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Abstract

In this thesis we will be concerned with determining the best possible rep-
resentations of finite distributive lgttices as congruence _lattices of lattices.
We first find lower and upper bounds for a finite algebra given its congruence
lattice. Secondly, we use the lower bound to determine the minimal repre-
sentation of a finite product of finite distributive lattices as a congruence
lattice of a lattice. This in turn reduces the problem to finding the minimal
representation of a product to the minimal representation of the product’s
directly indecomposable factors.

We will then give constructions of minimal representations of particular
kinds of directly indecomposable lattices, namely chains of length n. From
this we will be able to determine the size of a minimal representation of a

product of chains and also a construction for the representation.
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CHAPTER 1

Introduction

1. An Historical Overview

In 1942, Funayama and Nakayama [3] proved that the congruence lattice
of a lattice is distributive. Dilworth [unpublished)] established that for any
finite distributive lattice D, there is a finite latt-ice L whose congruence
lattice, denoted by Con(L), is isomorphic to D. The first construction was

given by Gréatzer and Schmidt [5]. So
M(D) =min{|L| : L is a lattice and Con(L) = D}

is well defined in N.

A further construction by Berman [1] found that for a finite distributive
lattice D, there is a lattice L whose congruence lattice is D and
|L| = 2|D| +2|J(D)| where J(D) denotes the poset of join-irreducibles of D.
From this we see that M(D) < 2|D| + 2|J(D)].

The poset of join-irreducibles of a finite distributive lattice D plays an
important role in determining D. By a theorem of Birkhoff (see [4] pages
61-62), D is isomorphic to the hereditary sets of J(D) ordered by inclusion.

Letting n = |J(D)| and defining f(n) = max{M(D) : |J(D)| = n} a

construction due to Grétzer, Lakser and Schmidt [6] shows that
1



2. DEFINITIONS AND NOTATION 2

f(n) < 4n?. Gritzer, Rival, and Zaguia [7][8] showed that for any & > 0
and any a < 2 there is an integer NV such that for any n > N, f(n) > kn®.
Zhang {11] improved this and showed that f(n) > (n/8log, n)%. A further
improvement by Gratzer and Wang [9] showed that f(n) > n?/16log, n. The
distributive lattice that was utilized to obtain the lower bounds for f(n) is
the distributive lattice that has as its poset of join-irreducibles n elements
with [n/2] maximal elements a.nd'[_n/ 2] minimal eleme;lts, and having all

the minimal elements comparable to all the maximal elements.

2. Definitions and Notation

The set of all equivalence relations on a set X, denoted by Eq(X), forms
a lattice ordered by inclusion. For & € Eq(X), X/« denotes the quotient set
of X under o that is the set of equivalence classes of a. For a € X, ¢/«
denotes the equivalence class or block of a under c.

For X # (0 and o, 8 € Eq(X) and 8 C o then a/8 denotes the equivalence
class on X/ where a/f is equivalent to b/3 under o/ if and only if a is
equivalent to b under .

A congruence relation o on an algebra A is an equivalence relation on
A such that if a; is equivalent to b; under @ for 1 < 7 < n and f is an n-
ary operation on A, then f (a,l,‘ --+ ,ayn) is equivalent to f(by,-- - ,b,;) under c.
The set of congruence relations on an algebra forms a lattice. The congruence
lattice of an algebra A will be denoted by Con(A). It is well known that

Con(A) is a sublattice of Eq(A).
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Let A be an algebra and g € Con(A). It is well known that f defined as
f:{B,¢ = Con(A/B) by o — /f is an isomorphism.

In particular, a congruence relation & on a lattice L is an equivalence
relation on L such that if a is equivalent to b and ¢ is equivalent to d under
o, then a V c is equivalent to b V d and a A c is equivalent to b A d under .

Given A an algebra and a € Con(A) and a € A, ¢/« will denote the con-
gruence (equivalence) class of a uﬁder - The smallest c.:ongruence relation
that makes a congruent to b, namely A{a € Con(4) : a = b(e)}, is called
the principle congruence of a and b, denoted by ©(a, b).

In a partially ordered set “a > b” denotes “a covers §” and “b < a”
denotes “b is covered by a”. “a is incomparable to 5" will be denoted by
“a || b”. Fora < bin L the interval from a tobisfa,b) = {z € L:a <z < b}.
If b > a then [a, ] is called a prime interval.

Let L be a lattice and let a € L, then a is join-irreducible if and only
if bV c =a implies b = a or ¢ = a and a is meet-irreducible if and only if
b A c=a implies b = a or ¢ = a. The poset of join-irreducibles of a lattice L
is denoted by J(L) and the poset of meet-irreducibles is denoted by M (L).

For a finite lattice L, 0 will denote the least element of L and 1 will
denote the greatest eiement of L. The 0 and 1 of Eq(X) are denoted by w

and ¢ respectively.
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Much use will be made of the fact that for a finite lattice L and any
a € J(Con(L)), a = O(a,b), where [a, b] is some prime interval of L. Con-
versely if [a, b] is a prime interval of L then ©(a,b) € J(Con(L)).

To see this let @ € J(Con(L)) so a = \/{O(a,b) : a = b(a) and e < b}.
Furthermore, by transitivity we may replace the condition a < b by a < b
and since o € J(Con(L)) there is a prime interval [e, f] of L such that
a = O(e, f). | '

Conversely, let [a, b] be a prime interval of L. Suppose that
O(a,b) < Ve, b;. Since [a,b] is a prime interval, for some j € I, a = b(6;),
making ©(a,b) < §;. In a distributive lattice this suffices for
©(a,b) € J(Con(L)). (The author was unable to come up with a reference
for the equating of principle congruences of prime intervals of L with the
Jjoin-irreducibles of Con{L) and upon inquiring was told that it is part of the
folklore of the subject. So the author is grateful to whatever folk lored it.)

For a finite distributive lattice D define
DEFINITION 1. M(D) := min{|L| : L is a lattice and Con(L) = D}.

If Con(L) = D and |L| = M(D), then L will be referred to as a minimal
representative of D. -

N5 refers to a lattice isomorphic to {0,1,a,b,¢c} where 0 < ¢ < 1 and
0<b<c<1

In what follows there is use made of some basic properties of graphs. A

bipartite graph G is a graph where the set of vertices of G is the disjoint
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union of two sets A and B and any edge has one vertex in A and one vertex
in B. A tree is a connected graph that contains no cycles. A spanning tree
T of a graph G is a subgraph of G that is a tree such that all the vertices
of G are vertices of T. Note that G is connected if and only if G contains a
spanning tree. It is well known that if T is a tree with n vertices then T has

n — 1 edges.



CHAPTER 2

The Main Results
1. Bounds for Finite Algebras

In this section we will exhibit two inequalities and upper and lower

bounds for finite algebras.

1.1. Ore’s Union Graph. In 1942 Ore published the paper “Theory
of equivalence relations”. In it he introduced what he termed a union graph

[10].

DEFINITION 2. For a set X and «, 8 € Eq(X) the union graph of o and
B, denoted by U(a, B), is the bipartite graph formed with bipartition X/«
and X/B. Fora,be X, a/a and b/B will be joined by an edge if and only if

a/anb/B # 0.

There are some observations that we can make concerning U(e, §)
(cf. [10]). For instance | X/« V S| is the number of connected components
of U(a,B) . From this it follows that U(e, §) is connected if and only if
oV B = 1. Also observe that each edge represents a block in A 8. Let E(G)
denote the set of edges of a graph G. From this it follows that
|[E(U(e, 8))] = |X/a A B]. Furthermore |X| = |E(U(e, 8))| if and only if

a A 8 = w. We will now establish the two inequalities.
6



1. BOUNDS FOR FINITE ALGEBRAS 7

LEMMA 1. Let a; € Eq(X), 1 <i<nand v = /\Kt.aj, 2<i1<n. If

g VY=t fori> 1, then | X| > Y 0, | X/o:| — (n —1).

ProOOF. We will proceed by induction on n. First we will show the
inequality holds for n = 2. Let a3, @ € Eq(X) with a; Vas =1, 72 = .
Consider U(ey, @). Since o V ap = ¢, Uy, @) is connected. Therefore
U(ai, a2) contains a spanning tree. There;fore U(oy, o) contains at least
[X/ou|+|X/ca| — 1 edges. Since two distinct edges represent distinct blocks
in the meet of a; and ap, we conclude that [X| > |X/ay| + | X/as| — 1.
Suppose n > 2. From above it follows that |X| > |X/7,] + | X/on] — 1.
Consider X/v,. For ¢ > 1 we have o;/v, V A;; @i/Vn = ¢/¥n. Therefore
by induction hypothesis [X/7,| < 307 (X/7n)/(0:/7a)| — (n — 2). Since
(X/¥n)/(ci/v)| = | X/ for i # 1, this establishes the inequality of the

lemma. O

The second inequality is as follows.

LEMMA 2. If a; € Eq(X) for 1 < i < n, where \]_, s = w, then

X[ < Ty [ X/l

ProoF. If AL, 04 = w then the map a — (a/ay,-- ,a/cy) is an injec-

tion. O

A direct consequence of the two inequalities is the following bounding for

finite algebras. The lower bound will be applied below to lattices.



2. DETERMINING M([T%, D:) 8

COROLLARY 1. If A is a finite algebra, Con(A) =[], L:; and
0; =(1,---,0,---,1), where 0 is in the i coordinate,

then 37, |A/6:] — (n — 1) < |A] < [T 1476

2. Determining M([[, D;)

Let L be a lattice and Con(L) = [].., D; where D; is distributive for
1 < i < n. By the lower bounci given for finite a.Ige.bras we have that
(L] > S°r  |L/6:| ~ (n — 1) where 6; = (1,---,0,---,1) with 0 in the ¢** co-
ordinate. Since Con(L/0;) = D;, |[L/6;]| 2 M(D;) and so we have established
M([Ty Di) 2 225, M(Di) — (n—1).

For two finite lattices L, and Lo we define the direct sum of L; and
L,, denoted by L; & Lo, to be the lattice obtained by identifying the 1
of L; with the 0 of L, and taking the transitive closure of the resulting
structure. It is easy to see that Con(L; @ Ly) = Con(L,) x Con(L2) and
|L1 ® La| = |L1| + |L2| — 1. In general Con(P;_, L:) = []i-, Con(L;) and
| B, Lil = 3%, |Li| — (n —1). Taking L; to be a minimal representative of
D; for 1 < ¢ < n; we have M([]_, Di) < .7 M(D;) — (n ~1). This gives

us the following:
THEOREM 1. M([], D;) =57 M(D;) — (n —1).

Any finite distributive lattice D can be written as a finite direct product

of finite directly indecomposable distributive lattices. So D =[], D; where
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each D; is directly indecomposable. As a result, determining M(D) reduces

to determining M (D;) for the directly indecomposable factors D; of D.

3. Determining M(C,)

In what follows C, denotes the chain of length n. In this section we will
construct a lattice L,, where |L,| =2n+1 and Con(L,) = C,, where n > 3.
It will then be shown that M(C)) = 2; M(Cz) =6, and M(C,) =2n+1
for n > 3. Thus L, is in fact a minimal representgtive of C,.

First we prove:

LEMMA 3. Let L be a finite lattice and let o € Con(L).
Then |L/a| = |L| ~ 1 if and only if « = ©(a,b), wherea > b in L, a € J(L)

and b € M(L) for some a,b € L.

PROOF. Consider the partition of L whose blocks are {a, b} and single-
tons {z} for z # a and = # b. It suffices to show that each block is a
congruence class of a congruence relation. If a € J(L) and b € M(L) and
a>b thenforce L,ifc<a,thencVvbe {a,b}and cVa=ac€ {a,b}. If
¢ > a, we argue similarly. If ¢ || a, then cVa =cVvband cAa=cAb. Thus
we see that the partition is compatible with joins and meets and so forms a
congruence on L. Therefore |L/O(a,b)| = |L| — 1.

Conversely, if |L/a| = |L]| — 1 for some a € Con(L), then « partitions
L into one block of precisely two elements and the remaining blocks are

singletons. Let {a,b} be the block containing the two elements and let
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a > b (if this were not the case then the block would contain more than two
elements and |L/e| < |L| — 1). If either a ¢ J(L) or b ¢ M (L), then in the
first case thereisac € L and a > ¢, ¢ # b, but then ¢ = aAc = bAc(O(aq, b)),

but then |L/a| < |L{ - 2. If b ¢ M(L) we argue similarly. O

The lattices L, and Con(L,) are described below.
Ln = {11 01 z, b01 bla ey bn—2: a1,C83,---, a2£l;—2_|—11 Co:C2y---, cz["z;z]}s

where 0 < 2 < 1, 0 < a3, 0 < ¢, @; < a;y2 for ¢ odd, ¢; < cj42 for j even,
b < bip1 for 0 <7< n—-3,a; < b, a; < b forioddi > 3, ¢;j < b; for
jeven. w < O(bg, b)) < O(co,cz) = O(b1,b2) < O(ay,az) = O(by, b3) <

- < O(ci, civ2) = O(biy1, biv2) < O(@it1,ai43) = O(biy2,biy3) < ... <
O(bn-3,bn—2) < O(z,1) = O(0,c) = 0(0,a;) = O(ay,b) = O(a;,b:) =

O(cj,b5) < 9(0, z) = O(by—2,1) = ¢ (see Figure 1)

THEOREM 2. Forn > 3 the lattice L, described above has the following
properties:
i) Con(L,) =2 C,

PROOF. By induction on n. For n = 3 it is easily verified that
|L3] = 7 and Con(L3) = C;. Suppose the theorem is true for n — 1. Observe
that Con(L,/©(by,b,)) = Con(L,—1/0O(co,c1)). By Lemma 3 and induc-
tion hypothesis, Con(L,_,/©(co, 1)) & Cn—2- Since O(a;, az) > (b, b2) in

Con(Ly), ©(bg, b2) is minimal in Con(L, /O(cy, ¢1))-
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FiGure 1. L,

i1



3. DETERMINING M(C,) 12
Therefore Con(L,/©(cq, ¢1)) =2 Cr-1 and since O(bg, b2) > O(cp,¢) in

Con(L,), Con(L,) = C,. An easy count shows that [L,| = 2n + 1.

a

LEMMA 4. Let D be a finite distributive lattice and let a > b in J(D).
Suppose c; € J(D) for1<i<nand¢ <aandci#bfor1<i<n.If

b< V5L, ,c <a, then thereis a j, 1 < j < n such that a = ¢;.

PROOF. Since b < Vi ¢, b =bA Vi 6 = Vi, (bAc). b€ J(D)
implies b = bA ¢; for some j. And so b < ¢; since b # c;; ¢; < a would imply

bAc; < b, therefore ¢; =a. O

For a,b,¢c,d € L, L a lattice, the notation a/b * c/d means that b < a,
d<c¢ b< dand c=aVd. The notation a/b \, ¢/d means that b < a,d < ¢,
c<aand d=>bAc. In both cases we will say that ¢/d is weakly perspective
into a/b.

The following lemma. is a generalization of a result due to Grétzer, Rival

and Zaguia [8]; the argument is along similar lines.

LEMMA 5. If o > B in J(Con(L)), then there ezists an N5 C L where
N5 = {o,a,b,c,1}, with ¢ = b and 0 and i the 0 and 1 of N; respectively(see

Figure 2); and O(b, c) = B and either ©(o,a) = @ or O(a,i) = c.

PROOF. Since o, € J(Con(L}), there exists prime intervals [u,v] and

[w, z] in L where ©(u, v) = « and ©(w, z) = §. Since o > 8, w = z(©(u, v)).
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By a theorem of Dilworth see [4] pages 131-132, there is a sequence:
v/u=-eyffo S effi \veffe /... Senffa=x/w. Let i, 1 < i< n,
be the first in the sequence {e;/f;} containing a prime interval [r,s] with
O(r, s) = B. Without loss of generality e;_/fi—1 e/ f:-

Consider {e;_1 AT, e;_1,T, 5, e;}. We claim that this is the desired N;. We
see that 7 A e;—; = s A e;_;. For if this were not the case, then
O(sAei—1,TAei—) =f and [r /\ei__-l, sAe;_1] would conté.in a prime interval
[p, q] where ©(p, g) = B contrary to the choice of i. -Also, ©(e;_1, s) = a. For
a > O(eiy AT,eiy) > B and
O(ei—1 A1,ei—1) = V{O(g,h) : [g,h] is a prime interval of [e;—; A T,e;_1]}-
There is no ©(g, k) equal to §. Since 8 € J(Con(L)), by the preceding
lemma there is a prime interval [¢’, '] C [e;—1 AT, ;1] where ©(g’, ') > B

and so O(¢’, ') = a. O
An immediate consequence of the above lemma is the following well
known result:

COROLLARY 2. The congruence lattice of a finite modular lattice is Boolean.

Proor. If L is finite lattice such that Con(L) is not Boolean then there
are o, f € J(Con(L)) where @ > 8 € J(Con(L)). Therefore by the preceding

lemma there is an N5 C L. Therefore L is not modular. O

LEMMA 6. If o = 8 in J(Con(L)) and |L/o| = |L/B| — 1,

then |L/B| < |L| — 4.
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~ FIGURE 2. Nj
1

PRrROOF. a > B in J(Con(L)). So by Lemma 5, there is an N5 C L such
that N5 = {0, a, b, ¢, 1}, ordered as in Lemma 5, and ©(b,c) = 3, and either
©(o,a) = a or O(a,t) = a. Without loss of generality assume O(o,1) = a.
Also by Lemma 3, since & > f# and |L/a| = |L/8| — 1, a/8 is represented in
L/B by a prime interval [0/, a/B], where o/8 € M(L/B) and a/8 € J(L/B);
therefore a,? € a/f and 0,b, ¢ € o/B. Since ¢ = o(O(b, ¢)), there is a sequence
c/b=e/fo S ef/fi veffo /... S en)/fn = b/b where b >~ V in L.

Either e; ¢ N5 or fi € N5 but e; € f1/8. Therefore |L/S| < |L| — 4. O

The following theorem will show that L, as constructed above attains

the minimum cardinality.
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FIGURE 3. Mg

THEOREM 3. M(C)) = 2, M(C;) =6, and M(C,) =2n+1 forn > 3.

Proor. M(C;) = 2, since C; is a minimal representative of Cy; and
M(C2) = 6, since Ms (see Figure 3) is a minimal representative for C,.
For n > 3 by the construction of L, [L,| = 2n + 1. Therefore for n > 3,
M(Cp) <2n+1.

Suppose the theorem is false. Let m be the smallest such n > 3 such
that M(C,) < 2m + 1. Let L be a lattice such that Con(L) & C,, and

ILl <2m+1. Let w=6p <8y <63 < ... <0y < 6, =¢ be Con(L).
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We claim that [L| = 2m. For if |L| < 2m — 1 then [L/6;| < 2m — 2 and

Con(L/6,) = Cp,—; contradicting m being the smallest such number. Also
|L/6:| = 2m — 1 for the above reason. |L/0s| =2m — 3 for |L/6,] < 2m — 3
would contradict the minimum choice of m since Con(L/6;) = Cp—2- And
if [L/02] = 2m — 2, then by Lemma 6, |L| = 2m + 3.

Arguing as above, |L/63| = 2m—5, and, in general, [L/6;| = 2m—(2i—1)
for 1 <7 < m — 2. In particular If,/Bm_gl =2m — (2(m-— 2) -1) =5 and

COH(L/Qm_g) = 02. But M(Cz) = 6. . O

COROLLARY 3. Let [T}, Ci(j) be a product of chains of length i(5). Then

M(ﬁci(j)) =a+5b+ Z 2i(f)+1

=1 i(7)>3

where a is the number of i(j)’s such that i(j) = 1 and b is the number of

i(5) ’s such that i(7) = 2.

ProoFr. By Theorem 1 and Theorem 3,
ML= Ciy) = 252 M(Cigpy) — (n— 1)
=2a+6b+3 ;;)53(2i(J) +1) — (n—1) = a+5b+37;;)53 2i(j) + 1, where a
is the number of i(5)’s such that ¢(j) = 1 and b is the number of :(5)’s such
that i(j) = 2. ) |
A construction of a minimal representative, L, of a product of chains
H?=1 Ci(j) is obtained by taking L, = C;, L, = M, and then setting



Conclusion

In conclusion, we have demonstrated that M([]—; D:) = Y =, D:i—n+1,
where D; is a finite distributive lattice. We have also shown that
M(Cr)=2n+1forn > 3. | |

Other questions will arise. For instance, if L is a finite lattice and there
is some finite algebra A such that Con(A) = L and we define
Mo (L) = min{|B| : B is an algebra and Con(B) = L}, then determining
My (L) is worthy of pursuit. We may restrict the algebra in question to an
equational class.

As an example consider Mg(C,,), where we define
Mg (L) = min{|G| : G is a group and Con(G) = L}. Since the congruence
lattice of a group is determined by its normal subgroups ordered by inclusion;
then if Con(G) =2 C,, we have {e} = Ng<a Ny <---<a4 N,_; 9N, = G. Since
[IV; : N;1] > 2 for 1 < i < n, we conclude that |G| > 2®. Taking G = Zsn,
we see that Mg (C,) = 2™.

As the above example indicates, there is much to determine in the general

case of representing finite lattices as congruence lattices of algebras.

17
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