The interfacial shear was determined from single-phase
friction factor correlations. They assumed two different forms for the local heat transfer
coefficient, 4,, using ideas proposed by previous investigators; these correlations for 4,
require knowledge of the film thickness. An iterative solution procedure was used to
calculate the film thickness along the tube and consequently the local heat transfer
coefficient. They compared their results with their own experimental data and concluded

that the agreement was good.




2.3 Numerical Studies on Condensation in the Presence of a Gas in Vertical Tubes
The presence of a non-condensable gas during vapor condensation has been found to
greatly reduce the condensation rate. This is due to the buildup of non-condensable gas
concentration at the mixture-liquid interface which decreases the partial pressure of the

vapor and thus the interface temperature.

For theoretical analyses of condensation of vapor in the presence of a non-condensable
gas, one of two techniques is usually employed: boundary layer analysis or heat and mass
transfer analogy. For the boundary layer analysis, the governing conservation equations
are solved in both the liquid film and the vapor-gas mixture and are linked together with
interfacial boundary conditions. These equations are solved using an integral approach,
assuming similarity, or via another numerical method. The heat and mass transfer
analogy is based on a heat balance at the liquid-mixture interface where the heat
transferred from the mixture is equated to the heat transferred through the condensate
film. The heat transfer from the mixture phase is made up of sensible heat and the latent

heat given off when the vapor condenses.

Several solutions have been developed based on the heat and mass transfer analogy.
Wang and Tu (1988) used this method and included the effects of interfacial shear and
pressure drop but neglected the sensible heat transfer from the gas phase. From their
results, they found that with small amounts of gas (W = 1%), the heat transfer was
reduced by 15-30% while with larger amounts of gas (W = 10%), the heat transfer was

reduced by 60%. They also showed that the presence of gas had a larger effect on the



heat transfer for lower mixture velocities. Siddique et al. (1993) studied the effects of air
or a lighter gas such as hydrogen or helium on steam condensation in vertical tubes.
They modeled the gas-steam mixture using the analogy between heat and mass transfer
and the liquid phase was modeled as heat conduction across a falling film. From their
investigation, they determined that for the same gas mass fraction, hydrogen and helium
have a more inhibiting effect on heat transfer when compared with air. They also found
that the film roughness effects were negligible for gas mixtures with low Schmidt number
(Sc < 1.0). Dehbi and Guentay (1997) developed a model that included the heat transfer
to the coolant in addition to the heat transfer in the condenser. This allowed for a
solution to be reached without the specification of a wall temperature. Their model used
the heat and mass transfer analogy in the mixture along with a Nusselt-type solution in
the liquid film. From their results they showed that the heat transfer coefficient was
reduced by increasing the inlet gas mass fraction, reducing the inlet mass flow rate,
increasing the inlet temperature (this reduced the flow rate), and using lighter gases such
as hydrogen or helium. No and Park (2002) also used the heat and mass transfer analogy
and proposed a non-iterative condensation model for steam condensation in the presence
of a non-condensable gas. Their predictions showed good agreement with experimental

data.

Ghiaasiaan et al. (1995) modeled condensation in a vertical tube based on the two-phase
flow conservation equations and using the ‘stagnant film model’. In the stagnant film
model, a quasi-steady, stagnant gaseous film is assumed to separate the liquid-gas

interface from the bulk gas and heat and mass transfer are assumed to take place through



this film by diffusion. They proved that the stagnant film model was capable of

predicting the correct data trend over a wide range of parameters.

There have been very few solutions developed based on a complete boundary layer
analysis for vapor condensation in vertical tubes in the presence of a gas. Yuann (1993)
solved the complete set of governing equations including the conservation of mass,
momentum, energy, and species concentration for both the liquid film and the vapor-gas
mixture. Turbulence was modeled by employing the two equation low Reynolds k-¢
model of Jones and Launder (1972) in both the mixture and the liquid film and using an
empirical correlation to account fof waves at the interface. Their model was validated by
comparing with the experimental results of Vierow (1990), Siddique (1992), and Kuhn
(1995). More recently, Revankar and Pollock (2004) developed a model based on these
same governing equations. Several assumptions were made in their analysis including
constant properties, locally self similar velocity profiles and a linear temperature profile
across the liquid film. In addition an empirical correlation was used for the friction
factor, a mixing length model was applied to the mixture region to account for

turbulence, and the liquid film was assumed laminar.

24 Experimental Studies on Condensation in Vertical Tubes
Several experiments have been performed for condensation both with and without non-

condensable gases. Some of these experiments are reviewed below.



Goodykoontz and Dorsch (1966, 1967) performed experiments on pure steam
condensation in both a 15.9-mm diameter vertical tube and a 7.44-mm diameter tube for
the NASA Lewis Research Centre. For the smaller diameter tube, a lower range of inlet
velocities was tested resulting in a negligible pressure drop along the tube. For the larger
diameter tube, high inlet vapor velocities were tested and static pressure rises were
obtained for conditions of high heat flux. In both cases, the heat transfer coefficient was
highest near the inlet and dropped along the condenser until complete condensation

occurred.

To support General Electric’s Passive Containment Cooling System (PCCS), Vierow
(1990) constructed an experimental facility to étudy the effects of a non-condensable gas
on steam condensation. The focus of this work was on presenting data on the local heat
transfer coefficient and on understanding how non-condensable gas affects the

condensation rate.

Siddique (1992) and Siddique et al. (1993) conducted an experimental investigation at the
Massachusetts Institute of Technology (MIT) for steam condensation in the presence of
air or helium flowing downward inside a 46-mm diameter vertical tube. The experiments
for steam-air covered mixture inlet temperatures of 100, 120 and 140 °C, inlet air mass
fractions of 10-35 %, and inlet Reynolds numbers of 5,000-22,700. For the steam-helium
tests, the same inlet temperatures were tested while the inlet helium mass fractions ranged
from 2 to 10 % and the inlet Reynolds numbers ranged from 5,000-11,400. Following

this, Hasanein et al. (1996), also from MIT, extended the work of Siddique to cover a

10



wider range of inlet Reynolds numbers and gas mass fractions for the steam-helium
experiments. In addition, they measured the local heat transfer coefficients of steam and

the simultaneous presence of air and helium.

Kuhn (1995) and Kulm et al. (1997) found that heat transfer coefficients from previous
experiments did not agree with one another and believed that this may be caused by
turbulence perturbations or by developing flow entrance effects in the cooling annulus
which are influenced by the method used to determine the coolant bulk temperature.
Therefore, Kuhn’s objective was to develop a new test section and method to minimize
these problems. A wide range of cases were run for steam condensation with either air or
helium and three different correlations were developed: one implementing the
degradation factor method, one using the diffusion layer theory, and one using a mass
transfer conductance model. To prove that their test section was producing accurate and
consistent results, several tests were repeated to demonstrate the level of reproducibility
of the experimental data.

Park and No (1999) from the Korea Advanced Institute of Science and Technology
performed experiments on condensation in the presence of air in a vertical tube of the
passive containment cooling system of the CP-1300 to show the parametric effects on
condensation heat transfer and to develop an empirical correlation. Also from this same
institute, Kim and No (2000) performed pure steam condensation experiments at
pressures as high as 7.5 MPa. Heat transfer coefficients were calculated and the two-

phase pressure drops were measured.
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More recently, Oh and Revankar (2005b) performed experiments on pure vapor
condensation for turbulent flow in a 26.6-mm inside diameter vertical tube. In these
experiments, complete condensation of steam was obtained by submerging a condenser
tube in a pool of water where heat from the condenser tube was removed by boiling the
water in the pool. From these experiments, they presented results for the overall heat
transfer coefficient as a function of system pressure and temperature difference between
the core and the wall. The data collected from these experiments showed that for a given
steam flow rate, the pressure in the system adjusted itself to ensure complete
condensation; for a large steam flow rate, the pressure in the system increased to
condense all the steam. The condensation heat transfer rate was found to increase with
pressure while the condensation heat transfer coefﬁcient decreased with pressure. Oh
and Revankar (2005c) also performed experiments to study the effects of a non-
condensable gas (air) on steam condensation. From these experiments, they presented
results for the overall heat transfer coefficient as a function of system pressure, inlet mass
flow rate, and gas mass fraction (up to 10%). They found that the condensation heat
transfer coefficient decreases with an increase in the amount of gas or an increase in

pressure, while it increases with increasing inlet mass flow rate.

2.5  Numerical Models Developed at the University of Manitoba

The first study done at the University of Manitoba on vapor condensation in the presence
of non-condensable gases was that by Chin (1995) and Chin et al. (1998). Chin modeled
laminar film condensation on isothermal vertical and inclined plates using the complete

two-phase boundary layer equations. Various vapor-gas mixtures were used including

12



steam-air, sodium-argon, and glycerine-bromine. The objective of this study was to
examine the effects of either the inertia terms or the energy convection and subcooling
terms on heat transfer. For sodium-argon mixtures it was found that the inertia effects
were significant for non-wavy laminar flow and decreased as the gas mass fraction
increased. For the glycerine-bromine mixtures, the effect of energy convection and

subcooling was found to be significant for all values of gas mass fraction.

Srzic (1997) and Srzic et al. (1999) extended the work of Chin by studying the effects of
a lighter gas on the heat transfer. His model solved the governing equations up to the
separation point. It was found that the lighter gas resulted in a larger reduction in the heat

transfer than heavier gases.

Groff et al. (2002) developed a numerically based algebraic correlation for Nusselt
number during laminar film condensation from steam-air and steam-hydrogen mixtures
on isothermal horizontal plates. Good agreement was obtained between the correlation
and the numerical results with a root mean square deviation of about 1.7% for both

vapor-gas mixtures.

Siow (2001) and Siow et al. (2002) modified the model further to study film
condensation inside a parallel-plate channel in the presence of a non-condensable gas. In
addition, Siow also re-developed the solution method such that the governing equations
were solved simultaneously using an advanced matrix algorithm instead of the segregated

solution method used in Chin and Srzic’s work. Siow studied the effects of the inlet gas
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mass fraction, the inlet velocity, the inlet pressure, and the temperature difference
between the inlet and the wall on the heat transfer. In addition, the effect of a downward
inclination on condensation was studied and it was found that the film thickness
decreased substantially due to the gravitational acceleration. Siow also analyzed
condensation of R134a-air mixtures and found that a lower heat transfer and higher

pressure drop were obtained compared with the steam-air mixtures.

2.6  Turbulence Modeling
When modeling turbulent flow, the governing equations are the same as those for laminar

flow, with the exception of the laminar stresses (u0u/dy ) being increased by additional

stresses known as Reynolds stresses. Turbulence models have been developed to
calculate these stresses and thus close the system of equations. = Boussinesq (1877)
proposed a method for modeling the turbulent Reynolds stresses called the eddy viscosity

concept. Analogous to the definition of the laminar shear stresses (¢ = pou/0y ), the

Reynolds stress was defined as follows:

P Yo 2.2)

In this definition, x'is the eddy viscosity and is often modeled as being a function of
either the mean velocity, or additional turbulence fields such as the turbulent kinetic
energy (k) and dissipation rate (¢). Turbulence models are classified based on the

number of transport equations used for the turbulence quantities. The two classes of
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turbulence models that will be reviewed here are the zero equation models and the two

equation models.

The zero equation models are relatively simple models that are easy and inexpensive to
implement. Prandtl (1925) developed a mixing length theorem that received even more
respect than the eddy viscoesity concept mentioned above. This theorem was based on the
idea that in turbulent flow, the fluid particles will join together to form lumps that move
together as a unit. These lumps of fluid would retain their momentum in the x-direction
for a distance £ in the y-direction. Prandtl defined this distance £ as the mixing length

and defined the Reynolds stresses in terms of this mixing length as follows:

di
dy

du

o (2.3)

Comparing Equation (2.3) with the Boussinesq hypothesis shown by Equation (2.2) gives

the following equation for the turbulent viscosity:

(2.4)

The physical interpretation of the mixing length was defined by Schlichting (1968) as
“The distance in the transverse direction which must be covered by an agglomeration of

fluid particles traveling with its original mean velocity in order to make the difference
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between its velocity and the velocity in the new lamina equal to the mean transverse

fluctuation in turbulent flow.”

Von Karman (1939) speculated that near the wall, the mixing length may be proportional

to the distance from the wall:
f=ky (2.5)

In the above equation, x is the von Karman constant, and y is the distance from the wall.

With this equation, the turbulent viscosity goes to zero at the wall.

Van Driest (1956) tried to improve the mixing length model for the region near the wall

by including a term for viscous damping. The mixing length was defined as:

{= KJ’[I—GXP[_T)};B where 4," =26 and y+= i (2.6)

Y7,

There have been several models based on the van Driest model. The one that will be
reviewed here is Pletcher’s (1974) mixing length model which was used in Panday’s
(2003) work to model pure vapor condensation in vertical tubes. Pletcher proposed a
generalization of the van Driest damping function to handle flows in which the shear

stress near the wall varies significantly. This turbulence model is suitable for flows with
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transpiration and was used for both the liquid film and the vapor core in Panday’s model.

The equations defining this model will be discussed in the following chapter.

Two equation models use two partial differential equations to model turbulence
quantities. In these models, the length scale is determined from a transport equation.
This length scale is often expressed in terms of the dissipation rate, ¢, but is sometimes
expressed in terms of the specific dissipation rate, @. This review will focus on the
length scale being expressed in terms of & The most well known version of the k-¢

model is that by Jones and Launder (1972). They proposed both a high Reynolds number
model and a low Reynolds number model. The high Reynolds number model is given by

the following equations:

Eddy Viscosity:

v=C ke 2.7)

Turbulent Kinetic Energy:

t
ot Ox; " Ox; Ox; o, Ox;
Dissipation Rate:
2 t
@JFUJ__Qi:Cd_{TiQ({L_Cg?E_JFi pp Y 0¢ .9)
ot ox; kY ox, Tk ox o, Ox;
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Coefficients:

C,=144, C,=192, C, =009, o0,=10, and o, =13 (2.10)

For wall bounded flows, this high Reynolds number k-& model cannot be used in the
vicinity of the wall since it neglects the effects of viscosity. For this reason, empirical
wall functions are often employed to connect the turbulent core to the solid boundary.
More recently, low Reynolds number models have been developed which include a wall
damping effect in the empirical constants of the transport equations. These models
therefore allow integration of the transport equations for the turbulent kinetic energy and
dissipation rate right up to the Wall. There have been several reviews done comparing
various low Reynolds number k-¢ models including Patel et al. (1984), Hrenya et al.
(1995), and Thakre and Joshi (2000). Depending on the flow conditions, each review
found different conclusions in terms of which model best predicts the experimental

results.

In the second model proposed by Jones and Launder (1972), viscous modifications were
added to the k-& model in order to adapt it for low-Reynolds-number regions close to the
wall. This model was used by Yuann (1993) in modeling vapor condensation in the
presence of a gas in vertical tubes and also in Bellinghausen and Renz (1992). The

equations and coefficients defining this model will be discussed in the following chapter.
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2.7 Summary

From this review it was found that the majority of numerical work done on condensation
in vertical tubes in the presence of gas used the heat and mass transfer analogy. The only
author who used the full set of governing equations for vapor-gas mixtures without
profile assumptions was Yuann (1993). The purpose of this research was to develop a
model based on the full set of governing equations for turbulent convection steam
condensation in the presence of a gas. The equations in Siow’s (2001) numerical model
will be changed from Cartesian to radial coordinates and the geometry will be modified
to model a vertical tube. In addition, turbulence models will be added to both the liquid

film and the mixture core to allow for a solution for turbulent flow conditions.

The goal is to compare different turbulence models including a mixing length model and
a two-equation model and evaluate their performance. The numerical model will be
compared with experimental results using the different turbulence models and a
parametric study will be done to analyze the effects of the various independent

parameters on condensation.
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CHAPTER 3

MODEL DESCRIPTION

3.1 Problem Statement and Assumptions

A diagram of the problem being considered is shown in Figure 3.1. A mixture of a
saturated vapor and a non-condensable gas enters a vertical tube of radius 7,, with a
uniform temperature profile, Ti,, a uniform velocity profile, ui,, a uniform pressure Py,
and a uniform gas mass fraction, ;. The teﬁperature of the tube wall is maintained
lower than that of the inlet mixture resulting in vapor condensation and a liquid film of
thickness & developing along the length of the tube. The mixture entering the tube is
either laminar for cases of low inlet Reynolds numbers, or turbulent, for cases of high
inlet Reynolds numbers. The liquid film is laminar near the inlet and can become
turbulent at a sufﬁdiently large value of liquid Reynolds number. The vertical orientation
of the tube results in an axi-symmetric flow which allows the problem to be modeled as

two-dimensional.
The following assumptions were made when formulating the governing equations:
e The flow is steady state — All the properties and flow conditions are
assumed to be independent of time and therefore, variation with respect to

time will not be considered.

e The liquid-mixture interface is smooth.
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Figure 3.1 Physical model

e Both the liquid and the mixture are Newtonian fluids — The shear stresses
in both phases are assumed to vary linearly with the strain
rate, 7 = uou/or .

e The vapor-gas mixture is treated as an ideal gas mixture — The mixture is

treated as a binary mixture of two ideal gases. The density is determined
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from the ideal gas law and the total pressure is the sum of the partial
pressures of the gases.

e Saturation conditions are assumed at the liquid-mixture interface — For
condensation to occur, the vapor must be saturated; therefore, the interface
temperature will equal the saturation temperature corresponding to the
partial pressure of the vapor.

e The pressure is assumed uniform in the radial direction — Pressure
variation across the tube is expected to be small therefore; dP/dr =0.
However, the pressure is allowed to vary in the axial (z) direction.

e Axial diffusion of heat, momentum, and mass are negligible — This is a
valid assumption since the radial diffusion is much larger than the axial

diffusion.

3.2  Mathematical Model

The liquid film and the mixture core were each defined by a set of governing equations in
the 7-z coordinate system and were connected by interfacial boundary conditions. For
high liquid film Reynolds numbers, one of two turbulence models was included in the
analysis: Pletcher’s (1974) mixing length model or the low Reynolds number &-& model
of Jones and Launder (1972). All the properties in the equations are allowed to vary and

are determined by methods that will be discussed in Section 3.3.
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3.2.1 Liquid Phase Governing Equations
The liquid region was defined by the following equations for conservation of mass,

momentum, and energy.

Liquid Continuity Equation:

0 10 '
'é—Z:COLuL)-i—;—a_;(rpLUL):O 3.1

Liquid Momentum Equation:

0 10 10 ou dP
_a;(pLuLuL)+;5;(rpLuLvL)=—;'é;(rluL,eff a—rL)"'pLg_Z | (3.2)
Liquid Energy Equation:

0 10 10 o7,

"a”z‘(pL”LCP,LTL )+ ;E(FIOL’ULCP,LTL ) = ;_a;(r/’{’L,eff ’5;’:) (3.3)

In the above equations, u, . and A . are the effective viscosity and thermal

conductivity, respectively, and are defined as:

Uy o = My + 1 Where 4 is the turbulent viscosity in the liquid (3.4

Ao =A, +Ay  where A; is the turbulent thermal conductivity in the liquid ~ (3.5)

:uIt.CP,L

t

with 4, =
Pr,

(3.6)
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The liquid turbulent Prandtl number Pr; was set to unity and the turbulent viscosity will
be defined in Section 3.2.3.  When the film is laminar, the turbulent viscosity and

turbulent thermal conductivity are zero resulting in: z4 o = 1 and A, 4 =4, .

3.2.2 Mixture Phase Governing Equations
Similar to the liquid region, the mixture region is also defined by the conservation of
mass, momentum, and energy. In addition to these three equations, an extra equation is

required for the conservation of gas.

Mixture Continuity Equation:

0 10
g(pMuM).*—;'é—;(rvaM)zo (3.7)

Mixture Momentum Equation:

0 10 10 Oty - dP

— APy Up iy )+ —— (7 Uy )=——| 7 — |+ - 3.8
Py (PM M M) r@r( Puly M) . 67”( Hotefr o ) Pu& 77 (3.8)
Mixture Energy Equation:

po) 10
——(pMuMCP,MTM )"'__“(FIOMUMCP,MTM):
¥ or

0z
10 T, 10 ow
- M~ = D \Ch, —C )T,
r 6r (rﬂ’M,eff ar J » al" (rpM eff( P P,v) Br Mj

(3.9)
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Mixture Mass-Diffusion Equation:

0 10 10 ow
_(pMuMW)+__(rpMUMW):__(rpMDeﬂ“ ] (3.10)
oz r or ¥ Or or

The effective viscosity s . , the thermal conductivity 4, . , and the diffusion coefficient

D, are defined as:

Hnierr = My + 1y Where gy is the turbulent viscosity in the mixture (3.11)

= A, +A, where 1, is the turbulent thermal conductivity in the mixture (3.12)
seff M

t ‘
. 1y C

with 4, = Mrt”’M and Pry, =1 (3.13)
M

Dy =D+D' (3.14)
,ut

where D' = ——— and Scy, =1 (3.15)

P SCy

The last term of Equation (3.9) represents the energy transfer due to mass diffusion.
When there is no gas, this term goes to zero. Equation (3.10) ensures that the amount of

gas is conserved across a control volume.

3.2.3 Turbulence Models
One of two turbulence models was used to determine the turbulent viscosity for both the
liquid and mixture regions in the above momentum equations: Pletcher’s (1974) mixing

length model or the Jones and Launder (1972) low Reynolds number k-& model.
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3.2.3.1 Mixing Length Model

Pletcher’s mixing length model is based on the damping function proposed by

van Driest (1956) and was developed for turbulent boundary layer flow with

transpiration. The turbulent viscosity for both the liquid and the mixture regions is

determined with the following equation:

ou

or

ﬂt — p£2

where, { is the mixing length defined by :

£=041D* for S%—L—
0.41D*

£=0.895, for > 008904,
0.41D*

(3.16)

(3.17)

(3.18)

For the liquid region, y is the distance measured from the wall, and for the mixture

region, y is the distance measured from the interface. The boundary layer thickness (Jpr)

is defined as the value of y for which #eative = 0.99 #e. In the mixture region, ureadve 1S the

mixture velocity relative to the velocity at the interface (urelative = Um - %i) and u. is the

centerline velocity relative to the velocity at the interface (ue = uc —

ui). In the liquid

region, upentive 1S the liquid velocity relative to the velocity at the wall and . is the
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velocity at the interface relative to the velocity at the wall; since the velocity at the wall is

ZET0, Urelative = 41, and e = u;. The damping function, D* is given by:

1/2
D*:l—exp ___’ﬂ iﬁ_ (319)
2611, \ o7,

The subscript o in the above equation refers to the wall for the liquid region and the

interface for the mixture region. The shear stress 7is defined by:

r=7,(1+V;U" +P"y") (3.20)
In this equation,
yr=2o (3.21)
uT :
—— (3.22)
u‘[
pr=| £ ap (3.23)
plu, ) dz
yt = (3.24)
U

u, =7,/ p, (3.25)
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7, is the shear stress for fully developed turbulent region and is evaluated at y* =26.

3.2.3.2. Low Reynolds Number 4-s Model

In the Jones and Launder low Reynolds number k-& model, the turbulent viscosity is
determined from the solution of the transport equations for the turbulent kinetic energy
'and dissipation rate. One of the benefits of this model is that it is valid in the viscous
sub-layer and therefore it can be applied right up to the wall in the liquid region and to

the interface in the mixture region.

_The turbulent kinetic energy and dissipation equations are identical in both the liquid film

and the mixture region and will therefore only be shown only once for the liquid region:

Kinetic Energy:

, 5 (3.26)
+up| == | - pLe. —2u i
L a L“L L a
Dissipation Rate:
0 10 10 Uy |0e,
—lpu e )+——\rp v, 6 )=——|H p, += | =&
aZ(PLLL) r@r(pL LL) rar|:(ﬂL O'gjar
3.27
rc S Ouy Z_C f 5L2+2/UL/1£ O’uy 2 o
el kL :uL 5r £2 2pL kL pL arz
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The constants in the above equations are:

o, =1.0 o, =13
C, =155 C, = 2.0(1 ~0.3 exp(— Re‘LZ)) (3.28)
k.’ '
where Re; = Pl (3.29)
' Hiéy

The turbulent viscosity is determined from the following:
H=C, [k’ 5 (3.30)

where C, =0.09 and  f, =exp(-2.5/(1+Re;/50)) (3.31)

3.2.4 Boundary Conditions
Boundary conditions were defined at the tube wall, at the interface, at the centerline, and

at the tube inlet.

At the tube wall (r =r,)

u, =0 (3.32)
v, =0 (3.33)
T =Ty (3:34)
b =6, =0 (3.35)

Equations (3.32) and (3.33) represent the no slip boundary condition at the wall. The

temperature at the wall is set to 7.y, which is either constant along the length of the tube
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or varies according to a prescribed profile taken from experimental results. When using
the Jones and Launder k-£model to define the turbulent parameters, the k and &boundary

conditions were both set to zero, which were the required values for this specific model.

At the interface (r =7, — 0)

U, =y, (3.36)
T, =T, =T, (3.37)
Ou; Ouy,
—= _— 3.38
Hyetr o Hapete o ( )
dé do "
PLUL T PLU A = PmOm T Prlim A = i (3.39)
or, or, .
At etr —== At ett —=J inthfg (3.40)
or or
Jo W —p, D, W _g (3.41)
int M ff
or
k,=¢ =0 (3.42)
L= 8L

A zero-width control volume is used at the interface such that the velocity and
temperature of the liquid at the interfacial node are set equal to those of the mixture
(Equations (3.36) and (3.37)). Equations (3.38) to (3.40) balance the shear stress, the
mass flux, and the heat transfer across the interface, respectively, and Equation (3.41)
states that no gas will cross the interface. Finally, the last boundary condition sets the
kinetic energy and dissipation at the interface to zero. The selection of this boundary

condition will be discussed in Section 5.4.4.
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At the centerline (» = 0)

Ouy

-0 3.43
or ( )

vy =0 (3.44)

oTv _, (3.45)
or

W _, (3.46)
or

%y _y (3.47)
or

%8m _ | (3.48)
or

The centerline acts as an axis of symmetry and therefore, the gradients of the axial
velocity, temperature, gas mass fraction, kinetic energy, and the dissipation rate are all

zero and the radial velocity is zero.

At the inlet (z = 0)

4, =0 (3.49)
Uy =, (3.50)
v, =0, =0 (3.51)
I, =T, (3.52)
Iy =T, (3.53)
W=, (3.54)
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k, =& =0 (3.55)

ky =1.5I%u,” where I is the turbulence intensity and is set to I = 0.037 (3.56)
kMB/Z
Ey = 3.57
M0.6r, 3-37)
6=0 (3.58)

In addition to the above governing equations, turbulence models, and boundary
conditions, one other equation is required to completely define the problem: the global
mass conservation equation. This equation states that the total amount of mass in both

the liquid and mixture regions is conserved along the tube:

r,—&

"o my,
Pl rar + L_JpLqudr =, (3.59)

This equation is necessary for determining the axial pressure gradient dP/dz.

33 Properties

For the purpose of this study, the vapor-gas mixture entering the vertical tube consists of
steam as the vapor and air as the gas. Both the mixture and the liquid properties were
evaluated at each node at the local temperature and pressure corresponding to that node.
All the equations used to determine the properties are presented in Appendix A of Siow

(2001).
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The specific heat, viscosity and thermal conductivity for both the vapor and the liquid
water were taken from the steam-water tables given in Incropera and Dewitt (1996). In
order to determine the properties at the exact local temperatures, interpolation between
the table values was required. The liquid density, latent heat and steam saturation
temperature and pressures were calculated using correlations from Irvine and Liley

(1984).

The steam and the air were treated as ideal gases and therefore the densities for both
fluids were determined by using the ideal gas law. The specific heat, viscosity, and
thermal conductivity of the air were calculated using correlations from Irvine and Liley

(1984).

With the vapor and air properties known, the mixture properties could be determined.
The mixture viscosity, thermal conductivity and diffusion coefficient were calculated
using equations from Reid et al. (1977). The density of the mixture was taken as the sum
of the individual densities of the vapor and gas and the specific heat is the sum of the

individual specific heats multiplied by their corresponding mass fractions.
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CHAPTER 4

NUMERICAL SOLUTION METHOD

4.1 Introduction

A numerical solution was developed based on Equations (3.1) to (3.59). These equations
were first transformed from an r-z coordinate system into an 17—y coordinate system.
Following this, the transformed equations were discretized using a finite volume method
and solved using a combination of an advanced matrix algorithm to solve foru, J, W, &
and dP/dz and a separate solver for the turbulent viscosity. This chapter covers the
detailed steps involved in developing the numerical model - from transforming the

governing equations to arriving at a final converged solution.

4.2 Transformation of Coordinates

The r-z coordinate system was transformed into an 77—y coordinate system such that the
centerline is at 77 = 0, the liquid-mixture interface is at 77 = 1 and the wall is at 7=2. The

equations that relate the 77—y coordinate system to the -z coordinate system are:

¥y¥=z forz>0 (4.1)
77=2—r°§_r for (r, ~8)<r<r, (4.2)
77=(r 7;5) for0<r<(r, -5) (4.3)
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With the new coordinate system, the mixture region is now clearly defined as 0 < < 1
and the liquid region is defined as 1 < 7 < 2. Although the film thickness is increasing in
the z direction, the interface is always located at 7 = 1. The domain was divided into a
certain number of stations NZ, that expand geometrically in the y direction and a certain
number of control volumes NL in the 7 direction in the liquid region, and NM in the 7
direction in the mixture region. The grid spacing in the liquid region remains constént
while the control volumes in the mixture region expand geometrically towards the
centerline. The reason for this is that the largest gradients in the mixture region occur
near the interface and therefore a fine grid is required there. This new coordinate system
will ensure that the number of nodes in the liquid and mixture regions remains constant
with z and that the two regions are always separated by a zero width control volume at

the interface.

Figure 4.1 shows a simplified grid for NZ =9, NL = 4 and NM = 6 in the 7-y coordinate
system. Each rectangle represents a control volume with a node at the center, where
indexing is applied. The index i is used to label the station number in the y direction, jy is
used to label the nodes in the 7 direction in the mixture region (starting at the centerline)
and ji is used to label the nodes in the 7 direction in the liquid region (starting at the
interface). The control volumes at the centerline (jy = 1), at the interface (jiy = NM), at
the wall (ju = NL), and at the inlet (i = 1) are all zero width; they were formed to
prescribe the boundary conditions. Field variables such as u, T and W are stored at the
nodal points, while J is stored at the north faces of the control volumes. The parameters &

and dP/dy (or P') are scalar variables and each have a single value at every axial station.
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Figure 4.1 Grid in the 77—y coordinate system

Figure 4.2 represents the actual domain in the -z coordinate system, showing the film

thickness starting at z = 0 and growing along the channel.
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Figure 4.2 Grid in the r-z coordinate system
The go'verning equations and boundary conditions were transformed into the new

coordinate system using Equations (4.1) to (4.3) above. The v-velocity component was

substituted with the mass flux J”, which is defined by the boundary condition given by
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Equation (3.39) and is perpendicular to the 77-axis. The transformed governing equations

are shown below. The derivation of these equations is shown in Appendix A.

Liquid Continuity:

(r5pL L)"'—__‘(rJI’:):O 4.4)
on ‘

Liquid Momentum:

1 0 1 0 1 O (THyex Oup dP
——\75 +——(rJ7 LR Y i 4.5
Iy (r pLuLuL) 7S o7 (r LY ) oy 87]( S aﬂj PLE (4.5)

Liquid Energy:

1 8 1 8 1 8 (rAg 0T,
7 C,. T JIC, T, )= —— it 3 4.6
5 0y (r LU Cpy ) r§8ﬂ(r LCrL L) ré’@n( 5 on (4.6)

Liquid Kinetic Energy Equation:

1 1 0
— 7 k —A(rS Tk, )=
50 (r PLUy ) r5877(r L L)

4.7)
Loalrf, ekl Jra] o (19)k)
rson| o\ o, Jon | 5oy | TP T S o
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Liquid Dissipation Equation:

._._1 _a 1 0 " 1 o|r ,UE a&'L
5 E; J+ rJie }= ——| — +
r8 Oy (rpiser) r5877( L) r5877[5('u]“ UJ

on

2 ¢ 2 2
+C£1 E_L/u 1 auL pLCaZ gL + 2IuL/uZL a uL
ky 5 on ky  po on

Mixture Continuity:

1
e _5)6 2 (v(r, - 5)pMuM)+m ()= 0

Mixture Momentum;

1 0 "
( 5) oy (r(r 5)pMuMuM)+'—(—_.S,“)‘E(rJMuM)

1 0 (rluMeff Outy, J dP

KON E

Mixture Energy:

19 5
= 5)5;;@(% — )Pty Conelie )+~ CopiTre )=

r(r, - 5)on
L0 (rhuw Oh), 1 8 (1PuDulCoy=Co )T oW
rr,—6)on\(r,—5) on ) r(r,-5)on (r,-5) o
Mixture Mass Diffusion;
1 0 1 0
2, -5 W)t —— ("
r(ro _5) o1 (r(ro )pMuM )"‘ r(ro ——5)5 (" M)
1 0 (rpyD,; oW
i, —o)on\ (r,—5) on
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4.9)

(4.10)

(4.11)
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Overall Mass Conservation:

J:pMuMﬂ(ro "5)2d77 + szLuL5(5(77 _2)+ro)d77 = % (4.13)

Mixture Kinetic Energy Equation:

;m—l_gj—;;(r(ro = 8) Ptk ) + ﬁ%(ﬂ;k@:
t 2
e ey ) aio
~ Puéu — 2y (_1__5_}\/1}2
(r,-5) on
Mixture Dissipation Equation:
ﬁ%(r(n —8)Puttrbna )+ r—(-};-l_—é,)%(rJ&gM)=
2
r(rol—5)%[(ro 5 (“ " %M‘j%}“%““‘{(%?)%] *13)
—C.py, ?ﬁ o Pty Oty
w Pyl —6) on

Boundary Conditions:
Atthe wall, 7=2

u =0 (4.16)
Ji=0 (4.17)
Ty =Ty (4.18)
fp =0 (4.19)
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At the centerline, 7 =0

Ouy

=0
on
T, 0
on
w _,
on
Jr =0
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(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)




%k _, (4.33)
%y _y (4.34)
4.3 Discretization

4.3.1 Introduction

The transformed equations above were integrated across a control volume of thickness d7

and length dy.
n
l—> w x
X
s epP n |4y
e v
: :
An

Figure 4.3 Control volume

The integration of the governing equations of motion, energy conservation, and
turbulence quantities over a typical control volume as shown in Figure 4.3 above used a
finite volume method and resulted in a set of algebraic equations. The resulting equations
required north, south, east, and west face values for all the variables and properties. In

addition, a Newton Raphson Linearization was used for all the non-linear terms. The
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details of the methods followed in discretizing the governing equations and boundary

conditions will be discussed throughout this chapter.

4.3.2 Face Values for Variables
The u velocity, temperature, gas mass fraction, kinetic energy, and dissipation (these
fields will be represented in general by ¢ hereafter) at the east and west faces of a control

volume were defined using the upwind differencing scheme such that:

. =Pp and @, =0y (4.35)

- At the north and south faces, an exponential differencing scheme was applied:

@, =(RNP+ ., ), +(RNN -, ) @y, (4.36)
@, = (RSS +a,) o + (RSP — at, ) (4.37)
where, RNP = — 2T RNN = 8T
Any + A, Any +An,
A A
RSS=—" RSP=—"2Ts (4.38)
Ang +An, Ang +An,
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The exponential differencing scheme is also used to determine the derivatives at the north

and south faces:

Qg — A ¢N _gpP , and a_(” ‘_‘",BS ¢P ._‘gDS ’ (4.39)
o, M =17 an Ty =1l
0.5Pe,’ 0.5Pe
where o, = ————, o =—"" (4.40)
0.5+ Pe, 0.5+ Pe,
1+0.005Pe,’ 1+0.005Pe’
e I VYT (441)
14+ 0.05P¢, 1+0.05Pe,
For the mixture region (0 < 17 < 1):
Pen :(ro—é‘)Jn(nN_nP), Pes =(r0_5)Js(Up*773) (442)
rn I'_‘S
For the liquid film (1 < 77 £2):
ST (. — (1. —
Pen — n(UIE\I‘ UP)’ Pes =§]s(7713 778) (443)

The diffusion coefficient for all the variables is shown in Table 4.1.
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Table 4.1 — Diffusion coefficients

Variable Iy 1

Uy, O Ui Lo + ! fs + 15

T or Ty A/Cpat 14/P1 A/Cpst 14 /Pr'
4 oDy + 14,/5¢" onDs + /8¢t

kr or ky T TAN '/ op

& or &y /o, ety oy

The normal mass flow rate, .J, was stored at the north face of each control volume:

J, =J, and  J, =J, (4.44)

The film thickness was assumed to vary linearly across a station:

0, =25,-9, (4.45)
4.3.3 Face Values for Properties

The east and west face values for the properties (o, 1 k; C, and D) were determined
using the upwind differencing scheme shown by Equation (4.35). The north and south

face values were evaluated using a harmonic mean on a uniform mesh:

_ Do P 0. = PPy
S +(1- £, o Y Lo+ (- 1)

?, (4.46)
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where fn :M and f; :771)_—77_5 (447)
v~ e —1s

4.3.4 Newton Raphson Linearization

If '“P=f((01,(02,(03)

¢ = {uLaJL’TuuMo'JM,TMaW’5’P'}
And @, ={uy ,J0, Tty Ty T s W, 5, P}
93 = {uL’JLaTLsuM»JM,TM’Waasp'}

Then the general Newton Raphson Linearization would give the following:

o¥° (. ov° ov°
1

P CL o, (o7 -2 )+ o, (pr —92)+ 20, )

The subscript ‘n’ refers to the current iteration and ‘o’ refers to the previous iteration.

4.3.5 Discretization Steps

The following steps were taken in discretizing Equations (4.4) to (4.34) above:

1. The equation was integrated across a control volume of thickness 47 and length

Ay ,as shown by the following example for the liquid continuity equation
c n 1 6 ]. a

Equation (4.4)) : 27 ——\rop,u, J+——rJ )| rdndy =0

(Bquation (4.4)) IWLL(S(.)Z( P )t oo L)} ndy

2. The upwind differencing scheme given by Equation (4.34) was applied to all the

east and west variables and properties, Equation (4.44) was applied to the east and
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west film thicknesses and Equation (4.43) was applied to the north and south face

mass fluxes.

3. The Newton Raphson Linearization discussed above was applied to all the non-
linear terms.

4. The exponential differencing scheme was applied to all the variables and
derivatives at the north and south faces.

5. The dependent variables were factored out and grouped into separate terms.

Detailed steps will be shown in Section 4.3.6 below for discretizing the mixture

momentum equation.

The coefficients of the resulting algebraic equations can be found in Appendices B, C and

D and are represented as follows:

The coefficient belongs to the The coefficient is for the mass
mass continuity equation flux (can also be u, W, T, P or
(can also be u, W, T, P, or 6 O for connections to these
for these equations) \21 JT « ariables
L,S

o o '/ T~ The mass flux is for the south
The equation is for the liquid region node (can also be N, E, W, and
(can also be M for mixture) P for north, east, west and

center nodes)

4.3.6 Discretized Governing Equations
Liquid continuity equation:

¥ Ju N 5 o 1 J
aL,SJL,S +applpp + aL,PJL,P + aL,P5P = bL,P (4.48)

47



Liquid momentum equation:

aLSuLS +aLSJLS +aLPuLP +aLPJLP +

. (4.49)
aLNuL vt aLP5 + aLPP =bp
Liquid energy equation:
aLSJLS+aLSTLS+aLPuLP+aLPJLP+ (4.50)
aLPTLP + aLNTLN + aLP5 = bgp
Mixture continuity equation:
aMsJMS+a,\“,uI\“,+aMI,JMP +a 5 :brfm, (4.51)

Mixture momentum equation:

1. Multiply Equation (4.10) by 27r(r.-6) and integrate:

€ n a e n a "
2z —a‘;(n( o —5)2pMuMuM)d77 dy + 27Z'L L 57‘;(77(7‘0 —5)JMuM)d77 dy

W s

=2z [ (th o }dndz+2ﬂj [, - 6) pug dndy

—27:_[ J n(r -8V Pdndy

27 [ 5 lole, =5 Pt Az +
20 [ (., = 8 senttrge =17, =W bysttne, ) =

e Ou
27 M
Iw (nn /’lM,n,eﬁ‘ 677

=7 /UM,s,eff

M sz+ 27 [ (e, ) pughn dx

S

~27 [ (s, -8) P'andy
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27[(’7? (7"0‘ _Je)sz.euM,euM,e —77P(r0 —5w )sz,qu,qu,w )Aﬂ
+ 27[(77n (ro —5P)J;’A,nuM,n "775(70 _5[’ )Jl,:{,suM,s)AZ:

Ouy

- nsluM,s,eﬁ' 677

jAz + 2777, (r, = 6, )’ Pup gAY

ou
27{% T —éi
7l

s

—2mm,(r, = 5, ) PiAnAy

2. Use the upwind differencing scheme on all the east and west face variables and
properties, Equation (4.45) on the east face film thickness and Equation (4.44) on the

north and south face mass fluxes.

27[(77;’ (ro _(251’ -0, ))sz,PuM,PuM,P _nP(ro =94, )2 Puwlvw¥mw )AU

M

6u
; s

- 775 /uM,s,eff a

Ou
+ (JM,PuM,n - JM,SuM,s )AZ = Zﬂ(nnﬂM,n,eﬁ‘ _67M

n

+2717, (r, = 5, )’ prupATAY =277, (1, = 8, ) FAnby
Expand the above equation to get the following:

27777PA77(r02 +§w2 +20,7, )pM.PuM,PuM,P +87[nPAn§P2pM,PuM,PuM,P
=871y p A5, (”o +0, )pM,PuM,PuM,P - 27”71>A77(ro — 08, )2 Puwhmwhvw

ou ou
+ St O — JM,S”M,SAZ =27n, ,Uran,eﬁ”a_;; Ay =270, fh s er _a‘;;t— Ay

f S

+ 27, pugATAy — A7, 8, pygAnAY + 2715, pyghniy
— 27, ByAnAy + Arnr, 8, By AnAy — 2718, By AnAy

3. Use Newton Raphson Linearization on all the non-linear terms:
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27[77PA77(r02 +5w2 +26,7, )pM,P (Zu;’,,,l,u;‘,[,,, —u,‘\’,,,l,u;’(’,,)
+87r7]PA17pMP(25°2u§“.u;‘” +2ul, 8888 —3u ;’“,25*’2)
—87[77PA77(r +8 )pMP(J"uMP Upgp J”uMP 5°uMPuMP)
=271, A7{r, =8, )’ Puawiwth

n [ [+] n o Qo i [+] [+] o o
+(JM,PuM,n + I upUnn _JM.PuM,n)_(JM,SuMs + st — JM,SuM,s)

Ay + 27w, pyp gAnAY

s

Oy
AZ Z”USﬂMSCff
677

Oty
=27
77nluM n,eff 577

n
n

AnAy

n 0o n ‘ 02
— 471, 1, Op pM,PgAnMAZ—l_Z”UPPM,PgAﬂAZ(25P5P —Op )'"27777Pro =

P
dmnr, (ST R + S2B — 50 P Widy
~ 277, (25;5;3,“’ +62 P —2837 Pl )AUA;(

4. Use the exponential differencing scheme on the current (‘n’) north and south face

variables and the north and south derivatives:

2z, A 77(1’02 + 5W2 +26,r, )pM,P (Zu{\’(,l,u,'\‘d’,, - u&’Pqu,P)
+ 8777, A TiDyr (25;2u;4,[,u;“ +2ul,, 588 —3ug,, 58"
~87m, A7, + 8, ) Pyir (wgu;’“u;‘u F Oy =253y )
= 21,817(r, =8, Prawthrg s
(Tt + T (RNP+ a2 Yty + (RNN = @ Jut ) T e, )
(g, + T (RSS +at Yu + (RSP = Yut, )~ T2 s,
= 2710, e (ﬂ « o e JAz Pz AT (ﬂ s ~lhgg ]Az
N7l My =Tl
+ 270151, P ATIAY = ATy, 5y P GATIAY + 2777y oy gANAY (255’ &5 -85 )
— 27,1, P AnAy + dzn,r, (5,§'PP’° +0 B —6,°B° )A?]AZ

2, 26383 Bee + 657 B 267 B JAmay

5. Now factor out the dependent variables and group them together
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u

- (RSS +ay )']1315 - zmsﬂM,s,eﬁ"[ 2 )Al'j’u:«,s - JIEI,SuI?A,s

Ty — 1

47[77PA77(r0 =26, + 4, )2 pM,PuI(\)/I,P
+(RNVP+ a2 3, — (RSP — o )3, Ul + S0 S
A B J Ay

N T » —Tls

+ 2ﬂﬂnﬂM,n,ef{ )A}t’ + Zﬂ‘mﬂM,s,eﬁ(

+ (RNN — e~ 2ﬂﬂnﬂM,n,eﬁ(—ﬂ'i‘~)A4u&,N
P

N

i {s] 0 2
"87277PA77(7'0 —265 + 0, )IOM,PuM,P S
P
|+ 471 P p ANIA Y (7, — 8p) — drmp B P AmpAy (1, — 5¢)

o rn [s] 2 L] [}
+ 27 AnAy (¥, — 6, )ZPP =27”71=A77(ro =0, ) Pumplmplmp

0 2 0 0 -
- 87[77PA77PM,PL‘M,P (ro -9, )5P + 27[77PA77(’L -0, )ZpM,qu,w2
02 o pfo o o o 0 o
+ 2717 Pryp 8A nAz(roz ~0p ) +4rn Sy B°AnAy (r, — 65) + Jurthn — Insthis

Where RSP, RSS, RNP, and RNN are defined by Equation (4.38).

The resulting equation takes the following form:

uu ut uu 714
Ay sty + Oysus + Opthe + Aypdyp + (4.52)

uu ud uP ' Lu
Ay Uy n + AypOp + aypbr =byp

where,
y A
a;\‘zs — _(RSS +asu ;\JA,S _-272_775 ﬂM,s/’lM,s,eff Z
(77P - 775)

w [
Ays = Uy
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Uip = 47[(”0 N )2 PrptpTe AT + (RNP +a, )]!?/[,P - (RSP - )]1(\)43

]szmsms,eﬁ( A JA;(

p — s

u

+ Zﬁnn#Mp,eﬁ(

N~
w __ .0
Oyp = Upgp

ﬂ: ﬂM,n,effAZ

Ay = (RNN a, )]MP — 271, (77 __77)
N b

2

aKZP = "87”7PA77(”0 N )IOM,PuI(\)/I,P
+ 4717, P p SATAY (7, — Oy ) — 47, B AnpAy (v, — 67 )

ay p = 27f(ro - Jp )ZUPATIAZ

u Q [s] Q [s] 2 (¢} 0
bM,P = 27[77PA77(ro -0, )sz,PuM,PuM,P - 87[77PA7710M,PuM,P <ro -0, )5?
o2
+ 27277PA77(’:) -4, )2 :DM,qu,w2 + 2717, Py p €A UAZ(FOZ -6 )
+ 47[77P§P0PP’0A nAx(r, — 5P0) + JI?'I,PuI?/I,n - J&,Sul‘:«,s

Mixture energy equation:

aMSJMS +aMSTMS +aMSW +aMPuMP +aMPJMP +

T§ ¢ _ .T
aM,PTM,P + aM,PWP + aM,NTM,N + aM,NWN + aM,Pé‘P = bM,P

Mixture mass diffusion equation:

ws w
aMSJMS+aMSW +aMPuMP+aMPJMP+aMPW +aMNW +aMP5 "bMP

4.3.7 Discretized k- Equations
Liquid kinetic energy equation:

k
aLSkLS +a kLN +aLPkLP _bLP
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Liquid dissipation equation:

£E EE EE — £
aisEr s T A nEn T Apérp =0pp

Mixture kinetic energy equation:

k K 23 Y
aM,SkM,S + aM,NkM,N + aM,PkM,P = bM,P

Mixture dissipation equation:

e £ £ _ 1€
Ayséps T OunEvn T Apéup = Oup

4.3.8 Discretized Boundary Conditions

At the tube wall ( n% 2)

Jp=0
U p =0
TL,P‘ Twall

At the interface (77=1)

Mass continuity at the interface:

W I Y
gy s+ apdip = bI,P

Equating shear stresses at the interface:

uu uu uu ud _ru
Auslys T Qupliyp T Uy +ap Op = b

53

(4.56)

(4.57)

(4.58)

(4.59)
(4.60)

4.61)

(4.62)

(4.63)




Saturated temperature at the interface:

aisTyp +aiy Wo +aly Py = by (4.64)

Impermeability at the interface:

ws v ww » w
arg Jys +arp Wp +ais Ws+app Op =byp (4.65)

Energy conservation at the interface:

5T 55 5 :
aI,STMS +aIPJLP +aIPTLP +aINTLN +aIP5 "bIP (4.66)

At the centerline (77=0)

Jyp =0 (4.67)
Upip = U (4.68)
T = T (4.69)
W, =W, (4.70)

Finally, the discretized mass balance equation results in the following algebraic equation:

NM-1

PSc _ 1P
Z anmqum +ZaleuLﬂ +a, 0, =b; (4.71)
Jm-1 Ji-1

4.4 Solving the Discretized Conservation Equations
A computer code was developed in-house to solve the above set of discretized equations.

The algorithm on which this code was based is described in the following sections.
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4.4.1 Construction of the Matrix

Starting at the first station; a matrix was constructed using the linearized, discretized
governing Equations (4.48) to (4.50) for the liquid film and (4.53 to 4.56) for the mixture,
the boundary conditions and the overall mass conservation equation (4.71).  The
turbulent kinetic energy and dissipation equations were not included in this matrix; they
were calculated separately using a Tri-Diagonal Matrix Algorithm (TDMA). This will be

discussed in Section 4.5.

The unknowns in the matrix are the mass flux, J, the velocity, u, the temperature, T, the
gas mass fraction, W, the film thickness, o, and the pressure gradient, P’. The four
variables, J, u, T, and W make up a block matrix for each control volume and row of the
matrix. The continuity equation was used to solve for J, the momentum equation for ,
the energy equation for 7, and the mass diffusion equation for . These block matrices
are followed by the two scalar variables §and P'. The interfacial energy equation is used
to solve for 6 and the global mass balance equation for P’. Equation (4.72) below shows
how the matrix was set up. The first row of the matrix represents the node at the tube
centerline (i = 1), row NM represents the node at the interface (ju = NM, jL= 1) and row
NM + NL represents the node at the wall (jp = NL). The last two rows in the matrix are
for calculating the film thickness and the pressure gradient respectively. More details on

the individual matrix entries are shown in Appendix E.
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_AM,P AM,N | :
1 1
AM,S AM,P AM,N
2 2 2
AM,S AM,P 4
NM-1  NM-1  NM-1
AIS LP AI,N Ez
4.72
ALS AL,P AL,N X1 Bl ( )
2 2 2
AL,S AL,P AL,N
NL-1 NL-1 NL-1
AL,S AL,P
NL NL
El E3 X, 2 Bz

4.4.2 Solving the Matrix

From Equation (4.72) above it can be seen that the off-diagonal entries of the bordered
block matrix are mainly zeroes. For this reason, it would be very inefficient to solve this
matrix using a conventional solver such as Gauss elimination. In order to reduce the
computation effort, a direct solver was developed based on the bordered matrix algorithm
discussed by Behie et al. (1985) and the standard block-tridiagonal matrix algorithm

(BTDMA).

Equation (4.72) can be written as:
ABTDM E2 Xl Bl
= (4.73)
El E3 X2 BZ
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where, Agpmpur : block-tridiagonal matrix of size (N x N)

E:: (2 x N) block matrix
E,: (N x 2) block matrix
E;: (2 x 2) block matrix
B, X;: (N x 1) vector
By, X5: (2 x 1) vector

N=4(NL + NM - 1)

Equation (4.73) can be transformed into:

ABTDM 0o I A;ITDMEZ Xl _ B1
E1 I o Es"'ElA;TDMEz Xz Bz
ABTDM o F1 B1
or, =
E, I||F,| |B,

[Fl:l !:I A;TDMEZ } IVX1:|
where, =
Fz 0 E3 ”‘ElAZzITDMEz XZ

Equation (4.74) can be written as the combination of two matrix equations:

Apmpm Fi =B,y

and E1 F1+F2=B2
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F; of Equation (4.76) was determined using the BTDMA method. Since Agrp,/ is an (N x
N) matrix and By is a (N x 1) vector, the result F; is also a (N x 1) vector. Next, F, was

calculated from Equation (4.77) and it is a (2 x 1) vector.

Let F3 = A;TDM E2 (478)

or, ABTDM F3 = Ez : (479)

Equation (4.78) can be solved using BTDMA. Since E, is an (N x 2) matrix, BTDMA
has to be applied twice to get Fs. Block Fj is another (N x 2) matrix. Equation (4.79) was

substituted into Equation (4.75), which becomes:

X1 + F3 Xz = F1 (480)

and (Es-E F)X,=F, (4.81)

The result of (E3 — E; F3) is a (2 x 2) matrix and thus Equation (4.81) can be easily

solved using Cramer’s rule to obtain Xj. Finally, X; was calculated from Equation (4.80).

Because of non-linearities, an iterative approach was needed to arrive at a solution. An
initial guess for mass flux, velocity, temperature, gas mass fraction, pressure gradient,
film thickness and turbulent viscosity was required before calculating the coefficients in
the matrix. The new solution obtained from the matrix calculation was compared with

the value from the previous iteration. If the convergence criterion was not met, the
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coefficients were re-calculated with the new results and the matrix was re-solved. The

convergence criteria are discussed in Section 4.6.

4.5  Turbulence Model Calculation

The turbulence model equations were solved once a converged solution was achieved for
mass flux, velocity, temperature, gas mass fraction, film thickness and pressure gradient.
When the mixing length model was employed, the turbulent viscosity was calculated in
one step. Once a new turbulenf viscosity was obtained, the matrix discussed in Section
4.4 was resolved until convergence. This loop continued until the turbulent viscosity and

the matrix convergence set had both converged.

When the &-£ model was used, a different iterative procedure was required. The kinetic
energy and dissipation rate equations were solved in a segregated manner, each using a
tri-diagonal matrix algorithm. The kinetic energy equation was first solved, followed by
the dissipation rate equation. The coefficients of both the kinetic energy and the
dissipation equation contain old values of kinetic energy, dissipation and turbulent
viscosity; therefore, several iterations were required before a solution was reached. After
each k and ¢ calculation, a new turbulent viscosity was obtained. The calculations of the
two equations were repeated until a converged solution was obtained for k£ and &. The
value of turbulent viscosity calculated from these k and ¢ fields was then used to re-
calculate the matrix coefficients discussed in Section 4.4 above. The matrix calculation

was then repeated until a new converged solution was reached. Iterations of the matrix
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followed by iterations of the k-&model continued until an overall converged solution was

achieved.

4.6 Convergence Criteria

4.6.1 Convergence Criteria for u, J, W, T, &, dP/dz

After each matrix calculation, the solution for velocity, mass flux, temperature, gas mass
fraction, film thickness and pressure gradient was compared with the previous

calculation. The relative error was calculated as follows:

(4.82)

Once y< 1 x 107 was achieved for all the nodal values in all the fields, the matrix was
said to have converged. This converged solution however is with old values of turbulent
viscosity. The turbulent viscosity must therefore be re-calculated with the new

converged matrix solution.

4.6.2 Convergence Criteria for k and ¢
When the k-& model was employed, a convergence check was performed after each
calculation of k and &. Since these parameters have a very wide range of values and the

kinetic energy is very small near a wall or interface, a better error calculation for this case

is a range-normalized relative difference:
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_|Le" -9
- Rangeigo" )

where Range(go“ ) =@ — P (4.83)

Once y< 1 x 107 was achieved at all nodes across a station, the k and & equations were
said to have converged and the matrix calculation was repeated with the new turbulent

viscosity.

4.6.3 Overall Convergence Check

An overall convergence check was required once a converged matrix solution was
obtained followed by a converged turbulent viscosity solution. When the k-& model was
employed, the overall convergence check was done by comparing the old converged &
and £ values (those used in the previous matrix calculation) with the new converged k
and ¢ values. This check was done using Equation (4.83). Once ¥ < 1 x 107 was
achieved at all nodes, the solution was said to have converged at that station and the

solution was marched to the next station.

When the mixing length model was employed, the overall convergence check was done
by comparing the old turbulent viscosities at each node (those used in the previous matrix
calculation) with the new turbulent viscosities. This check was done using Equation
(4.82). Once y <1 x 10” was achieved at all nodes, the solution was said to have

converged and the solution was marched to the next station to repeat calculations.
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4.7 Relaxation Factors
After each matrix calculation, if the convergence criterion was not met, a relaxation

factor () was applied to all the variables before the next iteration:

Pretmed =P T, (9" —0°) (4.84)
where ¢ = {u,J,T, W,é',gi}
dz

The typical values used for the relaxation factors for these variables are as follows:

v, =0.6 Yy =1
v, =0.6 vs; =0.1
v, =01 Vap =0.2

dz

4.8  Flow Reversal

The solution was advanced in the y direction, station by station, until either a specified
length L was reached or flow reversal occurred. Flow reversal occurred when the
solution converged and resulted in a negative velocity at one or more nodal points across
the tube (in either the liquid or the mixture regions). The numerical model is invalid for
negative velocities due to the parabolic approach taken in the solution method. For this
reason, when a negative velocity was obtained, the program was terminated. Flow
reversal most often occured for the case of pure vapor when the condensation rate was
large, and also when a fully developed inlet velocity profile was set (this is discussed in

the following chapter).
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CHAPTERSS

VALIDATION TESTS

5.1 Introduction

To ensure that the numerical model was producing accurate results, several validation
tests were done for both laminar and turbulent flow. These validation tests included grid
independence tests and comparisons with analytical, numerical and experimental results.
All the results presented in this chapter correspond to steam as the condensing vapor and

air as the non-condensable gas, unless otherwise stated.

5.2  Grid Independence

The grid independence tests consisted of running the code using various grid sizes and
comparing the results to determine the optimum control volume size such that further
reduction would not substantially change the results. The case chosen for this test was
one with a large condensation rate since this would require the finest mesh; run 3 of
Goodykoontz and Dorsch (1966) was chosen for this test. The range of values used for
the number of control volumes in the liquid region, NL, the mixture region, NM, and the
number of stations, NZ, were as follows: 40 < NL < 100, 60 < NM < 120, and 2000 < NZ
< 5000 for 2.2 metres of tube length. Table 5.1 shows the maximum percent difference
in the velocity and temperature profiles at four different z locations (z = 0.34 m, 0.69 m,
1.26 m, and 2.2 m) when the number of control volumes in the liquid region was

increased from 40 to 100.
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Table 5.1 Maximum difference in u and T profiles at z= 0.34 m,
0.69 m, 1.26 m, and 2.2 m when NL is increased from 40 to 100
(NM =100, NZ=4000)

NL Maximum % Difference
in u and T profiles
40 vs. 60 0.2002%
60 vs. 80 0.1225%
80 vs. 100 0.0771%

From the above table it can be seen that when increasing the number of control volumes
in the liquid region from 80 to 100, the velocity and temperature profiles changed by less

than 0.1 %. Therefore, grid independence was achieved at NL = 80.

Table 5.2 shows the maximum percent difference in velocity and temperature profiles

when the number of control volumes in the mixture region was increased from 60 to 120.

Table 5.2 Maximum difference in # and T profiles at z = 0.34 m,
0.69 m, 1.26 m, and 2.2 m when NM is increased from 60 to 120
(NL = 80, NZ = 4000)

NM Maximum % Difference
in u and T profiles
60 vs. 80 0.2497%
80 vs. 100 0.1300%
100 vs. 120 0.0806%
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From this table it can be observed that the maximum percent difference in the velocity
and temperature profiles was less than 0.1% when increasing the number of control
volumes from 100 to 120. The solution was therefore considered grid independent for

this case when NM = 100.

For run 3 of Goodykoontz and Dorsch, the total length of the tube was 2.2 m. The
minimum number of stations required for the solution to converge for this length of tube
was approximately 2000. Starting with NZ = 2000, the number of stations was increased
until the maximum percent difference in 6, dP/dz and Nu, was less than 0.1%. Table 5.3
shows the maximum percent difference when increasing the number of stations from |

2000 to 5000.

Table 5.3 Maximum difference in 6, dP/dz and Nu,
when NZ is increased from 2000 to 5000
(NL = 80, NM = 100)

' NZ Maximum % | Maximum % | Maximum %
Difference Difference | Difference in
ind in dP/dz Nu,
2000 vs. 3000 0.0225% 0.2889% 0.0286%
3000 vs. 4000 0.0105% 0.1372% 0.0137%
4000 vs. 5000 0.0061% 0.0794% 0.0079%

Table 5.3 shows that the pressure gradient, dP/dz, has the largest percent difference when

increasing the number of stations. When the number of stations was increased from 4000
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to 5000 the results changed by less than 0.1 % for all three distributions. Therefore, 4000

stations were sufficient for a length of 2.2 m.

5.3 Validation of the Laminar Model

5.3.1 Introduction

In order to validate the laminar model, three different comparisons were made: two for
pure vapor condensation and one for vapor-gas mixtures. The comparisons made for
pure vapor were with Nusselt’s analytical solution for condensation on a flat plate and
with Dobran and Thorsen’s (1980) analytical and numerical results for condensation in
vertical tubes. No previous work could be found for the case of laminar condensation of
vapor in the presence of gas. For this reason, an analytical solution was developed for the
location in the pipe where virtually complete condensation has occurred (termed “end of

condensation™).

5.3.2 Comparison with Nusselt (1916)

As mentioned previously in the literature review, Nusselt (1916) developed an analytical
solution for laminar film condensation of a pure saturated, quiescent vapor on a vertical,
isothermal surface. Included in his solution was an equation for the film thickness Sas a

function of distance z along the length of the plate:

5(2) — 4/’{’LIUL (T;at B Twall )Z (51)
8Py (pL — Py )hfg
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In order to emulate the conditions of Nusselt’s solution, a large tube radius (r, = 1 m) and
a low inlet Reynolds number (Rej, = 50) were used. Figure 5.1 shows a comparison of
the present numerical solution with Equation (5.1). As can be seen with this figure,
excellent agreement was obtained. Aside from the first couple of stations (a very small
distance near the inlet), the present results for film thickness were within 1 % of Nusselt’s

solution, with a deviation of less than 0.3 % for the majority of the stations.

5.3.3 Comparison with Dobran and Thorsen (1980)
The only published work available for laminar forced convection condensation in a

vertical tube is that of Dobran and Thorsen (1980). They présented both an analytical

7x10° F l . . l Nussélt Solutlion —
Present Numerical Solution ----
6x10° F i
5x10°F i
*
4x10°
3x10°
2x10°
51 i
1x10 AT =1K
O 'l 5 'l ) i 1 | 1
0 1x10° 2x10®° 3x10° 4x10° 5x10° 6x10° 7x10°
Z*

Figure 5.1 Film thickness comparison with
Nusselt’s (1916) analytical solution
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solution, which neglects inertia effects and assumes constant inter-phase shear, and a
numerical solution. Their numerical solution was obtained starting with the full set of
governing equations and using an integral analysis and profile assumptions for the
velocity in both the liquid and the vapor regions. They presented results for Nusselt
number and film thickness at a location defined as L*, where all the vapor had
condensed. In the present model, flow reversal often occurred before all the vapor was
condensed, and therefore L* was defined as the length at which flow reversal occurred.
For the purpose of this comparison, a fully déveloped inlet velocity profile was used to
match the conditions of Dobran and Thorsen. Table 5.4 compares the present results with

Dobran and Thorsen’s numerical (DTN) and analytical (DTA) results.

Table 5.4 Comparison with Dobran and Thorsen (1980) for
Fri,/Rein = 0.01 and p/o. = 0.05

OF

L Nu

ZipL*

Case | Pry. W/ | Ja Present | DTN | DTA | Present | DTN | DTA my [ iy,

1 2 0.04 |0.05 |0.168 0.1703 { 0.153 | 10.68 10.78 {13.06 | 0.96

2 2 2 0.05 | 0.092 0.098 | 0.088 |20.78 19.55 |22.74 |0.87

3 0.005 | 0.04 |0.001|0.172 |0.169 |0.153 | 10.57 10.76 | 13.06 | 0.7

4 0.005 | 0.04 | 0.005 | 0.268 0.187 ]0.153 | 6.43 9.61 13.06 |0.7

In cases 1 and 2, the present results compare well with DTN and DTA, falling between
the two results. For cases 3 and 4, corresponding to low liquid Prandtl numbers, the

dimensionless film thickness at the condensation length was higher than both DTN and
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DTA results while the Nusselt numbers for these cases were lower. The last column in
the table indicates the amount of vapor remaining in the core when flow reversal

occurred. In cases 3 and 4, 30% of the inlet mass still remained when the flow reversed.

Several tests were done to determine why flow reversal was occurring so early when a
fully developed inlet velocity profile was used in the comparisons with Dobran and
Thorsen. Figures 5.2 and 5.3 show the velocity profile when flow reversal occurs for a

uniform and a fully developed inlet velocity profile, respectively.

1 . T 1 1
Re, = 1,000
0.8} Po=1am 7
AT, = 10K
U*O6 I VVin =0 ]
04} -
0.2} -
Ok J I
-0.2 1 1 1

0 0.5 1 1.5 2
n

Figure 5.2 Velocity profile at flow reversal (z* = 4.86 cm)
with a uniform inlet velocity
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Re, = 1,000 |

P,=1 atm

Vvin =0

AT, =10 K
025 0.5 1 15 2

Figure 5.3 Velocity profile at flow reversal (z* = 0.26 cm)
with a fully developed inlet velocity
Both of these profiles correspond to the following dimensionless inlet conditions:
Prp = 1.87, p/pL = 0.0006, /14, = 0.04, Frin/Rei, = 0.005, and Ja = 0.018. From Figure
5.2 it can be seen that with a uniform inlet profile, flow reversal does not occur until
almost all the vapor has condensed. In addition it can be seen that at separation, the
velocity at the centerline is slightly negative. In the case of a fully developed inlet profile
(shown in Figure 5.3), separation occurs in the mixture region near the interface when
there is still a relatively large vapor velocity at the centerline. In Dobran and Thorsen’s
model, they assumed a parabolic velocity profile that could never resemble the profile
shown in Figure 5.3; this could explain why flow reversal did not occur in their model
until 100% of the vapor had condensed. The separation near the interface can be

explained by comparing the pressure gradient distribution along the length of the tube as
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well as the amount of mass condensed for the two different inlet profiles. From Figure
5.4 it can be seen that for the case of fully developed inlet, the adverse pressure gradient
was larger than for the case of a uniform inlet. In Schlichting’s “Boundary Layer
Theory” (1968), he stated that a laminar boundary layer can support only very small
adverse pressure gradients without the occurrence of separation. This could explain why,
for the case of a fully developed inlet profile where the adverse pressure gradient was
large, separation occurred. In addition, Schlichting also explained how boundary layer
suction helps to stabilize the flow by reméving the decelerated particles before they are
given a change to cause separation. Figure 5.5 compares the amount of mass condensed
for both inlet profiles. It can be observed that the amount of vapor condensed was

smaller for the case of a fully developed inlet and is therefore less stable and more likely

to separate.
\.\ Fully Developed Inlet Profile =—-—-—-
14 \, Uniform Inlet Profile 7
12} -
10} -
* .
S N
— 8 \.\ .
A ~.
~ 6L \'\,
Re,, = 1,000
4FP =1 atm
oL Vvin =0
AT, =10K
O et s gxal i 2z a3zl P e 3 3222l 2 el d A X
0.001 0.01 0.1 1
Z*

Figure 5.4 Dimensionless pressure gradient comparison
between a fully developed and a uniform inlet velocity profile
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0.12f W,=0 -
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Fully Developed Inlet Profile —«—-—-

0.02 Uniform Inlet Profile -
O * i [ [ | i 1
0 0.05 0.1 0.15 0.2 0.25 0.3
Z*

Figure 5.5 Comparison between a fully developed and a uniform
inlet velocity profile in terms of 1, /m,,

5.3.4 VEnd of Condensation Solution

While condensation occurs along the length of the tube, the velocity profile, temperature
profile and gas mass fraction profile are continuously changing. Eventually, the mixture
composition reduces to a gas fully saturated with vapor and the condensation process
shuts off. At this point, the temperature in the liquid and mixture is Ty, and the gas
mass fraction and velocity profiles no longer vary with z. This situation is referred to
here as the ‘end of condensation’. The fully developed conditions greatly simplify the

governing equations and therefore, an analytical solution can easily be obtained.

The following conditions, which are valid in the end-of-condensation region, were
applied to the governing equations:

e 7, =0 (5.2)
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e Uy =0

e —a-ﬂ—zauM :O
Oz Oz

® TL:TMszall

e Uniform # and physical properties

The governing equations reduce to:

modf du]_(dP) _
7 dr[r a’r} (dz i PLE

Py d) duy | _(dP)
¥ dr[r dr] (a’z e Pus

(5-3)

5.4

(5.5)

(5.6)

(5.7)

These equations were non-dimensionalized using the following dimensionless groups:

pr=L"t 7*=
LI
2 in“in .
R _ pinuinzro
in ,Uin 6o
Uu. 2
Fr=—1
gzro u*_..

The resulting non-dimensional equations are:
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* * , ,
_1_ d FE du, = —I—Rem Hin i l R_em P | P (5.8)
r¥*dr* dr* 8 s dz* 4 Fr Pin N My

* : * .
~1__Ci__ 7 *k duM — lRein lum dP 1 Re ,0 Ium (59)
r¥*dr* dr* 8 My ) dz* 4 Fr Pin N

Integrating the above equations results in velocity profiles for the liquid and mixture

region:

* . .
4], =| —Re, ”m LR [Pt |l w i mrtec, (510
’ 32 dz* 16 Fr Pin N My '

. * .
. = iRem(""’m)dP L Rey, (pM J(”j r*1C, Inr*+C,  (5.11)
’ 32 My ) dz* 16 Fr Pin N M

The constants C;, Cy, Cs, and C4 were evaluated by applying the following boundary

conditions:
e No slip at the tube wall:
u*=0atr*=1 (5.12)

e No shear stress at the centerline:
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*

=0 atr*=0 5.13
dr* ( )

e Velocity continuity at the interface:

Uy oo = Uy, L 7¥=5,, : (5.14)

e Shear continuity at the interface:

* *
H AT [ P | B at r¥=5, : G.15)
/uin dr* /uin dl"* ”

With these boundary conditions, the constants were calculated as:

C1:§E' lRein __IL_l_m_ pL Pu ’ (516)
2 4 Fr ﬂL pm
. *
c,=LRenfp | Lgpo ”m di (5.17)
16 Fr P Nty ) 32 dz*
C, =0 (5.18)
* *
¢, x| Lp, P (_@_ﬂmj_lRem(pLﬂm_pM#m]
4|8 dz*\ g py) 4 Fr\putte Pk
*
215" I:le; (/uin)(pL pMJﬂ é‘l‘z‘Rein(_/ic;P*]
Z
H Pin Hy (5.19)

+1 1 Rey, [ AL | M
16 Fr { p, \ 4,
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There are two unknowns in the above equations, &..* and dP*/dz* To determine these

unknowns, the following conservation of mass equations can be applied:

- rQ - Wiﬂ

My = PL J:;cc uL,eCZWodr = min( - I’Vecj (520)
W

mMec pMJ. uMeczmodrzmm(Wec] . (521)

The above equations state that the mass flow rate of the mixture at the inlet must equal
the mass flow rate of the condensate at the end of condensation plus the mass flow rate of
the mixture at the end of condensation. The gas concentration, W, can be determined by
assuming the gas at the end of condensation is fully saturated with vapor at Ty.; and
taking the total pressure from the numerical solution. The equation used to determine Wi,

is:

P
W, =1-06219—= (5.22)

ec sat

Where Pg, is the saturation pressure at Tygy.

In dimensionless form, Equations (5.20) and (5.21) become:

[ rmdre =t Lo P (5.23)
P 2 PL W;c
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S w 1 p, | W,
[, g * = _2"(_J(Vj (5.24)

Substituting the velocity distribution for the liquid (Equation (5.10)) into Equation (5.23)
and the velocity distribution for the mixture (Equation (5.11)) into Equation (5.24) results

in the following two equations:

flilRem dP* {1 &@[(5;)1115;(& —Pm)Jr (5;)(2% ‘PMJ (5.25)
i 8 dz* |4 Fr p 4 k Pin 8 Pin

_(5;)4(3&—2/9»4]* P }1&(1 ij}/{ RN CY ﬁé‘_f}
16 Pa ) 16p, | 2.0 W 8 16

ec

w8 Tdz* |4 Frop, M 16 \ 1y
G (e 1o () ) () (LS (5.26)
8 My 2pM VVec 16 Hoy 8

Equating the left hand sides of Equations (5.25) and (5.26) results in one equation with

Haly, dP* {1 Re, f [( ;)441n5§{pM —pL)+ (5;)(20L ,_p_MJ

one unknown (J.*). Once &.* is obtained, dP*/dz* can be found from either Equation
~ (5.25) or (5.26). The coefficients needed for the velocity profiles can then be evaluated

using the known values for d..* and dP*/dz*.
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The results from the numerical solution were compared with the analytical solution
discussed above. The inlet conditions used for this comparison were Rei, =1000,
Py =1 atm, Wi, = 0.2, and AT, = 20 K. Comparisons of the film thickness and pressure
gradient distribution, and the u velocity profiles with the end of condensation solution are
plotted in Figures 5.6 to 5.9. From these plots it can be seen that the results from the

numerical solution reach the end of condensation analytical solution at large values of z*.
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Figure 5.6 Dimensionless film thickness distribution
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Figure 5.8 End of condensation velocity profile in the mixture
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Figure 5.9 — End of condensation velocity profile in the liquid

5.4  Validation of the Turbulence Models

5.4.1 Introduction

Both the mixing length and the k-¢ low Reynolds number turbulence models were
validated to ensure that they were being applied correctly to the model. First the mixing

length model was applied to both the liquid film and the core regions and results were
compared with Panday’s numerical results. Following this, the k-& model was applied to
the core region and results were compared with single phase pipe flow. Finally, the k-¢

model was validated in the liquid film.
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5.4.2 Mixing Length Model

As was previously discussed in the literature review, Panday (2003) developed a
numerical model from the same equations and boundary conditions that were used in the
present model. The difference in the present model is that it includes the presence of gas
during condensation while Panday’s model is for pure vapor. The mixing length model
chosen for the présent solution was the one used in Panday’s work and was developed by

Pletcher (1974).

Panday (2003) presented results for pure steam condensation in a 24-mm diameter tube
with inlet velocities from 20 to 50 in/s, an inlet temperature of 117 °C, and a wall
temperature of 107 °C. In Panday’s paper, results of the Nusselt number were compared
with a correlation from Chen (1987) for velocities of 20 and 50 m/s. Figures 5.10 and
5.11 compare the present model with both Panday and Chen’s results for local Nusselt
number for these two inlet velocities. Figure 5.10 shows the local Nusselt number
distribution for an inlet velocity of 20 m/s. From this figure it can be observed that the
present model agrees very well with both Panday and Chen’s results for z* > 20. For
z* < 20, there is a large deviation between Chen and Panday with the present results
falling in between. Figure 5.11 shows the local Nusselt number distribution for an inlet
velocity of 50 m/s. In this plot, Panday’s results are considerably higher than the other
two in the region z* < 150. The present results agree with Chen’s for z* > 50 and fall
between the other two sets of results for z* < 50. The results of this comparison indicate

that the mixing length model is producing reasonable results.
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Figure 5.10 Local Nusselt number comparison with
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Figure 5.11 Local Nusselt number comparison with
Panday (2003) and Chen (1987) for Re;, = 94,300
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5.4.3 k-eModel in the Core

To validate the Jones and Launder low Reynolds number &-&£model in the core, the model
was set up to approximate single-phase flow in a tube and results were compared with
single-phase pipe flow results. In order to model single-phase pipe flow, the
condensation rate must be negligible and the interface must act as a wall. To ensure a
low condensation rate, thé temperature difference across the film was set to a low value
(either 0.01 or 0.1 K), the inlet gas mass fraction was set to 0.9, and the latent heat was
set to 22.25 GJ/kg. In addition to this, the velocity at the interface was set to zero such
that the no slip boundary condition was applied at the interface. The resulting fully
developed velocity profiles for 3 different cases were compared with experimental results
from Nikuradse (1932). Figures 5.12 to 5.14 show the resulting fully developed velocity
profiles for inlet Reynolds numbers of 4,000, 23,000, and 110,000, respectively. In these
figures, u. is the centerline velocity. From these plots it can be seen that the present
model agrees reasonably well with the results from Nikuradse and that as the inlet

Reynolds number increases, the agreement improves.

In addition to comparing velocity profiles, the kinetic energy profiles were plotted to
ensure that the k-¢ equations were producing the correct trends. Figures 5.15 to 5.17
show these plots for the three different Reynolds numbers mentioned above. These
profiles show that the kinetic energy increases from the centerline to the interface and
reaches its peak value between y/r, = 0 and 0.2 followed by a sharp drop to zero at the
interface. Previous results on single phase turbulent pipe flow show this same trend

(Wilcox, 2002).
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5.4.4 k-cModel in the Film

Only two published articles were found on condensation in vertical tubes using the Jones
and Launder low Reynolds number k-¢& model in the liquid film: Yuann (1993) and
Bellinghausen and Renz (1992). Yuann used this model in both the core and the film and
set k and & to zero at both the wall and the interface. Yuann found that the 4-£ model
never predicted turbulence in the liquid region; the turbulent viséosity was negligible
across the entire film. Bellinghausen and Renz also used this low Reynolds number k-¢
model in the liquid. Their boundary conditions are unknown as they were not stated in

their paper. They found that a minimum value for 4 was required for the k-& model to

predict turbulence: gf, =0.5u.

The boundary conditions in the present model for k£ and & were set to zero at both the
interface and the wall. Several authors have justified this choice of boundary condition
for the interface. Rodi (1993), Akai et al. (1981), Issa (1988), and Newton and Behnia
(2000) developed models for two-phase stratified flow. These autflors assumed that for
the case of a smooth stratified flow, the interface could be treated as a moving wall and
therefore applied the same boundary conditions at the interface as they applied at the

wall.

In the present model, when the interface is treated as a wall, the same behavior occurs as
did for Yuann; the turbulent viscosity is completely dampened. In order to initiate
turbulence in the liquid, attempts were made to set a minimum z' as was done in

Bellinghausen and Renz (1992). It was found that this did help initiate turbulence at a
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certain axial station but the turbulent viscosity was immediately dampened back to zero.

In addition to the minimum turbulent viscosity used in Bellinghausen and Renz
(Mpn =0.51), several other values were tested including He =0.1u
and g, =0.9u; the turbulent viscosity was still dampened for both these cases. Since
no details were given in Bellinghausen and Renz, it was difficult to predict what
boundary conditions and methods were used. It was concluded that the low Reynolds
number k—¢ model would never produce turbulence across a thin film when the boundary

conditions are set to zero at the inlet, the wall and the interface.

5.4.5 Comparisons with Yuann (1993)

Yuann (1993) developed a numerical model for condensation from a vapor-gas mixture
in vertical tubes using the same governing equations that were used in the present model.
In addition, he used the low-Reynolds-number %-g turbulence model of Jones and
Launder (1972) in both the mixture and the liquid regions. Therefore, another test used
to validate the k-& turbulence model in both the -liquid and mixture regions was to

compare the present numerical results with Yuann’s.

Three cases were chesen for comparison from Yuann’s results that included conditions
with the minimum and the maximum gas mass fraction as well as a low and a high value

for inlet pressure. Unfortunately, Yuann did not present tabulated results for various inlet

mass flow rates so comparisons could not be made for variouss,; all these results

corresponded to ;= 40 kg/h. Figures 5.18 to 5.23 show the film-thickness and the

heat-transfer-coefficient distributions for the three selected cases. The heat transfer
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coefficient in these plots is calculated as h , = T It must be noted that 4,

(T;nt - Twall) .
used by Yuann was based on the temperature difference, Tin-Twan, While %, that will be

used in the present study uses Tip-Twan as the temperature difference.

From these figures it can be seen that the largest differences correspond to the case of W,
= 0.4, Py, =276 kPa, and AT;, =2.13 K (Figures 5.20 and 5.21) while in the other 2 cases,
the present numerical results agree reasonably well with Yuann. There are several

possible reasons for the differences between the two sets of results.
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Figure 5.18 Dimensionless film thickness comparison with Yuann (1993)
for Py, =276 kPa, Wi, =0, and AT}, = 7.53 K

89



| 1 1 1
m,, = 40 kg/h
P,=276 kPa -
|/Vin =0
AT, =753 K 4
r,=2.5cm
Present Model
O 1 1 1 1 ] L 1 I H
0 4 8 12 16 20 24 28 32 36 40

*

Z

Figure 5.19 Heat transfer coefficient comparison with Yuann (1993)
for Pin =276 kPa, Wi, =0, and AT;; =7.53 K
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Figure 5.20 Dimensionless film thickness comparison with Yuann (1993)
for Pi, =276 kPa, Wi, = 0.4, and AT}, =2.13 K
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Figure 5.22 Dimensionless film thickness comparison with Yuann (1993)
for Py, = 483 kPa, Wi, = 0.3, and AT, = 19.75K
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5.23 Heat transfer coefficient comparison with Yuann (1993)
for P, = 483 kPa, Wi, = 0.3, and 4T3, = 19.73 K
One discrepancy that was found between the present results and Yuann’s was that
although the conditions of inlet mass flow rate, inlet temperature, inlet pressure, and the
tube diameter were set to match Yuann’s, the calculated value of Re;j, from the present
model did not always agree with his. It was found that the present value of Rei, agreed
closely with Yuann’s for cases of pure steam; however, for cases with steam-air mixtures,
Yuann’s values of Rej, were higher than the present values and the discrepancy increased
with increasing Wj,. The formulae used by Yuann for calculating the mixture properties
are identical to the formulae used in the present study; therefore, differences in the values
of the viscosity of air are the only possible reason for the discrepancy in Rej,. In order to
ensure that our property values were correct, the viscosity of air used in the present
analysis was compared with the values from Incropera and DeWitt (1996) for

temperatures from 250 K to 600 K and deviations were always less than 1 %.
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Another major difference between Yuann’s work and the present analysis is that he used
the 7-z coordinate system in discretizing the flow domain, while the ©—y coordinate
system was used in the present work. There are several advantages in using the 7—y
coordinate system. In the r-z coordinate system, the number of control volumes in the
film was increased from one axial station to the next, while in the 17—y, a fixed number of
control volumes in the film was used at all axial stations. Another advantage in using the
71—x coordinates is that the control-volume faces are orthogonal everywhere in the
domain, while in the 7-z coordinate system, the control-volume faces are non-orthogonal
at the interface. Finally, the last advantage that will be mentioned here is that in the n—y
coordinate system used in the present model, the spacing between the nodes in the radial
direction remains constant when advancing from ‘one station to the next; however, in the
r-z coordinate system the spacing is more complicated. In Yuann’s thesis, advancing the
mesh from one station to another in the liquid film was clearly explained, while
advancing the mesh in the mixture region from one station to the next was not elaborated
on. There are several complications that arise when using the 7-z coordinate system for

this problem that were eliminated when the 77—y coordinate system was used.

In addition to the above differences between Yuann’s approach and the present approach,
there are several other differences that were found between the present analysis and

Yuann’s; these differences are listed below:

1. For the v— velocity boundary condition at the centerline, Yuann used dv/dr = 0

while in the present model the v-velocity was set to zero. The radial velocity must
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vanish at the centerline otherwise there will be a mass source or sink at the
centerline.

2. In Yuann’s model, the film thickness was calculated from an energy balance
across the entire liquid film while in the present model, the film thickness was
calculated from an energy balance at the interface.

3. Yuann used a completely segregated approach in his solution method while the
present model uses a fully coupled approach.

4. Yuann included an empirical correlation to account for surface waviness at the
interface. The addition of this correlation resulted in a thinner film and a larger

heat transfer coefficient, as seen in Figures 5.18 to 5.23.

The above figures and discussion show that for the most part, the present model agrees

reasonably well with Yuann’s results and the discrepancies found are likely due to the

different methods used in the numerical models.
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CHAPTER 6

LAMINAR FLOW RESULTS

6.1 Introduction

In order to obtain laminar results from the model, the turbulent viscosity was set to zero
and the equations of the turbulence model were not solved. In this chapter, the velocity,
temperature and gas mass fraction profiles will be analyzed as well as the film thickness
and Nusselt number distributions. In addition, the effect of lvarying the independent
parameters on the film thickness and Nusselt number will be studied. Results were
obtained for steam-air mixtures entering the tube with inlet Reynolds numbers between
500 and 2000, inlet gas mass fractions between 0 and 0.8, inlet pressures from 0.5 atm to
2 atm, and temperature differences from 5 to 20 K. These results have been reported in a

recent publication by Groff et al. (2004).

6.2  Velocity, Temperature and Gas Mass Fraction

The results presented in Figures 6.1 to 6.3 are profiles of dimensionless velocity,
dimensionless temperature, and gas mass fraction at various axial stations along the tube.
The conditions used for these results are an inlet pressure of 1 atm, an inlet Reynolds
number of 1000, a temperature difference of 20 K, and an inlet gas mass fraction of 0.2.
The mixture region corresponds to 7 =0 to 1 and the liquid film region corresponds to 7
=1 to 2. From the dimensionless velocity profile in Figure 6.1, it can be observed that as
z* increases to 25, the velocity in the mixture decreases, while the velocity in the liquid

film increases. This trend is due to the transfer of mass from the mixture to the liquid.
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Figure 6.1 Dimensionless velocity profiles

As the mixture loses mass, it loses speed; the liquid film is gaining mass and
accelerating. As z* increases from 25 to 150, the velocity near the centerline increases
while the mixture velocity near the interface continues to decrease. The increase in
centerline velocity will be discussed later. A boundary layer can be seen to form in the
mixture region at the liquid-mixture interface. As z* increases, the boundary layer
thickness increases. Far from the inlet (z* = 150), the condensation process shuts off and

the velocity profile converges to the exact solution for ue*.

The dimensionless temperature profiles in Figure 6.2 indicate that the temperature
profiles in the liquid region are nearly linear, and that the interface temperature decreases

along the length of the tube, resulting in lower heat transfer across the film. The
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Figure 6.2 Dimensionless temperature profiles

temperature in the mixture region also decreases continuously along the tube. The
mixture temperature Ty starts at T, (T* =1) at z* = 0 and approaches Ty, (T = 0) at
z* =150. The slope at the interface also decreases with increasing z*. At z* = 150, T* ~

0 everywhere and the condensation process is shut off.

Figure 6.3 shows the profiles of the gas mass fraction, W. Near the inlet (up to z* = 0.5),
W = W, for the majority of the cross section but increases rapidly near the interface due
to the interface impermeability condition. Along the length of the tube, the gas mass
fraction increases at the centerline and the slope near the interface decreases. Far from
the inlet, at z* = 150, the gas mass fraction profile is fairly flat and is equal to the end of

condensation value of 0.71.
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Figure 6.3 Gas mass fraction profiles

Figure 6.4 shows dimensionless velocity profiles at different z* locations for the case of

Win= 0.6, Pi = 1 atm, Rey, = 1000 and AT}, = 20 K. In this case, the much higher amount
of gas significantly reduces the condensation rate. Comparing the velocity profiles in
Figure 6.4 to the profiles in Figure 6.1 (for an inlet gas mass fraction of 0.2), several
differences can be observed. First, the mixture velocity does not decrease as rapidly in
Figure 6.4 as it did in Figure 6.1. This trend is due to the much lower rate of mass
removal from the mixture for W;, = 0.6. Second, because the mixture is not losing mass
rapidly, a boundary layer development similar to that for a single phase pipe flow is seen.
This development is seen in the increase in centerline velocity up to approximately
z* =25, compared to the decrease in centerline velocity up to z* = 25 seen in Figure 6.1.

Finally, in the case of Wi, = 0.6, the centerline velocity decreases from z* = 25 to
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Figure 6.4 Dimensionless velocity profiles for Wi, = 0.6

z* =150, while the centerline velocity increased after z* = 25 in the case of W, = 0.2.
These opposing trends will be discussed in the following section with reference to Figure

6.5.

Figure 6.5 shows the axial variation of the dimensionless centerline velocity for different
inlet gas mass fractions. For the case of pure steam (Wi, = 0), the centerline velocity
decreases to zero once all the steam has condénsed. Under these conditions, flow
reversal occurs for Wi, < 0.08. For all the other cases (Wi, > 0.08), u.* reaches the
analytically predicted end of condensation value at large z* and remains constant. As

noted in the discussion of Figure 6.1, when Wi, = 0.2, u.* decreases due to the high
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Figure 6.5 Centerline velocity distribution

condensation rate until z* ~ 25, where it starts increasing. After z* = 25, the condensation
rate is very small and the increase in u.* is due to the increase in the amount of heavier
gas at the centerline from z* = 25 to z* = 50; the W increase at the centerline is seen in
Figure 6.3. Since the total mixture mass is not changing rapidly, the increase in gas mass
fraction near the center line results in a higher centerline velocity. For the case of
Wi = 0.6, the velocity at the centerline increases until z* ~ 20. As mentioned earlier, this
trend is due to hydrodynamic development dominating over the effects of mass removal.
At z* ~ 20 the centerline velocity starts to decrease. This decrease in the centerline
velocity results from condensation beginning to have an effect in removing mass from the
mixture. This reduction of mixture mass is consistent with the velocity profiles seen in

Figure 6.4. When Wi, = 0.8, the condensation rate is so low that the hydrodynamic
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development dominates for the entire length of the tube; therefore, the centerline velocity

continues to increase until it reaches the ‘end of condensation’ where it levels off.

6.3 Film Thickness and Nusselt Number Distributions

Figures 6.6 and 6.7 show the dimensionless film thickness and the Nusselt number
distributions for an inlet pressure of 1 atm, an inlet Reynolds number of 1,000, a
temperature difference of 20 K, and an inlet gas mass fraction of 0.2. Figure 6.6 shows
how the rate of change in film thickness, d&*/dz*, is highest near the inlet and decreases
until the film thickness reaches &%, = 0.00655. At this point, the condensation process
shuts off and the film thickness remains constant with z*. The rate of change in film
thickness is largest near the inlet because the heat transfer rate, and thus the condensation
rate, is largest near the inlet. This trend in the heat transfer rate is confirmed in
Figure 6.7. The Nusselt number is largest at the inlet, and then decreases to zero at the

end of condensation.

6.4 The Effect of Re;,, AT}, Pi, and Wi,

Figures 6.8 and 6.9 examine the effects of changing the inlet-to-wall temperature
difference, ATi,, and the inlet gas mass fraction, Wi, on the film thickness and the
Nusselt number. The Reynolds number is 1,000, and the inlet pressure is 1 atm. For

fixed Pj, and W, increasing ATi, corresponds to decreasing Tyay.

In Figure 6.8 it can be seen that as AT}, increases, d5*/dz* increases near the tube inlet for

both values of W, In addition, dé*/dz* also increases with decreasing Wi, at the
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same ATi,. It is expected that a higher AT;, and lower inlet gas mass fraction will each
result in a greater heat transfer rate. For Wi, = 0.01, the condensation rate is high and
flow reversal occurs, so the end of condensation is never reached. When Wi, = 0.01,
there is also a significant decrease in the tube length at which flow reversal occurs as AT},
increases. It is also observed from Figure 6.8 that the film thickness at the end of
éondensation increases with increasing AT, for both inlet gas mass fraction values.
When Wi, Rein, and Pj, are fixed, there is a fixed amount of vapor mass flow at the inlet.
Therefore, the difference in film thickness is due to a difference in the amount of vapor
condensed. At higher AT;, the lower wall temperature results in a lower mixture
temperature at the end of condensation. A lower mixture temperature cérresponds toa

decreased amount of vapor in the mixture, and thus more mass in the liquid and a thicker

film for higher AT,

The effect of ATi, and W, on Nusselt number can be seen in Figure 6.9. These results
éhow that Nu, decreases with increasing AT;,; which is consistent with the thicker film
and thus more resistance to heat transfer. A comparison of the curves for Wy, = 0.01 with
the curves for Wi, = 0.2 in Figure 6.9 shows how the presence of air greatly reduces the

heat transfer rate.

Figures 6.10 and 6.11 demonstrate how a change in Re;, affects the film thickness and
the Nusselt number for steam-air at Py, = 1 atm, Wy, = 0.2, and AT, = 5 K and 20 K.
From Figure 6.10 it can be seen that as the Reynolds number increases, d5*/dz* increases

near the tube inlet and the film thickness at the end of condensation also increases;
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Figure 6.10 Effect of Re;, and AT, on the dimensionless film thickness

therefore, a larger Reynolds number results in higher condensation rates. In addition, the
length of the pipe required for complete condensation increases with increasing Reynolds

number.

The effect of changing Rej, on the heat transfer rate is shown in Figure 6.11 in terms of
(NuZ/ReinO'43 ) versus z*. The results for the three values of Rei, (Rej, = 500, 1,000, and
2,000) for both values of ATi, (AT, = 5 and 20 K) are shown in this figure. For each
ATy, the results for all three Rei, values collapse fairly well onto the same curve.
Although this was not an attempt at a correlation, several different exponents for Re;,

were tested and 0.43 was selected for the purpose of this graph.

105



60 e e —

——Re,=500
50} — Re,, = 1,000 |
--- Re,, = 2,000

0.01 0.1 ' 1 10 100

Figure 6.11 Effect of Rej, and AT, on the local Nusselt number

Finally, the effect of changing Pi, is shown in Figures 6.12 and 6.13 for Rej, = 1,000 and
ATy, = 5 K. Results are shown for three different inlet pressures (P, = 0.5, 1 and 2 atm)
and two different inlet gas mass fractions (Wi, = 0.01 and 0.2). In Figures 6.12 and 6.13,
increasing Pj, at the same Wi, causes an increase in the inlet temperature. Because the
temperature difference is constant, Ty will increase. In Figure 6.12, it is seen that for
Win = 0.01, increasing the inlet pressure decreases the rate of increase in film thickness,
do*/dz*, and shortens the length at which reversal occurs. For Wi, = 0.2, 5*ec decreases
with increasing inlet pressure. These trends are expected to be primarily related to
changes in the properties. Figure 6.13 shows that Nusselt number decreases near the inlet
for increasing inlet pressures. However, for z* > 0.1, a change in the inlet pressure does

not have much effect on Nusselt number.
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6.5 Summary

Several conclusions can be drawn from the laminar results presented in this chapter. The
presence of gas in the mixture was found to greatly inhibit the heat transfer process. The
film thickness increased when either AT;, or Re;, was increased or when Wi, or P;, was
decreased. The Nusselt number increased with increasing Re;j, or decreasing AT, or Wi,
Beyond z* =~ 0.1, changing P;, had negligible effect on Nusselt number for the conditions

studied.
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CHAPTER 7

COMPARISONS WITH EXPERIMENTS

7.1 Introduction

To further validate the numerical model and compare the predictions of different
turbulence models, three experiments were chosen: Goodykoontz and Dorsch (1966),
Siddique (1992), and Kuhn (1995). Several test cases were chosen from each of these
experiments and for each case the program was run using three different turbulence

models. The turbulence models are shown in Table 1 below.

Table 7.1 Turbulence models

Model Mixture Region Liquid Film
1 Pletcher's (1974) Mixing Length Pletcher's (1974) Mixing Length
Model Model
) Jones and Launder (1972) Low Jones and Launder (1972) Low
Reynolds Number k-£ Model Reynolds Number k- Model
5 Jones and Launder (1972) Low Pletcher's (1974) Mixing Length
Reynolds Number k- Model Model

From this point on, the models will be referred to by their numbers shown in the left
column of Table 7.1. For each test case chosen from the experiments, heat transfer
coefficient results were obtained for each of the three turbulence models. The results
from all three models were compared with those found in the experiments. In order to
make accurate comparisons, the boundary conditions in the model were set to emulate

those found in the experiments.
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7.2 Comparisons with Goodykoontz and Dorsch (1966)
Goodykoontz and Dorsch (1966) performed experiments for pure steam condensation in
a 15.9-mm diameter vertical tube.  They presented 14 test cases with the

following range of conditions:

Rein: 27,000 to 85,000
P;.: 100 kPa to 400 kPa

ATn: 510 18K

From these 14 test cases, the following six were chosen for comparisons:

Table 7.2 Runs Chosen from Goodykoontz and Dorsch (1966)

Run# | Repn |Pn(kPa)| AT (K)| i

3 82,900 243 11.8 0.99

4 90,500 252 12.6 0.99

5 37,600 269 14.8 0.96

. 6 45,100 307 13.2 0.96

7 64,500 265 16.8 0.97

9 27,800 138 12.5 0.94

In Table 7.2 above, the parameter x;, refers to the inlet quality at z = 0. These six cases
captured the maximum and minimum inlet Reynolds numbers as well as four different

Reynolds numbers within these limits. Test runs with inlet superheat were avoided.
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The inlet of the test section used in Goodykoontz and Dorsch’s experiments consisted of
a 14.4-cm adiabatic section which allowed the velocity profile to reach a fully developed
profile at z = 0 (beginning of cooling). To model these inlet conditions, a fully developed
inlet velocity profile and a fully developed turbulent viscosity profile were used in the
model. These profiles were obtained by running the program for single-phase pipe flow
with the same inlet Reynolds number until a fully developed flow was reached. The
resulting fully developed velocity and turbulent viscosity profiles were then used as the

inlet profiles for the condensation model run.

The wall temperature was set to match the experiments by fitting a polynonﬁal to the
measured wall temperatures and using this polynomial to calculate Ty.y at each station.
From Table 7.2 above it can be seen that the six test cases chosen from Goodykoontz and
Dorsch’s experiments each had a quality, x;, < 1, at the inlet of the test section. In the
present model however, the steam was saturated with a quality x = 1 at the inlet. In order
to make an accurate comparison, the location z = 0 in the model was taken as the point at
which the quality matched that from the inlet conditions of the experiments. The wall
temperature was maintained at the inlet Ty, until this quality was reached at which point

the polynomial was then used to calculate Tya(z).

Figures 7.1 to 7.3 show how the heat transfer coefficients calculated from the model

compare with the values found from the experiments for all three turbulence models.
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Figure 7.3 Comparison with Goodykoontz and Dorsch (1966) using model 3

From these plots it can be seen that the turbulence model that best predicts Goodykoontz
and Dorsch's results is model 2. It was found that with model 2, 61% of the numerical
results were within + 40% of Goodykoontz and Dorsch’s data and 73% were within
+ 50% of their data. This agreement can also be observed in Figures 7.4 to 7.9. These

plots show each run individually with results from all three turbulence models.
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7.2 Comparisons with Siddique (1992)

Siddique (1992) performed experiments for steam condensation with either air or helium
as the non-condensable gas. The inlet conditions corresponded to lower Reynolds
numbers than those used by Goodykoontz and Dorsch (1966), but included cases with
inlet gas mass fractions of up to 35%. A total of 52 runs were done with air as the non-

condensable gas. The ranges of inlet parameters were as follows:

7o: 2.3 cm

Rein: 4,800 to 24,000
Pin: 100 kPa to 500 kPa
Wia: 9% to 35%;

AT 10 60K

The present model was compared with eight different runs from Siddique’s experiments.
These eight runs were chosen such that they covered the entire range of parameters. Four
runs were selected at the minimum flow rate and four at the maximum flow rate. At each
flow rate, two runs were selected at the lowest pressure and two at the highest pressure.
In addition, at each pressure level, one run was selected at the lowest gas mass fraction
and one at the highest. The following table summarizes the eight cases chosen for

comparison.
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Table 7.3 Runs chosen from Siddique (1992)

Run# | Ren | Pn(kPa) | 4Ti(K) Win
1 6,000 107 7.4 0.09

6 7,330 133 28.8 0.33
13 4,840 389 26.2 0.11
17 9,790 475 60.3 0.34
35 17,300 109 0.7 0.11

| 40 |23,700 137 1.8 0.35
47 19,200 386 6.5 0.10
92 123,100 485 15.3 0.35

Siddique's test section included an adiabatic inlet length which resulted in a fully
developed velocity profile at the inlet to the condenser. The wall temperature was not
constant but decreased along the length of the tube. In order to model these conditions, a
fully developed inlet velocity and turbulent viscosity profile were used and a polynomial

was fit to the measured wall temperatures and was used to calculate the wall temperatures

in the model.

Figures 7.10 to 7.12 show how the heat transfer coefficients predicted by models 1, 2 and
3 compare with the experimental results from all eight runs. The turbulence models that

showed the best agreement with the data were models 2 and 3. It was found that model 3
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Figure 7.12 Comparison with Siddique (1992) using model 3

was slightly better than model 2 with 64% of the numerical results falling within + 30%
of Siddique’s results and 89% were within + 40% of Siddique’s  data.
Siddique reported that the experimental uncertainty was + 17.3%. In general, the
numerical model predicted Siddique's results better than the results from Goodykoontz
and Dorsch's (1966) experiments. Figures 7.13 to 7.20 show individual plots for each of

the eight runs. Again, it can be observed that both model 2 and model 3 show the best

agreement with the experimental results.
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7.3 Comparisons with Kuhn (1995)

Kuhn (1995) performed experiments for steam condensation in a vertical tube in the
presence of either air or hydrogen. The inlet Reynolds numbers in these experiments fell
between the large values found in Goodykoontz and Dorsch’s (1966) experiments and the
smaller values fouﬁd in Siddique’s (1992) experiments. The ranges of parameters used in

Kuhn’s experiments were:

¥o: 2.375 cm

Rein: 15,000 to 50,000
Pin. 100 kPa to 500 kPa
Win: 0 to 40%

AT 4t0 40K

A total of eight runs were selected from the 81 runs performed with steam-air. These
runs were selected to cover the entire range of parameters mentioned above. Four of the
eight runs selected were with pure steam and four were with the largest amount of gas
(Win = 40%). For each of these levels of gas, two runs were chosen at the lowest flow
rate (one at the highest P;, and one at the lowest Pin) and two at the highest flow rate (one
at the highest Pj, and one at the lowest Py,). The following table summarizes the eight

runs selected.
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Table 7.4 Runs chosen from Kuhn (1995)

Run# | Rej, Pin(kPa) | AT (K) Win
1.1-1 |36,500| 116 4.3 0
1.1-5 132,200 502 17.8 0
142 {18,500| 108 5.9 0
14-5 |15700| 409 12.9 0
3.5-2 |48,900| 205 139 | 0.38
3.5-5 [43,700| 493 28.8 | 0.37
452 |24500| 202 20.7 | 0.40
455 23400 503 362 | 0.38

The test section from Kuhn’s apparatus included a 50-cm adiabatic entrance region which
allowed the flow to reach a fully developed velocity profile at z = 0. For this reason, a
fully developed inlet velocity and turbulent viscosity profile were used in the model for
these comparisons. Similar to Goodykoontz and Dorsch and Siddique's experiments, the
wall temperature was set by fitting a polynomial to Kuhn’s wall temperature

measurements and using this polynomial to calculate the wall temperature at each station.

From Figures 7.21 to 7.23 it can be seen that both model 2 and model 3 show excellent
agreements with Kuhn’s results. It was found that with model 2, 86% of the numerical

results were within 15% of Kuhn’s data and 98% were within 30% of Kuhn’s results.
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Figure 7.23 Comparison with Kuhn (1995) using model 3

Model 3 also showed excellent agreement with 84% of the numerical results falling
within 15% of Kuhn’s data and 97% falling within 30% of Kuhn’s data. The
experimental error associated with Kuhn’s results was 18.7%; therefore, the numerical
solution shows agreement that is for the most part, well within the experimental error.
This agreement can also be observed in Figures 7.24 to 7.31. These plots show all eight
runs individually with all three models. From these plots it can be seen that for the runs
with pure steam, models 1 and 3 produce very similar results. These models both use the
mixing length model in the liquid film but different models in the core, The similar
results suggest that for the case of pure steam, the model used in the liquid has more of an

affect on the results than the model used in the core. In contrast, for the runs that have
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large amounts of air, models 2 and 3 show similar results. These models both use the k-g
two-equation model in the core but different models in the film. This suggests that for
cases with large amounts of air, the turbulence model in the core has more of an effect
than that used in the film. From these plots it can also be seen that the agreement is

much better with Kuhn than it was with both Siddique and Goodykoontz and Dorsch.

74  Errors Associated with Experiments

From the above comparisons it was found that the present numerical results compare
much better with Kuhn’s (1995) results than with Siddique (1992) and Goodykoontz and
Dorsch (1966). There are several possible reasons for the deviation between the present
model and the experiments including surface waves and the possibility of liquid
entrainment in the core, which were not included in the model. In addition, the method
that was used in determining the heat flux and the heat transfer coefficient in the

experiments could have a large influence on the experimental results.

In all three experiments discussed in the above sections, the local heat transfer coefficient

was calculated as follows:

q"u
h, =2l 7.1
e (7.1)

wall

Where gy, is the local heat flux at the wall, %, is the local heat transfer coefficient and

T, is the saturation temperature corresponding to the partial pressure of steam which is
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evaluated using the average gas mass fraction across the tube. In this equation, the heat
flux was calculated from an energy balance on the coolant in the annulus with the
following equation:

~ M0y Cpoy AT, (2)

oW~ p,cw

(7.2)

9 wan =
wa Py dz

4]

Where 1, is the mass flow rate of the coolant, C p.ow 18 the specific heat of the coolant,

and 7,

b,ew

is the local bulk temperature of the coolant.

Goodykoontz and Dorsch (1966), Siddique (1992), and Kuhn (1995) all used different
methods to measure the coolant bulk temperature. The various methods used to
determine the coolant bulk temperature can greatly affect the local heat transfer

coefficient.

Goodykoontz and Dorsch (1966) tried to measure the coolant bulk temperature directly
by inserting thermocouples into the annulus(one thermocouple per axial station) and
using the local temperatures as the coolant bulk temperatures. With this method, large
errors could result for cases of low coolant Reynolds numbers where large temperature

differences exist across the annulus.

Siddique (1992) used a different approach to measure the coolant bulk temperature. Air

bubbles were inserted into the coolant to promote mixing and the coolant bulk
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temperature was then measured by inserting thermocouples into the annulus (one
thermocouple at each axial location). This method introduced uncertainties in the bulk

temperature measurements due to local fluctuations.

Kuhn (1995) studied the existing techniques used in determining the coolant bulk
temperature and developed a new method. In this method, a numerical approach was
used to determine a relationship between the local coolant bulk temperature, the coolant
flow rate, and the inner and outer wall temperatures of the annulus. The numerical
solution Waé developed by first solving the velocity profile in the annulus assuming a
hydro-dynamically fully developed flow. Next, the temperature profile in the annulus
was solved by assuming a thermally fully developed turbulent flow with a uniform heat
flux at the inner wall. This temperature profile was dependent on both the inner wall
temperature (7w;) and the outer wall temperature (7 wo)- The bulk temperature (T c.,) was
then calculated using the standard definition for their specific annulus geometry and the
specific coolant used (water). This bulk temperature was found to be a function of Ty,

Two and the mass flow rate of the coolant. The relationship between 7; bew and the

independent variables Ti, Tw, and m,, was tabulated based on their numerical

calculations. During their experiments they installed a thermocouple at both the inner
and outer walls of the annulus at each axial station. From these measurements and the
measured mass flow rate of the cooling water they were able to determine the local bulk

temperature from the tabulated values.

Among the three different methods of measuring the coolant bulk temperature, Kuhn’s
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method appears to be the most accurate. It is interesting to note that the present

numerical results agree best with Kuhn’s experimental results.

7.5 Summary
Table 7.5 below shows a summary of how the numerical predictions compare with the

experimental results for all three turbulence models.

Table 7.5 Summary of comparisons with Kuhn (1995), Siddique (1992), and
Goodykoontz and Dorsch (1966)

Goodykoontz
Kuhn (1995) Siddique (1992) and Dorsch
' (1966)

Model Within | Within | Within | Within | Within | Within
£15% | £30% | £30% | £40% | +40% | +50%

1 33% 55% 45% 70% 48% 57%

2 86% 98% 61% 89% 61% 73%

3 84% 97% 64% 89% 52% 60%

From this table along the with Figures 7.1 to 7.31, it can be seen that the turbulence
model that shows the best agreement with all three experiments is the k-& model applied
to both the liquid and the mixture regions of the flow (model 2). In addition, the
numerical model showed the best agreement with Kuhn’s experimental results with 98%
of the present results falling within + 30% of Kuhn’s data. The larger errors associated
with comparisons made with Siddique and Goodykoontz and Dorsch’s data are likely due
to either surface waves, liquid entrainment in the core, or the method which they used to

determine the coolant bulk temperature and thus the local heat flux.
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CHAPTER 8

TURBULENT FLOW COMPUTATION RESULTS AND DISCUSSION

8.1 Introduction

In this chapter, results are presented for turbulent steam condensation in vertical tubes
both with and without the presence of air. The turbulence model selected for the purpose
of this study was the k-& model applied to both the mixture core and the liquid film. The
input variables are the inlet Reynolds number, the inlet gas mass fraction, the inlet
pressure, and the inlet temperature difference between the mixture and the tube wall. At
the inlet, the pressure, gas mass fraction, and velocity are all uniform across the tube and

the temperature of the tube wall is maintained constant along its entire length.

Throughout this chapter, the process of turbulent flow condensation will be discussed for
the case of pure steam followed by the study of steam condensation in the presence of air.
Detailed results for film thickness, Nusselt number, velocity, mass fraction, pressure,
temperature, and turbulent kinetic energy will be used to discuss these results. Following
this, the effect of each of the input parameters mentioned above will be studied by

examining the distributions of the dimensionless film thickness and local Nusselt number.

8.2 Pure Steam
For the case of turbulent pure steam condensation in a vertical tube, the numerical model
was solved using a 2-cm diameter tube with the following inlet conditions: Re;, = 40,000,

Pin =1 atm and AT;, = 5 K. Figure 8.1 shows the dimensionless velocity profiles at seven
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different axial locations. The vapor region is from 7 = 0 (centerline) to 77 = 1 (interface)
and the liquid region is from 7 =1 to 77 = 2 (tube wall). At the inlet of the tube, the
velocity profile in the core is uniform while the velocity in the film is zero. As
condensation proceeds along the tube, the core loses mass resulting in a decreased
velocity profile in the core. As the steam condenses, the liquid film gains mass, resulting
in both a thicker and a faster moving film. At z* = 569, flow reversal occurs; however, a

very high percentage of the inlet vapor has already condensed at this location.

The turbulent kinetic energy profiles for the core region are shown in Figure 8.2. The

turbulent kinetic energy is represented by k/u’ on the vertical axis and the horizontal

1.2 I I I
Re,, = 40,000
1 e P,=1atm -
ZF=10 - Vvin =0
0.8 ‘_I AT, =5K -
U*OG_ zZ* =0.01 0=1cm N
04F 2 _ 250 -
02k = 500—x Z* =569 -
O A 4
[ 1 1
0 0.5 1 1.5 2

Figure 8.1 Velocity profiles for pure steam
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axis is the distance y/r, measured from the interface towards the centerline.

Re,, = 40,000
3 Z* — 250 Ijin = 1 atm =
VVin =0
25 AT,=5K 7

r,=1cm

\

0 01 02 03 04 05 06 0.7 08 09 1
v,

Figure 8.2 Turbulent kinetic energy profiles for pure steam

The

. ouY . - . .
production term ,uL(a—u) in the kinetic energy equation depends on the u-velocity
2

profile; when the u-velocity gradient in the radial direction increases, the production term

increases resulting in an increase in the turbulent kinetic energy. Near the inlet, the

kinetic energy is small across the tube; this is due to the near uniform velocity profile at

this axial location and thus a small production term. As z* increases to 100, the kinetic

energy increases with a maximum occurring near the interface. This increase is due to

the velocity profile changing from uniform to a more fully developed shape thus

increasing the production term. The peak in the turbulent kinetic energy profile occurring
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near the interface can be attributed to the increasing mean velocity gradient as VIt
approaches zero. After z* = 100, the kinetic energy profile decreases due to the
decreasing velocity in the core. At z* = 569 when the velocity reverses, the kinetic

energy drops to zero, due to very small velocities at this location.

Figures 8.3 and 8.4 show the dimensionless film thickness and Nusselt number

%
distributions. In Figure 8.3, the slope of the curve,% , is largest near the inlet due to
Z

the high condensation rate and decreases along the tube. This high condensation rate
near the inlet can also be observed in Figure 8.4; the Nusselt number is largest near the

inlet and decreases as z* increases.

0025 1 T 1 T 1
0.02} i
0% 0.015} -
0.01} Re,, = 40,000 -
P, =1atm
0.005 W,=0 i
AT, =5K
r,=1cm
O { I | | 1
0 100 200 300 400 500 600

*

4

Figure 8.3 Dimensionless film thickness distribution for pure steam
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Figure 8.4 Local Nusselt number distribution for pure steam

8.3 Steam-Air Mixtures

The results of the steam-air run, shown in Figures 8.5 to 8.11, are for a 2-cm diameter
tube with Rey, = 40,000, Py, = 1 atm, AT, = 5 K, and Wi, = 0.1. Figure 8.5 shows the
dimensionless velocity profiles for various axial locations. At the inlet, the profile is
uniform in the mixture region and zero in the liquid. As z* increases to 10, the velocity
profile in the mixture tends to a fully developed profile while the velocity in the liquid
increases due to condensation. Comparing the velocity profiles in Figure 8.5 to those
found in Figure 8.1 for the case of pure steam it can be seen that the centerline velocity in
Figure 8.5 increases from z* = 0 to z* = 10 whereas the centerline velocity in Figure 8.1
decreased. The reason for this is that as z* increases, a boundary layer develops in the

mixture at the interface with the liquid. As a result, the centerline velocity increases as
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Figure 8.5 Dimensionless velocity profiles for a steam-air mixture

can be seen from Figure 8.5. However, for the case of pure steam, the condensation rate
1s large and thus the velocity in the core decreases due to the loss of steam and offsets the
increasing centerline velocity. As z* increases from 10 to 1000 in Figure 8.5, the velocity

in the mixture continues to decrease while the velocity in the liquid increases.

Figure 8.6 shows the gas mass fraction profiles at various z* locations. Near the inlet, the
gas mass fraction is equal to W, across the majority of the core but increases at the
interface due to the impermeability boundary condition. As z* increases and more steam
condenses, W increases across the core and at z* = 1000, the gas mass fraction is uniform

and is approximately equal to 0.285.
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Figure 8.6 Gas mass fraction profiles for a steam-air mixture

Figure 8.7 shows how the dimensionless pressure P* varies along the length of the tube,

P-P .
where P* = 05—"‘2 In the present model, there are three components that influence
- pinuin

P*: one 1s the change in momentum which for this problem causes P* to rise, the second
is the wall friction which causes P* to drop, and the third is the force of gravity which is
small relative to the other two components but causes P* to rise. From the definition of
P*, it is known that at the inlet (z* = 0) P* will equal zero. It can be seen in Figure 8.7
that shortly after the inlet, at z* = 0.001, P* = -0.5; this drop in P* from z* = 0 to 0.001 is
due to the large frictional force near the inlet. As z* increases further, the change in
momentum becomes more significant relative to the wall friction causing P* to increase.
Near z* = 0.1, the slope of the curve decreases, but remains positive right up to z* =

1000.
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Figure 8.7 Dimensionless pressure distribution for a steam-air mixture

Figure 8.8 shows the temperature profiles along the length of the tube. Near the inlet (z*
= (.01), the mixture temperature is uniform and equal to the inlet temperature and drops
sharply at the interface, while in the liquid region, the profile is nearly linear. Between
z* = 0.01 and 10, the temperature in the mixture remains equal to the inlet temperature
across most of the core region, while the interfacial temperature rises. The interfacial
temperature (T) is a function of both the pressure (P) and the interfacial gas mass
fraction (Wint); Tine decreases with Wiy and increases with P and thus P*. From Figure 8.7
it can be seen that from z* = 0.01 to 10, P* increases significantly resulting in an increase
in the interfacial temperature. Beyond z* = 10, Ti decreases continuously. Figure 8.7

shows that the change in P* is not significant beyond z* = 10 and therefore, P* does not -
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Figure 8.8 Dimensionless temperature profiles for a steam-air mixture

have much of an effect on the temperature profile; the decrease in Ty is therefore due to
the increase in Wiy From z* = 10 to z* = 1000, the temperature across the entire tube

drops and T* approaches zero as we approach the end of condensation.

The turbulent kinetic energy profiles in the mixture region are shown in Figure 8.9. Near
the inlet, the kinetic energy is close to zero due to the flat velocity profile across the core.
As z* increases and the velocity profile takes on the shape of a fully developed profile,
the kinetic energy profile increases with its peak value occurring near the interface and
dropping to zero at the interface. With the presence of air, the kinetic energy profile does

not drop back to zero as it did for the case of pure steam. The reason for this is that the
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Figure 8.9 Turbulent kinetic energy profiles for a steam-air mixture

velocity profile maintains the shape of a fully developed profile due to the presence of

gas and therefore the kinetic energy will also maintain its shape.

The dimensionless film thickness and Nusselt number distributions are shown in Figures
8.10 and 8.11. From Figure 8.10 it can be seen that the film thickness increases rapidly
near the inlet due to the large condensation rate and levels off near the end. This trend
can also be observed in Figure 8.1 1; the Nusselt number is large near the inlet and drops

to small values near the end.
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Figure 8.10 Dimensionless film thickness distribution for a steam-air mixture
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Figure 8.11 Local Nusselt number distribution for a steam-air mixture
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8.4  Effect of Re;,

Figure 8.12 compares the dimensionless film thickness for three different inlet-Reynolds
numbers. For all three cases shown in this figure, Piy =1 atm, Wi, = 0.1, ATy, = 8 K, and
ro = 1 cm. The three curves represent inlet Reynolds numbers of 20,000, 40,000, and
60,000. From these curves it can be seen that near the inlet, the film thickness decreases
with increasing Reynolds number. Further along the length of the tube, the film thickness
curves cross and the film thickness decreases with decreasing Rej,. The final film
thickness at the “end of condensation” does therefore increase with an increase in Rejp,

which is the expected behavior.

0.025 1 1 T T 1 T T
0.0 Re, = 40,000
§* 0-015F ﬂ\— Re,, = 20,000
0.01 Rem = 60,000 -
P, =1 atm
W, =0.1
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O [ 1 [ 1 | ] | ] i
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Z*

Figure 8.12 Effect of Re;, on the dimensionless film thickness
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Although the film is thinner near the inlet for the higher Re;,, the total mass flow rate
across the film is larger. For this to occur, the velocity of the film must be significantly
higher for the larger inlet Reynolds numbers. This is shown in Figure 8.13, where the
velocity profile in the liquid film is plotted at z* = 100 for all three cases of Re;,. From
this figure it can be seen that as Rej, increases, the liquid velocity increases and the film
thickness decreases (as can be determined from the distance on the horizontal axis, y/o,

where the velocity is the highest).
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Figure 8.13 Effect of Rej, on the velocity profile in the liquid film at z* = 100
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The thinner, faster moving film resulting from the higher inlet Reynolds numbers is likely
due to the interfacial shear stress acting on the film. The expected trend is that as the
interfacial shear increases, the velocity in the film increases and the film thickness
decreases. Figure 8.14 shows the axial distribution of the interfacial shear stress for the
three cases of Reji, with the same conditions used in Figures 8.12 and 8.13. The results in

Figure 8.14 confirm the significant increase in interfacial shear with Re;,.

P,=1atm
AT,=8K
W, =0.1
r,=1cm

[— Re,, = 60,000

200 300 400 500 600 700 800

Figure 8.14 Effect of Re;, on the interfacial shear stress distribution
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Figure 8.15 shows the local Nusselt number for the same three inlet-Reynolds numbers
used in Figures 8.12 to 8.14. These results show that the Nusselt number increases with
increasing Rei,. The form of Nu, dependence on Rej, is examined in Figure 8.16 by
plotting (Nu,/Rei") versus z*. The results for the three values of Rey, (Rein = 20,000,
40,000, and 60,000) with P;, = 1 atm, Wi, = 0.1, ATy, = 8 K, and r, = 1 cm are shown in
this figure. The results for all three Rej;-values collapse fairly well into one curve. This
result gives a starting point for developing an algebraic correlation; however, much more

work is needed to achieve this goal.
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Figure 8.15 Effect of Re;, on the local Nusselt number
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Figure 8.16 Nu,/Re;>> vs. z* for various Re;,

8.5 Effect of AT;,

Figures 8.17 and 8.18 show the effects of both inlet Reynolds number and temperature
difference between the inlet and the wall on film thickness and local Nusselt number.
The independent parameters for the runs shown in these figures are: P, = 1 atm,
Win=0.1,r,=1cm, AT}, =5 and 10 K, and Re;, = 20,000 and 40,000. From Figure 8.17
it can be seen that the film thickness increases with increasing ATy,. In addition, the
temperature difference has a greater effect on the film thickness for higher Reynolds
numbers. When comparing the curves for AT}, = 5 and 10 K it can be seen that the curve
for Rei, = 20,000 crosses the curve for Re;, = 40,000 at a lower z* value for AT, = 10 K.
The reason for this is that for AT}, = 10 K, the condensation rate is higher near the inlet
and therefore, less distance is required for the steam to fully condense and for the film

thickness curve to level off.
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Figure 8.17 Effect of ATy, and Rey, on the dimensionless film thickness
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Figure 8.18 Effect of AT, and Rey, on the local Nusselt number
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Figure 8.18 shows the local Nusselt number distribution for these same runs. From this
figure it can be seen that increasing AT}, results in a decrease in the local Nusselt number.
The reason for this is that for the higher AT}, the film is much thicker resulting in a lower
heat transfer coefficient and thus a lower Nusselt number. It must be pointed out that a
decrease in the heat transfer coefficient does not necessarily mean a decrease in the heat
flux since the heat flux depends on the product of the heat transfer coefficient and the

temperature difference.

8.6 Effect of W;,

Figures 8.19 and 8.20 show the effect of inlet gas mass fraction on film thickness and
Nusselt number. The input parameters for these figures are Rei, = 40,000, -Pin =1 atm,
AT=5K,7,=1cm and W, = 0, 0.05, 0.1 and 0.2. Although the results shown in these
figures are for a maximum gas mass fraction of 20%, the numerical model is capable of
producing results for gas mass fractions up to 60%. The dimensionless film thickness
distributions are shown in F igure 8.19. As Wi, increases, the film thickness decreases and
levels off at lower z* values. For the case of pure steam (Wi, = 0), flow reversal occurs at
z* = 580. Figure 8.20 shows the effect of Win on the local Nusselt number. From this
figure it can be seen that as Wi increases, the local Nusselt number decreases.
Comparing the case of Win =0 to Wy, = 0.2 it can be noted that the Nusselt number and

thus the heat flux at the wall doubles when the air is removed.
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Figure 8.19 Effect of W, on the dimensionless film thickness
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Figure 8.20 Effect of Wi, on the local Nusselt number
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Figure 8.21 and 8.22 show the effects of both AT, and Wi, on film thickness and Nusselt
number. The inlet parameters are: Rei, = 40,000, Py, = 1 atm, r, = 1 cm, Wi, =0 and 0.1
and ATy, = 5, 10 and 20 K. From Figure 8.21 it can be seen that for the case of Win=0,
flow reversal occurs at lower z* as ATy, increases; this is due to the larger condensation
rate for higher AZ},. Similar trends as those found in previous figures can be observed
here including an increase in &* with increasing ATy, and decreasing W, Figure 8.22
shows the local Nusselt number distribution for these same runs. The Nusselt number
was again found to decréase with the addition of air and with increasing ATi,. When
comparing the effects of Wi, and AT}, it can be seen that increasing Wi, from 0 to 0.1 has

a greater effect on the Nusselt number than increasing AT}, from 5 to 20 K.
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Figure 8.21 Effect of AT, and Wi, on the dimensionless film thickness
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Figure 8.22 Effect of ATy and Wiy on the local Nusselt number

8.7 Effect of P;,

The effect of inlet pressure is shown in Figures 8.23 and 8.24. The inlet Reynolds
number for these figures is 40,000, the radius is 1 cm, and the inlet temperature
difference is 5 K. Two values were used for the inlet gas mass fraction (W, = 0 and
Win = 0.1) and three values for the inlet pressure (Pin = 1, 2, and 4 atm). Figure 8.23
shows the dimensionless film thickness distributions. Near the inlet, the film thickness
increases with the inlet pressure whereas near the end of the condenser or near flow
reversal, the film thickness decreases with increasing inlet pressure. Varying the inlet
pressure also appears to have a greater affect for the case of pure steam. The local
Nusselt number distribution is shown in F igure 8.24. Near the inlet, the Nusselt number

decreases with P;,, while at larger z* values, the Nusselt number increases with Py,
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Figure 8.23 Effect of P;, and Wi, on the dimensionless film thickness
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Figure 8.24 Effect of P;, and W, on the local Nusselt number
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The effect of inlet pressure on both film thickness and local Nusselt number is mainly
due to the property changes that occur when varying the pressure. This was proven by
keeping the properties constant and varying the inlet pressure for both the case of pure
steam (Figures 8.25 and 8.26), and a steam-air mixture (Figures 8.27 and 8.28). Figures
8.25 to 8.28 show the effect of inlet pressure on the dimensionless film thickness and the
local Nusselt number for fixed properties. From these plots it can be seen that when the
properties are held constant, the effect of varying the inlet pressure is negligible on both

the film thickness and the local Nusselt number.
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Figure 8.25 Effect of Pi, on the dimensionless film thickness for
pure steam with fixed properties
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Figure 8.27 Effect of P, on the dimensionless film thickness for a
steam-air mixture with fixed properties
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8.8 Summary
The results presented in Sections 8.2 and 8.3 for the cases of turbulent pure steam and
steam-air mixtures showed similar trends as those found in the laminar flow results with
the exception of one difference. The velocity profiles in the core resembled a fully

developed turbulent profile and were therefore flatter than the profiles for laminar flow.

From the parametric studies several trends were observed. The dimensionless film
thickness was found to increase with increasing inlet temperature difference, and/or with
decreasing inlet gas mass fraction. Near the inlet, the film thickness increased with
decreasing Reynolds number while further along the tube the curves crossed and beyond

that, the film thickness was found to increase with increasing Reynolds number. When
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varying the inlet pressure, the film thickness curves cross. Near the inlet, the film
thickness increases with increasing pressure while further away from the inlet the
opposite trend is found; the film thickness increases with decreasing pressure. The local
Nusselt number was found to increase with decreasing inlet gas mass fraction, with
decreasing inlet temperature difference and with increasing inlet Reynolds number.
When varying the inlet pressure, different trends were observed near the inlet of the tube
and the end of the tube. Near the inlet, the Nusselt number increased with decreasing

pressure while further along the tube, the Nusselt number increased with increasing

pressure.
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CHAPTER9

CONLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

A numerical model was developed based on the full set of governing equations for
turbulent condensation of a vapor in a vertical tube in the presence of gas. This model
produces results for both laminar and turbulent flow conditions. For the case of laminar
flow, a fully—coupled approach is used to solve the governing equations; while for the
case of turbulent flow, the turbulent parameters are calculated separately from the

governing equations. A parametric study was completed for the case of laminar flow and
the following trends were observed: The film thickness increased when either ATy, or
Rein was increased or when W, or P;, was decreased and the Nusselt number increased

with increasing Re;, or decreasing ATy, or Wi,

For the case of turbulent flow, the following three turbulence models were employed to

model turbulence in both the core and the film:

e Pletcher’s (1974) mixing length model applied to both the core and the film

e Jones and Launder’s (1972) low Reynolds number k-& model applied to both the
core and the film

e Jones and Launder’s (1972) low Reynolds number &£ model applied to the core

and Pletcher’s mixing length model applied to the film
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When using the Jones and Launder low Reynolds number 4-¢ model across the liciuid
film along with boundary conditions of zero for both & and ¢ at the wall and the interface,
the turbulent viscosity was dampened across the entire film. These findings are

consistent with previous numerical models (e.g., Yuann, 1993).

The local heat transfer coefficient results from each of the three turbulence models above
were compared with experimental results of Goodykoontz and Dorsch (1996), Siddique
(1992), and Kuhn (1995). From these comparisons it was concluded that the model that
showed the best agreement with all three experiments was the Jones and Launder low
Reynolds number &-¢ model applied to both the core and the film. With this model- 73%
of the results were within + 50% of Goodykoontz and Dorsch’s data, 89% of the results
were within + 40% of Siddique’s data, and 98% of the results were within = 30% of

Kuhn’s data.

A parametric study was performed for the case of turbulent flow using the k-£ model in
both the core and the film. The dimensionless film thickness was found to increase with
increasing AT, and/or with decreasing Wy,. When varying Rey,, two different trends were
observed; near the inlet, the film thickness increased with decreasing Re;, and near the
end, the film thickness increased with increasing Rej,. When varying the inlet pressure,
the film thickness curves crossed. Near the inlet, the film thickness increases with
increasing pressure while further away from the inlet the opposite trend is found; the film
thickness increases with decreasing pressure. The local Nusselt number was found to

increase with decreasing Wi,, with decreasing ATy, and with increasing Rey,. Near the
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inlet, the Nusselt number increased with decreasing P;, while further along the tube, the

Nusselt number increased with P;,.

9.2 Recommendations

The following recommendations are made for future work:

1. More research should be done in selecting an appropriate turbulence model for the
film. A k- model as well as other k-¢& models should be employed and compared
with the three turbulence models used in thié thesis.

2. Empirical correlations should be added to account for a wavy interface. This would
also require new _interfacial boundary conditions.

3. The present model could be extended to model both horizontal and inclined tubes.
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APPENDIX A

Transformation of Governing Equations, k- Model

and Boundary Conditions
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A.1 Coordinate Transformation

Given the transformation equations:

z=y

r= 5(77—2)+r0

r=nlr, —5)

In derivative form:

Oy =0z
Or = 60n

or=(r,—6)on

Ifg= {uL,UL,TL,uM,vM,TM,W}it’s partial derivatives are transformed as:

for z=0
for (ro —§)SrSro

for 0<r <(r, - &)

for z>20
for (r, -5)<r<r,

for 0<r<(r, -5)

9p _ 09 0x , 09005
0z Oy 0z 0ndd oz

_94 09 0
8y om0
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oy & ondy’
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for z>0 and (r0—5)SrSro
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A.2 Normal Mass Flux

Referring to Figure B.1:

Z w

Ze

=Xw
=Xe

o

for z>0 and (r, -5)<r<r,

for z20and 0<7<(r, - 5)

for z>0and 0<r <(r, - &)
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=0 —-2)+
rw,n w(ﬂn ) ro for (ro —§)Sr S}’o (A12)
Fen =5e(77n _2)+ro

- )
rw,n Un(ro w)} fOI‘ Osrﬁ(ro__ﬁ) (A]_3)
re,n =77n(ro _'58)

In the liquid region, the mass flow rate normal to the north face is:

mL,n = IJDL,nvL,u (Ze —Zw)+pL,nuL,n (rw,n _re,n) ﬂ’rn

m n §e _5w
(ZWL’AX) = pL,nvL,n - pL,uuL,n (77n - 2)_(_AZ——) for (7'0 - 5) =r S ro (A‘14)

Similarly, in the mixture region:
mM,n = I_/DM,nZ)M,n (Ze - Zw )+ pM,nuM,n (rw,n —F )JQJZT

e,n n

M, S, — 9,
(ZWM,AX) = IDM,HDM,H + pM,nuM,nnn g—A;;_) for 0<r< (ro - 5) (A 15)

Define the variable, J” , normal mass flux:

Jy szvL_pLuL(n—z)%z; for (r0~5)SrSro (A.16)

I = PuOu + PrtbnaT —dg— for 0<7r<(r, - &) (A.17)

A.3 Governing Equation Transformation

Liquid Continuity Equation

0

10
EE(PL”L)‘*';E;(FPLUL):O (A.18)
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10 10
;g(rpLuL)_*_;_é;(rvaL):O (A.19)

L =20, (0, 10,
—(rpL = g ) 5 e ) =0 (A.20)

The second term of (A.20) can be written as:

(n-2) @ ds _ 1 8 s\ pou, s
AL/ S = ) bl et Pt e 21
— an(rpLuL) p iy rpyu (7-2) )5 4 (A.21)

Substituting (A.21) into (A.20) and rearranging gives the following:

(pL L)——

0 do d
5677(@%(77 240 )—’f——5 2 po)=0  (A2)

dy o dy r5677

Term 1 of equation (A.22) can be re-written as:

1 0 do
55(@&%)& (o )+ P27 o (A.23)

Substitute the above equation into (A.22) to get:

1 ¢ 1 & 1 0 do
——{r5 _ —— (=2 — =0 A.24
75 01 (r pLuL)+r5 81 (rpLUL) 75 o7 ((77 )rpLuL)d;{ ( )
Note that:

1 0 1 o dé
— (] )= —— 2 A25
r58ﬂ(r L r5a77(r L L) 58 ((77 )rpLuL)dZ ( )
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Substituting the above into equation (A.24) results in:

1 0

0
fo) —rJ')=0
ré' (I’ pLuL)+ 50 77(r L)

Liquid Momentum Equation

o)+~ L ro,,0,)= L 2 1y 22 )4 g -
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The second term of (A.29) can be written as:

_(r-2)ds o SR ot (17— 248, Py dS
L¥L*"L L L

75 dyon "’ r5 o i) 5 dy

Substituting the above equation into (A.29) gives:

o ds wu, ds 1 8,
P (rpL LuL) _5"%(’301‘ LuL(n Z)dZJ ‘pL—éf‘_dX 55‘7'7'(rpLuLUL)

1 0 VH Y esr auL dP
S T e A |TPET
réon\ & 0On dy

Term 1 in the above equation can be re-written as:

19
r56

pLuLuy do

190
(”5PL Uy )—;&—(rpLuLuL)-'_ 5 dy
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Substituting into equation (A.31) gives:

1 0 1 0 dé 0
___(rdpLuL”L)“—.”‘“" rpL“L”L(ﬂ_z)_ +—"“‘(rpLuLUL)
ro on dy) rdon

rd Oy &
roon\ o6 0On dy
Note that:

1 0 " 1 do
75'57‘( LuL)zB“‘_(rpL L0 L) "“'_«77 2)”/OLuL”L)d
Substituting into equation (A.33) results in:

1 0 FU o Ouy dpP
- 5 _ 4 — |+ -
5 Oy (r pLuLuL) ( Jyu L) 5 677[ 5 on ) PrLE az
Liquid Energy Equation
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The second term of (A.38) can be written as:
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1) dy

Substituting the above equation into (A.38) gives:

10 1 8 ds
_-"(”PLuLCP,LTL)_gg(rpLuLCP’LTL(n—2)5J+

roy 5 dy
rA
0 (rva CPLT) 1 5 — oL
ré' on 5 677 5 on

Term 1 in the above equation can be re-written as:

1 0

10 N P Co T, ds
’__‘“(”é;OL” CPLT) raZ(rpLuLCP,LTL)+~i.u—

S Oy 5 dy

Substituting into equation (A.40) gives:

1 8 1 0 dé
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1 0 y 1 08
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Substituting into equation (A.42) results in:
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Mixture Continuity Equation

8 16,
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r 3 Pt 5 p o )=0

10 n 0 dé 1 i _
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The second term of (A.47) can be written as:

0
1 ~““(rpMuM)

ds_ 1 _of 45\ pyu do
r(r, - 8) on dy o, -8)on T gy

(-0 dx

Substituting (A.48) into (A.47) and rearranging gives the following:

L1 1 0 do) puly d5+
(rpMuM) ( —5)5 ( TPut\T] J (r ~ )
r(rl—§)6 (rpM M) 0

Term 1 of equation (A.49) can be re-written as:

L0 o)l 2 o ) Lt 4
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Substitute the above equation into (A.49) to get:
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Substituting the above into equation (A.51) results in:
1 0 1 0
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r(ro _5) ox (r(ro ,PM“M)"" r(ro __5) on (’” M) (A.53)
Mixture Momentum Equation
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10 10 190 1%; dP
_g(rpMuMuM)+;5(rpMuMUM): ;E;(rluM,eff —au_:i)'*‘ PuE “EZ‘ (A.55)
1 0 dé 0 1 0
ra (”:OM”M“M)"’(TU_Edla (rpMuMuM)+m‘a77‘(rpMuMUM)
(A.56)
1 6 r/uMeff 8uM __di
0 -5)677((r ~8) 0 nJ “E Ty

180



The second term of (A.56) can be written as:

n doé o 1 0 doé
r(r _5) dy o7 (rpMuMuM) ( _5)5‘("/71\4”!\4”1\4772;)
_ Puthyihy 45
(,-6) dx

- Substituting the above equation into (A.56) gives:

1o ) 45)_ putnit 48
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Term 1 in the above equation can be re-written as:
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1 0 16
”“(”(”o —5)pMuMuM)= __(rpM”MuM)“
r oy (r0

r(r, —6) ox -58) dy

Substituting into equation (A.58) gives:

1 0 dé
( 5)8 (r(r 5)pMuMuM)+X~——ﬂ(rpMuMuMn:1—;J+

r0—5)8
gy ) = | e Do | P
rr,—8)on MMM TG, = 8) on\(r, - 6) o M dy
Note that:
1 (r ' u ) L (r,o Uy, )+
#(r,—8)on MG, —5) 0 77 MEMEM

L (rpuun)——
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(A.57)

(A.58)

(A.59)

(A.60)

(A.61)



Substituting into equation (A.60) results in:

1
r(r — ) (r(r )pMuMuM)+ma

1 @ (r;zM,eﬁ auMJ dp

T —0)on\(, -0) oy ) T ay

(rJ” Uy )

Mixture Energy Equation

0 10 10
g(pMuMCP,MTM )+ ;B;(rpMUMCP,MTM): T

oT,
(r/’{’M,etf —8—:1

10 ow
+ ;—a—;(erDeff (CP,g —Cs, )XTM)

0 o7,
—l—i(rpMuMCP,MT )+l’a_(rPMUMCPMT) 16(’“’1\/1@5“’6%)

10 ow
+;§(erDeff (CP,g - CP,V >_6—;TM)

b /4 ¥ Or r or

120 7 dé o
ra,}j (rpMuMCPMT ) r(r _5) dy 87 (rpMuMCPMT )

1 2 1 Fher 0T,
=5y (PO CruiTin) = e —5)677((r = 5) anj

l a erDeff(CP,g _CP,v)aW
+ — Iy
r(r, —5) o7 (r, -5) o

The second term of (A.65) can be written as:

n dé o
—_— 7,
r(ro__ )d)f an(rpMuMCPM )

1 0 ds) PutmComTy dS
_— YO C o T j —_—
r(o-5)677[ MMM dy (n-6) dx
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(A.62)

(A.63)

(A.64)

(A.65)

(A.66)



Substituting the above equation into (A.65) gives:

10 1 0 dé PMUMCP,MTM doé
rax(rpMuMCPMT ) r(r —5)6 (rpMuMCPMTMndxj Wd}f

1 b, 1 Fher 0Ty
(FPM’(JMCPMT ) r(r _5) 877(( _5) on J (A.67)

r(ro —5) on
1 a er‘Deff (CP,g - CP,V ) aW
—_ TM
r{r, - &) on (r, -5) on

Term 1 in the above equation can be re-written as:

r(r —5)6 (r(r 5)pMuMCP,MTM)=
(A.68)

10 PutinCp Ty dS
—_— cC..r }—— - T
- oy (rpMuM PM M) (-—6) dy

Substituting into equation (A.67) gives:

1 0 1 0 dé
_(r(ro - 5)pMuMCP,MTM )"’ __(rpMuMCP,MTMU “) +
r(r, - 5) oy dy

r(r, —5) oy
1 0 1 Fer 0Ty
9 7. )= 9| A,
e -5)677(”) uOuCruic) . —5) 677((1’0 5 on j (A-69)

1 i[erDeﬁ(CP,g_CP,v)aWT J
M

-a)on (-0 o

Note that:

1 0 . 0
S (J CPMT) (rvaMCPMT)
To-3)on o o

1 0 do .
— T
r(ro -—5)6 (rpMuMCPM Mﬂ)dl
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Substituting into equation (A.69) results in:

1 0 1 0 ( ,n
ma_(( 5),0MuMC'PMT) (FJ CPMT)

r(r —5)6
A71
1 P 0T, 1 8 (puDal(Cr-Co,)omw (A7)
+ — Ty
“rr,-5)on 577 (r,—5) on ) r(r,-5)on (r, ~5) o
Mixture Mass Diffusion

0 10 10 ow
—(pMuMW)-l__—'(rvaMW):_'_ FoMD it )
Oz ¥ Or or

5 (A.72)
10 10 10 ow
_—(rPMuMW)+ ——(rpyonl) = ”_(”pMDeff __) (A.73)
r 0z v Or r or or
10 dé o
(FPM”MW) (rpMuM ) (rvaMW)
roy (r, - 5) —5)dxa (r, - 5) —5) 4
1 8 (rpyD.y oW (A.74)
r(r —5)877 (r —5) on
The second term of (A.74) can be written as:
—‘TZ—“d(S 0 (rpMuMW)_
(r, —8)dy on s
L 0(, . pndd)_ putn d5 (A.73)
=8 an " g )~ 6) 4z
Substituting the above equation into (A.65) gives:
1 0 dé W dé
r o (rpMuMW)+——r(r - ) U(F,OMuMWﬂdl) /()rLiMé.)Z/E
19 D oW (A7)
1 rIOM eff
—— w
r(ro—(')")@?](rvaM = —5)87]((}" ~5) anj
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Term 1 in the above equation can be re-written as:

PuttyW d5

5 dr (A.77)

( 5) o7 (r(r 5)PM”MW)= %%(FPML‘MW)

Substituting into equation (A.76) gives:

1 5, . dé
~ 8oy W)+ ———— Wn—
r(r _5) (r(r Yo W)+ e ~5)on (rpMuM n d}t’) +

1 0 (rpyDey OW
rlr,~8)on\ (r, -5) on

(A.78)

1
( 5) (” PrOym W)

Note that:

1
T

1
7_7)5 (rpMuMWﬂ) a7

(J” W)_ (r _5) (rvaMW)+
(A.79)

Substituting into equation (A.78) results in:

1

-5)o 77(r )

r(r —5)6 (r(r )pMuM )+ (
12 (rpMDeff GW]
=) on\ (r, -5) on

(A.80)

A.4 k—¢ Equation Transformation

Liquid Kinetic Enerevy Equation

10 10 10 ‘) ok
__-(rpLuLkL)-'_—_(rvaLkL):__— ey +& . +GL—pLeL - Dy (A.81)
Oz ¥ Or ¥ Or or

Oy
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au 2
Where, Gy =y | —*% )

ok, )
And, D, =24, | V%

) ~2)ds o , 1 8
BE(JDLuLkL)_(nr—é-)a% rpLuLkL)—*-;‘g%(rvaLkL):

1 a[r ok,
LI A R B L N B
%) 677{5('% O'kjan LT P T

2
Where G, = u; 1 Ouy
6 on,

2
ok
And D, =2yL(l LJ

d On

Term 2 of Equation (A.84) can be re-written as:

(n-2)ds o 1 8 s\ pouk, ds
M k )=——|rn-2 k — |- 7O
¥ dy on (rpLuL L) 75 07 r(ﬂ )PL”L Ldf( 5 dy

Substitute Equation (A.87) into Equation (A.84):

0 1 0 do\ pouk, do
—\popu by )———| rln-2)p u b, — |+ 2
a}t’(pL L L) rﬁan( (77 )pL L Ldl’] 5 dy

ro 0 réo on| o

Oy

In order to define the velocity, v in terms of the mass flux, use the following:
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1 0 1 0 r )\ ok
*—n(rvaLkL)= —“[_(/ﬁ +ﬁL]—5-i}+GL —PLéy _DL

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)



1 0 1 0 1 & dé
——Ar Sk )= —— v, k) —— -2)—k A.89
v o rJy L) 5 aﬂ(rpL L L) 5 an(rpLuL(ﬂ )dZ LJ ( )

Substitute Equation (A.89) into Equation (A.88)

po k., dé 1 98 "
_COLuLk ) L; d_+ 55;(rJLkL):
1 8 )\ ok (4.90)
r Hy L
— | = +—=|—|+G, - p,& —D
”5677[5(/”L O'k)aﬂjl L T PLEL L
Term 2 of Equation (A.90) can be re-written as:
pu k. do
L—;-L-a raa (r§ oLt k) - (pLuLkL) (A.91)
Substituting Equation (A.91) into Equation (A.90) results in the following:
0 1 o
——Arop,u ki, )+ ——(rJ "k, )=
r5(3;{( PLUy, L) r5577( L L)
1 & '\ ok (A.92)
ML L
+—=|—=—=+G, —-p.&, —D
réan[é(% akjan} LT AE TR
Mixture Kinetic Energy Equation
10 10 10 Ly, ) Ok
— e Uy ky )+ —— vyky )=—— MM
5 TPtk )+ 2 oot rarH”M ak] 61’:, (A.93)
+Gy — Puén — Dy
¢ [ Ouy 2
Where, Gy = A, r (A.94)
v
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2
ok
And, Dy, = ZuM[ arM ) (A.95)

d5 0 0
k —_— k., )=
(pMuMk ) (r —-5)r d,?,’ P (rloMuM )+ r(ro _5) o7 (rvaM M)

: 5 " (A.96)
r Hy M
— + = |+ Gy — Py — D
r<ro—5>an[<ro—a>(““‘ ) an} .
Where G, 1 ow | (A.97)
0 =5) '
2
ok
And D, =24, ! = (A.98)
(r,=6) on
Term 2 of Eqn (A.96) can be re-written as:
lndé'é‘(r un) L ir ukd—é‘—
r(r—é‘)dz@ Prlmiy ( -5)3 ﬂpMMMdZ
(A.99)
Puttyky A6
(. -5) dax
Substitute Equation (A.99) into Equation (A.96):
0 do
(pMuMk )’*‘ e, -—5)8 (rﬂpMuMkMZ?;)——
pMuMkMﬁ+ L9 (o) = (A.100)

(r,=96) dy r(r,-0)0n

1 0 2 Ly | Oky
a VeV LS I
r(ro—d)aﬂ[(ro—c?)(ﬂM ak)aq M T P T P

In order to define the velocity, v in terms of the mass flux, use the following:
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1
r(r *5)8 ( ( ~5) om (rvaM M)+

Lo s,
r(r, &) o\ Pl g

(A.101)

Substitute Equation (A.101) into Equation (A.100)

Pubtuby dO 1 "k
_“(PM MM) (r. —5) dZ+r(r ~5) on (rJ M)_

| 5 - (A.102)
r H M
— +—= |—=|+G,, — -D
r(ro—ﬁ)an[m—a)(” akJanJ M P ™ B

Term 2 of Equation (A.102) can be re-written as:

Pt do 10 (0 55 0k )+

(r,-d) dy (r —5) oy
0
a_Z_(pMuMkM)

(A.103)

Substituting Equation (A.103) into Equation (A.102) results in the following;

1 1 0
mé—(r(r — ) Ptk )+ . —5) 2 (

r M M
—_ U, +~——~ —=1+G,, —p.&.—-D
r(ro é)éi;{("o C()( ijéj}:l

JII M)

Liquid Dissipation Rate Equation

10 10 10 Uy | 0g,
- e )+ ——(rp v & )==— +2L
raz(rpLuL L) rar(rpL L L) rarlir[/ﬁ J o
(A.105)

2

+Cel-fl G Cazfsz 2 +E;

L L
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6u 2
Where, GL= u; (——L—) (A.106)

PL ES
— —1_ ~Re;’
fi=1 f,=1-03e (A.107)
P
2
RLJ - 2L 2
&L Vi

-2)ds @

'“_(”IOL” 8L) (Thé. dy o7

1 0
( pLuLgL)+ E_(rvaLgL ) =
2 (A.108)

19 Ui \%s;
+— G -~C +E
r§ P [g(ﬂx, o )37] 1f1 ezfsz k, L

£

Where G, = s Low T (A.109)
6 0n
2u, 1t O%u :
And E, =—%(-—;) (A.110)
pLo” \ on

Term 2 of Equation (A.110) can be re-written as:

2)ds o 1 0 ds u e, ds
(n-2)ds o e )= -2 1 2)pu e, 28 |- LUt 46 (A.111)
¥S dy oy rS 8 dy o dy

Substitute Equation (A.111) into Equation (A.108):
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10 1 o dé) pou,e, dS
-9 LI Y A 90|, Pty 0
» oy (rpLuLgL) rS on (7(77 )PL”LEL dZ) 5 dr

1 @ 4 o, &L
+i= |—=+C_ f, —G, —
r5 (rpL ve L) 5877[5(”1“ O_g] an /1 k, L

2

&
p.HC,, ;L_ +Ep
L

In order to define the velocity, v in terms of the mass flux, use the following:

2 (i) g )2 -2 2

ro on

Substitute Equation (A.113) into Equation (A.112)

10 u & do 1 0 "
__(rpLuLgL)_l_pL e ——(rJLgL)::
r oy 6 dy rdéonm

1 o|r U | 0¢, U
a0 R o G
— an[a[ﬂL p_ Jan glfl - P ngz k. E,

£

Term 2 of Equation (A.114) can be re-written as:

10
bl =—~—(r§pLuL8L)————(”,0L”L5L)
r Oy

Substituting Equation (A.115) into Equation (A.114) results in the following;:

1 0
Eé;(ré‘pLuLgL)—*_

I’:gL):

2

1 9 |7 U | os,
- — +i= G
r5 o, {5(;”1, JanL:l .slfl — P 52f2 k, E;

191

(A.112)

(A.113)

(A.114)

(A.115)

(A.116)



Mixture Dissipation Rate Equation

10 10 10 vy | 0e
”_(rpMuMgM)'*'—’_(rvaMgM):“_ v e el A
r 0z r Or r or o,

or
’ (A.117)
£
+Celf1 H —=Gy szsz % +Ey
M M
2
Where, Gu= 14, (%LJ (A.118)
k or '
¢ 2 2
Pr or*
— —Rer
fi=1 f,=1-03 (A.119)
>kt
RM,f_ = 2M 27
Eym Vi
C, =155 C, =20
(rpMuMgM) 45 0 (rpMuMgM)"'
r a r(r, - 5) —5) dy on
1 0 1 0 r Ly |0y
—_— V., &y )= —_— +— |2 A.120
T ) oy Puen) T *5)577[(% e (120)
Em ‘9M2
+C, h k_GM - PuCor /s _k—+EM
M M
1 ou, |
u
Where G, —_M A.121
/JM’:(F _5) 57] ( )
t 2 2
And E,, = —2Futhe [0ty (A.122)
pM (ro “6) 877

Term 2 of Equation (A.122) can be re-written as:
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r(r —5)d;{6 MEMEM (r —5)67] MM Md;( (A.123)
PuthyEy 46 '

(,-0) dx

Substitute Equation (A.123) into Equation (A.120):

1(ru8)_1.__a_r uoe 99
oy Pumlménm (r—5)5' anMMdZ
PrultyEy A0 1
=4 = A.124
(r.—8) dy  r(r.—8) on (IDM MgM) ( )

1 0 r Uy | 0y Ey £y :
— +—= G -C +E
(. —3) om [(7’0 ~5) (IUM o J o :l elfl zfsz 2 M

& M

In order to define the velocity, v in terms of the mass flux, use the following:

1 0 y 1 0
( MEM)

1 9y Ve )+
r(r.—8)om " r(r. —8) o7 o Puuen)

(A.125)
1 8 ds
r(r, — &) on | MMl g Em

Substitute Equation (A.125) into Equation (A.124)

l”a_(rpMuM £)— Pty 20

+ ( M‘9M)—
roy (r,=9) dy r(r, —5)6

1 9] r My |0¢
r(r, = 5) an{(ro—é)[ﬂ m ]an“L (A-126)

2
& &
Ca/fy k_MGM = Co f2Py 'kﬂ"‘ +Ey

M

M

Term 2 of Equation (A.126) can be re-written as:
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Puthéy 45 _ 1 o

(r. -5) dy = maﬂl (r(ro _§)pMuM8M)+

(A.127)
10 oz
- oy Putivém
Substituting Equation (A.127) into Equation (A. 126) results in the following:
1 0 ' 1 0
———— (1, =) pyty ey )+ ————— ("¢, )=
r(ro—é')a,’g((o ) Prthng M) r(r0—5)877( M M)
1 0 v |0
Sl L S T ) e (A.128)
r(r, —3) on| (r, - 5) o, )on
2
£ £
+C, Gy —C oy M
1 kM M 2M-°M kM
A.5 Boundary Condition Transformation
Tube Wall (7=2)
e u =0 (A.129)
e J' =0 . (A.130)
© I =T, (A.131)
Center Line (7 =0)
. Oty -0
Or
1 ou_,
(7"0 - 5) 677
ou
—M =0 v (A.132)
on
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JI =0

0Ty
or

1 oh,
r,—6 on

L_aw_
(r,—-8)on

Uy =Uy
Ou, Oy,
luLeff Br :uM,eff 8r
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(A.133)

(A.134)

(A.135)

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)



oT. oT, ”
® Al "“a-:” = Z’M,eff _ﬁarl - Jihfg

&gs gTL _ (iM,ef; ) %TM Tk (A.141)
n (n-6)on

Overall Conservation of Mass

AR To 1.
] J; Pty adr + L s Py rdr = %‘;—
[ Putriin (7, = 5V dn + [ 85607 ~2)+r, )y = 'Zr (A.142)
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rw,n=&v(77L,n'2) +ro

<
=
=)

A 4

re,n=5e(77n'2)+ro

—P Zw = Jw

P Ze= e

Figure A.1 Flows at the north face
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APPENDIX B

Discretization of Governing Equations
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B.1 Discretized Equations in the Liquid Region

Liquid Continuity Equation

a7 g’ a7 J
apsfrs+ aLflPuL,P +appdp + a, P5 = b
where,
afs =-1

Ji [ o
aleP = 27[(7"0 + 56 (UP - 2))A77PpL,e5e
afp =+]

JS o 0
apy =4r (r o 26, (77P - 2))A o Pty p

' bLJ,P = 47[(7% +20, (77P _2))5;A77PPL,eu(L),P
+ 27[(5w (77P - 2)+ ro )5WA77PpL,WuL,W

Liquid Momentum Equation

uu uJ uu uJ uP u
Ausiis tagstis Harpup +aiyJ p +af NNt @O +apphy = =brp

‘where:
ﬂsuluLseﬂ”A/’(
a; RSS+0£ - 262 7, =2 )
LS ( )] ( P( ) )5P (77? ‘773)

w o
Ars = —Up

agy = 47[(5:(771: _2)+ro )ﬁopLeuEPAnP +(RNP+a:)Jf,P —(RSP—O,’S” )]I(,)S
B s BX
&7 (17, —715)

ﬂ /uLneff /1/

+27r(§°(77n—-)+r)50( ~_ )+27f(5§(775“2)+”0)

wS o
App =Up,
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(B.1)

(B.2)
(B.3)
(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)



uu u o 0 ﬁl‘:ﬂ ’""e A
at, = (RNN a2 12, —22(52 (7, —2)+ 7, ) 5 (UL; = ,,i)

ath = 47{262 (1, —2)+ 1, oy jupy Amy
-27(283(n, ~2)+7, Jp, p gATAY
+272(288 (7, - 2) + 1, )Pi° Ay Ay
2o e Y Ou | 27 s Y Buy
s on|, st oy

o

s

atty =27(53 (1, —2)+ 1, )62 A Ay

bf,p = 47[(25: (77P _2)+ro b:pL,euE,PZAUP
+ 277(5: (77P - 2)+ o )é‘eopL,euE,PzAﬂp
+27Z'(5w(77p _2)+ro bpr,wuL,WzAﬂP

27, phy o AY Ou lo
o ] o .o oL neff L
+ JL,PuL,n - JL,SuL,s + 59 on
P

n

_ ZﬂroﬂL,s,eﬁ”Az auL |0
N on |,

+27(283 (y = 2)+ 7, PP Ay

- 27[(77P - 2)5§2pL,PgA meAY

Liquid Energy Equation

i T Tu 7
arstis+ apslis+a pu p+ agpdip +

T T 6 ¢ _ 4T
applip+ apntin + aL,P5P = bL,P
where,

7 _ o
Qs = _CP,L,ST Ls

ﬂsTﬂ'L,s,effAZ

als = —CP’L,S(RSS +oa) PP 27z(§1§’ (7, —2)+ ro) F
P \'/P S

ag} = 27[(5: (77P - 2) 7, )5:loL,eCP,L,eTI’3PA77P
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(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)




aIf‘P = 27[(5: (7713 - 2)+ ro b:pL,eCP,L,e:Z}SPAUP
al:f:,]P = CP,L,n‘T;fn

ai,TP = 27[(5: (77p - 2)'*’ % )aeopL,eCP,L,euz,PAﬂP + CP,L,n (RNP + anT E,P

ﬂ:ﬂt PYAY 4
_C sRSP—asT 0 +27[5o77n_2 +}B—o—ﬁ.—_.
PL, ( LS ( P( ) )5P (77N -—77P)
0 ﬂSTﬂ'Lseﬂ'AZ
+27\65 (7, - 2)+ 1, s Lsdll /.
(P( ) )5P(77P_778)
ﬂnT/?'Ln PEAZ
aTT =C nRNN—a: 0 —27xl5° n_2 +’;)-0_L£—.—
5= ol £ = 27(532, 2) )5,, (7 =125
° 0 0 2, A oD OT, [
aﬁ: = 47[(25e (77P —2)+ r;))pL,eCP,L,eTI'_,,PuL,PAﬂp + §02 gAY 67;
P n
_ 2W0ﬂ14,s,effAZ a]—],_, °
s o,

inP = 4”(255 (77P - 2)"' 7 b;pL,eCP,L,elePuE,PA”P
+27(82 (1 = 2)+ 1, 091 oy Tpta? v
22631, ~2)+ 1, 15201\ Co JTowtS AT
+Cp i e, n ™ Cor/) Esﬂos

+ 2Woﬂt,n,ethZ aTL '0 _ 2ﬂrcaﬂt,s,effA/?«/ aTL
& onl, & on|

[$]

B.2 Discretized Equations in the Mixture Region

Mixture Continuity Equation

N Ju 5 5 o g
Asd s Ayplyp + Apypd yp + Ay pOp = byip
where,

Jo_
ays =-1
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(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)



u 4] 2
al\J«f,P = 27[(”0 -9, ) Pl AT,
aI\JdJ,P =+1
al\fp = _877(7'0 — 0, )pM,eul?A,PnPAnP

bzii,P _87[(r0 N SPM,eufa,PﬂPAﬂP + 27[(’3 -0, )ZpM,qu,wﬂPAﬂP

Mixture Momentum Equation

uu uf uu wS
Ay ghys + s/, ms T O plhyp T Ay pdyp +

uu ué uP p' _ pu
Ayt + Ay pOp + ayp by = bM,P

where,
uu ulro ﬂ suluM s,eff AZ
s =—\RSS + ] = 2xn ——22
s = i (7 ~125)
Qs = —Upygg

ajity = 42(r, — 82 ] prg tieotoArty + (RNP+ a2 V2, — (RSP = a2 ),

4

+ 27Z77n/‘lM,n,eff( ﬂn ]Ax + 27[7751”M,s,eﬂ’[ iBS JAZ

N~ e =15
alz\L/‘II,P = ul?/l,n
“ A
Ay = (RNN -a, )J!(\){,P — 271, ﬂ?:Mze; )Z
N~

u (¢] o] 2
aM(,sP = =8zn, Ay (’”o =0, )pM,euM,P

4]

0 dP {s]
+ 4717, Py ZATAY (r, — 55) 4m7p-@ AnpAy(r, —3)

P

ayp = 2”(ro ~ & )ZUPAUPAZ
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(B.28)
(B.29)
(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)




bg{,? =27npAn, (”o - 5:)2pM,euI‘\J/I,PuI(\)/I,P

*SmPAﬂPpM,euM,Poz(ro —5: )5P
+ 27, Ay (ro -9, )sz,qu,Wz

02 .
+ 27010y Py 8T A (7, - 5T ) (B.40)
. dP[ .
—4nipdp—| Ay (r, —65)
| il
+ ‘]1‘\:./I,PI’IM,110 - J;I,Su:d,s
Mixture Energy Equation
aysSus + s Ty + Ay Wy + Ayiptiyp +aigpdyip + BAD
angM’P +a$,WP +a§;:NTM’N +af£’NWN +a§fP5P =b»§,p .
where
azﬁ{s = _CP,M,STI\/(;,S (B42)
T
A
ags = _CP,M,S(RSS + asT )]1?45 =277, ﬂ—sw
(771) - 775) (B.43)
+ stpM,st,eff (.CP,g - CP’V)AZ%Z (RSS + asT)
Tl
"o D. . \Co —Co )T A
CZI\YZ,S _ '—27[775 IBS pM,s s,eff( Pg P,v)s M,s Z (B44)
(77P - 773)
Tu _ 2 ( 50)Z C 0 A
App = 27\, — O ) Phre P,M,eTM,PUP e (B.45)
Op = CopunTitn (B.46)
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agp = 277(”0 - 5eo)2pM,eCP,M,eu;/I,P77PA77P + CP,M,n (RNP + a:)jl‘\)d,l’

~Cp (RSP~ Vg, +27,

ow

- 2man,nDn,eﬁ” (CP,g B CP’V )n AZE;

ow
+ zman,st,eff (CP,g - CP,V )s AZ a
n

o}

S

ﬂl\i,an,nDn,eE (CP,g = CP,V )n TNOI,n

ﬂnTAM,n,effAz
(77N —7p

0

+ 271,
)

(RNP + anT)

n

(rsP - o7 )

Ay

™
aM,P - 2m7n

(’7N - 77P)

ﬂl\i,leM,st,eﬂ‘ (CP, g~ CP,v )S I, KZ,SAZ

+27n

5

(77P - 775)

afaT,N =Cprtn (RNN -, )JI?A,P —27n, (
U

ow

- Zman,nDn,eff (CP’g - CP’V )n Az-a_;

/Bfﬂ’M,n,effAZ ’
_77P)

(v -a)

n

B PyunDre (Cr y — Cp,v),, T Ay

™w
Ay n =277,

(77N - 77?)

T6 o 0 [}
Ayp = “87[(’2; -6, )pM,eCP,M,eTM,PuM,PUPAUP
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b!\]/;,P = "87[(’8 -6, )5§pM,eCP,M,eT1\z,Pu1(\)4,P77?A77P
+ 27[(’3 - 560)sz,eCP,M,eTI\?[,Put?/I,PﬂPAﬂP

s} 0 [+]
+ 27[(’3 =4, )2IDM,WCF,M,WTM,WuM,WnPAUP
0 (¢] (] (o]
+ CP,M,nJM,PTM,n - CP,M,sJM,STM,s

owl .
- 27z—77nIOM,n‘Dn,eﬁ" (CP,g - (:’P,v),1 AZE M,n
owl .
+ zmspM,st,eﬁ‘ (CP,g - C’P,v)S AZB‘; M,s

Mixture Mass Diffusion Equation

wr ww Wu wr ww W5 o oW
aM,SJM,S +ay W + Ayplyp + aM,PJM,P +ay Wy + aM,PaP = bM,P

where
affs =-Ww?
74 D A
alfg = —(RSS+aSW )]1345 — 27, By PrusDoen By
(77[’ _77,5‘)

u o \? ]
al\Z,P = 271'(7‘0 hé‘e ) pM,eWP nPAnP

wr o
ayp =W,

a% = 277(’5 _5e0)sz,eu1(\,A,P77PA77P + (RNP"'a:V )]1(\)4,? —(RSP_O‘SW )Ilzis

ﬂstM,st,effAZ
(77P - 775)

IBI?/IOM,nDn,effA/’L’
(77N - 77P)

+ 271 + 277

n s

algﬁ’ = —872'(7‘0 - 5: )pM,eu:/I,P ﬂPAﬂP
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(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)
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bl\;fI,,P = "Sﬂ(ro N )5f?pM,eu§4,PWPO77PA77P
[+ 2 o o]
+ 27[(1’0 -6, ) Pt pWe 1 Ay (B.60)
+ 27Z'(7’0 _5w )sz,qu,WanPAﬂP +J1?/[,PW110 ~J&,SW;0
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APPENDIX C

Discretization of k-c Model
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C.1 Discretized Kinetic Energy Equation

Liquid kinetic energy equation

allfl,cskL,s + alrchkL,N + arlfl,cpkL,P = bIIf,P (C.1)
t
. (IUL,S + %iJ
alli],cS = —-JL,S (RSS + ask )— ZﬂAZﬂsk (5P (773 - 2)+ 7, )—5—(——k +
o (70 = 715) (C.2)
47TAZ/‘L,P(§P(77P_2)+"0) 1— ki, (RSS+a">
Op AT, I(j,s )

t
(ﬂL,n + %j
afh = J, (RNN = af )~ 22854 (6, (1, — 2) 1, )+
Sp (17 = 17) (C.3)

drA s (8, (1,-2)+7,) . ko (RNN 3 ak)
S.AT, V&, "

af’fp =27A1, (Je (77P -~ 2) +7, )5c P +J . (RNP + af )— Jig (RSP - ask )+

t t
[IUL,n + ‘Lol{w“ J [IUL,S + ,L;d’s ]
27N By (1 = 2) 47, )~ + 2B (8 (1, - 2)+ 1, o

J'4
5P(77N _77P) 5P(77P _778)
+ 47TAZ/UL,P(5P(77P _2)+ro) 1— % (RNP+al'f)+ 1- k‘;’" (RSP-CZ:) +
5PA77P kL,n kL’S
2 p I+Rel/50 PLp fLp
0.187AyA™, (5P (7ZP - 2)+ %o )5P'0L’P 1044 p&1p (1 +Re;/ 50)2
/JL,P 2 5
+2k;p CXP(H—RE:‘L/S_OJ
S - C4
| O182ApA, (Selmy =2)+7 )6 pre’kie [ =25 o
PR 1+Re; /50
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bf,? = 2”A77(5w (77P "2)"'70 )5WpL,WuL,WkL,W +27[AZA77(5P (77P “2)+ro )5PGP +

_ex ~25 2o 3 |
O PR VO B (. TE0) il
0.187AvAn S —2}+r k° .
YA\ Op 77Pt 0/PpPLp frLp IOﬂL,PgL,P (1+Re,°_/50)2
Hip 5 s
+ 2k, expl —————
e <5 [1+Re;/50]
Mixture kinetic enerev equation
aﬁc,skM,s + aI\kZNkM,N + al\klﬁPkM,P = bzfm (C.o)
P
s = —Jy (RSS + & )-27A g i A 2K
(17, —115) (C.7)
47A kS
+ATAYTTp My p 1- |Mn (RSS+aSk)
Ay kM,s

t
(/UM,H + /JOI\_A - j
@i = ya(RNN — & )~ 22y ly, > Z5 L
R (7 =77 (C.8)

+ 47Z.AZ?7P/'IM,P 1 _ kl(\)/[,s (RMV' _ a‘/lc)
A1y kM,n
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ahk/f,P = 27‘—A77P77P(ro _5c)2pM,euM,e +JM,n(RNP+ar]:)—_JM,s(RSP_aSk )+

Hin Hoss
40 :
(IUM,u oy ] (JUM,S o, J

27Ay B* —27A
AP~ ) 2B~ —

AL bha e Hl ];&“J(RSP ot )+ (1 ZM”* ](RNP+af):l

AV/ M,s M

~exp =25 ), o]
T 1+ Rel,/50 Jr e
| 0-187A7A
AR P 1(),uwgw,(1+Re:§w/50)z
,uMP 25
+ 2k, exp| —————
MP p(1+Rel‘w/50)
- - C.9
, O-187Ay A1, (7, ~ )pMpkMpexp ~2.5 7
P 1+Re;,/50

b:a,P = 27A1gp1, (7, — O, )sz,qu,wkM,W +27Ay A1, (7, —5P)2GM,'P

ex "‘2.5 zko 3
. i Vo Pl T+Ret /50 ) er e 10
0 187A YA o ;
AV LAY AN P) Pump fump 1O/uM,PgM,P(1+ReItVI/SO)Z
,UM P Y
+ 2k, exp| —————
e p(1+Re;\4/50J |

C.1 Discretized Dissipation Rate Equation
Liquid dissipation equation
arigsgL,s + afngL,N + aIingL,P = brip (C.11)

210



aif? = 27A17, [(5e (77p - 2) +7, )éepL,euL,e] +J La (RNP +ag )

t
(:uL,u + %)
—J, RSP —a )+ 27Ap B0, (1, — 2)+ 7, )t
. ( ) ( P( ) ) §P(77N'"77P)
t
(/uL,s + Fe )
o
=2mAy B (Sp (1, —2)+ 7, )
( P( ) ) 5?(779—773)
4 0.67AyAn, (51’ (77P - 2)+ Q)gppM,P'zcgz «
\/:ult,P
i 95 0.5 ]
2 -2, 5
(1-0.3exp(—Re; )(1 5 exp(1 TRl D &p —
0.5
ex _ =25 k.’
Pli+Ret/50)) “p Pue
4044, 562, (1+Rel/50]
N\ 0.5
B —-2.5 o2
O.6(exp(———1 TReL/50 )) exp(—Re; )
+ 0.67Ay A, (59 (77P - 2)+ro)5PpL,P3/2C52 y
\//J]i,P
2 5 0.5
t2 4 0
l:(l —0.3exp(—Re; ))(l S5 eXp(:R_eTD ELp }
!
(]
af’s = =J, (RS +af )~ 2702 (6, (1, 2) 4 1, S
S (77P - 773)

t
(IUL,n + ilolj_n]
arn=Jin (RMV -a, \)'" 2mhy 3y (§P (77n - 2)'*' % )__*8_

5?(771\1 - 77?)
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b =27Am, (§w (77P ‘“2)+ro )5WPL,wuL,w3L,W
+ 0.67AyAn, (51) (77P _2)+ro )5PIDL,P28£,PC€2 «

(1-0.3exp(-Re!’ )(1 5 exp(

2.5

expl —— =7
( p(l + Re‘L/SO

05
o 2
)J kL,P PLp

4041, e, (1+Re} /50

0.5
-25 2
0.6 exp| ————— exp(—Re!
( p(1+Re’L/50B pERer )

05 T
~25 o
1+Re! e

0
PrpéLp

-2.5

0.672A YA, (51) (77P - 2)'*' i~ )5PGL,PC51f1 ‘/ pE

LP

) tol o2
+4man, Ax (S, (7, —2)+7.) P“L’P”:’P[ ”;’ }
pL,P5P on IP

Mixture dissipation equation

£€ £ £ _1.£
Ay sEms T Danéun T Arpére = Onp
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ayp = 27AT, [77P (ro - S, )2 pM,euM,e]+ Sra (RNP +a, )_ St (RSP —a )+

t t

(ﬂm “;LJ [ﬂM,s + !;Mj

2Ny i, ~————<= 27y B
(7y—77,) (7. —715)

| 067xAN 1 (= 5,) Pup'Cr

\/ /‘rt«,P

0.5 7]
' -2.5
1-03 —Re' )| 1.5ex e, —
( exp( M )( p(1+Re§A )J M,P

0.5
-2.5 2
— = || &
(eXp ( 1+ Re;,,/SOD Me Pup

8044y, (14 Rel,/ 50
0.5
—-2.5 2
0.6 S exp(—Re!
(exr{u Refw/SOD P(-Rey )

, 06mAZAn T, (1, = 8.0’ Py *C

£2

Vit (C.16)

0.5
~25
1-0.3exp(=Re!, )| 1.5ex £°
{( exp(-Re,, )( € p[HRe;J] M,p}

t
[/‘M,s+ :uM,s]
(e}
ay s =—Jyu NRSS + ! |- 27y, 2 (C.17)
o =~ (RSS + o) 2min S

(ﬂ  Haas )

M,n

@ = Jy o (RNN — o )= 2maypin S T2 ) (C.18)
, , (77N - 77P)
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bl\gd,P = 27An,175 (7, — 5w)2pM,qu,W5M,w -

+ 0.67Ay A1, (7, — 5?)2 pM,Pzglt’/I,PCE?. y

\//ult/I,P
I 25 0.5
1—0.3exp(—Re!, ) 1.5exp| ——=>— °
( p( M )( p(1+Re§w }] Emp
0.5
ex TS k..t
Pl1+ReL/50 )| e P
404,355, (1+ Rely/ 50f

0.5
-25 2
0.6| exp| ——————|| exp(-Re;
( p(1+Re;,I/50D *P(=Rew )

: Fhipbhip azuMl
+47An,Axn = +
’ PPM,P(ro—é‘P)ZIiaWZ |P

o _25
0.6 AT (r = 8. VG .C.. £ |PwrEmr o
yA 77?77P(o -P) M,P elﬁJ ,u;” p 1+Re;4/50
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APPENDIX D

Discretization of Boundary Conditions
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D.1 Boundary Conditions at the Tube Wall (7 =2)

Liquid Boundary Continuity Equation

e J =0

Jip=0
aLSJLS+aLPuLP+aLPJLP+aLP§ beP

where, a;’ =1

N T Y
Qg =0y p =4 p~ bL,P =0

Ligquid Boundary Momentum Equation

aLSuLS +aLSJLS+aLPuLP +aLPJLP

uP u
+apuy  + a5, rarL B =bt,
uu
where, a; =1

_. _ e WP B
aLS aLs"aLP aLN'"aLP arp = bLP 0

Liquid Boundary Energy Equation

aLSJLS +aLSTLS+aLPuLP +aLPJLP +

75 T
aL,PTL,P + azL,NTL,N + aL Op b
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[D.1]
[D.2]
[D.3]

[D.4]

[D.5]

[D.6]

[D.7]

[D.8]

[D.9]

[D.10]



where, o', =1 D.11
LP

bip =T [D.12]
Gs=as=ap=ajy=ay=a, =0 [D.13]
D.2 Boundary Conditions at the Center Line (77 = 0):
Mixture Boundary Continuity Equation
e J,=0
Jop =0 [D.14]
Ay s Jris + Gupothy p + G pdyip + g pOp =byp | [D.15]
where, a{,{, p=1 [D.16]
Gy = uip = Angp = by p =0 [D.17]
Mixture Boundary Momentum Equation
. Ouy, _0
on
UpN = tp [D.18]
ay suMs+a,vlsJMS-}-al’\‘}‘PuI\AP +a,\“,JMP + | (D.19]
Ayt + Gp0p + By p B = bl p
where, ay/y = -1 [D.20]
a, =1 [D.21]
aMS—aMS—aMP—-aMP—af\‘fpzb;\‘d’P=0 [D.22]
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Mixture Boundary Energv Equation

® %z O
on
TM,N = TM,P

aMSJMS+aMSTMS+aMSW +aMPuMP +aMPJMP +

6 o _ 4T
aM,PTM,P + aM,PWP + aM,NTM,N + aM,NWN + aM,PaP = bM,P
where, aii, =~1
T _
Qi p =1

——— — — T —
aMs“aMs-aMs aMP“‘aMP aMP_aMN_aMP bMP 0

Mixture Boundary Mass Diffusion Equation

aW -0
on
WN:WP

ws w
aMsJMS'*'aMsW +aMPuMP+aMPJMP+aMPW +aMP5 _bMP
where, ap =—1
.
aM,P—-I

_ _ Wu v _
aMS aMS aMP_aMP_aMP bMP 0

D.3 Boundary Conditions at the Interface (7= 1)

Continuity Equation at the Interface

" n
o Ji=Jy
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[D.24]

[D.25]
[D.26]

[D.27]

[D.28]
[D.29]
[D.30]
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e =Jus

al{é‘] Ms T aIJ,IJ)J Lp = bi,]P
where, ajq =-1

aI{JP =1

b, =0

Momentum Equation at the Interface

U, =ty

° _/iauL: My Ouy
s on (r,~8)on

,B::UL,P,eff [uL,N —Upp } _ ﬂsuluM,P,eff (uL,P - uM,S)
Op M= (ro_5P) e =715

Applying Newton Raphson linearization results in the following:

(7 —71) B > ;

u n n 4] n o 0
B, Hipers | Yoy —Urp  Urpy ~Upp 54 Upn — ULy
0
Op 5P° Op

ﬂsuluM,P,eff uE,P - ul?{,s Ulp— u&,s n uE,P —uz?/[,s o
= ( ) ( 50) 5 Op + 5 Op
me-ns) 0 -63) (-s0F * (o)

uu

uu uy ud __Lu
Apglhygs + Qrpllyp + Ay Uy + a1 p0p = bpp

ﬂsu/uM,P,cff
(7 — 116, — 55

where, a/'s = —
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[D.38]

[D.39]
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/BufuMPeff i Hipese

W G 7\, - ) (11 — 710 )5%

uu ﬁ luLPeff

a
e ( —1p )§P

[s] u ] [+
46 :B Hyip e (uL P uM,S) + I Hpefr (uL,N —Up )

T _ 77s)( 50)2 (77N

_77P)51?2

_IB /uM,PeEf(uLP uMS)5o ﬂﬂLpeﬁ(uLN uLP)

bl’fp 2
(77 Us)(r _50) (77N 77P)5P
Temperature Equation at the Interface
e T T ];at@P
]LP = ‘T;at(W>Pl)
° WP (o oo
‘TI'.,P:TL,P aW )+“—%F“’P(P PP )
aIPTMP +ay, W, +aIPP bT
where, a;; =1
aTW _ sat(W PI)
LP
oW P
an = _aTsat(WalD,) °
LP B PE—
oP »
blTP =TLOP _SEELVV_P) VVPO sat(W P) Pro
’ ’ oW R oP' o
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[D.43]

[D.44]

[D.45]

[D.46]

[D.47]

[D.48]

[D.49]

[D.50]

[D.51]

[D.52]



Mass Diffusion Equation at the Interface

pMDeff QEV__

o JUW LMl 0
" (n-6)on
TusWe _ ﬂstM,PDP,eﬁ” (Wp ~Ws ) ~0 [D.53]
Zmp(ro_5P)AZ (ro_é‘P) e —1s

(s (s] n 0 Q 0 W b W
(JM,SVV;’ +Jy sWe — JIusWe )— szﬂstM,PDP,effAZ( £ . J [D.54]

: p — 1
ays Jys + arp Wo +ajy Wy +a;e8, = b, [D.55]
‘where, ajq =Wy [D.56]

Y Ori oD oA
aLﬂgV = J3 s — 27, By PupDeeaDr (D.57]
(7 —75)
Y ou o Do A
angW = 2777, B :?M,P p,eft S [D.58]
h — 775)

ar =0 [D.59]
bl =Ty Wy [D.60]

Energy Conservation Equation at the Interface

e /IL,eff aTL — X’M,eﬁ‘ aTM ___Jn
5 on (-8 oan M
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/B: e AZ I T
27[7713(,,0 _5P) ﬂ’L,P, ff LN "dip | _
Op =Tk

[D.61]
T TL,P B TM,S
270, /’tM,P,eﬁ”AZ - |~ JL,thg
e — 1
2., ,BanlL,P,effAZ T _OTL‘:P _ Tin— ILOP S+ Tin :TI'iP
(77N - 77P) Op 50 o,
[D.62]
' T.-T
= 27IIBST/1'M,P,eﬁ'AZ(MJ - JL,thg
M — 75
aISTMS+aIPJLP +aIP7;,P+aINTLN+aIP5 bxsp [D.63]
T
A
where, a’y =271, B FupenSZ [D.64]
(7, —715)
afy =hy [D.65]
T A _50 T A
af{: — ”‘272-771) an X’L,I;,eff Z(ro P ) _ 27[77[; Ib)s /?"M,P,eff Z [D66]
Sl 1) (17 = 715)
T A _ 50
iy = 271, b /?L"f;‘*"f 2. ~5) [D.67]
Op (77N - 77P)
[¢] A TO _ TO
aIP —272:7713 anﬂ'L,P,zf; Z( L,N L,P) [D.68]
Op (77N - 77P)
A A TO - TO
bf}, =27, B, /?"L,P,eff Z( LN L,P) [D.69]

55?(771\1 _77P)

D.4 Global Mass Balance Equation
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min

1
@ LpMuMn(ro _5)2d77+ szLuL5(§(ﬂ“2)+ro)d77:
2

NM -1

ZpM,euM,e”P(ro _56)2(A77 jm +
Jm—1
AL o [D.70]
ZPL,euL,e56(5e(77 - 2)+ ro)(An)jl =
= 2z
ML AL
Zl Ayt bt im + Z afu, 4 +al’S, =by [D.71]
Jjm— Ji-1
where, aff' i = Ort il jm A (ro -0, )2 [D.72]
aI{J,l_‘jl = PL,j177j15: ((77j1 _2beo +ro) [D.73]
s M '
al’ = Z_4pM,jm77ij77jmul(\)/I,jm (”o _5:)
e [D.74]

NL
+ZpL,le77jluz,jl (851? (77 _2)_45w (77 —2)+2r0)

-1

NM -1

blf = Z_ 4pM,jm77ij77jmuI(\)/I,jm5l;) (7;) - 251? + 5w)
jm-1
AL ] [D.75]
o o o min
+ Z P11 11, 40 [(77ﬂ - 2)(859 —40,)+ 2ro]+ o
Ji-1
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APPENDIX E

Bordered Block Matrix
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E.1 Full Matrix Equation

r
AM,P AM,N

1 1
AM,S AM,P

2 2

Alg AL,P
2 2
O
L. El
E.2 Block Entries
Forji=1,2, ..., NM-I:
Aypp al‘j{ P 0 0 —l
A alﬁ‘ P aI{,[J P 0 0
MP | 1y 94 ™
M Dup YMmr Mmp 9up
Wu wJ ww
a a 0 a
| mp Amp MP |,
ayny 0 0 0
A 0 0 0 0
M,N — T ™
M 0 0 ayn 9un
0 0 0 a7
= M.N 1y
ays ads 0 0
¥
A - 0 ays O 0
MS T 77 W
M 0 yvs Ovs  ugs
0 aWJ 0 aWW
M,S MS 5,
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(E.2)

(E3)

(E.4)




fa 0 0 0
0 & o0 0
A = LP E.5
LE 0 0 af‘; ang' (E-5)
| 0 aly 0 a7
[a% 0 0 0
0 00 0
A= E.6
olo 00 0 (E6)
i 0O 0 0 af;?’
gt 0 00
0 a2 0 0
= E.7
1o o0 00 E7
0 0 0 0
Forjp.=2,3,...,NL
at,  afp 0 0
Ju JJ
a a 0O O
A=l W T m (E.8)
L ap arp ap O
0 0 (A
JL
a“ 0 0 0
0O 0 0 O
A y= o 0 47 (E.9)
JL a4 N 0
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