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ABSTRACT

In this work we consider the constraints imposed on the
topological structure of a topological space X by various
order-theoretic properties of the poset (B,<), where B is an
open base for X. Given a space X with an open base B such
that every fixed antichain of (B,c) is finite, we prove that
X is hereditarily metacompact. if for every point x of X
there is a positive integer n such that every antichain of
((@)X,C) has at most n elements, then we prove X has a
Noetherian base with the same pfoperty. If in addition X is
a B-space in which points.are Gé's, we proﬁe X is
developable. We also characterize the regular ccc spaces X
which have a base B such that the fixed antichains of (B,c)

have at most n elements, for some integer n.
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CHAPTER I

INTRODUCTION

All topological spaces are assumed to be T1. We will refer
to a base for the open subsets of a topological space as a

"base". By a "local base" in a space X we mean a family F

of open subsets of X such that there exists an x € X for

which F is a neighborhood base at x.

We will represent a cardinal by the minimal ordinal of that
cardinality. Greek letters are used to denote ordinals.
The symbols "w" and "w," denote the first two infinite

cardinals. The cardinality of a set X is denoted by |X]|.

For a given base B of a space X we are interested in the
partially ordered set (B,c). We will need the following
notation and terminology for partially ordered sets

(posets).

Let (P,<) be a partially ordered set. If p and q are two

elements of P then p is comparable with q if p < g or q < p.

Two elements are incomparable if they are not comparable.

Two elements p and q of P are compatible in P if there

exists an r € P such that p < r and q < r.

A subset A of P is an antichain if every two members of A



are incomparable. A subset C of P is a chain if every two
members of C are comparable. A poset is directed if every

two elements are compatible.

A partially ordered set (P,s<) is Noetherian iff every chain

of P has a maximal element. An equivalent definition is: A’
poset (P,<) is Noetherian iff every chain of P is
well-ordered by ">". The following lemma, in particular,
characterizes Noetherian posets with only finite antichains

as those posets in which every non-empty subset has at least

one, and at most finitely many, maximal elements.

1.1 Lemma [LN] Let (P,<) be a poset. The following are

equivalent.
(i) P is Noetherian and every antichain has cardinaliﬁy at
most «.
(ii) Given a subset Q of P, there is a subset Q° of Q such
that every member of Q is less than or equal to some

member of Q°, and |]Q°] < k. O

The posets that interest us are the posets in which every
antichain is finite or in which there is an integer n such
that every antichain has at most n elements. The following

two theorems are of prime importance for these posets.

1.2 Theorem [D]l If (P,<) is a poset and k £ w is such that

every antichain has at most k elements then P can be



expressed as the union of at most k chains of P. [
1.3 Theorem [ET],[P] If P is a poset such that every
antichain is finite, then P can be expressed as the union of

finitely many directed subsets. 0O

1.4 Lemma If P is a poset whose antichains are finite then

there is a chain of P with cardinality |P}.

Proof Erdos’ theorem is useful here (see [J] for further
details on Erdods” theorem). We will partition the two
element subsets of P into two sets. Let set I contain the
two element subsets with comparable elements. Let set II
contain the two element antichains of P. Since P has no
infinite antichains, there does not exist an infinite subset
H of P, all of whose two element subsets are members of set
II. Therefore if k¥ = |P|, Erdds’ theorem asserﬁs that

there is a subset H of P of cardinality x such that every
two element subset of H is a member of set I. Hence H is a

chain of P with cardinality x. O

If X is a set and B is a family of subsets of X then we say

B is an antichain, a chain, Noetherian, or directed if the

partially ordered set (B,c) satisfies the respective

property.



Let B be a family of subsets of a set X. For x ¢ X, denote
the family {B € B: x € B} by (Q)X. Define St(x,B), the star
of B at x, to be u(B),. If K c X, let Bly denote the set

{BnK: B e B}. B is fixed if nB = ¢.

The symbol "c" will denote set inclusion, but will not

necessarily denote proper set inclusion.

1.5 Definition Let x be a cardinal. The family B of subsets

of a set X has rank <k if every fixed antichain of B has
less than « members. If x € uB, define rx(ﬁ) to be

sup{|4]: 4 < (B), is an antichainl.

Let n be a positive in£eger. Let B be.a family of subsets
of a set X. We will consider the expression "rank sn" to be
equivalent to the expression "rank <n+1". We say B has

rank n, if B has rank <n but not rank <n. We define B to

have finite rank if there is =a positive integer such that B

has rank sn. B has point-finite rank if, for every x & uB,

rx(g) is finite. B has subinfinite rank if B has rank <w,

The concept of rank was defined by Nagata [Nal. Subinfinite
rank and point-finite rank were introduced in [GNJ] as

generalizations of finite rank.

We will discuss the properties of spaces which have bases of



finite, point-finite, or subinfinite rank. Some common
examples of spaces with bases with these properties are
given in [GN]. They include the Pixley-Roy hyperspace FL[R]
of the real line which has a base of point-finite rank but
not a base of finite rank, and the Sorgenfrey line which has
a base of subinfinite rank but not a base of point-finite

rank [GNJ].

Now we will define some common topological properties.

Let X be a topological space and U a family of subsets of X.

A family ¥V of subsets is a partial refinement of U if every

member of ¥ is a subset of some member of y. A family y is

a refinement of g if y is a partial refinement of U and in

addition vV = ul. The family y is point-finite if every
point of X is contained in at most finitely many members of

U. A space X is metacompact if every open cover of X has a

point-finite refinement. A family U is irreducible if every

member of U contains a point not in any other member of U.
The intersection of a decreasing family of subcovers of a
point-finite cover is a cover, so by Zorn’s lemma, every

point-finite cover contains an irreducible subcover.

The main result of Chapter II States that a space with a

base of subinfinite rank is metacompact.

This generalizes the result: Every space with a base of



point-~finite rank is metacompact [GNJ].

Every regular countably compact metacompact space is compact
and every separable metacompact space is Lindeldf.

Therefore it becomes clear that a countably compact space
with a base of subinfinite rank is compact [G] and a
separable space with a base of subinfinite rank is Lindelof

[G].

In Chapter III we study spaces with bases of finite or
point-finite rank. It is known [Ny3] that a space with a
base of rank 1 has a Noetherian base of rank 1. It has been
asked by Nyikos in [GN1, [LN], and [Ny4] whether every space
with a base of point-finite rank has a Noetherian base of
point—finite rank. In Chapter ITI we give an affirmative
answer. With this we can find simpler proofs for many
theorems on spaces with bases of point-finite rank. 1In
particular, we can immediately see that every space with a

base of point-finite rank is metacompact.
Rank has relevance to metrization and dimension theory, as
illustrated by the following theoremn.

1.6 Theorem [Nal,[Ar1] Let X be metrizable. Then X has a

base of rank n iff dim X = n-1. O



There are several important metrization theorems for spaces

Wwith bases of finite or point-finite rank.

Arhangel “skii proved that a compact space with a base of
rank 1 is metrizable [Ar2l], and twelve years later this was

extended as follows:

1.7 Theorem [GN] A compact space with a base of point-finite

rank is metrizable. [

We now present three classes of spaces, each of which

contains the compact spaces and the metrizable spaces.

1.8 Definition [Nm] A sequence {Ei: i < w} of locally

finite closed covers of a space X is called a spectral

I-sequence for X if for every sequence {xi: i< w} < X and
x & X such that x; ¢ n(Ei)X, then {x;: i < w} has a cluster
point. A space X which has a spectral I-sequence is call a

I-space.

1.9 Definition [Bol A space X is a wA-space if there is a

sequence {Qi: i < w} of open covers of X such that whenever
x € X and X; € St(x,gi) for each i, then {xi: i < w} has a

cluster point.

1.10 Definition [Ho1l A B-space is a space in which there

is associated to each point x and each positive integer n an



open neighborhood g(n,x) of x such that if {xn: n < w} is a
sequence in X and n{g(n,x ): n < v} # ¢, then {x : n < o}

has a cluster point. The function g from w x X to the

topology of X is called a g-~function.

Eﬁery wA-space or IL-space is a B-space [HoZ2].

A well-known generalization of a metric space is a

developable space.

1.11 Definition A space X is developable if there exists a

sequence {Qi: i < w} of open covers of X such that for each

point x ¢ X, {St(x,gi): i < w} is a local base for x in X.

A regular developable space is also called a Moore space.

Although a first countable regular B-space with a base of
point-finite rank may not be metrizable, in Chapter IV we

show that it is at least developable.

The final result of Chapter IV characterizes the regular ccc

space which have a base of finite rank.

10



CHAPTER II
THE METACOMPACTNESS OF SPACES WITH BASES

OF SUBINIFINITE RANK

Recall that a family U of subsets of a space X has

subinfinite rank iff every fixed antichain of U is finite.

In this chapter we show that every space with a base of
subinfinite rank is hereditarily metacompact. Some of the
interesting pfoperties that spaces with a base of
subinfinite rank are known to possess can be accounted for
by the fact that these spaces are hereditarily metacompact.
For example, it has been shown that a countably compact
space with a base of subinfinite rénk is compact aﬁd a
separable space with a base of subinfinite rank is

hereditarily Lindeldf [G].

2.1 Definition [Aul If U is a family of subsets of X then

M c U is maximally distinguished with respect to U (max.

dist. wrt. U) if every member of U contains at most one
element of M and M is maximal in the poset (ordered by
inclusion) of subsets of ulU which satisfy this property.

The following lemmata are easily established.

2.2 Lemma If U is a family of subsets of a set X then there

11



exists a maximally distinguished set with respect to . [

2.3 Lemma Let U be a family of subsets of X with
subinfinite rank. If M is max. dist. wrt. U then

{St(x,U): x € M} is point-finite. @O

2.4 Theorem Let X have a base B of subinfinite rank. Then

X is hereditarily metacompact.

Proof Let W be a family of open sets of X. It is
sufficient to show that ¥ has an open point-finite

refinement.

Choose a family {ﬁn: n < w} of subsets of B and a family
{Mn: n < w} of subsets of X as follows:
(1) By = {B € B: Bc W for some W & ¥}
and for every n < wo,
(ii) Mn is max. dist. wrt. En

(iii) B

B ,,q = 1B ¢ By B on U{Mj: J £ n} = ¢}

We will first show by induction that U{Mj: J £ k} is closed

in ul for every integer k. Assume U{Mj: J < k} is closed in
Ul . QO is a base for the points in ul{, so by (iii) uak =

UK \ U{Mj: J < k}. Every element of Qk contains at most one
element of Mk’ S0 Mk is closed in Uﬁk. Therefore

M v (VE O\ UB) = oMz g < keld 'is closed in UK. The

induction is complete.

12 VR



,13,

For all n < w and x ¢ Mn’ it is possible by theorem 1.3 to
find an integer kx and decompose (ﬁn)X into a family

{c

Cy 3¢ i< kx} of finitely many directed subsets. For every
y

n < w and x e Mn we will define a finite family

{Vx,i: i« kX} of open sets. If ng,i © W for some W & W,
i c i c. ..

then define Vx, to be U-x,i’ otherwise choose Vx,i € “,i

Consider the set'{Vx’i: X € U{Mn: n < wl, i< kx}. We have

constructed this to be a partial refinement of K, in fact,
we will be able to show it contains a point-finite

refinement of ¥.

Define {V : n < w} as follows:
-1l

(a) Yy = {VX 5

3

X € Mg, 1 < kX} |

() Vo,q = {Vx,i: x € M 4, 1<k, and Vx,i ¢ u{uzj: jsn} }
We claim y = u{zn: n < w} is a point-finite refinement of K.
We have already noted that y is a partial fefinement of W,

and now we will show ¥ is a refinement of K.

Let us prove ¥ is at least a cover of Mn for every n < o,
Suppose x € M . If Vx,O € Zn then x € UV and if Vx,O 4 Kn
then by (b) x = Voo < U{Kj: J < n}. Assume ¥V is not a

b
cover of UK; we will arrive at a contradiction. Let

z € UW \ u¥. We have noted that z ¥¢ U{Mn: n < w}. Since

UK \

Ugn = U{Mj: J < n}, we have z ¢ uﬁn for all n < w.



1y

By induction we will choose {Un: n < w} such that:

(1) z ¢ Un and Un € (En)x for some x ¢ Mn

(2) U, ¢ Uj for all j < n.

Suppose {Uj: J < n} satisfies (1) and (2). The set uB_
contains z, so by the maximality of Mn, there exists x ¢ Mn
such that z € U(Qn)x. There is an i < kx such that

zeu .. Since V_ . < uvful.: j < n}or V_ . € ¥ , we have
X,1 x,1i J X,i n

z ¢ Vy j- Therefore V. ; # uC, ; and by the definition of

v we can conclude that for all W e W, uQX i £ W. In

X,i’ ’

particular, for all j < n, UQX i -4 Uj’ For each j < n, we
. ’

can choose Uj € gx’i so that Uj ¢ Uj' Since gx,i is

directed we can choose Un € QX 5 which contains {z} and each
b4

U’

3 J < n. Then {Uj: J £ n} satisfies (1) and (2).

Let {Un: n < w} satisfy (1) and (2). For all n < w we have
Un n Mn Z ¢. If n < m, then by condition (iii) of the
definition of Bys Uy n M, = ¢, so U, ¢ U,. Condition (2)
above states U, ¢ U,, therefore the elements of {Un: n < w}

c (B)Z are pairwise incomparable, which is a contradiction.

Therefore ¥V is a refinement of K.

Next we will show the countable family {uzn: n < w} is
point-finite. Let z ¢ uV and define I = {n: z ¢ uzn}. For
each n € I we will choose Un e (Qn)z such that Un < ¥, but

for all i < n, Un -4 uzi. For each n € I choose Vn € Kn such

that z ¢ Vn. Ir Vn € §n then define Un to be Vn' Otherwise



Vn = Ul for some directed set C in (Qn)x, where x « Mn' By
the definition of Kn’ uC ¢ uzi for i < n. We can choose

U e ¢ such that z € U and for each i € n n I, we can choose
U € ¢ such that Ui -4 uzi. Since ¢ is directed we can

1

choose Un e ¢ which contains U and Ui, iennlI.

Therefore if n and m are members of I and n < m, then

Un n Mn Z ¢, while Um n Mn = ¢, and Um & Uzn while Un c ul

0
Therefore {Un: ne I} c (2)Z has pairwise incomparable
elements, and since B has subinfinite rank, I is finite.
Therefore |{n: z ¢ Uzn}l < w; in other words, {uzn: n < w}

is point-finite.

Finally we can prove J = u{zn: n < w}l is point-finite.

Since {uzn: n < w} is point-finite it will suffice to show
that each Kn is point-finite. Each member of the family Kn
contains an element of M, so v, o= u{(Kn)X: X € Mn}. The
family {St(x,gn): X € Mn} is point-finite by lemma 2.3 and
since for x e Mn’ St(x,zn) c St(x,ﬁn), the family

{St(x,Kn): X € Mn} is point-finite. For each x e Mn the set

(I’.n)X c {V i < k,} is finite, therefore u{(¥ )t x e M)

X,i°

is point-finite. 0

G. Grabner characterized regular metacompact spaces as those

regular spaces in which every open cover has an w-Noetherian

refinement (a family U is w-Noetherian if every well-ordered

15



strictly increasing chain in gy is at most. countable) [FG].
It is not true that a space in which every open cover has
refinement of subinfinite rank is metacompact. The space u,
with the order topology is not metacompact, though every

open cover of w, has a refinement of rank 1.

We will now present a characterization of meftacompact

developable spaces.

2.5 Definition [Ar3] A collection of sets will be called

perfectly decreasing iff it contains a proper subset of each

of its elements.

2.6 Definition [V] A family B of subsets of X has countable

order if whenever C < B is perfectly decreasing and x & ng

then ¢ is a local base for x in X.

2.7 Definition [WW] A space X is 8-refinable if for every

open cover of X there is a countable family {Kn: n < w} of
open refinements such that for every point x ¢ X, (Kn)x is

finite for some n < w.

2.8 Definition [Na2] 4 base B for a space X is uniform, if

for every point x of X and every neighborhood U of X, there

are at most finitely many V ¢ (Q)x which are not a subset of

U [Na2].



The following proposition examines the properties of a

uniform base.

2.9 Proposition A base B is uniform if and only if B is a

Noetherian base of subinfinite rank and countable order.

Proof It is clear that a uniform base is a Noetherian base

of subinfinite rank and countable order.

Assume there exists a space X with a Noetherian base B of
subinfinite rank and countable order which in not uniform.
Choose x € X and a neighborhood U of x such that

{V e (Q)X: V ¢ U} is infinite. By lemma 1.4, this set
contéins an infinite chain. Every infinite Noetherian chain
contains a perfectly decreasing subchain, and any subset of
{V ¢ (ﬁ)x: V & U} is clearly not a local base at x.
Therefore B does not have countable order; a contradiction.

O

The corollary below strengthens theorem 2.10 of [LN].

2.10 Corollary A space is metacompact and developable iff
it has a base of countable order and a base of subinfinite

rank.

Proof A space is develbpable iff it is #®-refinable and has

17
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a base of countable order [WW]. Clearly every metacompact
space 1is e-refinable. By theorem 2.4 every space with a
base of subinfinite rank is metacompact. Therefore a space
with a base of countable order and a base of subinfinite

rank is metacompact and developable.

It can be shown [Al] that a space is metacompact and
developable iff it has a uniform base. Proposition 2.9
shows that a uniform base has subinfinite rank and countable

order. [
We will apply the following theorem in Chapter IV.

2.11 Theorem Let X have a base of subinfinite rank. If
every uncountable subset of X has a countable subset with an
accumulation point, then X \ {pl is Lindeldf for every point

p of X.

Proof Assume there is a p & X such that X \ {p} is not
Lindeldf. Let U be a collection of open subset of X \ {p}
which covers X \ {pl} but which does not have a countable

subcover.

By theorem 2.4, X is hereditarily metacompact, so we can
choose a point-finite refinement ¥V of U. There is an
irreducible subfamily of ¥ which covers X \ {p}, so we will

assume ¥ is irreducible. Let {Va: a < w;} be an uncountable



Hié,,w

subfamily of ¥V and for each e < w, choose a point X in Va
which is not in any other member of V. Then {xa: a < w,} is
closed and discrete in X \ {p} and p is an accumulation

point in X of any uncountable subset of {xa: e < wy},

Since every neighborhood of p contains all but countably
many points of {xa: a < w,} , countably many neighborhoods
of p have uncountably many points in common. Therefore p
does not have a countable local base. Let B be a local base
of subinfinite rank at p. We can inductively choose

{B e <uwle«c (Q)p to satisfy (i) x, ¢ By, and

B
(ii) BB # Ba if a < B < w,.

Since {Ba: a < w,} has no infinite antichains, by lemma 1.4,
there is an uncountable chain C = {Ba: a ¢ A}. By condition
(i1), BB # B for any a < B, C is a well-ordered decreasing
chain. There is a countable subset of {xa: a ¢ A} which has
an accumulation point in X. For every countable subset of
{xu: a € A} there is a member of C which does not intersect
it, therefore {xu: a € A} has an accumulation point in

X\ {p}l. But {xu: a € A} is closed and discrete in X \ {p}.

This contradiction proves that X \ {p} is Lindeldf. O
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CHAPTER III

SPACES WITH BASES OF POINT-FINITE RANK

In this.chapter we prove that a space with a base of
point-finite rank has a Noetherian base of point-finite

rank.

Recall that a family of subsets B of a space X has rank sn
if every fixed antichain of B has at most n members. If
every antichain of (_B_)X has at most n members, we denote
this by writing rx(ﬁ) < n. It will be useful to define a
property which insists that only some of the fixed

antichains of a family B have at most n members.

3.1 Definition Let K be a subset of a space X. A family B

of subsets of X has rank sn at K if rx(g) < n for every

point x of K. 1If (2)X is a local base in X for every point
x of K, and B has rank <n at K, we will say that B is a

base of rank sn at K.

3.2 Definition If B is a family of subsets of a set X, then

B is closed under union of chains if uC € B for every chain

C  B. The closure of B under union of chains is the

minimal subfamily of the power set of X which contains B and

is closed under union of chains.



Given an open base of point-finite rank, we will routinely
take the closure under union of chains. The next lemma

assures us that we will not increase the rank at any point.

3.3 Lemma [Ar2] Let n be a positive integer and let B be a

family of subsets of a set X. If x € X and rx(ﬁ) = n then
the closure of B under union of chains also has rank n at x.
0

It follows from corollary 4.5 of [GN] or theorem 2.4 that a
space with a base of point-finite rank is metacompact. We
require something more for our purposes. Not only do we
want a point-finite refinement of any open cover of a space
with a base of point-finite rank, but we want the refinement
to consist of members from the base. The next lemma says
this can be done if the base is closed under union of

chains. The lemma differs in only a minor way from theorem

4.4 of [GN].

3.4 Lemma Let K © X and let B be a base of rank <n at K in

X. If B is closed under union of chains and ¥ is an open

cover of K in X, then there is a partial refinement U < B of

¥ such that U covers K and QIK is irreducible.

Proof As every family of finite rank also has subinfinite
rank, we know by theorem 2.4 that K is metacompact. Let ¥V

be a partial refinement of ¥ such that KIK is a

21
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point-finite cover of K. Define B” to be {B e B: B n K = ¢,
BcV for some V e Y}. Let ¢ be a chain in B"; we will
prove uC € B°. Without loss of generality we can assume all
members of ¢ have a point x of K in common. Therefore only
finitely many members of ¥V have as a subset a member of c,
so there exists V ¢ ¥ '‘and a cofinal subchain of c, all of
whose elements are subsets of V. Hence ul is a subset of
some member of V, and since uC ¢ B, we have by the

definition of B® that uC ¢ B’.

The union of a maximal chain of B’ is a maximal member of
B’, so every member of B’ is a subset of a maximal member of

4

B .

Let I be the set.of maximal members of B°. Then U is a

. partial refinemént of W which covers K. Since U is an
antichain of B” and B has rank <n at K, every point of K is
in at most n members of U. Every point-finite cover has an
irreducible subcover, so a subcover of U satisfies the

lemma. [

3.5 Definition If B is a local base for x ¢ X, and U is a

neighborhood of x, then define PX(Q,U) to be the supremum of
the set of cardinalities of the antichains in

{B e B: x e B « U}.



If n is an integer, we will call an antichain with exactly n

distinct members, an n-antichain.

3.6 Lemma Let B be a base of rank sn at x ¢ X. If U is a

finite set of neighborhoods of x and rX(Q,U) = n for every

U e U, then rx(g,ng) = n.

Proof For every U € U, we can choose ah n-antichain

Ay < (E)X whose members are subsets of U. There are no
n+l-antichains in U{AUI U e U} since PX(B) < n, so by
theorem 1.2 we write U{AU: U e U} as the union of at most n
chains. Without loss of generality we can assume these
chains are pairwise disjoint. Since U{AU: U € Yy} contains a
n-antichain, our partition consists of exactly n chains.
Define 4 to be the set of minimal members of each of the n.
chains we have chosen. Therefore 4 has n elements and we

Will show it is an antichain whose members are subsets of

nl.

For every U e [y, AU has n incomparable sets so each of the
chains we have chosen contains exactly one member of AU'
Therefore every member of 4 is a subset of some member of

A Assume A and B are two distinct members of 4. If

29t
A e AU’

then B is a proper subset of A, hence A ¢ B. If A is

we can choose B’ ¢ Ay such that B < B, If B = A

incomparable to B”, then A ¢ B. Therefore A ¢ B and

similarly we can show B ¢ A. Thus 4 is an n-antichain.

23WHHH“,,”



If A € 4 then A is a subset of some member of AU for each U
e U, and every member of AU is a subset of U. Therefore

every member of A is a subset of nl. il

3.7 Definition Let B be a family of subsets of X. We will

say a subfamily U < B is n-wide with respect to B iff for

every two members V and U of U, if V is a proper subset of U
then there is an n-antichain 4 < B between V and U, that is,
Ve AcUfor every A e A. If it is clear from context to
which family of sets we refer, we will simply say U is

n-wide.

3.8 Lemma Let B be a base for K in X, and suppose U < B is
n-wide. If x ¢ K and r_(B) s n then either n(ﬂ)X is a

neighborhood of x or (Q)X is a local base in X for x.

Proof Suppose x € K and rx(ﬁ) € n. Assume n(_l[)x is not a
neighborhood of x. Let B e B be a neighborhood of x. We

will find a member of (_I{)X which is a subset of B.

Let 4 be a maximal antichain of {W ¢ (Q)X: B ¢ W}. This set
is not empty since n(_Q)X does not have the neighborhood B as
a subset. Also 4 has at most n members, since rx(ﬁ) < n.

Therefore n4 is a neighborhood of x and since n(Q)X is not a

neighborhood of x, we can choose UO € (Q)X such that

24
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B n ng & UO'
Since B ¢ UO € (Q)x and 4 is a maximal antichain of the
members of (_[[)X for which B is not a subset, we can choose a
menmber U1 of 4 which is comparable to UO' We can rule out
the possiblity that U1 c UO’ since n4d & UO; therefore

U, € U,. Since U is an n-wide family, we can choose an

0 1

n-antichain 4" < B between UO and U1. The point x is in the
set B n nd4d’ and rx(ﬁ) £ n, so we can choose A € 4° such that
A and B are comparable. B cannot be a subéet of A since B
is not a subset of U1. Hence A, and therefore UO € (Q)x, is

a subset of B. This proves (_Q)x is a local base at x. 0O

Suppose B is a base of rank <n for X. If [y < B is n-wide
With respect to B, it is ciear from the definition of
wideness that any subfamily of U is n-wide with respect to
B. Therefore, by the previous lemma, if U < U then either

(1) nU” is open or (2) n(U") {x} and U” is a local base

for some x ¢ X. Since every subfamily of a base of rank 1
is 1-wide, we have a generalization of lemma 1.4 in [Ny3],

which is stated below:

Let B be a rank 1 base for a space X, and let B’ < B. Then
either

(1) nB” is open
or (2) nB” is a singleton {x} and B  is a local base for x

in X.



”é6ww

The next result is the key description of the structure of a
base of finite rank. For a point x and a neighborhood U of
X, recall that PX(Q,U) is defined to be the rank of

{B ¢ (B)X: B < U} at x.

3.9 Lemma Let n be a positive integer. Let K < X and let B

be a base of rank sn at K in X. If B is closed under union
of chains then there exists a Noetherian n-wide family U < B
such that for every point x & K either

(1) (¥), is a local base

or (ii) rX(Q,U) < n for some U ¢ (Q)X.

Proof Let B be a base for K c X sﬁch that B is closed under
union of chains and for all x ¢ K, rX(Q) < n. We will
assume every member of B intersects K. For convenience we
will assume K contains no isolated points of X. This will
not result in a loss of generality since by simply adding
open singletons to the family U which we will construct for
a set K without isolated points, we obtain the desired

family for any subset of X.

We wish to inductively choose antichains Qa c B, for every

ordinal «, that satisfy conditions (a)-(e) below.

(a) U, is a cover of K,

(b) U_  is an antichain and a subfamily of B,
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(¢c) 1«
{x ¢ K n (uau) : rx(ﬂ,n(ﬂa)x) = n},

as is a partial refinement of Qu and a cover of
(d) for every V ¢ Uyy1o U e U, if V.n Un K 2 ¢ then V is
a proper subset of U and there is an n-antichain of B
between V and U,
(e) if a is a limit ordinal, then Qu is a partial
refinement of W, = {intXn(u{Qﬁ: § < a})x: x e vl  for

all § < a}, and U, is a cover of (uga) n K.

By lemma 3.4, we can choose a family Uy = B such that QOIK

is an irreducible cover of K.

Assume a is a limit ordinal and we have defined {QS: § < a}.
By lemma 3.4 we can find a subfamily ua of B which is a
partial‘refinement of the collection Eu defined in (e) above

which, when restricted to UW. n K, is an irreducible cover.

U, satisfies (b) and (e).

Assume we have defined Qa. We will choose Qa+1 so that

(b)~-(d) are satisfied.

If x € K n vl and rX(Q,n(Qa)X) = n, then choose an
n-antichain A, < {B e B: x e Bec n(ga)x}. If n = 1 then we
explicitly demand that the member of Ax is a proper subset
of n(gu)x. We can do this as x is assumed not to be

isolated in X. Define ga to be the collection of all sets
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of the form nd . Clearly I is a cover of {x & K n (vy )

PX(B,n(ﬂa)x) = n} and a partial refinement of u,.

By lemma 3.4 we can choose Qu+1 ¢ B which is a partial
refinement of Za and an irreducible cover of (uza) n K.

Therefore U.,,1 satisfies (b) and (ec)

Let us show (d) is satisfied. Let V ¢ U, .- V is a subset
of some member of Ea, which is the intersection of an
n-antichain 4 < B whose members are subsets of n(ga)x for
some x £ K n ugu. For every member U of Qa such that
Unnd n K =2 ¢ we claim u4 ¢ U. This is clearly true if

Ue ()

o«)x» and in fact we will prove U e (U ).

Since n4A n U n K 2 ¢ and rz(ﬁ)vs n for all z»s K, we can
choose A & 4 such that A and U are comparable, If A < U
then a fortiori, x € U and we are done. But if we assume

Xx £ Uand U c A then U is a proper subset of A and since A
is a subset of every member of (Qa)x, U is then a proper
subset of some member of (ga)x. This is not possible since
U 1is an antichain.

a

Therefore every member of 4 is a subset of U for any U € Qa

such that n4 n U n K # ¢. Since V < n4, 4 is an antichain
between V and any member of U of Qa which intersects V n K.

Therefore Qa+1 satisfies (d).
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We have shown [ satisfies conditions (b)-(d) and the
a+1

induction is complete.

Suppose ga has been defined for every ordinal a and
conditions (a)-(e) are satisfied. We will show there exists
an ordinal n such that Ua = ¢ for all ordinals « 2 nq.
Suppose V ¢ QB, U ¢ Qa, a < B, and Vn U n K = ¢. It
follows from (c) and (e) that QB is a partial refinement of
U

“~a+1?

Therefore V" n U n K # ¢ and by (d) we can infer that V is a

S0 we can choose V' ¢ ga+1 such that V < V7.

proper subset of U and there is an n-antichain between V and
U. Therefore Qa n QB = ¢, and for any ordinal n,

{Qa: o £ n} is n-wide in B. Since the families U, are
pairwise disjoint subsets of B, we can choose an ordinal n
.such that Qn': ¢. We will show the n-wide family U =

uiZ : o < n} is Noetherian and satisfies (i) and (ii) of the

lemma.

Assume ¢ < U is a chain. Define & to be min{a < n: Cnu, =
¢}. If @ < B < n then no member of Uu is a subset of any
member of UB' Therefore C n QG is a singleton set whose

member is the maximal member of ¢. Therefore U is

Noetherian.

Let x € K. We will prove either (_I{)X is a local base for x
in X, or there exists U e (_Z[)X such that rx(g,U) < n. Let a

be the minimal ordinal such that x ¢‘UQG. Assume o is a
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limit ordinal. We will show (g)x is a local base for x.
Since x ¢ vl , by (e) we have x ¢ intxn(u{QG: § < a})x-
Therefore, since U is n-wide, lemma 3.8 states that

Xu{ﬂaz 5 < a})X is a local base at x.

Now assume « is equal to §+1 for some ordinal . By (b)
(Ug), is finite and by (ec) rx(ﬁ,n(gé)x) < n, since x ¢

vl By lemma 3.6 we can conclude that there exists

§+1°
U e (gﬁ)x such that rX(Q,U) < n. 0O

3.10 Lemma Let n be a positive integer. Let K ¢ X and let

B be a base of rank sn at K. If B is closed under union of
chains then there exists a subset of B which is a Noetherian

base for K in X.

Proof Let n be a positive integer. Assume for every subset
L of X and for every base of rank <n at L that is closed

under union of chains, we can find a Noetherian subset which

is a base for L in X.

Let K ¢ X have a base B of rank <n that is closed under
union of chains. Using the induction assumption, we will
exhibit a subcollection of B that is a Noetherian base for K

in X.

We will insist that every member of B intersects K. By



lemma 3.9 we can choose a Noetherian n-wide family ¢ e B
such that for all x € K either (i) (_Q)X is a local base at x

or (ii) rx(ﬁ,U) < n for some U ¢ U which contains x.

For each U ¢ U, define FU to be {x € U n K: rX(Q,U) < n},
and define Bé to be {B e B: B n Fy # ¢, B < Ul. The family
26 is a base of rank <n at FU and since B is closed under
union of chains, so is Eﬁ. By our inductién assumption, we
can choose a Noetherian subfamily EU of Qé which is a base

for FU in X.

Let ¢ be a chain in U{QU: Ue U}. We will show that € has a

maximum member.

Define D to be {U € U: C n QU Zz ¢}. Any set of n+1 members
of p have in common a subset which is a member of £, and
therefore have a point of K in the intersection. Since B
has rank <n at K, there are at most n maximal members in the
set D. For each maximal member U of D, let CU be the
maximum member of € n QU. Suppose C is a member of C. We
Will prove € has a maximum member by proving C is a subset

of one of the members from the finite set {CU: U is maximal

in D}.

Choose V € D such that C ¢ QV. If V is maximal in D, then C

c C so suppose V is not maximal. There is a maximal

V,

member U of D which has V as a subset, since U, and

3{_ S
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therefore D, is Noetherian. Since U is n-wide there is an
n-antichain 4 « B between V and U. Therefore rz(ﬁ,U) = n
for every z € V n K, and this implies that V n FU = 4.

Since C < V and CU n FU ¢.¢, we cannot have CU < C. But CU
and C are members of a chain, so C c CU‘ Hence U{QU: U e U}

is Noetherian.

The union of two Noetherian families is Noetherian, so

U u U{QU: U é Qi is Noetherian. If x € K and U is not a
local base for x then by (ii) of lemma 3.9, there exists
some U € U, such that rX(Q,U) < n. Then By is a local basé
for x. Hence U v U{QU: U € U} is a Noetherian base for K in

X. 0O

We are now able to answer a question of P. Nyikos appearing

in [GNJ, [LNJ] and [Ny4].

3.11 Theorem A T, space with a base of (point-)finite rank

has a Noetherian base of (point-)finite rank.

Proof Let X have a base B of finite or point-finite rank.
By lemma 3.3 we can assume, without loss of generality, that

B is closed under union of chains.

If B has finite rank, then lemma 3.10 states that there is a
Noetherian subset of B which is a base for X. This

Noetherian base has finite rank since B does, so in this
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case we are done.

Suppose B has point-finite rank. For every integer n,
define Xn to be {x ¢ X: rx(g) = n}. Clearly B is a base of
rank <n at Xn‘ By lemma 3.10 we can choose a Noetherian
subset Qé of B which is a base for X, in X. We will suppose

every member of Qé intersects Xn'

For each integer n, define B_ to be {B e B’: B n uf{X.: i <
~n T i

n} = ¢}. If x ¢ U{Xi: i < n} then there ‘is an n-antichain 4

in (ﬁ)x. The set nd is a neighborhood of x which does not

intersect U{Xi: i < n}. Therefore U{Xi: i < n} is closed in

X which implies En is a base in X for Xn' Therefore

u{ﬁn: n < w} is a base for u{Xn: n < w} = X.

Since B is a subset of B’, B is Noetherian. We claim
n T n

u{ﬁn: n < w} is Noetherian. Let € be a chain in this base.
Define m to be the minimal integer n such that ¢ n an ¢ .
Let C be the maximal member of ¢ n ﬁm' We can show C is

maximal in ¢. If D e C \ then D & ¢ n Em' for some

Bm,
m” > m. Therefore D n Xp = ¢ and since Cn X2 ¢, C is not
a subset of D. Therefore D © C and C is the maximal element

of €. O

Since the maximal members of any subcollection of a
Noetherian base of point-finite rank is point-finite, it is

easy to see from theorem 3.11 that a space with a base of



”Héd-,;

point-finite rank is hereditarily metacompact, a result

proven in [GN]J].

3.12 Corollary A regular space X with a base of point-
finite rank has a base B such that for every point x & X,
the cardinality of (_}3)X is not greater than the cellularity

of X.

Proof By theorem 3.11 we can choose a Noetherian base B’ of
point-finite rank. For each U € B’ consider the set [U] =
{VepB”: clyV = elyU}. Since B’ is Noetherian every member
of [U] is a subset of a maximal member of [U]l. Define B to

be {U e B: U is maximal in [U1}.

If x ¢ X and W is a neighborhood of X, then we can choose
U € B such that x € U ¢ clyU = W. There exists a maximal
member V of [U] which contains U. Therefore V ¢ B and since

x e UecVec chU < W, we have shown B is a base for X.

For any x ¢ X, by lemma 1.4 we can choose a chain € of (B),
witﬁ the same cardinality as the cardinality of (Q)X. Since
¢ is Noetherian, let {Ca: o < B} be a well-ordering of C
which agrees with the order given by reverse set inclusion.
Since the Ca's are comparable, they have distinct closures
in X. Therefore {Cc, \ clyC .4 @ < B} is a collection of

pairwise disjoint non-empty open subsets of X, and |8l =
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The following results are immediate consequences of 3.12. A
regular hereditarily Lindeldf space with a base of point-
finite rank has a point-countable base [G]. A regular
separable space with a base of point-finite rank is
metrizable [G]. A regular space with calibre ®,; and a base

of finite rank is metrizable and separable [GN].

Metacompactness is not preserved under finite products. For
example, the Sorgenfrey line is metacompact, in fact
Lindeldf, but its square is separable and has an uncountable
closed discrete subset. The Sorgenfrey line also has a base
of subinfinite rank, so in corollary 3.13 below,

"point-finite" cannot be replaced by "subinfinite".

The next corollary describes a sufficient condition for the
product of finitely many metacompact spaces to be

metacompact.

3.13 Corollary The product of a finite family of spaces

with bases of point-finite rank is metacompact.

Proof By theorem 3.11, a space with a base of point-finite
rank has a Noetherian base of point-finite rank. Theoren

2.5 of [GN] states that a product of finitely many spaces
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with Noetherian bases of subinfinite rank (and in particular
point-finite rank) has a Noetherian base of subinfinite

rank. Therefore the product, by theorem 2.4, is

metacompact. [



;37 :

. CHAPTER IV

SPACES WITH BASES OF POINT-FINITE RANK THAT ARE METRIZABLE

In this chapter we will prove that a regular first countable
B-space with a base of point-finite rank is developable and
we characterize those regular ccc spaces which have a base

of finite rank.

Let us recall the definition of a B-space [Hol1l. A B-space
is a space in which there is associated to each point x and
each positive integer n an open neighborhood g(n,x) of x-
such that if {xn: n < w} is a sequence in X and

n{g(n,xn): n < w} # ¢, then {Xn: n < w} has a cluster point.
The function g from w x X to the topology of X is célled a

B-function.

Listed in [Ho1] are characterizations of developable spaces,
wb-spaces, semi-stratifiable spaces, and weak—Nagata spaces
given in terms of a function from w x X to the‘topology of

X. It is clear from the characterizations given that these

classes are all contained in the class of B-spaces.

Suppose X is a B-space and g is a B-function for X. If for
every x € X and n < w, f(n,x) is a subset of g(n,x) and an
open neighborhood of x, then f is also a B-function for X.

Therefore, without loss of generality we will assume that,
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for each x ¢ X, {g(n,x): n < w} is a decreasing sequence of

neighborhoods for x.

4.1 Lemma Let g is a B-function for a space X such that
{g(n,x): n < v} is a decreasing sequence, for all x ¢ X. If
n{g(n,xn): n < wl z ¢, then every infinite subset of

{xn: n < w}! has an accumulation point in X.

Proof Suppose n{g(n,xn): n < w} # ¢ and A is an infinite
subset of w. Define Yp to be X, if n € A, otherwise define

Y. to be X for some n” € A which is larger than n. Since

n
g(n,yn) = g(n',xn,), we have n{g(n,yn): n < e} > nfgln,x ):
n e A} # ¢. Therefore {yn: n < w} = {xn: n € A} has a

cluster point. 0

4.2 Definition A constructible subset of a space X is the

intersection of two subsets of X, one open in X and the

other closed in X.

4.3 Lemma Let X be a regular B-space in which every point

is a Gg. If a constructible subset K of X has a Noetherian
base B of rank =n at K, theﬁ there is a subfamily U of B of
countable order (see Definition 2.6) such that for all x ¢ K
either (i) (_Q)x is a local base for x or (ii) rx(ﬁ,U) < n

for some U e U.

Proof Let K be a constructible subsét of X which does not
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contain any isolated points of X. Choose an open subset VK
of X and a closed subset FK of X such that K = VK n FK.
Assume B” is a Noetherian base of rank <n at K. Define B to

be {B ¢ B : clyB < V BnK@®# ¢}. B is a base of rank <n

K’
at K; it is Noetherian since B is. We will construct a

subfamily of B that is a base for K in X of countable order.

Let g be a B-function for X such that {g(i,x): i < w} is a
decreasing sequence for eveby x ¢ X. Since every point x of

X is a G;, we will assume n{g(i,x): i < w} = {x}.

We will inductively construct a n-wide subfamily of B

(recall Definition 3.7). We will define Qi < B and Di c K

for i < w to satisfy the following:

(1) QO is a cover of K
(2) U; = B is an antichain

(3) u;

i+1

(u{uj: j s i})x}

is a cover of {x € K: rX(Q,U) = n for all U e

For each x e D;, we choose f(i,x) ¢ B such that U; =

{f(i,x): x € Di} and such that:

() x e £(i,x) < g(i,x)
(5) £f(i,x) is a proper subset n(u{gj: j < i})X and there
exists an n-antichain of (Q)X between f(i,x) and

n(U{Qj: Jj < i})x
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(6) if y « Dj, J<i, x ¢ f(j,y), and y # x then chf(i,x) c

Let us define EO and DO' For each x ¢ K choose f(0,x) ¢ B
such that x ¢ £(0,x) ¢ g(0,x). Define Uy to be the set of
all maximal members of {f(0,x): x ¢ K}. For each member U
of QO, choose Xy € K such that f(O,xU) = U and define DO to
be {xU: U e QO}.

Suppose a subset Dj of K, and an anfichain Qj =

{£f(j,x): x e Dj} have been chosen satisfying (1)-(6) for all
J £ i. We will choose Qi+1'
Define V; to be U{Qj: J s i} and define Ei to be

U{Dj: J s i}. Suppose x € K. Each Qj, j=< i, is an
antichain and has finite rank at K, so the set (Ki)X is
finite. Therefore {y = E;: x e £(5,y) ¢ Qj} is finite and
n(Ki)x is a neighborhood of x in X.

Suppose further that rx(ﬁ,n(zi)x) = n. By definition we can
choose an n-antichain Ax c (Q)X such that U4, < n(Ki)X. No
isolated point of X is a‘point of K, so now we can choose a
neighborhood f(i+1,x) of x whose closure in X is a proper
subset of the neighborhood nﬁx n g(i+1,x) and which does not
intersect {y ¢ Ei: x & f(j,y) e U.,, js<i, vy # x}. Then

J
f(i+1,x) satisfies (4)-(6).
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Define Qi+1 to be the set of all maximal members of
{f(i+1,x): x e K, rx(ﬁ,n(ﬁi)x) = n}. For each member U of

U

Us 1 choose Xy € K such that f(i+1,xU) = U and define Di+1

to be {xU: U e Qi+1}' Then Qi+1 and Di+1 satisfy all

required conditions. This completes the induction.

If Qi has been defined as above for all i < w, we claim U =

u{gi: i < w} is n-wide in B and and is the required base.

If j <iand x ¢ D; then, by (5) and (3), we have x ¢ VL -
Then by (5) again, Ui is a partial refinement of Qj, since

(g;)

i’x Z ¢ for all x ¢ Di'

Suppose X € Di’ y € Dj’ f(i,x) = u., £f(j,y) ¢ Qj and f(i,x)
is a proper subset of £(j,y). Assume i <€ j. Then Qj is a
partial refinement of Qi and f(i,x), as a proper subset of

£(j,y) ¢ Qj, must be a proper subset of some member of Qi.

But this is a contradiction since Qi is an antichain.

Therefore, if f(i,x) and f(j,y) are two distinct members of
U and f(i,x) is a proper subset of f(j,y), then i > j.
Furthermore by (5), there is an n-antichain of (E_)X between

f(i,x) and f(j,y). This proves U is n-wide.

Let ¢ ¢ [ = U{Ui: i e w} be an infinite chain. To prove U

has countable order, we will show that either nC = ¢ or ¢ is

a local neighborhood base in X for some point of K.
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Each Qi is an antichain, so the chain ¢ will contain at most
one member of Qi. Therefore there is an infinite set A c w

such that ¢ = {f(i,xi): ie A, x; € D;}.

Suppose there exists an x such that {i ¢ A: X; = x} is
infinite. We have chosen {g(i,x): i < w} to be a strictly
decreasing sequence whose intersection is.the set {x},
therefore by (4) n{f(i,x): i € A} = {x}. But U is n-wide
and {x} is not open in X (K contains no isolated points of

X), so by lemma 3.8, {f(i,xi) e C: x; = x} is a local base

for x in X.

If no element is repeated infinitely often in {xi: i e A}
then there is an infinite subset A° < A such that, if

{i,j} « A* and i = j, then X; # Xge Suppose nl % ¢. Then
{xi: i € A"} has a cluster point c ¢ X, by our éhoice of the
vB—function and lemma 4.1. We have proven earlier that, if

i < j then f(i,xi) ¢ f(j,xj). Therefore f(j,xj) c f(i,xi)
for any {i,j} < A", i < j, and furthermore by (6) chf(j,xj)
< £(i,x5) \ {x;}. Therefore nC does not intersect

{xk: k € A’}, but since f(i,xi) contains all but finitely
many points of {xk: k € A’}, we have ¢ € nf. Since

{xk: k ¢ w} is a subset of the closed set FK, the cluster
point ¢ is contained in FK. Since ¢ € nC and every member

of € is a subset of V we have c ¢ VK. Therefore ¢ € VK n

K’

F K. But ufl,: i < v} is n-wide and r,(B) < n, so by

K
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3.8, nC is a neighborhood of ¢ or € is a local base at c.
Since nC does not meet {xi: i e A}, nC cannot be a
neighborhood of the cluster point ¢, so € is a local base

for ¢ in X and ng = {x}.

Therefore every infinite chain of U = U{gi: i < w} has empty
intersection or is a local base. Therefore U has countable

order.

Finally we will show (i) and (ii) in the statement of the
lemma are satisfied. Suppose x ¢ K and rX(Q,U) = n for all
U e (Q)X. We will show (Q)X is a local base for x in X. By
(3), x ¢ ug; for all i < @ so (1/_)X is infinite. B has
finite rank at x, so by lemma 1.4 there is an infinite chain
in (Q)x. We have proven every infinite chain of U is either

a local base or has empty intersection, therefore (g)x is a

. local base for x.

We have proven the 1emﬁa assuming that K is a constructible
subset of X without any isolated points of X. If K’ is any
constructible subset of X and B is a Noetherian base of rank
<n at K°, then define K to be K° \ {x: {x} open in X}. Then
K is a constructible subset of X and B is a base of rank sn
at K, so we can find a subset of B to satisfy the lemma for
K. By simply adding all the open singletons to this subset,

we obtain the desired family for K’. O



Ny

4.4 Lemma Let X be a regular B-space in which every point
is a GG' If a constructible subset K of X has a Noetherian
base B of rank sn at K, then there is a subfamily of B with

countable order which is a base for K in X.

Proof ' We will prove the lemma by induction on n. Let n > 0

be an integer. Assume we have shown the lemma is true for

every integer less than n.

Let K be a constructible subset of X and suppose B is a
Noetherian base of rank sn at K. We will assume every
member of B intersects K. By lemma 4.3, we can choose a
subfamily U of B with countable order such that for all

x ¢ K, either (_Q)X is a local base at x, or rX(Q;U) < n for

some U € [.

For each U € U, define Ky to be {x € Un K: r (Bg,U) < n}.
Every point of U that is not in KU is in the intersection of
an n-antichain which does not intersect KU’ therefore KU is
closed in U n K, and is a constructible subset of X.
Furthermore {B € B: B c U} is a base of rank <n at KU. By
our induction assumption, we can choose a subset EU of

{B € B: B © U} which is a base of countable order for KU in

X‘

We will show U u U{QU: U e U} is a base of countable order
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for K in X.

Let ¢ ¢ U{QU: U e U} be an infinite chain. Assume that the
set € = {U e U: C c U for some C ¢ €} is infinite. Since
the intersection of every subcollection of C” with n+1
members contains as a subset a member of ¢, and therefore
contains an point of K, there are no n+l-antichains in c’.
Therefore by lemma 1.4 there is an infinite chain in C~.
Since it is also Noetherian, there is a perfectly decreasing
subchain. U has countable order so nC” = ¢ or C” is a local

¢ or £ is a local

base for some point of X. Therefore n(

base for some point.

Assume {U e : Cc U for some C € ¢} is finite. Then the
members of ¢ are distributed among only finitely many

families B U e U. Therefore there exists U € U such that

.._U’
C n BU is infinite. EU is Noetherian and has countable
order, so the chain € n QU has empty intersection or is a

local base. Therefore ¢ has empty intersection or is a

local base.

We have shown U{QU: U € U} has countable order. The union

of two families of countable order also has countable order,
so U u U{QU: U ¢ U} has countable order. If x € K and U is
not a base at x, then there exists U € U such that rx(ﬁ,U) <
n, and therefore By is a base for x. Hence U u U{QU: U e Ul

is a base of countable order for K in X. n



Recall that a Moore space is a regular space with a

developement (see Definition 1.11).

4.5 Theorem Let X be a regular B8-space in which every point
is a GG. If X has a base of point-finite rank, then X is a

Moore space.

Proof By theorem 3.11 we can assume X has a Noetherian base

B of point-finite rank.

For each.n < w define Kn to be {x ¢ X: rx(ﬁ) < n}. Then B
is a base of rank sn at Kn' Ir rx(g) > n then x is
contained in the intersection of an n+1-antichain of B, and
this intersectién does not interéect Kn‘ Therefore Kn is
closed in X, so we can apply lemma 4.4 to find a base B, <8

of countable order for Kn in X.

Define 56 to be the empty set and for n > 0, define Qg to be
{B ¢ Qn: B n Kn—1 = ¢}. Each En is a base for Kn \ Kn—1 in
X and has countable order since ﬁn does. We claim

U{Qé: n < w} is a base of countable order for X.

Let ¢ = u{B : n < w} be a perfectly decreasing chain. If,
for every n < w, there exist a member of C which does not
intersect K, then nC < n{X \ K :n< w} = ¢. If there

exists an n < w such that every member of ¢ intersects Kn

ue
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then ¢ c u{ﬁi: i £ n}. Therefore there is an i such that
cn 3{ is infinite. Since Qi has countable order, either
£ n Qi is a local base or its intersection is empty. Hence

either ¢ is a local base or nC = ¢.

Therefore X has a base of countable order, and since X has a
base of point-finite rank, by corollary 2.10 X is

developable. O

The requirement in the theorem above that X be a B-space can
not be dropped. The Michael line, the space obtained by
declaring each irfational of the real line to be isolated,
is a space with a base of rank 1 (see example 5.1 of [LN1).
It is first countable, but it is not developable. The "two
arrows" space of Alexandroff, whiph is I x 2 with the
lexigraphic order (I denotes the unit interval), is a
compact first countable space with a base of subinfinite
rank [GN]. Since every collection-wise normal Moore space
is metrizable [Bil, the two arrows space is not a Moore
space.. Therefore the property "point-finite rank" cannot be
replaced by the weaker property "subinfinite rank" in the

theorem above.

4.6 Corollary A collectionwise normal I-space (or wl-space)

with a base of point-finiﬁe rank 1s metrizable.

Proof Every wA-space or I-space is a B-space [Ho2l. We



will show every point of a I-space or wA-space with a base
of point-finite rank is a GS. Then we can apply theorem 4.5
to prove X is developable. Since a collectionwise normal

developable space is metrizable [Bi]l], we will then be done.

Suppose X is a wA-space, and x € X. It follows immediately
from the definition of a wh-space that every point of X has
a collection {Un: n < w} of neighborhoods such that, for any
sequence {xn: n < w} of X, if X, € Un for all n, then

{xn: n < w} has an accumulation point. Since X is regular
Wwe can choose a closed G6 Vn contained in Un and containing
X. Therefore the closed set n{Vn: n < w} is a countably
compact G6 containing x. Every base of point-finite rank is

a base of subinfinite rank, so by theorem 2.11, x is a G6 of

n{Vn: n < w}, and hence x is a Gs in X.

Now suppose X is a I-space, and let {ﬁh: n < wl! be a
spectral I-sequence for X. For each point of X and for
every integer n we can choose a neighborhood Vn which
intersect only finitely many members of En' Let Un be a
closed Gy such that x =« Un c Vn' Using the method used in
the proof of theorem 2 of [GZ], we will show every
uncountable subset of the closed Gg, n{Un: n < v}, has a

countable subset with an accumulation point.

Let A be an uncountable subset of G = n{Un: n < w}. For

every n, only finitely many members of En meet G, so the set

ys



x € G, n < w} is countable. If for every x e G,

{n(F)

-n’x’

). n A is finite,

there is an integer n(x) such that ”(En(x) X

then {n(ﬁn(x))x: x € G} would be a countable cover of A with
each member containing only finitely many elements of A.
This contradiction shows there exists a point y such that

A n n(ﬁn)y is infinite for every n < w. We can inductively
choose {a : n < w} c A as follows: ag © ﬂ(EO)y n A, and

e n(E

a ). on AN\ ta;: 1 s n}. By the definition of a

n+1 n+1’y

spectral sequence, {an: n < w} has an accumulation point.
Therefore every uncountable subset of G has a countable
subset with an accumulation point, so by theorem 2.11, every

point of G is a G, in G, and hence in X. g

We cannot weaken "collectionwise normal” to "normal'" in
coroilary 4.6. For example, consider the following subspace
of Heath’s "tangent V space" [Hel. Let X be the set of all
points in the Euclidean half-plane above the x-axis plus o,
points of the x-axis. A basic open neighborhood of a point
x on the x-axis is a pair of 1line segments of equal length
extending up from x at an angle of 45 degrees. All points
not on the x-axis are isolated. This describes a base of
rank 2 for X. X is a I-space and a wiA-space, though it is
not metrizable since X is not collection-wise normal. If we
add Martin’s axiom and the negation of the continuum
hypothesis (see [Jel) to the usual axioms of set theory,
then the space X is normal. The proof is identical to that

given in [R] to show the square of a x-Sorgenfrey line is

_ngbwu,“_,u,



normal if w < x < 2°. Therefore in some models of set
theory, X is a normal non-metrizable I-space and whA-space
with a base of rank 2. On the other hand, if the set-
theoretic axiom PMEA is consistent (though it may not be,

see [Ny51), then every normal first countable space 1is

collectionwise normal.

Corollary 5.14 of [GN] states that a ccc space is a finite
dimensional metric space iff it is a collectionwise normal
I-space with a base of finite rank. Corollary 4.6 together
with theorem 1.6 show that this result holds for all spaces,

not just the ccc spaces.

In the remainder of this chapter we characterize the regular

cce spaces with a base of finite rank.

4.7 Definition A Souslin line is a ccc non-separable space

that can be embedded in a linearly ordered space. A Souslin
tree is any uncountable poset (P,<) with no uncountable
antichains or chains, such that for every x e P,

{y € P: y < x} is a chain well-ordered by "<mn,

A Souslin line exists if and only if a Souslin tree exists
[M]. The existence of a Souslin tree is consistent with and

independent of the usual axioms of set theory [Je2].
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It is shown in [Ny2] that a ccc space with a base of rank 1
is non-metrizable if and only if there exists a Souslin

tree. We extend this to spaces with bases of finite rank.

4.8 Theorem If a regular, ccc space X has a base of finite

rank, and no open subset of X is separable, then a dense

subset of X is a Souslin line.

Proof Let G be an open subset of X. Define n to be the
minimal integer m such that there exists an open subset W’
of G with a base Qw' of rank sm. Choose an open subset W of

G which has a base B of rank <n.
We will inductively choose a dense subset of W.

Suppose we have chosen {xa: a < B} « W such that

rXu(ﬂ y W\ ch{xyz Y < @a}) = n for every a < 8. Assume the
set VB =W\ ch{xa: a < B} is not empty. There exists a
point x e Vg such that rX(Q,VB) = n, otherwise the family

{Be B: Bc VB} is a base of rank <n for V contradicting

B ’
the minimality of n. Therefore we can choose Xg € VB such

that r  (B,V.) = n.

In this way we will choose a dense subset {xa: a < n} of W.
For every e < n, we can choose an n-antichain Aa c
{B e B: X, € Bec W\ ch{xY: vy < al}l since the rank of

{Be B: Bec W\ {XYI‘Y < all at X, is exactly n. Also, by



corollary 3.12, X is first-countable, so for each X 1 We can

choose a decreasing local base {Ua it i < w} < B such that
b

U . < n4d for each i.
a,1 a

We claim {Uu i@ <o, i < w} has rank 1. Suppose a < B and
y

U . intersects U, .. Then U . intersects n4_ which has

a,l ByJ a,l B

UB j as a subset. B has rank <n at W, so Ua i is comparable
9 $

to some member of the n-antichain Ag. The point X, is not

-contained in any member of AB‘ Therefore Ua i must have
’

some member of A, as a subset, so U . is a subset of U ..
B ByJ G,

Therefore {Uu,i: ¢ <n, i < w} is a base of rank 1 for

{xu: a < n}. Since {xa: a < n} is a dense subset of W, it
is non-separable and cce. Every space with a base of rank 1
can be embedded as a subspace of a totally ordered set with

the usual order topology [Ny31, therefore {x : « < n} is a

Souslin line dense in an open subset of G.

We can choose a maximal cellular family of open subsets of X
which contain a dense Souslin line, and since every open set
of X contains an open subset with a dense Souslin line, the
union of this family is dense in X. In this way we can
choose a countable family of pairwise disjoint Souslin lines

whose union is dense in X and is a Souslin line. |

Let us show that every ccc non-separable space X has an open

subset with no open separable subsets. Choose a maximal

"5



cellular (possibly empty) family ¥V of separable open subsets
of X. Since X is cce, V is countable, so uV is separable.
Thus X \ clxuz is a non-empty open subset of X, and by the
maximality of J, every open subset of X \ clxuz is

non-separable.
Therefore any ccc non-separable space X with a base of
finite rank contains an open subset with a dense Souslin

line.

A space X has precalibre w, if every uncountable family of

open subsets of X contains an uncountable filter-base. In
[IN] it is proven that the set-theoretic axiom X (every ccc
space has precalibre w,) implies that every regular space
with a base of finite rank is.separable. It is well known
that a Souslin line does not have precalibre w,, so this

result is a consequence of theorem 4.8.

4.9 Corollary The following statements are equivalent.

(1) X is a regular ccc space with a base of rank <n and does
not contain a Souslin line.

(2) X is a regular space with a base of rank <n and X? is

cce.

(3) X is a separable metric space of dimension n-1.

Proof Recall that theorem 1.6 states that a metrizable
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space has a base of rank n iff it has dimension n-1.

Therefore (3) implies (1).

Suppose X is a regular ccc space with a base of rank sn. If
X? is not ccec then X is not separable, so by the remark
following theorem 4.8, X contains a Souslin line. Therefore

(1) implies (2).

If X* is ccc, then no open subset of X contains densely a
Souslin line, since it is well known that the square of a
Souslin line is not cce. By the remark following theorem
4.8, a non-separable ccc space with a base of finite rank
contains an open subset with a dense Souslin line.
Therefore, if X is a regular space with a base of finite
rank and X? is ccec, then X is separable, and a separable
space with a base of point-finite rank is metrizable [G].

Therefore (2) implies (3). O
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