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Simply supported deep beams with circular openings were investigated,

both analytically and photoelastically.

The six beams studied were divided into two series. Series A consisted
PR . . 7 .

of three beams, loaded in pure bending, each with depth/span ratio of 2/3,

and containing a circular hole with diameter/depth ratio of /3. However,

the holes were located along the central vertical axis at different depths.

The three beams of series B also had depth/spau ratios of 2/3 but
were loaded in bending and shear with a point load at mid-span. Each
beam had a pair of circular holes, diametér{depth ratio 1f3, centred on

o~ 1
{

the vertical axes at quarter-span from either support, and along ©

1
£

1@ same
horizontal line, The varying parvameifer in this case was the distance of
the line of centres of holes from the top edge.

| All six beams were experimentally studied, using two-dimensional

photoelasticity. The method used for separating principal stresses was

the direct numerical solution of the Laplace equation for the sum of

principal stresses. For an analytical solution, an original numerical
method, philosophically similar to the compatibility method of structural S
analysis, but using finite element techniques, was developed. A relatively

coarse discretization was then applied to one beam of the B series and

stresses obtained, which were then ccmpared to the experimenital results.

They were seen to compare favorably.
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1, INTRODUCTION

A deep beam may be defined as one whose depth is comparable to its

span. Beams of this type, both in steel and in reinforced concrete, often

arise in the construction of bins, hoppers or similar structures, as well

as in more ordinary construction of foundation walls or in cases in wnhich
walls are supported on individual columns or footings. The vertical or
horizontal diaphragms used to transmit wind forces in tall buildings
(walls or floors) are frequently of such dimensions as to be classified
as deep beams,

The problem of holes in beams, especially beams with large depth/span
ratios, is not uncommon. In almost all buildings and related structures,
openings of some sort are required either for access or for passing piping,
ventilation or electrical systems to different compartments. Such material
discontinuities cause stress concentrations in structural members and, if
neglected, may endanger the otherwise well designed structure. Lt is,

therefore, the duty of the structural engineer to carefully evaluate these

stress concentrations and properly allow for them in the overall design.

As is well known, the ordinary theory of bending, the Bernoulli-

Euler theory, cannot be applied to a beam whose depth is greater than about
half its sgpan., The stress distribution in deep beams has received the

attention of mathematicians and research workers since the turn of the

century. One common approach is by solving the bi-harmonic equation for

the Airy stress function, and then obtaining the normal and shear stresses
as second partial derivatives of the stress function. Unfortunately, in

the case of the deep beam, there are six boundary conditions to be sarisfied

(15)

in the general loading case and only four constants in the bi-harmonic



-2-

so that no general solution is sossible. Approximate solutions, however,
have been obtained for certain simple loading cases by choosing a

particular solution for the bi-harmonic and then finding a polyncmial

which, when super-imposed on the particular solution, will satisfy
boundary conditions.

Neglecting body forces, and assuming all boundary forces to be given,
the stress distribution in two;dimensional problems involving simply-

connected bodies is independent of the material. However, the presence

of openings greatly complicates the mathematical solution, since in
multiply~connected bodies, the possibility exists that strains may be

_ (10)
sulti-valued even when the stresses are single-valued . In such
problems, not only must the mathematical solution satisfy the conditions
at the boundaries, but in addition the expressions for displacement must
be examined to see that they are single-valued. The mathematical solution
of deep beams with openings thus becomes a very tedious and involved, and
very often impbssible, task.

Classical mathematics, despite its ever-increasing sophistication,

is basically capable'of solving only highly idealized situations while

demanding at the same time a great deal of skilled time, which could other-
wise be more usefully employed in the process of design. Fortunately,
with the advent of digital computers which perform arithmetical operations

at an amazing speed, methods of numevical analysis have been developed

which are easily adaptable to electronic computations. The finite
difference and the up-coming finite element methods are fine examples
of such techniques. Unlike solutions employing classical mathematics,
numerical solutions encounter no difficulty in satisfying boundary

conditions. Numerical methods give approximate solutions, but so do
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mathematical analyses which make use of series convergence. In the latter
case, only a series summed to infinite number of terms will yield an

exact solution. In the finite difference method, the approximation lies

[

n the solution of the bi-harmonic, whereas in the finite element method,
the approximation is in the assumption of behaviour of individual elements.
Before numerical solutions of real problems dealing with complex
continua can be performed, it is necessary to limit the number of unknowns
involved --- a process known as discretization. Naturally, the finer the

discretization, the closer will be the solution obtained to its exact
value. The digital ccmputer, with its tremendous capacity and speed, is
ideally sﬁited to solve the large number of linear algebraic equations
resulting from the numerical analysis.

Alternatively, the complicated problems of stvess distribution in
multiply~connected continua may be solved experimentally with the relatively
simple and yet very powerful photoelastic methods. Photoelastic methods
excel in yielding a whole-field representation of stress distribution and
concentration.

The science of photoelasticity first appeared in the engineering
world at the turn of the century, and has since become a powerful tool
for stress analysts. It is applicable to any state of stress, but it can
be most conveniently applied_in studies of two-dimensional state of stress.
The present problem may be studied as a plane-stress case if it is assumed
that either the thickness of the beam is small compared with its other
dimensions, or the load is applied uniformly throughout its thickness.

Thus only two-dimensional photoelastic equipment and technique are

required.




A

Photoeclastic data include principal stress directions and differences
in principal stresses. Any standard method of separation of principal

stresses ~--- be it the interferometer, the lateral extensometer, the

oblique incidence or the shear difference method, or the semi-analytical
method of numerical solution of the Laplace equation for sums of principal

stresses --- completes the analysis for stresses in a given continuum.
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2. REVIEW OF LITERATURE
The departure of stresses in deep beams from straight-line distribution

(6)

is well known. In 1932 Dischinger used trigonometric series to determine
(5)
the stresses in continuous deep beams. The Portland Cement Association
prepared an expanded version of Dischinger's paper and added solution for
(3) _
simply supported spans. Conway, Chow and Morgan , in 1951, proposed a
method of solving problems of simply supported deep beams by satisfying
lateral boundary conditions by super-imposing on the primary Airy stress
function, a second stress function obtained with a strain energy wmethod.
(1
Later in 1952, Chow, Conway and Winter used finite difference equations
to deal with the same problems. Many cases of loading and depth/span
ratios were studied for the simply supported deep beam, but, unfortunately,
it was later brought out in a discussion of the paper that a considerable
amount of error existed because of the coarseness of the net and inherent
rounding~off of peak values.
An exhaustive compilation of solution to problems of plates, with or
without openings, loaded transversely or in their planes, with various
(22) (20)
support conditions, was prepared by Weinberg . Timoshenko also
gave solutions to beams with circular openings, but only limited to
openings that are small compared with dimensions of the beam, and a
(13)
further simplification of uniform stress field was made. Muskhelishvili
in his book on problems in elasticity, indicated the use of conformal
mapping in solving problems dealing with multiply-connected bodies.
' (20)
Boundary conditions, however, were again idealized. Timoshenko
demonstrated the application of finite difference techniques to problems

of multiply-connected bodies, with special considerations to how conditions

at secondary boundaries could be satisfied. The work of Savin on stress

.

2
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concentration around holes has been translated into English and published
(17)

in the form of a monograph . It is an extensive theoretical investi-

gation of the influence of various holes in the state of stress in a

nen-uniform stress field in a plane, based on one important assumption =---

that this influence is localized,

The ditfficulty of satisfying boundary conditions no longer exists
with the recent development of finite element techniques, which consider
the discretized continuum as an assemblage of elements whose behaviour is
studied with the basic methods of structural analysis, namely the force
and displacement methods. The large number of resulting linear algebraic
equations are expediently solved with high speed electronic computers.

(24) and(25)
Clough and Zienkiewicz have made important contributions to
(11)
this field, while Gaonkar explores the feasibility of various numerical
methods in solving problems of inclusions.
Literature on photoelastic analysis of deep beams or beams with open-
(14)

ings are relatively scarce. Saad and Hendry investigated simply
supported deep beams, depth/span ratios of 2/3, 1 and 1.59, each carrying
a central concentrated load. The conclusion was that the simple beam
theory was adequate in the case of beams whose spans exceeded 1.5 times

(12)
their depths. Gibson and Jenkins photoelastically analysed a simply
supported shallow beam with a circular opening at the centre of the beam
and carrying a concentrated load at mid~span. Holes of different sizes
were studied and it was found that the pattern of local stress concentration
around the holes could not be predicted by mathematical theory.

No literature on deep beams with openings have been located, even

with the help of the exhaustive Geodex Structural Information Index.




iy

It is therefore hoped that this contribution to the study of the problem
will provide useful information to designers and serve to encourage

further investigation of the problem,
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3. A FLEXIBILITY COEFFICIENT METHOD
IN PIANE STRESS ANALYSIS

3.1 Introduction

Any method of analysis of indeterminate structures must satisfy the
following conditions:

(1) Equilibrium of the structure is maintained.

(2) Stress-strain relationship of the elastic material is obeyed.

(3) Compatibility exists between different parts of the structure

before fracture.

'Consequently, all methods are basically similar except for the order in
which the above conditions are satisfied. 1In particular, the flexibility
coefficient method, also known as the force or compatibility method,
initially assumes equilibrium of the structure. Further equations
are then obtained by stipulating compatibility requirement between parts
of the structure. The stress-strain relationship is implicitly obeyed
in the procesé of determining flexibility coefficients.

The same concepts may be used in problems of stress analysis, and
most conveniently in plane stress problems. When the body is discretized
into a finite number of elements, it can be considered as an ordinary
indeterminate structure. In this particular method, the unknowns are
the normal and shear stress resultants, which are assumed to he acting
at the centres of the interfaces between elements. Thus the discretized
structure is statically equivalent to an assemblage of elements connected
by fictitious hinges at the centres of interfaces (Fig. 3.1).

Basically, the relation between the method presented here and the
usual finite element method can be compared to thé relation between the

force and displacement methods used in analysis of indeterminate structures.

1
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As will be seen later, the procedure used in solution of any plane stress
problem by flexibility coefficients closely parallels the steps used in
setting up and solving the elastic equations of the force method.

As compared to the usual finite element technique, the flexibility

o

coefficient method offers several advantages. Geometrical and stress

i~

conditions at the boundaries are automatically satisfied, and in most
cases the number of unknowns is substantially less than in the finite
element approach. One of the cutstanding features of the method is its
remarkable simplicity and the ease with which it can be adapted for the

1 -

computer by making use of a few simple standard sub-routines.

3.2 The Primary Structure and the Calculation of Flexibility Coefficients

In the flexibility coefficient approach, any elastic body in a state
of plane stress can be considered as an assemblage of mostly rectangular
elements with trapezoidal or truncated-rectangular elements at curvilinear
boundaries (Fig. 3.2)., In the subsequent development, it is simpler to
‘concentrate one's attention on a typical rectangular element as is shown
in Fig. 3.3a.

Assuming the body to be of unit thickness, the well~known equilibrium

equations for such an element can be written in a finite difference
(21) and (7)

form as
<O§5m+l - 6§9m)b + (Tyxgﬂfl “'Tyxan)a + abX =0 (3.1)
(C§sn+l - o§9n)a + (T§y9m+l "'Txy9m>b +aby =0 (3.2)

where X and Y are body stresses. As can be seen from Fig., 3.3b, these
equations assume that the variations of the stresses o;,'Tgys 0§9'Tyx

across the lengths of the element are linear. And by considering the
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- Discretized Structure as Assemblage of
Finite Elements Connected with Fictitious
Hinges at Centres of Interfaces

Fig. 3.2 - Discretized Doubly-Connecited Continuum




Fig. 3.3a - Stresses on Typical Rectangular Element
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ress resultants to act at the centres of interfaces, one has inherently

assumed uniform stress distribution over the interfaces between the

finite elements., Further, it may be noted that since elements of finite
lengths are being considered,“rxy é'fyxs since equality applies only to

infinitesimally small elements.,
Two such equilibrium equations can be writtem out for cach element,

so that i1f the body of Fig., 3.2 were divided into E elements, a total of

2E equilibrium equations would be available. At each interface such as

P

m in Fig., 3.2, normal and shearing stresses ¢and | are acting. If F is

the number of intexfaces, then the number of stresses to be determined is

1

2F

T

o he assemblage of E elements constituting the body is therefore
indeterminate I times where
I =2(F - E) (3.3)

0f the 2F stresses to be found, T stresses can be treated as redundants

and on setiting these as zero, a primary structure will be obtained which

should be determinate and geometrically stable, Bearing this in wind, it

is not difficult to decide on which of the 2F stresses can be treated as

redundants.,

Censider now the primary structure. Under the action of the applied

. o) o
loads, primary stresses which can be denoted by ¢°, T are produced at

the interfaces as shown in Fig, 3.4a. These can be evaluated by writing

out equation (3.1) and (3.2) for each element and by considering the
equillibrium of groups of such elements taken as rigid bodies,

Due to the deformations of the individual elements, discontinuities
will be produced in the direction of the redundants at the interfaces,

. . . , o
These deformations which can be denoted in general by D, are evaluated by

N
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applying suitable fictitious loads to the primary system.

. . .  a s i .

Fig. 3.4b shows the effect of a unit fictitious load b1 =1 applied

. . - e

at the interface of the elements marked 1, 3, where T~ is a fictitious.
stress acting in the direction of the redundant X~, The effect of this
fictitious stress will generally be localized over a limited number of
elements, since the stresses are self~equilibrating. The stress distribu-
tion throughout these elements will also be mostly rectangular or
triangular, a fact which further simplifies calculations,

fand} s F - SO O + £1 3 L g o 3 L3

The discontinuity D~ in the primary structure along the direction

i
ol . et . . o

of T7is found by applying Mohr's equation of virtual work to the two

loading cases shown in Fig. 3.4a and 3.4b. The vesult is
" SR Li . o L Feivo i, o
W% = ot e 0 av + ST av o [ oople 0 av (3.4)

o yo . . . . .
vhere &7, ¥~ are the strains in the primary structure. Considering only

the case of plane stvess and putting
E fe) _L (o__,o . 'O“'O)- (: o ___1._(0.;0 - OJO).
X T E X K y 72 2 = MO, )5

™) =

[N

(T = 2 () (T ® + Ty %) 3)

gives the equation

o] lgp, i O i o uopp, 10 i o
Di = Ejj(ox o + oy Oy ) dx dy -~ z xf(ox c§ + o; oy ) dx dy

1 i o 1 ., i, .0
+ g S Tey Tyy dx dy + g(1+w) ﬁ’ryx Tyx dx dy  (3.6)

"
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Since the principle of complementary shearing stresses does not
apply, it is necessary to consider the virtual work done by the shearing
stresses T__ and T _ separately in equation (3.6). The integrations in

Xy v
this equation have to be performed over the entire region of trhe body,
since the variation of stresses over each element is linear, the integrals
can be readily evaluated by using the standard tables for Mohr's

(18)

integrals . For instance, referring to Fig. 3.5 and considering the

element marked 1,

;’ _i o - _Ei 1 90 W =0
JJf Oy ox dx dy 6 [stm (“Ox,m ' Ox9m+l )
- ey oot ]
Oxﬁm+l <26x?m+l + G;,m )} (3.7)

Equation (3.6) can now be written in a form suitable for computation
by replacing fhe integrals by sums of the type indicated in equation (3.7)
and extending the summation over the entire assemblage of elements,
Derivations of equation (3.7) and similar expressions for other integrals
indicated in equation (3.6) are given in Appendix A, while Appendix B
discusses the computerization of these 0peratidns.

The flexibility coefficients are defined as the displacements
produced in the primary structure under no loads, when one of the
redundant forces is set equal to unity while the other redundants are
assumed zero. Fig. 3.6 shows the redundant force aT%yk:l acting at
the interface of elements 2, 4. Applying Mohr's equation to the two

loading cases of Figs. 3.4b and 3.6 gives
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_zi _,k . i _,k - _L-}f Ji Jk e - i ") -
ff( o™ 4 o§ oy ) dx dy E‘éf(ox o, T ooy ooy ) dx dy
1 ik 1 ; i k
+ E(l'{"U-) f/ Txy. —!xy dx dy + E(l'%'u) S wryx T'yx dx dy (3.8)

The integrals are again evaluated for each element and summed up
to give the value of the integral taken over the entire region.
For compatibility of the displacements of the various elements to

occur, no discontinuities should exist in the displacements of points

situated on interfaces of two adjacent elements., This leads to the usual

compatibility equations

- . - o7
dll dlZ ........... dln Xl Dl
o
do1 dgn ceosranenas don X9 Do
+ =[o] (3.9)
o
al an ee e dnn; _an _Dn |

i,
where any redundant such as X~ is the product of a stress and the length

of the element, that is

ag” .

X = drl or X

In matrix notation, the above compatibility equations can be written
3 k q

in the usual form as

[d] [x] +[0°] = [0] | (3.9a)
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Solution of these equations gives the values of the redundants, which are

then used to evaluate the remsining unknown stress resultants by using

the equilibrium equations (3.1) and (3.2) and the principle of super~position.

In dealing with curviiinear boundaries, the elements at such boundaries
are likely to be non-rectangular, although they are still bounded by
straight lines. The basic equilibrium equations would hold good even for
such elements. However, the integrals involved in the virtual work
equations (3.6) and (3.8) would have to be modified from their normal
numerical form as in equation (3.7). These necessary modifications are
discussed in Appendix A, It may be mentioned that the number of non-
rectangular clements is generally smsll compared to the large number of
rectangular elements that are present. Any approximation inherent in
the evaluation of the virtual work integrals over such elements is

therefore not likely to materially affect the final solution.

3.3 Numerical Procedure

The numerical procedure involved in this method is best illustrated
by considering the analysis of the wall-beam of Fig. 3.7 subjected to
distributed loads applied to the upper edge. Tabulated values of the stress

(3)

distribution in a similar problem are available so that the solution
can be fruitfully compared to accepted values.

Since the beam is symmetrically loaded, only half of it need be
considered in its analysis, shearing stresses along the centre-line
being zero. Tn order not to obscure the essence of the method with an

unduly large amount of computations, a very coarse discretization is

here used. The elements and interfaces are numbered as shown in Fig. 3.7.
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Since the redundants are the stress resultants, Ni and Si will be used

to denote the normal and shearing stress resultants, repectively, where

i represents the number of the interface on which the resultant acts.
There are 14 interfaces and, therefore, 28 unknowns of which,

however,"r7,7_6,"r

10 and T14 are zero. Eight elements give a total of

16 equilibrium equations of the types cccurring in equation (3.1) and
(3.2). Hence eight unknowans have to be removed as redundants before the
structure becomes statically determinate. The most convenient way of
selecting a good set of redundants is to consider how prospective
redundants would react to applied loaas. This can be summarized in the
following observations.

(L) If is found that less confusion results if only shearing stress
resultants are made redundants whenever possible.

(2) For rather obvious reasons, no element should be completely
severed from the structure as a result of removing redundants.
Adequate connections must be maintained in the primary structure
to effectively transmit external loads to the supporﬁs.

(3) Stability of the primary étructure prevents certain combinations
of redundants. For instance, in Fig°'3.79 if all four forces
of Np, Ngy NlO and N14 were removed, the beam would not be
geometrically stable.

(4) Static determinacy of the primary structure as a rigid body
sometimes requires certain stresses to be removed as redundants.
he left half of the wall-beam in Fig. 3.7, for example, is
equivalent to a beam resting on-four rollers located at the

centres of interfaces 2, 6, 10 and 14, resPectively. Any two

»
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of these must be removed in order that the primary structure
may be analysed using the equations of equilibrium alone.

(5) When the correct number of redundants are chosen, each self-
equilibrating system, such as indicated in Fig. 3.8b, is unique.

5 S

As a result of these considerations, Sl’ 83, SS9 73 Sg» Sll°N6

and N4 are chosen as redundants. Figs. 3.8a and 3.8Db show the effects
on the primary structure of applied loads and of S3= 1, respectively.

T+ should be noted that the sketching of self-equilibrating systems like

these is equivalent to solving the set of equilibrium equations by setting,

in turn, all redundants but one equal to zero. The N, and S, thus
5 1 1 L

generated are then divided by the appropriate lengths to give the stresses

which, together with the area of each element, are then fed into the
computer to obtain the flexibility coefficients [d] and the load terms

o o . . . e
[D ]. Results from the computer give, assuming Poisson's ratio p = 0.167,

6.889 4.445 2.445 0.0 0.0 0.0 0.042 0.042]
4oht5 4,889 2.445 0.0 0.0 0.0 0.028 0.056
2.445 2.445 2.889 0.0 0.0 0.0 =~0.014 0.0l&4
0.0 0.0 0.0 2.889 -~0.278 0.0 0.176 0.268
0.0 0.0 0.0 -0.278 2.889 -0.278 =0.027 0.027
0.0 0.0 0.0 0.0 -0.278 2.889 -0.268 ~0.176

0.042 0.028 ~0,014 0.176 =0.027 ~0.268 0.994 0©.451

0.042 0.056 0.014 0.268 0.027 -0.176 0.451 0.994

which is, of course, a symmetric matrix.
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Also obtained is

1

[DO] - [36611 2,625 1.625 0.268 0.389 0.310 0.030 0.012] .

Therefore, referring to equation (3.9a) and putting

1
[}0.419 -0.109 -~0.900 -0.158 ~0.132 ~0.124 -0.052 0.0&é]

These values are then directly substituted into the equilibrium equations
to obtain the rest of the unknowns. The stresses, obtianed by dividing

the stress resultants by the appropriate lengths, are listed in Table 3.1

below.

TABLE 3.1 ~ Stresses at Interfaces
Interface No, 1 2 3 4 5 6 7
ofq -0.109 -0.316 =-0.419 =-0.581 ~-0.049 -0.052 -0.509
T/q ~0.419 0.0  -0.109 -0.207 ~0.090 0.0  -0.158
Interface No. 8 9 10 11 12 13 14
W/q | ~0.491 +0.034 +0.048 ~0.640 ~0.359 +0.124 +0.318

T/q -0.210 -0.132 0.0  =-0.124 =-0.196 =0.359 0.0




A

Values of ¢ along centre~line of the wall-beam are plotted in
ps
Fig. 3.9. The curve compares very favorably with results for a similar
(3

problem obtained by Conway et al s considering the coarseness of the

discretization used.
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4, ANALYTICAL SOLUTION TO PROBLEMS OF
DEEP BEAMS WITH OPENINGS
Of the six beams photoelastically investigated, Fig. 5.1, only
B-2 was analytically studied. It was felt that reasonable agreecment
between the experimental and theoretical solutions would serve to confirm

the correctness of both techniques.

4.1 Discretization

There is symmetry in loading and in the geometry of beam B-2; so
only half of it need be considered (Fig.&.l). The curvilinear boundary
of the circular opening is approximated by straight lines, thus making
the elements bordering the opening trapezoidal. Rectangular elements are
used elsewhere. Finer strips of elements at the concentrated load and
at the support are justified, because this particular method assumes point
loads to be distributed over the faces of the elements they act on. A
finer element, therefore, would reduce the magnitude of errors introduced
by this assumption.

Stress concentration around the opening is most expediently studied
photoelastically, hence no unduly fine discretization is used in this
region. It should be pointed out that the amount of numerical computations
is proportional to the square of the number of interfaces. hus, refine-
ments of discretization which do not result in appreciable improvement
in accuracy are not justified.

Fig. 4.1 shows the left half of the beam divided into 36 elements
with 64 interfaces. Applying equation (3.3), it is seen that there are

S and S

4 - . - Jhi
2(64 = 36) or 56 redundants, of which 86, 818’ 829, SAO’ 59 "

are zero due to symmetry., Thus the resulting structural system is
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indeterminate 50 times.

4,2 Selection of Redundants

18° N29, N40 and N52 are considered redundant to

ensure static determinacy of the primary structure.

To begin with, N
S592 Se00 5610 Sea
and S63 are retained in the primary structure for transmission of forces
from one strip of elements to another in the vertical direction, and 812’
Sous 835, 846 and 558 are retained for the similar reasoﬁ, but in the
horizontal direction.

When .dealing with multiply-ccnnected bodies, special care should be
taken not to remove shear resistance on too many interfaces, or a portion
of the body may be completely severed., For example, it is obvious that
any two of Spq, 832 and 543 must be retained, otherwise either the strip
of elements 3-9~15 or 4-10-16 will be completely sepavated from the main
bedy when the.other shears are set to zero during the process of
evaluating flexibility coefficients. Consequently, SZl and 843 are not
considered as redundants. All shearing forces, apart from the ones
mentioned above, are removed from the system to form the statically
determinate primavy structure. The self-equilibrating system correspond~-
ing to 832 =1 is illustrated in Fig. 4.2 as an example of 51 such systems,

one for each of the 50 redundants set equal to unity and one for the load

terms.

4.3 Computations

The program specially written for calculation of flexibility
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coefficients matrix is linked up with a "simultaneous equations’ sub-
routine (Fig. B.3, Appendix B) so that the ocutput directly gives the
values of the 50 redundant stress resultants (Table 4.1). These are
substituted into the equilibrium equations of the type indicated by
equations (3.1) and (3.2) to obtain the rest of the stress resultants,
which, when divided by appropriate lengths, give the stresses sought
(Table 4.2).

Table 4.2 gives stresses in terms of (P/Lt). Ifiog is the
extreme fibre stress in the beam as predicted by the simple beam theory,

then,

6% = Moo %Eélﬁl for the loading of beam B-2,
z 1L 2
g t(H)
PL/4 ,
= 1 2L.2 = 3.38(:—
G, Lt

Therefore, by dividing each stress by a factor of 3,38, dimensionless
ratios are obtained which are plotted and compared to experimental

results in Fig. 5.26.
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Interface, 1

i’

P

10

11

12

13

14

15

16

17

18

19

20

21

22

.012

.050

.130

.254

416

. 009

.016

.129

.083

.246

.017

.0L7

.082

.079

.054

.038

. 004

.029

.103

.115

.056

TABLE 4.2 - Stresses in Beam B-2

P/Lt

P/Lt

. 086

.360

.935

.830

. 240
.324
.192
. 930
.598
.950
.611
.152
. 738
.990
. 486
.342
. 036
. 040
.240
. 740

.850

~-0.009

.025

L1154

.237

. 483

.012

.038

.080

124

.162

.034

.020

.107

.093

. 066

044

.029

.099

.077

.095

. 065
. 180
.110
. 710

.470

L423
455
.575
.891
. 940
. 220
. 180
. 963
.160
.594

. 406

. 040
.185
.160

440




TABLE 4.2 - Continued

Interface, i Length, N , P
L/36 *

23 3.0 ~0.136
24> 1.0 ~0.061
25 3.0 -0.008
26 3.0 ~0.046
27 3.0 +0.048
28 3.0 ~0.019
29 3.0 ~0.028
30 1.0 -0.043
31 3.0 -0.162
32 1.0 -0.042
33 1.0 -0.042
34 3.0 ~-0.165
35 1.0 ~0.046
36 3.0 +0.004
37 3.0 +0.041
38 3.0 ~0,014
39 3.0 +0.011
40 3.0 +0.019
41 1.0 ~0.062
42 .3.0 -0.139
43 2.375 -0.046
44 2.375 ~-0.105

-33-

.630

. 190

. 096

-0.551

.575
.228

.335

.510

. 980

. 048

-0.491

. 168
.132
.228
.230
.670
.698

. 590

.0l4

.073

.014

.015

-0.037

.137
.031 .
.047
.213
. 009
.019
. 004
. 063

. 009

.033
.100
.074

.061

. 168
.875
. 168

. 180

.330
.630
.120
.690
. 560
.324
. 228
. 048
. 755

. 109




TABLE 4.2 - Continued

~34=

Interface, 1 TLength, N,, P o7, PfLt
1./36 8 *

45 3.0 -0.111 -1.220
46 1.0 ~-0.,037 ~-1.330
47 4.0 +0.019 +0.171
48 4.0 +0,060 +0. 540
49 4,0 +0.020 +0.180
50 4.0 +-0.058 +0, 522
51 4.0 +0.076 +0.684
52 4.0 +0.055 +0.495
53 1.0 ~-0.018 -0.648
54 3.0 ~0.245 2,940
55 5.0 -0.079 -0.570
56 5.0 ~-0.090 ~0.649
57 3.0 ~-0.053 -0.635
58 1.0 -0.015 ~0.540
59 5.0 +0.014 +0.101
60 5.0 +0.073 +0.525
61 5.0 +0.187 +1.850
62 5.0 +0.210 +1.550
63 5.0 +0.380 +2.740
64 5.0 +0.408 +2.940

i’

~0.188

-0.001

+0. 044

~0.062

~0.085

-0.080

~-0.022

~0.014

~0.059

~-0.114

-0.023

-0.170

~-0.020

~0.482

~0.237

-0.158

-0.068

-0.015

0.0

~-0.036
+0.396
~-0.558
-0.855
-0.720

-0.198

~-0.503
-0.710
-0.820
-0.156

~-2.040

-3.470
~1.710
~-1.140
~0.490
~0.108

0.0
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5. THE PHOTCETASTIC EXPERIMENT

5.1 Fundamental Principles

The basic property required in photoelasticity is that of temporary
birefringence, or double refraction, which certain transparent materials
exhibit when subjected to stress and strain. When the study is conducted,
the loads are applied to the model, and the resulting optical effects in

*
the model are viewed in a field of circularly polarized 1light. With
a white light source, the optical effects are wmanifested in the form of
coloured bands covering the range of the spectrum. With monochromatic
light source, the optical effects are seen as alternate dark and light
bands, referred to as isochromatic fringes. These fringes are ordered
according to the darkness brightness cycles that take place at a point
in the model as the load is increased from zero to its final value. The
fringe orders are commonly related to the stress-optic law which states
that, in the case of two-dimensional stress fields, the isochromatic
fringes are the loci of points of constant maximum shear stress in the
élane of the applied loads.

By the simple process of counting fringes and multiplying their

orders by the proper calibration constant, the maximum shear stress

* Photoelastic terms are freely used here without explanations.
Definitions of such tevrms, together with more detailed mathematical
theory behind photoelasticity, are available in any book on fundamental

theories, for example, references (4) and (8).
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distribution throughout the model can be obtained. Slnce“l18 =7 (oi~o§),
max

the difference between the two principal stresses at any point can also

be determined. In its mathematical form, the stress-optic law thus

becomes
Nfo-'
ol - o? = -
1 2 t
where fo‘: material fringe wvalue obtained from calibration,
N = fringe order at point of interest,

and t.= thickness of model.

When viewed in a field of plane polarized white light, another fringe
pattern ccnsisting of dark bands is seen to be super-imposed on the coloured
isochromatics. These are the isoclinics, loci of points with one of the
principal stress dirvections parallel to the axis of the polarizer.

The isochromatic and isoclinic fringes are the basic raw data obtain-
able from the photoelastic experiment and may be permanently recorded by

photography.

5.2 Materials for Photoelastic Models

Apart from basic requirements of transparency and birefringence, a
good photcelastic material should exhibit low optical and mechenical creep,
high elastic limit, good machinability, low time-edge effect and, above
all, low material fringe value and high Young;s modulus. The measure for
the last two properties is expressed as the ratio E/fOJ known as the

figure of merit of the material. In other words, a high figure of merit

is desirable.
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Araldite belongs to the family of epoxies which are the most recent

addition to the list of materials used for the manufacture of photoelastic

models. It is mostly used in three-dimensional investigations, but its
high sensitivity, low creep and time-edge effects are also ideally suited
for two-dimensional studies. Tt is available in sheets and also in the
form of pure resin (liquid or granular) which has to be mixed with a
hardener to be polymerized. Casting with liquid araldite was attempted
and sheets were obtained whcih were practically bubble-free and had
glossy-smooth surfaces. Residual thermal stresses, however, were consider-
able and, unfortunately, a proper photoelastic oven, which should give

a close control over the cooling rate during the annealing process, was
not availabie in the laboratory where these experiments were conducted.
Hence sheet araldite was resorted to. PSM-5, supplied by Photolastic
Incorporation of U.S.A., was used in making models for determining
isochromatic fringes. Nevertheless, a report on the procedures followed

in successfully obtaining satisfactory castings is included in Appendix C,

which summarizes the experience gained by the author during the experiment.

To isolate the isoclinics from a mixed pattern of isochromatic and

isoclinic fringes, one method used is to continuously vary the loads when
the pictures of isoclinics are taken, to blur the images of the iso-
chromatics. On the other hand, if a very insensitive material is used,
only the isoclinic pattern will show up clearly in a field of plane
polarized white light, perhaps with a few coloured isochreomatic fringes
around points of load application or stress concentration which Can be
readily distinguished. Perspex, of material fringe value approximately

700 psi/fr/in, was used in making models for isoclinic determinations.

.
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5.3 Experimental Procedures

Two series of beams were investigated, each consisting of three
beams. Fig. 5.1 illustrates pertinent dimensions and also loading
patterns of these beams. All six beams had depth/span ratios of 2/3.
Beams of series A were subjected to pure bending by two point loads
located at equal distances from either support. DBeams of series B were
loaded in bending and shear by a concentrated load at mid-span,

Two sets of models were made, each model being inscfibed with a
3/8" square grid. The set made of PSM-5 was used for investigating
isochromatics, and the set made of perspex for determining isoclinic’
parameters. A 3'-diameter circular disk was also made from the PSM-5
avaldite for calibration of the fringe value of that material. Models
were tested the day they were machined. TLoads were applied through flat
steel bars placed between 1/4" steel rollers and the loading frame. The
rollers were padded with two lapses of masking tape. The polariscope
used was of the diffused light type with 12"-diameter elements. The
preliminary adjustments of the polariscope have been discussed by the

(9)
author in a previous report and will not be repeated here. The
testing included the following steps:

Referring to the ordinate system shown in Fig. 5.2a, it is
(8)

well known that stresses in the circular disk under diametral

compression are

4
61:0":———- ; and 0% = 00 = - 4D -1
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Therefore, x 9
L - 4(p
o* - of = 8P |-
1 A x. 212
TED | 41 4 a(dy
D >
3P
and when x = 0, o7 - 07 = —— = £'N
1 2 TED foudie}
where P = applied diametral compression,
£' = wmodel fringe value,
o
t = thickness of disk,
D = diameter of disk,
and NO = fringe order at centre of disk.
Lreansposing,
ft - ._§.P_,..
= DN
Io] e o
Then the material fringe value f =f't = &b (5.1)
L e } i NCR AN Nel all = = e o
o 3 o G- \TDNO

The disk was placed between two flat steel bars and load applied
vertically in its plane. Normal photoelastic procedures were followed
to obtain dark and light field patterns at P = 80 1b and P = 400 1b.
Pictures were taken of all patterns. Pertinent photographic data will
be listed in Table 5.1. Loading cycle and photography were repeated once.
Plate 1 shows the matching dark and light field patterns at each of the
two loads, while Fig. 5.2a contains sketches of isochromatics plotted

with average values obtained from the two sets of similar pho

T

Fringe values at varying distsnces along the horizontal dgra
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plotted (Fig. .5.2b) for both loadings. The difference in NO values for
the two loads was obtained from this curve. The purpose of working with
differences was to eliminate any initial stress that might exist in the
material.

Pe - P, =400 - 80 = 320 1b.

MN)e - N), =4.5 fr., as obtained from Fig. 5.2b,
o’ f 0’0 g

where £ and o denote final and arbitrary zero loads, respectively.

Substituting into equation (5.1),

_8(320)

£f =
T(3)(4.5)

o = 60.2 psiffrfin.

(2) Isochromatics and Boundary Values

Each araldite model was loaded in turn, P. and PO being recorded

£
and shown in Fig. 5.1. The fringe orders at grid points along boundaries,
which were direct indications of magnitudes of tangential stresses at
these points, were accurately determined to two decimal places using
(8)

Tardy's compensation method . The signs of these boundary stresses were
checked by the "nail test" =--- when pressure is applied on a nail placed
at the boundary point of interest, a flow of fringes towards the point
indicates compression, while tension is indicated by the boundary fringe
being pushed inside.

The models were observed in white light as load was gradually in-
creased from zero to its final value, to note the order of each fringe

formed. The ovrder of the colour bands shcould be yellow-red-blue-gree,

going from a lower to a higher order fringe. This fact was particularly

.
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helpful in determining the orders of fringes around the openings.
Plates 2 to 4 are photographs for the A series models while Plate 5

shows B-1 as an example of the models being stress-free before load

application. Sketches of isochromatics at Pf, together with the accurately

determined boundary fringes, are illustrated in Figs. 5.3 to 5.8. These

sketches were prepared from enlargements of photographs shown in Plates

2 to 4 and 6 to 8.

(3) Isoclinics and Identification of 01 and Oé

The polariscope was adjusted to give a field of plane polarized

white light. FEach pe

(i

rspex model was loaded in turn and observed. Load
was varied until a clear isoclinic pattern appeared. Photographs were

o . ; 0 PR
ken at 10~ parameters, i.e. the analyser was rotated 10° counterclock-

ta
wise after each shot, starting from zero. Plate 10 shows a series of
such photographs for beam B-2. By projecting the negatives of these

photographs onto a sheet of paper placed on the easel, a sketch of the

isoclinic patterns in beam B-2 was prepared and shown in Fig. 5.9. During

this process, the light areas were traced instead of the dark areas since
the projection was made from negatives.

Isoclinic parameter at each grid point was obtained by rotating the
analyser until an isoclinic passed through that point and noting the

reading on the scale.

Since isoclinics do not give information with regard to whether 01
or Gé is parailel to the polarizer, this must Be determined separately.

A strip of very sensitive photoelastic material, PSM-1 (fg,: 40 psi/fr/in),
was super-imposed on the point of interest and compressed in the direction
of one of the principal stresses, as indicated by the isoclinic parameter

1 -

previously obtained. 'An increase in fringe order at the point would
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indicate oé being parallel to the applied compression. The converse
was true when a decrease in fringe order was observed.
(4) Photography

Since oﬁly portion of the beam between the supports was of
interest, bellows were used to obtain close~ups with the span filling the
entire length of the negative frame. Film, filters and paper were
selected on the basis of bringing out the high contrast between dark and
light areas by suppressing intermediate tones.

Ordinary light meters donot give dependable exposure readings for
phetography with polarized light, unléss it is independently calibrated.
Instead of calibrating the meter, e%posure was directly calibrated by
taking shots over a pre-determined range of exposure-times and judging
the developed negatives. Photographic data are listed in Table 5.1

below.

TABLE 5.1 - Photographic Data

Camera: Minolta SR-T101, SLR
Lens: Takumar £/4.0 100 mm Bellows
Filter: Kodak Wratten #77 (Green) for isochromatics.

No filter required for isoclinics.

Film: Kodak High Contrast Copy Film, ASA 0.6
Exposure:  Isochromatics - £/4 at 14 secs.
Isoclinics ~ f£f4 at 2.5 secs.

Paper: I1ford Multigrade with #5 filter.
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5.4 Interpretation of Photoelastic Data

Photoelastic data alone are adequate in evaluating boundary stresses, -
For example, at the boundaries of circular openings, radial stresses, o},
are zero and only tangential stresses, ob, may have values. Therefore,
the fringe orders at points along these boundaries, when multiplied by
the model fringe value, directly give the values of Ob.

Distribution of oé around the boundary of the hole of beam A-1 was
obtained as a dimensionléss plot of the ratios of fringe.orders at
various 6@ to the maximum fringe order at the lower boundary of the beam.
It is equivalent to plotting oéfo&, where o& is the maximum stress at the
extreme bottom fibre of the beam. Figs. 5.11 to 5.15 are similar plots
for the other five beams. For beams of series B, the plots are for the
left holes, the plots for the right holes being the mirror images of
those for the left, since there is symmetry about the centre-line in
each beam.

The choice of O% as a basis of comparison was not a random one. It
was designed to enable a direct estimate of the amount of reinforcement
required around the holes, in the case of reinforced concrete members,
as compared to the maximum amount of tension steel required elsewhere,
The discussion on the application of these results to reinforced concrete

will be elaborated in Chapter 6.

5.5 Separation of Principal Stresses

When evaluating separate values of 01 and oé at internal grid points,
however, photoelastic data must be supplemented by more information, for

example, the value of (01 + o&) at each grid point. The separation




Fig. 5.11 - Variation of o’G/U;n Around Hole of Beam A-2



Fig. 5.13 - Variation of o‘e/c‘mAround Left Hole of Beam B-1



Fig

g. 5.14 - Variation of O‘G;’G:H Around Left Hole of Beam B-2

+2

Fig. 5.15 - Variation of cr,'a/c;n Around Left Hole of Beam B-3
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technique used in this study was the solution, by the finite difference
(16)

method , of the Laplace equation given below:
(—, + E;—2><o‘l + 05) =0 (5.2)

At external boundaries, either 01 or oé is zero, Hence (01 + oé)

2

is equal to o’ or Gé' The Laplace equation may then be soved, in terms

of fringes, with boundary values furnished by boundary fringe orders.
However, fringe orders at points of application of concentrated loads are
indeterminate. To overcome this difficulty, (01 + Oi) was solved for two
sets of boundary conditions. . The first set assumed zero fringe orders at
load points while other boundary grid points maintained their fringe ovders
as obtained from the experiment. Referring to the grid systems in Figs. 5.3
to 5.8, only half of each beam was considered due to symmetry. The system
of algebraic, linear equations resulting from the finite difference

analysis was fed into the computer with a "simultaneous equations' program,

and outputs were shown in Tables 5.2 to 5.7. Then 61 and oé were evaluated
and referred to as solution 1, or Sl.

The second set of boundary conditions assumed a system of consistent
arbitrary fringe orders at load points and zeros at other boundary points.
(61 + 03) was solved for with assumed fringe orders of -200 at P and -100
at P/2. Computer results were listed in Tables 5.8 to 5.13. 01 and éé were
again evaluated and referred to as solution 2, or S_.

2

The true solution was S = Sl + C829 where C was a constant to be
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determined by'equilibrium censiderations. The vertical section at mid-
span of each beam was considered for equilibrium, Symmetry dictated
that there should be no shear stress along this section which was,
therefore, a principal plane. Then 0; = (01 or oé) was plotted for both
solutions and the areas under the curves referred to as A1 and Az,
respectively., Since there was no horizontal load in any of the cases

considered, the true solution should give Jf o dy = 0. That is to say
Ay +Chy =0 (5.3)

From equation (5.3), the C values wmight be obtained. The C values thus

determined for each beam are listed below:

Beam Constant C
A-1 1.560
A-2 1.010
A-3 0.590
B-1 0.132
B-2 0.121
B-3 0.119

Once these constants were determined, it was a simple task to
linearly combine the two solutions and obtain the final values of 01
and o), in terms of fringes. In Figs. 5.16 to 5.21, these results are

presented, together with principal stress directions, as ratios of 01/0;

and oéfoé, where c; = g is the extreme fibre stresses as calculated with
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the simple beam theory. It was found to be more convenient to convert
Og into fringes than to convert other stresses into psi. For instance,

for Beam A-1,

M = (P/2)(Moment Arm)
= 200(0.75) = 150 1b-in.
1.2 1 2 .3
Z = ‘é‘tH =% t(3)” = 1.5t in
Therefore,
- - M 3 Mt
s Zf(‘)_, Zf
o108 = 1.66 fringes

1.56(60.2)

From results presented in Figs. 5.16 to 5.21, the normal and shear
stresses on any plane may be evaluated using the following relationships

obtained from the Mohr's Circle:

o+ o o - o ’
oh = L 2 4 (1 2) cos2n (5.4)
2
o7 - o3
Th = ( L2y gin 2n (5.5)

where n is the angle made by the normal to the plane with the ma jor
principal stress direction. Equations (5.4) aﬁd (5.5) were used to find
ox aleng the vertical sections at mid-span and at centre-line of each
opening, and also o; along the horizontal section at mid-depth of each
beam. Results were plotted as ratios to o; and presented in Figs. 5.22

to 5.27. ’
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Fig. 5.22 - Beam A-1,




-78 -

: ? ! H/{ a:’i
Ao

[

72

/2




.
c f




o,
S

o

T

T

[
L

e

oy

[
-

a8
i

gl

I

Rt

mml i)

[

T

TSI,

.

I

i
i

i
i

 — -
p— o

Fig.

5.25 - Beam B-1,

%
Js

and

[




-31-

et ?
Ll

Ty
"
~
~

R
-~
ey

O ;V.,;::'O 'B 7

¥
sy rmor ey

H b
R L L T T L

En
w

05T

S T o]
[ sriment il
.
> Car ars ewm som o - ‘44- n‘i{"/ti’i‘,@ll



To
~23.8

Les]
i

N o T e == T

St W WU S U ! -
R h

L R A -

([
el

I

I

l

5.27 - Beam B-3,

Fig.










]
i










edanseIn

o
a_::.
&

.
-85~

P




MmN

[V







0

PR

b

4
3
i
e
%
£
Wt

1

Tsoo

o




- O .
507 Isoclid

cs

T
1

oo

60° Tsoclinics

H
r

LY V.

kY

B-2 {(Cont'd) ro




-93-

6. DISCUSSIONS

6.1 Observations on Experimental and Analytical Results

Stress distribution curves for all six beams investigated resemble
(14) (22)

those obtained by Saad and Hendry and Weinberg for similar beams

but without openings, except for the regions in the immediate vicinity
of the openings. Deviation is more pronounced when the hole is located
in the lower half of the beam where tension predominates.

Stress distribution diagrams around openings in beams of series A

(Figs. 5.10 to 5.12), which were subjected to pure bending, ave symmetrical
about the axis of symmetry of the beam. In cases of series B (Figs. 5.13
to 5.15), a line of symmetry is also found, for each beam, which is
roughly parallel to the line joining the concentrated load and the support.
Stress concentration is not very serious in any of the cases considered,
indicating that circular shapes are desirable when openings have to be
made,

Analytical and experimental vesults obtained for beam B-2Z compare

very favorably (Fig. 5.26). The discrepancy directly under the point

load wmay have been caused by two factors:

(1) the assumption made in the analytical solution (Article 4.1)
that the concentrated load is distributed over a small area, and
(2) sensitivity of the value C, the constant in the linear combina-
tion used in the experimental analysis (Article 5.5), to
concentrated loads.
The fact that an extremely good comparison is obtained elsewhere in
the beam, despite the above two factors, is a good verification of Saint-

Venant's Principle,



YA

6.2 Application of Experimental Results to Prototypes
| (8)

Model analysis shows that results obtained in photoelastic

studies, when multiplied by a proper scale factor, may be applied to
prototypes made of any homogeneous material loaded within its elastic
limit, The only possible source of error, the difference in model and
prototype Poisson's ratios, need not be considered when the body is
simply-connected and the body-force field is either absent or uniform
(i,e. dead weight loading). For multiply-connected bodies, Coke and
(2)
Filon have indicated a dislocation procedure which may be followed
in making correction to the stress distribution produced by a different
(23)
Poisson's ratio. In most practical cases, however, Wolf claims
that this correction only ranges from 5 to 8 percent.
In the case of reinforced concrete members, non-homogeneity of the
material and cracking of the tension zone may result in a stress
distribution scmewhat different from that predicted in the model study.

If, however, tension steel is arranged in such a fashion as to give a

distribution of steel stresses which closely resembles that in the tension

zone of the model, resultant of the steel stresses would be located very
close to, if not coincident with, that found in the model. Besides, deep
beams are generally imbedded with a mesh reinforcement which further
enhances homogeneity by reducing the chances of small cracks propagating.
For members similar to the models studied, and under similar conditions
of losding, if is recommended that the same amount of steel be specified
around the openings as at the bottom of the tension zone, because the
maximum value of oé/oa is very close to unity in all cases, where o&

has been previously defined as the maximum stress at the extreme bottom

S
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fibre of the beam.

6.3 Conclusions

Both the experimental and the analytical methods used in this
investigation have been found to be very efficient and produce rigorous
results, the photoelastic method being particularly useful in determining
stress concentrations. Only a limited number of parameters in the problem
of deep beams with openings have been studied, but the same methods
may be applied to a more extensive range of depth/span ratios, diameter/
depth ratios and locations of oPeningé so that charts may be prepared to
aid practical design.

Normally, as in the case of other experimental methods, photoelasticity
enters the pictures when a mathematical analysis proves inadequate or
unsatisfactory. However, even when analytical solutions are obtainable
by numerical ﬁet@ods, photoelasticity is still invaluable in providing
convincing corroboration in theoretical methods, thus adding much to its
technical value. It is to this end that photoelasticity has been employed
in this research.

The new flexibility coefficient method developed by the author and

(19)
his advisor has proved to be a powerful method for the solution of
plane stress problems of multiply-connected continua. The method promises
to be extremely versatile and can be further developed for the solution
of more involved problems in theory of plate and shell. The basic procedure
as presented in Chapter 3 would essentially be unchanged, and only the
details of the steps required to set up the flexibility coefficients

matrix would have to be modified.

.
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The author is of the hope that this theoretical and experimental
study of stresses in wall-beams with openings will pave the way for
further work in the subject. Future researchers might consider the
following variations of the basic problem:

(1) Effect of shape of openings on the stress concentration factors

--~ triangular, rectangular or elliptical, as compared to
circular.,

(2) Effect of openings on stresses distributions in continuous

wall-~-beams.

(3) Stresses in deep beams with reinforced openings.

(4) Cantilevered wall-beams with openings, loaded in bending and

shear --- to simulate and study stresses in shear walls.
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APPENDIX A

EVATUATION OF MOHR'S INTEGRALS

A.1l Rectangular Elements =--- Direct Stress Terms

The expressions of equation (3.7), which are applicable to the

evaluation of integrals of direct stress terms, viz. ff o‘}’{lo’k dx dy,
v X

i_k ik i |k
j}’f oy 03, dx dy, f/Txy Txy dx dy, and -//Tyx Tyx dx dy, may be

directly obtained from integration.
. L i k .
Figs. A.la and A.1b show the variations of o;{l and oL s respectively,

for a rectangular element. The stress functions may be written as

1 i
oy = o%,m + klx (A.1)
k k
and o, = O;<,m + kzx (A.2)
i .
o L
+1
where ki = i X, A.3)
a
k k
O;<,1n+l - O;(sm ‘
and ko = - (A«‘*_)
© b oa Dk b a . K
i
Then ,/,f 0x 0y dx dy :j_/’ (o;<9m+klx)(o;:9m+kzx) dx dy
00 00
2 3 2
= i k a k a . a .
= b(ao;{ym O;ISm + —2—-1(10:';,_’111 =+ 1{11(2-——:3— i kz—i O;{:;‘m)

Substituting (A.3) and (A.4) into the above expression and simplying,
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a
i~k ab i k i k _ i k
6f6[ o q‘ dx dy = g (20%,m O;9m + 20 k1 O;,m+l 4 OJ,m x.m 41
i
+ % ,m+1 %%,m )
ab | _1i k .
=% Oxsm(zogqsm + ooy mFl) ﬂTl<Zd’ il OX%m) &3

where (ab) is the area of the rectangular element.

A.,2 Rectangular Elements --- Crossed Stress Terms

The integrals for the crossed stress terms, viz. jyao; U’ dx dy

and ,A/ dx dy, require separate consideration, since o; is a

function of x while o;k is a function of y,.
Equation (A.l) again represents the stress function for o' ',
x

. k.
whereas the stress function for o  is
: y

O‘y = o7 -+ k3y : (A.O)

as shown in Figs. A.2a and A.2b. Substituting equations (A.l) and (A.6)

into the integral,
b K
d%f lg’ dx dy —ijf (G’ + klx)(o§,n + kqy) dx dy

i k i
:fof (% ,m + k1x0y, ) + kgyo, o T EpkgRy) dx dy

2 2 212
k ab _k ab . a‘hb
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1 i k k
0, i1 - O o7 o
1 .
Putting ki = i 0 ang ky = yontt st
a b
and simplifying, one gets
b i_k ab i k i k i k
6f6/ %% O; dx dy = 4 <Oksm O;,n + O;,m+l O;,n+l * %,m y,ntl
" 1 _ok
F o;(,n‘r}‘l y’n)
ab k k
=74 O m( y n T O& o) mwl(OJ ,n+l O§9n) (A7)

in which (ab) is again the area of the element.

A,.3 Elements at Curvilinear Boundaries

As mentioned earlier, elements of shapes other than rectangular have
to be considered when dealing with curvilinear boundaries. It is,
therefore, important to find cut what modifications to the integrals
have to be made in such cases. Fig. A,3 illustrates a truncated-
rectangular element, the integral of which may be considered as the
difference in the integrals for the rectangle and for the triangle.

. . i_k .
For instance, the integral JO[ o o; dx dy for this element becomes

Jé/ q%io%k dx dy = jof O;io;k dx dy -Jc/ O;io%k dx dy

rect. tria.

b a

-f/ olekaxay - 3 ff oplork ax ay
60
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b a i x 1 d a ik 1 d a~c ik
:6/6/ 0% G; dx dy - idfaf o; oy dx dy + 5 6/6/. o, Oy dx dy

Referring to equation (A.5) for each term in the above expression and

grouping accordingly, one gets

L1k ab _ a(d/2) d(a-o) /2] 1 . _x _k
JC/ Ox 0 dx dy = { 6 6 * 6 Ox,m(zoxsm + Ox,m+l)

i k k
+ O;<,m+l(2olxsm{‘l + O;%m)]

ab _ cd/2 i _k _k | 1 k . _k
= ("g - 6 ) {%§9m<zoxgm + Ox,m+l) + O§3m+l(20%,m+l k o%,m%] (».8)

in which (aB - ¢df2) is the area of the truncated-rectangular element. It
may thus be concluded that the basic expressions remain unchanged. The
same conclusion may be drawn for integrals of crossed stress terms, and
also for elements of other shapes as long as they are bounded by straight
lines. This is, in fact, a logical deduction from the principle of
superposition, because linearity is assumed to exist in relationships of

all quantities concerned.
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APPENDIX B

ADAPTATICN OF THE FLEXIBILITY COEFFICIENT METHOD TO COMPUTERS

The computations of stresses using the Flexibility Coefficient
Method may be carried out in the follﬁwimg steps, some or all of which
may be adapted to computer operations., It should be mentioned that, as
in many other cases, complete computerization may not be the best
approach. The importance and advantage of properly located human links
cannot be over-emphasized.

(1) Set up 2E equilibrium equations for the E elements.

(2) Choose the appropriate I stress resultants as redundants.

(3) Call subroutine for simultaneous equations to solve the
equilibrium equations, making one redundant unity and others
zero. This is performed (I+1) times to obtain the stresses
caused by each redundant and also by applied loads aciing on
the primary structure.

(4) Call subroutine for flexibility coefficients and load terms.

(5) Call subroutine for simultaneous equations to solve for the
redundants.

(6) Back-substitute into equilibrium equations in (1) and solve

. for the remaining stress resultants.

(7) Divide the stress resultanté by corresponding lengths to get
the stresses, unit thickness of the body being considered.

Of the seven steps outlined above, only step (4) needs further

discussion, since the other subroutines are fairly standard. Notation
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for stresses are shown in Fig. B.l. Input to the computer includes

the area and the eight stress terms for each element. FEach stress ferm

is fed in in a two-dimensional array, e.g. XL(I,J), the columns correspond-
ing to the element numbers and the rows correspoﬁding to respective

redundants, the last row being the stress terms due to applied locads.
-] [o) pp

columns. The flexibility coefficients are assembled as a square matrix
D(T,K), whose order is (T+1), the last row or column with signs changed
forming the right-hand-sides of the linear equations in step (5). The
flow chart for these operations is shbwn in Fig. B.2 to which the

following legend applies:

NSET = Number of sets to bhe solved

UM = g = Poisson's ratio

1f

NEL =E Number of elements

i

NRE = Number of redundants plus one

XINT = [f olok ax dy

YINT = [/ o‘lo“ dx dy

XYINT = (1 + u)Jéﬁr k dx dy
YXINY = (1 + ) jﬁﬁr % Tyx K ax dy

CINT = -u/ff o tor® ax ay -u/ff % c—k dx dy

This "flexibility coefficients" program may be linked up with a "simultaneous
equations™ subroutine to perform steps (4) and (5) simultaneously, as shown

in Fig. B.3.
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L

(/Rcad NSET, <3WWW<§>
UM N .

NEL, NRE, U

(/Rea AREA (J)
¢ l?
i

Read XL(I,J), XR(I,J), YI(I,J),
YB(L,J), XYL(I,J), XYR(I,J),

XYT(I,J), XYB(I,J)

R - S

Form XINT(J), YINT(J), XYINT(J),

derived in Appendix A

YXINT(J), CINT(J), using relations

|
V;v?

SUM(J) = XINT(J) + YINT(J) +
XYINT(J) + YXINT(J) +
CINT(J)
\

1

Fig. B,2 - Flow Chart for
Flexibility Coefficients
Program




(@}

100
200
300
500
600

4

-110-

Fig. B.3 - Program for Flexibility Coefficients & Stress Resultants

>
O

DIMENSION XL(S51,51),XR(51,51),YT(51,51),YB(51,51) ,XYL(51,51),
IXYR(51,51),XYT(51,51) ,XYB(51,51) ,D(51,51) ,KINT(40) ,YINT(40),

2XYINT(40) ,YXINT(40) ,CTNT (40) ,SUM(40) ,ARFA (40) ,E(51,51) ,F(51)
FORMAT (I10)

FORMAT (16F5.0)

FORMAT (11O, I5)

FORMAT (F10.0)

FORMAT (8F10.2)

LL=1

READ (5,100)NSET

READ (5,100)NEL

READ (5,100)NRE

READ (5,500)UM

UM=POISSON 'S RATIO

NEL=NUMBER OF ELEMENTS, NRE-NUMFER OF REDUNDANTS+1
AN=NEL

ANI *AN/]_(/).“:‘O. 99

MAN=AN1

NAS=MAN*16

READ (5,200) (ARFEA(J),J=1,NA8)

WRITE (6,600) (AREA(J),J=1,NEL)

READ (5,200) ((XL(L,J),J=1,NA8),I-NRE)

WRITE (6,300)LL

WRITE (6,600) ((XL(I,J),J=1,NEL),I=1,NRE)

READ (5,200) ((XR(I,;J),J=1,NA8),I=1 ,NRE)

JRITE (6,600) ((XR(I,J),J=1,NEL),I=1 NRE)

READ (5,200) ((YT(I,J),J=1,NA8),I=1,NRE)

WRITE (6,600) ((YT(I,J),J=1,NEL),I~1 NRE)

READ (5,200) ((YB(I,J),J=1,NA8),I=1 NRE)

WRITE (6,600) ((YB(I,J),J=1,NEL),I=1 NRE)

READ (5,200) ((XYL(I,J),J=1,NA8),6I=1 ,NRE)

WRITE (6,600) ((XYL(I,J),J=l,NEL),I=1 ,NRE)

READ (5,200) ((XYR(I,J),J=1,NA8),I=1,NRE)

WRITE (6,600) ((XYR(I,J),J=1,NEL),T=1,NRE)

READ (5,200) ({XYT(I,J),J=1,NA8),T=1 ,NRE)

WRITE (6,600) ((XYT(I,J),J=1,NEL),T=1,NRE)

READ (5,200) ((XYB(T,J),J=1,NA8),T=1,NRE)

WRITE (6,600) ((XYB(I,J),J=1,NEL),L=1,NRE)

I=1

K=1

D(I,K)=0.

DO 20 J=1,NEL

XINT(J) =(ARFA () /6. )% (2. #XL(T ,J)*XL (K, T)+2 . %XR(L, J)*XR(K, J)
XL (T, ) SXR(K, DXL, T #XR(T, 1))

YINT(J) =(AREA (J)/6.)% (2, %YT(L,J)*YT(K,I)+2.YB(I,T)*YB(K,J)
YT (T, 3)*YB(K,I)HYT(R,I)YB(I,))

XYINT(J) =(1.4+UM)* (ARFA (J) /6. )% (2. %XYL(T, I)*XYT.(R, J)+2 . *
IXYR(T, J)*XYR(K,J)+FXYL (T, J) #XYR(K, J)+XYL (K, J)*XYR(I,J))
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YXTNT(J) =( L. +UM)* (ARFA (J) /6. )% (2. %XYT(T,J)*XYT(K,J)+2.*XYB
LT, J)*XYB(R, DHXYT(L,J)% \YB(\ IRV T (K, T)*XYB(L, J)
CINT(J) =(~UM/4. )* (XL(T YEY BRI AA(T\D YT, XL (T, D *YT(R,T)
1'V1G'J)wme,Jymez,Jyﬂt( LAY T(T, Y FXR(K, I YP(IPN XR(K,J)
24YT(L ST FXL IR, J) ) SAREA (J)
)bV(J)sXINT(J)+YINT(J)+XYINT(J\+YXINT(J)+CINT(J).
DLL,K)Y=D{T  K)+SUM(JI)
20 CONTINUE
K=K4-1
IF (K-NRE)10,10,30
30 I t--l
¢ (I- ’\l\u)b 5,40

DO 60 f—1 CJNRE L
DO 60 K= l,lel
E(1,K)=D(I,K)
F(K) =-D(NRE,K)
60 CONTINUE
WRITE (6,400) (((IbK,E(I,K)),K:l,NREl),I:l,NLEl)
400 FORMAT (4(1HO,T3,I3,78.3))
WRITE (6,900) ((K,F(K)),K=L,NREL)
900 FORMAT (4(1HO,I3 3’ 78 3))
CALL SOLVEREL,E ,l‘)
LL=LIA-1
IF (LL-NSET)4,4,50
50 CONTINUE
END

SUBROUTINE SOLVE(N,A,B)
DIMENSTON A (51,51),B(51),%(51)
NMl=N-1
DO 300 K:-1,NMl
KP1=K+L
L=K
DO 400 I= KPL,N
(ABS(A(T,K))-ABS (A (L,K)))400,400,401
401 L=I
400 CONTINUE
(L-K) 500,500,405
405 DO 410 J=K,N
TEMP-A (K, J)
A(R,J)=A(L,J)
410 A(L,J) =TEMP
TEMP = B(K)
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300

710

300
301

Fig.

B(X) =B(L)
B(L) =TEMP

DO 300 T= KPL,N
FACTO=A (I,K) /A (K,K)

A(T,K) =0,

PO 301 J= KPL,N
A(T,J)=A(L,J)-FACTO¥ (K, J)
B(I)= B(L)-FACTO*B(K)

K(N) = B(N) /A (N,N)

T =M1

IP1l=I+1

SUM=0.

DO 700 J=IP1,N

SUM= SUMFA (T ,J)*X(J)
X(I)=(B(I)-SUM)/A(I,I)

T=T-1

IF (I)800,800,700

WRITE (6,901) ((JJ,X(JJ)),JJ=1,N)
FORMAT (4(1lHO,I5,5%,E15.7))
RETURN

END
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APPENDIX C
CASTING OF ARALDITE SHEETS FOR TWO-DIMENSIONAT

PHOTOEIASTICITY

The material used was ARALDITE 502. It is a light straw-coloured
epoxy resin available in a very viscous liquid form. When mixed with
aliphatic polyamines or other recommended hardeners, it yields a photo-
elastic material with a very high figure of merit. The hardener used
waé HARDENER 951. Both the plastic resin and the hardener were supplied
by the CIBA Corporation througﬁ the Iﬁtertechnology Limited of Ontario,
Canada.,

The casting procedures may be divided into three parts: weighing
and pre-heating, mode preparation, mixing and pouring.

(1) Weighing and Pre-heating

The total amount of resin-hardener mixture required was

calculated using the approximate formula

W =18.5xA x ¢

where W = total weight needed in grams,

A = area of sheet in sq. in.,

t = desired thickness in inches.
Correct amount of resin and hardener was weighed, paper cups being used
'as containers. The resin as obtained from the can was fairly clear
and free of bubbles, but pouring and other handlings would invariably

introduce scme bubbles. And, being a very viscous liquid, it would

.
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not free the bubbles before alengthy period of undisturbed settling.
It was, therefore, necessary to pre-~heat it with an infra-red lamp
for about 20 minutes, during which time the mode could be prepared.
The bubbles were driven to the surface and conveniently removed with
a wooden tongue-~depressor.

(2) Mode Preparation

The resin-hardener mixture, when partly or completely cured,

sticks to most surfaces. Teflon is suggested by many researchers as
the material for making the mode. However, teflon sheets do not come
with glossy~-finished surfaces and have to be carefully polished if a
perfectly smooth surface is desired. It was found that perspex plates
were an excellent substitute in that they produced surfaces on the casted
araldite which did not require any polishing at all.

One disadvantdge of using perspex plates was their tendency to
warp after three or four castings, probably due to the heat generated
in the curing process. However, their relatively low cost allowed
them to be economically discarded after three castings or when appreciable
warpping was noticed, whichever occurred first.

The mode was made with two 8" x 5" x 1/4" perspex plates, with
three 10 mm x 10 mm flexible teflon strips forming three edges. The
fourth edge, preferably a lengthwise one, was left open for pouring.
The assembly was held together by C;clamps, and artist's cement was
applied around the outside of the edges for water-proofing. The mode
was then placed in an inclined position, about 30° with the bench. It

was then slightly heated with an infra-red lamp to about 20°F above
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room temperature to facilitate free-flowing of the poured mixture,.
Just before the mode was assembled, light wmachine oil was applied,
very sparingly, to the inner surfaces of the perspex plates to serve
as a releasing agent.

(3) Mixing and Pouring

The temperature at mixing should not be so high that rhe pot-

life of the mixture is shortened to an extent not leaving sufficient
time for proper mixing, nor should it be so low thet the mixture is viscous
and difficult to mix without vigorous stirring. A temperature between
85% to 90°F was found to be desirable; The pre~heated resin was, therefore,
allowed to cool to this temperature before mixing with the hardener,

The hardener was gently poured into the resin and mixed with the
help of a thermemeter, which was worked in a circular motion around the
inside wall of the paper cup. The polymerization of the resin was an
exothermic process. Bubbles at this stage, if any, would be driven up
to the surface by the heat generated, and were drawn to the side of the
container and bursted or scraped off. When the temperature reached
120°F the mixture was ready for pouring. A disposable rod, or simply a
straw, was held against one edge of the mode to guide the pouring in a
thin stream.

Curing was then allowed to proceed in undisturbed surroundings at
room temperature. The clear, bubble-free, 10 mm thick aradite sheet
could be released from the mode after 24 hours, but should be allowed

to rest on a flat surface and continue to cure for another 2 to 6 days.




