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Abstract 

In this thesis we will be concerned with detenniaing the best possible rep- 

resentations of finite distributive lattices as congruence lattices of Lattices. 

We first find lower and upper bounds for a finite algebra given its congruence 

lattice. Secondly, we use the lower bound to deterinine the minimal repre- 

sentation of a finite product of finite distributive lattices as a congruence 

lattice of a lattice. This in turn reduces the problem to finding the minimal 

representation of a product to the minimal representation of the product's 

directly indecomposable factors. 

We will then give constructions of minimal representations of particular 

kinds of directly indecomposable lattices, namely chains of length n. From 

this we will be able to determine the size of a minimal representation of a 

product of chains and also a construction for the representation. 



1 wish to express my gratitude to my supervisor, Dr. Harry Lakçer for 

his advice and suggestions; especially those wbich tunied awkward and cum- 

bersome arguments into much more elegant ones. 

Thanks must also go to Dr. Thomas Kucera for his advice and for proof- 

reading the thesis (with the exception of the acknowledgements of which he 

would likely take exception to  that which appears parenthetically beside his 

name). 

1 would also like to express gratitude to  Dr. George Gratzer whose course 

and talks a t  the Universal Algebra Seminar inspired the research conducted 

for the thesis. 

1 would aIso like to extend thanks to The Department of Mathematics at 

the University of Manitoba and to Dr. Murray Bell, Dr. Jacek Fabrykowski, 

Dr. Harry Lakser, and Dr. Peter McClure for financial support. 



Contents 

Abstract 

Acknowledgements 

List of Figures 

Chapter 1. Introduction 

1. An Historicd Overview 

2. Definitions and Notation 

Chapter 2. The Main Results 

1. Bounds for Finite Algebras 

2. Determining M (ny=L=, Di) 

3. Determining M (C,) 

Conclusion 

Bibliography 



List of Figures 



CHAPTER 1 

Introduction 

1. An Historical Overview 

In 1942, Funayarna and Nakayama [3] proved that the congmence lattice 

of a lattice is distributive. Dilworth [unpublished] established that for any 

finite distributive lattice D, there is a finite lattice L whose congmence 

lattice, denoted by Con(L), is isomorphic to D. The first construction was 

given by Gratzer and Schmidt [5]. So 

M ( D )  = rnin(lL1 : L is a lattice and Con(L) 2 D )  

is well d e h e d  in N. 

A further construction by Berman [l] found that for a finite distributive 

lattice D, there is a lattice L whose congruence lattice is D and 

1 LI = 2 1 D 1 + 2 1 J (D)  1 where J (D)  denotes the poset of join-irreducibles of D. 

From this we see that M(D)  5 2101 + 21 J (0 ) I .  

The poset of joinlirreducibles of a finite distributive lattice D plays an 

important role in determining D. By a theorem of Birkhoff (see [4] pages 

61-62), D is isomorphic to the hereditary sets of J (D)  ordered by inclusion. 

Letting n = 1 J(D)I and defining f (n) = rnax{M(D) : 1 J(D)I = n) a 

construction due to Gratzer, Lakser and Schmidt [6] shows that 

1 
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f (n) 5 4n2. Gratzer, Rival, and Zaguia [7][8] showed that for any k 2 O 

and any a < 2 there is an integer N such that for any n 2 N, f (n) > knP. 

Zhang [11] improved this and showed that f (n) 2 (n/8 log, n)2. A further 

improvement by Gratzer and Wang [9] showed that f (n) > n2/16 log, n. The 

distributive lattice that was utilized to obtain the lower bounds for f (n) is 

the distributive lattice that has as its poset of job-irreducibles n elements 

with [n/2] maximal elements and ln/2J minimal elements, and having all 

the minimal elements comparable to dl the maximal elements. 

2. Definitions and Notation 

The set of all equivalence relations on a set X, denoted by Eq(X), foms  

a lattice ordered by inclusion. For a  E Eq(X), X / a  denotes the quotient set 

of X under a that is the set of equivalence classes of a. For a E X, a / a  

denotes the equivalence class or biock of a under a. 

For X # 0 and a, E Eq(X) and P C o! then a/P denotes the equivalence 

class on X / p  where a / p  is equivalent to b / B  under a/p if and only if a is 

equivdent to  b under a. 

A congruence relation a on an algebra A is an equivalence relation on 

A such that if ai is equivalent to bi under a! for 1 5 i 5 n and f is an n- 

ary operation on A, then f (al, o - o , G) is equivalent to f (b l ,  o - o , 6,) under a. 

The set of congruence relations on an aIgebra forms a lattice. The congruence 

lattice of an algebra A will be denoted by Con(A). It is well known that 

Con(A) is a sublattice of Eq(A). 
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Let A be an algebra and ,û E Con(A). It is well known that f defined as 

f : [P, L] + Con(A/P) by a H cr/P is an isomorphism. 

In particular, a c o n p e n c e  relation cu on a lattice L is an equivalence 

relation on L such that if a is equivalent to b and c is equivalent to d under 

a, then a v c is equivalent to b V d and a h c is equivalent to b A d under a. 

Given A an algebra and (Y E Con(A) and a E A, a / a  will denote the con- 

gnience (equivalence) class of a under a. The smallest congruence relation 

that makes a congruent to b, namely A(a E Con(A) : a b(a)), is called 

the principle congruence of a and b, denoted by @(a, b). 

In a partially ordered set "a + b" denotes "a covers b7' and "b 4 a" 

denotes "b is covered by a". "a is incomparable to b" will be denoted by 

"a I I  b". Fora 5 binLtheintervalfromatobis[a,b] = {x E L: a 5 1  5 b ) .  

If b r a then [a, b] is called a prime interval. 

Let L be a lattice and let a E L, then a is join-imeducible if and only 

if b V c = a implies b = a or c = a and a is meet-ireducible if and only if 

b r\ c = a implies b = a or c = a. The poset of join-irreducibles of a lattice L 

is denoted by J(L) and the poset of meet-irreducibles is denoted by M(L).  

For a finite lattice L, O d l  denote the least elernent of L and 1 will 

denote the greatest elernent of L. The O and 1 of Eq(X) are denoted by w 

and L respectively. 
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Much use will be made of the fact that  for a finite lattice L and any 

a E J(Con(L)), <r = @(a, b), where [a, b] is some prime interval of L. Con- 

versely if [a, b] is a prime interval of L then @(a, b) E J(Con(L)) . 

To see this let o! E J(Con(L)) so a = V{B(a, b) : a I b(a) and a 5 b). 

Furtherrnore, by transitivity we may replace the condition a < b by a 4 b 

and since a E J(Con(L)) there is a prime inteml [e, f] of L such that 

(Y = O(e, f). 

Conversely, let [a, b] be a prime interval of L. Suppose that 

@(a, b) 5 Vie, Bi. Since [a, b] is a prime interval, for some j E 1, a = b(Bj), 

making @(a, b) 5 Bi. In a distributive lattice this suffices for 

O (a, b) E J(Con(L)). (The author was unable to corne up with a reference 

for the equating of principle congruences of prime intervals of L with the 

join-irreducibles of Con(L) and upon inquiring was told that it is part of the 

folklore of the subject. So the author is grateful to whatever folk lored it.) 

For a finite distributive lattice D define 

DEFINITION 1. M ( D )  := rnin{lLI : L is a lattice and Con&) D).  

If Cor@) D and ILI = M(D) ,  then L will be referred to as a minimal 

representatiue of D. - 

N5 refers to a lattice isornorphic to {O, 1, a, b, c )  where O 4 a 4 1 and 

O + b + c + l .  

In what follows there is use made of some basic properties of graphs. A 

bipartite graph G is a graph where the set of vertices of G is the disjoint 
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union of two sets A and B and any edge has one vertex in A and one vertex 

in B. A tree is a connected graph that contains no cycles. A spanning tree 

T of a graph G is a subgraph of G that is a tree such that al1 the vertices 

of G are vertices of T. Note that G is connected if and only if G contains a 

spanning tree. It  is well known that if T is a tree with n vertices then T has 

n - 1 edges. 



CHAPTER 2 

The Main Results 

1. Bounds for Finite Algebras 

In this section we will exhibit two inéqualities and upper and lower 

bounds for h i t e  algebras. 

1.1. Ore's Union Graph. In 1942 Ore published the paper ''Theory 

of equivalence relations". In it he introduced what he termed a union graph 

Pol 

DEFINITION 2. For a set X and a, B E Eq(X) the union graph of a a n d  

p, denoted b y  U(Q, P ) ,  is the bipartite graph f o n e d  vith bpart i t ion X / a  

and X / P  For a, b E X, a/a and b/P will be joined by an edge if and only if 

a / a  n b/P # 0. 

There are some observations that we can make concerning U ( a ,  P )  

(cf. [IO]). For instance IX/cr v ,BI is the number of connected components 

of U(a, p)  . From this it follows that U(a, P )  is connected if and only if 

(Y V p = L. Also obsenre that each edge represents a block in a / \ P .  Let E(G) 

denote the set of edges of a graph G. From this it follows that 

IE(U(a,P))I = I X / a A  Pl. Furthermore 1x1 = IE(U(a,P))I if and only if 

ac A ,û = w. We dl now establish the two inequalities. 

6 
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LEMMA 1. Let ai E Eq(X), 1 5 i < n and yi = AjCiaj, 2 5 i 5 n. If 

V Ti = L for i > 1, then 1x1 2 C;=l [X/Q~( - (n - 1). 

PROOF. We will proceed by induction on n. First we wiU show the 

inequality holds for n = 2. Let cq, (Y:! E Eq(X) with al V a 2  = L, = al- 

Consider U(al ,a2) .  Since a, v a2 = L, U(al, a2) is connected. Therefore 

contains a spanning tree. Sherefore U(a1,&) contains at  least 

X/a21 - 1 edges. Since two distinct edges represent distinct blocks 

in the meet of al and a 2 ,  we conclude that 1x1 2 IX/al 1 + IX/a2 1 - 1. 

Suppose n > 2. From above it follows that 1x1 2 + IX/anl - 1- 

Consider X/y,. For i > 1 we have cri/% V Aj,,ctj/?, = Therefore 

by induction hypothesis (X/ynl 5 C Y ' ( X / ~ ) / ( L ~ ~ / ~ )  2-1 1 - (n - 2). Since 

I(X/yn)/(ai/yn)l = IX/ail for i # 1, this establishes the inequality of the 

lemma. CI 

The second inequality is as follows. 

LEMMA 2. If ai E Eq(X) for 1 5 i 5 n, where aÿ = w ,  then 

1x1 5 n:=1 lX/~il- 

PROOF. If aj = w then the map a ct (a/crl, - - , a/an)  is an injec- 

tion. O 

A direct consequeme of the two inequalities is the following bounding for 

finite algebras. The lower bound will be applied below to lattices. 
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COROLLARY 1. IfA is a finite algebra, Con(A) = rr",, Li and 

Bi = (1, - - - ,O, - , l), where O is in the ith coordznate, 

then Cr=, IA/BiI - (n - 1) 5 IAl 5 nYzL=, IAJeil- 

Let L be a lattice and Con(L) = El. Di where Di is distributive for 

1 5 i 5 n. By the lower bound given for finite algebras we have that 

ILI 2 xy=l IL/&[ - (n - 1) where Bi = (1, - - ,O, - - - ,1) mith O in the ith co- 

ordinate. Since Con(L/Bi) r Di, 1 L/Bil 2 M(Di)  and so we have established 

M (n;xl Di) L Cy=l M (Di) - (n - 1) - 

For two finite lattices LI and Lz we define the direct sum of LI and 

Lî,  denoted by Li @ Lî, to be the lattice obtained by i d e n t e n g  the 1 

of LI with the O of L2 and taking the transitive closure of the resulting 

structure. It  is easy to see that Con(Li L2) E Con&) x Con(&) and 

1 Li @ Lz( = ILl] + 1 L21 - 1. In general Con(@:='=, Li) n7=L=I Con(Li) and 

1 @in=l Li 1 = zYsl 1 Li[ - (n - 1). Taking Li to be a minimal representative of 

Di for 1 5 i 5 n; we have M(nL=,  Di) 5 M(Di) - (n - 1). This gives 

us the following: 

THEOREM 1. M (ny=L=l Di) = M (Di) - (n - 1) - 

Any h i t e  distributive lattice D can be written as a finite direct product 

of finite directly indecornposable distributive lattices. So D E ny='=, Di where 
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each Di is directly indecomposable. As a result, determining M ( D )  reduces 

to determining M(Di) for the directly indecomposable factors Di of D. 

In what follows C, denotes the chain of length n. In this section we will 

constmct a lattice Ln, where lLnl = Zn + 1 and Con(&) "- C,, where n 2 3. 

It will then be s h o m  that M (Cl) = 2; M (C2) = 6 ,  and M (Cn) = 2n  + 1 

for n 2 3. Thus Ln is in fact a minimal representative of C,. 

First we prove: 

LEMMA 3. Let L be a finite lattice and let a E Con (L) . 

Then IL/crl = ILI - 1 if and only i f c r  = @(a7 b ) ,  where a > b in L, a E J(L) 

and b E M(L) for some a, b E L. 

PROOF. Consider the partition of L whose blocks are {a, b )  and single- 

tons (2) for x # a and x # 6 .  It suflices to show that each block is a 

congruence class of a congruence relation. If a E J(L) and b E M(L)  and 

a + b ,  t h e n f o r c € L , i f c < a , t h e n c ~ b € { a , b } a n d c ~ a = a ~  {a,b}. If 

c 2 a, we argue similady. If c II a, then c v a  = c v  b and c ~ a  = C A  6 .  Thus 

we see that the partition is compatible with joins and meets and so foms  a 

congruence on L. Therefore 1 L/O(a, b) 1 = 1 LI - 1. 

Conversely, if ILIa1 = IL1 - 1 for some cr E Con(L), then a partitions 

L into one block of precisely two elements and the remaining blocks are 

singletons. Let {a,  b )  be the block containing the two elernents and let 



3- DETERMIMNG M(C,) 10 

a r b (if this were not the case then the block would contain more than two 

elements and IL/crl < ILI - 1). If either a $ J(L) or b 6 M(L) ,  then in the 

first case there is a c E L and a r c, c # b, but then c = aAc = b~c (O(a ,  b ) ) ,  

but then 1 L/aI 5 1 LI - 2. If b 6 M(L)  we argue sirnilarly. 

The lattices Ln and Con(L,) are described below. 

THEOREM 2. For n 2 3 the lattice Ln descnbed above has the following 

properties: 

PROOF. By induction on n. For n = 3 it is easily verified that 

IL3] = 7 and Con(L3) i C3. Suppose the theorem is true for n - 1. Observe 

that Con(Ln/8 (50, b2) )  i CO~(L, -~ /B(C~,  cl)). By Lemma 3 and induc- 

tion hypothesis, CO~(L,-~/B(Q, cl)) C,-,. Since @(al, a3) > Q(bo, b2) in 

Con(L,) , O (bo, b2) is minimal in Con(Ln/B (Q, cl) ) . 
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Therefore Con(L,/O(co, c i ) )  C,-l and since 8 (bO, b2) > Q (Q, cl) in 

Con(L,), Con(L,) C,. An easy count shows that IL,I = 2n + 1. 

LEMMA 4. Let D be a finite distributive lattice and let a + b in J ( D ) .  

Suppose E J ( D )  for 1 5 z 5 n and ci 5 a and q # b for 1 5 i 5 n. If 

b 5 V:==, ci 5 a, then there is a j, 1 5 j 5 n such that a = c,. 

PROOF. Since b 5 Vy=, 4, b = b A Vr==I Q =- Vhl(b A c i )  b E J ( D )  

implies b = b A cj for some j. And so b < cj since b # cj; cj < a wodd imply 

b A cj < b, therefore cj = a. Cf 

For a, b, c, d E L, L a lattice, the notation a/b 7 c/d means that b 5 a, 

d 5 c, b < d and c = a v d .  The notation a l b  \ c/d means that b 5 a, d 5 c, 

c 5 a and d = b A c. In both cases we wiil say that c/d is weakly perspective 

into alb. 

The following lemma is a generalization of a result due to Gratzer, Rival 

and Zaguia [8]; the argument is dong similar lines. 

LEMMA 5. If (Y + P in J(Con(L)), then there &ts an N5 C L where 

N5 = { O ,  a, b, c, i), with c > b and O and i the O and 1 of Ns respectively(see 

Figure 2); and O(b, c) = ,û and either @(O,  a) = a or @(a, i) = a. 

PROOF. Since ~ $ 3  E J(Con(L)), there exists prime intervals [u,v] and 

[w,x] in L where 8(u, v) = cr and O(w,x) = 0. Since a 2 ,O, UJ E I(@(u, 'u)). 
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By a theorem of Dilworth see [4] pages 131-132, there is a sequence: 

d u  = eo/fo 2 elIf1 I ez/f2 7 - - 7 %/fn = xlw. Let 2, 1 i i I n, 

be the first in the sequence {ej/fj) containing a prime interval [r, s] with 

8 ( r ,  S )  = p. Without ~ O S S  of generality fi-l / ei/  fi. 

Consider {ei-i A r, ei- 1 ,  r, s ,  ei) .  We daim that this is the desired N5. We 

see that r A e-1 = s A ei-1. For if this were not the case, then 

8 ( s  A ei-1, r A ei-1) = f l  and [r A ei-1, s A ei-i] would contain a prime interval 

[ p ,  q] where B(p, q) = p contrary to the choice of i. -Also, O(ei-i, s) = a. For 

a! 2 e(ei-1 r\ r, ei-i) 2 ,O and 

B(e+i A r, ei-1) = V{O(g, h) : [g, hl is a prime interval of [ei-l A r, 

There is no O(g, h) equal to P. Since E J(Con(L)), by the preceding 

lemma there is a prime interval [g', h'] c [ei-l /\ r, where B(g', h') > B 

and so 8 (g', h') = a. O 

An immediate consequence of the above lemma is the following well 

known result : 

COROLLARY 2. The congruence lattice of afinite modular lattice is Boolean- 

PROOF. If L is finite lattice such that Con(L) is not Boolean then there 

are a, p E J(Con(L)) where a > 0 E J(Con(L)) . Therefore by the preceding 

lemma there is an Ns L. Therefore L is not modular. 0 

LEMMA 6. If (Y + P in J(Con(L)) and IL./al = 1 L/pI - 1, 

then ILIPI 5 ILI - 4. 



PROOF. O + ,f? in J(Con(L)). So by Lemma 5, there is an N5 c L such 

that N5 = {O, a, b, c, i), ordered as in Lemma 5, and 0 ( b ,  c) = P, and either 

@(O,  a) = (Y or 8 (a, i) = a. Without loss of generality assume O (O ,  i) = a. 

Also by Lemma 3, since a > P and (Llcrl = 1 LIPI - 1, (Y/@ is represented in 

L/P by a prime interval [0/0, a/P], where o /p  E M(L/B)  and a/p E J(L/P);  

therefore a, i E a/p and O, b, c E o/P.  Since c = o(O(b, c ) ) ,  there is a sequence 

The following theorem will show that Ln as constructed above attains 

the minimum cardinality. 



THEOREM 3. M(Cl) = 2, M(C2) = 6 ,  and M(C,) = 272 + 1 for n 2 3. 

PROOF. M (Cl) = 2, since Cl is a minimal representative of Cl; and 

M(C2) = 6 ,  since M6 (see Figure 3) is a minimal representative for C2. 

For n 2 3 by the construction of Ln, IL,I = 272 + 1. Therefore for n 2 3, 

M(C,) 5 2n f 1. 

Suppose the theorem is faIse. Let m be the smdest  such n 2 3 such 

that M(C,) < 2m + 1. Let L be a lattice such that Con(L) S Cm and 

ILI<2m+1. L e t ~ = 0 ~ + 8 ~ + 0 ~ +  ...+ 8,-,+8,=~beCon(L). 
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We claim that ILI = 27-72. For if 1 LI 5 2m - 1 then IL/B1l 5 2m - 2 and 

Con(L/&) Cm-1 contradicting m being the smallest such number. Also 

1 L/&I = 2m - 1 for the above reason. IL/û21 = 2rn - 3 for 1 L/021 < 2m - 3 

would contradict the minimum choice of m since Con(L/B2) Cm-2- And 

if IL/Bzl = 2m - 2, then by Lemma 6, ILI = 2m + 3. 

Arguing as above, 1 L/03 1 = 2m - 5, and, in general, 1 L/Bil = 2772 - (2i - 1) 

for 1 5 i 5 m - 2. In particular IL/6m-21 = 2m - (2(m - 2) - 1) = 5 and 

CO~(L/Q,-~) C2. But M(C2) = 6 .  O 

COROLLARY 3. Let nkl CiCI) be a product of chains of length i(j)  . Then 

where a is the number of i(j)  's such that i ( j )  = 1 and b is the number of 

i(j) 's such that i(j) = 2. 

PROOF. By Theorem 1 and Theorem 3, 

M (& Cio-,) = Cj"=l M (Cî(j)) - (n - 1) 

= 2a + 6b + '&),3(2i(j) + 1) - (n - 1) = a + 56 + '&)zB %(j) + 1, where a - 

is the number of i(j)'s such that i(j) = 1 and b is the number of i(j)'s such 

that i(j) = 2. Cl 

A construction of a minimal representative, L, of a product of chains 

n;=i Ci(j) is obtained by taking LI = Cl, L2 = Mc, and then setting 

L = Lio.). 



Conclusion 

In conclusion, we have demonstrated that M ( n L ,  Di) = Di-nf l, 

where Di is a finite distributive lattice. We have also shown that 

M(Cn) = 2n + 1 for n > 3. 

Other questions will arise. For instance, if L is a h i t e  lattice and there 

is some finite algebra A such that Con(A) L and we d e h e  

Ma(L) = rnin{lBI : B is an algebra and Co@) L), then determining 

Mn(L) is worthy of pursuit. We may restrict the algebra in question to an 

equational class. 

As an example consider Me (C,), where we define 

MB(L)  = min{lGI : G is a group and Con(G) i L}. Since the congruence 

lattice of a group is determined by its normal subgroups ordered by inclusion; 

then if Con(G) Cn7 we have ( e )  = No a NI a - - - u Nnal a N, = G. Since 

[Ni : Ni-l] 2 2 for 1 5 i 5 n, we conclude that IGI 2 2n. Taking G = ZZn, 

we see that M (C,) = 2". 

As the above example indicates, there is much to determine in the general 

case of representing finite lattices as congruence lattices of algebras. 
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