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ABSTRACT

The upper limb plays a crucial role in manipulation, perception, prehension and exploration.
It has extraordinary adaptability and is of vital importance in human activity. While there is an
impressive understanding of upper limb anatomy, the present state of knowledge with respect to
kinetic analysis of upper limb movement is not as well developed. Values from variables such as
joint forces and moments, transferred and generated powers and energies give a quantitative eval-
uation of movement and can be used in various applications. To determine these quantitative val-
ues, a kinetic analysis is needed. In many situations, it is also desirable to know the internal joint
forces and individual skeletal muscle forces because knowledge of the joint loading encountered
by the human body could play a crucial role in determining the possible mechanism and in pre-
vention of injury during occupational and sports activities.

This thesis addresses the problem of determining joint forces and moments, power and
energy flows, individual muscle forces and internal joint forces for the upper limb. There are two
major objectives. The first is to do a kinetic analysis of the upper limb based on three dimensional
motion data. The second is to determine power flows and individual muscle forces based on the
kinetic and kinematic variables. A link-segment model with ten degrees of freedom, along with
the kinematic variables based on motion data, is used to develop the kinetic equations which gov-
ern the dynamic behaviour of a limb. To determine individual muscle forces that occur during
upper limb motion, a new approach based on fuzzy logic is developed. The fuzzy model uses not
only the forces and moments extracted from the kinetic equations, but also the kinematic variables

of the motion.
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1.1. MOTIVATION

CHAPTER 1. INTRODUCTION

1.1. MOTIVATION

The upper limb plays a crucial role in manipulation, perception, prehension and exploration.
It has extraordinary adaptability and is of vital importance in human activity. Observations, from
macroscopic to microscopic, have provided anatomic details of the upper limb. While there is an
impressive understanding of upper limb anatomy, the present state of knowledge with respect to
kinetic analysis of upper limb movement is not as well developed.

For motion analysis of the upper limb, a macroscopic approach is more suitable. Models
used for motion analysis are quite varied. Many upper limb models are designed in two dimen-
sional space, typically to reduce the complexity of the analysis. In some cases the motion of the
involved segments can be assumed to be planar because of constraints placed on the overall activ-
ity. In other instances, the investigator might only be interested in those aspects of the motion that
occur in a particular plane; for example, the side view of a gymnast on a balance beam. Although
motion analysis in two dimensional space has added considerably to the understanding of the
basic functional behaviour of the upper limb, three dimensional modelling is more appropriate to
generate realistic information about both normal and pathological upper limb movements and to
do a dynamic analysis of such movements.

Dynamic analysis gives a quantitative evaluation of movement and can be used in various
applications: orthopedics, rehabilitation, ergonomics and sports. For example, orthopedic sur-

geons have to be able to assess the patients’ problems, put them in the proper perspective, select
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the best individual treatment and carry it out. Quantitative values from variables such as joint
forces and moments, transferred and generated powers and energies could help the surgeon, not
only to make a better decision in the choice of treatment, but also to evaluate the outcome of the
surgery. To determine these quantitative values, a kinetic analysis is needed. In many situations, it
is also desirable to know the internal joint forces and individual skeletal muscle forces because
knowledge of the joint loading encountered by the human body could play a crucial role in deter-
mining the possible mechanism and in prevention of injury during occupational and sports activi-
ties.

This thesis addresses the problem of determining joint forces and moments, power and
energy flows, individual muscle forces and internal joint forces for the upper limb. Such knowl-
edge could provide valuable information for the design of joint implants, prostheses, surgery, and
rehabilitation programs. It is hoped that this study will provide a step towards establishing a basis

for solving relevant clinical problems.

1.2. RESEARCH OBJECTIVES AND STATEMENT OF THE PROBLEM

There are two major objectives for this research. The first is to do kinetic analysis of the
upper limb based on three dimensional motion data. The second is to determine power flows and
individual muscle forces based on the kinetic and kinematic variables.

In general, body segments can be studied from two points of view- statically, in which the
body is at rest or is moving with uniform motion, or dynamically, in which body segment motion
accelerates. The study of dynamic motion, dynamics, is further subdivided into kinematics, a
study of motion without considering the forces that produce it, and kinetics, which formulates the

relationship between forces and the resulting motion. There are two general problems when kinet-



CHAPTER 1. INTRODUCTION 1.2. RESEARCH OBJECTIVES AND STATEMENT OF THE PROBLEM

ics of a rigid body is considered. The first is the direct problem where the applied forcing func-
tions are known and the objective is to determine the resulting motion of the system. The second
is the inverse problem in which the motion is completely specified or known and the objective is
to find the forcing functions that cause the motion.

This research is concerned with the inverse kinetic analysis of upper limb movement based
on motion data. This is done, not only from a theoretical viewpoint, but also with an aim of utiliz-
ing the theoretical analysis for clinical applications. To formulate kinetic equations, kinematic
variables, i.e., angular and linear displacements, velocities and accelerations, of different points of
the body segment should be known. Also, to generate kinetic equations for the upper limb, a link-
segment model must first be established. The link-segment model, along with the kinematic vari-
ables based on motion data, is used to develop the kinetic equations which govern the dynamic

behaviour of a limb. The inverse kinetic analysis is the first objective of this research (Fig. 1.1).

Link-Segment
Model
Kinematic Kinetic
Variables ——— 8 - B Forces & Moments
Equations

Fig. 1.1 Objective one: inverse kinetic analysis of the upper limb.



CHAPTER 1. INTRODUCTION 1.2. RESEARCH OBJECTIVES AND STATEMENT OF THE PROBLEM

The second objective is the determination of the power flows, individual muscle forces and
internal joint forces that occur during upper limb motion. A new approach based on fuzzy logic is
developed for the force distribution problem, that is, the partitioning of the intersegmental forces
and moments to individual muscle forces and moments. To distribute the intersegmental forces
during motion, the fuzzy model uses not only the forces and moments extracted from the kinetic
equations, but also the kinematic variables of the motion. However, as when any new method is
being developed, the fuzzy logic approach was first applied to a straightforward problem; the
methodology was developed by considering only the elbow joint, the muscles crossing the ante-

rior aspect of the joint and the one degree of freedom motion (extension/flexion) possible at this

joint. The second objective is shown in Fig. 1.2.

Forces & Moments Kinematic Variables
Power Flow Fuzzy Model
Calculation
Power Flows Individual Muscle Forces

N /

Fig. 1.2 Objective two: determining power flows and individual muscle forces.
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As can be seen in Fig. 1.1 and Fig. 1.2, to achieve the research objectives it is necessary to
establish a link segment model and to determine kinematic variables. A model consisting of three
segments representing the arm, forearm and hand segments has been developed. In this model, the
elbow and wrist joints are considered as ball and socket joints, each with two rotational degrees of
freedom (DOF). However, because both translation and rotation occur at the shallow gleno-
humeral (shoulder) joint, three translational DOF and three rotational DOF for the arm segment

are considered. Therefore the model has a total of ten DOF, three translational DOF and seven

rotational DOF. The determination of the necessary kinematic variables is shown in Fig. 1.3.

Euler Angles
Calculation
3D Motion Link-Segment Kinematic Kinematic
Data > P
Model Equations Variables

7

Translational DOF

Calculation

Fig. 1.3 Block diagram of the kinematic analysis.
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For kinetic analysis, not only the position but also velocity (first derivative) and acceleration
(second derivative) are required. Because the differentiation process amplifies noise, data should
be smoothed to prevent error amplification in the system. Therefore a data smoothing block is
added to the block diagram of Fig. 1.3. Smoothing can be applied to the motion data or to the
inputs to the kinematic equations. To prevent amplification of possible error produced in calcula-
tion of the Euler angles and translational DOF it is better to apply smoothing after these calcula-
tions (Fig. 1.4). In the other words smoothing should be applied as close as possible to the
differentiation process. In addition, motion data in 2D (or 3D) are displacements of different
markers over time expressed as xy (or xyz) coordinates. The question then arises whether these
data components should be processed independently or not. Known and constant distances
between markers might be used as constraints during the smoothing process. Imposing constraints
during the smoothing process is not an easy task. Therefore in this work, smoothing is applied to

the inputs of the kinematic equations.

4 N

Euler Angles
Calculation
3D Motion Link-Segment Data
Data

Model / Smoothing
Translational DOF / Kinematic
inemati

Calculation Equations

v

\ Kinematic Variables J

Fig. 1.4 Block diagram for kinematic analysis with data smoothing.
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1.3. THESIS ORGANIZATION

The organization of the thesis is shown in Fig. 1.5. As was stated, one of the objectives of
this research was to do kinetic analysis which requires development of a link segment model and
calculation of kinematic variables. This model, along with the determination of Euler angles,
three translational DOF and the resultant kinematic equations, is presented in Chapter 2. In Chap-
ter 3 four different methods for kinematic data smoothing are described and compared. Kinetic
equations developed using both Lagrangian and Newtonian methods and an analytical relation-
ship between them for the upper limb are described in Chapter 4. Also equations for obtaining
power flows are developed. At the end of the chapter results of experiments to test the model are
presented. Chapter 5 describes the fuzzy logic method to determine individual muscle forces.
Simulation results are presented and results of experiments to verify the fuzzy logic gpproach for
the force distribution problem are shown at the end of the chapter. The final chapter, Chapter 6,
concludes and makes recommendations for future research. Each chapter begins with a review of

the relevant literature.
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Fig. 1.5 Organization of the thesis.
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CHAPTER 2. KINEMATIC ANALYSIS

2.1. INTRODUCTION

Many kinematic three dimensional (3D) analyses of body segment movement start with data
captured by an imaging device. An exposition on instrumentation for 3D measurements and 3D
video-based measuring systems is presented in [1]. Thus description of such systems is not dis-
cussed in any detail in this thesis. However, to achieve the research objectives, it is necessary to
establish a link segment model and determine kinematic variables, i.e. angular and linear dis-
placements, velocities and accelerations. This model and the determination of the necessary kine-
matic variables are discussed in this chapter.

The chapter is organized as follows. First, the center of rotation is explained. The general
method to determine center of rotation in two dimensional (2D) space is presented and it is shown
that this method does not work in 3D space. Therefore a method to determine the center of rota-
tion in 3D space using the screw axis is introduced. Then the link segment model of the upper
limb with three translational DOF determined by the screw axis and seven rotational DOF mod-
elled by Euler angles is described. Finally, kinematic equations of the model using homogenous
coordinates are presented.

In general, kinematic analysis of the musculo-skeletal system is a challenging task in bioen-
gineering. In biomechanics, models are categorized into three groups [2]:

I) bones 1) joints IIT) body segments

This research is concerned with modelling at the level of body segments with a simple model for
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2.1. INTRODUCTION

the joint [3]. King [2] has divided the third class of modelling into five major groups: fingers and
thumb, the lower extremities, the spinal segment, thorax, and the whole body. It is interesting to
note that upper limb modelling was not included. In body segment modelling, the number of
links, dimension of space (2D/3D), the number of degrees of freedom (DOF) and consideration of

kinetics and/or kinematics are some features of the model. Table 2.1 lists a number of upper limb

models and their features.

Ref. # Year Model of #oflinks | 2D/3D | DOF Kinematic / Dynamic
[4] 1978 Elbow 3 3D 1 Kinematic
[5] 1978 Upper Limb 2 2D 2 Dynamic
[6] 1979 Elbow 3 3D 2 Kinematic
[7] 1981 Upper Limb 2 3D 6 Kinematic
[8] 1989 Upper Limb 3 2D 3 Dynamic
[9] 1990 Upper Limb 3 3D 7 Kinematic
[10] 1992 | Hand & Finger 2 3D 3 Kinematic
[11] 1994 Upper Limb 3 3D 7 Kinematic
[12] 1994 Upper Limb 3 3D 7 Kinematic

Table 2.1 Studies considering a model of the upper limb and their features.

10
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The number of links should be chosen in such a way that the link-segment model represents
the physical motion of the bones and also that the position and orientation of points of interest can
be found. The number of bones in the shoulder, arm, forearm and hand are respectively 2, 1, 2 and
27 [13]. In this research the objective is to accomplish kinetic analysis of upper limb motion for
application in movements typically associated with activities of daily living. Thus the upper limb
model has been simplified appropriately and finger movement is not considered. The hand is
modelled as a single segment. The final model for the upper limb contains three links each repre-
senting the arm, forearm and hand segments, respectively, that move in 3D space.

The outputs of the link-segment model are trajectories of markers attached to defined points
on the upper limb. To obtain the orientation and position of different points of the segments, kine-
matic equations need to be established. Kinematic equations are obtained using a homogeneous
coordinate system which can easily incorporate an increase in the number of links.

The number of DOF in a kinematic model is related to the number of joints. Generally, each
joint has six DOF, three rotational and three translational [3][14]. The total DOF of the upper limb
has been reported to be 42 [15] and 87 [16]. Because of the research objectives, only three joints
with ten DOF are considered: three translational and three rotationél DOF for the arm segment,
two rotational DOF for the forearm segment and two rotational DOF for the hand segment [17].
Three translational DOF are considered for the arm segment because both translation and rotation
occur at the shallow glenohumeral (shoulder) joint [18]. To find the translational DOF of the arm
segment, the instantaneous center of rotation of the segment must be determined. The center of

rotation and its determination in 2D and 3D space are discussed in the next section.

11
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2.2. CENTER OF ROTATION

To obtain the force and moment at a joint, it is necessary to determine rolling and sliding
movements at that joint. Therefore the location and trajectory of the joint’s center of rotation must
be known. The instantaneous center of rotation is defined as the point in space which maintains a
constant distance from every point of the moving segment or as the point with zero velocity dur-
ing an infinitesimally small motion [19]. A moving segment can both translate along and rotate
about a fixed segment. Although in many cases translation can be ignored because it is very small,
this simplification results in an error when the center of rotation is calculated. In fact, the center of
rotation for the moving segment will change throughout the course of motion. Therefore its posi-
tion must be derived for each instant in time.

Because in experimental measurements it is nearly impossible to determine the instantane-
ous velocity of different points on a body in motion [20], the center of rotation is usually approxi-
mated by two points on the moving segment using two consecutive positions within a short period
of time [21]. The methods for determining the center of rotation in 2D and 3D space are quite dif-

ferent. These are discussed in the next two sections.

2.2.1. DETERMINATION OF CENTER OF ROTATION IN 2D

Fig. 2.1 shows graphically the determination of the center of rotation of a moving segment
in 2D space. Let the position of two markers on the moving segment in position 1 be M; and N,
and in position 2 be M, and N,. The approximated center of rotation can be found as a intersection
of the two lines perpendicular to the lines M;M, and NN, as shown in Fig. 2.1. Points C, and
C,; are, respectively, the calculated center of rotation using positions 1,2 and 2,3 of the moving

segment.

12
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- |

Position 3

K Position 1 Position 2 /

Fig. 2.1 Determination of center of rotation between two positions of a moving segment.

Mathematical determination of the center of rotation is explained in the literature [19][22]

[23]. All methods are based on the fact that within an arbitrary plane coordinate system, move-
ment of every point of a rigid body from point X, to X, can be expressed as

X, = RX,+T (2-1)

where R and T are the rotation matrix and translation vector respectively. If the origin of the
coordinate system is chosen at the center of rotation, the translation vector will be zero, that is, the

rigid body motion can be written in the following form in an arbitrary coordinate system

X,-C=R(X,-O) (2-2)
where C is the center of the rotation vector. Solving Eq (2-2) for C, one obtains
C = [I-R (X,-RX)) (2-3)

The rotation matrix in the 2D coordinate system can be easily found using two markers

13
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(e.g., M and N in Fig. 2.1) on the moving segment. Therefore, to determine the center of rotation
of a moving segment in a 2D coordinate system at least two markers on the segment are neces-
sary.

This method does not work in 3D space, because the rank of [/- R] is two. It means that

center of rotation in 3D space must be determined by another method.

2.2.2. DETERMINATION OF CENTER OF ROTATION IN 3D USING SCREW AXIS

To overcome the above mentioned difficulty in determining the center of rotation in 3D
space, in this research an approach based on the screw axis is developed. For completeness, the
determination of the screw axis is described next.

Regardless of how the actual motion takes place in 3D space, the displacement of the mov-
ing segment from position 1 to position 2 can always be represented as a rotation about and a
translation along a unique axis as shown in Fig. 2.2. This axis is directly analogous to the instant
center of rotation for 2D space motion and is called the screw axis [14]. It is used to obtain the
three translational DOF of the arm segment. To use the screw axis one needs to determine orienta-
tion of the axis in space and also its rotation angle and translation vector, respectively angle ¢ and

vector T in Fig. 2.3. This is done as follows.

14
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s ™

A Z Screw Axis

'4

Position 2

X Position 1

N /

Fig. 2.2 Displacement of a segment as the rotation about and translation along screw axis.

In a homogeneous coordinate system*[24], a point (x,y,z) can be represented with respect to

a coordinate system i by the following vector

Y=y 1]l (2-4)

This point with respect to another coordinate system j can be written as
Ip =T (2-5)

The transformation matrix, H , has the following structure

T pt il
P jT] 2-6)

J Hi=
|: o” 1
where 'R and ' are respectively the rotation matrix and translation vector of the coordinate sys-

tem i relative to the coordinate system j and 0" = [0,0,0].

In 3D space, Eq. (2-1) can be written in homogeneous form,

* In this section every vector with the prime is considered in the homogeneous coordinate system.

15
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an ap a3 T,
X, R IRS 4 a4 a3 T,|[X,
= = 2-7)
1 0 IjLl as a3, as3 T,iL1
0 0 0 1
or
X2 = A'X'l (2"8)

The matrix 4' can be determined if the coordinates of four non-coplanar points M @
(i=1,2,3,4) on the moving segment are known in both positions 1 and 2. For four points, Eq.
(2-8) can be written in matrix form as follows

By = A'B', (2-9)
where matrix B'; is 4 x4 and its four columns are the homogenous coordinates of four points in

position i. Therefore the matrix 4' is given by
-1
4" = (B'y) (B'}) (2-10)
Considering ¢ as the rotation angle about the screw axis and T = Ku as the translation vec-
tor along the axis, where #is a unit vector with components (u, Uy Uy) the rotation matrix in
Eq.(2-7) can be written as [14]

u2D+C uxuyD—qu uulD+u
X

z7x y
R= |uuD+us u,D+C uuD-u.S (2-11)
2
uzuxD—uyS uyuzD+uxS u,D+C

where S = sin (¢) , C = cos (¢) and D = 1 - cos (9).
The submatrix R defines a pure rotation. It has three independent parameters and its ele-
ments are independent of where the axis of rotation is actually located. Consider a new axis paral-

lel to the screw axis but passing through the origin. A pure rotation of a point P about this axis is

16
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given by
P, = RP, (2-12)
If the point P is located on the axis of rotation, then P is not rotated and P, and P, become the
same point. Therefore
P=RP= [[-R]P =0 (2-13)
As was mentioned in the previous section, the rank of [/ R] is two, therefore there is a non-triv-

ial solution for Eq. (2-13) which is the vector u, the direction of the screw axis. Eq. (2-13) can be

expressed as

a;, -1 ay; a3 U, 0
ay ay -1 4y ||%| = |0 (2-14)
a3 a3 ay;— 1] |u, 0

Thus one possible solution is

ux = Z'tx
u, layaz —ay (a3 —1)]
17 (ap-D(a—1) —ayay, (2-15)
u lay a3 —az (ay-1)]
Y~ (ay—1) (a3~ 1) —ayas,

Since u is a unit vector,
2, 2, 2
wtu,tu, =1 (2-16)

Egs. (2-15) and (2-16) are sufficient to determine the direction of the screw axis.

When the direction of the screw axis is known, the rotation angle can be calculated using

Eq. (2-11)

2
o = acos!: 5 i! (2-17)
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Now let Q be a point located on the screw axis. The position of the point @ from position 1

to 2 can be expressed in homogenous coordinates as
0, =40/ (2-18)

But the point is on the screw axis, therefore

0, -0, = Ku' (2-19)
or from Eq. (2-18)

[4'-11Q,' = Ku' (2-20)
Every parameter in Eq. (2-20) is known, except the three components of the point Q@ and scaling
factor K. But Q is an arbitrary point on the screw axis and, given one component of the point, the
two other components and the constant K can be found from the three equations in Eq. (2-20).
Therefore, translation along the screw axis can be found using Eq. (2-20).

The screw axis is used to obtain three translational DOF of the link-segment model as fol-
lows. Let the moving segment be at position 1, 2, 3 and 4 respectively at times 7, ¢,, #,and 7, as
shown in Fig. 2.3. Consider lines S,, S, and S, as three screw axes from position 1 to 2, 2 to 3 and
3 to 4, respectively. T}, T, and T, are translations along the three axes calculated using equations
(2-15) and (2-20). The trajectory of the axis of rotation from position 1 to 4 can be found by con-
necting vectors T,, T, and T, as shown in Fig. 2.3. Using this method to calculate the trajectory

of the rotation axis, the three translational DOF of the arm segment are determined during move-

ment.

18
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ST
S

rajectory of the axis of rotation
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K Position 2

~

Fig. 2.3 Determination of trajectory of the axis of rotation using screw axis.

2.3. KINEMATIC MODEL OF THE UPPER LIMB

The physical system of the upper limb is represented by a link-segment model composed of

three rigid segments representing the arm, forearm and hand as shown in Fig. 2.4A. Points @, &

and @ represent the shoulder, elbow and wrist joints respectively. A coordinate system is associ-

ated with each segment. The model contains ten DOF, three translational and three rotational DOF

for the shoulder joint, two rotational DOF for the elbow joint and two rotational DOF for the wrist

joint. The seven rotational DOF are modelled using nine Euler angles of the three defined coordi-

nate systems of each segment relative to the lab coordinate system with the three translational

DOF obtained using the screw axis method described in the previous section.
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For experimental purposes, six reflective markers (M, , i = 1, ..., 6) are used to define the
three coordinate systems of the three segments. Markers M|, M, and M, are fixed on the arm,
M, and M are fixed on the forearm and M is fixed on the hand as shown in Fig. 2.4B. Marker
specifications are explained in Appendix A. Let (i_,j_,k,) be the orthogonal basis of the coordinate
system (X,,Y,Z) s=1,2,3, where s represents the segment number. Then three bases for the three

segments are defined as follows

. — _) H _.—-)
Jj = MM, J = MyM, J3 = MM
) N e e . —_— -
o= MMy® MM, i, = MMOMM, 4 iy = MM, ® MM, (2-21)
k, =i ®j k, = i,®}], ky = 0,0,

—
where MM, means the unit vector from marker M, to M; and @ is the cross product operator.

~

Fig. 2.4 A) Link-segment model of the upper limb consisting of three segments.
B) Arrangement of six markers on the upper limb.

The next section explains specifically how the three translational DOF are determined for the
upper limb. The section following it shows the derivation of the seven rotational DOF using Euler

angles.
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2.3.1. DERIVATION OF THREE TRANSLATIONAL DOF

It is assumed that the forearm and hand are connected respectively to the arm and forearm
using a joint with two DOF [3]. However for the arm segment, six DOF, three translational and
three rotational DOF, are considered [18].

In Section 2.2.2., it was explained that at least four points are necessary to find all parame-
ters of the screw axis, but there are only three markers (M,, M,, M, ) on the arm segment as shown
in Fig. 2.4B. It appears that one extra marker should be added to the arm segment for this purpose.
However an imaginary marker, discussed below, was used for all calculations of the screw axis.
Consider matrices R, and R ’ respectively as the rotation matrix of the arm and forearm relative to
the lab coordinate system. The rotation matrix can be found using three Euler angles of the seg-
ment and is independent of the arm translation. An imaginary marker, Mi , of the arm segment can

be found using the following equation
My = My+RR (M,~M,) (2-22)

where M, and M, are vectors of the physical markers as shown in Fig. 2.4B and RaRJ:1 is the
rotation matrix of the forearm coordinate system relative to the arm segment. Mi along with the
first three markers (M, , M, , M, ) is used to find screw axis of the arm segment.

Having described how to determine analytically the three translational DOF of the arm seg-
ment, it is of interest to see how large they are in a typical upper limb movement. Therefore an
illustrative experiment was performed where a subject was asked to pick up a bottle from a table
while sitting on a chair. Three dimensional motion data were collected using the University of
Manitoba Motion Analysis System (UMZ?AS) [9][25] (Appendix A). Fig. 2.5 shows the three

translational DOF of the arm segment for this experiment. Fig. 2.6 shows the trajectory of the

translational DOF in 3D space. Although it appears that the magnitude of the trajectory vector is
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small relative to the range of motion which is on the order of 30 cm and can be ignored, it is
shown in Chapter 4, which considers kinetic analysis, that these small translational DOF are very
important for kinetic analysis purposes. This is because the three translational DOF of the arm
segment are used as the coordinates of a point upon which the displacement of all points in the
link-segment model depends. Also in kinetic analysis not only displacements but also the first and
second derivatives of the kinematic variables are used. Therefore any small error is magnified and

it is important that the translational DOF be considered.

Position (cm)
.<

0 é 1'0 1l5
Time (sec.)

o /

Fig. 2.5 Three components of the translational DOF of the arm segment in lab coordinate
system.
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Fig. 2.6 Translational DOF of the arm segment in lab coordinate system.

2.3.2. DERIVATION OF SEVEN ROTATIONAL DOF

Using the three segment coordinate systems defined in Eq. (2-21), the Euler angles of
each joint can be determined. Let the rotation sequence of Euler angles for a segment be XYZ
Rotation through angle Eu_; about the X axis, angle Eu_, about the Y axis and angle Eu , about

the Z axis can be written as follows

I 10 o[l g c, 05, 2 C, -8, 0[5~ ¢
l:"} = |0 CI _SI jI s jI = 0 1 0 j2 9 jz = S3 C30 j3 = j (2_23)
K 05, C,|lk k, =S, I Gyl |k, k, 0 0 1||k;=k

where the symbols C; and S; denote respectively cosine and sine functions of angle Eu ; and

(I,J,K) and (i,j,k),s = 1,2,3, are bases for the corresponding coordinate system. The total
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rotation of the coordinate system i relative to the lab coordinate system is given by

I i €,Cs —C,S; S
J| =R j| where °R = |C,S;-5,5,C; C1C3=8,5,8, =5, (2-24)
K k 8,85+ C,8,C, §,C3-C,8,8, C,C,

Euler angles (Eu,,,Eu_,Eu,) of coordinate system s, s = 1,2,3, with (i,j.k) as a

sl

basis, relative to the lab coordinate system XYZ with (1, J,K) as a basis (considering an XYZ rota-

tion sequence) are

Eu, = Sin" (I-k,)
51 = Cos™' (K-k/Cos(Eug,))  s=1,2,3 (2-25)
Cos ' (I-i/Cos(Eu,))

by b
8 R
noon

The objective of determining the Euler angles of the link-segment model in this section is
not to provide the joint’s anatomical rotations, but to have a mathematical model of the segment’s
rotation that can be used in kinetic analysis. Therefore, slight variation of the placement of mark-
ers only changes the direction of the corresponding coordinate system. This results in an equiva-
lent set of Euler angles, equivalent in the sense that both sets describe mathematically the motion
and the kinetic variables are the same.

A total of nine Euler angles represent the seven rotational DOF of the upper limb. To con-
clude, it is important to note that in the link segment model presented in this research, the number
of DOF are less than the number of Euler angles and that the Euler angles do not necessarily cor-
respond to common anatomical terminology used to describe upper limb movements.

Euler angles for the illustrative experiment described in the previous section were also
found. The nine Euler angles, shown in Fig. 2.7, Fig. 2.8 and Fig. 2.9, represent seven rotational

DOF of the three segments. It should be noted that for the elbow and wrist joints with two DOF,
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all three Euler angles are non zero (Fig. 2.8 and Fig. 2.9). While these angles can not be consid-
ered as anatomical movement, e.g., flexion/extension, there is a mapping between Euler angles
and anatomical angles. Finding this mapping or arranging the markers in such a way that the map-
ping is an identity is an interesting and challenging subject for research [10]. However in order to

perform a kinetic analysis of the upper limb, Euler angles are sufficient and appropriate.

D Eup g
k=)
S 5k
®
=) 0
g .
0 5 10 15
[4]®
Eu13 5
BT 8
15k
0 5 10 15

K Time (sec.) /

Fig. 2.7 Three Euler angles of the first coordinate system attached to the arm segment
relative to the lab coordinate system.
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Fig. 2.8 Three Euler angles of the second coordinate system attached to the forearm
segment relative to the first coordinate system attached to the arm segment.
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Fig. 2.9 Three Euler angles of the third coordinate system attached to the hand segment
relative to the second coordinate system attached to the forearm segment.
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2.4. ESTABLISHMENT OF THE KINEMATIC EQUATIONS FOR THE UPPER LIMB

To determine kinematic variables, i.e., angular and linear displacements, velocities and
accelerations, of different points of the upper limb segments, kinematic equations must be estab-
lished. To do so, anthropometric parameters are required. Determination of these parameters is
described followed by a derivation of the kinematic equations.

For the model shown in Fig. 2.10, let L, L, and L, be respectively the length and m,, m,
and m, be the mass and G,, G, and G, be the mass center of the arm, forearm and hand. From

[26], these variables can be calculated on the basis of the height, A, and weight, W, of the sub-

ject:
L, = 0.173H m, = 0.028W
L, = 0.16H m, = 0.016W (2-26)
L, = 0.0575H my = 0.06W

The distances between the mass center (G,) and the proximal joint of the segments can be calcu-

lated using the following equations [26]
0,G, = 0.463L,
0,G, = 0.430L, (2-27)
0,G, = 0.506L,
Ol 1y 2P : : .
Let "H , and be homogeneous transformation matrices of respectively the arm,

forearm and hand coordinate systems relative to the lab arm and forearm coordinate systems.

They can be written as follows

0.1 0.2, 0.1 -1 0,3, ,0 .2 -1
R T R R T. R R T
0,1 { I}IHZZ [( ) CRY 2} ey {( ) CRY 3} 029

0 ] o’ 1
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4 )

Fig. 2.10 Link-segment model of the upper limb.

where T, is the trajectory vector of the axis of rotation of the arm segment determined using the

screw axis equations given in Section 2.3.1. and

(2-29)

=10 1, o0
T

T,=[0 L, 0
Finally the position of the joints and mass centers in the homogenous lab coordinate system

can be written as follows
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(0, =T,

¢, =0 o6 o 117

o,="w'o 1, o 1’

¢,= ey g o6, o 117 (2-30)
o,=CEY(eHo L, o 11

e, = CEY BBy o,6, o 117

The angular velocity of a segment s can be expressed as follows

®, = Eugi, + Eug,j,+ Eugks = o i+ 0 j+o_k (2-31)
where
O, = C2C3Ei‘s1 + S3Ei152
msy = —CZS3EuS1 + C3Eus2 (2-32)

o,, = S,Eu, +Eu_,
Velocity and acceleration of an arbitrary point A in a segment relative to another point, e.g., B, of
the segment are as follows

{VA =Vt ®r, 233

a, apt O ®rp, +® @ (0O,®r;,)
where ® represents the cross product operator.

These velocities and accelerations are used in the kinetic equations to determine interseg-

mental forces and moments.
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2.5. SUMMARY

In this chapter the link segment model is presented and determination of the kinematic vari-
ables necessary to do kinetic analysis is discussed. First, the center of rotation in 2D and 3D space
is explained. A method to determine the trajectory of the axis of the rotation in 3D space is intro-
duced.

A kinematic model for the upper limb in 3D space is described. The model contains ten
DOF: three translational and seven rotational DOF. Using the screw axis, determination of the
three translational DOF for the upper limb is explained. The seven rotational DOF are represented
by nine Euler angles of the three defined coordinate systems of each segment relative to lab coor-

dinate system. The chapter ends with the establishment of kinematic equations.
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CHAPTER 3. KINEMATIC DATA SMOOTHING

3.1. INTRODUCTION

All kinematic studies utilize data obtained from some type of measurement. Most equip-
ment for kinematic movement analysis measures position of markers affixed to body segments.
Modelling errors (e.g., a joint is not a point but a surface in three dimensional space) and measure-
ment errors (e.g., Systematic errors in measurement equipment) affect the measured variables [1].

To perform dynamic analysis, the first and second derivatives of the kinematic data have to
be estimated. Because the differentiation process amplifies noise, kinematic data should be
smoothed before differentiation. Though error propagation effects in the calculations can be con-
siderable, special measures can be taken to minimize them. It is necessary to include constraints
to achieve meaningful derivative estimates and minimize error propagation. A suitable criterion is
to assume that the movement is sufficiently smooth, i.e., it does not contain ordinarily high fre-
quency components since this would entail extremely high inertial forces [27].

A common approach to model error is to assume that the data are corrupted by additive
noise, thus the observations can be considered to be samples of a continuous random variable Y.

Let ¥, be the value of Y at times ¢, . The following equation
Y, =f(t)+e, n=12..,N (3-1)
is known as the regression model where f(¢,) is the value of a unknown function and e, is a zero

mean, uncorrelated random variable with variance o°. The function f is usually referred to as the

regression function [28].
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In general, there are two approaches for regression analysis, parametric and nonparametric
regression. A parametric regression assumes that the form of f is known except for finitely many
unknown parameters [28]. In this case the function f can be linear or nonlinear. Polynomial curve
fitting is an example of linear parametric regression analysis. Parametric methods require very
specific quantitative information about the regression function. Nonparametric regression analy-
sis, such as the splines method, gives an estimate of f that allows great flexibility in the form of
the regression function, relies on the qualitative information about it and lets the data speak for
itself concerning the actual form of the regression function [29].

Kinematic data smoothing can be applied to the “raw” 2D motion data, to the 3D recon-
structed data, or to the inputs of the kinematic equations. However as mentioned previously, due
to the noise-amplification characteristic of the differentiation process it is better to perform data
smoothing as close as possible to the differentiation process. In addition, kinematic data in 2D (or
3D) are expressed as xy (or xyz) coordinates of different markers over time. The question then
arises whether these data components should be processed independently or not. Known and con-
stant distances between markers might be used as constraints during the smoothing process.
Imposing constraints during the smoothing process is not an easy task. Therefore in this thesis,
smoothing is applied to the inputs of the kinematic equations.

For the kinematic data smoothing, four different methods were investigated: Butterworth fil-
ter as an example of a classic linear filter and one which is widely used in biomechanics; the
median filter which is a simple digital technique; curve fitting representing the linear parametric
regression approach; and the splines method, a nonparametric regression method. Although these
are not the only methods found in the literature that could or have been applied to the kinematic

data, they represent the most commonly used ones, particularly the Butterworth filter and the
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splines approach. The objective of comparing these methods is to determine somewhat heuristi-

cally which approach is best suited for kinetic analysis purposes.

3.2. FOUR METHODS OF SMOOTHING

In this section the four methods of smoothing: Butterworth filter, median filter, polynomial
curve fitting technique and splines method, and their characteristics are bri efly explained.
The basic concept of a linear filter, of which the Butterworth filter is a classic example, is

the separation of signals based on their nonoverlapping frequency content. The Butterworth filter

considered here is one which has been used for biomechanical signal smoothing [26]. It is a low
pass second order filter with zero-phase. Its difference equation when the sampling frequency and

cutoff frequency are respectively 60 Hz and 6 Hz is

f() =a f(t, ) +ayf(t,_,) +b,Y +b\Y, | +b,Y, , (3-2)
where
by = 0.0675
{al = 1.1429 o o135
a, = 0.4129 R (3-3)
b, = 0.0675

The second filter considered is the median filter which is a simple digital technique for
smoothing signals. The implementation of a median filter requires a very simple digital nonlinear
operation [30]. It slides a window that spans 2+ points across the data with the filter output set
equal to the median value of these 2W+/ samples. Only the center point of the window is
affected.

To account for start up and end effects at the two end points, W samples each are appended

at the beginning and at the end of the sequence [31]. For data to pass through a median filter
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unchanged means that central sample value for each window position is itself the median of the
samples within the window. The only parameter of the filter is the size of window (/). Note that
the output of the filter when the window size is equal to one will be the same as its input.

As an example of a commonly used linear parametric approach consider the regression

function f to be approximated by a polynomial as follows

R

f@t) = a0+a1tn+a2ti+...+aptp (3-4)

The parameters a,, a,, a,, ...,a, of this linear parametric regression can be selected to give the

p

best fit using a criterion such as minimum square error (SE ).

N
SE = > |¥,-f()| (3-5)

n=1

The SE is decreased by increasing the degree of the polynomial (p). For best smoothness, not best
fit, p should be chosen carefully.

The last approach is spline smoothing which is a nonparametric regression method. In this
method, the goal is to find a good fit for the data which at the same time has some degree of
smoothness. The natural measure of roughness (lack of smoothness) associated with a function £,

is the roughness penalty [28][29] given by

2

N
R, = 2| )

(3-6)
n=1
where f ) represents mith derivative of the function f.
Spline smoothing is based on the weighted combination of the two criteria as follows
Min {SE+uR } (3-7)

for a suitably selected m>0 where p is a weighting factor. The value m=0 results in an interpolat-
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ing spline. The spline consists of local polynomials of degree not greater than 2m-1. These poly-
nomials are piecewise continuous at the knots (#,) up to and including the (2m-2)nd derivative
[27]. The case m=2 corresponds to cubic splines, m=3 to quintic splines, m=4 to heptic splines
and m=35 to nonic splines [27][29]. Because in kinetic analysis only first and second derivatives of
the data are necessary cubic splines are used in this research.

To obtain some feel for the efficacy of the four methods they were applied to experimental
data. Fig. 3.1 shows a typical example of the raw data along with the filtered data. First and sec-
ond derivatives of the filtered data are shown in Fig. 3.2. Although the outputs of four methods for
the raw data (Fig. 3.1) are similar, the differences of the outputs for the derivatives (Fig. 3.2) are
obvious visually. However, because the raw data is corrupted with unknown noise, it is not clear
which filter produces an output that is closest to the actual values of the derivatives of the data.
Thus it was decided to use a simulation model to compare these methods in order to determine

which approach is best suited for the purpose of kinetic analysis.
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Experimental Data
159 —— Butterworth
~~~~~~~~~~~ Median (W=9)
; ——— Curve Fitting (p=15)
/ -—-— Splines (m=2)
-20 - L\

-25 -

Angle (deg.)

Time (sec)
\

Fig. 3.1 Experimental data and smoothed data using four methods.
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\\

First Derivative (deg./sec.)

Second Derivative (deg./sec.?)

/

\

—— Butterworth
----------- Median (W=9)

——— Curve Fitting (P=15)
—-— Splines (Mm=2)

-30 -
T T T
0 2 4 10
Time (sec)
—— Butterworth
........... Median (W=9)
A --—— Curve Fitting (P=15)
60 - N N —-— Splines (M=2)

-30
|
’ Tl B
0] W
I H by
|
I

-g0

6 8

Time (sec)

Fig. 3.2 First and second derivatives of the smoothed data using four methods.

37



CHAPTER 3. KINEMATIC DATA SMOOTHING 3.3. COMPARISON AMONG FOUR METHODS OF SMOOTHING

3.3. COMPARISON AMONG FOUR METHODS OF SMOOTHING
To compare the four methods especially at the level of first and second derivatives of the

data [32][33], exact values of the raw data before corruption with noise need to be known.
Because the source of the noise is unknown, this is not possible to do with experimental data.
However an experimental signal can be simulated. The simulated or test signal cannot be any sig-
nal, but should be a suitable representation of the class of experimental data. The next section dis-

cusses the generation of test signals to represent the class of kinematic data.

3.3.1. GENERATING THE TEST SIGNALS

A simple method to generate a test signal is to sum sinusoidal signals of different amplitude,

frequency and phase as follows

N
s(2) = 3 Asin (2nfr+96)) (3-8)

i=1
It should be noted that although this formula looks like a Fourier series, it is not necessarily a Fou-
rier series of s (¢) . In a Fourier series, the frequencies, f;, are harmonically related, but here they
can be any real number. Having chosen s (¢) to be the representation of kinematic data the first

issue that needs to be resolved is what is a reasonable choice of N. Four experimental signals

z;(#); i=1,2,3,4 were considered, and for N = 2, 3,4, 5, 6, the parameters 4;, f; and 0, were

determined using a nonlinear optimization program with a least square criterion . The initial con-

ditions for the 4,, f; and 6, were chosen as the random variables with uniform distribution over

the range of [0, 1], [0, 1] and [0, 2r] respectively. The range for the phase ( [0, 27] ) covers all

*. “Curvefit.m” function in optimization toolbox of MATLAB package (Version 5.1) was used.
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possible values. The range of [0, 1] for the amplitude and frequency is a normalized range, nor-

malized by the maximum value.

To compare the different fits the normalized mean square measure was used

T
[z, s 01 %a
E(z)% = - - % 100 (3-9)
[1z,(01%a
0

The results are tabulated in Table 3.1. The average value of the error versus N is shown in Fig.

3.3. This figure shows that after reaching N = 3 the error curve is almost flat and it is less than

8% which is considered to be reasonable. Therefore N = 3 was used for the generation of the test

signals.
N = =3 N = N = N =
E(z)% 97.3% 12.2% 9.1% 8.2% 8.0%
E(z,)% 95.3% 7.2% 6.6% 5.3% 5.2%
E(z) % 85.3% 7.6% 7.3% 6.3% 6.2%
E(z,)% 89.1% 4.9% 3.7% 3.3% 3.0%
Average 91.7% 7.9% 6.7% 5.7% 5.6%

Table 3.1 Error of fitting test signal to four experimental data.
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4 ™

100 -
90 A
80 -
70 S
60
50 -
40
30 -
20 -
10 -

Average of the error (%)

Fig. 3.3 Average value of the error versus N

3.3.2. METHOD OF COMPARISON
Ten test signals were generated as described in the previous section (N = 3), where 4,, f,
and 6, are considered to be random variables with uniform distribution over the range of [0, 1],

[0,1] and [0, 2n] respectively. Then noise, n (#) , was added to the test signal, s (¢) .
x(t) = s() +n(d) (3-10)
Two different noise models were chosen: Gaussian noise which, because of the central limit
theorem, occurs frequently in nature, and uniform noise which in some sense is noise that is most
difficult to be filtered. A signal to noise ratio of 10dB was considered, felt to be a typical experi-
mental situation. Two other ratios were also considered: 3dB less, a doubling of noise power, and

3dB more, a halving of noise power. Therefore three different signal to noise ratios, 7dB, 10dB,

13dB were used.
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4 N

s (1) d s' (1) d s" (2)
= & | ™ @
n(t) ++ E% E,% E%
+
j d d
; Smoothing y > 2 |
x (1) Method (i) | v (®) y'(5) ' (1)

Fig. 3.4 Comparison of four smoothing methods at three levels.

Then the resultant signal, x (¢) was filtered using the four different approaches and com-

pared with the test signal at three levels; raw, first derivative and second derivative of the signal as

shown in Fig. 3.4. The resultant errors at each level (£ 1» E, and E,) were calculated using Eq. (3-

9) for the ten generated test signals.
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3.3.3. RESULTS OF COMPARISON

The mean and standard deviation of error at three levels of comparison are illustrated in Fig.

3.5 (first level comparison), Fig. 3.6 (second level comparison) and Fig. 3.7 (third level compari-
son). The numerical values of mean and standard deviation are given in Appendix B. Two things
can be concluded from a visual inspection of these three figures. The first is that the median filter
performs considerably poorer than any of the other three methods. The second is that for all three

levels of comparison, all considered types of noise and noise levels the spline method produces

the smallest error. However the difference is some situations is not that striking. Consider Fig. 3.5,
with Gaussian noise and a signal to noise ratio of 13dB. The performance of splines and curve fit-
ting is very close.

To further confirm whether the observed differences were significant or not a statistical

comparison was performed. The statistical test was a two way analysis of variance (ANOVA)
with a post-hoc Student-Newman-Keuls Multiple Range Test for multiple comparisons [34][35].
The level of significance was set a priori as p <0.05. At the first level there was no significant
difference between the splines method and the curve fitting approach (Table 3.2). At this level the

splines method performed significantly better than the Butterworth filter except for the case of

Gaussian noise at a signal to noise ratio of 13dB. However the results of comparison at the second

and third levels (Table 3.3 and Table 3.4 respectively) showed that the performance of the splines
method was significantly better than the other methods for all types of noise and noise levels.

Therefore the splines method was used in this research for smoothing of kinematic data.
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4 )

Comparison among four methods at the first level

20

Butterworth
18 | 22 Median
Curve_fitting
¥ Splines

Error(%)

13 db 10 db 7 db 13 db 10 db 7 db
Uniform Uniform Uniform Gaussian Gaussian Gaussian

Signal to noise ratio

Fig. 3.5 Mean and standard deviation of error for four methods at the first level.

Butterworth Median Curve Fitting

Splines IS XS AL EES XXXXXX

Table 3.2 ANOVA comparison of the splines method with the other three
approaches at the first level. A (/) indicates that the splines

method was significantly different. An (X ) indicates that there was
no significant difference. The order here is the same as in Fig. 3.5.
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( Comparison among four methods at the second level
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Fig. 3.6 Mean and standard deviation of error for four methods at the second level,

Butterworth Median Curve Fitting

Splines S SIS S

Table 3.3 ANOVA comparison of the splines method with the other three
approaches at the second level. A (/) indicates that the splines
method was significantly different.
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/

Comparison among four methods at the third level
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~

/

Fig. 3.7 Mean and standard deviation of error for four methods at the third level.

Butterworth Median Curve Fitting

Splines SIS IS SIS SIS

Table 3.4 ANOVA comparison of the splines method with the other three

approaches at the third level. A (V') indicates that the splines
method was significantly different.
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3.4. SUMMARY

In kinetic analysis, not only the displacement data provided by a motion system, but also
velocity (first derivative) and acceleration (second derivative) are required. Since differentiation
is a process that amplifies the error in the data, it is necessary to smooth the measured data. There
are no generally accepted models either for the class of signals or for computing noise. Thus a
heuristic approach is necessary to design and/or evaluate the smoothing process.

This approach was adopted in this chapter where four common methods of smoothing were
investigated. A heuristic model of the class of signals was determined. Based on this the perform-
ance of the four smoothing methods was investigated under two noise models via simulation.

The results indicate that overall the splines method offered the best performance, particu-
larly at the second and third levels. Therefore for the experimental portions of the research the

splines method was used.

46



4.1. INTRODUCTION

CHAPTER 4. KINETIC ANALYSIS

4.1. INTRODUCTION

There are two general problems when kinetics of a rigid body is considered [36]. The first is
the direct problem where the applied forcing functions are known and one wants to determine the
resultant motion of the system. The second type, the one of interest in this research, is the inverse
problem. Here the motion is completely specified or known and the forcing functions that cause
the motion are to be determined. In both cases, the kinetic equations of the motion may be formu-
lated using either the Lagrangian or the Newtonian method. This chapter describes the process of
generating upper limb kinetic equations. To avoid error and for confidence, the kinetic equations
are developed using both methods. The two methods are, of course, related and this relationship is
developed in the chapter. Formulation of the kinetic equations allows one to determine the inter-
segmental forces and moments at three upper limb joints, one of the research objectives.

The kinetic equations along with the kinematic variables are also used to determine energy
and power flows in the upper limb. Power can be calculated by using either the time derivative of
total energy, i.e., the sum of the kinetic and potential energies or by considering the power gener-
ated or absorbed by muscles and transmitted between segments through the joints. Both methods
are described later in the chapter where it is shown that if the body segments are considered to be
rigid bodies then the two methods always yield the same power. Thus, contrary to some literature,

discrepancies between the output of the two methods cannot be used to test the validity of the
model [37] or be attributed to errors in modelling, experimental errors, kinematic errors resulting

from digitizing cinefilm, movement of the markers on skin or anthropometric data [371[38][44].
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The difference between the two methods only reflects computational error. The other possibility

to reach different results is the wrong supination, i.e., body segments are not rigid bodies.

4.2. GOVERNING EQUATIONS

In order to develop the kinetic equations of the upper limb, the governing equations of a sin-
gle segment must first be considered. For a single segment as shown in Fig. 4.1, the angular
momentum about the mass center denoted by H , is given by

H, = Io 4-1)
where 7 is the moment of inertia matrix and  is the angular velocity of the segment. The total

force (F;) and total moments about mass center (M) are given by

{FT = Fp+F,-mg

M, =M,+M,+r®F,+reF, (4-2)
where ® denotes cross product and
g=10 0 g, g=098W/Kg (4-3)
The kinetic energy (KE) can be written
KE = TKE + RKE (4-4)
where
1
TKE = 5xm (Vg V)
; ; (4-5)
RKE = jxoyHG = ?xlm-a)
and - denotes inner product. The potential energy of the segment is given by
PE = mg-G (4-6)
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4 )

BV

Fig. 4.1 Single segment model.

4.2.1. LAGRANGIAN METHOD
For a single segment the associated Lagrangian equation is defined as
L = KE-PE (4-7)
where KE and PE are the kinetic and potential energy given by Egs. (4-4) and (4-6). The general-

ized force, Q, for a segment with six degrees of freedom, 4, (i.e., three Euler angles and three

coordinates of mass center)

9= [q, g, g, g, gs g5 (4-8)
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is =10, o o o 0o ol (4-9)

given by 0= [(DXI)TFXJ +> [ TMXJ_] (4-10)

J

where X, and X, are the points where, respectively, the external forces and moments are applied.

D, and J can be found using the following set of equations

V., = D,q
{ S (4-11)
o =Jg
Lagrange’s equations are expressed by
G = 1,2,...,6 (4-12)
o ag,) 3, % TT DA )

For the upper limb model shown in Fig. 4.2, let p;, p, and p; be the Euler angle vectors

respectively related to the arm, forearm and hand be written as follows
T
p; = [Buy, Euy, Euys]
T
Py = [Euy Euy, Buy;) (4-13)

T
P; = [Euy, Eus, Eug,]

Using Egs. (4-4), (4-6) and (4-7), the left hand side of Lagrange’s equations can be written

o[ dL oL
E(EJ_E = ROIL+RP)m+X,  5=12,3 (19

s
The operators R and X are defined as
L(u,Eu) L (uy, Eug,) L(u, Eu)

SK(uS) =L (u, Eu,) L(uy, Euy,) L(u, Eu,) (4-15)
L(u,, Eug,) L(uy, Eug) L(u,, Eus)
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4 N

or, T
K= 55| € (4-16)
3 3 3
v 4% . v
where L(v,Euy) = JeaEie, v+ SEa aEuijv 4-17)
InEq.(4-14) I= (L, I, I ,m=1[m  m  m] wherel,,I,, I, andm,

are respectively the moment of inertia about the x, y, z axes and the mass of segment s.

Using Eq. (4-10), the generalized forces which are the right hand side of the Lagrange’s

equations for each segment, can be written as follows

51



CHAPTER 4. KINETIC ANALYSIS 4.2. GOVERNING EQUATIONS

9, = J1T(M1“M2)
0, = J;(M,-M)) (4-18)
9; = J§M3

Finally the total moments about shoulder joint, elbow joint and wrist joint can be written

M, = J{R(0) I, + R (V) my + X ,} (4-19)
M, = M,+J, {R (o)L +R(V,)m, + R,} (4-20)
M, = My +M,+J, {R(o) I, +R(V))m, + R} (4-21)

_ N7
where JnT = (J 1) .

4.2.2. NEWTONIAN METHOD

Newton’s first and second laws are expressed by

dpP
F, = i {P = mVy
h 4-22
o dH where - Io ( )
T dt
where ¥V, is the velocity of mass center and
dH .
- = —g—t([m) = Io + 0o lo (4-23)

Considering the three link-segment model shown in Fig. 4.2 and Eq. (4-22), Newton’s equa-
tions for the hand are given by

{FT, = miag,

M, = H3

3

(4-24)

where
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{FT, = Fy-m,g

M = M;-r;0F, (4-25)

Using Egs. (4-23), (4-24) and (4-25), the moment about the wrist joint can be written as
M, = I3cb3+m3®13(03+r3®m3an+r3®m3g (4-26)

For the elbow, Newton’s equations are
{F T, — M4,
. 4-27
My = H; @27
where
{FT2 = F)—F;—m,g

M, =M,-M,-r,®F,—¥,®F (4-28)

3

Using Eqgs. (4-24), (4-25), (4-26), (4-27) and (4-28), the moment about the elbow joint is
expressed by
M, = M;+ Lo+ w,®,n, +r2®m2an+r2®m2g+ r2®m3aG3+r2®m3g
= [3(3)3+(03®I30)3+r3®m3aG3+r3®m3g+ (4-29)
Lo +w,®l,0, + r2®m2aGl+r2®m2g+r2®m3acj+r2®m3g
In the same way, the generated moment about the shoulder joint can be written as follows
M, = M3+M2+II(}31 0,80, tr, ®mag tremgt+r, ®m2aG2+ Fi@m,g
= L3 + 0, @ [0, + r;@myag +r;0mg+
: (4-30)
Loy + 0,®L,m, +r,® Myl T r,@mag+ Fy® miyag + F,@m,g+
Il(bl to, 0o, +r ®mag + @mgtr ®@myas +1r @m,g
Next, it is shown that the Egs. (4-28), (4-29) and (4-30) (Newtonian method) are equivalent

to Egs. (4-19), (4-20) and (4-21) (Lagrangian method), as one would expect.
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4.2.3. RELATIONSHIP BETWEEN NEWTON’S AND LAGRANGE’S EQUATIONS

First, the relationship between the cross product in “Newtonian space” and the derivative

with respect to the generalized coordinates in “Lagrangian space” needs to be found. Consider

two vectors X and Y fixed in a coordinate system rotating with angular velocity o with respect to

a global coordinate system with rotation matrix J. The angular velocity, ®, can be expressed as

follows
o =Jp

where for the XYZ sequence rotation, matrix J is

C,Cy S,
J= [ —C,8, C,
S, 0

Now, consider the cross product of the two vectors X and ¥

XoY = (00) 0o’ (Xo¥)
= [(0o") " olo” (Xe ¥)
= [(00)) 0lo- (Xe¥)
= [(00") 0] (0&X) - ¥

= [(oo)) 0] XY

= [((DO)) co](g;( )TY
= [(0o)) o] @_p
= [(mwT)_]co] Al ( )

= [(0o) " (00)1J 7

(&Y
=J op Y

54

(4-31)

(4-32)

(4-33)



CHAPTER 4. KINETIC ANALYSIS 4.2. GOVERNING EQUATIONS

Therefore, J(Xey) = (g—f )TY (4-34)
LetX = o
(g—;()TY = (%CEO)TY = [—a%(Jp)TY = (g—ip)T v=J¥ (4-35)

and using Eq. (4-34)

Fwey) =1y (4-36)

Consider the moment about the wrist joint obtained by the Lagrangian method (Eq. (4-19),

page 52) and that obtained by the Eulerian method (Eq. (4-26), page 53).

M; = T {R(0) L+ R (V)my + R} [from page 52] (4-19)

M; = [,os + 0,0 [0, + ry®@myac *r;0mg [from page 53] (4-26)

After some algebric manipulation, the first term in Eq. (4-19) can be written as follows

T
T . r.T 7l 80)3
Ty Rlo) Iy = Log+JpJ ;Lo;-J; ap, ) Ol (4-37)
Note that boldface I,= [J, I, L] T, whereas I, is a 3 x 3 matrix of moment of inertia.

In Eq. (4-36), let ¥ = L;o,, then
_r.T
0;® [[;0,] = J,J Lo, (4-38)

The right hand side of Eq. (4-38) is the same as second term on the right hand side of Eq. (4-37).

In Eq. (4-34),if X = o, and Y = o, it follows that
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—T( 8033

T
7 m) ®, = [0],,, (4-39)

By substitution of Egs. (4-38) and (4-39) in Eq. (4-37), the first term of Eq. (4-19) equals the first
and second term of Eq. (4-26).

Now consider the second term in Eq. (4-19).

2, \T . \T . \T
. d ¥3 . 81’3 “ 8r3 .
RV)my = R(F3)my = m, F3tmyl = | r3-ma| T | F3

otop op )

D3 D3 D3 (4-40)

il

" Lo aps) ) \ops)

Using Eq. (4-34), it is obvious that
or; |7

5;‘3‘ ry = [0];,, (4-41)
1;3 = 0)3@"3 =J3p.3®r3 = —r3®J31'73 (4‘42)

In the Eq. (4-40), let —r; = X and J,p; = Y. Therefore, using Eq. (4-34), one can write Eq. (4-

40) as follows
r. ors \'r .
Jyrs = —(51;;] (J3p3) (4-43)
Then
Therefore,
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al"_g 8r3
— = = (4-45)
dps  9Ps
and Eq. (4-40) can be written as follows
ar3 T“
RVy)m; = -m, E F3 (4-46)
and using (4-34)
IRV = —m3(r3 ® r}) (4-47)
Finally, the second term of Eq. (4-19) can be written
LR (V)my = myrs®rg, (4-48)
which is equal to the third term in Eq. (4-26).
Using X = G and Y = g the third term in Eq. (4-19) is
ar3 r
N, = 7, mig = r;@m,g (4-49)

the same as the last term in Eq. (4-26).
Therefore, as one would expect, Newton’s equations for the upper limb are equivalent to

Lagrange’s equations.

57



CHAPTER 4. KINETIC ANALYSIS 4.3. POWER FLOWS

4.3. POwER FLows

Power analysis of human movement has been an area of interest for many years
[39][40][41]. A number of investigations have been performed to estimate total power and its
components during different activities [37][38][42][43]. Two basic methods are used for this pur-
pose [38][44]. One uses the time derivative of total energy, i.e., the sum of the kinematic and
potential energies. The other considers the power generated or absorbed by muscles and transmit-
ted between segments through the joints.

Discrepancies between results obtained by the two methods have been reported. The sources
of the discrepancy have been attributed to errors in the modelling, experimental errors, kinematic
errors resulting from digitizing cinefilm, movement of the markers on skin and of anthropometric
data [37][38][44]. The existence of a discrepancy between the methods has been proposed as a
test for validity of the underlying model [37]. The analysis presented here shows that if the body
segments are considered to be rigid bodies, then the two methods always yield the same power.
The implication is that the results of these two methods cannot be used to draw a conclusion about
the validity of the model or data.

To calculate the rate of work done (power) in each segment, the first method takes the time

derivative of the total energy, the sum of the kinetic and potential energies, i.e.,

dE, d(KE,+PE)

PES = —d—lT- —"T-—— s = ],2,3 (4'50)

where s is the segment number and kinetic (KE, ) and potential (PE,) energies are defined in Egs.

(4-5) and (4-6).

In the second method the power generated or absorbed by the muscles (PM,) and the power

58



CHAPTER 4. KINETIC ANALYSIS 4.3. POWER FLOWS

transmitted between segments through joints (PJ,) are used, i.e.,

P,=PJ+PM,  s=123 (4-51)

PJS = 2 (Fjs ) V's)

J
/mhb (4-52)

PM, = 3, (M o)
j=P,D

where F, is the intersegmental force vector at joint j (P: proximal joint, D: distal joint) in seg-
ment s, ¥, is the linear velocity vector of joint j (P: proximal joint, D: distal joint) in segment s,

M

. 1s the generated moment vector about joint j (P: proximal joint, D: distal joint) in segment s
and o, is the angular velocity vector of segment s.
PJ, reflects power delivered to or taken from segment s due to work done by the joint inter-

segmental force (Fjs ). If PJ,  is positive, power is delivered to the segment and if it is negative,

power is taken from this segment and delivered to the adjacent segment. Joint powers therefore

show only the rate of transfer of energy between segments. Itis easy to show that
3
Y P =0 (4-53)
=1

PM, shows the power delivered to or taken from segment s and its joint j due to the work done by

muscles.

4.3.1. EQUIVALENCE OF THE Two METHODS
In this section it is shown that the two methods produce the same output. For the single seg-

ment shown in Fig. 4.1, using Egs. (4-22), and (4-52), PJ_ can be written as follows
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PJ = ) PJ =F, V,+tmg Vpytmaz V,~Fpy-V, (4-54)
j=PD
Since
{VP =V,+roo,
4-55
Vp = Ve—roeo, (4-55)
Eq. (4-54) can be written as
PJ = Fp - Vo+Fp reo +mg-V,+mg-rewg 156
tmag-Vegtmag reo —Fp-Vo+F,-reoo, (4-56)
Using Egs. (4-2), (4-52) and (4-55), PM, can be written as follows
PMS = z PM]S
j=PD
=M, 0 +roF, 0 +reF, 0+, 0 +00lo o -M, o (4-57)
=r®F, o t+tromg -0 +troma, o, +reF, o
+I 050, +0,®Lo, - o
By adding Egs. (4-56) and (4-57), P, canbe written as
P, =mg - Vgtmag Vg+Ios- o
_d 1 1
=8 G+§miVG. Vet ilsms - O, (4-58)

dPE,+KE, dE

The above shows that both methods of power analysis give identical results. Any discrepancy

between the results of the two methods must be solely attributable to the numerical accuracy of

the algorithms that implement the two approaches. A discrepancy is not an indication of errone-

ous kinematic data or of a link segment model that does not represent the physical situation prop-
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erly. Therefore a high correlation between the results cannot be assumed to indicate that kinematic

data are accurate or that the model necessarily represents physical reality [37]. It only indicates
that the precision of the numerical algorithms is sufficiently reasonable. Verification of the data or
model accuracy needs to be done by other independent methods. Although theoretical analysis
showed that the two methods for determining power flows are identical, for completeness a small

experiment was carried out. The results are shown in Appendix C.

4.4. EFFECT OF TRANSLATIONAL DOF

Having discussed the calculation of power, this section considers the effect of ignoring
translational DOF on power in an actual situation. An experiment was performed where kinematic
data were obtained from the upper limb during the performance of a drinking from a cup. The
three dimensional reconstructed data were smoothed using the splines method. Then three Euler

angles of each segment and the screw axis of the arm were calculated. Three Euler angles and

three translational DOF of the arm segment are shown respectively in Fig. 4.3 and Fig. 4.4. 1t is
important to note that nine Euler angles represent only seven DOF. Total arm power was calcu-
lated for two cases; considering only 7 rotational DOF (ignoring translational DOF ) and consider-
ing all 10 DOF as shown in Fig. 4.5.

As discussed in Section 2.3.1, the three translational DOF considered in the 10 DOF model
(Fig. 4.4) are small relative to the range of motion which is about 30 cm. However by looking at

the temporal patterns of the two powers calculated using two models shown in Fig. 4.5, consider-
able difference between them can be seen. The cross correlation between the two powers is 0.79.

Also maximum percentage deviation (MPD) calculated using the following formula is 215%.
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Max (| P(DOF = 10)~ P (DOF = 7))
X
Max (P (DOF = 10))

MPD% = 100 (4-59)

Therefore, it is important to consider translational DOF in kinetic analysis. This is because
the three translational DOF of the arm segment are the coordinates of a point on which the dis-
placement of all points in the link-segment model depends. Also in kinetic analysis not only dis-
placements, but also the first and second derivatives of the kinematic variables are used.

Therefore any small error is magnified and it is important that the translational DOF be consid-

ered.

Euler Angles (deg.)

K Time (sec.) /

Fig. 4.3 Three Euler angles of the arm segment.
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4 )

Position (cm)

-1.5

-2.0 T T T
0 2 4 [ 8 10 12 14

Time (sec.)
N /

Fig. 4.4 Three translational DOF of the arm segment.

Power (W)

-0.5

Time (sec.)

Fig. 4.5 Power calculated in arm segment when DOF=7 and DOF=10.
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4.5. POTENTIAL OF KINETIC ANALYSIS TO EVALUATE RHEUMATOID ARTHRITIS

Patterns of upper limb movement required to perform certain independent living tasks may
be affected by theumatoid arthritis (RA) of the shoulder. A kinetic analysis was performed on the
data collected by Ripat [45]. The purpose of this analysis is to investigate whether there is a dif-
ference between the kinematic/kinetic variables of normal and RA subjects [46][47]. Subjects
were ten normal (NR) and ten subjects with rheumatoid arthritis (RA) who had shoulder joint
involvement. Subject demographics are presented in Appendix D. More information about sub-
jects can be found in [45].

In Ripat’s experiment [45], subjects were asked to perform five different functional tasks.
All tasks were performed five times; data from the three middle repetitions were analysed. The
starting position for all tasks was with the hand on the thigh.

In task #1, subjects seated on a stool at a comfortable height were asked to lift up a bottle
from a shelf. The height of the shelf was adjusted relative to the height of the subject and it was at
a distance from the stool which was comfortable for the subject to reach. To perform the experi-
ment, the subject flexed the shoulder, extended the elbow to set the bottle momentarily on the top
of the shelf without releasing it. After this the bottle was then returned to the starting position.
Task #2 was similar to task #1, except that subjects were asked to lift up an object (tin can) of dif-
ferent weight. In task #3, subjects were asked to comb their hair. The comb was drawn through the
hair from front to back; the hand then was returned to the starting position. Task #4 was to touch
the sacrum. Subjects brought their hand backwards from the starting position to place the palm on
the sacrum, the hand then was returned to the starting position. The last task (task #5) was to reach

across the body to touch opposite scapula and to return to the starting position.
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4.5.1. RESULTS AND DISCUSSION

From the data collected by Ripat [45], some kinematic and kinetic variables of the upper
limb for both normal and RA subjects during the performance of the five tasks were calculated.
Maximum values of the Euler angles, angular velocities and accelerations of the three segments,
the magnitude of intersegmental forces and moments at three joints and power flows in the three
segments were calculated. Two-tailed unpaired z-tests [34][35] were used to determine if a signif-
icant difference existed between calculated variables of normal and RA subjects (Table 4.1). In
this test, the level of significance was set a priori as p < 0.05. The third Euler angles of the fore-
arm and hand segments are not reported because they were small. In this study and in [45], no sig-
nificant difference was found between maximum angular velocities and acceleration in most
cases, therefore these values are not reported.

Fig. 4.6 shows the comparison of the mean of maximum Euler angles for normal and RA
subjects. It can be seen that only in three cases (Eu,, in task #5 (p = 0.009), Eu,, in task #1
(p = 0.01) and Eu,, in task #4 (p = 0.03)) the difference was significant (p <0.05). It can be
concluded that the maximum value of Euler angles is not a good measure to distinguish between
two groups of normal and RA subjects [45].

Table 4.1 shows p values of |F1| , |F2| and |F3| (|M1| , [M2| and |M3{) respectively maxi-
mum intersegmental forces (moments) at shoulder, elbow and wrist joints. For the first three tasks
no significant difference (p <0.05) was found. However for the last two tasks, the difference in
most cases is significant. This might be because motion at the shoulder joint is the principal
motion required to accomplish task #4 and #5. These differences are also reflected in the p values

of the maximum power flow at the arm, forearm and hand segment (P, Py, Py).
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Variable Task #1 Task #2 Task #3 Task #4 Task #5
Euler Angles
Eu,, 0.76 0.36 0.82 0.50 0.009
Eu,, 0.01 0.19 0.25 0.53 0.07
Eu,, 0.36 0.29 0.34 0.52 0.34
Eu,, 0.65 0.89 0.63 0.98 0.11
Eu,, 0.42 0.72 0.53 0.03 0.26
Eu,, 0.08 0.91 0.55 0.52 0.23
Eu,, 0.27 0.81 0.71 0.08 0.07
Forces
|F| 0.47 0.75 0.07 0.01 0.45
|F)| 0.24 0.50 0.10 0.004 0.29
|F3| 0.16 0.35 0.20 0.005 0.24
Moments
|M| 0.2 0.14 0.54 0.05 0.02
|M)] 0.15 0.59 0.28 0.03 0.05
|M;| 0.08 0.20 0.44 0.007 0.25
Power Flows
P, 0.52 0.20 0.10 0.10 0.01
P, 0.39 0.36 0.17 0.22 0.15
P, 0.57 0.35 0.15 0.03 0.13
P, 0.60 0.28 0.11 0.04 0.04

Table 4.1 Results of statistical comparisons of kinematic/kinetic variables between
normal and RA subjects.
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In the final row of the table, p value of the maximum total power, P, , is shown. It shows

that there is a significant difference, p = 0.04 <0.05, between total power of normal and RA sub-
jects in tasks #4 and #5. Although the differences between forces and powers in task #5 are not

significant (except P, ), the total powers are significantly different. The reason is because of the

way the total power is calculated.

3 3
P,= Y P =Y (PJ+PM,) (4-60)

t
s=1 s=1

where PJ_ is the power transmitted between segments and PM, reflects the power generated or
absorbed by muscles,

PIo= 3 (F, V)
j=P,D

PM, = 3 (Mj-®)
j=P,D

(4-61)

However, as was mentioned in Section 4.3., Eq. (4-53), the sum of power transmitted between
segments is zero. Therefore the first term in Eq. (4-60) is zero, i.e.,
3 3 3
P,= Y P =Y (PJ+PM) = ¥ PM, (4-62)
s=1 s=1 s=1

Thus in P, only moments make contribution not forces. Fig. 4.7 shows the p values of the power
flows for different tasks. The p value from task # 1 to task #5, in general, decreases. For the last
two tasks total powers of normal subjects are significantly different from those of RA subjects
(p<0.04).

It can be concluded that the kinetic variables are more sensitive to differences between nor-

mal and RA subjects than the kinematic variables.
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Power Flows

Tasks #5

Fig. 4.7 Probability p for power flows in different tasks.
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4.6. SUMMARY

To determine muscle forces and joint moments, kinetic equations must be established. In
this chapter Newton’s and Lagrange’s equations for the upper limb movement are developed and
the relationship between them is shown. Also two methods to calculate power flows are explained
and it is shown that both methods give identical results. Therefore, any discrepancy between the
results of the two methods must be solely attributable to the numerical accuracy of the algorithms
that implement the two approaches. Experimental results of applying kinetic analysis to two
groups of subjects, RA and normal are presented in this chapter. It is shown that kinetic variables

are a better measure to distinguish between normal and RA subjects.
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CHAPTER 5. FORCE DISTRIBUTION PROBLEM

5.1. INTRODUCTION

Application of the kinetic and kinematic analyses of the previous chapters allows determina-
tion of the net force and moment acting at and across a joint. However situations may arise in
which the area of interest is the way muscles in a group share the load; in these cases it is desira-
ble also to determine the individual skeletal muscle forces. In general, this is an indeterminate
problem, since the number of unknowns exceeds the number of equations. This can be easily seen
from the equilibrium equations. For a given joint crossed by N muscles, the dynamic force and
moment equilibrium equations are

N
Fp= ) F,+F

m=1

(5-1)

N
]‘lT= ZMrn+‘]‘lj
=1

N

where F, and M, are the intersegmental force and moment, F, and M, are the force and
moment produced by muscle m, F; and M, are the joint constraint force and moment. The inter-
segmental force and moment, F, and M, are the net kinetic effects that adjoining body segments
have on each other. The number of unknown variables, i.e., F,and M (m=1,..,N),usually
exceeds the number of equations where the difference represents the degree of redundancy. Math-
ematically, this produces an indeterminate problem that has no unique solution. The most com-

monly used approach found in the literature to overcome this problem is the optimization
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technique [48][49][50][S1][52][531[541[55][56]. This approach is based on the assumption that
the load sharing between the muscles is more or less unique during learned motor activities, and
that the neural control of the muscle action is governed by certain physiological criteria that guar-
antee efficient muscle actions. This allows setting up an objective function to be optimized
(Appendix E). A major difficulty with the optimization method is that the physiological criteria
are presently unknown [57]. Therefore, in the literature objective functions have been chosen for
their simplicity and computational tractability. In this research, a new approach based on fuzzy

logic is developed which does not suffer from this disadvantage.

5.2. FORCE DISTRIBUTION PROBLEM AT THE ELBOW JOINT

The distribution of the muscle forces at the elbow joint was chosen for the development of
the proposed approach. As mentioned, a straightforward problem was considered- one degree of

freedom motion (flexion/extension) possible at the elbow joint. A schematic description of the

physical model considering one segment for the forearm and hand segments is shown in Fig. 5.1.
Because the goal is to distribute the force at the elbow joint, the muscles crossing the anterior
aspect of the joint are considered. Three muscles, biceps brachii (Bic), brachialis (Bra) and bra-
chioradialis (Brd), are the major flexor muscles of the elbow joint [58]. In Fig. 5.1, Fg;, Fg,, and
Fg,q represent respectively force produced by Bic, Bra and Brd muscles, m,, m, and m; denote
respectively the mass of the arm segment, sum of the masses of the forearm and hand segments,
and the external load. There are two coordinate systems, one for the shoulder (Xs,Yg) and one for

the elbow (Xg,Y,) where angles o and B are the angle of the arm and forearm with respect to the

corresponding coordinate system. In this model the muscle forces are unknowns. In order to
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develop the fuzzy logic method, the functional behaviour of the three flexor muscles must be

understood.

4 N

o /

Fig. 5.1 A schematic description of the physical model for force distribution at the elbow joint;
(Xs. Yo): shoulder joint coordinate system, (Xg, Yg): elbow joint coordinate system.

The biceps brachii is a two headed arm muscle and consists of the long and short head. It
extends from the scapula to the proximal aspect of the radius. The biceps is generally active dur-
ing flexion of the supine forearm under all conditions and during flexion of the semiprone fore-
arm when a load of about 1 kg is lifted. However with the forearm prone, in the majority of
instances the biceps plays little if any role in elbow flexion, in the maintenance of elbow flexion,

or in antagonistic action during elbow extension, even under load. Biceps is particularly active
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during quick extension with an added load likely, providing a protective function for the elbow
joint [58].

The brachialis is a flat muscle that lies deep to the biceps arising from the distal anterior
aspect of the humerus and inserting in the proximal aspect of the ulna. Maintenance of a specific
flexed posture of the elbow, i.e., isometric contraction, or slow extension when the flexors must

act as antigravity muscles are situations which generally bring the brachialis into activity in all

positions of the forearm [58].
The brachioradialis originates two-thirds of the way down the lateral aspect of the humerus
between the triceps and the brachialis and inserts on the thumb side of the distal aspect of the

radius. Depending upon the speed of forearm movement, the amount of external load and the rota-

tion angle of the forearm, its role in flexion/extension of the forearm changes [58]. The brachiora-
dialis does not play any appreciable role during maintenance of the elbow position or during slow
flexion and extension when the movement is carried out without a external resistance. When a
weight is lifted during elbow flexion, the brachioradialis is generally moderately active in the
semiprone or prone position of the forearm and is slightly active in the supine position. There is
no comparable increase in activity with added load during maintenance of flexion and during
slow extension. In most instances brachioradialis is active in all three positions of the forearm
during quick flexion and extension. It follows that the muscle is reserved for occasions when

rapid movement is required and when weight is to be lifted, especially in the semiprone and the

prone forearm positions [58].
In the next section, the architecture of the fuzzy logic model for force distribution is pre-
sented and the different components, input interface, output interface and fuzzy rules based on the

above discussion are described.
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5.3. Fuzzy SET THEORY
Fuzzy set theory, a generalization of conventional or Boolean set theory, was introduced by
Zadeh [59] as a natural and possible way to represent vagueness in everyday life. A central gener-

alization of fuzzy set theory [60] is the extension of the notation of the elementhood from the dis-

crete set of {0,1} to the entire interval [0 1]. Consider an example where the universe of discourse

is the set of real numbers and set, 4, defined as the set of numbers that are “approximately zero™.

4= {xe Rjx=0} (5-2)

Using a conventional definition for this set, one must first define the upper and lower crisp
limits for its set. These limits are domain specific, e.g., +0.5.

4= {xe R|-0.5<x<0.5} (5-3)

Equivalently, this boolean set may also be described by its membership function, 4 (x)

I if (-0.5<x<0.5)
A(x)= (5-4)

0 otherwise

Every real number, x, is eitherin 4 or it is not. 4 (x) maps all real numbers onto the two points
{0,1}. Hence, x is “approximately zero” if and only if 4 (x) = 1. Fig. 5.2 illustrates the above
mapping which may be considered to be a special case of a membership function. Note that if
x =05, 4(x) = 0, hence x is not “approximately zero”. However, if x = 0.4999, A(x) = 1,
therefore x is “approximately zero”.

In fuzzy set theory, the value of the membership function, F (x) , 1s known as the grade of

membership of x in F. There is no unique membership function for F. However, there are some

properties [61]. The first property is normality; at least one point in the grade of membership
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function should equal to one. A fuzzy set should also satisfy the criterion of monotonicity, i.e., it

has only one local maximum. Although not necessary, a fuzzy set may also satisfy the criterion of

symmetry. Different possible membership functions for our example are shown in Fig. 5.3.

o amy I

1 —

Fig. 5.2 Membership function for the crisp definition of “approximately zero”.

/ Fr (%) )

1
0 1 | ! 1 L
-1 -0.5 0 0.5 1 X
Fy(x)
1
0 ] ] | ] l B
-1 -0.5 0 0.5 1 X
F3(x)
1
0 [ ] I -

- -0. 0 .
k 1 5 0.5 1 X /

Fig. 5.3 Dijfferent possible membership functions for the fuzzy definition of
“approximately zero”.
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5.4. Fuzzy FORCE DISTRIBUTION

The main contribution of fuzzy logic is a methodology for computing with words [62]. No
other methodology serves this purpose. A key aspect of computation with words is that it involves
a fusion of natural languages and computation with fuzzy variables. For the upper limb force dis-
tribution problem at the elbow joint, three variables (speed of forearm segment, forearm rotation
angle and the amount of load to be lifted) are considered as the input variables for the fuzzy
model. The outputs of the fuzzy model are the weighting coefficients which determine the contri-

bution of three muscles, biceps brachii, brachialis and brachioradialis, to the necessary force

needed for the forearm movement. Fig. 5.4 shows the architecture of the fuzzy model for force

distribution.

4 )

- - =~ ~
re ~
e
AN
Kinematic & Kinetic E:(> Input ;E> Fuzzy —l—'\ Output Force
Variables Interface Rules _J"l/ Interface Weights
N - _
~ . _ g
Fuzzy Model

Fig. 5.4 Architecture of the fuzzy model for force distribution.
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5.4.1. INPUT INTERFACE

For the considered problem, three parameters, rotation angle of the forearm segment, load
and the speed of the forearm movement, are the inputs of the model. For the forearm angle three
membership functions, shown in Fig. 5.5, are developed for the prone (PR), semiprone (SP) and

supine (SU) positions of the forearm. When the angle is zero, the forearm is in a semiprone posi-

tion and

]
—r

Fsp(Angle)
Fpog(Angle)
Fsy(Angle)

(5-5)

Similarly when the angle is -90 or +90 degrees the forearm is respectively in the prone or
supine position, then the value for one membership function is one and zero for the other two. At

an angle of 20 degrees

Fsp(Angle) = 0.78
Fogr(Angle) 0
Fsy(Angle) = 0.22

/ F(Angle) SP \

1.0 5

(5-6)

0.8 -

0.6

0.4 +

0.2

0.0 : . ' : : ] Angle
& -90 -60 -30 0 30 60 0 (deg.)/

Fig. 5.5 Forearm rotation angle membership functions; PR: prone, SP: semiprone and
SU: supine Positions.
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which indicates that the forearm is considered to the supine and semiprone positions but not in the

prone position and it is closer to the pure semiprone than supine position.

Two membership functions are chosen for the load. These, the low (LO) and high (HI) load

membership functions, are shown in Fig. 5.6. The choice of 1 and 3 kg as the typical margins for

membership functions is based on the experimental results from different papers as summarized

by De Luca [58]. Of course, for a very muscular person or an abnormal subject different values

should be considered.

Membership functions for the speed of the movement are shown in Fig. 5.7. The angular
velocity is normalized to be between -1 and 1. Five membership functions are postulated for the
speed; NH: negative high, NM: negative medium, ZE: zero, PM: positive medium, PH: positive
high. Negative speed means extension of the forearm and positive speed means flexion. The ZE
membership function is considered for an isometric contraction and slow motion when the abso-
lute value of speed is less than 0.2. PM and NM membership functions are considered for the nor-
mal motion. When normalized speed is between 0.5 and 0.8, medium and high membership
functions are active. However when the normalized speed exceeds 0.8 which is considered to be a

quick motion only the high membership function is active.
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4 N
F(Load)

1.0

0.8

0.6

0.4 4

0.2

Load
00 ———= — 4 . - - -
0 i 2 3 4 5 (kg)

Fig. 5.6 Load membership functions, LO: low load, HI: high load.

F(Speed)
NH NM ZE PM PH

1.0 —r

0.8
0.6
0.4

0.2

: . . . . =\ . . ; . Speed
-1.0 -0.8 -0.6 -0.4 0.2 0.0 0.2 0.4 0.6 0.8 10 (Norm.)

\ /

Fig. 5.7 Speed membership functions, NH: negative high, NM: negative medium, ZE: zero,
PM: positive medium and PH: positive high.

0.0
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5.4.2. OUTPUT INTERFACE

Four membership functions, as shown in Fig. 5.8, are considered for the muscles; NA: non
active, LA: low active, AC: active, and HA: highly active. Although here the membership func-
tions are identical for each of the three muscles, for more complicated cases they may be different.
To calculate the output of the fuzzy model, the s-norm and z-norm, analogous to the intersection
and union, should be considered. Here min and max were used as the s-norm and z-norm to calcu-

late fuzzy outputs.

- A
F(Weight)

1.0 —

W NA
08

0.6

0.4 +

0.2 /

0.0

o . Weight

5 /

Fig. 5.8 Muscle weight membership functions, NA: nonactive, LA: low active, AC" active,
and HA: highly active.

The three calculated forces should satisfy the following equation.

N
> b, F, = M~ M, (5-7)

m=1
where b, is moment arm of the muscle m. Since, the outputs of the fuzzy approach are three

weighting coefficients, Wy, , Wy, and W, ,, a postprocessing calculation is needed.
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The left hand side of the Eq. (5-7) can be written as follows

N
2 bmFm = bBicFBic + bBraFBra + bBicFBrd (5-8)

m=1

I

a( WBichicFBic (max) + W, bBraF

Bra Bra (Max) + Wy, by, Fp,,(max))

In this equation Fy,, (max) , Fp, (max) and F, ,(max) are respectively, the maximum forces of

the three muscles and can be calculated using the following equation.

F

muscle

(max) = cSmuscle ) Amuscle (5—9)

where 6, and 4, . are respectively maximum muscle stress and physiological cross sec-
tional area of the muscle.
Using Eq. (5-7) and Egq. (5-8)

WpicbpiFpi. (max) + Wgralprok 5r, (max) + Wgrdlrak prg (max)

_ Bra
o = M= 17, (5-10)
Therefore the three muscle forces can be calculated using the following equations
Fpie = OWp, Fp,, (max)
FBra = O('I/VBrarFBra (max) (5-1 1)

Fpie = Wy, I g, 4 (max)
With the muscle forces determined, the internal joint force can then be determined using dynamic

equilibrium equation (Eq. (5-1)).

5.4.3. Fuzzy RULES
Based on physiological and anatomical facts and experimental results from the different

papers discussed in Section 5.2., 30 rules (30 = 3 x 2 x 5) were developed for each muscle. They

are listed in Tables 5.1, 5.2 and 5.3.
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Rule #

Rules for biceps muscle

10
11
12
13
14

22
23
24
25
26
27
28
29
30

If (Angle is PR) and (Load is LO) and (Speed is NH) then (BIC is NA)
If (Angle is PR) and (Load is HI) and (Speed is NH) then (BIC is AC)
If (Angle is PR) and (Load is LO) and (Speed is NM) then (BIC is NA)
If (Angle is PR) and (Load is HI) and (Speed is NM) then (BIC is NA)
If (Angle is PR) and (Load is LO) and (Speed is ZE) then (BIC is NA)
If (Angle is PR) and (Load is HI) and (Speed is ZE) then (BIC is LA)
If (Angle is PR) and (Load is LO) and (Speed is PM) then (BIC is NA)
If (Angle is PR) and (Load is HI) and (Speed is PM) then (BIC is AC)
If (Angle is PR) and (Load is LO) and (Speed is PH) then (BIC is NA)
If (Angle is PR) and (Load is HI) and (Speed is PH) then (BIC is AQC)
If (Angle is SP) and (Load is LO) and (Speed is NH) then (BIC is NA)
If (Angle is SP) and (Load is HI) and (Speed is NH) then (BIC is AC)
If (Angle is SP) and (Load is LO) and (Speed is NM) then (BIC is NA)
If (Angle is SP) and (Load is HI) and (Speed is NM) then (BIC is NA)
If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BIC is NA)
If (Angle is SP) and (Load is HI) and (Speed is ZE) then (BIC is AQC)
If (Angle is SP) and (Load is LO) and (Speed is PM) then (BIC is NA)
If (Angle is SP) and (Load is HI) and (Speed is PM) then (BIC is HA)
If (Angle is SP) and (Load is LO) and (Speed is PH) then (BIC isNA)
If (Angle is SP) and (Load is HI) and (Speed is PH) then (BIC is HA)
If (Angle is SU) and (Load is LO) and (Speed is NH) then (BIC is NA)
If (Angle is SU) and (Load is HI) and (Speed is NH) then (BIC is AC)
If (Angle is SU) and (Load is LO) and (Speed is NM) then (BIC is NA)
If (Angle is SU) and (Load is HI) and (Speed is NM) then (BIC is NA)
If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BIC is LA)
If (Angle is SU) and (Load is HI) and (Speed is ZE) then (BICis AC)
If (Angle is SU) and (Load is LO) and (Speed is PM) then (BIC is LA)
If (Angle is SU) and (Load is HI) and (Speed is PM) then (BIC is HA)
If (Angle is SU) and (Load is LO) and (Speed is PH) then (BIC is LA)
If (Angle is SU) and (Load is HI) and (Speed is PH) then (BIC is HA)

Table 5.1 Fuzzy rules for the biceps muscle.
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Rule #

Rules for brachialis muscle

31
32
33
34
35
36
37
38
39
40
41
42

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

60

If (Angle is PR) and (Load is LO) and (Speed is NH) then (BRA is NA)
If (Angle is PR) and (Load is HI) and (Speed is NH) then (BRA is NA)
If (Angle is PR) and (Load is LO) and (Speed is NM) then (BRA is NA)
If (Angle is PR) and (Load is HI) and (Speed is NM) then (BRA is NA)
If (Angle is PR) and (Load is LO) and (Speed is ZE) then (BRA is AC)
If (Angle is PR) and (Load is HI) and (Speed is ZE) then (BRA is HA)
If (Angle is PR) and (Load is LO) and (Speed is PM) then (BRA is AC)
If (Angle is PR) and (Load is HI) and (Speed is PM) then (BRA is HA)
If (Angle is PR) and (Load is LO) and (Speed is PH) then (BRA is HA)
If (Angle is PR) and (Load is HI) and (Speed is PH) then (BRA is HA)
If (Angle is SP) and (Load is LO) and (Speed is NH) then (BRA is NA)
If (Angle is SP) and (Load is HI) and (Speed is NH) then (BRA is NA)
If (Angle is SP) and (Load is LO) and (Speed is NM) then (BRA isNA)
If (Angle is SP) and (Load is HI) and (Speed is NM) then (BRA is NA)
If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BRA is AC)
If (Angle is SP) and (Load is HI) and (Speed is ZE) then (BRA is HA)
If (Angle is SP) and (Load is LO) and (Speed is PM) then (BRA is AC)
If (Angle is SP) and (Load is HI) and (Speed is PM) then (BRA is HA)
If (Angle is SP) and (Load is LO) and (Speed is PH) then (BRA is HA)
If (Angle is SP) and (Load is HI) and (Speed is PH) then (BRA is HA)
If (Angle is SU) and (Load is LO) and (Speed is NH) then (BRA is NA)
If (Angle is SU) and (Load is HI) and (Speed is NH) then (BRA is NA)
If (Angle is SU) and (Load is LO) and (Speed is NM) then (BRA is NA)
If (Angle is SU) and (Load is HI) and (Speed is NM) then (BRA isNA)
If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BRA is AC)
If (Angle is SU) and (Load is HI) and (Speed is ZE) then (BRA is HA)
If (Angle is SU) and (Load is LO) and (Speed is PM) then (BRA is AC)
If (Angle is SU) and (Load is HI) and (Speed is PM) then (BRA is HA)
If (Angle is SU) and (Load is LO) and (Speed is PH) then (BRA is HA)
If (Angle is SU) and (Load is HI) and (Speed is PH) then (BRA isHA)

Table 5.2 Fuzzy rules for the brachialis muscle.
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Rule # Rules for brachioradialis muscle

61 If (Angle is PR) and (Load is LO) and (Speed is NH) then (BRD is AC)
62 I (Angleis PR) and (Load is HI) and (Speed is NH) then (BRD is HA)
63 If (Angle is PR) and (Load is LO) and (Speed is NM) then (BRD is NA)
64 If (Angleis PR) and (Load is HI) and (Speed is NM) then (BRD is NA)
65 If (Angle is PR} and (Load is LO) and (Speed is ZE) then (BRD is LA)
66 If (Angle is PR) and (Load is HI) and (Speed is ZE) then (BRD is HA)
67 If (Angle is PR) and (Load is LO) and (Speed is PM) then (BRD is LA)
68 If (Angle is PR) and (Load is HI) and (Speed is PM) then (BRD is HA)
69 If (Angle is PR) and (Load is LO) and (Speed is PH) then (BRD is AC)
70 If (Angle is PR) and (Load is HI) and (Speed is PH) then (BRD is HA)
71 If (Angle is SP) and (Load is LO) and (Speed is NH) then (BRD is AC)
72 If (Angle is SP) and (Load is HI) and (Speed is NH) then (BRD is HA)
73 If (Angle is SP) and (Load is LO) and (Speed is NM) then (BRD is NA)
74 If (Angle is SP) and (Load is HI) and (Speed is NM) then (BRD is NA)
75 If (Angle is SP) and (Load is LO) and (Speed is ZE) then (BRD is LA)
76 If (Angle is SP) and (Load is HI) and (Speed is ZE) then (BRD is AC)
77 If (Angle is SP) and (Load is LO) and (Speed is PM) then (BRD is LA)
78 If (Angle is SP) and (Load is HI) and (Speed is PM) then (BRDisHA)
79 If (Angle is SP) and (Load is LO) and (Speed is PH) then (BRD is AQC)
80 If (Angle is SP) and (Load is HI) and (Speed is PH) then (BRD is HA)
81 If (Angle is SU) and (Load is LO) and (Speed is NH) then (BRD is AQ)
82 If (Angle is SU) and (Load is HI) and (Speed is NH) then (BRD is HA)
83 If (Angle is SU) and (Load is LO) and (Speed is NM) then (BRD is NA)
84 If (Angle is SU) and (Load is HI) and (Speed is NM) then (BRD is NA)
85 If (Angle is SU) and (Load is LO) and (Speed is ZE) then (BRD is NA)
86 If (Angle is SU) and (Load is HI) and (Speed is ZE) then (BRD is LA)
87 If (Angle is SU) and (Load is LO) and (Speed is PM) then (BRD is NA)
88 If (Angle is SU) and (Load is HI) and (Speed is PM) then (BRD is LA)
89 If (Angle is SU) and (Load is LO) and (Speed is PH) then (BRD is LA)

90 If (Angle is SU) and (Load is HI) and (Speed is PH) then (BRD is AC)

Table 5.3 Fuzzy rules for the brachioradialis muscle.
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The fuzzy approach to distribute the force was studied both by simulation and also experi-
mentally and compared with the optimization method. The simulation and experimental results

are presented and discussed in the next two sections

5.5. SIMULATION RESULTS

Simulation results of force distribution between three elbow flexors muscles, biceps, brachi-

alis and brachioradialis muscles are discussed in this section. In this simulation only the external

load was increased linearly from zero to 4 kg and arm/forearm angles, o, and B, shown in Fig.

5.1, were considered to be respectively 90 and 0 with the hand in a supine position as shown in

Fig.5.9.

/

Fig. 5.9 Position of the arm and forearm for the experiment #1.
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It should be noted that in this static situation, the left hand sides of the equilibrium equa-
tions, Eq. (5-1), are zero. In this section simulation results for the optimization method for two
different objective functions discussed in Appendix E are presented first . Then simulation results

of the fuzzy logic approach are presented.

The first cost function considered for the optimization problem was as follows.

p
Minimize — Fg, +Fy +Fp (5-12)

Bra
Fig. 5.10 shows the results when p = 1,2. The simplest case, p = 1, has a linear cost function. It
turns out that only biceps muscle is selected to counterbalance the external force. This muscle has
the largest moment arm with respect to the elbow coordinate system, and is the cheapest to use.
Although when p = 2, all three muscles are involved, biceps has to generate more force because

it has the largest moment arm. For this cost function and for the considered arm and forearm

angles

Fpie>Fpy>Fp,, (5-13)
always because

bpic>bga>bg,, (5-14)
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4 )

Optimization method (p=1) Optimization method (p=2)

Normalized Force (N)

Normalized Force (N)
L) w o w» o ~ [+~ o

o

Time (sec.) Time (sec.)

\_ J

Fig. 5.10 Results of force distribution between three elbow flexors muscles using the optimization

. . , p p p
method when external load was increased with the cost function of Fg, , +Fp, ,+Fp ..

Fig. 5.11 shows the results of force distribution using the optimization approach when the

second cost function is considered with p = 2, 4.

Minimize (Fio/ A )"+ (Fp o/ Ag, )’ + (Fy 0/ Ay )Y (5-15)

ic
For this cost function

FBic >F

Bra> FBra (5-16)

because
bpic  Apic>bpry Agra>bp,g Ap,q (5-17)

Comparing the two results in Fig. 5.11 shows that if p is increased, the forces are closer to each

other.
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4 N

Optimization method { (F/A)?) Optimization method ( (F/A)*)

Normalized Force (N)

Nomalized Force (N}
n w ES w (] ~ o« ©

=
=3

Time (sec.) Time (sec.)

Fig. 5.11 Results of force distribution between three elbow flexor muscles using the optimization
method when external load was increased with the cost function of

(FBic/ABic)p+ (FBra/ABra)p+ (FBrd/ABrd)p'

In the results obtained using the optimization method (Appendix E), the moment arm and
physiological cross-sectional area (muscle volume divided by its length), PCSA, of the muscle are
important factors in the muscle force distribution. Previous formulations did not include other
important factors for force distribution, e.g., forearm rotation angle. Using the fuzzy approach

three important factors of the force distribution for the elbow flexor muscles, forearm rotation

angle, external load and speed of the movement, are considered. Fig. 5.12 shows the weighting
coefficient of biceps muscle vs. load and angle when the normalized speed is zero. This figure
shows that by increasing the external load, biceps activity will increase. However the activity will

be greater when the forearm is in supine position than in the prone position. The weighting coeffi-

cient of the biceps muscle vs. load and angle when normalized speed is 0.8 is shown in Fig. 5.13.
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It shows that in flexion of the forearm, the biceps is more involved than during the maintenance of
the forearm especially when the load is high. The weighting coefficient of the biceps muscle dur-
ing the extension of the forearm with a normalized speed of -0.8 is shown in Fig. 5.14. It shows

that biceps is active during forearm extension when the speed is high and it is more active when

the load is high than when the load is low.

( Nomalized speed=0

Weight (Bic)

K Load (kg) 0 _ Angle (deg.) j

Fig. 5.12 Weighting coefficient calculated using the Juzzy approach for the biceps muscle vs.
external load and forearm rotation angle when the normalized speed is zero.
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( Normmalized speed=0.8 \

Load (kg) Y Angle (deg.)

\ J

Fig. 5.13 Weighting coefficient calculated using the fuzzy approach for the biceps muscle vs.
external load and forearm rotation angle when the normalized speed is 0.8.

/ Normalized speed=-0.8 ﬁ

\ Load (kg) Y ) Angle (deg.) /

Fig. 5.14 Weighting coefficient calculated using the fuzzy approach for the biceps muscle vs.
external load and forearm rotation angle when the normalized speed is -0.8.
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The weighting coefficients calculated using the fuzzy approach for the brachialis muscle vs.

external load and forearm rotation angle with the normalized speeds of 0, 0.8 and -0.8 are shown

respectively in Fig. 5.15, Fig. 5.16 and Fig. 5.17. They show that the change in forearm rotation
angle is not an important factor for this muscle. The reason for this is because the line of its pull
does not change with pronation or supination. In zero speed, i.e., isometric contraction, its activity
is increased with increasing load (Fig. 5.15). In high speed flexion shown in Fig. 5.16, the activity

of the brachialis is maximum. Fig. 5.17 shows that brachialis is not active during the high speed

extension of the forearm.

( Nommalized speed=0 i

Weight (Bra)

K Load (kg) Y ) Angle (deg.) j

Fig. 5.15 Weighting coefficient calculated using the Juzzy approach for the brachialis muscle
vs. external load and forearm rotation angle when the normalized speed is zero.
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Nomalized speed=0.8 \

Weight (Bra)

0

-50
Load (kg) 0

\ Angle (deg.) j

Fig. 5.16 Weighting coefficient calculated using the fuzzy approach for the brachialis muscle
vs. external load and forearm rotation angle when the normalized speed is 0.8.

( Normalized speed=-0.8 ﬁ

0.8+

Weight (Bra)
¢ o
>

Angle (deg.) /

Fig. 5.17 Weighting coefficient calculated using the fuzzy approach Sor the brachialis muscle
vs. external load and forearm rotation angle when the normalized speed is -0.8.

93



CHAPTER 5. FORCE DISTRIBUTION PROBLEM 5.5. SIMULATION RESULTS

Activities of the brachioradialis muscle calculated using the fuzzy approach vs. external

load and forearm rotation angle are shown in Fig. 5.18, Fig. 5.19 and Fig. 5.20 respectively with
the normalized speeds of 0, 0.8 and -0.8. They show that this muscle is more active in semiprone

and prone positions than in the supine position of the forearm. Also, it is quite active during quick

flexion (Fig. 5.19) and extension (Fig. 5.20).

K Nomalized speed=0 \

o
y]

Weight (Brd)

Load (kg) 0 Angle (deg.)

J

Fig. 5.18 Weighting coefficient calculated using the fuzzy approach for the brachioradialis
muscle vs. external load and forearm rotation angle when the normalized speed is
zero.
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/ Normalized speed=0.8 \

0

-50
Load (kg) Y Angle (deg.)

o /

Fig. 5.19 Weighting coefficient calculated using the fuzzy approach for the brachioradialis
muscle vs. external load and forearm rotation angle when the normalized speed is
0.8.

/ Nomalized speed=-0.8 \

rd)

0
50
& Load (kg) 0 Angle (deg.) j

Fig. 5.20 Weighting coefficient calculated using the Juzzy approach for the brachioradialis
muscle vs. external load and forearm rotation angle when the normalized speed is
-0.8.
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Fig. 5.21 shows simulation results of force distribution between three elbow flexor muscles
using the fuzzy approach when external load is increased. At first the brachialis has more force
than two other muscles. However when the load is increased the biceps is more active. Therefore
the slope of the brachialis muscle force is decreased. At the end the brachialis muscle force

reaches its maximum value and its force curve is flat.
Comparison of the results obtained using the fuzzy approach (Fig. 5.21) and the optimiza-

tion method (Fig. 5.10 and Fig. 5.11) shows that, in this case, external load plays a major role in
force distribution using the fuzzy approach. However in the optimization method, moment arm,

cost function and p are important factors.

Normalized Force (N)

Time (sec.)
N )

Fig. 5.21 Results of force distribution between three elbow flexor muscles using the fuzzy
approach when external load was increased.
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Results of force distribution for the biceps muscle using the fuzzy approach in supine, semi-
prone and prone positions of the forearm when the external load was increased are shown in Fig.

5.22. It shows that in a prone position the biceps is always less active than in the two other posi-
tions. Also at first, when the load is low, the biceps has its greatest activity in the supine position.
However by increasing load there is not much difference in biceps activity in supine and semi

prone positions.
Comparing the results obtained using the fuzzy approach (Fig. 5.22) and the optimization

method (Fig. 5.10 and Fig. 5.11) shows that the rotation angle of the forearm is an important fac-
tor in force distribution using the fuzzy approach. However in the optimization method, there will

not be any change in biceps muscle force due to the change in the forearm rotation angles.

( )

Supine

----- Semiprone
—— Prone

Normalized Force (N)

0 2 4 6 8 10 12 14
\ Time (sec.) /

Fig. 5.22 Results of force distribution for the biceps muscle using the fuzzy approach in supine,
semiprone and prone positions of the forearm when external load was increased.
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5.6. EXPERIMENTAL RESULTS

Besides the simulation, an experiment was performed. Two types of experiments were done
where the subjects were three healthy males. The purpose of the first experiment (Exp. #1) was to
investigate the force produced by three muscles, Bic, Bra and Brd, in an isometric condition when
aload is added to the hand. The purpose of the second experiment (Exp. #2) was to investigate the
force produce by one of the muscles in three different orientations of the forearm, i.e. prone, semi-

prone and supine.

5.6.1. EXPERIMENT #1

In this experiment, a subject was asked to hold a load in his hand with the upper limb in the
position where the arm and forearm angles (o, and B shown in Fig. 5.1) were respectively 90 and
0 and the hand in a supine position as shown in Fig. 5.9. Then load was added until the maximum
value that the subject could hold was recorded. Electromyographic (EMG) signals were recorded
from the three muscles, Bic, Bra and Brd, using surface electrodes. For each subject, there were
four trials, each of 30 seconds duration with the sampling frequency of 1 KHz. Because the root
mean square (RMS) value of the EMG signals in isometric condition is considered to be a good
representation for muscle force [58], the RMS was calculated over every 250 msec of the EMG
signals. Then the average of RMS values was calculated over six windows each of 5 seconds in

length.
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4 I

J

Fig. 5.23 Position of the arm and forearm for the experiment #1.

Fig. 5.24 shows the RMS values of EMG signals from the first subject for four trials of the
first experiment. The RMS of each muscle was normalized so that the maximum value is one. It
should be noted that RMS values of the EMG signals from different muscles are not comparable

with each other. The results of the first experiment for subjects 2 and 3 are shown respectively in

Fig. 5.25 and Fig. 5.26. The results showed that in most cases the slope of the RMS of the brachi-
alis muscle decreased at the end of the experiment which means that the brachialis muscle was the
first muscle whose force reached its maximum value and was saturated. This supports the results
of the force distribution using the fuzzy approach shown in Fig. 5.21. A decrease in slope of the
RMS value of the EMG from brachialis muscle and an increase in the RMS value of EMG from
biceps muscle at the middle of the experiment were seen in some cases of the experimental
results. This supports the idea that biceps is less active when the load is low and it becomes more

active as the load increased.
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Fig. 5.24 Normalized RMS of EMG signals when external load was increased for subject 1.
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Fig. 5.25 Normalized RMS of EMG signals when external load was increased for subject 2.

101



CHAPTER 5. FORCE DISTRIBUTION PROBLEM

5.6. EXPERIMENTAL RESULTS

-

—

N

Subject3_trial1 Subject3_trial2
T 19
} o // —o— B
Bic R, - 0-e- glr: %
--0--- Bra el Brd //
—v— Brd i
g | — . o 2 i
T g x s
g P /. o
3 5 Z
k] 3 =
£ £ =
2 ,""// 2 g
i //
_'Q /
i T T T T — 0 T : : T —
1 2 3 4 5 6 1 2 3 4 5 6
Window Number Window Number
Subject3_trial3 Subject3_trial4
1 e e O
? o = 0"//
—e— Bic . — —e— Bic A
-0~ Bra . - O--- Bra - 7
—v— Brd peert T (e2d Brd ‘;'/ ~
2 Ny 2 ¥
i // i e
) o o /
ks ~ 8
g o": / 2 4
// 4
4
P ;
e 2
z
0 T T T — 4] T T T T p—
1 2 3 4 5 6 1 2 3 4 5 6
Window Number Window Number

y

Fig. 5.26 Normalized RMS of EMG signals when external load was increased for subject 3.
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5.6.2. EXPERIMENT #2

The second experiment was performed with the same arm and forearm angles shown in Fig.
5.9, but for three different orientations of the forearm and hand- supine, semiprone and prone.
Load was increased during the course of experiment, but not to its maximum value as in Exp #1.
The three orientations of the forearm were randomly assigned. Because the purpose of this exper-
iment was to compare the force generated by one muscle in different orientations of the forearm,
the EMG signals recorded by surface electrodes from the muscle should be comparable directly.
Among the three muscles, Bic is the only one that is superficial and offers a large area of record-
ing. Therefore its EMG signals can be compared in different orientations of the forearm. The rela-
tive position of the surface electrodes with respect to the Bra and Brd muscles will be changed in
different orientations of the forearm; therefore, in this experiment only signals from the Biceps
muscle were recorded and it was assumed that these EMG si gnals are comparable in different ori-

entations of the forearm.

Fig. 5.27/5.28 and Fig. 5.29/5.30 show respectively, the RMS value of EMG signals from
subject 1 and subject 2 for two trials. RMS values in the prone orientation of the forearm were
always less than those in the two other orientations, i.e., the biceps muscle was least active in the
prone orientation. This supports the results of force distribution using the fuzzy approach (Fig.
5.22). Also, at no load (the first point in the curves), the biceps always had the highest activity
with the forearm in the supine position. This also supports the prediction of the forces using the
fuzzy approach. It should be noted that when the optimization method is used to distribute the

force, the position of the forearm is not an important factor and the muscle force is the same for all

different positions of the forearm.
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Fig. 5.27 Normalized RMS of the biceps EMG signal when external load was increased in supine,
semiprone and prone positions of the forearm for the subjectl_triall.
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Fig. 5.28 Normalized RMS of the biceps EMG signal when external load was increased in Supine,
semiprone and prone positions of the forearm for the subjectl_trial2.
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Fig. 5.29 Normalized RMS of the biceps EMG signal when external load was increased in supine,

semiprone and prone positions of the forearm for the subject2_triall.
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Fig. 5.30 Normalized RMS of the biceps EMG signal when external load was increased in supine,

semiprone and prone positions of the forearm for the subject2_trial?.
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5.7. SUMMARY

In many applications, such as orthopedics and rehabilitation, it is desired to know the forces
in individual skeletal muscles. A new approach for the partitioning of the intersegmental forces,
i.e., the force distribution problem, using fuzzy logic is discussed in this chapter. The approach is
illustrated by partitioning the muscle forces acting on the elbow joint. The rotation angle of the
forearm, the speed of the movement and the external load are three inputs of the fuzzy model.
Ninety rules are developed for the relation between input interface and output interface of the
fuzzy model.

The results of optimization method for the specific tasks are presented and compared with
the fuzzy logic method. Although there is a great need to perform more experiments to validate
the predictions, experimental results showed that the fuzzy logic approach distributes force
between muscles better than a commonly used optimization method. The new method therefore

should be a promising paradigm for the force distribution problem.
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6.1. CoNCLUSION

This thesis addressed the problem of determining joint forces and moments, power and
energy flows, individual muscle forces and internal joint forces for the upper limb. To find these
kinetic variables, kinetic equations were established. A 3D link-segment model, along with the
kinematic variables based on motion data, was used to develop the kinetic equations which gov-
ern the dynamic behaviour of a limb.

The model has ten degrees of freedom (DOF), three translational and three rotational DOF
for the shoulder joint, two rotational DOF for the elbow joint and two rotational DOF for the hand
joint. The seven rotational DOF were represented by nine Euler angles with three translational
DOF obtained by an approach developed in this research. It was shown that there is a significant
difference in the calculated power if the three translational DOF are i gnored.

Four methods of smoothing the kinematic data (Butterworth filter, polynomial curve fitting,
median filter and splines method) were reviewed and compared at three levels, raw data, first
derivative and second derivative. The results showed that in most cases at the first level of com-
parison, i.e., raw data, all methods except the median filter have similar results. However at the
first and second levels, the splines method had significantly less error.

The kinematic data was the input to the kinetic equations developed using both Lagrangian
and Newtonian methods. The analytical relationship between the two methods was shown in the
thesis. Besides developing the kinetic equations, two methods for determining power flows were

explained. It was shown that the two methods produce the same result. The major significance of
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this is that correlation between them can not be used as a measure to validate the model as sug-
gested in some literature.

Finally the force distribution problem was discussed. A new approach to the problem using
fuzzy logic was introduced. The method was developed for the flexion/extension of the elbow
joint. The intersegmental force was distributed between the three flexor muscles- biceps, brachia-
lis and brachioradialis- using both the optimization method and the fuzzy approach. Both simula-
tion and experimental results were used to compare the two methods. Although there is a great
need to perform more experiments to validate the predictions, experimental results show that the
fuzzy approach includes the parameters that distribute force between muscles better than the opti-

mization method.

6.2. CONTRIBUTIONS OF THIS RESEARCH

The major contributions of this research are listed as follows.

* A link-segment model was developed for the upper limb using 6 markers. Using this
model seven rotational and three translational DOF variables of the upper limb can be
calculated.

¢ An analytical proof was provided that shows the equivalence between two methods to cal-
culate power. This negates the hypothesis that correlation between the calculated powers
can be used as a measure to verify the kinematic model.

* A new approach was presented to calculate three translational DOF variables of the upper
limb. These are very important for kinetic analysis.

* A new technique was established for force distribution using fuzzy logic. This method

distributes force between muscles better than the commonly used optimization method.
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6.3. RECOMMENDATIONS FOR FUTURE RESEARCH

In this research different areas of upper limb motion analysis and dynamic analysis were
covered. However several areas of future investigation are suggested.

Rotational degrees of freedom of the model presented in this research are obtained using
Euler angles. However, the mapping between Euler angles and anatomical angles was not deter-
mined. Finding this mapping and/or a way to describe the motion mathematically based on the
anatomical angles is an interesting area for a future research.

The force distribution problem presented in this research using fuzzy logic has great flexi-
bility. Although some experiments were performed, there is a need to perform more experiments
to refine the fuzzy rules and verify them. To extend the fuzzy logic approach the following steps
should be considered:

* Study the functional behaviour of the muscle of interest, i.e., determine the parameters

that affect the force generated by that muscle.

* Consider those parameters as the inputs to the model.

* Assign membership functions to the model inputs.

* Set fuzzy rules based on functional behaviour of the muscle and model inputs,

Perform experiments to compare and verify the fuzzy logic method results.

109



[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

REFERENCES

P. Allard, I. A. F. Stokes, J. P. Blanchi, Three-dimensional analysis of human movement.

Champaign: Human Kinetics, 1995.

A. I King, “A review of biomechanical models,” Journal of Biomechanical Engineering,

vol. 106, pp. 97-106, 1984.

G. L. Kinzel and L. J. Gutkowski, “Joint models, degrees of freedom, and anatomical

motion measurement,” Journal of Biomechanical Engineering, vol. 105, pp. 55-62, 1983.

E. Y. Chao and B. F. Morrey, “Three-Dimensional rotation of the elbow,” Journal of Biome-
chanics, vol. 11, pp. 57-73, 1978.

K. M. Jackson, J. Joseoh and S. J. Wyard, “A mathematical model of arm swing during

human locomotion,” Journal of Biomechanics, vol. 11, pp. 277-289, 1978.

Y. Youm, R. F. Dryer, K. Thambyrajah, A. E. Flatt and B. L. Sprague, “Biomechanical anal-
ysis of forearm pronation-supination and elbow flexion-extension,” Journal of Biomechan-

ics, vol. 12, pp. 245-255, 1979.

N. A. Langrana, “Spatial kinematic analysis of the upper extremity using a bipolar videotap-

ing method,” Journal of Biomechanical Engineering, vol. 103, pp. 11-17, 1981.

K. Schneider, R. F. Zernicke, R. A. Schmidt and T. Hart, “Changes in limb dynamics during

the practice of rapid arm movements,” Journal of Biomechanics, vol. 22, pp. 805-817, 1989.

110




REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Safaee-Rad, E. Shwedyk and A. O. Quanbury, “Three-dimensional measurement system
for functional arm motion study,” Medical & Biological Engineering & Computing, vol. 28,
pp. 569-573, 1990.

C. F. Small, J. T. Bryant and D. R. Pichora, “Rationalization of kinematic descriptors for
three-dimensional hand and finger motion,” Journal of Biomedical Engineering, vol. 14, pp.

133-141, 1992.

D. P. Romilly, C. Anglin, R. G. Gosine, C. Hershler and S. U. Raschke, “A functional task
analysis and motion simulation for the development of a powered upper-limb orthosis,”

IEEE Transactions on Rehabilitation Engineering, vol. 2, pp. 119-129, 1994,

E. Sprigings, R. Marshall, B. Elliott and L. Jennings, “A three-dimensional kinematic
method for the determining the effectiveness of arm segment rotations in the producing rac-

quet-head speed,” Journal of Biomechanics, vol. 27, pp. 245-254, 1994,

J. P. Schade, Introduction to functional human anatomy, Philadelphia, Saunders, 1974.

G. L. Kinzel, A. S. Hall and B. M. Hillbery, “Measurement of the total motion between two
body segments -I. Analytical development,” Journal of Biomechanics, vol. 5, pp. 93-105,
1972

M. D. Zimmerman, “Designing thee ultimate man/machine interface technology for the
handicapped,” Machine Design, vol. 8, pp. 38,43, 1982.

S. C. Jacobsen, D. F. Knutti, R. T. Johnson and H. H. Sears, Development of the Utah arti-

ficial arm,” IEEE Transactions on Biomedical Engineering, BME-29, No. 4, pp. 249-269,
1982.

111



REFERENCES

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Fazel-Rezai, E. Shwedyk and S. Onyshko, "Three dimensional kinematic model of the
upper limb with ten degrees of freedom," Proceedings of IEEE EMBS Conference, p. 137,
1997.

V. H. Frankel and M. Nordin, Basic biomechanics of the skeletal system, Lea & Febiger,
Philadelphia, 1980.

J. J. Crisco, X. Chen, M. M. Panjabi and S. W. Wolfe, “Optimal marker placement for the
calculating the instantaneous center of rotation,” Journal of Biomechanics, vol. 27, pp.

1183-1187, 1994.

K. N. An, E. Y. Chao, “Kinematic analysis of human movement,” Annals of Biomedical
Engineering, vol. 12, pp. 585-597, 1984.

M. M. Panjabi, V. K. Goel, S. D. Walter and S. Schick, “Errors in the center and angle of
rotation of a joint: An experimental study,” Transactions of the ASME, vol. 104, pp. 232-
237, 1982.

S. Holzereiter, “Calculation of the instantaneous center of rotation for a ri gid body,” Journal

of Biomechanics, vol. 24, PP. 643-647, 1991.
J.J. Spiegelman and S. L. Y. Woo, “A rigid-body method for determining centers of rotation
and angular displacements of planar joint motion,” Journal of Biomechanics, vol. 20, pp.

715-721, 1987.

R. O. Duda and P. E. Hart, Pattern classification and scene analysis. New York: Wiley,
1973.

112



REFERENCES

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. Safaee-Rad, “Functional human arm motion study with a new 3-D measurement system,”
M. Sc. dissertation, Electrical & Computer Engineering Department, University of Mani-
toba, Winnipeg, Manitoba, 1987.

D. A. Winter, Biomechanics and motor control of human movement. New York: Wiley,

1990.

H. J. Woltring, “On optimal smoothing and derivative estimation from displacement data in

biomechanics,” Human Movement Science, vol. 4, pp. 229-245, 1985.

R. L. Eubank, Spline smoothing and nonparametric regression. New York: Marcel Dekker,
1988.

J. A. Fessler, “Nonparametric fixed-interval smoothing with vector splines,” JEEE Transac-

tions on Signal Processing, vol. 39, pp. 852-859, 1991.

G. R. Arce and N. C. Gallagher, “State description for the root-signal set of median filters,”

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-30, pp. 894-
902, 1982.

N. C. Gallagher and G. J. Wise, “A theoretical analysis of the properties of median filters,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-29, pp. 1136-
1141, 1981.

R. Fazel-Rezai, E. Shwedyk and S. Onyshko, "Comparison of different biomechanical data
smoothing methods," Proceedings of Canadian Medical and Biological Engineering Society
Conference, pp. 32-33, 1997.

113



REFERENCES

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

R. Fazel-Rezai and E. Shwedyk, "Biomechanic signal filtering for dynamic analysis pur-
pose: A quantitative comparison between different methods," Journal of Biomechanics, vol.

31, p. 85, 1998.

L. G. Portney, M. P. Watkins, Foundation of clinical research, application to practice,

Appleton & Lange, Norwalk, Connecticut, 1993.

A. D. Aczel, Statistics, concepts and applications, Richard D. Irwin, INC., 1995.

C. L. Vaughan and J. G. Hay, “Closed loop problems in biomechanics Part I- A classifica-
tion System,” Journal of Biomechanics, vol. 15, pp. 197-200, 1982.

Gordon, E. Robertson and D. A. Winter, “Mechanical energy generation, absorption and
transfer amongst segments during walking,” Journal of Biomechanics, vol. 13, pp. 845-854,
1980.

A. O. Quanbury, D. A. Winter, “Instantaneous power & power flow in body segments dur-
ing walking,” Journal of Human Movement Studies, vol 1, pp. 59-67, 1975.

H. Elftman, “Forces and energy changes in the leg during walking,” Journal of physiology,
vol. 125, pp. 339-356, 1938.

H. Elftman, “The function of muscles in locomotion,” Journal of physiology, vol. 125, pp.
357-366, 1938.

H. Elftman, “The work done by muscles in running,” Journal of physiology, vol. 127, pp.
672-684, 1940.

114



REFERENCES

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. A. Winter, “Moments of force and mechanical power in jogging,” Journal of Biomechan-

ics, vol. 16, pp. 91-97, 1983.

F. Prince, D. A. Winter, G. Sjonnesen and Robyn Wheeldon, “A new technique for the cal-
culation of the energy stored, dissipated, and recovered in different ankle-foot prostheses,”

IEEE Transactions on Rehabilitation Engineering, vol. 2, pp. 247-255, 1994.

M. P. Looze, J. B. J. Bussmann, I. Kingma and H. M. Toussaint, “Different methods to esti-
mate total power and its components during lifting,” Journal of Biomechanics, vol. 25, pp.

1089-1095, 1992.

J. Ripat, The relationship between functional upper limb kinematics, pain and perceived dis-
ability in individuals with theumatoid arthritis, M. Sc. dissertation, School of Medical Reha-
bilitation, University of Manitoba, Winnipeg, Manitoba, 1997.

R. Fazel-Rezai, E. Shwedyk, J. E. Cooper, J. Ripat and S. Onyshko, "Changes in upper limb
dynamics in patients with rheumatoid arthritis," Journal of Biomechanics, vol. 31, p. 15,

1998.

R. Fazel-Rezai, J. E. Cooper, S. Onyshko and E. Shwedyk, “Generated moments at the
upper limb during movement,” Proceedings of IXth Biennial Conference of Canadian Soci-

ety for Biomechanics, 1996.

K. R.Kaufman, K. N. An, W. J. Litchy and E. Y. S. Chao, “Physiological prediction of mus-
cle forces-I. Theoretical formulation,” Journal of Biomechanics, vol. 40, pp. 781-792, 1991.

K. R. Kaufman, K. N. An, W. J. Litchy and E. Y. S. Chao, “Physiological prediction of mus-
cle forces-II. Application to isometric exercise,” Journal of Biomechanics, vol. 40, pp. 793-

804, 1991.

115



REFERENCES

[50]

[51]

[53]

[54]

[55]

[56]

[57]

K. N. An, K. R. Kaufman and E. Y. S. Chao, “Physiological considerations of muscle force
through the elbow joint,” Journal of Biomechanics, vol. 22, pp. 1249-1256, 1989.

K. N. An, B. M. Kwak, E. Y. Chao and B. F. Morrey, “Determination of muscle and joint
forces: A new technique to solve the indeterminate problem,” Transactions of the ASME,

vol. 106, pp. 364-367, 1984.

S. A. Kautz and M. L. Hull, “Dynamic optimization analysis for equipment setup problems

in endurance cycling,” Journal of Biomechanics, vol. 28, pp. 1391-1401, 1995.

J. Cholewicki, S. M. McGill and R. W. Norman, “Comparison of muscle forces and joint
load from an optimization and EMG assisted lumbar spine model: Towards development of

a hybrid approach,” Journal of Biomechanics, vol. 28, pp. 321-331, 1995.

E. Y. S. Chao and K. Rim, “Application of optimization principles in determining the
applied moments in human leg during gait,” Journal of Biomechanics, vol. 6, pp. 497-510,

1973.

A. Pedotti, V. V. Krishnan and L. Stark, “Optimization of muscle-force sequencing in

human locomotion,” Mathematical Biosciences, vol. 38, pp. 57-76, 1978.

J. Cholewicki and S. M. McGill, “EMG assisted optimization: A hybrid approach for esti-
mating muscle forces in an indeterminate biomedical model,” Journal of Biomechanics, vol.

27, pp. 1287-1289, 1994.

J. Dul, G. E. Johnson, R. Shiavi and M. A. Townsend, “Muscular synergism-II. A mini-
mum-fatigue criterion for load sharing between synergistic muscles,” Journal of Biome-

chanics, vol. 17, pp. 675-684, 1984.

116



REFERENCES

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

J. V. Basmajian, C. J. De Luca, Muscle alive, their functions revealed by electromyography,
Williams & Wilkins, 1985.

L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-53, 1965.

C. V. Negotia, Fuzzy systems, Tubridge Wells: Abacus Press, 1981.

L. A. Zadeh, “A computational approach to analysis of complex systems and decision pro-

cess,” IEEE Transactions on System Man and cybernetics., vol. 9, pp. 149-84, 1983.

L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans Fuzzy Systems., vol. 4,
pp. 103-11, 1996.

R. Shapiro, “Direct linear transformation for the three-dimension cinematography,” The

Research Quarterly, vol. 49, pp. 197-205, 1978.

N. R. Miller, R. Shapiro and T. M. McLaughlin, “A technique for obtaining spatial kine-
matic parameters of segments of biomechanical system from cinematographic data,” Jour-

nal of Biomechanics, vol. 13, pp. 535-547, 1980.

H. Hatze, “High-precision three-dimensional photogrammetric calibration and object space
reconstruction using a modified DLT approach,” Journal of Biomechanics, vol. 21, pp. 533-

538, 1988.
J. H. Challis and D. G. Kerwin, “Accuracy assessment and control point configuration when

using the DLT for photogrammetry,” Journal of Biomechanics, vol. 25, pp. 1053-1058,
1992.

117



REFERENCES

[67] B.Yu, T.J.Koh and J. G. Hay, “A panning DLT procedure for three-dimensional videogra-
phy,” Journal of Biomechanics, vol. 26, pp. 741-751, 1993.

[68] L. Chen, C. W. Ammestrang and D. D. Raftopoulos, “An investigation on the accuracy of
three dimensional space reconstruction using the direct linear transformation technique,”

Journal of Biomechanics, vol. 27, pp. 493-500, 1994.

[69] G. A. Wood and R. N. Marshall, “The accuracy of DLT extrapolation in three-dimensional
film analysis,” Journal of Biomechanics, vol. 19, pp. 781-785, 1986.

[70] R.Fazel-Rezai, E. Shwedyk, S. Onyshko and J. E. Cooper, “Power analysis of upper limb

movement,” Proceedings of IEEE Engineering in Medicine and Biology Conference, Paper
no. 210, 1996.

118



APPENDIX A. UNIVERSITY OF MANITOBA MOTION
ANALYSIS SYSTEM (UM2AS)

A.1. THE UM2AS SETUP

The system used to record motion data was the University of Manitoba Motion Analysis

System (UMZAS) [9][25]. This system records motion on video tapes that can be used for analysis
later. In this system, three orthogonally placed charge coupled device (CCD) video cameras

record upper limb motion (Fig. A.1).

-

Fig. A.1 UM?4S laboratory set up.
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Reflective markers are placed on the upper limb landmarks in such a way that cause no dis-
ruption to the normal pattern of movement. Markers are one-inch Styrofoam balls. These are
securely attached to the skin of the subject’s upper limb with double sided adhesive tape. The
Imaging space is approximately one cubic meter in volume, illuminated by three pot lights and the
walls are draped in non-reflective material. Although two cameras are enough to calculate three
components of the markers in three-dimensional space, using three cameras prevents the problem
of disappearing markers and overlapping. A camera flash is used to synchronize the video-tapes;
this was done at the beginning of each trial recording. The motion was recorded at the rate of 30
frames/second (30 Hz) by three Beta recorders. However during the digitizing of the video-taped
sequences, every fifth frame was digitized. Therefore the sampling rate was 6 HZ. The video-
taped sequences were played back manually. The image was displayed on a black and white mon-

itor. The frame after the synchronization flash was considered as the first frame for all three cam-

eras. Then UM?AS software was used to di gitize the tapes. The process of digitizing three video-
taped motion produces three two-dimensional images. The direct linear transformation algorithm
was used to reconstruct three-dimensional trajectories of the markers as explained in the next sec-

tion.
A.2. THREE DIMENSIONAL RECONSTRUCTION METHOD

Among three dimensional reconstruction methods, the most widely applied and discussed is

the direct linear transformation (DLT) algorithm. The DLT equations [63] are
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L X+ LY, +L,Z,+L,
X, =
l L9/Yi-*-LlOYi—}-LIIZi+1

(A-1
L Xt LY+ LyzZ,+ Ly )

L9X}+LIOEIi+LIIZi+ 1

Vi

where x;, y, are the coordinates of the it% point, X,, Y, Z.are the object space coordinates of the
ithpoint,and L, ...,L,, are DLT parameters. Eleven parameters of DLT are used to characterize
the calibration, position and orientation of a single camera [64]. DLT parameters permit the com-
putation of the unknown spatial coordinates of a point whose image coordinates have been
recorded by at least two cameras. Because there are three unknowns and two equations, at least
two cameras are necessary to find the three components of a point in 3D space.

Determination of the DLT parameters of each camera requires a calibration procedure [65],
where at least six control points with known spatial coordinates are chosen and recorded by each
of the cameras to be calibrated [66][67][68][69]. The control points are normally mounted on a
calibration structure which is placed in the space of interest, filmed and removed. By rearranging
Eq. (A-1), a matrix equation results in which DLT parameters appear as the vector of unknowns.
Linear least-squares techniques may then be employed to compute this vector from the overdeter-
mined system [65]. It is imperative that the position, orientation and focal length of each camera
be unchanged during the experiment.

To find the best angle between two cameras to minimize error, consider Fig. A.2. Let the
optical axis of the two cameras be AC; and BC,. Point C; represents the position of a point to be

digitized by the cameras.
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SAA -

.
- ~
~
-~

< N
Cj~

Fig. A.2 Error generated due to ervor in the optical axis.

If one considers errors due to the digitizing, calibration procedure, change in the camera ori-
entation and/or DLT technique, the optical axis of camera 4 can be modelled as AC,. In terms of
the angle between cameras (), distance between the camera and the object point (r), and optical

axis error (80), the error (3d) can be written as

766

84~ Srtar (A-2)

Obviously, the error will be minimum if o equals to 90 degrees and r is chosen to be as

small as possible.
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APPENDIX B. SMOOTHING RESULTS

This appendix shows individual graphs of the output of the four smoothing techniques with
the input experimental data of Fig. 3.1. Also the first and second derivatives of the resultant out-

put are shown. Finally, error results shown graphicly in Fig. 3.6 and Fig. 3.7 are tabulated in

Tables B.1-B.6.
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Fig. B.1 Raw data and the output of the Butterworth filter.
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Fig. B.2 First and second derivatives of the filtered data by Butterworth filter.
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Fig. B.3 Median filtering when window size is equal to nine.
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Fig. B.4 First and second derivative of the filtered data by median filter.
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Angle (deg.)

45

--------- Raw Data
— Fitted Curve(p=15)

-50

Time (sec.)

\

Fig. B.5 Curve fitting when the polynomial degree is equal to fifteen.
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Fig. B.6 First and second derivative of the fitted curve.
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Fig. B.7 Raw and smoothed data using the cubic splines method.
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Fig. B.8 First and second derivatives of the smoothed data using the cubic splines method.
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Noise Distribution Uniform Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 3.43 % 4.98 % 8.67 % 4.38 % 6.78 % 11.91 %
Median Filter 7.07 % 9.55 % 13.64 % 7.08 % 10.15 % 15.64 %
Curve Fitting 2.82% 3.93% 6.16 % 3.49 % 519 % 8.62 %
Splines Method 221 % 3.10% 4.90 % 3.27 % 4.55 % 7.87 %
Table B.1 Mean value of the error at the first level over ten test signals.
Noise Distribution Uniform Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 4.73 % 7.52 % 13.22 % 4.01 % 5.96 % 9.71 %
Median Filter 15.58 % 18.66 % | 24.07 % 14.70 % 17.25% | 24.63 %
Curve Fitting 5.29 % 6.70 % 9.58 % 4.22 % 4.51 % 512 %
Splines Method 2.63 % 3.46 % 5.21 % 1.71 % 1.80 % 1.99 %
Table B.2 Mean value of the error at the second level over ten test signals.
Noise Distribution Uniform Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 11.71 % 21.5% 41.45 % 11.11 % 19.68% | 36.81 %
Median Filter 60.65% | 64.20% | 76.49% | 55.06% | 66.90% | 87.20 %
Curve Fitting 13.83 % 17.53 % | 25.21 % 11.60 % 12.34 % 13.83 %
Splines Method 4.79 % 6.03 % 8.96 % 3.32 % 3.50 % 3.81 %

Table B.3 Mean value of the error at the third level over ten test signals.
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Noise Distribution Uniform . Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 0.51 % 0.69 % 2.31 % 1.65 % 2.75% 4.57 %
Median Filter 1.43 % 1.71 % 2.56 % 1.42 % 2.05 % 3.08 %
Curve Fitting 1.57 % 1.62 % 1.86 % 1.69 % 1.91 % 2.59 %
Splines Method 0.64 % 0.69 % 0.79 % 114 % 1.21 % 1.98 %
Table B.4 Standard deviation of the error at the first level over ten test signals.
Noise Distribution Uniform Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 0.63 % 1.15% 2.30 % 0.81 % 0.81 % 1.44 %
Median Filter 1.65 % 1.27 % 3.74 % 2.88 % 4.80 % 4.02 %
Curve Fitting 3.16 % 3.12% 3.1 % 3.31 % 3.34 % 3.38 %
Splines Method 0.96 % 0.96 % 0.67 % 0.70 % 0.73 % 0.77 %

Table B.5 Standard deviation of the error at the second level over ten test signals.

Noise Distribution Uniform Gaussian
Signal to Noise Ratio 13db 10db 7db 13db 10db 7db
Butterworth Filter 2.59 % 5.33% 10.88 % 2.10 % 4.43 % 9.04 %
Median Filter 8.46 % 19.75% | 23.63% | 21.68% | 24.42% | 3237 %
Curve Fitting 6.78 % 6.32 % 6.33 % 9.03 % 9.27 % 9.69 %
Splines Method 1.69 % 1.86 % 1.53 % 1.69 % 1.82 % 2.04 %

Table B.6 Standard deviation of the error at the third level over ten test signals.
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APPENDIX C. EXPERIMENTAL RESULTS OF POWER
ANALYSIS

To verify experimentally the equivalence between power flows shown analytically in Chap-
ter 4, an experiment was done. Kinematic data were collected from two subjects: age 50 and 65
years, weight 84 and 88 kg, and height 155 and 181 cm. Each subject performed two tasks: lifting
a bottle (task #1) and a can (task #2). After obtaining the Euler angles of the segments and solving
the kinetic equations, the power of each segment was calculated in the two different ways as
described [70]. As expected cross correlations between P,,, the rate of change of energy, and P
the sum of generated or absorbed power by muscles and transmitted power through joints, were
close to one in all cases (Table C.1). As a representative curve, the power patterns of three seg-

ments of subject #1 during the performance of task #1 are shown in Fig. C.1.

Arm Forearm Hand
segment segment segment

Task #1 0.9988 0.9992 0.9938

Subject £l T sk 2 0.9997 0.9998 0.9998
Task #1 0.9988 0.9922 0.9798

Subject #2 Tk #2 0.9983 0.9954 0.9855

Table C.1 Cross correlations between total power and rate of energy change.
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Fig. C.1 Total power and rate of energy change for the subject #1 and task #1.
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APPENDIX D. DEMOGRAPHICS OF SUBJECTS IN
RHEUMATOID ARTHRITIS STUDY

In this appendix normal and RA subject demographics are presented [45]. Subjects were ten
normal (NR) and ten subjects with theumatoid arthritis (RA) who had shoulder joint involvement.

The average and standard deviation of age weight and height for the normal and RA subjects are
shown in Table D.1 The average (xstandard deviation) duration of RA subjects was 16 years, 2

months (7 years). More information about subjects can be found in [45].

Age (years, months) Weight (kg) Height (cm)
NR subjects 43,8 (£14,2) 73.5 (£10.4) 172.0 (£10.1)
RA subjects 52,2 (& 8,5) 68.0 (£16.5) 167.9 (+11.2)

Table D.1 The average (* standard deviation) of age, weight and height for normal and
RA subjects.
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APPENDIX E. OPTIMIZATION METHOD

E.1. INTRODUCTION

To arrive at a specific solution for the indeterminate equations, one method is to specify a
criterion or objective function and to find the solution that minimizes or maximizes this criterion
[49][50][51][52][53]. A common criterion is based on the hypothesis that efficiency principles are
inherent to neuromuscular control and this is used as the rationale for optimization. With this
approach the indeterminate problem can be solved uniquely. The objective function to be opti-
mized represents the physiological cost to be minimized. Different objective functions have been
used for the force distribution problem [54][55][56]. The two most commonly used objective

functions are

N
obj= Y F? (E-1)
m=1
N
Obj= Y, (F,/4)" (E-2)

m=1

where F, is the muscle force, 4, is its physiological cross-sectional area (muscle volume

divided by its length), PCSA. Different values of p have been chosen by different authors.

133



APPENDIX E. OPTIMIZATION METHOD

E.2. LAGRANGE MULTIPLIER FOR NONLINEAR OPTIMIZATION METHOD

The general form of the optimization for the objective function shown in Eq. (E-1) is

N
Minimize: 2 Frf; (E-3)
m=1
subject to the constraint
N
2 b,F, = M=, (B-4)

m=1

where b, is moment arm of the muscle m.

To solve this optimization problem, the Lagrangian function is defined as follows

b~
[
M =

Fy+A (b, F, —Mp+ M) (E-5)
1

3
It

Extreme values for L are

Lo=0  m=12..m
o (5-6)
m =0
Solving Egs. (E-5) and (E-6) gives the muscle force
M.— M.
F = L J (B-7)
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In the same way, the solution when optimization for the objective function in Eq. (E-2) is

used can be written as

M~ M,
F =4 L (E-8)

N
p/(p-1)
bmAm Z (bkAk/bmAm)
k=1
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