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Abstract

The quest of how to optimally design experiments originally extends back to
1918 where Smith was one of the first to state a criterion and obtain optimal designs
for regression problems. Many years later, Kiefer (1959) contributed tremendously to
this subject which included the equivalence theorem and optimality criteria as well
as the construction of various optimal designs using algorithms.

We first introduce basic linear design theory and discuss their properties. We
determined optimality conditions based on directional derivatives along with the prop-
erties of these derivatives.

This thesis mainly explores constructing optimizing distributions with appli-
cations in estimation by exploring a class of algorithins, indexed by a function f(.),
where f(.) is positive and strietly increasing. The function may depend on a free
positive parameter §.

Estimation problems and their properties are studied and their results are re-
ported, namely for the 3 x 3 case and 4 x 4 case. We also consider another estimation
problem, namely, constructing optimizing distributions with equality of variances of
the estimates of two parametric functions of interest.

This thesis goes further by discussing how we can improve convergence rates

of the algorithm by choosing the function f{.) and the parameter 4.

vi
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Chapter 1

Optimal Design Theory

1.1 Introduction

Optimal designs originally date back to 1918 where Smith’s paper consisted
of mathematical work of designed experiments. In this paper, she calculated optimal
designs for polynomial regression models. Many years later, the next well-known indi-
vidual to study optimal design to great lengths was Kiefer (1959). Kiefer’s tremendous
contributions to this subject include his extensive and fundamental work on equiva-
lence theorem and optimality criteria as well as the construction of various optimal
designs using algorithms. Well-known sources that most books cite from in the field
of optimal design are Atkinson and Donev (1992), Silvey (1980), Fedorov (1972), and
Pukelsheim (1993).

A well-designed experiment is an essential technique that must be performed in order
to answer problems of interest. Experiments must be conducted and designed in a
procedure with statistical methods to collect outcomes in an efficient way. The goal
is to reduce expenses, effort and time, while trying to minimize any random errors

that may incur.



Whenever a problem with the need of accepting or not accepting a set of alterna-
tive decisions is encountered, specific experiments that consist of chosen values or
levels of outputs to gather observations on which the decision has to be based must
be designed. These experiments, in some sense, have to be optimum to select an

optimum decision, thus arising the theory of optimal experimental design.

The focus of this chapter is to give a description of optimal design theory for lin-
ear models. Provided are some basic concepts of optimal design theory such as the
definition of a design, variance function, an information matrix, and various criterion

functions and their properties.

First, consider the problem of selecting an experimental design to accommodate in-

formation on models of the type: y ~p(y| z, &, o)

where

g/ is the response variable.

z = (24, Zo, ..., Z,)" are the design variables. These values can be chosen by the
experimenter and are restricted to a space y, i.e. € v C R™. Therefore, the
set of experimental conditions are y. The design space is y, although sometimes
discrete, will generally be continuous.

8= (6, 8, ..., 8;)7 is a k-dimensional vector of unknown parameters. f is known to

belong to the set # € R*.




o is a nuisance parameter which is fixed but unknown. This parameter is not of
fundamental interest.

p(.) is a probability model.

In most cases, x is assumed to be compact. The experimental conditions from the

given domain x can be utterly chosen by the experimenter.

For every = € x, an experiment can be conducted whose outcome is a random variable
y = y(z), where var(y(z)) = o* assuming o does not depend on the experimental

condition z.

In linear regression design, the model is linear in the unknown parameters § but
is not necessarily linear in z. As a result, in linear models, y(z) has an expected

value of the explicit form:

E(ylz,8,0)=f"2)¢ (1.1.1)

where
fl@) = (filz), fo(), ..., fu(@))" is a vector of k real-valued functions defined on
X, what are known to the experimenter before-hand are the regression functions

fu, oy oy S

A value for z must always be chosen from y in order to acquire an observation
on y. It is understood that z can be set to any chosen value in y. This leads to

the consideration of at what value of z should observations, say n, on y be taken



in order to attain a ‘best’ inference for all or some of the parameters §. Obtaining
this reliable inference, or allocating n observations to the elements of y is termed an

optimal regression design.

At this time, presume that this is point estimation for the mode of inference. The
projected solution for this example will hold well for other future modes of inference

as well.

Deciding what n values (z,, z,, ..., &,) to produce ‘best’ point estimation 8 of some

or all of the parameters ¢ is something to consider.

Let the estimator § of # be obtained by some method of point estimation. Let @
be unbiased for §. The components 6; will be correlated. Debatably then, the & x &
matrix D(@) = E([g — 8] — 8)7) which is the dispersion matriz of § about ¢, holds
information about the accuracy of § not only in its diagonal elements, which measures
the mean square deviation of 9; but also in its off-diagonal cross product deviation

terms. For the most part, the smaller D(é) gets, the greater the accuracy of §.

Consider model 1.1.1 to be true and let 1; represent the observation obtained at

x; where,

E(y:) =0, v; = (filz;), foz), o frlz))T, i=1,2,..n. (1.1.2)

Suppose y1, ¥2, ..., Y» are independent random variables with equal variance 2. Also,

there will be several equalities between the z,’s, where more than one observations are




being taken at the same z value. Therefore, gi’s then satisfy the following standard
linear model:

E(Y)= X4, DY) =1, (1.1.3)

where

Y = (41, 25 -y Yn)s

X is an n x k matrix whose (4, j)th clement is f;(z;),
# is a k x 1 vector of unknown parameters,

o? is the constant error variance (usually unknown),
I, is the identity matrix of order n,

D(Y)) symbolizes the dispersion matrix of Y.

Model 1.1.3 can also be referred to as a fized-effects linear model.

Least squares estimators are a predictable choice for a model having the optimal-

ity of being best linear unbiased estimators (BLUE). Solutions are of:
(XTX)6 = XTY (1.1.4)

where (X7 X) is the information matrix for 8 of order k x k.

When (X7 X) gets larger, the information will become more superior in the exper-
iment. If all parameters # are of interest, then the selection of x must at least
substantiate the matrix (X% X) is non-singular. In this case, the unique solution for
1.1.4 is given by:

§=(X"x)"' X"y (1.1.5)



and
E@) =20
D(g) = o*(XTX)™

The predicted value of the response at g is,
Y(z) = fi@bi + fol@)ds + .. + fil@)fy = T
where f(z) = (f(z), fo(@), -, fil@)™.
As a result, it can be seen that the dispersion matrix of § does not have to depend on
8 and only depends proportionally on the parameter o%. We select {z,, s, ..., z,}

to make the matrix D(é) as small as possible. That is, we to select {z;, o, ..., Z,.}

which makes the matrix (X7 X) large in some sense.

1.2 Discretizing the Design Space

The model 1.1.1 can also be written as:

E(y|v,8,0)=0v"8 (1.2.1)

where
v= (fl(.:.ﬂ.)a f2(§): teey fk(g))Ta V€ V:
V={veR:u=(filz), Llz), .., @)% zcx}



Choosing a vector g in the design space x is equivalent to choosing a k-vector v
in the closed k-dimensional space V = f(x), where f is the vector valued function
(f1, fas -y f&)¥. Vis the image under f of x and uses an induced design space. Gen-

erally, the design space is continuous, but we can assume that V is discrete.

Let V, the discrete design space consists of J distinet vectors v, v,, ..., 2;. To obtain
an observation on y, we must choose a value for v from the J elements of V to be the
point at which to take this observation. Using Caratheodory’s theorem, this design

space, V is taken to be discrete, suggesting that it can be done without error.

At what points v; should observations be taken and, if the total observations are
allowed, how many of these observations can be taken at these points in order to
obtain ‘best’ least squares estimators of §7 With this in mind, the design problem

can be expressed exactly.

With n observations, we have to decide how many observations, say n; to take at
J
Y5, »_ nj = n. With this in mind, the matrix (X7 X) can be written in the following
i=1
form:

XTX = M(n), n=(nyg, 0y, ..., 2y)" (1.2.2)

where
J
M@) =) nu]
j=1

=VNVT

and V = (v, ¥y, ..., ], N = diag(ny, na, ..., ng).




By choosing n now, we can make the matrix M(n) large. Since n;’s must be in-
tegers it triggers an integer programming problem and in the design context it is

described as an ezact design problem.

Integer programming problems are generally tedious to solve mainly because the
theory of calculus cannot be used to define of or to identify optimal solutions. There-
fore, a solution has to be worked out completely separately for different values of n.

However, there is a simpler way to solve the problem. We can write the information

matrix as:
M(n) = nM(p) (1.2.3)
where
J
M(p) = piwut (1.2.4)
=1
=VPVT (1.2.5)

and P = diag(p1, pa, ..., ps); where p; = % is the proportion of observations taken

at v;, so that p; > 0

— i

J
p; = 1; and p = (py, po, ..., ps) Tepresents the resultant

J=1

distribution on v.

Hence, choosing p to make M(p) large subject to p; = %Z becomes our new prob-
J

lem. Relaxing the latter to p; > 0 and ) p; = 1 generates an approzimate design
j=1

problem. Indeed, this is a more flexible problem to solve and visibly not much differ-

ent from the original.




Design Measure:
Previously we have referred to p as both the vector (p;, pa, ..., ps) and as a probability

distribution on V. A full statement of this could possibly be:

p=5 — 7 (1.2.6)

where

z;’s are the values of the factors, that is, the design points. p;’s are the associated
J
design weights, > p; =1and 0 < p; <1 for all j.
j=i

A more suitable and less confusing notation is:

Ty Ty .., X
- 4 & L (1.2.7)

P, P2y, .y Dy

with £ defined to be the design measure.

Exact designs have a specific number of trails, n. The design measures for an ex-

act design is written as:

Ly

£ = L o L (1.2.8)

m B2 g
n? n* 7Y on

where

. . ! . J -
n; is the integer number of trials at z; and > 7, n; =n.
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Support of a Design Measure:

The support of a design measure (p) in V is defined by:

supp(p) ={v; € V:ip; >0,i=12,..,J} (1.2.9)

That is, supp(p) is the collection of those v; which has non-zero p;.

1.3 Optimality Criteria

By making the matrix M (p) large, it may be possible to obtain a best inference
for all or some of the unknown parameters § € ©. Therefore, to make the matrix
M (p) large, that is to say, by maximizing some real valued function ¢(p) = Y{M(p)},

various methods are considered.

There are many design criteria and they are mostly labeled after the letters of the
alphabet. These criteria are sometimes called alphabetic optimality. The function ¢
is identified as the criterion function. A criterion defined by the function ¢ is called
¢-optimality. A design maximizing ¢(p) is called a ¢-optimal design. There are two
types of criteria. One type is when ‘all’ the parameters in the model are of interest

and the other is when ‘not all’ k parameters are of interest.

Consider the case when interest is in inference about all of the parameters §. There-
fore, we must have M(p) as non-singular, and thus positive definite. When all

parameters are of interest, then there are several possible criteria which include:
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D—optimality, A—optimality, and G—optimality. Mandal (2000) extensively re-

searched on many of these criteria.

D—optimality

The most important and popular design criterion in applications is that
of D—optimality. D-—optimality seeks to maximize the value of |X?X|, the de-
terminant of the information matrix X7 X. D—optimality results in minimizing the
generalized variance of the estimates of the parameter based on a pre-specified model.
This criterion is also known as the determinant criterion. The criterion function of

D—optimality is given by:

¢p(p) = ¥p{M(p)} = logdet{M (p)} = —log det{M ' (p)} (1.3.1)

Other motivations for D—optimality exist, and they extend way beyond ideas of point
estimation and all fall into the field of explicit joint inference. If we assume normality
of the errors in linear models, then the general form of the joint confidence region for

the vectors of unknown parameters # € © is described by an ellipsoid of the form:
{8:(0—07(0—08) <c)}, for some critical value ¢ (1.3.2)
where § is the least squares estimates or the maximum likelihood estimate of 8.

The D—optimality criterion chooses the information matrix M (p) to make the vol-

ume of the above ellipsoid as small as possible because this volume is proportional
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to [det{M (p)}}7'/%. The value of [log det{M (p)}] is finite if and only if M (p) is non-
singular, meaning when all the unknown parameters are estimable. See Keifer (1959),
Farrell et al. {1967), Fedorov (1972}, Silvey (1980), Pazman (1986), Shah and Sinha
(1989), Atkinson and Donev (1992), Pukelsheim (1993). Mandal (2000) considered
the construction of D—optimal designs in a variety of examples. This is the most

extensively studied of all the design criteria.

A—optimality

A—optimality is defined by the following criterion function:

$a(p) = Ya{M(p)} = —Trace{M ' (p)} (1.3.3)

A—optimality minimizes the trace of the inverse of the information matrix. It min-
imizes the sum (or the averages) of the variances of the parameter estimates based
on a pre-specified model, but does not take correlations between these estimates into
account. A—optimum design is also known as trace criterion. This criterion was

considered by Elfving (1952) and Chernoff (1953).

G—optimality

G —optimality seeks to minimize the maximum prediction variance over
a specified set of design points. That is to say, it minimizes the maximum value of
vT M~Y{(p)v which is proportional to the variance of v7. Kiefer and Wolfowitz (1960)

proved the equivalence of this criterion with the D—optimal criterion.




13

The criterion function for G—optimality is defined by:

d6(p) = de{M(p)} = — maxy" M (p)y (1.3.4)

Now consider the case when interest is not in all & parameters, but only in some
of the unknown parameters or some combinations of the parameters of the linear

model 1.1.1.

Say we are interested in s linear combinations of the parameters 6, 6,, ..., 8, namely
those s linear combinations which are elements of the vector a = A6, where 4 is a

s X k matrix of rank s < k.

If M(p) is non-singular, then the variance matrix of the least squares estimator of
Af is proportional to the matrix AM~(p)AT. However, if M(p) is singular, then the
basic requirement for estimating the vector o = Af is that the row space of 4 is in
the range space of M (p) which results in the invariance of the matrix AM~(p)AT to

the choice of generalized inverse M~ (p) of M(p).

A good design in this case would be one that makes the matrix AM~(p)A” (or
AM~Y(p)AT if M(p) is non-singular) as small as possible. Criteria include D4—,

Dg— and Linear (L—) optimality.
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D y—optimality

D 4—optimality is used when we are interested in s linear combinations
of g, that is, the elements of the vector AT¢. If XTX is non-singular, this criterion

maximizes the determinant of [AT(XTX)~1A4]~1.

The criterion function is given by:

¢, (P) = Yo {M(p)} = —log det{ AM ' (p)AT} (1.3.5)

Consider the special case of D4-optimality, which is Dg-optimality.

Dg-optimality is used when we are interested in s parameters A = [Is : O] and we

partition the matrix M (p) as follows:

SX§ 3axXk—s
MEE MY

M(p) =
M, Mg

(1.3.6)

Using algebra we can express the matrix (AM~1(p)AT)™! as (My; — Mya M3t ML)
[see Rhode (1965) and Torsney (1981)]. Our design criterion becomes that of selecting
p to maximize the determinant of this matrix. So maximizing ¢p, in this case is

equivalent to maximizing:
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¢ps(p) = log det{M1; — MMz ML} (1.3.7)

which is known as the Dg-optimal criterion. See Karlin and Studden (1966), Atwood
(1969), Silvey and Titterington (1973) and Silvey (1980).

Linear Optimality

Let L be a systematic and positive definite k¥ x k& matrix of coefficients.

The function for L—optimality is defined as:

¢1(p) = Y{M(p)} = —Trace{ M (p)L} (1.3.8)

It is linear in the elements of the covariance matrix M ~1(p). There is a relationship
between L—optimum and D 4—optimum designs. In D4—optimality, the determinant
rather than the trace of A(XTX) 1AT is minimized. The form that stressed this re-
lationship is when L is of rank s < k. L is expressed as L = ATA, where Aisa sx k

matrix with rank s.

Then the criterion function 1.3.8 can be defined as:

¢1(p) = ~Trace{ M (p)L} = —~Trace{ M (p)AT A} = ~Trace{ AM ™ (p) AT}
(1.3.9)

There is a special case of L—optimality when A is a column vector. This special case

is called c—optimality, which minimizes the variance of a linear combination ¢7§.
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Thus, the design criterion will be minimizing ¢¥ {M(p)}~'c. An important reference

of this criterion is Elfving (1952).



Chapter 2

Optimization Problems and
Optimality Conditions

2.1 Introduction

First, we determine optimality conditions for which p* will be optimal for an
optimization problem in this chapter. We determine optimality conditions in terms of
point to point directional derivatives. Then we consider some optimization problems
in estimations. The directional derivative Fy{p, ¢} of a eriterion function ¢(.) at p in
the direction of g is an important tool. This has a significant simplifying role in the

calculus of optimization.
First consider a class of optimization problems in which we wish to find an opti-

mizing distribution. Particular examples are optimal regression, maximum likelihood

estimation, stratified sampling and image processing problems.

17
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2.2 Optimization Problems

Consider the following problems.
Problem 1
J
Maximize the criterion ¢(p) over P = {p = (p1, p2, .., ) :p; =0, d.p; = 1}.
j=1

Having the equality constraint ) p; = 1 presents the problem of a nonde-
J
generate constraint optimization problem, the full constraint region being a closed

bounded convex set.
Problem 2

Maximize ®(8) over © = {# = (6,6, ..., 6,) : 8, > 0,C8 = a} where C is a

s x t matrix of rank s, and a is in the range space of C.

As we can see, Problem 2 is a generalized form of Problem 1. One occur-
rence of Problem 2 arises when testing the linear hypothesis about the parameters in
multinomial models for categorical data. These parameters are probabilities so that
the constraint C'f = a must either include as a component that 178 = 1, where 1 is a
vector of 1’s, or proclaim that various subsets of the components of ¢ should sum to

unity. We will consider an example of such linear hypothesis in Chapter 4.
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2.3 Directional Derivatives

In order to maximize a criterion ¢(p), we need to characterize optimality con-
ditions on p. We define optimality conditions in terms of point to point directional

derivatives.

Let

9(p, g, €,) = o{(1 ~ &)p +eq} (2.3.1)

oo 9pge) - d(p)  dg(p,g,€)
Fy{p. ¢} =lim . i (2.3.2)

Fy{p, q} is called the directional derivative of ¢(.) at p in the direction of ¢ as stated

by Whittle (1973). This derivative can exist even if ¢(.) is not differentiable.

2.4 Properties of Fy{p, q}

Some general properties of the directional derivative Fiy{p, ¢} are as follows.
Property 1:

If p,g € S, where S is a convex set, then {(1 —&)p +eq} € Sforall 0 < & < 1. This

would be an advantage if one wishes F;{p, ¢} only for p,q € S

Property 2:

Fy{p,q} > ¢(q) — #(p) if 4(.) is concave.
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Proof:

{1 —e)p +£q} — c,é(p)]

Fyo{p,q} = lim|

|0 e
> 151%1[(1 —€)é(p) +€ ed(q) — ¢(p)]
= ¢(g) — o(p) (2.4.1)

Up to this point, any assumptions about differentiability of the criterion function ¢
has not been made. A function does not have to be differentiable at a point p in order

to have well defined directional derivatives in all directions.

Despite that, when the criterion function ¢ is differentiable, it plays a vital simplify-
ing role in the optimization of ¢. Mandal (2000) studied the properties of F;{p, q}

extensively.

Have in mind that at point p, ¢(.) should be smoothly changing in all directions.
A more precise definition is that at point p, the ¢(.)-surface should just touch or
possibly cross in parallel a unique linear hyper-plane, the tangent plane to ¢(.) at
p, or the supporting hyperplane at p if the two surfaces do not cross. This plane
will provide a linear approximation to ¢(.) at p in any direction, so that the linear
approximation to ¢(.) at p which it suggests in the direction of ¢ and in the opposite

direction will be the same apart from a difference in sign.
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If two surfaces oceur at the same time, they will obviously have some common charac-

teristics at the point of contrast p. They must have common first derivatives, partial,

or directional derivatives, and hence whatever properties are enjoyed by the deriva-

tives of one function at p, must be enjoyed by those of the other function.

For ¢(.) to be differentiable at p, it must be that

dé .
Felpa} = (g— p)Ta—I') =(g—p)Tdforallgq
J 9

= Z(Qi"‘pi)di, di=—, i=1,..,J, d=—=

I’

i=1

In Problem 1, when p € P we have,

J
Fylp,e;} =d; - Z‘])i(l; = F}, say.

i=1

We call Fj a vertex directional derivative of ¢.

2.5 Optimality Conditions: The General
Equivalence Theorem

(2.4.2)

(2.4.3)

The General Equivalence Theorem is the central development on the theory

of optimum design of experiments of which it depends upon.
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This theorem can be seen as an application of the result where the derivatives are
zero at a minimum of a function. Keep in mind that the function depends on the

measure p through the information matrix M (p).

Recall the derivative of ¢{.) in the direction of ¢ is

H{(1 —e)p +eq} — H(p)

£

Fo{p,q} =lim=
|0

In optimal design, the main concern is to minimize the convex function w{M(p}} by

using the directional derivative of Fy{p, q} in the direction of g.

D-optimality is an example in which ¥p{M(p)} = logdet{M~'(p)} is minimized so
that the determinant of the information matrix, M (p), is maximized. By taking the
logarithm of the determinant it leads to minimization of a convex function. Thus, the
General Equivalence Theorem can be viewed as an application of the result that the
derivatives are zero at a minimum of a function. Nonetheless, the function depends
on the measure p through the information matrix A (p). Let the measurc $ put unit

mass at the point z and let the measure p’ be given by,

p={1-a)p+ap
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Then,

M@y = (1 — a)M(p) + M (p). (2.5.1)

Thus, the derivative of 4 in the direction of p is,

A(p) = lim = DAL= )M (p) + aM(p)} — p{M(p)}
all o

(2.5.2)

The General Equivalence Theorem states the equivalence of the following three con-

ditions on p*: [Atkinson and Donev (1992)]

(1) the design p* minimizes Y{M (p)};
(2) the minimuam of A(p) > 0;

(3) the derivative A(p) achieves its minimum at the points of design.

This theorem is very important in the theory of optimal design. According to this

theorem, it provides methods for the construction and checking of optimum designs.

Our problem is maximizing a criterion ¢(p) in Problem 1. We write the optimality

conditions in terms of this problem:
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If S = P, ¢(p} is concave on P and p* is a differentiable point of ¢(.) on P, then p*

maximizes ¢(.) on P iff

d¢ d¢

= — when p > 0 2.5.3
o 2_5:1 P o 2 (2.5.3)
09 . B¢ .

< ¥ x J x pracad .~_
opf = 2 ; o when p; 0 (2.5.4)

In terms of directional derivatives Fj, the optimality conditions are:

=0 when p; > 0 (2.5.5)

< 0 when p; =0 (2.5.6)

General equivalence theorem plays an important role in constructing optimal designs.
It specifies a finite set of optimality conditions. It is easy to check whether or not these
conditions are satisfied by a postulated solution obtained by numerical techniques. We
use these optimality conditions to construct the optimizing distributions in Chapters

4 and 5.



Chapter 3

Algorithms

3.1 Introduction

It is typically not possible to evaluate an explicit solution p* to optimal de-
signs. An analytic solution to the problem of forming optimal designs is possible
only in simple cases. Generally, it is not possible to evaluate an exact solution p*
to Problem 1 and 2 or to derive an optimal regression design explicitly. Iterative
techniques must be needed and consequently, certain algorithms have been devised
for a constrained optimization problem (particularly for the design problem) which

requires the calculation of an optimizing probability distribution.

It can be seen that there always exists an optimal measure with finite support
(Caratheodory’s Theorem). We wish to identify an optimizing p*. Of course, this
will be the case if V is a discretization of a continuous space. The implication of this
is that at the optimum there will be zero weights. Hence, we consider the following
class of algorithms, indexed by a function which depends on derivatives and one or

more free parameters.
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An algorithm for an optimization problem is a sequence of successive approxima-
tions to a solution p*. First, we make an initial guess p{® to p* and try by some
means to derive from p®, an improved approximation p(. Then by the same means
a further improvement p® is derived from p") and we carry on this way. A se-
quence p®, ptI), .. is thus generated in the belief that the sequence will converge to

the optimum p*.

3.2 A Class of Algorithms

Problem 1 contains a unique set of constraints, specifically the variables p;, ps, ...

must be nonnegative and add up to 1. An iteration which neatly submits to these

and has some suitable properties is the multiplicative algorithm:

() proi1)
p(_r+1): ij (xj])

J T (3.2.1)
r r
Epi flz:”)
=
Tere o) ) G
where z; "’ = d; orf;’, and
(r) __ 98¢
d] o Bp_,» szl("}

. 1 J P . |
F}(’} = df,-’) ~ 2 pd" |a directional derivative of ¢ at p = p™)],
i=1

the function f{z) satisfies the following conditions:
(i) f(z) is positive;

(i) f(x) is strictly increasing in z.

y B



f(z) may depend on one or more free parameters. We use only one free parame-

ter 8. The value of § is positive.

Therefore, as a result of the conditions for (local) optimality, a solution to Prob-
lem 1 is a fixed point of the iteration and the partial derivatives (d;) share a common

value. This is a necessary but not a sufficient condition for p{™ to solve problem 1.

Torsney (1977) first proposed this type of iteration, taking z = d, f(d) = d°, with
6 > 0. This requires derivatives to be positive. Following empirical studies include
Silvey, Titterington and Torsney (1978), which is a study of the choice of § when
f(d) = &*, & > 0; Torsney (1988), which mainly considers f(d) = exp{dé} in a
variety of applications, for which one criterion ¢(.) could have negative derivatives.
Mandal and Torsney (2000) considers systematic choices of f(.). Torsney and Alah-
madi (1992) explore other choices of f(.). Mandal (2000) uses this algorithm in a
variety of problems. Torsney and Mandal (2001) and Mandal et al. (2004) use this
algorithm for constrained optimization problems. Mandal and Torsney (2004) con-

sidered a clustering approach to improve the convergence rates considerably.

Titterington (1976) describes a proof of monotonicity of f(d) = d in the case of
D-optimality. Torsney (1983) explores monotonicity of particular values of § for par-
ticular ¢(p). Torsney (1983) also establishes a sufficient condition for monotonicity of
f(d)=d° 6 =1/(t + 1) when the criterion ¢(p) is homogeneous of degree —¢, t > 0
with positive derivatives and proves this condition to hold in the case of linear design

criteria such as c-optimal and A-optimal criteria when ¢ = 1 so that § = 1/2. In other
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cases the value § = 1 can be shown to yield an EM algorithm which is known to be
monotonic and convergent. See Dempster et al (1977). The EM algorithm is known

to have slow convergence.

Convergence results depend on properties of the criterion function ¢(.), on the func-
tion f(.) and on 4. In the later chapters we have tried to explore variety of choices
of f(.) and of its argument for constructing optimal designs with applications in es-
timation. In Chapter 4 we consider the problem of determining maximum likelihood
estimates under a hypothesis of of marginal homogeneity for data in a square con-
tingency table. In Chapter 5 we consider the problem of finding optimal design with
equality of variances of the estimates of two linear parametric functions. We use
Minitab statistical package for the programming purposes and for the running of the

algorithim in Chapters 4 and 5.

3.3 Properties of the Iteration

Under the conditions imposed on f{.), iterations under (3.2.1} possess the follow-
ing properties considered by Torsney (1988), Torsney and Alahmadi (1992), Mandal
(2000) and Mandal and Torsney (2000).

Property 1: p©) is always feasible.
Property 2: Fy{p", pr+tP} > 0 with equality when the d;’s corresponding to

nonzero p;’s have a common value, d, in which case z; = d; = d or

x; = F; =0 and so, with z = d or 0,
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(r) (r)
pg,-ﬁ) _ ‘P; f(Tj) _ P flz} :p{_r)

e e
;pir fa) f(-?:);pi'

Consider the case z; = d;.

The inequality property can be seen by letting a positive random variable D

take the value 22 - with probability p; (p; = -")).
Then

Fo{p™, p"1} = Cov(D, f(D)I/E[f(D)). (3.3.1)

Proof:

J
= Z[pﬁ"“)—pf”]d
J
_ (1) )
= ZP di= > pd;
i=1

pif(di)d;
= :} _pr (3.3.2)
:%pzf(dz)
{Z if (diddi] — {Zl)d}fzpf( i)l
S _ (3.3.3)
Z?f(d)

Cov[D, f(D )]
E[f(D)]
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The covariance between D and f{D) must be nounegative if (D) is increasing in
D. Thus an increase in the criterion can be obtained by a partial but possibly not

a full step from p™ in the direction of p+1.

Property 3: Under the above iteration supp(p+1) C supp(p{™), but weights can
converge to zero.
Property 4: An iterate p'") is a fixed point of the iteration if the derivatives 58—%
P;
corresponding to nonzero p?') are all equal. Equivalently if the
corresponding vertex directional derivatives F}(") are zero. This is a

necessary but not a sufficient condition for p to solve Problem 1.

There are other algorithms for finding optimizing distributions. These vary in at-
tribute. Some are simple computationally. Some are highly efficient but heavy in

computation.

Vertex direction algorithms were first proposed by Fedorov (1972) and Wynn (1972).
These are useful when many weights (p;) are zero at the optimum. When all weights
(p;) are positive at the optimum or when it has been found which are positive, con-
strained steepest ascent or Newton type iterations may be appropriate. [see Wu

(1978) and Atwood (1976, 1980)]
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Each algorithm has advantages and disadvantages depending on the optimization
problem under consideration. We use the above multiplicative algorithm for con-
structing optimizing distributions. As mentioned earlier, this algorithm neatly sub-
mits to our problems of interest. Also, the performance of the algorithm is investigated
in finding one optimizing distribution for each problem. We improve the convergence
rates of the algorithm by subjectively choosing the function f(.) and the free pa-

rameter §. Convergence rates also vary according to the choice of the argument of

fE)



Chapter 4

Optimization Problems in
Estimation

4.1 Introduction

In Chapter 2, we considered Problems 1 and 2 which are examples of more
problems in statistics which call on the calculations of one or many optimizing dis-

fributions or measures.
Take into consideration three examples of Problem 1:

Example 1: One of the elementary examples is that of finding the
maximum likelihood estimators of the probabilities of a multinomial

likelihood

o(p) = c(x)pi'ps* - - Py’ (4.1.1)

7

. . : . : £ Lioo o Y -
It is well known that the optimum choice of p; is p} = 2, n = zl z;.
J:

32
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Example 2: Estimating the mixing parameters (probabilities) of a mixture
distzibution given data y > Yo -+ ¥, 18 another example. This will originate
when the component probability models f;(y) of the mixture are themselves

free of any unknown parameters, this would produce the likelihood function.

n

é(p) =[] {ijfj(l_/i)} (4.1.2)

i=1

A useful text on this is Titterington, Smith and Makov (1985). Other references

include Smith and Makov (1978), Dempster, Laird and Rubin (1977).

Properties of Examples 1 and 2:

(i) Since independence is a common assumption in the formulation of probability

models, the two functions are all homogeneous.

(ii) The functions have positive derivatives as is
obvious from the following respective expressions for %:
2

Example 1: 5%,@; = ¢(P)[Iz,_j]

Fily,)
Example 2: g;% = ¢(p) [Z ——Zr;i'(y.)}
1 s =

(iii) In some instances the functions are concave.
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With Property (iii), it ensures the existence of a unique maximum while

properties (i) and (ii) are useful in the formulation of an algorithm.

Now we consider the problem of determining maximum likelihood estimates under
the hypothesis of marginal homogeneity for data in a square n x n contingency table,
Torsney (1988) was the first to consider this problem. Mandal and Torsney (2000)

also considers a standardized version of this problem.

Given observed frequencies, Oy;, 1 =1, 2, ..., n, j = 1, 2, ..., n and assuming a single

1 n
multinomial distribution conditional on N = 3~ 3~ Oy;, with p;; being cell probabili-
i=1j=1
ties, we want to solve the following version of Problem 1. The likelihood function is
i3 n
proportional to 3 3 Oy ln(p;;).

i=1j=1

L n
Maximize 1(p) = > > O ln(p;;) subject to
i=1;=1

piy =20,i=1,2,.,n 7=1,2,..,n,

n n

2.2 pi=1

i=1j=1

1 L
Yopi=ppforr=12 . n
i=t i=1

The latter conditions are the conditions for marginal homogeneity. We can make

some simplification of the problem in view of the fact that at the solution

Oi i

=N 1=12,..,n,

Pii

and also that one of the linear constraints, e.g. that corresponding to r = n, can be
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taken away since they are linearly dependent.

Let us look at the case n = 3, i.e. a 3 x 3 contingency table.

4.2 3 x 3 Case - Maximum Likelihood Estimation

For simplicity, let (11, ua, s, t, s, Ug) = (O1a, O3y, Oag, Oa1, 013, O32) and
($1;$2)$33I4:$57$ﬁ) = (E127E313E23)E211E13)E3‘2); ‘Vhere Etj - j\rpij; i = 1: 21 31
7 =1, 2, 3 and therefore are expected frequencies.

Hence, our problem in terms of z;’s and w;’s is now just simply,

6
Maximize ¥(z) = > w In(a;) subject to
i=1

2 >0, t=1,2,..,6,
6 3
Doa=b=(N=> 0y), (4.2.1)
t=1 i=1
Ty — Tg — g + 25 =0,

—x1+ 23+ 24— 25 =0
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Last two equations come from the marginal homogeneity conditions. Actually there
are three equations from this condition. However, we can consider the above two

equations because three equations together become linearly dependent.

For a standardized version of this problem, it can be given by the transformation

2 = %, Accordingly,

Y =9(z) = Y _win(z.) + > uln(b) (4.2.2)

where >z = 1.
7

Thus our problem is to maximize 1(2) = > wln(z) subject to
t

d a=1, (4.2.3)

21—-22—24—|-Z5:0,

—21+23+Z.;—25:0.

We can also write as:

2€Z={z:2€R%2%>0,t=1,2,..,6,Cz=a}
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1 1 1 1 1 1 1
where C' = 1 -1 0 -1 1 0 andag= | 0
-1 0 1 1 0 —1 0

This is a convex polygon. The vertices are given by,

vy = (1/2, 0, 0, 1/2, 0, 0)7
v, = (0, 1/2, 0, 0, 1/2, 0)7
vy =(0,0,1/2, 0,0, 1/2)"
vy = (1/3,1/3,1/3, 0, 0, 0)7

vy =(0,0,0,1/3,1/3, 1/3)T

Now we can solve a similar version of Problem 1 with J = 5. Also z = E,{G(v)} =
5 6 5

Ep{v} = 3o piw; (As G(v) = ¥) and ¢(p) = 3w in{}" pj(v;)h} where (y;), =
=1 t=1 =1

element of vy
Let V = (v, 2y, ..., ¥5). It can be shown that the partial derivatives are:

_9 ,
dj = 7 yjw (4.2.4)
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Uy

where w = (wy, wa, .., we)T, w; =%, i =1,2,..,6
]

Hence, in vector notation:

Now, from the definition of directional derivatives, the vertex directional derivatives

are given by

dp; =" Op;
= d; —p'd
= d;j —p"VTw
(4.2.5)
Thus, in vector notation:
F=d-p"V'w

Now we apply the above optimization problem to an example. For an interest in
the hypothesis of marginal homogeneity, look at a specific example of data in Placket
(1974). A grading of the unaided distance vision of each eye of 7477 women had the
following frequencies:

(Oi2, Os1, Og, Oay, Ogs, Osa) = (266, 153, 510, 234, 190, 444), b = 1797.
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We use algorithm (3.2.1) to find the optimizing distribution. Using algorithm (3.2.1),
we record for n = 1, 2, 3, 4 the number of iterations needed to achieve mjax{Fj} <
1077, for n = 1,2, 3,4 starting from equal initial weights pd(jﬂ) =1/J,j=1,2, .., J,
where F} are the vertex directional derivatives. Refer to §4.4 for tables of results

computed for various choices of f{.) and 4.

Table 4.4 shows the numbers of iterations for the best choices of § (i.e. achieving

fastest convergence) for each of f(.).

The results clearly show that the numbers of iterations depend on the choice of f(.).

In our case, f(d) = d° and f(d) = exp{ds} are better.

4.3 4 x4 Case - Maximum Likelihood Estimation

Now we consider 4 x 4 contingency table. The procedure is the same as with

the 3 % 3 case.

n (3
In 4 x 4 case, our problem is to maximize ¢(p) = > > Oy; In{p;;) subject to
i=1j=1

Pij >0,0=1,234,7=1,2,3,4

4 4
ZZP:’;‘ =1 {4.3.1)

P12+ P13+ Prs — P — P31 — pa = 0,
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—P12+ Par + Paz — Pag — P32 — Pa = 0,

—P1a — P2z + P+ P32+ pag — paz = 0.

Again, for simplicity consider the following notations:

Let (U-i,Tl'Qaibs,'thi,---,1512) = (012,031,0243043,013,02;,034,042,01410413023,032)
and (1, &2, ¥3, 24, -, T12) = {F1g, By, oy, Euz, B3, By, Fag, Egs, Evy, Eqy, Eas, Esg),

where Ej; = Np;;,i=1,2,3,4, 7 =1, 2, 3, 4 are expected frequencies.

At the solutions p;; = %&i,i = 1,2,3,4 and in terms of ;’s and w;’s, the simplified

12
problem is to maximize () = > w; In{x;) subject to
t=1

2 >0, t=1,2,..12

4

12
Yom=b=(N=-Y 0), (4.3.2)

i=1

Ty — T+ Ty —Tg+ 29— 230 =10,
1 — 23— Tp+2g— 2+ T2 =0,

$2~$4~1’5+$7—.’E11+.’E12:O.



Similar to the earlier case, we can transform z; to z, = 3 and our problem becomes

to maximize ¥(z) = > wu,; In(z) subject to
%

We can also write the above as:

where C =

[ R

2>0 t=12,..,12,

12
E 2y = 1,
t=1

1
-1
-1

1
0
0

11 1
01 -1
10 0
00 0

21— 20+ 25 — 26+ 29 — 210 = 0,

z1— 23— s+ 2y — 2+ 22 =0,

Zo— 2y — 25+ 27 — 2z + 212 = 0.

1
0
-1
-1

2€Z={z2:2€R% 5 >0,t=1,2,..,12,C, = a}

and @ =

QDO D
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The vertices of the above convex polygon are:

E g

Iz

Yy

Vg

Vg

Ysp

(1/2,0,0,0,0,0,1/2,0, 0,0, 0, )7
(0,1/2,0,0,0,0,0,1/2,0,0, 0, 0)"
(0,0,1/2,0,0,0,0,0,1/2, 0,0, 0)7
(0,0,0,1/2,0,0,0,0,0,1/2, 0, )"
(0,0,0,0,1/2,0,0,0, 0,0, 1/2, 0)7
(0,0,0,0,0,1/2,0,0,0,0,0, 1/2)7
(1/3,0,0,1/3,0,0,0,1/3,0,0, 0, 0)
(0,1/3,0,0,0,0,1/3,0,0,1/3, 0, 0)F
(6,0,0,1/3,0,1/3,0,0,0, 0, 1/3, 0)T
(0,0,0,0,1/3,0,0,0,0,1/3, 0, 1/3)7
(0,1/3,0,0,0,1/3,0,0,1/3,0, 0, 0)7
(0,0,1/3,0,0,0,0,1/3,0,0,0, 1/3)7
(1/3,0,0,0,1/3,0,0,0,1/3, 0,0, 0)"
(0,0,1/3,0,0,0,1/3,0,0,0, 1/3, 0)7
(1/4,0,0,1/4,0,1/4,0,0, 1/4, 0, 0, 0)T
(1/4,0,0,0,1/4,0,0,1/4, 0,0, 0, 1/4)7
(0,1/4,0,0,0,1/4,1/4,0,0,0, 1/4, 0)7
(0,1/4,0,0,1/4,0,0,1/4,0,0,1/4, 0)T
(0,0,1/4,0,0,0,1/4, 0,0, 1/4, 0, 1/4)"

(6,0,1/4,1/4,0,0,0, 0, 1/4, 1/4, 0, 0)T
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20
Now we can answer a version of Problem 1 with J = 20. z = ) pju; and ¢(p) =
i=1

12 20
2. ug in{ Y7 pi(v;)} where (v;)e = " element of ;.
t=1 Jj=1

The partial derivatives g}%’s are given hy gf— = yjw. Thus d = VTw, where
3 4

Vo= (01,29, -, ) and w = (wy, Wy, ..., Wyy), Wy = 2.
For example, we still consider the same data [Placket (1974)], but in 4 x 4 con-
tingency table format. The grading of the unaided distance vision of each eye of 7477
women had the following frequencies, that is:

(Or2, Oz, Oaq, Ous, Ors, Oz, Ou4, Ose, Org, Oy, Oa3, O3z) = (266, 124, 66, 432, 78, 205,
234, 117, 36, 362, 82, 179), b = 2181

For the same choices of f(.) (as in 3 x 3 case) in algorithm (3.2.1), we record for
n = 1,2/3,4 the number of iterations needed to achieve mjax{Fj} < 107", for
7 = 1,2,...,J starting from equal initial weights pﬁo) =1/J, 7 = 1,2,...,J where
F; are the vertex directional derivatives. Refer to §4.4 for tables of results computed

for various choices of 4.

Table 4.8, shows the numbers of iterations for § achieving fastest convergence for
each f(.). Our results show that the choice of f(d) = d° and f(d) = eaxp{ds} are

hetter.
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Now we write the following summary of the iteration results.
(i) The expected frequencies in each case were found as:

3 X 3-case :

(B2, By, Eas, Eay, Bz, Eag) = (252,022, 173.898, 479.002, 247.740,169.616, 474.720).

4 x 4-case :

(Ens, Es1, Bay, Eug, Brs, Ex, Esy, Ega, Evg, Eyy, Eog, Ez) =

(252.482,111.843, 56.966, 409.418, 70.585, 195.258,247.237, 131.269, 42.785, 383.133,
91.625, 188.309).

(ii) Each choice of f(d) depends on a free parameter § which is always positive. The
value of d is important for convergence rates. The values of § recorded in tables 4.4

and 4.8 achieves fastest convergence.

(iii) In both cases, it is clear that d° and exp{dd} achieves the fastest and best con-

vergeance.

(iv) Remembering that Z]Jj = 0, since F; = d; — Z pid;, we might consider re-
placing d; by Fj. Resuits are given in tables 4.9 and 4 10. In the 3 x 3-case with
f(F) = ®(F6) and § = 2.5 the number of iterations needed to achieve 111;1}{{153} <
107" for n = 1,2,3, 4 respectively are 2, 3, 4 ,6, whereas taking f(d) = &(dd) with

same § takes 56, 142, 247, 428 iterations to achieve max{F;} <10 " forn=1,2,3,4
j
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respectively.

In the 4 x 4-case with f(F) = ®(£§) and § = 3.0 the number of iterations needed

to achieve max{F;} < 107" for n = 1,2, 3,4 respectively are 3, 6, 10, 12, whereas
j

taking f(d) = ®(dé) with same & takes 417, 1102, 2045, 2951 iterations to achieve

max{F;} < 107" for n = 1, 2, 3, 4 respectively.
3

Thus we see that the choice of f({.) and its argument play an important role in
the convergence of the algorithm. Also the choice of the free parameter & is crucial.

With the appropriate choices, we set good results as shown in the tables.
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4.4 Tables: Iteration Results

3 x 3 -case:

Results for various choices of ¢

|6 [n=1 n=2 n=3 n=4]|
0.5 10 22 41 62
0.6 9 20 38 57
0.7 9 20 36 55
0.8 9 19 36 54
0.9 9 19 36 54
1.0 9 20 37 50
1.5 13 29 51 80
2.0 24 56 96 160
2.5 56 142 247 428
3.0 138 468 887 1528

Table 4.1: 3 x 3 case - f(d

) = ®(dd): Number of iterations needed to achieve
max{F;} <107" for n=1,2,3,4.
J
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L(S n=1 n=2 n=23 n:4—|
0.5 5 11 21 31
1.0 3 5 10 14
1.5 2 4 6 9
1.6 2 4 ] 8
1.7 2 3 5 7
1.8 2 4 5 7
1.9 2 4 6 8
2.0 3 5 7 9
2.5 H 9 15 19
3.0 9 17 27 35

Table 4.2: 3 x 3 case - f(d) = d°: Number of iterations needed to achieve max{F;} <
J
107" for n =1,2,3,4.

L(S ]n:l n=2 n=23 71:4—|

0.5 5 11 21 30
1.0 3 6 10 14
1.5 2 4 6 9
1.6 3 4 5 8
1.7 3 4 5 7
1.8 3 5 6 8
2.0 3 6 g 11
2.5 9 ¥4 25 33

Table 4.3: 3 x 3 case - f(d) = exp{dd}: Number of iterations needed to achieve
max{F;} <107 for n = 1,2,3, 4.
J

| JOO |6 n=1 n=2 n=3 n=4]

o(ds) [08 9 19 36 54
el 1.6 2 4 6 8
exp{dd} | 1.7 3 4 5 7

Table 4.4: 3 x 3 case - Number of iterations for best choices of 4.
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4 x 4 -case:

Result for various choices of §

I ) Inzl n=2 n=3 nzéﬂ
0.5 15 48 79 111
06| 14 45 73 103
0.7 14 43 71 99

08| 14 42 70 98

09| 15 43 71 100
1.0 15 44 73 103
1.5 24 64 108 153
2.0 48 125 219 312
3.0 417 1102 2045 2951

Table 4.5: 4 x 4 case - f(d)

= ®(dé): Number of iterations needed to achieve
max{F;} < 107" forn =1,2,3,4.
i
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|0 [n=1 n=2 n=3 n=4|

0.5 8 25 41 57
1.0 4 12 20 28
1.5 3 8 13 18
1.8 3 7 11 14
2.0 3 6 9 13
2.2 3 6 9 12
2.3 3 5 8 11
2.5 4 6 10 13
3.0 6 13 35 57

Table 4.6: 4 x 4 case - f(d) = d°: Number of iterations needed to achieve max{F;} <
3
107" forn=1,2,3,4.

[ o [n=1 n=2 n=3 n=4]

0.5 7 24 38 53
1.0 ) 12 18 26
1.5 4 8 12 17
1.7 3 7 10 15
1.9 3 5 9 13
2.0 4 6 9 12
2.1 4 6 9 11
2.3 5 8 12 15
2.5 8 13 19 23

Table 4.7: 4 x 4 case - f(d) = exp{dé}: Number of iterations needed to achieve
max{F;} <107 forn = 1,2, 3,4.
7

| F) 9% n=1 n=2 n=23 n=4]

&(ds) 108 14 42 70 98
d® 2.3 3 5 8 11
exp{dd} | 2.1 4 6 9 11

Table 4.8: 4 x 4 case - Number of iterations for best choices of 4.
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Results for various choices of 6 using F; in place of d;

i & i n=1 n=2 n= n = ;
0.5 6 14 26 39
1.0 4 7 13 19
2.0 2 4 6 8
2.3 2 4 5 7
2.5 2 3 4 6
2.7 2 3 5 7
2.8 2 3 6 9
3.0 2 4 7 11

Table 4.9: 3 x 3 case - f(F

) = ®(Fd): Number of iterations needed to achieve
max{F;} <107 forn =1,2,3,4.
i
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| 6 [n=1 n=2 n=3 n=4]|

05| 10 30 49 69
1.0 6 16 25 35
1.5 4 11 17 23
2.0 4 9 13 18
2.5 3 7 11 15
2.7 3 7 10 14
2.9 3 6 10 13
3.0 3 6 10 12
3.5 3 6 14 24
4.0 3 88 164 242

Table 4.10: 4 x 4 case - f(F) = ®(#§): Number of iterations needed to achieve
max{F;} <107 for n =1,2,3,4.
7



Chapter 5

Equality of Variances of the
Estimates of Two Parametric
Functions

5.1 Introduction

In this chapter, we construct approximate optimal designs which optimize a.
non-standard criterion function. As an example, we take the eriterion as the differ-

ence of the variances of the estimates of two parametric functions.

In fact, if the parametric functions are 78 and 079, then the above optimization
problem is equivalent to minimizing covariance between ¢78 and QTQA, where ¢ = 512—%
and d = %—L’ In many design problems it is desired to estimate certain parameters
or parametric functions independently of others. This can be done by making covari-
ances or correlations between the relevant parameter estimates to zero. Equivalently,
this can be done by finding the optimizing distribution with equal variances of the

estimates of the parametric functions with the above relationship between a, b and ¢,

d.
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This is an example of an optimal regression design problem where we need to obtain
an optimizing probability distribution. Some recent work in this direction are Torsney

and Alahmadi (1995) and Mandal, Torsney and Carriere (2004).

Torsney and Alahmadi (1995} consider constructing designs subject to zero corre-
lations between the estimates of two linear combinations of the parameters. They
consider the case of minimal support designs and transform the constrained opti-
mal design problem to a maximization problem with respect to two or three sets of
weights. Mandal, Torsney and Carriere (2004) consider constructing optimal designs
by maximizing a criterion (D 4- and A-optimality) subject to two constraints. They
solve the problem by transforming the constrained optimization problem to one of

maximizing three functions of the design weights simultaneously.

Here, we do not consider a constrained optimization problem. Rather we take one of
the constraints as our criterion function. Then we optimize that criterion function

subject to the basic constraints p; > 0 Vj and > p; = 1.

To construct the optimizing distribution, we use the multiplicative algorithms (3.2.1),
indexed by a function f(.) which satisfies certain conditions. To improve the conver-

gence rates, we consider some objective choices of the function f{.).

5.2 Formulation of the Optimization Problem

Suppose the two parametric functions we consider are o7 and b’ 8, where a,

be R, We want to find an approximate design (if it exists) such that the variances



of the estimates of the ahove two parametric functions. Let the estimates of a’g and

'8 be _qTé and QTQ respectively.

The variances of each of the above estimates would be:

V(@"d) = a"M ' (p)a

and

V(') ="M ()b

Let us define the function g(p) as:

9(p) = V(d"0) - V(")

= "M p)a— "M (p)b

One possible motivation for the case

gp) ="M ' pya - "M (p)b

arises when we take

¢ = —tr{AM~'(p)AT}, A=, 4]"

(5.2.1)

(5.2.2)



The above choice of g(p) is equivalent to a problem in the case ¢ = —tr{ AM1AT},

If both variances have a common value then tr{AM 1AT} is twice this common

value and hence is minimized when this common value is minimized.

Now consider the function,

¢=G = —g*(n)

= —[a"M ' (p)a—b" M (p)0)? (5.2.4)

Note that the above optimization problem is an example of Problem 1. This can

be done by maximizing G (= —¢?(p)) for appropriate vectors ¢ and b.

Thus, in Problem 1, we maximize ¢(p) = G(p) = —¢*(p) over P = {p = (p1, pa, .-, pi) :

J
p; 20, _lej =1}.
J:

If a maximum value of zero is attained, we obtain the optimizing distribution with

equal variances of aZ§ and 4" 4.
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Now we obtain the partial derivatives:

a5 = 9E _ og(p)- Qg;—f)
= 2[a"M ' (p)a - "M (D) Bi(e" M (p)v;)? — (6" M (p) v,)?

= 20" M7 (p)a - "M (D) bl + B M (p) y;)l(e — b M~1(p) ;]

=2

= 29(p)- [(a+8)"M () v,ll(e — &))" M (p) v} (5.2.5)

Thus, using the definition of directional derivatives, we can obtain the directional

derivatives of G as:

J
Ff =df - pdf (5.2.6)
i==1

5.3 Algorithms

In the case of finding design maximizing the function G(p), that is, finding de-
sign with equal variances of the estimates of a8 and b” 8, we maximize ¢(p) = —G2(p)

subject to p; > 0,3 p; = 1.

For this type of optimization problem, we use algoithm (3.2.1) but with suitable

choice of the argument in f(.). That is, we use the algorithm:

o _ _BOSE)

J J
> o f(z)

f==1
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where a:fir) = dg-r)orﬁ;-(r), and

dn = 2
4 9p5 | pp(r)

J
F = dfi") ~ > pd™ [a directional derivative of G at p = ™),
5

1

We start with the choice of the argument of f(.) by taking the partial derivative
of G = —g*(p), and a suitable choice of the function f (.) which satisfies the required

conditions.

5.4 Examples and Results

We consider the following examples. These examples are defined by their de-

sign spaces.
Example-1:
vy = (1, -1, -1,)"
Y = (1: _1: l)T
v o= (1,1, -1
u = (1,227



Example-2:

Example-3:

Example-4:

S

je2
=

J
b3

1§

IS

EEoE B B OB

2

(1’ '—1: '—1:)T
(1, -1, )7
(11 13 _l)T

(1,2,3)7

(1’ —1: _2: )T
(1, -1, )T
1,1, -7

(1, 2, 2)7

1,1, -1, -7
1, -1, 1, -7
(1, -1, -1, -7
(1,2, 2, -1)7
1,1, -1, D7

(1, —1.5,1, )T

(1, -1, -1, 2)¥

68
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These examples correspond to linear models with a constant term since the first com-

ponent of each vertex (v;) is always 1.

In fact, we can assume the more realistic regression model:

Eylv)=v"8, veV. (5.4.1)

In examples 1-3, the choices of ¢ and b (in which g(p) = 0 is obtained) are:

a = (1,0, )7
é = (1: 03 _l)T
In example 4, the choice of a and b are:
g = (1,00, 1)

Q = (1: 01 0: _1)T

Other choices of g and p in example 4 are:
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(1,0,1, 07

1S
I

1o
i

(1,0, -1, 0)F

We report the performance of algorithm (3.2.1) in calculating the optimizing distribu-
tions for each of the above examples. We take f(.) such that it satisfies the required

conditions.

We first consider the following choices of f{.), taking = d:

f(d) = exp{dd} (5.4.2)
_ exp{dd}
fd) =g - (5.4.3)

In tables 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, 5.11, 5.13, and 5.14, we recorded for
n = 1,2,3,4 the number of iterations needed to achieve mjax{FJ} < 107", where
F; are the vertex directional derivatives of G. In all the cases, we take the initial
design to be pg_o) =17 =1,2,3,4 We also try to improve convergence rates of
the algorithm by using the properties of the directional derivatives of the criterion

function under consideration.

The choice of f(.) plays an important role in the convergence of the algorithm.
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Note that any criterion has both positive and negative directional derivatives. So
the function f(.) needs to be defined for both positive and negative F. Note that
F; = d; — 3 pjd;. Thus 3" p;d; = 0. So, a suitable choice of the function should be

one which is centred at zero and changes reasonably quickly about zero. That is,

FF) = exp{Fé}

1+ exp{Fd} (5.44)

With these in mind, we choose an objective choice of f(.), namely the iteration

results are reported in Tables 5.3, 5.6, 5.9, 5.12, 5.15.
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5.5 Tables: Iteration Results

As we can see, for each example the numbers of iterations needed to achieve
max{F;} < 107" for n = 1,2, 3,4, were small, meaning it converged quickly. We also
J
noticed that for each case of f(d) = ﬁ%% and f(F) = %5}—}, the results were
almost the same.

Each choice of f(.) depends on a free parameter of § which is always positive. For
example-5, having g = (1, 0, 1, 0)7 and b = (1, 0, —1, 0)7, all three f(.)’s achieves
the fastest and best convergence compared to the other examples. Also noted is the

values of G for each case were zero.

Below are the iteration results for different functions of f(.). In examples 1-3, the
choices of g and b are ¢ = (1,0, 1)T and b = (1, 0, —1)7. The results for these

examples are reported in Tables 5.1-5.9.

d [n=1 n=2 n=3 n=4
0.02 7 11 15 15
0.03 5 7 9 11
0.04 3 4 5 6
0.06 5 7 9 11
0.07 7 11 14 17
0.08 13 21 27 33

Table 5.1: Example 1 - f(d) = exp{dd}: Number of iterations needed to achieve
max{F;} < 107" for n = 1,2,3,4.
3



§ |n=1 n=2 n=3 n=4
0.001] 309 518 727 936
0.04 | 7 11 15 19
005 | 6 9 12 14
006 | 5 6 9 11
007 | 4 5 7 9
008 | 3 4 5 6
009 | 2 3 4 5
01 | 3 4 5 6
Table 5.2: Example 1 - f(d) = ;2228

max{F;} <107 for n = 1,2, 3,4.
3
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Number of iterations needed to achieve

) n=1 n=2 n=3 n=4j

[0.000 3
003 | 1

0.05
0.06
0.07
0.08
0.09
0.1

Qo b W YD

4

0.04 7

56
16

B O O -] O

78
22
15

12
9
7
5
4
5

101
27
19
14
11

Dy O Oy

Table 5.3: Example 1 - f(F) = fj%%%}:

max{F;} <107 for n = 1,2,3,4.
J o

Number of iterations needed to achieve



§ |n=1 n=2 n=3 n=4

0.01
0.04
0.05
0.06
0.07
0.09

0.1

S Q0 O O
=1 Gt b B D
W ~J ot S W

74
15
11
7
6
8
11

Table 5.4: Example 2 - f(d) = exp{dé}: Number of iterations needed to achieve
max{F;} <107" for n = 1,2, 3,4.
3

§d |n=1 n=2 n=3 n=4
0.01 152
0.05 27
0.08 6 9 15
0.09 5 8 13
0.1 5 7 9 11
0.11 4 ] 7 9
0.12 4 5 6 8
0.13 3 4 5 6
0.14 2 3 4 5
0.15 3 4 5 6
0.2 5 7 9 12
025 11 17 23 29

Table 5.5: Example 2 - f(d) =
max{F;} 107" for n = 1,2,3,4.
i

Number of iterations needed to achieve




§ In=1 n=2 n=3 n=4|

0.01] 52
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.2

DO Qo T O

85
11
9

=3 = 0Ty -] 00

118
14
12
10

9

7
6
5
9

152
18
15
13
11

9
8
6
12

Table 5.6: Example 2 - f(F) = ﬁ%ﬁ%i

mjax{ﬁ},} <10™ for n=1,2,3,4.

| & [n=1 n=2 n=3 n=4

0.005| 33
0.01 17
0.03 5
0.04 4
0.05 2
0.06 3
0.07 4
0.08 6
0.09 9
0.1 15

&7
28

OO e Wt oo

Y =
[N

80
39
11
7
4
5
8
12
19
32

104
50
14

9
5
6
10

15
24
40
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Number of iterations needed to achieve

Table 5.7: Example 3 - f(d) = exp{dd}: Number of iterations needed to achieve

max{F;} <107 for n = 1,2,3,4.
j
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§ |n=1 n=2 n=3 n=4 _
0.01 33 57 80 104
0.05 6 10 14 17
0.07 4 7 9 11
0.08 4 3 7 9
0.09 3 4 6 7
0.1 3 4 5 6
0.14 4 6 8 10
0.15 5 7 10 12
0.2 19 32 45 58

Table 5.8: Example 3 - f(d) = 1—%—1{%‘%: Number of iterations needed to achieve

max{F;} < 107" for n = 1,2, 3,4.
i

§ |[n=1 n=2 n=3 n=4 ]
0.01 33 b7 80 104
0.05 6 10 14 17
0.08 4 5 7 9
0.09 3 4 6 7
0.1 3 4 5 6
0.13 4 5 7 3
0.15 5 8 10 12
0.2 20 32 44 56

Table 5.9: Example 3 - f(F) = 12252,5 : Number of iterations needed to achieve

max{F;} < 107" for n = 1,2, 3,4.
i ‘
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§ |n=1 n=2 n=3 n=4]
0.001 72 158 245 331
0.005 15 31 47 64
0.01 8 15 23 30
0.02 4 7 10 13
0.03 3 4 6 7
0.04 2 3 4 5
0.05 3 5 7 9
0.06 5 9 13 17
0.07 12 24 37 49
0.08 38 53 69 85
0.09 17 19 20 23

Table 5.10: Example 4 witha = (1,0, 0, 1)T and b = (1, 0, 0, =1)7 - £(d) = ezp{ds}:
Number of iterations needed to achieve max{F;} < 107 for n = 1,2, 3, 4.
J

)

n=1 n=2 n=3 n=4

0.001
0.005
0.01
0.05
0.06
0.07
0.09
0.1

143
29
15

3

QL N W

317 491 665
63 97 131
31 47 64

& 8 10
4 6 7
3 4 5
4 3 7
5 6 9

Table 5.11: Example 4 with g = (1, 0, 0, )T and b = (1, 0, 0, —1)T - f(d) = ~=el®}_

Number of iterations needed to achieve max{F;} < 107" for n = 1,2, 3, 4.
3

1+exp{ds} :



§ |n=1 n=2 n=3 n=4

0.001
0.006
0.01
0.04
0.05
0.06
0.07
0.09
0.1

143

29
4

o QO b QO Qo

317

63

[ R e

491
97
10
10

8

6
4
5
7

665
131
13
13
10
7

5
7
9

Table 5.12: Example 4 with ¢

68

(1,0,0,1)T and b = (1,0, 0, ~1)T - f(F) =
4_%1-?22??;5 : Number of iterations needed to achieve mjax{F},} < 107" for n=1,2,3,4.

) n=1 n=2 n=3 n=4
0.001 1 85 174 264
0.005 1 17 34 51
0.01 1 9 17 25
0.02 1 5 8 11
0.03 1 3 5 6
0.04 1 2 3 4
0.05 1 3 5 7
0.06 1 5 9 12
0.07 1 11 19 29
0.08 1 237 321 405

Table 5.13: Example 4 witha = (1, 0, 1, 0)T and b = (1, 0, —1, 0)T - f(d) = exp{ds}:

Number of iterations needed to achieve max{F;} <107 for n = 1,2, 3,4.
j



§

1 n=2 n=3 n=4

0.001
0.005
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

et el e e el el e b e ]

W BN W R UL O

350

69
34
17
11

U QO B UT O 00

530
105
51
25
16
1

-] TU i T O QO

Table 5.14: Example4 witha = (1, 0, 1, 0)T and b = (1, 0, —1, 0)7 - f(d) =
Number of iterations needed to achieve max{F;} < 107" for n = 1,2, 3, 4.
7

) n=1 n=2 n=3 n=4
0.001 1 350 530
0.005 1 69 105
0.01 1 33 51
0.02 1 9 17 25
0.03 1 6 11 16
0.04 1 5 8 11
0.05 1 4 6 8
0.06 1 3 5 6
0.07 1 2 4 5
0.08 1 2 3 4
0.09 1 3 4 5

0.1 1 3 5 7

Table 5.15: Example 4 with ¢

(1: 0, 1, O)T and b = (1: 0, -1, O)T - f(F)
ﬁ%: Number of iterations needed to achieve mjax{Fj} <107 for n=1,2,3,4.




Chapter 6

Conclusions

6.1 Summary

The application of optimal design theory has become an increasing interest in

the field of statistics.

We considered constructing optimizing distributions with applications in estimation
by exploring a class of multiplicative algorithms, indexed by a function f(.) is pos-

itive and strictly increasing. The function may depend on a free positive parameter §.

First we provided some basic introduction to linear design theory. We also pro-

vided some standard design criteria and discussed their properties.

We discussed optimality conditions. These are based on directional derivatives. We
also discussed the properties of these derivatives and the General Equivalence Theo-

rem.

70



71

We considered a class of multiplicative algorithms:
Y o i £ ()

where a:g-r) = d_g-r)oer(r)

d = 8¢
J ;| pptr)

J
F;_{r) _ dgr) _ Zpgr)d?)-
2
Properties of the algorithms were also discussed.

Then we considered some estimation problems and their properties. For finding opti-
mizing distributions, we considered the problem of determining maximum likelihood
estimates under a hypothesis of marginal homogeneity for data in a square contin-
gency tables. We considered two cases: namely 3 x 3 case and 4 x 4 case. We also

discussed how we improved convergence rates.

We also considered another estimation/design problem of constructing optimizing
distributions with equality of variances of the estimates of two parametric functions
of interest. Here also, we discussed how we improved convergence rates of the algo-
rithm by objectively choosing the function f{.), its argument and the free parameter
é.
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6.2 Future Work

Many design selections for optimal criteria are highly dependent on the ap-
proximation of a response surface model. The model is usually proposed before we
collect data. The optimal design generated by a computer algorithm is only optimal

for that specific proposed model.

However, in many situations, the regression model is not known at the beginning
of the designing stage. In this case, we need to implement a design that is not only
efficient for a model but rather for two or more models that might fit the experiment
to discriminate between them. By selecting the best model, we can proceed with
the optimization techniques. Once the model is selected, it is possible to obtain the
optimal design of the chosen model. We would like to work in this direction, that is,

on model selection.

As we have discussed in Chapter 1, there are many design criteria in the field of
optimal design. The most popular and widely used criteria in computer generated
design experiments is D—optimality. The D—optimality criterion, or determinant cri-
terion, claims that the best set of points in the experiment maximizes the determinant
|XTX|. From a statistical point of view, a D—optimal design leads to response sur-
face models for which the maximum variance of the predicted responses is minimized.
In other words, the points of the experiment will minimize the error in the estimated
coeflicients of the response model. The advantages of this criterion are the use of
irregular shapes and the possibility to include extra design points while the quantita-

tive factors do not depend on the scale of variables. Not only does this criterion use all
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relevant information, it is also invariant under linear transformation of the parameter.

In general, an optimal design will rely on the assumed model with its parameters
and on the chosen optimization criterion. In the beginning, the focus in optimal de-
sign research is on linear models, and later on the developments involved more around
nonlinear models. This is an interesting area to work further. We would like to focus

on working on optimal regression design problems in the future.

6.3 Further Readings

For further study in optimal design theory, with literature on optimality being
vast, a widely popular text is A.C. Atkinson and A.N. Donev, Optimum Ezsperimental
Designs, Oxford University Press, 1992. Other texts include F. Pukelsheim, Optimal
Design of Ezperiments, New York, Wiley, 1993, V. V. Fedorov, Theory of Optimal
Ezperiments, Academic Press, New York and London, 1972 and S. D. Silvey, Optimal
Design, Chapman and Hall, London, 1980.
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