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Aesrnncr

The upper limb plays a crucial role in manipulation, perception, prehension and exploration.

It has extraordinary adaptability and is of vital importance in human activity. While there is an

impressive understanding of upper limb anatomy, the present state of knowledge with respect to

kinetic analysis of upper limb movement is not as well developed. Values from variables such as

joint forces and moments, transferred and generated powers and energies give a quantitative eval-

uation of movement and can be used in various applications. To determine these quantitative val-

ues, a kinetic analysis is needed. In many situations, it is also desirable to know the internal joint

forces and individual skeletal muscle forces because knowledge of the joint loading encountered

by the human body could play a crucial role in determining the possible mechanism and in pre-

vention of injury during occupational and sports activities'

This thesis addresses the problem of determining joint forces and moments, power and

energy flows, individual muscle forces and intemal joint forces for the upper limb. There are two

major objectives. The first is to do a kinetic analysis of the upper limb based on three dimensional

motion data. The second is to determine power flows and individual muscle forces based on the

kinetic and kinematic variables. A link-segment model with ten degrees of freedom, along with

the kinematic variables based on motion data, is used to develop the kinetic equations which gov-

ern the dynamic behaviour of a limb. To determine individual muscle forces that occur during

upper lirnb motion, a new approach based onfazzy logic is developed. The fvzzy model uses not

only the forces and moments extracted from the kinetic equations, but also the kinematic variables

of the motion.
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1.1. MoïvATroN

Cnnpren 'l . lNTRoDUcloN

1.1 . Morvnnon¡

The upper limb plays a crucial role in manipulation, perception, prehension and exploration.

It has extraordinary adaptability and is of vital importance in human activity. Observations, from

macroscopic to microscopic, have provided anatomic details of the upper limb. While there is an

impressive understanding of upper limb anatomy, the present state of knowledge with respect to

kinetic analysis of upper iimb movement is not as well developed.

For motion analysis of the upper limb, a macroscopic approach is more suitable. Models

used for motion analysis are quite varied. Many upper limb models are designed in two dimen-

sional space, typically to reduce the complexity of the analysis. In some cases the motion of the

involved segments can be assumed to be planar because of constaints placed on the overall activ-

ity. In other instances, the investigator might only be interested in those aspects of the motion that

occur in a particular plane; for example, the side view of a gymnast on a balance beam. Although

motion analysis in two dimensional space has added considerably to the understanding of the

basic functional behaviour of the upper limb, three dimensional modelling is more appropriate to

generate realistic information about both normal and pathological upper limb movements and to

do a dynamic analysis of such movements.

Dynamic analysis gives a quantitative evaluation of movement and can be used in various

applications: orthopedics, rehabilitation, ergonomics and sports. For example, orthopedic sur-

geons have to be able to assess the patients' problems, put them in the proper perspective, select
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the best individual treaffnent and carry it out. Quantitative values from variables such as joint

forces and moments, transferred and generated powers and energies could help the surgeon, not

only to make a better decision in the choice of teatrnent, but also to evaluate the outcome of the

surgery. To determine these quantitative values, a kinetic analysis is needed. In many situations, it

is also desirable to know the internal joint forces and individual skeletal muscle forces because

knowledge of the joint loading encountered by the human body could play a crucial role in deter-

mining the possible mechanism and in prevention of injury during occupational and sports activi-

ties.

This thesis addresses the problem of determining joint forces and moments, power and

energy flows, individual muscle forces and internal joint forces for the upper limb. Such knowl-

edge could provide valuable information for the design ofjoint implants, prostheses, surgery and

rehabilitation programs. It is hoped that this study will provide a step towards establishing a basis

for solving relevant clinical problems.

1.2. ReseancH OBJEcnvES AND STATEMENT oF THE PRoeleul

There are two major objectives for this research. The first is to do kinetic analysis of the

upper limb based on three dimensional motion data. The second is to determine power flows and

individual muscle forces based on the kinetic and kinematic variables.

In general, body segments can be studied from two points of view- statically, in which the

body is at rest or is moving with uniform motion, or dynamically, in which body segment motion

accelerates. The study of dynamic motion, dynamics, is further subdivided into kinematics, a

study of motion without considering the forces that produce it, and kinetics, which formulates the

relationship between forces and the resulting motion. There are two general problems when kinet-
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ics of a rigid body is considered. The first is the direct problem where the applied forcing fi.inc-

tions are known and the objective is to determine the resulting motion of the system' The second

is the inverse problem in which the motion is completely specified or known and the objective is

to find the forcing functions that cause the motion.

This research is concemed with the inverse kinetic analysis of upper limb movement based

on motion data. This is done, not only from a theoretical viewpoint, but also with an aim of utiliz-

ing the theoretical analysis for clinical applications. To formulate kinetic equations, kinematic

variables, i.e., angular and linear displacements, velocities and accelerations, of different points of

the body segment should be known. Also, to generate kinetic equations for the upper limb, a link-

segment model must first be established. The link-segment model, along with the kinematic vari-

ables based on motion data, is used to develop the kinetic equations which govem the dynamic

behaviour of a limb. The inverse kinetic analysis is the first objective of this research (Fig. 1'1).

Kinematic
Variables Forces & Moments

Fig. 1.1 Objective one: inverse kinetic analysis of the upper limb.
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The second objective is the determination of the power flows, individual muscle forces and

intemal joint forces that occur during upper limb motion' A new approach based onfvzy logic is

developed for the force disfibution problem, that is, the partitioning of the intersegmental forces

and moments to individual muscle forces and moments. To distribute the intersegmental forces

during motion, the finzy model uses not only the forces and moments extracted from the kinetic

equations, but also the kinematic variables of the motion. However, as when any new method is

being developed, the finn¡ logic approach was frrst applied to a staightforward problem; the

methodology was developed by considering only the elbow joint, the muscles crossing the ante-

rior aspect of the joint and the one degree of freedom motion (extension/flexion) possible at this

joint. The second objective is shown in Fig. 1'2'

Forces & Moments Kinematic Variables

Power Flows lndividual M uscle Forces

Fuzzy Model

Fig. 1.2 Objective two: determining power flows and individual muscle forces.
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As canbe seen inFig. 1.1 andFig. 1.2, to achievetheresearch objectives itis necessary to

establish a link segment model and to determine kinematic variables. A model consisting of three

segments representing the arm, forearm and hand segments has been developed' In this modei, the

elbow and wrist joints are considered as ball and socket joints, each with two rotational degrees of

freedom (DOF). However, because both translation and rotation occur at the shallow gleno-

humeral (shouider) joint, three tanslational DOF and three rotationai DOF for the arm segment

are considered. Therefore the model has a total of ten DoF, three translational DoF and seven

rotational DOF. The determination of the necessary kinematic variables is shown in Fig' 1'3'

Kinematic

Variables

Fig. 1.3 Block diagram of the kinematic analysis.
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For kinetic anaiysis, not only the position but also velocity (first derivative) and acceleration

(second derivative) are required. Because the differentiation process amplifies noise, data should

be smoothed to prevent error amplification in the system. Therefore a data smoothing block is

added to the block diagram of Fig. 1.3. Smoothing can be applied to the motion data or to the

inputs to the kinematic equations. To prevent amplification of possible error produced in calcula-

tion of the Euler angles and translational DOF it is better to apply smoothing after these calcula-

tions (Fig. 1.4). In the other words smoothing should be applied as close as possible to the

differentiation process. In addition, motion data in 2D (or 3D) are displacements of different

markers over time expressed as xy (or xyz) coordinates. The question then arises whether these

data components should be processed independently or not. Known and constant distances

between markers might be used as constaints during the smoothing process. Imposing constraints

during the smoothing process is not an easy task. Therefore in this work, smoothing is applied to

the inputs of the kinematic equations.

Euler Angles

Calculation

Kinematic Variables

Fig. L4 Block diøgramfor kinematic analysis with data smoothing.
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1.3. Tnesrs ORcRuzAroN

The organizatton of the thesis is shown in Fig. 1.5. As was stated, one of the objectives of

this research was to do kinetic analysis which requires development of a iink segment model and

calculation of kinematic variables. This model, along with the determination of Euier angles,

three translational DOF and the resultant kinematic equations, is presented in Chapter 2. In Chap-

ter 3 four different methods for kinematic data smoothing are described and compared. Kinetic

equations developed using both Lagrangian and Newtonian methods and an analytical relation-

ship between them for the upper limb are described in Chapter 4. Also equations for obtaining

power flows are developed. At the end of the chapter results of experiments to test the model are

presented. Chapter 5 describes the fuzzy logic method to determine individual muscle forces.

Simulation results are presented and results of experiments to veriry thefuzzy logic approach for

the force distibution problem are shown at the end of the chapter. The final chapter, Chapter 6,

concludes and makes recoÍrmendations for future research. Each chapter begins with a review of

the relevant literature.
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Kinematic

Variables

Power Flows Individual M uscle Forces

Fig. 1.5 Organization of the thesis.



2.1. INTRoDUcïoN

GnnprER 2. K¡ruen¡Rlc Atr¡ALYSls

2.1. In¡rnooucloN

Many kinematic three dimensional (3D) analyses of body segment movement start with data

captured by an imaging device. An exposition on instrumentation for 3D measurements and 3D

video-based measuring systems is presented in [1]. Thus description of such systems is not dis-

cussed in any detail in this thesis. However, to achieve the research objectives, it is necessary to

establish a link segment model and determine kinematic variables, i.e. angular and linear dis-

placements, velocities and accelerations. This model and the determination of the necessary kine-

matic variables are discussed in this chapter.

The chapter is organized as follows. First, the center of rotation is explained. The general

method to determine center of rotation in two dimensional (2D) space is presented and it is shown

that this method does not work in 3D space. Therefore a method to determine the center of rota-

tion in 3D space using the screw axis is introduced. Then the link segment model of the upper

limb \Ã¡ith three translational DOF determined by the screw axis and seven rotational DOF mod-

elled by Euler angles is described. Finally, kinematic equations of the model using homogenous

coordinates are presented.

In general, kinematic analysis of the musculo-skeletal system is a challenging task in bioen-

gineering. In biomechanics, models are categorized into three groups [2]:

I) bones II) joints III) body segments

This research is concerned with modelling at the level of body segments with a simple model for
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the joint [3]. King [2] has divided the third class of modelling into five major groups: fingers and

thumb, the lower extremities, the spinal segment, thorax, and the whole body. It is interesting to

note that upper limb modelling was not included. In body segrnent modelling, the number of

links, dimension of space (2Dl3D),the number of degrees of freedom (DOF) and consideration of

kinetics and/or kinematics are some features of the model. Tabie 2.1 lists a number of upper limb

models and their features.

Thble 2. I Studies considering a model of the upper limb ønd their features.

Ref. # Year Model of # of links 2DI3D DOF Kinematic / Dvnamic

l4l t97B Elbow 3 3D I Kinematic

tsl r978 Upper Limb 2 2D 2 Dynamic

l6l t 979 Elbow aJ 3D 2 Kinematic

l7l t 98l UpperLimb 2 3D 6 Kinematic

t8l 1 989 Upper Limb 3 2D a
J Dynamic

tel I 990 Upper Limb aJ 3D 7 Kinematic

t10l r992 Hand & Finger 2 3D J Kinematic

[11] r994 Upper Limb 3D 7 Kinematic

lr2l 1,994 UpperLimb a
J 3D 1 Kinematic

10
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The number of links should be chosen in such away that the link-segment model represents

the physical motion of the bones and also that the position and orientation of points of interest can

be found. The number of bones in the shoulder, arm, forearm and hand are respectively 2,1,,2 and

21 ll3l.In this research the objective is to accomplish kinetic analysis of upper limb motion for

application inmovements typically associated with activities of daily living. Thus the upper limb

model has been simplified appropriately and f,rnger movement is not considered. The hand is

modelled as a single segment. The final model for the upper limb contains three links each repre-

senting the arm, forearm and hand segments, respectively,thatmove in 3D space.

The ouþuts of the link-segment model are fajectories of markers attached to defined points

on the upper limb. To obtain the orientation and position of different points of the segments, kine-

matic equations need to be established. Kinematic equations are obtained using a homogeneous

coordinate system which can easily incorporate an increase in the number of links.

The number of DOF in a kinematic model is related to the number ofjoints. Generally, each

joint has six DOF, three rotational and three translational t3ll14l. The total DOF of the upper limb

has been reported tobe 42 [ 5] and 87 [16]. Because of the research objectives, only three joints

with ten DOF are considered: three translational and three rotational DOF for the arm segment,

two rotational DOF for the forearm segment and two rotational DOF for the hand segment [17].

Three tanslational DOF are considered for the arm segment because both tanslation and rotation

occur at the shallow glenohumeral (shoulder) joint [18]. To find the tanslational DOF of the arm

segment, the instantaneous center of rotation of the segment must be determined. The center of

rotation and its determination in 2D and 3D space are discussed in the next section.

t1
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2.2. Ceruren or RoranoN

To obtain the force and moment at a joint, it is necessary to determine roliing and sliding

movements at that joint. Therefore the location and trajectory of the joint's center of rotation must

be known. The instantaneous center of rotation is defined as the point in space which maintains a

constant distance from every point of the moving segment or as the point with zero velocity dur-

ing an infinitesimally small motion [19]. A moving segment can both translate along and rotate

about a fixed segment. Although in many cases translation can be ignored because it is very small,

this simplification results in an error when the center of rotation is calculated. In fact, the center of

rotation for the moving segment will change throughout the course of motion. Therefore its posi-

tion must be derived for each instant in time.

Because in experimental measwements it is nearly impossible to determine the instantane-

ous velocity of diferent points on a body in motion [20], the center of rotation is usually approxi-

mated by two points on the moving segment using two consecutive positions within a short period

of time 1211. The methods for determining the center of rotation in2D and 3D space are quite dif-

ferent. These are discussed in the next two sections.

2.2.1. DerenMrNATroN oF CENTER oF RorenoN rN 2D

Fig. 2.I shows graphically the determination of the center of rotation of a moving segment

in2D space. Let the position of two markers on the moving segment in position I be M, and N1

and in position 2beM2 and N2. The approximated center of rotation can be found as a intersection

of the two lines perpendicular to the lines M,M2 and N,N, as shown in Fig. 2.1. Points C,2 and

C4 are, respectively, the calculated center of rotation using positions 1,2 and 2,3 of the moving

sesment.

tz
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Fig. 2.1 Determination of center ofrotation between two positions of a moving segment.

Mathematical determination of the center of rotation is explained in the literature ll9ll22l

1231. All methods are based on the fact that within an arbitrary plane coordinate system, move-

ment of every point of a rigid body from point X, to X, canbe expressed as

X,: RX,+ T

where R and T are the rotation matix and translation vector respectively. If the origin of the

coordinate system is chosen at the center of rotation, the translation vector will be zero,thatis, the

rigid body motion can be written in the following form in an arbitrary coordinate system

xr-c: R(x|-c)

where C is the center of the rotation vector. Solving Eq(2-2) for C, one obtains

(2-2)

c : tI-Ãl-'(xr-Axl)

(2-r)

(2-3)

The rotation matrix in the 2D coordinate system can be easily found using two markers

13
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(e.9., M and N in Fig. 2.1) on the moving segment. Therefore, to determine the center of rotation

of a moving segment in a 2D coordinate system at least two markers on the segment are neces-

sary.

This method does not work in 3D space, because the rank of U- Rl is two. It means that

center of rotation in 3D space must be determined by another method.

2.2,2. DerenurNATroN oF CENTER oF RornroN ¡N 3D Usrruc Scnew AXrs

To overcome the above mentioned dificulty in determining the center of rotation in 3D

space, in this research an approach based on the screw axis is developed. For completeness, the

determination of the screw axis is described next.

Regardless of how the actual motion takes place in 3D space, the displacement of the mov-

ing segment from position 1 to position 2 can always be represented as a rotation about and a

translation along a unique axis as shown in Fig. 2.2. Ttris axis is directly analogous to the instant

center of rotation for 2D space motion and is called the screw axis [14]. It is used to obtain the

three translational DOF of the arm segment. To use the screw axis one needs to determine orienta-

tion of the axis in space and also its rotation angle and tanslation vector, respectively angle q and

vector r in Fig. 2.3. This is done as follows.

lll
ll
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Screw Axis

Position 2

Fig. 2.2 Displøcement of a segment as the rotãtion about and translation along screw axis.

In a homogeneous coordinate systemx[24], a point (*,y,") can be represented with respect to

a coordinate system i by the following vector

ír, : fx,y,z,LlT

This point with respect to another coordinate systemj can be written as

jr' 
- 

jH: .ìr'

The tansformation matrix, iIl ,hus the following structure

(2-4)

(2-s)

ri i i I

tri= I'o, '''l (2-6)
L0' rl

where 'Rt and i Tt ur"respectively the rotation maffix and translation vector of the coordinate sys-

tem i relative to the coordinate systemj and 0r = [0,0,0].

In 3D space, Eq. (2-1) can be written in homogeneous form,

*. In this section every vector with the prime is considered in the homogeneous coordinate system.

15
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lx,1 [n
L r l: Lo

rl [x,l
¡l L t l:

lott 
atl

lort 
az2

lot, 
432

L0 0

4,"IJ

a^.¿)

a^.
JJ

0

,,f

1l [''.1r"lL t )
il

(2-7)

(2-10)

(2-rr)

or

X2: A'X1 (2-8)

The matrix I' can be determined if the coordinates of four non-coplanar points M(i)

(i = 1, 2,3,4) on the moving segment are known in both positions i and 2. For four points, Eq.

(2-8) can be written in mafix form as follows

B'2 -- A'B'1 (2-e)

where maffix B', is 4 x 4 and its four columns are the homogenous coordinates of four points in

position i. Therefore the matrix I' is given by

A, : (B,z) (B'r)-'

Considering Q as the rotation angle about the screw axis and T = Ku as the translation vec-

tor along the axis, where uis a unit vector with components (u*,trr,u"),the rotation matrix in

Eq.(2-7) can be written as [14]

| "]O 
* C u,urD - u"S u"u'D * "r1

R: 
lu,urD 

+ u,S 
"jo 

* C uru:o - 
"t I

lu"urD - urS ururD * urS uiD + C I

where,s : sin(0), C : cos(Q) and D : I-cos(Q).

The submatrix A defines a pure rotation. It has three independent parameters and its ele-

ments are independent of where the axis of rotation is actually located. Consider a new axis paral-

lel to the screw axis but passing through the origin. A pure rotation of a point P about this axis is

l6
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given by

Pr: RP, (2-12)

If the point P is located on the axis of rotation, then P is not rotated and P, and P, become the

same point. Therefore

P=RP-V-AIP:0 (2-13)

As was mentioned in the previous section, the rank of U- Rl is two, therefore there is a non-triv-

ial solution for Eq. (2-I3) which is the vector u , the direction of the screw axis. Eq. (2-13) can be

expressed as

(2-r4)

U,

u, fazza 3t - ar, (ar, - l) I
(azz- I) (azs- l) - a23a3z

urlaz(32- ar, (arr- l))
Y (azz- I) (an- 1) - a23a32

Since z is a unit vector-

"i*4*"? : I (2-16)

Eqs. (2-15) and (2-16) are sufficient to determine the direction of the screw axis.

When the direction of the screw axis is known, the rotation angle can be calculated using

Eq. (2-11)

l"r,- 
| on an 

I [,,.l tol

l?,', 
o'\,,t 

,i,"-r)L;l 
: 

L:l

Thus one possible solution is

rtf
I an-url

q: acosl-l
L L-u, J

(2-rs)

t7
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Now let Q be apoint located on the screw axis. The position of the point Q from position I

to 2 can be expressed in homogenous coordinates as

O^' : A'O,'

But the point is on the screw axis, therefore

O^'-O,': Ka'-¿-|

or from Eq. (2-18)

(2-r 8)

(2-re)

(2-20)lA'-nO,'= Ku'

Every parameter in Eq. (2-20) is known, except the three components of the point @ and scaling

factor K. But Q is an arbitrary point on the screw axis and, given one component of the point, the

two other components and the constant K can be found from the three equations in Eq. (2-20).

Therefore, tanslation along the screw axis can be found using Eq. (2-20).

The screw axis is used to obtain three translational DOF of the link-segment model as fol-

lows. Let the moving segment be at position 1, 2,3 and 4 respectively at times tr, t2, t3and ro as

shown in Fig. 2.3. Consider lines Sr, Sz and 53 as three screw axes from position I to 2,2 to 3 and

3 to 4, respectively. Tr, T, and T, are tanslations along the three axes calculated using equations

(2-15) and (2-20). The trajectory of the axis of rotation from position I to 4 can be found by con-

necting vectors Tr, Tz and Tr, as shown in Fig. 2.3. Using this method to calculate the trajectory

of the rotation axis, the three translational DOF of the arm segment are determined during move-

ment.

t8
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ñr"ctory of the axis of rotation

Position 4

Position 3

Position I

Position 2

s2

Fíg. 2.3 Determination of trajectory of the axis of rotation using scrØ,u axis.

2.3. KrrueluRrc MoDEL oF THE Uppen L¡Me

The physical system of the upper limb is represented by a link-segment model composed of

three rigid segments representing the arm, forearm and hand as shown in Fig. 2.4A. Points O, Ø

and @ represent the shoulder, elbow and wrist joints respectively. A coordinate system is associ-

ated with each segment. The model contains ten DOF, three translational and three rotational DOF

for the shoulder joint, two rotational DOF for the elbow joint and two rotational DOF for the wrist

joint. The seven rotational DOF are modelled using nine Euler angles of the three defined coordi-

nate systems of each segment relative to the lab coordinate system with the three translational

DOF obtained using the screw axis method described in the previous section.

l9
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For experimental purposes, six reflective markers (M,,i : 1, ...,6) are used to define the

three coordinate systems of the three segments. Markerc Mr, M, and M, are fixed on the arm,

Mo and M, are fixed on the forearm and Mu is fixed on the hand as shown in Fig. 2.48. Marker

specifications are explained in Appendix A. Let (¡,i,,k,) be the orthogonal basis of the coordinate

system (X,,Y,,Z,) s:1,2,3, where s represents the segment number. Then three bases for the three

sesments are defined as follows

li,

t;
l"
\,:,{;

---------)
-- MtMz

---------å ---------â: MtMz@ MrM3

: ir @jr

---------+: MzMq

: MzM+Ø M2Ms

: íz@jz

--------à: M^M^

---------å: MqMsØ M4Ms

: ìzØjt
(2-2r)

where
--------->

M.M.tJ means the unit vector from marker M, to ø is the cross product operator.M, and

A B

,Z

1

xr

Fig. 2.4 A) Link-segment model of the upper limb consisting of three segments.
B) Arrangement of six markers on the upper limb.

The next section explains specifically how the three translational DOF are determined for the

upper limb. The section following it shows the derivation of the seven rotational DOF using Euler

angles.
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2.3.1. DeRIvRTION OF THREE TRANSLATIONAL DOF

It is assumed that the forearm and hand are connected respectively to the arm and forearm

using a joint with two DOF l3]. However for the arm segment, six DOF, three translational and

three rotational DOF, are considered [18].

In Section 2.2.2., it was explained that at least four points are necessary to find all parame-

ters of the screw axis, but there are only three markers (M, Mz, Mr) on the arm segment as shown

in Fig. 2.4B.It appears that one extra marker should be added to the arm segment for this purpose.

However an imaginary marker, discussed below, was used for all calculations of the screw axis.

Consider mafices Ro and R, respectively as the rotation matrix of the arm and forearm relative to

the lab coordinate qystem. The rotation matrix can be found using three Euler angles of the seg-

ment and is independent of the arm transl ation. An imaginary marker, I,lo , of the arm segment can

be found using the following equation

ilo : Mr+ R,R;t (M4- M2)ul (2-22)

where Mo and M, arc vectors of the physical markers as shown in Fig. 2.48 and R,R;' is the

rotation matrix of the forearm coordinate system relative to the arm segment. nlo along with the

first three markers (Mt, Mz, Mr) is used to flrnd screw axis of the arm segment.

Having described how to determine analytically the three translational DOF of the arm seg-

ment, it is of interest to see how large they are in a typical upper limb movement. Therefore an

illustrative experiment was performed where a subject was asked to pick up a bottle from a table

while sitting on a chair. Three dimensional motion data were collected using the University of

Manitoba Motion Analysis System ruM2AS) t9lt25l (Appendix A). Fig. 2.5 shows the three

translational DOF of the arm segment for this experiment. Fí9. 2.6 shows the trajectory of the

translational DOF in 3D space. Although it appears that the magnitude of the trajectory vector is

21
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smal1 relative to the range of motion which is on the order of 30 cm and can be ignored, it is

shown in Chapter 4, which considers kinetic analysis, that these small translational DOF are ve'ly

important for kinetic analysis purposes. This is because the three translational DOF of the arm

segment are used as the coordinates of a point upon which the displacement of all points in the

link-segment model depends. Also in kinetic analysis not only displacements but also the first and

second derivatives of the kinematic variables are used. Therefore any small error is magnified and

it is important that the translational DOF be considered.

Fig. 2.5 Three components of the translational DOF of the arm segment in lab coordinate
svstem.

CV
o
=c)

fL
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Fig. 2.6 Translational DOF of the arm segment in lab coordinate system.

2.3.2. DenrvRnoN oF Severu RornroNAL DOF

Using the three segment coordinate systems defined in Eq. (2-2I), the Euler angles of

each joint can be determined. Let the rotation sequence of Euler angles for a segmentbe XYZ.

Rotationthrough angle Eu,, abouttheX axis, angle Eu,raboutthe Iaxis and angle Eu,, about

the Z axis can be written as follows

where the symbols C¿ and S; denote respectively cosine and sine functions of angle Eu,, and

(1, J, K) and (L,/r, Ér) , s : 1,2,3, are bases for the corresponding coordinate system. The total

1l t, o ofl,,f [t'l lr,or,.l [t,l l,'f þ,-s,rl [u:tlrl=l0cr-s1l lir| , l¡,1:lo rlllirl ,li'l :lr, c3lllis=ile-23)K) 
L, r, c,)l*,) Lo,) L-r, , ,Àlo,) lo,) lo o t)l*, : *)
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rotation of the coordinate system i relative to the lab coordinate system is given by

where oRt : (2-24)

,Sr,S, + C152C3

Euler angles (Eur,Eur.r,Eurr) of coordinate system s, s : 1,2,3, with (¡r,jr,kr) as a

basis, relative to the lab coordinate systemXYZ with (¿ f ,K) as abasis (consideringanXYZrota-

tion sequence) are

t-11 [ 
tl

Itl :'o'l;I
LKJ IK]

ctct
c ,ss- s ts2c 3

-crss s2

c ,c,- ^ç1^ç2^t3 -s 
'c 's,cs-cls2s3 cF,

(2-2s)

The objective of determining the Euler angles of the link-segment model in this section is

not to provide the joint's anatomical rotations, but to have amathematical model of the segment's

rotation that can be used in kinetic analysis. Therefore, slight variation of the placement of mark-

ers only changes the direction of the corresponding coordinate system. This results in an equiva-

lent set of Euler angles, equivalent in the sense that both sets describe mathematically the motion

and the kinetic variables are the same.

A total of nine Euler angles represent the seven rotational DOF of the upper limb. To con-

clude, it is important to note that in the link segment model presented in this research, the number

of DOF are less than the number of Euler angles and that the Euler angles do not necessarily cor-

respond to common anatomical terminology used to describe upper limb movements.

Euler angles for the illustrative experiment described in the previous section were aiso

found. The nine Euler angles, shown in Fig. 2.7,Fig.2.8 and Fig.2.9, represent seven rotational

DOF of the three segments. It should be noted that for the elbow and wrist joints with two DOR

lEu", : stn-t ç1.k.¡t"-
1t",, 

: Cos-t (K - k,/ Cos 1Eu,)) s:1,2,3
¡Eu,s : Cos-t (I 'ír/ cos çEu,r))
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all three Euler angles are non zero (Fig. 2.8 andFig.2.9). While these angles can not be consid-

ered as anatomical movement, €.9., flexior/extension, there is a mapping between Euler angles

and anatomical angles. Finding this mapping or arranging the markers in such away that the map-

ping is an identity is an interesting and chailenging subject for research [10]. However in order to

perform a kinetic analysis of the upper limb, Euler angles are sufficient and appropriate.

Eu,

o

o

Eu,

8,,,

Fig. 2.7 Three Euler angles of thefirst coordinate system attached to the arm segment
relative to the lab coordinate system.
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Eu^

o

Eu,

8,,,

Fig. 2.8 Three Euler angles of the second coordinate system attached to the forearm
segment relative to thefirst coordinate system attached to the arm segment.

Eu,

o

o
q

8,,,

Eu""JJ

Fig. 2.9 Three Euler angles of the third coordinate system attached to the hand segment
relative to the second coordinate system attached to the forearm segment.
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2.4. EsrRal¡SHMENT oF THE Krruennarc EouAloNs FoR THE Uppen l-tue

To determine kinematic variables, i.e., angular and linear displacements, velocities and

accelerations, of different points of the upper limb segments, kinematic equations must be estab-

lished. To do so, anthropometric parameters are required. Determination of these parameters is

described followed by a derivation of the kinematic equations.

For the model shown in Fig. 2.I0,let Lt, L2 and L, be respectively the length and m, m,

and m, be the mass and Gt, G2 and G, be the mass center of the arm, forearm and hand. From

[26], these variables can be calculated on the basis of the height, H , and weight, W , of the sub-

ject:

(2-26)

The distances between the the proximal joint of the segments can be calcu-

l*, 
= 0.028W

1*, 
= 0.016W

l*, = 0.06W

lt, 
: o.r73u

1tr: 
o.r6H

lLz : 0.0575H

mass center (G,) and

lated using the following equations [26]

loro, 
= 0.463L,

lOrGz: 0.430L,

lo,ro, = o.5o6L,

Let 
jVr 

, tli and,'Ê b" homogeneous transformation matrices of respectively the arm,

forearm and hand coordinate systems relative to the lab arm and forearm coordinate systems.

They can be written as follows

r,f 1) [(on')(oRt)-'l''I{= |l-i L o'

(2-27)

î'] 
*. ,,r:l(on') (on') 

l] e-z')loo'
Lo'

oHt:
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_t

Fig. 2.10 Link-segment model of the upper limb.

where l, is the trajectory vector of the axis of rotation of the ann segment determined using the

screw axis equations given in Section 2.3.1. and

frr: ï.0 L, ol 
r

1-Lrr: [o L2 o] 
r (2-2e)

Finally the position of the joints and mass centers in the homogenous lab coordinate system

can be written as follows
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o'l.: T t

G't : oHt lo orG,

o', : otl ¡o Ll

G,, = ToHt) (rf> rc
o'r: çoHt) (tl) to

0 1l 
r

0 1lr

ozG, o 1l 
z

Lt o llr

(2-30)

G,2 = (oa') ('rf) (Ê¡ rc orGt o ll ?

The angular velocity of a segment s can be expressed as foliows

tì, : Eurrír + Eus2i2+ Eurrk, : o"rí * tùr,i* {ìrrk (2-3r)

where

(2-32)

Velocity and acceleration of an arbitrary point A in a segment relative to another point, e.g., B, of

the segment are as follows

fr", = c2c3E;,1+ srEu,,
I

I 
t", : -crs.rEu,, 

| 'ttu,,
[0", = SrEurr* Eurt

JVn 
: Vr* cì,Ørrn

I on or * ó" Ø rat* trl" @ (ro" Ø rs¿)

where @ represents the cross product operator.

(2-33)

These velocities and accelerations are used in the kinetic equations to determine interseg-

mental forces and moments.
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2.5. Sun¡n¡nnv

In this chapter the link segment model is presented and determination of the kinematic vari-

ables necessary to do kinetic analysis is discussed. First, the center of rotation in 2D and 3D space

is explained. A method to determine the trajectory of the axis of the rotation in 3D space is intro-

duced.

A kinematic model for the upper limb in 3D space is described. The model contains ten

DOF: three translational and seven rotational DOF. Using the screw axis, determination of the

three translational DOF for the upper limb is explained. The seven rotational DOF are represented

by nine Euler angles of the three defined coordinate systems of each segment relative to lab coor-

dinate system. The chapter ends with the establishment of kinematic equations.
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3.1. INTRoDUcïoN

GnnprER 3. Kruennnr¡c Þnrn $nnoon-rrNc

3.1. lrurnooucroN

All kinematic studies uttlize data obtained from some type of measwement. Most equip-

ment for kinematic movement analysis measures position of markers affixed to body segments.

Modelling eriors (e.g., a joint is not a point but a surface in three dimensional space) and measure-

ment errors (e.9., systematic effors in measurement equipment) affect the measured variables [1].

To perform dynamic analysis, the first and second derivatives of the kinematic data have to

be estimated. Because the differentiation process amplifies noise, kinematic data should be

smoothed before differentiation. Though error propagation effects in the calculations can be con-

siderable, special measures can be taken to minimize them. It is necessary to include constraints

to achieve meaningful derivative estimates and minimize etror propagation. A suitable criterion is

to assume that the movement is sufficiently smooth, i.e., it does not contain ordinarily high fre-

quency components since this would entail extremely high inertial forces [27].

A common approach to model error is to assume that the data are comrpted by additive

noise, thus the observations can be considered to be samples of a continuous random variable I.

Let Y,, be the value of Y at times /,,. The following equation

Yn:fG)+t,, ft:1,2,...,N (3-1)

is known as the regression model where f (t,) ís the value of a unknown function and e, is azero

mean, uncorrelated random variable with varian 
"" 

o' .The function / is usually referred to as the

regression function [28].
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In general, there are two approaches for regression analysis, parametric and nonparametric

regression. A parametric regression assumes that the form of / is known except for finitely many

unknown parameters [28]. In this case the function f canbe linear or nonlinear. Polynomial curve

fitting is an example of linear parametic regression analysis. Parametric methods require very

specific quantitative information about the regression function. Nonparametric regression analy-

sis, such as the splines method, gives an estimate of f that allows great flexibility in the form of

the regression function, relies on the qualitative information about it and lets the data speak for

itself conceming the actual form of the regression function [29].

Kinematic data smoothing can be applied to the "tàw" 2D motion data, to the 3D recon-

structed data, or to the inputs of the kinematic equations. However as mentioned previously, due

to the noise-amplification characteristic of the differentiation process it is better to perform data

smoothing as close as possible to the difÊerentiation process. In addition, kinematic data in 2D (or

3D) are expressed as xy (or xyz) coordinates of different markers over time. The question then

arises whether these data components should be processed independently or not. Known and con-

stant distances between markers might be used as constraints during the smoothing process.

Imposing constraints during the smoothing process is not an easy task. Therefore in this thesis,

smoothing is applied to the inputs of the kinematic equations.

For the kinematic data smoothing, four different methods were investigated: Butterworth fil-

ter as an example of a classic linear filter and one which is widely used in biomechanics; the

median filter which is a simple digital technique; curve fitting representing the linear paramekic

regression approach; and the splines method, a nonparamehic regression method. Although these

are not the only methods found in the literature that could or have been applied to the kinematic

data, they represent the most commonly used ones, particularly the Butterworth filter and the
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splines approach. The objective of comparing these methods is to determine somewhat heuristi-

cally which approach is best suited for kinetic analysis purposes.

3.2" Foun Mernoos oF SMoorHtNc

In this section the four methods of smoothing: Butterworth filter, median filter, polynomial

curve fitting technique and splines method, and their characteristics are briefly explained.

The basic concept of a iinear filter, of which the Butterworth filter is a classic example, is

the separation of signals based on their nonoverlapping frequency content. The Butterworth filter

considered here is one which has been used for biomechanical signal smoothing L26l.Itis a low

pass second order filter with zero-phase. Its difference equation when the sampling frequency and

cutofffrequency are respectivel y 60 Hz and 6 Hz is

f(t,) : arf(tn_) +arf(tn_) + boY,* bryu_t* bzy,_z (3-2)

where

lo,:
1laz =

r.1429

-0.4t29

fu, 
: o.o67s

lár 
: 0.13s

lb, = 0.0675

(3-3)

The second filter considered is the median filter which is a simple digital technique for

smoothing signals' The implementation of a median filter requires a very simple digitat nonlinear

operation [30]. It slides a window that spans 2W+ I points across the data with the filter ouþut set

equal to the median value of these 2W+1 samples. Only the center point of the window is

affected.

To account for start up and end effects at the two end points, Z samples each are appended

at the beginning and at the end of the sequence [31]. For data to pass through a median filter
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unchanged means that central sample value for each window position is itself the median of the

samples within the window. The only parameter of the filter is the size of window (IZ). Note that

the ouþut of the filter when the window size is equal to one will be the same as its input.

As an example of a commonly used linear parametric approach consider the regression

function f tobe approximated by a polynomial as follows

f (t,) : ao* att,+ artl,+ ... + aol (3-4)

The parameters e0, a, a2, ..., ao of this linear parametric regression can be selected to give the

best fit using a criterion such as minimum square enor (Sð).

N

sE: \1r,,-f(t,)l'
n:l

(3-5)

The .SE is decreased by increasing the degree of the polynomial þ). For best smoothness, not best

fit, p should be chosen carefi.rlly.

The last approach is spline smoothing which is a nonparamefic regression method. In this

method, the goal is to find a good fit for the data which at the same time has some degree of

smoothness. The natural measure of roughness (lack of smoothness) associated with a function/,

is the roughness penalty l28ll29) given by

D_t'm - (3-6)

where ¡(') repres ents mth derivative of the function /.

Spline smoothing is based on the weighted combination of the two criteria as follows

Min {SE * FA,,} (3-7)

for a suitably selected m>0 where p is a weighting factor. The value m:0 rcstits in an interpolat-

N

Zll^'r,,¡1'
n:l

5¿l
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ing spline. The spline consists of local polynomials of degree not greater than 2m-1. These poly-

nomials are piecewise continuous at the knots (r,) up to and including the (2m-2)nd denvative

1271. The case m:2 corresponds to cubic splines, m:3 to quintic splines, m:4 to heptic splines

and m:5 to nonic splines l27lt29l. Because in kinetic analysis only first and second derivatives of

the data are necessary cubic splines are used in this research.

To obtain some feel for the efficacy of the four methods they were applied to experimental

data. Fig. 3.1 shows a typical example of the raw data along with the filtered data. First and sec-

ond derivatives of the filtered data arc shown in Fig. 3.2. Although the ouþuts of four methods for

the raw data (Fig. 3.i) are similar, the differences of the ouþuts for the derivatives (Fig. 3.2) are

obvious visually. However, because the raw data is comrpted with unknown noise, it is not clear

which filter produces an output that is closest to the actual values of the derivatives of the data.

Thus it was decided to use a simifation model to compare these methods in order to determine

which approach is best suited for the purpose of kinetic analysis.
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" """" Median (W=9)

--- Curve Fitting (p=15)
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Fig. 3.1 Experimental data and smoothed data using four methods.
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Fig. 3.2 First and second derivatives of the smoothed data usingþur methods.
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3.3. ConnpnnrsoN AMoNG Foun Mernoos oF SMoorHtNG

To compare the four methods especially at the level of first and second derivatives of the

data l32ll33l, exact values of the raw data before comrption with noise need to be known.

Because the source of the noise is unknown, this is not possible to do with experimental data.

However an experimental signal can be simulated. The simulated or test signal cannot be any sig-

nal, but should be a suitable representation of the class of experimental data. The next section dis-

cusses the generation of test signals to represent the class of kinemati c data.

3.3.I. GeruenAïNc rHE TEST stcNALS

A simple method to generate a test signal is to sum sinusoidal signals of different amplitude,

frequency and phase as follows

¡/
\-r

s ( l) : ). A,sin (2nf ,t + e ,¡
I: I

(3-8)

It should be noted that although this formula looks like a Fourier series, it is not necessarily a Fou-

rier series of s ( r) . In a Fowier series, the frequen ctes, f,, are harmonically related, but here they

can be any real number. Having chosen s (¡) to be the representation of kinem atic data the first

issue that needs to be resolved is what is a reasonable choice of ¡¿. Four experimental signals

z,(t); i:7,2,3,4 wereconsidered,andfor N:2,3,4,5,6,theparameters A¡, fi and 0, were

determined using a nonlinear optimization program with a least square criterion*. The initial con-

ditions for the A,, f, and 0, were chosen as the random variables with uniform distribution over

the range of [0, 1] , [0, 1] and l0,2nl respectively. The range for the phase (l0,2nl ) covers all

*. "Curvef,tt.m" function in optimization toolbox of MATLAB package (Version 5.1) was used.
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possible values. The range of [0, I ] for the amplitude and frequency is a normalized range, nor-

malized by the maximum value.

To compare the different flrts the normalized mean square measure was used

E (2,) o/o = x 100 (3-e)

The results are tabulated in Table 3.1. The average value of the error versus ,^/ is shown in Fig.

3.3. This figure shows that after reaching ¡/ : 3 the error curve is almost flat and it is less than

8% which is considered to be reasonable. Therefore N = 3 was used for the seneration of the test

sisnals.

N:2 N:3 N:4 À/:5 N--6

E (zr)% 97.3%

9s3%

85.3%

89.t%

12.2%

7.2%

7.6%

49%

9.r%

6.6%

73%

3.7%

8.2%

5.3%

6.3%

J.J Yo

8.0%

5.2%

6.2%

3.0%

E (zr)%

E (zr)%

E (z)%

Average 9r.7% 79% 6.7% 5.7% s.6%

Table 3.1 Error offitting test signal to þur experimental data.

T
l'¡
)lz,(t)-s(t)l-dr
0

T
1)
J lz,(t)J-dt
0
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100
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L970
S60550
;40
F' so
920

0

Fig. 3.3 Average value of the error versus N

3.3.2. Mernoo or GoupARtsoN

Ten test signals were generated as described in the previous section (¡/ : 3 ), where A, , .f,

and 0, are considered to be random variables with uniform distribution over the range of [0, l] ,

[0, 1] and l0,2nl respectively. Then noise, n (t) , was added to the test signal, s (¿) .

x(t) : s(t) +n(t) (3-10)

Two different noise models were chosen: Gaussian noise which, because of the cental limit

theorem, occurs frequently in nature, and uniform noise which in some sense is noise that is most

difficult to be filtered. A signal to noise ratio of 1OdB was considered, felt to be a typical experi-

mental situation. Two other ratios were also considered: 3dB less, a doubling of noise power, and

3dB more, a halving of noise power. Therefore three different signal to noise ratios, 7dB, 10d8,

i3dB were used.
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s'(/)

Fig. 3.4 Comparison offour smoothing methods at three levels.

Then the resultant signal, ;c(r) was filtered using the four different approaches and com-

pared with the test signal at three levels; raw, first derivative and second derivative of the signal as

shown in Fig. 3.4. The resultant effors at each level (ø, , E, and E, ) were calculated using Eq. (3-

9) for the ten generated test signals.
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3.3.3. Resulrs oF CoMPARtSoN

The mean and standard deviation of error at three levels of comparison are illustrated in Fig.

3.5 (first level comparison), Fig. 3.6 (second level comparison) and Fig. 3.7 (third ievel compari-

son). The numerical values of mean and standard deviation are given in Appendix B. Two things

can be concluded from a visuai inspection of these three figures. The first is that the median filter

performs considerably poorer than any of the other three methods. The second is that for all three

levels of comparison, all considered types of noise and noise levels the spline method produces

the smallest error. However the difference is some situations is not that stiking. Consider Fig. 3.5,

with Gaussian noise and a signal to noise ratio of 13d8. The performance of splines and curve fit-

ting is very close.

To further confirm whether the observed differences were significant or not a statistical

comparison was performed. The statistical test was a two way analysis of variance (ANOVA)

with a post-hoc Student-Newman-Keuls Multiple Range Test for multiple comparisons t3alt35l.

The level of significance was set a priori as p < 0.05 . At the first level there was no significant

difference between the splines method and the curve fitting approach (Table 3.2). Atthis level the

splines method performed significantly better than the Butterworth filter except for the case of

Gaussian noise at a signal to noise ratio of l3dB. However the results of comparison at the second

and third levels (Table 3.3 and Table 3.4 respectively) showed that the performance of the splines

method was significantly better than the other methods for all types of noise and noise levels.

Therefore the splines method was used in this research for smoothing of kinem attc d.ata.

/1 ^t



CHAPTER 3. KIrue¡vRrIc DRTR S¡¡oorHIruo 3.3. COvpnnISON AMONG FoUR METHoDS oF SMooTHING

Comparison among four methods at the first level
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L
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Signal to noise ratio

7db
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Fig. 3.5 Mean and standard deviation of enorforfour methods at thefirst level.

Table 3.2 ANovA comparison of the splines method with the other three
approaches at the first level. A (/ ) indicates that the splines
method was significantly dffirent. An ( X ) indicates that there was

no signfficant dffirence. The order here is the same as in Fig. 3.5.

Curve Fitting

,/,/ / i( ,/ ,/ ,/,//,/,/,/ i{xxxxx
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Comparison among four methods at the second level
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Fig' 3.6 Mean and standard deviation of errorforþur methods qt the second level.

Table 3.3 ANOVA comparison of the splines
approaches at the second level. A
metho d w as signifi cantly dffirent.

method with the other three
(/ ) indicates that the splines

Butterworth Median Curve Fitting

Splines ./ ,/ ,/ ./ ,/ ,/ ,/ ,/ ,/ ,/ ,/ ,/ /,/ ,/ ,/ ,/,/
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Comparison among four methods at the third level
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Fig. 3.7 Mean and standard deviation of errorþrþur methods at the third level.

Table 3.4 ANOVA comparison of the splines method with the other three
approaches at the third level. A (/ ) indicates that the splines
method w as sígnificantly dffirent.

Curve Fitting

,/ ,/ ,/ ,/ ,/ ,/,/ ,/ ,/ ./ ,/ ,/ ,//,/,/./,/Splines
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3.4. SuunnRRv

In kinetic anaiysis, not only the displacement data provided by a motion system, but also

velocity (f,rrst derivative) and acceleration (second derivative) are required. Since differentiation

is a process that amplifies the error in the data, it is necess ary to smooth the measured data. There

are no generally accepted models either for the class of signals or for computing noise. Thus a

heuristic approach is necessary to design and/or evaluate the smoothing process.

This approach was adopted in this chapter where four common methods of smoothing were

investigated. A heuristic model of the class of signals was determined. Based on this the perform-

ance of the four smoothing methods was investigated under two noise models via simulation.

The results indicate that overall the splines method offered the best performance, particu-

larly at the second and third levels. Therefore for the experimental portions of the research the

splines method was used.
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4,1. INTRoDUcTIoN

ennprEn 4. Klruenc An¡nlysls

4.1. lrurRooucloN

There are two general problems when kinetics of a rigid body is considered [36]. The first is

the direct problem where the applied forcing functions are known and one wants to determine the

resultant motion of the system. The second type, the one of interest in this research, is the inverse

problem. Here the motion is completely specified or known and the forcing functions that cause

the motion are to be determined. In both cases, the kinetic equations of the motion may be formu-

lated using either the Lagrangian or the Newtoniær method. This chapter describes the process of

generating upper limb kinetic equations. To avoid error and for confidence, the kinetic equations

are developed using both methods. The two methods are, of course, related and this relationship is

developed in the chapter. Formulation of the kinetic equations allows one to determine the inter-

segmental forces and moments at three upper limb joints, one of the research objectives.

The kinetic equations along with the kinematic variables are also used to determine energy

and power flows in the upper limb. Power can be calculated by using either the time derivative of

total energy, i.e., the sum of the kinetic and potential energies or by considering the power gener-

ated or absorbed by muscles and transmitted be¡veen segments through the joints. Both methods

are described later in the chapter where it is shown that if the body segments are considered to be

rigid bodies then the two methods always yield the same power. Thus, contrary to some literature,

discrepancies between the ouþut of the two methods cannot be used to test the validity of the

model [37] or be attributed to errors in modelling, experimental errors, kinematic errors resulting

from digitizing cinefilm, movement of the markers on skin or anthropometric d,ata l37ll3}ll44l.
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The difference between the two methods only reflects computational error. The other possibility

to reach different results is the rvvrong supination, i.e., body segments are not rigid bodies.

4.2. GoveRruING EQUATIoNS

In order to develop the kinetic equations of the upper limb, the goveming equations of a sin-

gle segment must first be considered. For a single segment as shown in Fig. 4.1, the angular

momentum about the mass center denoted by H 
" 

is given by

Ho = Irù (4-1)

where 1 is the moment of inertia matix and co is the angular velocity of the segment. The total

force (F.) and total moments about mass center (Mr) are given by

{o, 
: Fpt Fo-ms

lMr: Mp+Mo+rØFp+r'@Fo (4-2)

(4-3)

(4-4)

(4-s)

where ø denotes cross product and

g=t0 0 gl', g=9.8(N/Kg)

The kinetic energy (KE) canbe written

KE = TKE+RKE

where

PE : mg.G

(I
)rKE 

= Zxm(Vo.V6)

l^"" : t" 6.Hc : t"1o. ro

and ' denotes inner product. The potential energy of the segment is given by
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, /v| ' tn
t/

-- l¡

Fig. 4.1 Single segment model.

4.2.1. LncnnNGtAN Mernoo

For a single segment the associated Lagrangian equation is defined as

L : KE-PE (4_7)

where KE and PE are the kinetic and potential energy given by Eqs. (4-4) and (4-6). The general-

ized force, Q, for a segment with six degrees of freedom, q, (i.a., three Euler angles and three

coordinates of mass center)

8: 181 Qz Qt Q+ Qs qul'
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is

given by

lo,

Q=

where X, and X, are the points where, respectively, the extemal forces and moments are applied.

D*, and J canbe found using the following set of equations

(4-1 1)

Lagrange's equations are expressed by

o. o. Q4 Qs Qul'

L (ur, Eurl)

L (ur, Eur2)

L (ur, Eu¡)

(4-e)

(4-10)

(4-12)

Euler angle vectors

(4-r3)

(4-r4)

Zl(r*)'r*l *Ilrn'u*.1
-\ 

"/ij

{v*' 
: D*'ø

I a:Js

i = ],2,,..,6

For the upper limb model shown in Fig. 4.2, Let p t, pz and ps be the

respectively related to the arm, forearm and hand be written as follows

s : 1,2,3

lP, = lEu, Eu, Eup)'

lor: [Euzt Eu, Eu6)r

þ, : lEuy Eutz Euy)r

Using Eqs. (4-4), (a-6) and (4-7), the left hand side of Lagrange's equations can be written

a(atl a¿

t'[rd,.J- ðq, = Q,

The operators 9l and X are defined as

lt @" Eu')
t"

91 (u,) : lL (u,, Eu,2)"l
V @" Euú)

L (u,, Eu.)]
f g,, ør-.'r¡l

t çu-", Zu'r¡)
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-M2

-F2
D1 F2

M2

Dt2

Dr3

-m^o

Fig. 4.2 The upper lÌmb model consísting of three segments.

where

In Eq. (4-14) I,: fI,,

2
âv âv âv

L(v,Eu,,)=-: Y+ - v-5;;;vtr' òtòUu,, òEùij ouuii

(4-r6)

(4-r7)

*r)r whete Isx, Isy, I* aîd m,

lð', l'
n, ='"|. 

-ao,) 
r

I, Irr)' ) ms= fm, ffi,

are respectively the moment of inertia about fhe x, y, z axes and the mass of segment s.

Using Eq. (4-10), the generalized forces which are the right hand side of the Lagrange's

equations for each segment, can be written as follows
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lQ, : 4 <*,-M,)
1a,: $rnr,-M) (4-r8)

lo, : im,
Finally the total moments about shoulder joint, elbow joint and wrist joint can be written

^ / .\r
where f' : l -f' In \n,/

4.2.2. NewrouAN METHoD

Newton's first and second laws are expressed by

where V" is the velocity ofmass center and

M3 : lrr {N(rrlr)1, +9,(v:)m, + N3}

Mz : M3+J;r 1î (orr) 12+çJl(vr)mr+ N2Ì

Mr : Ms+M¿+l,r{fr(co,)1r +9t (Vr)mr+ N1}

mvc

Ia

#:$rttl:1ro+arøIro

(dP
lFr: a¡ lP:
l_- dH where lr:
lMr : Zt

(F, =

Ç,=

(4-re)

(4-20)

(4-2r)

(4-22)

(4-23)

Considering the three link-segment model shown in Fig. 4.2 andBq. (4-22), Newton's equa-

tions for the hand are given by

ffitQn
- "l

Hs

where
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lFr,: Fr-m3s
1_-- _,Í .. ^n Ø-25)lMr, = Mr-rrØF,

Using Eqs. (a-23), (4-24) and (4-25), the moment about the wrist joint can be written as

M3 = Ijiot+ rrl3@1jo3 *r¡@ m3uc,rrj@m3g

For the elbow, Newton's equations are

(4-26)

çF, : mra.

l*=,. = ;,"' (4-27)

where

(F, : Fr-Fr-mrg

\*r" : ir- *rl,r* Fr- r'rØ F,
(4-28)

Using Eqs. (4-24), (4-25), (4-26), (4-27) and @-28), the moment about the elbow joint is

expressed by

Mz : Mr+ Iritz * olr@ Irttl.r+ 12Øm2øG.Í rrØm.rg* r'rØmrøo,+ rtzØm3g

: Iròlt * co¡ @Irco, + 13Ø m3øG3* r, @ msg * Ø-2g)

I2ilz + rl.2Ø I2trl,2 * rzØ *zoc.* rzØ mrg * r'rØ mrao,* r'rØ m jg

In the same way, the generated moment about the shoulderjoint can be written as follows

Mt = M3+M2+1,ôr +ol@/lor + rrØffiraG,*rl@ mÊ+r'rØmrøo"*r'tØmzg

: 1rô, * ros @/ral, + 13Ø m3aG,* r:@ mrg *
(4-30)

Iri:12+ @2@12lo2* rrØ*2o'r* rz@mrg* r'r@mrøo,Í r'2@mrg-l

1,ror +{Dl @llol *rt@ *tnGr*rt8 mtg*r'rØmrao"*r'tØm2g

Next, it is shown that the Eqs. (a-28), (4-29) and (4-30) (Newtonian method) are equivalent

to Eqs. (4-19), (4-20) and (-21) (Lagrangian method), as one would expect.
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4.2.3. RelRlon¡sHrp BETWee¡rr NewroN's nruo LncRANcE's Eounlo¡r¡s

First, the relationship between the cross product in "Newtonian space" and the derivative

with respect to the generalized coordinates in "Lagrangian space" needs to be found. Consider

two vectors X and Yfixed in a coordinate system rotating with angular velocity ot with respect to

a global coordinate system with rotation matix -r. The angular veiocity, cù, can be expressed as

follows

a : Jp (4-31)

where for the XYZ sequence rotation. matuix .r is

f CrC, ,ç3 0lt"-l
¡: l-CrS, C3 o | Ø32)Lr, ; il

Now, consider the cross product of the two vectors X and Y

X@ y : (c,rcor) 
-'rrt1Xø 

F¡

[ (coolt) 
-'r] rt(xø Ð

= [ (roalt) -'r] r . (X@ Ð
: [ (r¡olt)-'co] (<o ØX) .y

= [ (r¡r¡t) 
-' 

a] Xy

r (coo,') ''r (þ)'"
(4_33)

: [ (orco') -'r, (#t '^)' "
: [ (orart) -' ,'1.''-r'(#)t"

: [ (roar.) -'(rr.) V, (ff)'v
-, ( ðx\r

= J' \ãp) Y
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Therefore,

LetX: ro

f6øÐ: laxlrt. l/
'-oP / (4-34)

(4-3s)
(ax
\ap-

(4-34)

lzIV: (#)'": t+ (rþ)f'Y
(at \r .r: \V) Y: r Y

and using Eq.

.f @øÐ : f, (4-36)

Consider the moment about the wrist joint obtained by the Lagrangian method (Eq. (4-lg),

page 52) and that obtained by the Euierian method (Eq. Ø-26), page 53).

M3 = J3' {çJf (olr)1, +<Íl(Vr)n, + N3} ffrom page 52] (4-19)

Ms : 1rol3 + rrl, @1rro, * r, @ msøG,* rrØ m jg ffrom page 53] (4-26)

After some algebric manipulation, the first term in Eq. as follows

-T.rr'91 (orr) I, = Irtìj (4-31)

(4-19) can be written

/ \æ
.f ðrrl, l'

- t,'16; ) a,t,-7 .T+ Jt'J sIs1Js

Note that boldface 1r=

In Eq. (4-36),let Y = lrolr, then

-r.Torrø llrrrlrl : Ji J ,Ir;l.. (4-38)

The right hand side of Eq. (4-38) is the same as second term on the right hand side of Eq. (4-3j).

InEq. (4-34),ifX: crl, and y: (Ðr,itfollowsthat

T
U, I, 1,J ' , whereas 1, is a 3 x 3 matrix ofmoment of inertia.
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/ \r
.f âo:, ì'tr'lAo,)^r= [0]¡*, (4-39)

By substitution of Eqs. (a-38) and (a-39) in Eq. (4-37), the first term of Eq. (4-19) equals the first

and second term of Eq. (4-26).

Now consider the second term in Eq. (a-19).

/ 2 \r /
vt(v3)mt : n.s)mt: -,lh)' ,,* -,(#)',,--,(#)',,

fal-la¡l. I fa,,l'.I (4-40)

: ,, 
La-,l[. òþ,) 

,')-lò^) ,'J

(4-4r)lð'rì'.
lãù "

(a,'\'( . \: -tao,i lrsn:)

,ò'r, l(òr,\r f'
'' rþ,= -L[øJ I =

Using Eq. (4-34),it is obvious that

t,3 = 03Ø13:JrpsØ13 : -r3øJrbs (4-42)

In the Eq. (4-40), let -r j : X and J jis = I. Therefore, using Eq. (4-34), one can write Eq. (4-

40) as follows

4;, (4-43)

Then

(4-44)
,òr,r"-"¡òps
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òrs òrs

òis òP s

and Eq. (4-40) can be written as follows

and using (4-34)

4N tr,> - -*r(,,* i,)

Finally, the second term of Eq . (4-I9) can be written

/^ \7
I drz l'çJl(V)ms = -mtl ;- | ¡s"\'P s )

(4-4s)

(4-46)

(4-47)

lNtrr>m, = mrrjØr:6, (4-48)

which is equal to the third term in Eq. (4-26).

Using X = G and Y: g thethirdterminEq.( -19)is

( a", I'n, = 
[ã¿ )*rr 

: rjØmjs (4-49)

the same as the iast term in Eq. (4-26).

Therefore, as one would expect, Newton's equations for the upper limb are equivalent to

Lagrange's equations.
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4.3. Powen Flows

Power anaiysis of human movement has been aî area of interest for many years

l39ll40ll4ll. A number of investigations have been performed to estimate total power and its

components during different activities l31ll38ll42l[43]. Two basic methods are used for this pur-

pose [38][44]. One uses the time derivative of total energy, i.e., the sum of the kinematic and

potential energies. The other considers the power generated or absorbed by muscles and transmit-

ted between segments through the joints.

Discrepancies between results obtained by the two methods have been reported. The sources

of the discrepancy have been attributed to errors in the modelling, experimentai errors, kinematic

errors resulting from digitizing cinefilm, movement of the markers on skin and of anthropomefic

data l37ll38ll44l. The existence of a discrepancy between the methods has been proposed as a

test for validity of the underlying model [37]. The analysis presented here shows that if the body

segments are considered to be rigid bodies, then the two methods always yield the same power.

The implication is that the results of these two methods cannot be used to draw a conclusion about

the validity of the model or data.

To calculate the rate of work done (power) in each segment, the first method takes the time

derivative of the total energy, the sum of the kinetic and potential energies, i.e.,

dE" d(KE"+ PE^)
- rr: zt 

: 
--T- 

u : '7u1u (4-s0)

where s is the segment number and kinetic (Kr, ) and potenti aJ (P E ,) energies are defined in Eqs.

(a-s) and (4-6).

In the second method the power generated or absorbed by the muscles (pM,) and the power

58



CHAPTER 4. KINETIC ANALYSIS 4.3. POWER FLoWS

transmitted between segments through joints (P.r") are used, i.e.,

Po, : PJr+ PM, s: 1,2,3 (4-s1)

(4-s2)

(4-s3)

V.\ls.

' or)

where 4" it the intersegmental force vector at jointi (P: proximal joint, D: distal joint) in seg-

ment.s, V.,, is the linear velocity vector ofjointj (P: proximal joint, D: distal joint) in segment s,

Mr, is the generated moment vector about jointj (P: proximal joint, D: distal joint) in segment s

and ol" is the angular velocity vector of segment s.

PJr, reflects power delivered to or taken from segment s due to work done by the joint inter-

segmental force ({., ).If PJj, is positive, po\ryer is delivered to the segment and if it is negative,

power is taken from this segment and delivered to the adjacent segment. Joint powers therefore

show only the rate of transfer of energ, between segments. Itis easy to show that

3
\-1

LPJ,: O

^- |

PMr, shows the power delivered to or taken from segments and its jointT due to the work done by

muscles.

4.3.1. EoutvnLENcE oF THE TVvo Mernoos

In this section it is shown that the two methods produce the same ouþut. For the single seg-

ment shown in Fig. 4.1, using Eqs. Ø-22), and (4-52), pJ" can be written as follows
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PJ, :
J:P,D

Since

vc*rØa,
Vo-r'Øtù,

Eq. $-5fl can be written as

PJr: Fo Vc*Fo- r€lCùs¡mg.Vc+*g 'r8Os
+ møG' Vc* ms.G. rØ 0r- Fo. Vc+,F, . y' @ ol"

Using Eqs. (4-2), (4-52) and (4-55), PM. canbe written as follows

PM, :
J=P,D

: M D. o, * r @ F,o . o" + r' @ F o. o" * 1rô"' o" * (,), @ lsos . oJs - M D' as

: r@ Fo. o, * rØ*¡g. ú)" *r Ø mec. o, *r'@,FD. os

+ 1"{Ð, . O" * c,), @ 1"o" . cù"

By adding Eqs. (a-56) and (4-57), P o, canbe written as

Pr, = mg ' Vc¡ mac' Vc+ I"cor ' rrr,

d I t

lv,:
\ro =

(4-s4)

(4-ss)

(4-s6)

(4-st)

(4-s8)= h*f . G + 2m,V6. Vc+ jl"ro, . co"

dPEs+ KE, dE":---T:Vt:-,,

The above shows that both methods of power analysis give identical results. Any discrepancy

between the results of the two methods must be solely attributable to the numerical accuracy of

the algorithms that implement the two approaches. A discrepancy is not an indication of errone-

ous kinematic data or of a link segment model that does not represent the physical situation prop-
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erly. Therefore a high conelation between the results cannot be assumed to indicate that kinematic

data are accurate or that the model necessarily represents physical reality 1311.lt only indicates

that the precision of the numerical algorithms is sufficiently reasonable. Verification of the data or

model accuracy needs to be done by other independent methods. Although theoretical analysis

showed that the two methods for determining power flows are identical, for completeness a small

experiment was carried out. The results are shown in Appendix C.

4.4. Errecr oF TRANSLATIoNAL DOF

Having discussed the calculation of power, this section considers the effect of ignoring

translational DOF on power in an actual situation. An experiment was performed where kinematic

data were obtained from the upper limb during the performance of a drinking from a cup. The

three dimensional reconstructed data were $noothed using the splines method. Then three Euler

angles of each segment and the screw axis of the arm were calculated. Three Euler angles and

three translational DOF of the arm segment are shown respectively in Fig. 4.3 andFig.4.4. It is

important to note that nine Euler angles represent only seven DOF. Total arm power was calcu-

lated for two cases; considering only 7 rotationai DOF (ignoring translational DOF) and consider-

ing all 10 DOF as shown in Fig. 4.5.

As discussed in Section2.3.L, the three translational DOF considered in the 10 DOF model

(Fig. a.a) are small relative to the range of motion which is about 30 cm. However by looking at

the temporal patterns of the two powers calculated using two models shown in Fig. 4.5, consider-

able difference between them can be seen. The cross correlation between the two powers is 0.79.

Also maximum percentage deviation (MPD) calculated using the following formula is 215%o.

6l



CHAPTER 4. KINETIC ANALYSIS 4.4. EFFE?I oF TRANSLATIoNAL DOF

Max(l p (DoF: lo)- p (DoF: 7) l)
MPD% : x 100 (4-se)

Max (P (DOF : 10) )

Therefore, it is important to consider translational DOF in kinetic analysis. This is because

the three translational DOF of the ann segment are the coordinates of a point on which the dis-

placement of all points in the link-segment model depends. Also in kinetic analysis not only dis-

placements, but also the first and second derivatives of the kinematic variables are used.

Therefore any small error is magnified and it is important that the translational DOF be consid-

ered.

Fig. 4.3 Three Euler angles of the arm segment.
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Fig. 4.4 Three translational DOF of the arm segment.
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Fig. 4.5 Power calculated in arm segment when DOF:7 and DOF:10.
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4.5. Poren¡lRl oF K¡ruenc Arualvsrs ro EvALUATE RneumRrotD ARTHRtns

Pattems of upper limb movement required to perform certain independent living tasks may

be affected by rheumatoid arthritis (RA) of the shoulder. A kinetic analysis was performed on the

data collected by Ripat [a5]. The purpose of this analysis is to investigate whether there is a dif-

ference between the kinematic/kinetic variables of normal and RA subjects 1461147l. Subjects

were ten normal (NR) and ten subjects with rheumatoid arthritis (RA) who had shoulder joint

involvement. Subject demographics are presented in Appendix D. More information about sub-

jects can be found in [a5].

In Ripat's experiment [45], subjects were asked to perform five different functional tasks.

All tasks were performed five times; data ûom the three middle repetitions were analysed. The

starting position for all tasks was with the hand on the thigh.

In task #1, subjects seated on a stool at a comfortable height were asked to lift up a bottle

from a shelf. The height of the shelf was adjusted relative to the height of the subject and it was at

a distance from the stool which was comfortable for the subject to reach. To perform the experi-

ment, the subject flexed the shoulder, extended the elbow to set the bottle momentarily on the top

of the shelf without releasing it. After this the bottle was then retumed to the starting position.

Task #2 was similar to task #1, except that subjects were asked to lift up an object (tin can) of diÊ

ferent weight. In task #3, subjects were asked to comb their hair. The comb was drawn through the

hair from front to back; the hand then was retumed to the starting position. Task #4 was to touch

the sacrum. Subjects brought their hand backwards from the starting position to place the palm on

the sacrum, the hand then was retumed to the starting position. The last task (task #5) was to reach

across the body to touch opposite scapula and to return to the starting position.
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4.5.1. Resulrs AND D¡scussror,¡

From the data collected by Ripat [45], some kinematic and kinetic variables of the upper

iimb for both normal and RA subjects during the performance of the five tasks were calculated.

Maximum values of the Euler angles, angular velocities and accelerations of the three segments,

the magnitude of intersegmental forces and moments at three joints and power flows in the three

segments were calculated. Two-tailed unpaired /-tests [34]1351 were used to determine if a signif-

icant difference existed between calculated variables of normal and RA subjects (Table 4.1). In

thistest,thelevelofsignificancewas setaprioriasp<0.05.ThethirdEuleranglesofthefore-

arm and hand segments are not reported because they were small. In this study and in [45], no sig-

nificant difference was found between maximum angular velocities and acceleration in most

cases, therefore these values are not reported.

Fig.4.6 shows the comparison of the mean of maximum Euler angles for normal and RA

subjects. It can be seen that only in three cases (82,, in task #5 (p: 0.009), Eurz in task #1

(p : 0.01 ) and Eu, in task #a Q : 0.03 )) the difference was significant (p < 0.05 ). It can be

concluded that the maximum value of Euler angles is not a good measure to distinguish between

two groups of normal and RA subjects [45].

Table 4.1 shows p values of lr,l , lrrl and l\l (lMtl,lMrl and lntrl) respectively maxi-

mum intersegmental forces (moments) at shoulder, elbow and wrist joints. For the first three tasks

no significant difference (p < 0.05 ) was found. However for the last two tasks, the difference in

most cases is significant. This might be because motion at the shoulder joint is the principat

motion required to accomplish task #4 and#S. These differences are also reflected in the p values

of the maximum power flow at the arm, forearm and hand segment (p1, p2, pr).
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Variable Task #1 Task#Z Task #3 Task#  Task #5

Euler Angles

8,,,

8,,,

Erß

Errr.

Eu,

8,,,

Eutt

0.76

0.01

0.36

0.6s

0.42

0.08

0.27

0.36

0.19

0.29

0.89

0.72

0.91

0.81

0.82

0.2s

0.34

0.63

0.53

0.s5

0.71

0.50

0.53

0.52

0.98

0.03

0.s2

0.08

0.009

0.07

0.34

0.11

0.26

0.23

0.07

Forces

lF'l

IFÅ

lr"lI Jl

0.47

0.24

0.16

0.75

0.50

0.35

0.07

0.10

0.20

0.01

0.004

0.005

0.45

0.29

0.24

Moments

lM,l

lmrl

lMl

0.2

0.i5

0.08

0.r4

0.59

0.20

0.54

0.28

0.44

0.0s

0.03

0.007

0.02

0.0s

0.25

Power Flows

Pr

P2

P"
J

p't

0.52

0.39

0.57

0.60

0.20

0.36

0.35

0.28

0.10

0.11

0.15

0.11

0.i0

0.22

0.03

0.04

0.01

0.15

0.13

0.04

Table 4.1 Results of statistical comparisons of kinematic/kinetic variøbles between
normal and RA subiects.
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Task #2
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Task #5

r. I p<0.05

**: p<0.01

Task #1

Eu11 Eu12 Eur3 Euã Euz Eu31 Euæ

Task #4

Eulr Eurz Eur. Eur, Euz Eusr Euæ

Task #3

Euil Eur2 Eu,a Euã Euæ Eusr Euæ

Eu11 Eurz Eu13 Euã Euz Eu31 Euæ

Fig. 4.6 Mean of maximum Euler anglesfor normal Q'{R) and RA subjects.
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ln the final row of the table, p value of the maximum total power, P, , is shown. It shows

that there is a significant differenee, p = 0.04 < 0.05, between total power of normal and RA sub-

jects in tasks #4 and #5. Although the difterences between forces and powers in task #5 are not

significant (except P, ), the total powers are significantly different. The reason is because of the

way the total power is calculated.

JJ

P,= ).p-= Lrp"r"+PM)
s= I s= I

where P"r" is the power transmitted between segments and PM, reflects the power generated or

absorbed by muscles,

(4-60)

(4-62)

lrt,:
I i=r'o 

Ø-6r)

l"': ,].,(Mj'' 
0)')

However, as was mentioned in Section 4.3., Eq. (4-53), the sum of power transmitted between

segments is zero. Therefore the first term in Eq. (a-60) is zero, i.e.,

P,: Lps: > (pJ,+pM,):
s= I s= I

3

L pr,
s: l

Thus in P, only moments make contribution not forces. Fig. 4.7 shows the p values of the power

flows for diflerent tasks. Tlne p value from task # I to task #5, in general, decreases. For the last

two tasks total powers of normal subjects are significantly different from those of RA subiects

(p s 0.0a).

It can be concluded that the kinetic variables are more sensitive to differences between nor-

mal and RA subjects than the kinematic variables.
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Power Flows

Fig. 4.7 Probability p þr powerflows in dffirent tasks.
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4.6. Sun¡nnRny

To determine muscle forces and joint moments, kinetic equations must be established. In

this chapter Newton's and Lagrange's equations for the upper limb movement are developed and

the relationship between them is shown. Also two methods to calculate power flows are expiained

and it is shown that both methods give identical results. Therefore, any discrepancy between the

results of the two methods must be solely attributable to the numerical accvracy of the algorithms

that implement the two approaches. Experimental results of applying kinetic analysis to two

groups of subjects, RA and normal are presented in this chapter. It is shown that kinetic variables

are a better measure to distinguish between normal and RA subiects.
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CnnprER 5" Foncr Þ¡srn¡e¡.JTtoN FnoeLetur

5.1. lrr¡rnooucloN

Application of the kinetic and kinematic analyses of the previous chapters allows determina-

tion of the net force and moment acting at and across a joint. However situations may arise in

which the area of interest is the way muscles in a group share the load; in these cases it is desira-

ble also to determine the individual skeletal muscle forces. In general, this is an indeterminate

problem, since the number of unknowns exceeds the number of equations. This can be easily seen

from the equilibrium equations. For a given joint crossed by i/ muscles, the dynamic force and

moment equilibrium equations are

N

Fr: 2 F,,* F¡
m= |

¡/

Mr: Z M,,* M¡
m:I

(s-1)

where F, and M, are the intersegmental force and moment, F* and M_ are the force and

moment produced by muscle m, Fj and ut, are the joint constraint force and moment. The inter-

segmental force and moment, F, and Mr, ate the net kinetic effects that adjoining body segments

have on each other. The number of unknown variables, i.e., F- and M* (m: I,...,1Ð , usually

exceeds the number of equations where the difference represents the degree of redundancy. Math-

ematically, this produces an indeterminate problem that has no unique solution. The most com-

monly used approach found in the literature to overcome this problem is the optimization
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technique [48][49][50]1511[52]l53lt54l[55]t561. This approach is based on the aszumption that

the load sharing between the muscles is more or less unique during learned motor activities, and

that the neural control of the muscle action is govemed by certain physiological criteria that guar-

antee eff,rcient muscle actions. This allows setting up an objective function to be optimized

(Appendix E). A major difficulty with the optimization method is that the physiological criteria

are presently unknown [57]. Therefore, in the literature objective functions have been chosen for

their simplicity and computational tractability. In this research, a new approach based on fazzy

logic is developed which does not suffer from this disadvantage.

5.2. Fonce Dlsrn¡eunoN Pnoeletu Ar rHE Er_eow Jolrur

The distribution of the muscle forces at the elbow joint was chosen for the development of

the proposed approach. As mentioned, a staightforward problem was considered- one degree of

freedom motion (flexion/extension) possible at the elbow joint. A schematic description of the

physical model considering one segment for the forearm and hand segments is shown in Fig. 5.1.

Because the goal is to distribute the force at the elbow joint, the muscles crossing the anterior

aspect of the joint are considered. Three muscles, biceps brachii (Bic), brachialis (Bra) and bra-

chioradialis (Brd), are the major flexormuscles of the elbow joint t581. In Fig. 5.1, Fs¡", Fs* and

Fs.¿ represent respectively force produced by Bic, Bra and Brd muscles, ffiI, m2 and m¡ denote

respectiveiy the mass of the arm segment, sum of the masses of the forearm and hand segments,

and the external load. There are two coordinate systems, one for the shoulder (x.,y.) and one for

the eibow (X",Ye) where angles o and B are the angle of the arm and forearm with respect to the

corresponding coordinate qystem. In this model the muscle forces are unknowns. In order to
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develop the ñnn¡ logic method, the functional behaviour of the three flexor muscles must be

understood.

Fig. 5.1 A schematic description of the physical modelforþrce distribution at the elbow joint;
(Xs,YJ: shoulder joint coordinate system, (X",V): elbow joint coordínate system.

The biceps brachii is a two headed arm muscle and consists of the long and short head. It

extends from the scapuia to the proximal aspect of the radius. The biceps is generally active dur-

ing flexion of the supine forearm under all conditions and during flexion of the semiprone fore-

arm when a load of about 1 kg is lifted. However with the forearm prone, in the majority of

instances the biceps plays little if any role in elbow flexion, in the maintenance of elbow flexion,

or in antagonistic action during elbow extension, even under load. Biceps is particularly active

IJ
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during quick extension with an added load likely, providing a protective function for the elbow

joint [s8].

The brachialis is a flat muscle that lies deep to the biceps arising from the distal anterior

aspect of the humerus and inserting in the proximal aspect of the ulna. Maintenance of a specific

flexed posture of the elbow, i.e., isomeftic contraction, or slow extension when the flexors must

act as antigravity muscles are situations which generally bring the brachialis into activity in all

positions of the forearm [58].

The brachioradialis originates two-thirds of the way down the lateral aspect of the humerus

between the triceps and the brachiaiis and inserts on the thumb side of the distal aspect of the

radius. Depending upon the speed of forearm movement, the amount of extemal load and the rota-

tion angle of the forearm, its role in flexion/extension of the forearm changes [58]. The brachiora-

dialis does not play any appreciable role during maintenance of the elbow position or during slow

flexion and extension when the movement is carried out without a external resistance. 'When 
a

weight is lifted during elbow flexion, the brachioradialis is generally moderately active in the

semiprone or prone position of the forearm and is slightly active in the supine position. There is

no comparable increase in activity with added load during maintenance of flexion and during

slow extension. In most instances brachioradialis is active in all three positions of the forearm

during quick flexion and extension. It follows that the muscle is reserved for occasions when

rapid movement is required and when weight is to be lifted, especially in the semiprone and the

prone forearm positions [58].

In the next section, the architecture of the fuzry logic model for force distribution is pre-

sented and the different components, input interface, ouþut interface andfwn¡ rules based on the

above discussion are described.
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5.3. Fuzzv Ser Tnrony

Fruzy set theory a generalization of conventional or Boolean set theory, was introduced by

Zadeh [59] as a natural and possible way to represent vagueness in everyday life. A central gener-

alizatton of fwry set theory [60] is the extension of the notation of the elementhood from the dis-

crete set of {0,i } to the entire interval [0 1]. Consider an example where the universe of discourse

is the set of real numbers and set, l, defined as the set of numbers that are "approximately zeto,'.

A = {x e 9tl.r=0} (s-2)

Using a conventional definition for this set, one must first define the upper and lower crisp

limits for its set. These limits are domain specific, e.g., +0.5 .

A : {x e 9tl-0.5<.r < 0.5} (5-3)

Equivalently, this boolean set may also be described by its membership function, I (;r)

A(x)=
if (-0.5<x<0.5)

otherwise
(s-4)

Every real number, .r, is either in A or it is not. A (x) maps all real numbers onto the two points

{0,1}.Hence, .r is "approximately zero" if and only if A(x) = 1. Fig. 5.2 illustates the above

mapping which may be considered to be a special case of a membership frnction. Note that if
-r: 0.5, A(x) : 0, hence.r is not"approximately zero". However, if x = 0.4ggg, A(x) : r,

therefore -r is "approximately zeto".

In fi,azy set theory the value of the membership function, F (x) , is known as the grade of

membership of x in ,F. There is no unique membership function for F. However, there are some

properties [61]. The first property is normality; at least one point in the grade of membership
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function should equal to one. A fuzzy set should also satisfu the criterion of monotonicity, i.e., it

has only one local maximum. Although not necessary, afazzy set may also satisfy the criterion of

symmety. Different possible membership functions for our example are shown in Fig. 5.3.

Fig. 5.2 Membershipfunctionþr the crisp definition of"approximately zero".

Fig. 5.3 Dffirent possible membershipfunctionsfor thefuzzy definition of
"approximately zero".
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5.4. Fuzzv Fonce D¡srn¡eunoN

The main contribution of finzy logic is a methodolory for computing with words [62]. No

other methodology serves this purpose. A key aspect of computation with words is that it involves

a fusion of natural languages and computation withfuzzy variables. For the upper limb force dis-

tribution problem at the elbow joint, three variables (speed of forearm segment, forearm rotation

angle and the amount of load to be lifted) are considered as the input variables for the fuzn¡

model. The ouþuts of the fuzzy model are the weighting coefficients which determine the contri-

bution of three muscles, biceps brachii, brachialis and brachioradialis, to the necessary force

needed for the forearm movement. Fig. 5.4 shows the architecture of the fuzry model for force

distibution.

Kinematíc & Kinetic
Variables

Force
Weights

Fuzzy Model

Fig. 5.4 Architecture of thefuzzy modetforforce distribution.
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5.4.1. l¡¡pur lrureRrRce

For the considered problem, three parameters, rotation angle of the forearm segment, load

and the speed of the forearm movement, are the inputs of the model. For the forearm angle three

membership functions, shown in Fig. 5.5, are developed for the prone (PR), semiprone (SP) and

supine (SU) positions of the forearm. When the angle is zero, the forearm is in a semiprone posi-

tion and

(5-s)

Similarly when the angle is -90 or +90 degrees the forearm is respectively in the prone or

supine position, then the value for one membership function is one and zero for the other two. At

an angle of20 degrees

lFspAngte) 
= 1

Trrr(Anste) 
= 0

lF"u(Angle) = g

lFrr(Anote)

lrrr(Ansre)
lFrr(Angle)

= 0.78

=Q

= 0.22

Fig. 5.5 Forearm rotation angle membershipfunctions; PR: prone, SP: semiprone and
SU: supine Positions.

(s-6)

F(Angle) SP

1.0

0.8

u-o

o.4

0.2

0.0

SU .'

t... ,/

./i...

Angle

so (deg.)

78



CUapreR 5. FoRcE DISTRIBUTIoN PHoBLEM 5.4. FUZZY FoRcE DISTRIBUTIoN

which indicates that the forearm is considered to the supine and semiprone positions but not in the

prone position and it is closer to the pure semiprone than supine position.

Two membership functions are chosen for the load. These, the low (LO) and high (HI) load

membership functions, are shown in Fig. 5.6. The choice of I and 3 kg as the typical margins for

membership functions is based on the experimental results from different papers as summarized

by De Luca [58]. Of course, for a very muscular person or an abnormal subject different values

should be considered.

Membership functions for the speed of the movement are shown in Fig. 5.7. The angular

velocity is normalized to be between -1 and l. Five membership firnctions are postulated for the

speed; NH: negative high, NM: negative medium , ZE: zero, PM: positive medium, pH: positive

high. Negative speed means extension of the forearm and positive speed means flexion. The ZE

membership function is considered for an isomefic contraction and slow motion when the abso-

lute value of speed is less than 0.2. PM and NM membership firnctions are considered for the nor-

mal motion' When normalized speed is between 0.5 and 0.8, medium and high membership

functions are active. However when the normalized speed exceeds 0.8 which is considered to be a

quick motion only the high membership function is active.
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F(Load)

1.0

0.8

u.o

0.4

o.2

F(Speed)

1.0

0.8

0.6

o.4

0.2

0.0

PH

Speed
0.8 ,.0 (Norm.)

Fig. 5.7 speed membershipfunctions, NH: negatíve high, NM: negative medium, zE: zero,
PM: positive medíum and pH: positive high.
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5.4.2. Ourpur lrurenrnce

Four membership functions, as shown in Fig. 5.8, are considered for the muscles; NA: non

active, LA: low active, AC: active, and HA: highly active. Although here the membership func-

tions are identical for each of the three muscles, for more complicated cases they may be difflerent.

To calculate the ouþut of the finzy model, the s-norm and /-norm, analogous to the intersection

and union, should be considered. Here min and maxwere used as the s-norm and /-norm to calcu-

latefvry ouþuts.

Fíg. 5.8 Muscle weight membershipfunctions, NA: nonactíve, LA: low actíve, AC: active,
and HA: highly active.

The three calculated forces should satisfy the foilowing equation.

\.a

L b^F^ : Mr- M¡
m: ]

(s-7)

where b* is moment arm of the muscle rn. Since, the ouþuts of the finn¡ approach are three

weighting coefficients, wB¡", wB,o aîd lrp,¿, a posþrocessing calculation is needed.

F(Weight)

1.0

0.8

0.6

o.4

o.2

0.0

/f
/\

Weight
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The left hand side of the Eq. (5-7) can be written as foilows

¡/

2 b*F,r: bn¡"FB¡"r bBroFBro* br,"Frro
tn: 1 (5-8)

: a (Il/t,rb BicF Bic (max) * WB,ob BroF rro(max) * Wa,¿b nr¿F n,o(max) )

In this equation Fr,r(max) , FB,o(max) and Fr,o(max) are respectively, the maximum forces of

the three muscles and can be calculated using the following equation.

F^ur"r"(max) = 6^ur"rr' A,rur"r" (5-9)

where 6,nus"t" ffid A*urrt" are respectively maximum muscle stress and physiologicat cross sec-

tional area of the muscle.

Using Eq. (5-7) and Eq. (5-8)

^. _ Wa,"b B¡cFB¡c (max) I WBrob BroF r,.o(max) t Wnrdb nrdF rro(max)

Therefore the three muscle forces can be calculated using the following equations

(s-i0)

I Fn," : a.V[/o,"Fo,^(max)
| -'"

1o 
u," : a.lï r,oF r,.o (max)

lFn," : uWn,dFn,¿(max)
(s-i 1)

With the muscle forces detsrmined, the intemal joint force can then be determined using dynamic

equilibrium equation (Eq. (5-1)).

5.4.3. Fuzzv Rules

Based on physiological and anatomical

papers discussed in Section 5.2.,30 rules (30 :

are listed in Tables 5.I.5.2 and 5.3.

facts and experimental results from the different

3x2x 5) were developed for each muscle. They
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t0

12

IJ

l5

l6

17

t8

r9

20

2l

22

.A

25

26

27

28

29

Rules for biceps muscle

If (Angle is PR) and (Load is LO) and (Speed is NH) then @IC is NA)

If (Angle is PR) and (Load ìs HI) and (Speed is NH) then (BIC is AC)

If (Angle is PR) and (Load is LO) and (Speed is NM) rhen (BIC is NA)

If (Angle is PR) and (Load is HI) and (Speed is NM) then (BIC is NA)

If (Angle is PR) and (Load is LO) and (Speed is ZE) then (BIC is NA)

If (Angle is PR) and (Load is HI) and (Speed is ZE) then (BIC is tA)

If (Angle is PR) and (Load is LO) and (Speed is pM) then (BIC is NA)

If (Angle is PR) and (Load is HI) and (Speed is pM) then (BIC is AC)

If (Angle is PR) and (Load is LO) and (Speed is pH) rhen (BIC is NA)

If (Angle is PR) and (Load is HI) and (Speed is pH) then (BIC is AC)

If (Angle is SP) and (Load is LO) and (Speed is NH) then (BIC is NA)

If (Angle is SP) and (Load is HI) and (Speed is NH) then (BIC is AC)

If (Angle is SP) and (Load is LO) and (Speed is NM) then (BIC is NA)

If (Angle is SP) and (Load is HI) and (Speed is NM) then (BIC ìs NA)

If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BIC is NA)

If (Angle is SP) and (Load is HI) and (Speed is ZE) then @IC is AC)

If (Angle is SP) and (Load is LO) and (Speed is pM) then @IC is NA)

If (Angle is SP) and (Load is HI) and (Speed is pM) then (BIC is ÉLA)

If (Angle is SP) and (Load is LO) and (Speed is pH) then (BIC is NA)

If (Angle is SP) and (Load is HI) and (Speed is pH) then (BIC is FIA)

If (Angle is SU) and (Load is LO) and (Speed is NH) then @tC is NA)

If (Angle is SU) and (Load is HI) and (Speed is NH) then (BIC is AC)

If (Angle is SU) and (Load is LO) and (Speed is NM) then (BIC is NA)

If (Angle is SU) and (Load is HI) and (Speed is NM) then @IC is NA)

If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BIC is LA)

If (Angle is SU) and (Load is HI) and (Speed is ZE) then(BIC is AC)

If (Angle is SU) and (Load is LO) and (Speed is pM) then @IC is LA)

If (Angle is SU) and (Load is HI) and (Speed is pM) then (BIC is IIA)

If (Angle is SU) and (Load is LO) and (Speed is pH) rhen (BIC is LA)

If (Angle is SU) and (Load is HI) and (Speed is pH) rhen (BIC is HA)

Table 5.1 Fuzzy rules þr the biceps muscle.
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JI

J¿

33

34

35

JO

)t

Jð

)v

40

42

43

44

45

46

47

48

49

50

5l

52

53

54

55

56

57

58

59

Rules for brachialis muscle

If (Angle is PR) and (Load is LO) and (Speed is NH) then (BRA is NA)

If (Angle is PR) and (Load is HI) and (Speed is NH) then (BRA is NA)

If (Angle is PR) and (Load is LO) and (Speed is NM) then @RA is NA)

If (Angle is PR) and (Load is HI) and (Speed is NM) then (BRA is NA)

If (Angle is PR) and (Load is LO) and (Speed is ZE) then(BRA is AC)

If (Angle is PR) and (Load is HI) and (Speed is ZE) then@RA is HA)

If (Angle is PR) and (Load is LO) and (Speed is pM) then (BRA is AC)

If (Angle is PR) and (Load is HI) and (Speed is pM) then (BRA is FIA)

If (Angle is PR) and (Load is LO) and (Speed is pH) then (BRA is HA)

If (Angle is PR) and (Load is HI) and (Speed is pH) then (BRA is FIA)

If (Angle is SP) and (Load is LO) and (Speed is NH) then (BRA is NA)

If (Angle is SP) and (Load is HI) and (Speed is NH) then (BRA is NA)

If (Angle is SP) and (Load is LO) and (Speed is NM) then (BRA is NA)

If (Angle is SP) and (Load is HI) and (Speed is NM) then (BRA is NA)

If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BRA is AC)

If (Angle is SP) and (Load is HI) and (Speed is ZE) then (BRA is HA)

If (Angle is SP) and (Load is LO) and (Speed is pM) rhen (BRA is AC)

If (Angle is SP) and (Load is HI) and (Speed is pM) then @RA is FIA)

If (Angle is SP) and (Load is LO) and (Speed is pH) then (BRA is HA)

If (Angle is SP) and (Load is HI) and (Speed is pH) then @RA is IIA)

If (Angle is SU) and (Load is LO) and (Speed is NH) then (BRA is NA)

If (Angle is StI) and (Load is HI) and (Speed is NH) then (BRA is NA)

If (Angle is SU) and (Load is LO) and (Speed is NM) then @RA is NA)

If (Angle is SU) and (Load is HI) and (Speed is NM) rhen (BRA is NA)

If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BRA is AC)

If (Angle is SU) and (Load is HI) and (Speed is ZE) then @RA is HA)

If (Angle is SU) and (Load is LO) and (Speed is pM) then (BRA is AC)

If (Angle is SU) and (Load is HI) and (Speed is pM) then (BRA is FIA)

If (Angle is SU) and (Load is LO) and (Speed is pH) rhen (BRA is HA)

If (Angle is SU) and (Load is HI) and (Speed is pH) then (BRA is HA)

Table 5.2 Fuzzy rules for the brachialis muscle.
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61

62

63

o4

65

66

67

68

69

70

7l

72

IJ

74
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79

80

8l

82
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84

85
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88
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Rules for brachioradialis muscle

If (Angle is PR) and (Load is LO) and (Speed is NH) then (BRD is AC)

If (Angle is PR) and (Load is HI) and (Speed is NH) rhen (BRD is FtA)

If (Angle is PR) and (Load is LO) and (Speed is NM) then (BRD is NA)

If (Angle is PR) and (Load is HI) and (Speed is NM) then (BRD is NA)

If (Angle is PR) and (Load is LO) and (Speed ìs ZE) then (BRD is LA)

If (Angle is PR) and (Load is HI) and (Speed is ZE) then (BRD is FIA)

If (Angle is PR) and (Load is LO) and (Speed is pM) rhen (BRD is LA)

If (Angle is PR) and (Load is HI) and (Speed is PM) then (BRD is IIA)

If (Angle is PR) and (Load is LO) and (Speed is pH) then (BRD is AC)

If (Angle is PR) and (Load is HI) and (Speed is pH) then (BRD is HA)

If (Angle is SP) and (Load is LO) and (Speed is NH) then (BRD is AC)

If (Angle is SP) and (Load is HI) and (Speed is NH) then (BRD is H.A)

If (Angle is SP) and (Load is LO) and (Speed is NM) then (BRD is NA)

If (Angle is SP) and (Load is HI) and (Speed is NM) then (BRD is NA)

If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BRD is LA)

If (Angle is SP) and (Load is HI) and (Speed is ZE)then (BRD isAC)

If (Angle is SP) and (Load is LO) and (Speed is pM) then (BRD is LA)

If (Angle is SP) and (Load is HI) and (Speed is pM) then (BRD is HA)

If (Angle is SP) and (Load is LO) and (Speed is pH) then (BRD is AC)

If (Angle is SP) and (Load is HI) and (Speed is pH) then (BRD is FIA)

If (Angle is SU) and (Load is LO) and (Speed is NH) then (BRD is AC)

If (Angle is SU) and (Load is HI) and (Speed is NH) then (BRD is FIA)

If (Angle is SU) and (Load is LO) and (Speed is NM) then @RD is NA)

If (Angle is SU) and (Load is HI) and (Speed is NM) then (BRD is NA)

If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BRD is NA)

If (Angle is SU) and (Load is HI) and (Speed is ZE) then (BRD is LA)

If (Angle is SU) and (Load is LO) and (Speed is pM) rhen (BRD is NA)

If (Angle is SU) and (Load is HI) and (Speed is pM) then (BRD is LA)

If (Angle is SU) and (Load is LO) and (Speed is pH) rhen (BRD is LA)

If (Angle is SU) and (Load is HI) and (Speed is pH) rhen (BRD is AC)

Table 5.3 Fuzzy rules þr the brachioradialis muscle.
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The fuzzy approach to distribute the force was studied both by simulation and also experi-

mentally and compared with the optimization method. The simulation and experimental results

are presented and discussed in the next two sections

5.5. S¡nnuInnoN RESULTS

Simulation results of force distribution between three elbow flexors muscles, biceps, brachi-

alis and brachioradialis muscles are discussed in this section. In this simulation only the external

load was increased linearly from zero to 4 kg and arm/forearm angles, g and B, shown in Fig.

5.1, were considered to be respectively 90 and 0-with the hand in a supine position as shown in

Fig.5.9.

ml9

Fig. 5.9 Positíon of the arm andforearmþr the experiment #L
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It should be noted that in this static situation, the left hand sides of the equilibrium equa-

tions, Eq. (5-1), aÍe zeto.In this section simulation results for the optimization method for two

different objective functions discussed in Appendix E are presented first . Then simulation resr¡lts

ofthe fuzzy logic approach arepresented.

The first cost function considered for the optimization probiem was as follows.

Minimize Fl,"* rl,"* rl,o (s- I 2)

Fig.5.l0showstheresultswhen p: I,2.Thesimplest case,p: l,hasalinearcostfunction.It

turns out that only biceps muscle is selected to counterbalance the extemal force. This muscle has

the largest moment arm with respect to the elbow coordinate system, and is the cheapest to use.

Although when p : 2, all three muscles are involved, biceps has to generate more force because

it has the largest moment arm. For this cost function and for the considered arm and forearm

angles

Fn,") FBrdu FBro (s-1 3)

alwavs because

bn,") bnr¿) baro (s-14)
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Opt¡mizat¡on method (p=1 ) Opt¡m¡zat¡on method (p=2)

I

I

z7
og6
o
E'
o

o

o-z
2

f

Fig. 5.10 Results ofþrce distríbution between three elbow flexors muscles using the optimization

method when external load was increased with the cost function of fl,"* F;,o* For,o.

Fig' 5.11 shows the results of force distibution using the optimization approach when the

second cost function is considered with p = 2.4 .

Minímize

For this cost firnction

because

(F Bi"/ABi)p + 7F r,o/Aa,o)p * (F r,¿/As,.¿)p (s-i s)

(s-16)

(s- I 7)

closer to each

Fs,") FBro'Furd

b rr". ABr") bBro. ABro) b rrd. Auro

the two results in Fig. 5.11 shows that if p is increased, the forces areComparing

other.
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Opt¡mization method ( (F/A)'z)
Optimízation method ( (F/Af )

Fig- 5.lI Results offorce dístribution between three elbow flexor muscles using the optimization
method when external load was increased with the costfunction of
(FBi"/ABi)p + 7Fr,.o/Aa,o)p * (Fr,¿/Ap,¿)p .

In the results obtained using the optimization method (Appendix E), the moment arm and

physiological cross-sectional area (muscle volume divided by its length), PCSA, of the muscle are

important factors in the muscle force distribution. Previous formulations did not include other

important factors for force distribution, e.g., forearm rotation angle. Using the finzy approach

three important factors of the force distribution for the elbow flexor muscles, forearm rotation

angle, external load and speed of themovement, are considered. Fig.5.12 shows the weighting

coefficient of biceps muscle vs. load and angle when the normalized speed is zero. This figure

shows that by increasing the external load, biceps activity will increase. However the activity will

be greater when the forearm is in supine position than in the prone position. The weighting coeffi-

cient of the biceps muscle vs.load and angle when normaiized speed is 0.8 is shown in Fig. 5.13.
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It shows that in flexion of the forearm, the biceps is more involved than during the maintenance of

the forearm especially when the load is high. The weighting coefficient of the biceps muscle dur-

ing the extension of the forearm with a normalized speed of -0.8 is shown in Fig. 5.14. It shows

that biceps is active during forearm extension when the speed is high and it is more active when

the load is high than when the load is low.

Normalized speed=0

o.4

o.2

0

Fig. 5.12 Weighting cofficient calculated using thefuzzy approachþr the bíceps muscle vs.
external load andþrearm rotation angle when the normalized speed is zero.
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Normalized sDeed{.8

Angle (deg.)

Fig. 5 ' I 3 Weighting cofficíent calculated using the fuzzy approøch for the biceps muscle vs.
external load andþrearm rotation angle when the normalízed speed is 0.8.

Fig' 5'14 Weighting cofficient calculated using thefuzzy approachfor the biceps muscle vs.
external load andforearm rotation angle when the normalízed speed is -0.8.

Nomalized speed={.8

1

0.8

o
i!- 0.6

'õ u.+

= 0.2

0
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The weighting coefficients calculated using the fazzy approach for the brachialis muscle vs.

external load and forearm rotation angle with the normalized speeds of 0, 0.8 and -0.8 are shown

respectively in Fig. 5.i5, Fig. 5.16 and Fig. 5.17. They show that the change in forearm rotation

angle is not an important factor for this muscle. The reason for this is because the line of its pu¡

does not change with pronation or supination. ln zero speed, i.e., isometric contraction, its activity

is increased with increasing load (Fig. 5. 15). In high speed flexion shown in Fig. 5. 16, the activity

of the brachialis is maximum. Fig. 5.17 shows that brachialis is not active during the high speed

extension of the forearm.

Normalized speed{

Fig' 5.15 Weighting cofficient calculated using the fuzzy approach for the brachialis muscle
vs. external load andforearm rotation angle when the normalized speed is zero.
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Normalized soeed=0.8

'I

0.8

o
õ 0.6

=
80.4

= 0.2

Fig. 5.16 Weighting cofficient calculated using the fuzzy approachfor the brachialis muscle
vs. external load andforearm rotation angle when the normalized speed is 0.8.

Fig. 5-17 Weighting cofficient cølculated using the fuzzy approach for the brachíalis muscle
vs. external load andforearm rotation angle when the normølized speed is -0.8.

Normalized speed={.8

1

0.8

rg
dl u.b

=O^,
o-"
E

0

93



CHRpTTR 5. FoRcE DISTRIBUTIoN PRoBLEM 5.5. SIMULATIoN RESULTS

Activities of the brachioradialis muscle calculated using the fizry approach vs. external

load and forearm rotation angle are shown in Fig. 5.18, Fig. 5.19 and Fig. 5.20 respectively with

the normalized speeds of 0, 0.8 and -0.8. They show that this muscle is more active in semiprone

and prone positions than in the supine position of the forearm. Also, it is quite active dwing quick

flexion (Fig.5.i9) and extension (Fig.5.20).

Fig' 5.18 Weighting cofficient calculated using the fuzzy approach þr the brachioradialis
muscle vs. external loød and þrearm rotation angle when the normqlized speed is
zero.

Normalized speed=0

õ'0.6
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Load (kg)
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Normalized speed{.8

'I

0.8

co u.þ

c
'õ ".*
= 0.2

0

Angle (deg.)

Fig. 5.19 Weighting coefficient calculated usíng the fuzzy approach þr the brachioradialis
muscle vs. external load and þreørm rotation angle when the normalized speed ís
0.8.

Fig. 5.20 Weightíng cofficient calculated using the fuzzy approach for the brachioradíalis
muscle vs. external load andþrearm rotation angle when the normalized speed is
-0.8.
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Fig. 5.21 shows simulation results of force distibution between three elbow flexor muscles

using the fuzn¡ approach when external load is increased. At first the brachialis has more force

than two other muscles. However when the load is increased the biceps is more active. Therefore

the slope of the brachialis muscle force is decreased. At the end the brachialis muscle force

reaches its maximum value and its force curve is flat.

Comparison of the results obtained using the fiuzy approach (Fig. 5.21) and the ophmiza-

tion method (Fig. 5.10 and Fig. 5.11) shows that, in this case, external load plays a major role in

force distribution using the fuzn¡ approach. However in the optimization method, moment arm,

cost function and p arc important factors.

Fig. 5.21 Results offorce distribution between three elbow flexor muscles using thefuzzy
øpproach when external load was increased.
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Results of force distribution for the biceps muscle using the fazzy approach in supine, semi-

prone and prone positions of the forearm when the extemal load was increased are shown in Fis.

5.22.It shows that in a prone position the biceps is always less active than in the two other posi-

tions. Also at first, when the load is low, the biceps has its greatest activity in the supine position.

However by increasing load there is not much difference in biceps activity in supine and semi

prone positions.

Comparing the results obtained using the fazry approach (Fig. 5.22) and the optimization

method (Fig. 5.10 and Fig. 5.i1) shows that the rotation angle of the forearm is an important fac-

tor in force distribution using the fuzzy approach. However in the optimization method, there will

not be any change in biceps muscle force due to the change in the forearm rotation angles.

Fig. 5.22 Results offorce distributionfor the biceps muscle using thefuzzy øpproach in supine,
semiprone ønd prone positions of the þrearm when externøl load wøs increased.
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5.6. Expenl¡UENTAL Resulrs

Besides the simulation, an experiment was performed. Two types of experiments were done

where the subjects were three healthy males. The purpose of the first experiment (Exp. #1) was to

investigate the force produced by three muscles, Bic, Bra and Brd, in ær isometric condition when

a load is added to the hand. The purpose of the second experiment (Exp. #2)was to investigate the

force produce by one of the muscles in three different orientations of the forearm, i.e. prone, semi-

prone and supine.

5.6.1. ExpeRtMENr #1

In this experiment, a subject was asked to hold a load in his hand with the upper limb in the

position where the arm and forearm angles (cx and p shown in Fig. 5.1) were respectively 90 and

0 and the hand in a supine position as shown in Fig. 5.9. Then load was added until the maximum

value that the subject could hoid was recorded. Electomyographic (EMG) signals were recorded

from the three muscles, Bic, Bra and Brd, using surface electrodes. For each subject, there were

four trials, each of 30 seconds duration with the sampling frequency of I KHz. Because the root

meari square (RMS) value of the EMG signals in isometric condition is considered to be a good

representation for muscle force [58], the RMS was calculated over every 250 msec of the EMG

signals' Then the average of RMS values was calculated over six rvindows each of 5 seconds in

length.
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Fig. 5.23 Position of the arm andforearmþr the experiment #L

Fig. 5.24 shows the RMS values of EMG signals from the first subject for four fials of the

first experiment. The RMS of each muscle was normalized so that the maximum value is one. It

should be noted that RMS values of the EMG signals from different muscles are not comparable

with each other. The results of the first experiment for subjects 2 and,3 are shown respectively in

Fig' 5 '25 and Fig. 5 .26 . The results showed that in most cases the slope of the RMS of tfre brachi-

alis muscle decreased at the end of the experiment which means that the brachialis muscle was the

first muscle whose force reached its maximum value and was saturated. This supports the results

of the force disfibution using the fuzzy approach shown in Fig. 5.21. Adecrease in slope of the

RMS value of the EMG from brachialis muscle and an increase in the RMS value of EMG from

biceps muscle at the middle of the experiment \ryere seen in some cases of the experimental

results. This supports the idea that biceps is less active when the load is low and it becomes more

active as the load increased.
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Subjectl_triall Subjectl_tria12

Subjectl_trial3 Subjectl_trial4

Fíg' 5'24 Normalized RMS of EMG signals when external loadwas íncreased f'or subÌect I.
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Fíg' 5'25 Normalized RMS of EMG signals when external loadwas increasedfor subject 2.
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Fig' 5'26 Normalized RMS of EMG signals when external loadwas increased for subiect 3.
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5.6.2. ExpeRlnnENr #2

The second experiment was performed with the same arm and forearm angles shown in Fig.

5.9, but for three different orientations of the forearm and hand- supine, semiprone and prone.

Load was increased during the course of experiment, but not to its maximum value as in Exp #1.

The three orientations of the forearm were randomly assigned. Because the purpose of this exper-

iment was to compare the force generated by one muscle in different orientations of the forearm,

the EMG signals recorded by surface elecfrodes from the muscle should be comparable directly.

Among the three muscles, Bic is the only one that is superficial and offers alarge area of record-

ing. Therefore its EMG signals can be compared in different orientations of the forearm. The rela-

tive position of the surface electrodes with respect to the Bra and Brd muscles will be changed in

different orientations of the forearm; therefore, in this experiment only signals from the Biceps

muscle were recorded and it was assumed that these EMG signals are comparable in different ori-

entations of the forearm.

Fig.5.2715.28 andFig' 5.2915.30 show respectively, the RMS value of EMG signals from

subject 1 and subject 2 for two fials. RMS values in the prone orientation of the forearm were

always less than those in the two other orientations, i.e., the biceps muscle was least active in the

prone orientation. This supports the results of force disfibution using the fwry approach (Fig.

5'22)' Also, at no load (the first point in the curves), the biceps always had the highest activity

with the forearm in the supine position. This also supports the prediction of the forces using the

fuzzy approach. It should be noted that when the optimization method is used to distribute the

force, the position of the forearm is not an important factor and the muscle force is the same for all

different positions of the forearm.
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Subiectl _triall

W¡ndow Number

-1.. - - o"" "- " - "' -' -' .o--- -- -'- " --' -- -' o

-.-......

Fig' 5'27 Normalized RMS of the biceps EMG signal when external load was increased ín supine,
semiprone and prone positions of the forearmþr the subjectl_tríal¡.

Subjectl_trial2

Window Number

Fíg' 5'28 Normalized RMS of the biceps EMG signalwhen external loadwas íncreased in supine,
semiprone and prone positions of the forearm þr the subjectlLtríat2.
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Subject2_triall

Window Number

Fig' 5.29 Normalized RMS of the biceps EMG signalwhen external loadwas increased in supine,
semiprone and prone positíons of theforearmfor the subject2_trialI.

Subject2_trial2

Window Number

Fig' 5.30 Normalized RMS of the biceps EMG signalwhen external loadwas increased in supine,
semiprone and prone positions of the þreørmþr the subject2_tría12.
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5.7. Sunnn¡Rny

In many applications, such as orthopedics and rehabilitation, it is desired to know the forces

in individual skeletal muscles. A new approach for the partitioning of the intersegmental forces,

i'e', the force distribution problem, using fuzzy logic is discussed in this chapter. The approach is

illustrated by partitioning the muscle forces acting on the elbow joint. The rotation angle of the

forearm, the speed of the movement and the external load are three inputs of the fuzzy model.

Ninety rules are deveioped for the relation between input interface and ouþut interface of the

futzy model.

The results of optimization method for the specific tasks are presented and compared with

the fuzzy logic method. Although there is a great need to perform more experiments to vajidate

the predictions, experimental results showed that the fuzzy logic approach distributes force

between muscles better than a commonly used optimizationmethod. The new method therefore

should be a promising paradign for the force distribution problem.
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6.'1. Oo¡¡cl-us¡ol

This thesis addressed the problem of determining joint forces and moments, power and

energy flows, individual muscle forces and internal joint forces for the upper limb. To find these

kinetic variables, kinetic equations were established. A 3D link-segment model, along with the

kinematic variables based on motion data, was used to develop the kinetic equations which gov-

ern the dynamic behaviour of a limb.

The model has ten degrees of freedom (DoF), three tanslational and three rotational DoF

for the shoulder joint, two rotational DOF for the elbow joint and two rotational DOF for the hand

joint. The seven rotational DOF were represented by nine Euler angles with three translational

DOF obtained by an approach developed in this research. It was shown that there is a sisrificant

difference in the calculated po\ /er if the three translational DOF are ignored.

Four methods of smoothing the kinematic data (Butterworth filter, polynomial curve fitting,

median filter and splines method) were reviewed and compared at three levels, raw data, first

derivative and second derivative. The results showed that in most cases at the first level of com-

parison, i.e., raw data, all methods except the median filter have similar results. However at the

first and second levels, the splines method had significantly less error.

The kinematic data was the input to the kinetic equations developed using both Lagrangian

and Newtonian methods. The analyticat relationship between the two methods was shown in the

thesis. Besides developing the kinetic equations, two methods for determining power flows were

explained. It was shown that the two methods produce the same result. The major significance of

107



CHRpTER 6, CoNCLUSIoN AND RECoMMENDATIoNS 6.2. CoNTRIBUTIoNS oF THIS RESEARoH

this is that correlation between them can not be used as a measure to validate the modei as sus-

gested in some literature.

Finally the force distibution problem was discussed. A new approach to the problem using

fuzzy logic was introduced. The method was developed for the flexion/extension of the elbow

joint. The intersegmental force was distributed between the three flexor muscles- biceps, brachia-

lis and brachioradialis- using both the optimization method and the fryzy approach. Both simuia-

tion and experimental results were used to compare the two methods. Although there is a great

need to perform more experiments to validate the predictions, experimental results show that the

fuzn¡ approach includes the parameters that distribute force between muscles better than the opti-

mizationmethod.

6.2. Co¡vrRleuiloNs oF THts Reseancn

The major contributions of this research are listed as follows.

' A link-segment model was developed for the upper limb using 6 markers. Using this

model seven rotational and three translational DOF variables of the upper limb can be

calculated.

An analytical proof was provided that shows the equivalence between two methods to cal-

culate power. This negates the hypothesis that correlation befween the calculated powers

can be used as a measure to verify the kinematic model.

A new approach was presented to caiculate three translational DOF variables of the upper

limb. These are very important for kinetic analysis.

A new technique was established for force distribution using fuzzy iogic. This method

distributes force between muscles better than the commonly used optim izattonmethod.
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6"3. Reconnn¡ENDATtoNS FoR Furune Resennc¡-r

In this research diff,erent areas of upper limb motion analysis and dynamic analysis were

covered. However several areas of future investigation are suggested.

Rotational degrees of freedom of the model presented in this research are obtained using

Euler angles. However, the mapping between Euler angles and anatomical angles was not deter-

mined. Finding this mapping and/or a way to describe the motion mathematically based on the

anatomical angles is an interesting area for a future research.

The force distribution problem presented in this research using finry logic has great flexi-

bility. Although some experiments were performed, there is a need to perform more experiments

to refine fhe fuzzy rules and verifu them. To extend the fiuz¡ logic approach the following steps

should be considered:

' Study the functional behaviour of the muscle of interest, i.e., determine the parameters

that affect the force generated by that muscle.

. Consider those parameters as the inputs to the model.

. Assign membership functions to the model inputs.

' Set fuzzy rules based on functional behaviour of the muscle and model inputs.

" Perform experiments to compare and verifu thefvzy logic method results.
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ApperuDlx A" Un¡lvenstw or MnruToBA Molon¡

An¡n¡-ysls SysrEM (UM2AS)

A.'1. Tnr UM2AS Serup

The system used to record motion data was the University of Manitoba Motion Anatysis

System lUU2eS¡ Pllzsl. This system records motion on video tapes that can be used for analysis

later. In this system, three orthogonally placed charge coupled device (CCD) video cameras

record upper limb motion (Fig.4.1).

,/,/

/w

N

lì-ì-.

Fig. A.I UU2,qS hboratory set up.
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APPeruoIx A. UNIVERSITY oF MANIToBA MoTIoru ANALYSIS SYSTEM (UM2AS)

Reflective markers are placed on the upper limb landmarks in such a way that cause no dis-

ruption to the normal pattern of movement. Markers are one-inch Styrofoam balls. These are

securely attached to the skin of the subject's upper limb with double sided adhesive tape. The

imaging space is approximately one cubic meter in volume, illuminated by three pot lights and the

walls are draped in non-reflective material. Although two cameras are enough to calculate three

components of the markers in three-dimensional space, using three cameras prevents the problem

of disappearing markers and overlapping. A camera flash is used to synchronize the video-tapes;

this was done at the beginning of each hial recording. The motion was recorded at the rate of 30

frames/second (30 Hz) by three Beta recorders. However during the digitizing of the video-taped

sequences, every fifth frame was digitized. Therefore the sampling rate was 6 HZ. The video-

taped sequences were played back manually. The image was displayed on a black and white mon-

itor. The frame after the synchronization flash was considered as the first frame for all tlree cam-

eras. Then UM2AS software was used to digitize the tapes. The process of digitizing three video-

taped motion produces three two-dimensional images. The direct linear tansformation algorithm

was used to reconstruct three-dimensional trajectories of the markers as explained in the next sec-

tion.

4,.2. Tnnee D¡n¡erus¡oNAL REcoNSTRUcnoN Mernoo

Among three dimensional reconstruction methods, the most widely applied and discussed is

the direct linear fansformation (DLT) algorittrm. The DLr equations [63] are
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Appgr'rorx A. UNtvEBStry oF MANIToBA Moloru ANALysts Svsreu (UM2AS)

LrX,+ L2Yi+ L3Zi+ L4

LsXi+ LroY,+ Ltzi+ I
LrX,+ LuY,+ L|Zí+ L8

(A-l)

LrX,+ LrcY,* Lnzi+ I

where xi, yi aÍe the coordinates of the ith point, Xí, Yí, Z,aÍe the object space coordinates of the

ith point, and L ,, . . . , L ,t are DLT parameters. Eleven parameters of DLT are used to chanctenze

the calibration, position and orientation of a single camera [64]. DUf parameters permit the com-

putation of the unknown spatial coordinates of a point whose image coordinates have been

recorded by at least two cameras. Because there are three unknowns and two equations, at least

two cameras are necessary to find the three components of a point in 3D space.

Determination of the DLT parameters of each camera requires a calibration procedure [65],

where at least six control points with known spatial coordinates are chosen and recorded by each

of the cameras to be calibrated [66][67][68]1691. The control points are normally mounted on a

calibration structure which is placed in the space of interest, filmed and removed. By rearranging

Eq. (A-i), a matix equation results in which DLT parameters appear as the vector of unknowns.

Linear least-squares techniques may then be employed to compute this vector from the overdeter-

mined system 1651. It is imperative that the position, orientation and focal length of each camera

be rinchanged during the experiment.

To find the best angle between two cameras to minimize erro1 consider Fig. 4.2. Let the

optical axis of the two cameras be AC 1 and BC ¡ Point C7 represents the position of a point to be

digitized by the cameras.

t,,

t2l



AppENDrx A. UNTvERStTy oF MAN|ToBA MoÏoN ANALysts Svsrev (UM2AS)

Fig.4.2 Error generated due to error in the optical axis.

If one considers errors due to the digitizing, calibration procedure, change in the camera ori-

entation and/or DLT technique, the optical axis of camera A cwt be modelled as ACr.In terms of

the angle between cameras (a), distance between the camera and the object point (r), and optical

axis error (ô0), the enor (ôd) can be written as

rô0
õd = snTõ (A-2)

Obviously, the error will be minimum if o equals to 90 degrees and r is chosen to be as

small as possible.

t22



ApperuDrx B" Sn¡oorHtNc Resulrs

This appendix shows individual graphs of the ouþut of the four smoothing techniques with

the input experimental data of Fig. 3.1. Also the first and second derivatives of the resultant out-

put are shown. Finally, error results shown graphicly in Fig. 3.6 and Fí9. 3.7 are tabulated in

Tables B.i-8.6.
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APPENDIX B. SMooTHING RESULTS
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APPENDIX B. SMooTHING RESULTS
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Fig. 8.3 MedÌan filtering when window size is equal to nine.

Fig. 8.4 First and second derivative of thefiltered data by medianfilter.
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Fig. 8.8 First and second derivatives of the smoothed døtø using the cubic splines method.
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APPENDIX B. SMooTHING RESULTS

Noise Distribution Uniform

l3dblloonlron
Gaussian

ll13dbl10dbl7dbSignalto Noise Ratio

Butterworth Filter 3.43% 4.98 "/o 8.67 % 4.38 o/o 6.78 % 11.91 %

Median Filter 7.07 % 9.55 % 13.64 % 7.09 % 10.15 0/" 15.64 0/"

Curue Fitting 2.82 % 3.93 % 6.16 % 3.49 % 5.19 % 8.62%

Splines Method 2.21 "/o 3.10 % 4.90 % 3.27 % 4.55 7o 7.87 %

Table B.l Mean value of the error at thefirst level over ten test signals.

Table 8.2 Mean value of the error at the second level over ten test signals.

Table 8.3 Mean value of the error at the third level over ten test signals.

Noise Distribution Uniform

l3dblrooolroo
Gaussian

l3dblroool zooSignalto Noise Ratio

Butterworth Filter 4.73 "/" 7.52 o/" 13.22% 4.01% 5.96 % 9.71 "/"

Median Filter 15.58 % 18.66 % 24.07 % 14.70 % 17.25% 24.63%

Curue Fittino 5.29 % 6.70% 9.58 % 4.22 o/o 4.51 o/" 5.12 "/"
Splines Method 2.63 "/" 3.46 0/" 5.21% 1.71% 1.80 % 1.99 %

Noise Distribution Uniform

l3dbllooolzon
Gaussian

l3dblroonl zooSignalto Noise Ratio

Butterworth Filter 11.71 "/o 21.5 o/o 41.45 o/" 11.11% 19.68 % 36.81 %

Median Filter 60.65 % 64.20 % 76.49 To 55.06 % 66.90 % 87.20%
Curve Fitting 13.83 % 17.53 % 25.21% 11.60 o/" 12.34 "/" 13.83 %

Splines Method 4.79 % 6.03 % 8.96 % 3.32 o/o 3.50 % 3.8't %
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APPENDIX B. SITIooTHING RESULTS

Noise Distribution Uniform

13db I loao I zon

Gaussian

l3dblrooolzooSignalto Noise Ratio

Butterworth Filter 0.51% 0.69 % 2.31% 1.65 % 2.75 Y" 4.57 o/o

Median Filter 1.43% 1 .71 o/o 2.56 0/o 1.42 % 2.05 % 3.08 %

Curue Fitting 1.57 "/o 1.62% 1 .86 o/o 1.69 "/o 1.91 % 2.59 o/o

Solines Method 0.64% 0.69 % 0.79 % 1.14 Y" 1.21 o/o 1.98 %

Table 8.4 Standard deviation of the error dt thefirst level over ten test signals.

Table 8.5 Standard deviation of the error dt the second level over ten test signals.

Table 8.6 Standard deviation of the enor at the third level over ten test signals.

Noise Distribution Uniform

lsdblrooolzon
Gaussian

l3dblroonizcoSignalto Noise Ratio

Buttenvotlh Filter 0.63 % 1.15% 2.30 o/o 0.81% 0.81 o/o 1.44 %

Median Filter 1.65% 1.27 % 3.74 o/o 2.BB% 4.80 % 4.02%

Curve Fitting 3.16 o/o 3.12% 3.11% 3.31% 3.34% 3.38 %

Solines Method 0.96 % 0.96 % 0.67 o/o 0.70% 0.73 o/o 0.77 %

Noise Distribution Uniform

l3dblrooolzon
Gaussian

lsdblrooolzonSignalto Noise Ratio

Butterworth Filter 2.59 % 5.33 % 10.88 0/" 2.10 % 4.43 Y" 9.04 %

Median Filter 8.46% 19.75 % 23.63% 21.58 % 24.42o/o 32.37 o/o

Curue Fitting 6.78 o/o 6.32% 6.33 % 9.03 % 9.27 % 9.69 o/"

Splines Method 1.69 To 1.86% 1.53 % 1.69 o/o 1.82 o/o 2.04 o/o
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Appen¡Drx C" ExpenlMENTAL Resu¡-rs oF Fowen

An¡nlvsls

To verifi7 experimentally the equivalence between power flows shown analytically in Chap-

ter 4, an experiment was done. Kinematic data were collected from two subjects: age 50 and 65

years, weight 84 and 88 kg, and height 155 and 18 I cm. Each subject performed two tasks: lifting

a bottie (task #1) and a can (task #2). After obtaining the Euler angles of the segments and solving

the kinetic equations, the power of each segment was calculated in the two different ways as

described [70]. As expected cross correlations between Pr,, the rate of change of enerry, and Pp*

the sum of generated or absorbed power by muscles and transmitted power through joints, were

close to one in all cases (Table C.1). As a representative curve, the power patterns of three seg-

ments of subject #1 during the performance of task #I are shown in Fig. C.1.

Arm
segment

Forearm
segment

Hand
segment

Task #1

Subject #l T_L 4.laSK ffz

0.9988 0.9992 0.9938

0.9997 0.9998 0.9998

0.9988 0.9922 0.9798

0.9983 0.99s4 0.98ss

Task #l
Subiect #2" Task#2

Table C.I Cross correlations between total power and rate of energ,, change.
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Fig. C.I Tbtal power and rate of energl,, changefor the subject #I and task #L
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ApperuDIX Þ. De¡uocnAPr-rrcs oF Sue.Jecrs tN

Rneu¡vrATorD Anrnnmrs sruDY

In this appendix normal and RA subject demographics are presented [45]. Subjects were ten

normal (NR) and ten subjects with rheumatoid arthritis (RA) who had shoulder joint involvement.

The average and standard deviation of age weight and height for the normal and RA subjects are

shown in Table D.1 The average (+standard deviation) duration of RA subjects was 16 yearc,2

months (+7 years). More information about subjects can be found in [a5].

Age (years, months) weight (kg) Height (cm)

NR subjects 43,8 (+t4,2\ 73.s (+10.4) 172.0 (+10.1)

RA subjects 52,2 (L 8,5) 68.0 (+16.s) 167.9 (+rr.2)

Table D.I The øverøge (+ standard deviatÌon) of age, weight and height þr normal and
RA subjects.
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ApperuDtx E" Opr¡ulzATton¡ Mernop

8.1. In¡rnooucnoN

To arrive at a specific solution for the indeterminate equations, one method is to specifu a

criterion or objective function and to find the solution that minimizes or maximizes this criterion

l49l[50][51][52][53]. A common criterion is based on the hypothesis that efficiency principles are

inherent to neuromuscular control and this is used as the rationale for optimization. With this

approach the indeterminate problem can be solved uniquely. The objective function to be opti-

mized represents the physiological cost to be minimized. Different objective functions have been

used for the force distibution problem [54][55][56]. The two most commonly used objective

functions are

obj: (E-1)Lri
m= |

N

obj: | {n¡l;o
m=1

(E-2)

where F* is the muscle force,A^ is its physiological cross-sectional area (muscle volume

divided by its length), PCSA. DifFerent values of phavebeen chosen by different authors.
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APPENDIX E. OPTIMIZATIoN METHOD

8.2. Lacnnruce MuInpLIER FoR NoNLINEAR OPTIMIzATION METHOD

The general form of the optimization for the objective function shown in Eq. (E-1) is

subject to the constaint

N

\ u*p* : Mr-M, (E-4)

l_ ,u 
^'^ 

: Mr- M¡

where å, is moment arm of the muscle la.

To solve this optimizatton problem, the Lagrangian function is defined as follows

Extreme values fot L are

N

Minimize: L fi
m:I

L : \ Pi^*?u(b-F-- tvtr+ M,)
m:I

Ea
Mr- M¡

m¡l

b,,> (b k/ b.)o' b - 
')

t-- 1

(E-3)

(E-s)

(E-6)

(E-7)

l*_: o (m: r,2,...,m)
loo'
la¿L¡¡- = UdL

Solving Eqs. (E-5) and (E-6) gives the muscle force
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APPENDIX E. OpIvIzRTION METHOD

In the same way, the solution when optimization for the objective function in Eq. (E-2) is

used can be written as

F:A
Mr- M¡

(E-8)m*N

b,nA *L (b kA k/ b *A *rnt 
(n - t)

k= |
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