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Abstract

The quest of horv to optimally design experirnents originally extends back to

1918 rvliele Smith ivas one of the first to state a cliter.ion and obtain optirnal designs

for regression ploblems. N4any years later', I(iefer (1959) contr.ibuted tremendously to

this subject rvhich included the equivalence theorern and optimality cr.iteria as I'ell

as the constluction of various optimal designs using aìgorithms.

\4¡e fitst introduce basic linear design theor'¡' and discuss their pr.operties. \Ve

detemiined optirnalit¡. c6tr¿i¡ion. Oased on directional delivatives a.long n'ith the prop-

elties of these derivatives.

This thesis mainly explores corìstructing optirnizing distr.ibutions rvith appli-

cations in estirnation by exploring a class of algorithns, indexed b¡, a function /(.),

il'ltere /(.) is positive and strictly increasing. Tlie function ma)¡ depend on a fiee

positive pal ametel d.

Estimation problems and their ploperties are studied and theil results are re-

ported, nanel¡, fol the 3 x 3 case and 4 x 4 case. We also considel anothel estirnation

ploblem, namel¡., constlucting optimizing distlibutions ri,ith equality of variances of

the estimates of trvo parametric functions of intelest.

This thesis goes furthel by discussing horv rve can irnplove convelgence Ìates

of the algorithui bJ,choosing the fuuction /(.) ald the paratnetet ó..
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Chapter 1-

Optimal Design Theory

1.1 Introduction

Optimal designs originally date back to 1918 rvher.e Srnith's paper.consisted

of mathematical ivork of designed experirnents. hi this paper, she calculated optimal

designs for polynomial leglession rnodels. Xtlanv yeals later, the lext s'ell-knowt indi-

vidual to study optirnal design to gleat lengths was I(iefer. (1959). I(iefer's tr.ernenclous

contlibutions to this subject include his extensi.r,e and funda.rnental rvork on equiva-

lence theorern and optirnality critelia as rvell as the construction of var.ious optimal

designs using algolithms. Well-k¡rorvn soulces that most books cite from in the field

of optirnal design ale Atkinson and Donev (1992), Silvey (1980), Fedolov (1972), and

Pukelsheim (1993).

A rvell-designed experirnent is an essential technique that Irrust be pelfolmed in ordel

to ans{'eÌ ploblems of interest. Expeliments must be conducted and designed in a

plocedure ri,ith statistical methods to collect outcomes in an efficient rvay. The goal

is to leduce expenses, effort and tirne, rvhile tÌying to minimize any randorn elrors

that rnay incur.



Whenevel a ploblem rvith the need of accepting ot'not acceptilg a set of alterna-

tive decisions is encountered, specific experiments thât consist of chosert values or.

levels of outputs to gather obselvations ol rvhicli the decision has to be based must

be designed. These experiments, in some sense, have to be optimun.r to select an

optimum decisiol, thus arising the theoly of optitr.ral exper.imental design.

The focus of this chaptel is to give a descriptiorl of optirnal design theor.y fol lin-

ear models. Plovided are sonle basic concepts of optimal design theorv such as the

definition of a design, r,ariance function, an information matrix, and various cr.iterion

functions and their properties.

Filst, consider the ploblem of selecting an exper.imental design to accommodate in-

formation on models of the type: A - p(1J I î, e, o)

rvhere

y is the lesponse variable.

x : (¡r, :t:2,..., gn)" are the design variables. These values can be chosen by the

experimentel and ale restricted to a. space X, i.e. Ì e X c R-. Thelefore, the

set of experimental conditions ale X. The design space is ¡, although someti¡res

disclete, rvill generall¡' be continuous.

A- (9r,9r,..., 4)t ir a k-dimensional vectol of unknotvn pârârnetels. á is klotvn to

belong to the set I e lRÀ'.



d is a nuisânce paratìÌeter rvhich is fixed but unknol'n. This parameter.is not of

fundamental interest.

p(.) is a probability model.

In rnost cases, X is assurned to be conpact. The exper.irnental conditions fi.om the

given dornain X cal be utterly chosen by the experimenter.

FoÌ every z € X, an expeliment cau be conducted rvhose outcome is a r.a.ndom var.iable

A : A@), rvhere uar(g(¿)) : ø2 assuming a does uot depend on the expelimental

condition q.

In lineal reglession design, the model is linear. in the unknorvn par.arneters @ but

is not necessaril5' lineâÌ in 8. As â result, in linear. rnodels, g(q) has an expected

value of the explicit form:

E(al s, Q, "): Í'@)Q (1.1.1)

t'hele

l(s) : (n(c), h@.), .,,f¡(s))" is a vectol of tu r'eal-valued fiurctions defined on

X, rvhat ale knorvn to the expelimenter before-hand ale the regr.ession functions

Jr, J2) ., Jk

A value fol z rnust ahvays be chosen fr-om ¡ in older to acquire an obser.vation

ol g. It is understood that q can be set to atry chosen value in X. This leads to

the consideration of at ü,hat value of q should observations, sây n, on y be taken
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in order to attain a 'best' inference for all or sorne of the paÌâmetets p. Obtaining

this leliable infelence, or allocating r¿ observations to the elements of X is ter.med an

optirml regression design.

At this tinle, ptesurne that this is point estimation fot the mode of inference. The

plojected solution for this exarnple l'ill liold well for otlìer future modes of inference

as well.

Deciding rvhat z values (Ìr rz, ..., c,,) to produce'best' poirú estitnâtion á of some

or all of the par'âmeters f is sornething to consider..

Let the estirnator É of É be obtained by sorne method of point estimation. Let á

be unbiased fo¡ 9. The componerts dr. ivill be correlated. Debatably then, the À x Æ

nratrix D(4) : E(A- 9)lê- - Q]r) rvÌrich is tlte dispersi,on mattia: of Q abour f, holds

infor'¡lation about the accuracy of @ not only in its diagonal elements, rvìrich rneasur.es

the mean. square deviation of 8, but also in its off-cliagonal cross pr.ocluct deviation

teÌnìs. For the most paÌt, the smaller D(@) gets. the g1.eâter. the accuracy of @.

Considel model 1.1.1 to be tlue and let g¡ replesent the obser.ration obtainecl at

qi lvhere,

E(ù:vTQ, vi:Ut(s), Í,(c), .,.ft (s,))r, i:r,2,...,n (r.1..2)

Suppose gr1, Uz, ..., U, are independent random variables rvith equal var-iance ø2. AIso,

there rvill be sevelal equalities betl'eel the gr's, whele more than one obselvations ale
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being taken at the same q value. Thelefole, 37,'s then satisfy the follorving standard

lineal model:

E(Y) - X Q, D(Y) -- o2 r, (i.1.3)

rvhere

Y : (At, az, ..., a"),

X is an n x /i matrix rvhose (i,j)úÀ elernent is /¡(¿,),

á is a k x 1 vector of unknorvn pararìletets,

o2 is the constânt erLor varialce (usually unknorvn),

1" is the identity matlix of order n,

D(Y) syrnbolizes the dispersion rnatlix of Y.

N,Iodel 1.1.3 can also be lefelred to as a fcerl-eJJects lir.rear rnodeì.

Least squales estimators ale a predictable choice for a model liaving the optimal-

ity of being best linear unbiased estimators (BLUE). Solutions ale of:

(XTX)9_ XTY

rvhele (X"X) is the information matlix fol @ of order ft x Æ.

(1.1.4)

Wren (X"X) gets larger, the infolmation rvill become nore supeLiol in the exper-

iment. If all parametels @ ale of interest, then the selection of g r.mlst at least

substantiate the matlix (X"X) is non-singular'. In this case, the unique solution fol

1.1.4 is given by:

A: (xrx)-r xrY (1.1.5)



E(Ð:0.

D(Q) : o'(x'x)-'

The predicted value of the response at q is,

?@): l'@)â,+ Íz@)âz+...+ k@)ân: f føe

where /(ø) : (/'(q), Ír(s.), .,., Íx(q))'.

As a result, it can be seen that the dispersion matrix of á does not have to depend on

0 and only depends proportionally on the pa.rarneter o2. We select {&t, gz, ,,,,g"n}

to make the matrix D(@) as small as possible. That is, we to select {rt, xz, ..., !,}
which makes the matrix (X"X) large in some sense.

L.2 Discretizing the Design Space

The model 1.1.1 can also be written as:

E(sl a, 0-, o) : f 0.

where

v: ff{a), fz(s.),..., fx(s))r,vev,
y = {u e IRß : q: (Ír(s), fr@.), ..., fx@))r, øe x}.

(1.2.1)
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Choosing a vector r in the design space ¡ is equivalent to choosing a k-vector g

in the closed k-dimensiona.l spa¡e y: /(X), where / is the vector valued function

(h, fz, ..., J¡)". V is the image under / of x and uses an induced design space. Gen-

erall¡ the design space is continuous, but we can assume that )/ is discrete.

Let V, the discrete design space consists of J distinct vectors qlt lzt ,,.t or. To obtain

an observation on gr, we must choose a value for q from the J elements of ) to be the

point at which to take this observation. Using Caratheodory's theorem, this design

space, V is taken to be discrete, suggesting that it can be done without error.

At what points gj should observatioru be taken and, if the total observations a¡e

allowed, how many of these observations cân be taken at these points in order to

obtain 'best' least squa.res estimators of É? With this in mind, the design problem

can be expressed exactly,

With n observations, we have to decide how many observations, say n¡ to take at
J

U¡, D n¡ : r¿. With this in mind, the matrix (X"X) can be rvritten in the following

form:

XrX : M(n), L: (&t, Lz, .,., L¡)r

where
J

Mh\:Yn,u,uT
j:r

:VNVl'

and 7 : lh, uz, ..., url, N : diag(n1, n2, ..., n¡).

(r.2.2)
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By choosing Z now, we can make the matrix M(2) Iarge. Since n¡,s must be in-

tegers it triggers an integer programming problem and in the design context it is

described as an eract d,esign problem.

Integer programming problems are generally tedious to solve mainly because the

theory of calculus ca¡rnot be used to define of or to identify optimal solutions. There-

fore, a solution has to be worked out completely sepa.rately for different values of r¿.

However, there is a simpler way to solve the problem. We can w¡ite the information

ma,trix a.s:

where

tø(s'): nU(7t)

J
tø(p):De¡p¡4

:VPÍF,

(1.2.3)

(1..2.4)

(1.2.5)

and P : d,iagQt1, p2,..., p.¡); where pj : + is the proportion of observations taken
J

at qj, so that p¡ > 0, Dp¡ : 1; and p : (pr p2,..., p¡) represents the resultant

distribution on z.

Hence, choosing p to make M (p) la¡€:e subject to ?j : I becomes our new prob-

lem. Relaxing the latter to pj > 0 *d É p¡ : 1 generates aL o,pprodmate d,esi,gn

problem. Indeed, this is a more flexible problem to solve and visibly not much differ-

ent from the original.



Design Measure:

Previously rve have referled to p as both the vector' (pt, pt, ..., p.¡) and as a probability

distributior on )r. A full statenent of this could possibly be:

o-[ "' 12 "' 8t I
\ ;,,-;,, ,-;, J 

(12 6)

rvhere

z¡'s are the values of the factors, that is, the design points. p¡'s are the associated
J

design rveiglrts, Ðp¡ : L and 0 ( p¡ < 1 for all j.
j=t

A more suitable and less confusing notation is:

ll
€: { 

8t Qz .", et 
| 1t.z.r¡

I nt, nz, ..., pt )
rvith { defined to be the design rneasure.

Exact designs have a specific numbel of trails, 4. The design measures for an ex-

act design is rvÌitten as:

€=f ., 12....8¡ It+,+',+J
rvhere

n¡ is tlre itrteget nutnber of trials at r¡ anð,fl-rn¡ : n.

(1.2.8)
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Support of a Design Measure:

The support of a design measure (p) in V is defrned by:

supp(p) : {u¡ e V : p¡ > 0, i, : 1,2, ..., J}

That is, szpp(p) is the collection of those tr¡ which has nor.-zero pj.

(1.2.e)

1.3 OptimalityCriteria

By making the m afitx M (p) Iarge, it may be possible to obtain a best inference

for all or some of the unl<nown parameterc € e O. Therefore, to make the matrix

M Qt) larye, that is to say, by maximizing some real valued function /(p) : rþ{¡ut (p)},

va¡ious methods a¡e considered.

There are many design criteria and they a,re mostly labeled after the letters of the

alphabet. These criteria a¡e sometimes called alphabeti,c opti,mality. The function /
is identified as the criterion function. A criterion defined by the function þ is called

foptimalíty. A design maximizing /(p) is called a foptimal design. There are two

types of criteria. One type is when'a.ll' the pa.rameters in the model a¡e of interest

and the other is when 'not all' fr pa,rameters a¡e of interest.

Consider the case when interest is in inference about all of the parameters d. There-

fore, we must have M(p) * non-singu1a.r, and thus positive definite. TVhen all

parameters axe of interest, then there a¡e several possible criteria which include:
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D-optimality, .z{-optimality, and G-optimalit¡'. N4andal (2000) exterÌsivel), re-

searcl:ed orì lìrâlì)' of tìrese cliteria,

D-optimality

The most important and populal design criter.ion in applications is tltat

of D-optirnality. D-optimality seeks to maxirnize tlìe \,âlue of lX?Xl, the d+

teÌÌìinant of the infolmation matÌix XrX. D -optimality lesults in minimizing the

gener'ãlized variance of the estirnates of the parânìeteÌ based on a ple-specified model.

This criterion is also knorvn as the determinant cliter.ion. The cliterion function of

D-optirnality is given bv:

ó n(p) : rþ o{A[ (p) ] : log det{,41þ) } : - los det{¡,1-1 (p) } (1.3.1)

Other motivations fol D-optirlality exist, and they extend s,ay beyond ideas ofpoint

estimation and all fall ilto the field of explicit joint infererce. If rve assurle nolmality

of the erlols in linear models, then the genelal folrn of the joint confidence regiou for

the vectols of unknorvn parameters p e O is described by an ellipsoid of the for.m:

{Q, @- ø"@- A) < c)}, fol some clitical value c (1.3.2)

whele É is the least squâres estinates or the maximurn likelihood estimate of 4.

The D-optilttalit), cliterion chooses the infolmâtion matrix M(p) to make the vol-

ume of the above ellipsoid as small as possible because this volume is plopoltionaì
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to [det{I,r(2)}]- t/2. The value of llogdet{n{þ)}l is finite if and onlf if ,VI (p) is non-

singular, meâning lvhen âll the unknorvn pâr.âmeters aÌe estinìàble. See l(eifer. (1g59),

Fanell et al. (1967), Fedolov (1972), Silvey (1980), Pazrnan (1986), Shah and Sinha

(1989), Atkinson and Donev (1992), Pukelsheim (1993). il,Ianclal (2000) considered

the constluction of D-optirnal designs il a val.iety of exarnples. This is the lnost

extensively studied of all the design clitelia.

á-optimalitv

A-optimality is defined by the follori'ing ct'itelion function:

ó.¿(tt) : +t,¡{I,I(p)} : -Trace{À,[ 
t(p)} (1.3.3)

A-optimality minirnizes the tlace of the inverse of the inforrnation matr.ix. It nin-

imizes the sum (ol the averages) of the variances of the pararneter estimates based

on a pre-specified n.rodel, but does not take colt'elations betl'een these estimates into

account. A-optimurn design is also knot'n as trace a,itet ion. This cr.itelion rvas

considered by Elfving (1952) and Chernofl (1953).

G-optimality

G-optimality seeks to n.ìininize the maxirnum plediction vaÌiance ovel

â specified set of design points. Thât is to sa¡,, it milimizes the tlaxirnum value of

{ lvl-t (Iùy which is plopoltional to the variance ofu"d. Kiefel ancì \\¡olforvitz (1960)

ploved the equivâlence of this clitelion I'ith the D-optimal critelion.



The critelion function for G-optimality is defined by

óc(ù : rþc{A,I(p)} : -ÌrÈâJ:!r¡,/ l(p)q (1.3.4)

Norv consider the case rvhen interest is not in all rb parametels, but only in sorne

of the unknorvn pat'âmeters or sorle combinations of the pararnetels of the linear

model 1.1.1.

Say rve are intelested in s linear combinations ofthe par.ameter s 0t, 02, ...,9¡, namely

those s linear combinations rvhich are elernents of the vector a : A0. rvhere á is a

s x À matrix of rank s ( /r.

If tll(2) is non-singular', then the valiance matr.ix of the least squares estinator. of

A@ is propoltional to the nattix AÀ4- (p),4?. Hot'ever., if luI (p) is silgular, then the

basic lequirernent for estimating the vectol a: A9 is that the rotv space of á is in

tlre range space of .rì,I(p) rvhich iesults in the invariance of the matr.ix AA,t (p) AT Lo

tlre choice of generalized inverse ,41-(p) of X,I(p).

A good design in this case rvould be one thât makes the matrix ,4,4,1 (p),4r (ot

AM-l(p)Ar if M(p) is non-singular') as sniall as possible. Criteria include D¡-,
Ds- and Linear (l-) optimality.



D¡-optimality

D¡-optirnality is used rvhen we ar.e interested in s linear combinations

of d, that is, the elernents of the vector ArA. ß XTX is non-singular, this criterion

maximizes tlre determinalt of lAr (Xr X)-t Al-t .

The criterion function is given by:

ón 
"(p) 

: tÞ n 
"{M 1p¡¡ : - losdet{AM-' (p) A'} (1.3.5)

Consider the speciaì case of D1-optimality, which is Ds-optimality.

Ds-optimality is used when we axe interested in s parâmeters A : lls I O] and we

pârtition the matrix M(p) as follows:

(1.3.6)

Using algebra we can express the mafi:x (AM-r(p)ár¡-t * (Mlr- MnM;z|Mï)

[see Rhode (i965) and Torsney (1981)]. Our design criterion becomes tha.t ofselecting

p to maximize the determina¡rt of this matrix. So maximizing þ.ao in this case is

equivalent to maximizing:
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óo"(p): logdet{M11 - MeMntMl} (1.3.7)

which is known as the De-optimal criterion. See Karlin and Studden (1g66), Atwood

(1969), Silvey and Titterington (1973) and Silvey (1980).

Linear Optimality

Let .L be a systematic and positive definite ,k x fr matrix of coefficients.

The fu¡ction for .L-optimality is deûned as:

ót (p) : tþt {M (p)} : -Trace{M-1(gt) L} (1,3.8)

It is linear in the elements of the covariance ma..rrx M-|Qt). There is a relationship

between tr-optimum and D¡-optimum designs. In D¡-optimality, the determinant

rather than the trace of A(Xr X)-t AT is minimized. The form that stressed this re-

lationship is s/hen.¿ is of rank s<le. L is expressed as L: ATA, where,4 ís a s x,k

matrix with rank s.

Then the criterion functíon 1.3.8 can be defined as:

óilp) : -Trace{M" (p) L} : -Trace{M-r (p) A' A} : -Trace{.tM-t Q)Ar}
(1.3.e)

There is a special case of .L-optimality when .4 is a colrunn vector. This special case

is called c-optimality, which minimizes the va¡iance of a linear combination 4á,
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Thus, tlre design critelion rvill be rninirnizing { {^,1(p)}-r c. An itlportant refer.ence

of this criterion is Elfving (1952).



Chapter 2

Optimi zation Problems and
Optimality Conditions

2.L Introduction

Filst, s'e detelrnine optimality conditions fbr rvhich 2- rvill be optimal for an

optimization problern in this chaptet. \\/e detelmine optilnality conditions in teuns of

point to point directioual derivatives. Then rve consideL sorne optirnization problems

in estinratious. The dilectional derirative F6{p, q} on a critelion function þ(.) at 2 in

the direction of q is an impoÌtânt tool. Tltis has a significant sirnplifying role in the

calculus of optilrizatior.

Fit'st considel a class of optiniization ploblems ilt ivhich rve rvish to find an opti-

mizing distribution. Palticulal examples ale optirlal legression, maximur¡ likelihood

estimatiotl, stratified sampling and image plocessing problems.
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2.2 Optimization Problems

Consider the follorving ploblems.

Problem 1

N,faximize the criterion /(p) over P: {p: (pr, p", ..., pt)
J

z¡ ) 0, !p¡:1)

Having the equalitJ¡ constraint t?,
J

geneÌate constlaint optimization ploblem,

bounded cot¡'ex set.

Problem 2

: 1 presents the problem of a uonde-

the full constraint regiou being a closed

N,Iaximize iÞ(á) over O - {0 : (0\,02,...,0¡) : 0¡ > 0,C0 : a} r'hele C is a

s x , rnâtrix of rank s, and ¿ is in the range space of C.

As rve can see, Ploblern 2 is a generalized for.m of Pr.oblem 1. One occur-

rence of Problem 2 alises rvhen testing the linear h¡'pothesis al¡out the parameters in

multiromial models fol categorical data. These pal..aììeter.s are pr.obabilities so that

the constrâint Cd: a rnust eithel include as a colrpotìent tlìat l"d - 1, tvher.e 1is a

vectol of 1's, ol ploclaim that various subsets of the components of d should sum to

unity. We rvill considel al example of such linear h¡pothesis in Chapter. 4.
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2.3 Directional Derivatives

In ordel to maxirlize a critetion @(p), rve need to char.acterize optirnality con-

ditions on p. We define optirnality conditions in ter.ms of point to point dir.ectional

delivatives.

Let

s(p, s, €,) : ó{(1 - e)p + eq}

F^[n. o\ :,.,,, g(p, q, e) - d(p) _ dsØ,s,e)l
'etr"vr -"iä € - d, l,_"_

(2.3.1)

(2.3.2)

FO{p, q} is called the directional delivative of /(.) at p in the direction of q as stated

by Whittle (1973). This derivative carì exist even if /(.) is not differentiable.

2.4 Properties of Fa{p, q}

Some general propelties of the directional deli.r'ative F¿{p, S} ar.e as follorvs.

Ploperty 1:

If p,q e S, r4rele,9 is a convex set, then {(1 - €)p+ €q} e,9 folall 0 < e < 1. This

rvould be an advantage if one l'ishes F¿{p, q} only for' ¡r, q e 5

Property 2:

Fø{p, q} 2 ó(q) - ó(p) if /(.) is conca'e.
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Proof:

Fa{p,q}: ,, ,d{(1 - e)1t+ eq} - þ(p),ïi#r . I

,.,,,,(1 - e)d(p) + ed(q) - d(p),
elo' t '

ô(q) - ë(p) (2.4.r)

Up to this point, any assumptions aì:out differ.entiability of the cr.iter.ion function þ

has not been made. A function does not Ìrave to be differentiable at a point p in order.

to have rvell defined directional delivatives in all dir.ections.

Despite that, t'hen the critelion function / is diffelertiable, it plays a r.ital sirnplify-

ing role in the optimization of þ. lvlandal (2000) studied the proper.ties of F6{p, q}

extensively.

Have in rnind that at point p, þ(.) should be smoothly changing in all dilections.

A more plecise definition is that at point 2, tlte þ(.)-sulface should just touch or

possibly cross in parallel a unique lineal hyper'1lale, the tângent plale to @(.) at

p, ol the suppolting þpelplane at.¡r if the ts,o sulfaces do not cross. This ¡rlane

rvill provide a linear- apploximation to /(.) at p in anv clirection, so that the lineal

approxinration to þ(.) at p rvhich it suggests in the direction of q and in tlte opposite

dilection rvill be the same âpâ.r't fioli a diflerence in sign.
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If trvo surfaces occul at the sâme time, tìrey ivill obviously have some cornmon charac-

telistics at the point of contrâst p. They rnust have cornrlon first derivatives, partial,

or directional delivatives, and hence rvhatever properties ar.e enjoyed by the cleliva-

tives of one function at p, must be enjoyed by those of the otl.rer function.

For'@(.) to be diflerelìtiable at 2, it must be that

Folp,,r] : (q - p)'*: (q - p)rd for. alt q
¿)p

J

- Dtn,*p¡)d¡, d¡:ff, ,-1,..J, d:P Q.4.2)
¡:l aP¡ ul)

hr Problem l, I'hen p € P rve have,

Fo{p,"¡} : O, -f,o,O,:4, say. (2.4.g)
i=l

!\¡e call 4 a vertex directional delivative of /.

2.5 Optimality Conditions: The General
Equivalence Theorem

The Genelal Equivalence Theolem is the centlal development on the theory

of optiurum design of experin.rents of l'hich it depends upon.
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This theorem can be seen as an applicatio. of the lesult rvhere the der.ivatives ar.e

zero at a minilr.ru¡n of a function. I(eep in mind that the functio' depends on the

rneasure p tlirougli the infor.mation liatr.ix r1,l(7:).

Recall the derivative of /(.) in the direction of g is

Fø{p,s}:lr:4l9ï-zì:_4(p)

In optimal desigl, the main concem is to rninimize the convex functiol ry'{,41(2)} by

using tlre dilectional delivative of Fa{p,q} in the direction of q.

D-optinrality is an example in rvhich rþ"{^,t(p)}: log det{,4,1-1(p)} is mi¡irnized so

tliat the determinant of the infolmation matr.ix, M(¡r), is maximized. By taking the

Iogalithm of the deterrninâ,nt it leads to minimization of a convex function. Thus, the

Genelal Equivalence Theorem can be 
'ie*'ed 

as an aPplicatio. of the l.esult that the

detivatires åte zero at a minimurn of a fiurction, Nonetheless, the functiol depends

on the measure p through the ilfor.mation natr.ix À/(7:). Let the lleasur.e ! put unit

rnass at tlìe point c and let the neasru.e 2' be given by,

p':(r-o)p+ctq
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Then,

Ir 0)') : (I - a) A,I (1t) + a I,I (7t)

Thus, the derivative of / in the direction of p is,

(2.5.1)

The Genelal Equivalence Theolem states the equivalence of the follorving three con-

ditions on 2*: [Atkinson and Donev (1992)]

(i) the design p* rninimizes ,þ{¡,t (p)};

(2) the minimuni of A(p) > 0;

(3) the derivative A(p) achieves its minimum at tlìe points of design.

This theorem is very important in the theoi-y of optirnal design. Accolcling to this

theorem, it plovides methods fol the constluction and checking of optimum designs.

Oul ploblem is maximizing a cliterion /(2) in Probleni 1. We l'r'ite the optirnality

conditions in teuls of this problern:
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If S: P, /(p) is concave on P and p* is a diflerentiable point of þ(.) on p, then px

maxirnizes ó(.) on P iff

In ter'¡ns of directioral derivatives Fi,

when ?4 > 0

\dìen p; : 0

the optirnality conclitions ale:

rvhen pj > 0

rvhen pj : g

J ^,oQ s- -d@
apj u,=r''' opi

4.{,raö
apj - ?" opi

(2.5.3)

(2.5.4)

(2.5.5)

(2.5.6)

ry:0
<0

General equivalence theolem plays ân impol.tant r.ole irr constructing optimal designs.

It specifies a finite set of optimality conditions. It is easy to check rvhether.ol not these

conditions are satisfied by a postulated solution obtained by numelical techniques. We

use these optimality conditio¡ts to consttuct the optimizing distributious in Chapters

4 and 5.



Chapter 3

Algorithms

3.1- Introduction

It is typicall¡. not possible to e\,aluate an explicit solution p* to optirnal de-

signs. An analytic soh:tion to the problem of folrning optimal designs is possible

only in sirlple cases. Genelally, it is not possible to eraluate an exact solution p*

to Problern 1 a.nd 2 ol to derive an optimal regression design explicitly. IteÌative

techniques must be needed and consequently, celtain algorithrns have been devised

for a constrailed optimization ploblem (particularly for the design pr.oblem) rvhich

lequires the calculation of an optimizing probabilitS, distribution.

It can be seen that there always exists al optimal measule rvith finite support

(Caratheodory's Theoren). \A/e rvish to identify an optirnizing p*. Of course, this

ivill be the case if V is a discretization of a continuous space. The implication of this

is that at the optimum there rvill be zero rveiglrts. Hence, r'e considel the follorving

class of algolithrns, indexed bJ, a function rvhich depends on derivâtives and one or'

tnole fi ee paÌameters.
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An algolithrn for an optirnization ploblem is a sequence of successive ap¡rloxima-

tio¡rs to a solution p*. First, ü'e mâke aü i¡itial guess pQ) to p* and tr.¡' by some

rneans to delive fi'om p(0), an imploved apploximation p(t). Th"n by the same means

a fulther implovement ?(2) is delived flom p(t) a¡{ 11,e carry o¡ this rva¡,. A ss-

euence p(0),2(1),... is thus genelated in the belief thât the sequence rvill conver.ge to

the optirnum p*.

3.2 A Class of Algorithms

Problern 1 contains a unique set of constraints, specifically the valiablespl, p\ ..., pJ

must be nonnegative and add up to 1. An itelation t4rich neatl¡' submits to these

and has some suitable propelties is the rnultiplicative algoritlitl:

-(r+1) It:'\ Í(,:'))t;-":ffi (321)

,,,lrer" 
"(' 

) : d ') 
6¡ p!'') 

, ""0.¡tr) ao I

r op¡ lp=pt,)

F;') : d!') - L t l'') alt [a clilectional derivative of þ at p : pt')],

tlie functiol /(c) satisfies the follorving conditions:

(i) /(r) is positi ve;

(ii) /(:r-) is stlictl¡' ircleasing in.r.
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/(ø) rnay depend on one or nloÌe free pararnetels. \Ve use only one free paLame-

tel d. The value of d is positive.

Therefore, as a result of the conditions for (local) optimâlit)., a solutiol to pr.ob-

lern 1 is a fixed point of the iter.ation ald the partial del.ivatives (d¡) sha;:e â, corrrnroÌr

value. This is a necessar¡, but not a suflicient coldition for p(D to soh'e problem l.

Torsney (1977) first ploposed this type of iteration, taking r : d, lkt): dá, r,r,ith

6 > 0. This requires delivatives to be positive. Follol'ing enipilical stuclies i¡cl¡cle

Silvey, Titterington and Torsney (1978), ivhich is a study of the choice of ó' ri4ren

f (d.) : d6, ô > 0; Tolsney (1988), r'hich mainly consider.s f(I) : exp{d6} in a

valiety of applications, for rvhich one cr.iteriol /(.) could have negatir.e der.ivatives.

,Iandal and Torsne¡' (2000) considers s),stematic choices of /(.). Tor.sney ancl Alah-

madi (1992) explore other choices of /(.). \rtandal (2000) uses this algorithm in a

variety of problens. Tolsney and trIandal (2001) and \4anda.l et al. (2004) use tliis

algolithn fol constrained optirnization ploblenrs. 4aldal ancl Tor.sley (2004) con-

sidered a clustering appÌoach to irnpr.ove the conver.gence rates consider-abl¡r

Titte::ington (1976) describes a proof of monotonicity of /(d) : ¿l in the case of

D-optirnality. Tolsney (1983) explores monotonicity of par.ticular values of ô fol par-

ticular /(p). Tolsney (1983) also establishes a suflicieut conclition for rronotonicity of

l kl) : d0, 6 : 1./(t + 1) s4ren the criter.ion q(7) is hornogeneous of cleglee -¿, ¿ > 0

t'ith positive derivatives and plo\¡es this condition to hold in the case of linear design

criteria such as c-optimâl aud A-optimal clitelia rvhen f : 1 so that d : 1/2. In other
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cases the value ô: 1 can be shou'n to yield an EN4 algor-ithm u4rich is knoq,n to be

monotonic ald convergent. See Dempster.et al (1977). The EN'I algor.ithm is knor,i,n

to have slorv conveÌgence.

Convergence lesults depeld on propetties of the cr.iterion furction þ(.), on the fì¡tc-

tion /(.) and on ó. I¡t the latel chapters rve have tr.ied to expìor.e var.iety of choices

of /(.) and of its argument for constructing optirnal designs rvith applicatior.rs in es-

tirnation. In Chapter 4 we considel the ploblern of deter.rlining maximum likelihood

estimates undel a þpothesis of of narginal homogeneity for. data in a squale con-

tingenc¡' table. ht Cliapter 5 $'e consider the pr.oblem of finding optimal design rvith

equalit¡' of variances of the estimates of trvo linear paÌanettic fulctions. We use

N,Iinitab statistical package for the proglarnming pulposes and for the r.unning of the

aìgolithn in Chapters 4 and 5.

3.3 Properties of the Iteration

Under the conditions imposed on /(.), iterations under (3.2.1) possess the follos.

ing plopelties considered by Torsney (1988), Tolsney ancl Alahmadi (1992), L,Iandal

(2000) and Nfandal and Tolsney (2000).

Propelty 1: 2(') i. alrvays feasible.

Ploperty 2: F6{p0)., p(' +t)} > 0 rvith equality *'hen the di's colresponding to

nonzelo 2j's have a colrmoll value, d, in n'hich câse Jj : d¡ : d ot

x¡ : F¡ :0 and so, rvith ø : d or' 0,



-(r- r) n'j) ltr) pt" Í(r) .(r)t,j : J _ ________j__- _tlj

Dtl,,Í(*,) "f(,) Dp!,)
i=l i=l

Considel the case c¡ : dr.

The inequality property can be seen by letting a positive r.aldom raliable D

take tlre value ff rvith probability p¡ (p1 -- {')).

Then

Fó{r)o), p(,+Ð}: Cou[D, f (D)]lEIf @)l

Ploof:

Fó{p(ù,r)þ'+Ð} - tipþ +r) - p(1)lr d

! ÞÍ'*') -zj')1a,

JJ

!zi'*'ra, -lnl'')a,
J
Dp,Í(d¡)4 r
i=1

J -) P¡d¡

Dp,f kI,) i=r

(3.3.1)

(3.3.2)

(3.3.3)

JJJ
lD p, Í (d,) d,l - lD p¡d ¡llD p, I @,))
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The covariance betrveen D and /(D) must be nonnegative if /(D) is increasing in

D. Thus an increase in the clitelion can be obtained by a paltial but possibly not

a full step flom p(Ð in the directio¡ of ?r('+1).

Property 3: Under the above iteration supp(p(t +1)) C supp(;p(t')), but rveiglrts can

cotìverge to zero.

Propelty 4: An iterate Z(') is a fixed point of the itelation if tlìe derivatives ãþ
corresponding to nonzeto pj') are aU equal. Equivalently if tlie

conesponcìing veltex directional clerivatives 4(') u.u ,.ro. Tliis is a

necessary but not a sufficient condition for' p(') ¿o solve Ploblem l.

Thele are othel algorithms fol finding optiniizing distlibutions. These var¡' i¡ ¿1-

tribute. Sorne ale simple computationally. Sorne ale highl¡'efficient ì:ut heavy in

computatior.

Vertex direction algolitlims s'ele first proposed by Fedorov (i972) and Wyln (1972).

These ale useful rvhel many t'eights (p¡) a.e zero at the optinrum. When all ri'eiglrts

(p3) are positive at the optimurn or rvhen it has l¡een found l'hich ar.e positive, con-

strained steepest ascent or Nervton type iterations may be appropliate. [see Wu

(1978) ancl Ats'ood (1976, 1980)l
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Each algolithm has advantages and disadvantages dependiug on the optimization

ploblem under considelation. We use the above rnultiplicative algorithur for con-

stlucting optimizing distributions. As mentioned earlier., this algorithr:.r neatly sub-

mits to our' ¡rroblems of intelest. AIso, the per.for.mance of the algor.ithln is iuvestigated

in finding one optimizing distril¡ution fol each problern. We inipr.ove tlte conver.gence

râtes of the algolithm by subjectively choosing the function /(.) and the free pa-

lameter' ô. Convergence rates also \¡aly according to the choice of the argument of

/( ).



Chapter 4

Optimization Problems in
Estimation

4.L Introduction

In Chapter 2, rve considered Problenis 1 and 2 ri'hich are examples of uore

problems in statistics r4lich call on the calculations of o'e or many optiniizi'g dis-

tlibutions or rneâsures.

Take into colnidelation thlee exanples of Pr.oblem 1:

Example 1: One of the elernental.y examples is that of finding the

r:- axiurum likelihood estiruatols of the probabilities of a rnultinonial

likelihood

ó(p) : c(x)pi'pi' . . p"t' (4.1.1)

J
It is ivell knorvn that the optirnulì choice of p¡ ¡" ü : I , ¡z : D ,¡.j=1
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Example 2: Estirnating the mixing pâranretets (pr.obabilities) of a mixtule

distribution given data \,!2, ..., !,, is another example. This rvill or.iginate

wherì the componerÌt plobabilit¡' models /i(g) of the mixtur.e are themselves

ftee of any unknown palaneters, this s'ould produce the likelihood function.

(4.r.2)

A useful text on this is Titterington, Srnith ancl \,Iakov (1985). Other. r.eferences

include Smith and Nlakov (1978), Dernpster, Laird and Rubin (1977).

Properties of Examples 1 and 2:

(i) Since independence is a cornrlon assumption in lhe for.mulation of pr.obability

nodels, the two functions are all hornogeneous,

(ii) The functions have positive delivatives as is

obvious fi'om the follorving lespective expressions for' ff:
Exanrole L: 9! - a(n\llll

' opJ r 'tpj r

dþ) : lI {i,,r,u,,}

Exa'rpre z, ff_óØ)ll#å]

(iii) In some ilstances the functions ate concave.
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With Propelt¡' (iii), it ensures tlìe existence of a unique maximurn u4tile

ploperties (i) and (ii) are useful in the formulation of an aìgorithn.

Norv rve considel the ploblern of determining maxinum likelihood estimates under

the þpothesis of rnalginal homogeneity for data in a square rz x n contingency table,

Torsney (1988) wâs tlìe first to consider this pr.oblern. ,Iandal and Torsney (2000)

also considers a standaldized ver.sion of tliis ploblem.

Given observed frequelcies, Oi¡, i: l, 2, ..., n, j :1,2, ..., ¿ ancl assu¡ri¡g a single

multinomial distlibution conclitional on fU : ! f O,r, .,r,irl., p,, being cell pr.obabili-
t=l j=l

ties, we wânt to solve the follorving version of Problen 1. The likelihood fuuction is
nn

proportional to D D O¡¡ In(p¿¡).
i:t j:t

Ivlaxirnize ,þ(ù : D I O¡¡ In(p¡¡) subject to
¿:1j:1

The lattel conditions are the conditions for margilal homogeneit¡'. We cau make

some sinpliflcation of tlle ploblern in vien' of tlie fact that at the solution

n,, -f i - r'2' "" t¡,

and also that one of the lineal constrailts, e.g. that corresponding to r. : r¿, can be

P¡¡ > 0,i : 1, 2, . 
' 
n' i :1' 2, ..., n,

ÐDp,¡ - t,

Dp,¡ : Dp¡'rot r : 1,2, ., tt"



taken arva¡' since they ale linearly dependent.

Let us look at the case n : 3, i.e. a 3 x 3 contingenc)¡ table.

4.2 3x3 Case - Maximum Likelihood Estimation

Fol sinrplicit¡', Iet (u1, u,2,us,ua, rú5, u6) : (On,Oy,Ozs,Ozr, Ors, O¡z) and

(x:rt lr2, :c3,.c4, i¿5,4) : (Ep,831,823,821, Es,832), rvhere -Ð¡3 : Npr¡, i.:1-,2,3,
j : 1,2,3 and thelefole ale expected fiequencies.

Hence, oul ploblern in telms of ¿i's and ?¿,'s is norv just simply,

6

Maxitnize ,þ(r): Ð"r ln(z¿) subject to
t=1

¿-¿ à 0, f :I,2,...,6,

D', : ¡: (/f - Io,,), (4.2.r)
t=1 i=l

!\-Ìz-¿¿i¿¡:0,

-¿rf¿3*c¿-26:Q.



Jtl

Last trvo equations cone fLom the niarginal homogeneit¡' conditions. Actually ther.e

are thlee equatiol'ìs fionr this conditiol. Horvever', u'e can consider. the above tlo
equations because tluee equations together become linear.ly clependent.

Fol a sta.ndardized version of this problem, it can be given ìt¡, the tr.ansformation

z¿ : ff. Accordingl¡,,

tþ: +¡("):lu¡tn(2,) + !r¿tz(ü)
tt

rvhele !zr - l.
t

Tlrus our ploblem is to rnaxirnize tþ(z) : \u¡ln(zt) subject to
t

(4.2.2)

We can also rvrite as:

z¡ ) 0, t:1,2,...,6,

6

Dr, - t \4.2.3)

zr-22-Ztlzt:0,

-),-L2^-L>,-t^-(\

¿e Z : {z : ¿ € JR6,z¿ > 0,t - I,2,...,6,C2: S}



where C :
111111
1-1 0-1 10
-1 0110-l

and¿:

This is a convex polJ'gon The vertices are given b¡

3\: (1/2,0,0, 1.12,0, qr

u": (0. I/2.0. 0. 1/2. 0)"

u" : (0. 0. t /2. 0. 0. \ /2\r

u., : (1/3. | /3. I /3. 0. 0. 0)1

u. : 10. 0. 0. I /3. r /3. 1/3\r

Non' rve can solve a siliilar version of Pr.oblem i $,ith J : 5. AIso z - ErIG(y)] =
565

Eo{p} : Ðp;s; (As c(y) : y) and þ(p) : D.ta tn{D-p¡(s¡),} *,1l"r. (!¡)t: ttt,j-I i:I i=r
element of g,.

LeL V : (p.r,y", .. ,W). It can be shorvn that tlie partial der.ivatives are:

lil

. ¿)ód;:-.--:u.u' dpi -r- (4.2.4)
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$'here g¿ : (wt, w2,..., r¿o)", w¡ : T, i : I,2,...,6

Hence, in vectol notation:

d :4 - v',u.-dp

Norv, from the definition of directional derivatives, the veltex dir.ectional der.ivatives

are given by

Thus, in vector notation:

F.: oþ -r-"'¿'r apj ?_r"'0p,
: d.¡ - prd

: d¡ - If l/rw

(4.2.5)

F:d-prVru.

Norv rve apply the aboiæ optirnization ploblem to an example. For an intelest in

the h¡pothesis of matginal homogeneity, look at a specific exarl¡rle of data in Placket

(1974). A grading of the unaided distance vision of each e¡'e of 7477 tomer had the

follos'ing fi'equencies:

(op, ot, ozs, ozt, oß, osz) - (266, 153, 5r0, 234, 750, 444), b : 1757.
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lVe use algorithrn (3.2.1) to find the optirnizing distribution. Using algor.ithni (3.2.1),

s'e recold for n : 1, 2, 3, 4 the number. of iteratior.rs leecled to achieve lrax{.{ } <

10-", for n : 7,2,3,4 stâÌting fÌom equal initial I'eiglits 2j0) :11J, j : 7,2, ..., J,

rvliere -Q a.r e the veltex dilectional derivatives. Refer. to $4.4 for. tables of lesults

conputed fol various choices of /(.) and d.

Table 4.4 shorvs the nutnbeÌs of iterations fol the best choices of 6 (i.e. achieving

fastest convergence) for each of /(.).

The lesults cleall¡' s11611' that tlie numbels of iter.ations depend on the clioice of /(.).
Itr oul case, f @.) - d.o and /(d) : erp{d6} are betteÌ.

4.3 4x4 Case- Maximum Likelihood Estimation

Norv rve considel 4 x 4 contingency table. The procedule is the sarre as t'ith

the3x3case.

In 4 x 4 case, oul ploblern is to naximize ô(p) : if, Or¡ tnlp,¡l subject to
ì=1i:t

?¿¡ > 0'i : 7,2,3,4, i : 1,2,3,4

,t4

DDr,'r: r; (4.3.1)
i=l i=,1

Pp I Pn I Pu - ?zt - Pst - p : 0,
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-Pn + P2t + P23 - P24 - Psz - P¿z - 0,

-prs - p2z I pï I ltsz *p¿4 -p¡::0.

Again, fol simplicity considel the follorving notations:

Let (u1,u2, us,u¿,,...,1¿y-) : (Op,Os¡,O2a,Oa3,Os,O21,O3a,Oa2,Oy,Oa1,04,O32)

and (ø1,22,a3,e¿,...,¿n) : (812, Ey, E2a,E.4, Es,827, E3a, Ea2, Eya, Ea1, Es, 832),

rvhere -Ð¡3 : Npii, i : 1,2, 3, 4, j : 1,2, 3, 4 are expected freque¡cies.

At the solutiors nii : ff,1 : 1,2,3,4 ancl in ter.ms of ø¡'s and z¡'s, the sirnplified

problem is to maxirnize ,þ(ù : f, urln(z¿) subject to

z¿)0, f :I,2,...,12,

124

D', :6: (N - Do,,), (4.J.2)
r=1 i=1

rt - rz I :¡iõ - :16 + 1j9 * Í¡iro : 0,

17 - Is - ¿6 +¿'s - ørr f ¿rz : 0,

.Ì2 - Í¿ - 15 I x7 - ¿rr * ¿rz : 0.
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Sirnilal to the earliel case, we calì tLansform rt lo zt - f, and oul pr.oblem becomes

to tnaximize ,þ(") : Drtr lrz(z¿) subject to
t

zt)0,t:I,2,...,12,

\2
\-" _,
¿-'l

zt - zzl zs - zsl Zs - z¡g:0,

zr - zs - 26l z¿ - 211 * ze : g.

22- z.t- zb+ z7 - 4t* ztz:0

We cau also rvliLe l,he above as:

(4.3.3)

Ze Z : {z: 3 € IRI2.4 > 0.t: l,2, ....12,C?: g.}

tdrere C :

1

-1
-1

10

111
001
010
100

11
00
-1 I

-1 1

and¿:

1

-1
0

0

111
001
-1 0 0

0 -1 -

lr

lr
L,

1

-1
0

1 i,j



The veltices of the above convex polygon ar.e:

q : (r/2,0, 0, 0, 0, 0, 112,0,0, 0, 0, 0)"

a, : (0, 112, 0,0, 0, 0, 0, 112,0, 0, 0, 0)"

q3 : (0, 0, Il2,0,0, 0, 0, 0, 1.12,0,0, qr
q : (0,0,0,112,0,0,0,0, 0, 1/2,0,0)r

3¿, : (0, 0,0, 0, 112,0, 0, 0, 0, 0, I/2,qr

!o : (0, 0, 0, 0, 0, 1/2,0,0,0,0,0, 1./Ðr

h : (1/3,0,0, 1/3,0,0,0, 1/3,0,0,0,0)"

1¡" : (0, 1/3, 0, 0, 0, 0, 1/3, 0, 0, 1/3, 0, 0)"

qs : (0, 0,0, 1,13,0, 1/3, 0, 0, 0, 0, 1/3, 0)"

qro : (0, 0, 0, 0, 1/3, 0, 0, 0, 0, I/J,0, Ilz)r

qrr : (0, 1/3, 0, 0, 0, 1/3, 0, 0, 1/3, 0, 0, 0)"

srz : (0, 0, 1/3, 0, 0, 0, 0, 1/3, 0, 0, 0, 1/3)"

hs : 0/3,0,0,0, 1/3,0,0,0, 1/3,0,0,0)"

su : (0, 0, 1/3, 0, 0, 0, 1/3, 0, 0, 0, 1/3, 0)"

ur, : (714,0,0,1l4,0, 1l4,0,0, 1/4, 0, 0, 0)"

urc : Gl4, 0, 0, 0, 114, 0, 0, rl4, 0, 0, 0, I/Ðr
qrz : (0, 1/4,0,0,0,114, 114,0, 0, 0, 1/4, 0)r

Ðrs - (0, t14,0,0, 114,0,0,114,0,0, 1/4,qr

lrs : (0,0,114,0,0,0, 114,0,0, 114,0,11Ðr

't¿zo : (0,0, Il4, 114,0, 0, 0, 0, 114, 1/4,0, qr
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Now rve can ans\vet a version of Problem 1 rvith J : 20

12 20

l,u¡ ln{lp¡(yt)r} rvhele (!)t:ln element of qr.

TIre paltial delivatives P'r ur" given bv P : pTru. Thus d - Vrq, ivhele'oQj"u(tl,j

V : (u1.a2,...,q20) and l!- (at.!u2,..., ¿u,r), ¡u, - f,.

For example, rve still considel the sa.ne data [Placket (t97a)], but in 4 x 4 con-

tingency table format. The glading of the unaicled clistance vision of each el e of 7477

rvornen had the follotving frequencies, that is:

(Op, Ott, Oz¿, O¿s, On, On, Osa, O¿2, Ot¿, Ou, Ozz, O¡¡.) : Q66, 124, 6ß, 432,78,205,

234, I77 , 36, 362, 82, 179), ¿r : 2i81

Fol the sane choices of /(.) (as in 3 x 3 case) in algolithm (3.2,1), rr'e recor.d for.

n : I,2,3,4 the numbe¡ of iterations needed to achieve max{{} ( 10-,,, for.

j : I,2,...,J stâr'ting fiom equal initial rveights pjo) : llJ, i: 1,2,,..,J r4rer.e

.[ ale the veltex directional derivatives. Refel to $4.4 fol tables of lesults computed

fol various choices of d.

Table 4.8, shorvs the nurnbels of iterations for ô achieving fastest convelgence for'

eacli /(.). Out'results shorv that the choice of /(d) : dó and /(d) : erp{dõ} arc

better.

20

z: Dn;|!.¡ and þ(p) :
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Norv r¡,'e rvrite the following sunlnìar.t¡ of the iter.ation lesults.

(i) The expected frequencies in each case rvere found as:

3 x 3-case :

(En, 831, Ex, E2t, Ðn, Esz) : (252.022,173.898, 479.002, 247 .740,769.616,474j20)

4 x 4-case :

(Ep,831, E2a, Eas, Eß,821,834, 842, E¡a, E¿1, E¡, 832) :
(252.482,111.843, 56.966, 409.41S, 70.585, r95.258,247 .237 ,13i.269, 42.785, 383.133,

91.625, 188.399).

(ii) Each choice of /(d) depends o'a fiee pararnete' d *4rich is alivavs positive. The

vâlue of ô is impoúa.t fol con'e.gence .ates. The values of 6 r'ecordecl in tables 4.4

and 4.8 achieves fastest convergence.

(iii) hr both cases, it is clear that d6 and, erp{d6} achie.r'es the fastest and best con-

vefgelrce.

(iv) RernernbeÌiDg that !pi{ : 0, since F¡ : d.¡ - lp¡d¡, \'e might consider r.e-
ii

placing d¡ b1,{. Results are giten in tables 4.g and 4.10. In the 3 x 3-case tith
/(F) : Õ(¡'ô) and ô : 2.5 the number.of iterations needed to achieve rnax{.e} <

10-n foÌ z - I,2,3,4 respectivel¡' aÌe 2, 3, 4 ,6, r'heleas taking /(d) : Õ(dô) \,ith

same 6 takes 56,L42,247,428 itelations to achieve rryx{{} ( 10 ,¡ for n: 1,2,5,4
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lespectively.

In the 4 x 4-case vith /(F) : Õ(Fô) and ð : 3.0 the numl¡el of iteratious needed

to achieve mr?x{4} ( 10-'ù for n : 7,2,3,4 respectively ale 3, 6, 10, 12, r'hereas

taking /(d) : Õ(dð) l'ith sârre ô takes 4\7, 7102,2045,2g5l itelations to achieve

t"r?"{4 } ( 10 n for n:7,2,3,4 respectivel¡r

Thus rve see that the choice of /(.) ald its algurlent play an inipoltant role in

the convergence of the algolithm. Also the choice of the free pararneter 6 is clucial.

With the applopriâte choices, rve set good results as showÌl iìr the tables.



4.4 Tables: Iteration Results

3 x 3 -case:

Results fol valious choices of d

Table 4.1: 3 x 3 case - Í (ri) : Õ(dô): Number of iterations needed to achieve

J

n:l n:2 n:3 n:4
u.ô

0.6
0.7

0.8
0.9
1.0
1.5

2.0
2.5

3.0

10 22 47 62
9203857
9203655
9193654
9193654
9203756
13 29 51 80
24 56 96 160
56 742 247 428
138 468 887 1528



ò ?¿:1 'lr:2 1t:3
0.5
1.0
1.5

1.6
L.7

1.8

1.9
2.0

3.0

511 21 31
3510 14
2469
2468
z¿,Ðl
2457
2468
3579
5915 19
9172735

ÏÏijj;iila::".' 
t,', : dd: Numbet'oriterations neerrerr to achieve max{-Ç} <

Table 4.3: 3 x 3 case - f (d) : etp{dõ}: Numbe¡ of iter.ations needecl to achieve
-¡{4} < 10-'¡ for' ¡¿: I,2,3,4.

n:7 n-2 ¡t.:3 n:4
elaô )

dô

er'p{ d6}

0.8 I
i.6 2
1.7 3

r9 36 54
468
457

ò 11 :L n:2 n:
0.5
1.0

i.5
1.ll
L7
1.8
2.0

5 11 27 30
3610t4
2469
3458
3457
3568
3 6 9 11

9172533

Table 4.4: 3 x 3 case - Number of iter.ations for best cltoices of d



4 x 4 -case:

Result fol valious choices of d

Table 4.5: 4 x 4 case - Í (d) - iÞ(dd): Nurnbel of iterations needecl to achieve
max{{} ( 10-¡¡for n-7,2,3,4.

J

n-1 17:2 n:3
u.ð
0.6

0.7
0.8
0.9
1.0
1.5
2.0
3.0

15 48 79 111
t-4 45 73 103

14 43 71. 99
L4 42 70 98
t5 43 71 100
L5 44 73 103't4 64 108 153

t8 125 219 3I2
17 rt02 2045 2951
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Table 4.6: 4x4case - Í(d)-d6
10-ñ fol n : 1,2,3,4.

Nurnber of ilelations neerled ro achieve nrax{{} I

Table 4.7: 4 x 4 case - f (d) : eÌp{d6}t Number of iterations neecled to achieve
mrîx{4} ( 10-" for n - I,2,3,4.

d ??, : I n:2 ?¡.:3 n:4
0.5
1.0

1.5

1.8
2.0

2.2

8254L57
4 1.2 20 28
3813 18
3 7 1i 74
36913
369t2
3 5 8 11

4610 13
6133557

á n:2 n:3t¿:1
0.5
1.0

1.5
1.7

1.9

2.0
2,1

72438
5 1.2 18
4872
3710
359
4ß9
469
5872
813 19

)ó

26

t7
L5

t3
t2

t1

t5

l3

/o n:4?¿:3n:2?1 :l
o (dô)

d6

exp{116]¡

42 70 98
5 8 11

6 I i1

0.8 14

2.7 4

Table 4.8: 4 x 4 case - Number of iter.ations for best choices of ô.



Results fol various choices of ô using { in place of d¡

Table 4.9: 3 x 3 case - /(F) : Õ(F6): Numbel of iterations needed to achieve
nrax{F¡} < 10-'fol n:1,2,3,4.

6 n:2 n:3 n:4
0.5

1.0

2.0

¿.o

2.8

3.0

6742639
4713 19

2468
2457
2346
¿óðl
2369
24711



ò Ì7:I n:2 n:3 ?1 :4
u.ð
1.0
1.5
2.0

2.9
3.0

4.0

LU óU

616
4II
11 0

ót)
óD
ót)
388

ry b9
¿5 35

13 18

tl 15

L0 74

t0 13

L0 1.2

L4 24
ß4 242

Table 4.10: 4 x 4 case - "f(F) : Õ(Fô): Nurnbel of iterations needed to achieve
rnqx{Fr} { 10-'¡ for n:1,2,3,4.

J



Chapter 5

Equality of Variances of the
Estimates of Two Parametric
F\rnctions

5.1 Introduction

I'this chapter', $,e coDstruct app.oxi'rate optimal designs rvhich opti'rize a

non-standald cliterion function. As an example, rve take the criterion as the diflel-

euce of the laLiances of tlie estimates of trvo par.ametr.ic functions.

In fact, if the pararletr.ic functions ar.e 4T@ ancl àrÉ, then the above optimization

problern is equivalent to minimizing covariance betrveen q"p a:nd QT Q, rvher.e q: f
a.ncl d: f. In roany design ploblems it is desited to estimate certain par.ânetets

or parametlic functions independerúly of other.s. This can be dole by rlaking covari_

ances or collelations betq'een the releYant parânìetel estimates to zelo. Equivaleltl¡,,

this can be done by filding the optimizi'g distribution ivith equal varialces of the

estimâtes of the palarnetlic functions l'ith tlie above lelationsliip betrveen g, ! and ç,

d.



53

This is an example of an optimal reglession design p.,-oblem t'here rr,e need to obtâin

an optimizing plobability distlibution. Some r.ecent s'olk in this dir.ection ar.e Tor.sney

and Alahnradi (1995) and r\,Iandal, Torsney and Carliele (2004).

Torsney and Alahmadi (1995) considel constlucting designs subject to zeÌo corre-

lations betrveen the estinrates of tn'o Ìinear combinations of the par.anieter.s. They

consider tìre case of ninimal suppolt designs and tr.ansfor.m the constr.ained opti-

mâl desigrì pÌoblern to a r.naximization problem rvith respect to t.ivo or.three sets of

iveights. ìvlandal, Torsney and Caniere (2004) consider constructing optirnal designs

by maximizing a critelion (D¡- ancl ,4-optirnality) subject to trvo colstlaints. They

solve the problem by tlalsfolming the constrained optinization pr.oblem to one of

mâximizing tlrree functions of the design s'eiglrts simultaneousll,.

Hele, r'e do not consider a constlained optimizâtiolt probletìì. Rathel rve take one of

the constraints as oul critelion function. Then rve optimize that criterion function

subject to the basic constraints p¡ 2 0 V j ard !p, : 1.

To construct the optirnizing distÌibution, \r'e use the nìultiplicâtive algolithrns (3.2.1),

indexed by a function /(.) rvliich satisfies celtain conditions. To irnplove the conver-

gence rates, \\'e consider sorne objective choices of the functiol /(.).

5.2 Formulation of the Optimization Problem

Suppose the t$'o paranìettic functions rve considel are 4"@ and þ"@, l,hele 4,

!eRr(. We ivant to find an ap¡rloxinate design (ifit exists) such that the variances



54

of the estimates of the above trvo paramet.ic functions. Let the estimates of ¿7á a'd

f Qbe gr|and !"{ r.espectively

The variances of each of the âbove estimâtes would be:

v(srQ) : sr l\'r-t0)¡ q (5.2.1)

and

v(þr¿) : f 
^r-tØ)t)

(5.2.2)

Let us define the function g(p) as:

''' :Ii:','"'l'uì, 'r,þ (52s)

One possible motivation for the case

s(p) : { II, (ù t! _ þ, I\¡-' (p) þ

arises li'hen rve take

ó: -tr{A^,r-t(ùAr}, A: [s,Ur
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TIre above choice of 9(p) is equivalent to a ptoì:lem in the case ó: -tr1At,t-, ¡t tt.

If botlr va¡iances have a comlrron talue then tr{Ad,I-t Ar} is trvice this colìtìlor'l

value and hence is minimized l4ren this common value is niiltirnized.

Norv considel the function,

ö: G : -s'(p)

: -I{M-'(ùs-þ'A,I-'(p)þ1" (s.2.4)

Note that the above optimization plobleni is an exanple of Problem l. This can

be done by maximizing G (: -g'(p)) for appropriate vectors q and þ.

Thus, in Problern 1, rve maximize þ(p) : C(p) : -S'(p) ovel P = {p: (pr, pz, ..., pi)
J

n¡ 20,1p¡:lj.

If a rnaxirnuur value of zelo is attained, *e ol¡tain the optimizing distril¡ution rvith

equal variances o1 {Qand{Q.



Now we obtain the partial derivatives:

'î:#: -'zs@)'W
: 2lsÏ M -' (Ð s - f M " (ù þil({ u -' (p) y¡)' - (f M -' (p) p)'l
: 2Ê M - (ù s - f M I (p) b)l@ + þ)r M - | (p) ajjl(e - þ)r M -, (p) s¡l

: zs@) l@+þ)rM-'(p)y¡l[@-þ)ru-'(ùal (5.2.5)

Thus, using the definition of directional derivatives, we can obtain the directional

derivatives of G as:
J

Ff :4 -Dr,oy (5.2.6)
i=r

5.3 Algorithms

In the case of finding design maximizing the function G(p), that is, ûnding de.

sign with equal variances of the estimates of s"fl and !rP, we maximize /þ) : -G, (p)

subject to p¡ > 0, Dp¡ : r.

For this type of optímization problem, we use algoithm (3.2.1) but with suitable

choice of the argument in J(.), That is, we use the algorithm:



where øj") : df) or4Í'), an¿

,¡(¡) o¿ I*j _ 
ãE lr:oct

r,Ø : afi -t,ePaf) [a directional derivative of G at p : p(")1,

We start with the choice of the argument of /(.) by taking the pa.rtial derivative

of G : -gz(p), and a suitable choice of the function /(.) which satisfies the required

conditions.

5,4 Examples and Results

lVe consider the following examples. These exa,:nples are defined by their de-

sign spaces.

Exampie-l:

or = (1, -1, -1, )"

u, : (1, -7,7)î

u. : 11. 1. -1)"

a : (1,2,2)1:
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Example-2:

Example-3:

B¡ç¡mple-4:

a, : 1. -1. -1.1"

u, : (7, -1,l)r
!3 : (1, 1, _1)"

a : (t.,2,3)r

0r : (1, -1, -2,)T

u" : (!,-7,7)T

o. : 11. 1. -1)"

la : (7,2,2)T

ùr : (1, 1, -1, -i)"
2z : (1, -1, 1, -1)"

?3 : (1, -1, -1, -1)1

!¿ : (7,2,2, _1,)r

3b : (1, 1, _1, 1)"

% : (1, -1.5, 1, 1)"

lz : (7, -1, -7,2)T



These examples correspond to linea¡ models with a constant term since the first com-

ponent of each vertex (r,j) is always 1.

In fact, we can assume the more realistic regression model:

E(slu): f Q, vev (5.4.1)

ln examples L-3, the choices of ¿ and þ (in which S@) : 0 is obtained) are:

s : (1, 0, 1)"

ö : 11.0. -1)"

In example 4, the choice of ¿ and þ are:

s : (1,0,0, 1)"

Þ : (1, 0, 0, -1)1

Other choices of ¿ and ! in exa,mple 4 are:
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s : (1,0, 1,0)"

0 : (1,0, -1, 0)"

Vy'e report the performance of algorithm (3,2.1) in calculating the optimizing distribu-

tions fo¡ ea¿h of the above exa,:nples. We tafte f(.) such that it satisfies the required

conditions.

Vy'e fust consider the following choices of /(.), taking ø: d:

f (d): exp{d,6}

r@):#ïffi

(5.4.2)

(5.4.3)

In tables 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10, 5.11, 5.13, and 5.14, we recorded for

n : 7,2,3,4 the number of iterations needed to achieve max{,Ç} ( 10-n, where

-S are the ve¡tex directional derivatives of G. In all the cases, we take the initial

design to be pr(ol : j,,l : t,z,l,l,. We also try to improve convergence rates of

the algorithm by using the properties of the directional de¡ivatives of the criterion

function under consideration.

The choice of /(.) plays an important role in the convergence of the algorithm.
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Note that any criterion has both positive and negative directional derivatives. So

the fimction /(.) needs to be defined for both positive and negative F. Note that

F¡: d¡ - !p¡d¡. Thus Dp¡d¡ :0, So, a suitable choice of the function should be

one which is centred at zero and changes reasonably quickly about zero. That is,

,,r, - erp{F6}
., \- ,/ t + erp{F6l¡

(5.4.4)

With these in mind, we choose an objective choice of /(.), namely the iteration

results a¡e reported in Tables 5.3, 5.6, 5.9, 5.72,5.75.



5.5 Tables: Iteration Results

As we can see, for each exa,:nple the nu-mbers of iterations needed to achieve

rfx{$} ( 10-n for n: L,2,3,4, were small, meaning it converged quickly. We also

noticed that for each case of f (d,): fiffi and /(¡) = ,o",rf.r)@, the results were

almost the same.

Each choice of /(.) depends on a ftee parameter of ô which is always positíve. For

example-5, having o: (1,0, 1,0)î and !: (1,0, -1,0)", atl thee /(.)'s achieves

the fastest and best convergence compa.red to the other examples. Also noted is the

values of G for eo¿h câse were zero.

Below are the iteration resu-lts for difierent functions of /(.). In exo,mples 1-3, the

choices of ¿ and ! a,re ¿ : (1, 0, 1)" and ! : (1, 0, -1)". The results for these

examples a,re reported in îables 5.1-5.9.

Table 5.1: Example 1 - Í (d) : erp{d6\: Number of iterations needed to achieve
nigx{4} ( 10-¿ for n: !,2,3,4.

ô n:l n:2 n:3 n:4

0,03
0.04

0.08

U,U2

0.07
0.06

771 15 19
57911
3456
57911
7 tt 1.4 17
i3 21 27 33
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Table 5.2: Example 1- Í (d) : ffi, Number of iterations needed to achieve

ryx{4} 
( 10-" for n: 1,2,3,4.

Table 5.3: Example 1 - /(F) : ffit Number of iteratiors needed to achieve

ûi9x{4} ( 10-a for n: 1,2,3,4'

ò n:t n:) n:f, n:
U.UUl

0.04
0.05
0.06
0.07
0.08
0.09
0.1

309 518 727 936
777 15 19

691274
5 6 I 11

4579
3456
234ú
3456

ò n:7 n:2 n:3 n:4
0.009

0.03
0.04
0.05

0.06
0.07
0.08
0.09

0.1

34 56 78 101

10 16 22 27
7Lr15 19

69t2t4
57911
4579
3456
2345
.ó45tl



ô n:3 n:4n:2
U.UI

0.04
0.05
0.06
0.07
0,09
0.1

26 42 58 74
6972 15

46911
3467
3456
4578
57911

Table 5.4: Example 2 - Í (d,) : erp{d,6}: Number of ite¡ations needed to achieve
n19x{4} ( 10-a fo¡ n:1,2,3,4.

Table 5.5: Example 2 - f@) : ffit Number of iterations needed to a¿hieve

Tx{4} 
( 10-n for n:7,2,3,4.

õ n:I n:2 n:3 n:4
U.U1

0.05
0.08
0.09
0.1

0.11
0.t2
0.13
0.14
0.15
0.2

0.25

52 85 118 752
10 16 2L 27
6912 15

5810 13

57911
4679
4568
3456
2345
3456
57912
11 17 23 29



ò n:I n:2 n:3 n:4
U.U I
0.07
0.08
0.09
0.1

0.11

0.L2
0.13
0.2

52 E5 118 752
7Lt74 18
6912 15

5810 13

47911
4679
3568
2456
57912

Table 5.6: Example 2 - f @) : tÍffi, Numbe¡ of iterations needed to a¿hieve

n)9x{4} ( 10-n for n: I,2,3,4,

Table 5.7: Exa.mple 3 - /(d) : exp{d,6}: Number of iterations needed to achieve

iax{4} 
( 10-4 for n:7,2,3,4.

n:\ n:2 n:3 n:4
U.UUD

0.01

0.03
0.04
0.05

0.06
0.07
0.08
0.09

0.1

óó Õ/ ðu ru4
17 28 39 50
5811 74
4579
2345
3456
46810
6912 15

974 1924
15 23 32 40



ò n:I n:2 n:3 n:4
U.U I
U.UI]

0.07
0.08
0.09

0.1
0.14
0.15
0.2

33 57 80 104

610 1477
47911
4579
3467
3456
46810
5710t2
19 32 45 58

Table 5.8: Example 3 - /(d) : ffi, Number of iterations needed to a¡hieve
mfx{4} ( 10-ñ fo¡ n:I,2,3,4.

Table 5.9: Ðxample S - /(F) : tåffi ' Number of iteratio¡rs needed to achieve

iax{4} 
( 10-" for n:7,2,3,4.

ò n:7 n:2 n:3 n:4
U.U1

0.05
0.08
0.09
0.i

0.13
0.15
0.2

.Jó ÐI ðU TU4

610 14 17
4579
3467
3456
4578
581072
20 32 44 56



ò n:4n:3n:2
U. UUI.

0,005
0.01

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

72 158 245 331
15 31 47 64
8152330
4710 13

3467
2345
3579
5913t7
72 24 37 49
38 53 69 85
t7 19 20 23

Table 5.10: Example 4 with ¿ : (1, 0, 0, 1)" and! : (1, 0, 0, -1)" - f (d) : enp{d6}:
Number of iterations needed to achieve 

19x{Fi } 
( 10-n for n: !,2,J,4.

Table5.11: Ðxa.mple4with¿: (1, 0, 0, 1)îandþ: (1, 0, 0, -1)î-l(d): ffit
Number of iterations needed to a¡hieve 1gx{4i 

( 10-¿ for n:7,2,3,4.

d n:3 n:4n:2n:7
U.UU I
0.005
0.01

0.05
0.06

0.07
0.09
0_1

l4ó ór( 49t ooo
29 63 97 131
15 31 47 64
35810
3467
2345
3457
3569



n:4n:3n:2
U.UUl

0.005
0.01

0.04
0.05
0.06
0.07
0.09

0.1

143 317 491- 665
29 63 97 131

4710 13

4710 13

35810
3467
2346
3457
3579

Table -5.12: Example 4 with 4 : (1, 0, 0, 1)" and þ : (1, 0, 0, -1)t - /(F) :
f",rd4f$O, Number of iterations needed to achieve n1?x{4} I 10-n for n:1,2,3,4.

Table 5.13: Example4withs: (1,0, 1,0)" aad!: (1, 0, -1,0)"- /(d) : ery{d,6}l
Numbe¡ of iterations needed to achieve yx{4} ( 10-a fo¡ n:7,2,3,4.

ô n:4n:3n:2n:1
U,UU I
0.005

0.01

0.02
0.03
0.04
0.05
0.06

0,07
0.08

1 85 774 264
1773451
197725
15811
1356
7234
1357
15972
111 1929
L 237 327 405



ò n:4n:3n:2
0.001
U.UUIT

0.01

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

r 1ii9 35U 530
L 34 69 105
717345i
19t725
1611 16

15811
7468
r.ó,fo
1245
!234
1345
1357

Table5.14: Example4with¿: (1,0, i,0)"andþ: (1,0, -1,0)t-l(d) : #"ffit
Number of iterations needed to achieve iaxi$i 

( 10-" for n:1,2,3,4.

Table ,5.15: Example 4 v¡ith q : (1, 0, 1, 0)" and ! : (1, 0, -1, 0)t - /(F) :
tíH$O' Number of iterations needed to achieve mfxi4Ì ( 10-n for r¿ : !,2,i,4.

ò n:4n:2
0.001

0.005

0.01

0.02
0.03

0.04
0.05
0,06
0.07
0.08
0.09
0.1

169 350 530
34 69 105
77 33 51
91725
611 16

5811
468
356
245
234
345
357



Chapter 6

Conclusions

6.1 Summary

The application of optimal design theory has become an increasing interest in

the ûeid of statistics.

Vy'e co¡rsidered constructing optimizing distributions with applications in estimation

by exploring a class of multiplicative algorithrns, indexed by a function /(.) is pos-

itive and strictly increasing. The function may depend on a free positive parameter ô.

Fi¡st we provided some basic introduction to linea¡ design theory. We also pro-

vided some standa¡d design criteria and discussed their properties.

We discussed optimality conditions. These a¡e ba¡ed on directional derivatives. We

a,lso discussed the properties of these derivatives and the General EquivaJence Theo-

rem.
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We considered a class of multiplicative algorithms:

,{:+1) orl') ¡p{')¡

where øjI) : df;is¡P!"t

,¡(r) - ¡s¡ |-j - opi lp=pî)

F;ù : dy) _ipf,¿ç¡.

Properties of the algorithrns were also discussed.

Then we co¡rsidered some estimation problems and thei¡ properiies. For finding opti-

mizing distributions, we considered the problem of determining maximum likelihood

estimates under a hypothesis of ma.rginal homogeneity for data in a square contin-

gency tables. We considered tv/o cases: namely 3 x 3 case a.nd 4 x 4 case. We also

discussed how we improved convergence rates.

We also considered another estimation/design problem of constructing optimizing

distributions with equality of va,riances of the estimates of two parametric functions

of interest. Here also, we discussed how we improved convergence rates of the algo-

rithm by objectively choosing the fu¡ction /(.), its a.rgument and the free parameter

ô.
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6.2 F\rture \il'ork

Many design selections for optimaì criteria a¡e highly dependent on the ap

proximation of a resporue su¡fa¡e model. The model is usually proposed before v¡e

collect data. The optimal design generated by a computer algorithm is only optimal

for that specific proposed model.

However, in many situations, the regression model is not known at the beginning

of the designing stage. In this case, we need to implement a design that is not only

efficient for a model but rather for two or more models that might fit the experiment

to discriminate between them. By selecting the best model, we can proceed with

the optimization techniques. Once the model is selected, it is possible to obtain the

optimal design of the chosen model. We wor¡ld like to work in this direction, that is,

on model selection.

As we have discussed in Chapter 1, there a.re marry design criteria in the freld of

optimal design. The most popula.r and widely used criteria in computer generated

design experiments is D-optimality. the D-optimality criterion, o¡ determina¡rt cri-

terion, claims that the best set of points in the e>çeriment maximizes the determina¡t

lX"Xl. Flom a statistical point of view, a D-optimal design leads to response su¡-

face models for which the maximum va¡iance of the predicted responses is minimized.

In other words, the points ofthe experiment will minimize the e¡ror in the estimated

coefrcients of the response model, The advantages of this criterion are the use of

irregular shapes and the possibility to include extra design points while the quantita-

tive facto¡s do not depend on the scale of la,riables. Not only does this criterion use all
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releva,nt information, it is also invariant under linea¡ transfotmation ofthe pa.rameter.

In general, an optimal design will rely on the assumed model with its parameters

a¡rd on the chosen optimization criterion. In the beginning, the focus in optimal de-

sign research is on linear models, and later on the developments invoLved mo¡e a¡ound

nonlinea¡ models. This is an interesting area to work fu¡ther. We would like to focus

on working on optimal regression design problems in the future.

6.3 F\rrther Readings

Fo¡ fruther study in optimal design theory, with literatu¡e on optimality being

vast, a widely popula.r text is A,C. Atkinson and A.N, Donev, Opt'imum Eæsperimental

Designs, Oxlorð, University Press, 1992. Other texts include F. Pukelsheim, Opfinzøl

Desi,gn of Erperiments, New York, Witey, 1993, V. V. Fedorov, Theory of Optimal

Eteri,ments, Academic Press, New York and London, 7972 andS. D. Silvey, Optimat

Deságn, Chapman and Hall, London, 1980.
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