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The cash flow values and the interest rate in the net present value (NPV) model are usually specified by either crisp numbers
or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form
expressions for fuzzy possibilistic net present value (FNPV). Then, following Carlsson and Fullér (2001), we discuss some of the
possibilistic moments related to FNPVmodel along with an illustrative numerical example. We also give a unified approach to find
higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011).

1. Introduction

Recently, there has been growing interest in using fuzzy sys-
tems to deal with impreciseness, uncertainty, and vagueness
(e.g., see Buckley [1], Kaufmann andGupta [2], Zimmermann
[3] etc.). Viewing the fuzzy numbers as random sets, Dubois
and Prade [4], defined their interval valued expectation and
introduced their mean value as a closed interval bounded
by the expectations calculated from its upper and lower
distribution functions. In recent years fuzzy systems has
become an extensively area of research mainly due to the fact
that deterministic models have huge limitations. Also, it
has been shown that the decision making models based on
probability theory are relatively hard to deal with due to their
complex stochastic structure.

Possibility theory (Carlsson and Fullér [5]) along with
fuzzy set theory and fuzzy systems (see (Zadeh [6]; Zimmer-
mann [3]), Kaufmann and Gupta [2] provide a new avenue
to deal with impreciseness in decision making problems.
Recently, there have been several applications of possibility
theory in decision making (e.g., see Appadoo et al. [7] and
Thavaneswaran et al. [8]). Appadoo et al. [7], using possibilis-
tic moments of adaptive fuzzy numbers, develop a model for
fuzzy net present value (FNPV) of future cash flows. Paseka et
al. [9] define moment generating function of fuzzy numbers
and apply it to some time series models in finance, and
Thavaneswaran et al. [8] introduce noncentered possibilistic

moments, extend the results to centered moments, and find
the kurtosis for a class of fuzzy coefficient autoregressive
(FCA) and fuzzy coefficient volatility (FCV) models. Fur-
thermore, they demonstrate the superiority of fuzzy forecasts
over the least square error forecast. In this paper we revisit
the fuzzy net value problem (FNVP) addressed extensively
in the literature. However, these studies have, generally, been
confined to fuzzy numbers having linear type of membership
functions. The main reason for using linear membership
function is to avoid complex nonlinear computations (for
more details, e.g., see Medaglia et al. [10] and Medasani
et al. [11]). Furthermore, they have pointed out that there
are difficulties associated with the selection of the solution of
a problem that uses linear membership function. They also
have highlighted the importance of having a membership
function which can be easily tuned and adjusted. In the
present paper we use special type of fuzzy numbers, called
(𝑚, 𝑛)-trapezoidal fuzzy numbers [12], that have special type
of nonlinear membership functions. Although the classical
NPV method plays a decisive role in evaluation, it does not
take into account the uncertainties which may be inherent
in these parameters used in it. Ward [13] develops a fuzzy
net present model by introducing trapezoidal fuzzy numbers
as the future cash flow amounts. Due to computational
efficiency Chiu and Park [14] modify the proposed fuzzy
net present value formula by using triangular fuzzy numbers
(TFNs) instead. Buckley [15] proposes fuzzy capital budgeting
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model in mathematics of finance. Kaufmann and Gupta [2]
apply fuzzy discount rate to the fuzzy net present valuemodel.
Karsak and Tolga [16] present a fuzzy present value model
for financial evaluation of advanced manufacturing system
(AMS) investments under conditions of inflation. Kuchta [17]
considers a global fuzzy net present value and uses quadratic
0-1 programming to the proposed model. Kahraman et al.
[18] consider fuzzy present value, fuzzy equivalent uniform
annual value, fuzzy final value, fuzzy benefit-cost ratio, and
fuzzy payback period in the capital budgeting model. Liou
and Chen [19] proposed a fuzzy equivalent uniform annual
worthmethod to assist practitioners in evaluating investment
alternatives. Omitaomu and Badiru [20] developed a fuzzy
model for evaluating information system projects. Different
fromusing possibility as themeasure of a fuzzy event, recently
Huang [21] and Huang [22] extended chance-constrained
programming idea to fuzzy environment to solve fuzzy
capital budgeting problems based on credibility measure.
Furthermore, based on credibility theory, Huang [23] pro-
posed models for selecting projects that combine random
uncertainty and fuzzy uncertainty simultaneously.

In what follows, we divide the paper into 4 sections.
In the first section we provide preliminaries, notation, and
definitions. Main results are derived in Sections 2 and 3.
In Section 2, we provide some moment properties of fuzzy
numbers with special reference to a more generalized type
of fuzzy numbers. Furthermore, in this section we consider
possibilistic moment generating functions associated with
fuzzy numbers. In Section 3 we consider fuzzy net present
value problem (FNPV), state two easy to prove main results
alongwith few special but useful cases, including themoment
generating function associated with FNPV. In Section 4, we
conclude the paper.

1.1. Preliminaries and Notation. In the sequel, we shall denote
a classical set of objects, called the universe, by 𝑋 whose
generic elements shall be denoted by 𝑥. A set of real numbers
will be denoted by R, positive real numbers will be denoted
by R+, a fuzzy number will be denoted by by 𝐴, and a set
of fuzzy numbers will be denoted by F. We now have the
following definitions.

Definition 1. Fuzzy set𝐴 in𝑋 ⊂ R, the set of real numbers, is
a set of ordered pairs𝐴 = {𝑥, 𝜇(𝑥) : 𝑥 ∈ 𝑋}, where 𝜇(𝑥) is the
membership function or grade of membership or degree of
compatibility or degree of truth of 𝑥 ∈ 𝑋 which maps 𝑥 ∈ 𝑋

on the real interval [0, 1].

Definition 2. If Sup 𝜇(𝑥) = 1, 𝑥 ∈ R, then the fuzzy set 𝐴 is
called a normal fuzzy set inR.

Definition 3. Thecrisp set of elements that belong to the fuzzy
set 𝐴 at least to the degree 𝛼 is called the 𝛼-level set (or 𝛼-
cut); that is, 𝐴(𝛼) = {𝑥 ∈ 𝑋 | 𝜇(𝑥) ≥ 𝛼, 𝛼 ∈ R+}. If the set
𝐴󸀠(𝛼) = {𝑥 ∈ 𝑋 | 𝜇(𝑥) > 𝛼, 𝛼 ∈ R+}, then 𝐴󸀠(𝛼) is called
strong 𝛼-level set (or strong 𝛼-cut).

Definition 4. A fuzzy set𝐴 is said to be a convex set if 𝜇(𝜆𝑥
1
+

(1 − 𝜆)𝑥
2
) ≥ min(𝜇(𝑥

1
), 𝜇(𝑥
2
)), 𝑥
1
, 𝑥
2
∈ 𝑋 and 𝜆 ∈ [0, 1].

Definition 5. 𝐴 fuzzy set𝐴, which is both convex and normal,
is defined to be a fuzzy number on the universal setR.

Definition 6. Let 𝐴 be a subset ofR, then the set of elements
having the largest degree of membership in 𝐴 is called the
core of 𝐴. Thus,

Core (𝐴) = {𝑥 ∈ 𝑋 | 𝜇
𝐴
(𝑥) = sup

𝑥∈𝑋

𝜇
𝐴
(𝑥)} . (1)

If 𝐴 is a fuzzy number ∈ F, where F is the class of all fuzzy
numbers then, by the definition of normality, Core(𝐴) ̸= 0.
Furthermore, Core(𝐴) is also called the 1-level set of 𝐴. The
support of a fuzzy set 𝐴 is a set of elements in 𝑋 for which
𝜇
𝐴
(𝑥) is positive; that is,

Supp (𝐴) = {𝑥 ∈ 𝑋 | 𝜇
𝐴
(𝑥) > 0} . (2)

Definition 7. An 𝛼-level set of a fuzzy number 𝐴 is denoted
by 𝐴(𝛼) = {𝑡 ∈ 𝑅 | 𝐴(𝑡) ≥ 𝛼} if 𝛼 > 0, and 𝐴(𝛼) = 𝑐𝑙{𝑡 ∈ 𝑅 |

𝐴(𝑡) > 𝛼}, if 𝛼 = 0.

Definition 8 (see Appadoo [12]). A fuzzy number𝐴 = [𝑎
1
, 𝑎
2
,

𝑎
3
, 𝑎
4
]
(𝑚,𝑛)

, 𝑎
1

< 𝑎
2

< 𝑎
3

< 𝑎
4

∈ 𝑋, is said to be (𝑚, 𝑛)-
trapezoidal fuzzy number (written as (𝑚, 𝑛)-Tr.F.N.) if its
membership function 𝜇(𝑥) is given by

𝜇 (𝑥) =

{{{{{{{{{{

{{{{{{{{{{

{

0 𝑥 ≤ 𝑎
1
,

1 − (
𝑎
2
− 𝑥

𝑎
2
− 𝑎
1

)

𝑚

𝑎
1
≤ 𝑥 ≤ 𝑎

2
,

1 𝑎
2
≤ 𝑥 ≤ 𝑎

3
,

1 − (
𝑎
3
− 𝑥

𝑎
3
− 𝑎
4

)

𝑛

𝑎
3
≤ 𝑥 ≤ 𝑎

4
,

0 𝑥 ≥ 𝑎
4
.

(3)

Setting 1 − ((𝑎
2
− 𝑥)/(𝑎

2
− 𝑎
1
))
𝑚

= 𝛼 and 1 − ((𝑎
3
− 𝑥)/

(𝑎
3
− 𝑎
4
))
𝑛

= 𝛼 we obtain the 𝛼-cut representation of an
(𝑚, 𝑛)-Tr.F.N. 𝐴 = [𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
]
(𝑚,𝑛)

as

𝐴 (𝛼) = [𝑎
1
(𝛼) , 𝑎

2
(𝛼)]

= [𝑎
2
− (𝑎
2
− 𝑎
1
) (1 − 𝛼)

1/𝑚

, 𝑎
3
− (𝑎
3
− 𝑎
4
) (1 − 𝛼)

1/𝑛

] ,

∀𝛼 ∈ (0, 1] .

(4)

Remark 9. It may be remarked here that as a special case, the
results for a

(i) Tr.F.N. can be obtained from the results of an (𝑚,

𝑛)-Tr.F.N., by setting𝑚 = 1 and 𝑛 = 1, and
(ii) T.F.N. can be obtained from the results of an (𝑚,

𝑛)-Tr.F.N., by setting 𝑚 = 1 and 𝑛 = 1, along with
𝑎
3
= 𝑎
2
and then writing 𝑎

3
for 𝑎
4
.

Definition 10. An (𝑚, 𝑛)-Tr.F.N. is said to be symmetric if 𝑎
2
−

𝑎
1
= 𝑎
4
− 𝑎
3
= 𝛽 and𝑚 = 𝑛 in Definition 8.

Remark 11. In view of Remark 9, the results for a symmetric
Tr .F.N. and for a symmetric T.F.N. can be obtained from the
results of a symmetric (𝑚, 𝑛)-Tr.F.N.
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2. Moment Properties of Fuzzy Numbers

Following Carlsson and Fullér [5] we use the following
results given in (5) in deriving the moment properties of (𝑚,

𝑛)-Tr.F.N. Let 𝐴 ∈ F be a fuzzy number with 𝐴(𝛼) =

[𝑎
1
(𝛼), 𝑎
2
(𝛼)], 𝛼 ∈ [0, 1]. Following Carlsson and Fullér [5]

and using properties (5) we have the following moment
properties:

Possibility [𝐴 ≤ 𝑎
1
(𝛼)] = 𝜋 (−∞, 𝑎

1
(𝛼)]

= sup
𝑢≤𝑎
1(𝛼)

𝐴 (𝑢) = 𝛼,

Possibility [𝐴 ≥ 𝑎
2
(𝛼)] = 𝜋 [𝑎

2
(𝛼) ,∞)

= sup
𝑢≥𝑎
2(𝛼)

𝐴 (𝑢) = 𝛼.

(5)

The lower possibilistic mean value 𝐸
𝐿
(𝐴), the upper pos-

sibilistic mean value 𝐸
𝑅
(𝐴), the possibilistic mean value

𝐸(𝐴), the interval value possibilistic mean IVPM(𝐴), and the
possibilistic variance Var(𝐴) are below

𝐸
𝐿
(𝐴) =

∫
1

0
Pos [𝐴 ≤ 𝑎

1
(𝛼)] 𝑎

1
(𝛼) 𝑑𝛼

∫
1

0
Pos [𝐴 ≤ 𝑎

1
(𝛼)] 𝑑𝛼

= 2∫
1

0

𝛼𝑎
1
(𝛼) 𝑑𝛼,

𝐸
𝑅
(𝐴) =

∫
1

0
Pos [𝐴 ≥ 𝑎

2
(𝛼)] 𝑎

2
(𝛼) 𝑑𝛼

∫
1

0
Pos [𝐴 ≥ 𝑎

2
(𝛼)] 𝑑𝛼

= 2∫
1

0

𝛼𝑎
2
(𝛼) 𝑑𝛼,

𝐸 (𝐴) = ∫
1

0

(𝑎
1
(𝛼) + 𝑎

2
(𝛼)) 𝛼 𝑑𝛼 =

𝐸
𝐿
(𝐴) + 𝐸

𝑅
(𝐴)

2
,

(6)

IVPM (𝐴) = [𝐸
𝐿
(𝐴) , 𝐸

𝑅
(𝐴)]

= [2∫
1

0

𝑎
1
(𝛼) 𝛼 𝑑𝛼, 2 ∫

1

0

𝑎
2
(𝛼) 𝛼 𝑑𝛼] .

(7)

The variance of a fuzzy number 𝐴 is the expected value of
the squared deviations between the arithmetic mean and the
endpoints of its level sets. One has

Var (𝐴) = ∫
1

0

Pos [𝐴 ≤ 𝑎
1
] ([

𝑎
1
(𝛼) + 𝑎

2
(𝛼)

2
− 𝑎
1
(𝛼)]

2

)𝑑𝛼

+ ∫
1

0

Pos [𝐴≥𝑎
2
] ([

𝑎
1
(𝛼)+𝑎

2
(𝛼)

2
−𝑎
2
(𝛼)]

2

)𝑑𝛼

= ∫
1

0

1

2
(𝑎
2
(𝛼) − 𝑎

1
(𝛼))
2

𝛼𝑑𝛼.

(8)
Let𝐴 and𝐵 ∈ F be fuzzy numbers with𝐴(𝛼) = [𝑎

1
(𝛼), 𝑎
2
(𝛼)]

and 𝐵(𝛼) = [𝑏
1
(𝛼), 𝑏
2
(𝛼)], 𝛼 ∈ [0, 1]. Goetschel Jr. and

Voxman [24] introduced a method for ranking fuzzy num-
bers as

𝐴 ≤ 𝐵 ⇐⇒ ∫
1

0

(𝑎
1
(𝛼) + 𝑎

2
(𝛼)) 𝛼 𝑑𝛼

≤ ∫
1

0

(𝑏
1
(𝛼) + 𝑏

2
(𝛼)) 𝛼 𝑑𝛼.

(9)

As pointed out by Goetschel Jr. and Voxman [24] the defini-
tion given in (9) for ordering fuzzy numberswasmotivated by
the desire to give less importance to the lower levels of fuzzy
numbers. Zhang and Nie [25] introduced the concepts of
lower possibilistic and upper possibilistic variances of fuzzy
numbers. These concepts are consistent with the extension
principle and with the well-known definition of variance
in probability theory. The lower and upper possibilistic
variances of fuzzy number 𝐴 with 𝐴(𝛼) = [𝑎

1
(𝛼), 𝑎
2
(𝛼)],

𝛼 ∈ [0, 1] are as follows.

Remark 12. The lower possibilistic variance of 𝐴 is defined
as the lower possibility-weighted average of the squared
deviations between the left-hand endpoint and the lower
possibilistic mean of its level sets. The lower possibilistic
variance of 𝐴 is defined as

Var
𝐿
(𝐴) =

∫
1

0
Pos [𝐴 ≤ 𝑎

1
(𝛼)] (𝐸

𝐿
(𝐴) − 𝑎

1
(𝛼))
2

𝑑𝛼

∫
1

0
Pos [𝐴 ≤ 𝑎

1
(𝛼)] 𝑑𝛼

= 2∫
1

0

𝛼(𝐸
𝐿
(𝐴) − 𝑎

1
(𝛼))
2

𝑑𝛼.

(10)

Remark 13. The upper possibilistic variance of 𝐴 is defined
as the upper possibility-weighted average of the squared
deviations between the right-hand endpoint and the upper
possibilistic mean of its level sets. Therefore, one has the
following:

Var
𝑅
(𝐴) =

∫
1

0
Pos [𝐴 ≥ 𝑎

1
(𝛼)] (𝐸

𝑅
(𝐴) − 𝑎

2
(𝛼))
2

𝑑𝛼

∫
1

0
Pos [𝐴 ≥ 𝑎

2
(𝛼)] 𝑑𝛼

= 2∫
1

0

𝛼(𝐸
𝑅
(𝐴) − 𝑎

2
(𝛼))
2

𝑑𝛼.

(11)

Remark 14. The possibilistic variance of fuzzy number 𝐴 is
defined as

Var (𝐴) =
Var
𝐿
(𝐴) + Var

𝑅
(𝐴)

2

= ∫
1

0

𝛼(𝐸
𝐿
(𝐴) − 𝑎

1
(𝛼))
2

+ (𝐸
𝑅
(𝐴) − 𝑎

2
(𝛼))
2

𝑑𝛼.

(12)

Remark 15. The crisp interval possibilistic variance of fuzzy
number 𝐴 is defined as

ITPV (𝐴) = [Var
𝐿
(𝐴) ,Var

𝑅
(𝐴)]

= [2∫
1

0

𝛼(𝐸
𝐿
(𝐴) − 𝑎

1
(𝛼))
2

𝑑𝛼,

2 ∫
1

0

𝛼(𝐸
𝑅
(𝐴) − 𝑎

2
(𝛼))
2

𝑑𝛼] .

(13)

In the next subsection, in line with Carlsson and Fullér
[5], we discuss possibilistic mean and possibilistic variance of
(𝑚, 𝑛)-Tr.F.N. For any 𝐴 ∈ F we use the notation 𝐴(𝛼) =

[𝑎
1
(𝛼), 𝑎
2
(𝛼)] for 𝛼-level sets of 𝐴.
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Table 1: 𝐸
𝐿
(𝐴), 𝐸

𝑅
(𝐴), and 𝐸(𝐴) for different values of𝑚 and 𝑛.

𝑚 𝑛 𝐸
𝐿
(𝐴) 𝐸

𝑅
(𝐴) 𝐸(𝐴)

0.5 0.5 5

6
𝑎
2
+

1

6
𝑎
1

5

6
𝑎
3
+

1

6
𝑎
4

5

12
𝑎
2
+

1

12
𝑎
1
+

5

12
𝑎
3
+

1

12
𝑎
4

1 10 2

3
𝑎
2
+

1

3
𝑎
1

31

231
𝑎
3
+

200

231
𝑎
4

1

3
𝑎
2
+

1

6
𝑎
1
+

31

462
𝑎
3
+

100

231
𝑎
4

5 2 8

33
𝑎
2
+

25

33
𝑎
1

7

15
𝑎
3
+

8

15
𝑎
4

4

33
𝑎
2
+

7

30
𝑎
3
+

4

15
𝑎
4
+

25

66
𝑎
1

10 0.5 31

231
𝑎
2
+

200

231
𝑎
1

5

6
𝑎
3
+

1

6
𝑎
4

31

462
𝑎
2
+

5

12
𝑎
3
+

1

12
𝑎
4
+

100

231
𝑎
1

25 3 38

663
𝑎
2
+

625

663
𝑎
1

5

14
𝑎
3
+

9

14
𝑎
4

19

663
𝑎
2
+

5

28
𝑎
3
+

9

28
𝑎
4
+

625

1326
𝑎
1

2.1. Moments of Fuzzy Numbers 𝐴 = [𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
]
𝑂(𝑚,𝑛)

.
Using (7) and (8) for the (𝑚, 𝑛)-Tr.F.N., the possibilistic
expected value and possibilistic variance are as follows;

𝐸
𝐿
(𝐴) =

2𝑎
1
𝑚2 + 3𝑚𝑎

2
+ 𝑎
2

(1 + 2𝑚) (𝑚 + 1)
,

𝐸
𝑅
(𝐴) =

2𝑛
2𝑎
4
+ 3𝑛𝑎

3
+ 𝑎
3

(1 + 2𝑛) (1 + 𝑛)
,

𝐸 (𝐴) =
2𝑎
1
𝑚2 + 3𝑚𝑎

2
+ 𝑎
2

2 (1 + 2𝑚) (𝑚 + 1)
+

2𝑛2𝑎
4
+ 3𝑛𝑎

3
+ 𝑎
3

2 (1 + 2𝑛) (1 + 𝑛)
.

(14)

It is important to point out here that when 𝐴 is a Tr.F.N. or
a T.F.N., 𝐸

𝐿
(𝐴), 𝐸

𝑅
(𝐴) and 𝐸(𝐴) can be easily obtained from

(14). Similarly, using (10) and (11)

Var
𝐿
(𝐴)

= 2∫
1

0

𝛼(𝐸
𝐿
(𝐴) − 𝑎

1
(𝛼))
2

𝑑𝛼 = 2∫
1

0

𝛼𝑎
2

1
(𝛼) 𝑑𝛼 − 𝐸

2

𝐿
(𝐴)

= ( (2𝑎
2

2
+ 2𝑚
3

𝑎
2

1
− 2𝑚
3

𝑎
2

2
− 7𝑎
2

2
𝑚
2

+ 𝑎
2

1
𝑚
2

+ 6𝑎
2
𝑎
1
𝑚
2

+7𝑎
2

2
𝑚
2

+7𝑎
2

2
𝑚+2𝑎

2

2
𝑚
3

) ((3𝑚+2𝑚
2

+1) (𝑚+2))
−1

)

− (
2𝑎
1
𝑚2 + 3𝑚𝑎

2
+ 𝑎
2

(1 + 2𝑚) (𝑚 + 1)
)

2

,

Var
𝑅
(𝐴)

= 2∫
1

0

𝛼(𝐸
𝑅
(𝐴) − 𝑎

1
(𝛼))
2

𝑑𝛼 = 2∫
1

0

𝛼𝑎
2

2
(𝛼) 𝑑𝛼 − 𝐸

2

𝑅
(𝐴)

= ( (2𝑎
2

3
− 2𝑛
3

𝑎
2

3
− 7𝑛
2

𝑎
2

3
+ 2𝑛
3

𝑎
2

4
+ 𝑎
2

4
𝑛
2

+ 7𝑎
2

3
𝑛
2

+2𝑎
2

3
𝑛
3

+7𝑎
2

3
𝑛+6𝑛
2

𝑎
4
𝑎
3
) ((𝑛+2) (1+𝑛) (1+2𝑛))

−1

)

− (
2𝑛2𝑎
4
+ 3𝑛𝑎

3
+ 𝑎
3

(1 + 2𝑛) (1 + 𝑛)
)

2

.

(15)

This yields

Var (𝐴) = ( (2𝑎
2

2
+ 2𝑚
3

𝑎
2

1
− 2𝑚
3

𝑎
2

2
− 7𝑎
2

2
𝑚
2

+ 𝑎
2

1
𝑚
2

+6𝑎
2
𝑎
1
𝑚
2

+ 7𝑎
2

2
𝑚
2

+ 7𝑎
2

2
𝑚 + 2𝑎

2

2
𝑚
3

)

× (2 (3𝑚 + 2𝑚
2

+ 1) (𝑚 + 2))
−1

)

+ ( (2𝑎
2

3
− 2𝑛
3

𝑎
2

3
− 7𝑛
2

𝑎
2

3
+ 2𝑛
3

𝑎
2

4
+ 𝑎
2

4
𝑛
2

+ 7𝑎
2

3
𝑛
2

+2𝑎
2

3
𝑛
3

+ 7𝑎
2

3
𝑛 + 6𝑛

2

𝑎
4
𝑎
3
)

×(2 (𝑛 + 2) (1 + 𝑛) (1 + 2𝑛))
−1

)

−(
2𝑛2𝑎
4
+ 3𝑛𝑎

3
+ 𝑎
3

2 (1 + 2𝑛) (1 + 𝑛)
)

2

−(
2𝑎
1
𝑚2+ 3𝑚𝑎

2
+ 𝑎
2

2 (1 + 2𝑚) (𝑚 + 1)
)

2

.

(16)

For various values of𝑚 and 𝑛 we obtain Tables 1, 2, and 3.

2.2. Possibilistic Moment Generating Function. From Buckley
[1] andGeorgescu [26]wehave that for an increasing function
𝑔(𝑥) and a fuzzy number 𝐴 whose 𝛼-level sets are 𝐴(𝛼) =

[𝑎
1
(𝛼), 𝑎
2
(𝛼)] then we have the following:

(𝑔 (𝐴))
𝛼
= {𝑔 (𝑥) | 𝑥 ∈ (𝐴)

𝛼
}

= {𝑔 (𝑥) | 𝑎
1
(𝛼) ≤ 𝑥 ≤ 𝑎

2
(𝛼)}

= {𝑔 (𝑎
1
(𝛼)) , 𝑔 (𝑎

2
(𝛼))} .

(17)

On the other hand if 𝑔(𝑥) is a decreasing function then

(𝑔 (𝐴))
𝛼
= {𝑔 (𝑥) | 𝑥 ∈ (𝐴)

𝛼
}

= {𝑔 (𝑥) | 𝑎
2
(𝛼) ≤ 𝑥 ≤ 𝑎

1
(𝛼)}

= {𝑔 (𝑎
2
(𝛼)) , 𝑔 (𝑎

1
(𝛼))} .

(18)

The weighted possibilistic moment generating function, if
exists, is defined as

MGF
𝐴
(𝑢) =

1

2
∫
1

0

𝑓 (𝛼) (𝑒
𝑢(𝑎
1
(𝛼))

+ 𝑒
𝑢(𝑎
2
(𝛼))

) 𝑑𝛼,

0 ≤ 𝛼 ≤ 1.

(19)
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Table 2: Var
𝐿
(𝐴) and Var

𝑅
(𝐴) for different values of𝑚 and 𝑛.

𝑚 𝑛 Var
𝐿
(𝐴) Var

𝑅
(𝐴)

0.5 0.5 7

180
𝑎2
2
−

7

90
𝑎
2
𝑎
1
+

7

180
𝑎2
1

7

180
𝑎2
3
−

7

90
𝑎
3
𝑎
4
+

7

180
𝑎2
4

1 10 1

18
𝑎
2

2
+

1

18
𝑎
2

1
−

1

9
𝑎
2
𝑎
1

425

53 361
𝑎
2

3
−

850

53 361
𝑎
3
𝑎
4
+

425

53 361
𝑎
2

4

5 2 325

15 246
𝑎2
2
−

325

7623
𝑎
2
𝑎
1
+

325

15 246
𝑎2
1

11

225
𝑎2
3
−

22

225
𝑎
3
𝑎
4
+

11

225
𝑎2
4

10 0.5 425

53 361
𝑎
2

2
−

850

53 361
𝑎
2
𝑎
1
+

425

53 361
𝑎
2

1

7

180
𝑎
2

3
−

7

90
𝑎
3
𝑎
4
+

7

180
𝑎
2

4

25 3 4375

2637 414
𝑎2
2
−

4375

1318 707
𝑎
2
𝑎
1
+

4375

2637 414
𝑎2
1

9

245
𝑎2
3
−

18

245
𝑎
3
𝑎
4
+

9

245
𝑎2
4

Table 3: Var(𝐴) for different values of𝑚 and 𝑛.

𝑚 𝑛 Var(𝐴)

0.5 0.5 7

360
𝑎
2

2
−

7

180
𝑎
2
𝑎
1
+

7

360
𝑎
2

1
+

7

360
𝑎
2

3
−

7

180
𝑎
3
𝑎
4
+

7

360
𝑎
2

4

1 10 1

36
𝑎2
2
+

1

36
𝑎2
1
−

1

18
𝑎
2
𝑎
1
+

425

106 722
𝑎2
3
−

425

53 361
𝑎
3
𝑎
4
+

425

106 722
𝑎2
4

5 2 325

30 492
𝑎
2

2
−

325

15 246
𝑎
2
𝑎
1
+

325

30 492
𝑎
2

1
+

11

450
𝑎
2

3
−

11

225
𝑎
3
𝑎
4
+

11

450
𝑎
2

4

10 0.5 425

106 722
𝑎2
2
−

425

53 361
𝑎
2
𝑎
1
+

425

106 722
𝑎2
1
+

7

360
𝑎2
3
−

7

180
𝑎
3
𝑎
4
+

7

360
𝑎2
4

25 3 4375

5274 828
𝑎2
2
−

4375

2637 414
𝑎
2
𝑎
1
+

4375

5274 828
𝑎2
1
+

9

490
𝑎2
3
−

9

245
𝑎
3
𝑎
4
+

9

490
𝑎2
4

As a special case if we assume that the weighting function
is 𝑓(𝛼) = 2𝛼, then expression (19) can be rewritten in the
following form:

MGF
𝐴
(𝑢) = ∫

1

0

𝛼 (𝑒
𝑢(𝑎
1
(𝛼))

+ 𝑒
𝑢(𝑎
2
(𝛼))

) 𝑑𝛼,

0 ≤ 𝛼 ≤ 1.

(20)

Based on (19), we define the weighted possibilistic moments
as follows:

𝐸
𝑟
(𝐴) =

𝑑
𝑟

𝑑𝑢𝑟
(MGF

𝐴
(𝑢))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=0
= lim
𝑢→0

𝑑𝑟

𝑑𝑡𝑟
(MGF

𝐴
(𝑢)) .

(21)

In the following section, we formulate the possibilistic net
present value model and discuss its possibilistic moment
properties.

3. Fuzzy Net Present Value

Net present value (NPV) is a measure of economic effective-
ness and is defined as the sumof the discounted net cash flows

generated during consecutive years of the economic life of an
investment opportunity. Consider the following:

NPV (𝐶, 𝑟, 𝑡) = − 𝐶
0
+

𝐶
1

1 + 𝑟
1

+
𝐶
2

(1 + 𝑟
1
) (1 + 𝑟

2
)

+ ⋅ ⋅ ⋅
𝐶
𝑛

(1 + 𝑟
1
) (1 + 𝑟

2
) ⋅ ⋅ ⋅ (1 + 𝑟

𝑛
)

= − 𝐶
0
+ (

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡

(1 + 𝑟
𝑠
)
) .

(22)

𝐶
0
is the net cash outflow at the beginning of a project which

is a negative value, 𝐶
𝑡
is the expected net cash inflow of the

project estimated by the decision maker at 𝑡th time period,
and 𝑟
𝑡
is the required rate of return or the discount rate of a

project at 𝑡th time period.

Remark 16. It is important to note here that if the required
rate of return is constant for all 𝑡 > 0, then expression (22)
reduces to

NPV (𝐶, 𝑟, 𝑡) = −𝐶
0
+

𝐶
1

(1 + 𝑟)
+

𝐶
2

(1 + 𝑟)
2
+ ⋅ ⋅ ⋅

𝐶
𝑛

(1 + 𝑟)
𝑛

= −𝐶
0
+

𝑛

∑
𝑡=1

𝐶
𝑡

(1 + 𝑟)
𝑡
.

(23)
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Below we give a theorem for the fuzzy net present value
(see Appadoo et al. ([7, 27]) for details), where all the
parameters, 𝐶

0
, . . . , 𝐶

𝑛
, and 𝑟, in the models are assumed

to be fuzzy numbers and the corresponding 𝛼-cuts for the
FNPV model considered in Theorem 17 are given below. The
following theorem extends the results in Appadoo et al. [7] to
the time varying interest.

Theorem 17. For the fuzzy investment made at time period 𝑡

are given by 𝐹𝑁𝑃𝑉(𝐶, 𝑟, 𝑡, 𝛼); let
(a) 𝐶
𝑡
(𝛼) = [𝐶

𝑡1
(𝛼), 𝐶

𝑡2
(𝛼)], 0 ≤ 𝛼 ≤ 1, 𝑡 = 0, 1, 2, . . . , 𝑛

be the fuzzy investmentmade at the end of period 𝑡, and
let

(b) 𝑟
𝑡
(𝛼) = [𝑟

𝑡1
(𝛼), 𝑟
𝑡2
(𝛼)], 0 ≤ 𝛼 ≤ 1, 𝑡 = 0, 1, 2, . . . , 𝑛 be

the fuzzy return on the investment at each period 𝑡.
The cumulative discounted fuzzy net present value (𝐹𝑁𝑃𝑉) is
given by

𝐹𝑁𝑃𝑉 (𝐶, 𝑟, 𝑡, 𝛼)

= (−𝐶
02

(𝛼) , −𝐶
01

(𝛼)) + (
𝐶
11

(𝛼)

1 + 𝑟
12

(𝛼)
,

𝐶
12

(𝛼)

1 + 𝑟
11

(𝛼)
)

+ (
𝐶
21

(𝛼)

(1 + 𝑟
12

(𝛼)) (1 + 𝑟
22

(𝛼))
,

𝐶
22

(𝛼)

(1 + 𝑟
11

(𝛼)) (1 + 𝑟
21

(𝛼))
)

+ ⋅ ⋅ ⋅ + (
𝐶
𝑛1

(𝛼)

(1 + 𝑟
12

(𝛼)) (1 + 𝑟
22

(𝛼)) ⋅ ⋅ ⋅ (1 + 𝑟
𝑛2

(𝛼))
,

𝐶
𝑛2

(𝛼)

(1 + 𝑟
11

(𝛼)) (1 + 𝑟
21

(𝛼)) ⋅ ⋅ ⋅ (1 + 𝑟
𝑛1

(𝛼))
)

= (−𝐶
02

(𝛼) , −𝐶
01

(𝛼))

+ (

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
,

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
) .

(24)

Hence, the 𝛼-cuts of lower and upper 𝐹𝑁𝑃𝑉(𝐶, 𝑟, 𝑡, 𝛼) are
given by

𝐹𝑁𝑃𝑉
𝐿
(𝐶, 𝑟, 𝑡, 𝛼) = −𝐶

02
(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
,

𝐹𝑁𝑃𝑉
𝑅
(𝐶, 𝑟, 𝑡, 𝛼) = −𝐶

01
(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
.

(25)

Corollary 18. In (24) if all the 𝐶
𝑡
’s are crisps, for all 𝑡 then one

has
𝐹𝑁𝑃𝑉 (𝐶, 𝑟, 𝑡, 𝛼)

= (−𝐶
0
, −𝐶
0
)+(

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡

(1 + 𝑟
𝑠2

(𝛼))
,

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡

(1 + 𝑟
𝑠1

(𝛼))
) .

(26)

Corollary 19. In (24) if all the 𝑟
𝑡
’s are crisps, for all 𝑡 then one

has
𝐹𝑁𝑃𝑉 (𝐶, 𝑟, 𝑡, 𝛼) = (−𝐶

02
(𝛼) , −𝐶

01
(𝛼))

+ (

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠
)
,

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠
)
) .

(27)

Corollary 20. In (24) if all the 𝐶
𝑡
’s are crisps and 𝑟

𝑡
(𝛼) =

[𝑟
1
(𝛼), 𝑟
2
(𝛼)], for all 𝑡 then one has

𝐹𝑁𝑃𝑉 (𝐶, 𝑟, 𝑡, 𝛼)

= (−𝐶
0
, −𝐶
0
) + (

𝑛

∑
𝑡=1

𝐶
𝑡

(1 + 𝑟
2
(𝛼))
𝑡
,

𝑛

∑
𝑡=1

𝐶
𝑡

(1 + 𝑟
1
(𝛼))
𝑡
) .

(28)

Below one discusses some possibilistic moment proper-
ties of FNPV as in (25) as follows.

Corollary 21. The lower possibilistic mean for 𝐹𝑁𝑃𝑉 is

𝐸
𝐿
(𝐹𝑁𝑃𝑉)

= 2∫
1

0

𝛼𝐹𝑁𝑃𝑉
𝐿
(𝐶, 𝑟, 𝑡, 𝛼) 𝑑𝛼

= 2∫
1

0

𝛼(−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
) 𝑑𝛼.

(29)

Corollary 22. The upper possibilistic mean for 𝐹𝑁𝑃𝑉 is

𝐸
𝑅
(𝐹𝑁𝑃𝑉)

= 2∫
1

0

𝛼𝐹𝑁𝑃𝑉
𝑅
(𝐶, 𝑟, 𝑡, 𝛼) 𝑑𝛼

= 2∫
1

0

𝛼(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
) 𝑑𝛼.

(30)

Corollary 23. The interval value possibilistic mean for 𝐹𝑁𝑃𝑉

is
𝐼𝑉𝑃𝑀(𝐹𝑁𝑃𝑉)

= [𝐸
𝐿
(𝐹𝑁𝑃𝑉) , 𝐸

𝑅
(𝐹𝑁𝑃𝑉)]

= [2∫
1

0

𝛼(−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
) 𝑑𝛼,

2 ∫
1

0

𝛼(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
) 𝑑𝛼] .

(31)

Corollary 24. The possibilistic mean for 𝐹𝑁𝑃𝑉 is

𝐸 (𝐹𝑁𝑃𝑉)

= ∫
1

0

𝛼(−𝐶
02

(𝛼) − 𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))

+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
) 𝑑𝛼.

(32)
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Corollary 25. Expression for lower possibilistic variance
Var
𝐿
(𝐹𝑁𝑃𝑉) for 𝐹𝑁𝑃𝑉 is as follows:

= (∫
1

0

𝑃𝑜𝑠 [𝐹𝑁𝑃𝑉≤−𝐶
02

(𝛼)+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
]

× (𝐸
𝐿
(𝐹𝑁𝑃𝑉)

−(−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
))

2

𝑑𝛼)

× (∫
1

0

𝑃𝑜𝑠 [𝐹𝑁𝑃𝑉≤−𝐶
02

(𝛼)+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1+𝑟
𝑠2

(𝛼))
] 𝑑𝛼)

−1

= 2∫
1

0

𝛼(𝐸
𝐿
(𝐹𝑁𝑃𝑉)

−(−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
))

2

𝑑𝛼.

(33)

Corollary 26. Similarly, one can give expression for upper
possibilistic variance Var

𝑅
(𝐹𝑁𝑃𝑉) for 𝐹𝑁𝑃𝑉 is as follows:

= (∫
1

0

𝑃𝑜𝑠 [𝐹𝑁𝑃𝑉≥−𝐶
01

(𝛼)+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
]

× (𝐸
𝑅
(𝐹𝑁𝑃𝑉)

−(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
))

2

𝑑𝛼)

× (∫
1

0

𝑃𝑜𝑠 [𝐹𝑁𝑃𝑉 ≥ −𝐶
01

(𝛼)

+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
] 𝑑𝛼)

−1

= 2∫
1

0

𝛼(𝐸
𝑅
(𝐹𝑁𝑃𝑉)

−(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
))

2

𝑑𝛼.

(34)

Corollary 27. The interval value possibilistic variance
𝐼𝑉𝑃𝑉(𝐹𝑁𝑃𝑉) is

𝐼𝑉𝑃𝑉 (𝐹𝑁𝑃𝑉)

= [Var
𝐿
(𝐹𝑁𝑃𝑉) ,Var

𝑅
(𝐹𝑁𝑃𝑉)]

= [

[

2∫
1

0

𝛼(𝐸
𝐿
(𝐹𝑁𝑃𝑉)

− (−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
))

2

𝑑𝛼,

2 ∫
1

0

𝛼(𝐸
𝑅
(𝐹𝑁𝑃𝑉)

−(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
))

2

𝑑𝛼]

]

.

(35)

Corollary 28. Thus, the possibilistic variance is

Var (𝐹𝑁𝑃𝑉)

= ∫
1

0

𝛼((𝐸
𝐿
(𝐹𝑁𝑃𝑉)

−(−𝐶
02

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡1
(𝛼)

(1 + 𝑟
𝑠2

(𝛼))
))

2

+ (𝐸
𝑅
(𝐹𝑁𝑃𝑉)

−(−𝐶
01

(𝛼) +

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2
(𝛼)

(1 + 𝑟
𝑠1

(𝛼))
))

2

)𝑑𝛼.

(36)

The possibilistic moment generating function for FNPV
is as follows.

Corollary 29. Consider

𝑀𝐺𝐹
𝐹𝑁𝑃𝑉

(𝑢)

= ∫
1

0

𝛼 (𝑒
𝑢(𝐹𝑁𝑃𝑉

𝐿
(𝐶,𝑟,𝑡,𝛼))

+ 𝑒
𝑢(𝐹𝑁𝑃𝑉

𝑅
(𝐶,𝑟,𝑡,𝛼))

) 𝑑𝛼

= ∫
1

0

𝛼 (𝑒
𝑢(−𝐶
02
(𝛼)+∑

𝑛

𝑡=1
∏
𝑡

𝑠=1
(𝐶
𝑡1
(𝛼)/(1+𝑟

𝑠2
(𝛼))))

+𝑒
𝑢(−𝐶
01
(𝛼)+∑

𝑛

𝑡=1
∏
𝑡

𝑠=1
(𝐶
𝑡2
(𝛼)/(1+𝑟

𝑠1
(𝛼))))

) 𝑑𝛼,
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𝐸
𝑟
(𝐹𝑁𝑃𝑉)

=
𝑑
𝑟

𝑑𝑡𝑟
(𝑀𝐺𝐹

𝐹𝑁𝑃𝑉
(𝑢))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
= lim
𝑢→0

𝑑𝑟

𝑑𝑡𝑟
(𝑀𝐺𝐹

𝐹𝑁𝑃𝑉
(𝑢))

= lim
𝑢→0

𝑑𝑟

𝑑𝑡𝑟
(∫
1

0

𝛼 (𝑒
𝑢(−𝐶
02
(𝛼)+∑

𝑛

𝑡=1
∏
𝑡

𝑠=1
(𝐶
𝑡1
(𝛼)/(1+𝑟

𝑠2
(𝛼))))

+𝑒
𝑢(−𝐶
01
(𝛼)+∑

𝑛

𝑡=1
∏
𝑡

𝑠=1
(𝐶
𝑡2
(𝛼)/(1+𝑟

𝑠1
(𝛼))))

) 𝑑𝛼) .

(37)

Below, one gives Theorem 30 that can be proved easily
followingTheorem 17.

Theorem 30. Let

(a) 𝐶
𝑡
(𝛼) = [𝐶

𝑡1
(𝛼), 𝐶

𝑡2
(𝛼)] = [𝐶

𝑡2
− (𝐶
𝑡2

− 𝐶
𝑡1
)(1 −

𝛼)
1/𝑚
𝑡 , 𝐶
𝑡3

− (𝐶
𝑡3

− 𝐶
𝑡4
)(1 − 𝛼)

1/𝑛
𝑡], 0 ≤ 𝛼 ≤ 1,

𝑡 = 0, 1, 2, . . . , 𝑛 be the fuzzy investment made at the
end of period t and let

(b) 𝑟
𝑡
(𝛼) = [𝑟

𝑡1
(𝛼), 𝑟
𝑡2
(𝛼)] = [𝑟

𝑡2
−(𝑟
𝑡2
−𝑟
𝑡1
)(1−𝛼)

1/𝑀
𝑡 , 𝑟
𝑡3
−

(𝑟
𝑡3

− 𝑟
𝑡4
)(1 − 𝛼)

1/𝑁
𝑡], 0 ≤ 𝛼 ≤ 1, 𝑡 = 0, 1, 2, . . . , 𝑛 be

the fuzzy return on the investment at each of period 𝑡.

Then, the cumulative discounted fuzzy net present value
(𝐹𝑁𝑃𝑉) is given by

𝐹𝑁𝑃𝑉 (𝐶, 𝑟, 𝑡, 𝛼)

= ((𝐶
03

− 𝐶
04
) (1 − 𝛼)

1/𝑛
0 − 𝐶
03
,

(𝐶
02

− 𝐶
01
) (1 − 𝛼)

1/𝑚
0 − 𝐶
02
)

+ (

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2

− (𝐶
𝑡2

− 𝐶
𝑡1
) (1 − 𝛼)

1/𝑚
𝑡

(1 + 𝑟
𝑠3

− (𝑟
𝑠3

− 𝑟
𝑠4
) (1 − 𝛼)

1/𝑁
𝑠)

,

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡3

− (𝐶
𝑡3

− 𝐶
𝑡4
) (1 − 𝛼)

1/𝑛
𝑡

(1 + 𝑟
𝑠2

− (𝑟
𝑠2

− 𝑟
𝑠1
) (1 − 𝛼)

1/𝑀
𝑠)

) ,

(38)

where

𝐹𝑁𝑃𝑉
𝐿
(𝐶, 𝑟, 𝑡, 𝛼)

= (𝐶
03

− 𝐶
04
) (1 − 𝛼)

1/𝑛
0 − 𝐶
03

+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡2

− (𝐶
𝑡2

− 𝐶
𝑡1
) (1 − 𝛼)

1/𝑚
𝑡

(1 + 𝑟
𝑠3

− (𝑟
𝑠3

− 𝑟
𝑠4
) (1 − 𝛼)

1/𝑁
𝑠)

,

(39)

𝐹𝑁𝑃𝑉
𝑅
(𝐶, 𝑟, 𝑡, 𝛼)

= (𝐶
02

− 𝐶
01
) (1 − 𝛼)

1/𝑚
0 − 𝐶
02

+

𝑛

∑
𝑡=1

𝑡

∏
𝑠=1

𝐶
𝑡3

− (𝐶
𝑡3

− 𝐶
𝑡4
) (1 − 𝛼)

1/𝑛
𝑡

(1 + 𝑟
𝑠2

− (𝑟
𝑠2

− 𝑟
𝑠1
) (1 − 𝛼)

1/𝑀
𝑠)

.

(40)

We may now point out that one can easily study the
possibilistic of structure FNPV(𝐶, 𝑟, 𝑡, 𝛼) since we have close
form expressions for FNPV

𝐿
(𝐶, 𝑟, 𝑡, 𝛼) and FNPV

𝑅
(𝐶, 𝑟, 𝑡, 𝛼),

respectively.Thus, we observe that it can be used to determine
whether an investment is risky or not and this will be the
subject of future research.

Below, we discussed an application of FNPV
𝐿
(𝐶, 𝑟, 𝑡, 𝛼)

and FNPV
𝑅
(𝐶, 𝑟, 𝑡, 𝛼). It is important to point out here that

data in the example given below can usually be obtained
through expert opinion or survey.This approach is consistent
with empirical studies in social science and in real life. Note
that input data’s in fuzzymodeling can also be data driven and
there are genetic algorithms available which offer convenient
ways tomodel fuzzy systems andmembership functions from
raw data. In the example below, we aremore interested to give
an example to show how the various possibilistic moments
can be computed once the various model parameters are
obtained.

Example 31. In this example we illustrate the application of
fuzzy sets theory, possibility theory, and (𝑚, 𝑛)-trapezoidal
fuzzy numbers to the fuzzy net present value model devel-
oped early in the paper. Suppose we have an investment
opportunity where the cash flows are given as fuzzy numbers
as in Table 4, the fuzzy discount rate is given is Table 5.
Based on information given in Table 4 and Table 5 we can
calculate the fuzzy net present value using (39). It is worth
noting that the input variables in (40), which can only be
realized in the future, are full of uncertainty. In an uncertain
decision making environment, input parameters are vague,
ambiguous, and imprecise, which can only be handled by the
fuzzy analysis as proposed in this paper.

Consider the following:

FNPV
𝐿
(𝐶, 𝑟, 𝑡, 𝛼)

= (−1000 − 50(1 − 𝛼)
1/𝑛
0) + (

500 − 100(1 − 𝛼)
1/𝑚
1

1.15 + 0.1(1 − 𝛼)
1/𝑁
1

)

+ (
(350 − 50(1 − 𝛼)

1/𝑚
2)

(1.15 + 0.1(1 − 𝛼)
1/𝑁
1) (1.07 + 0.02(1 − 𝛼)

1/𝑁
2)

)

+ ( (150 − 50(1 − 𝛼)
1/𝑚
3)

× ((1.15 + 0.1(1 − 𝛼)
1/𝑁
1) (1.07 + 0.02(1 − 𝛼)

1/𝑁
2)

× (1.08 + 0.01(1 − 𝛼)
1/𝑁
3))
−1

)

+ (( (250 − 50(1 − 𝛼)
1/𝑚
4)

× ((1.08 + 0.01(1 − 𝛼)
1/𝑁
3)

×(1.04 + 0.02(1 − 𝛼)
1/𝑁
4))
−1

)

× ((1.15 + 0.1(1 − 𝛼)
1/𝑁
1)

×(1.07 + 0.02(1 − 𝛼)
1/𝑁
2))
−1

)

(41)
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Table 4: Fuzzy cash flow and corresponding 𝛼-cuts, ∀, 𝛼, 0 ≤ 𝛼 ≤ 1.

Year (𝑖) Fuzzy cash flows Corresponding 𝛼-cuts
0 [800, 900, 1000, 1050]

𝑂(𝑚0 ,𝑛0)
(900 − 100(1 − 𝛼)

1/𝑚0 , 1000 + 50(1 − 𝛼)
1/𝑛0 )

1 [400, 500, 600, 650]
𝑂(𝑚1 ,𝑛1)

(500 − 100(1 − 𝛼)
1/𝑚1 , 600 + 50(1 − 𝛼)

1/𝑛1

)

2 [300, 350, 400, 450]
𝑂(𝑚2,𝑛2)

(350 − 50(1 − 𝛼)
1/𝑚2 , 400 + 50(1 − 𝛼)

1/𝑛2

)

3 [100, 150, 200, 250]
𝑂(𝑚3 ,𝑛3)

(150 − 50(1 − 𝛼)
1/𝑚3 , 200 + 50(1 − 𝛼)

1/𝑛3

)

4 [200, 250, 300, 350]
𝑂(𝑚4,𝑛4)

(250 − 50(1 − 𝛼)
1/𝑚4 , 300 + 50(1 − 𝛼)

1/𝑛4

)

Table 5: Fuzzy discount rates and corresponding 𝛼-cuts, ∀, 𝛼, 0 ≤ 𝛼 ≤ 1.

Year (𝑖) Fuzzy discount rates Corresponding 𝛼-cuts
1 [1.0, 1.1, 1.15, 1.25]

𝑂(𝑀1,𝑁1)
(1.1 − 0.1(1 − 𝛼)

1/𝑀1 , 1.15 + 0.1(1 − 𝛼)
1/𝑁1 )

2 [1.03, 1.05, 1.07, 1.09]
𝑂(𝑀2,𝑁2)

(1.03 − 0.02(1 − 𝛼)
1/𝑀1 , 1.07 + 0.02(1 − 𝛼)

1/𝑁2 )

3 [1.05, 1.07, 1.08, 1.09]
𝑂(𝑀3,𝑁3)

(1.05 − 0.02(1 − 𝛼)
1/𝑀3 , 1.08 + 0.01(1 − 𝛼)

1/𝑁3 )

4 [1.02, 1.03, 1.04, 1.06]
𝑂(𝑀4,𝑁4)

(1.02 − 0.01(1 − 𝛼)
1/𝑀4 , 1.04 + 0.02(1 − 𝛼)

1/𝑁4 )

Table 6: Fuzzy net present value 𝛼-cuts, ∀, 𝛼, 0 ≤ 𝛼 ≤ 1.

𝑚
0

1 1 1 1 0.02 0.02 0.00002 0.00002 0.00002 0.00002 1000 1000
𝑚
1

1 1 2 2 0.05 0.05 1 1 0.00002 0.00002 1000 1000
𝑚
2

1 1 1 1 0.2 0.2 25 25 0.00002 0.00002 1000 1000
𝑚
3

1 1 5 5 0.3 0.3 1 1 0.00002 0.00002 1000 1000
𝑚
4

1 1 1 1 0.8 0.8 1 1 0.00002 0.00002 1000 1000
𝑛
0

1 1 1 1 0.003 0.003 1 1 0.00002 0.00002 1000 1000
𝑛
1

1 1 12 12 0.002 0.002 1 1 0.00002 0.00002 1000 1000
𝑛
2

1 1 1 1 0.05 0.05 1 1 0.00002 0.00002 1000 1000
𝑛
3

1 1 18 18 0.6 0.6 1 1 0.00002 0.00002 1000 1000
𝑛
4

1 1 1 1 0.08 0.08 1000 1000 0.00002 0.00002 1000 1000
𝑀
0

1 1 2.5 2.5 0.06 0.06 1 1 0.00002 0.00002 1000 1000
𝑀
1

1 1 1 1 0.09 0.09 1 1 0.00002 0.00002 1000 1000
𝑀
2

1 1 3.2 3.2 0.05 0.05 0.0009 0.0009 0.00002 0.00002 1000 1000
𝑀
3

1 1 1 1 0.02 0.02 1 1 0.00002 0.00002 1000 1000
𝑀
4

1 1 9 9 0.005 0.005 68 68 0.00002 0.00002 1000 1000
𝑁
1

1 1 1 1 0.09 0.09 45 45 0.00002 0.00002 1000 1000
𝑁
2

1 1 12 12 0.05 0.05 1 1 0.00002 0.00002 1000 1000
𝑁
3

1 1 1 1 0.003 0.003 1 1 0.00002 0.00002 1000 1000
𝑁
4

1 1 8 8 0.01 0.01 1 1 0.00002 0.00002 1000 1000
𝛼 FNPV

1
FNPV

2
FNPV

1
FNPV

2
FNPV

1
FNPV

2
FNPV

1
FNPV

2
FFNPV

1
FNPV

2
FNPV

1
FNPV

2

0 −315.44 868.97 −315.44 868.97 −315.44 868.97 −315.44 868.97 −315.44 868.97 −315.44 868.97
0.1 −284.93 819.76 −292.48 830.35 −105.05 507.69 −314.47 868.00 12.98 413.85 −315.40 868.92
0.2 −253.94 771.43 −268.90 792.21 −53.60 456.38 −313.39 866.92 12.98 413.85 −315.37 868.86
0.3 −222.46 723.97 −244.63 754.49 −30.16 439.88 −312.18 865.70 12.98 413.85 −315.33 868.79
0.4 −190.46 677.35 −219.54 717.15 −16.44 432.27 −310.78 864.30 12.98 413.85 −315.28 868.72
0.5 −157.94 631.54 −193.47 680.10 −7.28 427.15 −309.14 862.65 12.98 413.85 −315.23 868.63
0.6 −124.89 586.51 −166.20 643.25 −0.73 422.98 −307.14 860.65 12.98 413.85 −315.16 868.52
0.7 −91.29 542.25 −137.31 606.40 4.17 419.50 −304.57 858.08 12.98 413.85 −315.07 868.37
0.8 −57.12 498.74 −105.99 569.17 7.95 416.72 −301.00 854.50 12.98 413.85 −314.95 868.17
0.9 −22.37 455.94 −70.10 530.39 10.92 414.75 −294.98 848.49 12.98 413.85 −314.74 867.83
1 12.98 413.85 12.98 413.85 12.98 413.85 12.98 413.85 12.98 413.85 12.98 413.85
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and similarly,

FNPV
𝑅
(𝐶, 𝑟, 𝑡, 𝛼)

= (−900 + 100(1 − 𝛼)
1/𝑚
0) + (

600 + 50(1 − 𝛼)
1/𝑛
1

1.1 − 0.1(1 − 𝛼)
1/𝑀
1

)

+ (
(400 + 50(1 − 𝛼)

1/𝑛
2)

(1.1 − 0.1(1 − 𝛼)
1/𝑀
1) (1.03 − 0.02(1 − 𝛼)

1/𝑀
2)

)

+ ( (200 + 50(1 − 𝛼)
1/𝑛
3)

× ((1.1 − 0.1(1 − 𝛼)
1/𝑀
1) (1.03 − 0.02(1 − 𝛼)

1/𝑀
2)

× (1.05 − 0.02(1 − 𝛼)
1/𝑀
3))
−1

)

+ ( ( (300 + 50(1 − 𝛼)
1/𝑛
4)

× ( (1.05 − 0.02(1 − 𝛼)
1/𝑀
3)

× (1.02 − 0.01(1 − 𝛼)
1/𝑀
4))
−1

)

× ( (1.1 − 0.1(1 − 𝛼)
1/𝑀
1)

× (1.03 − 0.02(1 − 𝛼)
1/𝑀
2))
−1

) ;

(42)

we can easily compute FNPV
𝐿
(𝐶, 𝑟, 𝑡, 𝛼) and FNPV

𝑅
(𝐶, 𝑟,

𝑡, 𝛼) for different values of 𝛼 for 0 ≤ 𝛼 ≤ 1. As a simple
illustration it is easy to see that when 𝑚

0
= 0.00002, 𝑚

1
= 1,

𝑚
2

= 25, 𝑚
3

= 1, 𝑚
4

= 1, 𝑛
0

= 1, 𝑛
1

= 1, 𝑛
2

= 1,
𝑛
3

= 1, 𝑛
4

= 1000, 𝑀
1

= 1, 𝑀
2

= 0.0009, 𝑀
3

= 1,
𝑀
4

= 68, 𝑁
0

= 45, 𝑁
1

= 1, 𝑁
2

= 1, 𝑁
3

= 1, and
𝛼 = 0.7 we have FNPV

𝐿
= −304.57 and FNPV

𝑅
= 858.08 for

detail see Table 6. As in Appadoo et al. [7] we can also
compute possibilistic moments of FNPV

𝐿
(𝐶, 𝑟, 𝑡, 𝛼) and

FNPV
𝑅
(𝐶, 𝑟, 𝑡, 𝛼). Most of the fuzzy net present value models

have been confined to linear type of fuzzy numbers. As
pointed out by Medaglia et al. [10] and Medasani et al. [11],
even though these linear membership functions do provide
ease in calculations, they do not represent precisely the
linguistic terms being modeled. There are many difficulties
associated with selecting the solution of a problem written
in linear membership functions and they have highlighted
the importance of using nonlinear membership functions
that can be easily tuned and adjusted ([10, 11]). This example
shows clearly that FNPV

𝐿
(𝐶, 𝑟, 𝑡, 𝛼) and FNPV

𝑅
(𝐶, 𝑟, 𝑡, 𝛼)

depend on the curvature of the membership function. For
different values of the curvatures we obtained different values
of FNPV(𝐶, 𝑟, 𝑡, 𝛼).

4. Conclusion

The fuzzy net present value model developed in this paper
is practical and useful. The methodology proposed in this
paper may also be applicable to other fuzzy cash flow models
as well. This model could provide investors with a better

understanding of the cash flow model when making invest-
ment decisions. The evidence in favor of a fuzzy approach
highlights the advantage over the original crisp version
of the net present value model. Our approach provides a
formulation that more closely conforms to real situation.
The proposed fuzzy model does not imply rejection of other
discounted cash formulation but rather compliments existing
fuzzy model formulation.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. J. Buckley, Fuzzy Probabilities, Studies in Fuzziness and Soft
Computing, Springer, Berlin, Germany, 2005.

[2] A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arith-
metic Theory and Applications, Von Nostrand Reinhold, New
York, NY, USA, 1985.

[3] H.-J. Zimmermann, Fuzzy Sets Theory and Its Applications,
Kluwer Academic Publishers, Nowell, Mass, USA, 4th edition,
2001.

[4] D. Dubois and H. Prade, “The mean value of a fuzzy number,”
Fuzzy Sets and Systems, vol. 24, no. 3, pp. 279–300, 1987.

[5] C. Carlsson and R. Fullér, “On possibilistic mean value and
variance of fuzzy numbers,” Fuzzy Sets and Systems, vol. 122, no.
2, pp. 315–326, 2001.

[6] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8,
pp. 338–353, 1965.

[7] S. S. Appadoo, S. K. Bhatt, and C. R. Bector, “Application of
possibility theory to investment decisions,” Fuzzy Optimization
and Decision Making, vol. 7, no. 1, pp. 35–57, 2008.

[8] A. Thavaneswaran, S. S. Appadoo, and A. Paseka, “Weighted
possibilistic moments of fuzzy numbers with applications to
GARCH modeling and option pricing,” Mathematical and
Computer Modelling, vol. 49, no. 1-2, pp. 352–368, 2009.

[9] A. Paseka, S. S. Appadoo, and A. Thavaneswaran, “Possibilistic
moment generating functions,” Applied Mathematics Letters,
vol. 24, no. 5, pp. 630–635, 2011.

[10] A. L.Medaglia, S.-C. Fang, H. L.W.Nuttle, and J. R.Wilson, “An
efficient and flexible mechanism for constructing membership
functions,” European Journal of Operational Research, vol. 139,
no. 1, pp. 84–95, 2002.

[11] S. Medasani, J. Kim, and R. Krishnapuram, “An overview
of membership function generation techniques for pattern
recognition,” International Journal of Approximate Reasoning,
vol. 19, no. 3-4, pp. 391–417, 1998.

[12] S. S. Appadoo, Pricing financial derivatives with fuzzy algebraic
models: a theoretical and computational approach [Ph.D. thesis],
University of Manitoba, Winnipeg, Manitoba, Canada, 2006.

[13] T. L. Ward, “Discounted fuzzy cash ow analysis,” in Proceedings
of the Fall Industrial Engineering Conference, pp. 476–481,
Institute of Industrial Engineers, 1985.

[14] C.-Y. Chiu and C. S. Park, “Fuzzy cash flow analysis using
present worth criterion,”The Engineering Economist, vol. 39, no.
2, pp. 113–138, 1994.

[15] J. J. Buckley, “The fuzzy mathematics of finance,” Fuzzy Sets and
Systems, vol. 21, no. 3, pp. 257–273, 1987.



Mathematical Problems in Engineering 11

[16] E. Ertugrul Karsak and E. Tolga, “Fuzzy multi-criteria decision-
making procedure for evaluating advanced manufacturing
system investments,” International Journal of Production Eco-
nomics, vol. 69, no. 1, pp. 49–64, 2001.

[17] D. Kuchta, “A fuzzy model for R&D project selection with
benefit, outcome and resource interactions,” The Engineering
Economist, vol. 46, no. 3, pp. 164–180, 2001.

[18] C. Kahraman, D. Ruan, and E. Tolga, “Capital budgeting
techniques using discounted fuzzy versus probabilistic cash
flows,” Information Sciences, vol. 142, no. 1–4, pp. 57–76, 2002.

[19] T.-S. Liou and C.-W. Chen, “Fuzzy decision analysis for alterna-
tive selection using a fuzzy annual worth criterion,” Engineering
Economist, vol. 51, no. 1, pp. 19–34, 2006.

[20] O. A. Omitaomu and A. Badiru, “Fuzzy present value analysis
model for evaluating information system projects,” Engineering
Economist, vol. 52, no. 2, pp. 157–178, 2007.

[21] X. Huang, “Credibility-based chance-constrained integer pro-
grammingmodels for capital budgeting with fuzzy parameters,”
Information Sciences, vol. 176, no. 18, pp. 2698–2712, 2006.

[22] X. Huang, “Change-constrained programming models for cap-
ital budgeting with NPV as fuzzy parameters,” Journal of
Computational andAppliedMathematics, vol. 198, no. 1, pp. 149–
159, 2007.

[23] X. Huang, “Optimal project selection with random fuzzy
parameters,” International Journal of Production Economics, vol.
106, no. 2, pp. 513–522, 2007.

[24] R. Goetschel Jr. and W. Voxman, “Elementary fuzzy calculus,”
Fuzzy Sets and Systems, vol. 18, no. 1, pp. 31–43, 1986.

[25] W.-G. Zhang and Z.-K. Nie, “On possibilistic variance of fuzzy
numbers,” in Proceedings of the 9th International Conference on
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
(RSFDGrC ’03), vol. 2639 of Lecture Notes in Artificial Intelli-
gence, pp. 398–402, May 2003.

[26] I. Georgescu, “Possibilistic risk aversion,” Fuzzy Sets and Sys-
tems, vol. 160, no. 18, pp. 2608–2619, 2009.

[27] S. S. Appadoo, C. R. Bector, and V. N. Sharma, Net Present
Value under FuzzyData, Administrative SciencesAssociation of
Canada (ASAC), University of Quebec at Montreal (UQUAM),
Montreal, Canada, 2000.


