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Abstract

For an equity-linked insurance, the death benefit is linked to the perfor-
mance of the company’s investment portfolio. Hence, both mortality risk
and equity return shall be considered for pricing such insurance. Several
studies have found some dependence between mortality improvement and
economy growth. In this thesis, we showed that American mortality rate
and Dow Jones Industrial Average (DJIA) index price are negatively depen-
dent by using several copulas to define the joint distribution. Then, we used
these copulas to forecast mortality rates and index prices, and calculated
the payoffs of a 10-year term equity-linked insurance. We showed that
the predicted insurance payoffs will be smaller if dependence between

mortality and index price is taken into account.
Keywords: mortality, DJIA (abbreviation of Dow Jones Industrial Av-

erage), Time series models, Outlier models, Copulas, Equity-linked Secu-

rities.
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Chapter 1

Introduction

For a guaranteed equity-linked insurance contract, the death benefit is
linked to the performance of an investment portfolio, and hence the risk
will be shared between the policyholder and the insurer (Bacinello, n.d.).
If there exists negative dependence between the investment portfolio and
mortality, a positive change in the investment portfolio may be accompa-
nied by a negative change in the mortality. Consequently, if insurers do not
consider the dependence between the investment portfolio and mortality,

the equity-linked insurance may not be priced properly.

It is suggested that a good economy or a positive equity return may lead
to mortality improvement as people will have more money to spend on
healthcare resources. The converse may also be true. When people live
longer, the economy would benefit from the strong labor markets and

competitions; as a result, this may cause equity return to rise.

Several studies on the relationships between mortality improvement and
economic growth have been conducted. For example, Ribeiro and Pietro

(2009) concluded that, based on the data from 1900 to 2008, increases in



the US mortality rate is followed by negative DJIA returns in the same
year as well as the next five years. Furthermore, large decreases in the
mortality rates also lead to positive asset returns in the same year and the

next five years.

In addition, based on the data on mortality rates for different age groups and
GDP of certain countries, Kalemli-Ozcan (2002) suggested that mortality
decline working through the channels of education and fertility promotes
economic growth, as mortality improvements have been an important
incentive to increase investment in the education of children. On the other
hand, Jamison, Jamison, and Hanushek (2007) showed that improvements
in education quality is associated with declines in infant mortality. Their
result was based on the input data, including GDP per capita, capital stock

per capita, and years of education, of 62 countries.

Moreover, Preston (2007) examined the relationships between level of
average life expectancy and national income per capita in the 1930s and
1960s of several countries; the linear correlation between life expectancy
and logarithm of income per capita was found to be 0.885 in the 1930s
and 0.880 in the 1960s. Adelman (1963) also examined the coefficients of
correlation between infant mortality rates and levels of income. It has been
found that the coefficients are the order of -0.8. Pritchett and Summers
(1996) estimated the income elasticity of infant and child health with
respect to infant mortality and concluded that increases in income lead to
improvements of health status. Furthermore, Ettner (1996) also suggested

that increases in income significantly improve mental and physical health



based on estimations of structural impact of income on various measures

of health.

Finally, based on age-adjusted® mortality rates over 1901-2000 in the
United States and independent variables including real GDP per capita and
the unemployment rate, Brenner (2005) argued that economic growth has
been a strong factor in American mortality improvements over the 20th

century.

Since equity return is linked to the economy, it is reasonable to also
investigate the dependence between mortality and equity return for equity-
linked insurance pricing purposes. This thesis examines the dependence
and correlation, instead of cause/effect relationship, between American
mortality rate and DJIA index price. In order to examine the correlations,
instead of time series data, innovations from the time series models should
be used as the inputs. In other words, if there exist some autocorrelations
in the time series data, the correlation analysis should be performed on the
residuals or standardized residuals, which are obtained from appropriate

time series models (Patton, 2012).

Firstly, time series models will be fitted to Log index and Log mortality
of age group “55 to 64 years”. Then, linear as well as rank correlations

between the residuals or standardized residuals can be examined.

@ Age-adjusted death rate is calculated by giving different weights (instead of equal weights) to
the death rate of different age groups. Usually the weight represents the proportion of the age

group to the entire population.



Apart from the linear and rank correlations, for the extreme cases, tail

dependence can be examined by using copulas.

Our analysis shows that, under some copulas, tail correlations/coefficients
are larger than linear and rank correlations. In addition, these tail correla-

tions are significant at 0.05 while linear and rank correlations are not.



Chapter 2

Time Series Models

This chapter reviews some important time models including ARIMA mod-
els, GARCH models, and general time-series outlier models. Our analysis
show that, for our data series Log index and Log mortality, outlier models

are preferred to ARIMA/GARCH models.

2.1 Data

Grouped data for 1900-1932 American mortality are available on www .
mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=
1, and data for 1933-2010 can be found on www.cdc.gov/nchs/
data/databriefs/db88.htm#x2013;2010</a>. In addition,
Annual DJIA index price can be obtained from www .measuringworth.
com/DJIA_SP_NASDAQ/. Figures 2.1 and 2.2 display the annual DJIA
index price and annual mortality rates of age groups “55 to 64 years”.
While index price increased throughout the time, mortality rate decreased
steadily. The reason mortality data of age group “55 to 64 years” is used

is that the people from this age group are about to reach their retirement
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Figure 2.1: Annual DJIA index price, 1900-2010
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Figure 2.2: Annual US mortality rates of the age group "55 to 64 years",
1900-2010
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age at 65 and may receive insurance, annuity or pension benefits which

are linked to the performance of the investment portfolio.



2.2 ARIMA Models

The Autoregressive Integrated Moving Average (ARIMA) model is defined
by (Asteriou and Hall, 2011)

p q
2= Qizi—i+e+ > e (2.1)
i=1 i=1

where ¢;...¢, are the autoregressive (AR) parameters, 0;...0, are the
moving-average (MA) parameters, and e;, e; 1, ... are the white noise
error terms with zero mean and variance o,.. Furthermore, z; = Z; for
d=0and 2z, = Z, — Z;_; for d = 1,2, ... denotes the d'" difference of
the original data series Z;. Generally, the error terms are assumed to be
independent and follow a normal distribution identically. As such, the
estimated residuals é; can be obtained from the model. In an ARIMA
model, the conditional variance is constant while the conditional mean is

not.

Box and Jenkins (1976) proposed a three phase iterative procedure for

modelling an ARIMA time series:

1. Identification
2. Estimation

3. Diagnostic checks

Firstly, both autocorrelation function and partial autocorrelation function

plots can be used to identify the potential AR and MA order of the model.



The final model may be selected by comparing the AIC (Akaike Informa-
tion Criterion) (Akaike, 1974) or BIC (Bayesian Information Criterion)

(Schwarz, 1978) values which are based on information theory:
AIC =2k —2In(L) (2.2)

BIC =k lIn(n) —2In(L) (2.3)

where n is the total number of observations, k is the number of parameters
in the model, and L is the maximum value of the likelihood function for the
model. Basically both AIC and BIC measure the relative quality of a model
by taking its complexity into account. That is, increasing the number of
parameters in the model will result in increase in the maximum likelihood
value, but this will also lead to overfitting. By taking the penalty term for
the number of parameters against the term for the maximum likelihood

value, the model with the lowest AIC or BIC is preferred.

Once the orders are determined, then, ARIMA model can be fitted to time
series data and AR as well as MA parameter estimates can be obtained and

inferences on the parameter estimates can be examined.

Finally, some diagnostic tests should be conducted. For example, normality
tests for model residuals should be performed. The Ljung—Box test (Box
and Pierce, 1970), for which under the null hypothesis the autocorrelations
of a time series are different from zero, can be used to determine if there
exist serial correlations in the residuals. Furthermore, both ACF and PACF
plots should be checked so that they do not display significant spikes at all
lags, as a significant spike means a large autocorrelation. Also, checking
whether there exists some cluster of volatility in the residuals can be done

8



by plotting the residuals or squared residuals. If there is some serial

correlation in the residuals, the residuals should also be modeled.

Since there is clearly an increasing trend for the index price as well as a
decreasing trend for mortality rate as shown in Figures 2.1 and 2.2, they are
not stationary time series and hence differences shall be taken. In addition,
since index price and mortality rate will be forecasted by using time series
model, they may go below 0 which is inappropriate. Therefore, the inputs
Z; of the time series model shall be Log index price and Log mortality

rate.

In other words, ARIMA models with first difference will be fitted to both
Log index and Log mortality, and the final models are determined by
using the lowest BIC values. Table 2.1 shows the summary of the selected
models for Log index and Log mortality of age group “55 to 64 years”. For
Log index, there is no AR or MA order; for Log mortality, the estimated

parameters are all statistically significant.

After ARIMA models are determined, the residuals can then be obtained.
However, it is also important to check if the residuals need to be modeled
as well. Figures 2.3 and 2.4 display the residuals of Log index and Log
mortality. For Log index, there are some significant spikes between the
year 1920 and 1940. And for Log mortality, the spike of the year 1920 is

the highest one.

There are at least two options to model the residuals of an ARIMA model.
Firstly, the spikes on the squared residuals plot can be some cluster of

volatility, and hence another time series model shall be fitted to the resid-
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Table 2.1: Summary of the selected ARIMA models

Data series ARIMA Model BIC

Log index (0,1,0) -15.49
Log mortality (1,1,2) -460.47

Log mortality
Parameter Coefficient Standard Error Statistic

01 0.9978 0.0045 237.57
01 -1.2604 0.0988 -12.76
0y 0.287 0.0974 2.95

Figure 2.3: Residuals of Log index
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Figure 2.4: Residuals of Log mortality
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uals. However, if the spikes on the squared residuals plot are not some
cluster of volatility, then secondly, we may treat them as outliers effects in

the data series.

2.3 GARCH Models

If there are some serial correlations in the residuals, the generalized autore-
gressive conditional heteroskedasticity (GARCH) model should be used in
addition to ARIMA model. A GARCH model is defined by (Bollerslev,

1986)
ét — O€¢ (24)

where oy = \/ w—+ Y ae2 ; + 5% Bio? ; and ¢ is a white noise process.
When the error terms of an ARIMA model has GARCH effects, we can
have a combination of ARIMA and GARCH models for which both the

11



conditional mean and conditional variance are non-constant. That is,
the conditional mean and conditional variance are not independent of
time. As such, we can estimate the standardized residuals ¢; and examine
correlations analysis. Again, we should check whether the standardized
residuals exhibit autocorrelation, as €; is assumed to be independent and
identically distributed. This can be done by plotting the ACF of the
standardized residuals and/or conducting Box-Ljung test (Box and Pierce,
1970) for which the autocorrelations are not different from zero under the

null hypothesis.

Table 2.2 shows the selected ARIMA/GARCH models for both Log index
and Log mortality. Again, the models are justified by using the lowest BIC
values. For both data series, the orders of GARCH model are determined
to be (1,1). Note that these models have a lower BIC value than that
of the previous pure ARIMA models. Figures 2.5 and 2.6 display the
standardized residuals of both data series. It turns out that the patterns of
residuals and standardized residuals do not really differ. For Log mortality,
the spike for the year 1920 remains to be very significant; for Log index, the
result is slightly improved, but the spikes between 1900 and 1940 remains
higher. Moreover, Ljung-Box tests (Box and Pierce, 1970) for residuals
and standardized residuals of both models are also conducted. Since these
p-values are significantly large, the null hypothesis that autocorrelation
is O shall not be rejected. It turns out that the GARCH model does not
address the issue we have on residuals. Since there is no serial correlation
in the residuals, we may explain that the spikes on the squared residual

plots are the outliers, and hence outlier models can be used.

12



Table 2.2: Summary of the selected ARIMA/GARCH models

Data series ARIMA/GARCH Model BIC

Log index (0,1,0)/(1,1) -25.01
Log mortality (1,1,2)/(1,1) -507.17
Log index
Parameter Coefficient Standard Error Statistic

w 0.0178 0.01316 1.30

aq 0.29585 0.15263 1.94
51 0.36275 0.34851 1.04
Log mortality

Parameter Coefficient Standard Error Statistic
01 0.9978 0.0045 237.57
0, -1.2604 0.0988 -12.76
0y 0.287 0.0974 2.95
w 0.0178 0.01316 0.04
o1 0.29585 0.15263 1.86
51 0.36275 0.34851 22.96

Ljung-Box Test p-value

Residuals Standardized Residuals

Log index 0.8649 0.7358

Log mortality  0.9199 0.2986

13
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2.4 Outlier Models

Based on the ARIMA time series model, Chen and Liu (1993) proposed
an outlier model to address the issue of outlier effects. Following (2.1), an

ARIMA model can be expressed in the following equation:

Zt = W(B)Zt = € (25)

where ¢(B), 0(B) and w(B) are polynomials in B, and d represents the

difference order. A general time-series outlier model is defined by

M
Yi=Zi+ S Diim (2.6)
m=1

€t

¢(B)

as defined in (2.3), M is the total number of outlier events, A\;; ,, is the

where Y; represents Log index price or Log mortality rate, Z; =

outlier effects at time ¢, and ¢ represents the type of the outliers. There are

four types of outliers:

1. Additive outlier A\ 40 = wD,ET)

2. Innovational outlier AA\; ;o = %wa@

3. Level Shift A\; ¢ = ﬁWDzET)

4. Temporary Change Ay ¢ = ﬁth(T)

where DgT) = 1 for t = T" and 0 otherwise. An additive outlier (AO) only
affects a single observation of a time series. An innovational outlier (IO)
affects the whole time series structure, starting at a series pointt = 7. A

level shift (LS) outlier has permanent effects on all observations, starting

15



at a series point ¢ = 7'. Similarly, a temporary change (TC) outlier has
temporary effects on all observations, starting at a series point ¢ = 7'. For
the temporary change, the value of § will be 0.7 as recommended by Chen
and Liu (1993); however, it can also be specified depending on the time

series analysis.

In order to fit a general time-series outlier model to the data, we start
with the residuals. Similar to the residuals of an ARIMA model, the fitted

residuals of an outlier model is given by

5, _ ¢B)(1-B)
! 6(B)

Y 2.7)

Since Y; can be expressed in terms of the ARIMA model and outlier effects,

the fitted residuals of an outlier model can be rewritten as

M M
ét = W(B)(Zt + Z At,i,m) = & + 7T(B) Z At,i,m (28)
m=1

m=1
Assume that there is only one outlier, the general time-series outlier model

and the fitted residuals are given by
Yi=Zi+ Dy 2.9

ét =&+ W(B)Am"l (210)

Therefore, assuming there is only one outlier, the fitted residuals of each

of the four types of outliers is given by

1. é1.40 = &+ wD! 7 (B)

2. ét,IO =&+ UJDLST)

3. érrs =€+ ngT) 7{(_33)

16



4. ét,TC’ = &t + (,th(T) 7171(?2

fort =T,T+ 1,7 4+ 2,...,n. Note that, for example, for an additive

outlier case, the outlier effects on the data series 1s th(T), and this effects

on the residuals is ngT) multiplied by the polynomial 7(B). Hence,

érA0 = € + th(T)W(B) can be rewritten as é; 40 = &; + X;, where
X7 =1and X7, = —m;. Here, note that € is actually a linear function of
X;. When an ARIMA time series model is fitted to the data, we can obtain
both the polynomial 7(B) (and hence X;) and the residuals. If X; is the

input and the residuals ¢ is the output, then, the least squared estimation

can be used to estimate the parameter w (Chen and Liu, 1993):

Z?:T ét,AOAXt
S (Xi)?

Wi A0 = (2.11)

for T" = 1,2,...,n. The estimation of the other three types of outlier
effects are similar: Fit an ARIMA model to the data series, obtain the
residuals and polynomials, and estimate the parameters w; ; by using least
squared estimation. As such, the standardized statistic of the corresponding
outlier effects is given by

Fp= (2.12)
o

fori = AO,IO,LS,TC and T = 1,2, ...,n. There are various methods
which can be used to estimate the residual standard deviation 0. One of
the methods is called median absolute deviation (MAD) and is given by
(Hoaglin, Mosteller and Tukey, 1983)

1.483 * median{|é; — &}
i (Xi)?

where ¢; 1s the median of the estimated residuals.

(2.13)

o=

17



In addition, back to the initial fitted residuals of an outlier model é; =
et + m(B)XM_| Ayim, similarly, this can also be treated as a multiple
linear regression model and the parameters wy; and standardized statistic

77,; of each outlier effect can estimated accordingly.

In order to fit an outlier model to a data series, Chen and Liu (1993) pro-

posed a two stage joint estimation iterative procedure:

Stage 1

1. For first iteration: Fit ARIMA model to original data series and
obtain residuals.
For other iterations: Fit ARIMA model to adjusted data series (data

series after outlier effects are removed) and obtain residuals.

2. Fort =1,2...n, compute 7; 40, 7,70, Tt.1.s and T rc.
To find a possible outlier: L = max;;{7; > C}, where C'is a

defined critical value.

3. If an outlier is found, remove the outlier effect from the residuals, go

to 2. to find another possible outlier. If not, immediately stop here.

4. If outliers are found under the current ARIMA model, remove the
outlier effects from the data series. Go to 1. to revise ARIMA
parameters. If not, immediately stop here and conclude that there is

no outlier in this data series.

Stage 11
18



1. Suppose M outliers are found: jointly estimate the outlier effects by

using the equation é; = &; + w(B) Z%:1 ANtim

2. Compute 7,,, form = 1... M. If min, ;{7,,, < C}, delete the outlier
and go back to 1. If the minimum of the statistics is greater than C,

then immediately stop here.

3. Obtain the adjusted data series by removing the remaining outlier

effects from the original data series.

Based on the simulation results, Chen and Liu (1993) suggest that if the
number of observations is between 100 and 200, the appropriate critical
value C will be 3.0. If the number of observations is greater than 200, the

critical value C should also be greater than 3.0.

Note that there are two types of residuals. Firstly, é; is the residuals
obtained from the ARIMA model fitted to the original data series. That
18, é; is the residuals inclusive of outlier effects. On the other hand, after
outlier effects are determined, £; can be obtained from the ARIMA model
fitted to the adjusted data series. Hence, &; is analogous to the standardized

residuals in the ARIMA/GARCH model.

Li and Chan (2007) observed the presence of outliers or outlier effects
in the mortality data series. Therefore, other than the traditional ARIMA
time series model and the recent Lee-Carter model (Lee and Carter, 1992),
mortality can also be studied by using the general time-series outlier model:

Firstly, Lee-Carter model is fitted to the American and Canadian mortality

19



data, and the time-varying parameter k; is obtained. Then, a general time-
series outlier model can be fitted to the k; of both American and Canadian
cases. However, Li and Chan noticed one problem arising from the outlier

model and the estimation.

“Even if the model is correctly specified, outliers may lead to biases
in the estimation of parameters hence affecting the detection of
outliers and ultimately obscure the re-estimation of parameters, the

whole process repeating itself indefinitely” — Li and Chan (2005)

For the joint estimation proposed by Chen and Liu (1993), firstly, an
ARIMA model is fitted to the original data series; the ARIMA parameters
are estimated, and the residuals are obtained. If some outliers are detected
(under the initial ARIMA model), then the outlier effects are removed
from the original data series, and new ARIMA parameters are estimated by
using the adjusted data series. In other words, this new ARIMA model has
the same orders as the initial ARIMA model, but the estimated parameters

are different.

One problem over here is that the orders of the new ARIMA model (for
the adjusted data series) may not necessarily be the same as the orders of
the initial ARIMA model (for the original data series). While an outlier
model can address the issue of outlier effects, Li and Chan (2005) claim
that the outlier model do not address the problem that the outliers can

cause potential erroneous model selection. In order to overcome such

20



situation, an external iteration cycle proposed by Li and Chan (2005) will

be employed.

1. Identify tentative ARIMA model
Fit an ARIMA model to the original data series and obtained the

residuals.

2. Detect outliers and make adjustments
Use Chen and Liu’s (1993) joint estimation iterative procedure to
detect the potential outliers in Stage I, and delete the outliers that
are not significant in Stage II. Remove the remaining outlier effects

from the original data series and obtain the adjusted data series.

3. Re-identify the model
Identify the ARIMA model using the adjusted data series. The
ARIMA orders for the adjusted data series may not be the same as
the ARIMA orders of the original data series. If the ARIMA orders
are different, repeat Step 2 by using the adjusted ARIMA orders and
original data series. If the orders are the same, then immediately

stop here, the ARIMA model will be the final model.

Based on Li and Chan’s (2007) analysis, several outliers are found for the
case of American mortality. Among the most significant is the 1918 addi-
tive outlier which has a magnitude of 24.473 and standardized statistic of
13.06. Other detected outliers generally have magnitude and standardized

statistic lower than 10 and 5 respectively.

21



For our data series, the initial model for Log index and Log mortality are
identified to be ARIMA(0,1,0) and ARIMA(1,1,2) respectively. Then,
right after the first iteration, after the outlier effects have been removed
from the original data series, the models for the adjusted data series are
identified to ARIMA(0,1,0) and ARIMA(1,1,2) respectively, which are the
same as the initial models. Therefore, the outlier models for Log index and
Log mortality are ARIMA(O,1,0) plus outlier effects and ARIMA(1,1,2)
plus outlier effects respectively. Summary of the selected outlier models as
well as detected outliers for both data series are also shown in the Table 2.3.
Note that the BIC of the outlier models are lower than those of the ARIMA
and ARIMA/GARCH models. And therefore, it may be reasonable to

favor outlier models in terms of model selections for the data.

For Log index, there is a total of three outliers which happen to be in
1907, 1931, and 1932. A temporary change in 1931 is followed by an
additive outlier in 1931; This is no surprise as the Great Depression which
swept the United States took place between 1929 and 1932. The minus
sign of the coefficients explains that the Log index decreased due to the
extraordinary event. Although these outliers are detected, however, the
standardized statistics are not really large. For Log mortality of age group
“55 to 64 years”, there is a total of ten outliers. The level shift in 1919 1s
among the most significant one, with a standardized statistic of -8.71; it
was around the time when the flu event occurred. Note that Li and Chan
(2007) also detected a total of seven outliers by using Lee-Carter model £;
of American mortality as the input; five outliers happen to be the same in

terms of years: 1916, 1921, 1928, 1936, and 1954.
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Table 2.3: Summary of the selected outlier models

Data series Outlier Model BIC

Logindex  (0,1,0) + outlier effects -31.12
Log mortality (1,1,2) + outlier effects -514.2

Log index
Parameter Coefficient Standard Error Statistic
AO33 -0.4194 0.1369 -3.06
AO8 -0.4283 0.1367 -3.13
TC32 -0.7277 0.1785 -4.08
Log mortality
Parameter Coefficient Standard Error Statistic

01 0.9322 0.0397 23.48

0, -1.2575 0.0915 -13.74
0y 0.5645 0.0979 5.77
AO8 0.0654 0.0117 5.59
TC37 0.0507 0.0114 4.45
TCS55 -0.0487 0.0113 -4.31
AO3 -0.0499 0.0124 -4.02
TCS 0.0578 0.0128 4.52
TC17 0.0446 0.0129 3.46
LS20 -0.1237 0.0142 -8.71
AO22 -0.0559 0.0115 -4.86
LS29 0.0526 0.0121 4.35
AO39 -0.0391 0.0113 -3.46

**AOK, LSK and TCK represent additive outlier, level shift
and temporary change, respectively, of year 1989+ K.

23



Figure 2.7: Residuals of Log index, outlier model
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Figures 2.7 and 2.8 display the residuals of the outlier models fitted to both
data series. It can be observed that the spikes on the residuals plots are
removed. Therefore, based on these results, we conclude that the spikes
on the residual plots are not some cluster of volatility; instead, they are
some outliers effects. Hence, we will use outlier models for our data series
Log index and Log mortality. Then, residuals can be obtained from outlier

models for correlation analysis.

However, note that there are two types of residuals for an outlier model. An
outlier model is a combination of an ARIMA model and outliers effects.
One can estimate the outlier magnitudes by using the joint estimation
procedure on the equation of fitted residuals é&; = &; + m(B) =M_| Ay .
Note that in this case, €; will not be estimated along with the magnitude

of outliers (although it could be). Rather, £; will be obtained by using
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Figure 2.8: Residuals of Log mortality, outler model
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the adjusted data series. In other words, subject to the external iteration
cycle (Li and Chan, 2005), ¢é; is the residuals obtained from the ARIMA
model of the very first iteration in the first stage of the joint estimation
procedure fitted to the original data series; on the other hand, &; is the
residuals obtained from the ARIMA model fitted to the adjusted data series

(after outliers are removed).

Therefore, in order to capture the tail dependence between the two data
series, instead of &, é; should be used as the inputs as it contains outlier
effects in the outlier model. For the rest of this paper, we denote X the
residuals inclusive of outlier effects of Log mortality, and Y the residuals

inclusive of outlier effects of Log index.

It 1s worth to also note the differences between an ARIMA/GARCH model

and a general time-series outlier model. Firstly, after an ARIMA model
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Figure 2.9: Squared residuals of Log index with outlier effects labeled
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is fitted and residuals or squared residuals are obtained, while a GARCH
model explains that the spikes on the squared residual plot are some cluster
of volatility, an outlier model treats the spikes as outliers or outlier effects.
Our results showed that GARCH model is not able to deal with these
spikes; however, they are captured as outlier effects by outlier model. This
can be illustrated on Figures 2.9 and 2.10 where the locations of outliers
are labeled on the squared residual plots. Especially in the squared residual
plot of Log mortality, almost every significant spike matches the detected

outliers of the outlier model.

Secondly, although both models consist of an ARIMA model, the ARIMA
orders will be different if two or more iterations of external iteration cycle
are required. Also, even if the ARIMA orders of both models are the same,
the estimated parameters will be different as both models seek to explain

the residuals in two different ways.
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Figure 2.10: Squared residuals of Log mortality with outlier effects labeled
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Chapter 3

Correlations and Copulas

This chapter reviews linear and rank correlations as well as empirical and
parametric tail correlations. Parametric tail correlations can be calculated
by fitting copulas to our data series. Goodness of fit tests as well as
inferences on tail correlations will be conducted. Our analysis show that

Gumbel copula is preferred for our data series.

3.1 Correlations

Correlations measure the strength of the relationship between two variables
or two data sets. The Pearson correlation coefficient is defined as

Cov(X,Y)

p(X,Y) =
OxO0y

(3.1)

Rank correlation Kendall’s Tau is a measure of concordance for bivariate
random vectors; for (X,Y") an independent copy of (X,Y"), Kendall’s Tau
1s given by (Kendall, 1938)

pr(X,Y) = E(sign(X - X)(Y — 1)) (3.2)
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Note that for ¢ # j, any pair of observations (x;, ;) and (x;, y;) are said to
be concordant if both x; > x; and y; > y; or if both x; < z; and y; < y;.
Otherwise, they are discordant. The other rank correlation Spearman’s
Rho is simply the correlations between the cumulative function of the two

variables (Spearman, 1904).
ps(X,Y) = p(F(X), F(Y)) (3.3)

Correlations can be used to explain the relationship between residuals of
two models. If there exists a significant correlation between the residuals
of two models or variables, we may expect that a sudden change in one

variable will be accompanied by a change in the other.

For a sample, linear correlation can be calculated by (Rummel, n.d.)

(n —1)sxsy

(3.4)

and the test statistic for linear correlation is given by (Rummel, n.d.)

n— 2
=11 (3.5)

and follows a student-t distribution with n — 2 degrees of freedom. Sample

Kendall’s tau can be calculated by (Abdi, 2007)

number of concordant pairs-number of discordant pairs

L= 3.6
" n(n —1)0.5 (3.6)
and the test statistic for Kendall’s Tau is given by (Abdi, 2007)
n(n —1)0.5
= 3T\ ————— 3.7
: TJ 2n+5 -7)

and follows a standard normal distribution. Finally, sample Spearman’s
Rho can be calculated by (Daniel, 1990)

_ DUV — nUV
~ (n—1)sysy

Ts (38)
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where U = F(X) and V = F(Y'), and the test statistic for Spearman’s
Rho is given by (Daniel, 1990)

n— 2
1 —1r2

(3.9)

t=r

and follows a Student-t distribution with n — 2 degrees of freedom, which

1s the same as the test statistic for linear correlation.

Tail correlations shall also be examined in case that linear and rank correla-
tions do not exist, or if they do they are not significant. Tail correlations can
be empirical or parametric. For an empirical case, suppose X and Y are
two random variables with empirical CDF Fx and Fy, then if v, = F'y'(q)
is the 100¢"" percentile of X and y, = Fy '(q) is the 100¢""percentile of

Y, the upper and lower tail correlations are given by (McNeil et al., 2015)
PrY >y, X > x,)

Ao =Pr(Y >y, |X >z, = PriX > 1) (3.10)
q
PriYy <y, X <z
ANo=PrY <y/X <z = (PT<)?Q< ) ) (3.11)
q

Note that Pr(X < z,) = Pr(Y < y,) = ¢. In addition, tail correlation
is always between 0 and 1. For upper tail correlation, ¢ should be large

enough (close to 1) and for lower tail correlation, it should be small (close

to 0).

As mentioned in the last chapter, we denote by X the residuals inclusive
of the outlier effects of Log mortality, and Y the residuals inclusive of
the outlier effects of Log index. Figures 3.1 and 3.2 show the plots of
X against Y as well as empirical CDF of X against empirical CDF of
Y. While the existence of linear and rank correlations are ambiguous as
shown in the plots, there is clearly an upper tail dependence.
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Figure 3.1: Plot of X against Y
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Figure 3.2: Plot of F'(X) against F'(Y)
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Table 3.1: Summary of linear and rank correlations between X and Y

Correlation Correlation Inference p-value
Pearson coefficient -0.152 0.112
Kendall’s Tau -0.116 0.072
Spearman’s Rho -0.163 0.086

Table 3.1 summarizes the linear and rank correlations between X and Y.
These correlation values are all between -0.1 and -0.17, implying some
degree of dependence between the two data series. However, although
p-values for the inferences are small, they are not small enough to be
statistically significant. That is, we cannot reject the null hypothesis that

the correlations are not different from 0.

Table 3.2 also shows the empirical tail correlations between — X and Y.
The results seem to conform to the empirical CDF plot of X against Y. As
q becomes larger and close to 1, upper tail correlation increases. However,
at the lower tail side, when ¢ is smaller and close to 0, the tail correlation
goes to 0. This result implies that a very low mortality may be accompanied

by a very high index price.
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Table 3.2: Summary of empirical tail correlations between —X and Y

Lower
q 0.05 0.1 0.15
Tail Correlation O  0.091 0.125

Upper
q 0.85 0.9 0.95
Tail Correlation 0.125 0.182 0.2

3.2 Copulas

Tail correlations (or tail coefficients) can be parametric. In this case, tail
coefficients can be derived by using copula. According to Sklar (1959)
theorem, every multivariate cumulative distribution function can be written
in the form of copula C. For a bivariate case, for Fiy(z) = u and Fy(y) =

v, we have

C(u,v) = F(z,y) (3.12)

One useful fact is that the marginal distributions F'x(z) and Fy (y) can
be determined independently of the copula distribution. Some popular
classes of copula include Gaussian, student-t, Gumbel, Clayton, and Joe.
Both Gaussian and student-t are elliptical copulas; they are also known as
implicit copulas as they do not have a simple closed form (McNeil et al.,
2015). Since we are only interested in observing the dependence between

two variables, we only consider the bivariate case. Bivariate Gaussian and
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student-t copulas are given by (McNeil et al., 2015)
Gaussian . -1 -1

C};V(u, v) =t,(t (u),t 7 (v)) (3.14)

where p and v are the parameters, ® joint standard normal cumulative
distribution function, ¢ standard normal cumulative distribution function,
t, standard student-t cumulative distribution function with v degrees of

freedom, and ¢ standard student-t cumulative distribution function.

Archimedean copulas include Gumbel and Clayton. These are all explicit
copulas since they have a simple closed form. All bivariate Archimedean

copulas are defined by (McNeil et al., 2015)

C(u,v) = ¢ ' (p(u), ¢(v)) (3.15)

where ! is the Archimedean generator and it is a mapping from [0, 1]
to [0, co]. More specifically, Gumbel and Clayton copulas are given by
(McNeil et al., 2015)

CF(u,v) = e~ (CInu)"+ (=) ) g o0 (3.16)

C&u,v) = (W +0! = 1)V 0< <0 (3.17)

where 6 is the copula parameter. Since C(u,v) = F(x,y) for F(z) = u
and F'(y) = v, the upper and lower tail coefficients can be derived by

applying limits on the copulas (McNeil et al., 2015):

1-2
A, = lim Pr(Y > Fy'(q)|X > Fx'(¢)) = lim ¢+ Clg,9)

q—1- q—1- 1—gq

(3.18)
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q—0t q—07t q

(3.19)

In order to obtain the tail coefficients, we need to firstly fit different a
copula to the data, and maximum likelihood estimation can be used to
estimate the copula parameters. Once the parameter estimates are obtained,

we can proceed to tail coefficients calculations by using equations (3.12)

and (3.13).

Another class of copula is called extreme value copula. Just like the
Archimedean copulas, all extreme value copulas are of the same form.

Specifically, bivariate extreme value copulas take the form (McNeil et al.,

2005)

In(u)

C(u,v) = exp((In(u) + ln(U))A(Zn(u) + In(v)

) (3.20)

where A(w) = [§ maz((1 — x)w,z(1 — w))dH (z) is the Pickand’s de-
pendence function, H(z) = lim,,_,., F"(C,x + D,,), and C,, and D,, are

the normalizing constants.

Gumbel copula is both Archimedean and extreme value copula as it can be
expressed in these two different forms. The dependence function A(w) of

Gumbel, Galambos, and HuslerReiss are given by (McNeil et al., 2015)

A (w) = (w? + (1 — w)?)Y/? (3.21)
A% (w)y =1 = (w ™ + (1 —w)?)~ 1/ (3.22)
#”@g:u—ﬂmwé+?ﬁt:%+w®©+gmifw)(3%)

From the dependence functions of the copula families, we can derive the
upper and lower tail coefficients for a given extreme value copula by using
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Table 3.3: Summary of linear and rank correlations between X and Y

Copula Lower Tail Upper Tail
Gaussian 0 0
Student-t  2t,1(— %) 2t,11(— %)
Gumbel 0 2 — 21/
Clayton 2-1/0 0
Galambos 0 2~ 1/0
Husler Reiss 0 2(1 — q’(%))

equations (3.12) and (3.13) (McNeil et al., 2015):

1 -2
A, = lim 1+ C@a) _ o _ aq0) (3.24)
q—1- 1—gq
Az = lim C@9) (3.25)
q—07t q

Therefore, the lower tail coefficient of an Extreme Value copula is always
equal to 0; the upper tail coefficient of Gumbel, Galambos and HuslerReiss

copulas can be calculated by using the equation (3.24).

Tale 3.3 shows the derived lower and upper tail coefficients for copulas.
For the Gaussian copula, both upper and lower tail are always equal to
0; and for stuent-t copula, both upper and lower tail are always equal.

Moreoever, Gumbel copula has an upper tail, and Clayton has a lower tail.

Note that for the Gumbel copula, the upper tail coefficient equals 2 — 21/¢,
which is the same as the one in the Archimedean form. In order to calculate
the upper tail coefficients, again, the parameters for each extreme value

copula are to be estimated, and this can be done by using maximum log-
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likelihood estimation. Then, by using the equations above, the upper tail

coefficients can be obtained.

Moreover, one can simply replace v and/or v by 1 — w and/or 1 — v of the

equation of a copula to obtain a rotated copula:

1. For a 90° rotated copula, replace u by 1 — u

2. For a 1807 rotated copula, replace v and v by 1 —w and 1 — v

respectively

3. For a 270° rotated copula, replace vby 1 — v

The reason rotated copulas are used is that some ordinary copulas that we
discussed earlier can not be fitted to negatively dependent bivariate data
(McNeil et al., 2015). By rotating the copula or reverse the order of data,

tail dependence for negatively dependent data can hence be captured.

3.3 Fitting Copulas

Before a copula is fitted, the marginal distributions of residuals should
be defined. We may choose empirical marginals for the residuals. The

cumulative empirical distribution is given by

A

F(e) N n 1 Z {é,<e} (3.26)

where N is the total number of observations and 1{} 1s the indicator func-

tion.
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One standard estimation method, maximum likelihood estimation will be
used to fit the copulas (Patton, 2012). The bivariate copula density function

1s given by
0*C(u,v)
Oudv

Then, if U and V are the empirical marginals, in order to obtain the

c(u,v) = (3.27)

estimated values of the parameters ©, we have the log-likelihood function

that shall be maximized (Patton, 2012):
L(©;U,U) = > in(e(i, 71; ©)) (3.28)
where © = (61, 6, ...) is the parameter vector.

A semi-parametric copula-based model is composed of empirical marginal
distributions for the residuals and parametric model for the copula (Pat-
ton, 2012). For Archimedean or Elliptical copulas, parametric bootstrap
procedure (Remillard, 2010) may be used to estimate the p-value of the
goodness of fit test. Cramer-von Mises test will be used for goodness of fit

test of copula models, and the test statistic is defined by

/\

:g( (ui, vi;©) — Crarp(ui, v;))? (3.29)

where C'(u;, v;; @) is the parametric copula under the null hypothesis and
Cemp(ui,v;) = 755, 1(u; < u,v; < ) is the empirical copula. The

bootstrap procedure is as follows:

Algorithm 3.1. Parametric bootstrap procedure (Remillard, 2010)

(i) Obtain empirical CDF of the actual data (X,Y), and then use the
empirical CDF (U, V') to obtain the the parameter estimates of a

specified copula
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(i1)) Compute the Cramer-von Mises test statistic G
(iii) Repeat the following a total of n times (k = 1,2,...,n):

(a) Generate a bivariate random uniform variables from the speci-

fied copula with the estimated parameters
(b) Compute empirical CDF of the random uniform variables

(¢) Use the empirical CDF of the random uniform variables to

obtained parameter estimates of the specified copula.

(d) Compute the Cramer-von Mises test statistic G i

(iv) Compute the approximated p-value = % Yh=1 Liacen

The idea of the Parametric bootstrap procedure is to calculate the test statis-
tic, or the discrepancy between the empirical copula and the underlying
copula, and then simulate data from the underlying copula and calculate
the discrepancy between the empirical copula and the underlying copula.
The p-value measures how compatible the data is with the underlying

copula.

For extreme value copulas, goodness of fit test p-values can also be ob-
tained by using parametric bootstrap procedure (Genest et al., 2011). In
this procedure, Cramer-von Mises test based on the dependence function of
each copula, for which under the null hypothesis the dependence function
of the data is of a specified copula family, will be used. The test statistic is
given by

H= i(A(w; 0) — Apyp(w))? (3.30)

1=1

39



—In(a;)
1—w

where Agyp(w) = (7 1 min( ), _Z’ZS@") ))~! is the non-parametric
estimator and A (w; @) is the parametric estimator by using maximum like-
lihood method. The parametric bootstrap procedure for extreme value

copula goodness of fit test is as follows:

Algorithm 3.2. Parametric bootstrap procedure for extreme value

copula (Genest et al., 2011)

(i) Obtain empirical CDF of the actual data (X, Y'), and then use the em-
pirical CDF (U, V') to obtain the parameter estimates of a specified

copula
(i1)) Compute the Cramer-von Mises test statistic H
(iii) Repeat the following a total of n times (k = 1,2,...,n):
(a) Generate a bivariate random uniform variables from the speci-
fied copula with the estimated parameters

(b) Compute empirical CDF of the random uniform variables

(c) Use the empirical CDF of the random uniform variables to

obtained parameter estimates of the specified copula.

(d) Compute the Cramer-von Mises test statistic H k

(iv) Compute the approximated p-value = % il (A<l

The parametric bootstrap procedure is analogous to the Parametric boot-
strap procedure for the Elliptical and Archimedean copulas as discussed
earlier, except that the Cramer-von Mises test statistic here is applied to

the dependence function of each extreme value copula
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For a semi-parametric model, inference on the parameter estimate was
studied by Genest, Ghoudi and Rivest (1995). The asymptotic distribution

of the parameter estimates is given by
VT (O — 0%) —* N(0, Vsgparr) (3.31)

where

Vispur = AcrXorAct (3.32)

1s the asymptotic covariance matrix. According to Chen and Fan (2006),

Acr and Yo can be estimated by

. 1 I 32n(c(iy, 0); ©)
A = —— —— .
CRT =~ tzzl 5650 (3.33)
. A
YoF = - > sis; (3.34)
t=1
where
o R ..
StSQ = %ZH(C(ﬂt, ?Ajt>, @) + Pt + Qt (335)
.1 I 2n(c(ds, 0s); ©)
= — Hu < ugh —u .
b= S:%# 900y (1{aiy < s} — 1) (3.36)
.1 I 2 9 s
OUnfel::9:)i0) (g 5 < 51— ) (3.37)

for bivariate copula.

For inferences on the tail coefficients, since each of the above tail coeffi-
cient is a function of the parameter estimate(s), the Delta method (Oehlert,
1992) can be employed to calculate the standard error. If the tail coeffi-
cient is a function of one parameter estimate, as for many of the copulas

A

mentioned above, we denote g(6) the tail coefficient which is a function of
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0; then, the standard error of ¢(0) will be se(g(0)) = se(é)ag). Finally,

C e 0 _a
the statistic is z = wole@) N(0,1).

For our data series, empirical distributions will be used as the marginals.
We denote U and V the empirical CDF of X and Y respectively. We
showed that the linear and rank correlations between X and Y are nega-
tive. Hence, we shall used some 90° and/or 270° rotated copulas for our
data series. More specifically, Gaussian, Student-t, 90° rotated Gumbel,
90° rotated Clayton, 270° rotated Gumbel, 270° rotated Clayton, 90° ro-
tated Galambos and 90° rotated Husler Reiss copulas will be fitted to the

empirical CDF of X and Y, by using maximum likelihood estimation.

Note that since empirical marginals are used, the model will be semi-
parametric. Goodness of fit tests will be examined by using parametric
bootstrap procedures (Remillard, 2010) (Genest et al., 2011). For Elliptical
and Archimedean copulas, the test statistics will be based on the copula
functions; for extreme value copulas, the dependence functions will be
used to conduct the tests. In addition, delta method (Oehlert, 1992) will
be used to calculate the tail correlation inference statistics and hence the

corresponding p-values.

Table 3.4 shows the summary of the copulas fitted to U and V as well as
the tail coefficients calculated by using the MLE of copula parameters.
First, Student-t has the highest log-likelihood value, and is followed by
90° rotated Gumbel copula. For the copulas that cannot capture the upper

tail coefficient, their log-likelihood values are pretty small.

Second, for the goodness of fit tests by using parametric bootstrap pro-
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Table 3.4: Summary of copula tail coefficients between X and Y

Copula Log-likelihood ~ GoF  Lower Tail Upper Tail
Class value p-value Coefficient Coefficient
Elliptical* Gaussian 1.131 0.302 0 0
P Student-t 4.818 0.8861 0.179 0.179
90° R.Gumbel 2.749 0.9286 0 0.180
Archimedean® 90° R.Clayton 0.443 0.1080 0.005 0
270° R.Gumbel 1.362 0.5050 0.144 0
270° R.Clayton 2.505 0.8056 0 0.094
90° R.Gumbel 2.749 0.513 0 0.180
Extreme 90° R.Galambos 2.219 0.493 0 0.165
Value** 90° R.HuelerReiss 0.967 0.4321 0 0.150
*For these copulas, GoF tests are based on Algorithm 2.1
** For these copulas, GoF tests are based on Algorithm 2.2

cedure (Remillard, 2010) (Genest et al., 2011), the highest p-value goes
to 90° rotated Gumbel copula; this large p-value indicates that we have
very little evidence against the null hypothesis, therefore Gumbel copula
shall not be rejected for our analysis. In addition, Student-t copula also
has a large p-value. Overall, most copulas that can capture an upper tail

dependence have a very significant goodness of fit test p-value.

Since student-t and 90° rotated Gumbel copulas yield the larger log-
likelihood values and p-values, they are chosen for our analysis. However,
our empirical analysis showed that lower tail correlation is O when ¢ is
low enough. Hence, we will only use 90° rotated Gumbel copula for our

forecasting analysis.

Table 3.5 shows the parameter estimate and upper tail coefficient as well
as the corresponding standard errors and p-values. Both p-values are

significantly small, this leads to rejection of both the null hypothesis that
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Table 3.5: Summary of fitted 90° rotated Gumbel copula

H Parameter Upper Tail Coefficient H

Estimate 1.1577 0.18
Standard error  0.07306 0.07498
p-value 0.00001 0.00878

the parameter estimate and upper tail coefficient are O.

Overall, compared to linear and rank correlations, tail coefficients of the
copulas that pass the goodness of fit test are generally larger and significant
at the 5% level. When there is no obvious linear or rank dependence, it is
reasonable to seek for some tail dependence to explain the data for pricing

or forecasting purposes.

Generally, 90° rotated Gumbel copula beats all of the other copulas in
terms of log-likelihood value and goodness of fit test. What is important is
this copula also yields the highest tail coefficient 0.18 and it is significant
at 0.05. Therefore, it is reasonable to choose Gumbel copula for our data
series. Our results seem to imply that a very low mortality rate may be

accompanied by a very high index price.
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Chapter 4

Modified Gumbel Copula

This chapter reviews Gumbel copula from the Archimedean family and
introduces a modified copula which is based on the Archimedean generator
for Gumbel copula. The advantages and significances of using the modified
Gumbel copula will also be discussed. Finally, this newly developed copula
will also be fitted to our data series U and V' and tail coefficients will be

derived and calculated.

4.1 Motivation

Gumbel copula has been chosen for our forecasting analysis. However,
for this copula, there is still room for improvement. In order to under-
stand the modified Gumbel copula, both Gumbel copula and Archimedean
generators shall first be understood. As noted in Chapter 3, all bivari-
ate Archimedean copulas are in the form of C(u,v) = ¢~ (p(u), ¢(v)),
where ¢(t) is the Archimedean generator mapping from [0, 1] to [0, co]. A

strict Archimedean generator satisfies the following characteristics:
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3. ¢(t) is a continuously decreasing function

4. (t) is a convex function

Archimedean generator provides a useful platform for data simulation.
Suppose for a bivariate Archimedean copula with generator (), the

simulation procedure is as follows (Wu, Valdez, & Sherris, 2007):

Algorithm 4.1. Bivariate Archimedean copula simulation procedure

(i) Simulate two random numbers r ~ U(0,1) and s ~ U(0, 1)

(i) Compute ¢ = k~1(r) where k(t) = ¢ — £

(iii) Compute u = ¢ (s ¢(t)) and v = ¢ 1((1 — 5) ©(t))

(iv) Repeat (1) to (ii1) I’ times, receive two sets u and v

Note that u and v have a length of 7’, and their values are between 0
and 1. One can further compute the “raw data” by defining the marginal
distributions of the copula Fx and Fy such that v = Fiy'(u) and y =
Fyl(v).

In addition to the simulation procedure, Archimedean generator can also
be used to calculate theoretical Kendall’s Tau rank correlation (Genest &

MacKay, 1986).

1 o(t)
=1+4 dt 4.1
TC /0 (1) 4.1)
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For Gumbel copula, the Archimedean generator is defined by

o () = (ln(i))e (42)
where 6 > 1. Note that this generator satisfies all of the four characteristics
as discussed above. And hence, as noted in the last chapter and by using the
equation (3.9), the bivariate Gumbel copula is then defined by C§**(u, v) =
e~ (=)’ + (=) )" where 1 < § < 0o. When 6 = 1, the upper tail
coefficient of a bivariate Gumbel copula is 0, and when 6 approaches co
the upper tail coefficient is 1. The lower tail coefficient of a Gumbel copula
does not depend on # and is always 0. In addition, by using equation (4.1),

Kendall’s Tau rank correlation is given by

1
Tou =1 — 0 4.3)

This means that Kendall’s Tau rank correlation also depends on 6. Since

0 > 1, g, 1s between 0 and 1.

In summary, both upper tail and overall dependence are linked to the
only parameter 6. The larger the 6, the larger the upper tail and overall
dependence. In other words, for a Gumbel copula, a higher upper tail
coefficient will be accompanied by a higher rank correlation, and a lower
upper tail coefficient will be accompanied by a lower rank correlation. We
know that, however, this will probably not work for bivariate data series
for which they are only correlated sometimes. For example, a coffee stock
in Japan is not correlated to an oil stock in the US during normal times.
However, during a global economy crisis which lasts for more than a year,

most stocks including these two will go down as a result; hence, these two
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stocks are strongly correlated during these times. Therefore, there exist
some bivariate data series for which the tail dependence is pretty strong
but the overall dependence may be very small. In this case, if Gumbel

copula is used, it will probably not be fitted well.

4.2 Specification

We consider the following innovative copula: a modified generator function

of a bivariate Gumbel copula is given by

" 0
P (t) = (In(7 = (6 = 1))’ (4.4)
where 6§ > 1 and 6 > 0 are the parameters. Note that this generator
function satisfies all of the strict Archimedean generator conditions: it is
continuously decreasing and convex; ¢(1) = 0 and ¢(0) = co. As such, a
modified bivariate Gumbel copula can be constructed by using equation

(3.9):

O () = Beap((In(C—(5-1) "+ (i —(F-1))))+(5-1)

4.5)
Note that if 6 equals 1, then it becomes the original Gumbel copula. In
other words, Gumbel copula is nested under modified Gumbel copula.
Also note that the upper and lower tail coefficients of this copula can be
obtained by using (3.12) and (3.13). It is interesting that the lower tail
coefficient of the modified Gumbel copula is derived to be 0, and the
upper tail coefficient is 2 — 2'/%; these are the same as the upper and lower

tail coefficients of the original Gumbel copula. Details of derivations of
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upper and lower tail coefficients for modified Gumbel copula are shown in

Appendix A.

Furthermore, by using equation (4.1), Kendall’s Tau rank correlation can

also be calculated for modified Gumbel copula, and is given by

TM.Gu = S=17%¢ (4.6)
1— 0=1

b
In other words, 7)., depends on both parameters 6 and 0. We firstly
look at the effect of #. Similar to 7¢,,, the larger the 6, the larger the rank
correlation. However, the effect of § on the correlation is not clear; this
will be discussed in section 3.3. Note that when 0 = 1, this will equal to

1 — % which is the just 7. Finally, the derivation of 7,; ¢, are shown in

Appendix A.

4.3 Comparing Gumbel and Modified

Gumbel Copulas

In order to understand the significance of modified Gumbel copula, one
should firstly understand the differences between Gumbel and modified
Gumbel copulas and the purpose of the second parameter ¢ in the modified

Gumbel copula.

Firstly, we compare the generator of Gumbel and modified Gumbel copulas.
Figure 4.1 displays the Gumbel copula generator function for different 6.
Keep in mind that this is equivalent to a modified Gumbel copula where

0 = 1. Furthermore, Figure 4.2 displays the modified Gumbel generator
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Figure 4.1: Gumbel copula generator function

Generator

function for different 6 but ¢ is fixed at 2. Generally, although the patterns
look the same (that is, the smaller the 6, the faster the generator function
decreases from oo to 1, and the slower it decreases from 1 to 0), one can
easily observe the differences between these two plots. In addition, Figure
4.3 displays the modified Gumbel generator function for different 6 but 0
is fixed at 2. This plot is obviously completely different from the above

two. The smaller the 9, the faster the function decreases from oo to 0.

Secondly, we compare the simulated observations from these two copulas
by using Algorithm 4.1. Figure 4.4 shows the 500 pairs of simulated
observations u and v for different values of the parameter 6. When 6 is 1,
the plot displays no rank or tail dependence. However, when 6 becomes
larger, both upper tail and rank dependence increase, though this effect on

upper tail dependence is more notable.
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Figure 4.2: Modified Gumbel copula generator function, § = 2

Generator

Figure 4.3: Modified Gumbel copula generator function, § = 2

15

10

Generator
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Table 4.1: Sample Spearman’s Rho corresponding to Figure 4.4

# 6 Rank Correlation
1 1 -0.017
1.25 1 0.258
1.5 1 0.436
2 1 0.645
3 1 0.825
5 1 0.933

Figure 4.5 also shows the 500 pairs of simulated observations u and v
for different values of 6, and 6 = 2. Note that the observations of both
Figurers 4.4 and 4.5 are simulated from the same random sets r and s in
Algorithm 4.1. Same as the original Gumbel copula, when € is 1, the tail
dependence is observed to be 0; and when 6 becomes larger, both upper

tail and rank dependence increase as shown in the plots.

The differences between Gumbel copula and modified Gumbel copula are
also interesting. Figure 4.6 shows the 500 pairs of simulated observations
u and v for 6 = 2 and different values J. Always note that if ¢ is 1, then
the modified Gumbel copula reduces to the original Gumbel copula. As
shown in the plots, when @ is fixed at 2, no matter what value of ¢ is,
the theoretical tail coefficient is always 2 — 2!/?. However, the overall
dependence of the bivariate data does decrease when ¢ increases. This can
be further justified in Tables 4.1, 4.2 and 4.3 where the sample Spearman’s
Rho rank correlations or r(u,v) (overall dependence) corresponding to

Figures 4.4, 4.5 and 4.6 are calculated and recorded.
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Figure 4.4: Simulated bivariate observations from Gumbel copula
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Figure 4.5: Simulated bivariate observations from Modified Gumbel copula

with 6 = 2
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Figure 4.6: Simulated bivariate observations from Modified Gumbel copula

with § = 2
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Table 4.2: Sample Spearman’s Rho corresponding to Figure 4.5

# 6 Rank Correlation
1 2 -0.268
1.25 2 0.059
1.5 2 0.274
2 2 0.532
3 2 0.762
5 2 0.906

Table 4.3: Sample Spearman’s Rho corresponding to Figure 4.6

® o6 Rank Correlation
2 05 0.720
2 1 0.645
2 2 0.532
2 3 0.446
2 5 0.317
2 10 0.108

Since there exists evidence that when ¢ increases the overall dependence
will decrease as a result, it is reasonable to also justify the theoreti-
cal Kendall’s Tau rank correlation. Figure 4.7 displays the theoretical
Kendall’s Tau 7, ¢, for different 6. It can be observed that 75, ¢, 1S a
decreasing function of §. However, when 6 increases, the whole function
will be shifted upward. Similarly, Figure 4.8 also displays the theoretical
Kendall’s Tau 7, ¢, for different §; 75/, s an increasing function of 6.

However, when ¢ increases, the whole function will be shifted downward.
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Figure 4.7: Theoretical Kendall’s Tau for modified Gumbel copula
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All in all, for Gumbel copula, when 6 increases, both overall and upper tail
dependence increase. On the other hand, both overall and tail dependence
of a modified Gumbel copula depend on both the parameters ¢ and 9. As 6
increases, both tail and rank dependence increase; however, as ¢ increases,
tail dependence remains the same and overall dependence decreases. While
6 controls both the upper tail and overall dependence, J controls the overall

dependence of the distribution.

One of the reasons we try to observe tail dependence is because there
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Figure 4.8: Theoretical Kendall’s Tau for modified Gumbel copula
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exists no or smaller linear and rank correlations. When the rank correlation
(and probably linear correlation) is larger than or about the same as the
tail correlation, we probably do not need the tail correlation to explain the

data.

With one more parameter in the modified Gumbel copula, one has a greater
chance to determine the “true” distribution of the data with upper tail
dependence. For example, if two stocks are only correlated during good

or bad times (e.g. economic crisis), modified Gumbel copula will be
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Table 4.4: Summary of modified Gumbel copula tail coefficients between
XandY

Copula Log-likelihood ~ GoF  Lower Tail Upper Tail
Class value p-value Coefficient Coefficient
| Innovation*  90° R.M.Gumbel 2.922 0.9995 0 0257 |

’ *For this copulas, GoF test is based on Algorithm 2.1 ‘

very useful in this case. However, since Gumbel copula is nested under
modified Gumbel copula, one has to conduct some hypothesis tests, such
as log-likelihood ratio test, to determine whether Gumbel copula should

be rejected and hence modified Gumbel copula should be used.

4.4 Fitting Modified Gumbel Copula

For our data series, modified Gumbel copula will be fitted to U and V and
comparisons between the results by using Gumbel and modified Gumbel
copulas will be drawn. Table 4.4 shows the summary of the fitted 90°
rotated modified Gumbel copula. Surprisingly, both log-likelihood value
and goodness of fit test p-value for modified Gumbel copula are larger
than those for Gumbel copula. Moreover, modified Gumbel copula yields

a larger upper tail coefficient.

Since Gumbel copula is nested under modified Gumbel copula, log-
likelihood test shall be conducted to determine if Gumbel copula shall
be rejected for our analysis. By using the log-likelihood value of both
copulas fitted to our data, the log-likelihood ratio test yields a large p-value

0.73, and hence the null hypothesis that the data follows a Gumbel copula
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distribution shall not be rejected.

Nevertheless, in order to draw some comparisons, both Gumbel and mod-
ified Gumbel copulas will be used to forecast data series which will be
discussed in the next chapter. Since modified Gumbel copula is not pre-
ferred to Gumbel copula based on the log-likelihood ratio test, we expect

that these two copulas will yield very close results.
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Chapter 5

Equity-linked Insurance

This chapter specifies the equity-linked insurance to be used for payoffs
calculations. Our analysis show that by using the forecasted mortality
and index price generated from copulas, the expected value of payoffs,
variance and reserve are all smaller than those by using independent data

series.

5.1 Forecast of index Price and mortality

Once the copulas are determined for the data series, bivariate observations
can be generated and index price as well as mortality rate can be forecasted.
Then, insurance payoffs can be calculated by using the forecasted data

series. The simulation algorithm is as follows:

Algorithm 5.1. Forecast of index price and mortality rate

1. Simulate 300 pairs of bivariate observations U and V from the

Gumbel and modified Gumbel copulas by using Algorithm 4.1.
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In addition, simulate 300 pairs of bivariate independent observations

U and V from Unif(0,1).

2. Transform these simulated observations to X and ¥ by using empir-

ical distribution functions of the original data X and Y.

3. Calculate both forecasted Log mortality and Log index recursively

by using the time series equations.

4. Repeat Step 1 to Step 3 a total of 5000 times to obtain 5000 paths of

forecasted data series.

Both Gumbel and modified Gumbel copulas will be used to simulate
bivariate observations (U, V) by using Algorithm 4.1. In addition, in
order to draw comparisons between dependent and independent data series,
bivariate independent observations (U : V) will also be simulated from
Unif(0,1). Then, these observations are to be transformed to (X,Y)
by using the empirical CDF of X and Y respectively. Finally, one can
calculate the forecasted Log mortality as well as forecasted Log index

recursively by using the time series equations.

Note that outlier models are not necessary in this case. As mentioned
earlier, an outlier model is a combination of an ARIMA model and outliers,
and the inputs X and Y for copulas are é;, the residuals inclusive of outlier
effects of the outlier model. Since é; is the residuals obtained from the
ARIMA model fitted to the original data series (subject to the external iter-
ation cycle), the ARIMA models with the corresponding parameters fitted

to Log mortality and Log index shall be used for XandY respectively.
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That 1s, ARIMA(1,1,2) will be used to calculate forecasted Log mortality,
and ARIMA(0,1,0) will be used to calculate forecasted Log index.

Also, by taking exponential functions on forecasted Log mortality and Log
index, forecasted mortality as well as index can then be drawn. These
two forecasted data series will be used to calculate the payoffs of an

equity-linked insurance.

For the case by using Gumbel copula, Figure 5.1 shows the mean, 90%
and 95% confidence interval of the 5000 paths of forecasted LLog mortality
as well as Log index from year 2011 to 2110. Generally, it can be observed
from the plots that the forecasted Log mortality exponentially decreases

and Log index linearly increases throughout the time.

Similarly, for the case by using modified Gumbel copula, the forecasted
data series are shown in Figures 5.2. In addition, by using bivariate inde-
pendent observations, the forecasted data series are displayed in Figures
5.3. Generally, these three figures look very much the same and one can

hardly tell the differences.
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Figure 5.1: Forecasted Log mortality and Log index, with mean in blue,
90% CI in yellow, and 95% CI in red by using Gumbel copula
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Figure 5.2: Forecasted Log mortality and Log index, with mean in blue,
90% CI in yellow, and 95% CI in red by using modified Gumbel copula
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Figure 5.3: Forecasted Log mortality and Log index, with mean in blue,
90% CI in yellow, and 95% CI in red by using independent observations
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5.2 An lllustrative Equity-linked

Insurance

The price of an equity-linked insurance is determined by using at least two
variables: portfolio or index returns, and mortality rate. For example, the
payoff of an equity-linked insurance at time ¢ (Bernard & Lemieux, 2008)

is defined by
St

So

where « i1s a ratio regulated by law, P is the single premium or based rate,

Vi = aP maz((1+9)", (5)") (5.1)

g 1s the minimum guaranteed rate, ¢ is the time the insurance benefit is
paid, k is the participation rate, and S; and S are the stock or index price

at time ¢ and O respectively.

We will use an equity-linked insurance for which the payoff is a death
benefit payable at the end of the year of death. First, for our case, since
we use mortality data of the age group “55 to 64 years” to forecast future
mortality rates, these forecasted data should only be used for those who
fall in the age group “55 to 64 years”. For example, in 2021, a 55-year-old
shall be subject to the forecasted mortality rate of 2021. Next year, she
will turn 56 and hence will still be in the age group “55 to 64 years”;
therefore, she will be subject to the forecasted mortality rate of 2022. This
will continue until she reaches 65 for which she is no longer in the age
group “55 to 64 years”. Hence, the forecasted mortality rate is year specific
instead of age specific. Due to this reason, we propose to calculate the

payoffs of a 10-year term equity-linked insurance contract.
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Second, if copulas that can capture upper and lower tail dependence are
used to simulate the observations, then we assume that there exists some
dependence between the two data series mortality and index. We define
EPV the expected present value of insurance payoffs. We will use the
following to compute EPV; we consider an insurance where the death
benefit is linked to the equity return and payable at the end of the year of

death:

Algorithm 5.2. EPV of insurance portfolio calculation.

1. Suppose at the beginning of year 7”, we have N = 10000 poli-
cyholders aged 55 in the portfolio, then the expected number of

policyholders who will survive ¢ — 1 years and die in the following

year 18 N 1 _1Ps5i 17 4557 +i—1

2. For each of the 5000 forecast paths, calculate the conditional ex-

pected present value of the payoffs. That is, for s = 1, 2, ..., 5000,

10 S v
EPV; =Y e aP maz((1+g)", (STJFH)k) N _1ps5i.17 Q55617 +1—1
=1 T -1
(5.2)

3. Calculate the sample mean £ PV by taking the average of the 5000

EPV'’s.
EPV = - 3 Epv 5.3
~ 5000 ; ' (5-3)

Note that S; 771 denotes the forecasted index price of year 77 — 1 of
the *" forecast path, ;_1ps5:7 @55, 1+¢—1 denotes the probability that a

55-year-old in year 1" will survive ¢ — 1 years and die in the following
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year, calculated by using the forecasted mortality rate of the i’ forecast
path. According to Bernard and Lemieux (2008), the benchmark values

are P =100, « = 0.85,r = 0.04, g = 0.02, and £ = 0.9.

In order to calculate the required fund for the insurance portfolio, apart
from calculating the mean of the 5000 EPV’s, one can also obtain 95th
quantile (F PV g5) of the sample such that

5000

1
*5000[2 1(EPV; < EPVjg5)] = 0.95 (5.4)
i=1

More specifically, EPV{ g5 will be the minimum fund to be reserved
such that the probability that the future loss will be well covered is 95%.
Alternatively, one can firstly calculate the variance of the sample mean.
Then, by using normal approximation and for a 95% confidence level, the
required fund to be reserved such that the future loss will be well covered
can be obtained:

1 1 5000 , )
Var(EPV) = — [ —— S (EPV)? — EPV 5.5
ar(BPV) = =556 5000 izzl( ) 65

Fund = EPV 4+1.96 \Var(EPV) (5.6)

5.3 Numerical Results

We will still use Algorithm 5.2 to calculate the £ PV of insurance port-
folio payoffs. By using Gumbel copula, modified Gumbel copula and
independent observations, Figure 5.4 shows the E PV of payoffs of an
equity-linked insurance portfolio being sold to a group of 10,000 55-year-
olds in 77 = 2011, 2012, ..., 2025. It can be observed, the EPV by using
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Figure 5.4: EPV of an equity-linked insurance portfolio being sold to
a group of 10,000 55-year-olds in 7" = 2011, 2012, ..., 2025, by using
copulas and independent observations
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any of the copulas is always smaller, and the difference is increasing over

time.

Both Gumbel and modified Gumbel copulas fitted to our data yield a large
goodness of fit test p-value. Furthermore, the upper tail dependence of

Gumbel copula is statistically significant at 0.05. This means that a very
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low mortality will be accompanied by a very high index price. However,
these effects on the portfolio payoff is ambiguous. Firstly, if mortality
decreases, then the £ PV of portfolio payoffs will also decrease. Secondly,
if index price (return) increases, then the E PV of portfolio will increase
as well. Therefore, if a low mortality is accompanied by a high index
price in a particular year, then the effects (decrease and increase in EPV
of portfolio payoffs) may cancel out. But if the magnitude of increase in
index price is larger than that of decrease in mortality, then the EPV of

portfolio payoffs will go up, and vice versa.

Nevertheless, theoretically, the expected value of multiplications of two
variables is equal to multiplication of the expected values plus a covari-
ance. For our case, this covariance will be negative since index price and
mortality rate are negatively dependent. Therefore, it is no surprise that
the EPV by using Gumbel or modified Gumbel copula is smaller than
that by using independent observations. However, such reasons may be

too abstract.

To understand such effects in a more concrete way, mean of forecasted
mortality and forecasted index price, as well as correlation between fore-
casted mortality and forecasted index price calculated by using the 5000
forecast paths for each of the years of 7/ = 2011,2012,...,2025 are
shown in Table 5.1. It can be easily observed that for every year, Gumbel
copula, modified Gumbel copula and independent observations all yield
the same mean forecasted mortality. In addition, Gumbel copula, modified

Gumbel copula and independent observations all yield very close mean
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Table 5.1: Mean of forecasted mortality, mean of forecasted index,
correlation between forecasted mortality and forecasted index, calcu-
lated by using 5000 paths of forecasted data for each of the year of
T =2011,2012,...,2025

|

Mean mortality ‘ Mean index ‘ Cor(mortality,index) ‘

Year\ Indep  Gumbel M.Gumbel\ Indep Gumbel M.Gumbel\ Indep Gumbel M.Gumbel H

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

0.00846 0.00846  0.00846 | 12395.27 12429.86 12383.88 | -0.0255 -0.2288 -0.2219
0.00832 0.00832  0.00833 13239.38 13336.00 13217.87 | -0.0313 -0.2243 -0.1937
0.00819 0.00819  0.00820 | 14088.89 14249.62 14110.12 | -0.0160 -0.2237 -0.2057
0.00806 0.00806  0.00806 | 15083.58 15185.50 15123.25 | 0.0004 -0.2014 -0.2276
0.00793 0.00793  0.00792 | 16128.11 16203.51 16170.04 | -0.0014 -0.2073 -0.2258
0.00780 0.00780  0.00780 | 17325.55 17377.56 17262.87 | -0.0059 -0.2150 -0.2255
0.00767 0.00767  0.00767 | 18574.02 18651.38 18453.91 | 0.0055 -0.2181 -0.2201
0.00755 0.00754  0.00754 | 19962.78 19891.54 19777.66 | -0.0059 -0.2238 -0.2241
0.00743 0.00742  0.00742 | 21301.93 21196.75 21071.84 | 0.0058 -0.2197 -0.2134
0.00730 0.00729  0.00729 | 22778.56 22659.30 22435.82 | 0.0048 -0.2066 -0.2195
0.00719 0.00717  0.00717 | 24328.17 24413.54 24072.86 | 0.0009 -0.2093 -0.2122
0.00706  0.00705  0.00705 | 25945.16 25967.26  25804.33 | -0.0082 -0.1953 -0.1967
0.00694 0.00693  0.00694 | 27742.88 27801.46 27562.61 | -0.0056 -0.1909 -0.2112
0.00683 0.00682  0.00682 | 29904.77 29681.20 29551.28 | -0.0103 -0.1927 -0.2101
0.00671 0.00670  0.00670 | 32025.92 31695.83 31569.81 | -0.0178 -0.1959 -0.1906

forecasted index price and the differences can be neglected. However, by
using Gumbel or modified Gumbel copula, the correlation between the
forecasted mortality and index is much smaller than that by using indepen-
dent observations. This means that it is the negative covariance that makes

up the largest portion of differences between the £/ PV’s.

However, note that the future values of index price and mortality also
depend on the historical values. That is, they are time series data instead of
variables. In addition, also note that all PV ’s are decreasing over time,
this is due to the fact that forecasted mortality will continue to decrease

over time but annual return of forecasted index will remain stationary.

Figures 5.5 shows the 95" quantiles of the 5000 E'PV’s. It can be observed
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Figure 5.5: 95" quantile of the sample corresponding to Figure 5.4
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that the 95" quantile by using any of the copula is always smaller than
that by using independent observations, indicating that the required fund

to be reserved is smaller.

It would be also interesting to compare the variances (or standard de-
viations) of the sample mean. Figure 5.6 shows the variance of E PV
corresponding to Figure 5.4. It can be easily observed that the variance

by using independent observations is always larger than that by using
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Figure 5.6: Variance of PV corresponding to Figure 5.4
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Gumbel or modified Gumbel copula. Such result implies that, by assuming
negatively dependent mortality and index price, not only the expected loss

1s reduced, the corresponding risk shall be smaller.

Finally, by using normal approximation, the required fund to be reserved
such that the insurer is 95% confident that the loss will be well covered is
also shown in Figures 5.7. With a smaller expected value and variance of
insurance payoffs by using Gumbel or modified Gumbel copula, it is no
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Figure 5.7: Required fund corresponding to Figure 5.4, by using normal
approximation for a 95% confidence level
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doubt that the required fund is also smaller than that by using independent

observations.
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Chapter 6

Conclusion

Time series models that can be used to model human mortality include
ARIMA/GARCH model, Lee-Carter model (Lee and Carter, 1992), and
general time-series outlier model. The general time-series outlier model is
shown to be preferred for our time series data Log American mortality for
age group “55 to 64 years” and Log DJIA index price and hence shall be

used to obtain the residuals.

In order to capture the tail dependence between the two data series, residu-
als inclusive of outlier effects should be obtained and used. Then, copulas
can be fitted to the empirical CDF of residuals and correlations as well as
tail coefficients can be obtained. It has been shown that 90° rotated Gumbel
copulas is fitted very well to the data. Furthermore, both the parameter
estimate (1.1577) and upper tail correlation (0.18) of the fitted Gumbel
copula are statistically significant. At this point, it can be assumed that

there exists an upper tail dependence between the two data series.

In addition, a new copula, modified Gumbel copula, has been developed

based on the Archimedean generator of Gumbel copula. 90° rotated Mod-
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ified Gumbel copula is also fitted very well to the data. The upper tail
coefficient is determined to be 0.257, which is higher than that of Gumbel
copula. However, Gumbel copula is nested under modified Gumbel copula;
by using the log-likelihood ratio test, Gumbel copula was not rejected at
0.05. Nevertheless, both Gumbel and modified Gumbel copulas are used

to forecast Log mortality and Log index.

Once the joint distributions are determined, bivariate observations can
be simulated and time series data can be forecasted. Then, the payoffs
of an equity-linked insurance can be calculated. In order to highlight
the dependence between index price and mortality, one can compare the
differences between the equity-linked insurance payoffs by using simulated
observations from copulas and independent observations (see Algorithm

5.1).

Our analysis shows that the £ PV by using Gumbel copula and the £ PV
by using bivariate independent observations do differ, but the difference
is not really large. Similarly, the difference between the £ PV by using
modified Gumbel copula and the £ PV by using bivariate independent
observations is initially larger but gradually decreasing over time. Nev-
ertheless, the £ PV by using any of the copulas is always smaller than
that by using independent observations, and this is due to the negative
covariance between the forecasted index price and mortality when copulas

are used.

Note that when mortality decreases, the payoff of the equity-linked insur-

ance also decreases; and when index price (return) increases, the payoff of

77



equity-linked insurance increases too. Finally, if a very low mortality is
accompanied by a very high index price, then these effects (increase and
decrease in the payoff) may eventually be canceled out. However, this will
not be always the case. If the magnitude of mortality decrease is much
larger than that of index price increase, then the payoffs may be smaller.
On the other hand, if the magnitude of index price increase is much larger
than that of mortality decrease, then the payoffs may be larger. The effects
of low mortality accompanied by high index price (return) on the portfolio

payoffs may be ambiguous.

Nonetheless, our results show that by using the 5000 forecasted data
series for each of the year 77 = 2011, 2012, ... 2025, the mean forecasted
mortality as well as mean forecasted index are very close by using Gumbel
copula, modified Gumbel copula and independent observations. However,
the correlation between the forecasted mortality and index is around 0.2
by using Gumbel or modified Gumbel copula, and 0 by using independent
observations, indicating that the difference between the £ PV’s is due to

the negative dependence between the two data series.

Moreover, both 95% quantile and variance of £ PV are much smaller than
those by using independent observations respectively, indicating that the
risk of underwriting is also smaller. Finally, by either using 95% quantile or
using normal approximation, the required funds to be reserved such that the
future loss will be well covered are also smaller by using copulas. Though,
these values tend to be very close to each other as we have shown that

Gumbel copula was not rejected based on the log-likelihood test conducted
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earlier.

In conclusion, if mortality and index price were to follow modified Gumbel
or Gumbel copula for which they are dependent, then one should be cau-
tious of the pricing and reserving methods as the dependence between the
two data series will reduce insurance payoffs as well as the corresponding

risk.
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Appendix A

Modified Gumbel Copula

This appendix shows the derivations of both upper and lower tail coefficient

as well as Kendall’s Tau of a modified Gumbel copula.

A.1 Upper and Lower Tail Coefficients

Following (4.5), we have the equation for modified Gumbel copula. We
firstly replace both u and v by ¢, and then take first derivative on the
copula with respect to g. Then, ¢ shall be replaced by 1 and the upper tail
coefficient can be derived. For lower tail coefficient, first derivative on the
copula with respect to ¢ is not needed as tail coefficient can be directly

calculated by replacing ¢ by 1.

Clu,v) = §(elG=E=DI G- 4 (5 1))~

C(q,q) = 5(6([ln(g—(5—1))]9+[ln(§—(5—1))]9)”“’ +(5—1))"
= 5PN (5 1))

_ 5(6(21/9[m(g—(5—1))]) (5 — 1))—1
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C'(q,q)

C'(1,1)

— 6(6(21/9171(%7(571))) L (5—1)"

1/6
)

— 5(6(1n(g—(5—1))
J

+0-1)"

= 8(C - @-1)"" + (-1

q

J

—5((= = (-1 (5 1) 22V (5~ (6~
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J
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q

J
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q—>1* 1 — q
= lim —2+Cg.9)
q—1- —1
= 22!
_ i 929
q—07t q
I 0 1
= lim 1
0t (2 —(5-1))2" —(6-1) ¢
I 0 1
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A.2 Kendall’s Tau Rank Correlation

By using equation (3.1), theoretical Kendall’s Tau rank correlation can be
calculated for every Archimedean copula. For modified Gumbel copula,
¢'(t) shall be calculated and then the integral can be solved.

olt) = (n(© — (- 1))’

¢'(t) X
L o(t)
o = 144 o
Hin(§ = (6-1)) (3= (6 =1)) (=)
= 144 i dt
—6*In(0) + 6 — 1
= s
B 1 4+4=2 e §#1
1 -1 5=1

**When 0 = 1, limit needs to be applied. That is,

—6%In(d) + 6 — 1 —6%1In(d) + 6 — 1

) = 1+ lim(4 66— 120 )

lim(1 + 4
0—1

6(5—1)20 i
B ., =20In(6)—-6+1
A S T
B ., —2=2In(d) -1
DR Ty —
_ 1
9
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