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Abstract

We extend the definition of weak localization to the weighted Bergman spaces of the unit

ball, L2
a(Bn, dVα), for α > −1. We prove that a Toeplitz operator with a complex Borel

measure symbol whose total variation is Carleson is weakly localized on L2
a(Bn, dVα). We

extend the definitions of strongly localized and sufficiently localized operators defined in [37],

which is the paper of the Ph.D. candidate and Prof. N. Zorboska, to the weighted Bergman

spaces L2
a(Bn, dVα) and show that they are also weakly localized. We also show that bounded

Toeplitz operators with BMO1 symbols are strongly (and therefore also weakly) localized.

Finally, we prove that the Toeplitz operators induced by the complex Borel measures with

Carleson total variation are weakly localized on the spaces L2
a(ω) with the weight ω in the

class E .
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Introduction

The characterization of bounded and compact Toeplitz operators on the Bergman spaces

via their Berezin transforms has been widely studied. See for example [7], [52], [41], [24],

and [15]. These types of problems are usually referred to as the Reproducing Kernel Thesis

(RKT). Namely, since the normalized kernel functions form a dense subset of the space, the

RKT asks when we can describe the behaviour of the operator by checking its behaviour

on the kernel functions. In [7], Axler and Zheng proved that if T is a finite sum of finite

products of Toeplitz operators with bounded symbols on the Bergman space of the open unit

disk, then T is compact if and only if the Berezin transform of T vanishes on the boundary

of the disk. Then there were several generalizations to Toeplitz operators with unbounded

symbols (see for example [52]). In [41], Suárez proved that an operator on L2
a(Bn, dVα) is

compact if and only if it belongs to the Toeplitz algebra and its Berezin transform vanishes

on the boundary of the ball.

In [15], Isralowitz, Mitkovski, and Wick introduced the class of “weakly localized

operators” including the Toeplitz operators with bounded symbols. They also showed that
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the property of weak localization allows describing the compactness of an operator via its

Berezin transform. The main idea for their work came from the so-called “sufficiently

localized operators” on the Fock space defined by Xia and Zheng in [43]. Afterwards, a

long list of papers using similar ideas have been published on both Bergman and Fock

spaces. See for example [42], [16], and [37]. Our goal is to show that some large classes of

Toeplitz operators with possibly unbounded symbols are contained in the class of weakly

localized operators.

Toeplitz operators with complex Borel measure symbols were first studied by Luecking

in [23]. This class of Toeplitz operators includes the class of Toeplitz operators with

integrable symbols. We are specifically interested in the Toeplitz operators with complex

Borel measure symbols whose total variation is a Carleson measure. Carleson measures

were first introduced for the Hardy spaces Hp by Carleson in his solution of the corona

problem [12]. Corresponding versions of Carleson measures were later introduced for other

functions spaces such as the Bergman and the Dirichlet spaces. Being a Carleson measure

is a geometric property which is nicely matched with the geometric decomposition of the

open unit ball. This interesting connection is our motivation for considering Toeplitz

operators induced by Carleson measures.
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The theory of BMO spaces in the hyperbolic metric was introduced by Zhu in his Ph.D.

thesis [51] and then extended by Békollé, Berger, Coburn, and Zhu in [9]. Toeplitz operators

with BMO symbols constitute another interesting class of Toeplitz operators containing

those with bounded and with non-negative symbols. The BMO spaces provide a class of

possibly unbounded symbols that can, under certain assumptions, induce bounded Toeplitz

operators on the Bergman spaces as shown by Zorboska in [52].

The theory of Bergman spaces began with S. Bergman in [11], and it was extended to

the large Bergman spaces by Lin and Rochberg in [20]. This class of Bergman spaces is

called large since it contains the classical weighted Bergman spaces on the open unit disk

with the standard weights ωα(z) = (1−|z|2)α, α > 0, and many others. However, in chapter

3, we will focus on a subclass of the large Bergman spaces with the weights in the class E ,

which does not contain the standard weights. Weak localization of operators on a class of

weighted Bergman spaces with radial decreasing weights was defined in [4]. We use the same

definition of weak localization for operators on the Bergman space L2
a(ω) with the weight

ω in the class E , and show that our result from chapter 2 on weak localization of Toeplitz

operators induced by complex Borel measures with Carleson total variation on the standard

weighted Bergman spaces also holds true in the setting of this subclass of large Bergman

spaces.

The organization of the thesis is as follows. In chapter 1, we review some definitions

and theorems we need for presenting our work. Chapter 2 is devoted to our results on
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localization of some classes of Toeplitz operators acting on the standard weighted Bergman

spaces L2
a(Bn, dVα), α > −1, that are extensions of the same results derived by Prof. N.

Zorboska and myself in [37], proven for the non-weighted Bergman spaces. In chapter 3, we

prove that our main result from chapter 2 holds true also for the Bergman spaces L2
a(ω),

with the weight ω in the class of exponential-type weights E . Finally, in chapter 4, we state

some related open problems and mention a few topics for further investigation.
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Chapter 1

Preliminaries

In this chapter, we recall some definitions, notations and fundamental theorems which will

be used in the next chapters. Some references are provided for basic complex analysis,

basic functional analysis, and measure theory. One can consult those for more details.

See [2], [14], [34], and [36].

Throughout this manuscript, the notation A(x) . B(x) means that there is a positive

constant C, independent of x, such that A(x) ≤ CB(x), and the notation A(x) ≈ B(x)

means that A(x) . B(x) and B(x) . A(x). We first review reproducing kernel Hilbert

spaces and some basic properties of kernel functions which will be used in chapters 2 and 3.
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1.1 Reproducing Kernel Hilbert Spaces

Definition 1.1.1. Let X be any set and let F (X, C) be the vector space of all complex

valued functions defined on X endowed with the usual operations of addition and scalar

multiplication. By [3], a Hilbert space H is called a reproducing kernel Hilbert space

(RKHS) on X over C if

(i) H is a vector subspace of F (X, C),

(ii) for any x ∈ X the linear evaluation functional, Ex : H −→ F defined by

Ex(f) = f(x) is bounded.

If H is a RKHS on X, then by the Riesz representation theorem for Hilbert spaces, any

evaluation functional Ex comes from an inner product with a unique vector, Kx ∈ H. Hence,

for x ∈ X, we have f(x) = 〈f, Kx〉H, for all f ∈ H.

The function Kx is called the reproducing kernel for the point x and the function defined

by K(x, y) = Ky(x) is called the reproducing kernel for H. Kernel functions have the

following properties:

(1) K(x, y) = Ky(x) = 〈Ky, Kx〉H,

(2) K(y, x) = K(x, y) ,

(3) ‖Ex‖ = ‖Kx‖ =
√
K(x, x) .

See [1], [3], and [31] for further studies in reproducing kernel Hilbert spaces. In this

thesis, we deal with two classes of weighted Bergman spaces which are reproducing kernel
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Hilbert spaces. Other significant reproducing kernel Hilbert spaces which have been widely

studied, but will not be covered here, are Fock spaces, Hardy spaces and Dirichlet spaces.

Definition 1.1.2. Let H be a RKHS on X over C which contains constant functions and

let T be a linear operator on H. The Berezin transform of T is denoted by T̃ and is defined

on X by

T̃ (x) = 〈TKx, Kx〉H
K(x, x) , x ∈ X.

It is clear that if the operator is bounded, then so is its Berezin transform. The Berezin

transform also uniquely characterizes the operator [48, Proposition 6.2], and can serve as a

tool for describing and determining some of the properties of the operator.

1.2 Complex Measures and Polar Representation

Next, we will review some basic facts about complex measures and a consequence of the

Radon-Nikodym theorem that will be addressed later.

Definition 1.2.1. Let B be a σ-algebra in a set X. A complex measure ν on B is a

complex function on B such that

ν(E) =
∞∑
j=1

ν(Ej), E ∈ B

for any partition {Ej}∞j=1 of E.
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Definition 1.2.2. Let ν be a complex measure on a σ-algebra B on a set X. The total

variation of ν is denoted by |ν|, and is defined by

|ν|(E) = sup

∞∑
j=1
|ν(Ej)| : {Ej}∞j=1 is a partition of E

.

The total variation |ν| of a complex measure ν is a positive measure on B and it has the

following properties:

• |ν|(X) <∞, and

• |ν(E)| ≤ |ν|(E), ∀E ∈ B.

See [36, Theorem 6.2] and [36, Theorem 6.4]. Hence, any complex Borel measure on every

σ-algebra is bounded, since

|ν(E)| ≤ |ν|(E) ≤ |ν|(X) <∞, ∀E ∈ B.

Note that, while an infinite positive measure is not a complex measure (since infinity is not

a complex number), a finite positive measure µ may be regarded as a complex measure. It

is clear that if µ is a finite positive measure, then |µ| = µ.

The following theorem is a consequence of the Radon-Nikodym theorem. It states that

the unique measurable function that represents the complex measure ν in terms of its total

variation is unimodular. As the complex measure ν is represented as the product of its
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modulus and a unimodular function, this is usually called the polar representation or polar

decomposition of ν [36, Theorem 6.12].

Theorem 1.2.3. [36] Let ν be a complex measure on a σ-algebra B in a set X. Then

there exists a measurable function h with |h(x)| = 1, for all x in X, such that dν = h d|ν|.

1.3 Weighted Bergman Spaces on the Unit Ball

Let Cn denote the Euclidean space of complex dimension n. Componentwise operations of

addition and scalar multiplication turn Cn into a vector space. For

z = (z1, z2, · · · , zn) and w = (w1, w2, · · · , wn)

in Cn, we define the inner product of z and w by

〈z, w〉 = z1w1 + z2w2 + · · ·+ znwn,

where wi is the complex conjugate of wi. Thus, the norm of z in Cn is

|z| =
√
〈z, z〉 =

√
|z1|2 + |z2|2 + · · ·+ |zn|2.

The space Cn equipped with the inner product above is a Hilbert space over C.
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Let Bn denote the open unit ball {z ∈ Cn : |z| < 1} in Cn and Sn denote its boundary

{z ∈ Cn : |z| = 1}, called the unit sphere in Cn. We let dV denote normalized volume

Lebesgue measure on Cn such that V (Bn) = 1. For α > −1, we define

dVα(z) = cα(1− |z|2)α dV (z) with cα = Γ(n+ α + 1)
n! Γ(α + 1) , (1.1)

where Γ is the Euler gamma function, so that Vα(Bn)=1. For the following definitions,

statements, and more details we will refer to [35] and [50].

For 1 ≤ p <∞, the weighted Bergman space Lpa(Bn, dVα) is the set of all holomorphic

functions f on Bn such that

‖f‖p,α =
(∫

Bn
|f(z)|p dVα(z)

) 1
p

<∞.

When p = 2, we simply write ‖f‖α instead of ‖f‖2,α. We also let Lp(Bn, dVα) stand for the

standard Lebesgue space on Bn with respect to the measure Vα, and L∞(Bn, dVα) for the

space of bounded functions on Bn with respect to Vα.

By [50, Theorem 2.7], the weighted Bergman space L2
a(Bn, dVα) is a reproducing kernel

Hilbert space with the kernel Kα given by

Kα(z, w) = 1
(1− 〈z, w〉)n+1+α .
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We will denote the corresponding reproducing kernel function at z by Kα
z , and the normalized

reproducing kernel function at z by kαz . That is,

Kα
z (w) = 1

(1− 〈z, w〉)n+1+α and kαz (w) = (1− |z|2)(n+1+α)/2

(1− 〈z, w〉)n+1+α . (1.2)

For 0 6= z ∈ Bn, Pz will be the orthogonal projection onto the one dimensional subspace

Cz generated by z and Qz = I − Pz its complementary projection onto Cn 	 Cz. We have

that

Pz(w) = 〈w, z〉
|z|2

z, w ∈ Cn,

and

Qz(w) = w − 〈w, z〉
|z|2

z, w ∈ Bn.

For 0 6= z ∈ Bn, the mapping

ϕz(w) =
z − Pz(w)−

√
1− |z|2 Qz(w)

1− 〈z, w〉 ,

represents the automorphism of Bn, that interchanges the points 0 and z, [50, Lemma 1.2].

For z = 0, We define ϕz(w) = −w.

The following lemma from [50] gives two important properties of the automorphisms ϕz.

Lemma 1.3.1. [50] For any z ∈ Bn, the mapping ϕz satisfies
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1−
∣∣∣ϕz(w)

∣∣∣2 = (1− |z|2)(1− |w|2)
|1− 〈z, w〉|2

, (1.3)

and

ϕz ◦ ϕz = id. (1.4)

Consequently, we have the interesting identity

∣∣∣〈kαz , kαw〉α∣∣∣ = 1∥∥∥Kα
ϕz(w)

∥∥∥
α

, ∀ z, w ∈ Bn, (1.5)

and the change of variable formula

∫
Bn
f
(
ϕz(w)

) ∣∣∣kαz (w)
∣∣∣2dVα(w) =

∫
Bn
f(ζ) dVα(ζ), (1.6)

for all f ∈ L1(Bn, dVα), which will be subsequently referred to in chapter 2.

Throughout this thesis, the measure dλ will denote the Möbius invariant measure on Bn,

dλ(z) = dV (z)
(1− |z|2)n+1 ,

and dσ will represent the normalized surface measure on Sn, that is,

σ(E) = 1
v(Bn) v

({
tx : x ∈ E, t ∈ [0, 1]

})
,
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for any Borel measurable subset E of Sn, where v is the volume Lebesgue measure on Cn

without normalization.

The pseudo-hyperbolic and hyperbolic metrics on Bn are defined by

ρ(z, w) =
∣∣∣ϕz(w)

∣∣∣ and β(z, w) = 1
2 log 1 + |ϕz(w)|

1− |ϕz(w)| ,

respectively. For z ∈ Bn, we denote the pseudo-hyperbolic ball with radius 0 < r < 1

centered at z by

Dρ(z, r) = {w ∈ Bn : ρ(z, w) < r},

and the hyperbolic ball with radius r > 0 centred at z by

D(z, r) = {w ∈ D : β(z, w) < r}.

Thus,

D(z, r) = {w ∈ Bn : ρ(z, w) < tanh r} = Dρ(z, tanh r),

and therefore we can easily represent any of these balls in the other form. In fact, the

pseudo-hyperbolic and the hyperbolic balls are Euclidean balls such that

Vα
(
D(w, r)

)
≈ Vα

(
D(z, r)

)
≈
(
1− |z|2

)n+1+α
and ||Kα

w||α ≈ ||Kα
z ||α, (1.7)
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for any w ∈ D(z, r), with the equivalence constants depending only on r. For details see [50,

Lemma 1.24]. An interesting property of the pseudo-hyperbolic and the hyperbolic metrics

is that they are Möbius invariant [50, Proposition 1.21 and Corollary 1.22].

Proposition 1.3.2. [50] The pseudo-hyperbolic and the hyperbolic metrics are invariant

under automorphism of Bn, that is,

ρ(ϕ(z), ϕ(w)) = ρ(z, w) and β(ϕ(z), ϕ(w)) = β(z, w),

for all z, w ∈ Bn, and ϕ ∈ Aut (Bn).

The following covering lemma gives a decomposition of the open unit ball into hyperbolic

balls, which is very helpful when we deal with integrals with respect to Carleson measures [50,

Theorem 2.23].

Theorem 1.3.3. [50] There is a positive integer M such that for any 0 < r ≤ 1, there

exists a sequence {zi}∞i=1 ⊆ Bn such that

(1) Bn =
∞⋃
i=1

D(zi, r);

(2) D(zi, r/4)
⋂
D(zj, r/4) = ∅, ∀ i 6= j;

(3) Any point in Bn belongs to at most M of the hyperbolic balls D(zi, 2r).

Definition 1.3.4. [50] A sequence {zi}∞i=1 ⊆ Bn satisfying the conditions of Theorem 1.3.3

is called an r-lattice on Bn.
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The Forelli-Rudin estimates on the open unit ball and the sphere are our essential

tools for estimating integrals in chapter 2. See [35, Proposition 1.4.10] or [50, Theorem 1.12].

Theorem 1.3.5. [35] Suppose z ∈ Bn, c is real, and t > −1. Consider the integrals

Ic(z) =
∫
Sn

1
|1− 〈z, ζ〉|n+c dσ(ζ),

and

Jc,t(z) =
∫
Bn

(1− |w|2)t
|1− 〈z, w〉|n+1+t+c dV (w).

(1) If c < 0, then Ic and Jc,t are both bounded in Bn.

(2) If c = 0, then

Ic(z) ≈ Jc,t(z) ≈ log 1
1− |z|2

as |z| −→ 1−.

(3) If c > 0, then

Ic(z) ≈ Jc,t(z) ≈ 1
(1− |z|2)c

as |z| −→ 1−.

The notation A(z) ≈ B(z) as |z| −→ 1−, means that the ratio A(z)
B(z) has a positive finite

limit as |z| −→ 1−.
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1.4 Large Bergman Spaces and Exponential-Type

Weights

In this section, we state some definitions and theorems regarding large Bergman spaces

and its subclass corresponding to the class of exponential-type weights E . Throughout this

section, we consider the open unit disk as the domain. This class of spaces is called large

as it contains all Bergman spaces with standard weights. However, later in chapter 3, we

will only work with a subclass of the large Bergman spaces, namely the class of spaces that

corresponds to the class E , which doesn’t contain the Bergman spaces with standard weights.

Let H(D) denote the space of holomorphic complex valued functions on the open unit disk

{z ∈ C : |z| < 1}. A weight is a non-negative function ω in L1(D, dA), where dA = dx dy
π

is the normalized Lebesgue measure on the unit disk. We say that a weight ω is radial if

ω(z) = ω(|z|), for all z ∈ D. We consider some specific classes of radial weights which will

be used later. The following definitions are from [4], [20] and [6].

Definition 1.4.1. We say that a positive function τ defined on D belongs to the class L if

it satisfies the following two conditions:

(A) there exists c1 > 0 such that τ(z) ≤ c1(1− |z|) for all z ∈ D.

(B) there exists c2 > 0 such that |τ(z)− τ(ζ)| ≤ c2|z − ζ| for all z, ζ ∈ D.
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We let D(δτ(z)) denote the Euclidean disk centered at z ∈ D with radius δτ(z) for

δ ∈ (0,Mτ ), where

Mτ = min(1, c−1
1 , c−1

2 )
16 . (1.8)

Thus, as shown in [29, Lemma 2.1], if τ ∈ L and ζ ∈ D(δτ(z)) with δ ∈ (0,Mτ ), then by

using the Lipschitz condition B,

1
2τ(z) ≤ τ(ζ) ≤ 2τ(z). (1.9)

The above estimate will be used frequently in chapter 3.

Definition 1.4.2. Let ∆ denote the classical Laplace operator. We say that a weight ω

belongs to the class L∗ if it is of the form ω = e−2ϕ, where ϕ ∈ C2(D) with ∆ϕ > 0, and

(∆ϕ(z))− 1
2 ≈ τ(z), with τ being a function in the class L.

The following examples can be found in [20], [29], and [4].

Example 1.4.3. The standard weights ωα(z) = (1 − |z|2)α, α > 0, are in the class L∗with

the associated strictly subharmonic functions

ϕα(z) = −α2 log(1− |z|2).

We also have that (∆ϕα(z))− 1
2 = 1− |z|2√

2α
. So, we let τ(z) = 1 − |z|2, which satisfies the

conditions (A) and (B) in the definition of the class L.
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Example 1.4.4. For α ≥ 0, σ > 0, and c > 0, the weights

ωα,σ(z) = (1− |z|2)α exp
 −c

(1− |z|2)σ

,

belong to the class L∗with the associated strictly subharmonic functions

ϕα,σ(z) = −α2 log(1− |z|2) + c

2(1− |z|2)−σ.

Since ∆ϕ(z) ≈ (1− |z|2)−2−σ, we may let τσ(z) = (1− |z|2)1+σ
2 , which is in the class L.

Example 1.4.5. For β > 0 and γ > 1, the weights

ωβ,γ(z) = exp
− β ( log e

1− |z|

)γ,

lie in the class L∗with the corresponding strictly subharmonic functions

ϕβ,γ(z) = β

2

(
log e

1− |z|

)γ
.

We have that

∆ϕβ,γ(z) ≈ (1− |z|)−2
(

log e

1− |z|

)γ−1
,
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and hence, we may consider that

τγ(z) = (1− |z|)
(

log e

1− |z|

) 1−γ
2
.

Definition 1.4.6. [6] The class E consists of the weights ω ∈ L∗ for which an associated

function τ satisfies the following condition:

(C) For any n ≥ 1, there exist constants bn > 0 and 0 < tn <
1
n

such that

τ(z) ≤ τ(ζ) + tn|z − ζ|, for |z − ζ| > bnτ(ζ).

Example 1.4.7. [6] (i) The class E contains the family of exponential-type weights

ωσ(z) = exp
( −c

(1− |z|2)σ
)
, σ > 0, c > 0,

with the associated strictly subharmonic functions

ϕσ(z) = c

2(1− |z|2)−σ,

and with τσ(z) = (1 − |z|2)1+σ
2 , which is in the class L. Note that this is a subclass of

Example 1.4.4 with α = 0. The inclusion of this family of rapidly decreasing weights in the

class is the reason of choosing the name E (from exponential) for this class of weights.
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(ii) For p > 0, any radial weight ω in the class E , and any non-vanishing holomorphic

function f in Lpa(ω), the non-radial weight ωp,f (z) = |f(z)|p ω(z), is in the class E .

Remark 1.4.8. The standard weights ωα(z) = (1− |z|2)α, α > 0, are not in the class E.

Proof. Suppose ωα ∈ E . So, an associated function τ(z) = k(1−|z|2), satisfies the condition

C, for some k > 0. Thus, for any n ≥ 1, there exist constants bn > 0 and 0 < tn <
1
n

such

that

τ(z) ≤ τ(ζ) + tn|z − ζ|, for |z − ζ| > bnτ(ζ).

Fix n ≥ 1
k . Let ζ > 0 be in D, close enough to 1 such that z = ζ − (1 + 1

n
)bnτ(ζ) is positive.

Then,

|z − ζ| = (1 + 1
n

)bnτ(ζ) > bnτ(ζ),

and hence, by the condition (C),

τ(z) ≤ τ(ζ) + tn|z − ζ|,

which implies that

ζ2 − z2 ≤ tn
k
|z − ζ| < 1

nk
|z − ζ| ≤ |z − ζ|.

Since ζ and z are positive numbers, we have that ζ − z = |z − ζ| and hence, we get that

ζ + z < 1.
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If ζ −→ 1−, then τ(ζ) −→ 0, and z −→ 1−. Thus, we reach a contradiction, and therefore

ωα is not in the class E . �

The following covering lemma due to Oleinik [27] gives a geometric decomposition of D

in tems of τ ∈ L and δ ∈ (0,Mτ ).

Lemma 1.4.9. [27] Let τ ∈ L and δ ∈ (0,Mτ ). Then there exist a sequence {zi}i ⊆ D,

and a positive integer N such that the following conditions are satisfied:

(1) D =
⋃
i

D(δτ(zi));

(2) zi /∈ D(δτ(zj)), ∀ i 6= j;

(3) D̃(δτ(zi)) ⊆ D(3δτ(zi)), where D̃(δτ(zi)) =
⋃

z∈D(δτ(zi))
D(δτ(z)), for i = 1, 2, ...;

(4) Any point of D belongs to at most N disks of the covering
{
D(3δτ(zi))

}
i
.

Definition 1.4.10. A sequence {zi}i ⊆ D satisfying the conditions of Lemma 1.4.9 is called

a (δ, τ)-lattice on D.

Definition 1.4.11. For 1 ≤ p <∞, and any weight function ω, the Lebesgue space Lp(ω) =

Lp(D, ωdA) is the set of all complex valued functions f on D such that

‖f‖Lp(ω) =
∫
D
|f(z)|pω(z) dA(z) <∞,

and the corresponding weighted Bergman space is the set of all holomorphic functions in

Lp(ω), that is, Lpa(ω) = Lp(ω) ∩ H(D). When p = 2, we simply write ‖f‖ω instead of
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‖f‖L2(ω).

The following lemma from [29] gives a generalized sub-mean value property of

holomorphic functions. It yields that the Bergman space Lpa(ω) is complete and the point

evaluation functionals are bounded on L2
a(ω).

Lemma 1.4.12. [29] Let ω ∈ L∗, 1 ≤ p < ∞, and β ∈ R. Then there exists a constant

C ≥ 1 such that

|f(z)|p ω(z)β ≤ C

δ2τ(z)2

∫
D(δτ(z))

|f(ζ)|p ω(ζ)β dA(ζ),

for any f ∈ H(D), any z ∈ D, and any δ ∈ (0,Mτ ).

Thus, the weighted Bergman space L2
a(ω) equipped with the inner product

〈f, g〉ω =
∫
D
f(z) g(z)ω(z) dA(z),

is a reproducing kernel Hilbert space and L2
a(ω) is a closed subspace of L2(ω). We denote

the corresponding kernel function at z ∈ D by Kω
z and the normalized kernel at z ∈ D by

kωz .

For 1 ≤ p <∞, the projection Pω : Lp(ω) −→ Lpa(ω) is defined by

Pωf(z) =
∫
D
f(ζ)Kω

z (ζ)ω(ζ) dA(ζ), ∀z ∈ D.



1. Preliminaries 19

The operator Pω is not necessarily bounded on Lp(ω). When p = 2, the operator Pω is the

orthogonal Bergman projection from L2(ω) onto the closed subspace L2
a(ω), and therefore,

it is bounded.

Definition 1.4.13. [6] For a given weight ω, we denote the set of all holomorphic functions

f on the unit disk with

‖f‖L∞a (ω1/2) = sup
z∈D
|f(z)|ω(z)1/2 <∞,

by L∞a (ω1/2), and the set of all functions in L∞a (ω1/2) for which

lim
|z|→1−

|f(z)|ω(z)1/2 = 0,

by L0
a(ω1/2).

The following lemma from [6] gives a nice and important property of the reproducing

kernels of L2
a(ω), when the weight is in the class E .

Lemma 1.4.14. [6] Let ω ∈ E and z ∈ D. Then Kω
z ∈ L0

a(ω1/2).

The main motivation for choosing the class of weights E for the localization property on

large Bergman spaces comes from the following two lemmas from [20] and [6], and Lemma

1.5.7 which will be presented later. Considering the fact that there are no representations

for the reproducing kernel functions of L2
a(ω), the following estimates for the reproducing
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kernel functions are our essential tools for estimating integrals in chapter 3. See [20, Lemma

3.5] and [6, Theorem 3.1].

Lemma 1.4.15. [20] Let ω ∈ E. Then

‖Kω
z ‖ω ≈ τ(z)−1 ω(z)− 1

2 , z ∈ D.

Lemma 1.4.16. [6] Let ω ∈ E. Then for each M ≥ 1, there exists a constant CM > 0

such that

|Kω
z (ζ)| ≤ CM

1
τ(z)

1
τ(ζ) ω(z)− 1

2 ω(ζ)− 1
2

(
min(τ(z), τ(ζ))
|z − ζ|

)M
,

for any z, ζ ∈ D.

Combining Lemma 1.4.15 and Lemma 1.4.16, we obtain the following estimate.

Lemma 1.4.17. [20] [6] Let ω ∈ E. Then for each M ≥ 1, there exists a constant C ′M > 0

such that ∣∣∣〈kωz , kωζ 〉∣∣∣ ≤ C ′M

(
min(τ(z), τ(ζ))
|z − ζ|

)M
,

for any z, ζ ∈ D.

The following estimate from [6] will be used in the proof of Lemma 1.5.7.

Lemma 1.4.18. [6] Let ω ∈ E, and let Kω
z be the reproducing kernel for L2

a(ω) at z ∈ D.
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Then there exists some constant C > 0 such that

∫
D
|Kω

z (ζ)|ω(ζ) 1
2 dA(ζ) ≤ C ω(z)− 1

2 .

Carleson measures for weighted Bergman spaces provide us with an important class of

symbols of Toeplitz operators which will be defined later.

Definition 1.4.19. A finite positive Borel measure µ on D is said to be a Carleson measure

for the Bergman space L2
a(ω) if there exist a constant C > 0 such that

∫
D

∣∣∣f(z)
∣∣∣2ω(z) dµ(z) ≤ C

∫
D

∣∣∣f(z)
∣∣∣2 ω(z) dA(z),

for all f ∈ L2
a(ω).

The following theorem gives equivalent characterizations of Carleson measures for L2
a(ω)

in terms of the disks D(δτ(z)). See [20, Theorem 2.4] and [20, Theorem 2.8].

Theorem 1.4.20. [20] Let ω ∈ E and let µ be a finite positive Borel measure on D. Then

the following conditions are equivalent:

(1) µ is a Carleson measure for the Bergman space L2
a(ω).

(2) There exists some constant γ ∈ (0,Mτ ) such that

sup
z∈D

µ
(
D(γτ(z))

)
τ(z)2 <∞.
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(3) There exists some constant δ ∈ (0,Mτ ) such that for every (δ, τ)-lattice
{
D(δτ(zi))

}
i

on

D,

sup
i

µ
(
D(δτ(zi))

)
τ(zi)2 <∞.

1.5 Toeplitz Operators

1.5.1 Toeplitz Operators on L2
a(Bn, dVα)

A significant class of operators on the classical Bergman spaces which has been broadly

studied is the class of Toeplitz operators. In this section, we recall the definitions of Toeplitz

operators with integrable symbols and Toeplitz opertors induced by complex Borel measures

on the weighted Bergman spaces L2
a(Bn, dVα), α > −1. Most of what follows, and more, can

be found in [50].

Definition 1.5.1. Let α > −1 and f be a measurable function in L1(Bn, dVα). The Toeplitz

operator Tf on L2
a(Bn, dVα) is defined by

Tf h(z) = Pα(fh)(z) =
∫
Bn

f(w)h(w)
(1− 〈z, w〉)n+1+α dVα(w), h ∈ L2

a(Bn, dVα),

where Pα is the projection of L1(Bn, dVα) onto L1
a(Bn, dVα). Since H∞ is dense in

L2
a(Bn, dVα), the Toeplitz operator Tf is densely defined on L2

a(Bn, dVα).

It is not clear in general when the Toeplitz operator Tf is bounded on L2
a(Bn, dVα).
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However, Tf is bounded on L2
a(Bn, dVα) whenever f ∈ L∞(Bn). There is also a

characterization of bounded Toeplitz operators with BMO symbols in terms of their

Berezin transform, that is a generalization of the result in [52] for the classical Bergman

space on the disk which will be presented later.

Definition 1.5.2. Let α > −1 and f be a measurable function in L1(Bn, dVα). The Berezin

transform of f is defined to be the Berezin transform of Tf , that is,

f̃(z) = f̃α(z) = 〈Tfkαz , kαz 〉α =
∫
Bn
f(w) (1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α) dVα(w).

Next, we will define Toeplitz operators induced by complex Borel measures.

Definition 1.5.3. For a complex Borel measure ν on Bn, the Toeplitz operator Tν on

L2
a(Bn, dVα) is defined by

Tνg(z) =
∫
Bn

g(w)
(1− 〈z, w〉)n+1+α dν(w), g ∈ L2

a(Bn, dVα).

As before, the Toeplitz operator Tν is densely defined on L2
a((Bn, dVα), and it can be

unbounded in general. It is clear that if f is a measurable function in L1(Bn, dVα), and if

dν = f dVα, then Tν = Tf .

For positive measures, the boundedness of the corresponding Toeplitz operators is

completely characterized in terms of Carleson measures. See, for example, [25, Lemma 2.2].
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Definition 1.5.4. For p ≥ 1, a finite positive Borel measure µ on Bn is said to be a Carleson

measure for the Bergman space Lpa(Bn, dVα) if Lpa(Bn, dVα) is continuously embedded into

Lp(Bn, dµ); that is, if there exist a constant C > 0, independent of f , such that

∫
Bn

∣∣∣f(z)
∣∣∣pdµ(z) ≤ C

∫
Bn

∣∣∣f(z)
∣∣∣pdVα(z),

for all f ∈ Lpa(Bn, dVα).

We notice that the continuity condition of the embedding is redundant. In fact, by the

closed graph theorem, if Lpa(Bn, dVα) ⊆ Lp(Bn, dµ), then the embedding is automatically

continuous. Thus, µ is a Carleson measure for Lpa(Bn, dVα) if

∫
Bn

∣∣∣f(z)
∣∣∣pdµ(z) <∞, ∀ f ∈ Lpa(Bn, dVα).

Actually, the property of being a Carleson measure for Lpa(Bn, dVα) is independent of p,

and only depends on α. The following theorem gives equivalent characterizations of Bergman

Carleson measures on Bn in terms of hyperbolic balls. See [25, Lemma 2.2] and [50, Theorem

2.25].

Theorem 1.5.5. [25] [50] Suppose that µ is a finite positive Borel measure on Bn and

r > 0. Then the following conditions are equivalent:

(1) µ is a Carleson measure for the Bergman space L2
a(Bn, dVα).
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(2) There exists a constant C > 0 such that

∫
Bn

(1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α) dµ(w) ≤ C,

for all z ∈ Bn.

(3) There exists a constant Cr > 0 such that

µ
(
D(z, r)

)
≤ CrVα

(
D(z, r)

)
,

for all z ∈ Bn.

(4) There exists a constant Cr > 0 such that

µ
(
D(zi, r)

)
≤ CrVα

(
D(zi, r)

)
,

for all i ≥ 1, where {zi}∞i=1 is an r-lattice on Bn.

(5) The Toeplitz operator Tµ is bounded on L2
a(Bn, dVα).

Suppose that ν is a complex Borel measure such that its total variation |ν| is a Carleson

measure for L2
a(Bn, dVα). The real part and the imaginary part of ν are signed measures

which may be written as the difference of two positive measures by the Jordan Decomposition.
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Hence, ν may be decomposed as

ν = (µ1 − µ2) + i(µ3 − µ4), (1.10)

where each µj is a positive Borel measure and |ν| ≈ ∑4
j=1 µj. So, by Theorem 1.5.5, each µj

is a Carleson measure and Tµj is bounded on L2
a(Bn, dVα). Therefore, the Toeplitz operator

Tν = (Tµ1 − Tµ2) + i(Tµ3 − Tµ4)

is bounded on L2
a(Bn, dVα).

1.5.2 Toeplitz Operators on L2
a(ω)

Definition 1.5.6. Let ν be a complex Borel measure on D and let ω ∈ E. The Toeplitz

operator T ων on L2
a(ω) is defined by

T ων f(z) =
∫
D
f(ζ)Kω

z (ζ)ω(ζ) dν(ζ), ∀z ∈ D.

Generally, there is no guarantee that the above integral converges. But for a positive Borel

measure ν on D, imposing the condition

∫
D

∣∣∣Kω
z (ζ)

∣∣∣2 ω(ζ) dν(ζ) <∞,
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on ν ensures that T ων is well defined. See [4] and [6] for more details.

If ν is a complex Borel measure such that its total variation |ν| is a Carleson measure for

L2
a(ω), ω ∈ E , then

∫
D

∣∣∣Kω
z (ζ)

∣∣∣2 ω(ζ) d|ν|(ζ) .
∫
D

∣∣∣Kω
z (ζ)

∣∣∣2 ω(ζ) dA(ζ) <∞,

since Kω
z ∈ L2

a(ω), and hence, T ω|ν| is well defined and bounded. This immediately implies

that T ων is also well defined. By the Jordan decomposition ν may be decomposed as

ν = (µ1 − µ2) + i(µ3 − µ4),

where each µi is a positive Carleson measure. Since T ων is a linear combination of four

Toeplitz operators with positive Carleson measure symbols, it is a bounded operator.

Combining a few of the results from [6] stated in section 1.4, and some ideas from the

proof of a similar statement in [4] for another class of weights, we have the following.

Lemma 1.5.7. Let ω ∈ E and ν be a complex Borel measure on D such that |ν| is a Carleson

measure for L2
a(ω). Then

〈T ων f, g〉ω =
∫
D
f(ξ) g(ξ)ω(ξ) dν(ξ), (1.11)

for all f, g ∈ L2
a(ω).
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Proof. By the Jordan decomposition ν may be decomposed as

ν = (µ1 − µ2) + i(µ3 − µ4),

where each µi is a positive Carleson measure. So, it suffices to show that (1.11) holds for

positive Carleson measures µ.

Let µ be a positive Carleson measure for L2
a(ω). Suppose f is in L2

a(ω) and g is in

L∞a (ω1/2). Then by Lemma 1.4.18, the Cauchy–Schwarz inequality, and using the assumption

that µ is a Carleson measure for L2
a(ω), we have that

I =
∫
D

(∫
D
|g(z)| |Kω

z (ξ)|ω(z) dA(z)
)
|f(ξ)|ω(ξ) dµ(ξ)

≤ ‖g‖L∞a (ω1/2)

∫
D

(∫
D
|Kω

z (ξ)|ω(z) 1
2 dA(z)

)
|f(ξ)|ω(ξ) dµ(ξ)

. ‖g‖L∞a (ω1/2)

∫
D
|f(ξ)|ω(ξ) 1

2 dµ(ξ)

. ‖g‖L∞a (ω1/2)

(∫
D
|f(ξ)|2 ω(ξ) dµ(ξ)

) 1
2

. ‖g‖L∞a (ω1/2)‖f‖ω <∞.

Hence, by Fubini’s theorem, we get that
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〈T ωµ f, g〉ω =
∫
D

(∫
D
f(ξ)Kω

z (ξ)ω(ξ) dµ(ξ)
)
g(z)ω(z) dA(z)

=
∫
D
f(ξ)

(∫
D
g(z)Kω

ξ (z)ω(z) dA(z)
)
ω(ξ) dµ(ξ)

=
∫
D
f(ξ) g(ξ)ω(ξ) dµ(ξ).

By Lemma 1.4.14, Kω
z ∈ L0

a(ω1/2) ⊆ L∞a (ω1/2), for all z ∈ D. Since the set of finite linear

combinations of the reproducing kernels is dense in L2
a(ω), the set L∞a (ω1/2) is dense in L2

a(ω),

and therefore, we conclude that (1.11) holds for µ. �
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Chapter 2

Localization on the Weighted

Bergman Spaces of the Unit Ball

2.1 Weak localization on L2
a(Bn, dVα)

In [15], the notions of weak localization on Bergman and Fock spaces were introduced by

Isralowitz, Mitkovski, and Wick. They proved that the Toeplitz operators with bounded

symbols are weakly localized and therefore the Toeplitz algebra is contained in the C∗-algebra

generated by weakly localized operators. In [42], Xia established that these two algebras are

actually the same, that is, the C∗-algebra generated by weakly localized operators is equal

to the Toeplitz algebra.
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In this chapter, we show that also some large classes of Toeplitz operators containing Toeplitz

operators with bounded symbols are included in the class of weakly localized operators. To

present our work in a more general context, we first extend the notion of weak localization,

introduced in [15], to the weighted Bergman spaces of the open unit ball L2
a(Bn, dVα). It is

mentioned in [15] that this extension is possible and is left to the reader, but without the

details given. This chapter is based on the same results that hold in the case of the Bergman

space on the unit ball, published as a joint paper with my supervisor in [37]. The results here

are extensions of those results, and follow the methods and the ideas used in that paper. We

prove that a Toeplitz operator with complex Borel measure symbol, whose total variation

is Carleson, is weakly localized on L2
a(Bn, dVα). We define strongly localized and sufficiently

localized operators on L2
a(Bn, dVα), and show that they are also weakly localized. Then we

show that bounded Toeplitz operators with BMO1 symbols are strongly (and therefore also

weakly) localized.

Definition 2.1.1. Let α > −1 and n−1−α
n+1+α < a < 1. We say that a bounded linear operator

T on L2
a(Bn, dVα) is a, α-weakly localized if the following conditions are satisfied:
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(i) sup
z∈Bn

∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣ ‖Kα
z ‖aα

‖Kα
w‖aα

dλ(w) <∞, and (2.1)

sup
z∈Bn

∫
Bn

∣∣∣〈T ∗kαz , kαw〉α∣∣∣ ‖Kα
z ‖aα

‖Kα
w‖aα

dλ(w) <∞. (2.2)

(ii) lim
r→∞

sup
z∈Bn

∫
D(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣ ‖Kα
z ‖aα

‖Kα
w‖aα

dλ(w) = 0, and (2.3)

lim
r→∞

sup
z∈Bn

∫
D(z,r)c

∣∣∣〈T ∗kαz , kαw〉α∣∣∣ ‖Kα
z ‖aα

‖Kα
w‖aα

dλ(w) = 0, (2.4)

where dλ is the Möbius invariant measure on Bn,

dλ(z) = dV (z)
(1− |z|2)n+1 .

As mentioned before, we have that

D(z, r) = {w ∈ Bn : ρ(z, w) < tanh r} = Dρ(z, tanh r),

and therefore, the statements of part (ii) can also be given in terms of complements of

pseudo-hyperbolic balls Dρ(z, r). In that case we take the limits as r → 1−.

In this section, we will show that the Toeplitz operators induced by a complex measure

with Carleson total variation, are a, α-weakly localized on L2
a(Bn, dVα) for any n−1−α

n+1+α < a < 1.

This is an extension of the non-weighted Bergman space case, published in [37].
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We first provide a weighted version of [15, Lemma 2.1].

Lemma 2.1.2. Let α > −1 and n−1−α
n+1+α < a < 1. Then

lim
r→1−

sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w) = 0.

Proof. By the change of variable w = ϕz(ξ) and identity (1.5), we have that

I(z, r, a) =
∫
Dρ(z,r)c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w)

=
∫
Dρ(0,r)c

∣∣∣Kα
z (ϕz(ξ))

∣∣∣
∥∥∥Kα

ϕz(ξ)

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

∣∣∣kαz (ξ)
∣∣∣2 dVα(ξ)

=
∫
Dρ(0,r)c

∣∣∣〈kαz , kαϕz(ξ)〉α
∣∣∣
∥∥∥Kα

ϕz(ξ)

∥∥∥2−a

α∥∥∥Kα
z

∥∥∥−a
α

∣∣∣kαz (ξ)
∣∣∣2 dVα(ξ)

=
∫
Dρ(0,r)c

∥∥∥Kα
ξ

∥∥∥−1

α

∣∣∣〈kαz , kαξ 〉α∣∣∣a−2∥∥∥Kα
z

∥∥∥a
α

∣∣∣kαz (ξ)
∣∣∣2 dVα(ξ)

=
∫
Dρ(0,r)c

∥∥∥Kα
ξ

∥∥∥
α

∣∣∣〈kαz , kαξ 〉α∣∣∣a ∥∥∥Kα
z

∥∥∥a
α
dVα(ξ)

=
∫
Dρ(0,r)c

(
1− |ξ|2

)n+1+α
2 (a−1)+α

∣∣∣1− 〈z, ξ〉∣∣∣(n+1+α)a cα dV (ξ),

and since Dρ(0, r) is equal to the Euclidean ball of radius r centered at the origin, by
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integration in polar coordinates, we see that

I(z, r, a) = cα

∫ 1

r

∫
Sn

(
1−R2

)n+1+α
2 (a−1)+α

∣∣∣1− 〈Rz, ζ〉∣∣∣(n+1+α)a R
2n−1dσ(ζ) dR

= cα

∫ 1

r
I(n+1+α)a−n(Rz) R2n−1(

1−R2
)n+1+α

2 (1−a)−α
dR,

where

Ic(z) =
∫
Sn

1
|1− 〈z, ζ〉|n+c dσ(ζ).

By Forelli-Rudin estimates, we get that

I(n+1+α)a−n(Rz)) .



1 if (n+ 1 + α)a− n < 0

log 1
1−|Rz|2 if (n+ 1 + α)a− n = 0

1
(1−|Rz|2)(n+1+α)a−n if (n+ 1 + α)a− n > 0,

and therefore, we have that



2. Localization on the Weighted Bergman Spaces of the Unit Ball 35

I(z, r, a) .



∫ 1
r

R2n−1(
1−R2

)n+1+α
2 (1−a)−α

dR if n−1−α
n+1+α < a < n

n+1+α

∫ 1
r log

(
1

1−R2

)
R2n−1(

1−R2
)n+1+α

2 (1−a)−α
dR if a = n

n+1+α

∫ 1
r

R2n−1

(1−R2)(n+1+α
2 )a−n−1+α

2
dR if n

n+1+α < a < 1.

Using change of variables and integration by parts, we see that these three functions are

integrable over (0, 1) as n−1−α
n+1+α < a < 1. By taking supremum over z ∈ Bn and then letting

r → 1−, we get that

lim
r→1−

sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w) = 0. �

The proof of the main theorem of this section relies on the following lemma. The general

idea for the proof of the lemma is based on the geometric decomposition of Bn into hyperbolic

balls, Theorem 1.3.3 and the characterization of Carleson measures in terms of hyperbolic

balls, Theorem 1.5.5.

Lemma 2.1.3. Suppose that α > −1 and n−1−α
n+1+α < a < 1. If µ is a Carleson measure for

L2
a(Bn, dVα), then there exists a constant C > 0 such that
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(a)
∫
D(z,r)c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w) ≤ C
∫
D(z, r4 )c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w),

for all z ∈ Bn, and for all r > 1; and

(b)
∫
Bn

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w) ≤ C
∫
Bn

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w),

for all z ∈ Bn.

Proof. Fix s ≤ 1
4, and suppose {zi}∞i=1 is an s-lattice on Bn coming from Theorem 1.3.3.

Hence, we have that

Bn =
∞⋃
i=1

D(zi, s); D(zi, s/4)
⋂
D(zj, s/4) = ∅, ∀ i 6= j, (2.5)

and that each point of Bn belongs to at most M hyperbolic balls D(zi, 2s). For w ∈ D(zi, s),

we have that D(w, s) ⊆ D(zi, 2s), and that

(
1− |w|2

)n+1+α
≈ Vα

(
D(w, s)

)
≈ Vα

(
D(zi, s)

)
≈
(
1− |zi|2

)n+1+α
,

by (1.7). Hence, since |Kα
z | is subharmonic, for any i ∈ N and any w ∈ D(zi, s), we get

∣∣∣Kα
z (w)

∣∣∣ ≤ 1
V
(
D(w, s)

) ∫
D(w,s)

∣∣∣Kα
z (ζ)

∣∣∣ dV (ζ)
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.
1

V
(
D(zi, s)

) ∫
D(w,s)

∣∣∣Kα
z (ζ)

∣∣∣ dV (ζ)

.
1

(1− |zi|2)n+1

∫
D(w,s)

∣∣∣Kα
z (ζ)

∣∣∣ dV (ζ)

.
1

(1− |zi|2)n+1+α

∫
D(w,s)

∣∣∣Kα
z (ζ)

∣∣∣(1− |ζ|2)α dV (ζ)

.
1

Vα
(
D(zi, s)

) ∫
D(zi,2s)

∣∣∣Kα
z (ζ)

∣∣∣ dVα(ζ),

where the fourth inequality comes from

(1− |zi|2)α ≈ (1− |w|2)α ≈ (1− |ζ|2)α, ∀w ∈ D(zi, s), ∀ ζ ∈ D(w, s),

which holds by (1.7). Since we also have that

∥∥∥Kα
w

∥∥∥
α
≈
∥∥∥Kα

zi

∥∥∥
α

and
∥∥∥Kα

zi

∥∥∥
α
≈
∥∥∥Kα

ζ

∥∥∥
α
, ∀w ∈ D(zi, s), ∀ ζ ∈ D(zi, 2s),

we get that

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

.
1

Vα
(
D(zi, s)

) ∫
D(zi,2s)

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ)

.
1

Vα
(
D(zi, s)

) ∫
D(zi,2s)

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ),



2. Localization on the Weighted Bergman Spaces of the Unit Ball 38

for any w ∈ D(zi, s). If for z ∈ Bn and i ∈ N, we define

Si(z, s) = sup
w∈D(zi,s)

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

,

then we can rewrite the inequality obtained above as

Si(z, s)Vα
(
D(zi, s)

)
.
∫
D(zi,2s)

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α

‖Kα
z ‖1−a

α

dVα(ζ), ∀ i ∈ N. (2.6)

(a) Let z ∈ Bn, and r > 1 be arbitrary. Thus, we have that s ≤ 1
4 < r

4. We define the

family

Jz,r =
{
j ∈ N : D(zj, s)

⋂
D(z, r)c 6= ∅

}
.

Since {zi}∞i=1 is an s-lattice on Bn, and by the definition of Jz,r, we have that

D(z, r)c ⊆
⋃

j∈Jz,r
D(zj, s); D(zj, s/4)

⋂
D(zk, s/4) = ∅, ∀j, k ∈ Jz,r (j 6= k), (2.7)

and that each point of Bn belongs to at most M hyperbolic balls D(zj, 2s), j ∈ Jz,r, for some

positive integer M , independent of z and r, coming from Theorem 1.3.3.

Since 3s < 3r
4 , and since the hyperbolic distance from each zj to D(z, r)c is less than s,

we have that the hyperbolic distance from
⋃

j∈Jz,r
D(zj, 2s) to z is greater than r − 3s > r

4.

Thus
⋃

j∈Jz,r
D(zj, 2s) ⊆ D(z, r/4)c. (2.8)
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Thus, since µ is a Carleson measure, and by (2.6), (2.7), (2.8) and Theorem 1.5.5,

∫
D(z,r)c

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w) ≤
∫⋃

j∈Jz,r
D(zj ,s)

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w)

≤
∑
j∈Jz,r

∫
D(zj ,s)

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w)

≤
∑
j∈Jz,r

Sj(z, s)µ
(
D(zj, s)

)

=
∑
j∈Jz,r

Sj(z, s)
µ
(
D(zj, s)

)
Vα
(
D(zj, s)

) Vα(D(zj, s)
)

.
∑
j∈Jz,r

Sj(z, s)Vα
(
D(zj, s)

)

.
∑
j∈Jz,r

∫
D(zj ,2s)

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ)

.
∫
D(z, r4 )c

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ).

The last inequality comes from the fact that each ζ ∈ Bn belongs to at most M of the

hyperbolic balls D(zj, 2s).

(b) Since µ is a Carleson measure, and by (2.5), (2.6) and Theorem 1.5.5,

∫
Bn

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w) =
∫⋃∞

i=1 D(zi,s)

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w)
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≤
∞∑
i=1

∫
D(zi,s)

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dµ(w)

≤
∞∑
i=1

Si(z, s)µ
(
D(zi, s)

)

=
∞∑
i=1

Si(z, s)
µ
(
D(zi, s)

)
Vα
(
D(zi, s)

) Vα(D(zi, s)
)

.
∞∑
i=1

Si(z, s)Vα
(
D(zi, s)

)

.
∞∑
i=1

∫
D(zi,2s)

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ)

.
∫
Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ).

The last inequality holds since each ζ ∈ Bn belongs to at most M of the hyperbolic balls

D(zi, 2s). �

Before presenting the main theorem of this section, we state a version of the Forelli-Rudin

estimate on Bn in terms of kernel functions of the weighted Bergman space L2
a(Bn, dVα).

For α > −1 and n−1−α
n+1+α < a < 1, it is easy to check that

t = −n− 1 + α

2 +
(
n+ 1 + α

2

)
a > −1, c =

(
n+ 1 + α

2

)
(1− a) > 0,
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and n+ 1 + t+ c = n+ 1 + α. Therefore by part (3) of Theorem 1.3.5, we get that

sup
z∈Bn

∫
Bn

∣∣∣Kα
z (w)

∣∣∣∥∥∥Kα
z

∥∥∥1−a

α

∥∥∥Kα
w

∥∥∥1+a

α

dλ(w) = c−1
α sup

z∈Bn

∫
Bn

∣∣∣Kα
z (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(w) <∞. (2.9)

This implies that the integrals appearing in Lemma 2.1.3 are finite. We will apply this

form of the Forelli-Rudin estimate on Bn in our main theorem, presented in the following

subsection.

2.1.1 Weak Localization and Toeplitz operators with Complex

Measure Symbols on L2
a(Bn, dVα)

In this subsection we present the main theorem of this chapter. As mentioned before, this

is the extension of one of the results of a joint paper with my supervisor [37].

Theorem 2.1.4. Let α > −1 and ν be a complex Borel measure on Bn such that |ν| is a

Carleson measure for L2
a(Bn, dVα). Then the Toeplitz operator Tν is a, α-weakly localized

on the Bergman space L2
a(Bn, dVα), for any n−1−α

n+1+α < a < 1.

Proof. Since |ν| is a Carleson measure, the Toeplitz operator Tν is bounded on the Bergman

space L2
a(Bn, dVα). Let n−1−α

n+1+α < a < 1 be arbitrary and fixed. By Fubini’s theorem, and

Theorem 1.2.3, we have that

∣∣∣〈Tνkαz , kαw〉α∣∣∣ =
∣∣∣∣ ∫

Bn
kαz (ζ) kαw(x) dν(ζ)

∣∣∣∣ ≤ ∫
Bn

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣ d|ν|(ζ).
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Hence, by Fubini’s theorem, the Forelli-Rudin estimate (2.9), and part (b) of Lemma

2.1.3, we get that

∫
Bn

∣∣∣〈Tνkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) ≤
∫
Bn

∫
Bn

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

d|ν|(ζ) dλ(w)

=
∫
Bn

∫
Bn

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ)

=
∫
Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

∫
Bn

∣∣∣Kα
ζ (w)

∣∣∣∥∥∥Kα
ζ

∥∥∥1−a

α

∥∥∥Kα
w

∥∥∥1+a

α

dλ(w) d|ν|(ζ)

≤
(

sup
ζ∈Bn

∫
Bn

∣∣∣Kα
ζ (w)

∣∣∣∥∥∥Kα
ζ

∥∥∥1−a

α

∥∥∥Kα
w

∥∥∥1+a

α

dλ(w)
) ∫

Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

d|ν|(ζ)

.
∫
Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α

‖Kα
z ‖1−a

α

dVα(ζ).

Invoking the Forelli-Rudin estimate (2.9) one more time, we get that

sup
z∈Bn

∫
Bn

∣∣∣〈Tνkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) <∞.

Since T ∗ν = Tν , and |ν| = |ν|, replacing Tν by Tν in the proof above, we get that

sup
z∈Bn

∫
Bn

∣∣∣〈T ∗ν kαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) <∞.

Thus, we have shown that conditions (2.1) and (2.2) from the definition of weak localization

hold for the operator Tν . Next, we prove that that conditions (2.3) and (2.4) also hold for
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the operator Tν . By Fubini’s theorem, we have that

∫
D(z,r)c

∣∣∣〈Tνkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) ≤
∫
D(z,r)c

∫
Bn

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

d|ν|(ζ) dλ(w)

=
∫
Bn

∫
D(z,r)c

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ)

= I1(z, r) + I2(z, r),

where

I1(z, r) =
∫
D(z, r2 )c

∫
D(z,r)c

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ),

and

I2(z, r) =
∫
D(z, r2 )

∫
D(z,r)c

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ).

By the Forelli-Rudin estimate (2.9) and part (a) of Lemma 2.1.3, we see that

I1(z, r) ≤
∫
D(z, r2 )c

∫
Bn

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ)

=
∫
D(z, r2 )c

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

∫
Bn

∣∣∣Kα
ζ (w)

∣∣∣∥∥∥Kα
ζ

∥∥∥1−a

α

∥∥∥Kα
w

∥∥∥1+a

α

dλ(w) d|ν|(ζ)

.
∫
D(z, r2 )c

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

d|ν|(ζ)
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.
∫
D(z, r8 )c

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α

‖Kα
z ‖1−a

α

dVα(ζ).

So, by Lemma 2.1.2, we get that

lim
r→∞

sup
z∈Bn

I1(z, r) = 0.

To find an upper bound for I2(z, r), we first notice that

D(ζ, r2) ⊆ D(z, r), ∀ ζ ∈ D(z, r2).

Thus,

I2(z, r) ≤
∫
D(z, r2 )

∫
D(ζ, r2 )c

∣∣∣kαz (ζ) kαw(ζ)
∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) d|ν|(ζ)

=
∫
D(z, r2 )

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

∫
D(ζ, r2 )c

∣∣∣Kα
w(ζ)

∣∣∣∥∥∥Kα
w

∥∥∥1+a

α

∥∥∥Kα
ζ

∥∥∥1−a

α

dλ(w) d|ν|(ζ)

=
∫
D(z, r2 )

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

∫
D(ζ, r2 )c

∣∣∣Kα
ζ (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
ζ

∥∥∥1−a

α

c−1
α dVα(w) d|ν|(ζ)

.
(

sup
ζ∈Bn

∫
D(ζ, r2 )c

∣∣∣Kα
ζ (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
ζ

∥∥∥1−a

α

dVα(w)
)( ∫

Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

d|ν|(ζ)
)
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.
(

sup
ζ∈Bn

∫
D(ζ, r2 )c

∣∣∣Kα
ζ (w)

∣∣∣
∥∥∥Kα

w

∥∥∥1−a

α∥∥∥Kα
ζ

∥∥∥1−a

α

dVα(w)
)( ∫

Bn

∣∣∣Kα
z (ζ)

∣∣∣
∥∥∥Kα

ζ

∥∥∥1−a

α∥∥∥Kα
z

∥∥∥1−a

α

dVα(ζ)
)
,

where the last inequality comes from part (b) of Lemma 2.1.3. We use one more time the

Forelli-Rudin estimate (2.9) to get that

I2(z, r) . sup
ζ∈Bn

∫
D(ζ, r2 )c

∣∣∣Kα
ζ (w)

∣∣∣
∥∥∥Kw

∥∥∥1−a

α∥∥∥Kα
ζ

∥∥∥1−a

α

dVα(w),

and therefore, using Lemma 2.1.2 one more time, we obtain

lim
r→∞

sup
z∈Bn

I2(z, r) = 0.

Thus,

lim
r→∞

sup
z∈Bn

∫
D(z,r)c

∣∣∣〈Tνkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) = 0.

Since T ∗ν = Tν , and |ν| = |ν|, replacing Tν by Tν in the proof above gives

lim
r→∞

sup
z∈Bn

∫
D(z,r)c

∣∣∣〈T ∗ν kαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) = 0.

Hence, we have proven that conditions (2.3) and (2.4) from the definition of weak localization

hold for the operator Tν and the proof is complete. �
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2.2 Strong and Sufficient Localization

Recall that for any z ∈ Bn, the weighted composition operator Uα
z defined by

Uα
z f = (f ◦ ϕz)kαz

is a selfadjoint unitary operator on L2
a(Bn, dVα), α > −1, and

∣∣∣Uα
z k

α
w(ζ)

∣∣∣ =
∣∣∣kαϕz(w)(ζ)

∣∣∣, ∀ z, w, ζ ∈ Bn. (2.10)

See [39, Page 116] and [24, Page 2036].

Definition 2.2.1. We say that a bounded operator T on the weighted Bergman space

L2
a(Bn, dVα), α > −1, is α-sufficiently localized if there exists 2 + n

1 + α
< p < ∞ such

that

sup
z∈Bn

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α

<∞ and sup
z∈Bn

∥∥∥Uα
z T
∗Uα

z 1

∥∥∥
p,α

<∞,

and we say that T is α-strongly localized if the above conditions hold for any 1 ≤ p <∞.

These types of conditions were first used by Axler and Zheng for characterization of

compact Toeplitz operators with bounded symbols in terms of their Berezin transform [7].

The idea was used later by other authors for larger classes of Toeplitz operators (see [52],

[24]). In [52], Zorboska used the same conditions to show that the characterization holds
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true for compact Toeplitz operators with BMO symbols. In [41], Suárez gave a complete

characterization of compact operators on the Bergman spaces Lpa(Bn, dV ), for 1 < p < ∞,

in terms of the Berezin transform. Namely, he showed that an operator on Lpa(Bn, dVα) is

compact if and only if it belongs to the Toeplitz algebra and its Berezin transform vanishes

on the boundary of the ball.

We recall that the Fock space F2(Cn) is the set of all entire functions in L2(Cn, dΛ),

where dΛ(z) = e−|z|
2
dV (z) is Gaussian measure on Cn. It is well known that F2(Cn) is a

reproducing kernel Hilbert space with K(z, w) = e〈z,w〉. For this and for more details, see [45].

Xia and Zheng introduced the notion of “sufficiently localized operator” in [43] for operators

on the Fock space. A bounded operator T on the Fock space F2(Cn) is said to be sufficiently

localized if there exist some constants 2n < β <∞ and C > 0 such that

∣∣∣〈Tkz, kw〉∣∣∣ ≤ C

(1 + |z − w|)β ,

for all z, w ∈ Cn. They showed that Toeplitz operators with bounded symbols are

sufficiently localized on F2(Cn), and therefore, the C∗-algebra generated by sufficiently

localized operators contains the Fock Toeplitz algebra. This observation motivated further

investigation of localization properties of operators both on the Bergman, and on the

Fock-type spaces (see [43], [24], [15], [42], [8], [16]). In the joint paper [37], my supervisor

and I, determined the results of this section for the non-weighted Bergman spaces on the
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unit ball. It is clear that every α-strongly localized operator is α-sufficiently localized, and

we will show that every sufficiently α-localized operator is also α, a-weakly localized for

a = n
2(1+α)+n . Thus, the labels of sufficient and strong localization make sense. We show

that the sufficient localization implies the weak localization in a few steps, first by proving

the following three lemmas.

Lemma 2.2.2. Let α > −1 and 2 ≤ p < ∞. Suppose T is a bounded operator on

Lpa(Bn, dVα). Then

∥∥∥Uα
z TU

α
z 1

∥∥∥p
p,α

= cα

∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p−2

α
dλ(w).

Proof. Using the identities (2.10) and (1.5), and by the change of variable w = ϕz(ζ), we

have that

∥∥∥Uα
z TU

α
z 1

∥∥∥p
p,α

=
∫
Bn

∣∣∣〈Uα
z TU

α
z 1, K

α
ζ 〉α

∣∣∣p dVα(ζ)

=
∫
Bn

∣∣∣〈Uα
z Tk

α
z , k

α
ζ 〉α

∣∣∣p∥∥∥Kα
ζ

∥∥∥p
α
dVα(ζ)

=
∫
Bn

∣∣∣〈Tkαz , Uα
z k

α
ζ 〉α

∣∣∣p∥∥∥Kα
ζ

∥∥∥p
α
dVα(ζ)

=
∫
Bn

∣∣∣〈Tkαz , kαϕz(ζ)〉α
∣∣∣p∥∥∥Kα

ζ

∥∥∥p
α
dVα(ζ)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p
α

∣∣∣kαz (w)
∣∣∣2dVα(w)
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=
∫
Bn

∣∣∣〈Tkαz , kαw〉∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p−2

α

∥∥∥Kα
ϕz(w)

∥∥∥2

α

∣∣∣kαz (w)
∣∣∣2dVα(w)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p−2

α

∣∣∣〈kαz , kαw〉α∣∣∣−2∣∣∣〈kαz , kαw〉α∣∣∣2∥∥∥Kα
w

∥∥∥2

α
dVα(w)

= cα

∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p−2

α
dλ(w).

Lemma 2.2.3. Let α > −1 and T be a linear operator on the weighted Bergman space

L2
a(Bn, dVα) such that

sup
z∈Bn

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α

<∞,

for some 2 + n

1 + α
< p <∞, then for a = n

2(1 + α) + n
∈
(
n− 1− α
n+ 1 + α

, 1
)
, we have that

sup
z∈Bn

∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) <∞.

Proof. Let 2 + n

1 + α
< p <∞, and q = p

p− 1. Then for a = n

2(1 + α) + n
, we see that

I(z, p) =
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

) p−2
p

∣∣∣1− 〈z, w〉∣∣∣(n+1+α) 2−p
p

∥∥∥Kα
z

∥∥∥a− p−2
p

α∥∥∥Kα
w

∥∥∥a+ p−2
p

α

dλ(w)∣∣∣1− 〈z, w〉∣∣∣(n+1+α) p−2
p

,
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and by Hölder’s inequality, we have I(z, p) ≤ I1(z, p)
1
p I2(z, p)

1
q , where

I1(z, p) =
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

)p−2

∣∣∣1− 〈z, w〉∣∣∣(n+1+α)(2−p) dλ(w),

and

I2(z, p) =
∫
Bn

∥∥∥Kα
z

∥∥∥
(

(a−1)p+2
p

)
q

α

∥∥∥Kα
w

∥∥∥
(

(a+1)p−2
−p

)
q

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( p−2
p

)q
dλ(w).

Using the identity (1.5) and Lemma 2.2.2, we get that

I1(z, p) =
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

)p−2

∣∣∣1− 〈z, w〉∣∣∣(n+1+α)(2−p) dλ(w)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p(
∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α∣∣∣1− 〈z, w〉∣∣∣−(n+1+α)

)p−2
dλ(w)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p(∣∣∣〈kαz , kαw〉α∣∣∣−1)p−2
dλ(w)

=
∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣p∥∥∥Kα
ϕz(w)

∥∥∥p−2

α
dλ(w)

= c−1
α

∥∥∥Uα
z TU

α
z 1

∥∥∥p
p,α
.

Thus, we have

I1(z, p)
1
p ≤ c

− 1
p

α

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α
.

Next, we use the Forelli-Rudin estimates to show that I2(z, p) is bounded above by a constant
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independent of z. We have that

I2(z, p) =
∫
Bn

∥∥∥Kα
z

∥∥∥
(

(a−1)p+2
p

)
q

α

∥∥∥Kα
w

∥∥∥
(

(a+1)p−2
−p

)
q

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( p−2
p

)q
dλ(w)

=
∫
Bn

∥∥∥Kα
z

∥∥∥ (a−1)p+2
p−1

α

∥∥∥Kα
w

∥∥∥ (a+1)p−2
1−p

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( p−2
p−1 )

dλ(w)

=
∫
Bn

(1− |z|2)(n+1+α
2 ) (1−a)p−2

p−1 (1− |w|2)(n+1+α
2 ) (a+1)p−2

p−1∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( p−2
p−1 )

(1− |w|2)n+1
dV (w)

=
∫
Bn

(1− |z|2)(n+1+α
2 ) (1−a)p−2

p−1 (1− |w|2)(n+1+α
2 ) (a+1)p−2

p−1 −(n+1)∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( p−2
p−1 )

dV (w).

Setting

c =
(
n+ 1 + α

2

)(1− a)p− 2
p− 1 and t =

(
n+ 1 + α

2

)(a+ 1)p− 2
p− 1 − (n+ 1),

and using the assumption that 2 + n

1 + α
< p < ∞, and a = n

2(1 + α) + n
, it is easy to

verify that c > 0 and t > −1. We also have that

n+ 1 + t+ c =
(
n+ 1 + α

)(p− 2
p− 1

)
,
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and hence, by the Forelli-Rudin estimates, there exists C > 0 such that

I2(z, p) ≤ C, ∀z ∈ Bn.

Therefore, we obtain that

I(z, p) ≤ c
− 1
p

α C1− 1
p

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α
,

and by taking the supremum over all z ∈ Bn, and using the assumption, we get that

sup
z∈Bn

∫
Bn

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) <∞. �

Lemma 2.2.4. Let α > −1 and T be a linear operator on the weighted Bergman space

L2
a(Bn, dVα) such that

sup
z∈Bn

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α

<∞,

for some 2 + n

1 + α
< p <∞. Then

lim
r→1−

sup
z∈Bn

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥
q,α

= 0,

for all q with 2 + n

1 + α
< q < p.
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Proof. Let 2 + n

1 + α
< q < p be fixed, s = p

q
and s′ > 1 be such that 1

s
+ 1
s′

= 1. By

applying Hölder’s inequality with s and s′, we find that

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥q
q,α

=
∫
Dρ(0,r)c

∣∣∣Uα
z TU

α
z 1(w)

∣∣∣qdVα(w)

≤
(∫

Dρ(0,r)c

∣∣∣Uα
z TU

α
z 1(w)

∣∣∣pdVα(w)
) q
p
(∫

Dρ(0,r)c
dVα(w)

)1− q
p

≤
∥∥∥Uα

z TU
α
z 1

∥∥∥q
p,α

(∫
Bn\rBn

dVα(w)
)1− q

p

≤ (ncα)1− q
p

∥∥∥Uα
z TU

α
z 1

∥∥∥q
p,α

(1− r2)(1+α)(1− q
p

).

Hence, since (1 + α)(1
q
− 1

p
) > 0, we obtain that

lim
r→1−

sup
z∈Bn

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥
q,α
≤ (ncα)

1
q
− 1
p sup
z∈Bn

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α

lim
r→1−

(1− r2)(1+α)( 1
q
− 1
p

) = 0,

which is the desired conclusion. �

We are ready now to prove that the sufficient localization implies the weak localization.

Theorem 2.2.5. Suppose that T is a linear operator acting on the weighted Bergman space

L2
a(Bn, dVα), α > −1. If T is α-sufficiently localized, then it is a, α-weakly localized for

a = n
2(1 + α) + n

.

Proof. Let T be α-sufficiently localized on the weighted Bergman space L2
a(Bn, dVα). Thus,



2. Localization on the Weighted Bergman Spaces of the Unit Ball 54

there exists 2 + n

1 + α
< p <∞ such that

sup
z∈Bn

∥∥∥Uα
z TU

α
z 1

∥∥∥
p,α

<∞ and sup
z∈Bn

∥∥∥Uα
z T
∗Uα

z 1

∥∥∥
p,α

<∞,

By Lemma 2.2.3, we see that T and T ∗ satisfy condition (i) from the definition of weak

localization for a = n
2(1 + α) + n

. We will show that condition (ii) from the definition of

weak localization in terms of pseudo-hyperbolic balls also holds for a = n
2(1 + α) + n

. That

is, if T is α-sufficiently localized, then

lim
r→1−

sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) = 0,

and

lim
r→1−

sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣〈T ∗kαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) = 0.

Since T is α-sufficiently localized if and only if T ∗ is α-sufficiently localized, it is enough to

show that the first limit vanishes.

Let q be any number between 2 + n
1 + α and p, and q′ be the conjugate exponent of q. We

have that
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I = sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w)

=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

) q−2
q

∣∣∣1− 〈z, w〉∣∣∣(n+1+α) 2−q
q

∥∥∥Kα
z

∥∥∥a− q−2
q

α∥∥∥Kα
w

∥∥∥a+ q−2
q

α

dλ(w)∣∣∣1− 〈z, w〉∣∣∣(n+1+α) q−2
q

,

and by Hölder’s inequality, we have I ≤ I1(z, q)
1
q I2(z, q)

1
q′ , where

I1(z, q) =
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

)q−2

∣∣∣1− 〈z, w〉∣∣∣(n+1+α)(2−q) dλ(w),

and

I2(z, q) =
∫
Dρ(z,r)c

∥∥∥Kα
z

∥∥∥
(

(a−1)q+2
q

)
q′

α

∥∥∥Kα
w

∥∥∥
(

(a+1)q−2
−q

)
q′

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( q−2
q

)q′
dλ(w).

Using the identity (1.5), we get that

I1(z, q) =
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q
(∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α

)q−2

∣∣∣1− 〈z, w〉∣∣∣(n+1+α)(2−q) dλ(w)

=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q(
∥∥∥Kα

z

∥∥∥
α

∥∥∥Kα
w

∥∥∥
α∣∣∣1− 〈z, w〉∣∣∣−(n+1+α)

)q−2
dλ(w)
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=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q(∣∣∣〈kαz , kαw〉α∣∣∣−1)q−2
dλ(w)

=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q−2

α
dλ(w).

Next we show that

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥q
q,α

= cα

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q−2

α
dλ(w).

Using the identities (2.10) and (1.5), and by the change of variable w = ϕz(ζ) together with

the fact that ϕz
(
Dρ(0, r)

)
= Dρ(ϕz(0), r) = Dρ(z, r), we have that

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥q
q,α

=
∫
Dρ(0,r)c

∣∣∣〈Uα
z TU

α
z 1, K

α
ζ 〉α

∣∣∣q dVα(ζ)

=
∫
Dρ(0,r)c

∣∣∣〈Uα
z Tk

α
z , k

α
ζ 〉α

∣∣∣q∥∥∥Kα
ζ

∥∥∥q
α
dVα(ζ)

=
∫
Dρ(0,r)c

∣∣∣〈Tkαz , Uα
z k

α
ζ 〉α

∣∣∣q∥∥∥Kα
ζ

∥∥∥q
α
dVα(ζ)

=
∫
Dρ(0,r)c

∣∣∣〈Tkαz , kαϕz(ζ)〉α
∣∣∣q∥∥∥Kα

ζ

∥∥∥q
α
dVα(ζ)

=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q
α

∣∣∣kαz (w)
∣∣∣2dVα(w)

=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q−2

α

∥∥∥Kα
ϕz(w)

∥∥∥2

α

∣∣∣kαz (w)
∣∣∣2dVα(w)
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=
∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q−2

α

∣∣∣〈kαz , kαw〉α∣∣∣−2∣∣∣〈kαz , kαw〉α∣∣∣2∥∥∥Kα
w

∥∥∥2

α
dVα(w)

= cα

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣q∥∥∥Kα
ϕz(w)

∥∥∥q−2

α
dλ(w).

Hence,

I1(z, q) = c−1
α

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥q
q,α
.

Next, we use the Forelli-Rudin estimates to find an upper bound for I2(z, q).

I2(z, q) =
∫
Dρ(z,r)c

∥∥∥Kα
z

∥∥∥
(

(a−1)q+2
q

)
q′

α

∥∥∥Kα
w

∥∥∥
(

(a+1)q−2
−q

)
q′

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( q−2
q

)q′
dλ(w)

=
∫
Dρ(z,r)c

∥∥∥Kα
z

∥∥∥ (a−1)q+2
q−1

α

∥∥∥Kα
w

∥∥∥ (a+1)q−2
1−q

α∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( q−2
q−1 )

dλ(w)

=
∫
Dρ(z,r)c

(1− |z|2)(n+1+α
2 ) (1−a)q−2

q−1 (1− |w|2)(n+1+α
2 ) (a+1)q−2

q−1∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( q−2
q−1 )

(1− |w|2)n+1
dV (w)

=
∫
Dρ(z,r)c

(1− |z|2)(n+1+α
2 ) (1−a)q−2

q−1 (1− |w|2)(n+1+α
2 ) (a+1)q−2

q−1 −(n+1)∣∣∣1− 〈z, w〉∣∣∣(n+1+α)( q−2
q−1 )

dV (w).

Setting

c =
(
n+ 1 + α

2

)(1− a)q − 2
q − 1 and t =

(
n+ 1 + α

2

)(a+ 1)q − 2
q − 1 − (n+ 1),
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and using the assumption that 2+ n

1 + α
< q <∞, and a = n

2(1 + α) + n
, it is easy to verify

that c > 0 and t > −1. We also have that

n+ 1 + t+ c =
(
n+ 1 + α

)(q − 2
q − 1

)
,

and hence, by the Forelli-Rudin estimates, there exists C > 0 such that

I2(z, q) ≤ C, ∀z ∈ Bn.

Therefore, we obtain that

I = sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w)

≤ I1(z, q)
1
q I2(z, q)

1
q′

= C1− 1
q c
− 1
q

α

∥∥∥χ
Dρ(0,r)c

Uα
z TU

α
z 1

∥∥∥
q,α
,

Taking supremum of both sides over Bn, letting r → 1−, and applying Lemma 2.2.4, we

conclude that

lim
r→1−

sup
z∈Bn

∫
Dρ(z,r)c

∣∣∣〈Tkαz , kαw〉α∣∣∣
∥∥∥Kα

z

∥∥∥a
α∥∥∥Kα

w

∥∥∥a
α

dλ(w) = 0,

for a = n

2(1 + α) + n
. Therefore, T is a, α-weakly localized. �
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2.3 Toeplitz Operators with BMO Symbols

We start this section with the definition of BMO spaces. For what follows and for more

details about BMO spaces see [30], [47], [48], and [50].

Definition 2.3.1. [30] For α > −1, r > 0, and f ∈ L1(Bn, dVα), we define the averaging

function f̂r on Bn by

f̂r(z) = 1
Vα(D(z, r))

∫
D(z,r)

f(w) dVα(w).

For 1 ≤ p <∞, we say that the function f ∈ L1(Bn, dVα) belongs to BMOp,r
α (Bn) if

sup
z∈Bn

[
1

Vα(D(z, r))

∫
D(z,r)

∣∣∣f(w)− f̂r(z)
∣∣∣pdVα(w)

]1/p

<∞.

By [50, Page 195] and [47, Page 386], BMOp,r
α (Bn) is independent of r. Thus, we may

write BMOp
α(Bn) instead of BMOp,r

α (Bn). Equivalently, f ∈ BMOp
α(Bn) if and only if

‖f‖pBMOpα
= sup

z∈Bn

∥∥∥f ◦ ϕz − f̃(z)
∥∥∥
p,α

<∞,

where ϕz is the automorphism of Bn, that interchanges the points 0 and z, and f̃ is the

Berezin transform of f [47, Theorem 5].

We notice that ‖.‖BMOpα is a semi-norm on BMOp
α. The BMOp

α(Bn) spaces equipped with
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the norm

|‖f‖|p,α = |f̃(0)|+ ‖f‖BMOpα ,

are Banach spaces and we have that

L∞(Bn, dVα) ⊆ BMOp
α(Bn) ⊆ Lp(Bn, dVα), 1 ≤ p <∞,

and

BMOp
α(Bn) ⊆ BMOq

α(Bn) ⊆ BMO1
α(Bn), 1 ≤ q < p.

The space BMO1
α(Bn) also contains the non-negative functions in L1(Bn, dVα). For more

details on the BMO spaces see [30], [47], and [48].

In [52], Zorboska showed that bounded and compact Toeplitz operators with BMO1

symbols on the Bergman space of the open unit disk can be characterized by their Berezin

transform. This was generalized later by Zhang, Liu, and Lu to the weighted Bergman spaces

of the open unit ball in [44].

Theorem 2.3.2. [44] Let f ∈ BMO1
α(Bn). Then

(1) Tf is bounded on L2
a(Bn, dVα) if and only if f̃ is bounded on Bn.

(2) Tf is compact if and only if f̃(z) −→ 0, as |z| −→ 1−.

Hence, the BMOp
α(Bn) spaces provide a class of possibly unbounded symbols that might

induce bounded Toeplitz operators on the classical Bergman spaces.
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Definition 2.3.3. [50] The Bloch space of Bn is denoted by B and is defined to be the set

of all holomorphic functions in Bn such that

‖f‖ = sup
z∈Bn

(1− |z|2)|∇f(z)| <∞,

where

∇f(z) =
(
∂f

∂z1
(z), ∂f

∂z2
(z), ..., ∂f

∂zn
(z)
)
,

and |∇f(z)| is called the holomorphic gradient of f at z.

It is clear that ‖.‖ does not distinguish constants. In fact, ‖f‖ = 0 if and only if f is a

constant. The Bloch space B endowed with the norm

‖f‖B = |f(0)|+ sup
z∈Bn

(1− |z|2)|∇f(z)|,

is a Banach space.

The semi-norm of the Bloch space is invariant under the action of the automorphism

group of Bn, and the Bloch space is the largest space of holomorphic functions with this

property. Furthermore, by [30, Corollary 3.7], the set of holomorphic functions in BMOp
α(Bn)

is precisely the Bloch space B, that is,

BMOp
α(Bn) ∩H(Bn) = B, 1 ≤ p <∞.



2. Localization on the Weighted Bergman Spaces of the Unit Ball 62

The Bloch space is also nicely connected to the Bergman metric. The set of all holomorphic

functions that are Lipschitz from Bn, with the hyperbolic metric, to C, with the Euclidean

metric, is exactly the Bloch space. We have the following theorem based on the proof

of [50, Theorem 2.16].

Theorem 2.3.4. [50] For 1 ≤ p < ∞ and α > −1, the Bloch space is continuously

embedded in Lp(Bn, dVα).

In [19], Li and Luecking showed that the Bergman projection P maps BMOp(Bn)

continuously onto the Bloch space B and this was generalized to the weighted case in [44].

Lemma 2.3.5. [44] For 1 ≤ p <∞ and α > −1, the Bergman Projection Pα is a bounded

operator from BMOp
α(Bn) onto the Bloch space B.

More details on the Bloch spaces can be found in [50], [9], and [46].

2.3.1 Localization of Bounded Toeplitz Operators with BMO

Symbols

The content of this section was done in [37] by Prof. N. Zorboska and myself for the non-

weighted Bergman space on the unit ball. The ideas and methods of the proofs here follow

closely the ideas from [37].
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Theorem 2.3.6. Let f ∈ BMO1
α(Bn) with f̃ ∈ L∞(Bn). Then the Toeplitz operator Tf is

α-strongly localized and so also a, α-weakly localized on the Bergman space L2
a(Bn, dVα) for

a = n
2(1 + α) + n

.

Proof. For any f ∈ BMO1
α(Bn) with f̃ ∈ L∞(Bn) we have that f ◦ ϕz ∈ BMO1

α(Bn), for

all z ∈ Bn, and that Uα
z TfU

α
z 1 = Tf◦ϕz1 [44, Page 2138]. By Lemma 2.3.5, the Bergman

projection Pα is a bounded operator fromBMO1(Bn) onto the Bloch space B and by Theorem

2.3.4, the Bloch space is continuously included in Lp(Bn, dVα), for any 1 ≤ p <∞. Thus, we

have that

∥∥∥Uα
z TfU

α
z 1

∥∥∥
p,α

=
∥∥∥Tf◦ϕz1∥∥∥p,α

=
∥∥∥Pα(f ◦ ϕz)

∥∥∥
p,α

.
∥∥∥Pα(f ◦ ϕz)

∥∥∥
B

.
∥∥∥f ◦ ϕz∥∥∥

BMO1
α

. ||f ||BMO1
α

+ ‖f̃‖∞,

for any 1 ≤ p <∞, by [44, Page 2138]. Thus, we get that

sup
z∈Bn

∥∥∥Uα
z TfU

α
z 1

∥∥∥
p
. ||f ||BMO1

α
+ ||f̃ ||∞ <∞, ∀ 1 ≤ p <∞.
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To show that the second condition also holds, we notice that Uα
z T
∗
fU

α
z 1 = Tf̄◦ϕz1, and that

f̄ ∈ BMO1
α(Bn), with ˜̄f = ¯̃f ∈ L∞(Bn). So, we get that

sup
z∈Bn

∥∥∥U∗zT ∗fUz1∥∥∥p <∞, ∀ 1 ≤ p <∞.

Hence, Tf is α-strongly localized. But since then Tf is also α-sufficiently localized, by

Theorem 2.2.5, it follows that Tf is a, α-weakly localized for a = n
2(1 + α) + n

. �

Recall that the Toeplitz algebra Tα is the (operator norm) closed subalgebra of

B
(
L2
a(Bn, dVα)

)
generated by

{
Tf : f ∈ L∞, (Bn, dVα)

}
. In [42], Xia has proved that the

C∗-algebra generated by the set of weakly localized operators on L2
a(Bn, dV ) is the

Bergman Toeplitz algebra T0.

Theorem 2.3.7. [42] For any n−1
n+1 < a < 1, the C∗-algebra generated by a, 0-weakly

localized operators on L2
a(Bn, dV ) is the Toeplitz algebra T0.

Remark 2.3.8. In the remark on [42, Page 810], it is mentioned that with some trivial

modifications the theorem also holds for the weighted Bergman spaces of the unit ball. Thus,

for any n−1−α
n+1+α < a < 1, the C∗-algebra generated by the set of a, α-weakly localized operators

on L2
a(Bn, dVα) is the Toeplitz algebra Tα. Hence, by [25, Theorem 1.1], if a linear operator

T is a, α-weakly localized on L2
a(Bn, dVα), α > −1, such that T̃ (z) −→ 0 as |z| −→ 1−, then

T is compact on L2
a(Bn, dVα).
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Chapter 3

Localization on Bergman Spaces with

Exponential-Type Weights

The notion of weak localization of operators on a class of weighted Bergman spaces with

special radial decreasing weights was defined in [4], where it was also shown that any weakly

localized operator on such weighted Bergman spaces is bounded. The thesis also contains

a comment stating that the Toeplitz operators with bounded symbols on such weighted

Bergman spaces are weakly localized. However, that work has not been published and was

not available to us. Moreover, this does not impact our results since we deal with a different

class of weights, and with Toeplitz operators in a larger class with possibly unbounded

symbols.

In this chapter, we consider the definition of weak localization from [4], for the Bergman
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spaces L2
a(ω) with ω in E , and prove that any Toeplitz operator induced by a complex Borel

measure with Carleson total variation is weakly localized on L2
a(ω). This gives a large class

of weakly localized operators on L2
a(ω) with ω in E . We prove the theorem in a few steps.

Note that, as mentioned in chapter 1, the class E does not contain the standard weights

ωα(z) = (1 − |z|2)α, α > 0, and so our main results from chapter 2 and chapter 3 are

independent.

3.1 Geometry of the Sets Dm(z)

In this section we will define a special kind of sets, related to the class of weights E , depending

on the function τ , that was defined and discussed in section 1.4.

Let z, ζ ∈ D, and let τ be a positive function such that the corresponding weight ω is in

the class E . We denote

dτ (z, ζ) := |z − ζ|
min(τ(z), τ(ζ)) .

We always let δ ∈ (0,Mτ ) be fixed, where

Mτ = min(1, c−1
1 , c−1

2 )
16 ,

and c1 and c2 are given in Definition 1.4.1. For m ≥ 1, and for z ∈ D, we define

Dm(z) =
{
ζ ∈ D : dτ (z, ζ) < 2mδ

}
.
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We notice that dτ is not a metric on the open unit disk and therefore it is less convenient

to work with the sets Dm(z) rather than the Euclidean disks. Nevertheless, they are needed

in order to properly describe the weak localization for the specific subclass of large weighted

Bergman spaces. We present two lemmas regarding the geometry of the sets Dm(z) which

will be used for the proof of the main result of this chapter.

Lemma 3.1.1. Let z ∈ D and m ≥ 1. For τ ∈ L and δ ∈ (0,Mτ ), let {zj}∞j=1 ⊆ D be a

(δ, τ)-lattice on D. Then

⋃
j∈Jm,z

D(3δτ(zj)) ⊆ Dm−4(z)c, ∀m ≥ 7,

where

Jm,z =
{
j : D(δτ(zj)) ∩Dm(z)c 6= ∅

}
.

Proof. By the definition of the family Jm,z, and by property (1) of a (δ, τ)-lattice, we have

that

Dm(z)c ⊆
⋃

j∈Jm,z
D(δτ(zj)). (3.1)

Pick ζ ∈
⋃

j∈Jm,z
D(3δτ(zj)). Then ζ ∈ D(3δτ(zj)), for some j ∈ Jm,z. By the Lipschitz

condition (B), and since δc2 < 1/16, we get that

|τ(ζ)− τ(zj)| ≤ c2|ζ − zj| ≤ c2(3δτ(zj)) ≤
3
16τ(zj).
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Hence, τ(ζ) ≤ 2τ(zj) and similarly τ(zj) ≤ 2τ(ζ). We need to prove that ζ ∈ Dm−4(z)c. We

will show that ζ ∈ Dm−4(z) leads to a contradiction. If ζ ∈ Dm−4(z), then we have that

|z − ζ|
min(τ(z), τ(ζ)) < 2m−4δ.

Let yj ∈ D(δτ(zj)) ∩Dm(z)c 6= ∅, then

|z − yj| ≤ |z − ζ|+ |ζ − zj|+ |zj − yj|

< 2m−4δ min(τ(z), τ(ζ)) + 3δτ(zj) + δτ(zj)

= 2m−4δ min(τ(z), τ(ζ)) + 4δτ(zj).

There are two cases: either min(τ(z), τ(ζ)) = τ(z) or min(τ(z), τ(ζ)) = τ(ζ).

We show that in each case we reach a contradiction.

Case 1. If min(τ(z), τ(ζ)) = τ(z), then

|z − yj| < 2m−4δ min(τ(z), τ(ζ)) + 4δτ(zj)

= 2m−4δτ(z) + 4δτ(zj)

≤ 2m−4δτ(z) + 8δτ(yj)

≤ 2m−4δτ(z) + 8δ [c2 |z − yj|+ τ(z)]

< 2m−4δτ(z) + 1
2 |z − yj|+ 8δτ(z),
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where the second inequality comes from the fact that yj ∈ D(δτ(zj)) plus an inequality

proved earlier, the third inequality from the Lipschitz condition (B), and the fourth one

from δc2 <
1
16.

Thus, we obtain that

1
2 |z − yj| < 2m−4δτ(z) + 8δτ(z) ≤ 2m−4δτ(z) + 2m−4δτ(z) = 2m−3δτ(z),

as m ≥ 7, and so

|z − yj| < 2m−2δτ(z).

On the other hand, since τ(z) ≤ τ(ζ) ≤ 2τ(zj), and yj ∈ D(δτ(zj)), we get that

|z − yj| < 2m−2δτ(z) ≤ 2m−1δτ(zj) < 2mδτ(yj).

Hence,

|z − yj| < 2mδ min(τ(z), τ(yj)),

and this means that yj ∈ Dm(z) which violates yj ∈ Dm(z)c.

Case 2. If min(τ(z), τ(ζ)) = τ(ζ), then
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|z − yj| < 2m−4δ min(τ(z), τ(ζ)) + 4δτ(zj)

= 2m−4δ τ(ζ) + 4δτ(zj)

< 2mδτ(yj).

On the other hand, we have that

|z − yj| < 2m−4δ min(τ(z), τ(ζ)) + 4δτ(zj)

= 2m−4δ τ(ζ) + 4δτ(zj)

≤ 2m−4δτ(ζ) + 8δτ(ζ)

< 2mδτ(z).

So, we again get that

|z − yj| < 2mδ min(τ(z), τ(yj)),

and this gives that yj ∈ Dm(z) which negates yj ∈ Dm(z)c again.

We conclude that ζ ∈ Dm−4(z)c, and therefore, we have shown that for m ≥ 7,

⋃
j∈Jm,z

D(3δτ(zj)) ⊆ Dm−4(z)c. �
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We notice that by the condition (A), the positive function τ vanishes on the boundary of

the unit disk, and so by the definition of the set Dm(z), the points which are close enough

to the boundary are not in Dm(z). Since the area of D(δτ(zj)) vanishes as zj approaches

the boundary, there are infinitely many elements of the lattice {zj}∞j=1 near the boundary,

and therefore we conclude that the set Jm,z is infinite.

Lemma 3.1.2. Let δ ∈ (0,Mτ ), z ∈ D and m ≥ 4. Then, Dm
4

(ξ) ⊆ Dm(z), for any

ξ ∈ Dm
4

(z).

Proof. Fix ξ ∈ Dm
4

(z) and let ζ ∈ Dm
4

(ξ) be arbitrary. Thus, we have that

|z − ξ|
min(τ(z), τ(ξ)) < 2m

4 δ and |ξ − ζ|
min(τ(ξ), τ(ζ)) < 2m

4 δ. (3.2)

Combining the first one with the Lipschitz condition (B), we get that

τ(ξ) < (1 + 2m
4 δc2) τ(z) and τ(z) < (1 + 2m

4 δc2) τ(ξ). (3.3)

Similarly, the second inequality in (3.2) and the Lipschitz condition (B) gives that

τ(ζ) < (1 + 2m
4 δc2) τ(ξ) and τ(ξ) < (1 + 2m

4 δc2) τ(ζ). (3.4)
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We need to show that ζ ∈ Dm(z). By (3.2), we have that

|z − ζ| ≤ |z − ξ|+ |ξ − ζ| < 2m
4 δ min(τ(z), τ(ξ)) + 2m

4 δ min(τ(ξ), τ(ζ))

There are four cases and we show that ζ ∈ Dm(z) in any case.

Case 1. If min(τ(z), τ(ξ)) = τ(ξ) and min(τ(ξ), τ(ζ)) = τ(ξ), then

|z − ζ| < 2m
4 δ τ(ξ) + 2m

4 δ τ(ξ) < 2mδ τ(ξ) ≤ 2mδ min(τ(z), τ(ζ)),

and hence, ζ ∈ Dm(z).

Case 2. If min(τ(z), τ(ξ)) = τ(z) and min(τ(ξ), τ(ζ)) = τ(ξ), then by using (3.3),

we get that

|z − ζ| < 2m
4 δ τ(z) + 2m

4 δ τ(ξ)

< 2m
4 δ τ(z) + 2m

4 δ (1 + 2m
4 δc2) τ(z)

< 2mδ τ(z)

= 2m δ min(τ(z), τ(ζ)),

since δc2 <
1
16 , which gives us ζ ∈ Dm(z).
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Case 3. If min(τ(z), τ(ξ)) = τ(ξ) and min(τ(ξ), τ(ζ)) = τ(ζ), then by (3.4),

|z − ζ| < 2m
4 δ τ(ξ) + 2m

4 δ τ(ζ)

< 2m
4 δ (1 + 2m

4 δc2) τ(ζ) + 2m
4 δ τ(ζ)

< 2mδ τ(ζ)

= 2m δ min(τ(z), τ(ζ)),

since δc2 <
1
16 , which implies that ζ ∈ Dm(z).

Case 4. If min(τ(z), τ(ξ)) = τ(z) and min(τ(ξ), τ(ζ)) = τ(ζ), then by (3.3),

|z − ζ| < 2m
4 δ τ(z) + 2m

4 δ τ(ζ)

≤ 2m
4 δ τ(z) + 2m

4 δ τ(ξ)

< 2m
4 δ τ(z) + 2m

4 δ (1 + 2m
4 δc2) τ(z)

< 2mδ τ(z),

and similarly, by (3.4), |z − ζ| < 2mδ τ(ζ). Putting these two together, we obtain that

|z − ζ| < 2m δ min(τ(z), τ(ζ)),

or ζ ∈ Dm(z) which is the desired conclusion. So, we have shown that
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Dm
4

(ξ) ⊆ Dm(z), ∀ ξ ∈ Dm
4

(z). �

3.2 Weak Localization on L2
a(ω) with ω ∈ E

The definition of weak localization of operators on a class of weighted Bergman spaces with

specific radial decreasing weights was given in [4]. We will use the same definition also for

the Bergman spaces L2
a(ω) with the weight in the class E .

Definition 3.2.1. For ω ∈ E, a linear operator T on L2
a(ω) is said to be weakly localized if

the following conditions hold:

(i) sup
z∈D

∫
D

∣∣∣〈Tkωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 <∞, and

sup
z∈D

∫
D

∣∣∣〈T ∗kωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 <∞.

(ii) lim
m→∞

sup
z∈D

∫
Dm(z)c

∣∣∣〈Tkωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 = 0, and

lim
m→∞

sup
z∈D

∫
Dm(z)c

∣∣∣〈T ∗kωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 = 0,

where

Dm(z) =
{
ζ ∈ D : dτ (z, ζ) = |z − ζ|

min(τ(z), τ(ζ)) < 2mδ
}
.

We create the tools we need for the proof of our main result in this chapter, namely
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of Theorem 3.3.1, in three lemmas. First, we recall that the Forelli-Rudin estimates were

essential tools for estimating integrals in chapter 2. The following lemma will play the role

of Forelli-Rudin estimates for the space L2
a(ω).

Lemma 3.2.2. Let ω ∈ E. Then

sup
z∈D

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 <∞.

Proof. We split the integral into two integrals, one over the disk D(δτ(z)), and the other

over its complement. We show that each of these integrals is bounded above by a constant

independent of z.

I(z) =
∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 = I1(z) + I2(z),

where

I1(z) =
∫
D(δτ(z))

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 ,

and

I2(z) =
∫
D(δτ(z))c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 .
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By Lemma 1.4.17 with M = 1, we have that

I1(z) =
∫
D(δτ(z))

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2

.
∫
D(δτ(z))

min(τ(z), τ(ζ))
|z − ζ|

dA(ζ)
τ(ζ)2

≤
∫
D(δτ(z))

1
|z − ζ|

dA(ζ)
τ(ζ)

≈
∫
D(δτ(z))

1
|z − ζ|

dA(ζ)
τ(z)

= τ(z)−1
∫
|ζ|<δτ(z)

1
|ζ|

dA(ζ).

Integrating in polar coordinates, we get that

I1(z) . τ(z)−1
∫
|ζ|<δτ(z)

1
|ζ|

dA(ζ)

= τ(z)−1
∫ 2π

0

∫ δτ(z)

0
r−1 r dr dθ

π

= τ(z)−1 (2δτ(z))

= 2δ <∞.

To estimate the second integral, we use Lemma 1.4.17 with M = 3.
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I2(z) =
∫
D(δτ(z))c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2

.
∫
D(δτ(z))c

(
min(τ(z), τ(ζ))
|z − ζ|

)3
dA(ζ)
τ(ζ)2

≤ τ(z)
∫
D(δτ(z))c

1
|z − ζ|3

dA(ζ)

≤ τ(z)
∑
i

∫
Gi

1
|z − ζ|3

dA(ζ),

where

Gi =
{
ζ ∈ D : 2i−1 δ τ(z) ≤ |z − ζ| < 2i δ τ(z)

}
,

for i = 1, 2, ... Hence, we obtain that

I2(z) . τ(z)
∑
i

∫
Gi

1
|z − ζ|3

dA(ζ)

≤ τ(z)
∑
i

∫
Gi

1
(2i−1δτ(z))3 dA(ζ)

= τ(z)−2

δ3

∑
i

1
23i−3 A(Gi)

= τ(z)−2

δ3

∑
i

1
23i−3

[(
2iδτ(z)

)2
−
(
2i−1δτ(z)

)2
]
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= τ(z)−2

δ3

∑
i

1
23i−3 δ

2 τ(z)2
[
22i − 22i−2

]

= 3
δ

∑
i

1
2i−1 <∞.

Therefore, we conclude that

sup
z∈D

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 <∞. �

Next, we create the corresponding versions of Lemma 2.1.2 and Lemma 2.1.3 from chapter

2, which will be used in the proof of the main theorem of this chapter. We recall that

δ ∈ (0,Mτ ) is always fixed and

Dm(z) =
{
ζ ∈ D : dτ (z, ζ) = |z − ζ|

min(τ(z), τ(ζ)) < 2mδ
}

for m ≥ 1, and for z ∈ D, where

Mτ = min(1, c−1
1 , c−1

2 )
16 .

Lemma 3.2.3. Let ω ∈ E. Then

lim
m→∞

sup
z∈D

∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2 = 0.
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Proof. By the definition of the set Dm(z)c, we see that

I(z,m) =
∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2

≤ I1(z,m) + I2(z,m),

where

I1(z,m) =
∫
|z−ζ|≥2mδτ(z)

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2 ,

and

I2(z,m) =
∫
|z−ζ|≥2mδτ(ζ)

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2 .

We show that each of these integrals is bounded above by a constant independent of z, that

tends to zero as m→∞.

Applying Lemma 1.4.17 with M = 3 , we get that

I1(z,m) =
∫
|z−ζ|≥2mδτ(z)

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2

.
∫
|z−ζ|≥2mδτ(z)

(
min(τ(z), τ(ζ))
|z − ζ|

)3
dA(ζ)
τ(ζ)2

≤ τ(z)
∫
|z−ζ|≥2mδτ(z)

1
|z − ζ|3

dA(ζ)

≤ τ(z)
∑
j

∫
Rm,j

1
|z − ζ|3

dA(ζ),
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where Rm,j =
{
ζ ∈ D : 2m+jδ τ(z) ≤ |z − ζ| ≤ 2m+j+1δ τ(z)

}
. So, we have that

I1(z,m) . τ(z)
∑
j

∫
Rm,j

1
|z − ζ|3

dA(ζ)

≤ τ(z)
∑
j

∫
Rm,j

1
(2m+jδτ(z))3 dA(ζ)

= τ(z)−2

δ3

∑
j

1
23(m+j) A(Rm,j)

= τ(z)−2

δ3

∑
j

1
23(m+j)

[(
2m+j+1δτ(z)

)2
−
(
2m+jδτ(z)

)2
]

= τ(z)−2

δ3

∑
j

1
23(m+j) δ

2 τ(z)2
[
22(m+j+1) − 22(m+j)

]

= 3
2mδ

∑
j

1
2j

.
1

2m −→ 0 as m −→∞ .

To estimate the second integral, we apply Lemma 1.4.17 with M = 4.

I2(z,m) =
∫
|z−ζ|≥2mδτ(ζ)

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2

.
∫
|z−ζ|≥2mδτ(ζ)

(
min(τ(z), τ(ζ))
|z − ζ|

)4
dA(ζ)
τ(ζ)2

≤ τ(z)
2mδ

∫
|z−ζ|≥2mδτ(ζ)

1
|z − ζ|3

dA(ζ) .
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By the Lipschitz condition (B), if |z − ζ| ≥ 2mδ τ(ζ), then

|z − ζ| ≥ 2mδ τ(ζ) ≥ 2mδ
[
τ(z)− c2|z − ζ|

]
= 2mδ τ(z)− 2mδc2|z − ζ|,

which implies that,

(1 + 2mδ c2)|z − ζ| ≥ 2mδ τ(z),

and using the fact that δc2 <
1
16 , we obtain that

|z − ζ| > 2mδ τ(z)
1 + 2m−4 ≥

2mδ τ(z)
2m−3 = 8δ τ(z),

for all m ≥ 4. On the other hand, as shown in the proof of Lemma 3.2.2, we have that

τ(z)
∫
|z−ζ|≥δτ(ζ)

1
|z − ζ|3

dA(ζ) . 1,

and so, we get that

I2(z,m) . τ(z)
2mδ

∫
|z−ζ|≥2mδτ(ζ)

1
|z − ζ|3

dA(ζ)

≤ τ(z)
2mδ

∫
|z−ζ|>8δτ(z)

1
|z − ζ|3

dA(z)

.
1

2m −→ 0 as m −→∞ .
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Therefore, we have proven that

lim
m→∞

sup
z∈D

∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 = 0,

which is the desired conclusion. �

Note that by Lemma 3.2.2 and Lemma 3.2.3, it follows that the identity operator is

weakly localized on the Bergman space L2
a(ω) with ω ∈ E .

Lemma 3.2.4. Let µ be a Carleson measure for the weighted Bergman space L2
a(ω) with

ω ∈ E. Then there exists a constant C such that

(a)
∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dµ(ζ)
τ(ζ)2 ≤ C

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2 , ∀ z ∈ D.

(b)
∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dµ(ζ)
τ(ζ)2 ≤ C

∫
Dm−4(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣ dA(ζ)
τ(ζ)2 , ∀m ≥ 7, ∀ z ∈ D.

Proof. Fix δ ∈ (0,Mτ ). By Theorem 1.4.9, there exists a sequence {zi} such that

D =
⋃
i

D(δτ(zi)); (3.5)

and any point of D belongs to at most N disks of the covering {D(3δτ(zi))}i. By Lemma

1.4.12, there exists a constant C ≥ 1 such that

|kωz (ζ)|ω(ζ) 1
2 ≤ C

δ2τ(ζ)2

∫
D(δτ(ζ))

|kωz (ξ)|ω(ξ) 1
2 dA(ξ),
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for any z ∈ D, and for any ζ ∈ D(δτ(zi)). We also have that

D(δτ(ζ)) ⊆ D(3δτ(zi)), ∀ ζ ∈ D(δτ(zi)). (3.6)

Hence, by (1.9) and (3.6), we get that

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) .
1

τ(ζ)2

∫
D(δτ(ζ))

|kωz (ξ)|ω(ξ) 1
2
dA(ξ)
τ(ζ)

.
1

τ(ζ)2

∫
D(δτ(ζ))

|kωz (ξ)|ω(ξ) 1
2
dA(ξ)
τ(ξ)

≤ 1
τ(ζ)2

∫
D(3δτ(zi))

|kωz (ξ)|ω(ξ) 1
2
dA(ξ)
τ(ξ)

.
1

τ(zi)2

∫
D(3δτ(zi))

|kωz (ξ)|ω(ξ) 1
2
dA(ξ)
τ(ξ) ,

for any ζ ∈ D(δτ(zi)). Thus,

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) .
1

τ(zi)2

∫
D(3δτ(zi))

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ) , (3.7)

for any ζ ∈ D(δτ(zi)). For i ∈ N, and z ∈ D, we define

Si(z) = sup
ζ∈D(δτ(zi))

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) ,
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which is finite by (3.7) and Lemma 3.2.2. By (3.7), we get that

Si(z) τ(zi)2 .
∫
D(3δτ(zi))

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ) , (3.8)

for any i ∈ N, and any z ∈ D.

(a) By Lemma 1.4.15, and (3.5) we obtain that

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dµ(ζ)
τ(ζ)2 .

∫
D
|kωz (ζ)| ω(ζ) 1

2

τ(ζ) dµ(ζ)

.
∫⋃n

i=1 D(δτ(zi))
|kωz (ζ)| ω(ζ) 1

2

τ(ζ) dA(ζ)

≤
∞∑
i=1

∫
D(δτ(zi))

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) dµ(ζ)

≤
∞∑
i=1

Si(z)µ
(
D(δτ(zi))

)

=
∞∑
i=1

Si(z)
µ
(
D(δτ(zi))

)
τ(zi)2 τ(zi)2,

but since µ is a Carleson measure for L2
a(ω), by Theorem 1.4.20 and (3.8), and since

{D(3δτ(zi))}i is a covering of the disk with bounded multiplicity,

.
∞∑
i=1

Si(z) τ(zi)2
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.
∞∑
i=1

∫
D(3δτ(zi))

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ)

.
∫⋃∞

i=1 D(3δτ(zi))
|kωz (ξ)| ω(ξ) 1

2

τ(ξ) dA(ξ)

=
∫
D
|kωz (ξ)| ω(ξ) 1

2

τ(ξ) dA(ξ)

.
∫
D

∣∣∣〈kωz , kωξ 〉ω ∣∣∣ dA(ξ)
τ(ξ)2 ,

where the last inequality comes from Lemma 1.4.15. Therefore, we have shown that

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dµ(ζ)
τ(ζ)2 ≤ C

∫
D

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 , ∀ z ∈ D.

(b) For m ≥ 7 and z ∈ D, we define the family

Jm,z =
{
j : D(δτ(zj)) ∩Dm(z)c 6= ∅

}
.

So, by the definition and property (1) of a (δ, τ)-lattice, we have that

Dm(z)c ⊆
⋃

j∈Jm,z
D(δτ(zj)),
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and therefore, by Lemma 3.1.1, we get that

⋃
j∈Jm,z

D(3δτ(zj)) ⊆ Dm−4(z)c, ∀m ≥ 7. (3.9)

Now, we are ready to prove that (b) holds. By Lemma 1.4.15, (3.1), and (3.9) we obtain that

∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dµ(ζ)
τ(ζ)2 .

∫
Dm(z)c

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) dµ(ζ)

.
∫⋃

j∈Jm,z
D(δτ(zj))

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) dA(ζ)

≤
∑

j∈Jm,z

∫
D(δτ(zj))

|kωz (ζ)| ω(ζ) 1
2

τ(ζ) dµ(ζ)

≤
∑

j∈Jm,z
Sj(z)µ

(
D(δτ(zj))

)

=
∑

j∈Jm,z
Sj(z)

µ
(
D(δτ(zj))

)
τ(zj)2 τ(zj)2,

but since µ is a Carleson measure for L2
a(ω), by Theorem 1.4.20 and (3.8), and since

{D(3δτ(zj))}j is a covering of the disk with bounded multiplicity,

.
∑

j∈Jm,z
Sj(z) τ(zj)2
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.
∑

j∈Jm,z

∫
D(3δτ(zj))

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ)

.
∫⋃

j∈Jm,z
D(3δτ(zj))

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ)

≤
∫
Dm−4(z)c

|kωz (ξ)| ω(ξ) 1
2

τ(ξ) dA(ξ)

.
∫
Dm−4(z)c

∣∣∣〈kωz , kωξ 〉ω ∣∣∣ dA(ξ)
τ(ξ)2 .

We notice that the last two inequalities come from (3.9) and Lemma 1.4.15, respectively.

Therefore, we have shown that

∫
Dm(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dµ(ζ)
τ(ζ)2 ≤ C

∫
Dm−4(z)c

∣∣∣〈kωz , kωζ 〉ω ∣∣∣dA(ζ)
τ(ζ)2 , ∀m ≥ 7, ∀ z ∈ D,

and the proof is complete. �

3.3 Weak Localization and Toeplitz operators induced

by Complex Measures on L2
a(ω) with ω ∈ E

The following theorem is the corresponding version of Theorem 2.1.4 for Bergman spaces

L2
a(ω) with ω ∈ E . It is the main result of this chapter. The general idea is similar, however,

some technical difficulties will come up when we deal with the set Dm(z)c, as dτ is not a
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metric and so Dm(z)c is not a disk.

Theorem 3.3.1. Let ω ∈ E and ν be a complex Borel measure on D such that |ν| is a

Carleson measure for L2
a(ω). Then the Toeplitz operator T ων is weakly localized on L2

a(ω).

Proof. By Lemma 1.5.7, we have that

∣∣∣〈T ων kωz , kωζ 〉ω∣∣∣ =
∣∣∣∣ ∫

D
kωz (ξ) kωζ (ξ)ω(ξ) dν(ξ)

∣∣∣∣ ≤ ∫
D

∣∣∣kωz (ξ)
∣∣∣∣∣∣kωζ (ξ)

∣∣∣ω(ξ) d|ν|(ξ).

Therefore, by Fubini’s theorem and Lemma 1.4.15, we get that

∫
D

∣∣∣〈T ων kωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 ≤

∫
D

∫
D

∣∣∣kωz (ξ)
∣∣∣∣∣∣kωζ (ξ)

∣∣∣ω(ξ) d|ν|(ξ) dA(ζ)
τ(ζ)2

=
∫
D

∫
D

∣∣∣kωz (ξ)
∣∣∣∣∣∣kωζ (ξ)

∣∣∣ω(ξ) dA(ζ)
τ(ζ)2 d|ν|(ξ)

=
∫
D

∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ ∥∥∥Kω
ξ

∥∥∥2

ω
ω(ξ) dA(ζ)

τ(ζ)2 d|ν|(ξ)

≈
∫
D

∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

=
∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ ∫
D

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

≤
(

sup
ξ∈D

∫
D

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)( ∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ d|ν|(ξ)τ(ξ)2

)
.
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By Lemma 3.2.2 and part (a) of Lemma 3.2.4, we conclude that

sup
z∈D

∫
D

∣∣∣〈T ων kωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 ≤

(
sup
ξ∈D

∫
D

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)(
sup
z∈D

∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ d|ν|(ξ)τ(ξ)2

)

.
(

sup
ξ∈D

∫
D

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)(
sup
z∈D

∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ dA(ξ)
τ(ξ)2

)

<∞.

Therefore, as the adjoint of T ων is T ων , and |ν| = |ν|, we have established that the condition

(i) from the definition of weak localization is satisfied.

Next, we use Lemma 3.1.2 to prove that the condition (ii) in the Definition 3.2.1 also

holds. By Fubini’s theorem and Lemma 1.4.15, we obtain that

∫
Dm(z)c

∣∣∣〈T ων kωz , kωζ 〉ω∣∣∣ dA(ζ)
τ(ζ)2 ≤

∫
Dm(z)c

∫
D

∣∣∣kωz (ξ)
∣∣∣∣∣∣kωζ (ξ)

∣∣∣ω(ξ) d|ν|(ξ) dA(ζ)
τ(ζ)2

=
∫
D

∫
Dm(z)c

∣∣∣kωz (ξ)
∣∣∣∣∣∣kωζ (ξ)

∣∣∣ω(ξ) dA(ζ)
τ(ζ)2 d|ν|(ξ)

=
∫
D

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ ∥∥∥Kω
ξ

∥∥∥2

ω
ω(ξ) dA(ζ)

τ(ζ)2 d|ν|(ξ)

≈
∫
D

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

= I1(z,m) + I2(z,m),

where

I1(z,m) =
∫
Dm/4(z)

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2 ,
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and

I2(z,m) =
∫
Dm/4(z)c

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2 .

By Lemma 3.1.2, and part (a) of Lemma 3.2.4,

I1(z,m) =
∫
Dm/4(z)

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

≤
∫
Dm/4(z)

∫
Dm/4(ξ)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

≤
∫
D

∫
Dm/4(ξ)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

≤
(

sup
ξ∈D

∫
Dm/4(ξ)c

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)( ∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ d|ν|(ξ)τ(ξ)2

)

≤
(

sup
ξ∈D

∫
Dm/4(ξ)c

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)( ∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣ dA(ξ)
τ(ξ)2

)
.

So, by Lemma 3.2.2 and Lemma 3.2.3, we get that

sup
z∈D

I1(z,m) −→ 0 as m −→∞.

Applying Lemma 3.2.2 and part (b) of Lemma 3.2.4, we get that

I2(z,m) =
∫
Dm/4(z)c

∫
Dm(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2

≤
∫
Dm/4(z)c

∫
D

∣∣∣〈kωz , kωξ 〉ω∣∣∣∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

d|ν|(ξ)
τ(ξ)2
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≤
(

sup
ξ∈D

∫
D

∣∣∣〈kωζ , kωξ 〉ω∣∣∣ dA(ζ)
τ(ζ)2

)( ∫
Dm/4(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣ d|ν|(ξ)τ(ξ)2

)

.
∫
Dm/4(z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣ d|ν|(ξ)τ(ξ)2

.
∫
Dm′ (z)c

∣∣∣〈kωz , kωξ 〉ω∣∣∣ dA(ξ)
τ(ξ)2 ,

for large enough m, where m′ = m
4 − 4. Hence, by Lemma 3.2.3,

sup
z∈D

I2(z,m) −→ 0 as m −→∞.

Therefore, we have proven that the condition (ii) from the definition of weak localization

also holds and the proof is complete. �
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Chapter 4

Some Open Problems and Further

Research

In this chapter, we list some problems regarding localization of operators acting on the

classical Bergman space, or on the Bergman spaces with weights in E , that we have not been

able to solve.

4.1 Weak Localization and Compactness on L2
a(ω)

In [15], it was proven that any weakly localized operator with a vanishing Berezin transform

is compact on the Bergman space of the unit ball. One may ask whether the same statement

holds true for the weakly localized operators on the Bergman spaces L2
a(ω) with ω ∈ E .

This question was also posed in [4] for another class of weighted Bergman spaces. We have
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not had time to attempt this question yet, and this is probably a hard question that would

require a lot of time and effort.

4.2 Strong and Sufficient Localization on L2
a(ω)

Following the work done in [37], in chapter 2, strong and sufficient localization were defined

on the classical weighted Bergman spaces of the open unit ball. A natural question is how

we should define strong and sufficient localization on weighted Bergman spaces L2
a(ω), with

ω ∈ E . Due to the connection between compactness and localization, we believe that we first

need to have a deeper study of compactness of Toeplitz operators on such spaces in order

to explore the appropriate definitions of strong and sufficient localization. At this point, we

are not sure how hard it would be to build up such constructions.

4.3 Localization of BMO(τ)-Toeplitz Operators

Another interesting problem is whether the Toeplitz operators with BMO(τ) symbols, as

defined in [4], are weakly localized on L2
a(ω) with ω ∈ E .

For 1 ≤ p < ∞, and δ ∈ (0,Mτ ), the space BMOp
δ(τ) consists of integrable functions f

on D such that

‖f‖BMOp
δ
(τ) = sup

z∈D

(
1

δ2 τ(z)2

∫
D(δτ(z))

∣∣∣f(ζ)− f̂δ(z)
∣∣∣pdA(ζ)

)1/p

<∞,
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where

f̂δ(z) = 1
δ2 τ(z)2

∫
D(δτ(z))

f(ζ) dA(ζ).

One may attack this problem either directly through the definition of weak localization on

weighted Bergman spaces L2
a(ω), or by a similar approach as used in chapter 2, for the

classical weighted Bergman spaces.

Problem 1. Determine whether the Toeplitz operators with BMO(τ) symbols are weakly

localized on L2
a(ω) with ω ∈ E .

4.4 Localization of Composition and Weighted

Composition Operators

In chapter 2, we have shown that some classes of Toeplitz operators are weakly localized.

As a result, multiplication operators are also weakly localized on the classical weighted

Bergman spaces. A natural question arising is what we can say about other important

classes of operators, such as, for example, the class of weighted composition operators. We

give an example and a remark regarding localization of composition operators on the classical

Bergman space L2
a(D, dA).

We recall that for a non-constant holomorphic function ϕ mapping D into itself, the
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composition operator Cϕ is defined on L2
a(D, dA) by

Cϕf = f ◦ ϕ,

and for a bounded holomorphic function g : D −→ C and ϕ as above, the weighted

composition operator Wg,ϕ is defined by

Wg,ϕh = g(h ◦ ϕ),

for all h ∈ L2
a(D, dA).

Example 4.4.1. [26] A unitary composition operator defined on L2
a(D, dA) is weakly

localized if and only if it is the identity operator.

Suppose Cϕ is a unitary operator on L2
a(D, dA). If Cϕ is the identity operator, then

Cϕ = T1, and hence by Theorem 2.1.4 it is weakly localized.

Conversely, suppose that Cϕ 6= Id is weakly localized. Since Cϕ is unitary, ϕ is of the

form ϕ(z) = λz with |λ| = 1 (see [38]), and since it is not the identity operator, we have

that λ 6= 1. The Berezin transform of Cϕ is

C̃ϕ(z) = (1− |z|2)2

(1− λ|z|2)2 ,
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and since λ 6= 1, we get that

lim
|z|→1−

C̃ϕ(z) = lim
|z|→1−

(1− |z|2)2

(1− λ|z|2)2 = 0 .

If Cϕ is weakly localized, it is in the Toeplitz algebra by Xia’theorem, and since, its Berezin

transform vanishes on the boundary of the unit disk, it is compact on L2
a(D, dA), by [41,

Theorem 9.5]. This is a contradiction, since Cϕ is unitary.

Problem 2. Which weighted composition operators are weakly (strongly) localized on

L2
a(D, dA)?

We notice that if the composition operator Cϕ is weakly localized on L2
a(D, dA), then by

the fact that multiplication operators are weakly localized, and by [15, Proposition 2.3 ], we

conclude that the weighted composition operator Wg,ϕ is also weakly localized on L2
a(D, dA),

for any g ∈ H∞. The converse is also true if g does not vanish on D.

Problem 3. Which composition operators are weakly (strongly) localized on L2
a(D, dA)?
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