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ABSTRACT

rn Lhis work we consider the constraints imposed on the

topological strucLure of a toporogicar space x by various
order-t'heoretic properties of the poset (8,.), where B is an

open base for x. Given a space x with an open base B such

that every fixed antichain of (8,.) is finite, we prove that
X is hereditariJ-y metacompact. If for every poinL x of X

there is a positive inLeger n such t,haL every antichain of
((B)x,.) has at most n elements, then we prove X has a

Noetherian base with the same property. rf in addilion x is
a B-space in which points are Go'=, w€ prove X is
deveropabl-e . I^Je arso charac Leríze the regular ccc spaces x

which have a base B such that the f ixed antichai-ns of (.8,.)

have aL most n el_ements, for some integer n.
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CHAPTER I

INTRODUCTION

All topological spaces are assumed to be T1. t,le wil_l- refer
to a base for the open subsets of a toporogical space as a

ttbasert- By a ttlocal baset in a space x we mean a famiry F

of open subset,s of x such that there exists an x e x for
which F is a neighborhood base at, x.

!,le will represent a candinal- by the minimar ordinal- of that
cardinarity. Greek letters are used to denote ordinal_s.

The symbols rtort and rro I It denote the f irst two inf inite
cardinals. The cardinarity of a set x is denoLed by I xl .

For a given base I of a space X we are int,erested in the
partiaJ-J-y ordered set (8,.). We wiII need the folJ_owing

notation and terminofogy for partially ordered sets
(posets).

Let (P,s) Ue a partiall-y ordered set. If p and q are Lwo

elemenLs of P then p is comoarable with q if p

Two el-ements are incomoarabr-e if they are not comparabre.

Two el-ements p and q of P are compatÍbr-e in p if there
exists an r e P such that p

A subset A of P is an antichain if every two members of A



are incomparabl-e. A subset c of P is a chain if every Lwo

members of c are comparabl-e. A poset is directed if every

two el-ements are compatible.

A partially ordered set (p,<) i_s Noetherian iff every chain

of P has a maximal erement. An equivarent definition is: A

poset (P,<) is Noetherian iff every chain of p is
well-ordered by rt¡ tt . The following lemma, in particul-ar,
characterizes Noetherian posets with only finite antichains
as those posets in which every non-empty subset has aL reast
one, and at most finitely many, maximal el_ements .

1.1 Lemma tLNl Let (p,<) Ue a poset. The following are

equivalent .

(i) P is Noetherian and every antichain has cardinal-ity at
most K.

(ii) Given a subset a of p, there is a subset a'of a such

that every member of 0 is l_ess than or equal_ to some

member of Q', and I e'I < K. !

The posets that inLerest us are the posets in which every
antichain is finite or in which there is an inLeger n such

that every anbichain has at most n elements. The forlowing
two theorems are of prime imporLance for these posets.

1.2 Theorem [D] If (P,<) is a poset and k E o is such that
every antichain has ab most k el-ements then p can be



expressed as the union of aL mosL k chains of p. I

1"3 Theorem tETl,[P] rf p is a poset such that every

antichain is finite, then P can be expressed as the uni_on of
finitely many directed subsets. D

1 .4 Lemma rf P is a poset whose antj-chains are finite then

there is a cha j_n of P with cardinatity I p I .

Proof Erdös' theorem is useful, here (see tJl for further
det'ails on Erdös'theorem). I,je wirl- partition the two

element subsets of P into two sets. Let set r contain the

two erement subsets with comparabre elements. Let set rr
contain the two element antichains of P. Since p has no

infinite antichai-ns, there does not exist an infinite subset

H of P, all of whose two erement subsets are members of set

rr. Therefore if K = lpl, Erdös, theorem asserts that
there is a subset H of P of cardinarity r such that every

two element subset of H is a member of set r. Hence H is a

chain of P with cardinalÍty K. D

rf x is a set and B is a famiry of subsets of x then we say

B is an antiehain, a chain, Noetherianr or directed if t,he

partially ordered seL (Br.) satisfies t,he respective
property.



Let B be a family of subsets of a set X" For x E X, denote

the family {B e E_z x e B} by (a)*. Define St(x,å), the sLar

of E aL x, to be u (å)*. If K c X, let pl* denote the set

{gnK:BeB.l" Eisfixedif nÐt ô.

The synbol rrcrt will denote set incrusion, but witr not

necessarily denote proper set inclusion.

1.5 Definition Let r be a cardinal_. The family B of subsets

of a set X has rank <r< if every fixed antichain of B has

less than r members. If x e vB, define r*(B) to be

sup{lll: A c (B)x is an antichain}.

Let n be a positive integer. Let B be a family of subseLs

of a set X. !,le wil-I consider the expression 'trank snt to be

equivalent to the expression trrank <n+1il. l^ie say B has

rank n, if p has rank sn but not rank <n. lüe define E Lo

have finite rank if there is a positive integer such that å
has rank sn. B has point-finite rank if , for every x e u.ä.r

r* (¡ ) is f init,e . B has subinf inite rank if B has rank <o.

The concept of rank was defined by Nagata tNal. subinfinite
rank and point-finite rank were introduced in iGNl as

generalizaLions of finite rank.

l^le will discuss t,he properties of spaces which have bases of



finite, point-finite, or subinfinite rank. Some common

examples of spaces with bases with these properties are

given in tGNl. They include the pixley-Roy hyperspace FtÆl

of the real line which has a base of point-finite rank but

not a base of finite rank, and the sorgenfrey rine which has

a base of subinfinite rank but not a base of point-finite
rank tGNl.

Now we wil-1 define some common topological properties

Let x be a topologieal space and ð/ a family of subsets of x.

A family I¡ of subsets is a oartiaf refinement of IJ if every

member of Z is a subset of some member of IL. A family Z is
a refinement of Ir if .V. is a partiar refinement of I! and in

addition vV_ = vlL. The family // is point-finite if every

point of x is contained in at most finitery many members of
U. A space X is metacompact if every open cover of X has a

point-finj-te nef inement. A family I/ is irreducible if every

member of U contains a point not j_n any other member of u.

The i.ntersection of a decreasing famiry of subcovers of a

point-finite cover is a coverr so by Zorn's 1emma, every

point-finite cover contains an irreducibre subcover.

The main result of Chapter II states that a space with a

base of subinfinite rank is metaeompact.

This generalizes the result: Every space with a base of



point-finite rank is metacompact tGNl.

Every reguÌar countabry compact metacompact space is compact

and every separable metacompact space is LindeIöf.
Therefore it becomes crear that a countably compact space

with a base of subinfinite rank is compact tcl and a

separabre space with a base of subinfinite rank is Linderör
tcl.

fn chapter rrr þ¡e study spaces with bases of finite or

point-finite rank. It is known tmy3l tfiat a space with a

base of rank I has a Noetherian base of rank 1. rt has been

asked by Nyikos in tGNl, ILN], and tNy4l whether every space

with a base of point-finite rank has a NoeLherian base of
point-finite rank. rn chapter rrr we give an affirmative
answer. t^lith this we can find simprer proofs f or many

theorems on spaces with bases of point-finite rank. In
particularr w€ can immediately see that every space with a

base of point-finite rank is metacompact.

Rank has rel-evance to metrization and dj-mension t,heoryr âs

illustrated by the following theorem.

1.6 Theorem [Na],[Ar1J Let x be metrizabre. Then x has a

base of rank n iff dim X = n- 1 . I



There are several important meLrizaL

with bases of finite or point-finit,e
ion theorems for spaces

rank.

Arhangel

rank 1 i

ex tended

'skii proved that
s metrizable lAr2l

as fol-lows:

compact space with a base of

and twelve years l-ater t,his vras

compact space with a base of point-finite

0

i .7 Theorem tcNl A

rank is metrizabl-e.

we no'r present three classes of

contains the compact spaces and

spaces, each of which

the metrizabJ-e spaces.

1.8 Definition tNml A sequence {Ãr: i- < o} of }ocaIly
finite closed covers of a space X is cal-Ied a spectral_

r-seouence for X if for every sequence {xr: i < ur} c X and

x e X such that xi r n(f1)*, then {xr: i < t¡i has a cl_uster

point. A space X which has a spectral r-sequence is cal-I a

I-sDace.

1.9 Definition [Bo] A space x is a wô-space if there is a

sequence {G.: i < o} of open covers of X such that whenever'-l

x e X and *i e St(x,Ci) for each i, then {xr: i < r,r} has a

clusLer point.

1.10 Definition [Ho1] A ß-space is a space in which there

is associated to each point x and each positive integer n an
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open neighborhood g(

sequence in X and n {

has a cluster point 
"

topology of X is ca1

n,x) of x such Lhat if {xrr: n

B(nrxn): n < t¡Ì * 0, then {xn:

The function g from ûr x X to

led a B-function.

< rrr] iS

n < o]

the

Every w^-space or x-space is a B-space IHo2].

A well-known

d evelopabl-e

general j-zat ion

space.

of a metric space is a

1.11 Definition A space x is developable if there exists a

sequence {G., : i < roi of open covers of x such that for each- 
-l_

point x r Xr {St(x,4i): i < or} is a 1oca1 base for x in X.

A regular deveì-opabl-e space is arso carred a Moore space.

Although a first countabre reguÌar ß-space with a base of
point'-finite rank may not be metrizable, in chapter rv we

show that it is at least developable.

The final result of chapter rV characterizes the regular ccc

space which have a base of finite rank.
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CHAPTER II
THE METACOMPACTNESS OF SPACES WITH BASES

OF SUBINTFINTTE RANK

Recall that a family tt of subsets of a space X has

subinfinite rank iff every fj-xed antichain of u is finite.

rn this chapter we show that every space with a base of
subinfinite rank is hereditarily metacompact. some of the

interesting properties that spaces with a base of
subinfinite rank are known to possess can be accounted for
by the fact that these spaces are hereditariry metacompact.

For example, it has been shown that a countabry compact

space with a base of subinfinite rank is compact and a

separable space with a base of subinfinit,e rank is
herediLariì-y Lindelöf tcl .

2-1 Definition [Au] rf t/ is a family of subsets of x then

M c ull is maximallv distinsuished with respect to ¿/ (max.

dist. wrt " A) if every member of U contains at mosL one

element of M and M is maximal- in the poset (ordered by

inclusion) of subsets of uu which satisfy this property.

The following lemmata are easily established.

2.2 Lemma rf u is a family of subsets of a set x then there
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exist,s a maximall-y distinguished set with respect Lo Il_. D

2.J Lemma Let U be a family of subse.ts of X with
subinfinite rank. If M is max. dist " wrL. ll then

{St(x,¿) ¡ x e M} is point-finite. D

2-4 Theorem Let x have a base B of subinfinite rank. Then

X Ís hereditarily metacompact.

Proof Let Ir' be a family of open sets of X. It is
sufficient to show that H has an open point-finite
refinement.

choose a family {¿.-: n < or} of subsets of B and a family

{Mn: n < o} of subsets of X as follows:
(i) % = {B e B: B c l{ for some lrr . Ll

and for every n ( @,

(ii) Mn is max. dist. wrt.

(lii) årr*i = {e E Bo: B n uiMr: i s n} = o}

we will first show by induction that u {Mr: j s k} is closed

in uI/ for eveny integer k. Assume u {Mr: j < k} is closed in
uH. BO is a base for the points in uy_, so by (iii) uä"n =

uIl \ u{M*: j < ki. Every el-ement of B,_ contains at most oneJ"
element of MUr so Mt is elosed in uåt. Therefore

Mf u (uI/ \ UBU) = u{Mr: j < k+1} is closed in uH. The

induetion is complete.
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For all- n < o and x r Mr,, it is possible by theorem 1.3 to
find an integer k* and decompose (¿n)* into a family
{e*,it i . k*} of finitely many directed subsets. For every
n ( ¡¡ and x . Mn we will define a finite family
{V .: i < k } of open sets. If uC_-. c W for some W ¿ H,xra x --ri
then define U*,, to be uQ*r, otherwíse choose U*,, . !_,r.
Consider the set {V*,1t * e u{Mr.,: n < o}, i . k*i. }Je have

constructed this to be a partial refinement of H, in fact,
hle wil-I be able to show it contaj-ns a point-finite
refinement of tl .

Define

(a)

(b) v-ïì

:n

Y-o = {v

. = {V+l

V-n < o]

Xrr

Xrf

AS

XE

xe

fol-1ows:

MO, i . k*Ì

Mn+1, i . k* and U*,, I u{ut¡r: j<n}

is a point-finite refinemenL of A..

y- is a partial refinement of I{,

a refinement of U_.

lleclaim¿=u{Ç:ncro}

lIe have already noted that
and now we will show Z is

Let us prove I/

Suppose x e M n

then by (b) x e

cover of ul,/; we

z e uF/ \ uI¡. We

is at

IfV

v*, 
o

will

have

least a cover of Mn for every n < o.

Xrg t [., then x e ul/ and if u*r' , !-n

c u{Yr: j < n}. Assume I/ is not a

arrive at a contradiction. Let

noted that z É u{Mn: n < r,r}. Since

ull \ uËo = u{Mj: j . n}, we have z r ,¿r, for ar1 n < o.



ill

By induct,ion r^¡e

(1) z e Un and

(2) Un é Uj for

will choose { Ur, : n

U- e (a ) for somen '-n' x

all i < n.

r¡ Ì such that :

eM
n

or V-- . e V_, we haveXra -n
by the definition of

l,l , uC é W. In-xrr
For each j . n, we

Since C is
-xrf

contains {z} and each

(1) and (2).

x

Suppose {U-: j. n} satisfies (1) and (Z). The set u
J

contains z, so by the maximati-ty of Mn, there exists
such that z. u(Ën)x. There is an i < k* such that

B-n
xeM n

z e uC--
-xra XrJt J

z I V*rr' Therefore u*ri t uQxri and

U* 
r r r wê can conclude that for all lri E

particular, for all j . n, uC -- é U ..
-Xra J

can choose Uj . L*rí so that Uj É Uj.

directed vIe can choose Un , L*ri which

Uj, i . n. Then {Ur: i < n} satj-sfies

Let, {U-: n < o} satisfy (1) and (Z). For a1l- n < o u¡e haven

U_ n M_ t þ. If n . rrtr then by condition (ii-i) of thenn
definition of Bm, U, n Mr, = .þ, so Un ç Um. Condition (2)

above states u* I un, therefore the elements of { urr: n < o }

c (a), are pairwise incomparable, which is a contnadiction.
Therefore V i-s a refinement of ll .

Next lre will show the eountable family {u V-n : n < r¡Ì is
point-finite. Let z e uV and define I = {nz z r uZn}. For

each n e I v¿e wil-1 choose U., . (Bn)z such thab U. c u_U.n but
for all i . rlr U' d ,Li. For each n e I choose Vn . Ln such

that z r Vr,. If Vn. år, then defj_ne Un to be Vn. Otherwise
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Vn = uC for some directed set C in (rn)*, where x r Mn. By

the definition o, !-n, uc d uy-i for i < n. rrre can choose

U e C such that z e U and for each i e n fl I, we can choose

Uí e I such that Uí é u¿i. Since f is directed we can

choose Un e f, which contains U and Uí, i E n n I.

Therefore if n and m are members of r and n ( û, then

Un n Mn t þ, while U,n n Mr, - ô, and U^ I ulzn while Un c ,In.
Therefore {Un: n e I} c (B)z has paÍ_rwise incomparable

elements, and since B has subinfinite rank, r is finite.
Therefore l{n: z e ul/rr}l . oi in other words, {ul/n: n < o}

is point-finite.

Fj-na11y we can prove Z = u{Ln: n a ra} is point,-finite.
Since {uLn: n < oi is point-finite it wil_I suffice to show

that each I/n is point-finite. Each member of the famiry I¡n

contains an el-ement of Mr,, "o Zn = u{ (Ç)*: x . Mn}. The

family {St(x,Bn): x . Mrr} is point-finite by lemma 2.3 and

since for x . Mrr, St(x,Zo) . St(x,¿n), the family
{st(x,-Z.n): x r Mrr} is point-fi-nite. For each x , M' the set
(4r)* c tV*,ir i . k*]

is point-finite. t
is f inite, therefore u { (Ç )*: x e Mr, }

G. Grabner characterized regular metacompact spaces as those
regular spaces in which every open cover has an o-Noetherian

refinement (a famÍ]y U is o-Noet,herian if every well-ordered
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strictly increasing chain in L is at most,counbable) tFGl.
rt is not true that a space in which every open cover has

ref inement of subinf inite rank is metacompact . The space û.1¡

with the order topology is not meLacompact, though every

open cover of o¡ has a refinement of rank 1.

I^ie will no$I present a characLerízation of metacompact

developable spaces.

2.5 Definition [Ar3] A colrection of sets wilr be cal-l-ed

perfectrv decreasine iff it contains a proper subset of each

of its elements.

2.6 Definition tvl A famir-y B of subsets of x has countabfe
order if whenever c c B is perfectry decreasing and x e nÇ-

then C is a l-ocal- base for x in X.

2.7 Definition tWWl A space X is o-refinable if
open cover of X there is a countabl-e family 1Zn,

open refinements

finite for some n

everypointxrX,such that for
< o.

for every

n < t¡]- of
(rn)* is

is uniform, if
U of x, there

not a subset of

2.8 Definition INa2]

for every point x of
are at most finitely

U tNa2l.

A base B for a space X

X and every neighborhood

many V r (å,)x which are
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The following proposftion examines the properties of a

uniform base.

2. ! Prooosition A base B is uniform if and only íf B is a

Noetherian base of subinfinite rank and countabl-e order.

Proof rt is clear that a uniform base is a Noetherian base

of subinfinite rank and countabte order.

Assume there exists a space x with a Noetherian base g of
subinfinibe rank and countable order which in not uniform.
Choose x e X and a neighborhood U of x such that
{ V . (B )--: V é Ui is inf inite. By temma 1 . 4, this set'-'x
contains an infiniLe chain. Every infinite Noetherian chain

contains a perfectly decreasing subchain, and any subset of
{V e (¿.)x: V é U} is clearly not a 1ocal- base at x.
Therefore B does not have countabl_e order; a contradiction.
I

The coroll-ary bel-ow strengt,hens theorem Z.1O of t LN I .

2.1o corofrarv A space is metacompact and developabre iff
it has a base of countable order and a base of subinfinite
rank.

Proof A space is deveJ_opabj_e iff ib is o-refinable and has



1B

a base of countable order t hrwl . crearry every metacompact

space is e-refinabre" By theorem 2"4 every space with a

base of subinfinite rank is metacompact. Therefore a space

with a base of countabl-e order and a base of subinfinite
rank is metacompact and developable.

rt can be shown tAll that a spaee is metacompact and

developable iff it has a uniform base. proposition Z.g

shows that a uniform base has subinfinite rank and countable
order. I

lle will apply the foÌÌowing theorem in Chapter IV.

2.11 Theorem Let X have a base of subinfinite rank. If
every uncountable subset of X has a countable subset with an

accumulation point, then X \ {p} is Linde]öf for every point
p of X.

Proof Assume there is a p e x such that x \ {p} is not

Lindelöf. Let t¡ be a colleetion of open subset of x \ {p}

which covers x \ {p} but which does not have a countabfe

subcover.

By theorem 2.4, x is hereditarity metacompact, so v¡e can

choose a point-f inite ref inement I/ of U. There is an

irreducible subfamil_y of _2. which covers X \ {p}, so we will_

assume ï/ is irreducibl-e. Let {V^: c < or} be an uncountable
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subfamily of -U. and for each c < ûrr choose a point *o in Oo

which is noL in any other member of v. Then {xo: c < o¡} is
closed and discrete in X \ {p} and p is an accumulation

point in X of any uncountable subset of {xo: o < r,rr }.

since every neighborhood of p contains al-r but, eountabry

many points of { xo: c < o, } , countably many neÍghborhoods

of p have uncountably many points j-n common. Therefore p

does not have a countable local base. Let B be a locar base

of subinfinite rank at p. We can inductively choose

{Bot c < rr} c (¡)p to satisfy (i) *ß I Bu, and

(ii)BolB^ifs(B<0r.
Þq

since {B: o < ot} has no infinite antichains, by remma 1.4,g

there is an uncountable chain C = {Bo: o e A}. By condition
(ii), BU I Bo for any c < ß, C is a wefl-ordered decreasing

chain. There is a countable subset of {xo: c e Ai which has

an accumuration point in x. For every eountabl_e subset of
{xo: c e A} there is a member of C which does not intersect
it, therefore {xo: s e A} has an accumulation point in
X \ {p}. But, [xo: c e A] is closed and discrete in X \ {p}.
This contradiction proves that X \ tpÌ is Lindelöf. I
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CHAPTER TII
SPACES i^IITH BASES OF POINT-FfNITE RANK

ïn this. chapter we prove that a space with a base of
point-finite rank has a Noetherian base of point-finite
rank.

Recall that a famiry of subsets B of a space x has rank s¡
if every fixed antichain of B has at most n members. rf
every antiehain of,¡)x has at most n membersr w€ denote

this by writing r*(å) < n. rt wirr be usefur to define a

property whieh insists that only some of the fixed
antichains of a family B have at most n members.

3.1 Definition Let K be a subset of a space x. A famiJ_y B

of subsets of x has rank sn at K if r*(B) s n for every

point x of K. If (B)x is a local_ base in X for every point
x of K, and B has rank sn aL K, uÌe wiII say that B i_s a

base of rank sn at K.

3.2 Definition rf B is a famiry of subsets of a set x, then
B is crosed under union of chains if uc e B for every chain

C c B. The closure of B under union of chains is the
minimal subfamiÌy of the power set of x which contains B and

is closed under union of chains.
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Given an open base of point-finite rank

take the closure under union of chaÍns.

assures us that we will not increase the

we will

The next

rank at

routinely

lemma

any point

3.3 Lemma llr2l Let n be a positive integer and let B be a

family of subsets of a set x. rf x e x and r*(B) = 11 then

the closure of B under unj-on of chains also has rank n at x

ü

rt follows from corollary 4.5 of [GN] or theorem z.)l that a

space with a base of point-finite rank is metacompact. !ùe

require something more for our purposes. Not only do we

want a point-finite refinement of any open cover of a space

with a base of point-finite rank, but we want the refinement

to consist of members from the base. The next lemma says

this can be done ir the base is cl-osed under union of
chains. The l-emma differs in only a minor lùay f rom theorem

4.4 of tcNl.

3.4 Lemma Let K c X and 1et B

X. If B is el-osed under union

cover of K in X, then there is
Iy' such that U covers K and t¡l*

be a base of rank (¡¡ at K in
of chains and W is an open

a partial refinemenL U c B of

is irreducible.

Proof

rank,

bea

As every family of finite rank

we know by theorem 2.4 that K is
partial refinement of l'/ such that

also has subinfinite

metacompact. Let I¡

vl,, is a
-' l!
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point-finite cover of K. Define þ' to be {B e B_z B n K t 0 r

B c V for some V , lL\ " Let C be a chain in B'1we will
prove vc e B' . l,rlithout loss of general-ity we can assume arl
members of Ç- have a point x of K in common. Therefore only
finitely many members of v have as a subset a member of c,

so there exists v e I/ and a cofinal subchain of c, all of
whose elements are subsets of v. Hence uc is a subset of
some member of V , and since uC e B, we have by the

definition of B' L]naL vC e B'.

The union of a maximal- chain of B' is a maximal_ member of
B', so every member of B'is a subset of a maximal member of
B-' .

Let l/ be the set of maximal- members of B'. Then Z is a

parbial refinement of U- which covers K. Since !! is an

antichain of Ë.' and E-'has rank sn at K, every point of K is
in at most n members of u. Every point-finite cover has an

irredueible subcoverr so a subcover of u satisfies the
lemma. I

3.5 Definition rf B is a local base for x e x, and u is a

neighborhood of x, then define r*(B,u) to be the supremum of
bhe set of cardinalities of the antichains in
{B E ¿.: x e B c U}.
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rf n is an integer, w€ wirl catl- an antichain with exactry n

distinct membersr âD n-antichain.

3.6 Lemma Let B be a base of rank sn at, x e X. If IL is a

finite set of neighborhoods of x and rx(B,u) = n for every

U e U_¡ then r*(B rnt/) = n.

Proof For every u . II t we can choose an n-antichain
AV c (B)x whose members are subsets of U. There are no

n+1-antichains in u {AU: U e A} since r* (^E )

theorem i.2 we write u{.4u: u e t/} as the union of at most n

chains. !{ithout l-oss of generality we can assume these

chains are paÍrwise dis joint. Since u {.4U: U E !J_l contains a

n-antichain, our partition consists of exactly n chains.

Define .4 to be the set of minimal members of each of the n

chains rrre have chosen. Therefore ,4 has n erements and we

will show it is an antichain whose members are subsets of
nll.

For every u e Il, Au has n i-ncomparabre sets so each of the

chains $Ie have chosen conLains exactry one member of 4u.
Therefore every member of .4 is a subset of some member of
A U' Assume A and B are two distinct members of .4. If
A. ÁUr w€ can choose B" åU such that B c B'. If B'= A

then B is a proper subset of A, hence A É B. If A is
incomparable to B', then A É B. Therefore A É B and

simil-arl-y vre can show B é A. Thus .4 is an n-antichain.
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rf A e a then A is a subset of some member of /-u for each u

e !_, and every member of LU is a subset of U. Therefore

every member of A is a subset of nu. D

3.7 Definition LeL B be a family of subsets of x. !,ie wil_l

say a subfamily U c B is n-wide with respect to B iff for
every two members v and u of u, if v is a proper subset of u

then there is an n-antichain A c B between V and U, that is,
v c { c u for every A e A. rf it is erear from context to

which famiJ-y of sets we refer r w€ wiII simply say I!- is
n-wide.

J.B Lemma Let å be a base for K in X, and suppose ü c B is
n_wide. rf x e K and r*(¡) s n then either n (tz)* is a

neighborhood of x or (ø)* is a 1ocal base in X for x.

Proof Suppose x e K and r*(B) < n. Assume n(Z)x is not a

neighborhood of x. Let B e B be a neighborhood of x. vle

will- find a rnember of (Y)x whieh is a subset of B.

Let I be a maximal antichain of {r,I e (I/)*: B É l^l}. This set

is not empty since n(Z)x does not have the neighborhood B as

a subset. Arso / has at most n members, since r*(B) s n.

Therefore n/ is a neighborhood of x and since n(Z)* is not a

neighborhood of x, we can choose U0 r (Z)x such t,hat
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B n nA é U0.

Since B É Uo . (!-) y and .4 is a maximal antichain of the

nembers of 1U) x for which B is not a subset, we can choose a

member ul of A which is comparable to uo. we can rule out

the possiblity that Ul c UO, since nA É tJgi therefore
UO c U1. Since U is an n-wide familyr we can choose an

n-antichain ,4' . E between uo and u1. The point x is in the
set B n nA ' and r*(B) s rtr so r"Je can choose A e A' such that
A and B are comparable. B cannot be a subset of A since B

is not a subset of U1. Henee A, and therefore UO . (U) *, is
a subset of B. This proves (U)* is a local_ base at x. I

Suppose ã_ is a base of rank <n for X. If y c. E_ is n-wide

with respect to B, it is clear from the definition of
wideness that any subfamily of ü is n-wide with respect to
B. Therefore, by the previous l_emma , íf IJ' c ü/ then either
(1) nIJ' is open or (2) n(!-') = {x} and t/' is a 1oca1 base

for some x e x. since every subfamily of a base of rank 1

is 1-wider w€ have a generalization of lemma 1.4 in tNy3l,
which is stated below:

Letpbea

either
(1) nB'

or (2) ñB'

ín

rank 1 base for a space X, and 1et B'c B. Then

l_s open

is a singteton txÌ and B'is a local base for x

X"
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The nexL resurt is the key description of the structure of a

base of finite rank" For a point x and a neighborhood u of
x, recall that r*(a,U) is defined to be the rank of
{B . (.8.)x: B c u} at x.

3.9 Lemma Let n be a positive integer. Let K c x and let B

be a base of rank s¡ aL K in x. rf B is crosed under union

of chains then there exists a NoetherÍan n-wide family u c B

such that for every point x e K either
(i) ,Y)x is a local base

or (i-i¡ r*(B,u) < n for some U . (u)x.

Proof LeL B be a base for K c x such LhaL B is cfosed under

union of chains and for atl x e K, r*(B) s n. We will-
assume every member of B intersects K. For convenience we

wilr assume K contains no isorated points of x. This wirl
not result in a l-oss of generality since by simpry adding

open singretons to the famity z¡ which v¡e witl construct for
a set K without isorated points r ür€ obtain the desired
family for any subset of X.

we wish to inductivery choose antichai,rr Zo . E, for every

ordinal c, t,hat satisfy conditions (a)-( e) below.

(a) IJ^ is a cover of K,_U

(b) Uo is an antichain and a subfamily of B,
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(c) Lo+1 is a partial refinemen? of llo and a cover of
{x e K n (uz-a) : r*(ã.,n(lo)*) = D},

(d) for every V E Lo+1, U . Lo, if V n U n K r O then V is
a proper subset of u and there is an n-antichain of B

between V and U,

(e) if a is a l-imit ordinal , Lhen [Jo is a partial
refinement o¡ U_o. = {intXn(u1ü.or ô < c})*: x . ,Zo for
all ö < a], and [/o is a cover of (u4o) n K.

By lemma 3.4, we can choose a family uo c B such that 4olx
is an irreducibte cover of K.

Assume c is a limit ordinar and hre have defined {zu: ô < a} .

By lemma 3.4 we can find a subfamily ILs of ^ä. which is a

partial ref inement of t,he colrection fr'o def ined in ( e ) above

which, when restricted to ,Lo n K, is an irreducibre cover.

U-a satisfies (b) and (e).

Assume we have defined uo. !,Ie wirr choose IJ ^. , so that
-q+ I

(b)-(d) are satisfied.

If x e K n uZc and r*(¡,n(øo)x) - n, then choose an

n-antichain .4* c {B e B: x e B c n(yo)*}. If n = .l then we

expricitry demand that the member of l_x is a proper subset
of n (¿i-).-. We can do this as x is assumed not Lo be--a' x
isorated in x. Define ?- to be the col_lection of all_ sets
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of the form ¡4x. Clearl_y Lo is a cover of {x e K n (ulo) :

r*(E,n(ILo)x) = nÌ and a partial refinement of IJ-.
-o

By lemma 3.4 we can choose II-, t c fl which is a partial
refinement of T and an irreducible cover of (r[o) n K.

Therefore Zo*i satisfies (b) and (c)

Let us show (d) is satisfied. Let V, Lo+1. V is a subset

of some member of Lo, which is the intersection of an

n-antichain A . B_ whose members are subsets of n(Uo)x for
some x e K n u.U.c. For every member U o, !!a such that
u n nA n K î o we cl-aim uA c u. This is clearry true if
U e (üo)*, and in fact we will prove U . (Zo)x.

Since nA n U n K r O and r"(B) s n for al1 z e K, we can

choose A e / such that, A and u are comparabl-e. rf A c u

then a fortiori, x e u and vre are done. But if we assume

x I U and U c A then U is a proper subset of A and since A

is a subset of every member of (Uo)x, U is then a proper

subset of some member of (üo)*. This is not possibl-e since

Uo is an antichain.

Therefore every member of .4 is a subset of u for any u , Lo

such that nA n u n K t o. since v c AA, A is an antichain
between v and any member of u of uo which intersects v n K.

Therefore U_.n satisfies (d).
-c+ I
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We have shown Lo+1 satisfies conditions (b)-(d) and Lhe

induction is complete "

Suppose üo has been defined for every ordj-na1 a and

conditions (a)-(e) are satisfied. We wiII show there exists
an ordinal n such that Ao = þ for aII ordinals a à n.

Suppose V . !8, U E lot e < ß, and V n U n K . 6. It
follows from (c) and (e) LhaL UU is a partial refinement of

!o+1r so we can choose V' . !o+., such that V c V'.
Therefore v'n u n K t o and by (d) we can infer that v is a

proper subset of U and there is an n-antichain between V and

U. Therefore I/o n U_ø - O, and for any ordinal- n,

IUo: a s nÌ is n-wide in B. Since the famities Uo are

pairwise disjoint subsets of B r we can choose an ordinar n

such that Zn = Q . !üe will_ show the n-wide family U =

u{U-: a s n} is Noetherian and satisfies (i) and (ii) of the-c
lemma.

Assume c c u is a chain. Define ö to be min{c < n: c n lo Í
0]. If c < ß < n then no member of Uo is a subset of any

member of u^ . Therefore c n IJ. is a singleton set whoseB-:ô
member is the maximal member of C. Therefore I is
Noetherian.

Let x e K. We wÍt1 prove either (U)x is a local base for x

in X, or there exists U r (U)x such that r"(¡,U) < n. Let c

be the minimal ordinal such that x É uZo. Assume c is a
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lirnit ordinal. l,Je wil1 show (U)x is a local base for x.

Sinee x LLo, by (e) we have x I inL*n(u{i,/O: ô < "})*.
Therefore, since U is n-wide, Iemma 3.8 states that
(u{üO: O o o})x is a loca1 base aL x.

Now assume a is equal to 6+1 for some ordinal_ ô. By (b)

(UO)* is finite and by (c) r*(B,n(¿ö)x) q nr since x /
,4e*1. By lemma 3,6 we can conclude that there exists
U e (Uo)* such that r*(B,U) < n. n

3.10 Lemma Let n be a positive int,eger. Let K c X and tet
B be a base of rank sn at K. rf å is closed under union of
chains then there exist,s a subset of B which is a Noetherian

base for K in X.

Proof Let n be a positive integer. Assume for every subset

L of X and for every base of rank <n at L that is closed

under union of chains r Hê can find a Noetherian subset which

is a base for L in X.

Let K c x have a base B of rank <n that is closed under

union of chains. using the induction assumption, we will
exhibit a subcollection of B that is a Noetherian base for K

in X.

!'le wilr insisb that every member of B intersects K. By
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lemma 3.9 we can choose a Noetherian n-wide family U_ c E_

such that fon all x e K either (i) (U)* is a 1ocat base aL x

or (ii) rx(å,U) < n for some U e I which contains x.

For each u e !-, define Fu to be {x e u n K: rx(¿,u) < D},

and define Bíl to be {B e B: B n FU t O, ! c U}. The family
E-u is a base of rank <n aL Fu and since å 1" closed under

union of chainsr so '" ¿ú. By our induction assumption, r,¡e

can choose a Noetherian subfamily åu "f 
p_u which is a base

for FU in X.
ø

Let â be a chain in u{Bu: u e Itl. we wil-r show that c has a

maximum member"

Define D to be {U e [Jz C n AU ¿ ô]. Any set of n+1 members

of Ð- have in common a subset which is a member of c, and

therefore have a point of K in the intersection. since ¿
has rank sn at K, there are at most n maximar members in the

set D" For each maximal rnember U of D, let CU be the

maximum member of C n EU. Suppose C is a member of C. We

t+il-l- prove â has a maximum member by provÍng C is a subset

of one of the members from the finite set {cu: u is maximal-

in DI.

choose v e D such that c r åv. rf v is maximal in D, then c
c CV, so suppose V is not maximal. There is a maximal-

member U of D which has V as a subset, since U, and
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thereforê D , is Noethenian. Since /1 is n-wide there is an

n_antichain A c E_ between v and u. Therefone rr(a,u) = rl

for every z e V n K, and this implies that V n FU = Q.

Since C c V and CU n FU / þ, we cannot have CU c C. But CU

and c are membens of a chainr so c c cu. Hence u{Bu: u e ul

is Noetherian.

The union of two Noetherian fami-ries is Noetherian, so

U u u{åU: U e Ul is Noetherian. If x e K and U is not a

local base for x then by (ii) of lemma 3.9, there exists
some U e U, such that r*(B,U) < n. Then B' is a local base

for x.

x. I
is a Noetherian base for K in

llle are nor^r abl-e to answer a question of p. Nyikos appearing

in tcNl, ILN] and tNy4l.

3-11 Theorem A T1 space with a base of (point-)finite rank
has a Noetherian base of (point-)finite rank.

Proof Let x have a base B of finite or point-finite rank.

By lemma 3.3 r^re can assume, without r-oss of generarity, that
B is closed under union of chains.

rf B has finite rank, then remma 3.10 states that there is a

Noetherian subset of B which is a base for X. This

Noetherian base has finite rank since B doe-s r so in this

Hence I/ u u{Brr: U E U}-U
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case hre are done.

Suppose å has point-finile rank. For eveny integer n,

define X' to be [x e X: r*(å) = n]. CIearIy B_ is a base of
rank sn at X_. By lemma 3.10 we can choose a Noetheriann

subseL E; of B which is a base for xn in x. I.Ie wilr suppose

every member 
"f Z; intersects Xn.

Foreachint'egern'defineBtobeiBeB.:Bnu{X,:i<

nÌ = oÌ- rf x I u{xr: i < n} then there is an n-antichain /
in (B)... The set nl is a neighborhood of x which does not-x
intersect u{xt: i < n}. Therefore u{xr: i < n} is cl-osed in

u{Bn: n < ori is a base for u{Xrr: n < or} = X.

since B- is a subseL of B' , B- is Noetherian. !üe claim-n --Tl' :fì

u{{: n < o} is Noetherian. Let C be a chain in this base.

Define m to be the minimal_ integer n such UnaL L n Ðn* O .

Let C be the maximal member of Ç_ n Ër. We can show C is
maxirnalinâ. If Deâ\%, thenDe¿nE_n. forsome

m' > m. Therefore D n X, = þ and since C n Xro t O, C is not

a subset of D. Therefore D c c and c is the maximal element

of C. I

since the maximal members of any subcorrection of a

Noetherian base of point-finite rank is point-finite, it is
easy to see from theorem 3. 1 i that, a space with a base of

x which implies B is a base in x for xn. Therefore
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point-finite rank

proven in tGNl.

is herediLarily meLacompacL, a result

3.12 Corollarv

finite rank has

the cardinality

of X.

A regular space X with

a base B such that for
of (B)x is not gneater

a base of point-

everypointxeX,

than the cell-ularity

Proof By theorem 3. 1 i we can choose a Noetherian base B' of
point-finite rank. For each u e B' consi-der the set tul =

{ V e þ': eI*V = efXU} . Since B' is Noetherian every member

of [u] is a subset of a maximar- member of tul. Define B to
be {U e B': IJ is maximal_ in tUl}.

Ïf x e x and hl is a nei-ghborhood of x, then we can choose

U e B-'such that x e U c cl*U: !rI. There exists a maximal

member V of tul which contains U. Therefore V e B and since
x E U c ! c ci-*U c tr^I, v¡e have shown B is a base for X.

For any x r Xr by l_emma 1.4 we can choose a chain C of (B)x

with the same candinality as the cardinality of (a)*. Since

t is Noetherian, let {Co: q < ß } be a wel-l-ordering of C

u¡hich agrees with the order given by reverse. set incl_usion.
since the c-'s ane comparabre, they have distincb crosuresq

in X. Therefore {Co \ clrCo*r: c < B} is a collection of
pairwise disjoint non-empty open subsets of x, and I g I =
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t(å)xt" o

The following resurts are immediate consequences of 3.12. A

regurar hereditarily Linderöf space with a base of point-
finite rank has a point-countabre base tcl. A regurar
separable space with a base of point-finite rank is
metrizabre tGl. A regular space with calibre or and a base

of finite rank is metrizabl_e and separabl_e tGNl .

Metacornpactness is not preserved under finite products. For

exampJ-e, the Sorgenfrey l_ine is metacompact, in fact
Lindelöf, but its square is separable and has an uncountabre

closed discrete subset. The Sorgenfrey line arso has a base

of subinfinite rankr so in corollary 3.13 below,
trpoint-finitert cannot be replaced by ttsubinfinitetr.

The next corollary describes a sufficient condition for the

product of finitely many metacompaet spaces to be

metacompact.

3.13 coroÌlarv The product of a finite famiry of spaces

with bases of point-finite rank is metacompact.

Pnoof By theorem 3.1i, a space with a base of point_finite
rank has a Noetherian base of point-finite rank. Theorem

2-5 of tGNl states that a product of finitely many spaces
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with Noetherian bases of subl-nfiniLe rank (and in particul-ar
point-finite rank) has a Noetherian base of subinfinite
rank. Therefore the product, by theorem 2.4, is
metacompact. D
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SPACES WTTH BASES OF

. CHAPTER IV

POINT-FINITE RANK THAT ARE METRIZABLE

rn this chapter Lre wirr prove that a regular first countabl-e

ß-space with â base of point-fÍnite rank is developabre and

we characteríze those regurar ccc spaces which have a base

of finite rank.

Let us recal-I the definition of a ß-space tHo1l. A B-space

is a space in which there is associated to each point x and

each positive integer n an open neighborhood g(n,x) of x.

such that if {xr.r: n < ro} is a sequence in X and

n{g(n,xn): n ç r,r} Í 0r then {xn: ar} has a cluster point
The function g from o x x to the topology of x is carled a

ß-function.

Listed in IHo1] are characterizations of developabre spaces,

wÂ-spaces, semi-sbratifiabre spaces, and weak-Nagata spaces

given in terms of a function from o x X to the topofogy of
x. rt is elear from the characterizations given that these

cl-asses are al-I contained in the class of B -spaces .

suppose x is a B-space and g is a B-function for x. rf for
eve.ry x e X and n ( ,, f(nrx) is a subset of g(n,x) and an

open neighborhood of x, then f is also a B-funct,ion for x.
Therefore, without ross of generality we wirl assume that,
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for eaeh x e X, {g(nrx): n < or} is a decreasing sequence of
neighborhoods for x.

4.1 Lemma Let g is a ß-function for a space x such that
{g(nrx): n < o} is a decreasing sequence, for aII x e X.

n{g(n,xn): n < o} t þt then every infinite subset of
{xn: n < o} has an accumulation point j_n X.

If

Proof Suppose n {g(n,xn ): n

subset of o. Define yn to be

Yn to be Xn,, for some n' e A

8(n,Yn¡

n e A] r ô. Therefore iyrrt n

cl-uster poinL. I

r¡i / 0 and A is an infinite
*r, if n e A, otherwis"l Ourtrr"

which is larger than n. Since

niS(n,Yn): n < to] r n{S(n,xn):
< t'r] = {xrr: n s A} has a

4.2 Definition A constructibl-e subseL of a space x is the
intersection of two subsets of x, one open in x and the

other cl-osed in X.

4.3 Lemma Let x be a regurar B-space in which every point
is a Gö. rf a constructible subset K of x has a Noetherian

base B of rank s¡ at K, then there is a subfami Iy U of B of
countable order (see Definition 2.6) such that for aII x e K

either (i) (u)* is a l-ocal base for x or (ii) r*(B,u) < n

for some U e [J.

Proof Let K be a constructibre subset of x which does not
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contain any isoÌated points of x. choose an open subset vr

of X and a closed subset FK of X such that K = VK n FK.

Assume B'is a Noetherian base of rank sn at K. Define B Lo

be {B E L': cI*B c VK, B n K t O}. B is a base of rank sn

aL K; it is Noetherian since B' is. we will- construct a

subfamily of B that is a base for K in X of countable order.

Let g be a ß-function for X such that {g(i,x): i < o} is a

decreasing sequence for every x e x. Since every point x of
X is a Go, vle will assume n{S(irx): i ç r,r} = ix} .

l^Ie will- inductively construct a n-wide subfamily of B

(recalI Definition 3.7). We wil-1 define U. c B and Di c K

for i < o to satisfy the following:

For each x r Di, w€ choose f(i,x) e B such that úr, =

{f(i,x): x r Di} and such that:

(4) x E f(i,x) c s(i,x¡
(5) f(i,x) is a proper subset n(u{¿.: j < i})x and there

exists an n-antichain of (B)x between f(i,x) and

n(u{I/r: j . i})x

(1) U^ is a cover of K_U

(2) ILi c B- is an antichain
(3) Zi*l j-s a cover of {x e K: r*(¡,U) = n for atl U e

(u{Zr: j s i})*}
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(6) if y e D¡, i a i, x E f(i,y), and y t x then cI*f(i,x) c

f(j,y) \ {y}

Let us define /¿o and D0. For eaeh x e K choose f(O,x) e þ
such that x e f(O,x) c g(O,x). Define ZO to be the set of
al-l maximal members of {f(O,x): x e K}. For each member u

of !-0, choose *U e K such that f(O,x') = U and define DO to
be {x,,: U e U^l -U_U

Suppose a subset Oj of K, and an anti.chain lj =

{f(j,x): x. Dj} have been chosen satisfying (1)-(6) for a1l_

i s i. We will choose !í*l .

Define I¿. to be u {2.: .i < i} and def ine E, to be-l_ -'-J- " -i
u{Dr: j s i}. Suppose x e K. Each I/¡, j s i, is an

antichain and has f inite rank at K, so the set (l/i) x is
finite. Therefore iy e Ei: x e f(j,y), LjÌ is finite and

n(fr)* is a neighborhood of x in X.

suppose further that r*(a,n(zi)x) = rr. By definition we can

choose an n-antichain z4* c (B)x such that uL* c n(Lr)*. No

isolated point of x is a point of K, so now we can choose a

neighborhood f(i+1,x) of x whose closure in X is a proper

subset of the neighborhood n4* n g(i+1,x) and which does not
intersecb {y e Er: x e f(j,y) e U5, j
f(i+1,x) satisfies (4)-(6).
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Define U " . to be the set of all maximal members of-1+ I

{f (i+1,x): x e K, rx(8, n(Li )x) = n} . For each member U of

!i*1, choose xU e K such that f(i+1,xg) = U and define Di*1

t'o be txu: u t Zi*lÌ' Then !i*l and Di*l satisfy all
required conditions. This completes the induction.

If U, has been defined as above for all i < o, r,Je cl-aim t/ =-l-

u{U-: i < o} is n-wide in B and and is the required base.

If j . i and x . Di then, by (5) and (3), vle have x . uL_j

Then by ( 5 ) again , Lí is a partial refinement of ¿j , since
(u,)--t ö for all x e D=.
-Jx l-

Suppose x e D1, y . Dj, f(i,x) . Li,
is a proper subset of f(j,y). Assume

partial refinement of !_i and f (i,x),

f(j,y) , L, must be a proper subset
J

But this is a contradiction since U,

f(j,y) . U, and f(i,x)
J

i < i. Then U, is a

as a proper subset of

of some member of -Ui

is an antichain "

Therefore, if f(i,x) and f(j,y)
[/ and f(i,x) is a proper subset

Furthernore by (5), there is an

f( i, x) and r( i , y) . This proves

are two distinct members of

of f(j,y), then i > j.

n-anLj-chain of (B)x between

ü is n-wide.

Let f, c !l- = u{yr: i e ,o} be an infinite chain

has countable order r we will- show that either
a l-ocal neighborhood base in X for some point

nL

of

To prove ð/

=gorCis
K.
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Each Zt is an antichain, so the chain â wirr contain aL most

one member of !,i. Therefore there is an infinite set A c û)

such LhaL C = {f(i,xr): i r A, *i e Dr}.

Suppose there exists an x such that ii e A: *i = xÌ is
infinite. We have chosen {g(i,x): i < o} to be a strictly
decreasing sequence whose intersection is the seL { x} ,

therefore by (4) n{f(J-,x): i e A} = {x}. But U is n-wide

and ixÌ is not open in X (f contains no isolated points of
X), so by l-emma 3.8, {f(i,*i) e C: xi = x} is a local base

for x in X.

ïf no elemenL is repeated infinitery often in {xr: i e A}

then there is an infinite subset A' c A sueh that, if
{i,j} c A' and i r j, then *i æ xj. Suppose nC t O. Then

{xi: i e A'} has a cl-uster point c , Xr by our choice of the

ß-function and lemma 4..l. !.Je have proven earlier that, if
i < i then f(i,xr) I f(j,*j). Therefore f(j,xj) c f(i,x.)
for any {i,5} c A', i < j, and furthermore by (6) cI*f(j,*j)
c f(i'xi) \ {xt}. Therefore nC does not intersect
{xU: k e A'}, but since f(irxi) contains al_t but finitel_y
many points of {xU: k e A'}, }¡e have c e nC. Since

{xn: k e t¡} is a subset of the closed set FK, the cr-uster
point c is contained in FK. Since c e nâ ¿¡fl every member

of t is a subset of VK, lÍe have c . VK. Therefore c . VK n

Ff = K. But u{yr: i < o} is n-wide and r"(B) s Dr so by



43

3.8, nC is a neighborhood of c or

Since nL does not meet { xr: i. e A

neighborhood of the cl_uster poinf
for c in X and nÇ_ = {x}.

Therefore every infinite chain of
inbersection or is a local base.

order.

c

,I

c

is a l-ocal

, nC cannot

,soâisa

base aL c.

bea

local- base

U = ulU.:
-.1_

Therefore

< ar Ì has empty

has countable

i
U

Finally we wiII show (i) and (ii) in the statement of the

lemma are satisfied. suppose x e K and r"(¡,u) = rr for al-I

U e (ø)*. tie will show (tÐ* is a l-ocal base for x in X. By

(3), x E ulLi for all i < &i so (Z)* is infinite. I has

finite rank at x, so by l-emma 1.4 there is an infinite chain

in (t/)x. l,Je have proven every infinite chain of U is either
a Locar base or has empty intersection, therefore (u)x is a

local base for x.

lrle have proven the l-emma assuming that K is a constructible
subset of x without any isorated poínts of x. rr K' is any

construetible subset of x and B is a Noetherian base of rank
s¡ at K', then define K to be K' \ {x: {x} open in X}. Then

K is a consbructible subset of x and B is a base of rank s¡
aL K, so we can find a subset of B to satisfy the lemma for
K- By simpry adding al-l the open singletons to this subset,
ü¡e obtain the desired famiJ-y for K' . I
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4.4 Lemma

is a G-.
ô

base B of

countable

LeL X be a regular B-space

If a constructible subset K

rank <n at K, then there is
order which is a base for K

in which every point

ofXhasaNoetherian

a subfamily of B with

in X.

Proof We will prove the lemma by inductj_on on

be an integer, Assume ÞJe have shown the lemma

every integer less than n.

n.

is

Let n

true for

For each u ¿ IJt define Ku to be {x e I n K: r*(¡*,u) < n].

Let K be a constructibre subset of x and suppose B is a

Noetherian base of rank srl at K. r^re wilr assume every
member of B intersects K. By l-emma 4.3, we can choose a
subfamily a of B with countabl-e order such that for arl-

x e K, eÍther (ø)* is a local- base at x, or r*(¡,U) < n for
some U e L.

Every point of u that is not in Ku is in the inlersect,ion of
an n-antichain which does not intersect Ku, therefore Ku is
closed in u n K, and is a constructible subset of x.
Furthermore {B e Ë_: B c U} is a base of rank <n at KU. By

our induction assumption, we can choose a subset åU of
{B e B: B c u} which is a base of countabl-e order for Ku in
x.

we wil-l show u u u{Bu: u e u} is a base of counLabre order
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LeL C c u{BU: U e {J}

for K in X.

be an infiniLe chain. Assume that the

set d'= {U e [!: C c U for some C e Cl is infinite. Since

the intersection of every subcortection of c ' with n+1

members contaj-ns as a subset a member of c, and therefore
contains an point of K, there are no n+1-antichains in c'.
Therefone by lemma .l.4 there is an infinite chain in c' .

since it is arso Noetherian, there is a perfectly decreasing
subchain. t¡ has countable order so nC'= ô or C'is a 1ocal

base for some point of X. Therefore nC = 0 or C is a l_ocal

base for some point.

Assume {U e tL: C c U for some C e L} is finite. Then the

members of d are distributed among only finitely many

families Bu, u e lJ. Therefore there exists u e [/ such t,hat

L n L, is infinite. B, is Noetheri_an and has countableU_U-

orderr so the chain â n Eu has empty intersection or is a

local- base. Therefone c has empty intersection or is a

l-ocal base.

we have shown u{Bu: u e u} has countabl-e order. The union
of two famifies of countable order also has countabÌe order,
so u u u{Brr: u e uI has eountable order. rf x e ( and u is_U

notabaseatx'thenthereexistsUeð/suchthatr*(B,U)<

n, and therefor" åU is a base for x. Hence ð/ u u{Eg: U e U_l

is a base of countable order for K in X. I



Il6

Recall- that a Moore space is a regular space with a

developement (see Definition 1 " 1 1 ) .

4.5 Theorem Let x be a regular B -space in which every point
is a Gô. If X has a base of point-finite rank, then X is a

Moore space.

Proof By theorem 3.11 v.¡e can assume X has a Noetherian base

B of point-finite rank.

For each n ( o define K., to be {x e X: r*(B) < n}. Then B

is a base of rank sn at Kn. If r*(B) > n then x is
contained in the intersection of an n+1-antichain of B, and

this intersection does not intersect K -. Therefore K isnn
closed in x, so we can appry lemma 4.4 to find a base Bn c B

of countabl-e order for K' in X.

Define ao to be the empty set and for n, or define Bn to be

{B e {: B n Kn_1 = O}. Each å] is a base for K \ K . in-n n --n-1 -"
x and has countabre order since Bn does. hre eraim

u {Brr: n < r,¡} is a base of countable onder for X.

Let t c u{Bn: n < ¿o} be a perfectly decreasing chain. If ,

for every n ( o, there exist a memben of c which does not
intersect Kn then nC c n{X \ Kn: n a r} = g. If there

exists an n ( o such that every member of C intersects K.,
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then ¿ c u{åj: i < n}. Therefore there is an i such thal
c- n L; is inf inite . since å, has countabl-e order, either
Ç- n Lí is a local- base or its intersection is empty. Hence

either d is a loca1 base or nC = g.

Therefore x has a base of countabl-e order, and since x has a

base of point-finite rank, by coroj-Iary Z.1O X is
developable. D

The requirement in the theorem above that x be a ß-space can

not be dropped. The Michaer rine, the space obtained by

dectaring each irrationar of the real l-ine to be isolated,
is a space with a base of rank 1 (see example 5.1 of iLNl).
rt is first countabJ-e, but it is not deveropable. The "t":
arrowsrrspace of Alexandroff, which is I x 2 with the
lexigraphic order (f denotes the unit interval), is a

compacL first countabl-e space with a base of subinfinite
rank tGNl. since every col-lection-wise normal Moore space

is metrizable tBil, the two arrohrs space is not a Moore

space. Therefore the property tpoint-finite rankr cannot be

replaced by the weaker property t'subinfinite rank' in the

theorem above.

4.6 coroll-arv A colrectionwise normal r-space (or wô-space)

wibh a base of point-finite rank is metrizabte.

Proof Every wÂ -space or x-space is a ß-space I Ho2 ] . l,,le
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w111 show every point of a ¡-space or wa-space with a base

of point-finite rank is a G6 . Then we can apply theorem 4 "5
to prove x is developable. since a coll_ecti_onwise normal

deveJ.opable space is metrizable iBil, w€ will then be done.

Suppose X is a wÁ-spacer and x e X. It follows immediately
from the definition of a wô-space thab every point of x has

a collection {un: n < r^r} of neighborhoods such thaL, for any

sequence {xn: n < o} of X, if *n r Un for a]l n, then

{xn: n < r¡} has an accumulation point. Since X is regular
lJe can choose a cl-osed Go vn contained in un and containing
x. Therefore the closed set n{vn: n ç o} is a counLably

compact Go containing x. Every base of point-finite rank is
base of subinfinite rank, so by theorem 2.11, x is a Gô of

n{Vn: n < o}, and hence x is a G6 in X.

Now suppose X is a r-space, and let 1En, n < r¡Ì be a

spectraJ- I-sequence for X. For each point of X and for
every integer n v¡e can choose a neighborhood V' which

inLerseet only finitely many members of 4n. Let U., be a
closed G6 such that x r Un c Vn. Using the nethod used in
the proof of Lheorem 2 of lozfr w€ wirl show every
uncountabl-e subset of the elosed Go, n{un: n < r¡}, has a

countable subset with an accumulation point.

Let A be an uncountable subset of G = n{Un: n < r¡}. For

every n, onl-y finiteJ-y many members o¡ 4n meet G, so the set
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{n(fn)*: x t Gr n < or} is countable. If for every x E G,

there is an integer n( x) such that n (^En(*) )x n A is f inite,
then {n(A.n(x) )*: x e G} would be a countabre cover of A wiLh

each member containing onry finitely many erements of A.

This contradiction shows there exists a point y such that
A n n({), is infinite for every n < .u. tr{e can inductivery
choose {an: n < ur} c A as follows: 

"O 
e n(lO)y ¡ Ar and

an+1 t n(Fn*1)y n A \ {ar: i s ni. By the definition of a

spectral sequenee, { arr: n < a¡ } has an accumulation point.
Therefore every uncount,able subset of G has a countable

subset with an accumulation pointr so by theorem 2.11, every

point of G is a Go in G, and hence in X. I

!'le cannot weaken t¡collectionwise normar¡t to rrnormar-rr in
corollary 4.6. For example, consider the foltowing subspace

of Heath's "tangent v spacertIHe]. Let x be the set of alr
points in the Eucridean half-pIane above the x-axis pLus ûr r

points of the x-axis. A basic open neighborhood of a point
x on the x-axis is a pair of Ii-ne segments of equar length
extending up from x at an angle of 45 degrees. A1r points
not on the x-axis are isol-ated. This describes a base of
rank 2 for X. X is a x-space and a wÀ-space, though it is
not metrizabre since x is not col_lection-wise normar. rf we

add Martin's axiom and the negation of the continuum

hypothesis (see IJe]) to the usual axioms of set theony,

then the space x is normal" The proof is identical to that
given in tnl to show the square of a r<-sorgenfrey line is
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normal if o ( 6 o 2^. Therefore in some model-s of set

theory, x is a normal non-metrizabre r-space and wÂ-space

with a base of rank 2. 0n the other hand, if the set-
theoretj-c axiom PMEA is consislent (thougfr it may not be,

see tNy5l), then every normal first counLabre space is
collectionwise normal- .

Corollary 5.14 of tGNl states that a ccc space is a finite
dimensional metric space iff it is a corlectionwise normal
r-space with a base of finite rank. corortary 4.6 together
with theorem 1.6 show that this result holds flor all spaces,

not just the ccc spaces.

rn the remainder of this chapter we'characterize the regular
ccc spaces with a base of finite rank.

4-7 Derinition A souslin line is a ccc non-separabl_e space

that can be embedded in a linearly ordered space. A Souslin
tree is any uncountable poset (p,<) with no uncountabre

antichains or chains, such that, for every x € p,

{y e P: y < x} is a chain well_-ondered by rr<rr.

A souslin l-ine exists if and onJ-y if a sousrin tree exists
tMl. The existence of a sousrin tree is consistent with and

independent of the usual axioms of set theory t Je2l.



51

rt is shown in tNy2l trrat a ccc space with a base of rank 1

is non-metrizable if and only if there exists a souslin
tree. l,Ie extend this to spaces with bases of finite rank.

4.8 Theorem rf a regular, ccc space x has a base of finite
rank, and no open subset of X is separable, then a dense

subset of X is a Souslin line.

Proof Let G be an open subset of X. Define n to be the

minj-maI integer m such that there exists an open subset w'

of G with a base Br' of rank s¡¡. Choose an open subset W of
G which has a base B of rank <n.

!ùe wil-I inductively choose a dense subset of !,r"

Suppose we have chosen {xo: c < B} c W such that

"*o(å, hl \ cI*{xr: r < a}) - n for every q < ß. Assume the

set VU = VrI \ clx{xo: c < B} is not empty. There exists a

point x r vB such that r*(B,vß) - n, otherwise the family
{B e B-i B c vu} is a base of rank <n for vu, contradicting
the minimarity of n. Therefore we can choose *ß . vß such

that 
"*s 

(å,Uu ) = n.

{B e B: *o e B c !ü \ clr{xr: y < o}} since the rank of
{B e L: B c irl \ {xr: r < s}} at Xo is exactly n. A}so, by

rn this hray we wirl- choose a dense subset {xo: g ( n } of l^l.

For every s < rì, we can choose an n-antichain ,4o c
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corollary 3.12, X is first-countable, so for each xo, we can

choose a decreasing loca1 base {Uo,r: i < r,r} c B such that
U - c nA for each i.Grl- -O

l,le elaim {Uorrt o ( n, i < r¡} has rank i" Suppose s ( ß and

Uo,, intersects uu,j. Then uo,i intersects nLg which has

uo . âs a subset. B has rank sn at l/rl, so u^ o is comparableÞrJ "' -sri
to some member of the n-antichain .4u. The point Xo is not

contained in any member of Aø. Therefore Uo, i must have

SomememberofAoaSasubsetrSoUo*isasubsetofU^
-Þ ÞrJ ari-

Therefore tUorit s < n, i < roÌ is a base of rank 1 for
{xo: c < n}. Since {xo: c < n} is a dense subset of W, it
is non-separable and ccc. Every space with a base of rank 1

can be embedded as a subspace of a totatly ordered set with
the usual order topology tNy3l, therefore {xo: û < n} j_s a

Souslin l-ine dense in an open subseL of G.

ÍJe can ehoose a naximar cellurar farnily of open subsets of x

which contain a dense souslin rine, and since every open set

of x eontains an open subset with a dense sousrin rine, the

union of this family is dense in x. rn this vray we can

choose a countabl-e family of pairwise disjoint sousrin lines
whose union ís dense in X and is a Souslin Ìine. 0

Let us show that every ccc non-separabre space x has an open

subset with no open separabì-e subsets. choose a maximal
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cellular (possibly empty) family t¡ of separable open subsets

of x. since x is ccc, z is countabre, so uv is separabre.

Thus X \ eI*u/ is a non-empty open subset of X, and by the

maximality of y_, every open subset of X \ c1-ul/ is
^-

non-separable.

Therefore any ccc non-separabre space x with a base of
fi-nite rank contains an open subset with a dense Sousrin

line.

A space x has precaribre o ¡ if every uncountabre family of
open subsets of x contains an uncountable firter-base. rn

trNl it is proven that the set-theoretic axiom K (every ccc

space has precaribre o r ) implies that every regurar space

with a base of finite rank is separabl-e. ït is well known

that a sousl-in line does not have precaribre o¡r so this
result is a consequence of theorem 4.8.

4.9 Corollarv The following statements are equivalenL.
( 1 ) x is a regular ccc space with a base of rank <n and does

not contain a Sousl_in line.
(2) x is a regular space with a base of rank sn and x2 is

cec.

(3) X is a separable metric space of dimension n-i.

Proof Recall that theorem 1.6 states that a metrizabte
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space has a base of rank n iff it has dimension n-1"

Therefore (3) impties (1).

suppose x is a reguJ-ar ccc space with a base of rank sn. rf
Xz is not eec then X is not separable, so by the remark

following theorem 4.8, x contains a souslin l_ine. Therefore
(1) implies (2).

rf xz is ccc, then no open subset of x eontains densery a

Souslin line, since it is well known that the square of a

souslin line is not ccc. By the remark following theorem

4.8, a non-separabl-e ecc space with a base of finite rank

contains an open subset with a- dense Souslin 1ine.
Therefore, if x is a regular space with a base of finite
rank and x2 is ccc, then x is separabre, and a separable

space with a base of point-finite rank is metrizabl-e t Gl .

Therefore (2) implies (3). I
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