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Abstract

The 46,548,507 (p,a)*3>455%73c reactions were studied at a proton
energy of 40.35 Mev and with an overall energy resolution of about 80
kev IWHM.

Angular distributions for states with excitation energies up to
about 7 Mev in %3Sc and %°Sc and up to 8.4 Mev in 47Sc are presented.
-The J7 assignments were in agreement with those available in literature.
For some states where more than one JT value was given, the measured
angular distributions were used to determine a J" value.

Both positive parity and negative parity states were observed. The
positive parity states are excited mainly by pickup of two (fp) shell
neutrons and an (sd) shell proton while the negative parity states are
excited mainly by pickup of all the nucleons from the (fp) shell.

In an attempt to establish the (p,a) reaction as a useful spectro-
scopic tool, the microscopic form factor (MEF) formalism of the three
nucleon transfer reaction developed by Falk was applied. This form
factor was calculated using single-particle states calculated in a Woods-
Saxon potential, then expanded in a harmonic oscillator basis. To
account for the truncation in this expansion a cluster form factor (CEF)
taill was attached to the MFF.

First order calculations were performed assuming the simplest
possible configurétion for the transferred nucleons. Subsequently, the
(lfzé)n shell model wave functions of Kutschera were also used in a more
detailed test. All components with different neutron angular momentum

couplings were considered. Reasonable agreement was obtained for most
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of the states considered. However, the calculations point to the need
for Ti and Sc shell model wave functions calculated in a broader basis
that include both the sd and fp shells.

Shell model expressions for calculating the spectroscopic ampli-
tudes needed for this microscopic analysis are given.

The effect of including different configurations for each transi-
tion on the calculated analyzing power was also investigated to see to
what extent there is sensitivity to the details of the nuclear struc-

tures.
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Chapter 1

Introduction

During the last two decades many direct transfer reactions have
been utilized to extract nuclear structure information.

Single-nucleon pick-up and stripping reactions have been studied
extensively and have yielded important information about spins and
parities of energy levels. The differential cross section for these
peactions is incoherent in the orbital (£) and total angular momenta (J)

(1)5(2) { it coherent in the principal quantum

of the transferred nucleon
number (n). The measured spectroscopic factors for each transition can
be directly compared with the calculated ones.

The more complicated two-nucleon transfer reactions have two
interesting advantages. TFirst, as few other reactions, they can produce
states in the final nucleus for which T > ITZ[. Second, the differential
cross section is coherent in the configuration of the transferred nucleons
and incocherent in the transferred total angular momentum. The second
property makes the cross section sensitive to the signs of the components
of the nuclear wave functions. This has the advantage that data can be
used to test not only the magnitudes of various components of the calcu-
lated wave functions but also the relative signs, this information being
inaccessible from single-nucleon reactions.

In the case of three-nucleon transfer reactions - or specifically
for the (p,a) reaction of interest in the present study - the situation

is considerably more complicated than for two-nucleon transfer reactions

due to the presence of a third nucleon. The differential cross section



is coherent not only in n,2,) of the individual nucleons but also in
the total angular momentum (J') of the two neutrons.

In spite of this complexity the (p,a) reaction has many interesting
features that could yield a wealth of information on nuclei and wave
functions. These features have been documented by a number of authors
(3), (%), (5) and will be summarized briefly here.

1. The (p,a) reaction can populate single proton hole states in
nuclei with two neutrons away from the stability line. An example is

the reaction 58Ni(p,a)°°Co. Single proton pick-up reactions camnot be

employed to study °°Co due to lack of a suitable target.

2. The j-dependence (6)°(7)’(8). The angular distributions obser-
ved in the (p,a) reaction are dependent on the total angular momentum
transfer J, as well as on L, the orbital angular momentum. This is due
to the spin-orbit potential term in the proton channel. Fig. (1.1
shows L=1 angular distributions for the two cases J=L+S=1+1/2=3/2 and
JeL-S=1-1/2-1/2 for the reaction 1168n(p,a)i13In at 22 Mev (¥, Tnis
property is used quite often in spin assignments although, unfortunately,
the J-dependence of the angular distributions decreases as the orbital

angular momentum transfer L increases (7). However, from the measure-

(9)

ment of the analyzing pdwer in the (P,a) reaction , the strong J-

dependence noted for L=1 angular distribution appears again in the
analyzing_power for the 1165n(P,a)!13In reaction at 22 Mev as shown in
Fig. (1.2). 1In Fig. (1.3), the J-dependence of the analyzing powers for
the cases where L=3 and L=4 are shown together with the angular distribu-
tions. While the angular distributions show little difference between

J=1+S and J=L-S, the analyzing powers show strong J-dependence. This



Fig. (1.1) Angular distributions of cross
sections for L=1 for J=L+S=3/2
and J=1-5=1/2 for the reaction

1168n(p,d)1131n at 22 Mev (u).
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Fig.(1.2) Angular distributions of cross

sections and analysing powers
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Fig.(1.3) Angular distributions of cross

sections and analysing powers
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for the Sn(p,a) 131 reaction

at 22 Mev.
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property can be used for unambiguous J assignment.

3. The (p,a) reaction on target nuclei with seniority v=0 can
reach states in the final nuclei with seniority v=3. Examples of such
a case is “8Ti(p,a)*3Sc (19/27).

4. Another useful property of the (p,a) reaction is its ability

N-Z

to excite states with both T<=T3——§—- and T>:T3+l. This is not allowed

for example in the reaction (d,%He).

Until five years ago quantitative microscopic calculations employ-
ing the (p,a) reaction had been performed on relatively few nuclei(g)’
(10)’(11), unlike the two nucleon transfer reaction which was formulated
and tested(lz)’(ls) in many instances as long as fifteen years ago.

Nevertheless, over the last two decades or so several investiga-

aw)

tors have studied the (p,a) and (a,p) reactions However, generally

these were of qualitative nature; only in few cases was a quantitative
analysis attempted. One of the earliest efforts to obtain quantitative
information from the (p,a) reaction was conducted by Sherr and Baynan(lS).
The measurements and calculations were for selected cases of (lf;2)3
transfer to the ground states. Expressions for transition strengths be-
tween ground states were derived and reproduced the experimental trends.
Ground state wave functions were assumed to have a simple seniority (zero
for even A nuclei and one for odd A nuclei). Baynan(l) has analysed the
(p,a) data on 48Ti, 51V, %5Sc and S“Fe and was able to predict correctly
the experimental cross sections using the wave functions of McCullen,
Bayman and Zamick (M.B.Z.)(ls).

Nolen(l7) has presented a fully microscopic description of the (p,a)

reaction. However, he did not apply it in analysing the (p,a) reaction
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on Cu isotopés. Instead he introduced a simple spectator model where |
the two neutrons were coupled to anguwlar momentum J'=0.

Falk(g)’(IO) introauced a fully microscopic form factor by starting
with single particle wave functions calculated in a Woods-Saxon well,
which were then expanded in an harmonic oscillator basis. This improved
form factor was applied successfully to 12C(a,p)15N(7) , 130Te(p,a)127sb
(18 ma recently to “Oa“ZCa(p,a)37>39K(lg) where it was demonstrated
that in cases where the transferred neutrons come erm two major shells,
details of the nuclear wave functions become increasingly important.

()

Smits introduced a semi-microscopic description of the (p,a)

reaction. He chose as a natural degrees of freedom for the three-nucleon
transfer reaction the following:

(a) a single-particle degree of freedom, describing the transfer
of the odd particle (the proton).

(b) a collective degree of freedom, describing the (collective)
transfer of the remaining pair (the neutrons).
Thus he was able to separate the structure and dynamic parts. The model
was used successfully to predict transition strengths of the (p,a) reac-

tion on Sn isotopes.

Smith(zo) presented a theory for the (p,a) and (a,p) reactions
which is derived from a generalization of the Bayman and Kallio(zl)
method for calculating two nucleon form factors. Starting with single
particle wave functions generated in a Woods-Saxon potential, he first
calculated the two neutron wave function. Then the di-neutron is

treated as a mass—two particle and coupled to the proton to make a triton

in a 0S internal state. The form factor of the latter part was
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calculated as a two nucieon form factor but with unequal mass. This
method was restricted to those reactions where the transferred particles
are in OS state of internmal motion. This form factor is similar to that
used by Falk. The difference is in the method of evaluation. Both form
factors start with single-particle states calculated in a Woods-Saxon
potential. However, in Falk's form factor these single-particle states
are expanded in harmonic oscillator basis to permit analytical evalua-
tion, while in Bayman's approach the integration is done numerically.
A comparison between the two form factors gave agreement between the two
methods as mentioned in Ref. (2u4). |

Smith(zo) also presented calculations of the form factor where the
single-particle states were taken to be harmonic oscillator wave func-
tions. A hankel téil was matched to the oscillator form factor to give
the correct asymptotic behaviowr. These two form factors were found to

be essentially the same, although they differed a bit in the surface

region.

Pellegrini(ZQ)

has studied the 3%S (p,a)3!P reaction and compared it
with the reaction 328 (d,3He)31P. This comparison ruled out the specta-
tor model in describing the (p,a) reaction where the two neutrons were

coupled to angular momentum J'=0.

Recently Oberhummer(zg) studied the low-lying states in °3Mn using
the °®Te(p,a)®3Mn reaction. DWRA calculations using a fully microscopic
form factor resulted in good fits. However, the relative transition
strength could not be reproduced. It was pointed out that the inclusion

of small admixturesof additional proton shell configurations could account

ifor the observed strengths.
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In the'present work the objective is to study the Sc isotopes 43,
45, and 47 through the (p,a) reaction. Additional structure information
can be cbtained that camnot be obtained through other reactions. Also
this study will allow us to investigate the applicability of the micro-
scopic formalism for the (p,a) reaction on a series of isotopes.

The choice of these particular reactions was motivated by several
factors, among them:

1. The availability of shell model wave functions for both the
target and the residual nuclei(16)’(25). These wave functions were
calculated in the truncated space (lfzé)n. Although shell model calcu-
lations with a broader basis are needed to describe adequately the Ti
and Sc isotopes, the available ones provide a useful testing ground for
microscopic calculations.

2. The Ti(p,a)Sc reaction has been studied before on a few occa-
sions(26)’(27)’(23). However, to the best of our knowledge, the inves-
tigations did not exceed the qualitative stage. Moreover, only states
with excitation energies up to about 3 Mev were identified. In the
present work a quantitative analysis will be presented for states with
excitation energies up to 8.4 Mev.

3. The single hole structure of *°Sc and ¥7Sc have been studied using

(29) (30) and more recently

the (d,3He) reactions by Ohnuma and Mairle
by Doll(Bl). The study of Sc isotopes through the (p,a) reaction will
provide additional information about the structure of some of these

states. “3Sc has not been studied by the (d,3He) reaction due to the

lack of a suitable target.
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The bombarding energy was chosen to be in the neighborhood of 40

Mev. This was governed by the desire to avoid compound nucleus contri-
bution(S) »(32) and good cyclotron behaviour and transmission at this
energy.

Chapter 2 contains the details of the microscopic form factor.

This form factor is calculated using single-particle wave functions
calculated in Woods-Saxon potential and expanded in harmonic oscillator
basis. Also contained in chapter 2 are the shell model spectroscopic
amplitudes connecting the initial and final states for the three-nucleon
transfer reactions. These spectroscdpic amplitudes are needed for the
microscopic calculations.

The experimental procedure and setup, a description of the beam
facility, the electronic circuitry and other experimental details are
given in chapter 3.

Chapter Y4 contains a brief theoretical discussion about the nuclear
structure of Sc and Ti isotopes summarized from the existing literature.

Chapter 5 contains the experimental data together with the micro-
scopic calculations. The microscopic calculations have been performed
in two stages. In the first, simple configurations for the transferred
nucleons have been assumed, in order to investigate to what extent such
configurations can account for the observed transition strengths. In
the second stage the microscopic calculations have employed the shell

(25)

model wave functions of Kutschera where the Ti and Sc nucleil were
n

h

assumed to have the structure of closed “%Ca core coupled to ( 7 )
2
The residual interaction between nucleons in the unfilled shell was

estimated from the experimental data on three different two-body systems
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in 1fy, nuclei: %42Sc, 48Se and 4Co.  The wave functions of the first
2

and second excited state of each spin were calculated.
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Chapter 2

Microscopic Description for the (p,a) Reaction

2.1 The DWRA Formalism of the (p,o) Reaction

Fig. (2.1) shows a diagrammatic representation of the pickup

reaction A(p,a)B.

The DWRA expression for the differential cross section can be

written analogous to single—nucleon(33) and two-nucleon transfer
reactions(lz) as follows:
do . _'pla_ K, 1 T2 (2.1)
do - (2mh2)2 Kp (27,+1)(2S +1) M WB DW
i A P mAm
o p

where

p_ and n, are the reduced masses of the proton-target and alpha-
residual nucleus, respectively. Kﬁ and Ka are the magnitudes of the
wave numbers in the proton and o channels, respectively.

TDw is the distorted wave transition amplitude.

J

A
o, = . . . 5
The transition amplitude Ty, 1s glven by:(3u),(3 )

is the target nucleus spin.

To=Jld fdar xR r

X ,r ).
D “pA . oB B o B

(X r ) (2.2)

<Py Vo, = Voalwp, > ¢ x K ,
Ba PA PATYPA PA oA oA

where

J is the Jacobian of transformation to the relative coordinates
1 B/A |

™ and E’
sl 14 1

) |
PA oB :

J is given by
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Fig.(2.1) A diagramatic representation of

~ the A(p,a)B reaction.
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Vpa is the sum of all two-body interaction potentials between the

proton and each nucleon in the target nucleus A.

va is the optical potential describing elastic scattering in the

incident channel.
-

XoB

+)

XpaA

is the o distorted wave.
is the proton distorted wave.

All nuclear structure details are contained in the nuclear matrix
element < wBa IVPA - VPAI wPA > . The main problem in applying this
matrix element is in the construction of the form factor which is more
complicated than that of two-nucleon transfer reactions. Besides, the
evaluation of spectroscopic amplitudes (or equivalently, the overlap

(24)

integral) is needed for each possible transition. Falk has described

in detail the calculation of the form factor for describing the (p,a)

reaction. Appendix A contains a copy of the paper by Falk(zu) and the

reader is referred to it at this point, since no details will be given
here about the lengthy procedure of evaluating the nuclear matrix element.
Symbols and notations used in Appendix A are adopted here.
Of particular interest to us is section 2.7 of Appendix A where -
expressions of the nuclear matrix element and the microscopic form factor
are given. For completeness these expressions will be given here.

The nuclear matrix element is given by:(QH)
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< Ba|V|AP > a I (%%JM|%%)M%%IM>
He
Ly %, J'||J" 23 L
1 1 X 1 L Lo 01/21/2
(¥ u V% w | o o) e IAB(x,J ) - |72 _
P jp 3o J'||J" 33 7

J, (p,R) Y ®) . (2.3)

The function FJ, (p,R) is the form factor for transfer of the configura-

tion (y,J',J) and is given by:
A P1¥PotPot(8y+85483)/2

F ', (p,R) = gly) = T aP1aP2aP3(§:i)

PyP,P3 N'n'Nn
X < Py2yPy2y, J'|u,u|N'J'n' o, J' > < N'J' Pye3,L]|2y,u|Nlno,L >

N+L, 3(A-3)
< (éii) llhn' (v, v, B, D)RNL [ J (2.4)

The proportionality constant in Equ. (2.3) is the same for all

(p,a) reactions and remains as an overall (unspecified) normalization

constant.

2.2 Spectroscopic Amplitudes

1
The spectroscopic amplitudes S[2 are related to the expansion co-

LR\

efficients I, (%,J',J) as shown in Equ. (2.7) of Appendix A.

The spectroscopic amplitudes for pure shell model configurations
were calculated in Ref. (12) for two-nucleon transfer reactions in the
neutron-proton formalism. The same procedure will be extended to the
case of three-nucleon transfer reactions.

The coefficients I (%,J',J) have to be calculated for each
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configuration v,J',J, as may be noted from Equ. (2.3). The following will

illustrate how I AB(Y’J '.J) has been calculated.
Consider a nucleus A with the outermost proton shell w having m

protons coupled to angular Honentum.sp. let the outermost neutron shell

be p having n neutrons coupled to angular nomentum.Bn. The wave function
(37)

of this nucleus can be symbolized by:

The circilar arc indicates that the wave functions has been antisymmetrized
in the m protons and separately in the n neutrons. The arrow 1n Ty indi-

cates the order of coupling, i.e.:

Consider a simple transition involving pickup of a proton from shell
w and pickup of two neutrons from the p shell coupled to angular momentum

J'. Such a transition would be represented by:




‘él;k
where ® indicates vector coupling to a resultant T,. S andvyn are
the angular momenta of protons and neutrons in the residual nucleus,
respectively. J is the total angular momentum of the transferred group,
and T the residual nucleus angular momentum.

B
The expansion coefficients IAB (y,J',J) are represented by the

overlap integral symbolized by:

22,

A FA

IAB ) <

To evaluate the right-hand side, fractional parentage expansions

(z.5)

are made as follows:

Consider first a proton removed from the w shell:

'v'Yp,

b T2 Awnlap,) LW (v ) W

(2.¢)

where < {| > is one-particle coefficient of fractional parentage (cfp).(38)
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u and ¥' are additional quantum numbers required to completely -

specify a state (usually seniority).

Now, consider the neutron shell. FYor two neutrons picked up from

the p shell coupled to angular momentum J' we can write:

’

%y’

S22 S opa) PTG ) T

(2.7)

Here < {| > is a two-particle cfp.
Again x and y' are two additional quantum numbers required to
completely specify the state.

Also we can write:

Jo(‘h-z)

¥y w
(s} s

= J‘B, JI" 3_1
Jo?.

r‘A

" , , 7

Yo Yo Js

W g4

Bpe :B"' FA
- N (2"5?)




23.

where [ ] is the normalized 9-j symbol.
Combining’ the above result together with Equs. (2.6) and (2.7),

the overlap integral IAB in Equ. (2.5) will be given by:

vy

IAB - ZP < wm (u BP) {l w(m—l)

(u‘YP'); W
yY-Y M (
T n < pn (X Bn) {, o n-2) (yy_Yryl); DZ(J!) > .

JB'J1 yp' yn' J_,
z W JI Jl
Bp Bn I‘A

(2.9)
The spectroscopic amplitude in this case is related to IAB as follows:
SZ mp2datd) = (M2 (2T (2.10)
AB VP ] 2 AB '

From Equs. (2.9) and (2.10), the spectroscopic amplitude for a given
transition will be given by:
2 (wp2 g, 3 = (M2 (M < we)d 1] W™ Wy ws
AB > 1 2 P p

(n-2)

< o (y B ] o (v y) 5 P2 (3" >

Yp Y, TB
w J'J
Bp Bn rA (2.1
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Equ. (2.11) gives %he spectroscopic amplitude for a transition
which involves picking-up three nucleons from the outermost .neutron and
proton shells, all the other shells being closed. In the case of two or
more active shells, spectroscopic amplitudes can be derived following
the same method illustrated above. A numerical example for a sample
transition is given in Appendix B to illustrate the work involved in
calculating each amplitude.

Superposition of basic states

So far, spectroscopic amplitudes have been evaluated assuming pure
(basic) shell model configurations for the nuclear wave functions. For
the cases where the wave functions are linear combinations of basic

states the above results can be easily generalized.

Let the target A wave function be

J J
Y MA = T A Y MA (2.12)
A A p P p'a
and that of the residual nucleus B be
J J
LB (2.13)

B B
Y = Y
B MB q q q MB
where the wave functions wp and wq form some basic set, ahd A_ and B are

coefficients determined from shell model calculations. Then SA% must be

replaced by

L
T A B S22 (y,J,J (2.14)
QP g pa P )

and Equ. (2.3) can be written as:
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<B=lvl Ap > <X (1o Mg T M T0 r2a).

LT, M%’“t

(LA 'lz/u,* | 7 M) ('l . '/z/a.,: Joo).

YZ.T" 2~ Ipa (v, T'7). Ap-Bq |4, £, T
2 /2 o
g g T

5T'215= L Y A A

o, | " F., (£,R) YV (R)

JT Js T
(2./5)

1,2
21
dependent upon the choice of the signs for the fractional parentage

It is important to note that the signs of Ap and Bq and S_< are
coefficients used in their calculation. Hence consistency of sign con-
vention is of prime concern in the use of the above in calculations.

In addition, the nuclear structure calculations of Ap and Bq involve
other conventions as well. These are discussed in section (2.3).

Zero Range Approximation

Finite range effectshave been studied for the (p,n) reaction (e.g.
see Ref. 39, 4) and it was concluded that such effects are not very
important. On this basis and due to the fact that the DWBA finite range

(40) does not allow a spin-orbit potential in the distorted

code available
waves the analysis in the present work will be limited to the zero range
calculations. The zero range microscopic form factor is given by

Equ. (2.4) with Innf’ evaluated using a delta function intéraction, is a func.

of v and vy only.
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2.3 TImplementation of Formalism

The DWRA code DWUCK 2(36) has been modified to caleculate angular:
distributions using the nuclear matrix element given by Equation (2.15).
The 3 Clebsch Gordon coefficients appearing in this equation are already
included in the DWRA code in a standard calculation of cluster transfer.
Hence, only summation over the terms y, J', P, q need to be implemented.

The expansion coefficients Ipq (y,J',J), calculated separately as
illustrated in Appendix B for each y, J' and J, are fed, together with
as input to the code DWUCK 2.

the wave function'e amplitudes AP and Bq,
The microscopic form factor F},L(p,R) is calculated for each y, J' and L
according to Equ. (2.4) using the computer code FFSFR(ul). The norma-

lized 9-j symbols are calculated externally too, then fed as input to-
gether with the form factor into the DWBA code.

The single particle states are generated in a Woods-Saxon potential
and then expanded in a harmonic oscillator (H.0.) series using the com-
puter code of Nelson—Macefield(uz). The H.O. expansion coefficients
a_, are fed into FF3FR as input. The choice of Woods-Saxon parameters
and binding energies used will be described in the following section.

The angular distributions calculated by the modified DWUCK as des-
cribed above using the microscopic form factor and the nuclear structure
information, should differ from the experimentally measured cross sections
only by a normalization facfor. This normalization factor should be the
same for all states. In other words, the ratio oexp/ctheory should be
consistent for all states under investigation. This will represent a

severe test for all wave functions calculated in the framework of the

shell model for both the target and the residual nuclel.



27.

Sign Conventions

As mentioned in the last section, for calculations that involve
wave functions which are superposition of basic states it is important
that the same sign conventions be used throughout for the cfp’s involved.
Thus, the sign choices used in the shell-model wave function calcula-
tions should be known. In other words, the same cfp's should be used
in caleculating the expansion coefficlents in order to be able to use
the wave function amplitudes directly.

Furthermore, some other sign choices were made in evaluating the
microscopic formalism implemented above. These choices are summarized
below and they should be consistent with the DWBA code and the shell
model calculations.

1. The order of coupling is given by £ + s = J .

2. The sign of the radial wave function is positive as r-o .

The sign conventions of Kutschera wave functions are the same as
those mentioned above.

2.4 Discussion of the microscopic form factor

The microscopic form factor given by Equ. (2.4) has been calculated
using single particle waQe functions generated in a Woods-Saxon well,
and then expanded in a harmonic oscillator series. This procedure has
been used by Fa1x(1075(19),(18) studying the reactions !2C(a,p) SN,
40,42Ca(p,a)37539K and 130Te(p,a)127Sb. Only components in the target
wave functions where the protons and the neutrons were-each coupled to

zero were considered. A reasonable agreement between theory and experi-

ment was obtained-for most states.
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Fig. (2.2) shows a plot of this microscopic form factor for the
reaction *6Ti(p,a)%3Sc for a representative state L=3, J" =% . The

2

single-particle states required for the generation of the form factor
were calculated in a Woods-Saxon potential well with paraneters(qu) shown
in table (2.1). The triton experimental binding energy of 22.83 Mev was
divided among the three transferred nucleons in proportion to the actual
separation energies of both proton and néﬁtron from the target. The
binding energies (B.E.) used are shown in table (2.2). The same values
of B.E. of the nucleons were used for other excited states since in all
cases the form factor tail was replaced by é cluster tail.

The expansion of the single-particle states in harmonic-oscillator
functions was limited to 3 terms only because of the greatly increased
computational time involved as the number of terms in the expansion was
increased (see Equ. 2.10 of Appendix A). The computer code of Nelson-
Macefield(ul) was used to perform the above expansion. The harmonic-

oscillator expansion coefficients together with the overlap of this

expansion with the single-particle wave functions are given in table (2.2).

The shell model oscillator parameter was calculated from the formula(q3):
v=o0.02811 (2B (2.16)
A A

Also shown in Fig. (2.2) is a plot of the cluster form factor for the
same transition. The cluster wave function was calculated with para-
meters r = 1.17 fm and a, = 0.65 im.

The triton cluster was assumed to be bound by its experimental sepa-

ration energy. The MFT differs considerably from the CFFT in the nuclear
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Fig. (2.2) Comparison between MFF and CFT for

1=3
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Table (2.1) Optical-Model parameters used in the calculations of the
single-particle states

\Y T a. V. T a Re
s.0o. S.0. S.0.

(Mev) (fm) (fm) - Mev © (fm) - (fm) (fm)

| Varied 1.25 0.62 .42 1.25 0.62 1.25

Table (2.2) Calculated single-particle binding energies and wave-
function expansions in harmonic-oscillator functions

Single-particle Binding Energy 1) (2)
state (Mev) H.O. Expansion Overlap
% .
1f, mneutron (v, ) 8.22 .99852 .0734 .0uyi .9998
72 7
lf?& proton (ﬂfZQ) 6.45 .9906 .122 .04l6 .9930
(1) _ -
Vo p. T .248 fm
(2)

Overlap = fuz(r)z a_ H . (vr?)dr = overlap of the expansion on the
p PP original wave function.
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interior. The MFF falls rapidly compared to the CFF. This is due té
the truncation in the number of terms in the harmonic-oscillator expan-
sion. In order to correct this behaviour we replaced the MFF in the
asymptotic region by the CFF wave function. The point of matching is
taken at the radius where the logarithmic derivatives of the two func-
tions are equal.

The MFT calculated as described above may actually be of a limited
usefullness towards establishing the (p,a) reaction as a useful spectro-
scopic tool. The reason for this is that with such a complicated depen-
dence of the form factor on the detailed structure of each state, one
needs to know the wave functions in all their detail. Moreover, the
single-particles states have to be calculated for each transition to
reflect the appropriate triton separation energy, and then expanded in
an H.0. series. The latter involves a great deal of effort.

A simplification to this procedure results if the single-particle
states are taken to be oscillator functions. The obvious deficiency of
the resulting form factor in the nuclear surface region must be corrected
by attaching the CFF tail. All other details of the nuclear structure
are incorporated as before. In other words, all possible configurations
Y ana values of J' leading to a particular J value will be considered.

Fig. (2.3) shows a comparison between the MFF calculated with 3
terms in the H.0. expansion with that calculated using the dominant term
only. As may be noticed, both form factors are similar in the nuclear
interior but, not unexpectedly, differ considerably in the asymptotic
region. This is expected to have a minimal effect on the calculated

cross sections Since a CFF tail will be matched in the exterior
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Fig. (2.3) Comparison between CIF and MEF with
different number of terms in the

H.0. expansion



(ur) o

0°9 'S 0*h

0°¢€

0°2

0'T

34.

(Wwrel suo) Iy =-=~~--

(Swrel saap ) I —r —

410 ——

7R omm:Au,mvﬂaw:,

T'0

0T

(s3Tun -qay) (N4



35.

region in all cases.

The angular distributions calculated using these three .form factors
are showﬁ in Fig. (2.4). Table (2.3) shows the relative DWBA cross
sections calculated with theitwo'MFF. Each microscopic form
factor had a cluster tail attached to it. Both MFF were normalized as
shown in table (2.3). As may be noticed, all values are consistent
with each other within ~ 20%. Further, a comparison between the rela-
tive magnitude squared of both microscoplc form factors at the outer
maxima is shown in Table (2.4). With the exception of the l; state, one
’expects the error introduced into the ratio csexp/oJCh due to using only a
single H.0. term will be about 24%. The error in the l% state will be
larger (a factor of ~ 2).

Fig. (2.5) shows another comparison of the MIF for L=4, JH:Z§+ for
both cases where one and 3 terms in the H.0. expansion were considered.
Fig. (2.8) shows the corresponding angular distributions. Once more the
main differences between the two form factors are evident in the asymp-
totic region where the one-term F.F. tends to fall faster than the three-
terms F.F. However, the process of matching the tail with a Woods-Saxon
wave function will eliminate much of the error introduced by the trunca~
tion process.

Finally, it should be noted that a further consequence of using only
the dominant term in the harmonic oscillator expansion (i.e. assuming
oscillator functions for the single particle states), is that the form
factor shape generated this way depends only on the shells involved but
not on the coupling J' of the two neutrons. In other words, the form

factor for the transferred configurations (ﬂfz,) @>(vfz,)g has the
2 2°0}7,
2
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Fig. (2.4) Comparison of angular distributions
calculated with different number of

terms in the H.0. expansion
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Table (2.3) Comparison between relative DWBA cross sections calculated
using different form factors for the reaction *®Ti(p,a)%3Sc

o(one term) T_1%,- a0 T_gt T_7= ¢ ano LT

G(Tull expansion) J =% (18°) | J"=%,(24°) | J'=7,(32°) | J'=7,(22°)
(a) 1.1 1.2 0.85 1.2
¢o)) 1.8 5.1 b.2 b.1

(a) Both F.F.'s are normalized to unity

(b) Using the normalization of the F.F.'s given by the computer code
FF3FR.

Table (2.4) Comparison between the relative magnitudes squared of MFF
at the outer maxima

+ + + - -
Form Factor L 3 % % 1
MFF (full expansion) 1.0 1.0 1.0 1.0 1.0

MFF (one term only) 1.4 3.3 2.8 3.2 3.0
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Fig (2.5) Comparison between MET and CIT for
L=4. The configuration of the tran-
sferred nucleons is :

1d 1 if 2 2
T 3/2< 3,) ® v 7/2( )
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Fig. (2.6) Angular distributions for JT o= Z;
using MFF with different number of

terms in the H.O. expansion
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same shape as the form factor for the configuration (ﬂfzé)'® (vf22)§ .
The only difference is in the magnitude, and this will appear as an
overall normalization factor dependent on J'. This empirical result has
the advantage of allowing us to write the form factor as a part depen-

dent on the configuration y and the transferred angular momentum L, and

a part (normalization factor) dependent on the intermediate coupling J'.

Hence we can write:

Y - Y Y
Frp (R = Ny Fj (R)

In this way only one form factor shape is required for the DWBA

calculation for each transition. A tabulation of N}, values can be pre-

pared and used.
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Chapter 3

Experimental Procedure

3.1 Cyclotron and External Beam Facility

The high resolution beam line shown in Fig. (3.1) together with the
56 cm scattering chamber was used in theée experiments. The proton beam
used was produced by the University of Manitoba 42" sector focussed
cyclotron(MS). The axlal injection system injects a beam of negative
hydrogen ions vertically into the centre of the cyclotron at 11 Kev(MB).
The ions are deflected into the median plane by an electrostatic mirror
and accelerated by a 28 keV RF voltage. Extraction is achieved by
stripping the two electrons from the negative hydrogen ion using a thin
aluninum foil causing the magnetic force to reverse and sweep the beam
out of the cyclotron field.

The high resolution beam analysis system was built on the 15° right
beam line. For economic reasons, space limitations, and the requirement
to handle a beam with large emittance, the system was chosen to consist
of two 90° single focussing analyzing magnets of 30 inches bending

radius. The two magnets bend in opposite directions to each other, in a

47)

mamer makes the dispersions additive The system

accepts as input a beam of horizontal emittance as high as 15 mm-mrad

and provides at target position a beam of intensity 1% that of the in-
tensity on slits S1 shown in Fig. (3.1), and a final intrinsic energy

resolution AE/E = SXlO“”(u8).

3.2 Scattering Chamber

The 56 am scattering chamber of the high resolution beam line has
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' Fig. (3.1) High Resolution beam line
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a single rotating table with milled grooves 10° apart for mounting .de-
tectors. There are 12 vacuum sealed connéctors for detector connections.
The top of the chamber carries a vacuum lock and the target ladder slides
through this lock into the chamber. The target ladder can hold up to 3
targets at the same time, although one place is normally occupied by a
BeO screen used for viewing the beam. The vacuum was about 4x10=® Torr.

In order to improve energy resolutién, the kinematic matching tech-
nique prescribed in Ref. (49) was used. TFor a typical besam with charac-
teristic 1ength(u9) of 30 m/mrad and a focussing point 150 mm beyond the
targetvthe detectors should be pléced at disfances shown in Table (3.1).
Also shown in Table (3.1) are the solid angles subtended by each detector.
A small solid angle was used -for the for&ard detector in order to reduce pile-
up.

3.3 Electronics

In the scattering chamber the o-particles were detected using coun-—
ters at angular intervals of 10°. The most forward two counters were
telescopes consisting of AE-E silicon surface barrier detectors while the
other counters consisted of single E silicon detectors.The reason for the
AE-E telescopes was to eliminate protons elastically scattered from tar-
get depositing their full energy in the E-detector after being deflected
90° inside the detector. These protons appear as a broad peak at a
position close to the a-particle peaks, and thus their presence might

complicate the spectrum(l7).

The AE detectors were 100 um in thickness, while the E detectors
were 1000 ym, which is more than sufficient to stop the ~ 40 Mev a-
particle from the (p,o) reactions. The Q-value for the (p,3He) reaction is

about 12 Mev more negative, thus 3He spectrum will not complicate a-spectrum.



Table (3.1) Detectors Distances and Solid Angles

48.

Dectector Distance Solid Angle
(cm) Steradian x 1073
#1 (most forward) 17.0 0.5226
#2 17.9 0.6428
#3 18.0 (.6688
#h 17.9 0.6907
#5 17.0 0.6078
#6 15.7 0.8582




Fig. (3.2a) shows the electronics diagram used for the AE-E tele-
scopes. An 2%1Am g-source and a research pulser were used for the gain
matching process.

Fig. (3.2b) shows the circuit diagram used for the single E coun-
ters. Pairs of the single E detectors were routed through separate
ADC's.,

3.4 Targets and Determination of Absolute Cross Sections

- The targets used for the present work were prepared by the target
division of the Chalk River Nuclear Laboratories. 6T ang >0Ti targets
were prepared by rolling Ti isotopes down to a thickness of 333 pg/cm?
and 268 pg/cm?, respectively. The 4873 target was prepared by reducing
and evaporating TiO as a self-supporting 48T target of thickness
60 pg/cm?. The isotopic composition of these targets is shown in Table
(3.2a).

The target thicknesses were measured initially by the energy loss
technique using art 241An g-source. Another measurement was performed
using a proton monitop fixed at an angle of 20°. The proton optical

""" model parameters given in Ref. (44) were used to calculate proton elas-
tic cross section. Thus, the target thickness can be calculated. The
uncertainty in target thickness measured by this method is mainly due
to angular uncertainty of 0.2°. Table (3.2b) shows the results of both
measurements. The adopted values for target thicknesses were taken to
be the weighted average.

The absolute cross section scale is accurate within ~ 8%,

Proton monitor measurements at a fixed scattering angle of 20° were

taken at all times during the (p,a) runs in order to detect any change in
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Fig. (3.2) Electronics diagram
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Table (3.2)a Isotopic Composition of 46,148,507 Targets(::)
Target 4674 H771 48T 497 Sepi
467 81.2% 2.1% 14.1% 1.5% 1.1%
k8T .25% .26% 99.13% 0.13% .17%
5071 2.0% 1.8% 17.8% 2.0% 76.4%
(:‘:) . : .
As per supplier's analysis.
Table (3.2)b Targets Thickness Measurements Results
Target Energy loss Proton elastic Adopted
method scattering value
j.)jlcw\—" /"’31('*“:" 5 {Cn™
alit 335 + 10 327 + 20 333 £+ 9
L87{ 61 + 6 58 + 6 60 + L
5073 270 £ 9 267 + 16 269 + 8
L
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beam position on target.

3.5 Data Reduction and Analysis

The on-line PDP15/20 computer was used for data acquisition. Spec-
trum analysis and fitting were done using the computer code Autofit(SO)
on the IBM 370/168 computer. However, preparing the input data required
by Autofit - initial peak guesses, reference peak,... - was done on the
off-line cyclotron PDP 15/40 computer. The quality of the fits produced
by Autofit is shown by a sample spectrum in Fig. (3.3).

An energy calibration for each detector was made by performing a
linear least-squares fit. The states used were the g.s., L2+, 32+ from
the (p,a) spectrum and the g.s. from the (p,3He) spectrum. Channel zero
represented E=o. The excitation energy of each peak was determined by
averaging the values obtained from at least four different scattering

angles. Onlyvpeaks whose calculated excitation energies were consistent

within 15 kev over the whole angular range were considered here.
The uncertainties in the excitation energies reported in the present
work vary between 10-15 kev. The excitation energies obtained here will

be used to identify all states throughout the present work.

3.6 Optical Model Parameters

The optical model potential used is given by the expression:

_ . ~ . d
vV = Vc(rc) - Vf (ro,rb) - 1 Wf (rw,aw) + 1 wDaw a;-f (rw,aw)

h

mc
m

)2 v 240 2075 (3.1)

+ ( T
.0. » dr "so’"so

2

where
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Fig. (3.3) Sample spectrum
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1 -1
- - 73 ]
f(ri,ai) = [} + exp [(r r. A )/ail_ (3.2)
VC is the columb potential

W and WD are the volume and surface absorption potentials and Vs.o
is the spin-orbit potential.

For the “®Ti(p,a)*3Sc reaction it was found that the global optical
potential parameters for the proton chamnel of Becchetti and GreenleescBl)
gave better fits to the experimental data than +the parameters given in
the Perey compilation. This is in contrast to the case of “8Ti and 50Ti
where the Perey compilation parameters gave better fits. The potential
parameters for the a-channels for the three reactions were taken from
Ref. (44). The triton cluster was assumed to be bound by its separation
energy and the geometrical dimensions of the well were chosen such that
the experimental angular distributions are closely reproduced. Details
of the optical-model potential parameters are given in Table (3.3).

Fig. (3.4) shows the results of zero-range DWBA calculations for
some representative states using the parameters in Table (3.3) in order
to show the quality of tﬁe fits obtained by these parameters. It should
be mentioned here that changing the bound states parameters improves the
fits for some states and worsens them for a few others. The final choice
of the parameters given here is a result of a compromise reached after
fitting and examining a large number of states for many different values
of J.

The "well matching" procedure for choosing the optical potentials

for poorly L-matched reactions, suggested by Dodd and Greider(sz) and
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Table (3.3)
L3 L5 1478
Optical Model Parameters used for “6,48,50Ti(p,a) Sc, Se, Sc
Reactions
v T a W wD rw aw vs.o. Ié.o. as.o. IE

Mev) (fm) (fm) Mev) @Qev) () (m Mev) Gm) (m) (fm)

I. “0Ti(p,a)*3Sc

uy.4 1.17 0.75 6.1 9.08 1.35 .54 2u.8 1.01 .75 1.25
202.2 1.385 .565 26.4 ) 1.395 .565 1.38

(L 1.17 0.75

II. *8Ti(p,a)%3Sc, °0Ti(p,a)"7’Sc

44,85 1.16 .75  7.82 k.56 1.37 .63 24.16 1.064 .738 1.25

The same as in %8Ti

r=1.17, a=0.65 for %8Ti, a=0.75 for °0Ti

(l)Allowed to vary to reproduce triton separation energy. (v 140 Mev).
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Fig. (3.4) Angular distributions for representative
. states in *7Sc. The solid lines represent
the result of CFF zero-range DWBA calcula-

tions using the optical model parameters

given in Table (3.3)
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applied successfully to the (d,a) reaction(53) and the (p,a) reaction(ZO),

was tried in the present work. The proton parameters given. in Table

(3.3) for the “8,50Ti(p,a) reactions were kept fixed. The a-scattering

data of Priest(su) vere fitted using the code Seek(SS) to find another

set of optical potential parameters with real radius and diffuseness
equal to those of the proton (r = 1.16 and a = .75). The search for the
new parameters involved only search for the real potential depth V. It
was found that a value of V = 234 Mev was required to reproduce the
experimental o-scattering data with a x2/N value comparable to that of
Pfiest. |

However, as may be noticed from Fig. (3.5), the DWBA fits obtained
using the well matching parameters were in general less satisfactory
than those obtained previously using Table (3.3). Thus this procedure
was not pursued further.

Finally, it should be mentioned that the choice of the optical model
potential parameters introduces an uncertainty in the ratio Oexp/oth'
It was found that different optical parameters might produce comparable
fits while yielding different relative values of Otheory for different
J values. It is estimated that the uncertainty in oexp/gth is about
10% for L values of 3-7. This uncertainty increases to about 15% for
J = Y mainly because of the oscillatory character of the angular distri-
bution for this J value.

Fig. (3.8) shows angular distributions for a large range of J"
values. These distributions were calculated using the optical model

parameters given in Table (3.3). These distributions will serve the

- . A s i . L o: .
purpose of being a "yard stick" for J assignment in chapter 5. The
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Fig. (3.5) Comparison between DWBA fits using Perey

parameters and "well matching" parameters.
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Fig. (3.6) Calculated angular distributions

for different j" values.
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dependence of these angular distributions on excitation energies is very

weak in this energy range.
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Chapter 4

Theoretical Interpretation of the nuclear structure of

Sc and Ti isotopes

4.1 Shell Model Studies

The early theoretical investigations on the structure of the fp-
shell nuclei were carried out in the framework of the spherical shell
model by McCullen, Bayman and Zamick (M.B.z.)1822(58) qo oo cne.
tions and spectra for nuclei in the fp shell up to °0Ni were calculated
with effective interactions deduced from the “2Sc spectrum as it was
known in 1964. All valence nucleons were restricted to the 1f7/2 shell.
The calculated spectra of M.B.7Z. agreed well for even-even nuclei.

Figs. (4.1) and (4.2) show respectively, the “6Ti and “8Ti observed

spectra and their comparison with M.B.Z. calculations. Whereas the
calculation agrees well for the case of “6Ti the chief failure of the
theory in even-even isotopes is the predicted 3" 1evel at 3.01 Mev in

“8Ti for which there is no experimental evidence.

The theoretical predictions are less successful in the odd-even
nuclei than in either the odd-odd or even-even. This is partly due to
the configuration mixing from the higher configurations, the effects of
which are more pronounced in the odd-even isotopes.

Fig. (4.3) shows in the first colum the Y3Sc spectrum of negative
parity states as calculated by the M.B.Z. model. The experimental
spectrum is spread over 3 colums. One notices immediately that the
(lfzé)n calculation is quite inadequate from the point of view of the

number of levels that are present. In addition, the lowest-spin state
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Fig. (4.1) 465 spectrum compared with M.B.Z. calculation
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Fig.(4.2) 48r; spectrum compared with M.B.Z. caculation
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Fig.(4.3) The *350 spectrum of negative-parity

states compared with the M.B.Z. theory.
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in the M.B.Z. calculations is a J' = 3,  state at 3.4 Mev, but experi-
mentally the lowest 3 state is at 400 Kev. There is another 35~
state at 1.1 Mev.

Figs. (4.4) and (4.5) show a comparison between the calculated and
observed spectra for ¥3Sc and *7Sc respectively. The same remarks men-
tioned above about the “3Sc spectrum are applicable here. The experi-
mental energy levels for 3Sc, “°Sc and *7Sc are given in Appendix D.

Flowers(Sg) introduced the next stage of sophistication in the study of
433c. The “0Ca core was still regarded as inert, but the three extra-
core nucleons’were allowed to occﬁpy the complete 1f-2p shell. Appro-
priate single-particle energies were deduced from the “!Ca spectrum. The
second colum of Fig. (4.3) shows the experimental levels that can be

described by this model. The same conclusion has been reached also by

Ripka and Zamick(58).

The third column of Fig. (4.3) lists the levels of those states
which are associated(GO) with the K = 35, 5p-2h rotational band. The

last colum lists states which do not yet have any theoretical inter-

pretation.

The shell model calculation of M.B.Z. was also extended by Lips(sl)

for the nuclei N = 28, 20 < Z < 28 to include :Lfr7;l %3, and 1f§‘/;1 1,
proton configurations. They found that the lowest state of each J' is
mainly of (1f, é)“ structure for all the nuclei studied. Although the
spectra predicted improved, nevertheless, the predicted ML transion rates
were too small.

Reéently KUtschera(Qs) performed a new (lfzé)n—type shell model

calculation using more recent experimental information to deduce the
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Fig. (4.4) L}SSC negative parity spectrum compared

with M.B.Z. calculation.
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b7

Fig.(4.5) Sc negative parity spectrum

compared with M.B.Z. calculation.
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empirical two-body interactions. The calculated spectrum for %3Sc is
shown in Fig. (4.6). These wave functions will be tested in the present

work.

4.2 Cluster Interpretation for Sc-isotopes spectra

The cluster representation offers(27) a method for predicting a
qualitative level scheme for Sc-isotopes. Both positive and negative
parity spectra of !9F have been accounted for with the aid of this

method(SZ)

- The low-lying negative parity states of “3Sc are pictured
to arise from the interaction of an unexcited 40Ca core with a 3H
cluster. The lowest oscillation permitted by the Pauli principle are

of the 9th order, resulting in motions with possible angular momentum

17,37, 57, 77 . Coupling with the spin of 3H cluster gives rise to
%, Y%, %5, 55 ... states.

The positive parity states are Pictured to arise from the inter-
action of an unexcited 3%K and “He cluster. The lowest permitted

. . . +
oscillations are of the 12th order, with angular momentum O+, ho..

2",

Coupling with 3§+ spin of the 39K cluster results in 3;, l;, 3;, 5;, Z;,
... states. The predicted spectrum is shown in Fig. (4.7). The clus-

ter representation is still qualitatively applicable for the case of

“5Sc, but it is complicated for “7Sc.

4.3 The Collective Model Approach

An alternate way to describe some of the states of the odd-mass Sc
nuclel is to use the collective model to which single-particle effects
have been coupled. Fig. (4.8) shows the Nilsson diagram§76). From this
figure, positive deformations of 1f22 nuclel are expected to result in

a negative~-parity level sequence L, 3%, 3%, 75, with a rotational band
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Fig.(4.6) u3§c spectrum as predicted

by Kutschera (25).
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Fig(h4.7) 43Sc energy levels :

(a) qualitative cluster-representation levels

(b) calculated shell model levels ‘107,
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superimposed on each of these intrinsic states. That the Sc isotopes
with odd mass numbers have J" = %, rather than % can be accounted for by
noting that the band built on the 1, intrinsic state has a highly nega-
tive decoupling parameter for the deformation range 0 ¢ 6 < - 27 as shown
in Fig. (4.9) and that this causes a depression of the %, member of that
band relative to its !5 member.

Positive parity levels starting with 3% are expected to occur at
excitation energies that vary with the amount of deformation. The smal-
lest deformation (represented qualitatively by line a in Fig. (4.8)) is
éxpected for *1Sc and %°Se, witﬁ one nucléon outside closed shells. The
¥5Sc nucleus, with 5 particles (or 1 particle and 4 holes) outside closed
shells, is expected to have the largest deformation (line d in Fig. (4.8)).
The deformation of “3Sc (3 particles) is expected to be somewhat larger
than that of “7Sc (1 particle, 2 holes), because such a particle-hole
asymmetry has been observed in other deformed regions (lines ¢ and b in
Fig. (4.8)). The lergth of lines a - ¢ can be taken as an indication of
the excitation energy at which the lowest positive parity state is expec-—

ted to occur.

L.4 Core-plus-particle Model Interpretation

The low-lying odd-parity states of “3Sc are pictured(QS) to arise

from intermediate coupling of a single proton in the 1f-2p major shell
to the %Ca core in either its 0 ground state or 2 first excited state
at 1.156 Mev.

As shown in Fig. (4.10) a good agreement is obtained between fitted

levels and their experimental counterpart. All the energy levels below

2 Mev are well accounted for and a model space itruncation allowing only for



84.

Fig.(4.8) Single-particle energy level positions

as a function of deformation (Nilsson diagram).
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Fig.(4.9) Decoupling parameter versus deformation

for Nilsson orbit no. 14 of Fig.(4.8).
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the coupling between le,2 ?nd lpgﬁ proton states and the 0" and 2° core
states, is justified since the inclusion of further single particle orbi-
tals does not alter the predicted structure of levels.

As for the positive parity states it was found that(zs) they are
predominantly a ld%@ proton hole with |0° 1d;; > for the 0.012 Mev state
and |27, 1d;/: > for all other levels obtained.

Seth (73) presented a similar interpretation for the 1.40 Mev,

7, state in “33c only. This will be discussed in chapter 5.
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Fig. (4.10) The results of core-plus-particle
coupling calculations as compared
with the experimental level scheme

of ”5805
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Chapter 5

Experimental Results and Comparison with

Microscopic Calculations

In order to test the microscopic formalism described in chapter 2
and the wave functions of Kutschera(QS) the (p,a) reaction has been
studied on the Ti isotopes 46, 48 and 50. The following sections A, B

and C will give descriptions and results of the investigations.

Section A: The “®Ti(p,a)"3Sc Reaction

Al d—spectrum:

The (p,a) reaction of “6Ti isotope was studied at a proton energy
of EP = 40.35 Mev. The emerging a—particles were detected using 6
silicon surface barrier detectors, as discussed in chapter 3. Target
details are also given in chapter 3.

Fig. (5.1) shows a typical spectrum for “*3Sc obtained at I é 450,
An overall energy résolution of 70 Mev FWHM was obtained, resulting from
beam energy spread, beam divergence, energy straggling in the target and

electronic circuitry resolution.

States in “3Sc with excitation energies up to 6.22 kev were observed
in the present work. These levels are summarized in table (5.1). De-
tails of calculations and uncertainties in excitation energies are given
in chapter 3.

The spectrum observed here resembles qualitatively the 30 Mev spec-
tTrum of Nolen(sg) obtained from the same reaction. However, they did

not report any quantitative results.

Among the salient features of the spectrum shown in Fig. (5.1) is
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Fig. (5.1) The “®Ti(p,a)"3Sc spectrum
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the excitation of positi&e parity states at low excitation energies as
predicted by the collective model discussed in chapter 4. For example,
the 3; state at 0.15 Mev and the l; at 0.86 Mev state. The same fea-
ture is observed as well in both *°Sc and “7Sc spectra.

A second important feature of the spectrum shown in Fig. (5.1) is the
excitation of high spin states. The levels at 2.99 and 3.12 Mev have
been assigned to the values J' = 15, and 125 on the basis of angular
distributions obtained in the present work. Such assignments agree with

previous assignments(su) from (a,p) reactions.

Selection rules inhibit
the population of these high épin seniority three states in one
nucleon transfer reactions. Thus the study of the (p,a) reaction is of
demonstrated advantage in such cases.

t may be added that the ability of the (p,a) reaction to excite
states with both T and T_ is demonstrated through the excitation of the

level at 4.23 Mev with J" = %5 and T = 35. This level is the isobaric

analog (TA) of the “3Ca ground state. This is in agreement with M.B.Z.

model prediction(ss) of 4.17 Mev. A simple calculation of Coulomb dis-

placement energy(75) predicts such a state to have an excitation energy
of 4.28 Mev. Similarly, the state at 5.23 Mev, 3 is believed to be the
T = 35 TA of the 43Ca 0.99 Mev, %z state. . Again, this assignment is sup-
ported by the observed excitation energy and the angular distribution
shape, as will discussed in the following subsection.
One notices from table (5.1) that among the states excited in the
(p,a) reaction there are some states that are not (or only very weakly) excited

(65),(66) (67)

by the (a,p) and (®1i,1) reactions. These states are of positive

. + + +
parity: e.g. 0.15 Mev, 353 0.86 Mev, 15; 2.87 Mev, Z}Z; 5.23 Mev, 3,
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Table (5.1) Data Summary for “3Sc

Excitation Energies (Mev) ’ ;
i

i
(p,a)a ; (a,p)(es) (‘SLJ'.,‘C)(W)g J" Adopted value(su)’ (b)
0.0 0.0 j 0.0 7 0.0, %
. : +
0.15 very weakly 3/; : 0.151, 3,
excited f '

0.85 5 0.845, 55

0.86 S 0.855, 1
+

1.17 3%

1.18 1.18 A 1.179, 35
1.40 1.4l Y 1.407, %
1.65 | LGyt 1651, 5

1.81 : 1.81 C e 1.810, 3%
1.83 1.83 | 1.83 11, 1.828 (L,13)
2.13 2.141 (35,57
2.25 ; | Co2.2m (3,507

2.28 2,29 1% 2.289, %5
2.65 2.62 2,63 %, ¢ 2.634 (35-11)7

i

2.87 ' 7, 2.875
2.99 2.98 2.99 137 2.987 (Z5-13,)"
3.12 3.12 3.12 13, 3.123 (3,-1%,)7
3.47
3.81 3.806, Z,
4.23 o, 4.235, Z,
5.23 3 5.236 (3-12,)"
6.22 Ly 6.222, 1,

(a) Present work
(b) listed only are states with interest to present work.
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and 6.22 Mev, l;. The disappearance of these states from the stripping

reactions spebtra confirms that these states are mainly proton hole states.
However, thesé,;xsitive parity states have been excited in the reaction
“2Ca(3He,d)”3Sc(68) through the relatively large two-hole components in the
4202 ground State(se),(m)',(?l).

On the other hand there are states observed in both the (a,p) and
(%1i,1) reactions that are not observed in the present (p,a) work.
Examples are 1.18 Mev, 3;; 1.81 Mev, 3; and 2.29 Mev, 3;. The observa-
tion of these states in stripping reactions but not in a pickup reaction
indicates that these states are mainly particle states with the main
configuration (fp)3. In order to observe these states in a (p,a)
reaction the target should contain an appreciable amount of configura-
tion mixing in the lfsz and 2p32 shells, which apparently is not the
case for “®Ti. Finally states like 0.0 Mev, %3 1.83 Mev, 117 and 2.89
Mev, 1%, are observed here and in the stripping reactions (a,p) and
(®Li,t). This is an indication that the main configuration of these
states is/(fz§)3. This is supported by the prediction of the M.B.Z.
model for these states.

A.2  Angular Distributions - DWRA cluster Calculations:

Angular distributions obtained fop states (or group of states) in
“3Sc are shown in figs. (5.2) through (5.6) inclisive. The errops shown
are the quadratic sum of the statistical and fitting errors, which are
given by the code Autofit(so). The solid lines are the results of zero-
range DWBA calculations using a cluster form factor. The triton cluster
was bound by its experimental separation energy while the dimensions of

the Woods-Saxon well were chosen to reproduce the experimental angular
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Fig. (5.2) Angular distributions for the negative
parity states 0.0, %3 1.40 Mev, 7, and
1.83.Mev, 11,. The solid lines are the
results of cluster zero-range DWRA

calculations.
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Fig. (5.3) Angular distributions for the positive
- parity states 0.15 Mev, 3;; 0.86 Mev,
+ . .
Y; and 2.87 Mev, 7. The solid lines

are the results of cluster zero-range

DWBA calculations.
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Fig. (5.4)

101.

Angular distributions for the high spin

ctates 2.99 Mev, 19, and 3.12 Mev, '%,.
The solid lines are the results of zero-

range cluster DWBA calculations.
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Fig. (5.5) Angular distributions for the IAS to
| 430a(T=3,): 4.23 Mev, 3 5.23 Mev,

35 and 6.22 Mev, 5. The solid lines

are the results of zero-range cluster

DWRA calculations.
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Fig. (5.6) Angular distributions for the states
1.65 Mev and 3.81 Mev. No definite

J" assignment has been made
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distributions as discuséed in chapter 3. The optical model parameters
are shown in table (3.3). The calculated angular distributions have .
been normalized by eye to the experimental distributions. The calcu-
lated angular distributions confirmed the known and previously deter-
mined J" values for the states 0.0 Mev, %3 0.15 Mev, %;; 0.86 Mev, 9;
and 1.83 Mev, 11,. On the other hand, the calculated distribution for

the state 2.99 Mev was used to make a unique J" assignment of !%. This

level was given the assignment (75 - 1%,)” from y-ray woﬁk(su) but all

other J" values gave an inferior fit to that of J" = 15,. For some
other states it was difficult to make spin aséignments due to the simi-
larities in the angular distributions for different J transfer, or to
poor statistics, or to the possibility of overlapping states within one
peak. An example of this is the state 1.65 Mev (@§)+ which could be

fitted by more than one J value, though both of them do not actually reproduce
the data well. A similar case is the state 3.8l Mev. Both these states

are shown in Fig. (5.6) and will not be considered for quantitative

analysis.

A.3 DWBA Calculations - Microscopic Form Factor:

The microscopic form factor formalism introduced and implemented as
described in chapter 2 was used in order to get quantitative information.
Such calculations need detailed wave functions together with spectro-
scoplc amplitudes as discussed earlier in chapter 2 and appendix B. How-
ever, as a zeroJCh order calculation simple configurations for the trans-
ferred nucleons were assumed in order to test to what extent such con-

figurations would be able to explain the observed features in the (p.a)

reaction.
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1t was assumed tha% %671 can be represented by a doubly closed
40Ca with two extra-core 1f3@ protons and four extra-core 1sz neutrons.
Both protons and neutrons have seniority zero. The negative parity
states are then populated by picking up a lf7/2 proton and two ZLf—,},2 neu-
trons coupled to an angular momentum J' > ©, dependent on the J" value of
the final state. The positive parity states are populated by picking up
a (2s-1d) shell proton and two 1f7/2 neutfons. Fig. (5.7) shows a dia-
gramatic representation of these wave functions. The overlap integral
I,, was calculated as prescribed in chapter 2. MFF corresponding to

AB
these configurations were calculated and CFF tails attached as previously

described.

The zero range DWBA calculations using these MEF are shown in Figs.
(5.8) to (5.11) inclusive. Also shown are the cluster transfer fits for
comparison purposes. The MFF fits are better than the CFF fits for some

states while worse for others.

Table (5.2) shows the results of this zeroth order calculation.
Colum 6 shows the ratio o /o ~ for states in 43Sc where
exp theory

) = N. N is an overall normalization factor including

%heory %th “DiRA >
unspecified factors in the form factor program and factors in DWUCK 2.

OiiRA is the DWBA cross section calculated by the code DWUCK 2 using the
MEF described previously. The constancy of this ratio is an indication
of agreement between experiment and theory. As shown in table (5.2) the
ratios Gexp/oth are in agreement with one another for most of the states
- within a factor of 2.5. Exceptions are the states 1.40 Mev, % and

+ .. e . )
2.87 Mev, %. This is an indication that for these, in particular, the

simple wave functions assumed are inadequate and more detailed wave
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Fig.(5.7) Simple wave functions for L’LBTi(p,a)%SC .
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Fig. (5.8) Angular distributions for the states
0.0, %3 1.40 Mev, %, and 1.83 Mev,
1l,. The solid lines are the results
of zero-range MEF DWBA calculations.

The dashed lines are the CFF fits.
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Fig. (5.9) Angular distributions for the positive
parity states 0.15 Mev, @;; 0.86 Mev,
%; and 2.87 Mev, Z%. The solid lines
are the results of zero-range microscopic

DWBA calculations. The dashed lines are

the results of cluster calculations.



114,

*®1i (P, a)*®sc
E,=40.35 MeV

—— MFF
-——- CFF

3,

AN

E,=0.15 MeV

10
1007

do/dQ (b/str)
N

I0 20 30 40 50 60 70 80 90

8 cm (degrees)



115.

Fig. (5.10) Angular distributions for the high
- spin states 2.99 Mev, 13, and 3.12
Mev, 1%,. The solid lines are the
results of zero-range microscopic

DWBA calculations. The dashed lines

are the cluster fits.
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Fig. (5.11)

117.

Angular distributions for the isobaric
analogs of the low-lying states of “3Ca,
the T=3,: 4.23 Mev, %5; 5.23 Mev, 3
and 6.22 Mev, )3 states. The solid lines
are the results of zero-range MFF DWBRA
calculations. The dashéd lines are the

result of CFF fits.



100

- 50
100
50

20
100

50

do/dS) (/,Lb/str)

118.

AR

AN

[W

| |

*61i (P,a)*sc
Ep=40.35 MeV

——MFF
-—— CFF

E,=5.23 MeV
& g JT=3/2%

1 | |

I | | l

AR
AN

A\
AN

10 20

30 40 50 60 70 80 90

8 cm (degrees)



119.
Table (5.2) . Comparisons of Uexp/cth for states in “3Sc from the
“BTi(p,a)"3SC reaction R

- configurations of No of
state, J |46Ti > |*3Sc > transferred nucleons nodes Oexplc 3¢

N R
0.0, % (a) ) wf. (1 7)) & vif2, (0 0 3 = 1.0
| %o 72 %
2
3t d. (1 3,) @ vif, (0 0)
0.15, 3 (a) () A 3% 7 3 0.75
+ 2
0.86, ¥ (a) (c) w2s, (L 1) ®vlf (0 0) 4 2.5
o | Y i Yz
1.0, % (a) (b) 'rr]f7/2(l 7)) © vlfg/z(o 0) 3 0.1
_ 2
1.83, 11/2 (a) (a) ‘n'lf7 (1 7/2) i \)]f7 (2 2) 2 1.8
72 72
2.87, % (a) (@) md. (13) 8 vify @2 2 5.5
g, 7
2.99, 1% @ (@ wif, 17 e vif2 (2 6) 1 1.2
) h
3.12, 19, (a) () nlf7/2(l 7/2) B vlf%lz(z 68) O 0.5
_ 2
4.23, 2 (a) . () ﬂ1f7/2(1 7/2) ® v].f7/2(0 0) 3 1.1

(::)An overall normalization N of u6.3x10° wes used for the ground state.
see text for definition of N.

(a) |¥6Ti > = |0Ca doubly closed shell > | 7152 (0 0) & vifS
% :

|40Ca doubly closed shell > | 71f, (1 7)) @ vif2 (0 0) >
7/2 2 7/2

(0 0) >

(b) |*3sc >

"

43 450 =1 = *
(c) |¥3sc > = |*°Ca doubly closed shell > | 73 nlf%(o 0) x vl (0 0)7
2

v 1 -
(@) |“3sc > |40Ca doubly closed shell > | Tﬂf%(l 7/2) ® \)le’Q(\') )7
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functions are needed to éredict the observed strengths. Also, it should
be pointed out that for the 2.99 Mev, 13, state it was assumed that the
two neutrons transferred are coupled to J' = 6 and not to 4 for example.
The explanation for this is that the value of the product of the form
factor and the overlap integral for J' = ﬁ is much smaller than that for

'y o _ .
J' = 6 resulting in a larger Gexp/oth ratio.

In regards to the 1.40 Mev, % state Johnstone and Payne(72) pointed

out that this state cannot be understood in terms of an (le@)3 configura-

tion and an unexcited core. They showed that the major component of this
state should be 5p-2h. This picture is not very different from Seth's(73)
weak-coupling core-excitation picture for the same state where he sug-
gested that the dominant component of the wave function is the one in
which the “2Ca core is excited to its O; 1.88 state, the 1f7/2 proton is
weakly coupled to it. The 0; state in %2Ca is known to have more than
75% 4p-2h component with the hole component predominantly in the 1d§:2
shell. Taking such a component into consideration will reduce Gtheory
considerably since the number of nodes will be one less than the number
shown in table (5.2). This will bring the ratio Uexp/oth ratio into line

- with other states.

As for the 2.87 Mev, Z; state it is clear that the pure hole state

picture with the two neutrons coupled to angular momentum J' = 2 is in-
adequate to reproduce the experimentally observed strength. This sug-

gests a more complicated structure for this state. Unfortunately no

other information 1s available about this state in the literature.
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For the L; state one expects that the ratio oexp/cth will be higher
by a factor of ~ 2.3 because‘of the reason discussed in the text p.35.

A more realistic calculation should use shell model wave functions.
As discussed in chapter 4 there are only two complete sets of shell
model wave functions available for both Ti and Sc isotopes, one is the
M.B.Z. model(ss) and the other is the calculation of Kutschera(QS). In
the present work the Kutschera wave functions will be used since they
employ a more recent set of two-body matrix element. Phrthepmore,”they have
the advantage of using the same sign convention adopted in the micro-
séopic formalism discussed in chapter 2. Kutschera provided a tabula-
tion of the cfp's, so the same values can be used in the calculations
of the overlap integral IAB as were used in the shell model calculations.

Table (5.3) shows the ratios Gexp/oth for the negative parity states
using the Kutschera wave functions. The overlap integral was calculated
for each possible configuration as prescribed in Appendix B. One notices
immediately the improvement in the ratios Oexp/cth over those in table
(5.2).

Moreover, by introducing the Sp—Qh component in the wave function
of the 1.40 Mev, %5 state as discussed previously, the ratio Gexp/oth
increased from 0.1 to 0.7. It should be mentioned that the wave function
of this state (given by wave function "f" in table (5.3)) has a sign
ambiguity. The signs shown gave a reasonable value for the ratio

The other sign choice gave a much worse value.

/Oth'

For the 1.83 Mev, 11, state, the strength was predicted correctly

o
exp

indicating that this state is mainly of 3p-0h structure. A similar

(74)

conclusion has been reached by Zamick The excitation of this state
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. . . . 1*3 N
Table (5.3) Comparisons of oexp/ 0., for states in Sc from the

4675 (p,a)"3Sc reaction using shell model wave functions

o configurations of h)
state, J |46Ti > |%38c > transferred nucleons o /o A
exp th
0.0, % (a) (b) All possible configma‘cions = 1.0
1.40, % (a) () All possible configurations 0.7
1.83, 1}, (a) (c) A1l possible configurations 1.0
2.99, 13 (a) (d) A1l possible configurations 0.7
- 7 2
3.12, 1%, (@) (g) nlf7/2(l ) @ v1f7/2(2 6) 0.8

2 Y . of 2 4 .
(a) 0.855 ]wlf—,-/z(o o) & vlf7/2(o 0); O > + 0.496 Inlf7/2(2 2) & v1f7/2(2 2);
+ +
0>+ .096 ]ﬂﬁé(z 4) = v1f7/‘2*(2 4); 0>
(b) 0.788 [n1f7/2(1 ) x»lf—,-/i(o 0); 75> + 0.562 }n1f7/2(1 %) B vlf7/§(2 2)3
75> + 0.22 ]'Irlf7/2(l %) ® v1f7/§(2 w; % >
(c) 0.815 lnlf-;/z(l Ly e v1f7/§_(2 2); 135> + 0.505 ]nlf.,/z(l 7) e vlf-;é(? 1)
1y >
(@) 0.878 l‘lrlf7/2(l ) e vlf7/§(2 4); 13> + 0.477 ]ﬂlf7/2(l ) e vlf—,/i(Z 6);
15 >
..}.
(e) 1.0 ]wlf—,-/i(o o) ® vlf—,-/;(o 0); O >
a —
(£) Y25 |nlf; (1 %) ® vlf-;/z(o 0); % >+ V.75 |nlfy (1 %) @
2 2
I -2
vf7/2(o o) vda/z(o o) >
(g) 1.0 lﬂ1f7/2(1 ) ® vlf7/§(2 6); 1% >

(h) The overall normalization N is 47.2x10%. It was adjusted to yield a
value of 1.0 for the ground state. :
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in both (f1i,t) and (o,p) reactions as mentioned earlier lends further

support for this conclusion.

Although the (lfzé)n model calculations gavevsatisfactory results,
it is important to include the ].fz,2 - 2p§,2 ndéing(58). This is so be-
cause the energy difference is so small that the 2p§12 and 1f7/2 configura-
tions are mixed. Another reason for the need to include the configura-
tion mixing from 2p§é - lf5/2 shells is that the %3Sc spectrum calculated
by Flowers(BO), by allowing the three extra-core nucleons to occupy the
complete 1f2p shell, agrees better with the experimental one. However,
in orderbto use.such Wave functidns one needs a similar caleulation for
the target nucleus. Such calculations are not currently available to
us.

The uncertainty of the ratio oexp/cth shown in tables (5.2) and

(5.3) depends on the quality of the fit and the size of the error bars.
A typical value of uncertainty is about 15% for most of the states. This
increases up to about 45% for the 0.86 Mev, l; state. It should be noted
that the-uncertainties mentioned above are due only to the normalization
procedure. Other uncertainties due to approximations in the calculation
of the MFF have been discussed earlier in chapter 2.

Section B: The “8Ti(p,a)"°Sc Reaction

B.1 a-spectrum:

The 48Ti(p,a)"°Sc reaction was studied at a proton energy of u40.35
Mev. The emerging a-particles were detected using the same detection
system used for the “®Ti(p,a) reaction described previously in chapter 3.
A1l experimental details and target information are in chapter 3.

Fig.(5.12) shows a typical spectrum of %°Sc at elab = 25°. The

overall energy resolution was about 80 kev IWHM resulting from the same
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Fig. (5.12) - The “8Ti(p,a)">Sc spectrum



125.

S1NNOD

>
O
n =
L C+_2/LN8 0+ 0
0 % o +2/€+_2/L'ASW ZI0°0+0°0 W,
-~ = +2/1 {ASN $6°0 .
8 O « _2/N NN b3 |~
Du < T 2/S, ' NONBL |
o 9 _2/GI'ABN 6072 =]
— o L 3
— D ~2/G ' ABN DL "2 o
0 | +2/S NONG6E'2
< _2/€+.2/61 *ABNIL €+ ABNBI E ==
.@ \
S0 Ng & =
2/G=1"'_2/L NeN 899 =5 om?w
ABNIG'E 'D zgw
= i i I I | e |
@) @) O O ®) O @)
O Te} @) To) e To) ©)
0 < < D) P! a\V o

300 400 500

CHANNEL NUMBER

200



126.
factors discussed in section A.

States in “5Sc with excitation energiés up to ~ 7 Mev were observed
and they are summarized in table (5.4). The excitation energies given
there were calculated as prescribed in chapter 3.

One may notice from table (5.4) that the nurber of states excited
strongly enough to extract angular distributions in the present (p,a)
study is much less than the number of states observed in single-particle

(31), for example. This feature is also observed in the study of

the 48Ti(p,a)*5Sc reaction at 80 Mev$28) | This behaviour might be due

pickup

to the coherence pro@erty of the (p,a) reaction where cancellation of
amplitudes can occur.

Otherwise, the main features of the “3Sc spectrum discussed in
section A were observed again in *°Sc including the excitation of the
6.68 Mev, %, state which is the IA of the 45ca g.s. T = . Simple
calculations predict this state to have an excitation energy of 6.75 Mev,
while the M.B.Z. model prediction is 6.48 Mev. Both are in reasonable
agreement with experiment.

One notices from Fig. (5.12) and table (5.4) that the (p,o) reaction
can excite states with spins !}, 13, and '%. Such high spin states
cannot be observed in the (d,3He) reaction. This represents one of the
advantages of studying the (p,a) reaction, in spite of the considerable
difficulty in extracting quantitative information from the low cross
sections to these states. These-high spin states can be seen in_the_ (psp')
reaction. Positive parity states appear at energies as low as 12 Kev.

The explanation of this very low excitation energy is given in chapter 4.
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Table (5.4) Data Summary for “°Sc
Ex, J
()@ (p,a) (78 (a, 35y 3D
0.0, 7, *3 0.0, 7 0.0, 7@
0.012, % 0.012, %
0.377, %,
0.5&3‘, 55
0.72, %
oy, L 0.9y, L o.ou, Y
1.067, %
2u, 1 1.24, 13
1.3 (3/2,5/2)+
1.557, Y%
78, % 1.8, % %
.09, 135 2.11, 134
2.29, %
T4, % 2.76, 2%
95, 9 2.98, 2.91, %
3.u8, %
3.57, 12,
69, % 3.69, 1%
G 3.73, %
68, %, T=%

present work.
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B.2 Angular Distributions - Cluster DWRA Cluster Calculations:

Figs. (5.13), (5.14) and (5.15) show the angular distributions
obtained for states (or groups of states) in “°Sc. The error bars
represent the quadratic sum of the statistical and fitting errors. The
solid lines are the result of zero-range DWBA calculations using the
code DWUCK 2(36) and cluster form factors as discussed previously.

The J" assignments for the states 0Q9u Mev, 1.24 Mev, 1.78 Mev,

77

2.09 Mev, 2.74 Mev and 2.95 Mev were taken from the literature The

+ - et - - + . "
J" values are Y, 135, %, 1%, 5, and %, respectively. The DWBA cal-
culations are in agreement with these assignments.
. . . . . oo
As mentioned earlier, the first excited state (J" = 35) lies only
(31,77 + :
12 Kev above the ground state (see also chapter %) which makes
it impossible to resolve these two states. In an attempt to analyze
. . . . - + e s
this doublet a linear combination of % and %, angular distributions
were used to fit the experimental distribution. It was found that the

linear combination:

1.0 (g.s., %) +(0.6 + 0.1)(0.012, %)

gave a reasonable fit to the data. This relative strength ratio between
the 3; and %, states is close to the ratio between the 0.0, % and 0.15
Mev, @; states in "3Sc.

A similar situation has been encountered for the states at 3.69 Mev
where no single J" angular distribution can fit the data. Careful analy-
sis of the peak width showed that this is actually a doublet consisting
of the states 3.69 Mev, 13, and 3.71 Mev, 3,. This is supported by the

fit shown in Fig. (5.15) where the linear corbination:
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Fig. (5.13) Angular distributions for the states
0.0, % and 0.012, %, 1.24, 115 and
2.7%, % . The solid lines are the
result of cluster zero-range DWBA

calculations.
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Fig. (5.14) Angular distributions for the states
+
0.94, ¥ 1.78, 5% and 2.95, 5. The
solid lines are the result of zero-

range DWBA cluster calculations.
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Fig. (5.15) Angular distributions for the states
2.09, 1255 3.69, 1% 3.71, 3, and
6.68 Mev, %. The solid lines are
the results of DWBA cluster zero-

range calculations.
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1.0 (3.69 Mev, 1%) +(1.0 £ .1)(3.71 Mev, 33)

fits the data well.
+
The 1.78 Mev state has been assigned to the value J" = 3 on the

. ' . . . +
basis of the angular distribution. The valuevJTT = (33, %) had been

assigned to this level from the reaction L*‘STi(c'i,3He)l“58c:(29). However

from life time neasuren&nts(78) and the (a,py) reaction a unique assign-

i + . .- e s . .
ment J = 25 has been obtained. This is in agreement with our assign-

ment.

B.3 DWBA Calculations - Microscopic Form Factor:

A procedure similar to that described in section A.3 was followed
in analyzing the %*8Ti(p,a)%°Sc reaction using the MFF. Zero order
calculations where only simple configurations for the transferred
nucleons are assumed will be considered first. In these calculations
the “8Ti nucleus was assumed to be a doubly closed *0Ca core with two
extra-core lfz/2 protons and six extra-core 1fz,2 neutrons. Again, the
negative parity states are then populated by picking up a 1fZ@ proton
and two le@ neutrons with the proper angular momentum coupling. The
positive parity states are populated by picking up a (s-d) shell proton
and two le@ neutrons. Figs. (5.16) and (5.17) show the results of
zero-range DWBA calculations using the microscopic form factor. We
notice the quality of the fit is comparable to or somewhat better than
that of the cluster form factor fits.

'In all the above calculations the microscopic form factor tail was
replaced by the CFF tail. The overlap integral IAB was calculated as

described in Appendix B, and by the aid of the recursion relations of



Fig. (5.16)

136.

Angular distributions for the states
0.0, Z; + 0.012, %53 1.24 Mev, 11;
and 2.09, 12,. The solid lines are
the result of zero-range gdcroscopic
DWBA calculations. The dashed lines

are the cluster fits.
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Fig. (5.17) Angular distributions for the states

+ — —
0.94, 1,5 2.74, 35, 2.95, >, and 6.68,

Z,. The solid lines are the result of
zero-range microscopic DWBA calculations.

The dashed lines are the cluster fits.
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Ref. (38).
Table (5.5) shows the ratios cexp/oth for states in %3Sc calculated
according to the simple picture described above. With the exception of

the 3.71 Mev, 3, all the ratios Oexp/cth are in agreement with one
another within a factor of 3. Another exception is the 2.74 Mev, 35
state. The ratio UEXP/Oth for this state is two order of magnitudes

higher than other ratios. This is a direct result of the low value of

the structure factor:

2, 2, J"]  [J" 25 L

IAB('Y,J' 3J) ° 1/2 1/2 0 i 0 1@ ]72

j 3 J
2

.
R Y

for these states. Table (5.6) shows the structure factors for the 2.74

Mev, % and 3.71 Mev, % states compared to the ground state. It is

clear that for these states the (lfz/)n picture is inadequate.
2
(79) us
Fohl has suggested that the Ti ground state contains a neutron

5
component of the form [1fy (3 %) @ 1fs (1 QQ)JJ _ o vwhich is as high as
- 2 2 —

20%. Furthermore, the “8Ti(p,d)*7Ti reaction 8% provides evidence for

the presence of 2p-shell neutron components in the ground state wave
function through the %=1 transitions. Also the excitation of 3, states

(30),(31) is evidence that there is a

in the “8Ti(d,3He)*7Sc reaction

2p-shell proton component in the *8Ti ground state wave function. Thus,

@ shell model calculation in the 1f; - 2p3§ - lfS/2 basis is required to
5

describe the observed strength properly.

The states 0.0 Mev, %53 1.24 Mev, 1155 3.69 Mev, 1% and 6.68 Mev,
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it _ 45
Table (5.95) Compurlso§ of OEXp/Gth for states in *°Sc from the

46Ti(p,a) Reaction ~ Zero order calculations

configurations of  No of | (*)
state, J" |48Ti > [35c > ‘transferred nucleons nodes Uexploth
N
- 2 :
- 0.0, 7 (a) (b) wlf, (O 7.)evif; (0 0) 3 = 1.0
, 2 Ty o 2T
0.012, %  (a) (©)  mld, (1 3)mlfl (00) 3 0.7
% 7
+ 2
0.94, L ( 28, (1 17)=vlfl (0 0) y 1.9
2 (a) ) 1 1 %
- | 2
1.2y, 11 (a) (b) wlf, (1 YIevlf, (2 2) 2 1.6
> 7, 2%y, |
+ 2
1.78, 3 (a) (c) nldéé(l §§)®vlfzé(0 0) 3 0.3
- 2
2.09, 13 (a) (b)  wlf, (1 7)=vifl (2 6) 1 0.4
G B Ty
2.74, 5, (2) (b)  mF. (1 J)evifl (2 2) 3 (102)
%o T,
2.95, %; (a) (@) mld., §é)®vlf§ (0 0) 3 0.33
% Ve
197 2
3.69, 19, (a) (b) wlfzé(l Zé)&vlfzé(Q ) 0O 1.1
- 2
3.71, % (a) (b) wlf (1 77)»vlfl (2 2) 4 5.5
> 7 %y,
- 2
. 7 . (1 7 )devlf; (0 0) 3
6.68, 7 (a) (»)  mif, Q Jplevify 1.4

(a) |48Ti > = |%0Ca doubly closed shell > ]nlf%ﬁ(o o)@vlf%,(o o) >
2

(b) |"5Sc > = [40Ca doubly closed shell > |(nlf, )(1 %)evifs (¥ J) >
. 2 2
(c) |%3Sc > = |*0Ca doubly closed shell > l(nlf;,)(o o)(ﬂj)glevlf%/(o o) >
2 2
()

An overall normalization N of 24.6x10% was used for the ground state.
See text for definition of N.
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Table (5.8) Structure factors for few states in 45Sc

state. g7 configuration of transferred structure

? nucleons factor

0.0 Mev, 7%, 1f, (1 %) ® vif, (o o) 0.490
> 2 K 7 2 %

2.74 Vev, 5, 1f5 (1 %) ® vif, (2 2) 0.006
s '” 75 2 7

0.034

3.71 Mev, %

1f, (1 %) & vif, (2 2)
Ty, O %) =G,
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7, are all described well by the (1f7,)® picture. On the other hand
the cross section predicted for the state 2.09 Mev, 135 is high. Other
possible values of the nmeutron coupling angular momentum J' yield even
higher cross sections, resulting in a lower oexp/oth ratio. A detailed
wave function is needed where combination of different neutron couplings
are included.

The 0.94 Mev, 1} state is known to be mainly a proton hole state.
31)

Tt is excited in the “6Ti(d,3He)*5Sc reaction’ with a spectroscopic

factor of 1.55. This gives a validity to the simple picture assumed for
this state. However, the 5; states excited in fhe (p,a) reaction do
not appear to be a pure d52 hole and the structure of these states is
likely more complicated in nature. The spectroscopic factors extracted
from the (d,3He) reaction(gl) indicate that the dié hole strength is
fragmented over at least 14 different states.

The next degree of sophistication is to use the shell model wave
(25)

functions of Kutschera The results of such calculations are shown

in table (5.7). The ratios Oexp/cth are consistent with each other.

As for the 2.74 Mev, % state, the theoretical cross section was calcu-
lated using the empirical wave function suggested by Pohl(79) for the
“8Ti ground state as mentioned earlier. The consideration of such con-
figuration mixing brought the ratio cexp/oth for this state from 102 to
6.2 for the choice of signs shown in table (5.7). Tt is reasonable to

th

in line with other ratios if 2p32 and 1lfs proton components are included
5 ;

expect that the ratio Oexp/o for the 3, and %, states can be brought

in the wave functions.
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Table (5.7)  Comparison of UeXp/O_th for states in “°Sc from the
4871 (p,a)"5Sc Reaction using shell model wave functions
configurations of 5
state, J" |48 > [%°sc > transferred nucleons exploth( )
0.0, % (a) (b) All possible 1.0
B configurations
1.24, i, (a) (c) All possible 0.3
_ configurations
2.09, 1> (a) (d) A1l possible 0.6
_ configurations
2.74, > (£) (g) A1l possible 6.2
o configurations
3.69, 13 (a) (e) A1l possible 0.7
. configurations )
3"’ B
3.7, % (a? (h) 2f, (1 7,) @ v1f7/2(2 2y 2.1
(a) = [¥8Ti, 0" > = .929 |n1f; (o o) ® v1fS (0 0) >
2 2
=37 |mlff (2 2) @ vify (2 2) >
72 2
2 6
-.025 |7lf57 (2 4) ® vify; (2 4) >
| 7, ® 7,
~.007 |v1f} (2 6) ® vify (2 6) >
2 2
() = [¥55c,d = % > = 0.855 |1y (1 %) & vify (0 0) >
2 2
+0.496 [n1f,, (1 %) @ vify (2 2) >
2 2
7, 4
+0.96 Iﬂlf7/2(l 2) @ v1lfy (2 4) >
(¢) = |¥5Sc,d = 115 > = .738 |nlf; (1 %) & vlf;/z(Z 2) >
. 72
_ 7.) & vif-
.219 |ﬂ1f7/2(1 %) ® vlf—,~/2(2 4) >
7 L
-.237 Inlf-;/z(l ) & v1f7/2(2 6) >
(@ = [¥55c,0 = 1% > = .517 |wlf, (1 £7,) @ vify (2 4) >
2 2
=
-.418 ]n1f7/2(1 %) ® le7/2(2 6) >
L
~.608 ]n1f7/i(1 %) ®vlf7/2(14 L) >



(e

mn

()

(g)

H

(h)

G,
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|555c,d = 1%, > = 987 |nlfy A %) @ vlfl;/z(z 6) >

|48Ti, O >

i

4

IL*SSC, 5;2' >

H

|45se, 35 >

overall normalization N of 41.3x10%

— 5 : .
/3.2 1n1f§/2<_o o) @ [vify (3 %) @iy 1 501 >

J'=

2 6
/o8 |nif, (o 0) ® vif, (0 0) >
l'ﬂ 7/2 vV 7/2

7, 4
1.0 1[w1f22(1 5) B vleQ(Z 21 >

=5
J=>

7 L
1.0 I[Trlf7/2(l ) ® v1f7./2(2 21 >

-3
J= @]

was used for the ground state.
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Section C: The °%Ti(p,a)*7Sc Reaction

C.1  o-spectrum:

This reaction was studied at the same proton energy used for the
#8671 and “8Ti isotopes. The emerging a-particles were detected using
the same setup described in previous sections. TFig. (5.18) shows a
typical spectrum of “7Sc obtained at 0, = 25°. Similar to the studies
for the other two isotopes the energy resolution was about 80 kev.
tates in *7Sc with excitation energies up to 8.4 Mev were excited.
However, the *7Sc spectrum is complicated by the presence of about 18%
“8Ti isotopes in the target.

Table (5.8) summarizes the “7Sc data obtained. Also shown in table

(31) (81)

(5.7) are levels in %47Sc excited through (d, 3He) and (t,a)

reactions. Similar to the discussion in sections A and B there are some
states excited in the (p,a) reaction but not in the other single-particle
reaction; among those is the level at 3.09 Mev with J" = 1%. This level
cannot be reached by single-nucleon pickup. As in “°Sc, the strength of
the ld5/2 hole is fragmented over several states as obéerved in the
studies of the (d,3He) and (t,a) reactions. However in the (p,a) reac-
tion only one level with J" = 5% (2.38 Mev) was identified. On the other
hand, the strengths of the 1d%2 and 281/2 holes are concentrated mainly in
one state for each(Bl) at .77 Mev and 1.37 Mev, respectively. This is
deduced from the measured spectroscopic factor(82> of 3.47 and 1.71.

. + . T + Dy
Only one level with J' = Y and one level with J = % were identified

in the present work.
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Fig. (5.18) The °0Ti(p,a)*’Sc spectrum
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Table (5.8) Data Summary for “7Sc

Ex (Mev), J"

(p,a) &) (d, 3He) B1 () (t,a) BV D)
0.0, % 0.0 0.0, 2=3
0.77, 3% .78 767, 2=2
1.0n, 11 1.145
1.37, ¥ 1.39 1.39, 220
1.83, %

2.38, 54 2.39 2.377, 22
2.65, %

3.09, 13,

3.19, %

3.83 3.804, 2=2
5.57, (%) 5.571, 2=1
5.79 5.75 5.76, 222
5.98 5.987

6.63 6.62

8.40, 25

(a) present work

(pb) only levels of interest are shown
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C.2 Angular Distributions - DWBA Cluster Calculations:

In Figs. (5.19) - (5.22) the angular distributions obtained for.
states or group of states in “7Sc are shown. The errors shown are the
quadratic sum of the statistical and fitting errors. The solid lines
are the result of zero-range DWBA calculations using the code DWUCK 2(36)
and a cluster form factor as previously described. The spin assignments
for the states 0.0 Mev, 0.77 Mev, 1.37 Mev, 2.38 Mev were taken from
existing literaturecgl)’(Sl)’(SZ). The DWBA calculations are in agree-
ment with these assignments.

On the basis of the observed ahgular distributions, levels at 1.14
Mev, 3.09 Mev, 2.65 Mev and 3.49 Mev could be assigned to J" = 11, 15,
% and %, respectively. The 11, and 1% statescannot be excited in

single proton pickup reactions as mentioned earlier. The & = 1 level

(81) at 5.571 Mev probably corresponds

identified in the (t,a) experiment
to the level at 5.57 Mev observed in the present experiment. However,
assuming that this level is of 7p-Oh with respect to *0Ca core, the DWBA
cluster calculation cannot reproduce the observed distribution with a form
factor having 4 nodes, as shown in Fig. (5.22).

The level at 8.40 Mev was assigned to J' = 7. This level is pro-
bably the T = 7 isobaric analog of “7Ca ground state. This is in close
agreement with M.B.Z. model prediction of 8.404 Mev and Bardin &%)
assignment. A simple calculation similar to that performed for “6Ti and
%871 predicts this level to have an excitation enefgy of 8.48 Mev. DiWRA
calculation with J" = 7, reproducesthe experimental angular distribution

fairly well.



Fig. (5.19)

151.

Angular distributions for the negative

parity states 0.0, %,; 1.14 Mev, 11
and 1.83 Mev, % . The solid lines
represent the results of cluster zero-

range DWBA calculations.
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Fig. (5.20) Angular distributions for the positive
parity states .77 Mev, 3;; 1.37 Mev,
;;; and 2.38 Mev, 5%. The solid lines
are the results of cluster zero-range

DWRA calculations.
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Fig. (5.21)
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Angular distributions for the states
2.65 Mev, 553 3.09 Mev, 125 and 3.49
Mev, %. The solid lines represent
the results of cluster zero-range

TWBA calculations.
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Fig. (5.22) Angular distributions for the states
5.57 Mev, % and 8.40 Mev, 7,(t=%).
The solid lines represent the results

of cluster zero-range DWBA calculations.
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Fig. (5.23) shows the angular distributions for levels at 3.83
Mev, 5.7 Mev, 5.98 Mev and 6.63 Mev. These levels could not be fitted
by a single curve and most probably they represent groups of states.
Tnformation available in the literature is not sufficient to iﬁvestigate
these states any further.

C.3 DWBA Calculations - Microscopic Form Factors:

The microscopic form factors were calculated as described pre-
viously in chapter 2. Tigs. (5.24), (5.25) and (5.26) show angular
distribution levels in “7Sc and the results of zero-range DWBA calcula-
tiéns usiﬁg microscoPic form_factors.( The.quality of the fits is com-
parable to that obtained with cluster form factors.

Similar to the discussion of 3Sc and *°Sc we begin the 475¢ dis-
cussion with the zeroJCh order calculations. The transferred nucleon
configurations were assumed to be the simplest possible ones. Positive
and negative parity states were assumed to be populated in the same
manner described in sections B.3 and C.3.

Table (5.9) shows the results of these calculations. The ratios

/o.. are in agreement with one another within a factor of ~ 3 for

0exp th

most of the states. The error in Gexp/oth due to the normalization pro-

cedure is of the same order of magnitude as that for the cases of HETi
and “8Ti.

In striking disagreement are the levels 1.83 Mev, % and 5.57 Mev,
. ratios indicate that this simple picture is inade-
quate to describe these two states. Similar behaviour has been noticed

3% . The high Oexp/c

during the discussion of “°Sc. Configuration mixing might be the rea-

son for the high ratio as will be discussed at a later stege.
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Fig. (5.23) Angular distributions for the levels
(or groups of levels) at 3.83 Mev,

5.98 Mev and 6.63 Mev.
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Fig. (5.24) Angular distributions for the states
0.0, 7/;; 1.14 Mev, 11, and 1.83 Mev,
% . The solid lines are the result
of zero-range DWBA calculations using
microscopic form factor. The dashed
lines are the result of cluster

calculations.
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Fig. (5.25) Angular distributions for the states
0.77 Mev, 343 1.37 Mev, la and 2.38
Mev, 5%. The solid lines represent
the results of zero-range DWBA calcu-
lations using microscopic form factor.
The dashed lines are the result of

cluster calculations.
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Fig. (5.26)
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Angular distributions for the states
3.09 Mev, 1353 3.43 Mev, %53 5.57 Mev,
3, and 8.40 Mev, %. The solid lines
represent the result of zero-range
DWRA calculations using microscopic
form factor. The dashed lines are the

result of cluster calculations.
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As for the rest of,%he states it is not surprising that the zero
order calculations were able to reproduce reasonably the observed transi-
tion strength. This is mainly because the shell model calculations of
Khtschera(zs) predicted a simple wave function for the 507i ground state.
The levels 0.77 Mev, 3% and 1.37 Mev, l3 were observed in the (d,3He)
reaction(gl) with spectroscopic factors 3.54 and 1.71, respectively;
i.e. over 85% of the shell model sum rule. 'Thus assuming that these
states are pure proton hole states is a reasonable first approximation.
The theoretical cross section predicted for the 1.14 Mev, 115 state is
about two times larger than the experimental one. A more complicated
structure may be needed to describe this level properly.

Proton pickup reactions indicate(gl)’(8l) that the strength of the
1(15/2 hole is fragmented over at least 10 states with the state 2.38 Mev,
5; having :only 10% of the ZLCIE}’,2 hole strength. This means that the
assumption of a pure hole state in calculating the ratio Oexp/cth for
this table is incorrect and the agreement with the values in table (5.9)
is fortuitous. Assuming a different configuration for the transferred
nucleons for this state such as [nld%Q(I %) e leQ(Z 2)]5/2 predicﬁed
a ratio OEXP/Oth which is an order of magnitude higher. This disagree-
ment with the (d,3He) reaction result should be interpreted as this

state having a more complicated structure and its components -inferfering in such

way that the outcome resembles a pure lds effect.
2
(80)

The study of the reaction °9Ti(p,d)“°Ti by Kashy provides evi-

dence of 2p%, neutron admixtures in the ground level of °0Ti through the
2

observation of £ = 1 transition. In a mixed-configuration shell-model

calculation for nuclei with N = 28 and 20 < Z < 28, Lips(ol) calculated
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Table (5.9) Comparison Of'cexp/ath for states in “7Sc from the

50Ti(p,a) Reaction

R configurations of No of
state, J [30Ti > lé7SC > transferred nucleons  nodes GEXP/Oth(d)
0.0, 7 (a) () mify (1 7) e vlf%é(o o) 3 = 1.0
0.77 Mev, 3% (a) () mldy (1 %) e vlf%é(o o) 3 2.1
1.14 Mev, 117 (a) (b)  wmlf, (1 %) e vifs (22) 2 0.4
2 2
1.37 Mev, L (@) (@) w25, (1Y) e vlf%é(o o) i 2.8
1.83 tev, % (&) (b)  7ify, (A %) a'vlf%2(2 2) 3 16.5
2.38 Mev, 5, () (@)  1lds (1 %) @ v1fs (0 0) 3 0.9
2 72
3.09 Mev, 155 (a) () wlfy (1 7%) ® vlf%?(Q 6) 1 1.6
2
5.57 Mev, 3,  (a) (d) n1f22<1 ) @ vif%,(2 2) 4 16.0
8.40 Mev, 7, (a) (b)  7lf, (1 %) & vif5 (0 0) 3 2.9
% 2
(a) |°9Ti > = |*0Ca doubly closed shell > [nlf%?(o o) ® vlf%,(o o) >
2
(b) [¥7Sc > = [40Ca doubly closed shell > |mlf; (1 7,) & vlf%z(a J) >
2

where o is the seniority of the 6 neutrons coupled to angular momentum J.
() |%78c > = |*0Ca doubly closed shell > ]wlf%,(o o)3~N1 P w vlfg (o o) >
2 2

(d) An overall normalization N of 33.0x10° was used for the ground state.
See text for definition of N.
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the wave functions of 50Ti as a mixture of the proton configurations
(lfy/z)2 and (lf%@?p%é). The “8Ca was assumed to be a good closed
core(87) They found that the ground level of >0Ti is about 85% pure

(lfzé)n; An empirical wave function was constructed of the form:
[50Ti g.s. > = |48Ca doubly closed core > .

. 2 2
{0.92 ]n1f7/2<g o) > + 0.39 jnzp%(o o) >}.

The wave function for the residual nucleus was assumed to be pure (1fz?)n.
Repeating the calculations for the 5.57 Mev, 3% staté, the ratio oexp/cth
decreased to 1.5 from 16.0. The sign choice was made on empirical basis.
The other sign choice gave a larger value. This again illustrates the
importance of configuration mixing in the microscopic treatment of the
(p,a) reaction.

Table (5.10) shows the ratios Gexp/cth for a few negative parity

(25) shell model wave functions. This

states in “3Sc using the Kutschera
realistic calculation could not be extended to include all observed
states, like the 1.83 Mev, 5.57 Mev and 8.40 Mev states, for example,
because of lack of wave functions. Wave functions given in Ref. (25)
are only for the lowest two lines of each spin.

Nevertheless, one notices that for the 1.1u Mev,.1¥§ state the °
ratio Oexp/gth has improved, while for the 3.09 Mev, %, state the ratio
has decreased from 1.6 to 0.6.

A shell model calculation that includes lfz/ - 2p3
2

, 1f§§ proton

components is needed in order to extract more quantitative information

Tor this reaction.
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th
>0Ti(p,a) Reaction using the Kutschera shell model

Table (5.10) Comparison of Uexp/c for states in “*7Sc from

wave functions

. configuration of (%)
state, J |50Ti > 1“750 > transferred nucleons Uexp/cth
0.0, 7 (a) (b) All possible . = 1.0

' configurations
1.1, 1%, (a) (c) A1l possible 0.9
configurations
3.09, 15, @ | (@@ A1l possible : 0.6
configurations '

(*) An overall normalization factor N of 25.7x10% was used for the ground
state.

() [507i, o »

2 8
1.0 ]nlfzé(o o) ® Vle@(o o) >

)
®) [47Se, 7 .928 |n1f22(1 7)) ® vleQ(o o) >

N
v
il

~.370 |nlf, (1 %) @ vify (2 2) >
7o 7o

6
-.025 |71f, (1 72,) » v1f, (2 4
l'lT Zz( /2) AY ZZ( ) >

() [¥75e, 1}y > = 926 |nlfy (1 %) ® vify (2 2) >
2

v

_.376 7 e
: lefzz(l 7)) ® vlfzé(Z 4)

v

=035 |mlf, (1 Z,) & vify (2 6)
72 72

v

- _ 6
(@) |*7Sc, 155 > = -.639 |ﬂ1f22(1 ) ® vleQ(Q )

\%

+.769 |11f; (1 7)) ® v1ify (2 6)
72 -2



172.

Chapter 6

Summary and Conclusions

The 465%48,50T5(p,0)*3,%5,47Sc reactions were studied at a proton
energy of 40.35 Mev. The choice of the bombarding energy was such that
compound nucleus effects are negligible. The overall energy resolution
was about 80 Kev FWHM.

States with excitation energies up to about 7 Mev in both %3Sc
and *5Sc and up to about 8 Mev in “7Sc were excited. The excitation
energies for all observed states agreed well with the values given in
the literature. The error in the excitation energies was about 10-15
Kev. Due to the high density of states in the Sc isotopes, only states
whose calculated excitation energies did not vary by more than 15 Kev
from angle to angle were considered for analysis. Angular distribu-
tions for the emerging a-particles>were extracted over the angular
range for 15° - 75°. The spin assignments J" for most of the states
were taken from the existing literature. For those states where more
than one value of J was given, the angular distributions shape could
frequently be used in miking a definitive assignment. Thus the 2.99
Mev, 3.12 Mev and 5.23 Mev states of “3Sc were assigned to 13,, 135
and 3;, respectively. The 1.78 Mev state of *°Sc was assigned to 5;.
Similarly, the 1.14 Mev, 3.09 Mev and 2.65 Mev in “*7Sc were assigned
to 115, 13, and 5,5, respectively.

Both positive and negative parity states were excited. The posi-
tive parity states are excited by picking up two (fp) shell neutrons

and one (sd) shell proton, while the negative parity states are excited
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by picking up three (fp§ shell nucleons. One of the interesting features
of the spect?a of the odd Sc isotopes is the appearance of positive .
parity states at very low excitation energies. This behaviour can be
qualitatively understood from the Nilsson diagram. Similar behaviour
has been observed in the 19F spectrum.

Isobaric analogs of the low-lying states of the Ca isotopes were
observed in the Sc spectra. The excitation energies of all states agreed
well with the theoretical predictions.

In order to extract spectroscopic information, the microscopic form
factor for the (p,a) reaction formulated by Falk?? was used. This
form factor was calculated using single-particle states calculated in a
Woods-Saxon potential and then expanded in a harmonic oscillator basis.
Due to the complexity of this kind of calculation that involves large
numbers of terms in the expansion, only the dominant term in the expan-
sion was considered, i.e. the single-particle states were taken to be
harmonic oscillator functions. This truncation simplifies the calcula-
tions considerably. The main effect of this truncation is to cause the
form factor to fall rapidly in the exterior region. No significant
difference is introduced in the interior region. To correct for this
difference and to be able to reproduce the angular distributions correctly
the MIT tail was replaced by a CIT tail.

Expressions for calculating shell model spectroscopic amplitudes
needed in applying the shell model wave functions to this reaction study
were derived.

As a first order calculation the formalism was tested assuming the

simplest possible configurations for the transferred nucleons. The target
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nuclei were assuﬁed to be represented by a simple (1f32)n picture.. The
agreement with the experiment was within a factor of 3 for most cases.

Tor some of the states the disagreement was as high as two orders of magni-
tudes as discussed in further detail below. The }; and ;; states in "°Sc
and 47Sc were found to be mainly proton hole states. This is in agree-

ment with the results available from the (d,3He) reactions on “®Ti and

#8Ti. The 2.37 Mev, §; state in *7Sc is not a pure 1d§2 state 3D | How-
ever, the MFF predicted the observed strength correctly assuming it to be
a pure 1d§§ hole state. This agreenent with,experinent must be considered
fortuitous; a more complicated structure for this state is indicated.

yo

More realistic calculations were performed using the (1f22 shell

model wave functions of Kutschera(zs). Although the agreement with experi-
ments was better than that of the first order calculations, some disagree-
ment remained for some states. It was found that the (lfz,z)n wave func-
tions are incapable of describing the 3, and 2, states. The structure
amplitudes for the 35 and %, states from pickup of three ZL:EZ,2 nucleons
are very small and mixing from the 2p§§ and 13‘?5/2 subshells must be con-
sidered. This suggestion is supported by the spectroscopic factors
measured for some states excited in single-nucleon transfer reactions.
These states should not be excited unless certain configuration mixing
exists in wave functions. On the other hand, the Kutschera wave functions
described well the high spin states (J" = 1};, 13 and 1%) indicating
that the configuration mixing is less significant for these states.

An interesting feature of the (p,a) reaction is the excitation of
states with T = T> as well as the T _states. It would be interesting

to compare the strengths of both transitions. However, this reguires
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the calculation of spectroscopic factors in the JT representation for

each state. This procedure was found to be complicated and diffiéulﬁ
to calculate for the case of the (p,a) reaction since it involves 3
particle cfp's.

The uncertainty in the calculated cross sections have two different
sources. The first, due to truncation in the harmonic oscillator expan-
sion will be discussed shortly. The second is due to the choice of the
optical model parameters. It was found that slightly different optical
model parameters, yielding essentially a fit of éomparable quality,
could change the calculated cross sections by 15% on the average. The
last factor could be considerably reduced if polarization data were
avallable. Simultaneous fits for both cross section and analyzing power
should help to select a unique set of optical model parameters.

The sensitivity of the analyzing power to nuclear structure details
was investigated using the microscopic formalism. Figs. (6.1) and (6.2)
show the analyzing powers for the 3, and %, states using the MFF and
- different configurations for the transferred nucleocns. Also shown are
the analyzing powers calculated using the CFF. For the 3, state the
results shown in Fig. (6.1) indicate that there is no marked dependence
of the analyzing power on the configurations used in the MFF calculation.
Neither are the MFT predictions very different from the CFF predictions.
For the 7, state, although configurations with different numbers of
nodes (N) gave slightly different analyzing powers, these nevertheless
are not different from the respective cluster predictions. Thus, we
conclude that no significant microscopic structure information can be

obtained from the analysis of the analyzing power. Hence, the main
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Fig. (6.1) The calculated analysing powers
for the 5O'I‘i(}_),u)wSc:, J'=3/2" state
at 40.35 Mev using different confi-

gurations for the transferred nucleons.
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Fig. (6.2) The calculated analysing power

for the 7/2° state in 4780 .
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manifestation of structure details are manifested in the strength of
transitions. Of course, analyzing power measurements are still useful
for distinguishing between j=2t},

A normalization between the experimental cross sections measured in
the present work and the zero range DWBA calculations using the MFF is
obtained by writing:

Oy (ub/str) = N - OBA © Gexp
where N 1s a normalization factor defined in chapter 2. Table (6.1) shows
the results obtained for the reactions "©,%8,50Ti(p,a)*3545,47Sc at 40.35
Mev. The difference in the values of N is due to different structures and

variations in the optical model parameters and it is difficult to isolate

the part due to optical model parameters.

The relative measured cross sections for the ground state transi-
tions for the “6,48,50Ti targets were found to be 1 : 0.8 : 0.5, res-
pectively. Assuming a simple picture for these transitions (i.e.
nlfzé(lzh) @ vlf%@(o 0)), the calculated spectroscopic factors are
1: 1 : 2 which is a reasonable agreement.

For a more careful comparison of the ground state transitions, we
compare the square of the magnitudes of the form factors at the outer
maxima. This way the effect of different optical model parameters is
eliminated. Using Kutschera wave functions, the predicted relative
transition strengths were found to be 1 : 0.8 : 0.9 for Ti 46, 48 and
50, reépectively.

The uncertainty in the ratio o/ due to the truncation of

exp %t
the H.O. expansion, for each isotope separately was found to be about

. . . +
24% for all J" values studied with the exception J" = Y, where the
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Table (6.1) Normalization factors between experiment and theory

Isotope N for zero-order N for calculations using
calculations Kutschera wave functions

46T 46.3%106 14725108

4874 24 .6x106 41.3x108

507§ 33.0x106 25.7x10°
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uncertainty is as high as a factor of ~ 2. There is no explanation at
the present time.

In conclusion, we can say that the microscopic formalism used here
together with the simplifications introduced provides a powerful tool
in extracting quantitative information from the (p,a) reactions. How-
ever, there is a need for complete shell model wave functions for both
target and residual nuclei in the 2s-1d-1f-2p basis in order to make

use of the formalism fully.
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Abstract: Microscopic form factors for the three-nucleon transfer (p, a) reaction are described, with
special emphasis on their comparison with conventional cluster form factors. Considerable dif-
ferences in shape of these form factors is found, especially in the surface region. An extension of
the earlier zero-range descriptions of the microscopic form factor to include finite-range effects, is
formulated and tested. Center of mass corrections, the a-particle size parameter, and non-local
corrections in the single-particle states, all have a strong influence on the shape of the micToSCopic
form factor. The implications of these observations for the extraction of nuclear siructure
information is discussed, especially as this affects the commonly used procedure of replacing the
microscopic form factor with a cluster form factor, in the actual DWBA calculation.

1. Introduction

The distorted wave Born approximation (DWBA) analyses of multinucleon
transfer reactions (e.g. (p, «), (d, °Li) etc.) have generally employed cluster form factor
descriptions of the transferred nucleons. This procedure is simple to implement and,
using theradius and diffuseness parameters of the bound state as empirical quantities,
acceptable fits to the shapes of experimental angular distributions can usually be
obtained ! ~®). Interest in extracting nuclear structure information from these reac-
tions hasled to various microscopic approaches in describing the form factor ' 73:79),
Although a number of (p, «) analyses have been performed using microscopic form
factors, some with considerable success 8 %), other investigators have found that
much inferior fits to the angular distributions were obtained !*). Our recent investiga-
tions have shown that microscopic form factors differ considerably in shape from
the corresponding cluster form factors that give acceptable fits. This difference in
shape accounts for the featureless shape and rapid drop with increasing angle of
the calculated angular distributions frequently observed.

Despite these deficiencies one still hopes to obtain relative cross-section predictions
in order to interpret direct reaction data in terms of the nuclear structure of the
participating nuclei. It is with this in mind that we present the following discussion
of microscopic three-nucleon form factors, including an extension of the earlier

' Supported in part by the Natural Sciences and Engineering Research Council of Canada.
™ Present address: TRIUMF, University of British Columbia, Vancouver, Canada.
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zero-range (ZR) theory to include finite-range effects '2) An understanding of the
sensitivity of the details of the microscopic form factors to various parameters that
enter the calculation is essential to assess the reliability of the extracted nuclear
structure information.

Numerous arguments can be advanced as possible causes for the differences
and/or deficiencies in the microscopic form factors noted above. These are briefly
summarized below.

(i) Alpha-particle size. Arima '3) has suggested that the a-particle changes its size
as it approaches a nucleus. It is shown in the discussion to follow that the o-particle
size is a sensitive parameter in the calculated form factor shapes.

(11) Configuration space. Numerous papers dealing with one- and two-nucleon
transfer *“~'€) emphasize the impbrlancc of a sufficiently Jarge configuration space
in calculating transfer form factors. Direct reactions, with their sensitivity to nuclear
surface effects demand use of an adequate configuration space. Vallieres et al. 15)
give examples of extended basis shell-model (EBSM) calculations in which the
resulting form factors for (t, p) reactions increase in the asymptotic region by as much
as 509, and the outer maximum shifts 1o larger radius. Pinkston ') emphasizes
the importance of core-excited components in the ground states of nuclei (e.g. 1¢0)
particularly for pickup reactions. His EBSM calculations based on a surface delta
interaction predict constructive interference of higher-order configurations and
hence an enhancement and extension of the form factor in the nuclear surface region.

(i3) Antisymmetrization between picked-up nucleons and the core. In the standard
DWBA treatment of a-transfer Chant ez al. ! "}have noted the seemingly unacceptably
large radii required in the phenomenological Woods-Saxon potential used to generate
thea-corerelative wave function. This relative wave function, generated in a potential
constructed from a folding model, does not take account of antisymmelrization
between the nucleons in the a-particle and those of the core. Jackson '8} has shown
that explicit inclusion of antisymmetrization effects in such calculations results m
a large increase of the rms radius of the relative wave function. The importance of
these efects in a-decay have also been treated by several authors !9 29),

{1v) Finite-range (FR) effects. Conventional finite-range calculations using cluster
form factors have been investigated previously 2). In this paper finite-range micro-
scopicform factors are developed and investigated to seeto what extent'they overcome
the deficiencies noted for the ZR microscopic form factors.

(v) Non-local effects in the single-particle states. The damping of the interior
portion of the wave function that results when corrections are applied for the non-
local nature of the nucleon-nucleus interaction 1+2%) is much more pronounced
when applied to three-nucleon transfer than for single-nucleon transfer. Results of
calculations 1o be presented show that the form factor is shifted to larger radius (by
approximately 0.1 fm in “°Ca) when non-Jocal corrections are applied.
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(p, a)
2. Microscopic finite-range three-nucleon form factors

The expression for the nuclear matrix element in the DWBA, for a reaction
A(p, ®)B is given by 2%?3)

3 /N\3 4
wavsey = (S (3 (5 [osveroannce @)

where the integration d¢ is over all coordinates excluding the coordinates of relative
motion in the incident and outgoing channel. We now proceed to express more
explicitly the terms appearing in the above integral. Fig. 1 displays the relevant

e
7
- T A

Fig. 1. Coordinates for the pickup reaction A(p, a)B. Particles 1 and 2 refer 10 the two neutrons and
particle 3 to the proton; collectively these three nucleons are represented by the symbol 7 (iriton). The
relationships ¥ = 4r,, and v = Ir are used in the text.

coordinates, where the additional relationshipsu = 4r,, and v = 1r will be employed.
Separate treatment of neutrons and protons is assumed throughout.

2.1. THE INTERACTION, V

For analytical simplicity, a spin-independent Gaussian interaction between the
incoming proton and each of the picked-up nucleons is assumed:

3 3
~ 7= 2.2
Vi Voa—Upa = Z V= Z Voexp (— B Toids (22)
i=1 i=1
where the range of the interaction is 1/8. The subsequent use of the expression (2.2)
n the integration over the internal coordinates causes great difficulty because of
the complexity of the angular momentum coupling. Thus the expression for the
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interaction was further simplified by writing
VvV~ %{c~ﬁ2<sz+u2;[62ﬁ2p-~+e- zﬂ}p-~]+e-ﬁ’w’}, C(2.3)

With 52 = p2442_ 254 and w? — PP+4r24p- o, Eq. (23) differs from the full

expression (22) in that two lerms +28% p- y appearing in r}, and rZ, have been

neglected. After averaging over the angular part of these terms, it is reasonable that
only a small overall contribution should rema‘. To facilitate the Integration over

angular part was Tre-expressed using the addition theorem for the spherical harmonics.
The terms involving p- v were handled similarly. Similar approaches in the finite-
range treatment of two-nucleon transfer have been discussed by several authors 24).

22. ALPHA-PARTICLE WAVE FUNCTION

wave function:

Ve=Nexp(=n* ¥ r2) =N, eXp (—1n*(3p7 + 2417 + 8u?)). (24)
’ i<j=1
The a-particle size parameter 11 has a value of approximately 0.233 fm~! [ref. 2%)]
and is related 1o the equivalent oscillator parameter v, for the x-particle through the
relations 52 = 1y

2.3. FINAL NUCLEUS WAVE FUNCTION, Vg

The coordinates of the nucleons comprising nucleus B are referred to the fixed
center of the shell-model potential, as shown in fig. 2. Then, the wave function of

Center of
polential

Fig. 2. Nucleon coordinates of B and ; referred 1o the center of the shell-model polential.
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(. @)
B, 5, can be written as 26)
B = OI5.(Ea)Roo(BYRE) YAR,), (2.5)

where ¢(&) is the wave function of the internal coordinates of B, and R, a harmonic
oscillator function in its lowest quantum state, n = I = 0, with oscillator parameter
B times the nucleon oscillator parameter, v. (In this and subsequent expressions,
A and B are also used to designate the mass numbers of nuclei A and B respectively.)
The distance between the c.m. of B and the center of the potential is given by R,
The result (2.5) follows from a series of successive M oshinsky transformations which
convert the single-particle motion into internal (relative) and c.m. motion.

24. TARGET NUCLEUS WAVE FUNCTION, vy,

With reference to the coordinates displayed in fig. 2 the target wave function is
now expanded as follows: '
gI/A-I{;\A(RB’ $piTysrars) = Zyﬂ,{ir/{:-]AB()'s JJ)

X (S My IMIM )G Ep)R oo BYRDYS (R W™ Yyl ryury). (26)
where S, 54(y, J'J) is an expansion coefficient for transfer of three nucleons with the

configuration y = [(n,1,,), (n,l,7,), (n3l3j3)]- These expansion coefficients S .y are
proportional to the corresponding spectroscopic amplitudes for the given transition,

Z\}N\?
Sie(JJ) = (1) (2> I a6y, JJ). (2.7)

The three-nucleon wave functions, Y(r,, r,, r;), with quantum numbers (J'JM), and
nucleon coordinates, again referred to the center of the shell model potential, is
further described in the following section.

2.5. WAVE FUNCTION OF THE THREE TRANSFERRED NUCLEONS

The normalized and antisymmetrized wave function in J-j coupling of the three
transferred nucleons is given by 27)

e . 1
W)Jljw(rprzs ry) = Z (Jmlzlsmsl-]M){

myams [2(] _’—6yn‘2)Ji
x Z (i]mjjzmz’Jlm12)[¢’mIl;il,(rx)‘//nzlz},:z(rz) -y h;i,l,(rz)lr//nzlz,{fz(rl)]} wnalaf;;:(rs):
o (2.8)

where y; = (m)1,j,) and 7, = (n,l,),). For the subsequent transformation to internal
and center of mass coordinates eqn. (2.8) must first be expressed in L-S coupling. This
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result, for one of the above terms is
L L, L[ L
Y, ) = Z’“Sf,i (LASplM)I L 3 Sis
v o J2 JY LI s
x { X AS Wb ISm)nd,BX Y. Guty 3alS 1) (122

Nl
~ Uy I~

Bu3 Hip
X { LB ) T (2 Ly LW i e ™5 ). (29)
A'As Ay ag

Here neutrons 1 and 2 have been coupled to a total angular momentum J', which
In turn is coupled to the third particle, the proton, to yield a total angular momentum
J. The intrinsic spin of the two neutrons, S, is zero. The square brackets [ ] are
normalized 9-j symbols expressing the transformation from J-J to L-S coupling.

The spatial part of this three-nucleon wave function is now conveniently trans-
formed to internal and c.m. motion using two successive M oshinsky transformations.
A further restriction is imposed that only internal orbital angular momenta
I'=1= 0 are retained. (I is the orbital angular momentum of the two neutrons
about their common center of mass, and ! the orbital angular momentum of the
proton and dineutron about their center of mass.) Without this simplification enor-
mous complications follow in the allowed angular momentum couplings and the
evaluation of the radial integrations. Details of the above transformation have been
given before ”8); the result is that eq. (2.9) can now be written as

oL, JT L, L
Uy ) =Y (Lasu M) L 1 ol |o 3 S
PP PRSI VAR S |
X {20 (0034151823, B X Gty 34,1000 (1) ()]}
u3

H1p2

X Z a;’la;’za;’s Z <pIIJPZIZs Jllius #]Nljln/()’ JI>

Pip2p3 N'n'Nn

X (N'J'psly, L2y, yNLnO, L) X R,.o(2vi®) YQ(i) x R, o(6ve2) YO(H)
x Ry (3vR2)YAR,). (2.10) -

The symbol p in the Moshinsky brackets represents the nucleon mass. The a, are
the coefficients in the harmonic oscillator expansion of the single-particle states
generated in the fixed center shell-model potential; that is

Yrr) = > a;,xRp,_,l,(vr,-z)Ylf"(r"i) (2.11)
Pi
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2.6. CENTER-OF-MASS CORRECTIONS

Combining the result of eq. (2.10) with that of eq. (2.6) one further Moshinsky
transformation can be performed as follows:

’ [ROO(B"szs)YOO(K‘B)][RNLB"Rg)Yzf(ﬁa)]
= Z (PF2*LY Y L7)OONL, LiBpu, 3;1[)1*1*]\’.*[). LY[R, (A \'Ri)}’,.’"(ﬁA)]

m1e2*NL12t
3B ;
x [Rmu (7 "Rz) YLA?‘(R):,’ (2.12)
If the cm. motion of the 4 nucleons is in its lowest quantum state with n* = [* = Q,
it follows that N' = N and I! = L. The Moshinsky bracket is then ?8) S
) : By N+L:2 (4_3 N+Lj2
OONL, L|Bp, 3ul00NL, LY = = {— 2.13
< 1By, 3uj00NL, L) (By+3#> y (2.13)

This term is referred to as a c.m. correction term 226 2%). It is to be noted from eq.
(2.12) that the motion of the c.m. of the three-nucleon cluster with respect to the
residual nucleus B involves the oscillator parameter (3B/A)v.

Another c.m. correction occurs if the single-particle states are calculated in a
potential referred to the c.m. of the residual nucleus B. This wave function of relative
motion, expanded in a harmonic oscillator series, would be

¢"§_j(rB) = Z apRp,(vs'p‘ré) };"(fB). (2.14)
P

However, following arguments similar to the ones used above to obtain the motion
of the three nucleon cluster relative to the nucleus B, it can be shown that the motion
of a nucleon relative to the 4 —1 nucleons as given by the fixed center shell-model
potential is (cf. eq. (2.11))

; [ A—1\PHU2 A-1
¢"?(ra)=Za;<7—> R[( y )vré} Y (7). (2.15)

Thus, comparing (2.14) and (2.15), one obtains

A pt+l/2
a, = <A——-I> a, (2.16)

A-1
Vo, = ( y )v. (2.17)

The shell-model nucleon oscillator parameter v is thus greater than the single-
particle oscillator parameter V.p. Used In the actual expansion of the bound-state
wave functions, by a factor of 4/(4—1).
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2.7. NUCLEAR MATRIX ELEMENT

Collecting all the various terms given in the previous sections into the nuclear
matrix element, the integrations over the internal coordinates du and dv, while
tedious and lengthy (because of the power series expansion of the integrand in terms
of u and ¢), can be performed. The result is

(BoAVIAPY o<} (JMyIMIJ M XLA4p I M X31:314,100)

LIMpMip,
I L, Jy[ I, L
x2S IN) Y 4 0f]0 3 4| Fe RIVAR). (2.18)
W Jvoda I gy T

Thefunction FJ}. (p, R), which we call the form factor for transfer of the configuration
(y,J'J), depends on the radial coordinates p and R, and 1s given by

A Pyt patpst(ly+ia+13)2
PR =a) T 5 o,0,0,( %)

Pip2p3 N'n'Nn

X <PyliPalo, Il pIN'T WO, SN T pyly, Lig, pNLn, L
A—3\N*Li2 3(4-3
X (T) Inn'("s Vo ﬂ? p)Rl\'L [ ( A ) VR 2] . (21 9)

Results of all the internal integrations are now contained in the overlap integral I, .
which, in this finite range form factor, depends on g and p, in addition to v and v,
The factor g(y) results from the antisymmetrization of the two neutrons, introduced
in eq. (2.8), and has the value g = 1, if Y1 =7y and g = /2, if 3, # y, [ref. 2)].

3. Characteristics of the zero-range microscopic form factor (ZRMFF)

In the zero range approximation the overlap integral I,,. depends only on the
ratio of the oscillator parameters, & = v,/v. The result is 7)

_[er+ i rensyp 10 o g—1>"+"'
R P +eP\er1) G

Calculations of the ZRMFF, Fj.1(R), have been performed for *°Ca(p,a)*’K
and are shown in figs. 3 and 4. The sensitivity of the shape of the form factor to the
assumed value of the a-particle oscillator parameter, v,, arises through the dependence
of 1,,.(¢) on v, and is shown in fig. 3. Details of the Woods-Saxon paramelers and
binding energies used in the calculation of the single-particle states were similar to
those used for 2Ca [ref.”)], and are given in table 1. The shell model oscillator
parameter had a value v = 0.256 fm~2, corresponding to v, , = 0.250 fm~2 It is
observed that as v_ is decreased, or equivalently, the a-particle size is increased, the
form factor tends to peak at a larger radius in the nuclear surface region. Considerable
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Fig. 3. ZRMFF for “°Ca, L = 0 and L = 2 transfer, as a function of v,. The two 1d; ., neutrons are
coupled to total angular momentum zero. Parameters used in the calculation of these (numbered) curves
are specified in table 1. The harmonic oscillator function (H.O.) was calculated with the oscillator

oy

parameter 0.712 fm™".
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o} !
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Fig. 4. Dependence of the ZRMFF for 40Ca [ = 0 and L = 2 transfers, on the parameters of the single-
particle states. Details for these (numbered) curve are given in table 1. Mass-three cluster form factors
are shown for comparison.
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variations in the interior region are also observed as v, is varied. For values of v,
greater than 0.434 and for values less than 0.289, the calculated form factors differ
little from the ones calculated for these two values respectively. Also shown in fig. 3
for further comparison are harmonic oscillator functions for L = 0 and 2 repre-
senting the motion of the mass-three cluster, calculated with an oscillator parameter
of 0.712 fm ™2 (= 3v(4 — 3)/A).

Nucleon bound state parameters in the previous calculations were selected in
accordance with accepted optical-model parameters and single-particle separation
energies ). The dependence of the ZRMFF on these parameters 1S mvestigated in
fig.4 for L = 0 and L = 2 transfers. Curves 7 and 8 of fig. 4 were calculated with
identical parameters except for the radius and diffuseness parameters of the nucleon
Woods-Saxon well which were 1.152 and 0.692, and 1.25 and 0.65 fm respectively
as given in table 1. (The latter combination of 1.25 and 0.65 fm is the one most
frequently used in the literature in DWBA analysis of single-nucleon transfer reac-
tions!) The form factors resulting from these calculations exhibit differences in the
position of the outer maximum of about £ fm, and decreasing differences in the
nuclear interior. For comparison, a mass-three cluster form factor (curve 9) calculated
as a bound state in a Woods-Saxon well with r, = 1.20 and a, = 0.50 fm is also
shown in fig. 4. The curve differs markedly from the ZRMFF in the nuclear interior,
and approximates curve 8 reasonably well for R = 4fm. Changing the nucleon binding
energies as for curves 10 and 11 of fig. 4 moves the outer maximum to smaller radius
as expected, in close accord with the shift in the cluster form factor of approximately
the same total binding energy. The foregoing remarks apply generally to the L = 2
form factors shown in the right hand portion of fig. 4 as well, with perhaps a more
marked discrepancy between the cluster and ZRMFF in the nuclear interior.

Our experience with the use of these ZRMFF in DWBA calculations has shown
that they systematically yield angular distribution shapes which are less satisfactory
than those obtained from the cluster form factors, particularly when the smaller
radius parameter of r, = 1.17 fm is employed. Other investigators have made similar
observations 3°).

In every instance, the number of nodes obtained in the ZRMFF is equal to that
deduced from the relationship

’ 3

IN+L =Y 2n+1, (3.2)
i=1 :
where n;, [; are the single-particle shell-model state quantum numbers. However,

energy conservation restrictions permit a range of N-values given by
IN+LA+2n"+n) = (2p, + 1)+ 2p,+1,)+(2ps +13). (3.3)

The large deviation of the shape of the ZRMFF from that of an oscillator function
with oscillator parameter v = 0.712 fm ™ ? (curves 3 and 6 in fig. 3) would thus seem
to arise through the contributions from N-values other than that given by eq. (3.2).
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It is instructive to examine the behavior of the overlap integral I,,(¢) given by eq.
(3.1). This is done in fig. 5 where the ratios I 4/1 o0 and I,,/1 5, are plotted as a function
of . Clearly, for values of ¢ considerably larger than unity, contributions from terms
', n # 0 — or equivalently, from a range of N values — are significant. (It should be
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Fig. 5. Behavior of the overlap integral I, as a function of € = v, /v.

noted that if the single-particle states are represented by single harmonic oscillator
functions, in place of an expansion, the resulting ZRMFF should become identical
1o the oscillator functions shown in fig. 3, in the limit v, /v = 1.) Presenting this in
further detail, fig. 6 shows the contributions to L = 0 and L = 2 form factors for
several values of N, and the resultant form factors summing over all contributions
from N = 0 1o N = 7. For the L = 0 ZRMFF the term in N = 2 contributes to the
form factor with the same sign in the surface region as the (dominant) N = 3 term,
whereas the N = 4 term contributes with the opposite sign. The consequence 1S
that the form factor is strongly enhanced in the region between 3-4 fm and decreased
for r = 4 fm. Similar observations are made regarding the L = 2 form factor. As
noted earlier, these ZRMFF with their broad outer maximum peaking well inside
the nuclear radius, fail to produce acceptable angular distributions when used 1n
DWBA calculations. Other parameters used in calculating the curves of fig. 6 were
identical to those given for curves 1 and 4 of table 1.

In order to complete the discussion the ZRMFF we show in fig. 7 the result of
neglecting cm. effects, and the role of non-local 21.22) corrections applied to the
single-particle states. Comparing curves 21 and 22 in this figure we see that cm.
effects are large in the nuclear surface region and beyond. To a lesser extent, yet still
important, is the further enhancement of the form factor in the surface region when
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40Cg, ¥ =0.256 %, 14=0434fm
L=0,2" \N=3

[1d5 05 © 25,,) ]
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ZRMFF , “Co, L=2

Cp xRy (R)xIO
F (R) (arb.units)

|
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Fig‘ 6. Contributions to the L = 0 ZRMFF from F]g 7. Dependence of the L = 2 ZRMFF for
the dominant oscillator terms N = 2,3 and4, and 40Ca on center of mass (c.m.) corrections, non-
the dominant terms N = 1, 2 and 3 for the local effects, and on v,. Other details of these
L = 2 ZRMFF. The composite form factors are (numbered) curves are given in table 1.

indicated by X, and include terms N = 0 to

N = 7. C is the coefficient of the harmonic

oscillator function Ry, determined from eq.
(2.19).

a non-locality correction of 0.85 fm is applied to each of the three single-particle
bound states. The effect of changing the a-particle oscillator parameter from 0.434
fm~2 10 0.289 fm ™2 is seen to be comparable to these other effects.

4. Characteristics of the finite-range microscopic form factor (FRMFF)

A computer code has been written which performs the full calculation of the finite-
range microscopic form factor (FRMFF) as given by eq. (2.19). One example of such
a form factor (for “°Ca) for an L = 2 transfer is shown in fig. 8. The p-dependence
of this two-dimensional form factor is indicated by the series of curves drawn for
different values of p. An interaction range 1/ = 147 fm was used. The curve for
p = 0israther similar to the corresponding curve (curve 14) of the ZRMFF of fig. 4,
with the latter exhibiting Jess damping in the interior region and peaking at somewhat
greater radius. Curves for p # 0in fig. 8 exhibit an approximate Gaussian dependence
on p, and a shift of the maxima to larger R as p increases. Nevertheless, even for
p < 2 fm, the outer maximum occurs at a radius of only = 31 fm. Qualitatively
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Fig. 8. L = 2 FRMFF for *°Ca with an interaction range, 1/f = 1.47 fm: Other details are given under
curve 23 of table 1.

similar results were obtained for other L-transfers, which exhibited a dependence
on v, and non-locality corrections similar to that of the ZRMFEF.

The exact finite range DWBA code LOLA *1) was modified to allow the kernels
to be calculated from the FRMFF F(p, R). This modification is necessary since the
form factor can no longer be simply factored into a product of two functions, one of
which depends on p only, and the other on R only. Sample DWBA calculations for
L =0 and L = 2 transfer for *°Ca(p, a)>’K are presented in fig. 9. Also shown for
comparison are three other calculations representing a conventional zero-range
cluster transfer (ZR cluster}, a conventional finite-range calculation (FR cluster), and
azero-range microscopic form factor calculation (ZRMFF). The proton and a-particle
optical-model parameters were kept fixed for all these calculations and are shown
in 1able 2, with the exception that the FR calculations contained no spin-orbit term
in the proton channel. (The code LOLA 31) does not make provision for spin-orbit
terms in the optical-model potentials.) These parameters are the same as those used
in ref. 7). The p+t bound-state parameters for the FR cluster calculation were taken
from the n+t optical-model analysis of Sherif and Podmore *2). The data shown in
this figure will be the subject of a forthcoming publication.

Neglect of spin-orbit effects in the FR calculations will affect the shape of the
DWBA angular distributions because of the J-dependence of the (p, «) reaction.
However, it is known '7) that these effects are not very pronounced for L = 2
transfer in the 4 = 40 region. Calculations were subsequently performed in ZR in
which the spin-orbit potential was set to zero. The differences in the angular distribu-
tions with and without the spmn-orbit potential were not substantial. For L — 0
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Fig. 9. L = 0 and L = 2 transfer DWBA calculations for “°Ca using zero-range cluster (ZR cluster),

finite-range cluster (FR cluster), zero-range microscopic (ZRMFF). and finite-range microscopic

(FRMFF) form factors. The optical-model and bound-state paramelers are given in table 2, with further

details (on the corresponding numbered curves) presented in table 1. The FR calculations contain no
spin-orbit term in the proton channel.

TABLE 2

Optical-model parameters used in the DWBA calculations for the distorted waves and the bound states

4 r a W Ty ay: l‘VD.) Vs.o. Tso. 5. Tc
p+°°Ca 44.85 1.152 0.692 449 1309 0.549 392 4.32 1.014 0526 1.32
a+3'K 210.0 1.41 059 202 1.66 035 1.30
t+*'K b) 1.20 0.50 1.25
p+t 52.3°) 1488 0.14 1.30

*) The radius and diffuseness parameters for the surface term were the same as for the imaginary
volume term.

®) Selected to yield the experimental separation energy.

€) Selected to yield the experimental separation energy of 19.814 MeV.

transfer, the spin-orbit term has the effect of reducing the minima in the neighborhood
of 20° and 44°. Hence, inclusion of the spin-orbit term in the FR calculations would
Iikely bring them more closely in line with the corresponding ZR calculations in the
angular distributions of fig. 9. Without the spin-orbit term the L = 2 transfer angular
distributions are modified mainly in theneighborhood of 60°, with the small maximum
largely disappearing in these calculations. Thus, here also, inclusion of the spin-orbit
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term in the FR calculations would likely bring these angular distributions into closer
correspondence with the ZR ones. . _

While none of the DWBA calculations of fig. 9 represent high quality fits to the
experimental data, they may all be considered acceptable for the poorly L-matched
(p, @) reaction, keeping in mind the previous comments on the neglect of the spin-
orbit term in the FR calculations. Microscopic form factors for both the ZRMFF
and FRMFF calculations employed nucleon bound-state parameters ro = 1.25 fm
and a, = 0.65 fm. Totally unacceptable fits were obtained if the radius parameter
ro = 1.17 fm was used in the form factor calculations. Thus we conclude that an
empirically adjusted radius parameter for the nucleon bound state parameter, to
the somewhat large value of 1.25 fm, yields form factors. and subsequently angular
distributions, which fit the data about as well as conventional cluster transfer calcula-

tions.

5. Nuclear structure information and microscopic form factors

The previous sections have shown that microscopic form factors for three-nucleon
transfer, calculated according to the given prescription, have a broad outer maximum,
and require a large nucleon radius parameter to produce acceptable angular distribu-
tions when used in DWBA codes. An immediate question which then follows is
how, and in what manner, this microscopic information can be used in analysing
(p, o) reactions in the extraction of nuclear structure information. A related question
is that of the implementation of this rather complicated and lengthy procedure which
is not generally available as an experimenter’s tool in analysing data. '

Both questions have been dealt with through various approximations made to
the ZR equivalent of the expression for the form factor, eq. (2.19). Smits '+?) and
Pellegrini et al. 33) restrict the summations in eq. (2.19) by assuming oscillator func-
tions for the single particle states and including only those terms for whichn=n"=0.
The latter approximation is a good one when v,/v = 1, that is, for light nuclei, but
for heavier nuclei (assuming v = A~ 3) " the ratios of the overlap integrals I;o/Io0,
1,0/14, elc. are not small as can be seen in fig. 5. On the other hand, non-zero values
of n and n’ imply smaller values of N, because of the energy conservation restriction,
and hence oscillator functions of relative motion Ry, with fewer nodes. These func-
tions will clearly have their outer maximum at a smaller radius and hence contribute
less to the surface region of the nucleus. To the extent that the DWBA cross section
is sensitive to the surface region only, the largest N-value alone will be important.
Their procedure, subsequently, was to replace the single-oscillator function Ry,
representing the motion of the three-nucleon cluster relative to the residual nucleus
B, with a cluster wave function of the same N and L calculated in a Woods-Saxon
potential. Since this can be carried out in standard DWBA codes and the angular

' The oscillator parameter v for various nuclei was calculaied from the formula given by Bertsch 34y,
y = 0.02411 (45/,;1/3_25//42/3).
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distribution calculated with this form factor, a considerable simplification is intro-
duced. The nuclear structure information is then contained in all the remaining
terms of eqs. (2.18) and (2.19) as normalization factors.

Another approach described below also calculates the angular distribution
assuming a cluster transfer, but treats the nuclear structure information, as a normal-
ization factor to the DWBA calculation, as follows 3°). The normalization of the form
factor, calculated according to eq. (2.19) (in ZR),

FFnorma]ization:f [F3.(R)]J?R*dR, (5.
0

1s computed, and thisresult together with the remaining terms of eq. (2.18). considered
as the structure-containing quantity.

The following figures (10-12) contain numerous plots of the form factor normaliza-
tion as a function of v,/v for various nucleon configurations, and for a range of nuclei.
Since the dominant term in the ZRMFF occurs for n = n’ = 0, for which the overlap
integral . is proportional to ¢~* = [\ /e/(1 +¢)]3, all the form factor normaliza-
tions have been multiplied by the reciprocal of this factor to facilitate the comparison.
For all the results shown, with the exception of the *°Ca results in fig. 10, the single-
particle states were taken to be harmonic oscillator states calculated with the shell-
model oscillator parameter indicated in each figure. A full harmonic oscillator
expansion of the Woods-Saxon single-particle states for *°Ca was used for a few
selected cases only. A .

Fig. 10 shows the results for '°O in which p-shell nucleons only were considered.
Examination of these curves indicates that the relative normalization of the form
factors changes only little as v, is varied since the curves are very similar in shape.

o
o
T

F F NORMALIZATION xqxI0®
5

€=, /v

Fig. ‘}O. Form factor normalizations as given by eq. (5.1) for '°0 and “°Ca. The 1p subshell only is
considered for *0. and the 1d,,,. 25, , and 1f, ,, subshells for *°Ca. Harmonic oscillator single-particle

states have been used for %0, and Woods-Saxon single-particle states for *°Ca as given for curves ] and 4
in table 1.
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Animportant factor in the case of such a light nucleus is the small value of the overlap
ntegral 1. for n, n’ 0. The results for *°Ca in the lower portion of fig. 10 are for
form factors in which the single particle states were calculated in a Woods-Saxon
potential with the same paramelters as used in fig. 3. These curves should be compared
with the corresponding ones of fig. 11 which represent calculations with harmonic
oscillator single-particle states. Indeed, the similarities between the corresponding
curves for these different calculations is remarkable, except possibly for the smallest
values of ¢. The vertical arrow in this and succeeding figures indicates the value of
¢ for wheih v, = 0.434, its accepted value,

'OO { T i
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Fig. 11. Form factor normalizations as given by eq. (5.1} for **Ca using harmonic oscillator single-particle
states. Results are shown for configurations from the 1d, 2s, 2p and I subshells.

Numerous curves in fig. 11 for L-transfers . — 0to L = 4 show similar behavior,
the normalization decreasing by a factor of about three as ¢ varies from 1 to 2.
Generally, these curves comprise configurations where the single particle states
have lower orbital angular momenta. A rather different behavior as a function of
¢ 1s observed for those curves representing configurations involving the higher orbital
angular momenta of the single-particle states. These curves may be relatively inde-
pendent of ¢ or, indeed, show an increase with increasing ¢, after an initjal decrease.
It is abundantly clear from these results that the value of ¢ used in extracting the
nuclear structure information from the DWBA analysis is an important and sensitive
parameter if many configurations are involved. Indeed, in crossing a major shell as
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in Ca, where both sd and pf nucleons need be considered in the target and residual
nucleus wave functions, large uncertainties may be present in the extracted nuclear
structure information. By the same token, it is observed that for certain configura-
tions, spanning all L-values, relative insensitivity to ¢ would result. The implications
for one of the simplifying approaches that considers only terms in the form factor
for whichn =n' = 0, or equivalently, v_/v = 1, must thus be clearly borne in mind.

Morestriking yet are the variations in the normalizations for form factors involving
the 1*°Te(p, )*27Sb reaction, as shown in fig. 12. The neutron orbits considered are the

——
! ' I L ! ! ' Config 2N+T)

100 - Config. 2N +L 1100

<
ISOT th)5 g4

e
v =01907

(n);c 4

nid e

ole 2

o

N

tsi3d 12 4
_ 1s8)0 12
(a)12g 12
T ~tekgn i
{sd), g 12
thi g4
2 gia_|
(nk q1a
tsd), o 12
~(8)2 g 12
t8)2 a2

F.F. Normalization x g x 10*
5

i 1 i 1 { i - 1
1.0 2.0 3.0 1.0 2.0 30
€=y, /V €=, /V

Fig. 12. Form factor normalizations as given by eq. (5.1) for **°Te using harmonic oscillator single-
particle states. Results are shown for configurations from the 35,2, 2d;,, and . 1h,, , neutron subshells
and the 2p, If, ,, lg, 2d and 3s,,, proton subshells.

3s;,2d; and 1hy, subshells, and the proton orbits the 2p, if;. 1g, 2d and 3s, subshells.
Twomajor groupings of the curves are observed:: those whose normalization increases
with increasing ¢, as represented by all the configurations involving (h,hl)2 neutrons,
and the remaining curves which show a monotonic decrease of the normalization
factor with increasing e. This qualitatively different behavior of the two groupings
of curves is not understood at present. However, from classical considerations, one
expects that form factors comprised of nucleons with large orbital angular momenta
to be largely surface localized, and hence exhibit quite a different normalization
dependence on e. This is illustrated in figs. 13 and 14 where L = 0 and L = 4 form
factors respectively are shown for different configurations. The ones involving two
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Fig. 13. Cluster and microscopic form factors for '*°Te(p, «)'?’Sb, and the corrcspondmg DWBA

angular distributions. The ZRMFF's have been normalized 1o the cluster form factors at the outer

maximum. The incorrect asymptotic hehavior of the ZRMFF's was modified by replacement with the

cluster form factor in the asymptotic region, prior to calculating the angular distributions. Cluster form
factor binding energy is 16.70 MeV.
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Fig. 14. Caption as for fig. 13. Cluster form factor Binding energy is 17.85 MeV.
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h,, nucleons are very strongly damped in the nuclear interior. In contrast, the cluster
form factors exhibit quite a marked rise in the amplitude of the oscillations with
decreasing radius. Similar behavior was displayed for ZRMFF of all L-values. Since
DWBA calculations using an inner radial cutoff have indicated sizable contributions
from the nuclear interior in the generally poorly L-matched (p,a) reaction ® ')
_one might well expect sensitivity to the interior details of the form factor and hence
to the configurations involved in this reaction. DWBA calculations performed with
an inner radial cutoff did, indeed, show a marked sensitivity to the radial cutofl.
especially when this cutoff occurred within the broad outer maximum of the ZRMFF.

Furthermore, the relationships between the form factor normalizations and the
corresponding magnitudes and shapes of the DWBA angular distributions turn out
10 be complicated ones. This is shown in the right hand portions of figs. 13 and 14
where, for each of the form factors, o5, divided by the form factor normalization.
is plotted. For the same L and N, the magnitudes differ widely, and the shapes also
show strong variations. Optical-model parameters for the distorted waves and the
bound states were taken from the analysis of Sn(p, «)In reactions by Smits and
Siemssen !). The microscopic form factors, calculated using single-oscillator func-
tions for the single-particle states, were modified in the asymptotic region by attaching
the cluster form factor tail before the angular distributions were calculated.

A quantitative summery of these results is presented in table 3 where opyga
for the cluster form factor is compared with opyups/(FF normalization) for the
ZRMFF. (The cluster form factors are normalized to unity.) The results for *°Ca
are from the angular distributions shown in fig. 9 and the information given therein.
For this reaction, relative differences between L = 0 and L = 2 transfers for the
above quantities appear to be about 20 %, in addition to the overall factor of about

TaBLE 3

Comparisons of 6owpa Calculated for various form factors

Microscopic form factor Cluster
Reaction L N form factor

config. (6/Norm) x 10% %) (g/c)x10°®)  &x10°
“Cap,0)*’K 0 3 (1d;,0)2 ® 25,5 6.52 485 409 9
2 2 (1d;,2)2 ® 1d5 4.49 274 332 9
130Te(p, 2)'2’Sb 0 6 (2d;.9)2 ® 3s, 5 0.40 031 126 9
0 7 (Ihy, )2 @ 35, 5 132 0.64 300 9
4 4 (2d,,,)} ® lgg 227 1.18 22 9
4 5 (Thy 203 ® 1gg,, 6.02 2.88 135 f

*) Norm is the form factor normalization as defined by eq. (5.1).

) ¢ = [outer peak maximum (MFF)/outer peak maximum (cluster)]’.

) Cross section comparisons made at the peak in the neighborhood of 26°.
4) Cross section comparisons made at 36°.

¢} Cross section comparisons made at the peak in the neighborhood of 38°.

fy Cross section comparisons made at 24°,
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1.4 between the cluster and microscopic results. On the other hand, the Te(p, a)
results show overall factors of 2 to 20 between the cluster and microscopic results
and relative differences of 3 to 10 between L = 0 and L = 4 transfers. An alternative
means of comparing the cluster and microscopic results is shown in the second Jast
column of table 3 where the magnitudes of the form factors at their outer maxima
are used as the basis of comparison. The conclusions reached above are little altered
by this change. Thus, representing the ZRMFF by the equivalent cluster form factor
in DWBA calculations, leads to large uncertainties in the extraction of the relative
strengths of different L-transfers for a reaction like Te(p, 2)Sb, for the example given.
Furthermore, the approximation equivalent to setting &£ = 1, must seriously mis-
interpret the relative strengths of the various contributions.

6. Discussion and summary

Microscopic form factors (MFF) for the (p. o) reaction have been formulated and
investigated in the zero-range and finite-range approximation. The single-nucleon
states of the transferred nucleons require use of a Woods-Saxon radius parameter
of at least 1.25 fm (together with ay = 0.65), in their calculation, in order that the
MFF exhibit approximately the same radial §ize as a cluster wave function calculated
with parameters r, = 1.20 fm and ag = 0.50 fm. (The latter cluster wave function,
when used as the form factor in DWBA calculations, vields angular distributions
generally in acceptable agreement with the experimental data.) Other factors affecting
the radial size of the MFF include c.m. effects, non-local corrections in the single
particle wave functions, and the a-particle size parameter. An increase in the rms
radius of the a-particle from 1.61 fm to 1.97 fm (v, = 0434 — v, = 0.289) shifts the
outer maximum of the MFF to larger radius by about 0.15 fm for *°Ca. Center of
mass corrections to the MFF enter through the modification of the oscillator param-
eter for the mass-three cluster (i.e. 3v(4 —3)/4) and are increasingly important as
the mass of the target nucleus decreases. For *°Ca, inclusion of the c.m. correction
shifts the outer maximum to larger radius by about 0.2 fm. A non-locality correction
of 0.85 in each of the three single-particle wave functions produces a gualitatively
similar, but somewhat smaller effect, as the c.m. correction.

The MFF, in all cases, has a much broader outer maximum than the corresponding
cluster form factor, and also differs considerably from the cluster in the nuclear
interior. Angular distributions calculated for the MFF and cluster form factor
consequently showed differences which in some cases (e.g. *3°Te) were very large.
In other cases, as for *°Ca, much better agreement was obtained.

All the previous remarks apply equally to the FRMFF as well as the ZRMFF.
In particular, much superior fits to the angular distributions were obtained with a
radius parameter of 1.25 fm, rather than with 1.17 fm, in calculating the single-
particle states. Thus, inclusion of finite range effects fails to compensate for a form
factor where the outer maximum occurs at too small a radius.
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Differences in the cluster and MFF are also clearly manifest in the relative magni-

tudes of the calculated cross sections (for form factors of the same normalization).
This has a most direct bearing on procedures where the DWBA angular distributions
are calculated assuming cluster form factors which have been normalized in some
manner to the MFF. The procedure described in the present work of using the
normalization of the fully calculated MFF was shown 10 lead to consistent results
for the two configurations investigated for *°Ca(p, «). On the other hand, for the
'3%Te(p, a) reaction. for the configurations and L-transfers investigated, the predicted
strength of the L = 0 transfer to that of the L = 4 transfer can be too small by an
order of magnitude. This may explain in part the recent ) finding that the 1.1 MeV,
37 statein '?7Sbis observed with a strength approximately seven times greater than
predicted.
~ The procedure adopted by Smits **2) in which the summations in eq. (2.19) are
restricted to only those terms for which n = ' = 0 must also lead to large uncer-
tainties in the extracted nuclear structure information in certain cases, depending
upon the nucleon configurations involved in the transfer. Figs. 10-12 emphasize
this point showing the dependence of the MFF normalization on the ratio v /v.

Relative magnitudes of the cross sections predicted using the FRMFF could not
be adequately investigated because of the very long computation times involved.

Fmally, in making an overall assessment, the importance of the differences in
the shapes of the cluster and MFF cannot be minimized. If the MFF describes the
physical situation inadequately, some of the cffects mentioned in the introduction
need to be incorporated in an extension of the theory. The cluster form factor,
calculated with the empirically selected radius and diffuseness parameters, continues
to yield the better dynamical description of the (p, o) and (=, p) reactions at the present
timne.

The authors are grateful to Dr. B. Bayman who performed a number of form
factor calculations to serve as an independent check of our procedure. Good agree-
ment was observed between these two methods of calculating the ZRMFF.
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APPENDIX B

Sample Calculation for the Spectroscopic Amplitudes

Consider the reaction L*F’Ti(p,cn)'*g&:g o+ Tor the purpose of illus-
tration we consider only the component of the wave functions of both

target and residual nuclei shown below:

.t ek
4671, 07 > = |40Ca doubly closed core > |rlfs (2 2) @ V1E, (22) > tee
2
|43Sc, 75 > = [*0ca doubly closed core > lnlf—}-/zcl ) = vlf%?_(z 2) >7, Feoee

In the above expressions the symbols v and m represent neutrons and
protons respectively. The notation nlfi@(Z 2) represents two ].f7/2
protons coupled to seniority 2 and angular momentum 2, represented by
the first and second numbers within the brackets, respectively.

One possibility of the transferred nucleon configuration is picking
up one 13?7/2 proton and two lfzz.neutrons coupled to angular momentum
J' = o.

Trom Equ. (2.11) the spectroscopic amplitude for the above transi-

tion is given by:

1 1.2 1, 1 2 !
$2 (2 707 = (%) 2'(3) 2 <2 254{|%A B); Y >

L . 2 2
C< D2 29 {]%,(2 25 7(0) >

o2 L
0 Tl (B.1)
2 2 0

The 9-j symbol and the one-particle cfp are equal to 1. We concentrate
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now on evaluatiﬁg the two-particle cfp.

The relation between two-particle cfp and One-particle cfp is given
by:(38)

<3 @D 72, 0,y g20ry s Io< 3N gy 72, Jp)5 5 >
ayd;

: N 1 Jp+J+23
T3 3] 37 Jids 3 > - (L1 Y(23,+1) (237+1)

J2 3 0 '
- (B.2)

where { } ig the 6-3 symbol.

For the case in hand we have n=y._ @1 could take the values ] or 3.

FOI"GI:3 Jl:7/2

5 9 11

For o, %, 25 725 T2y

1
w
<

[

1. For o, =1, J1= 21 The contribution to Equ. (B.2) is given by:
_—

3 . 2 L . 3
<7/2(1 7/2) {I 7/2(2 2); ZZ > <Zz(2 2) {l 22(1 22); 7/2 >

2 % 1,

C (=T s . (B.3)

8x L, 2

Tables in Appendix C were used for the one-particie cfp. It is worth
mentioning that thig table is the same one used by Kutschera(2u) in calcu-

lating his shell-model wave functions. Equ. (B.3) will reduce to:

(-.32678) (.57735) (-1) /8) (-1) = -.09623 : (B.14)
¥ 8x5
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ITI. Similarly:

\w

(1) Foray; =3, J; =

N - 3 +2+
<72 21 (3 )5 %, > - (1T g

3 2
<73 B[ L2 )5 7, >

2 2, 3
= .03712 (B.5)

(i1) For «; = 3, J1.= %,

3 : 2 L . 3 24247
<2503 5,0 {] 2202 2)5 7y > <7502 2){| 2,03 3,05 7, > (-1) 247 /g

2 0 3,
79 2 0

(iii) For oy = 3, Jl = 9/2

0.52658 (B.6)

1

3 . 2 L ) 3 +9+
<0G B B2 25 Yy s <L ] TG %)s % - (-DXT g

2 L, %

= .0uug7 (B.7)
2, 2 0
(iv) For oy =3, J, = 1L,

X : ; X +2+
<22(3 11/25{! ;2(2 2); 22 > <';2(2 2){' 22(3 1;2); 7/2 5> . (_1)2 2 7/‘1~2
JR S
= 0.1443 (B.8)

substituting (B.3) to (B.8) inclusive into (B.2) we get:
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4 2 2 .
<22 2){] %(2 2); 7(0) > = .09623 + .03712 + .52628 + .04UBT7 + .1ul3

0.65644 (B.9)

substituting (B.9) into (B.1l) we get:

+
N
r5\1
N
0]
\
N

S2 (% 7,) = 2.27398
OR

I = = .b56Ly
BB Gk ==

The above procedure has to be repeated for all possible configura-

tions of the transferred nucleons that connect initial and final states.
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APPENDIX C

Coefficients of Fractional Parentage (cfp) Tabulation

a1dy

1.00

aydy
1.00
1.00
1.00

1.00

agdy

0.50

.n- . n .
-<jn 1Cu1 J1) ] J(vaY> 5 5 =
(Reference 25)

oo

:122

= 0o0 2 2
-.372678
-.46291
-.781736
-.321208
-.5270u6

2y
.50
.886405

-.246183
-.805823

.443813

-. 476731

%

26

.600925

0.57296
0.437418

0.724743

-879049



a1 =1 7%
1.00
.577350
.577350
.577350
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-.253546

.361873

-.560612
-.175933

.387298

. 524404
.123092
.238366
.1568114
.658281

.333712

-.278174
.520137
-.267183
. 754854
.128388
.5563912

-.373979

-.500
.313823
426401

-.301511
.BL5L87

-.438390

~.48349y

-. 389249

.597196

.320256
.4639871

.798438
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APPENDIX D

Energy levels of %3Sc, “5S¢ and “7Sc
(From Ref. 64 and 77)



215.

£, (xev) F R { vert £ {reY) FirR 1 ot
¢ b7 Ty v 383120012 b 3503 9 2 bz
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8232 0.3 32 226 2 15 ps 364542 1.8
8502 0.8 172 330 2110 fs 367232 1.8 arz - vy
£55.3 + 0.3 2t 2 2 & s 3700 210 (572 - 1872y
g0t 2 0.2 52t 64.2 0.9p 17138 1.8
1158532 0. a2 6.4 2 1.5 3755.0¢ 0.8
115.2 2 0.3 32 J0 2200 s 3157 s 2
13582 0.2 2t 1.2 3 0.5ps 38%.61 0.7 et
180752 0.8 170 % 2 70 fs 388y 2 2 (a2 - 2)°
165112 0.8 st 2% & 40 fs 3850 2 2
18107 2 0.5 1Y 2 2 1 f 383 2 6
1829.9:z 0.2 (172, 172y 320 2 40 f3 3937 2 7 (e - vy’
188382 0.6 (572, 9/2)” 8 2 30 fs 3855 2 &
1931.7: 0.4 972* 3.4 2+ D.Bps c001 s 2 (/2 - w72yt
19525+ 0.4 852 W6 2 20 s 20318 3z 2 (/2 - 1572)°
20432 0.3 Y a0 2100 fs 4138 210 Br -
210632 0.5 (172 - 2% 40 2 80 fs 4157 2 2 (/2 - 18/2)°
21832 0.9 sz 210 z - 12)°
2 1.9 = 0.9 (372, 5/2%) 30 2 60 fs a5 2 4 I
2248 2 2 {3/2 - 172)" 4276 2 8
2289.1 =+ 0.6 el <10 fs £35] 210 (572, 172)”
23160+ 0.7 (502, 972)° <50 s 3N 2 2 "
2382.82 0.5 (372, 1/2) 4430 2 2
2 £453.0 = 1.2 {572, 9/2)- <80 15 4481 =2 & {572, 9/2) a < 5fs
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275 2 2 2817 26 (wvz, ¥2)°
2 810.8 2 0.7 (572 - 972y «120 s a8s 2 8
2810.0 2 1.2 (272 - 172)* 485 2 8 (e, 32y
288522 1.8 4942 215
285972 1.6 (2 - 1372)° 5022 2§ (2, 32)°
2875 2 2 $195 212
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3205 2 X0 580 215 (2, ey
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3Sc Energy Levels
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