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ABSTRACT 

Images of individual kemels and bu&-grain samples for five grain types (Canada 

Westem Red Spnng (CWRS) wheat. Canada Western Amber Durum (CWAD) wbeat. 

barley, rye, and oats) from 20 different growing regions across western Canada were 

acquired. Images of individual CWRS wheat kernels were aiso acquired for six damage types 

(broken, mildewed, grass-greenlgreen-fiosted, black-point/smudged, heated, and bidfire- 

burnt). Morphological and color features were extracted to identify different grain types and 

damage types (for CWRS wheat only) using statistical and neural network classification 

methods with different selected feature rnodels (morphological, color, and combined). 

For the classification of different types of individual kernels, combining 

morphological and color features in the feature mode1 improved the classification accuracies 

over using morphological or color features alone. A non-parametric (k-nearest neighbor) 

statistical classifier with a feanire set of 15 morphological and 13 color features selected 

using SAS STEPDISC and DISCRIM procedures gave the best results. The average 

classification accuracies were 98.2,96.9,99.0,98.2, and 99.0% for CWRS wheat, CWAD 

wheat, barley, rye. and oats, respectively, when using three different training and testing data 

sets. Similar classification accuracies were achieved using a neural network classifier with 

the same features. 

For the classifkation of damaged CWRS wheat kemels, color features were more 

efficient than morphological features, while combining morphological features with color 

features improved the classification accuracies over using color features alone. A non- 

1 



pararnetric (k-nearest neighbor) statistical classifier with a selected feature set of 24 color and 

4 morphological features gave the classification accuracies of 92.5(healthy), 90.3(broken). 

98.6(mildewed), 99.0(grass-greedgnen-hsted), 99.1 (black-point/smudged), 9?.5(heated). 

and 100.0 (bifire-burnt)%, when using three different training and testing data sets. Similu 

classification results were obtained using a neural network classifier with the same features. 

For the classification of bullc-grain samples, a selected feature set of 8 color features 

was used with parametric and non-parametric statistical classifies, and a neural ne twork 

classifier. When tested on three different training and testing data sets, set 1, set2. and set3, 

a i i  the tested buik sample images were correctly classified by the non-parameuic classifier, 

while 5 out of 21 bulk images of CWAD wheat in set 2 were misclassified as CWRS wheat 

by the parametric classifier and 3 out of 21 images of CWAD wheat in set 1 were mis- 

classified as barley by the neural network classifier. 

For the classification of bulk CWRS wheat samp1es from three grades (grade 1. 3. 

and 3), a selected feature set of 20 color features was used with parametric and non- 

parametric statistical classifiers, and a neural network classifier. When tested on three 

different training and testing data sets. the neural network classifier gave the best results with 

8 1 .O, 67.7, and 82.5% average classification accuracies for bulk CWRS wheat samples of 

grade 1,2,  and 3, respectively. However, the classification accuracies varied significantly 

(23 3% for grade 1, 36.5% for grade 2, and 47.6% for grade 3) with different training and 

testing data sets, indicating that the color features extracteci b r n  bulic-wheat images did not 

carry suscient information for differentiating different wheat. grades. 
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INTRODUCTION 

Canada, as one of the major gain growing countries in the world, produced annually 

an average of 55 Mt (million tomes) of grains and oilseeds worth about $ 6  billion during 

the years from 1983 to 1992 (Canada Grains Council (CGC), 1994). These grains were 

collected, stored, and distributed for domestic consumption (30%) or exported (70%). In the 

current Canadian grain handling system, grain is delivered from famis by truck to prirnary 

elevators, transferred to terminal elevators by train for distribution and sale. At elevators, 

grain is bulked by type and shipped according to CGC set grades meeting customen' 

specifications. During transport fiom farm to customer, information on grain quality is 

needed at different handling stages to allow blending of the type and grade to maintain p i n  

quality and direct proper grain handling operations (receiving, cleaning, binning, and 

shipping). Currently, visual inspection is used to assess quality rapidly , with protein, oil, and 

moisture determined objectively by near infrared reflectance (NIR). The visuai process is by 

nature subjective and tedious. An objective, rapid and diable automatic grain inspection and 

grading system would be beneficial to the grain industry. 

In conjunction with imaging, image storage, and pattern recognition techniques. 

image analysis is capable of extracting various image features (shape, size, color, texture. and 

bnghtness) of objects, and performing task-relevant analysis and interpretation with 

precision, objectivity, and speed. It offers an attractive potential tool for the automation of 

the grain inspection and grading processes in the grain industry. 

Aithough substantial efforts have been made on applying image analysis for 

1 



automatic information acquisition of the content and quality of grain samples in the l i ü t  

decade (see Chapter II), rnany of the speciai needs and problems involved in the 

commercial application are still unsolved and commercial computer vision systems for grain 

inspection and grading are not yet available ( AgroVision AB (S-223 70 Lund, Sweden) has 

developed a computer vision system to classm wheat, barley, oats, rye, and triticale, but to 

the best of the author's knowledge, its performance is not reported in the literature). 

At the current stage of development, an image analysis system is more realistic for 

automated control of grain handling systems rather than for automated grain grading. For 

instance, an image analysis system could be installed in a terminal at point of receipt to 

identiQ the grain type during a rail car unloading for directing the machinery to transfer the 

grain into a bin of iike class and grade. The requirement for the image analysis system is to 

rapidly identiQ the major grain types with 100% accuracy. Most of the previous work 

dealing with identiwing different grains was based on the analysis of individual kemel 

features, which requires kemels to be presented to the camera in a scattered or non-touchicg 

manner or one kemel at a tirne. This kernel positioning process was mainly performed 

manually. Although some sample presentation devices have been developed (Keefe and 

Draper 1988; Casady and Paulsen 1989; Murray 1993), and an algorithm for separating 

contiguous grain-kemel image-regions has been proposed (Shatadal et al. 1995a), they were 

not always effective for different grain types. For example, the device developed by Murray 

(1993) was built specifically for canola and the algorithm of Shatadal et al. (1995a) gave 

higher failures in separation for oats than for other grain types. In addition. the kemel 

separation process and the single-kemel-feature based classification aigorithm are usually 



too slow (e-g. the discomect algorithm of ShatadaI et al. (1995a) took 20 min for a typical 

image of 25-50 kemels) for practical use. in the grain industry, a d c a r  containing 80- 100 

tonnes of grain is unioaded in less than 6 min. If the content identification can be done using 

features of bulk grain samples, the processing speed should be much faster. To date, there 

are no reports on the use of color features of bulk ga in  images for identifjing different grain 

types- 

Another potential application of image analysis is in grain cleaning section at termi na1 

locations. An image analysis system cm be used to monitor cleaner performance and provide 

information for adjustment of the cleaning machines for optimal cleaning of grain. To 

determine the cleaning performance, the constituents of the grain samples (different types 

of grains, dockage and other foreign materials) before and after the cleaning have to be 

identified correctly. Most of the early studies in classifying differeat grains using image 

anal ysis used srnall size and carefully cleaned samples. High (>95 %) classification 

accuracies among cereal grains have been reported using morphological and reflectance 

features (Sapirstein et al. 1987, Sapirstein and Bushuk 1989). It was hypothesized that the 

classification accuracy might be reduced if tested on large commercial samples collected 

from different growing regions. 

The application of image analysis for grain grading is a p a t e r  challenge. In Canada's 

current grading system, grain is graded based on the five principal grading factors established 

by the Canadian Grain Commission: test weight, varietal purity, soundness, vitreousness, and 

maximum iixnit of foreign material. Of these, test weight, as the only objectively determined 

factor, carmot be determined by image analysis, while the other four factors, visually 



determined by trained personnel, are difficult to speciQ precisely in quantitative image 

features. However, the research on relating various grain visuai features (size and shape, 

color, and texture) with grain species, classes, varieties, damage status, and impurities would 

be beneficial in the development of an objective and quantitative method for grain grading. 

While considerable studies have been done on using image analysis to discriminate wheat 

classes and varieties (see Chapter II), few work has been reported on using image analysis 

to identiQ different types of damaged grain kernels. 

Color is an important visud attribute of grains used in grain inspection and grading. 

Different grains and their varieties are commonly characterized according to grain color, and 

certain degrading factors like grass-green, bin-burnt, rnildewed, and fungal-damaged are 

expressed as discoloration. The use of color increases the information content for grain 

image analysis. However, most of the previous research has been focussed on using 

morphological (size and shape) features to characterize different grains and their varieties. 

The work deaiing with the use of color features for cereal grain image anaiysis was only 

reported by Neuman et al. (1989a, 1989b) for classiQing wheat classes and their varieties 

using a limited set of color features. The main reason behind this lack in research perhaps is 

that color information extracted from images is usually variable and unreliable due to the 

illumination variations existed in common light sources. A consistent illumination system 

is essential for color grain image analysis. So far no work has been reported on designing and 

calibrating illumination systems for color grain image analysis. 

The objectives of this research were to evaiuate color as a component for grain 

classification by 



1. testing the hypothesis that surface color features of buik gain samples can be used 

for rapid identification of different cered grains (Le., Canada Western Red Spring 

(CWRS) wheat, Canada Western Amber Durum (CWAD) wheat. barley, oats, and 

va; 
2. testing the hypothesis that surface color features of individual grain kernels can be 

used to improve the classification accuracy obtained using the morphological features 

alone; 

3. testing the hypothesis that color features of individual grain kernels can be used for 

identification of healthy and some types of darnaged wheat kernels (e-g., broken. 

grass-greerdgreen-frosted, bin-/fire-bumt, black-point/smudged, heated, and 

rnildewed); 

4. testing the hypothesis that a neural network classifier is more efficient and adaptable 

than statistical classifiers in classiQing different types of cereal grains using 

combined features (morphological and color features). 



REVIEW OF LITERATURE 

3.1 Overview 

Although established about 30 year ago, image analysis did not become a practical 

technique widely used in industries until the early 80's. when substantial advances had been 

made in the related technique areas especially in cornputer and imaging techniques. Its 

applications now can be found in broad areas of produce inspection, process guidance 

(robotic vision), and scientific research. Commercial image analysis systems are already 

common in many industries, such as automotive, electronics, and manufacniring (Ballard and 

Brown 1982; Gonzalez and Safabakhsh 1982; Haralick and Shapiro 1992). 

Applying image processing technique to the agri-food industry is challenging. Unlike 

other industrial objects of defmed size, shape, color, and texture, the objects or work-pieces 

involved in the a@-food industry usuaily demonstrate a natural variabiiity, which requires 

that image processing systems must be sufficiently flexible and robust to cope with this 

variability (Kranzler 1985; Sarkar 1986; Tilet 1991). In addition, processing speed demands 

in most food processing applications are very high, needing specialized image processi ng 

hardware and software. 

Image analysis systems began to appear in the agi-food industry in significant 

numbers in the early 80's (Shaw 1990). The initial use was limited to some simple sorting 

and inspection tasks. This application was expanded very rapidly in the next few years. In 

1989, 126 of the instaiied image analysis systems were k ing  installed by food processon 



(Novini 1990). Not only the number of installed image analysis systems increased, the scope 

of appf cation was also expanded to almost every aspect in food processing inspection, frorn 

raw material grading to final product and packaging inspection. The application of image 

analysis systems has ehinated the tedious and inefficient manual inspection tasks in the 

agri-food industry (Novini 1990). To food processon, the application of image analysis 

systems is no longer a luxury but a necessity to keep and increase the cornpetition abilities 

of their products in the market. Currently, the need for image processing systems in the agri- 

food industry is still high. According to the estimation by Nello Zuech (Vision Systems 

International, 3 Milton Drive, Yardley, PA 19067), the total market for image analysis 

systems in the agi-food industry is about US$58 1 million, but oniy about 465 units valued 

at US$57 million have k e n  installed. 

From a technical point of view. the application of image processing in the agri-food 

industry is still at its early stage. "Specified purpose" and Yack of color" rnight be the main 

limitations in the applications. Most of the installed image analysis systems are 2-D 

monochromatic or black and white systems with a resolution of 128 x 128 or 512 x 512 

pixels. They are based on PCs (personal computen) with a 80286 or 80386 processor. 

Limited by the cornputhg speed of the PCs, most of the systems use very simpIe image 

processing techniques (Tillet 1991). and many systems use specialized hardware or chips to 

increase the inspection speed. These systems are successful only under constrained 

conditions for specific applications. As high speed microcornputers (80486, Pentium) with 

reasonable and continuous lower pnces have become commercially available, image analysis 

algorithms can be implemented in software rather than custom hardware, giving more 



flexible and adaptable applications. Color image processing systems began to emerge in the 

agi-food industry in the early 90's. due to the advance in solid-state color imaging sensors 

as weil as the increased computing speed of microcornputers. Although research in these 

areas Lias grown rapidly and substantiaily in the recent years, the adoption of both generic and 

color image processing systems to food processing are very few. There are still a lot of 

generic problems to be overcome (Tillet 1991). Most of the developments are still being 

studied under laboratory conditions. 

The application of irnage analysis for grain inspection and grading has not as yet 

reached the commercial stage. The main obstacle is the difficulty in quantimg the major 

grading features used in the current inspection and gradhg system in t e m  of various image 

features (size. shape, brightness, color, and texture). In the last decade. however. 

considerable efforts have been made on using image andysis for automatic information 

acquisition on the content and quality of grain sarnples. The foilowing two sections review 

the previous work specifically for identification and classification of cereal grains (hereafter 

grains refers to cereal grains) (Section 2.2) and some applications of color image analysis in 

the agi-food indusuy (Section 2.3). 

2.2 Identification of Cereal Grains Using Image Analysis 

The major studies in this area can be found in a review by Sapirstein (1995). Most 

of the published research has been focused on using rnorphological features to identiw 

dflerent cereal grains and their varieties. wbile very limited work has been reported on using 

color feanires. 



Morphologiçal features were found effective in distinguishing different cereal p i n s  

by several researchers. Brogan and Edison (1974) successfully classified wheat, barIey, oats, 

rye, soybeans, and corn with an overall accuracy of 98%, using a rrcursive learning 

algorithm Sapirstein et al. (1987) extractcd a set of morphological feams including kemel 

length, width, area, aspect and thinness ratios, contour length and normalized central 

moments to classi@ among wheat, oats, barley, and rye kernels, using a linear discriminant 

model. For a sample size of 1160 kemels (haif for training and haif for testing), the 

ciassification accuracies were 100.0,99.3, 100.0, and 96.5%, for HRS wheat, barley. oats, 

and rye, respectively. Similar classification results were also obtained when using an optimal 

feature set of four, selected by step-wise discriminant analysis. in a later study, Sapirstein 

and Bushuk (1989) tested the similar features on a larger and randomly selected sample of 

2766 kemels (1366 for training and 1400 for testing). The classification accuracies were 

98.4, 93.7, 78.3, and 98.0%, for HRS wheat, barley, oats, and rye, respectively, with a 

signifiant drop for oats. The results suggest that a large and representative sample set is 

cntical for deriving a robust and reiiable classification model. In the same study, they 

demonstrateci that by incorporating the mean reflectance of kernels into the feature set, the 

ciassification accuracies were significantly improved to 99.2,95.7,95.3, and 98.3%, for HRS 

wheat, barley, oats, and qre, respectively. In testing an algorithm developed for disconnecting 

touching grain kernels, Shatadal et al. (1995b) reported classification accuracies of 98.5. 

94.5, 92.6, 90.7, and 95.296, for HRS wheat, CWAD wheat, barley, oats, and rye. 

respectively, using small sound grain samples and a set of morptological features, similar 

to the one used by Sapirstein and Bushuk (1989). 



Using image anaiysis to discriminate wheat classes and varieties, Keefe and Draper 

(1986) tried to i d e n t .  5 U.K- wheat cultivars using size and shape features. The 

classification accuracies were not reported in the literature. In a later study, Keefe ( 1992) 

reported a semi-automatic image analysis system for wheat grading. When tested for 

identifjhg twenty U.K wheat varieties using the 33 measured and 36 denved rnorphoIogical 

feanires, the classification errors were between 32.9 to 65.8%. Similarly, Zayas et al. (1985. 

1986) extracted morphologicai kernel features to differentiate among different Amencan 

wheat classes and varieties. Using pair-wise discrimination methods, they achieved the 

average classification accuracies of 77% and 85%, respectively in discnminating among 

wheat classes and among varieties in a same wheat class. These early studies, however, had 

a major Limitation that grain kemels had to be placed manually in a specific orientation for 

imaging and a single kernel per image was required. This drawback was overcome in the 

work conducted by Neuman et al. (1987) and the later studies by other researchers. Neuman 

et al. (1987) computed pian-fom spatial shape features and Fourier descnptors of kemel 

perimeters from silhouette wheat kernel images to discriminate Canadian wheat classes and 

cultivars within classes. Using a pedigreed sample size of 576 kemels from 14 wheat 

cultivars of 6 wheat classes, they found that CWRS and CWAD wheat kemeIs were the most 

easily differentiated classes, whiie considerable confusion existed among CWRW (Canada 

Western Red Winter), CWSWS (Canada Western Soft White Sprùig), CPS (Canada Prairie 

Spring), and CU (Canada Utility) wheat classes. Discriminant analysis of varie5es within 

classes gave inclusive resuits with classification accuracies ranging h m  15 to 96%. Similar 

studies were aiso reported by Symons and Fulcher (1988a, 1988b) on determination of 



Eastern Canadian wheat kemel rnorphological variation by digital image anaiysis and Barker 

et al. (1992a; 1992b, 1992c, 1992d) on use of different morphologicai features for the 

discrimination of Austraiian wheat varieties. Despite different morphological features and 

different classification methods king used by different researchers in the different studies, 

unsatisfactory results having a large range of classification errors were usually obtained. 

indicating the incapability of rnorphological features in differentiating among different wheat 

classes and varieties. 

In an attempt to increase the information content, Chen et al. (1989) used a laser 

range finder to acquire a cross-section profile of kemels. The inclusion of the features 

extracted ffom the cross-section profile to the plan-form rnorphological features. extracted 

from the 2-D images acquired by a camera, improved the classification rates. They reported 

mis-classifications of 8- 12% among different wheat classes and 20-26% arnong different 

wheat varieties within the same class. However, the high cost and the complexity in 

manipulating the system made the method less attractive. 

The use of color image analysis for identifjhg different wheat grain classes and 

varieties was reported by Neuman et al. (1989a, 1989b). The mean red (R), green (G), and 

blue (B) pixel reflectance features of individual wheat kemels were evaluated for 

identification of kemels as to one of six wheat classes grown in Western Canada. In general, 

the red, white, and arnber colored wheat types were well sepamed, while sorne confusion 

existed between certain red kemel types. On average, the pair-wise triais gave 88% correct 

varietal classification. Correct classï£ïcation rates for individual varieties varied from 34 to 

90%. They concluded that color features could assist or facilitate discrimination and 



identification of contrasting wheat classes. 

Multivariate discriminant analysis was used to distinguish between wheat and non- 

wheat, and between weed seeds and stones in the non-wheat part of a sample (Zayas et al. 

1989). With success in identifying wheat and weed seeds, unsatisfactory results were found 

for ident-g stones in the samples. 

Work on identimg damaged kemels in wheat samples was reported by Thomson 

and Pomeranz (1991). They modified the laser scanning system developed by Chen et al- 

(1989) to acquire 3-D images of wheat kemels. Using the extracted morphological features, 

they correctly identifed 89% of the sprouted and 83% of the un-sprouted wheat kemels. In 

the same study, they also used the system to classrfy two American wheat varieties with 92 - 

94% correct scores. 

2.3 Applications of Color Image Andysis in the Agri-food Industry 

The applications of color image analysis in the agri-food industry have k e n  focused 

mainly on sorting or grading agicultural products and identimng or distinguishing plants 

and plant parts. 

Wigger et al. (1988) applied color image analysis to detect and classify fungal- 

damaged soybeans. Individual soybeans were correctly classifïed into one of five categories - 

hedthy, with 98% accuacy, and those showing symptoms of infection due to Phomopsis sp., 

Altemuria sp., Fusariwn sp., and Cercospom kikuchii with 77 to 9 1% accuracies. Intensity 

and ratios of red to blue, red to green, and green to blue were used as features for 

discrimination. Shyy and Misra (1989) used the color information combined with other 



denved features to evaluate the quality of soybeans. Damaged soybeans were correctly 

classified with an accuracy of 85%. Casady et al. (1992) developed a trainable algorithm on 

a color image analysis system for inspection of soybean seed quality. The aigorithm correctly 

classified asymptornatic soybean seeds, seeds infected by C. kikuchii, seeds that belong to 

a group used by the Federal Grain Inspection Service called "seeds of other colon". and 

"materiaily damaged seeds" with 94,97,85, and 96% accuracy. respectively. The variables 

used for classification were color chromaticity coordinates and seed sphencity. 

Miller and Delwiche (1989) developed a color machine vision system to inspect and 

grade fresh market peaches. They used diffuse lighting and normalized luminance to reduce 

the red, green, and blue inputs to two-dimensional chromaticity coordinates. Peach color was 

compared to standard peach maturity colors. Machine maturity classification agreed with 

manuai maturity classification in 54% of the test samples, and was within one color standard 

in 88% of the tests. Shearer and Payne (1990) used a color machine vision system to sort bel1 

peppers according to color and damage. Red-green-blue pixel intensity values were mapped 

to one of eight possible hues and the relative hue distributions of pixel in six orthogonal 

views were caiculated and used as color quantitative variables. An accuracy of up to 96% 

was achieved for grading bel1 peppers by color. 

Precètti and Krutz (1993a; 1993b; 1993c) developed a PC-based real-time color 

classification system to perfonn corn husk deduction measurements. They segmented color 

images of corn cobs with husks into five color classes (e.g. background, dned husk, green 

husk, red cob, and yellow kernels) and calculated the husk to corn surface ratio which was 

linearly related to the husk mass to corn mass ratio with a correlation coefficient of 0.95. The 



machine vision system gave measurements with 1 % variation, while manual measurements 

yielded a variation of approximately 4%. 

Slaughter and Harrell (1987) analyzed images for chromaticity and intensity as a 

means of distinguishing between oranges on a tree and background foliage- An NTSC color 

decoder was used to transform the original composite video signal recorded on a video tape 

into RGB video signals. A color look-up table was constmcted to specify the RGB color 

space into 32,768 possible colors, and used to segment an image by assigning each pixel in 

the image a binary stanis denotuig whether the pixel fell within derived hue and saturation 

thresholds. When tested with three images of natural orange grove scenes, 93,45, and 85% 

orange pixels were correctly classified, respectively. 

Thomas et al. (1988) applied color image pmcessing technique to 35-mm color slides 

of canopy-soi1 combinations for distinguishing plants from their natural background. T hey 

transformed the color images into py-scale images of each primary color by viewing each 

slide through separate red, green, and blue colored fdters mounted on a video carnera. By 

subtracting the red image fiom the green or blue image, a grey-scde image resulted with 

perceptudy brighter leaf pixel and darker soi1 pixel. Compared to the human visual 

inspection procedure. the image processing procedure gave better results. However, the 

application was limited by the slow processing speed and the system cost. 

Shearer and Holmes (1990) identified plants by color-texture characterization of 

canopy sections. Three color CO-occurrence matrices were derived from image matrices for 

each color attribute: intensity, saturation, and hue. Eleven texture features were caiculated 

h m  each of the CO-occurrence matrices and used in a discriminant analysis mode1 to identiw 



plants. Overail classification accuracy of 9 1 % was achieved when this mode1 was used to 

identify seven common cultivars of nursery stock. 

Humphries and Simonton (1993) used color as weii as geometric features to identify 

geranium cutting feanires such as petioles, main stem, leaf blades, and growing tip. Correct 

classifications for leaf, petiole, and main stem material were 97, 95, and 93 %, respective1 y. 

Woebbecke et al. (1994) analyzed color slide images of weeds among various soiIs 

and residues for the chromatic coordinates r, g, and b (Gonzalez and Woods 1992). indices 

of r-g, g-b, (g-b)/l r-g 1, and 2g-r-b and a rnodified hue were derived and tested for identiSing 

weeds from soils and residues. It was reported that the modified hue, 2g-r-b, and green 

chromatic coordiaate disthguished weeds from a non-plant background (0.05 level of 

significance) better than other indices. 

Other applications of color image anaiysis found in the Literanire were characterizing 

germplasm properties (Panigrahi and Misra 1989), inspecting apples, mushrooms, and 

potatoes (Morrow et al. 1990), and sorting wood into color groups (Haney et al. 1994). 



IMAGE ACQUISITION 

Image acquisition is the first and probably the most important step in image analysis 

applications. Proper integration and calibration of an imaging system are essential for high 

quality image acquisition. Selecting representative grain samples is crucial for the gnerality 

of the analysis nsults. This chapter addresses the imaging system used in the research in 

Section 3.1, the illumination design in Section 3.2, the system calibration in Section 3.3, and 

the grain sample collecting and sampiîng technique in Section 3.4. 

3.1 Imaging System 

A typicd image analysis system basically consists of a vide0 carnera for acquiring 

images of the objects of interest, a light source for providing proper illumination for the 

imaging, a frame-grabber for digitizing the acquired images, and a computer with proper 

software for storing, analysing, and understanding the digitked images. Fig 3.l(a) shows the 

image analysis system used in this research. 

3.1.1 Hardware 

The hardware consisted of a 3-chip CCD (coupled charge device) color carnera 

(DXC-3000A, Sony, Japan) with a zoom lens of 10- 120 mm focal length (VCL- 10 12BY), 

a camera control unit (CCU-M3, Sony, Japan), a color monitor (PVM- 1342, Sony, Japan), 

a personal computer (PC) (386/2OMHz, UNISYS), a color frame grabbing and processing 

board @nt371 & DT 2858, DATA Translation, Marlboro, MA), an optical disk drive 

(SMC-SS02, Sony, Japan), and a difise illumination chamber. 





Mounted over the illumination chamber on a stand which provided easy vertical 

movement, the camera captured images of objecü in the illumination chamber. The NTSC 

(National Television System Cornmittee) composite color signal from the camera was 

converted by the camera control unit at a speed of 30 frames per second into three parallei 

analog video signals, namely red (R), green (G), and blue (B), corresponding to the three 

NTSC color primaries, and a sync signal. The camera control unit also enabled selectable 

manualiautomatic iris and video signai gain control and whitehlack balance of the carnera 

(manual iris control was used in th is  research to adjust the illumination level, see Section 

3-3-5). The frame grabber installed in the PC digitized the RGB analog video signais from 

the camera control unit into three 8-bit 5 12 x 480 digital images and stored them in three on- 

board buffen. The digital images were then sent to the color monitor for on-line display and 

transferred to the networked optical disk for storage. 

3.1.2 Software 

The image acquisition software was developed on the PC in C language using the 

supporting wbroutine library (Aurora, Data Translation, Marlboro, MA) for the frarne 

grabber DT287 1. It included an illumination standardizing program (Appendix A: 1itadj.c). 

an image acquiring program (Appendix A: msave-c), and two of the imaging system tuning 

programs. The iliuminaiion standardizing program monitored the illumination level inside 

the illumination chamber by continuously caIculating the average RGB grey levels over a 

smail central region (50 x 50 pixels) of the camera's field of view (FOV) and graphically 

displayhg them on the cornputer's screen. By adjushg the iris control knob and performing 

a blacklwhite balance, the RGB grey levels were brought to pre-detemiined values. The 



image acquiring program enabled the saving of an image to a computer file with the 

selections of image size, image part (window), and color mode (Blackiwhite. or RGB, or HSI 

(hue, saturation, and intensity)). The image analysis software was developed on another 

(Pentium/l66 MHZ) in C language under the DOS environment. It was independent of the 

frame grabber. The detailed functions of the anaiysis software will be given in Chapter IV 

and V. 

3.1.3 System mode1 

The following mathematical model is commonly used to describe a color image 

analysis system (Ballard and Brown 1982): 

= index spanning the three color channels (red, green, and blue), 
= space coordinates, 
= light wavelength, 
= output signal of color channel i, 
= light energy incident upon object surface, 
= spectral reflectance of object surface, and 
= spectral response of camera sensor for color channel i. 

This is an ideal model under the assumptions: (1) the illumination is uniform over the 

FOV and constant with tirne, (2) the lens system does not introduce any distortion over the 

FOV and the transmittance is constant with light wavelength, (3) the spectral responses of 

the sensors are uniform over the sensor's array, (4) the image digitkation does not introduce 

any emr. These assumptions, however, are usually not true in reality, due to less than perfect 

optical and electrical components in an image analysis system. For example, illumination is 

usually non-uniform over the FOV and variable with time in both intensity and color. due 



to changes in supply voltage, lamp deterioration, and ambient temperature. There is also 

always a sensitivîty variation among sensing celis of an imaging sensor array. Thereiore an 

object image, as captured by an image analysis system, is not only a function of the spectral 

properties of the object surface (which are of interest), but also is a function of the 

iliumination spectral distribution and the camera spectral response (determined by the lens 

transrnittance and the sensor's spectrai response), as described in Equation 3.2. 

where: 
t = time variable, 
v = power voltage of light source, and 
L() = lens transmittance. 

As a result, images of an object taken at different times or at different locations of the FOV 

may appear differently in either size and shape or color and brightness. This rnakes 

cornparison and analysis of object images difficuit, especially when color or reflectance 

information is involved. The imperfect factors in a practical image analysis system may not 

be totally eliminated by any means, however, they can be rninimized by proper system 

integration and tuning or if necessary by software correction. Their effects on imaging 

accuracy should be closely examined before taking any images. 

3.2 Illumination Design 

Iiiumination plays an important role in image acquisition. To acquire an object image 

carrying accurate infomtion of the spectral properties of the object surface, the dumination 

upon the object must be uniform over the FOV, consistent with time, and shadow free 



(diffused). Uniform diffbsed illumination can be achieved by proper arrangement of light 

sources. However, illumination usually varies in intensity and color with time due to changes 

in power voltage, arnbient temperature, and lamp deterioration. This inconsistency in 

illumination may be eliminated by adjusting the illumination each tirne an image is acquired, 

but this may become impractical in industrial applications of image analysis. Consistent 

illumination over an 8 h working shifi is usually desired. 

To select an acceptable light source for the image analysis system, three types of 

commonly used light sources: incandescent, halogen, and fluorescent larnps were evaluated 

in the following aspects: (1) sensitivity to lamp voltage variations, (2) stability with time. and 

(3) uniformity over FOV. 

3.2.1 Light sources 

The incandescent light sources were eight 40-W bulbs (Soft White, GE Lighting 

Canada, Mississauga, ON) with a rated voltage of 120 V. The halogen light sources were 

eight 46-W bulbs (Power Par 20, Duro-Test Co., Fairfield, NJ) with a rated voltage of 122 

V. The fluorescent light source was a 30.5-cm diameter, 32-W circular lamp (FC 12T9/CW, 

Phiiips, Singapore) with a rated voltage of 120 V. 

3.2.2 Numination chamber and power supply 

An iliumination chamber was designed and developed to provide uniform diffuse 

illumination over the FOV. For testing the incandescent and halogen light sources, the eight 

bulbs were onented verticaiiy in a ring around a round object plane of 150 mm in diameter 

in the centre of the illumination chamber. For testing the fluorescent light source, the lamp 

was placed around and just below the surface of the object plane (Fig 3.l(b) and (c)). As a 



light diffuser, a steel bowl of approximately 400-mm diameter, painted white and smoked 

with magnesium oxide on the inside was inverted and covered the light bulbs and the object 

plane such that the object plane was only exposed to the diffused light. The steel bowl had 

a 125-mm diameter opening at its top (in the inverted position) through which the carnera 

acquired images. 

A voltage regulator (Sola Canada Inc., Toronto, ON) supplied stable AC power (a. 1 

V) to the Light sources and the voltage to the lamps was adjusted by a variac. The fluorescent 

lamp was also tested with a light controlier (FXû648-2/120, Mercron, Richardson, TX) 

incorporated in its power supply. The light controlier automaticaliy detected the illumination 

level in the illumination charnber using a photodiode light sensor and adjusted the AC 

frequency to the lamp to maintain a stable level of illumination under varying conditions. 

The frequency of the AC power output of the controller varied between 140 kHz at the 

minimum light levels to 60 kHz at full power. 

3.2.3 Test 1: sensitivity to lamp voltage variations 

The lamps were turned on and the illumination was standardized (see Section 3.3.5) 

at the rated lamp voltage VR afier a 3 h warm-up tirne. Then the larnp voltage was gradually 

changed from (V, - 1.0 V) to (V, +1.0 V) with a step of O. 1 V by adjusting the variac. At 

each of the 2 1 steps, the digital image of a Kodak white card (E152-7795, Eastman Kodak 

Co., Rochester, NY) was acquired immediately following the voltage adjustment, and the 

mean R, 0, and B grey-level values over a smalI centrai area (50 x 50 pixels) were calculated 

and recordeci. The mean R, G, and B values at the different lamp voltages were then divided 

by the mean R, G, and B values ai the rated lamp voltage V, and defined as the voltage- 



deperdent relative intensities, Rv, Gv, and Bv, respectively. The same test was repeated five 

times for each type of light source and the average Rv, Gv, and Bv of the five tests were 

plotted venus the lamp voltage. 

3.2.4 Test II: stability with tirne 

The fiumination was standardized (see Section 3.3.5) immediately after switching 

on the lamps (b). The image of the Kodak white card was captured repeatedly, and the mean 

R. G. and B values over a small central ana (50 x 50 pixels) were computed and recorded 

every 10 min for 8 h. The lamp voltage was maïntained at the rated value V, all the time. The 

mean R. G, and B values at the different times were then divided by the mean R. G, and B 

values at and defmed as the time-dependent relative intensities. Rt, Gt, and Bt, 

nspectively. The same test was repeated five times for each type of light source and the 

average Rt, Gt, and Bt of the five tests were plotted versus tirne. 

3.2.5 Test III: uniformity over FOV 

It was impossible to separate the illumination evenness fiom the effects of the 

variation due to lem transmittance and the responses among the sensor arrays. Therefore the 

uniformity over the FOV was examined as a composite result of illumination distribution 

determined by the configuration of light sources, the lens transmittance, and the sensor 

responses. 

Again, the illumination was standardized (see Section 3.3.5) and the image of the 

Kodak white card was capnired. Mean R, G. and B values were calculated for each row 

(down the image) and each column (across the image) in the image. The row means of R. G, 

and B signals were then divided by the overall mean R. G, and B values and defined as the 



row-dependent relative intensities, Rr, Gr, and Br, respectively. Sirnilarly, the colurnn means 

of R, G, and B signais were divided by the overall mean R, G ,  and B values and defined as 

the column-dependent relative intensities, Rc, Gc, and Bc, respectively. For each light-source 

type, ten images of the sarne white card with different orientations and viewing regions were 

acquired and analysed. Average Rr, Gr, and Br and average Rc, Gc, and Bc of the ten tests 

were plotted versus the row and column numbers, respectively. 

3.3 System Calibration 

3.3.1 Aspect-ratio 

The DT2871 frame grabber instailed in the PC converts analog video images into 

digitai images using rectangular pixels, as a resuit of the horizontal re-sampling in the 

digitization process. A digitized image is actualiy a 512 x 480 data matrix. Each element of 

this matrix corresponds to a rectangular portion of the original analog video image. In other 

words, a rectangular-pixel digital image has different vertical and horizontal pixel 

resolutions. The resolutions of the images acquired by the imaging system shown in Fig 3.1 

were 0.20 mmfpixel in horizontal and 0.16 mmfpixel in vertical directions. 

The relationship between the vertical and horizontai spacing is descnbed by the 

aspect-ratio, a ratio of the length to width of the rectangular area in the original analog image 

represented by a pixel in the digitized image. The knowledge of the aspect-ratio is essential 

for interpreting image size and shape information in real world dimensions. However, there 

are no published data of the aspect-ratio value, because it is detemiined not only by the 

frame-grabôer (digitization), but also by other camera parameters (such as magnification, 



lem distortion, and etc.). Several methods have been proposed to practicdly evaluate the 

aspect-ratio (Toscani and Faugeras 1987; Lenz and Tsai 1987; Ganapathy 1984). 

In this research, a Canadian quarter coin was uxd to determine the aspect-ratio. With 

the same camera semng (maWcation) as used in the grain irnaging, four rectangular-pixel 

digital images of a Canadian quarter coin were acquired with the coin located in the centre 

of the camera's FOV at 4 different orientations. In each image. the coin region was separated 

from the background using the segmentation method described in Chapter N, and the 

numbers of pixel rows and columns, Nr and Nc, required to traverse the coin were calculated. 

The aspect-ratio is the average pixel row number divided by the average column number. 

To investigate the effect of the magnifcation on the aspect ratio, another group of 4 

rectangular-pixel image of the same quarter coin were acquired in the similar way but using 

a magnincation of about 1.13 times larger than the previous. Sirniiarly, the numbers of pixel 

rows and columns required to traverse the coin were calculated and the aspect-ratio was 

For the convenience of image analysis, the rectangular-pixel digital images were 

transformed to the square-pixel digital images with the knowledge of the aspect ratio, using 

an algorithm cailed pkelfilling algorithm (Castleman 1979): 

where: k = aspect ratio, 
Intn = function ûuncating to integer, 
f() = original rectangular-pixel image, and 
g() = square-pixel image. 



3.3.2 Spatial resolution of square-pixel images 

The spatial resolution is needed to relate the pixel dimensions computed from digital 

images to the reai world dimensions in the size feature measurements. Again a Canadian 

quarter coin was used to get the resolution information of the imaging system. The image of 

the coin located in the centre of the canera's FOV was acquired and transformed to the 

square-pixel image using the aspect ratio determined in Section 3.3.1. The diarneter of the 

coin was measured to the nearest 0.001 mm using a micrometer. The mean diameter of 

23.869 mm, was calculated by averaging four readings at 45 degree intervals around the coin. 

The spatial resolution was then detemiined by dividing the coin diarneter by the mean value 

of pixel columns and rows required to traverse the coin. To accommodate the possible 

changes in the camera's magnification, an image of a same Canadian quarter coin wris 

acquired and saved for the future use of the spatial calibration pnor to each imaging session. 

3.33 Image distortion 

Image distortion is a composite result of the imperfect factors in an imaging system, 

such as camera misalignment (the camera is not vertical to the object plane), lens distortion, 

and image digitization. The transformation h m  rectanguiar pixels to square pixels may also 

introduce further image distortion. A direct consequence of image distortion is that the size 

and shape measurements of an object become variant to the location and orientation of the 

object in the camera's FOV. 

To examine the image distortion introduced by the camera misalignment, the Iens 

distortion. and the image digitization, twenty rectangular-pixel images of a Canadian quarter 

coin were acquind. Four images were acquired with the coin located in each of the upper and 



lower corners and the centre of the camera's FOV, and the numben of the pixel rows and 

columns to traverse the diameter of the coin in the images, Nr and Nc, were calculated as in 

the case of determining the aspect ratio. 

To investigate the effect of the transformation from rectangular pixels to square 

pixels on the image distortion, the twenty rectangular-pixel coin images were transformed 

to the square images using the aspect ratio computed from the 4 central images. and the 

number of the pixel rows and columns to traverse the diarneter of the coin in the square 

images, Nr' and Nc', were calculated as in the case of the rectangular images. 

3.3.4 Gamma correction 

Gamma correction is univeMUy done on commercial video cameras for the purpose 

of correct reproduction of Light intensity on display devices. The light intensity generated by 

an image displaying device is usually not a linear function of the applied signal. A 

conventional CRT (cathode-ray tube) has a power-law response to applied voltage: light 

intensity produced at the face of the screen is approximately the applied voltage raised to 

some (typically 2.5) power. The numerical value of the exponent of this power function is 

colloquially known as gamma. To achieve correct reproduction of light intensity on the 

display device, the applied signai must be modified by a nonlinear transformation. called 

gamma correction which is esectively the inverse of the response of the display device. In 

an NTSC-RGB video camera, the gamma correction is performed by applying the following 

transfer functions to the tristimulus RGB signals: 

R' = R,, '*, G' = Go ''Y, B' = Bo 'h, y = 2.2 (3.4) 

w here: 
%* Go9 BO = vistirnuius RGB signals normalized in the range of [O, 11, 



R', G', B' = gamma-corrected video outputs noimdized in the r a q e  of [O. I l .  
and 

Y = gamma exponent- 

The interest of this research was in the physicai color difference in grains instead of 

displayed images on the display device and hear relationships between the system outputs 

and the object reflectance were desired. so the gamma correction imposed by the camen 

should be "removed" or "re-corrected". For some video cameras, this can be done by just 

simply disabhg the gamma correction function. Since the gamma correction was integrated 

within the camera used in this research, the removal of gamma correction was done in 

software by applying the following transformations to the digitized gamma-corrected RGB 

images from the frarne grabber: 

where: 
R(). GO, B() = digitized gamma-corrected RGB signals at (x, y), 
, G ,  B = digitized gamma-corrected RGB values of white reference, 
r(), go,  b() = normalized RGB signals at (x, y), and 

The system Linearity was examined using a 20-step paper gray scale (Cat 152-7762. 

Eastman Kodak Co., Rochester, NY) which has a varying reflection density ranging from 

0.05 at step 1 to 1.95 at step 20, with an equal difference of 0.10 between two adjacent steps. 

The illumination was standardized (see Section 3.35) fmt An image of each of the 20 steps 

in the scale was captured by presenting the corresponding step in the centre of the FOV, and 

the mean R, G, and B grey-level values over a s m d  central area (20 x 20 pixels) were 



computed and recorded. These mean R, G, and B values of the different seps were plotted 

versus step number. 

33.5 Illumination standardiza lion 

A color image of an object, as captured by an image analysis system, is actually a 

function of the spectral properties of the object surface as well as the illumination spectrai 

distribution and the camera spectral response. The color data extracted from the captured 

image are therefore device-dependant. When anaiysing color data, especially when 

comparing color data taken under different conditions (illumination and cameras), it is 

necessary to calibrate images to accommodate variations in illumination and camera sensor 

response. Many color calibration methods has k e n  proposed to map devicedependant color 

data ont0 an absolute (device-independent) color system (Hetzroni and Miles 1994; Lee 

1988; Gershon and Jepson 1989; Green and Ismail 1990; Tominaga 1992; Brainard and 

Wandell 1990; Levine 1985; Ballard and Brown 1982), using either the predetermined 

spectrai response of the camera sensors and Uumination distribution or the calibration 

matrices developed by using test color standards with known absolute color coordinates. 

The absolute color data were not of interest for this research, since the sarne camera 

was used to take al1 grain images using a fmed camera setting and a standard (consistent and 

uniform) illumination source. It was assumed that the color data extracted h m  images taken 

at different times or h m  different portions of an image were comparable. 

A Kodak white card with 90% reflectance (E152-7795, Eastman Kodak Co., 

Rochester, NY) was used as the white reference to standardize the illumination level. The 

lamp voltage was set to the rated value V,. Then the color image of the white card was 



acquired, and the mean R, G, and B grey-level values over a small central area (50 x 50 

pixels) were cornputed and used as the illumination-level indicators. By manually adjusting 

the iris control (the lens aperture) and performing white-balance with the camera control unir, 

al1 three values were adjusted to 250 I 1 (k, = G, = B, = 250). 

3.4 Grain Samples 

3.4.1 Sample sources 

The cereai grain samples used in this study were obtained fiom the Industxy Services 

Division of the Canadian Grain Commission, Winnipeg, Manitoba. For the 1994 growing 

year, unclean commercial samples of five grain types (Fig 3.2) were collected from different 

growing regions distributed across Western Canada. The grain samples were grouped into 

seven categories: CWRS 1; CWRS2; CWRS3 (wheat grade 1,2, and 3, respectively); CWAD 

wheat (grade 1, 2, 3, and 4); barley (grade EX1 and 1); rye (grade l), and oats (grade 

unknown). For each category, a composite sample (1000 - 1500 g) was made for each of the 

growing regions by mixing and sampling the available samples from different Fums 

(stations) within a growing region, using a Boerner Divider. Based on the sample 

availabilities, twenty composite samples from twenty growing regions (Appendix B) were 

selected for each grain category to represent the climatic and regional varïabilities over the 

Canadian Prairies. 

For the identification of damaged CWRS wheat kemels, six types of damaged kernels 

(Fig 3.3) were collected. Samples of k e  types of damaged CWRS wheat kernels, namely 

brokrn, grass-green/geen-frosted, and black-poinhudge, were rnanualiy picked from the 



Fig 3.2 A saxnple image of five grain types: 
CWRs wheat (uppcr Iefk), dpriim wheat (upper right), b d e y  (lower Ieft), cye 



unclean commercial samples of CWRS grade 3. Samples of the other three types of dmaged 

CWRS wheat kernels, mildewed, heated, and bin-@re-bumt, were created in the iaboratory. 

Al1 the damaged samples were verified by Mr. Dan Gobercihan (Assistant Operations 

Supervisor, Prairie Region, Industry Services, Canadian Grain Commission, Winnipeg, 

Manitoba) as being typical of naturaliy occurring damaged kemels. 

The rnildewed kemels were prepared by keeping sound CWRS kernels (grade I ) ,  

conditioned to 20 - 25% moisture content (wet basis), in a sealed plastic bag at room 

temperature (23 - 25°C) for a period ranging from 7 to 21 d, until the mildew damage 

occurred to the desired extent. The bag was shaken regularly to ensure an uniform 

development of mildew in the different parts of the bag. The heated kemels were created by 

keeping sound CWRS kemels (grade 1) in an oven at a temperature of 150°C for a penod 

ranging from 2 to 20 h until the kernels were heated to the desired extent. The bin-/fie-burnt 

kernels were created by keeping sound CWRS kernels (grade 1) in an oven at a temperature 

of 2 0 ° C  for a period ranging from 100 to 120 h until the kernels were heated to the desired 

extent. 

3.4.2 Sampüng technique and sample size 

For the identification of grain types, 600 - 900 kemels (approximately 225 g in mass) 

were sarnpled fiom each of the 7 x 20 composite samples (20 growing regions for each of 

the 7 grain categones). The composite grain sample ( 1 0  - 1500 g) was poured into a plastic 

bag and mixed thoroughly. A sub-sample of about 75 g was then withdrawn by randomly 

taking grain kemels h m  different parts of the bag using a scoop. Similarly the second and 

third sub-samples were obtained from the remaining grain which were re-mixed after the 



previous withdrawal. The three sub-samples were mixed again by passing them through the 

Boemer Divider 4 times to give a sample of approximately 225 g. 

The sample of 225 g was fmt split into three replicate samples for buk sample 

imaging. Each of the replicate samples was put into a bulk sample container and presented 

to the carnera (see Section 3-43). The container held the kemels in 2 - 3 kemel deep layers 

and only the kemels in the top layer appeared in the image. There were 100 - 150 kernels 

covered in each bulk sample image. 

Afier the buik sample imaging, the three replicate samples were re-mixed to give a 

sample of 225 g. From each of the 7 x 20 samples, 300 kemels were randomly picked and 

imaged in 12 images (25 kernels per image). In total 42 000 grain kemels were irnaged in 

1680 (12 x 7 x 20) images. 

For the identification of individual damaged CWRS wheat kernels, 1ûûû kemels were 

coilected for each of the 6 damage types as well as the heaithy kemels (CWRS grade 1) and 

imaged in 25 images (40 kemels per image). Totally 7 0  kemels were imaged in 175 

images. The 1000 mildewed kernels consisted of 600 (60%), 280 (28%), and 120 ( 12%) 

kernels from three laboratory-conditioned samples graded as grade 2,3, and feed because of 

the mildew damage, respectively. The 1000 heated kernels consisted of 500 (40%), 3 0  

(30%), and 200 (20%) kemels from three laboratory-conditioned samples graded as grade 

3, feed, and sample because of the heat damage, respectively. The 1000 bin-#ire-bumt 

kernels consisted of 500 (50%) and 500 (50%) kemels fiorn two laboratory-conditioned 

samples identifïed as bin-bumt and fm-bumt, respectively. The 1000 healthy kemels were 

randornly picked h m  a sample of CWRS grade 1. For each of the other three damage types, 



broken. grass-green/green-frosted, and black-pointLsmudge, 1000 kemels were picked fro m 

samples of CWRS grade 3. 

3.4.3 Sample imaging 

An operation guide (Appendix C) for grain irnaging using the image analysis system 

described in Section 3.1 was developed and followed in each of the grain imaging sessions 

to ensue the image quality. It specifkd the settings of the imaging system and the procedures 

for illumination standardization and spatial calibration. 

For imaging bulk grain samples, each sample (75 g in mas) was poured into a 

rectangular container made of transparent epoxy fibreglass with inner dimensions of 135 x 

100 x 10 mm (Fig 3.l(b)). A fibreglass board with dimensions of 135 x 100 mm was used 

to press the sample in the container so that the sarnple in the container was held in 

approximately two-three layen and the sample surface was levelled. Then the container with 

the sample was placed on the object plane in the illumination chamber in such a position that 

aimost a i i  the surface grain kemels were covered in a fbil size (5 12 x 480) image. The color 

image of the sample was saved in a füe and transferred to an optical disk for storage. 

For imaging individual kernels for gain type identification analysis, 25 individual 

kemels were randornly placed on a black background board in a separated (non-touching) 

rnaaner and presented to the camera's FOV for imaging (Fig 3.l(c)). The position of the 

kemels was adjusted by moving the background board to being around the centre of the 

camera's FOV. The image saving program allowed using a mouse to select a proper image 

window and size to cover al1 the 25 kernels. A similar procedure was applied to the imaging 

of damaged CWRS wheat kemels, except that a white background was used and 40 kemels 



were imaged in one image. 



IV IMAGE SEGMENTATION 

The purpose of image segmentation is to isolate each individual grain kemel in an 

image h m  the background and h m  each other so that the morphological and color features 

can be extracted h m  each of the individuai kemels in the image. This chapter illustrates the 

segmentation algorithms developed and used in this research using the two grain sample 

images in Fig 4.1 as examples. 

4.1 Thresholding 

The fmt step of image segmentation is to separate objects in a color image from the 

background by converthg the color image into a bi-level image which has only two pixei 

values: white (255) for the background and black (0) for the objects, or vice versa. This 

process is called image thresholding and is performed by examining each image pixel and 

deciding using some criteria whetker it bdongs to objects or to the background. To threshold 

a grey level image, the decision is generally made by comparing each pixel value against a 

fixed number cailed a threshold. If a pixel value is less than the threshold, the pixel is set to 

zero; otherwise set to 255. Because a color image consists of three grey-level images, narnely 

red, green, and blue band images, it is quite natural to consider using one of the three color 

bands for thresholding. Thus, the problern to be solved is to select a proper threshold value 

and choose a right band. 





4.1.1 Selecting a threshold 

Selecting a good threshold is the key for successful image thresholding. Although it 

is difficult to give a precise defuiition, a good threshold genedly means a threshold value 

by which the thresholded image has black regions that generally agree with the areas of the 

objects and white regions that correspond to the background of the image. This definition 

assumes that the objects are darker than the background and the pixels in the original image 

are set to zero if their values are less than the threshold and 255 if their values are larger than 

or equal to the threshold. 

Threshold selecting can be done either manuaiiy by visually comparing the 

thresholding results for different threshold values, or automatically using an threshold 

selecting algorithm In practice, especiaiiy industrial applications, it is usually impossible to 

manuaüy select a threshold for each image, and a predetennined threshold for al1 images may 

not accommodate the intensity variations among images due to the possible changes in 

illumination. A threshold has to be extracted from each individual image automatically. 

Many methods have ken developed for automatic threshold selecting (Parker 1994, 

Gonzalez and Woods 1992), based on the problem king investigated. In this study, an 

algorithm calied iterutive selection (Parker 1994) was used to select a threshold for a grey 

level grain image. The aigorithm is a recurring search process. InitiaDy, the overail mean grey 

level of an image is computed as the initial threshold estimate T- The next step calculates Tb 

and T, as the average grey levels of the background (pixels with grey level larger than or 

equal to T) and the objects (pixels with grey level less than T), assuming that the objects are 

darket than the background, and uses their average as the new threshold estimate: T = (Tb + 



TJ2. The process is repeated und the same value T is obtained on two consecutive 

iterations, at which point T is considered to be a good threshold for the image; or the number 

of the iterations is larger than a predetermined value @O), at which point it is considered that 

there is no region (object) in the image and T is set to 127 ( half of the maximum grey level). 

The C language code of the algorithm is given in Function thresh-is 0 in Appendix A. 

4.1.2 Singleband thresholding 

A preliminary test was conducted to investigate the suitability ofred, green, and blue 

bands for color grain image thresholding. Sixty five individual grain images (5 images for 

each of the five grain types, 5 images for each of the six darnage types of CWRS wheat , 5  

images of mixed grah-type kernels, and 5 images of mixed-damage type CWRS wheat 

kemels) were tested for each of the three color bands. The thresholded images were visually 

examined and compared. For the images containing single type gain kemels, there were no 

significant differences among the thresholded images of the red, green, and blue bands. 

except that the threshoided images of the red band usually enclosed some shadows as the 

object areas. However for images containing grain kemels from different grain types or 

damaged kemels fiom different damage types, there were significaat differences arnong the 

thresholded images of the three color bands. The blue band was the best and the green band 

was usually better than the red band for thresholding. 

Fig 4.1 shows two extreme cases: Fig 4.l(a) contains kemels from each of the five 

grain types king investigated, and Fig 4.1 (b) contains healthy and damaged CWRS wheat 

kemels with different extent from each of the six damage types king investigated. Fig 4.2 

(a), (b), and (c) are the thresholded results of the image in Fig 4.1(a), using the red, green, 







and blue band, respectively. Fig 4.3 (a), (b), and (c) are the thrrsholded results of the image 

in Fig 4.l(b), using the red, green, and biue band, respectively. 

4.1.3 Multi-band threshoIding 

Although the preliminary tests showed that satisfactory results could be achieved by 

thresholding the blue band, it is still arguable that the use of the single band always produces 

good thresholding results. In practical applications, it is possible that a color grain image cm 

not be satisfactorily thresholded using any of the three single color bands. A multi-band 

thresholding method was proposed to take advantage of color information in a color grain 

image. First single band thresholding was performed on each of the three color bands of a 

color image, resulting in three bi-level images, Mx. y), fG(x, y). and f,(x. y) corresponding 

to the red, green, and blue bands, respectively. Then a thnsholded image, f(x, y). of the color 

image was produced by taking the foiiowing logical operation: 

where: 
@ = logicai "and" and 
CB = logical "or". 

The multi-band method was dso tested with the sixty five individual ,gain images 

previously used for testing of the single band thresholding. The thresholding results of the 

image in Fig 4.l(a) and (b) using the multi-band method are shown in Fig 42(d) and Fig 4.3 

(d), respectively. The test results showed that using multi-band methoà was at least as good 

as using the blue band for thresholding the test images. The C-langage code of the algorithm 

is given in Function auto-thresh 0 in Appendix A. 



4.2 Labeling 

After thresholding, a bi-level image is obtained with the object areas having one grey- 

Ievel value and the background having the other. The labeling process is to fuxther 

distinguish the objects fiom each other by assigning a unique label to each of the separated 

regions (considered as an object area) in the bi-level image. 

The labelhg process is based on the relationship between individual pixels. Consider 

a small area of 3 x 3 pixels, centered about a pixel called Po at row x and column y of an 

image: 

The pixel Po has 8 neighbors: P, and P7 in horizontal; PI and P, in vertical; P,, P,, P,, and P, 

in diagonal directions. They are caiied 8-adjacent neighbon of the pixel Po, and the pixels 

Pl, P,, P,, and P7 are called Cadjacent neighbors of the pixel Po. Based on the neighboring 

relationship of two pixels, two major rules are defined to decide whether the two pixels are 

comected to each other: (1) two pixels are konnected if they are 4-adjacent and have the 

same pixel values; (2) two pixels are 8-connected if they are &adjacent and have the same 

pixel values. Two komected pixels are 8 îo~ec ted ,  while two 8-comected pixels may not 

be komected Fig 4.4 shows the possible combinations of two komected pixels. Fig 4.5 

shows the possible combinations of two 8-comected pixels. 



Fig 4.4 The possible combinations of two 4-connecteci pixels. 

Fig 4.5 The possible combinations of hvo 8-comected pixels. 

In a thresholded image, an object area (separated region) is actuaiiy a group of pixels 

which are comected to each other, in either the komected or 8-comected sense. If a region 

consists of 4-comected pixels, it is calIed a komected region. Similady, if a region 

consists of 8-co~ected pixels, it is cailed an 8-co~ected region. By tracing the connectivity 

relationship ( k o ~ e ~ t e d  or 8-connected) between pixels, comected regions [object areas) 

in an image c m  be labeled (Iocated and differentiated from each other). 

Use of different comectivity relationships to locate regions in the same image may 

result in different divisions of the regions. Fig 4.6 shows an image containing one region in 

the 8-connected sense while three regions in the komected sense. The choice of the 4- 

connected or 8-connected neighbor relationships for region labeiing depends on the specific 

application. Since the grain kernels were imaged in a separated manner, there is no 

preference to one over the other. The komected relationship was chosen in the algorithm 

deveropment. 



Fig 4.6 An image containhg an 8-comected or three 4eonnected regions. 

The region labeling algorithm consisted of two functional phases: seed pixel 

seanihing and region growing. It was assumed that the regions to be identified are black (O) 

on a white (255) background. Starting from the left-top pixel, the algorithm scanned the bi- 

level image row by row until a black pixel (with O grey value) was found. This pixel called 

seed pixel was then assigned a grey value of 1 and used to "grow" a region. From the seed 

pixel, the algorithm grew a region by setting al1 the 4-adjacent black pixels of the seed pixel 

to a grey level value of 1. These pixels then became sub-seed pixels and their 4-connected 

black pixels were mced and set to the grey level value of 1. The region growing phase 

continued until al1 the black pixels, komected with the seed pixel, were found and set to 

the grey level value of 1. At this point, the first region was labeled with a grey level value of 

1 and the image had three grey levels: O - the unlabeled regions, 1 - the fmt region, and 255 - 

the background. The same procedure was repeated to label the second region with a grey 

level value of 2. the third with 3. and so on, until no black pixels remained. The searching 

of the seed pixel in each region labeiing process started fmm the seed pixel of the last 



labeling process. Since a bi-level image uses only 2 out of 256 possible grey levels. at 

maximum 254 regions can be labeled in a bi-level image using the remaining 1 - 254 grey 

levels. For an image containing more than 254 regions (abjects), numbers larger than 255. 

although they do not represent grey IeveIs, are be used for the labeling. The C language code 

of the komected region labeling algorithm is given in Function region-4 () and the C 

language code of the 8-comected region labeling algorithm is given in Function region8 

0 in Appendix A. 

4.3 Hole-filling and False-region-deleting 

In a thresholded image there could be some groups of pixels with the background 

grey level value (255) enclosed in object regions (O) (as seen in Fig 4.2(d) and Fig 4.3(d)) 

due to the bright spots on object surfaces (as seen in Fig 4.1). These pixel groups, called 

"holes", have to be set to the object grey value for the accurate measurement of the object 

features. h practical applications, dusts, dirty background spots, or smaii pieces of grain s hell 

may appear in a sample image (as seen in Fig 4.1@)), resulting in small false regions in the 

thresholded image (as seen in Fig 43(d)). It is necessary to eliminate these false regions to 

avoid further feature measwements on these regions. 

The hole-füling and srnail-region-deleting were perfonned nght after the labeling. 

The hole-nlling program (Function fd-holes 0 in Appendix A) is based on the fact that in 

a labeled image the background pixels are 4-co~ected to each other. while the hole pixels 

are enclosed in object regions although they have the same grey level value as the 

background pixels. Using any of the background pixels (usually the top lefi pixel) as the seed 
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pixel, the background was labeled with a grey level value not used in region labeling (usually 

254). Then only the hole pixels were of the white grey level value (255) in the image. The 

next step was to change the grey level value of the hole pixels to the values of the enclosing 

regions. The grey level value of the background was fmaiiy set back to the white (255). The 

false-region-deleting subroutine (Function del-reg 0 in Appendix A) simply calculated the 

area of each region in pixels and changed the values of the pixel in those regions which 

contained 60 or less pixels (an area of < 2.4 (mm)' ) to the background grey value (255). Fig 

4.7(a) and (b) shows the final labeled images of the images in Fig 4.l(a) and (b) after hole- 

filling and faise-region-deleting. 
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Fig 4.7 The Iabeled test images (see Fig 4.1). (a) Kernels of different grain types. (b) Healthy and damageâ wheat kernets and 

dusts. (The number at the lower right of each region is the grey level value of that region). 



FEATURE MEASUREMENTS 

The objective of thîs research is to use an image analysis system to identiw different 

types or different types of damaged grain kernels which are presented in the fom of color 

images. A human observer can make identifications by simply looking at the images, but a 

computer has to make decisions by anaiyzing a set of quantitative data extracted from the 

images. These quantitative data. called image features, may represent the objects (grains in 

this case) in an image in different aspects. The most commonly used image features cm be 

grouped under three categones: morphological, color, and texture. The morphological 

features are the measurements of the size and shape of the object. The color features describe 

the spectral characteristics of the object surface in terms of the three color band values. The 

texture features represent the texture content, such as smoothness, coarseness, and regularity 

of the object surface (Gonzalez and Woods 1992). This chapter describes al1 of the 

morphological and color measurements made on grain images. From these measurements, 

various features were selected for specific classification analyses (Section 6.2). 

5.1 Measurements on Individual Grain Kernels 

An image of individual grains contains spatially separated image regions. The 

segmentation process distinguishes each individual kernel from the background and from 

each other in the labeied multiple grey level image, with the white (255) grey tevel 

representing the background and each of the remaining grey levels representing a grain 



kernel. To take measurements on each individual kernel, a bi-level image of each kernel is 

'%ut out" from the labeled image and a color image of the kernel is "cut out" from the 

original color image. The C language code of the cornputer program for doing this is given 

as Function extract-obj 0 in Appendix A. Fig S.l(a) shows the bi-level image of the upper 

right kernel in the image shown in Fig 4.7(a). In the foilowing sections. this kemel image 

will be used as an example to illustrate the extraction of various measurements. 

5.1.1 Morphologid measurements 

The following concepts or definitions are essential in describing the morphological 

measurement extractions: 

Center of mass (CM) The concept of the center of mass of an image objcct is 

borrowed from the physical concept of the center of mass which refers to a point in 

an object that has the same amount of substance around it in any direction. For a grey 

level image f(x, y) containing a single object of N pixels, the center of mas, (cm,. 

c q ) ,  of the object can be defined as: 

1 cm, = - C x f(x,y) 
N n 

w here : 

n = object region in the x-y plane. 

In the case of a bi-level image of an object consisting of N pixels at locations (xi, yi). 

i =1, ... NT the CM of the object can be computed as: 



Fig 5.1 The (a) ares. (b) enter of mass (CM), (c) principal axîs (PA) and minor axis 
(MA), (d) boundary, (e) minimum encloshg rectangle (MER) and standard minimum 
encloshg rectangle (SMER), and (0 signatures of the upper right kernel in the image 
Fig 4.1(a). 



It can be viewed as a reference point or origin of the object. The C language code for 

computing the CM of an object in a bi-level image is given as Function 

centre-of- mass 0 in Appendix A. Fig 5.1 (b) shows the CM of the grain kemel in 

Fig S.l(a). 

Distance between two pixels The distance between pixel P, at coordinates (x,, y , )  

and pixel P2 at coordinates (x,, y3 is defmed as the Euclidian distance: 

= [(x, - xJ2 + (y, - y2)211R (5-3) 

Distance from a pixel to a üne The distance from a pixel P to a line L is defmed as the 

minimum of the distances between the pixel P and any pixels on the line L. 

Principal a& (PA) and minor axis (MA) The principal axis of an object in a bi-level 

image is defîned as a pixel line passing through the object's CM and having a 

minimum total pixel distance fiorn al1 pixels belonging to the object (Parker 1994). 

The minor axis is the pixel line passing through the CM in a direction perpendicular 

to the PA. Function principal-& 0 in Appendix A determines the PA of an object 

in a bi-level image by giving the coordinates of two pixels on the PA. Fig 5.1(c) 

shows the PA and MA of the grain kernel in Fig S.l(a). 

Boundary The boundary of an object in a bi-level image is defined as the pixels 

belonging to the object and having at least one neighbor that belongs to the 

background. As discussed in Section 4.2. pixel neighbonng relationship could be in 

Qadjacent sense or 8-adjacent sense. Consequentiy. the boundary of a bi-level object 

could be a 4-adjacent boundary or an &adjacent boundaxy. The 4-adjacent boundary 

are the pixels that belong to the object and that are 4-connected to each other while 



8-adjacent to the background. The 8-adjacent boundary are the pixels that belong to 

the object and that are 8 c o ~ e c t e d  to each other while 4-adjacent to the background. 

Since there is no preference to one over the other, the 8-adjacent boundary was used 

in the measurement extraction. (Hereafter the b o u n w  of an object aiways refers to 

the 8-adjacent boundary). Fig S.l(d) shows the boundary of the grain kemel in Fig 

S.l(a). 

Standard minimum enclasing rectangle (SMER) The standard minimum enclos ing 

rectangle (SMER) of an image object is the minimum enclosing rectangle (MER) 

oriented dong the PA of the object. Fig S.l(e) shows the MER oriented dong the x 

axis and SMER of the grain kemel in Fig S.l(a). 

5.1,1,1 Size measurements 

Area The area of an object was computed by counting the total number of pixels belonging 

to the object in the bi-level image. 

Perimeter The perimeter of an object was computed as the length of the object 

boundary. Since the boundary was expressed in a bi-level image as a group of pixels 

which belong to the object and are c o ~ e c t e d  to each other, the perimeter can be 

roughly estimated as the total number of the boundary pixels. However. a pixel 

represents a small squarc area, not a linear distance. The distance enclosed in a pixel 

depends on the way in which the physical object boundary passes through the small 

square m a  represented by the pixel. For example, assuming that the pixel represents 

an area of 1 unit by 1 unit, then the pixel represents 1 unit distance if the boundary 

passes the pixel area vertically or horizontaiiy. or 1.4142 unit distance if the 



boundary nuis diagonaiiy across the pixel area Although from a digitized object 

image there is no way to precisely determine how the boundary passes a boundary 

pixel, it is possible to make a guess by looking at the neighborhood of the pixel. Fig 

5.2 shows the neighborhood templates used for estimating the distance represented 

by a boundary pixel. A boundary pixel was assigned a pixel distance of di, if the 

boundary pixel and its 8-neighbors matched any of the templates in group i (i = a b, 

c). The perimeter of an object was then obrained by summing up ali the pixel 

distances represented by each boundary pixel. The program for computing the 

perimeter of an object from its bi-level boundary image is given as Function 

perimeter 0 in Appendix A. 

000 00a 0.0 0.0 00. a00 000 a00 
(a) @.O @@O 0.0 0.0 0.0 0.0 00. 0.. d.= 1.207 

00. 000 a00 00. 0.0 0.0 a00 000 

a00 00. O00 00. 000 .o. 
(b) 0.0 0.0 0.0 0.0 0.0 orno 

00. a00 a00 00. .o. 000 

000 0.0 000 000 0.0 0.0 
( )  a.. 0.0 am0 o.. ..O o.. 

000 0.0 0.0 0.0 000 000 

Fig 5.2 The templates used for estimating distances represented by boundary pixels. 

Length and width The length and width of an object were defined as the length and 

width of the SMER of the object. 

Length of principal axis (PA) The length of principal axis was calculated as the 



distance between the two intersection pixels of the PA and the boundary of the 

object. 

Length of minor arOs (MA) The length of the minor axis was caiculated as the distance 

between the two intersection pixels of the MA and the boundary of the object. 

Minimum and maximum radii and mean and variance of radii The distances between 

each pixel on the boundary and the CM were computed and their minimum, 

maximum, mean, and variance vaiues were calcdated as the minimum and maximum 

radii, and the mean and variance of radii, respectively. 

AU of the size measurements were fnst computed in pixel units and then converted 

to physical units (mm2 for the area and mm for the others) using the pixel sesolution 

(mrn/pixel) ( Section 3.3.2). 

5.1.1.2 Shape rneasurements 

Derîved rneasurements The foiiowing measurements were derived from the size 

measurements to characterize the shape of individual p i n  kernels: 

Rectangular ratio = Length / Width (5.4) 

Aspect ratio = Length of PA / Length of MA (5.5) 

Area ratio = (Length x Width) / Area (5-6) 

Radius ratio = Maximum Radius 1 Minimum Radius (5.7) 

Thinness ratio = ~erimete? / Area (5.8) 

Haralick ratio = Mean Radius / Standard Deviation of Radii (5.9) 

Moments For an object image f(x, y), the centrai moment of order (p + q) of the object, 

denoted as p,, is defined as (Gonzalez and Woods 1992): 



The normalized centrai moments are calculated as: 

qq = Pm f k m Y T  y = (p +q)/2 + 1 (5.1 1) 

From the second and third norrnalized central moments, a set of measuremen ts t hat 

are invariant to translation, rotation, and scaiing of the object (Gonzalez and Woods 

1992) can be denved as foilows: 

@ i = % 0 + 1 ,  (S. 12) 

@2=(%o-%d2+4( l i i  
2 (5.13) 

4 3  = (130 - 3i)d2 +(%I - q03I2 (5.14) 

9 4  = (130 + t) 12)~ +(1)21 + 1 0 3 ) ~  (5.15) 

95 = - 3 l l d ~ ) ~  + ~13[(7l,O + 11d2 - 3 (121 + 10d21  + 

(rlm- 3121)(%3 + %i)[(?o3 + %il2 - 3 (1112 + 130121 (5. 16) 

+6 = ((Izo-%~)I(I~M+T) 1212 - (%~+floj)~l + 4fl I 1 (1)30+17 12)(%1+103) (5.17) 

47 = (110 - 37)12)(t)o3 + %1)[(%3 + %112 - 3 (112 + %o)~] - 

((la - 3rlzi)('la + iliJ[(ll30 + ilid' - 3 (121  + qo3)'I (5.18) 

The above invariant moments were computed for each of the individual grain kemels 

h m  their bi-level images (f(x, y) = 1 for grain kernel regions), and the fust four of 

them were used as shape measurements (the last three were found tw small for most 

of the grain kernels). 

Signatures A signature represents a 2-dimensional object shape by a set of l-dimensional 

data. There are different ways to extract a signature fiom an object image. For 



example. the radius as o function of the angie between the radius line and the PA is 

a signature (Gonzalez and Woods 1992). In this study, three types of signatures were 

extracted fkom the bi-level grain images. 

Consider an object with the CM at the coordinates ( c 4 ,  c q )  and the PA 

defined by line b: a[O] x + b[0] y + c[O] = O. A Iine that intersects the PA at point 

( c q ,  cmJ with an angle of 8 can be determined by a[e] x + b[0] y + c[e] = 0. 

where: 

@I = a101 - ~ [ O I  tg(@, (5.19) 

b[0] = b[O] + a[O] tg@), (5.20) 

c[8] = a[0] cm, - b[0] c q .  (5.21) 

Using Equation 5.19 to 5.21, Iines that intersect the PA at point (c-, cmJ with an 

angie of dû, 2x/8,3x/8,4rc/8,5rc18,6x/8, and 7x/8, respectively, were detennined 

as Li: a[i] * x + b[i] * y + c[i] = O, i = 1,2, ... 7. The seven lines, together with the 

PA, divided the object area into 16 fan-shape subregions. The subregions were 

numbered as subregion i (i = 0, 1, ... 15) in such a way that subregion O was the one 

enclosed by lines L, and L, and adjacent to the intersection point of the boundary and 

the PA farthest from the CM and subregion 8 was the other one enclosed by the lines 

L,, and L,. The subregion i was the one enclosed by the lines Li and LModU,eMi+i, and 

next to subregion i-1 and subregion i+8 was the other one enclosed by the lines Li 

and (i = 1. ... 7), where ModuleM(i) = i, if i <M or i - MT if i ZM (Fig 

S*l(Oh 

The sub-area A,, length of perimeter segment Pi, and mean radius R,, were 



calculated as for each of the subregion numbers i (i = 0, 1, ..Xi). These three 

sequences can be viewed as three types of signatures of the object shape: area. 

perimeter, and radius signatures. They are invariant to transformation and orientation. 

However h m  the dennition they depend on xaling. To achieve scaling invariance, 

A,, Pi, and Ri were normalized by the area A, the perimeter P, and the maximum 

radius R- of the object, respectively:. 

a(i) = U A .  p(i) = PCp, r(i) = R A u  (3.-- - 7 7 )  

The orientation invariance of a(i). p(i), and r(i) is based on the assumption that the 

same starting point (the intersection point of the boundary and the PA farthest from 

the CM) can be located on an object regardless of the object's orientation. 

Unfortunately, it was found that the staning point could be located on either the germ 

or the other ends of a grain kemel, depending on the kernel's orientation and location 

in the FOV. This may be due to the non-unifonn magnification over the FOV 

introduced by the lens distonion and image digitization. As a result, subregion i 

couid be numbered as subregion Module L6(i+8) if the orientation or location of the 

kemel was changed. Consequently, the first halves of sequences a(i). p(i), and r(i) 

could become the last halves. In other words, the sequences could be shifted 

circularly by half. To cope with fhis problem, the magnitudes of the Fourier 

aansforms of the normalized sequences were computed as the final area, perirneter, 

and radius signatures of the object by Equations 523,524, and 5.25 (N = 16). They 

are invariant to the starthg point (thnefore orientation) because the magnitude of the 

Fourier transfom of a sequence is invariant to the circulas-shift of the sequence. 



1 N-' N-I 

R(k) = 1 -c r(i)exp[-jZxiWN] ( r(i)cos(2~~ik/~)]~ +[c r( i )cos(2rci~~)]~  
N i=o N i =O 

(5.25) 

A List of the total 68 morphological measurements extracted fiom an individuai grain 

kernel is given in Table 5.1. The C Ianguage code for extracting the morphological 

measurements is given as Function she-shape-features in Appendiv A. 

5.1.2 Color measurements 

5.1.2.1 Measurements derived €rom normaiized RGB signals 

The normalized RGB signals. r(x, y). g(x, y), and b(x, y) were computed for each 

image fiom its three color band signals, R(x, y), G(x. y). and B(x. y). respectively, using the 

Equation 3.5. The foiiowing measurements were derived from the normaiized RGB signals 

of a kemel region Q which consisting of N pixels. 

Mean normaiized RGB signais 

Variances of normaiized RGB signais 



Table 5.1 Morphological measurements on individual grain kerneis 
-- - -- 

Number Measurement Code 

Size measurernents 

1 Area 

2 Perimeter 

3 Length 

4 Width 

5 Length of PA 

6 Length of MA 

7 Minimum radius 

8 Maximum radius 

9 Mean radius 

10 Variance of radii 

S ha= measurements 

I l  Aspect ratio 

12 Rectangular ratio 

13 Radius ratio 

14 Thinness ratio 

15 Area ratio 

16 Haralick ratio 

17 - 20 F i t  four invariant moments 

21 - 36 Area signatures 

37 - 52 Perimeter signatures 

A 

P 

L 

W 

LPA 

LMA 

K i n  

k m  

Rn," 

var, 

aspR 

rc tR 

radR 

thnR 

areaR 

hraR 

mntl - mnt4 

AS1 - AS16 

PSI -PSI6 

53 - 68 Radius signatures RSl - RS16 



Ranges of normalized RGB signals 

Ar = rmu - rmin 

Ab = b-- b,, = max[b(x,y)] - min[b(x,y)] 
Q Q 

5.1.2.2 Measurements derived fmm BSI signals 

The HSI color model is another cornmoniy used color model. In the HSI color model. 

color is descnbed by three attributes: hue, saturation, and intensity. Hue is an attribute 

associated with the dominant pure color (such as pure yellow. pure red, etc.); saturation 

refers to relative purity or the amount of white light mixed with a hue; and intensity is 

defined as a measure of the brightness of achromatic Light. 

The HSI color model owes its usehilness in image processing to two principal facts. 

First, the intensity attribute 1 is decoupied from the color information. Second, the hue 

attribute H and the saturation attribute S, together calied chromaticicy. are intimately related 

to the way in which human beings perceive color (Nevatia 1982). These features make the 

HSI color model an ideal tool for developing an image aigorithm based on some of the color 

sensing properties of the human visual system (Gonzalez and Woods 1992). 

The amibutes H, S. and 1 can be denved fiom the normalized RGB values r, g, and 

b by (Gonzalez and Woods 1992): 



H = cos'' { 
0.5 Kr - g) + (r - b)l 1 

Kr - g)2 + (r - b)(g - b)lm 

The HSI signals, H(x, y), S(x, y), and I(x, y) were computed for each image from its 

three color band signals. R(x. y). G(x, y), and B(x, y). respectively, for each image using the 

Equations 3.5 and 5.29. The following measurements were denved from the HSI signals of 

a kemel region Q of N pixels.: 

Mean ElSI signals 

Variances of ES1 signals 

Ranges of HSI signals 

AH = Hm- H,, = max[H(x,y)l - nWHCx.y)l 
Q Q 

5.1.2.3 Color moments 

In Section 5.1.1.1 the invariant moments defined by Equations 5.12 to 5.18 were 

computed on the bi-level grain images (f(x, y) = 1 for grain kemel regions) as shape 



rneasurements ai (i = 1, ... 7). This time, the invariant moments, cailed color momeats, were 

computed on each of the three normalized color bands, namely r(x, y), g(x, y), and b(x, y). 

for each individual grain kemel as color measurements @Ri, @Gi, and @Bi (i = 1, ... 7). 

respeaively. The f(x, y) was set equai to r(x, y), g(x, y), and b(x, y), respectively instead of 

1, if the pixel at (x, y) belongs to a kemel region. 

5.1.2.4 RGB histograms 

An M-band histogram of an object in a digital image with grey levels in the range [O. 

L- 1 ] is defmed as a discrete function H(k) = nJN, k = O, . .., M- 1 ( 1 r Ms L); w here k is the 

band number, n, is the number of pixels in the object region with grey levels in the kth band 

range [k*UM, (k+l)*UM-11, and N is the total number of pixels in the object region. 

Because a color image consists of three grey level images, narnely R, G, and B images. 

correspondingly three M-band histograms, HR(k), HG@), and HB(k), of an object in a color 

image can be obtained from the three grey level images. These histograms provide a global 

description of the object's color appearance. The selection of the number of bands, M. 

depends on specific applications. Generally, the larger M is the more precisely do the 

histograms describe the color appearance. However, when the histograms are used as color 

features to represent cotor differences between different objects, this statement is not always 

tme. In addition, a larger M means a larger number of measurements (the three histograms 

give 3 x M measurements in total). A preliminary test was conducted to compare the 

histograms with M = 8, 16, and 32, by exarnining the signifïcmce of the corresponding 

measurements to the classification of the different types of cereal grains. It was found that 

ldband histograms gave the best measurements. The 48 measurements fiom the three 16- 



band histograms, HR(k), &(k), and HB(k), were finally used as color measurements. 

A list of the total 78 color measurements extracted from an individual ga in  kernel 

is given in Table 5.2. The C language code for extracting the color measuremen ts is gi ven 

as Function color-featureso in Appendix A. 

5.2 Measurements on Bulk Grain Images 

For the buk grain image analysis, ail the color measurements used for the individual 

grain image analysis except the color moments were extracted from the color buik grain 

images. They were computed over the whole image instead of individuai kemel regions. The 

histograms of R, G, and B were computed as 32-band instead of ldband. A prelirninary 

study showed that the 32-band histograms were better than the 16-band histograms in 

discrirninating the bulk images of different grain types. A list of the total 114 color 

rneasurements extracted from a bulk grain image is given in Table 5.3. The C language code 

for extracting the color measurements from a buik grain image is given as Function 

bulk-features() in Appendix A. 



Table 5.2 Color measurements on individual grain kernels 

Number Measurement Code 

Mean of r 

Mean of g 

Mean of b 

Variance of r 

Variance of g 

Variance of b 

Range of r 

Range of g 

Range of b 

Mean of H 

Mean of S 

Mean of 1 

Variance of H 

Variance of S 

Variance of 1 

Range of H 

Range of S 

Range of 1 

ldband histograms of R 

ldband histograms of G 

16-band histograms of B 

Fit four invariant moments of r 

First four invariant moments of g 

Fit fow invariant moments of b 

rm, 

& a n  

b m a n  

var, 

var, 

As 

Ag 

Ab 

ba 

Sm, 

hm 
VarH 

v~u, 
vari 

AH 

AS 

AI 

hstR 1 - hstR 16 

hstG1- hstG16 

hstBl - hstB16 

mntrl - mntr4 

rnntgl - mntg4 

rnntbl - mntb4 



Table 5.3 Color measurements on bulk grain images 

- -- 

Number Measurement Code 

1 Mean of r rm, 

2 Mean of g grna 

3 Mean of b ~~ 
4 Variance of r Var, 

5 Variance of g Var. 

6 Variance of b vab 

7 Range of r Ar 

8 Range of g Ag 

9 Range of b Ab 

10 Mean of H Hm,, 

1 1  Mean of S Sm," 

12 Mean of 1 kWan 
13 Variance of H v% 
14 Variance of S va% 
15 Variance of I va1 
16 Range of H AH 

17 Range of S AS 

18 Range of 1 AI 

19 - 50 32-band histograms of R hstRl - hstR32 

51 - 82 32-band histograms of G hstG1 - hstG32 

83 - 114 32-band histograms of B hstB1 - hstB32 



VI CLASSIFICATION ANALYSIS 

6.1 Classification Criteria (Classiners) 

Classification analysis needs the use of a decision mle, caüed a classifiation 

criferion, to classify objects into two or more known groups, called classes, on the b a i s  of 

the quantitative features extracted h m  the objects. A set of features extracted from an object 

is called an observation of the object. The classification criterion is usuaily derived from the 

observations of known classes, called the training or designing data. The derived 

classification criterion then can be applied to classify new observations, called the test data. 

A classification criterion partitions an observation or feature hyper-space, R, into 

hyper-regions ai, i = 1, ..., N, where N is the nurnber of classes. An object is classified as 

corning from class q if its corresponding feature vector or observation x, a point in the 

hyper-space a, belongs to the region ni. There are many methods for developing a 

classification critenon fiom a training data set. 

6.1.1 Statistical methods 

The statistical methods are based on the Bayes minimum error rule (Duda and Hart 

w here: 
P(wi 1 x)= the posterior probability, by which an object with a feature vector x 

belongs to class wi, 
f - - "belongs to" , and 
v - - "for ail". 



The rule States that to minimize the average probability of error. an object should be 

classified as belonging to a class wi that maxunizes the posterior probability P(w, 1 x). 

By applying the Bayes' theorem: 

a more practical formulation of the mle can be obtained as 

where: 
P(wi) = the prior probability by wbich an object comes fkom ciass wi, 
p(x) = the probability density function for x, and 
p(xl w,) = the class-conditional probability density function for x. 

In practicd applications, it is rare that the posterior probabiiities or the class- 

conditional probability density functions are known. They usually need to be estimated fiom 

the training data set. There are two fundamental approaches to do this. 

6.1.1.1 Parametric approach 

The parametric approach is based on the assumption that the class-conditional 

probabiiity density function for x, p(xl w,), has a form of multivariate nomal distribution: 

where: 
d = the dimension of the feature vector, 
pi = the d-dimensional vector containing feature means in class wi, 
Xi = the covariance ma&, and 
' means transfer. 

So to estimate the probability density one needs to estimate the parameters fi  and 2,. The 

parameters, pi and &, can be estimated from the training data set using different parameter 

estimation methods (Hand 1981, Chapter 3). The prior probability P(wi) can also be 



estimated from the training data set. Then the classification cnterion. Equation (6.1) or (6.3). 

can be determined in an analytical forrn. 

6.1.13 Non-panunetrie approach 

The non-parametric approach calculates the postenor probability P(wi 1 x) directly 

from the training data set without any assumption of the underlying probability density. 

There are several methods for estimating P(wi 1 x) such as the histogram, the kemel method, 

the k-nearest-neighbor method, and the series method (Hand 1981, Chapter 2). The k- 

nearest-neighbor rnethod was used in this study. 

The idea of the k-nearest-neighbor method is quite straightforward. Let ni be the 

number of the training set points in class w,, i = 1, ..., N. and n be the total number of the 

training set points (so that n = xi ni ). For a new observation x, the method calculates the 

distances from x to each of the training set points and fin& out the k points that are the 

nearest to x. Suppose that amongst these k points there are 4 from class wi. Then the class- 

conditional probability density function at x is estimated as: 

~ ( ~ 1  ~ i )  = k, IIn, Vk(x)l (6=9 

The pnor probability by which an object cornes fkom class wi is estimated as 

P(wi) = n, / n (6.6) 

The probability density function for x is estimated as: 

p(x) = k 1 [n V,(x)l (6-7) 

where Vk(x) is the volume of the hyper-sphere which centers at x and just encloses the k 

nearest points of the training set. The postenor probability is given by the Bayes' theorem 

(Equation 6.2) as: 



By the Bayes minimum error d e  (Equation 6.1), this results in the classification critenon: 

classify an object with a feature vector x as belonging to class w,, if k, = max, (4). 

The parametnc approach has the advantage that the derived classification criterion 

is of an anaiytical form which c m  be easily transferred into a computer classification 

program. However, the assumption of the multivariate normal distribution, made for the 

class-conditional probability density function in deriving the classification cnteïion, could 

be incorrect or iasufficient in many appiications and may lead to a large classification errors. 

The k-nearest-neighbor approach avoids the subjective assumption by directly estirnating the 

posterior probability P(wi 1 x) from the training data set. A disadvantage of this approach is 

that the derived classification cntenon cannot be expressed anaiyticaily. Al1 of the training 

data must be retained - the distance fiom a new observation x to each of the training set 

points must be detemiined to choose the k neamt points. This means a large amount of 

computer mernory and a slow classification process. In addition, the estimation of the 

posterior probability is biased (Rosenblatt 1956) towards larger values. 

6.1.1.3 SAS Procedure DISCRIM. 

A statisticd classification analysis procedure, DISCRIM, is available in SAS (SAS 

1990). The procedure cm denve a classincation criterion fiom a training data set using either 

parametric or non-parametric approaches and apply the derived classification cntenon to 

classi@ a new (test) data set during the same execution of the procedure. If a paramevic 



approach is used, the denved classification criterion is given in an output data set. 

The DISCRIM can evaluate the derived classification cntenon in three methods. The 

fmt, caiied re-substir~rion classt~cution, is to apply the classification criterion derived from 

a training data set to the same data set and then count the number of mis-classification 

observations cailed emr-count estimate in each class. This error-count estimate has an 

optimistic bias. The second method, called cross-validation classification, is to apply the 

classification criterion derived from the N-1 out of the N observations of the training data 

set to the one observation left-out. The process is repeated for each of the N training 

observations and then the misclassification rate for each class is cdculated as the proportion 

of observations in the class that are mis-classified. The estimation is nearly unbiased but with 

a relatively large variance. The last method, caIied hold-out classification, calculates the 

error-count estimate by applying the classification criterion derived from a training data set 

to a test data set and then count the number of mis-classified observations in the testing set. 

6.1.2 Neural network method 

6.1.2.1 Neural networks 

A neural network (NN) is a computing network of numerous simple, highly 

intercomected processing elernents called neurons or ndes. A neuron has many continuous- 

valued input signais x = [xi] , i= 1, 2, ..., N, which represent the activicy at the input or the 

momentary frequency of neural impulses delivered by other neurons to this input (Kohonen 

1988), and an output y which represents the response of the neuron to the input signals. The 

relationship between the inputs and the output of a neuron is described by the neuron's 

transfer function. y = f[x]. In the simplest mode1 of a newon. the output value or the 



frequency of the neuron, y, is often approximated by: 

where K is a constant and is a noniinear function which takes the value +l for positive 

arguments and -1 (or 0) for negative arguments. The wi is called "synaptic efficacy" 

(Kohonen 1988), or weight, and 0 is a threshold- 

For some years now, many neural network models, dating as far back as the 1 960's 

(Rosenblatt 1962), have been developed with different neuronal transfer functions, network 

structures, and training methods. Most of them have had limited real-world applications. 

However, the rnultilayer neural nehvork with the generalized &ka ride for feurning by back- 

propagation has been used successfuiiy in various practical problems, especiaily in pattern 

recognition. 

6.1.2.2 MNN and B-P algorithm 

A rnultilayer neural network with the generalized delta rule for learning by back- 

propagation learning algorithm (Rumelhart et al. 1986) is an effective system for learning 

discriminants for classes from a set of examples (Sejnowski and Rosenberg 1987, Tesauro 

and Sejnowski 1989). In general such a network is made up of sets of neurons (nodes) 

arranged in several layen (Fig 6.1). There are three distinct types of layers: the input layer. 

the hidden layer(s), and the output layer. The connections between the neurons of adjacent 

layers relay the output signals from one layer to the next. The input layer receives the input 

information and distributes the information to the next processing layer (the fmt hidden 

layer). The number of the neurons in the input layer equals to the dimension of the input 



vector x (the number of the features). The hidden and output layers process the incorning 

signals by amplifying or attenuating or inhibiting the signais through weighting factors. 

Except for the input layer neuroas, the network input to each neuron is the sum of the 

weighted outputs of the neurons in the previous layer. The number of the neurons in the 

output Iayer is determined by the number of the classes under investigation. The number of 

hidden Iayers and the number of neurons in each hidden layer depend on specific 

applications. 

Input laye; Hidden layer t l  Hidden layer #2 Output layer 

Fig 6.1 A schematic depiction of a mulülayer neural network. 

The application of the B-P algonihm involves two phases. During the first phase the 

inputs x are presented and propagated fonuard through the network to cornpute the outputs 

y@) in presentation n for each unit k, i.e.: 



where: 

net,(n) = zj wkj(n) yj',(n) (6.11) 

wkj(n) is the weight of the comection from neuron j in the previous layer <O neuron k in the 

current layer in presentation n, and fJJ is the transfer function at unit k which is 

differentiable and nondecreasing. A widely used choice for a transfer function is the sigmoid 

funciion: 

where 8, is the threshold for unit k. 

The second phase involves a backward pass through the network (analogous to the 

initial forward pass), during which, the difference between the actual output and desired 

output generates an error signal bk(n) and this error signal is passed to each unit in the 

network and the appropriate weight changes are made according to: 

w,,(n+l) = w,,(n) + E 6,(n) y,(n) + a (wjk(n)-wjk(n-l)] (6.13) 

where E is the learning rate which is a scalar referring to learning speed, a is the learning 

momentum which is a scalar determinhg the effects of past weights on the convergence of 

the network in the weight space. This second, backward pass allows the recursive 

computation of oj(n) (Rumelhart et al. 1986). Once 6,(n) arrives at the desired error, the 

network wiii have found a set of weights that produce the comct  output for every input, in 

other words, the MNN wiii have stored the class knowledge in its weights and be ready to 

classifl new input data. 



When working as a classifier, an MNN operates as a black box which receives an 

input vector x (a set of observations) and produces responses y, from its output units j Cj = 

1,2, .... M. where M depends on the number of classes). Generaliy, yj = 1 if neuron j is active 

for the current input vector x, and yj = -1 (or O) if it is inactive. That means that for a specific 

input vector x, the outputs give the binary representation of its class number. 

Like a k-nearest-neighbor classifier, an MNN classifier l ems  the class knowledgr 

directiy from the training data set. Therefore, it is unnecessary to make any assumptions 

regarding the underlying probability density functions. An advantage of the MIW classifier 

over a k-nearest-neighbor classifier is that it takes less computer memory and less time in the 

classification process. After training (learning), the MNN classifier is specified by a set of 

processing elements which are amged in a certain topological structure and interconnected 

with fixed connections (weights). It can be easily transferred into a computer classification 

program. There is no need for retaining al1 the training data and no extensive computation 

is involved in the classification process. However, a problem in designing the MNN classifier 

is that there is no theoretical method available to optimally determine the network structure. 

the number of the hidden layers, and the node numbers in each hidden layer, which control 

the MNN's leaming and classifying ability. Although, it has been shown that an MNN with 

two hidden layers can fom any discriminant surface (Pao 1989)' MNNs with three or more 

hidden layers are also used for their efficiency and speed in leamïng (training). An MNN 

with a smaü and simple hidden layer structure may not grasp sufficient class knowledge for 

classification, while an M W  with a large and cornplex hidden layer structure may tend to 

memorize the specific patterns in the training data set rather than l e m  the general class 



information. The best way for the structure design is to stan with small number of hidden 

layers and processing nodes. The network complexity can be gradually increased until 

suffcient training degree is obtained. The time required for training an MNN strongly 

depends on the complexity of the network, the size of the training data set, and the cornputer 

speed. For a complex MNN and a large size training data set, the training process may take 

several days. For example, it took approximately 48 h to train an MNN of a 24-6-45 

structure with a training data set of 29 400 samples, where 24-6-44 represents a network 

consisting of an input layer with 24 nodes, two hidden layers with 6 nodes in the first and 1 

nodes in the second, and an output layer with 5 nodes. 

6.1.2.3 Qnet 

A commercial software package, Qnet (Qnet V2: 32-bit Neural Modeling for 

Windows, Vesta Service, Inc., 1001 Green Bay Rd., Box 196, Winnetka, IL) was used for 

the MNN modeling in this research. Qnet provides graphitai tools under Windows for 

creating, training, and testing (recaiiing) an MNN. For creating an MNN. Qnet allows 

specifjring the number of input nodes, the number of hidden layen and the number of nodes 

in each hidden layer, the number of output nodes, the connections between layers, and the 

transfer functions used in each layer. Qnet uses an optimized B-P algorithm for training an 

MNN. The training parameters, leaming rate e, learning moment a, and maximum nurnber 

of iterations can be specified at the beginning of the training and automatically or manually 

adjusted during the training according to the training situation. The training process can be 

monitored through the real-time training analysis tools, such as the training e m r  history plot, 

the testing error history plot, the leamhg rate history plot, the targets/output plots, the 



divergence check, and so on. Qnet cm automatically Save the training results (tnined 

networks) at a rate or interval specified by the user, which allows unattended training 

(recovering fiom overtraining situations and training divergence). The trained MNN can be 

recalled in Qnet for testing with new observation data or output in a file (*.net) which can 

be incorporated into W++ application programs. 

6.2 Feature Selection 

For a given classification probiem, there could be a large number of measurements 

which can be extracted from the objects to be classified. In the present case, there are 146 

measurements extracted from each individual grain kemel image and 1 14 measurements 

extracted fiDm each bulk grain image. Some of them may be redundant or highly correlated. 

It is, therefore, necessary to select an effective feature set from the extracted measurements 

which leads to satisfactory classification results. 

The feature selection was done in two steps. F i t  a SAS procedure STEPDISC (SAS 

1990) was used to select a group of feature models of different sires (feature numben), 

according to the feature's contributions to the discriminatory power of the corresponding 

rnodel. Then the feature models suggested by STEPDISC were M e r  evaluated using SAS 

DISCRIM and an optimal feature mode1 was then selected for the final classification 

analysis. 

6.2.1 Stepwise discriminant analysis 

The SAS procedure STEPDISC selects a set of features step by step, using forward 

selection, backward elhination, or stepwise selection methods. Two criteria can be used to 



chwse measurements to enter or leave the selecred fèature set: the significance level and the 

squared partial correlation. The stepwise selection rnethod and the significance level criterion 

were used by default in the feature discriminant analysis. A minimum signifiant level of 

0.15 was specified for a measurernent to enter and stay in the selected feature set. The 

stepwise selection method starts with no measurementq in the selected feature set. At each 

step, a covariance analysis is performed with the measurements already in the selected 

feature set serving as covariates and the measurements not in the set k ing  the dependents. 

If the measurement in the set that contributes l e s t  to the discriminatory power fails to meet 

the cnterion to stay, then the measurement is removed from the set. Otherwise, the 

measurement not in the set that conuibutes most to the discriminatory power is entered. The 

feature selection process continues until al1 measurernents in the selected set meet the 

cnterion to stay and none of the other measurements meets the criterion to enter. The 

stepwise discriminant analyses were camied out using the measurement data (observations) 

from al1 the available grain samptes. 

6.2.2 Evaluation of feature models 

To select an optimal feature model, the discriminating abilities of the different size 

feature models suggested by STEPDISC were evaluated using SAS DISCRIM. The 

evaluation started with the feature model of the first 4 features suggested by STEPDISC, and 

gradually incorporated more features from the feature set suggested by STEPDISC. Each 

time the next 4 features on the feature list were added in. For each feature model, both the 

parametric (quadratic) and the non-parametric (k-nearest neighbor) classification criteria 

were derived fiom al l  the available observations (grain samples) and the cross-validation 



method was used to evaiuate the discnminating abilities of the feature model under the 

parametric and non-parametric classification critena. The mean of the classification 

accuracies (MCA) for each class was computed for each of the two classification criteria and 

used as a measure of the discrirninating ability of the corresponding feature model. The 

feature model with the highest mean classification accuracy was chosen as the feature model 

for the final classification anaiysis. 

6.3 Classification Anaiysis 

6.3.1 Grain type identification of individual grain kernels 

Both of parametric and non-parametric statistical classifiers were used with thrsc 

types of feature models: namely morphological, color, and cornbined (morphological and 

color). For each type of the f e a m  models, an optimal set of features was selected using the 

feature selection method described in Section 6.2. The data set consisted of 42 000 

observations of grain kernels collected from five grain types and seven grain categories: 

CWRS wheat grade 1, 2, and 3; CWAD wheat; barley; rye; and oats. Each category 

contained 6000 observations (kemels) from 20 growing regions (300 kemels per region). 

Each grain type was considered as a class ( CWRS wheat grade 1,2, and 3 were treated as 

a single class). The hold-out method was used for the Sclass classification analysis. The data 

set was split into three subsets according to the growing regions. The first subset contained 

the obsecvations of the gain kemels from 7 growing regions (14 700 grain kemels), the 

second subset contained the observations of the grain kemels from another different 7 

growing regions (14 700 grain kernels), and the third subset contained the observations of 



the grain kemels from the remaining 6 growing regions (12 600 grain kemels). Using any 

two of the three data subsets as the training data to derive the classification criterion 

(classifier) and the remaining one as the testing data to test the denved classifier, three 

training and testing data set pairs (Sets 1.2, and 3) were available. Correspondingly, three 

classification results were obtained for each of the two statistical classifiers (parametric and 

non-parametric) with each of the three feature models. The average of the three classification 

results was computed and considered as the classification result for the classifier with the 

feature model. The means of the classification accuracies for each of the five classes were 

calculated and used as a measure of the discrimination abiIity of that classifier with that 

feature model. For cornparison, a neural network classifier was applied with the feature 

mode1 which resulted in the highest mean classification accuracy when used with either the 

parametric or non-parametric statistical classifier. 

6.3.2 Identification of damaged CWRS wheat kernels 

Both the parametric and non-parametnc statistical classifien were used with three 

types of feature models: namely morphological, color, and combined (morphological and 

color). For each type of the feature models, an optimal set of features was selected using the 

feature selection method described in Section 6.2. The data set consisted of 7000 

observations of CWRS wheat kemels in seven categones: undamaged, broken, black- 

point/smudged, grass-greenlgreen-frosted, mildewed, heated and bin-/fise-bumt. Each 

category, containhg 1OOO observations (kemels), was considered as a class. The hold-out 

method was used for the 7-class classification analysis. The data set was split into three 

subsets. The fkst subset contained the observations of the 3 0  randomly selected kemels for 



each of the 7 classes (2 100 kernels in total), the second subset contained the observations of 

another 300 randomly selected kernels for each class (2 1ûû kemels in total), and the third 

subset contained the observations of the remaining 400 kernels in each class (2800 kemels 

in total). Using any two of the three data subsets as the training data to denve the 

classification critenon (classifier) and the remaining one as the testing data to test the derived 

classifier, three training and teshg data set pairs (Sets 1. 2, and 3) were available. 

Correspondingiy, three classification results were obtained for each of the two statistical 

classifiers (parametric and non-pararnetric) with each of the three feature models. The 

average of the three classification results was computed and considered as the classification 

result for the classifier with the feature model. The means of the classification accuracies for 

each of the seven classes were calculated and used as a measuse of the discrimination ability 

of that classifier with that feature model. For cornparison, a neural network classifier was 

applied with the feature model which resulted in the highest mean classification accuracy 

when used with either the parametric or non-parametric statistical classifier. 

6.3.3 Grain type idenaf~cation of bulk grain samples 

An optimal set of features was selected from the 114 extracted color features using 

the method described in Section 6.2, Both the parametric and non-parametric s tatist ical 

classifiers were used with selected features. The data set consisted of 420 observations of 

bulk grain samples of five grain types and seven grain categories: CWRS wheat grade 1,2, 

and 3; CWAD wheat; barley; rye; and oats. Each category contained 60 observations (bulk 

samples) from 20 growing regions (3 samples per region). Each grain type was considered 

as a class (CWRS wheat grade 1, 2, and 3 were treated as a single class). The hold-out 



rnethod was used for the 5-clâss classification analysis. The data set was split into three 

subsets according to the growing regions. The fmt subset contained the observations of the 

grain kemels h m  7 growing regions (147 samples), the second subset contained the 

observations of the grain kernels h m  another different 7 growing regions (147 samples), 

and the third subset contained the observations of the grain samples fiom the rernaining 6 

growing regions (126 samples).Using any two of the three data subsets as the training data 

to derive the classification criterion (classifier) and the remaining one as the testing data to 

test the denved classifier, three training and testing data set pairs (Set 1, 2, and 3) were 

available. Correspondingly , three classification res ults were obtained for eac h of the two 

statistical classifiers (parameûic and non-parametric) with the selected feature model. The 

average of the three classification results was computed and considered as the classification 

result for the classifier with the feature model. The means of the classification accuracies for 

each of the five classes were calculated and used as a measure of the discrimination ability 

of that classifier with that feature model. For cornparison, a neural network classifier was 

applied with the selected feature model. 

6.3.4 Grade identification of bulk wheat samples 

An optimal set of features was selected h m  the 1 14 extracted color features using 

the method described in Section 6.2. Both the parameaic and non-parametric statistical 

classifiers were used with the selected featwes. The data set consisted of 180 observations 

of bulk CWRS wheat samples coiiected in th= categories: CWRS wheat grade 1,2, and 3. 

Each category had 60 observations (bulk samples) fkom 20 growing regions (3 samples per 

region). Each grade was considered as a class. The hold-out method was used for the 3-class 



classification analysis. The data set was split into three subsets according to the growing 

regions. The first subset contained the observations of the grain samples from 7 growing 

regions (21 samples), the second subset contained the observations of the grain kemels from 

another different 7 gmwing regions (21 samples), and the third subset contained the 

observations of the grain samples fmm the remahhg 6 growing regions (18 sarnples).Using 

any two of the three data subseu as the training data to derive the classification criterion 

(classifier) and the remaining one as the testing &ta to test the derived classifier, three 

training and testing data set pairs (Set 1, 2, and 3) were available. Correspondingly, three 

classification results were obtained for each of the two staîisticai classifien (parameuic and 

non-parametric) with the selected feature model. The average of the three classification 

results was computed and considered as the classification result for the classifier with the 

feature model. The means of the classification accuracies for each of the three classes were 

caiculated and used as a mesure of the discrimination ability of that classifier with that 

feature model. For cornparison, a neural network classifier was applied with the selected 

feature model. 



RESULTS AND DISCUSSIONS 

7.1 Iiiumination Design 

7.1.1 Test 1: sensitivity to lamp voltage variations 

Fig 7.1 shows the average Rv. Gv. and Bv of the five replicate tests (see Section 

3.23) with the lamp voltages in the range of V, - 1 .O V to V, +l .O V for the different light 

sources. Data for each curve were consistent with standard deviations for the R, G, and B 

color bands and for the 2 1 voltage levels behg less than 0.0016.0-00 16.0.0025, and 0.0020 

for the incandescent, halogen, fluorescent, and controlled fluorescent lamps, respec tivel y. 

The results showed that the output intensities of the R, G, and B signals varied 

linearly with the lamp voltage for ai i  of the light sources. Given a 1 V change from the rated 

supply voltage, the maximum changes among the three color signals occurred in the blue 

(1.8%). blue (1.3%). green (OS%), and green(0.596) bands for the incandescent, halogen, 

fluorescent, and controlied fluorescent larnps, respectively. 

The Rv, Gv, and Bv values were affecteci differentiy by a voltage change for a given 

lamp type. Slopes were different among the colors for the incandescent and halogen bulbs 

(Figs 7.l(a) and (b)) but were nearly identical for the fluorescent lamp (Fig 7.l(c)). These 

results indicated that lamp voltage changes from the rated supply voltage caused slight color 

shifts in the light outputs of the incandescent and halogen bulbs and little change in the 

spectral output fiom the fluorescent larnp. 

Incorporating the hght controller in the power supply for the fluorescent lamp (Fig 





7.l(d)) did not show any improvement. because the changes in the light output caused by the 

changes in the lamp voltage were widiin the control accuracy of the light controller. 

7.1.2 Test II: stability 4 t h  time 

Fig 7.2 shows the average Rt, Gt, and Bt of the five replicate tests (see Section 

3.2.4)over a duration of 8 h for the different light sources. Data for each cuve  were 

consistent with standard deviations for the k e  curves and for the 48 time intervais k ing 

less than 0.007, 0.01 1, 0.020, and 0.0 1 1 for the incandescent, halogen, fluorescent, and 

controlled fluorescent lamps, respectively. 

The results (Fie 7.2(a), (b), and (c)) showed that there were significant changes in 

the outputs fiom the three light sources over 8 h. The three color signals of the light changed 

differently with maximum differences of O.6,0.9. and 5.6% in the red, 4.7.5.0. and 7.7% in 

the green, and 2.5,3.0, and 6.4% in the blue, for the incandescent, halogen, and fluorescent 

lamps, respectively. This indicated that not only the Light intensities but also the light colors 

changed. 

The general trends of the curves showed that the major variations occurred within the 

first 3 h. Tbis may have been due to the ambient temperature changes in the illumination 

chamber, which increased after the light sources were switched on. 

The light levels of the incandescent and halogen bulbs varied in a similar way such 

that the G signais varied the most, foliowed by B then R. The R signals were actudly quite 

stable with less than 0.1 % variations over 8 h. AU of the three color signals of the fluorescent 

tube dropped significantly over the 8 h. As with the incandescent and halogen lamps, the G 

signal dropped the most, followed by the B and R signals. 





Incorporating the light controller in the power supply for the fluorescent lamp (Fig 

7.2(d)) showed a significant improvement in the Light stability. The intensity variations in 

the R, G, and B signals were reduced to 0.5, 1.2, and 0.5% respectively. Again the G signal 

decreased the most, foiiowed by B then R. 

7.1.3 Test III: uniformity over FOV 

Fig 7.3 shows the average Rc, Gc, Bc. Rr, Gr, and Br of the ten images (ser Section 

3.2S)of the Kodak white card under the three Light source types. Across the width of the 

FOV (column number), the maximum intensity variations among the three color signais were 

2.1,2.1, and 3.1 % of the overall image intensity means, for the incandescent, halogen, and 

fluorescent lamps, respectively. Down the depth of the FOV (row number). the maximum 

intensity variations among the three color signals were 1.0, 1.2, and 1.5% of the overall 

image intensity means. for the incandescent, halogen. and fluorescent larnps. respectively. 

With a simiiar configuration, the incandescent and halogen bulbs produced an almost 

identical light distribution over the FOV (Fi@ 73(a), (a'), (b), and (b')). The fluorescent 

and controlled fluorescent lamps produced an identical light distribution (Figs 7.3(c) and 

(c')) with lower intensities at the edge and slightly higher intensities near the center of the 

FOV. The obvious drop in light intensities at the right edge of the FOV (high column 

numbers) was due to the power lead junction of the fluorescent Iarnp. 

In spite of the different light sources and position and orientation of the white card, 

the Rc. Gc, and Bc curves (Figs 7.3(aj, (b), and (c)) have similar patterns. The Rr, Gr, and 

Br curves showing variations down the depth of the FOV (Figs 7.3(aP), (b'), and (c')) also 

have common trends. This indicated that there were response variations in each direction of 
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Fig 7.3 Illumination uniformities across (column) and down (row) the field of view for 
incandescent [(a) and (a')], halogen ((b) and (b')], and fluorescent [(c) and (cl)] Iamps. 



the three color sensor arrays or transinittance variations over the lem. 

The test results showed that the greatest intensity variations always occurred at the 

edges of the FOV because of the variations in the canera's responses as well as the 

configuration of the Eght sources. Tbis suggests that when taking images, objects should be 

placed as close to the center of the FOV as possible. If a &pixel w ide strip near each of the 

edges of the FOV is neglected, the intensities varied by less than 1.0% of the mean for al1 

three light source types. 

Overall, the controlled fluorescent lamp was the best light source, with the least 

variations with voltage changes and Ume and the acceptable uniformity over the FOV. It was 

chosen as the light source for the image analysis system. 

7.2 S ystem Calibration 

7.2.1 Aspect-ratio 

Table 7.1 lists the pixel numbers of rows and columns required to traverse a 

Canadian quarter coin in four rectangular-pixel images of the same coin located in the center 

of the FOV with four different orientations (see Section 3.3.1). An aspect-ratio of 1.275 was 

obtained by dividing the average pixel row number by the average column number. 

Table 7.2 lists the pixel aumbers of rows and columns required to traverse a 

Canadian quarter coin in another four rectangular-pixel images of the same coin located in 

the center of the FOV with four different orientations (see Section 3.3.1). The mgnification 

of the camera was about 1.13 times larger than the previous. An aspect ratio of 1.273 was 

obtained by dividing the average pixel row number by the average column number. 

90 



Table 7.1 Pixel numbers of rows and columns required to traverse a Canadian quarter 
coin in four rectangular-pixel images of the same coin located in the center of the FOV 
with four different orientations (Resolutions: 0.20 H x 0.16 V mmfpixel). 

Image* Nr (No. of rows) Nc (No. of columns) 

CTR1 .XV 151 

CTR2.XV 150 

CTR3 .XV 151 

CTR4.XV 150 

Average 150.5 
* CTR = center, Arabic numbers represent replicate number, 

and a E x  .xv represents viff format image 

Table 7.2 Pixel numbers of rows and columns required to traverse a Canadian quarter 
coin in four rectangular-pixel images of the same coin located in the center of the FOV 
with four different orientations (Resolutions: 0.18 H x 0.14 V mrn/pixel). 

Image Nr (No. of rows) Nc (No. of columns) 
- - 

CTRll.XV 17 1 134 

CTR2.W 170 134 

CTR3'.XV 170 133 

CTR4.W 169 133 

Average 170 133.5 

The results indicated that the aspect ratio did not change significantly with a slight 

change (13.0%) in camera's rnagnification. An aspect of 1.275 was used in the 

transformation of rectangular- to square-pixel images. 

Fig 7.4(a) shows a rectangular-pixel image of a Canadian quarter coin as displayed 

as a squarepixel (same resolution in vertical and horizontal). The coin image was distorted 

into an ellipse. Fig 7.4(b) shows the square-pixel image transformed h m  the coin image in 

Fig 7.4(a) using Equation 3.3. 



I L 
(a) Rectangular pixels (152 x 192) (b) Square pixels (193 x 192) 

Fig 7.4 A grey-level image of a Canadian quarter coin 
illustrating the tmnsformatlon from rectangular to square pixels. 



7.2.2 Image distortion 

Table 7.3 lists the numbers of the pixel rows and columns, Nr and Nc. required to 

traverse a Canadian quarter coin in the twenty rectangular-pixel images of the sarne coin 

located in each of the upper and lower corners and the centre of the camera's FOV with 

different orientations. The numbers of the pixel rows and columns, NI' and Nc*, required to 

traverse a Canadian quarter coin in the twenty corresponding square-pixel images are aiso 

listed in Table 7.3 (see Section 3.3.3). 

The results show that Nr and Nc were consistent with a 1 pixel variation over the 4 

corners in the camera's FOV, while 2.3 pixel on average larger in the central images. This 

indicated that the camera was well aligned, but the iens system has a mapification 

symrnetrically decreasing from the center to the edge dong the radii. The 1 pixel variation 

among the row and column numbers in the 4 images at each location was due to the 

digitization and segmentation processes. Afler the transformation from rectangular- to 

squarepixel, the numbers of the rows and columns of the coin, Nr' and Nc', were equal with 

1 pixel difference in d l  images, while the maximum difference in the colurnn number 

between the central images and the corner images was 2 pixels. This increase was due to the 

use of the aspect ratio calculated fiom the central images in the transformation. 

In surnmary, the camera misalignment and the rectangular-to-square pixel 

transformation did not introduce signifcant image distortion, compared to the 1 pixel 

inherent error caused by the digitization and segmentation processes. The lens distortion 

contributed the most to the image distortion. 



Table 7.3 Pixel numbers of rows and columns required to traverse a Canadian quarter 
coin in the rectangular-pixel and square-pixel images of the same coin located in 
dinerent portions of the FOV with different orientations. 

-- 

Image* ~ec tan&u-~ ixe l  Square-pixels 

Nr Nc Nr' Nc ' 

* UL = upper left, LL = low left, UR = upper right. and LR = low right 

Image distortion resulted in a non-uniform spatial resolution over the camera's FOV. 

which certainly would degrade the system's precision of  the sue and shape measurements. 

It is difncult to qumtify the degradation accurately, however, a mugh estimation can be made 



for the size measurement under certain assumptions. As the Iens distortion was the major 

contributor to the image distortion, it was simply assumed that the difference between the 

size measurements of an object made with the object located at two fmed different locations 

in the camera's FOV was proportional to the real size of the object, and the size measurement 

was invariant to the object orientation. The maximum difference between the column 

measurements' of the quarter coin (which can roughly be viewed as the measurements of the 

coin diameter) made with the coin located at the center and the corners of the FOV was 4 

pixels as showed in Table 7.3. Then a maximum difference of 4*(&23.689) pixels ( where 

23.689 is the diameter in mm of the coin) would be expected in the measurements for an 

object with a length of a (mm), if it was measured in the similar way as the coin. For a 

typical CWRS wheat kemel with a length of 5.7 mm, the maximum difference cornes to 

4*(5.7/23.689) - 0.96 pixel. This measurement error caused by the image distortion is 

comparable to the inherent measurement error of 1 pixel caused by the digitization and 

segmentation processes, which is irrespective to the size of the object king measured. Based 

on the above estimation, it was assumed that the image distortion does not significantiy affect 

the precision of the size and shape measurements of cereal grain kemels. 

7.2.3 Gamma correction 

Fig 7.5(a) shows the system outputs (in mean R, G, and B grey-level values) for each 

reflectance step of the Kodak paper gray scale. Non-linear relationships were observed 

between the system outputs and the object reflectance. Fig 7.J(b) shows the results of 

removing the gamma correction using Equation 3.5 with y = 2.2. 

The maximum range of the r, g, and b values of grain kemels were from 0.4 1 to 0.97, 



Scale step number 

Fig 7.5 System linearity before (a) and after (b) removd of gamma correction. 



as measured by the image analysis system in 18000 CWRS, 6000 CWAD wheat. 6000 

barley, 6000 Iye, and 6000 oats kemels. W i t b  this range. the ~Iationships between r, g, and 

b and the object refiectance can be viewed as linear. 

7.3 Grain Type Identification of Individual Grain Kernels 

73.1 Morphologid feature d e l  

With a minimum significant level of 0.15, the SAS procedure STEPDISC selected 

65 features h m  the 68 extracted morphological features and ranked thern according to the ir 

contributions to the discriminatory powen of the feature corresponding model (Appendis 

D-1). Table 7.4 Lists the h t  28 steps for selecthg up to 28 best morphological features- The 

discriminating abilities of the feature models Im4 (the best 4 morphological features), Im8 

(the best 8 rnorphological feahues), Im 12 (the best 12 rnoiphological features), .. ., and Imt8 

(the best 28 mocphological features) were evaluated using SAS DISCRIM (Appendix E- 1). 

For both the pararnetric (quadratic) and non-paramemc (k-nearest neighbor) classifiers, the 

mean classification accuracies increased to a certain extent and then remained relatively 

constant as the number of features increased (Fig 7.6(a)). For ali examined morphological 

models, the mean classification accuracies were higher with the non-parametric classifiers 

than with the parametric classifiers, suggesting that the assumption of multivariate normal 

distribution did not hold firmly for the extracted morphological feature data of individual 

grain kernels. The highest mean classification accuracy (94.8%) was obtained with the 

feature model 1.24 using the non-parametric classifier. So the model Im24 was chosen as 

the morphological feature model for the hold-out grainotype classification analysis of 



Table 7.4 The first 28 steps for selecting up to 28 best morphologid features by SAS 
STEPDISC for grain type identification analysis of individual grain kernels 

S tep Feature Partial F Prob* W i b '  A Prob ASCC' Prob 
In Out No. R2 Statistic > F > A ,  >ASCC 

1 L* 1 0.8886 83785.35 0.0001 0.1 114 0.0001 0.2222 0.0001 

2 AS13 2 0.5433 12490.61 0.0001 0.0509 0.0001 0.3379 0.0001 

3 Var, 3 0.5807 14541.24 0.0001 0.0213 0.0001 0.4737 0,0001 

14 AS7 14 0.0364 396.25 0.0001 0.0058 0.0001 0.6273 O.ûûO! 

15 P 15 0.0306 330.74 0.0001 0.0056 0.0001 0.6310 0.0001 

16 thnR 16 0.0325 352.51 0.0001 0.0054 0.0001 0.6340 0.0001 

17 mntl 17 0.0506 559.06 0.0001 0.0051 0.0001 0.6395 0.0001 

18 RS16 18 0.0289 3 12.57 0.0001 0.0050 0.0001 0.6419 0.0001 

26 RS2 26 0.0152 161.41 0.0001 0.0043 0.0001 0.6569 0.0001 
27 AS11 27 0.0128 135.58 0.0001 0.0042 0.0001 0.6582 0.0001 

28 PSlO 28 0.0130 138.07 0.0001 0.0042 0.0001 0.6594 O 
* Probability. '~verage squared canonical correlation. * See Table 5.1 for definitions. 



Ic4 Icû 

Fig 7.6 Evaluation of morphologicaI (a), color (b), and combined (c) feiiture models 
for grain type identifkation andysis of individual kemeb using SAS DISCRIM. 



individual kernels. 

The hold-out grain-type classification analysis of individual kernels was carried out 

ushg the three pairs of training and testing data sets for both the parametric (quadratic) and 

non-parametric (k-nearest neighbor) statistical classîfien. The results (Appendix F-1) are 

summarized in Table 7.5(a) for the parametric classifier and in Table 7.5(b) for the non- 

parametric classifier. For the parametric classifier, the average classification accuracies of 

the three training and testing data sets were 93.6,84.3.96.0,93.5, and 97.3% for CWRS. 

CWAD, barley, rye, and oats, respectively. For the non-parametric classifier, the average 

classifcation accuracies of the t h  training and testing data sets were 96.3,87.8,97.5. 88.1, 

and 98.0% for CWRS, CWAD, barley, rye, and oats, respectively. The mean classification 

accuracy for a i l  five types of grains was 93.6% with the non-parametric classifier, which was 

statistically higher than 92.9% with the parametric classifier. As for individual grain types. 

the average classification accuracies of the three training and testing data sets were 

statisticdy higher with the non-parameuic classifier than with the paramehic classifier for 

CWRS, CWAD, barley, and oats, while lower for rye. 

The classification accuracies (of the non-parametric classifier) using the different 

training and testing data sets were generaliy consistent (with the variations of 3.0,8.1,0.7, 

0.9, and 0.9% for CWRS, CWAD, barley, rye, and oats. respectively). This suggested that 

there was no simcant difference in the morphological characteristics among grain kemels 

from different growing regions and the classifier developed based on the selected 

morphological features was robust. 

The major misclassifications occurred among CWRS, CWAD and rye (Table 7.5). 



Table 7.S(a) Grain type classification of individual grain kernels by a parametric statistical classifier (quadratic discriminating 
function) using 24 selecteà morphological features 

Class to =, CWRS Durum Barley R Y ~  Oats K A *  
from 8 No. % No. % No. % No. % No. % % 

CWRS 
Set 1 (6300') 
Set2(63ûû) 
Set3(5400) 

average 
Dururn 

Set l(2 100) 
Set2(2 100) 
Set3( 1 800) 

average 
Bar ley 

Set l(2 100) 
Set2(2 100) 
Set3(1800) 

average 
R Y ~  

Set 1 (2 100) 
Set2(2 100) 
Set3(18ûû) 

average 
Oats 

Set 1(2 100) 
Set2(2 100) 
Set3( 1800) 

* Meün clussificütion iiccüiacy ? Testing data size 

101 



Table 7S(b) Grain type classification of individual grain kernels by a non-parametric statistical (k-nearest neighbour) 
classifier using 24 selected morphological features 

Class to -, CWRS Durum Barley R Y ~  Oats Unknown MCA* 
from U No. % No. % No. % No. % No. % No, % % 

CWRS 
set1(630s) 6041 95.9 206 3.3 9 O. 1 29 0.5 1 0.0 14 0.2 
Set2(63ûû) 6173 98.0 94 1.5 2 0.0 12 0.2 1 0.0 18 0.3 
Set3(5400) 5131 95.0 188 3.5 6 O. 1 30 0.6 2 0.0 43 O. 8 

average 96.3 2.8 O. 1 0.4 0.0 0.4 
Dumm 

Set l(2100) 64 3.1 1883 89.7 O 0.0 137 6.5 O 0.0 16 0.8 
Set2(210) 221 10.5 1740 82.9 4 0.2 109 5.2 O 0.0 26 1.2 
Set3( 1 800) 46 2.6 1637 90.9 O 0.0 106 5.9 O 0.0 1 1  0.6 

average 5.4 87.8 O. 1 5.9 0.0 0.9 
Barley 

Set 1 (2 100) O 0.0 7 0.3 2040 97.1 24 1.1 24 1.1 5 0.2 
Set2(2 100) 1 O. 1 14 0.7 2046 97.4 18 0.9 13 0.6 8 0.4 
Set3(1800) 1 O, 1 8 0.4 1761 97.8 14 0.8 10 0.6 6 O. 3 

average 0.0 O. 5 97.5 0.9 O. 8 0.3 
R Y ~  

Setl(210) 6 0.3 195 9.3 12 0.6 1849 88.1 4 0.2 34 1.6 
Set2(2 100) 27 1.3 167 8.0 10 0.5 1868 89.0 1 0.1 27 1.3 
Set3( 1800) 5 0.3 165 9.2 6 0.3 1586 88.1 2 O. 1 36 2.0 

average 0.6 8.8 0.5 88.4 O, 1 1.6 
Oats 

Set 1 (2 100) O 0.0 9 0.4 2 1 1 .O 14 0.7 2050 97.6 6 0.3 
Set2(2 1 00) O 0.0 5 0.2 I I  O, 5 14 0.7 2068 98.5 2 O, 1 
Set3( 1 800) O 0.0 3 O. 2 16 0.9 I I  0.6 1764 98.0 6 O. 3 

avwee 0.0 O. 3 O. 8 0.7 98.0 O. 2 93.6 
* Mean clnssificiition üccuracy P Testing data size 



This happened because the CWAD kernels are more simiiar in morphology to CWRS and 

rye kernels than to kernels of other grain types. This result is different from the result 

reported by Sapirstein and Bushuk (1989) that oats, with the lowest classification score 

(78.3 %), were mainly mis-classified as rye (20.0%), w hen morphological features were used 

to differentiate CWRS, barley, oats, and rye- The difference in the result is partially due to 

the difference in the grain samples used. In their research, a small grain sarnpie h m  limited 

sources was used and CWAD was not included. It was hypothesized that incIusion of color 

features would improve the classification accuracies of these grain types because of their 

differences in color. 

7.3.2 Color feature model 

With a minimum significant level of 0.15, the SAS procedure STEPDISC selected 

65 features from the 78 extracted color features and ranked them according to their 

convibutions to the discriminatory powea of the correspondhg feature model (Appendix 

D-1). Table 7.6 lists the fmt 28 steps for selecting up to 28 best coior features. The 

discriminating abilities of the feature models Ic4 (the best 4 color features), Tc8 (the best 8 

color features), Ic 12 (the best 12 color features), ..., and Ic28 (the best 28 color features) were 

evaluated using SAS DISCRIM (Appendix E-1). The mean classification accuracies were 

statisticali y significantly higher with the non-paramehic O<-nearest neighbor) classi fiers than 

with the parametric (quadratic) classifiers (Fig 7.6(b)), indicating that the extracted color 

feature data did not follow the multivariate normal distributions. For the non-parametric 

ciassifiers, as with the morphological models, the mean classification accuracy increased to 

a certain extent and then remained nlativeiy constant as the number of features increased. 



Table 7.6 The first 28 steps for seleeting up to 28 best color fentures by SAS STEPDISC for 
grain type idenafincation mdysis of individual grain kernels 

- -  - - - 

S tep Feature Partial F Prob* l f i&?rp~rob ASCC' Prob 
In Out No. R2 Statistic > F > A. >ASCC 

1 ~ n t r 2 ~  1 0.7064 25258.34 0.0001 0.2936 0.0001 O. 1766 0.0001 

13 hstR9 13 0.0518 573.06 0.0001 0.0133 0.0001 0.5905 0.0001 
14 Var, 14 0.0426 466.89 0.0001 0.0127 0.0001 0.5957 0.0001 

16 hstB2 16 0.0491 541.83 0.0001 0.0117 0.0001 0.6033 0.0001 
17 Var, 17 0.0413 452.36 0.0001 0.01 12 0.0001 0.6069 0.0001 
18 Var, 18 0.0538 596.82 0.0001 0.0106 0.0001 0.6104 0.0001 
19 Vas, 19 0.0519 575.04 0.0001 0.0100 0.0001 0.6162 0.0001 
20 rnntb4 20 0.0379 413.62 0.0001 0.0097 0.0001 0.6205 0.0001 

28 hstGlO 28 0.0610 681.82 0.0001 0.0069 0.0001 0.6547 O 
* Probability. '~verage squared canonical comlation. ' See Table 5.2 for definitions. 



For the parameaic classifiers, the mean classification accuracy varied considerably with the 

feature model. Since the highest mean classification accuracy (97.9%) was obtained using 

the non-parametric classifier with the feature model Ic20, this model was chosen as the color 

feature model for the hold-out grain-type classification analysis of individual kernels. 

The hold-out grain-type classification anaiysis of individual kernels was carried out 

using the three pairs of training and testing data sets using both the parameûic (quadratic) 

and non-pararnetric (k-nearest neighbor) statistical classifiers. The results (Appendix F-1 ) 

are summarized in Table 7.7(a) for the parametric classifier and in Table 7.7(b) for the non- 

parametric classifier. For the parametric classifier, the average classification accuracies of 

the three training and testing data sets were 73.7,84.6,92.7, 98.9, and 99.2% for CWRS, 

CWAD, barley, rye, and oats, respectively. For the non-parameuic classifier, the average 

classification accuracies of the t h e  training and testing data sets were 96.7,95.4,94.8,97.3, 

and 97.9% for CWRS, CWAD, barley, rye, and oats, respectively. The mean classification 

accuracy for all five types of grains was 96.4% with the non-parametric classifier, which was 

statisticaily higher than 89.8% with the parametric classifier. As for individual grain types, 

the average classification accuracies of the three training and testing data sets were 

statistically higher with the non-parametnc classifier than with the parametric classifier for 

CWRS, CWAD, and barley, while lower for rye and oats. 

Compared to the classification results using the morphological feature model, larger 

variations (6.3, 6.3, 9.5, 4.0, and 5.4% for CWRS, CWAD, barley, rye, and oats, 

respectively) existed in the classification accuracies (non-parametric classifier) using the 

different training and testing data sets, suggesting that larger clifferences existed in the color 
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Table 7.7(b) Grain type classification of individual grain kerneb by a non-parametric statistical (k-nearest neighbour) 
classifier using 2û selected color featum 

Cliss to =. CWRS CWAD Barley R Y ~  Oats Unknown MCA* 
from 1 No. % No. % No. % No. % No. % No. % % 

CWRS 
Set l(6300') 
Set2(6300) 
Set 3 (S4tOO) 

average 
CWAD 

Set l(2 100) 
Set2(2 100) 
Set3( 1800) 

average 
Barley 

Set 1(2 100) 
Sei2(2 100) 
Set3(1800) 

average 
R Y ~  

Set l(2 100) 
Set2(2 100) 
Set3( 1800) 

average 
Oals 

Set 1(2100) 
Set2(2 100) 
Set3( 1 800) 

* Mcan clussification accuracy ? Test ing detû size 

IO7 



than in the morphological charactenstics of the grain kemels from the different growing 

regions. 

For a!i types of grains, except for barley, the average classification accuracies using 

the color feature model (non-parametric classifier) were comparable to or higher than the 

classification results using the morphological feature model (Fig 7.7). In particularly. 

substantial improvements in the classification accuracies of CWAD and rye demonstrated 

the signifiant advantage of the color features over the morphological features in 

diffenntiating the different types of grains. With the lowest classification accuracy, barley 

kemels were mis-classified as CWAD wheat kernels (2.6%) or oats kemels (1.9%), and vice 

versa (Table 7.7(b)). 
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Fig 7.7 A cornparison of morphoiogical, color, and combined féature models Lr grain 
type idenafication of individual kernels using non-pammetric(k-nearest neighbor) 
classifiers. (111124: 24 morphological festures; Ic2û: 20 color features; Is28: 28 
morphological and color features) 

Sapirstein and Bushuk (1989) also reported that the greatest degree of mis- 

classification (approximately 4%) occurred between bnght barley and oats kemels when 



including reflectance in addition to morphological features to discriminate CWRS wheat. 

barley, oars, and rye kemels (CWAD wheat kernels were not included). However, these three 

types of grains, CWAD wheat, barley, and oats, were very well differentiated using the 

morphological features (Table 75(b)). It was hypothesized that higher classification rates 

could be obtained by using a combination model of moiphological and color features. 

7.3.3 Combined feature model 

With a minimum significant level of O. 15, the SAS procedure STEPDISC selected 

129 features fiom the 146 extracted morphological and color features and ranked thern 

according to their contributions to the discriminatory powers of the corresponding feature 

mode1 (Appenàii D-1). Table 7.8 Lists the first 28 steps for selecting up to 28 best combined 

features. The discriminating abilities of the feature models is4 (the best 4 combined features, 

same as Im4), Is8 (the best 8 combined features, including 7 features in Im8 and a color 

feature hstrl2), ..., Is28 (the best 28 combined features, including 15 rnorphological and 13 

color features) were evaluated using SAS DISCEüM (Appendix E-1). The mean 

classification accuracies were higher with the non-parametric O<-nearest neighbor) classifiers 

than with the pararnetric (quadratic) classifiers (Fig 7.6(c)). For the non-parameuic 

classifiers, as with the morphological models, the mean classification accuracy increased to 

a certain extent and then rernained relatively constant as the number of features increased, 

while for the parametnc classiners, the mean classification accuracy increased to a maximum 

as the number of features increased from 4 to 12, then decreased as the number of features 

increased. Since the highest mean classification accuracy (99.1%) was obtained using the 

non-parametric classifier with the feature model Is28 (higher mean classification accuracy 



Table 7.8 The first 28 steps for seleeting up to 28 best combinai features by SAS 
STEPDISC for grain type identification analysis of individual grain kernels 

S tep Feature Partial F Prob* Wilks' A Prob ASCC' Prob 
In Out No. R~ Statistic > F > A  >ASCC 

1 L* 1 0.8886 83785.35 0.0001 0.1 1 14 0.0001 0.2222 0.000 1 
2 AS13 2 0.5433 12490.41 0.0001 0.0509 0.0001 0.3379 0.0001 
3 Var, 3 0.5807 14541.24 0.0001 0.0213 0.0001 0.4737 0.0001 
4 areaR 4 0.3231 5010.18 0.0001 0.0144 0.0001 0.5330 0.0001 
5 hstR12 5 0.2128 2838.64 0.0001 0.01 14 0.0001 0.5505 O.OOO1 

6 % ,  6 0.1692 2138.46 0.0001 0.0094 0.0001 0.5693 0.0001 
7 &n 7 0.1253 1504.24 0.0001 0.0083 0.0001 0.5844 0.0001 
8 hraR 8 0.1436 1760.78 0.0001 0.0071 0.0001 0.6012 0.0001 
9 Ab 9 0.1016 1187.02 0.0001 0.0069 0.0001 0.6104 0.0001 

10 Lim 10 0.0906 1045.20 0.0001 0.0058 0.0001 0.6190 0.0001 
11 grna 11 0.2591 3670.42 0.0001 0.0043 0.0001 0.6558 0.0001 
12 L n  12 0.1292 1557.19 0.0001 0.0037 0.0001 0.6618 0.0001 
13 hstBl 13 0.1326 1604.07 0.0001 0.0032 0.0001 0.6770 0.0001 

14 sr", 14 0.2376 3271.16 0.0001 0.0025 0.0001 0.7033 0.0001 
15 ka 15 0.0853 978.11 0.0001 0.0023 0.0001 0.7083 0.0001 
16 PS13 16 0.0528 584.68 0.0001 0.0021 0.0001 0.7139 0.000i 
17 hstG6 17 0.0423 463.27 0.0001 0.0020 0.0001 0.7178 0.0001 
18 RSI 18 0.0407 445.79 0.0001 0.0020 0.0001 0.7206 0.0001 
19 rctR 19 0.0391 427.08 0.0001 0.019 0.0001 0.7241 0.0001 
20 mntl 20 0.0393 429.62 0.0001 0.0018 0.0001 0.7263 0.0001 
21 Ar 21 0.0344 374.04 0.0001 0.0017 0.0001 0.7300 0.0001 
22 AS4 22 0.0325 352.83 0.0001 0.0017 0.0001 0.7321 0.0001 
23 hstB6 23 0.0317 343.56 0.0001 0.0016 0.0001 0.7342 0.0001 
24 AS15 24 0.0308 333.31 0.0001 0.0016 0.0001 0.7362 0.0001 
25 RS16 25 0.0283 305.10 0.0001 0.015 0.0001 0.7378 0.0001 
26 hstG5 26 0.0216 231.19 0.0001 0.0015 0.0001 0.7404 0.0001 
27 hstR14 27 0.0245 263.51 0.0001 0.0015 0.0001 0.7428 0.0001 

1.44 0.0001 0,0014 0.0001 0.7439 O 
* Probability. '~verage squared canonical correlation. ' See Tables 5.1 and 5.2 for definitions. 



may be obtained using more features, however, it was concluded from the trend (Fig 7.6i L)  

that the improvement was negiigible), this model was chosen as the combined feature mode1 

for the hold-out grain-type classification analysis of individual kemels. 

The hold-out grain-type classification analysis of individual kemels was carried out 

using the three pairs of training and testing data sets for both the parametric (quadratic) and 

non-parametric (k-nearest neighbor) statistical classifiers. The results (Appendix F-1) are 

summarized in Table 7.9(a) for the parametric classifier and in Table 7.9(b) for the non- 

parametric classifier- For the parametric classifier, the average classification accuracies of 

the three training and testing data sets were 97.2, 82.0,97.5, 98.1, and 98.8% for CWRS, 

CWAD, barley, rye. and oats, respectively. For the non-parametrïc classifier, the average 

classification accuracies of the three training and testing data sets were 98.2,96.9.99.0.98.2. 

and 99.0% for CWRS, CWAD, barley, rye, and oats, respectively. The mean classification 

accuracy for ali five types of grains was 98.3% with the non-paramctric classifier, which was 

statisticaliy significantly higher than 94.7% with the parametric classifier. As for individual 

grain types, the average classification accuracies of the three training and testing data sets 

were higher with the non-parametric classifier than with the parametric classifier for ail types 

of grains. 

Compared to the classification ~ s u l t s  using the morphological or the color feature 

model alone, the variations (3.5.4.6, 1.6,2.4, and 1.8% for CWRS, CWAD, barley, rye, and 

oats, respeztively) in the classification accuracies (of the non-pararnetric classifier) using the 

different training and testing data sets were pneraiiy less than using the color feature model, 

but larger than using the morphological model. It still could be considered that there was no 



Table 7.9(a) Grain type classification of individual grain kernels by a parametrie statistical clamifier (quadratic discriminating 
funclion) using 28 selected combined features 

Class to - CWRS CWAD Barley R Y ~  Oats MCA* 
from I No. % No. % No. % No. % No. % % 

CWRS 
Set 1 (63ûûe) 
Set2(6300) 
Set3(540) 

average 
CWAD 

Set l(21ûû) 
Set2(2 100) 
Ser3( 180) 

average 
Brirley 

Set l(2 100) 
Set2(2 100) 
Set3(1800) 

average 
R Y ~  

Setl(2100) 
Set2(2 100) 
Set3( 1 800) 

average 
Oats 

Seil(2 100) 
Set2(2 100) 
Set3( 1 800) 

a v c r w  0.0 0.1 1.2 0.0 98.8 94.7 
* Meiin classificüiion iicciiïiicy ? Testing diii i i  size 
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Table 7.9(c) Grain typo classification of individual grain kernels by a neural network classilier (28-6-4-5) 
using 28 selected combineù features 

Class to - CWRS CWAD Barley R Y ~  Oats MCA* 
from 4 No. % No. % No. % No. % No. % O/o 

CWRS 
set l(6300') 
Set2(6300) 
Set 3(54OO) 

average 
CWAD 

Set l(2 1 0 )  
Set 2(2 100) 
Set3( 180)  

average 
Barley 

Set l(2 100) 
Set2(2 100) 
Set3( 1 800) 

average 
R Y ~  

Set l(2 100) 
Set2(2 100) 
Set3( 1 800) 

average 
OMS 

Setl(2100) 
Set2(2 100) 
Set3( 1800) 

average 0.0 O. 2 1.3 0.0 98.5 97.8 
* Meün clüssiîicütion accuïitcy P Testing data size 

114 



significant difference in the overall characteristics arnong gain kernels from different 

growing regions and the grain samples were representative. It was noted that for each feature 

model, the largest variation in the classification accuracies aiways occumd to the gain type 

with the lowest average classification accuracy (Table 7S(b), Table 7.7@), and Table 

7 . 9 m -  

For aii types of grains, except for barley, the average classification accuracies using 

the combined feature model (non-parametric classifier) were statistically higher than the 

classification results using the morphological or the color feature model done (Fig 7.7). The 

major mis-classifications occurred among CWRS, CWAD and rye when using the 

morphological features done. The CWAD wheat kernels, with the lowest average 

classification accuracy (96.9%), were mis-classified as CWRS wheat kernels (1.6%); the rye 

kemel, with the second lowest average classification accuracy (98.2%), were mis-classified 

as CWAD wheat kemels (1.4%); and the CWRS wheat kernels, with the next lowest average 

classification accuracy (98.2%), were mis-classified as CWAD kemels (1.5%) (Table 

7.9(b)). Overall, using the combined features significantly irnproved the classification 

accuracies obtained using the morphological or color features done in identifjring the 

different type grain kemels. 

As a cornparison to the statisticai classifiers, a MNN classifier with a structure of 28- 

6-4-5 (four layea with 28 nodes in the input, 6 nodes in the fmt hidden, 4 nodes in the 

second hidden, and 5 nodes in the output layer) was used with the combined feature model 

Is28. The results are summarized in Table 79(c). The average classification accuracies were 

98.4, 96.2,98.4,97.4. and 98.5% for CWRS, CWAD. barley, rye, and oats, respectively, 



which were slightly lower than using the non-parametric classifier but statistically 

significantly higher than using the parametric classifier. 

From the classification results, it can be concluded that the MNN classifier is better 

than the paramehic (quadratic) classifier, but it cannot be concluded that the non-pararnetnc 

(k-nearest neighbor) classifier is better than the MNN classifies. The performance of a MNN 

classifier strongly depends on the structure of the network, specifically the nurnber of hidden 

layers and the numbers of nodes in each hidden layer. Since, so far there is no theoreticai 

method for the optimal design of MNN structures, the structure of a MNN classifer can only 

be detennined by experience and experiments for the specific classification problem. Limited 

by time (the training time required by a MNN classification is usuaily very long, especially 

when a large number of features is used with a large size of training data set, as in the case 

of this study; it took approximately 50 h to train the MNN classifier with a training data set 

of 27 300 observations of 28 features), only three MNN classifiers with different structures 

were tested for the classification task, and the one reported was chosen due to its superior 

performance. Although the classification results (with a mean classification accuracy of 

97.8%) were slightly lower than the classification results using the non-parametric statistical 

classifier, the differences were smail. Considering the advantages of neural networks over 

k-nearest neighbor classifiers in required cornputer memory and executing (classifjmg) tirne. 

a MNN classifier is still recornmended as the fmt choice for the classification task. 



7.4 Identification of Damaged CWRS Wheat Kernels 

7.4.1 Morphological feature model 

With a mlliimum significant level of 0.15. the SAS procedure STEPDISC selected 

57 features h m  the 68 extracted morphological features and ranked them according to their 

contributions to the discriminatory powers of the correspondhg feature model (Appendix 

D-2). Table 7.10 lists the fmt 28 steps for selecting up to 28 best morphological features. 

The discriminahg abilities of the feature models Dm4 (the best 4 morphological features), 

Dm8 (the best 8 morphological feanires), Dm1 2 (the best 12 morphological featws), ..., and 

Dmî8 (the best 28 morphologicai features) were evaluated using SAS DISCRIM (Appendix 

E-2). The morphological features were not sufficient for distinguishing the hedthy kernels 

from the six types of damaged CWRS wheat kernels (Fig 7.8(a)). The highest rnean 

classification accuracy (only 63.4%) was obtained with the feature model Dm28 using the 

non-parametric (k-nearest neighbor) classifier. ïhe reason behind this incapability of 

morphological features in differentiating the healthy and different damage types of CWRS 

wheat kemels is quite obvious because most of the damage types are very similar in 

morphology to the healthy kemels and to each other, except for the broken and grass- 

greedgreen-fiosted types. Despite the poor performance in the discriminant analysis. the 

model Dm28 was stiii aied as the morphological feature model for the hold-out classification 

analysis of damaged CWRS wheat kemels. 

The hold-out classification analysis of damaged CWRS wheat kernels was canied out 

using the thRe pain of training and testing data sets for both the parametric (quadratic) and 

non-parametric (k-neanst neighbor) statistical classifiers. The results (Appendix F-2) are 



Table 7.10 The first 2û steps for selecting up to 28 best morpbological features by SAS 
STEPDISC for identifkation anaiysis of damaged CWRS wheat kernels 

S tep Feanue Partial F Prob* Wiiks'k Prob ASCC' Prob 
In Out No. R~ Statistic > F > A  >ASCC 

1 Ki: 1 0.4326 888.62 0.0001 0.5674 0.0001 0.0721 0.0001 
2 RSl 2 0.2955 488.68 0.0001 0.3998 0.0001 O. 121 1 0.0001 
3 AS7 3 0-2736 438.90 0.0001 0.2904 0.0001 O. 1624 0.0001 
4 mnt3 4 0.1416 192.14 0.0001 0.2493 0.0001 0.1821 0.0001 
5 LPA 5 0.0851 108.40 0.0001 0.2280 0.0001 0.1921 0.0001 
6 RS16 6 0.0758 95.48 0.0001 0.2108 0.0001 0.2027 0.0001 
7 PS7 7 0.0620 76.95 0.0001 0.1977 0.0001 0.2097 0.0001 
8 RS14 8 0.0565 69.70 0.0001 0.1865 0.0001 0.2160 0.0001 
9 RS5 9 0.0429 52.22 0.0001 O. 1785 0.0001 0.2219 0.0001 
10 AS13 IO 0.0521 63.92 0.0001 0.1692 0.0001 0.2300 0.0001 
11 hraR 11 0.0426 51.80 0.0001 0.1620 0.0001 0.2348 0.0001 
12 AS13 12 0.0419 50.83 0.0001 0.1552 0.0001 0.2390 0.0001 
13 areaR 13 0.0356 43.01 0.0001 0.1497 0.0001 0.2431 0.0001 
14 A 14 0.0349 42.06 0.0001 0.1445 0.0001 0.2466 0.0001 

15 %m 15 0.0740 92.99 0.0001 0.1338 0.0001 0.2536 0.0001 
16 L 16 0.0452 55.12 0.0001 0.1277 0.0001 0.2594 0.0001 
17 P 17 0.0372 44.90 0.0001 0.1230 0.0001 0.2633 0.0001 
18 rctR 18 0.0344 41.42 0.0001 0.1 188 0.0001 0.2676 0.0001 

19 Rmax 19 0.0450 54.72 0.0001 0.1134 0.0001 0.2725 0.0001 
20 RS6 20 0.0287 34.38 0.0001 0.1 102 0.0001 0.2750 0.0001 
21 thnR 21 0.0270 32.24 0.0001 0.1072 0.0001 0.2781 0.0001 

22 Var, 22 0.0286 34.27 0.0001 0.1041 0.0001 0.2806 0.000L 
23 mntl 23 0.0425 51.55 0.0001 0.0997 0.0001 0.2853 0.0001 
24 1 ~ t . 2  24 0.0303 36.25 o.oOû1 0.0967 0.0001 0.2888 0.0001 
25 mnt4 25 0.0293 35.06 0.0001 0.0938 0.0001 0.2921 0.0001 
26 W 26 0.0255 30.43 0.0001 0.0914 0.0001 0.2948 0.0001 
27 radR 27 0.0209 24.75 0.0001 0.0895 0.0001 0.2970 0.0001 
28 AS5 28 0.0184 2 1.76 0.0001 0.0879 0.0001 0.2986 O 
* Probability. '~verage squared canonical correlation. ' See Table 5.1 for definitions. 
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summaiized in Tabk 7.lI(a) for the parametric classifier and in Table 7.11(b) for the non- 

parametric classifier. For the pararnetrïc classifier, the average classification accuracies of 

the t h e  training and testing data sets were 57.2(healthy), 59.4(broken), 58.6(mildewed), 

76.5(grass-greedgreen-frosted), 76.6Black-pointkmudged), 25.4(heated), and 7 1.8(bin-/tire- 

bunit)%. For the non-parametric classifier, the average classification accuracies of the three 

training and testing data sets were 43 S(healthy), 57.4(broken), 44.7(milde wed), 64.2(grass- 

greedgreen-frosted), 67.8(bIack-point/smudged), 24.6(heated), and 55.4(bin-/fire-bumt)%. 

The mean classification accuracy for the healthy and al1 six type damaged CWRS wheat 

kemels was 5 1.1% with the non-parametric classifier, lower than 60.8% with the parameuic 

classifier. 

The low differentiating rates for healthy, miidewed, black-poinilsmudged, heated, and 

bin-/frre-burnt kemels were expected because of their sirnilarities in kemel morphology. 

However, the rates for the broken and grass-green/green-frosted kemels were also quite low. 

despite their morphological differences (smaller sizes and irregular shapes for broken and 

srnaller sizes for grass-greenlgreen-fiosted kernels) from the kemels of other damage types. 

The explanation could be that the features used were selected based on the overall 

performance in distinguishing the healthy and six types of damaged kemels rather than the 

performance in distuiguishùig the kernels of these two damage types fiam the others. By and 

large, the morphologicai features were inadequate in diffe~ntiating the heaithy and damaged 

CWRS wheat kemels. 

7.4.2 Color feature mode1 

With a minimum signifcant level of 0.15, the SAS procedure STEPDISC selected 



Table 7.11(a) Classification of damaged CWRS wheat kernels by a parametric statistical classifier (quadratic discriminating 
function) using 28 selected morphological features 

b s s  to- HalthY Broken Mildewcd Grass-green Black-point Hcatcd Binliïre bumi MCA* 
from 1 No. 96 No. 96 No. % No. 9b No. % No. 96 No. % 9h 

Sei 1(30OV) 
Set 2(300) 
Sei 3(400) 

average 
Broken 

Set l(300) 
Sei 2(300) 
Set 3(400) 

average 
Mildewed 

Sei l(300) 
Sei 2(30)  
Set 3(400) 

average 
Grass-green 

Set l ( 3 0 )  
set 2000) 
Set 3(400) 

average 
Black-point 

Sct 1(3ûû) 
Set 2(300) 
Sel 3(400) 

average 
Hcatcd 

Sei l(300) 
Set 2(3ûû) 
Sei 3 ( W )  

average 
Bidfirc-humt 

Sc1 l(300) 
Sei 2(300) 
Set 3(4QO) 

1.8 0 4  5 O 3.9 11-11 7 H 71 -8 

* Mean classification accurücy ? Testing data size 



Table 7.1 1(b) Classification of damaged CWRS wheat kernels by a non-parartric statistical classifer (k-nearost neighbor) 
using 28 selecîed morp hological fea tures 

aass to - H ~ l t h y  Broken Mildewcd Grass-grcen Blcck-point Hcated Biniiire hum1 Unknown MC A* 
from 1 No. 'K No. % No, 8 No. % No. % No. % No. % No. % % 

Set 113000) 
Set 2(300) 
Set 3(400) 

average 
Broken 

Sei 1(3ûû) 
Sei 2(300) 
Set 3(400) 

average 
Mildewed 

Set 1(30Q) 
Set 2(300) 
Set 3(400) 

average 
Grnss-green 

Sct 1(300) 
Set 2(300) 
Set 3(400) 

average 
Black-point 

Sei l(300) 
Set 2(30) 
Sei 3(W) 

average 
Heated 

Sei l ( 3 0 )  
Set 2(300) 
Sei 3(400) 

average 
Bidfire-biimi 

Sei l(300) 
Set 2(300) 
Set 3(400) 

* Mean classification accurücy O Testing data size 

122 



69 features from the 78 extracted color features and ranked them according to rheir 

contributions to the discriminatory powers of the corresponding feature rnodel (Appendix 

D-2). Table 7.12 lists the fmt 28 steps for selecting up to 28 best color features. The mean 

hue value over a kernel (Km) was ranked as the most signifcant color feature for 

distinguishing the healthy and the different damaged CWRS wheat kernels. The 

discriminating abilities of the feature moàels Dc4 (the best 4 color features), Dc8 (the best 

8 color f e a ~ s ) ,  Dc 12 (the best 12 color features), ..., and Dc28 (the best 28 color features) 

were evaluated using SAS DISCRIM (Appendix E-2). The color features were quite 

powerful in discriminating the healthy and different damaged kernels (Fig 7.8(b)). For al1 

exarnined color models, the mean classification accuracies were higher with the non- 

pararnetric (k-nearest neighbor) classifiers than with the parametric (quadratic) classifiers, 

indicating that the extracted color feature data did not follow the multivariate normal 

distribution very well. Fgr the non-parametric classifiers, the mean classification accuracy 

increased to a certain extent and then remained relatively constant as the number of features 

increased, while for the parametnc classifiers, the rnean classification accuracy varied non- 

monotonously with the feature size. Since the highest mean classification accuracy (95.8%) 

was obtained using the non-parametric classifier with the feature model Dc28, this rnodel 

was chosen as the color feature model for the hold-out classification anaiysis of darnaged 

CWRS wheat kernels. 

The hold-out classification analysis of damaged CWRS kemels was canied out using 

the three pairs of training and testing data sets for both the parametric (quadratic) and non- 

parametric (k-nearest neighbor) statistical classifiers. The results (Appendix F-2) are 



1 Ht 
2 hstGlO 
3 Ar 
4 hstR6 

hstB 10 
mntb3 
hstB 1 1 

var, 
La, 

O Var, 

Table 7.12 The first 28 steps for selecting up to 28 best color features by SAS STEPDISC 
for idenfication analysis of damaged CWRS wheat kemels 

S tep Feature Partial F Prob* Wilks' A Prob ASCC' Prob 
In Out No. RZ Statistic > F >a. >ASCC 

1 0.9722 40792.33 0.0001 0.0278 0.0001 0.1620 0.000! 
2 0.6223 1920.39 0.0001 0.0105 0.0001 0.2647 0.0001 
3 0.4137 822.06 0.000I 0.0062 0.0001 0.3213 0.0001 
4 0.3531 635.79 0.0001 0.0040 0.0001 0.3793 0.0001 
5 0.3061 513.79 0.0001 0.0028 0.0001 0.4111 0.0001 
6 0.2781 44-63 0.0001 0.0020 0.0001 0.4524 0.0001 
7 0.2276 343.05 0.0001 0.0015 0.0001 0.4782 0.0001 
8 0.2514 390.98 O.ûûO1 0.0012 0.0001 0.4909 0.0001 
9 0.1993 289.79 0.0001 0.0009 0.0001 0.4955 O.Cl001 

10 0.3700 683.59 0.0001 0.0006 0.0001 0.5066 0.0001 
11 hstB13 11 0.2172 322.90 0.0001 0.0005 0.0001 0.5096 0.0001 

12 gn- 12 0.2015 293.71 0.0001 0.0004 0.0001 0.5293 0.0001 
13 mntbl 13 0.1590 219.98 0.0001 0.0003 0.0001 0.5452 0.0001 
14 mntb4 14 0.1683 235.40 0.0001 0.0003 0.0001 0.5643 0.0001 
15 hstG4 15 0.1382 186.59 0.0001 0.0002 0.0001 0.5655 0.0001 
16 hstG3 16 0.2058 301.3 1 0.0001 0.0002 0.0001 0.5674 0.0001 
17 hstBl 17 0.1771 250.26 0.0001 0.0001 0.0001 0.5686 0.0001 
18 hstR5 18 0.1599 221.33 0.0001 0.0001 0.0001 0.5721 0.0001 
19 hstG2 19 0.1275 169.94 0.0001 0.0001 0.0001 0.5726 0.0001 
20 hstR12 20 0.1033 133.86 0.0001 0.0001 0.0001 0.5826 0.0001 
21 hst.8 21 0.1005 129.84 0.0001 0.0001 0.0001 0.5897 0.0001 
22 hstR16 22 0.0964 123.91 0.000I 0.0001 0.0001 0.5906 0.0001 

23 Sm, 23 0.0973 125.17 0.0001 0.0001 0.0001 0.5976 0.0001 
24 hstR1S 24 0.1069 139.01 0.0001 0.0001 0.0001 0.6050 0.000 t 
25 hstR13 25 0.0853 108.36 0.0001 0.0001 0.0001 0.6095 0.0001 
26 mntrl 26 0.0854 108.47 0.0001 0.0001 0.0001 0.6156 0.0001 

27 bm- 27 0.2579 403.47 0.0001 0.0000 0.0001 0.6312 0.0001 
28 nuite1 28 0.0792 99.90 0.0001 0.0000 0.0001 0.6357 O 
* Probability . ' ~verage squared canonical correlation. ' See Table 5.2 for de finitions. 



surnmarized in Table 7.13(a) for the parametric classifier and in Table 7.13(b) for the non- 

parametric classifier. For the parametric classifier, the average classification accuracies of 

the three training and teshg data sets were 70S(healthy), 5 1.8(broken), 97.2(mildewed). 

96.3(grass-greedgreen-fros ted), 95.6(black-pointkmudged), 9 1.8(heated) and lOO.O(bin- 

Ifm-bumt)%. For the non-parametric classifier, the average classification accuracies of the 

three training and testing data sets were 87.3@ealthy), 84.9(broken), 97.4(mildewed), 

97 .O(grass-green/green-frosted), 99.0filack-pointlsmudged), 97.1 (heated) and 100.0(bin- 

/fk-bumt)%. The mean classification accuracy for the healthy and al1 six types of damaged 

CWRS wheat kernels was 94.7% with the non-parametric classifier, which was much higher 

than 86.2% with the parametnc classifier. As for individual grain types. the average 

classification accuracies of the three training and testing data sets were higher with the non- 

parametric classifier than with the parametric classifier for the healthy and al1 damage types 

of CWRS wheat kernels, except for the bin-/fire-burnt kemels that were 100.0% correctly 

identified using either the parametric or non-parametric classifiers. Compared to the 

classification results using the morphological feature model, the average classification 

accuracies (non-pararnetric classifier) using the color feature model were much higher for 

each class (Fig 7.9). 

It was not surprising that very high classification accuracies were achieved for the 

bin-/fm-bumt and black-point/smudged kernels. The bin-/fm-bumt kemels were totally 

black and the germ ends of the black-point/smudged kernels had unique black spots. The 

major mis-classifkations were found in two groups of damage types (Table 7.13(b)). The 

fmt group includes healthy, broken. and miidewed damage types. The broken kemels. with 



Table 7.13(a) Classification of damaged CWRS wheat kernels by a parametric stalistical classifier (quadratic discriminating 
function) using 28 selected color features 

nass 10 - Heal thy Broken Mildewed Grass-green Black-point Heated Binlllre bumt MCA* 
from l No. % No. % No. 9h No. % No. % No, 96 No. % CYo 

set 1(300°) 
Set 2(300) 
Sei 3(400) 

averagc 
Broken 

Set l(300) 
Sei 2(3ûû) 
Sei 3(4ûû) 

averagc 
Mildewed 

Set l(300) 
Sei 2(300) 
Set 3(400) 

average 
Grass-green 

Set l(300) 
Sei 2(300) 
Set 3(400) 

average 
Black-point 

Set l(300) 
Sei 2(300) 
Sei 3(400) 

average 
Heated 

Set l(300) 
Set 2(300) 
Set 3(400) 

average 
Bidfire-bumt 

Sei l(3ûû) 
Set 2(300) 
Set 3(400) 

0.0 0.0 0-0 0 0  0.0 0.0 

* Meun classificiition üccumcy ? Testing dutu s i x  
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the lowest average classification accuracy, were mis-classified as healthy (5.82) or 

mildewed (4.3%) or unknown (4.1 %) kemels. The healthy kemels, with the second lowest 

average classification accuracy, were mis-classified as mildewed (6.8%) or broken ( 1.9%) 

or unknown (3.5%) kemels. The mildewed kemels were mis-classified as healthy kernels 

(1.8%). The second group includes the gms-greenmen-fkosted and heated damage types 

where 1.5% ps-greedgreen-frosted kemeis were mis-classified as heated and 1 -3% heated 

kemels were mis-classified as grass-greedgreen-frosted kemels. It was hypothesized that 

higher classification rates could be achieved by including morphological features with the 

color feues ,  because of the morphological differences of the broken from the healthy and 

mildewed kemels and the morphological differences of the grass-greenlgreen-frosted from 

heated kernels. 

Fig 7.9 A comparison of morphological, color, and combinecl feature modes for 
identifkation of àamaged CWRS wheat kemeis using non-parametric(k-nearest 
neighbor) classifien. @ d 8 :  28 morphological t e a m ;  D d h  28 color fe8tum; Ds28: 
2û rnorpbologiePl and color fkatures; H: healthy; B: broken; M: mildeweà; G: gras- 
greedgreen-frosted; BP: black-poinVsmudged; HD: heated; BN: bh-/fin?-burnt) 



7.4.3 Combined feature mode1 

With a minimum sie&ficant level of 0.15, the SAS procedure STEPDISC seIected 

1 13 features from the 146 extracted morphological and color features and ranked them 

according to their connibutions to the discriminatory powers of the corresponding feature 

model (Appendix D-2). Table 7.14 iists the first 28 steps for selecting up to 28 best 

combined feahues hcluding 24 color and four morphological features. The mean hue (han) 

was still ranked as the most significant feature, while the kemel area (A) was ranked at the 

third place. The discriminating abilities of the feature models Ds4 (the best 4 combined 

features), Ds8 (the best 8 combined features), ..., Ds28 (the best 28 combined features) were 

evaluated using SAS DISCRIM (Appendix E-2). For al1 examined combined feature models. 

the mean classification accuracies were higher with the non-parametric (k-neares t neigh bor ) 

classifiers than with the parametric (quadratic) classifiers (Fig 7.8(c)). For the non- 

parametric classifiers, as with the color models, the mean classification accuracy increased 

to a certain extent and then remained relatively constant as the number of features increased, 

while for the parametric classifiers, the mean classification accuracy varied non- 

monotonously with the feature size. Since the highest mean classification accuracy (97.4%) 

was obtained using the non-parametric classifier with the feature model Ds28 (higher mean 

classification accuracy may be obtained using more features, however, it was concluded f?om 

the trend (Fig 7.8(c)) that the improvement was negligible), this model was chosen as the 

combined feature model for the holdsut classification analysis of damaged CWRS wheat 

kernels. 

The hold-out classification analysis of damaged kernels was carrïed out using the 



Table 7.14 The first 28 steps for selecting up to 28 best combined feabws by SAS 
STEPDISC for identifkation analysis of damagd CWRS wheat kernels 

S tep Feature Partial F Prob* Wilks' A Prob ASCC' Prob 
In Out No. 

RI 1 
hstGlO 2 
A 3 
Ar 4 
hstR6 5 
hstB 10 6 
hstBl1 7 

var1 8 
RS 14 9 

vat, 10 
r m a n  11 
hstE313 12 

iL- 13 
mntb4 14 
mntb 1 15 
hs tG4 16 
hs tG3 17 
hstB 1 18 
hstRS 19 
areal3 20 
mnt 1 21 
mntr 1 22 

bm- 23 
Smem 24 
hstG2 25 
hstGl5 26 

Var, 27 

R2 Statistic 
0.9722 40792.33 
0.6223 1920.39 
0.4230 854.34 
0.3477 620.86 
0.35 19 632.44 
0.2663 422.70 
0.2697 430.13 
0.2409 369.50 
0.2073 304.46 
0.2049 300.02 
0.3645 667.63 
0.2090 307.48 
0.1719 241.59 
0.1450 197.33 
O. 1 645 229.05 
0.1390 187.81 
0.2103 309.68 
O. 1686 235.82 
O. 1632 226.74 
0.13 1 1 175.33 
O. 1273 169.59 
0.4624 999.58 
0.2075 304.13 
0.1678 234.30 
0.1650 229.45 
0.1388 187.12 
O. 1324 177- 19 

28 h stR12 28 0.1145 150.10 0.0001 0.0000 0.0001 0.6918 O 
* Probabiiïty. '~verage squared canonical correlation. ' See Tables 5.1 and 5.2 for defînitions. 



three pairs of training and testing data sets for both the parametric (quadratic) and non- 

parametric (k-nearest neighbor) statistical classifiers. The results (Appendix F-2) are 

summarized in Table 7.15(a) for the parametric classifier and in Table 7.15(b) for the non- 

pararnetric classifier. For the parametric classifier, the average classification accuracies of 

the three training and testing data sets were 86.0(healthy), 73.0(broken), 96.9(rnildewed). 

97.5(grass-greedgreen-fios ted), 97.9(black-pointfsmudged), 93.9(heated) and 1 OO.O@in- 

Ifire-bunit)%. For the non-parametric classifier, the average classification accuracies were 

92.5(healthy), 90.3(broken), 98.6(mildewed), 99.0(grass-greenlgreen-frosted), 99.1 (Mac k- 

pointlsmudged), 97.5(heated) and 100.0(bin-/fm-bunit)%. The mean classification accuracy 

for the healthy and ali  damage types was 96.7% with the non-parametric classifier, which 

was statistically higher than 92.2% with the parametric classifier. As for individual grain 

types, the average classification accuracies of the three training and testing data sets were 

higher with the non-parametric classifier than with the parametric classifier for the healthy 

and ail the damage types. 

Compared to the classification results using the color features alone, higher average 

classification accuracies were achieved by the inclusion of rnorphological features in the 

feature mode1 for aU types of damaged CWRS kemels, especially the broken and healthy 

kernels (Fig 7.9). The major misclassifications were found in the same two groups of 

damage types (Table 7.15(b)). The broken kemels, with the lowest average classification 

accuracy, were mis-classified as healthy (6. L%), or mildewed (1.4%) kemels. or unknown 

(1.1 %) kemels. The hedthy kemels, with the second lowest average classification accuracy, 

were mis-classified as mildewed (5.0%). or broken (1.1%), or unknown (1.9%) kemels. The 



Table 7.15(a) Classification of damaged CWRS wheat kernels by a parametric statistical classifier (quadratic discriminating 
function) using 28 selected combined features 

klass to - HalthY Broken Mildewcd Grass-green Black-point Hcaicd Bin/iïre burnt MCA* 
from l No. No. % No. % No. % No. 9b No. % No. 8 % 

Healthy 
Set 1(300°) 
Sct 2(300) 
Set 3(400) 

average 
Broken 

Set l (30 )  
Set 2(300) 
Set 3(400) 

average 
Mildewed 

Sc t 1 (300) 
Set 2(300) 
Set 3(400) 

average 
Grass-green 

Set 1 (300) 
Set 2(300) 
Set 3(400) 

average 
Black-point 

Set 1 (3OO) 
Set 2(300) 
Set 3400) 

average 
Heated 

Set 1 (300) 
Set 2(3ûû) 
Set 3(400) 

average 
Bidfire-bumt 

Sei l(300) 
Set 2(300) 
Set 3(400) 

* Mean cliissificution accuracy 9 Testing data size 



Table 7.15(b) Classlfieation of damaged CWRS wheat kernels by a non-parametric statistical classifier (knearest neighbor) 
using 28 selected combined features 

Class tom Healthy Brokcn Mildewed Grass-green Black-point Hcaicd Binlfirc bumt Unknown MCA* 
from 1 No. 96 No. % No. % No. % No. % No. 96 No. % Na. % 9h 

Healthy 
Sei 1(30Ov) 
Set 2(300) 
set 3 ( m )  

average 
Broken 

Set l(300) 
Set 2(300) 
Set 3(400) 

average 
Mildewed 

Set l(300) 
Set 2(300) 
Set 3(400) 

average 
Grass-grcen 

Set l(300) 
Set 2(30) 
Sei 3(400) 

average 
Black-point 

Sct l ( 3 0 )  
Sct 2(300) 
Set 3(400) 

average 
Hcated 

Sct 1 (300) 
Set 2(300) 
Sc1 3(400) 

average 
Binlfire humt 

Sei l ( 3 0 )  
Sci 2(300) 
Sc1 3(400) 

0.0 963 

* Mean classification accurücy ? Testing dütü size 
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mildewed kernels were mis-classified as hedthy kernels (1.2%). in the second group, 0.9% 

grass-greedgreen-hsted kemels were mis-classified as heated and 1.3% heated kernels were 

mis-classified as grass-green/green-frosted kemels. Overall, using the combined features 

significantly improved the classification accuracies obtained using the morphological or 

color features alone in identifying the different types of damaged grain kemeis. 

As a cornparison to the statistical classifiers, a M N '  classifier with a structure of 28- 

13-7 (three layers with 28 nodes in the input, 13 nodes in the hidden, and 7 nodes in the 

output layer) was used with the combined feature model Ds28. The results are summarized 

in Table 7.1S(c). The average classification accuracies were 9 1.4(heal thy), 9 1.6(broken), 

97.1(mildewed), 97.8(grass-green/green-frosted), 98.2(black-pointlsmudged), 96.3(heated) 

and 99.9(bin-Ifire-burnt)%, slightiy lower than using the non-parametric classifier. Because 

the structure of the MNN, therefore the performance of the MNN classifier was not 

optimwd, it cannot be concluded that the non-pararnetric (k-nearest neighbor) classifier is 

better than the MNN classifier. The reported MNN classifier was chosen from three tested 

MNN classifiers with different structures, due to its superior performance. For the damage- 

type identification problem, the MNN classifier can be considered as good as the non- 

parametric (k-nearest neighbor) classifier. 

7.5 Grain Type Idenafication of Buik Grain Samples 

With a minimum significant level of 0.15, the SAS procedure STEPDISC selected 

55 features from the 114 extracted color features and ranked them according to their 

contributions to the discriminatory powers of the comsponding feature model (Appendix 
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D-3). Table 7.16 lists the fnst 32 steps for selecting up to 28 best color features. The 

discriminating abilities of the feature models Bc4 (the best 4 features), Bc8 (the best 8 

features), Bc12 (the best 12 features). ..., Bc28 (the best 28 features) were evaluated using 

SAS DISCRIM (Appendbr E-3). For both the parametric (quadratic) and non-parametric (k- 

nearest neighbor) classifiers, a high classification rate of 99.9% was achieved with the best 

4 fezture zmdel? and a !cK).O% ciassification rate was achieved with the best 8 aiid 12 feature 

models (Fig 7.10). After that the classification rate decreased for the pararnetric classifier 

while remained constant for the non-parametric classifier as the size of the feature model 

increased. The model Bc8 was chosen as the color feature model for the hold-out grain-type 

classification analysis of buik grain samples. In the model Bc8.4 out of the 8 features were 

direcdy extracted h m  the red band of the color images, compared to 2 from the green band 

and I from the blue band. The remaining feature was mean saturation. This agrees with the 

results reported by Neuman et al. (1989b) and Hawk et al. (1970) that the reflectance 

properties of bulk samples of cereal grains were more distinct in the red color band than in 

other color bands of the visual spectrum. 

The hold-out grain-type classification analysis was carried out using the three pairs 

of training and testing data sets for both the parametric (quadratic) and non-parametric (k- 

nearest neighbor) statistical classifiers. The results (Appendix F-3) are summarized in Table 

7.17(a) for the pararnetric classifier and in Table 7.17@) for the non-parametic classifier. 

For the pararnetric classifier, 100.0% classification accuracies were obtained for each of the 

five grain types with each of the three training and testing data sets, except for CWAD wheat 

with the training and testing data set 1 where 5 out of 2 1 CWAD wheat images in the testing 



Table 7.16 The k t  32 steps for selecting up to 28 best color features by SAS STEPDISC 
for grain type identification analysis of bu& grain sarnples 

Step Feature Partial F Prob* WilkstA Rob ASCC' Prob 
In Out No. R~ Statistic > F > A  >ASCC 

32 hstG24 28 0.0557 5.724 0.0002 0.0000 0.0001 0.9507 0.0001 
* Probability. '~verage squmd canonical correlation. ' See Table 5.3 for de finitions. 
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Table 7.17(a) Grain type classification of bulk grain sainples by a parametric statistical classiler (quadratic discriminating 
function) using 8 selected color features 

Class to 9 CWRS CWAD Barley R Y ~  Oats MCA* 
from 1 No. % No. % No. % No. % No. % % 

CWRS 
set 1 (63') 
Set2(63) 
Set3(54) 
average 

CWAD 
Set 1(2 1) 
Set2(2 1)  
Set3(18) 
average 

Barley 
Setl(21) 
Set2(2 1 ) 
Set3( 18) 
average 

R Y ~  
Set l(21) 
Set2(2 1 ) 
Set3(18) 
average 

Oats 
Setl(21) 
Set2(2 1 ) 
Set3( 18) 

v 000 98 
* Meün clüssi fication accuracy ? Tcsting data size 
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Table 7.17(c) Grain type classification of bulk grain samples by a neural network classifier (84-4-5) 
using 8 selectcd color features 

Class to- CWRS CWAD Barley R Y ~  Oats MCA* 
from I No. % No. % No. % No. % No. % % 

CWRS 
Set l(63 ') 
Set2(63) 
Set3(54) 
average 

CWAD 
Set 1(2 1 )  
Set2(2 1 ) 
Set3( 18) 
average 

Barley 
Set l(21) 
Set2(2 1 ) 
Set3( 18) 
average 

R Y ~  
Seil(21) 
Set2(2 1 )  
Set3( 18) 
average 

Oats 
Sctl(21) 
Set2(2 1 )  
Set3( 1 8) 
a- 0.0 0.0 0.0 0.0 100.0 99.1 

* Mean cliissification iiccütacy O Testing data size 



data set were mis-classified as CWRS wheat. For the non-parametric classifier. 100.04 

classification accuracies were obtaiwd for each of the five grain types with each of the three 

training and testing data sets. 

Fig 7.10 Evaiuation of color teohire models for grPin type identification analysis of 
bulk grain samples using SAS DISCRIM. 

As a cornparison to the statistical classifiers, a MNN classifier with a structure of 8-6- 

4-5 (four layea with 8 nodes in the input. 6 nodes in the fint hidden. 4 nodes in the second 

hidden. and 5 nodes in the output layer) was used with the feature mode1 Bc8. The results are 

summarized in Table 7.17(c). The 100.0% classification accuracies were obtained for each 

of the five grain types with each of the thrre training and testing data sets, except for CWAD 

wheat. With the trainhg and testing data set 2, 3 out of 21 CWAD wheat images in the 

testing data set were mis-classified as barley. 



7.6 Grade Identification of Bulk CWRS Wheat Samples 

With a minimum sie&icant Ievel of 0.15, the SAS procedure STEPDISC selected 

only 20 features from the 114 exuacted color features and ranked them according to their 

contributions to the discriminatory powers of the comsponding feature model (Appendix 

D-4). Table 7.18 lists the 32 steps for selecting these 20 color features. The discriminating 

abilities of the feature models Hc4 (the best 4 features), Hc8 (the best 8 features), Hc 12 (the 

best 12 features), ..., Hc20 (the best 20 features) were evaluated using SAS DISCRIM 

(Appendix E-4). For both the parametric (quadratic) and non-parametric (k-nearest 

neighbor) classifiers, generaiiy the mean classification accuracies hcreased as the size of the 

feature model increased (Fig 7.11). For al1 examined feature models, except for Hc4. the 

mean cfassifîcation accuracies were higher with the parametric classifiers than with the non- 

parametric classifiers. This was contrary to the corresponding results in the previo u s  

classification analyses (Sections 73,7.4, and 7.5) where the mean classification accuracies 

were higher with the non-parametric classifiers than with the paramealc classifiers. Since the 

highest mean classification accuracy (85.6%) was achieved using the paramehic classifier 

with the feature model HcSO, this model was chosen for the hold-out grade classification 

anaiysis of bulk CWRS wheat samples. 

The hold-out grade classification analysis was carried out using the three pairs of 

training and testing data sets for both the panunetric (quadratic) and non-pararnetric (k- 

nearest neighbor) statistical classiners. The results (Appendix F-4) are summarized in Table 

7.19(a) for the parametric classifier and in Table 7.19(b) for the non-pararnetric classifier. 

As a comparison to the statistical classifers, a MNN classifier with a structure of 20- 
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Table 7.18 The first 32 steps for selecüng up to 20 best color features by SAS STEPDISC 
for grade identification analysis of buk CWRS wheat samples 

S tep Feature Partial F Prob* Wilks' A Prob ASCC' Prob 
In Out No. R2 Statistic > F > A  >ASCC 

1 hstBlt 1 0.4071 60.7760 0.0001 0.5929 0.ûûûl 0.2036 0.0001 

32 hstRI7 20 0.0170 1.3590 0.2599 0.1201 0.0001 0.6056 0.0001 
* Probability. '~verage squared canonical comlation. ' See Table 5.3 for def~tions. 



TaMe 7.19(a) Grade clns9ification of bulk CWRS wheat samples by a paramtric sîatistical classifier (quadralic discrlminating 
function) using 20 selectd color feature. 

-- - -  - 

Class to - Grade 1 Grade 2 Grade 3 MC* 
from 1 No. % No. % No O % % 

Grade I 
Set l(2 1 ') 19 90.5 1 4.8 1 4.8 
Set2(2 1 ) 16 76.2 3 14.3 2 9s 
Set3(18) 10 55.6 3 16.7 5 27.8 
average 74.1 11.9 14.0 

Grade 2 
Set l(2 1) 3 14.3 7 33.3 I I  52.4 
Set2(2 1 ) 3 14.3 14 66.7 4 19.1 
Set3( 1 8) O 0.0 17 94.4 I 5.6 
average 9.5 648 25.7 

Grade 3 
Set l(2 1)  4 19.1 1 4,8 16 76.2 
Set2(2 1) 5 23.8 9 42.9 7 33,s 
Set3( 18) O 0.0 2 11.1 16 88.9 

* Mean classification accuracy ? Testing data size 



Table 7.19(b) Grade classification of bulk CWRS wheat samples by a non-paranietrie statistical (k-nearest neigh bour) 
classifier using 20 selected color features 

Class to - Grade 1 Grade 2 Grade 3 Unknown MCA* 
from I No. % No. 70 No. % No. % % 

Grade 1 
Set 1(2 1 ') 18 85.7 2 9.5 O 0.0 I 4.8 
Set2(2 1 ) 20 95.2 1 4.8 O 0.0 O 0.0 
Set3( 18) 16 88.9 O 0.0 O 0.0 2 1 1 . 1  
average 90.0 4.8 0.0 5.3 

Grade 2 
Set l(21) 3 14.3 1 I 52.4 4 19.1 3 14.3 
Set 2(2 1 ) 2 9.5 16 76.2 2 9.5 1 4.8 
Set3( 1 8) O 0.0 6 33.3 6 33.3 6 33.3 
average 7.9 54.0 20.6 

Grade 3 
Setl(21) O 0.0 10 47.6 9 42.9 2 9.5 
Set2(2 1 )  4 19.1 I l  52.4 5 23.8 I 4.8 
Set3( 1 8) O 0.0 2 1 1 . 1  16 88.9 O 0.0 

* Mean classificution ûccuracy ? Testing data size 



Table 7.19(c) Grade classification of bulk CWRS wheat samples by a neural network classifier (20-5-5-3) 
using 20 selected color features 

Cla!!s to 4 Grade 1 Grade 2 Grade 3 MCA* 
from 1 No. % No. % No. % % 

Grade 1 
Setl(21q) 19 90.5 2 9.5 O 0.0 
Set2(2 1) 18 85.7 2 9.5 1 4.8 
Set3( 18) 12 66.7 5 27.8 1 5.6 
average 81 .O 15.6 3.4 

Grade 2 
Set 1(2 1) 6 28.6 I l  52.4 4 19.1 
Set2(2 1 ) 2 9.5 13 61.9 6 28.6 
Set3(18) O 0.0 16 88.9 2 11.1 
average 12.7 67.7 19.6 

Grade 3 
Setl(21) O 0.0 I 4.8 20 95.2 
Set2(2 1) 3 14.3 7 33.3 I I  52.4 
Set3(18) O 0.0 O 0.0 18 100.0 

* Mean clnssification accuracy O Testing data size 



5-5-3 (four layers with 20 nodes in the input, 5 nodes in the fint hidden. 5 nodes in the 

second hidden, and 3 nodes in the output layer) was used with the feature mode1 Hc20. The 

results are summarized in Table 7.17(c). In general, the MNN classifier performed the best 

with a mean classification accuracy of 77.1%. The parametric classifier with a mean 

classification accuracy of 68.32 performed better than the non-parametric classifier with a 

mean classification accuracy of 65.3%. As for the individual grades, the samples of grade 1 

were correctly identified with an average rate of 74.1,90.0, and 8 1 .O% for the parametric. 

non-pacametric, and MNN classifier, respectively. Very large differences (ranging from 9.5 

to 65.1 %) existed in the classification accuracies using ciiffereut training and testing data sets. 

suggesting that either the data set were not large enough to provide adequate class 

information for training the classifiers or the features used were incapable of representing the 

class differences. The average classification accuracies of the three training and testing data 

sets were higher with the non-parametric classifier than with the parametric classifier. 

Fig 7.11 Evaluation of color feature models for grade identification anaiysis of bulk 
CWRS wheat samples wing SAS DISCRIM. 



SUMMARY AND CONCLUSIONS 

An illumination system was designed and developed to provide consistent, uniform 

diffused illumination for high quality color imaging of grain samples. Tests showed that the 

illumination was insensitive to the change in the supply voltage (with a maximum variation 

of 0.5% in the R, G, and B intensities for a 1 V change fiom the rated supply voltage), was 

stable with time (with a maximum variation of 1.20% variations in the R, G, and B 

intensities over 8 h), and was uniform over the FOV (with the maximum intensity variations 

of 3.1 % across the width and 1.5% down the depth of the FOV). 

A software package was developed on a microcornputer (Pentium 166 MHZ) under 

the DOS environment for grain image processing. The functions of the package includes 

imaging control, automatic segmentation of individual kemel images, and automatic 

extractions of 68 morphologicai and 78 color features for individuai kemel images and 1 14 

color feature for bulk sarnple images. 

Using the developed illumination system, individual and bulk grain images of the 

samples collected in five grain types (CWRS wheat, CWAD wheat, barley, rye, and oats) 

from 20 different growing regions from the western Canada were acquired. Images of 

individual CWRS wheat kernels were also acquired for seven darnage types (healthy, broken, 

mildewed, grass-green/green-frosted, black-point/smudged, heated, and bin-Ifire-bumt). 

Morphologicd and color features were extracted from the acquired images using the 

developed s o h a r e  package and the classification analysis were conducted to differentiate 

different grain types and different damage types (for CWRS wheat) using statistical and 
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neural network classification methods with different feature models (morphological. color. 

and combined). The foliowing conclusions were made from the classification analysis: 

1. For the grain type classification of individual kemels, using combined morphological 

and color features improved the classification accuracies over using morphological 

or color features alone. For a specific feature model (morphological, color, or 

combined), the non-parametric (k-nearest neighbor) statistical classifier aiways gave 

the best classification result. Using a non-parameuic classifier with a selected 

combined feature model of 15 morphological and 13 color features. the average 

classification accuracies were 98.2,96.9,99.0,98.2, and 99.0% for CWRS wheat, 

CWAD wheat, barley, rye, and oats, respectively, when trained and tested with three 

different training and testing data sets. Similar classification accuracies were 

achieved using a neural network classifier with the same features. 

2. For the classification of damagecl CWRS wheat kemels. color features proved to be 

more efficient than morphological features, however combining morphological 

features with color features improved the classification accuracies over using the 

color features alone. Again, the non-parametric (k-nearest neighbor) statistical 

classifier always gave the best classification result. Using a non-parametric classifier 

with a selected combined feanue mode1 of 24 color and 4 morphological features, the 

average classification accuracies were 92.5 (hedthy), 90.3 (bmken), 98.6 (mildewed), 

99.0 (grass-greedgreen-frosted), 99.1 (black-point/smudged), 97.5 (heated), and 

100.0 (bin-/tire-burnt) 8, when trained and tested with three different training and 

testing data sets. Similar classification accuracies were achieved using a neural 



network classifier with the same features. 

3. For the grain type classification of bulk samples, a selected feature model of 8 color 

feanres was used with parametric and non-parametric statistical classifies, and a NN 

classifier. When tested on three different training and testing data sets, set 1, set2. and 

set3, al1 the tested bulk sample images were correctly classified by the non- 

parametric classifier, while 5 out of 2 1 bulk images of CWAD wheat in set 2 were 

mis-classified as CWRS wheat by the pararnetric classifier and 3 out of 2 1 images 

of CWAD wheat in set 1 were mis-classified as barley by the neural network 

classifier. 

4. For the grade classification of bulk CWRS wheat samples, a selected feature model 

of 20 color features was used with paramehic and non-parametric statistical 

classifiers, and a NN classifier. The NN classifier gave the best results with 80.95, 

67.72, and 82.52% bu& wheat sampks of grade 1,2, and 3, respectively, correctly 

classified. However, large variations of 23.8 1% for grade 1,36.5 1 % for grade 2, and 

47.61% for grade 3 existed in the classification accuracies when using different 

training and testing data sets, indicating that the grade information is probably not 

fully represented by the extracted color features. 



M CONTRIBUTION TO KNOWLEDGE 

1. Demonstrated that surface color features of individual grain kemels can be used to 

significantly improve the classification accuracy obtauied using the morphological 

features aione; 

2. Dernonstrated that surface color features of bulk grain samples can be used for rapid 

identification of different cereal grains (Le., CWRS wheat, CWAD wheat, barley, 

oats, and rye); 

3. Demonstrated that color features of individual grain kernels can be used for 

identification of heaithy and some types of damaged wheat kemels (e-p.. broken. 

grass-greenlgreen-frosted, bin-If=-bumt, black-pointlsmudged, heated. and 

mildewed); 

4. Demonstrated that neural network classifiers are efficient in classifying different 

types of cereal grains; 

5. Designed and developed a consistent, uniform diffused illumination system for high 

quality color irnaging of grain samples; 

6. Developed a color image processing software package on a microcornputer under the 

DOS environment dedicated to color grain image analysis. 



X SUGGESTIONS FOR FUTURE RESEARCH 

1. For practical applications, a Line-scan color canera, instead of a area-sensing color 

camera should be used to acquire grain images from continuous grain flow on the 

Mt ;  

2. To develop a practical system for i d e n t m g  the constituents of a grain sample using 

the developed algorithms, more grain types and objects other than grains that are 

commonly found in uncleaned commercial grains (such as dockages and Stone 

pieces) should be collected and included in the training data set; 

3. For the classification of healthy and darnaged grain kernels, more damage types and 

more damaged grain kernels should be collected and included in the training data set 

and the developed algorithms need to be tested with practical mixed samples (Le.. a 

small amount of different damaged kemels mixed with a large arnount of healthy 

kernels); 

4. An investigation on the effect of growing regions on grain kernel features could be 

helpful in developing a robust classifier; 

5. An statisticai analysis of the selected features should be made to determine the 

probability distributions of the features which could be useful in selecting a proper 

type of classi fiers (parametric or non-parametric) . 
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Appendix A 

C LANGUAGE CODE OF SOFTWARE PACKAGE 
FOR GRAIN IMAGE PROCESSING 



* Program to standardize the lighting configuration, * Monitors a small cenaal square region (50 x 50) and displays * graphically the average RGB value differences between * desired and actual grey levels as RIS, WIB BALAIUCE * arc adjustcd Cornpletes once the desired and acniai * green grcy levels am within the input error allowed 
for 10 consecutive fiamts. 

* 
* Xiangyang Luo, May 0 1/95 * Modified h m  UN1STAND.C BY Jeff Hehn MAY 22/93 * 

#define ON 1 
Mefine Off O 
#define INTERNN, O 
#define EXTERNAL 1 
#define RGB-MODE 1 
#define HSI-MODE O 
#de fine TRUE 1 
#define FALSE O 

struct videoconfig screen; 
main0 

int i j,x,n, dgrey; 
float r-awy, gagrey, b-agrey, dl-err; 
int rpixels[S 121, gpixels[5 121, bpixels[S 121; 
long rp-sum, rgn-size, rpix-sum, gpix-sum, bpix-sum; 
int rgn_arr[4], ovcr-on[4] = { 1,l.l. 1 ) ; 
char buffer[25] ,clr_buf[25] ; 
in t rgrey-set, ggrey-set, bgrey-set; 

/* Initialize aurora */ 
au-err-mgs (ON); /* enable display of AURORA error messages */ 
auinit O; /* initialize AURORA resources */ 
au-setrnode (RGB-MODE); 
au-display (ON); I* enable display */ 
aubuf,clear( 3 ); /* clear the overlay buffer */ 
au-set-ovl_plns( over-on ); /* overlay is displayed */ 
rgn_arr[O] = 165; 
rgn-arr[l] = 180; 
rgn_arr[2] = 150; 
rgn_arr[3] = 150; 



pnntf("\n ïilumination Adjusting Ropm") ;  
prind("\n desired average grey level: "); 
scanf("%i ", &dgrey); 
printf("li allowable error (+- grey levels): "); 
scanf(" 8 f', &dl-em); 

/* Set up graphics on screcn */ 
-setvideornode( ,VRES 16COLOR ); /* set to vga 640x480 - 16 color */ 
~etvideoconfig( Brscreen ); 
,clearscrten( -ûcEARSCREEN ); /* clear the screen */ 
-rectangle( ,GBORDER, 243.99,396,356 ); 
-setcolor( 5 ); 
,rnoveto( 243, (int)(355dpy) ); 
,lineto( 396, (int)(355-dgrey) ); 
sprintf( cIr-buf, " " 1; 

/* Ok. Lets do it ! */ 
au-set-sync -AL); l* select extemai sync */ 
n a ;  
do 
{ 

rgey-set = FALSE, ggrey-set = FALSE, bgrey-set = FALSE; 

while( ! ggrey-set ) 

{ 
au-acquire(0,l); /*acquireanimage */ 
rpix-sum = 0. gpix-sum = 0. bpix-sum = 0; 
for(i=rgn-arr[O]; i<(rp-arr[O]+rgn-arr[2]); i++) 
( 

auset-ûixel(0, il rgn-am[ 1 1, rgn_arr[3], rpixels, gpixels, bpixel s); 
for(j4; jagn_arr[3]; j++) 
{ 

rpix-sum = (long)rpixelsu] + rpix-sum; 
gpix-sum = (1ong)gpixelsuJ + gpix-sum; 
bpix-sum = (long)bpixeIsu] + bpix-sum; 

1 
1 
,setcolor( O ); 
,rectangle( ,GFILLINTERIOR, 244, 100,395,355 ); 



,settcxtposition( 2.2 ); 
spnntf( buffer. "Red too low! avg: %3.2f'. r-agrty ); 
,outtext( buffer ); 

1 
else if( (r-apy > ( (float)dgrey + dl-en) )) 
( 

,sencxtposition( 2,2 ); 
sprintf( buffer. "Red too hi@! avg: %3.2f', r-agrey ); 
puttext( buffer ); 

1 
eise 
( 

rgrey-set = TRIE; 
-senextposition( 2.2 ); 
sprintf( buffer, "Red is OK! avg: %3.2f1. r-agrey ); 
outtext( buffer ); - 

1 

if( (gagrey < ( (float)dgrey - dl-err) )) 

( 
n a ;  
,settextposition( 4,2 ); 
sprind( buffer, "Green tw low! avg: %3.2f1, g-agey ); 
outtext( buffer ); - 

1 

na; 
,senextposition( 4.2 ); 
sprintf( buffer. "Green too high! avg: %3.2f', Lagrey ); 
,outtext( buffer ); 

ggrey-set = TRUE; 
-settextposition( 4.2 ); 
sprintf( buffer, "Green is OK! avg: %3.2fW. gagrey ); 
,outtext( buffer ); 

if( (b-agrey < ( (fl0at)dgrey - dl-cm) )) 
{ 

,settcxtposition( 6,2 ); 
sprincf( buffer. "Blue too Iow! avg: %3.2f', b-agrey ); 



outtext( buffer ); - 
1 
else if( (b-agey > ( (float)dgrey + dl-en) )) 

,senextposition( 6,2 ); 
sprintf( buffer, "Blue tw hiph! avg: 83.2f '. b-agrey ); 
,outtext( buffer ); 

1 
else 
I 

bgrey-set = TRUE; 
,settextposition( 6,2 ); 
sprintft buffer. "Blue is OK! avg: %3.2f', b-agrcy ); 
-ounext( buffer ); 

1 

,senextposition( 8.2 ); 
spnntf( buffer. " testing ... %i ", n ); 
-outtext( buffer ); 

1 
1 

auet-sync (INTERNAL); /* select interna1 sync */ 
-setvideornode( ,DEFAULTMODE ); 
au-end(); 

Program to Save a rectangular-pixel image (in R&W, RGB, or HSI) 
from DT287 1 framcgrabber usine the Aurora subroutines in the 
khoros VlFF image format. 

a X. Luo, Oct., 1995 
* Modified from Jcff s xvsave-c * 
........................................................................ 

#indude cstdi0.b 
#include <string.h> 
#inchde cd0s.b 
#indude "viff.hM /* VIFF headcr definitions */ 
#indude "vdefines-h" /* more VlFF information */ 
#inchde "c:hurorahuerrs.h" /* Aurora include files */ 



#inchde "c: hurorahudefs. h" 
#inchde "mousfunt.h" /* mouse function definitions */ 

Mefine OVER-BUF 3 /* the auxiliary buffer */ 
#define Ni-BUF O /* the intensity buffer */ 
Mefine HUE-BUF 2 /* the hue buffer */ 
#define SAT-BUF 1 /* the saturation buffer */ 
Mefine ABS-VAL O I* dont use absolute value in filter operations */ 
Mefine HSIMODE O 
Mefine RGB-MODE 1 

int ovcr-offP3={0,0.0,0}, over_on[4]={ 1 ,l,1,1}; 
void get-roi-mouse( int *. int * ); 

maino 
{ 

FiLE *fp, *fpsat, *fphue; 
char headerl[520]; 
unsigned char *image; 
int *ternp 1, *ternp2, *ternp3, tcml[5 1 21, tem2[S 121, tem3[5 121; 
unsigned long header2[5], header3[ 1 191, band-form; 
float header3[2]; 

int status,c,freeze; /* AURORA Iibrary retum status */ 
int buf,num,final,loop; /* buffer to save*/ 
int comer[4], fiIe-ok, rgn,arr[4]; 
int pic,num,bands,color,color~mode; /* picture number */ 
char fname[50j1comment[1000],zip[1 001,ch; 
int rows=480,cols=5 12,i j,k; /* Default 5 1 2x480 pixels */ 
int stara, starty, change-roi; /* starting ROI coordinates */ 
int x=5O,y=50,xn=û,yn=0,boxXcol,boxXrow; 
int height, lefl-over, hm-32k. num-blocks; 
float 1-w-ratio = l.27S539; 

/* Initialization of Aurora */ 
status = au,err,msgs (ON); /* enable display of AURORA error messages */ 
statu = au-inil(); /* initialize AURORA resources */ 
pic-num = 0; 
status = au,pic,clear( pic-num ); 
status = au-display(0N); 

/* Get an image into buffer using passthru and frtczeframe */ 
printf("\n Select color mode B&W(2) or RGB(1) or HSI(0): "); 
scanf("%iW, &color ); 
if( color < O II color >= 2 ) /* makc sure mode is valid */ 

color,mode = 0; /* default to HSI */ 
else 

color,rnode = color; 



au-set-mode( color-mode ); /* set color mode HSI or RGB */ 
auet-sync 0XïERNA.L); /* select external sync */ 
a ~ p = h O ;  /* pass images */ 
printf("\n To freeze fiame (1): "); 
scanf("%i",&freeze); 
a~,freeze~frarne(); /* frceze the frame */ 
au-set-s ync (INTERNAL); /* set back to interna1 sync */ 

/* transfcr rectanplar pixels to square pixels */ 
for(i4; k480; i++) 
{ 

j=(int)ctii((float)i *l-w-ratio); 
if( je480 ) 

au-get-trixel(0, j, 0,512, temI, tern2, tern3); 
else 

for(à=û; k<=S 1 1 ; k++) 
{ 

tem 1 @c]=û. tem2(k]=û, tem3 [k]=0, 
1 

au,put-trixel(O, i, 0.5 12, teml, tem2, tem3); 
1 

if( color = 2 ) /* if B&W then clear other bufs */ 
( 

au-buf-clear( HUE-BUF ) ; 
au-buf-clear( SAT-BUF ); 

1 
final=O; 
au-buf-clear( OVER-BUF ); /* clear the overlay for ROI */ 

/* Detemine ROI to be saved */ 
while( final < 1 ) 
{ 

printf(lt\n Use default ROI (5 12x376)- yes(1) no(0): "); 
scanf("%i",&change_roi); 
if( change-roi = 0) 
{ 

printf("\n Mark upper left point:"); 
get-roi-mouse( &xn,&yn ); 
startx = xn; 
starty = yn; 
printf("point selected (%i,%i)", xn,yn); 
au,set-grfi,pos( starty,stam+ l0,l ); 
comer[O] = starty; corner[l] = startx; 
corner[2]= starty+lO; corner[3]= startx; 
au-draw-lines( 2, corner, 1 ); 
printf("\n Mark lower nght point:"); 
do /* get 2nd point and make sure it is valid */ 
( 

get-roi,rnouse( &xn,&yn ); 
cols = xn - stanx; 
rows = yn - stany; 



) while ( rows<=I II cols<=l ); 
printf(" point selexteci (%i.%i)\nm. x n p ) ;  

1 
else 
I 

startx=û; starty=0; rows=376; cols=5 12; 
1 

/* Draw a box on rnonitor to indicate region to be saved */ 
box-col = cols; box-row = rows; 
if( cols>S 1 O ) 

box-col=5 10; /* limit 5 10 for aurora to work */ 

au-set,grfx-pos( starty,startx, 1 ); 
au-draw-box( box-row, box-col, 1 ) ; 
printf ("\n Use coordinates (%,si) (%i,%i)", 

starur,starty,stam~ols,starty+rows); 
printf("\n Yes(1) No(0): "); 
scanf("%im, &final ); 
au,set,prfx-pos( starty,startx, 1 ); 
au-draw-box( box,row,box-col,O ); 

1 
/* Get filename and comment */ 

do 
( 
printf("\n Full file name drive:\\path\%lenam\n "); 
flush&(); 
getsffnarne); 
printf("\n Enter a comment:"); 
flushall(); 

np 1; 
strcpy( comment," "); 
strcat( comment, zip ); 
strcpy( headerl , comment ); 
flushall(); 
printf(" Save file and comment E S ( 1 )  NO(0): " ); 
scanf("%i", &file-ok ); 

) while( file-ok = O ); /* otherwise revise filenarne and comment */ 

/* Set viff header for RGB. MS. or B&W image */ 
switch( color ) 
( 
case O: 

case 1 :  

case 2: 

bands = 3; 
band-form = VFF-CM-IHS ; 
printf("\n Saving color MS viff image "); 
break; 

bands = 3; 
band-form = VFF-CM-genericRGB; 
printf("\n Saving color RGB viff image "); 
break; 



bands = 1 ; 
band-form = VFF-CM-NONE: 
prinrf("\n Saving B&W viff image "); 
break; 

1 

/* Fifl viff header buffers with appropriate values for Save */ 
for( i=O; icl19; i++) 

hcadcr4[i] =O; /* fil1 hader4 with zeros */ 
header 1 [O] = XV-FILE-MAGIC-NtJM; 
headcr 1 [ 1 ] = XV-FILEFILETYPE-XVIFF; 
headcrl[2] = XV-IMAGEREL-NUM; 
header 1 [3] = XV-MAGE-VER-KM; 
hcaderl[4] = VFF-DEPNSORDER; /* intel byte ordering */ 
heaàeR[O] = cols; /* row lcngth */ 
headcr2[1] = rows: /* column length */ 
header2[2] = 0; 
header2[3) = 0; 
header2[4] = O; 
header3 [O] = 0.0; 
hcader3[1] = 0.0; 
header4[0] = VFFVFFLûCOCIMPUCIT; 
header4[1] = 0; 
header4[2] = 1 ; /* 1 image */ 
header4[3] = bands; /* three bands I,H,S */ 
header4[4] = VFF-TYP-1-BYTE; /* 1 byte per band */ 
header4[5] = VFF-DES-RAW; 
header4[6] = W M S - N O N E ;  
header4[7j = 0; 
header4[8] = 0; 
headcr4[9] = 0; 
header4[1 O] = 0; 
header4(11]= VFF-MAP-OPTIONAL; 
header4f 121 = 0; 
header4[13] = band-form; /* format of bands */ 
header4[ 141 = 0; 
header4[15] = 0; 
header4[ 163 = 0; 
header4[17] = 0; 

/* Save image to disk */ 
/* write the viff header (1024 bytes) information to a file first */ 

printf("\n file %s opcned \n writing header", fname ); 
fwrite( header 1, sizeof( char ), 520, fp ); 
fwrite( header2, sizeof( long ), 5, fp ); 
fwrite( headcr3, sixof( float ), 2, fp ); 
fwrite( header4, sizeof( long ). 1 19 , fp ); 

/* write the image data to the file */ 



height = (int) (16000/cols); /* 32 kb at 2 byteslpixel */ 
num-blocks = (int) (rowsheight + 1 ); 
lim-32k = height*cols; /* size of musc be under 32 kb */ 
tcmpl = (int *) calloc( (size,t)lim,32k, (size,t)sizeof(int) ); 
ternp2 = (int *) dloc(  (size,t)lim,32k, (size,t)sizeof(int) ); 
temp3 = (int *) calloc( (sizt,t)Lim,32k, (size,t)simf(int) ); 
image = (unsigncd char *) calloc( (size,t)lim,32k, (six-t)sizcof(char) ); 
rgn,arr[l]=startx; rgn-arr[2]=heipht; rgngnm[3]=cols; 

l* check last arrays allocated to see if ok. check both cause one is far */ 
pnntf("\n buffcring image"); 
if( image!=NULL II tcmp3 !=NULL) 
{ 

loop=O; 
if( (fphue = fopcn("fi\hue.buf ',"wb") ) != NULL ) 
I 

if( (fpsat = fopcn("f3sat. buf', "wb") ) != NULL ) 
for( i-tarty; i<stany+rows-height; i=i+height) 
( 

rgn-arr[O] = i; 
au-set-act-rgn( rgn-arr ); 
auset-pic-rgn( 0, temp 1 ,temp2,temp3 ); 
for( jd; jdim-32k; j++ ) 
imagefi] = (unsigned char) temp 1 u]; 

fwrite( image, sizeof(char), lim,32k, fp ); /* write out int directly */ 
fwrite( temp2, sizcof(int), 1im,32k, fpsat ); 
fwrite( temp3, sizeof(int), lim,32k, fphue ); 
Ioopu; 

1 
left-ovcr = starty+rows-i; /* height is what is left */ 
rgn-m[O] = i; 
rgn_arr[2] = leftover; 
au-set-act-rgn( rgn-arr ); 
auset-pic-rgn( 0, templ ,tempZ,ternp3 ); 
for( j=û; jcleft-over*cols; j++ ) 

imageu] = (unsigneci char) temp 1 lj] ; 
fwrite( image, sizeof(char), left-over*cols, fp 1; /* write out int directly */ 
fwrite( temp2, sizeof(int), left,over*cols. fpsat ); 
fwrite( ttmp3, sizeof(int), left,over*cols. fphue ); 
fclose( fpsat ); 
fclose( @hue ); 
fphue = fopen("f:Uiue.buf',"hW); 
fpsat = fopen("f:bat.bufg."rb"); 
if( band-fom = VFF-CMqenericRGB) /* also output r&b bufs*/ 
{ 

for( id; iaium,blocks- 1 ; i u )  

fiead( templ , sizeof(int), lim,32k, fpsat ); 
for( j=û; jdim-32k; j++ ) 

imageb] = (unsigncd char) templ [j]; 
fwrite( image, sizeof(char), lim,32k, fp ); 

1 



fread( temp 1. sizeof(int), left-over*cols, fpsat ); 
for( j4; jdeft_over*coIs; j++ ) 

imgelj] = (unsigned char) temp 1 b]; 
fwrite( image, sizeof(char), left-over*cois, fp ); 
for( i=O; i<num,blocks-1; i++) 
( 

fread( temp 1. simf(int), lim-32k @hue ); 
for( j=û; jdm-32k; j++ ) 

imagefi] = (unsipcd char) temp 1 01; 
fwrite( image, sizeof(char), lim,32k, fp  ); 

1 
frcad( temp 1, sizcof(int), left,ovcr*cols, @hue ); 
for( j=Q jdeftftover*cols; j++ ) 
imageu] = (unsigned char) templ b]; 

fwritc( image, sizeof(char), left,ovet"cols, fp ); 
1 
if( band-fonn = VFF-CM-IHS) /*also output s&h buffers */ 
{ 

for( i d ;  i<num,blocks- 1 ; i++) 
I 

fread( tcmpl . sizeof(int). lim-32k, fphue ); 
for( j=û; j<lim,32k; j++ ) 
imageu] = (unsigned char) temp 1 b]; 

fwrite( image, sizeof(char), lim-32k. fp ); 
1 
fread( temp 1, sizeof(int). Ieft-over*cols. fphue ); 
for( j=O; j<left_over*coIs: j++ ) 

imageu] = (unsigned ch&) temp 1 lj] ; 
fwrite( image, sizeofk har), Ieft-over*coIs, fp ); 
for( i d ;  iaium-blocks- 1 ; i++) 
{ 
frtad( temp 1, sizmf(int), lim-32k fpsat ); 
for( jd; jdim-32k; j++ ) 

imageu] = (unsigned char) tcmp 1 b]; 
fwrite( image, sizeof(char), Iim-3 2k, fp ); 

1 
fread( temp 1. sizeof(int), left-over*cols, fpsat ); 
for( 9; j<left,over*cols; ji+ ) 

imgeb] = (unsigned char) temp 1 lj]; 
fwrite( image, sizeof(char), left,over*cols, fp ); 

1 
fclose( fpsat ); 
fclose( @hue ); 

1 
else 

printf("in unable to open files on ramdisk f:"); 
1 
clse 
{ 



1 
elsc 

penor("write mor"); 

au,set,ovl-plns( over-off ); 
free( header 1 ); 
statu = au,end(); 

1 
/* release AURORA resourccs */ 

Function to  get a point from the muse movcment. 
Draws a cursor on SONY and moves it with mouse. 

********************************************************************/ 
void get-roi-mouse( int *xr, int *y ) 
( 

int xp,yp,flag; 

if (rodentexis ts) 

{ 
flag= 1 ;  
clearbuttons(); 

do 
{ 

msJgctstanls(); 
ms,movement(); 
switch (rodent. btnstaîus) 
I 
case 1 : 

flag = O; 
brcak; 

case 2: 
flag = O; 
break; 

case 3: 
flag = O; 



break; 
1 
au-set-curs-pos( rodent-row, rodent-colurnn ); 

) while (flag); 
yp = rodent-row; xp = rodtn~column; 
ms,init(); 

1 
else /* flag that no mouse found */ 
( 

printf("\n Sorry no rodent found on this machine"); 
1 
*xr = xp; 
*yr = yp; 
au,set,ovl_plns( over-on ); 

1 /* end of get-mi-mouse */ 

/* MOUSEFUNCTIONS */ 
void clearbuttons(void) 
( 

inreg-x-ax = 0x05; 
inregs-x-bx = LEFI'; 
MouseCail; 

int ms,btnpress(int button) 
( 
inregs-x.ax = 0x05; 

rodent.btnstatus = outregs.x.ax; 
rodentbtnclicks = outregs.~. bx; 
rodent.column = outrqs.x.cx; 
rodent.row = outregs.x.dx; 



return 0utregs.x. bx; 
1 

int ms,buirelease(int button) 
{ 

inregsx-ax = 0x06; 
imegs-x-bx = button; 

rodent btnstams = outregs.x.ax; 
rodentbmclicks = outregs.x.bx: 
rodentcolurnn = outrcgs.x.cx; 
rodenuow = outregs.x.dx; 

rtturn oubtpx.  bx; 
1 

void rns-exclude(int toplefa. int toplefty, int b m .  int btmrry) 
f 

inregs.x.ax = Ox 1 O; 
inregs-x.cx = topleftx; 
inregs.x.dx = toplefty; 
imgs.x.si = btrrirtx; 
inrep.x.di = btmny; 

MouseCall; 
1 

int ms-gerstanis(void) 
I 

inregs.x.ax = 0x03; 

rodent.btnstatus = outregs.x.bx; 
rodentcolurnn = outregs.x.cx; 
rodent.row = outregs.x.dx; 

renirn 0utregs.x. bx; 
} 

void ms-hidecrsr(void) 
I 

if(rodent.cursor-displ ay) 
{ 
inrcgs.x.ax = 0x02; 
MouseCall; 
1 

1 

int ms-init(void) 



rodent-exists = outreg-x-ax; 
return outregs.x.ax; 

1 

void rns,lightpenoff(void) 
{ 

iaregs.x.ax = OxOE; 
MouseCdl; 

1 
- - 

void rns,lightpenon(void) 
( 

inregs.x.ax = OxOD; 
MouseCall; 

1 

void ms-rnovecrsflint row, int col) 
{ 

inregs.x.ax = 0x04; 
inregs.x.cx = col; 
inregs.x.dx = row; 

void ms-movemnt(void) 

inregs.x.ax = OxOB; 

void ms-sethrange(int leftcol. int rightcol) 
( 

inregs.x.ax = 0x07; 
inregs.x.cx = leficol; 
inregs.x.dx = rightcol; 

void ms-sttvrange(int uppcrrow, int lowcmw) 

inregs.x.ax = 0x08; 



inregs-x.cx = upperrow; 
inregs.x.dx = Iowerrow; 

void ms-scttextcnr(int cursorcype, int scan 1, int scan2) 
{ 
inregs.x.ax = OxOA; 
inreg-x. bx = cursortype; 
inregs.x.cx = scan 1 ; 
inregs.x.dx = scan2; 

void rns-showcrsr(void) 
{ 

int i, counter; 

inregs.x.ax = Ox2A; 
MouseCaIl; 
counter = inreg-x-ax; 

for (i = 1 ; i < counter; i++) 
{ 
inregs.x.ax = 0x0 1 ; 
MouseCaII; 
1 

rodenr.cursor-display = 1 ; 
1 

void waitcIick(int bunon) 
{ 

char *whichbtn[l] = {"the lefi button", 
"the right button", 
"bah buttons", 
"any button" ) ; 

printf("C1ick %s to continue. ", whichbtnlbutton]); 
rodent. btnstatus = 0; 
do 
ms-getstatus(); 
while (rodent.btnstanrs != 0); 
if (button c 3) 

do 
ms,getstanis(); 

whilc (rodent-bmstatus != button + 1); 
1 

clse 
{ 



do 
ms-getstatus(); 

while (rodent buistatus <= 0); 
1 

do 
mssets tatus(); 

while (rodenttbtnstatus != 0); 
1 

void cltarscrccn(void) 
C 

int x; 

for (X =O; x 4; XU) 

printf("liw); 
1 

void locate(char x, char y) 
t 
inregs.h.ah = 0x02; 
inregs.h.dh = y- 1 ; 
inregs.h.dI = x- 1 ; 
inregs-h.bh = 0; 

Program to calculate the average RGB values over a central 
arca of 50x50 pixels in FOV every ten min. for 8 hrs. Used 
for light stability testing. 

X. Luo, Jan. 1995 
Modified h m  üNIF0V.C by Jeff 

#define ON 1 
#define Off O 
#defineINTERNAL O 
Mefine EXTERNAL 1 
void delay (dock-t wait); 
void main(void) 
{ 

int pic-numi j,k,x,y,status; 



int color_mode,freeze; 
int over_on[4] = { 1.1.1.1 ). over_om4] = (0,0.0,0} ; 
int pixelO[ll2],pixell [I 12],pixe12[112]; 
int hbsizc, vbsize, hsite, vsize; 
float sum0,sumI ,sum2; 
float rgn-size; 
FiiE *outfile; 
char fnam[256]; 

pnntf("\n*** Program to calculate avg. RGB values over a 50x50 central area ***"): 

/* Initialize aurora */ 
status = au,err,rnsgs (ON); /* cnable display of AURORA error messages */ 
status = au,init(); /* initialize AURORA resources */ 
pic-num = O; 
status = ausic-clear(pic-num); 
status = au-display (ON); /* enable display */ 
color-mode = 1 ; 
au-set-mode (color-mode); 
au-set-sync (EXTEFWAL); 
au-set-ovl-plns(over-on); 
au,buf,clear(3); 

vbsize = 50; 
hbsizc = 50; 
vsize = 480; 
hsize = 5 12; 
rgn-size = (f1oat)vbsize * (float) hbsize; 

/* Draw a box around the 50 x 50 ROI */ 
y=2 1 5; 
x=23 1 ; 
au,set&x-pos( y, x, 1 1; 
au-draw-box( vbsize, hbsize, 1 ); 

/* Get the name of the output file */ 
printf("\n File name to save data: "); 
flushall(); 
gets( fname ); 
flushail(); 
if( (outfile = fopen(fname,"atl') ) != NULL) 
{ 

printf( "\n\nAvg. RGB values over a 50x50 ROI" ); 
printf( "\nh Rif Gk B"); 
fprintf( outfile,"\n\nAvg. RGB values over a 50x50 ROI" ); 
fprintf(outfile,"\n\n R\t G\t B"); 

/* Calculate the average RGB over the 50 x 50 ROI every ten min.*/ 
for (ka; kc49; k++) 

a~passthm0; 
au,freeze,frame(); 



sumo = 0.0; suml = 0.0; s u d  = 0.0; 
for(i=y; i<(y+vbsize); i++) 

auset-trixel(0, i, x, hbsize. pixel0, pixel 1, pixeI2); 
for(j=O; jdibsize; j++) 
( 

s u d  = (float)pixelO~] + sumo; 
suml = (float)pixeI 1 u] + suml ; 
sum2 = (float)pixel2fi] + s u d ;  

1 
1 

/* output the rcsults */ 
fprintf( outfile, "\n%3.2flt%3.2nt%3.2f', 

sumûhgn-site, 
sum 1 /rgn-sizc. 
sum2/rgn-site); 

prina("Li%3.2f\t%3.2f\t%3.2f '. 

sumû/rgn-size, 
sum l/rgn-size, 
sumUrgn-size); 

delay ((clock-t)600*CLOCKS-PER-SEC); 
1 

1 
elst 
printf("\n could not open file Sûs", fname ); 
fclose( outfile ); 

au,set,sync(INTERNAL); 
au,set,ovl-ph( over-off ); 
au-end(); 

1 

void delay(clock-t wait) 

clock-t goal; 
goal = wait + clock(): 
while ( goal > clock() ); 



Program to extract individual kernel features from an image 
stored in a file 

X. Luo, June. 1996 

void rnain(int argc, char *argv[]) 
{ 
FILE *ouf; 
stmct image *a, *b, *binaryobject, *color-object; 
struct feature *objf; 
char fp 1 [256], fp2[256], @3[256]; /* fpl: file n a m  ofinput image 

fp2: file namc of calibraaon image 
fp3: file namc of output features */ 

double mm-per-pixel; 
int i, ibegin. en, t, m, n; 
int *ptr; 
int **obj-ptr; 

if (argc != 4) ( 
an,error(GET-US AGE); 
exit(0); 

1 

/* Read in caiibration (coin) image to image A */ 
// reacimg (&a, fp2, Bierr); 
read-image-in-viff (&a, fp2, &en); 
if (err) { 

an-error(err) ; 
exit(0); 

1 
// disp-image(a,O,&err); 

/* Copy red band of coin image A into image B */ 
b =O; 

// copy-image (a, &b, O, &en); 
copy-image (a, &b. 1, &en); 
if (en) ( 

an,error(err); 
exit(0); 

1 



fiecimage (a, &en); 
if (err) { 

an-error(err) ; 
exit(0); 

1 
11 disp,image(b.O,&err); 

/* Transfcr rectangular pixel image B to square pixel image A */ 
rectangular-to-square (b, &a, km); 
if (err) ( 

an-errofferr) ; 
exit(0); 

1 

f~ - image  (b, &err); -- 
if (en) { 

/* Get the calibration scale from image A */ 
mm,per-pixel= get-scale(a) ; 

free-image (a, &en); 
if (en) { 

an,error(err); 
exit(0); 

1 

/* Read in object image (in viff) to image B */ 
read-imge-in-vi ff(&b, fp 1, &en); 
if (en) ( 

an,error(err); 
exit(0); 

) 
// disp,image(b,O,&err); 

/* Transfer rectanplar pixel image B to square pixel image A */ 
rtctanplar-to-square (b, &a, &en); 
if (err) [ 

an-error(err); 
cxi t(0); 

free-image (b, &en); 
if (en) ( 



/* Copy red band of object image A into image B */ 
b = 0; 

// copy-image (a, &b, 1, &en); 
copy-image (a, &b, 1, &en); 
if (err) { 

an-error(err); 
exit(0); 

1 

/* Threshold the red band image B to get a binary image B */ 
thrcsh-is (b, &t,&err); 
if (err) { 

an,error(err); 
exi t(0); 

1 
// disp-image(b,O,&err); 

thrcsbold (b, t, Bierr); 
if (err) ( 

an,error(err); 
exit(0); 

1 
// disp,image(b,O,&err); 

/* Allocate object pointer which contains the coordinates of each region */ 
obj-ptr = (int **)rnalloc((size-t)sizeof(int *)*MAX-OBJECT-NUM); 
if (!obj-pu) ( 

an-error(0UT-OF-STORAGE) ; 
exit(0); 

1 

for (i = O; i c MAX,OBJECTCTNUM; i ++) { 
ptr = (int *) malloc((size,t)sizeof(int)*4); 
if (!ptr){ 
an,error(OUT-OF-STORAGE); 
exit(0); 

1 
eIse obj-ptr[i] = pu; 

1 

/* Mark each seperated regions, ignore very small regions. and fil1 holes 
in any regions to get a labelled image B.*/ 

err=O; n=O; ibegin =O; m=0; 
/* n: no-of marked regions.mno. of pixels in a region. 

ibegin: the fmt row of the last markcd region */ 
while (err = 0) { 

region-4 (b. n+l, Bribegin, &m. &err); 
if (err = NO-REGION) break; 
/* Ignore very small regions */ 
if (me60) { 
del-reg (b, n+ 1, &cm); 
if (en){ 



an-error(en) ; 
exit(0); 

1 
continue; 

1 

l* FiIl holes in the region rnarked n+l, and murn the coordinates 
of the region in obj,ptr[n ] array, */ 
fiIl-holes (b. n+l. obj-ptr[n]. &cm); 
if (en) { 
an,error(err); 
exit(0); 

1 
n u ;  

1 
II disp,image(b,O,&en); 

// prind ("Wo. of objects is 8d.h". n); 
II setch(); 

l* Allocatc feature stmct pointer */ 
objf = (suuct feature *)malioc((size-t)sizmf(snuct feature)); 

l* Open the output feature file */ 
outf = fopen(fp3. "ab"); 
if (outf = NüLL){ 

an,error(CANNOT-OPEN-=); 
exit(0); 

1 
l* write the fcature names to the output file * /  
1/ write-fnarne(ou tf); 

for(i=O;i<n;i+t)( 
l* Extract a binary & a color (grey-level) image of the object mark& i+l */  

extract-obj (b, a, &binary-object, &color-object, i+l,  obj_pu[i], &en); 
if (en){ 
an,error(err); 
exit(0); 

1 
II disp-image(binw-object, 0, &en); 

/* Compute size and shape features of the object */ 
size-shapepefcatufcs(binary_object, OBJECT, objf, mmger-pixel, &cm); 
if (en) [ 
an-error(err); 
exit(0); 

1 
// disp,irnage(color-object, 0, &err); 

/* Compte color fcatures of the object */ 
color,feanires(binary_obje~ color-object, OBJECT, objf, 16. Bzerr); 
if (cm){ 



/* Wnte mcaswed fcanires to output fiIe */ 
write-feature(outf, objf, fp  1, i); 

free (objf); 

free-image (color,object+&e~); 
if (en)( 

an,error(err); 
exi [(O); 

1 

free-image (b, &en); 
if (en)( 

an-emr(en); 
exit(0); 

1 

free-image (a, &en); 
if (err) an-error(err); 



/************************************************************************* 
* bu1 k.c 
* 
a Program to extract bulk fcaturcs h m  a bulk grain image 
* stored in a file 
* 
a X. Luo, June. 1996 
* 
**********************************************************************/ 

void main(int argc, char *argv[l) 

FILE *oud; 
struct image *a, *b; 
stnict bfeaturc * bf; 
char fp1[2561, fp2[256], fp3[256]; /*QI: file name ofinpur image 

fp2: file name of calibration image 
fp3: file narm of output features * /  

double rnrn-per~ixel; 
int err; 

/* Read in calibration (coin) image to image A */ 
II read-img (&a, fp2, &err); 
read-image-in-viff (&a, fp2, &err); 
if (en) ( 

an-error(err); 
exit(0); 

1 
// disp-image(a,O.&err); 
/* Copy red band of coin image A into image B */ 

b = 0; 
// copy-image (a, &b, 0, &en); 
copy-image (a, &b, 1, &en); 
if (en) ( 

an,error(err); 
exi t(0); 

1 
free-image (a, &en); 
if (en) ( 

an-erroderr); 
exit (0); 



/* Transfer rectanplar pixel image B to square pixel image A */ 
rectangula~to-square (b, &a, &en); 
if (err) { 

an,enor(err): 
exit(0); 

1 
free-image (b, &en); 
if (en) ( 

an,enor(crr); 
exit(0); 

1 
// disp,image(a$,&err); 
/* Get the caiibration scaie fiom image A */ 

mm,pergixel= get-scaie(a); 

free-image (a, &en); 
if (en){ 

an-error(err); 
exi t(0); 

/* Read in object image (in vif0 ro image A */ 
read-image-in,viff(&a, fp 1, &err); 
if (err) { 

an-error(err); 
exit(0); 

1 
// dise-image(aO,&err); 

/* Transfer rectanplar pixel image A to square pixel image B */ 
rectangiilar,to,square (a Bb, &err); 
if (cm) { 

an-error(err); 
exi t(0) ; 

1 

free-image (a, Bien); 
if (err)( 

an,error(err); 
cxit(0); 

1 
// disp-irnage(b,O,&err); 

/* AlIocate a bulk image fanire struct */ 
bf = (struct bfeature *) malloc((size-t)sizeof(stnia bfeature)); 

/* cornpute bulk image features */ 
bulk-feahire(b, bf, 32, &en); 
if <err> { 

an-enor(err); 



/* Open the output feature file */ 
outf = fopen(fp3, "ab"); 
if (outf = NULL) { 

an,error(CANNOT-OPENENFILE); 
exi t(0); 

1 

/* wrire the bulk feature to the output file */ 
write,bf(outf,bf,fp 1); 

exi ((0); 
1 

Rogrnm to display the square, thmholded and labellcd images of 
a viff-formatted color image stored in a file 

X. Luo. June. 1996 

void main(int argc, char *argv[]) 
( 
struct image *a, *b; 
char fp 1 [256]; /*file name of input image */ 

int i, ibegin, en, t, m, n; 
int *ptr; 
int * * o b j , p ~  

err = 0; 

if (argc != 2){ 
an,crror(GET,USAGE); 
exit(0); 



11 readjrng (&a, fp  1, &en); 
fead-image-in-viff (ab, fp  1, &err); 
if (err) { 

an-error(err); 
exit(0); 

1 

/* Transfer rectangular pixel image B to square pixel image A */ 
rcctangular-to-square (b, &a, km); 
if (cm) { 

an-error(em) ; 
exit(0); 

1 

free-image (b, Brerr); 
if (err) ( 

an-error(err) ; 
exit(0); 

1 

/* COPY red band of object image A into image B */ 
b=0;  

// copy-image (a, kt>, 1, &err); 
copy-image (a, &b, 1, &err); 
if (err) ( 

an-error(err); 
exi t(0); 

1 

fke-image (a, &en); 
if (m) ( 

an,error(err) ; 
exit(0); 

1 

/* Threshold the red band image B to get a binary image B */ 
thresh-is (b, &t&err); 
if (en) ( 

an-emor(err); 
exi t(0); 

1 
// disp-image(b,O,&err); 

threshold (b. t, Brerr); 
if (err) { 

an_crror(err); 
exit(0); 

1 



// disp-irnage(b,O,&err); 
/* AlIocate object pointer which contains the coordinates of each region */ 
obj-ptr = (int **)malloc((sizt-t)siztof(int *)*MAX-OBJECT-NUM) ; 
if (!obj_ptr) { 

an-emr(OUT,OF-STORAGE) ; 
exi t(0); 

1 

for (i = O; i < MAX-OBJECT_NUM; i ++) ( 
pu = (int *) maIloc((si~t)siteof(int)*3); 
if (!ptr) ( 
an-enor(Om-OF-STORAGE) ; 
exit(0); 

1 
else obj_ptr[i] = ptr; 

1 

/* Mark each scperated rcgions, ignore very small regions, and fil1 holcs 
in any regions to get a labelleci image B.*/ 

err = O; n = O; ibcgin = O; m = 0; 
/* n: no-of markcd ngions,m:no. of pixels in a region, 

ibegin: the fmt row of the 1st marked region */ 
while (err = 0) ( 

region-4 (b, n+l, Bubegin, Btm, &err); 
if (err = NO-REGION) break; 
/* Ignore very smail regions */ 
if (m < 30) { 
del-reg (b, n+ 1, &en); 
if (en) { 

an_crror(err); 
cxit(0); 

1 
continue; 

1 

/* Fil1 holes in the region marked n+l, and retum the coordinates 
of the region in obj_ptr[n] anay. */ 
fil]-holcs (b, n+ 1, obj,ptr[n], &en); 
if (err) { 
an,error(err); 
exit(0); 

1 
n++; 

1 
// disp-image(b,O,&err); 
prind ("\.No. of objects is %d.\nW, n); 
2etchO; 
free-image (b, &cm); 
if (en) an_trror(err); 
exit(0); 

1 



Program to display the square, thresholded, and labellcd images of 
a urn-formatteci color image stored in a file 

* X. Luo, June. 1996 

void main(int argc, char *argvn) 

struct image *a, *b; 
char fp  1 [256]; /*file name of input image */ 

int i, ibegin. err, t. m, n; 
int *ptr; 
int **obj_pw 

if (argc != 2){ 
an,error(GET_USAGE); 
exit(0); 

1 

/* Transfer rectangular pixel image B to square pixel image A */ 
rectangular-to-square (b, &a, dkerr); 
if (err) { 

an,error(err); 
exit(0); 

1 

fretetimage (b. &en); 
if (err)( 

an,error(err); 
exit(0); 

1 



/* Copy red band of object image A into image B */ 
b-0; 

11 copy-image (a, &b, 1, &cm); 
copyjmage (a, &b, 1, Brerr); 
if (en) ( 

an,error(err); 
exit(0); 

1 
fret-image (a, &err); 
if (en)( 

an_crror(err) ; 
cxit(0); 

1 

/* nireshold the red band image B to get a binary image B */ 
thrtsh-is (b, &&&err); 
if (err) { 

an,error(err); 
exit(0); 

1 
11 disp-image(b,O,&em); 

threshold (b, t, &err); 
if (err) { 

an,crror(err); 
exit(0); 

1 
11 disp,image(b,O,&err); 

l* Allocate object pointer which contains the coordinates of each region */ 
obj-ptr = (int **)malIoc((size-t)sizeof(int *)*MAX-OBECT_NUM); 
if (!obj-pu){ 

an-enor(OUT_OFSTORAGE); 
exi t(0); 

1 

for (i = O; i < MAX-OBJECT-NUM; i ++) { 
ptr = (int *) malloc((size,t)sizeof(int)*4); 
if (!ptr) { 
an,error(OUT_OF-STORAGE); 
exit(0); 

1 
etsc obj-ptr[i] = ptr; 

/* Mark each seperated regions, ignore very small regions, and fil1 holes 
in any regions to get a labelled image B.*/ 

err=O; n =O;  ibegin=O; m = 0 ;  
/* n: no.of marked rcgions,m:no. of pixels in a region, 

ibcgin: the f i t  row of the last marked region */ 
while (en = O) { 

region-4 (b, n+l , &ibegin. am, &en); 



if (err = NO-REGION) break; 
/* Ignore very small regions */ 
if (rn < 30) { 
del-reg (b, n+l, &en); 
if (en) ( 

an,error(en); 
exit(0); 

1 
continue; 

1 

/* Fil1 hotes in the region marked n+l, and return the coordinates 
of the region in obj-pu[n] anay. */ 
fill-holes (b, n+ 1, obj_ptr[n], &en); 
if -. - 

an,crror(err); 
exit(0); 

1 
n++; 

1 
disp,irnage(b,O,&err); 
printf ("\nNo. of objects is %d.\nW, n); 
_getchO; 
free-image (b, &en); 
if (en) an-error(err); 
exi t(0); 

1 

Program to calculate aspect ratio h m  a Canadian quarter image 
stored in a file 

X. Luo, June. 1996 

void main(int argc, char *argv[]) 
{ 
FILE *oud; 
stmct image *a, *b; 
char fp 1 [256], fp2[256]; 
int i, ibegin, en, t, m, n; 
int *ptr; 
int **obj,ptr; 



l* Read in coin image to A */ 
read-image-in-viff (&a, fp 1, &err); 
if (en) ( 

an,error(e~); 
eXit(0); 

1 
Il disp-irnage(a,O,&en); 

l* Copy red band of coin image A into image B */ 
b=O; 
copy-image (a, &b, 1, &err); 
if (err){ 
an,error(err); 
exit(0); 

1 

free-image (a, &cm); 
if (en){ 
an,error(err); 
exit(0); 

1 
1* 'Ihreshold the r d  band image B to get a binary image B */ 
thresh-is (b, &t,&err); 
if (err) { 
an-error(err); 
exi t(0); 

1 
// disp,image(b,O,&err); 
threshold (b, t, &en); 
if (err) { 
an,error(err); 
exit(0); 

1 
tl disp,image(b,O,&err); 
1* Allocate objet pointer which contains the coordinates of each region */ 
objju = (int **)malloc((size-t)sizeof(int *)*MAXOBJECTCTNUM); 
if (!obj-ptr) { 
an,emor(OUT-OF-STORAGE) ; 
exit(0); 

1 
for (i = O; i c MAX-OBJECT-NUM; i ++) ( 

pu = (int *) malloc((sizt_t)siztof(int)*4); 
if (!pu){ 
an-error(0-F-STORAGE); 
exi t(0); 

1 
else obj-ptr[i] = ptr; 



1 
/* Mark each seperated regions, ignore very small regions, and fil1 holes 

in any regions to get a labelled image B.*/ 
err=O; n=O;ibegin=O;msO; 
/* n: no.of markcd rcgions.mno. of pixels in a region, 

ibegin: the fmt row of the last rnarked rcgion */ 
while (m = 0) ( 

region-4 (b, n+l, Biibcgin, km, &cm); 
if (en = NO-REGION) break; 
/* Ignore very srna11 regions */ 
if (m < 30) ( 
del-reg (b, n+l, Bterr); 

if (cm) { 
an-mr(=); 
exit(0); 

1 
continue; 

1 
/* FiIl hotes in the region marked n i 1  , and return the coordinates 

of the region in obj-ptr[n] array. */ 
fill-holes (b, n+l, obj-ptr[n], &en); 

if (en){ 
an-emor(err); 
exit(0); 

1 
nt+; 

1 
11 disp,image(b,O,&err); 
if(n>l)( 
an-error(N0-ORTOOMANY-EGIONS ) ; 
exit(0); 

1 
/* Open the output feature file */ 
outf = fopen(fp2, "ab"); 
if (outf = NULL){ 
an,error(CANNOT-OPENENFILE); 
exit(0); 

1 
/* write the a r a  and the vertical and horitonal ranges in pixel 

to the output file */ 
fprintf(outf, "Coin Arta Nr Ncin"); 
fprintf(outf, "%s %d 5bd %ch", fpl. area(b,l), 

(obj_p~[Ol~2l-~bj~~~~OlEOl)~(obj~p~~[Ol[3l~bj~p~~Ol~ 11)); 
fclose(outf); 
fice-image (b, &cm); 
if (err)( 
an-error(err); 
exi t(0); 

1 
cxi t(0); 

1 



Program to check illumination uniformity over FOV 

X. Luo, June. 1996 

void main(int argc, char *argvn) 

FILE *oun; 
stnict image *a; 
char fp 1 [256], fp2[256]; 
double r, g, b; - 
int i, j, e r  

if (argc != 3) { 
an,emor(GET_USAGE); 
exit(0); 

1 

outf = fopen(fp2, "ab"); 
if (outf == NUU)( 

an,error(CANNOT-OPENENFILE); 
exi t(0); 

1 

for (id; ka->nr; i++){ 
r = 0.0; 
g = 0.0; 
b = 0.0; 
for Q=û; jc(a->nc-4); j++){ 

r += a->band I Ci] u]; 
g += a->band2[iJljJ; 
b += a->band3[ij u]; 

1 
r = r / (double)(a-xcd); 



g = g 1 (double)(a->nc-4); 
b = b 1 (dou ble)(a->nc-4); 
fprintf(outf,"row %d %f %f %fin", i, r, g, b); 

1 

fprintf(outf, "W.); 
for 0=0; j<(a->nc-4); j u )  ( 
r = 0.0; 
g = 0.0; 
b = 0.0; 
for (izO; ka->W. i++)( 

r += a->band 1 [il b] ; 
g += a->band2[i]lj]; 
b += a->band3[i] b]; 

1 
r = r / (double)a-xr; 
g = g 1 (doub1e)a->nr; 
b = b / (double)a->nr; 
fprintf(ou$, "col %ci 8 f  %f %h", j, r, g, b); 

1 
fprintf(outf, "hW); 

free-image (a, &cm); 
if (err) an-error(em); 

Header file defining various constants and structures and 
including DOS header files uscd in the software 

X. Luo, June. 1996 

#include a td i0 .b  
Winclude anath.h> 
Winclude unalIoc.h> 
//#include <stdlib.h> 
Winclude <graph.h> 
#inchde <conio.h> 
#include ~process.h> 
//#include d c n t 1 . b  
//#include u 0 . b  
//#include cd0s.b 
//#include <bios.h> 
#inchde <string.h> 



#define R OxOOûûûûûûlL 
#define G OxOOOOOO 1 OOL 
#de fine B OxOOOO 1 OOOOL 

#define BACKGROUND 255 
Mefine OBJECT O 
Mefine COIN-DIAMETEXJM-MM 23 -869 
#define WHITE 250.0 
Mefine MAX-OBJECT-NUM 40 
#define SQRT2 1.4 142 13562 
#define PI 3.141 5926535 
Mefine PIX,ASP_RATIO 1.275539 

/* nie  UM (raw) image data structure */ 
struct image { 

int nc, nr, color; 
unsigned char **band 1, **band2, **band3; /* Pixel values */ 

1; 

/* The viff image data structure */ 
stnict viff-image { 

char hdrl[510]; 
unsigned long hdr2[5], hdr4[119]; 
float hdr3[2]; 
unsigned char **band l , **bmd2, **band3 /* Pixel values */ 

1; 

/* The bulk image feature structure) */ 
struct bfeature { 

double me&; 
double meanG; 
double meanB; 
double meanH; 
double means; 
double mead; 
double varR; 
double vaKi; 
double varB; 
double varH; 
double vars; 
double vari; 
double rangeR; 
double rang&; 
double rangeB; 
double histR[32]; 
double histG[32]; 
double histB[32]; 

1; 

/* The feature data snucnire 
stnict feanue ( 



doub 
doué 
doub 
doub 
doub 
doub 
doub 
doub 
doub 
doub 

le area; /* Object area */ 
le perimeter; /* Object perimeter */ 
le lenm; /* Length of the smallest enclosing rectangular box */ 
le width; /* Width of the smallest enclosing rectangular box *1 
,e lpa; /* Length of the principal axis */ 
s wma; /* Width of the min. axis */ 
le rmin; I* Min. radius */ 
e rmax; /* Max. radius */ 
e rmtan; /* Mcan radius */ 
c var,r; /* variance of radius */ 

double radR[32]; /* Ratio of radius at i*(PY12) from PA to rmax */ 
double perimR[32]; /* Ratio of primeter segments within tach PU12 

angle to perimeter 
double areaR[32]; - /* Ratio of subarea within each PU12 angle to area */ 

double asp-R; /* Aspect ratio = Ipdwma */ 
double rec-R; /* Rectangular aspect ratio = lenghlwidth */ 
double rad_R; /* Radius ratio = rrndrmin */ 
double thin-R; /* Thinness ratio = perimeter*penmeter/area */ 
double ana_R; /* Ara ratio = length*width/area */ 
double har,R; /* Haralick ratio = rrneanlvar-r *I 

double rneanR; I* mean red component value 
double meanG; /* mean green component value 
double meanB; /* mean blue component value 
double mead; /* mcan hue value 
double means; I* rnean sat. value 
double mead; I* mean inten. value 
double varR; /* var. of red component vaiue 
double varG; /* var. of green component value 
double varB; /* var. of blue component value 
double varH; /* var. of hue value 
double vars; /* var. of sat. value 
double varI; /* var. of inten. value 
double rangeR; 
double rangffi; 
double rangeB; 
double histR[32] ; /* histgrarn of red component 
double histG[32]; /* histgrarn of green component 
double histB[32]; /* histgram of blue cornponent 

}; 

/* Error Codes: */ 
Mefint BAD-IMAGE-SIZE 
#define OüT-OF-STORAGE 
Mefine CANNOT-OPEN-= 
Mefine BAD-DESCRIPTOR1 
#define BAD-Nt-NC 
Mefine FItEFItETOOOOSHORT 
Mefine BAD-DESCRIPTOR2 
#define NO-REGION 



#define REGION-DIT-BOUND 1 08 
#define INTERNAL-1 109 
ridefine BAD-IMAGE-COORD 110 
#define NO-RESULT 1 1 1  
#define IMPOSSiBLE-CLASS 112 
Mefine TOO-MANY-CLASSES 113 
#define TûOOOMANYMANYEDGES 113 
#define BAD-COLOR-MAP 115 
#define IO-=OR 116 
#define BAD-ARGUMENT1 117 
#define BAD-ARGUMENT2 118 
#define BAD-ARGUMENT3 119 
#de fine NO-ORTûûMANY-REGIONS 120 
#define BAD-FEATCTRE-SXZE 121 
Mefine CANNOT-GET-CALIBR-SCALE 122 
Mefinc GET-USAGE 123 

/* Viff hcader definitions */ 

#define XV-FILE-MAGIC-NUM Oxab /* Khoros file identifier */ 
#define XVXVFILEFILETYPETYPXVIFF I /* indicatcs an image file */ 
#define XV-IMAGE-VER-NLJM 3 /* Version 3 (3.1) */ 
#define XV-LMAGEiELhnlM 1 /* Release 1 */ 
Mefine VFF-DEP-NSORDER 0x8 /* NS320ûû byte ordcring */ 
#define VFF,LOC,IMPLICIT 1 /* The location of image pixels */ 
#define WFJYPTYPI-BYTE 1 /* pixels are byte (unsigned char) */ 
#define VFF-DES-RAW O /* Raw - no compression */ 
Mefine VFF-MS-NOM O /* No mapping is to be done, & rnaps are to k stored */. #define 
VFF-MAP-OPTIONAL 1 /* The data is vdid without king sent 

thni the color map. If a map is defined. 
the data may optionally be sent thni it.*/ 

#define VFF-CM-NONE O 
#define VFFVFFCM-gcncricRGB 15 /* an RGB image but not confonning to any 

standard */ 



* Included file including functions and routines files used in the software * 
X. Luo, June. 1996 

* 
....................................................................... 

double angle,2pt(int rl ,int c 1 ,int r2,int c2); 
double dl-dist(smct image *x.double i I.double j 1 ,double i2,double j2,int val); 
double dist,2pt(double rl, double cl, double r2, double c2); 
double get-scale(struct image *x); 
double line-interval(stnict image *y.double a, double b, double c); 
double rnax(double a, double b); 
double rnin(doublc a, double b); 
double perirncter(suuct image *x,int val,int *sum_pixel,int *errer-code); 

int area(struct image *x jnt val); 
int is-zcro(doub1e x); 
int line2pt(double x1,double y1 ,double xZdouble y2,doubIe *%double *b,doublc *c); 
int line,intersect(double a 1 double b 1 ,double c 1 ,double a2,double b2,doubIe c2, 

double *x, double *y) ;  
int locate-region(int x, int y, double *a, double *b, double *cl int orient); 
int max2(int i,int j); 
int nay4(smct image *x, int i, int j, int val); 
int nay8(struct image *x, int i, int j, int val); 
int orientation(stmct image *x, double *a, double *b, double *c); 
int range(struct image *x.int n,int m); 

struct image *new-hage(int nrjnt nc,int co1or.int *enor,code); 

void minmax-dist (stnict image *x, int val, double a, double b, double cl 
int *iil, int *al, int *ii2, int *jj2); 

void an,error(int ccode); 
void box(struct image *x,int vai,int *rxy,int *enor-code); 
void center-of-mass (struct image *x. int val, double *ii, 

double *j, int *errer-code); 
void clr,line(smct image *x. double a, double b. double cl int *enor-code); 
void color~featurcs(stnict image *bin,obj,stnict image *cl,obj,int val, 

stnict feature *objf, int n, int *enor-code); 
void copy-imagc(stnict image *x,stnict image **y,int bandvint *errer-code); 
void copy,reg(stmct image *x,stnict image **y,int val, 

int *rxy,int *enor-code); 
void del,reg(sauct image *x,int value,int *errer-code); 
void disp,image(stnict image *x,int bandvint *crror,code); 
void draw-line (struct image *im, int xl, int yl, int x2, int y2); 
void câge~sobe~(struct image *x,int *mor_code); 
void extract-obj (struct image *markcd, struct irnagc *original, 

stNct image **bin,obj,stnict irnage **cl,obj, 



int va1,int *rxy.int *enor-code); 
void fft(doub1e *f, int ln); 
void fill-holes(smct image *x,int v,inr *rxy,int *enor-code); 
void frame(struct image *x); 
void frce-image(smct image *z,int *error-code); 
void histogram(struct image *x,long *hist.int n,int *error-code); 
void lines-radius(double *a, double *b. double *c, double x, double y); 
void ln-obj-intersec (struct image *y, double a. double b, double c, 

int *i 1, int *j 1, int *i2, int *j2); 
void Iines_parallel(stnict image *s int value, 

double *a, double *b, double *c, int orient); 
void mark4(mc: image *x,int vdue.int isced,int jsecci,int *regsize); 
void mark8(stnict image *x,int vduejnt isecd.int jseed.int *regsite); 
void perp (double a, double b, double c, double *al, double *bl, 

double *cl, double x, double y); 
void principal,axis(stnict image *x,int va1,doubIe *i 1 ,double *j l ,double *i2, 

double *j2, double cmi, double cmj, int *errer-code); 
void radius(struct image *y.double *&double *b,doubIe *c, int k, 

double cmi,double cmj,doubIc *ri ,double *r2); 
void read,um(stnict image **x,char *fn,int *emrfcode); 
void rcad-image-in-viff(sma image * *x,char * fn,in t *enor-code); 
void read-hg (suuct image **x, char *fn, int *errer-code); 
void rectanpular-to-square (struct image *x,struct image **y,int *enor-code); 
void region_4(struct image *x,int value,int *ist.art,int *rsize,int *enor-code); 
void rcgion~8(stnict image *x,int valueTint *istart,int *r-size.int *enor-code); 
void si~shape-features(struct image *bin_obj.int va1,struct feature *objf. 

double mm_per-pix.int *enor-code); 
void thresh-is(struct image *x.int *tint *enor-cade): 
void threshoId(stmct image *x,int t,int *error,code); 
void write,image(stnict image *x, char *fn, int *error-code); 
void write-featurem *ou@, struct feature *objf, char *img int i); 
void write-fnamc(FILE *outfp); 
void bulk-feature(struct image *x, struct bfeanire *bf. int n, int *error,code); 
void write-bf(FiLE *outfp, stnict bfeature *bf, char *img); 

struct image *new-image (int nr, int nc, int color, int *enor-code) 
{ 
struct image *x; /* New image */ 
unsigneci char *ptr; /* new pixel array */ 
int i; 

*enor-code = 0: 
if (nr < O II nc < 0) { 

*error,code = B AD-IMAGE-SIZE; 
retum O; 

1 

I* Allocatc the image structure */ 

x=(stnict image *)malloc((size,t)siztof(stnict image)); 



/* fiil appropriate values into headers to create a um fiie */ 

x->nc = nc; 

/* AIlocate the pixel array */ 

switch (color) { 
case O: 

x->bandl= (unsigneci char **)malloc((si~t)siztof(unsi~ed char *)*(int)nr); 
if (!(x->bandl)) { 

*errer-code = OUT,OF,STORAGE; 
retum O; 

1 
for ( i d ;  iuir, i++) { 

ptr = (unsigncd char *) malloc((size-t)sizcof(unsigned char)*(int)nc); 
/* AlIocate one row */ 

if (!Pr) ( 
*mor,code = OUT-OF-STORAGE; 
return O; 

) else x->bandl [il = ptr; 
1 
x->band2 = 0; 
x->band3 = 0; 
break; 

case 1: 
x->band1 = (unsigned char **)malloc((size-t)sizeof(unsiped char *)*(int)nr); 

/* Pointers to rows */ 
if (!(x->bandl)) { 

*enor-code = OüT-OF-STORAGE; 
return O; 

1 
for ( i d ;  ienr; i u )  { 

p u  = (unsigned char *) malloc((size_t)sizeof(unsiped char)*(int)nc); 
/* Ailocate one row */ 

if (!ptr) { 
*enor-code = OUT-OF-STORAGE; 
retum O; 

} eIse x->band 1 [il = pu; 
1 
x->band2 = (unsigned char **)malIoc((size-t)sizeof(unsiped char *) *(int)nr); 

/* Pointers to rows */ 
if (!(x->ban&)) ( 

*cnor_code = OUT-OF-STOMGE; 
r e m  O; 

1 
for (i=& iair, i++) { 

ptr = (unsigkd c h  *) malloc((size-t)sizeof(u[1~igned char)*(int)nc); 
/* Allocate one row */ 

if (!ptr) ( 



*errer-code = OUT-OF-STORAGE; 
return O; 

) else x->band2[i] = pn: 
1 
x->band3 = (unsigned char **)malloc((size-t)sizeof(unsigned char *)*(int)nr): 

l* Pointers to rows */ 
if ( !(x->ban&)) ( 
*error,code = OUT'OF-STORAGE; 
rchim 0; 
1 
for (i=O; ia ir;  i++) { 

ptr = (unsigned char *) malloc((site_t)sizeof(unsigned char)*(int)nc); 
/* Allocate one row */ 

if (!ptr) { 
*emr,code = OUT_OF-STORAGE; 
rem O; 

} else x->band3 [il = pu; 
1 
break; 

1 
return x; 

1 

/* Free an image Z */ 
void free-image (smct image *z. int *errer-code) 
{ 
/+ Free the storage associated with the image Z */ 

int i; 

*enor-code = 0; 
if (z != 0) ( 

for ( i d ;  ie z->nr; i*) { 
if (z-xolor = O) free @->band 1 [il); 
else { 

free @->band 1 [il); 
free @>band2 [il); 
free (z->band3[i]); 

1 
1 
free (z->band 1 ); 
free (z->band2); 
free (z->band3); 
f- (2); 

1 
1 

/* Remeve a viff-format image file from disk into an image structure */ 
void read-image-in-viff (smct irrage **x, char * fn, int *error,code) 
{ 
/* Allocate an um image structure and read an viff image into it */ 



int n.nc,color,i j, k; 
unsigneci char hcir1[530], hdr2[20]; 
unsigncd Iong hdr3[119]; 
float hdr3 [23; 
unsigneci char *bufi 

/* Open the viff file */ 
inf = fopen(fn, "rb"); 
if (inf = 0) ( 

*enor-code = CANNOTTOPENJïLE; 
r e m ;  

1 
- - 

/* Look for XV-FEE-MAGIC-NUM and XV,FILEFILETYPETYPXVIFF as the fmt two characters */ 
if (freadOidrl, sizeof (unsiped char), 520, in0 != 520) ( 

*error,code = B AD-DESCRTPTOR 1 ; 
fclose (inf); 
return; 

1 

/* Read the image size. */ 
if (fread(hdr2, sizeof (unsigned char), 20, in0 != 20) ( 

*emor-code = BAD-DESCRIPTOR 1 ; 
fclose(inf); 
return; 

1 

// printf("NC: %i, NR: %i\n", nc, nr); 
// setch(); 

if (nr<tO Il nrS999 II nc<=O II nc9999) ( 
*enor-code = BAD-NR-NC; 
fclose (inf); 
return; 

1 

if (fiead(hdr3, sizcof (float), 2, inf) != 2) ( 
*errer-code = B AD-DESCRIPTOR 1 ; 
fclose(inf); 



if (fiead(hdr4, sizeof (unsiped long). 119. inf) != 1 19) ( 
*errer-code = BAD-DESCRIPTOR 1 : 
fclose(inf); 
retum; 

1 

/* Ailocate an um image and r a d  1-he data. */ 

*x = new-hge (nr, nc, color, emr-code); 
if (*errer-code) { 

fclose (inf); 
return; 

1 

buf = (unsigneci char *)mdloc((size_t)si~f(unsigned char)*nc): 

/* R d  in band1 &ta */ 
for (id; iair; i++) ( 

k = fiead (buf, 1, nc, inf); 
if (k != nc) ( 
*error,codc = FILE-TOOOOSHORT; 
pnmf ("Too shon at row %d nbytes=%hW. i,k); 
pemr(" message: "); 
scanf ("%dm, &j); 
fciose (inf); 
retum; 

) else 
for G=0; jcnc; j++) (*x)->band 1 [i]b] = bufb]; 

1 

/* Read in band2 data */ 
for ( i d ;  icnr; i u )  { 

k = fread (buf, 1, nc, inf); 
if (k != nc) { 
*errer-code = FILEFILETûOOOSHORT; 
printf ("Too short at row %d nbytes=%d\nW, i,k); 
perror(" message: "); 
scanf ("%dW, &j); 
fclose (inf); 
retum; 

} else 

/* Read in band3 data */ 
for (i=û; iuu; i++) ( 

k = fread (buf, 1, nc, inf); 
if (k != nc) { 
*error,codt = FILEFILETûûo0SHORT; 
printf ("Too shon at row %d nbytes=%d\nW, i.k); 
perror(" message: "); 
scanf ("%do', &j); 
fclose (inf); 



retum; 
) else 
for (j=0; j a c ;  j++) (*x)->band3[iju] = bufli]; 

1 

f* Renieve a raw-data (UM format) image file from disk into an image saucturc */ 
void fead-um (struct image **x, char *fn. int *errorcode) 
[ 
/* Allocate an um image structure and read an um image into it */ 

FILE * inf; 
int m,nc,color.i j, k; 
int num[3]; 
unsigned char *buf; 

/* Open the file */ 
inf = fopen(fn, "rb"); 
if ( i d  = O) [ 

*error,code = CANNOT_OPENENFïLE; 
return; 

1 

/* Read the image size and image type (grey or coior) indicator */ 

if (fmd(num, sizeof (int), 3, inf) != 3) { 
*morecode = BAD-DESCRIPTOR 1 ; 
fclose(inf); 
return; 

1 
nr = num[O]; 
nc = num[I]; 
color = num[2]; 

printf("NR: %d, NC: %d, CL: %d", nr, nc, color); 

if (nrcû B n-999 II n c d  H no9999) [ 
*enor-code = BAD-NR-NC; 
fciose (inf); 
retum; 

1 

/* Allocate image and rcad the &ta */ 
*X = newjmage (nr. nc, color, errer-code); 
if (*enor-code) [ 

fclose (inf); 
retum; 



buf = (unsigned char *)malloc((size-t)sizeof(unsigned char)*nc); 
/* Read in band 1 data */ 
for (i=û; iuu; i*) { 

k = frcad (buf, 1, nc, inf); 
if (k != nc) { 
*emrCcode = FILECTûûOOSHORT; 
printf ("Too short at row %d nbytcs=%d\n", i,k); 
pcrror(" message: "); 
scanf (" %dW, &j); 
fclose (inf); 
return; 

) else 
for (je jaic; j++) (*%)->bandl [il01 = bufb]; 

} 
if (color != O){ 

/* R e d  in band2 data */ 
for ( i d ;  iau,  i*) ( 

k = fiad (buf, 1, nc, inf); 
if (k != nc) ( 

*error,code = FILECTûûCS HORT; 
printf ("Tm short at row 8 d  nbytes=c/ad\n", i.k); 
penor(" message: "); 
scanf ("%d", &j); 
fclose (inf); 
remni; 

) dse 
for (j=O; j a c ;  ju) (*x)->band2[i]Lj] = bufljj; 

1 
/* Read in band3 data */ 
for (i=û; i a u ;  i*) { 

k = fread (buf, 1, nc, inf); 
if (k != nc) { 

*errer-code = FILEFILETûûOOSHORT; 
printf ("Tm short at row %d nbytes=%d\nW, i,k); 
pcrror(" message: "); 
scanf ("%dN, &j); 
fclose (inf); 

for Q=0; jcnc; j++) (*x)->band3[i]Lj] = bufi]; 

void read-img (struct image **x, char *fn, int *error,code) 
{ 
/* AlIocate an um image structure and rcad an um image into it */ 



FILE * inf; 
int nr,nc,color,i J, k; 
unsigned char *but 

/* Open the file */ 
inf = fopcn(fn, "rb"); 
if (inf = 0) ( 

*errer-code = CANNOT-OPENENFLE; 
retum; 

1 

I* Read the image size and image type (grey or color) indicator */ 
nc = 512; 
N = 768; 
color = O; 

l* AIlocate image and read the data */ 
*x = new-image (nr, uc, 0, error-code); 
if (*errer-code) ( 

fclose (inf); 
return; 

1 

buf = (unsigned char *)malloc((size,t)sizeof(unsigned char)*nc); 

/* Read in band l data */ 
for ( i 4 ;  iuu; i++) { 

k = fread (buf, 1, nc, inf); 
if (k != nc) ( 
*error,code = FILEFILETOOOOSHORT; 
printf ("Too short at row %d nbytes=%d\n". i, k); 
perror(" message: "); 
scanf ("%dV, &j); 
fclose (inf); 
return; 

) else 
for @O; jac; j u )  (%)->band l [ilu] = bufli J; 

1 

if (color != 0) ( 
/* Read in band2 data */ 
for (i*; icnr; i++) ( 
k = fread (buf, 1, nc, inf); 
if (k != nc) { 

*error,code = FILEFILETOOOOSHORT; 
printf ("Too short at row %d nbytes=%d\nW, i,k); 
perror(" message: "); 
scanf ("%dW, &j); 
fclose (inf); 



return; 
) else 

for (jd; juic; j++) (*x)->band2[i]u] = bufi]; 
1 
/* Read in band3 data */ 
for ( id ;  i a r ;  i++) { 

k = h d  (buf, 1, nc, inf); 
if (k != nc) [ 

*trror,code = FLEFitETOOOOSHORT; 
printf ("Tm short at row %d nbytes=%d\nn, i,k); 
perror(" message: "); 
scanf ("%dm, &j); 
fclose (inf); 
rcnirn; 

) else 
for Q=0; jcnc; j++) (*x)->band3[i]u] = bufU']; 

1 
1 
free (buf); 
fclose (inf); 

1 

/* Write the given urn image X to a file named FN *1 
void write-image (struct image *x, char *fn, int *error-code) 
I 
FLLE *inf; 
int i, k; 
int num[3]; 

/* Open the file */ 
*error-code = 0; 
inf = fopen (fn, "wb"); 
if (inf = NCIU) { 

*error,code = CANNOTIfOPENOFEE; 
return; 

1 
/* Write um image headers */ 
num[O] = x->nr; 
num[l] = x->nc; 
nurn[2] = x->color; 
if (fwrite (num. sizeof (int), 3, inf) != 3)( 

*error,code = FILEFILETOOOOSflORT; 
retum; 

1 
/* Write the image as rows. */ 
/* write band 1 data */ 
for (i=û; i< x->nr; i++) { 

k = fwrite (x->band 1 (il, 1, x->nc, id);  
if (k != x->nc) { 
*error,code = FILEFILETûûOOSHORT; 



if (x-xolor != O){ 
/* write band2 data */ 

for (id; i< x->nr; i u )  { 
k = fwrite (x->band2[i], 1, x-mc, inf); 
if (k != x->nc) { 

*errer-code = FILE-TOOOOSHORT; 
reîum; 

1 
1 

/* write band3 data */ 
for (i=O; i< x->nr, i u )  { 
k = fwrite (x->band3[i], 1, x-xc. inf); 
if (k != x->nc) { 

*errer-code = FLEFILETOO-SHORT; 
return; 

1 
- 

1 
1 
fclose (inf); 

1 

l* Mak a copy of the image X into the image (*Y) if "band = O) or 
extract one band h m  image X into the image (*Y). AIlocate Y if 
necessary; otherwise copy into the existing storage. */ 

void copy-image (stnict image *x,struct image **y,int bandvint *enor-code) 
{ 

/* check if the specified band is legal */ 
if (band != O && band != 1 && band != 2 && band != 3)( 

*enor-code = B AD-ARGUMENT I ; 
return; 

1 

if (band = O) ( 
/* check if *y exits, if so check the size and image type*/ 
if (*y = 0) new =1; 
elsc if ((*y)-mc != x->nc II(*y)->nr != x->nr Il(*y)-xolor != x->color){ 

free-image (*y, error-code); 
new = 1; 

) else new =O; 

if (new) *y = new-image (x->ru, x->nc, x->color, enor-code); 
if (*crror-code) return; 

if (x->color != 0) { 
for (i=û; i< x->nr; i++){ 

for @O; j< x->nc; j++)( 
(*y)->band 1 [il u] = x->band 1 [il Ej] ; 



(*y)->bandZ[i] Li] = x->band2[i] b] ; 
(*y)->band3[i] fi] = x->band3 [il [j]; 

1 
1 

}else ( 
for (i=Q ic x->nr; i t t )  

for Q=0; jc x->nc; j++) 
(*y)->band 1 [il u] = x->bandl [ilu]; 

1 
}else ( 

if (x->color = 0) ( 
*enor-code = BAD-ARGUMENT2; 
rctwn; 

)else { 
/* check if *y exits, if so check the sizc and image type*/ 
if (*y = 0) new =l ; 
else if ((*y)->nc != x->nc Il(*y)->nr != x->nr II (*y)-xolor != O){ 

free-image (*y, error-code); 
new = 1; 

} else new dl; 

if (new) *y = new-image (x->m. x-xc, 0. error-code); 
if (*enor-code) return; 

switch (band) ( 
case 1 : 
for ( i d ;  ic  x->nr; i++) 

for (jd; jc x-mc; j++) 
(*y)->band 1 [il Cj] = x->band 1 [il Li]; 

break; 
case 2: 
for ( i 4 ;  ie  x->nr; i t t )  

for (j=O; j< x->nc; j++) 
(*y)->band 1 [il O] = x->band2[i] u] ; 

break; 
case 3: 
for (id; i< x->nr; i++) 

for (j=Q j< x-xc; j+t) 
(*y)->band 1 [il b] = x->band3 [il u]; 

break; 
1 

1 
1 

1 

I* Display an irnage X on screen*/ 
void disp-image (struct image *x, int band, int *errer-code) 
( 
stnict videoconfig vc; 
int i; 
int col. row; 
long int coIor[256]; 



*error-code = 0; 
/* check if the specificd band is legal */ 
if (band != O && band != 1 && band != 2 && band != 3) ( 

*enor,code = BAD-ARGUMENT1 ; 
rctum; 

1 

/* rnaxx = vc.numxpixels - 1 ; 
maxy = vc.numypixels - l;*/ 

/* remap colors to 256 level p y  scaie */ 
for ( i=0; iQ56; i++ ) 
color[i] = i4(R + G + B); 
,remapailpalctte(color); 

switch (band) { 
case O: 

/* if (!(x-xolor)) ( 
*enor-code = BAD-ARGUMENT2; 
retum; 

1 */ 
for ( row=û; row < x->ru; row++ )( 

for ( col=û; col< x->nc; col++ ) ( 
,setcolor(x->band 1 [row][col]/4);/* 256 g e y  levels available */ 
,setpixcl((int)col,(int)row); 

1 
1 
break; 

case 1: 
if (!(x->color)) ( 

*enor-code = BAD-ARG-; 
retum; 

1 
for ( rowd; row < x->ru; row++ )( 

for ( coI=O; col< x->nc; col++ ) [ 
,setcolor(x->bandl [row J [col]/4);/* 256 grey levels avai table */ 
,setpixel((int)col,(int)row); 

1 
1 
break; 

case 2: 
if (!(x->color)) ( 

*errer-code = BAD-ARGUMENT2; 
retum; 

1 
for ( rowt0; row < x->nr; row* )( 

for ( col=O; col< x->nc; col++ ) ( 
,sctcolor(x->band2[row][coI]N);l* 256 grcy levels available */ 
,se tpixel((in t)col ,(in t)row); 



1 
1 
break; 

case 3: 
if ( !(x-xoior)) { 

*error,code = BAD-ARGUMENT2; 
return; 

1 
for ( ni* row < x->nt; r o w u  ) { 

for ( col=O; col< x->nc; col* ) { 
,setcolor(x->band3 [row] [co1]/4);/* 256 p y  levels avaiiable */ 
,setpixel((int)col,(int)row); 

1 
1 
break; 

1 

,settcxtposition(30,1); 
,outtext("hit any key to exit"); 

/* Gct the n-band histogram from a grey-level image X */ 
void histogram (stnict image *x, long *hist, int n. int *error,code) 
{ 

long ilj,k,xmin, xmax, t; 
double width, xmean, y; 

if (x->color) { 
*error,code = BAD-ARGUMENT3; 
return; 

1 

xmin = 256L; xmax = OL; 
xmean = 0.0; y = 0.0; 
for (id; ia->nr; i++) { 
for (jd; j a -mc ;  j++) [ 

t = (long)(x->bandl [il 1); 
if (t > wnax) xmax = t; 
if (t < xmin) xmin = t; 
y += (doub1e)t; 

1 
1 
prind ("Minimum level is %id Maximum level is %Id\n", xmin,xmax); 
setch(); 



width = 256.0/(double)n; 
for (i=Q iCZ36; i u )  hist[i] = 0; 
for (i*; ior->nr; i t t )  

for (j=O; jar->nc; j+t) { 
k = (long)(((double)(x->band 1 [il fi]))/width); 
hist[ k ] += 1; 

} 
xmax = ((long)(x->nr)*Oong)(x->nc))/2; 

xmin = O; i = 0; 
whilc (xmin < xmax) 

m i n  += hist[iu]; 

printf ("Mean level is %f Median level is %dinl', xmean, i); 
setch(); 
printf ("histogram is:\nW); 
for (i=O; iQ56; i++) 

prind ("8ld %IdW. i, hist[i]); 
1 

/* Threshold an image X. Any pixels with a level less than T 
will be set to O; othtrs will be set to BACKGROUND */ 

void threshold (stnict image *x, int t, int *emr-code) 
{ 

int i j; 

if (x->color) ( 
*errer-code = BAD-ARGITMENT3; 
retum; 

1 

for ( i S ;  i<x->nr; i u )  
for (j=O; j<x->nc; j++) 

if (x->bandl [illj] < t) x->band I [il fi] = (unsigned char)BACKGROUND; 
else x->band 1 [il b] = (unsigned char)OBJECT; 

1 

/* Autornatically choose an optimal thresholding level for a grey-Ievel image X */ 
void thresh-is (stnict image *x, int *t, int *error,code) 
( 

static long hist[256], i, j, n, rn; 
long n, tb, to, tl, t2; 

/* Crcate a histogram ... */ 
for ( i d ;  iQ56; i++) hist[i] = 0; 
n = 0; 
for ( i d ;  i a - m r ;  i++) 
for G=0; j<x->nc; j++) { 



/* The fmt thrcshold is the mean level - thcn ittrate */ 
n = Oong)(x->nr)*(long)(x->nc); 
n = Wn; 

for (d; m<40; m++) { /* MAX of 40 iterations */ 
t l  =O; t2=0; 
for (i=& k=n; i++) { 

tl = tl + i*hist[i]; 
t2 = t2 + hist[ij; 

1 
to = tl/(S*t2); 

t l  =O; t2=O; 
for (i=tt+I ; i#6; i++) { 

tl = tl + i*hist[i]; 
t2 = t2 +hist[i]; 

1 
tb = t 1/(2*t2); 

if (n = (tb+to)) { 
*t = (int) n; 
retum; 

1 
n = tb+to; 

1 
printf ("Too many iterations in THRESH-IS !\nw); 
*error,code = NO-REGION; 
*t = 127: 

1 

/* Set the pixels on the framc of a grey-level image X to O */ 
void frame (struct image *x) 
{ 

int i J; 

for (i=O; ia->W. i++) { 
x->bandl [i][O] = 0; 
x->band 1 [il [x->nc- l ] = 0; 

1 
for Q=û; jar-xc; j++) ( 

x->band 1 [O] Li] = 0; 
x+band 1 [x-xr-  1 ]fi] = 0; 

1 
1 

/* Mark an konnectcd region, beginning at (iseed, jseed), with VALUE, 
and retum the region size in *REG-SIZE */ 



void mark4 (stnict image *x, 
( 

int i j,n,m k, again; 

int value, int iseed, int jseed. int *reg_size) 

/* Pixels to be markcd will al1 have the value K */ 
k = x->band 1 [iseed] bsetd]; 
x->band 1 [iseed]Ljseed] = value; 

do I 
again = 0; 
for (i=iseed; iqc+nr, i++) 

for (j=Q ja->nc; j++) 
if (x->band 1 [il b] = value) 

for (n=i- 1 ; ne++ 1 ; n++) 
for (rn=j-1 ; m<=j+l; m++) ( 

if ( (j-m)*(i-n) != 0) continue; 
if (range(x. n, m) = 0) continue; 
if (x->band 1 [n] [ml = k) ( 

x->band 1 [n] [ml = value; 
(*regsize) *; 
again = 1 ; 

1 
1 

for (i=x->nr- 1 ; i>=iseed; i-) 
for (i=x->nc-i ; j>=O; j-) 

if (x->band 1 [il Cj] = value) 
for (n=i- 1 ; n<=i+ 1 ; n u )  

for (m=j- 1 ; rn<=j+l; mi+) ( 
if ( (j-m)*(i-n) != 0) continue; 
if (range(x, n, m) == 0) continue; 
if (x->band 1 [nl[m] = k) { 

x->band 1 [n] lm] = value; 
(*regsize) ++; 
again = 1; 

} 
1 

/* h a t e  a OBJECT region, mark it with value VALUE. 
and retum the value *ISART of the fmt row. konneceted */ 

void region-4 (smct image *x, int value, int *istart, int *r,size, int *error,code) 
{ 

int i. j* ii* jj; 

*enor-code = O; 
ii= -1; j  = -1; 
for (i = *kart; ia->nr; i++) { 



for (j*: j a - x c ;  j++) 
if (x->band 1 [il Li3 = OBJECT) ( 

i4; j=j; 
break; 

1 
if (ii >= 0) break; 

1 

if (u <O) { 
*mot,code = NO-REGION; 
rctum; 

1 

/* Mark an 8-connccted ngion, beginning at (iseed, jsttd). with VALUE, 
and return the region sizc in REG-SIZE */ 

void mark8 (struct image *x, int vaiue, int iseed, int jseed, int "regsize) 
{ 

int i j,n,m, k, again; 

if (range(x, iseed. jseed)=û) return; 

/* Pixels to be rnarked will al1 have the vaiue K */ 
k = x->band 1 [iseed] Ijseed] ; 
x->band 1 [isetd] ljseed] = value; 
* re~s ize  = 0; 

again = 0; 
for (i=istcd; icx->nr, i*) 

for +O; ja-mc; j+t) 
. if (x->band 1 [il lj] = value) 

for (n=i- I ; ne=i+l; n++) 
for (mzj- 1 ; rn<=j+ 1 ; m++) { 
if (rangc(x, n, rn) = 0) continue; 
if (x-> band 1 [n] [ml = k) ( 

x->band 1 [n] [m] = value; 
(*re@ze) ++; 
again= 1; 

1 
1 

for (i=x->nr-1 ; ù=isetd; i-) 
for (j=x-xc- 1 ; j>=û; j-) 

if (x->bandl [il lj] = value) 
for (US- 1 ; a&+ 1 ; n++) 

for (m=j-1; mc=j+l; m++) { 
if (range(x, n, m) = 0) continue; 
if (x->band 1 [nj [ml = k) [ 



x->bandl [n][m] = vaiue; 
(*re~s i te )  ++; 
again = 1 ; 

1 
1 

) while (again); 
1 

/* Locatc a OBJECT region, mark it with value VALUE, 
and nturn the vaiue ISART of the fint row, 8conneceted */ 

void region-8 (struct image *x, int value. int *istarc. int *r,size. int *enor-code) 
( 

int i j,iid; 

*enor-code = O; -. -1; jj - - -1; 
for (i+istan; ia->nr; i++) { 

for (jd; ja-mc;  j++) 
if (x->band 1 [il u] = OB JECT) ( 

ü=i; jj=j; 
break; 

1 
if (ii >= 0) break; 

1 

if (ii < 0) ( 
*enor-code = NO-REGION; 
return; 

1 
*istart = ii; 
mark8 (x, value, ii, jj, r-size); 

1 

/* FiIl any holes in the region marked V by marking them too, and return 
the coordinates of the region in RXY array. */ 

void fiII-holes (struct image *x, int v, int *my, int *errer-code) 

I 
int i. j, m; 
struct image *z; 

*crror-code = 0; 
/* copy region markcd V into 2, and get the region coordinates in RXY array*/ 

copy-reg (x. &z, v, nry, error-code); 
if (*errer-code) ( 
free-image (2, emr-code); 
retum; 

1 

/* Assume (0,O) is background, and rcmark it */ 
mark4 (z, 254, O, O, km); 



/* Any remainint pixels with value BACKGROUND are holes. Change [hem to V. */ 
for ( i 4 ;  i u - x r ;  i t t )  

for Gd; je->nc; j++) 
if (2->band 1 [il fi3 = BACKGROUND) 

x->bandl [i+rxy[O]-l]~+ncy[l]-l] = v; 
/* mark4 (z, 254, i, j);*/ 

frtc-image (z, crror-code); 
1 

/* Copy the pixels btlonging to the region markcd VAL into a new 
image (y). Ai1 othcr pixels will be background. The new image 
wilI be 1 pixel bigger than the region in row & coIumn. Return 
the coordinates of the region in RXY array */ 

void copy-reg (smct image *x, stmct image **y, int val. 
int %y, int *errer-code) 

{ 
int i J, rmin, m. cmin, cmax; 

/* Create and initialize the new region image */ 
(*y) = new-image (rmax-rmin+3, cmax-cmin+3,0, enor-code); 
if (*enor-code) retum; 
for (i=O; i<(*y)->ru; i++) 

for Q=0; j<(*y)-mc; jt+) 
(*y)->band 1 [i]u] = BACKGROUM); 

/* Copy VAL pixels into Z */ 
for (i=l ; i<(*y)->nr- 1 ; i++ j 

for O= 1 ; jc(*y)->nc- 1; j++) 
if (range(x,i+nnin- 1, jwrnin- 1 )) { 
if (x->band 1 [i+rmin- 1 ] lj+cmin- 1 ] = val) 

(*y)->band 1 [il Q] = val; 
else (* y)->band 1 [il b] = BACKGROUND; 

} else (*y)->band 1 [il lj] = BACKGROUND; 
1 

/* Determine the image-oriented bunding box for the region in the 
image X marked with value VAL. Return coordinates of the region 
in the array RXY */ 

void box(struct image *x, int val, int *=y, int *enor-code) 
{ 

int i J, ipl jplJp2jp2; 



/* Find the min and max coordinates, boh row and column */ 
for ( i d ;  ia->nr, i++) 
for(j=û; ja->nc; j++) 

if (x->band 1 [il b] = val) ( 
if (i < ipl) ipl = i; 
if (i > ip2) ip2 = i; 
if (j c jp l )  jpl =j; 
if (j > jp2) jp2 = j; 

1 
if (jp2 < O) ( 

*enor- code = NO-REGION; 
return; 

1 

/* Coordinate array RXY: 
rxy[O]my[ 1 1 : Upper lcft (min,min) 
rxy[2l,rxy[ 11 : h w e r  Ieft (m,min) 
my[2l,rxy[3] : Lower right (max,max) 
nry[OI,my[31: Upper right (min,max) */ 

/* Delete a region marked VALUE by setting the pixel values to BACKGROUND */ 
void del-reg (struct image *x, int value, int *crror-code) 
{ 

int i J; 

*enor,code = 0: 
for ( i d :  ior->nr; i++) 

for (j=O; j a - x c ;  j++) 
if (x->bandl [ij u] s= value) 

x->band 1 [il Li] = BACKGROUND; 
1 

/* Extract the object marked VAL (coordinate range indicated by anay RXY) 
into a new image (y). The pixels bclong to the object will be set to 
OBJECT, and al1 other pixels will be set to BACKGROUND. The new image 
will be 2 pixel bigger than the object in row & column. */ 

void extract-obj (sauct image *marked, struct image *original, 
stnict image **bin,obj,struct image **cl,obj, 
int val,int *rxy,int *enor-code) 

t 
int i, j, miin, rmax, cmin, cmax, nr, nc; 

/* Create and iriitialize the new object images */ 



(*bin,obj) = new-image (nr, nc, 0, error-code); 
if (*enor-code) return; 
(*cl-obj) = new-image (nr, nc. original-xolor, enor-code); 
if (*crror,code) rctum; 

for (i=û; iuu;  i+t) 
for Q=0; j a c ;  j*) ( 

(*bin,obj)->bandl [i][j] = BACKGROUND; 
(*cl,obj)->band 1 [i]u] = BACKGROUND; 
if (original-xolor) ( 
(*ci,obj)->band2[i]b] = BACKGROUND; 
(*cI,o bj)->band3 [il [j] = BACKGROUND; 

1 
1 

/* Copy VAL pixels into Z */ 
rmin = rxy[O]; min  = rxyt 11; 
for (i= 1 ; i<(nr- 1 ); i++) 

for (j= 1 ; j<(nc- 1 ); j++) 
if (range(marked,i+rmin- 1, j+cmin- 1)) ( 
if (rnarked->band 1 [i+nnin- 1 ] u+cmin- 1 ] = val) { 

(* bin-obj)->band 1 [il Q] = OBJECT; 
(*clobj)->band1 [ijlj] = original->bandl [i+nnin- 1 ]lj+cmin- 11; 
if (original->color) ( 
(*clobj)->band2[i] u] = original->bandS[i+rmin- 1 j lj+cmi n- Il; 
(*cl-obj)->banâ3[i] U'j = original->bancU[i+rmin-l ] Ij+crnin- I l ;  

1 
)else ( 

(* binpbj)->band 1 [il = BACKGROüND; 
(*cl,obj)->band t [iJU J = BACKGROW; 
if (original->color) { 
(*cl,obj)->band2[i] J = BACKGROüND; 
(*cl,obj)->band3[i] U] = BACKGROUND; 

1 
1 

)else( 
( *bin,obj)->band 1 [il G] = BACKGROUND; 
(*cl-obj)->band1 [il u] = BACKGROUND; 
if (original->color) ( 

(*cl-obj)->band2[i] b] = BACKGROUND; 
(*clpbj)->band3 [il lj] = BACKGROW; 

1 
1 

1 

/* Compote the perimetcr of the rcgion(s) markcd with VAL */ 
double perimeter (stnict image *x, int val, int *sum-pixeI, int *error,code) 
( 

int i,j,k, iiJj,t; 
double p; 



struct image *y; 

/* Remove al1 pixels exccpt those having value VAL */ 
for (i-0; iq->nr; i+t) { 
for (jd; jq-mc; j++) { 

if (x->band 1 [il01 != val) { 
y->bandl [illj] = BACKGROUND; 
continue; 

} 
(*sumgixel) ++; 
k = nay4(x, i, j, vd); /* How rnany neighbors are VAL */ 
if (k < 4) /* If not d l ,  this is on penm *! 
y->band 1 [il u] = OB JECT; 

else y->bandl [il lj] = BACKGROUND; 
1 

1 

for (id; iq-mr; i u )  ( 
for (id; jq->nc; j++) ( 

if (y->band 1 [il u] != OBJECT) continue; 

/* Match one of the ternplates */ 

k=1;  t = 0 ;  
for (ii= - 1 ; ii<=l; ii*) ( 

for (ij =-l;d<=I;d+t) ( 
if ( i i d  && j j d )  continue; 
if (y->band 1 [i+ii]u+j] = OBJECT) 

t = t + k ;  
k = k « l ;  

1 
1 

/* Templates for 1.207: 
0 0 0  o o #  o # o  o # o  # o o  o o #  0 0 0  Uoo 
# # O  # # O  o # o  o n 0  o # o  o # o  O # #  O # #  

o o #  O 0 0  # o o  o o #  o # o  o # o  # o o  O 0 0  

T= 210 014 042 202 101 104 060 021 

Templates for 1.4 14: 
# o o  o o #  # o o  oo# O 0 0  # O #  

o p 0  o p 0  o p 0  o p 0  o p 0  o p 0  
o o #  # o o  l o o  o o #  # O #  0 0 0  

T= 201 044 041 204 240 005 

Templates for 1 .O: 



if (t==02 IO II t - 014 11 t = 042 11 
'==O202 Il t =O101 II t 4 1 0 4  II 
t== 060 11 t = 021) ( 
p += 1.207; 
continue; 

1 

if (t =O201 11 t-044 11 t - 0 4 1  11 
t = 0204 11 t 4 2 4 0  Il t = 005) { 
p += 1.414; 
continue; 

1 

continue; 
1 
p += 1.207; 

1 
1 
free-image (y, error-code); 
return p; 

1 

/* Compute the color features of the object marked with VAL. */ 
void color,features(stmct image *bin,obj,struct image *cl-obj. 

int val,struct feature *objf, int n, int *enor-code) 
{ 

int j, k; 
double r, g, b; 
double rl ,  gi, bl; 
double tt, s, i; 
double width; 
long np = 0; /* pixel number of the object */ 

if (!cl,obj->color) ( 
*enor-code .= BAD-ARGUENT2; 
return; 

1 

width = 256,0/(double)n; 



for Q=0; jai; j ++)( 
objf->histRu] = 0.0; 
objf->histGu J = 0.0; 
objf->histBu] = 0.0; 

1 

for 0' = O; j < bin-obj->nr; j ++){ 
for (k = O; k c bin-obj->nc; k ++){ 

if (bin-obj->bandl J[k] != val) continue; 

np ++; /* count object pixel number */ 

/* Read in RGB grey-level vaIues */ 
r 1 = (double)(cl-obj->band1 b][k]); 
g 1 = (double)(cl-obj->band2G][k]): 
b 1 = (doubIe)(cI-obj->band3 Li] [k]); 

/* Rernove Gamma corrections and nonaalized RGB */ 
r = exp((1/2.2)*log( le-20+r 1 /WHITE)); 
g = exp((l/2.2)*iog(le-20+gI1WHITE)); 
b = exp((1/2.2)*10g(le-20+b 1 /WHITE)); 

/* Compute HSI values */ 
i=(r+g+b)/3 .0;  
if (i = O)( 
s =O; h =O; 

)else ( 
s = 1.0 - (min(min(r. g), b))li; 
if (S =O) h =O; 
clse h = =os(O.S*((r-gMr-b))/sqN 1 e-20yr-g)*(r-gwr-b)*(g-b))): 

1 



1 
1 
objf->meanR = objf->me@ 1 (doub1e)np; 
O bjf->mcanG = objf->meanG / (dou b1e)np: 
objf->meanB = objf->meanEl/ (doub1e)np; 
objf->meanR3GZB 1 = objf-xneanR3G2B 1 / (doub1e)np; 
objf-xwmH = objf->meanH / (dou ble)np; 
objf->rneanS = objf->means / (doub1e)np; 
objf->mead= objf->mead/ (doub1e)np; 

for (j=0; j<n; j ++){ 
objf->histRu] = objf->histRu] / (doub1e)np; 
objf->histGlj J = objf->histGU] / (double)np; 
objf->histBu] = objf->histBu) 1 (doub1e)np; 

1 
1 
Extract morphological features from a binary image */ 
void size-shape-features(struct image *binpbj.int vd,stnict feature *objf, 

double mm-per-pix. int *error,code) 
I 

int iJ,km,ii& oricn; 
long np; /* np: number of pixels on perimeter */ 
double a[35]. b[35], c[35]; 
double r,ipl ,ip2 jp  1 jp2; 
double xl[4], y1[4], cmi, cmj; 
struct image *y; 



/* Get center of mass of the object */ 
center-of-mass (bin-obj, val, &mi, Brcmj, error-code); 
if (*enor-code) retum; 

l/ disp,image(bin-obj,O,error,code); 

/* Find the principal axis; this defines the direction of the 'length' 
dimension, and is a suaight Iine defined by 2 points */ 

principal-axis (bin,obj,val,&ïp 1 ,&jp 1 ,&ip2,&jp2,cmi,cmj,error~code); 
if (*errer-code) retum; 

// disp,image(bin,obj,O,error-code); 

/* Compte the coefficients of the equation of the PA: a[i]x+b[l]y+c[1]=0. */ 
line2pt (ip 1, jp 1, ip2, jp2, &a(l], &b[1], &c[l]); 

/* Compte the coefficients of the equation of the MA: a[O]x+b[OJy+c[O]=û. */ 
a[O] = b[i]; 
b[O] = -a[l]; 
c[O] = -a(O]*cmi - b[O)*cmj; 
if (c[O] < O II (c[O] = O && b[O] < O)){ 
a[O] = -a[OJ; 
b[O] = -b[O]; 
c[O] = -c[O]; 

1 

/* Get the boundary image Y */ 

/* make a copy of object image */ 
y = O; 
copy-image (bin-obj, &y, 0, error-code); 
if (*enor-code) retum; 

// disp-image(y,O,error-code); 

/* Extract the bounary */ 
for (i=O; ic(y-mr); i++) ( 
for Q=û; j<(y-xc); j++) { 

if (y->bandl [il fi] != val) continue; 
k = nay4(bin-obj, i, j. val); /* How many neighbors are VAL */ 
if (k <4) /* If not d l ,  this is on perimter */ 

y->band 1 [il fi J = OBJEW 
else y->band 1 [i]('j] = BACKGROUND; 

1 
1 

// disp-imageQ,O,error-cde); 

/* Determine the orientation of the object */ 
orien = orientation(y, a, b, c); 

/* Cornpute the coefficients of 15 lines a[i]*x+b[i]*y+c[i]=O (i=2,.. 16) that 
intersects PA: a[l]x+b[l]y+c[l]=O at point (x. y) with angle of i*PI/16. */ 

lines-radius(a, b, c, cmi, cmj); 



/* Get the the area features in tem of pixel number. */ 
objf->ana = 0.0; 
for ( i e *  i 42 ;  i++) objf->areaR[i] = 0.0; 

for (i=0; icy->ru; i++) ( 
for (i=û; jcy-mc; j++) ( 

if (bin-obj->band 1 [i][j] != val) continue; 

/* locate the pixel in which of the 32 subrepions divided by a[i]*x+b[iI8y+c[i], i=l .. 1 6.*/ 
m = locate,rcgion(i, j, a, b, c, orien); 

(objf->ares) ++; I* count the pixel number of the object */ 
(objf->areaR[m]) ++; /* count the pixel number of the subregion m */ 

1 
1 

// disp-irnage(bin-obj,O,enor-code); 

/* Compute the coefficients of the 7 lines: a[i]*x+b[i]*y+c[i]=û (i=17,..23) parallel 
to PA, equaily dividing MA & the 7 Iines: a[i]*x+b[i]*y+c[i]=O (i=24,..30) parailel 
to MA, quaily dividing PA */ 

lines,paralIel(y, OBJECT, a, b, c, orien); 

/* MA: a[O]*x+b[O]*y+c[O]=û. 
PA: a[l]*x+b[l]*y+c[l]=O. 
Radius lines: a[i]*x+b[i]*y+c[i]=û, i = 1, ... 16. 
Lints parailel to PA: a[ij*x+b[ij*y+c[i]=O, i=i7, ... 23. 
Lincs parallel to MA: a[i]*x+b[i]*y+c[i]=O, i=24, ... 30. 
MER. Box: LI : a[3 1]*x+b[3 l]*y+c[3 1 ] d ,  L2: a[32]*x+b[32]*y+c[32]=0, 

W 1: a[33]*x+b[33]*y+c[33]=0, L2: a[34]*x+b(34I8y+c[34]=0. */ 

/* Compute d l  lengthlwidth features */ 

/* find the intersection of W1 with LI: */ 
line-intersect (a13 1],b[3 1],c[3 11, a[33l,b[33],c[33], &(x 1 [O]). &(y1 [O])); 

/* find the intersection of W2 with L1: */ 
line-intersect (a[3 1l.b[3 1 M 3  II ,  a[34],b[34],c[33], &(XI [l]), &(y1 [I I ) ) ;  

/* find the intersection of W2 with L2: */ 
Line-intersect (aI32l.b[32],c[32], a[34] ,b[34],c[34], &(x 1 [2]), &QI [SI)); 

/* find the intersection of W1 witb LZ: */ 
Iine-intersect (a[32], b(32] ,c[32], a[33], b[33],c[33], &(x 1 [3]), &(y1 [3])); 

objf+length = dist,2pt(x 1 [O], y1 [O], x 1 [l], y1 [l]); 
objf->width = dist,2pt(x 1 [O], y1 [O], x 1131, y1 [3]); 



for (i=0; i<7; i++) ( 
objf->lwR[i) = line,interval(y, a[i+17], b[i+I 73. c[i+l7])/objf->length; 
objf->lwR[7+i] = line-interval(y, a[i+24], b[i+21], c(i+24])/objf->width; 

1 

/* Compute perimttcr and ail radius relatai features */ 
objf->perimcter = 0.0; 
objf->nnean = 0.0; 
objf->var_r = 0.0; 
objf->min = 10000.0; 
objf->rmax = 0.0; 
np = 0; -- 

for (i=O; id2; i ++) objf->perimR[i] = 0.0; 

for (i=O; iq->nr; i*) ( 
for Q=0; jcy->nc; j++) { 

if (y->bandl [illj] != OBJECT) continue; 

/* Compute the radius related features */ 
r = dist~2pt((double)i,(double)j,cmi,cmj); 

/* Locate the pixel position in the 24 subregions */ 
rn = locate-region(i, j, a, b, c, onen); 

/* Match one of the templates for computing perimeter */ 

k =  1; t=0;  
for (ii= -1 ; ii<=l; ü u )  ( 

for Cîj = -1;j<=l;Ü++) { 
if ( i i d  && Jd) continue; 
if (y->band 1 [i+ii] U+j]  = OBJECT) 

t = t + k ;  
k=kc< 1 ;  

1 
1 

/* Templatcs for 1.207: 
0 0 0  o o #  o # o  o # o  # o o  o o #  000  # o o  
# # O  # # O  o n 0  o # o  o # o  o # o  O # #  O # #  



Templates for 1.4 14: 
# o o  o o #  # o o  o o #  O 0 0  # O #  
OP0 o p 0  OP0 OP0 o p 0  OP0 
o o #  a00 # o o  o o #  # O #  000  

T= 201 044 041 204 240 005 
D= 1.4142 1.4142 1.4142 1.4142 1.4142 1.4142 

Templates for 1 .O: 
O 0 0  o # o  O 0 0  0 0 0  o # o  o # o  
# # #  o # o  # # O  O # #  # # O  O # #  

000  o # o  O R O  o # o  0 0 0  0 0 0  

T=O30 102 72 80 I O  18 
D=1.0 1.0 1.0 1.0 1.0 1.0 */ 

if ( c d 2 1  O Il t==û 14 II t d  II t d 2  1 Il 
t d 2  II t 4 2 0 2  II t==0 10 1 11 t a  104) ( 
objf->pcrirneter += 1.207 1 ; 
objf->perirnR[rn] += 1.207 1 ; 
continue; 

1 

if ( t 4 2 0  1 Il t=û44  1 t 4  1 II 
t 4 2 W  Il t d 2 4 0  Il t 4 5 )  { 
objf->perimeter += 1.4 142; 
objf->perimR[m] += 1.4142; 
continue; 

1 

if ( 1 4 3 0  11 t==O 102 H t-72 II 
t=80 Ift=lO tlt=18) { 
objf->primeter += 1 .O; 
objf->perirnR[m] += 1 .O; 
continue; 

1 

/* compute radius at each PYl6 angle from PA */ 
for (ka; kc16; k u )  
radius(y,~b,c,k,cmi,cmj,&(objf->radR~]),&(objf->radR[k+16])); 

/* compute radius relatcd ratio featurcs */ 

objf-xmcan = objf->rmtan/np; /* man radius */ 



objf->var_r = (O bj f->var_r - np*(objf->rmean)*(objf->rmean))/(np- 1 .O); /* Radius variance*/ 

for ( i d ;  k.32; i++) { 
objf->radR[i] = objf->radR[i]/objf->rmax; 
objf->areaR[i] = objf->areaR[i]/objf->area; 
obj f->perimR[i] = objf->perimR[i]/objf->perimeter; 

1 
// disp,image(y,O,enor,code); 

/* Space calibration */ 
objf->ana = objf-xrea * mm-perjix * mm-pr~ix;  
objf->pcrimctcr = objf->perimcter * rnm,per&c; 
objf-Aength = objf-Acngth * mm-per-pix; 
objf->width = objf->width * rm~l-pcr-pix; 
objf-Apa = objf->lpa * mm,per-pix; 
objf->wma = objf->wma * mrnp-pix; 
objf-xmax = objf->rmax * mrn,pcr,pix; 
objf->min = objf-xmin * mm-per-pix; 
obj f-xmean = objf->nntan * mm-per-pix; 
objf->var-r = objf->var,r * mm-perjix * rnm-per-pix; 

// disp,imageQ,O,e~or,code); 

/* compte ratio shape features *1 
objf-xsp-R = objf-Apa / objf->wma; 
objf-xec-Et = objf-~1engt.h / objf->width; 
objf->rad,R = objf->rmax 1 objf->min; 
objf->thin-R = objf->primeter * objf->perirneter 1 objf->ares; 
objf->ares-R = objf4ength * objf->width / objf->ares; 
objf-Aar-R = objf->mean / obj f->var_r; 

*enor-code = 0; 
free-image (y, enor-code); 

/* clear each 24 sub-regions dctennined by 12 radius lines */ 
/* for (ka; kd2; k ++) ( 

for (i=û; icbin-obj->nr, i++) { 
for (jd; jcbin-obj->nc; j++) ( 
m = locate-region(i j,a,b,c, orien); 
if (bin-obj->bandl[i]G] = val && m=k) 

bin-obj->band l [il u] = BACKGROUND; 
1 

1 
disp-imge(bin,obj,O,error-code); 

1 */ 
1 

/* Calculate the coordinates of the cenur of mass of the re@on(s) 
marked with the value VAL- Rctuni as (IIJJ). */ 

void center-of-mass (struct image *x, int val, double *ii, 
double *JI int *enor,code) 

{ 
int i j; 



long kk; 

*enor-code = O; 
kk = O; 
*ü = 0.0; *ij = 0.0; 
for (i=Q ia-mr, i++) ( 

for Q=0; ja->nc; jç+) ( 
if (x->band 1 [il lj] = val) ( 

*ii += (dou b1e)i; *jj += (doub 1e)j; 
kk += 1; 

1 
1 

1 

if (kk==O) ( 
*errer-code = NO-REGION; 
retum; 

1 
*ii = *ii/(double)kk; *jj = *jj/(dou ble) kk; 

1 

/* Determine the principal axis of the region marked with VAL in 
the image X. Line will be specified by two pointç:(i 1 J l),(i2 j2) */ 

void principal-axis(stnict image *x,int val,double *i I ,double *j 1 ,double *i2, 
double *j2, double cmi. double crnj.int *error,code) 

{ 
int i J, di,dj,k; 
smct image *y; 
double dmax,dd,cmi 1 ,cmj 1 ; 

/* Make a local copy of the image so it can be changed */ 
y=o;  
copy-image (x, &y, O. errorcode); 
if (*mer-code) retum; 

/* Change (crni, cmj) into integer coordinate */ 
crni 1 = (double)( (int)cmi ); cmj 1 = (double)( (int)cmj ); 

/* Mark candidate pixels: primeter between O-row CM1 and COI CMJ-max */ 
for (i=O; i<=(int)(cmi+O.S); i++) 
for (jd; je->nc; j++) 

if (x->band 1 [il b] = val) ( 
if (nay4(x, i j, val) != 4) 

y->band 1 [il bj = 254; 
1 

/* nie principal axis will pass through the ccnter of mass. Considcr 
al1 candidate pixeIs, determine the line through it and the COM, 



and sum the distance between the tine an dl pixels in the region *I 

do ( 
k =O; 
for ( i d ;  i<=(int)(cmi 1 +0.5); i++) 

for u=0; jcx-xc; j++) 
if (y->band l [il /j] - 253) { 

dd = all_dist(x, crni 1 .cmj 1. (double)i.(double)j, val); 
if (dd < drnax) ( 
dmax = dd; 
di = i; dj = j; 
k += 1; 

1 
y->band 1 [i J /jl = val; 

1 
) whik (k); 

*i 1 = (double)&; *j 1 = (doub1e)dj; 
*i2 = cmiI; *j2 = cmjl; 
fiecimage (y, errer-code); 

1 

/* Compute the distance betwetn two points (rl .c 1) & (r2,c2). */ 
double dist,2pt(doublt rl, double cl, double r2, double c2) 
( 

double r, c, d; 

/* Compute distance between the line given and dl pixels in the 
region. fine is specified by two points: (i 1 J 1 ) and (i2 j2) */ 

double alI-dist (suuct image *x, double il, double jl, 
double i2, double j2, int val) 

{ 
int i j; 
double a, b, c, e, f, d; 

/* Equation of the iine is a*x + b*y + c = O */ 
a=j2 - j l ;  
b = i l  -i2; 
c = - (il-i2)*j1 + 0'1-j2)*i1 ; 
e = a*a + b*b; 
d = 0.0; 

P Sum the residuais. substiniting (i j) for each pixel in place of (x,y) */ 
for ( i d ;  i a - x r ;  it+) 

for Q=û; j a - x c ;  j++) { 
if (x->band 1 [il U'j != vd)continuc; 

f = (a*i +'b*j + c); 



P Calailate the coefficients of the ïinc perpcndicular to a x + b y d  */ 
void perp (double a, double b, doubk c, double *al, double *bl, 

double *cl. double x, double y) 
{ 

C = c; 
*al = b; 
*bI =-a; 
*c 1 = a*y - b*x; 

1 

/* Compute the coefficients of 15 Iine a[i]*x+b[il*y+c[i]=û (i=2,..16) thar 
intersects PA: a[l]x+b[l]y+c[l]=O at point (x. y) with angle of i*PY16. */ 

void lines~adius(double *a, double *b. double *c, double x, double y) 
{ 

int i; 
double alpha, di; 

for (i=l; i 4 6 ;  i ++){ 
alpha = i*PY16; 
if (alpha < PY2) { 

di = tan(alpha); 
a[i+l] = a[l] - b[I] * di; 
b[i+l] = b[I] + a[l] * di; 
c[i+l] = -a[i+l]*x - b[i+l]*y; 

1 
else if (alpha > PY2) ( 

di = tan(a1pha); 
a[i+l] = -a[l] + b[l] * di; 
bfi+l] = -b[l] - a[l] * di; 
c[i+l] = -a[i+I]*x - b[i+l ]*y; 

/* Compute the coefficients of the 7 lines: a[i]*x+b[i]*y+c[i]=O (i=l3. .. 19) parailel 
to PA, equaily dividing MA & the 7 Lines: a[i]*x+b[i]*y+c[i]=û (i=20,..26) parallel 
to MA, equaily dividing PA */ 

void iines,parailel(stnrct image *z, int value, 
double *a, double *b, double *c, int orient) 

{ 
int i, i 1, j 1, i2, j2, i3, j3, i4, j4; 



T* Find the two pixels farthe~t (perpendicular) fiom the PA. One must be positive 
in distance, the other negative. These points will be (i 1 j 1) =+ve and 
(i2 j2)=-ve, and wiIl lie on opposi te sides of the MER. */ 

minmax-dist (2, value. all], b( Il, c[l], &i 1 .&j 1 ,&i2,&jt); 

/* Find the two pixels farthest (perpendicular) from the MA. One must be positive 
in distance, the other negative. These points wili be (i3 j3) =+ve and 
(i4 j4)=-ve, and will lie on oppositc sides of the MER. */ 

minmax-dist (z, vaIut, a[O], b[O], c[O], Bu3,&j3,&i4,&j4); 

/* LI and L2 arc lines forming oppositc cdges of MER paralle1 to PA */ 
c[31] = -a[l]*il-b[l]*jl; a[31] = a[l]; b[31] = b[l]; /* LI */ 
c[32] = -a[l]*i2-b[l]*j2; a[32] = a[l]; b[32] = b[l]; /* L2 */ 

/* W 1 and W2 are lines parallel to MA fonning opposite edges of the MER */ 
c[333 = -a[O]*i34~[0]*j3; a[33] = a[O]; b[33] = bfO]; /* W1 */ 
c[34] = -a[O] *i4-b[0] *j4; al341 = a[O] ; b [34] = b [O]; /* W 2 */ 

/* Find the seven lines paralle1 to PA, equally dividing MA 
and the seven lines parallel to MA, equaIly dividing PA */ 

for (id; k7; i u ) (  
a[i+i7] = a[l]; 
b[i+17] =bill; 
a[i+24] = a[O]; 
b[i+24] = b[O]; 
switch (orient) { 

case 1 : 
c[i+17] = (i+l)*(c[32]-c[31])/8 + c[31]; 
c[i+24] = (i+ 1 )*(c[33]c[31])/8 + ~(341; 

break; 
case 2: 
c[i+l7] = (i+l)*(c[32]-c[3 1])/8 + c[3 11; 
c[i+24] = (i+1)*(~[34]-~[33])/8 + c[33]; 

break; 
case 3: 
c[i+17] = (i+l)*(c[3 1]c[32])/8 + c[32]; 
c[i+24] = (i+ 1 )*(c[34]-~[33])/8 + c[33]; 

break; 
case 4: 
c[i+17] = (i+l)*(c[31]-~[32])/8 + c[32]; 
c[i+24] = (i+l)*(c[33]-~[34])18 + c[34]; 

break; 
1 

1 
1 

/* Return the number of 4-connected neighbors of (i j) with value VAL */ 
int nay4 (stnict image *x, int i, int j. int val) 

int n,m,k; 

if (x->band 1 [il b] != val) retum 0; 



k = 0; 
for (n= -1; n<=l; n++) { 

for (m= -1 ; m<=l; m++) { 
if ( P m )  continue; 
if (range(x.i+n, j+m)) 
if (x->bandl [i+n]b+m] = val) k++; 

1 
1 
retum k-1 ; 

/* Retum the number of 8-connecteci neighbors of (i j) having value VAL */ 
int nay8 (struct image *x, int i. int j, int vat) 
{ 
/* return the number of û-neighbors of (i J) */ 

int n.m.k; 

if (x->bandl [i]u] != val) retum 0; 
k = 0; 
for (n= - 1 ; n<= 1 ; n++) ( 

for (m= -1; m<=l; m++) { 
if (range(x,i+n, j+m)) 
if (x->band 1 [i+n] u+m] t= val) k++; 

1 
1 
return k-1; 

1 

/* Retum 1 if (n,m) are legal (row,column) indices for image X */ 
int range (struct image *x, int n, int m) 
I 

if (n c O II n >= x->nr) return O; 
if (m < O II m >= x->nc) retum 0; 
return 1; 

1 

/* Count the total pixel number of a region with a grey level of val in image X *! 
int area(suuct image *x, int val) 
( 

int i j,k; 

k=0; 
for ( i d ;  ia->nr; i++) 

for (jd; ja->nc; j*) 
if (x->band 1 [il J = val) k*; 

retum k; 
1 

/* Find the two intersections (il j l )  & (i2j2) of the line ax + by + c =O 



and the given object boundary image X. */ 
void ln-obj-intersec (suuct image *y, double a double b, double c. 

int *i 1. int *j 1, int 52,  int *j2) 
{ 

int i, j; 
int ii2, jj2, ü3, $3, ii4, jj4; 
double d, drnin, d 1, d2; 

dmin = 1000000.0; 

for ( i 4 ;  iq->N; i++) ( 
for (je, j<y->nc; j++) ( 

if (y+bandl [i]u] != OBJECï) continue; 

d = fabs(a*i + b*j + c); 
if (d < dmin) ( 
*il =i ;  
*jl =j; 
dmin = d; 

1 
1 

1 

for ( id);  iey->nr; i t t )  ( 
for 0'4; jcy-xc; j++) ( 

if (y->band 1 [il lj] != OBJECT) continue; 
if (i = *i 1 && j = *j I ) continue; 

d = fabs(a*i + b*j + c); 
if (cl c dmin) ( 
ii2 = i; 
jj2 = j; 
dmin = d; 

1 
1 

1 

dmin = 1000000.0; 
for ( i d ;  icy->nr; i u )  ( 
for ( jd ;  jq->nc; j++) ( 

if @->band 1 [il lj] != OBJECT) continue; 
if ((i = *il Bi& j = *jl) II (i = ii2 Br& j =jj2)) continue; 

d = fabs(a*i + b*j + c); 
if (d c dmin)( 
ii3 = i; 
jj3 = j; 
dmin = d; 

1 





double d, dmin; 

dmin = 100000.0; 
i l  =Z6; j l  =256; 
i2 = -1. j2 = -1; 
drnin = 100000.0; 

for ( i d ;  i q - x r ,  i*) ( 
for (j=Q jq-mc; j++) { 

if &->band t [i][i] != OBJECT) continue; 

d = fabs(a[k]*i + b[k]*j + c[k]); 
if (d < drnin)( 
i l  =i; jl =j; 
dmin = d; 

1 
1 

1 
dmin = 100000.0; 
for (i*; iq->nr; i++) ( 
for 0'4; jq->nc; j++) ( 

if (y->band t [il Ij] != OBJECT) continue; 
d = fabs(a[k]*i + b[k]*j + c[k]); 
i f ( (dcdmin)&&(i!=i l )&&Q !=jl)){ 
i2 = i; j2 = j; 
dmin = d ;  

1 
1 

1 
if (a[O]*il + b[O]*jl + c[O] >= O){ 

*r 1 = dist,2pt(cmi,cmj,(double)i 1 ,(double)j 1); 
*r2 = dist~2pt(cmi,cmj,(double)i2,(double)j2); 

}else ( 
*r2 = dist-2pt(cmi,cmj,(double)i 1 ,(double)j 1 ); 
*r l = dist-2pt(cmi,cmj ,(double)i2,(double)j2); 

1 
1 

/* Find the point whcre two Iines intersect */ 
int line-intersect (double a l ,  double b 1, double c 1, double a2, 

double b2, double c2, double *x, double *y) 
( 

double dt; 

dt= a2*bl - al*b2; 
if (is,zero(dt)) return 0; 



/* Cornpute the coefficients a, b, and c of the equation ax+by& 
of the iine between (x 1 ,y1 ) and (x2,yS). */ 

int line2pt (double x 1, double y1 , double x2, double y2, 
double *a, double *b, double *c) 

( 
double dx, dy, dsq, dinv; 
*a = 0.0; *b = 0.0; *c = 0.0; 
dx=x2-x1; dy=y2-yl; 
dsq = dx*dx + dy*dy; 
if (dsq < 1 .O) nmrn 0; 
dinv = -1 .O/sqrt(dsq); 
*a = dy*dinv; 
*b = dx*dinv; 
*c = (x 1 *y2 - x2*y l )*dinv; 
if (*c < O  Il (*c =O && *b <O))( 
*a = -(*a); 
*b = -(* b); 
*c = -(*c); 

1 
r e m  1; 

1 

/* Find the two objcct pixeb farthest (perpendicular) from the line ax+by+c=O. 
One must be positive in distance, the other negative. These points will be 
(ii 1 Jj 1 ) =+ve and (ii292)=-vt, and will lie on opposite sides of the MER. */ 

void minrnax-dist (stnict image *x, int val, double a, double b, double c, 
int *ii 1, int *jj 1, int *ii2, int *jj2) 

t 
int i j; 
double f, dmax,drnin; 

drnax = 0.0; dmin = 100000.0; 

/* Locate the pixels with the maximum and minimum residual */ 
for ( i 4 ;  i a -mr ;  i u )  
for 0'4; ja->nc; j++) { 

if (x->band 1 [illj] != va1)continue; 
f = (a*i + b*j + c); 
if (f < dniin) { 

*ii2 = i; *jj2 s j; 
drnin = f; 

1 
if (f > d m )  ( 
*iil t i ;  *jj1 =j; 
dmax=f; 

1 
1 



/* Clear (set to BACKGROUND) a Iine a*x + b*y + c r O in the region VAL */ 
void clr-line (struct image *x,double a double b, double c,int *errer-code) 
( 

int i j,m,n,rn,ibegin,err; 
double f, dmin; 

n =O; ibegin=O; m=0; crr=O; 
while (!en) { 
region-4 (x, n+l, 8Ubegin. &m. &en); 
if (en = NO-REGION) break; 
n++; 

1 
if(n =O)( 
*mer-code = NO-REGION; 
rem;  

1 
- - 

dmin = 0.0; 
rn = n; 
while (n = rn ) ( 
dmin += 0.5; 
/* clear the pixels with the minimum residual and set the other 

back to OBJECT */ 
for (i = O; i < x-mr; i++) 

for (j=O; j < x->nc; j++) ( 
if (x->bandl (i]u] = BACKGROUND) continue; 
f = (a*; + b*j + c); 
if (fabs(f) < dmin) x->band 1 [i]u] = BACKGROUND; 
else x->bandl (il fi] = OBJECT; 

1 

m =O; ibegin =O; m=O;err=O; 
while (!en) ( 

region-4 (x, n+l, &ibegin, km, &err); 
if (err = NO-REGION) break; 
m u ;  

1 
1 
for ( i 4 ;  i < x->nr; i++) 
for (j=0; j < x->nc; j++) { 

if (x->band 1 [il u] = BACKGROUND) continue; 
x->band 1 [il u] = OBJECT; 

1 
1 

/* Is a real valut close enough to zero? */ 
in; is-zero (double x) 
( 

if ( (X <= 0.000 1 ) &Br (x >= -0.000 1 ) ) return 1 ; 
retum O; 

1 



double x, dr, dc, conv; 

conv = 180.0/3.14 15926535; 
dr = (r2-rl ); dc = (c2-c 1); 

Cornpute the raw angle based of Drow, DcoIumn 
if ( d r d  && dc = O) x = 0.0; 
else if (dc = O) x = 90.0; 
else { 

x = fabs(atan (drldc)); 
x = x * conv; 

1 

Adjust the angle according to the quadrant 
if (dr <= 0) { /* upper 2 quadrants */ 
if (dc < O) x = 180.0 - x; /* Lcft quadrant */ 

) else if (dr > 0)  ( /* Lower 2 quadrants */ 
if (dc < 0) x = x + 180.0; /* Lcft quadrant */ 
else x = 360.0-x; /* Right quadrant */ 

1 

retum x; 

/* Cornpute the angle bctween two points. (r1,cl) is the origin 
specified as row, colurnn, and (r2,c2) is the second point. 
ResuIt i s  between 0-360 degrees, where O is horizontal right. */ 

double angle-2pt (int rl, int c 1, int r2, int c2) 

/* Draw a line from (x 1 ,y1 ) to  (x2,y2) with a grey level of OBJECT */ 
void draw-line (smct image *in int x l ,  int yl, int x2, int y2) 
t 

int x, y, si@, si=; 
int absx, absy, d, dx, dy; 
int True = 1; 

dx = x2-x 1 ; 
if (dx CO) ( 

absx = d x ;  sigx = -1; 
) else ( 

absx = dx; sigx = 1 ; 
1 
absx = absx cc 1 ; 

dy = y2-y 1 ; 
if (dy c 0) { 

absy = d y  ; sigy = - 1 ; 
) else { 

absy = dy: sigy = 1 ; 
1 
absy = absy « 1 ; 



x = x l ;  y = y l ;  
if (absx > absy) { 
d = absy-(absm 1); 
while m e )  ( 

im->band 1 [x] [y] = OBJECT, 
if (x=x2) rcnirn; 
if (&=O) ( 
y += sigy; 
d -= absx; 

1 
x += sigx; 
d += absy; 

1 
1 el= ( 
d = absx-(abspl); 
whiIe (T'rue) ( 

im->band 1 [x] b ]  = OBJEm, 
if -2) rcturn; 
if (&=O) { 

x += s i s ;  
d -= absy; 

1 
y += sigy; 
d += absx; 

1 
1 

1 

/* Check pixel (x,y) in which of the 32 subregions ( 1 to 32) divided by 
lines a[i]*x + b[i]+y + cri] =O, i =O, ... 15, return the No. */ 

int Iocate-region(int x, int y, double *al, double *bl, double *cl, int orient) 
( 

int i, m; 
double a[34], b[34], c[34]; 

for (i= 1 ; i< 17; i++) { 
a[i] = al[i]; b[i] = bl[i]; c[i] =cl  [il; 

1 
for (i= 17; i 4 3 ;  i++) ( 
a[i] =-alri-161; bfi] = -bl[i-161; cfi] = acl ri-161; 

1 

for (i=l; i 4 3 ;  i ++) 
if (a[i]*x+b[i]*y+c[i] >= O && a[i+l ] *x+b[i+l ] *y+c[i+l ] c 0) break; 

switch (orient)( 
case 1: 

rn = i-1; 
break; 
case 2: 



if (kI7)  rn = 164; 
else rn = 48-i; 

break; 
case 3: 

if ( i d  7) m = 15+i; 
else m = i-17; 

break; 
case 4: 

m = 32-i; 
break? 

1 

/* Cornputer the calibration scaies from coin image X, and retum the row and colum scales */ 
double gct-scale(stnict image *x) 
( 

int t, n, ibegin, m. nry[4], error; 
doubIe s; 

error = 0; 

/* nircshold the red band image 10 gct a binary image C */ 
thresh-is (x, &t,&enor); 
if (enor) return 0.0; 
thrcshold (x, t, &error); 
if (error) nNrn 0.0; 

// dis p-image(x,O,&e~or); 

/* Mark each sepcrated regions, ignore very mal1 regions, and fil1 holes 
in any regions to get a labelleci image Cm*/ 
error = O; n = O: ibegin = O; m = 0; 

/* n: no.of marked rcgions,rn:no. of pixets in a region. 
ibegin: the fmt row of the last marked region */ 
while (error = O) [ 
region-4 (x. n+l, 8ubegin. &m, &error); 
if (enor = NO-REGION) break; 
/* Ignore very srnall regions */ 
if (m < 30) { 

del-reg (x, n+l , &enor); 
if (error) rcturn 0.0; 
continue; 

1 

/* Fil1 holcs in the region markcd n+l, and rcturn the coordinates 
of the region in nry array. */ 
fiIl-holes (x, n+l, rxy, &enor); 
if (error) retum 0.0; 
n++; 

1 



if (n > 2) return 0.0; 

/* Transfcr rtctangular pixel image to square pixel image */ 
void rectangular-to-square (struct imagc *x, stnict image **y, int *crror,code) 
( 

int i, j, k, nc; 
double t, f; 

nc = (int)floor( (doubie)(x->nc) * PR-ASP-RATIO ); 
*y = ncw-image (x->nr, nc, x->color, emr-code); 
if (*errer-code) r e m ;  

for(j=O; j c (*y)-mc; j++) { 
t = (doubIe)j/PIXIXASP,RATIO: 
k = (int)fIoor(t); 
f = t - (doub1e)k; 
for(i=û; i < (*y)->nr; i++){ 

(*y)->bandl [illj] = (unsigned char)(( 1 -f)*(double)x->band 1 [il [k] 

f*(double)x->band 1 [il &+ 11); 
if (x->color) { 
(*y)->band2[i] Ij] = (unsiped char)(( 1 -f)*(double)x->band2[i] [k] 

P(doub1e)x->bandî[i] [k+ 11); 
(*y)->band3 [il Li] = (unsiped char)(( 1-f)*(doubIe)x->band3 [i][k] 

/* Detemine the orientation of the genn part */ 
inc orientation(stnict image *x, double *a, double *b, double *c) 
{ 

int i, j, oricn-ptr, 
int i l ,  jl, i2, j2, i3, j3, i4, j4; 
dou blc dmax, d 1, d2, d3, d4; 

/* Dctennine the orientation of the object and make the four phases divided by 
PA and MA, phase 1,2,3, & 4, in anti-clockwise direction, stmed with the 
~p-right, be (+,-),(+,+),(-,+) Br (-,-1 */ 

/* Remernber (0.0) was on the positive side of PA and MA (c[1]>0 & c[O]>O) */ 
if (c[l]Sl&& a[1]4 && b[l]<=û &Br c[O]>O && a[O]>=O &Br b[O]<O) oricnjtr = 1; 
else if ( c[1]>0 && a[1]<0 && b[1]<0 &Br 

((c[O]>O && a[O]<O && b[O]>O) II CIO] = O )) { 



orien-pu = 2; 

orien-pu = 3; 
a[l] = - alil; b[l] = -b[l]; c[l] = -c[ll; 

1 
else orien-ptr = 4; //(c[O]>O && a[O]<O && b[1 ]<O && (c[1 ]>O && a[ 1 ]<O 

&& b[l ]>O)llc[I ]=O)) 

/* Find the inersection of PA and MA witb object boundary 
(i 1 j l),(i2 j2),(i3J3),(i4 ~ 4 )  */ 

ln-obj,interscc(x, a[l], b[l], c[l]. &i 1, &jl. &i2, &j2); 
In-obj,intersec(x, a[0], b[O], c[O], &i3, &j3, &i4, &j4); 

/* Make (i 1 j 1) on lefi(negative) side & (i2 j2) on right(positive) side of MA */ 
/* Make (i3 j3) on up@ositive) side & (i4 j4) on down(negative) side of MA */ 
if(a[O]*il + b[O]*jI +c[O] >O)( 
i = i l ; j = j l ;  
il = i2; jl = j2; 
i2 = i; j2 = j; 

1 

/* Calculate the distances between ( i  1 j I ) & (i3 j3). dl, 
(i2.j2) & (i3j3). d2. 
(i2j2) & (i4j4). d3, 
(i 1 j 1 ) & ( i 4 . j )  4 */ 

dl  =dist-2pt(i1, jl,  i3, j3); 
d2 = dist-2pt(i2, j2, i3, j3); 
ci3 = dist-Zpt(i2, j2, i4, j4); 
d4 = dist-2pt(i 1, j 1, i4, j4); 

/* Determine which of d l ,  d2.63, and d4 is the longest */ 
dmax = max(max(d 1, d2), max(d3, d4)); 
if (dmax = dl ) onensa = 1 ; 
else if (dmax = d2) orien-ptr = 2; 

clse if (dmax = d3) orien-ptr =3; 
else orien-ptr =4; 

/* Compare two numbers, a and b, and return the bigger one */ 
double rnax(doub1e a, double b) 
{ 

double c; 



/* Compare two numbcrs, a and b, and rcturn the smallcr one */ 
double min(doub1e a. double b) 
{ 

double c; 

/* CaicuIate magnitudes of Fourior transformations of a In-dimension data vetor F */ 
void Ht(doub1e *f, int In) 
{ 

int i, j, k, 1; 
int n, nv2, nml, le, lel ,  ip; 
double t, tr, ti, ur, ui, wr, wi; 
double fr(2561, fi [256]; 

n = (int)pow(2.0, fdoub1e)ln); 
nv2 = n/2; 
nrnl =ml;  

j =O; 
for (i = 0; i < nml; i ++)( 

if (i c= j){ 
t = fli]; 
ftjl = f[il; 
fli] = t; 

1 
k = nv2; 
while (k <= j){ 
j = j - k ;  
k = k / 2 ;  

1 
j = j + k ;  

1 

for (i = O; i < n; i ++) fr[i] = Ri]; 

for(l=O;l<ln;l++)( 
le = (int)pow(2.0, (double)(l+l)); 
lei = la; 
ur = 1 .O; ui = 0.0; 
.wr = cos(PMe 1); wi = -sin(FWiel); 



for  (j = 0; jdel; j u) 
for( i  =j; i <n; i += le)[ 

ip= i  + lel; 
tr = fr[ip]*ur - fi[ip]*ui; 
ti = fi[ip]*ui + fi[ip]*ur; 
fi[@] = fr[i] - n; 
fi[ip] = fi[i] - ti; 
firi] = fr[i] + tr; 
fi[i] = fi[i] + ti; 

1 
~f = UPW - ui*wi; 
ui = ur*wi + ui*wr; 

1 

/* Compute bulk image fcaturcs which include m s ,  variances and 
h i s topans  of R G, & B values */ 

void bulk-feature(struct image *x, stnict bfeature *bf. int n, int *crror-code) 
( 

intj ,  k, n l ,  n2; 
long hist[256]; 
double width, np, t; 
double r, g, b; 
double r l ,  gl, b l ;  
double h, s, i; 
struct image *y; 

width = 256,0/(double)n; 

for Q=û; jai; ju) { 
bf->histRCj] = 0; 
bf->histGlj] = 0; 
bf->hi& Lj] = 0; 

1 



for Q=0; jcr-mr; j++) 
for (ka; ka->nc; k c t )  { 

/* R a d  in RGB grey-fevel values */ 
r 1 = (double)(x->band 1 Li J [k]); 
g 1 = (double)(x->band2u] FI); 
b 1 = (double)(x->band3b J[k]); 

bf->histR[(int)(rl/width)) = bf->histR[(int)(rl/width)] + 1 .O; 
bf->histG[(int)(g llwidth)] = bf->histG[(int)(g l/width)] + 1 -0; 
bf->histB [(int)(b llwidth) J = bf->histB[(int)(b Ilwidth)] + 1 .O; 

l* Remove Gamma corrections and get normalized R,G, and B values*/ 
r = exp(( 1.0/2.2)*1og(l e-20+r 1 /WHITE)); 
g = exp(( 1.0/2-2)*log( 1 e-20+g l m ) ) ;  
b = cxp(( 1.0/2-2)*log( 1 e-20+b INHITE)); 

/* Compute HSI values */ 
i = (r + g+ b) /3.0; 
if (i = 0.0) ( 
s = 0.0; h = 0.0; 

1 
else ( 
s = 1 .O - (min(min(r, g), b))/i; 
if (S = 0.0) h = 0.0; 
else ( 

t = sqn((r-g)*(r-g)+(r-b)*(g-b)+ l e-20); 
h = acos( O.S*(2.0*r-g-b)/t ); 

1 
1 
if (b > g) h = 2.0*PI - h; 
h = h 1 (2.0*PI); 



for (j=0; ja; j ++) ( 
bf->histRLj] = bf->histRu] / np; 
bf->histGlj] = bf->hisffilj] 1 np; 
bf->histB Lj] = bf->histBu] / np; 

1 

/* get the thresholding level j */ 
t = 0; 
for (j=O; jQ56; j ++) ( 

t = t + (double)histlj]; 
if (t >= 3.0*np/10.0) break; 

1 
l* Copy nd band of image X to imag  Y */ 

y = &  
copy-image (x, &y, 1, error-code); 
if (*c~or,code) return; 

II printf ("thrtshold is %dW, j); 
// setch(); 

threshold(y, (int)j, enor-code); 



if (*enor-code) retum; 

for (j=O; j<(y->N); j ++) 
for @=O; k<(y->nc- 1); k ++) 

if (@->band l b]@c] = OBJECT) && @->bandl (j]F+l] = BACKGROUND)) n 1 ++; 

for &=O; k<(y-mc); k ++) 
for (j=O; j<(y-mr- 1 ); j ++) 

if ((y->band 1 [il m] - OBJECT) && (y->band 1 u+l] [k] = BACKGROUND)) n2 ++; 

free-image (y, crror,code); 
if (*emr,code) retum; 

1 
/* Write calculatcd bulk fcanrres to a output file */ 
void write,bf(FILE *outfp, suuct bfeature *bf, char *img) 
( 
fprintf(outfp, "Image "); 
fprind(outfp, "rncanR rneanG m d  rneanR3G2B 1 varR varG varB varR3G2B 1 ") ; 
fprintf(outfp, "meanfi means meani varH vars var1 Kn "); 

fprinrf(outfp, " histG[O] histG[l] histG[2] his tG[3] "); 
fpnntf(outfp, "histG[4] histG[R histG[6] histG[7] "); 
fprintf(oudp, "histG[8] histG[9] histG[lO] histG[11] "); 
fprintf(outfp, "histG[ 121 histG[13] histG[14] histG[15] "); 
fprintf(ourfp, "histG[l6] histG[17] hi&[ 181 histG[l9] "); 
fprintf(outfp, "histG[20] histG[2i] histGi22] histG[23] "); 
fprintf(outfp, "histG[24] histG[25] histG[26] histG(271 "); 
fprintf(outfp, "histG[28] histG[29] histG[30] histG[3 l ]  "); 



fprintf(outfp, "%f %f %f %f %f %f %f %f ", 
bf->histR[O], bf->histR[l], bf->histR(2], bf->histR[3], 
bf->histR[4]. bf->histR[S], bf->histR[6], bf->histR[q); 

fprintf(outfp, "%f %f %f %f %f %f %f %f ", 
bf->histR[8], bf->histR[9],bf->histR( 1 O], bf->histR[ll], 
bf->histR[12],bf->histR[13],bf->histR[14],bf->histR[ 151); 

fprintf(outfp, "%f %f %f %f %f %f %f %f ", 
bf->histR[l6],bf->hi~tR[17],bf->histR[18],bf~histR[19], 
bf->histR[2O],bf->histR[2 l ],bf->histR[22],bf->histR[23]); 

fprintffoutfp, "%f %f %f %f %f %f %f %f ", 
bf->histR[24],bf->histR[Z),bf->histR[26],bf->histR[27], 
bf->histR[28],bf->~~tR[293,bf->histR[3O],bf-~histR[3 1 1); 

fprintf(outfp, "%f Okf %f %f %f %f %f %f ", 
bf->histB [O], bf->histB[I 1, bf->histB[2], bf->histB[3], 
bf->histB[4], bf->histB [SI, bf->histB[6], bf->histB[7]); 

fprintf(outfp, "%f %f %f %f %f %f %f %f ", 
bf->histB[8], bf->histB[9],bf->histB[lO],bf->histB [ I I  1, 
bf->histB[12],bf->hi~tB[13],bf->histB[14],bf->histB[I 51); 

fprintf(oudp, "%f %f %f %f %f %f %f %f ", 
bf->histB[16],bf->histB[17],bf->histB[ 181,bf->histB[19], 
bf->histB[20l,bf->histB[2 11,bf->histB [22],bf->histB[23]); 

fpnntf(outfp, "%f %f %f %f %f %f %f %f \nu, 
bf->histB[24],bf->histB[25],bf->histB[26],bf->histB[27], 
bf->histB[28],bf->histB[29], bf->histB [30],bf->histB[3 11); 

1 

/* Write individual featurcs' namc to an output file */ 
void wri te-fnamc(FILE *outfp) 

fprintf(outfp. "Image Object Area Peri Leng Width Lpa Wrna Rmin Rmax Rmean VarR "); 



fprintf(outfp, " AspR RecR RadR ThinR AreaR HarR "); 

fprintf(outfp. "radR[1] radR[2] radR[3 1 radR[4] radR[S] radR[6] radR[7] radR[8] "); 
fprin@outfp, "radRf91 radR[ IO] radR[lI ] radR[ 121 radR[ 131 radR[ 14 J radR[l SI radR[16] "); 
fprintf(outfp, "radR[ 1 'T] radR(l81 radR[ 19 ] radR(20] radR[2 11 radR[22] radR[23] radR[24] "); 
fpnnef(outfp. "radR[Bl radR1261 radR[27] radR[28] radR[29] radR[30] radR[3 11 radR[32] "1; 

/* Wnte calculated individual featurcs to a output file */ 
void write-feature(F1LE *outfp, stnict feature *objf, char *img int i)  
{ 

fprintf(outfp."%s %d %f %f %f %f %f %f %f %f %f %f ", img, i+l, 
objf->ma, objbperimeter, 
objf->length, objf->width, objf-Apa, objf->wma, 
objf->min. objf-xmax, objf->man, objf->var,r); 



fpnntf(outfp,"%f %f %f %f %f %f %f %f %f %f %f 8 f  Li", 
objf->rneanR, objf->meanG, objf->meanB, 
obj f->varR, objf->varG, O bjf->varB, 
obj f->rneanH. objf->meanS. obj f->mead, 
objf->varH, objf->varS. objf->vari); 



fprintf(oudp,"%f %f %f %f %f %f %f %f 9bf %f %f %f %f %f %f 8 f  hW, 
objf->histB[O], objf->histB[ Il, objf-MstB [2], objf->hi& [3], 
objf->histB[4], objf->histB[S], objf->histB[6], objf->histB[7], 
objf->histB[8], objf->histB[9], objf->histB[ 1 O], objf->histB [ 1 I 1, 
objf->histB[12], objf->histB[ 131, objf->histB[14], objf->histB[ 151); */ 

1 

case OUTUTOFFSTORAGE: 
printf ("Cannot allocate any more storage.inW); 
break; 

case CANNOT-OPEN-FILE: 
printf ("Cannot open the specified file.\."); 
break; 

case BAD-DESCRIPTOR 1 : 
printf (*'This is not an UM format irnage fi1e.h"); 
break; 

case BAD-NRJC: 
printf ("Size specified in the file is iIlegal.\n"); 
break; 

case FILE-TOO-SHORT: 
printf ("Data is missing from the image file.\n"); 
break; 

case BAD-DESCRIPTOR2: 
printf ("Synchronization error in irnage file.\,"); 
break; 

case NO-REGION: 
printf ("Operator needs a rcgion - none was found with Uiis value.\nW); 
break; 

case REGION-INT-BOUND: 
printf ("The region intersects the image boundary.\nW); 
break; 

case INTERNAL-1: 
pnntf ("INTERNAL ERROR: S hould not occur. hW); 
break; 

case BAD-IMAGE-COORD: 
printf ("Specified pixel coordinates lie outside of the image.\nW); 



break; 
case NO-RESULT: 

printf ("Can't compute a result for this operation.\nW); 
break; 

case IMPOSSIBLE,CLASS: 
printf ("A class number is out of range. Are dl  classes defined?\nW); 
break; 

case TOOMANYCLASSES : 
printf ("nie standard systcm allows 200 classes on1y.h"); 
break. 

case TOO-MANY-=ES: 
printf ("An internai limit for nurnkr of cdgcs has ken rtached.\nl'); 
break; 

case BAD-COLOR-MAP: 
pnntf ( " n e  color map has been omitted or comptcd.\n"); 
break; 

case IO-=OR: 
ptintf ("An InputIOutput crror has occuned.\n"); 
break; 

case BAD-ARGUMENT1 : 
printf ("Band should be 0,1,2, or 3.h"); 
break; 

case BAD-ARGUMENT2: 
printf ("Enor: Performing color operations on a grey(single band) image.\nW); 
break; 

case BAD-ARGUMENT3: 
printf ("Error: The operation rtquires a grey(single band) image.\nW); 
break; 

case NO-OR-TOO-MANY-REGIONS: 
printf ("No or too rnany regionsin "); 
break; 

case BAD-FEATURE-SIZE: 
printf ("Feature six should be larger than 1 and lcss than 100.\nW); 
break, 

case CANNOT-GET-CALIBR-SCAtE: 
printf ("Cannot get calibration scale for somt reason.\n"); 
break; 

case GEUSAGE:  
pnntf (This program nec& 3 arguments.\n"); 
break; 

default: pnntf ("Unknown error code : %d.\nW, ccode); 
1 
p f i n t f ( " b - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  -hW); 
p f i n t f ( " - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ n W ) -  
1 



Appendix B 

GRAIN SAMPLE DISTRIBUTION 
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Appendix C 

OPERATION GUIDE FOR GRAIN IMAGING 



OPERATION GUIDE FOR GRAIN IMAGING ON 
"GADGET' --- A COLOR COMPUTER VISION SYSTEM 

CAMERA (DXC-MOA) SETTINGS: 

Focus ring 
F.f adjustment ring 
MACRO (close-up) ring 
ZOOM selector 
Iris selector 
ABL switch 
VTR selector 
FILTER selector 
B A R S / '  selector 
Gain selector 
POWER VF PREHEAT 

max. position 
fixed position 

max. position in the direction of the arrow 
S 

A 
OFF 
1 
1 
AUTO 
OdB 
ON 

CAMERA CONTROL UNIT (CCU-M3) SETTINGS: 

LOCK switch OFF 
PHASE selector O" 
MODE selector CAMERA 
GAIN selector OdB 
W/B BALANCE selector AUTO 
IRIS selector MANUAL 
MASTER PEDESTAL zero position 

SYSTEM AD JUSTMENT 

Turn the cornputer (Gadget), the camera adaptor (CMA-S), the carnera contro1 
unit(CCU-M3), and the illumination chamber on. 
Set the power voltage to the illumination chamber at 120.00 V and wait for 30 
min. to dlow the system to be stable. 
Login ta Gadget and go to director- c:ümaging 
Run the program "passthru" to put the image on the color video monitor. 
Focus the camera at a quarter coin by adjusting the motorized zoom switch. 
Freeze the coin image (Exit from the program"passthru "). 
Point the camera at the white side of the Kodak gray card. 
Perform black balance (press the BLACK switch under W/B BALANCE on the 
camera con trol unit). 



9. Make sure that the power voltage to the light box is 120 (+-) 0.1 V. 
10. Run the program "litadj" on the computer with the parameten: desired grey level 

= 250, allowable error = 1. 
1 1. Adjust the IRIS control h o b  (if necessary) on the camera control unit to get the 

desired green grey level (250) (when ready, the program will automatically corne 
out). 

12. Perfom white balance on the white side of the Kodak gray card (press the 
WHITE switch under W/B BALANCE on the camera control unit). 

Now the systern is ready to take images. 

Don't change any setting on the camera and camera contml unit ! 
- - 

TO SAVE THE RESOLUTION INFORMATION 

13. Put a quarter coin with a black background under the camera. 
14. Make sure that the power voltage to the light box is 120 (c) 0.1 V. 
15. Run the program "xvsave" on the computer to save the coin image in the name of 

coinmmdd.xv for the future use of the spatial calibration. 
Comment: coin quarier image for space calibration, rnmlddlyear. 

TO TAKE A GRAIN IMAGE 

16. Put a grain sample under the camera. 
17. Make sure that the power voltage to the light box is 120 (t) 0.1 V. 
18. Run the program "xvsave" on the computer to Save the image in the name of 

*??m and supply the related information in the comment by indicating the type 
of grains (such as HRSW). grade, growing location. bulklsep.. M.C, and the 
corresponding calibration file "coin-?.xv". 

Repeat procedures 7 to 12 prior to taking each image to adjust the system to the 
illumination change with time. 

Save the resoiution information in the image files coin?.xv every working unit. 



APPENDM D-1 

STEPDISC ANALYSIS OF ICERNEL FEATURES 
FOR GRAIN TYPE IDENTIFICATION ANALYSIS 

OF INDIVIDUAL KERNELS 



Stepdisc AnaIysis of Mof Features of Individual Grain Kemnels 
1251 Friciay, February 7, 1997 

S tepwise Selection: Summary 
Average 
Squarcd 

Variable Number Partial F Rob > Wilks' Rob < Canonical Prob > 
Step Entcred Removed In R**2 Statistic F Lambda Lambda Correlation ASCC 





Stepdisc Analysis of Color Features of Individual Grain Kemnels 
125 1 Friday, February 7, 1997 

Stepwise Selecuon: Surnmary 
Average 
Squared 

Variable Number Partial F Prob > Wilks' Rob c Canonical Prob > 
Step Entered Removcd In R**2 Statistic F Lambda Lambda Correlation ASCC 





Stepdisc Analysis of A11 Features of Individuai Grain Kernnels 363 
I2:5 1 Friday, February 7. 1997 

S tepwise Selection: Sumrnary 
Average 
Squared 

Variable Number Partial F Rob > Wiiks' Rob < Canonical Prob > 
Stcp Entercd Rcmovcd In R**2 Statistic F Lambda Lambda Correlation ASCC 

-- 







APPENDIX D-2 

STEPDISC ANALYSIS OF KERNEL FEATURES 
FOR DAMAGE TYPE IDENTIFICATION ANALYSIS 

OF INDIVIDUAL CWRS WHEAT KERNELS 



Stepdisc Analysis of Mof Feamres of Damaged HRS Wheat Kernnels 1 
Stepwise Selection: Summary 

Average 
S q h  

Variable Numkr Panial F Prob > Wilks' Prob < Canonical Prob > 
Step Entered Removed In R**2 Statistic F Lambda Lambda Correlation ASCC 





S tepdisc Andysis of Coior Features of D m g e d  HRS Wheat Kernnels 148 
14:02 Sunday. February 16, 1997 

Stepwise Sclection: Summary 
Average 
Squarcd 

Variable Number Pattial F Prob > WiUcs' Prob e Canonical Prob > 
Step Entered Rernoved In Rn*2 Statistic F Lambda Lambda Correlation ASCC 

1 F75 
2 FI21 
3 F81 
4 FI01 
5 FI37 
6 F94 
7 FI38 
8 F8O 
9 F69 
10 F72 
1 1  FI40 
12 €70 
13 F92 
14 F95 
15 FI15 
16 FI14 
17 F128 
18 FI00 
19 F113 
20 FI07 
21 FI35 
22 F l l l  
23 F76 
24 FllO 
25 FI08 
26 F81 
27 F71 
28 F88 
29 F73 
30 F136 
31 F93 
32 F85 
33 F99 
34 F98 
35 F120 
36 FI34 
37 F74 
38 FI41 
39 F97 
40 F123 
41 F78 
42 FI06 
43 F82 
44 F79 





Stepdisc Analysis of Al1 Features of Damaged HRS Wheat Kernnels 336 
14:02 Sunday. February 16. 1997 

Stepwise Selection: Surnmary 
Average 
Squared 

Variable Number Partiai F Prob > Wilks' Prob < Canonical Prob > 
Step Entered Removed In Rn*2 Statistic F Lambda Lambda Correlation ASCC 

1 F75 
2 F121 
3 FI 
4 F81 
5 FI01 
6 F137 
7 FI38 
8 F80 
9 F34 
10 €72 
I l  F69 
12 FI40 
13 F70 
14 F95 
15 F92 
16 F115 
17 F114 
18 F128 
19 FI00 
20 FI5 
21 F17 
22 F84 
23 F71 
24 F76 
25 FI13 
26 F126 
27 F73 
28 F107 
29 Fi08 
30 F99 
31 F98 
32 F97 
33 FllI  
34 FI33 
35 F12 
36 F136 
37 F74 
38 FI41 
39 F94 
40 F3 
41 F2 
42 F123 
43 F14 
44 F79 







APPENDM D-3 

STEPDISC ANALYSIS OF BULK GRAIN IMAGE FEATURES 
FOR GRAIN TYPE IDENTIFICATION ANALYSIS 

OF BULK GRAIN SAMPLES 



Stepdisc Analysis of Bulk Grain image Data 17:34 Tuesday, December 1 7. 1996 
1 
Stepwise Selection: Surnmary 

Average 
Squarcd 

Variable Number Partial F Prob > Wilks' Prob < Canonical Prob > 
Step Entered Rernoved In R**2 Statistic F Lambda Lambda Correlation ASCC 





APPENDM D-4 

STEPDISC ANALYSIS OF BULK GRAIN IMAGE FEATURES 
FOR GRADE IDENTIFICATION ANALYSIS 

OF BULK CWRS WHEAT SAMPLES 



Stepdisc Anaiysis of Bulk wheat Image Data 13:3 1 Wednesday, December 1 8. 1 996 
1 

Stepwise Selection: Summary 
Average 
Squared 

Variable Nurnber Partial F Prob w Wilks' Prob < Canonicai Prob > 
Step Entertd Removed III R8*2 Statistic F Lambda Lambda Correlation ASCC 



EVALUATIONS OF FEATURE MODELS 
FOR GRAIN TYPE IDENTIFICATION ANALYSIS 

OF INDIVIDUAL KERNELS 



Parametric Method. Using 4 mof Features 14:21 Friday. February 7. 1997 83 

From SPECIES 1 2 3 4 5 Total 

1 

2 

3 

4 

5 

Total 
Percent 

Priors 

Error Count Estimates for SPECIES: 

i 2 3 4 

Rate 0.046 1 O. 1732 0.0753 

F'riors 0.2000 0.2000 0.2000 

From SPECIES 

1 17096 
94.98 

2 385 
6.42 

3 6 
0.10 

4 1 24 
2.07 

5 O 
0.00 

NonParametric Method, Using 3 mof Features 1 M l  Friday, February 7. 1 997 88 

OTHER Total 



Total 1761 1 6285 5963 6172 
Percent 41.93 14.96 14.20 14.70 

Error Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0502 0.2017 0.0648 O. 1563 

Riors 0.2000 0.2000 0.2000 0.2000 

Paramtmc Method. Using 8 mof Features 

From SPECIES 

1 

2 

3 

4 

5 

Total 
Percent 

Prion 

Total 

0.0387 O. 1023 

0.2000 

14:21 Friday, February 7, 1997 97 

5 Total 

5 18000 
0.03 100.00 

O 6000 
0.00 100-00 

103 6000 
1.72 100.00 

24 6000 
0.40 100.00 

&or Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0584 O. 1327 0.0462 0.0903 0.0392 0.0733 

hiors 0.2000 0.2000 0.2000 0.2000 0.2000 



NonParamemc Methoci, Using 8 mof Features 

From SPECJES 1 

1421 Friday, February 7, 1997 

Percent 42.25 t 4.72 14.12 14.65 14.19 0.06 100.00 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estirnates for SPECIES: 

1 - 7 3 4 5 Total 

Rate 0.0347 O. 1347 0.0395 0.0893 0.0235 0.0643 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Pararneüic Meihod, Using 12 mof Features 14:21 Friday, February 7, 1997 1 I I  

From SPECIES 1 2 3 4 5 Total 



Total 17191 6 138 5987 
Percent 40.93 14.61 14.25 

Error Count Estirnates for SPECIES: 

1 2 3 4 

Rate 0.06 t 0 0.1848 0.0423 

Mors 0.2000 0.2000 0.2000 

From SPECIES 

Totai 17793 
Percent 42.36 

5 Total 

0.0570 0.0352 0.076 1 

0.2000 0.2000 

NonParametric Mcthod, Usine 12 mof Features 1421 Friday, February 7, 1997 

OTHR Total 

5 18000 
0.03 100.00 

O 6000 
0.00 100.00 

6 6000 
0.10 100.00 

5 6000 
0.08 100.00 

Error Count Estimates for SPECES : 

1 2 3 4 5 

Rate 0.03 14 O. 1255 0.0335 0.0905 

Priors 0.2000 0.2000 0.2000 0.2000 

Total 

0.0208 0.0604 

0.2000 



Parametric Metfiod, Using 16 mof Features 1421 Friday, February 7. 1997 126 

Frorn SPECIES 1 2 3 4 5 Total 

1 

2 

3 

4 

5 

Total 
Percent 

Mors 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0562 0.1 607 0.0392 

Priors 0.2000 0.2000 0 . 2 m  

132 

From SPECIES 

1 17463 
97.02 

2 296 
4.93 

3 4 
0.07 

4 4 1 
0.68 

5 O 
0.00 

5 Total 

0.0632 0.0265 0.0691 

0.2000 0.2000 

NonPararnetric Method, Using 16 mof Feanires 14:Sl Friday, February 7. 1997 

OTHER Total 



Total 17803 6277 5974 597 1 
Percent 42.39 14.95 14.22 14.22 

Error Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0298 O. 1 105 0.0208 0.0947 

F'riors 0.2000 0.2000 0.2000 0.2000 

Total 

0.0 157 0.0543 

0.2000 

Parametric Method, Using 20 mf Fatures 14:21 Friday. Febmary 7, 1997 112 

From SPECGES 

1 1 7006 
94.48 

2 209 
3.48 

3 5 
0.08 

4 19 
0.32 

5 O 
0.00 

Total 17239 
Percent 4 1 .O5 

Priors 0.2000 

Error Count Estirnates for SPECIES: 

1 2 3 4 

Rate 0.0552 O. 1778 0.0348 

Riors 0.2000 0.2000 0.2000 

4 5 Total 

I 64 5 1 8000 
0.9 1 0.03 100.00 

848 O 6000 
14.13 0.00 100.00 

93 83 6000 
1.55 1.38 100.00 

5690 14 6000 
94.83 0.23 100.00 

50 583 1 6000 
0.83 97.18 100.00 

6815 5933 32000 
16.30 14.13 100.00 

0.2000 0.2000 

5 Total 

0.05 17 0.0282 0.0695 

0.2000 0.2000 



NonParamemc Method, Using 20 mof Features 
148 

From SPECLES 1 2 3 4 5 

Total 17795 6394 5944 5885 596 1 

l4:2 1 Friday, February 7, 1997 

OTHER Total 

6 1 8ûûû 
0.03 100.00 

O 6000 
0.00 100.00 

4 6000 
0.07 100.00 

4 6000 
0.07 100.00 

7 6000 
0.12 100.00 

2 1 12000 
Percent 42.37 15.22 14.15 14.0 1 14.19 0.05 100.00 

Pnors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECES: 

1 2 3 4 5 Total 

Rate 0.0293 O. 1 023 0.0235 0.1018 0.0 1 58 0.0546 

  ri ors 0.2000 0.2000 0.2000 0.2000 0.2000 

Parametrie Method, Using 24 rnof Features 14:21 Friday, February 7, 1997 161 

From SPECES 1 2 3 4 5 Total 

18000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 



Total 17168 6163 597 1 6738 5960 42000 
Percent 40.88 14.67 14.22 16.04 14.19 100.00 

Mors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0588 0.1588 0.0323 0.0505 0.0243 0.0650 

~ o n ~ i - t r i c  Method. Using 24 mof Fearures 14:2 1 Friday, February 7. 1997 
1 70 

From SPECIES 1 2 3 4 5 OTHER Total 

Total 178 10 6325 5955 593 1 5959 20 42000 
Percent 42.40 15.06 14.18 14.12 14.19 0.05 100.00 

Error Count Estimates for SPECZES: 

1 2 3 4 5 Total 

Rate 0.028 1 O. 1 030 0.02 12 0.0943 0.0 152 0.0523 



Pararnetric Meuiod, Using 28 mof Features 14:2 1 Friday, Februq 7, 1997 1 83 

From SPECIES 

Total 17169 
Percent 40.88 

Priors 0.2000 

Rate 

Priors 

1 2 3 4 5 Total 

Error Count Estirnates for SPECIES: 

192 

From SPECIES 

5 Total 

NonPararnetric Method, Using 28 mof Features 

1 2 3 4 5 

0.0240 0.0632 

0.2000 

14:21 Friday, February 7, 1997 

OTHER Total 



Total 17822 6374 5953 5864 5959 28 42000 
Percent 42.43 15.18 14.17 13.96 14. 19 0.07 100.00 

Prion 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECZES: 

1 2 3 4 5 

Rate 0.029 1 O. 1040 0.02 10 0.1030 

Pnors 0.2000 0.2000 0.2000 0.2000 

Pararnetric Method, Using 4 color Faturcs 

From SPECIES 

1 1 744 1 
96.89 

2 154 
2.57 

3 4 
0.07 

1 5 1 
0.85 

5 O 
0.00 

Total 17650 
Percent 42.02 

Priors 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.03 1 1 O. 1202 0.1 188 

Total 

0.0 150 0.0544 

0.2000 

14:2 1 Friday, Fcbniary 7, 1997 20 1 

5 Total 

O 18000 
0.00 100.00 

O 6000 
0.00 100.00 

202 do00 
3.37 1CH3.00 

1 6000 
0.02 100.00 

5 Total 

0.0435 0.0187 0.0664 



NonParametric Method, Using 3 color Features 
206 

From SPECIES 1 2 3 4 5 

Total 17652 6326 5950 5978 6073 
Percent 42.03 15.06 14.17 14.23 14.46 

OTHER Total 

4 I 8000 
0.02 100.00 

5 6000 
0.08 100.00 

5 6oOo 
0.08 100.00 

6 6000 
0.10 100.00 

1 6Ocm 
0.02 100.00 

2 1 42000 
0.05 100.00 

Error Count Estirnates for SPECIES: 

1 2 3 4 5 

Rate 0.0270 0.0972 0.1212 0.0343 

Prion 0.2000 0.2000 0.2000 0.2000 

Paramehic Method, Using 8 color Features 

From SPECIES 1 2 3 4 

14:21 Fnday, February 7. 1997 

Total 

0.0200 0.0599 

0.2000 

1421 Friday, February 7, 1997 2 15 

Total 

1 8000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 



Total 1572 1 3933 67 10 944 1 6195 42000 
Percent 37.43 9.36 15.98 22.48 11.75 100.00 

Error Count fitirnates for SPECIES: 

Rate 0.1331 0.4787 O. 1050 0-0 1 23 0.0123 0.1483 

NonParametric Method, Using 8 color Features 14:2 1 Friday, February 7. 1997 
220 

From SPECES 1 2 3 4 5 OTHER Total 

Total 17808 6171 6002 5962 6042 15 42000 
Percent 42.40 14.69 14.29 11.20 14.39 0.04 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0 180 0.06 17 0.0668 0.0282 0.0 190 0.0387 



Pararnetric Method, Using 12 color Features 14:21 Friday, February 7, 1997 229 

From SPECES 1 2 3 4 5 Total 

Total 14898 7577 66 17 679 1 61 17 42000 
Percent 35.47 18-04 15.75 16.17 14.56 100.00 

Prion 0.2000 0.2000 0,2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate O. 1773 O. 1933 0.07 1 5 0.0095 0.0 1 35 0.093 1 

NonParametric Method, Using 1 2 color Features l4:2 1 Friday, February 7, 1997 
233 

From SPECTES 1 2 3 4 5 OTHER Total 



Total 17812 6153 602 1 5969 
Percent 42.4 1 11.65 14.34 14.21 

Error Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0 146 0.0375 0.0395 0.0 188 

hiors 0.2000 0.2000 0.2000 0.2000 

From SPECTES 

I 

2 

3 

4 

5 

Totai 
Percent 

Priors 

6036 
14.37 

0.2000 

Total 

0.0148 

Paramctric Method, Using 16 color Features 1421 Friday. Febniary 7. 1997 244 

4 5 Total 

279 O 18000 
1.55 0.00 100.00 

367 O 6000 
6.12 0.00 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 
Rate 0.2292 0.2227 0.0567 0.01 17 0.0 158 0.1 072 

Prion 0.2000 0.2000 0.2000 0.2000 0.2000 



NonPararneaic Method, Using 16 color Features 11:2 1 Fri&y, February 7. I 997 
250 

From SPECTES 1 2 3 4 5 OTHER Total 

Total 1 7843 6 120 5993 5980 6060 4 42000 
Percent 42.48 14.57 14.27 14.24 14.43 0.01 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0 128 0.0362 0.0395 0.0 183 0.0 1 15 0.0237 

Prion 0.2000 0.2000 0.2000 0.2000 0.2000 

Paramemc Method, Usine 20 color Featurcs f 4:21 Friday, February 7, 1997 260 

From SPECR3 Total 

1 8000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 

6000 
100.00 



Total 13 152 8740 7198 6854 6056 42000 
Percent 31.31 20.81 17.14 16-32 14.42 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.2766 0.2487 0.0542 0.01 12 0.0165 0.1214 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

266 

From SPECIES 

1 

2 

3 

4 

5 

Total 
Percent 

P ~ ~ o M  

NonParametric Method, Using 20 coior Feanires 1421 Friday. February 7, 1997 

OTHER Total 

Enor Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0138 0.03 12 0.0328 0.0 168 0.01 13 0.021 2 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 



Parametric Method, Using 24 color Features 1421 Friday, Febmary 7. 1997 279 

From SPECIES 1 C 7 3 3 5 To ta1 

1 

2 

3 

4 

5 

Total 
Percent 

Priors 

Error Count Estirnates for SPECIES: 

1 2 3 4 

Rate 0.2240 0.2342 0.0568 

Priors 0.2000 0.2000 0.2000 

5 Total 

0.0 1 72 0.0200 0.1 104 

0.2000 0.2000 

NonParameaic Method, Using 24 color Features 14:21 Frida, February 7, 1997 288 

From SPECIES 1 2 3 4 5 OTHER Total 

3 18000 
0.02 100.00 

1 6000 
0.02 I00.00 

O 6000 
0.00 100.00 

5 do00 
0.08 100.00 

2 6000 
0.03 100.00 



Total 17777 6218 6023 5957 
Percent 42.33 14.80 14.34 14.18 

Error Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0 163 0.0322 0.03 17 0.0200 

Riors 0.2000 0.2000 0.2000 0.2000 

From SPECIES 

Total 14460 
Percent 34.43 

Pararnemc Method, Using 28 color Features 

Error Count Estimates for SPECIES : 

1 2 3 4 

Rate 0.2046 0.23 15 0.0573 

Priors 0.2000 0-2000 0.2000 

Total 

5 Total 

5 Total 

0.0 163 0.0213 0.1062 

0.2000 0.2000 



NonParamemc Method. Using 28 color Features 1.121 Friday. February 7. 1997 
3 10 

Frorn SPECIES 1 2 3 4 5 OTHER Total 

'Total 17775 6225 6007 5947 6038 8 42000 
Percent 42.32 14.82 11.30 14.16 13.38 0-02 100.00 

Error Count Es tirnates for SPECIES: 

I 2 3 4 5 Total 

Rate 0.0 1 64 0.0322 0.0328 0.0 198 0.0098 0.0222 

Paramctric Method, Using 4 combined Feawres l4:2 1 Friclay, February 7, 1997 
3 19 

From SPECIES 1 2 3 4 5 Total 



Total 1 7667 4488 6079 6065 570 1 42000 
Percent 42.06 15.45 14.47 14.44 13.57 100.00 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.046 1 O. 1732 0.0753 O. 1692 0.0682 0.1064 

NonParanietric Mcthod, Using 4 combined Fcatures 14:21 Friday, Fcbnrary 7, 1997 
324 

From SPECIES 1 2 3 4 5 OTHER Total 

Total 1761 1 6285 5963 6172 5923 46 42000 
Percent 41.93 14.96 14.20 14.70 14.10 0.1 1 100.00 

Prion 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0502 0.20 17 0.0648 0.1563 0.0387 O, 1 023 



Parametric Method, Using 8 combined Features l4:2 1 Friday. Febmary 7. 1997 

From SPECIES 1 2 3 

Totaf 16970 6404 6010 
Percent 40.40 15.25 14.38 

Error Count Estimates for SPECIES: 

Rate 0.0766 O. 1792 0.0407 

4 5 Total 

156 4 1 8000 
0.87 0.02 100.00 

73 1 O 6000 
12.18 0.00 100.00 

85 94 6000 
1.42 1.57 100.00 

5666 8 6000 
94.43 0.13 100.00 

O 5842 6000 
0.00 97.37 100.00 

6638 5948 32000 
15.80 14.16 100.00 

0.2000 0.2000 

5 Total 

0.0557 0.0263 0.0757 

0.2000 0.2000 

NonParametric Method, Using 8 combined Feanires l4:2 1 Friday. Febmary 7. 1997 

From SPECIES OTHER Total 

10 l8OOO 
0.06 100.00 

2 6000 
0.03 100.00 

5 6000 
0.08 100.00 

3 6000 
0.05 100.00 

5 6000 
0.08 100.00 



Total 1 7670 6 188 589 1 621 1 
Percent 42.07 14.73 14.03 14.79 

Ermr Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0419 O. 1402 0.0385 0.0735 

Prion 0.2000 0.2000 0.2000 0.2000 

Total 

0.0120 0.0612 

0.2000 

From SPECIES 

Total 17872 
Percent 32.55 

Paramttric Method, Using 12 combined Fea~rts - ' ' 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0202 0.0493 0.0 157 

Prion 0.2000 0.2000 0.2000 

Total 



NonParameÛic Method, Using 12 combined Features 1421 Fnday, February 7. 1997 
352 

From SPECIES 

Total 17922 61 19 5964 
Percent 42.67 14.57 14.20 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0 102 0.0203 0.01 17 

Pnors 0.2000 0.2000 0.2000 

OTHER Total 

2 1 8000 
0.01 100.00 

1 6000 
0.02 100.00 

O 6000 
0.00 100.00 

O 6000 
0.00 100.00 

1 6000 
0.02 100.00 

5 Total 

0.0 162 0.0060 0.0129 

0.2000 0.2000 

Parametric Method, Using 16 combined Fcatures 14:21 Friday. February 7, 1997 
362 

Frorn SPECIES 1 2 3 4 5 Total 



Total 17602 5830 5995 6559 6014 32000 
Percent 41.91 13.88 11.27 15.62 11.32 100.00 

Error Count Estimates for SECIES: 

1 2 3 4 5 Total 

Rate 0.029 1 0.0758 0.0 1 83 0.0 157 0.0 1 OS 0.0299 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

NonParamcmc Methoci, Using 16 combined Features l4:2 1 Friday, February 7, 1997 

From SPECIES 1 2 3 4 5 Total 

Total 17947 6102 5970 5974 6007 42000 
Percent 42.73 14.53 14.21 14.22 14.30 100.00 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES : 

1 2 3 4 5 Total 

Rate 0.0074 0.0 152 0.0 1 02 0.0 122 0.0055 0.0101 



Paramemc Method, Using 20 combined Features 14:2 1 Friday, February 7. 1 997 
378 

From SPECIES 1 2 3 4 5 Total 

Total 17629 5889 5962 6184 6036 42000 
Percent 4 1.97 14.02 14.20 15.44 14.37 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0278 0.0700 0.02 1 8 0.0157 0.0095 0.0290 

NonParamemc Method, Using 20 combined Features 14:21 Friday, February 7. 1997 
381 

From SPECIES 1 2 3 4 5 OTHER TotaI 



To ta1 1793 1 6096 5982 599 1 5999 1 42000 
Percent 42.69 14.51 11.24 14.26 14.28 0.00 100.00 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECES: 

1 2 3 4 5 Total 

Rate 0.083 0.0 163 0.0083 0.0 1 20 0.0060 0.0102 

- 
Pammuic Method, Using 24 combined Features 14:21 Friday, February 7, 1997 

From SPECïES 1 2 3 3 5 Total 

Total 17668 5847 6000 6486 5999 42000 
Percent 42.07 13.92 14.29 15.44 14.28 100.00 

Error Count Estimates for SPECIES : 

1 2 3 4 5 Total 

Rate 0.0256 0.07 1 O 0.0152 0.0 155 0.0092 0.0273 

Priors 0.200 0.2000 0.2000 0.2000 0.2000 



NonParaniemc Method, Using 24 combined Feanires 14:2 I Friday. Februaq 7. 1997 

From SPECIES 3 4 5 OTHER Tod 

To rai 17950 6102 6001 5967 
Percent 42.74 f 4.53 14-29 14.2 1 

-or Count Estimates for SPECIES: 

1 2 3 4 5 

Rate 0.0076 0.0 158 0.0048 0.0 148 

Pnors 0.2000 0.2000 0.2000 0.2000 

Total 

0.0058 0.0098 

0.2000 

Pararnctric Mechod, Using 28 combincd Fcatures 
1 1  9 

From SPECIES 1 2 3 4 5 

142 1 Fnday, February 7, 1997 

Total 



Total 17853 5044 601 7 
Percent 42.5 1 12.01 14.33 

Error Count Estimatts for SPECIES: 

t 2 3 4 

Rate 0.0247 0.2008 0.0197 

Riors 0.2000 0.2000 0.2000 

5 Total 

0.0 1 67 0.01 00 0.0544 

0.2000 0.2000 

NonParametnc Mcthod, Using 28 combined Feamres l4:2 1 Friday, February 7. 1 997 

From SPECES 

Total 17950 
Percent 42.74 

OTHER Total 

O 18000 
0.00 100.00 

1 6000 
0.02 100.00 

O 6000 
0.00 100.00 

1 6000 
0.02 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0072 0.0 152 0.0052 0.0 145 0.0055 0.0095 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 



APPENDM E-2 

EVALUATIONS OF FEATURE MODELS 
FOR DAMAGE TYPE IDENTIFICATION ANALYSIS 

OF INDIVIDUAL CWRS WHEAT KERNELS 



Paramecric Methoci, Using 4 mof Features 16:07 Sunday, February 16. 1997 9 

From SPECIES 7 Total 

29 1OOO 
2.90 I00.00 

64 IO00 
6.40 100.00 

26 IO00 
2.60 100.00 

86 Io00 
8.60 100.00 

77 I o 0 0  
7.70 100.00 

193 IO00 
19.30 100.00 

386 1OOO 
38.60 Iûû.00 

NonParamttric Method, Using 4 mof Features l6:O7 Sunàay, February 16, 1997 

From SPECIES 

1 



NonParametric Meshod, Usine 4 mof Features I6:07 Sunday, February 16. 1997 
16 

From SPECIES 6 7 OTHER Total 

Frorn SPECIES 

P arametric Method, Usine 8 mof Features 16:07 Sunday, Febt-uary 1 O, 1997 26 

* 3 4 5 6 7 Total 



NonParametnc Method, Using 8 mof Features 

From SPECIES 1 2 3 4 

NonParametric Method, Using 8 mof Features 
34 

16:07 Sunday, February 16. 1997 

From SPECIES 6 7 OTHER Total: 

l6:Oi Sunday. February 16, 1997 



Parameuic Method, Using 12 mof Features 16:07 Sunday. February 16. 1997 44 

From SPECIES 7 Total 

30 Io00 
3.00 100.00 

3 1 1OOO 
3.10 100.00 

30 IO00 
3.00 100.00 

112 Io00 
11.20 100.00 

64 IO00 
6.40 100.00 

219 Io00 
21 -90 100.00 

563 IO00 
56.30 100.00 

NonParametric Method, Using 12 mof Features 16:07 Sunday, February 16, 1997 

From SPECIES 1 2 3 4 5 



NonParametric Method, Using 12 mof Features l6:O7 Sunday. February 16, 1997 

From SPECIES 6 7 OTHER To rai 

From SPECIES 

Paramecric Method, Using 16 mof Features I6:07 Sunday, February 16, 1997 63 

7 Total 

19 1OOO 
1.90 100.00 

15 1OOO 
1.50 100.00 

15 1OOO 
1-50 100.00 

66 IO00 
6.60 100.00 

47 lm 
4.70 100.00 

160 1000 
16.00 100.00 

460 Io00 
46.00 100.00 



NonParamevic Method, Using 16 rnof Features I6:07 Sunday, February 16, 1997 

From SPECIE!3 1 2 3 4 5 

NonPararnetnc Merhod, Using 16 mof Features 16:Oï Sunday, February 16, 1997 

From SPECIES 7 OTHER Total 



From SPECm 7 Total 

25 I o00  
2-50 100.00 

17 IO00 
1.70 100.00 

2 1 1000 
2.10 100.00 

66 I o00  
6.60 100.00 

45 Io00 
4.50 100.00 

198 Io00 
19.80 100.00 

505 1OOO 
50.50 100.00 

Parametric Method, Using 20 mof Features 16:07 Sunday, F e b m q  16. 1997 83 

1 

NonParamemc Metfiod, Using 20 mof Features 16:07 Sunday, February 16, 1997 

From SPECIES 1 2 3 4 5 



NonParamehic Method, Using 20 mof Fatures l6:O7 Sunday, Febmary 16, 1997 
92 

From SPECIES 6 7 OTHER Total 

From SPECFc 

Pararneuic Method, Using 24 mof Features 16:07 Sunday, February 16, 1997 1 O7 

6 7 Total 

2 8 1000 
0.20 0.80 100.00 

7 12 Io00 
0.70 1.20 100.00 

O 2 lm 
0.00 0.20 100.00 

2 36 IO00 
0.20 3.60 100.00 

6 22 1000 
0.60 2.20 100.00 

41 128 1OOO 
4.10 12.80 100.00 

22 368 IO00 
2.20 36.80 100.00 



NonParamemc Method, Usine 24 mof Features 16:07 Sunday, Febniary 16, 1997 

Frorn SPECIES 1 2 3 4 5 

NonPararncmc Method, Using 24 mof Features 16:07 Sunday, February 16. 1997 
1 20 

From SPECIES 6 7 OTHER Total 



Pararnetric Methoci, Using 28 mof Features 16:07 Sunday, February 16. 1997 
135 

From SPECIES 6 7 Total 

O 7 1000 
0.00 0.70 100.00 

3 7 lm 
0.30 0.70 IOû.00 

O 2 1OOO 
0.00 0.20 100.00 

1 3 1 1OOO 
O. 10 3.10 100.00 

4 19 IO00 
0.40 1.90 100.00 

30 94 IO00 
3.00 9.40 100.00 

16 298 1OOO 
1.60 29.80 100.00 

NonParametnc Method. Using 28 rnof Features 16:07 Sunday, February 16, 1997 

From SPECES 1 2 3 4 5 



NonParametric Method, Using 28 mof Features 16:07 Sunday, February 16. 1997 

From SPECIES 6 7 OTHER Tod 

From SPECIES 

Paramemc Method, Using 4 color Features 16:07 Sunday, February 16, 1997 157 

2 3 4 5 6 7 Total 



NonParametric Method, Using 4 color Feanires 16:07 Sunday, February 16. 1997 

From SPECES 

NonPararnetric Method, Using 4 color Features 
164 

From SPECIES 6 7 OTHER Total 

16:07 Sunday, February 16. 1997 



Parametric Method, Usine 8 color Feamres 16:07 Sonday, February 16. 1997 1 71 

From SPECIES 3 4 5 6 7 Total 

6 29 27 O Io00 
0.60 2.90 2.70 0.00 100.00 

20 14 1 O O IO00 
2-00 1.40 1 .O0 0.00 1 00.00 

O O 13 O IO00 
0.00 0.00 1.30 0.00 100.00 

927 17 18 O Io00 
92.70 1 -70 1.80 0.00 100.00 

15 949 10 O lm 
1.50 94.90 1 .O0 0.00 100.00 

119 13 72 1 O Io00 
1 1.90 1.30 72.10 0.00 100.00 

O O 2 998 1OOO 
0-00 0.00 0.20 99.80 100.00 

NonParammc Method, Using 8 color Fcaturcs 16:07 Sunday, Febmary 16, 1997 

From SPECIES 



NonParametric Method. Using 8 color Feamres l6:O7 S unday. February 1 6. 1 997 

From SPECIES 6 7 OTHER Total 

192 

From SPECIES 

Pararnetric Method, Usine 12 color Features 16:07 Sunday, February 16, 1997 



Nonfaramecric Method, Using 1 2 color Feanires 1 6:07 Sunday, February 1 6, 1 997 
199 

Frorn SPECIES 

From SPECIES 

NonParametnc Method, Using 12 color Feanires l6:O7 Sunday, February 16. 1997 

6 7 OTHER Total 



Parametric Method, Using 16 color Features 16:07 Sunday, February 16, 1997 

From SPECIES 3 4 5 6 7 Total 

1 17 I l  O Io00 
O. IO 1.70 1.10 0.00 100.00 

22 15 6 O IO00 
2-20 1.50 0.60 0.00 100.00 

O O 6 O IO00 
0.00 0.00 0.60 0.00 100.00 

973 O 13 O IO00 
97.30 0.00 1.30 0.00 100.00 

8 983 2 O IO00 
0.80 98.30 0.20 0.00 100.00 

1 80 7 622 O IO00 
18.00 0.70 2.20 0.00 ~00.00 

O O 1 999 Io00 
0.00 0.00 0.10 99.90 100.00 

NonParameûic Method, Using 16 color Features 1607 Sunday, February 16. 1997 

From SPECIES 



NonParametric Method. Using 1 6 color Fearures 1 6:07 Sunday . Febmary 16. 1 997 

From SPECTES 6 7 OTHER Totai 

23 1 

From SPECIES 

13 O 4 1OOO 
1 -30 0.00 0.40 100.00 

1 1  O 6 1OOO 
1.10 0.00 0.60 100.00 

7 O i Io00 
0.70 0.00 0.10 100.00 

22 O 1 Io00 
2.20 0.00 0.10 100.00 

O O 1 lm 
0.00 0.00 o. 10 100.00 

914 O 6 IO00 
91 -40 0.00 0.60 100.00 

1 999 O IO00 
0.10 99.90 0.00 100.00 

Parameaic Method, Using 20 color Featurcs 16:07 Sunday, Fcbruary 1 6. 1997 

3 4 5 6 7 Total 

O 16 10 O IO00 
0.00 1.60 1 .O0 0.00 100.00 

12 16 5 O 1OOO 
1.20 1.60 0.50 0.00 100.00 

O O 2 O Io00 
0.00 0.00 0.20 0.00 100.00 

959 3 18 O IO00 
95-90 0.30 1-80 0.00 100.00 

1 O 980 5 O 1000 
1.00 98.00 0.50 0.00 100.00 

208 7 676 O 1000 
20.80 0.70 67.60 0.00 100.00 

O O O 999 Io00 
0.00 0.00 0.00 99.90 100.00 



NonParametric Method, Using 20 color Features 1 6:O7 Sunday , F e b r u q  1 6.  1 997 

From SPECIES 

NonParametric Method. Using 20 color Features 16:07 Sunday. February 16, 1997 
240 

From SPECIES 6 7 OTHER Total 



Parametric Method, Using 24 color Features 16:07 Sunday, February 16. 1997 
255 

From SPECIES 

From SPECIES 

2 3 4 5 6 7 Total 

228 2 14 2 O 1OOO 
22.80 0.20 1.40 0.20 0.00 100.00 

115 39 3 1 2 O 1OOO 
1 1 -50 3.90 3.10 0.20 0.00 100.00 

967 O O O O IO00 
96.70 0.00 0.00 0.00 0.00 100.00 

O 978 2 6 O 1OOO 
0.00 97.80 0.20 0.60 0.00 100.00 

O 14 983 1 O Io00 
0.00 1.40 98.30 0.10 0.00 100.00 

87 263 16 448 1 1OOO 
8.70 26.30 1.60 44.80 0.10 100.00 

O O O 1 999 Io00 
0.00 0.00 0.00 0.10 99.90 100.00 

NonParamehic Method, Using 23 color Features I6:O7 Sunday. Fetiruary 16. 1997 



NonParametric Mechoci, Using 24 color Features 16:O7 Sunday, February 16, 1997 

From SPECIES 

283 

From SPECIES 

6 7 OTHE. Total 

Parametric Method, Using 28 color Features 16:07 Sunday. February 16, 1997 

3 4 5 6 7 Total 

O 8 1 O 1 000 
0.00 0.80 0.10 0.00 100.00 

20 2 1 1 O Io00 
2.00 2.10 0.10 0.00 100.00 

O O O O 1ooo 
0.00 0.00 0.00 0.00 100.00 

979 4 7 O Io00 
97.90 0.40 0.70 0.00 100.00 

9 988 1 O Io00 
0.90 98.80 0.10 0.00 100.00 

268 7 512 I r ooo 
26.80 0.70 51.20 0.10 100.00 

O O 1 999 IO00 
0.00 0.00 0.10 99.90 ~00.00 



NonParametric Method. Using 28 color Features 16:07 Sunday. February 16. 1997 

From SPECIES 

NonParametric Method, Using 28 color Features 16:07 Sunday, February 16, 1997 

From SPECIES 6 7 OTHER Total 



Parameuic Method, Using 4 combined Features 16:07 Sunday. February 16, 1997 
305 

From SPECIES 

From SPECIES 

2 3 4 5 6 7 Total 

NonPararnetric Method, Using 4 combined Features 16:O7 Sunday, February 16. 



NonParamefric Method. Using 4 combined Features 16:07 Sunday. February 16. 
1997 3 12 

From SPECIES 6 7 OTHER Totai 

Parameoic Method, Using 8 cornbined Features l6:O7 Sunday, February 16, 1997 

From SPECIES 3 1 5 6 7 Total 

i 32 29 O 1OOO 
0.10 3 -20 2.90 0.00 100.00 

18 20 15 O IO00 
1 .%O 2.00 1.50 0.00 100.00 

O O 14 O 1OOO 
0.00 0.00 1.40 0.00 100.00 

956 3 16 O 1OOO 
95.60 0.30 1.60 0.00 100.00 

2 96 1 9 O 1000 
0.20 96.10 0.90 0.00 100.00 

78 20 728 O 1OOO 
7.80 2.00 72.80 0.00 100.00 

O O 2 998 IO00 
0.00 0.00 0.20 99.80 100.00 



NonPararnetric Method, Using 8 combined Features 16:07 Sunday. February 16. 
1997 329 

From SPECIES 1 2 3 4 5 

NonParamemc Method, Using 8 combined Features 1 6:07 Sunday , Fe bruary 1 6. 
1997 330 

From SPECIES 6 7 OTHER Total 



Parametric Method, Using 1 2 combined Features 1 6:07 Sunday, February 1 6.  1 997 
340 

From SPECiES 3 4 5 6 7 Total 

1 37 I l  O lm 
0.10 3 -70 1.10 0.00 100.00 

20 26 3 O IO00 
2.00 2.60 0.30 0.00 100.00 

O O 6 O 1OOO 
0.00 0.00 0.60 0.00 100.00 

976 5 8 O Io00 
97.60 0.50 0.80 0.00 100.00 

1 992 1 O 1OOO 
O. 10 99.20 O. 10 0.00 100-00 

1 07 5 1 540 O 1OOO 
10.70 5.10 54.00 0.00 100.00 

O O 1 9'39 lm 
0.00 0.00 0.10 99.90 100.00 

NonParamttric Method, Using 12 combined Feamres l6:O7 Sunday, February 16, 

From SPECIES 

I 83 1 
83.10 

2 55 
5.50 

3 34 
3.40 

4 5 
0.50 

5 14 
1.40 

6 34 
3.40 

7 O 
0.00 



NonPararnetric Method, Using 1 2 combined Features 16:O7 Sunday, February 16. 
1997 348 

From SPECIES 6 7 OTHER Total 

359 

From SPECIES 

Paramemc Method, Using 16 combined Feanires l6:O7 Sunday, February 16, 1997 



NonParamecric Method, Using 16 combined Fmures 1607 Sunday, February 1 6.  
1997 367 

From SPECIES 1 2 3 4 5 

NonPararnetric Method, Usinp 16 combined Fearures 1 6:O7 Sunday, Febroary 1 6, 
1997 368 

From SPECIES 6 7 OTHER Total 



Pararnetric Method, Using 20 combined Feamres 16:07 Sunday. February 16. 1997 
379 

From SPECJE!S 3 4 5 6 7 Total 

O 1 1  IO O 1000 
0.00 1.10 1 .O0 0.00 100.00 

6 7 8 O IO00 
0.60 0.70 0.80 0.00 100.00 

O O 4 O lm 
0.00 0.00 0.40 0.00 100.00 

969 2 13 O IO00 
96.90 0.20 1.30 0.00 100.00 

5 985 2 O Io00 
0.50 98.50 0.20 0.00 100.00 

194 I l  697 O IO00 
19.40 1-10 69.70 0.00 100.00 

O O O 999 1000 
0.W 0.00 0.00 99.90 100.00 

NonParametric Method, Using 20 combined Features I6:07 Sunday. February 16. 

From SPECIES 



NonParametric Methoc& Using 20 cornbined Femres 16:07 Sunday. Februar,: 16. 
1997 388 

From SPECIES 6 7 OTHEX Total 

403 

From SPECIES 

Parametric Method, Using 24 cornbined Fcatures 16:07 Sunday, February 16, 1 997 

3 4 5 6 7 Total 

O 3 3 O 1OOO 
0.00 0.30 0.30 0.00 100.00 

O 5 O O 1OOO 
0.00 0.50 0.00 0.00 100.00 

O O O O Io00 
0.00 0.00 0.00 0.00 100.00 

98 1 2 5 O t 000 
98.10 0.20 0.50 0.00 100.00 

5 990 1 O Io00 
0.50 99.00 0.10 0.00 100.00 

189 9 800 O Io00 
18.90 0.90 80.00 0.00 100.00 

O O 1 999 1000 
0.00 0.00 0.10 99.90 100.00 



NonPararnetric Method. Using 24 combined Features I6:07 Sunday, Febmary 16. 

Frorn SPECIES 

NonParametric Method, Using 24 combined Feamres 16:07 Sunday, Febmary 16, 
1997 416 

From SPECES 6 7 OTHER Totai 



Paramemc Method, Using 28 cornbined Features 16:07 Sunday. February 16. 1997 
43 1 

From SPECIES 3 4 5 6 7 Total 

O 5 1 O Io00 
0.00 050 0.10 0.00 100.00 

O 8 2 O IO00 
0.00 0.80 0.20 0.00 100.00 

O O O O 1000 
0.00 0.00 0.00 0.00 100.00 

982 2 8 O 1OOO 
98.20 0.20 0.80 0.00 100.OC) 

5 992 1 O Io00  
0.50 99.20 0.10 0.00 100.00 

248 12 720 O Io00 
24.80 1.20 72.00 0.00 100.00 

O O 1 999 1OOO 
0.00 0.00 0.10 99.90 100.00 

NonParamemc Method. Using 28 combinai Features 1 6:O7 Sunday, February 1 6,  

Frorn SPEClES 



NoParamemc Metfiod, Usine 28 combined Features I6:07 Sunday. Febmary 16. 1997 

From SPECIES 6 7 OTHER Total 



EVALUATIONS OF FEATURE MODELS 
FOR GRAIN TYPE IDENTIFICATION ANALYSIS 

OF BULK GRAIN SAMPLES 



Paramenic Method, Using 4 color Features 08:33 Thursday. Apd 10, 1997 9 

From SPECES 1 2 3 4 5 Total 

Total 1 79 6 1 60 
Percent 42.62 11.52 14.29 

Priors 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0056 0.0000 0.0000 

Priors 0.2000 0.2000 0.2000 

5 Total 

0.0000 0.0000 0.001 1 

0.2000 0.2000 

NonParametric Mettiod. Using 4 color Feamres 08:33 Thursday, April 1 0, 1 997 
14 

From SPECIES 1 2 3 4 5 Total 



Error Count Estimates for SPECJES : 

1 2 3 4 5 Total 

Rate 0.0056 0.0000 0.0000 0.0000 0.0000 0.001 1 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Parametric Method, Using 8 color Features 08:33 niursday, April 10, 1997 23 

From SPECIES 

1 1 80 
100.00 

2 O 
0.00 

3 O 
0.00 

4 O 
0.00 

5 O 
0.00 

Toul 180 
Percent 42.86 

Mors 0.2000 

1 2 3 4 5 Total 

Error Count Ektirnates for SPECIES: 

1 2 3 4 5 Totai 

Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 



NonParaniettic Merhoci, Using 8 color Features 08:33 Thursday, April 1 O. 1997 
28 

From SPECIES 1 2 3 4 5 Total 

Totai 1 80 60 60 
Percent 42.86 13.29 14.29 

Enor Count Estirnates for SPECIES: 

1 2 3 4 

Rate 0.0000 0.0000 0.0000 

Wors 0.2000 0.2000 0.2000 

5 Total 

0.0000 0.0000 0.0000 

0.2000 0.2000 

Parametric Method, Using 12 color Features 08:33 Thursday, Apnl 10. 1997 37 

From SPECES 1 2 3 4 5 Total 



Total 180 60 60 60 60 420 
Percent 42.86 14.29 14.29 14.29 14.29 100.00 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 

NonPafametric Methoci, Using 12 color Features 08:33 Thursday, April 10, 1997 
42 

From SPECIES 1 2 3 4 5 To tai 

Total 180 60 60 60 60 420 
Percent 42.86 14.29 14.29 14.29 14-29 100.00 

Pnors 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECES: 

1 2 3 4 5 Total 

Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Priors 0.2000 0.2000 0.2000 0.2000 0.2000 



Pararnetnc Method, Using 16 color Fearures 08:33 ïlursday, April 10. 1997 52 

From SPECIES 1 2 3 3 5 Total 

Total 179 60 6 1 60 60 320 
Percent 42.62 14.29 14.52 14.29 14.29 100.00 

Prion 0.2000 0.2000 0.2000 0.2000 0.2000 

Error Count Estimates for SPECIES: 

I 2 3 4 5 Total 

Rate 0.0056 0.0000 0.0000 0.0000 0.0000 0.001 1 

Fnors 0.2000 0.2000 0.2000 0.2000 0.2000 

NonPararnemc Method, Using 16 color Features 08:33 Thursday, ApnI 10, 1997 
58 

From SPECES 1 2 3 4 5 Total 



Total 180 60 60 
Percent 42.86 14.29 14.29 

Enor Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0000 0.0000 0.0000 

Prion 0.2000 0.2000 0.2000 

5 Total 

0.0000 0.0000 0.0000 

0.2000 0.2000 

From SPECIES 

Total 181 
Percent 43.1 O 

Parametric Method, Using 20 color Features OR33 Thursday , April 10, 1997 68 

Priors 0.2000 

2 3 4 5 Total 

Error Count Estirnates for SPECIES: 

1 2 3 4 

Rate 0.0056 0.01 67 0.0000 

Priors 0.2000 0.2000 0.2000 

5 Total 

0.0 167 0.00üG 0.0078 

0.2000 0.2000 



NonParametric Method. Using 20 color Features 08:33 Thursday, Apt4 10, 1997 

From SPECIES 1 2 3 4 5 Total 

Total 180 60 60 
Percent 42.86 14.29 14.29 

Enor Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0000 0.0000 0.0000 

mors 0.2000 0.2000 0.2000 

5 Total 

0.0000 0.0000 0.0000 

0.2000 0.2000 

Pararnemc Method, Using 24 color Features 08:33 Thursday, Aprii 1 0, 1997 87 

From SPECIES 1 2 3 4 5 Total 



Total 180 60 60 
Percent 42.86 14.29 11.29 

Error Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0056 0.0000 0.0000 

Prion 0.2000 0.2000 0.2000 

5 Total 

0.0 167 0.0000 0 . W  

0.2000 0.2000 

96 

From SPECTES 

1 1 80 
100.00 

2 O 
0.00 

3 O 
0.00 

4 O 
0.00 

5 O 
0.00 

Total 180 
Percent 42.86 

Priors 0.2000 

NonParamemc Mcthod, Using 24 color Feanircs 08:33 Thursday, April 10. 1997 

Enor Count Estimates for SPECIES: 

I 2 3 4 

Rate 0.0000 0.0000 0.0000 

Priors 0.2000 0.2000 0.2000 

* 

5 Total 

0.0000 0.0000 0.0000 

0.2000 0.2000 



Parametric Method, Using 28 color Features 08:33 Thursday. April 10. 1997 109 

From SPECIES 1 2 3 4 5 Total 

Total 180 60 60 
Percent 42.86 13.29 14.29 

Enor Count Estimates for SPECIES: 

1 2 3 4 

Rate 0.0056 0.0000 0.0000 

Prion 0.2000 0.2000 0.2000 

NonParamemc Method, Using 28 color Feanires 08:33 ïhursday, Apd 10, 1997 
118 

From SPECIES 1 2 3 4 5 Total 



Total 180 60 60 60 60 420 
Percent 42.86 14.29 14.29 14.29 14.29 100.00 

Error Count Estimates for SPECIES: 

1 2 3 4 5 Total 

Rate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Riors 0.2000 0.2000 0.2000 0.2000 0.2000 



EVALUATIONS OF FEATURE MODELS 
FOR GRADE IDENTIFICATION ANALYSE 

OF BULK CWRS WEIEAT SAMPLES 



Pararnetric Method, Using 4 coIor Features 08:35 Thursday, April 10, 1 997 8 

Discriminant AnaIysis Classification Summary for Cati bration Data: WORK-CALIB 

Cross-validation Summary using Quadratic Discriminant Function 

GeneraIized Squared Distance Function: Posterior Probability of Membership in each SPECIES : 

2 -1 2 2 
D (XI '(x-x le COV (x-x ) + in ICOV I WIX) = enp(--5 D (x)) I SUM exp(--5 D 01)) 
j cX)j cX)j O j  cX)j j k  k 

Number of Observations and Percent Classified into SPECIES: 

Frorn SPECIES 1 2 

Total 77 74 
Percent 42.78 41.1 1 

Total 

60 
100.00 

60 
100.00 

60 
100.00 

180 
100.00 

NonParametric Method. Using 4 color Features 08:35 Thunday. April 10, 1997 

Discriminant Anaiysis Classification Summary for Caiibration Data: WORK-CALIB 

Cross-validation Surnrnary using 5 Nearest Neighbors 

Squared Distance Function: Posterior Robability of Mernbership in each SPECIES: 

2 -1 m (X) = Proportion of obs in p u p  k in 5 nearest neighbors of X 
D (X,Y) = @-Y)' COV (X-Y) k 

RUE) = m (X) PRIOR 1 SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classificd into SPECIES: 

From SPECES 1 2 3 OTHER Total 

1 54 4 2 O 60 



2 

3 

Total 
Percent 

Prion 

Paramcuic Mcthod, Using 8 color Feanrrcs 08:35 Thursday, April 10, 1997 2 1 

Discriminant Andysis Classification Summary for Caiibration Data: WORKCALIB 

Cross-vdidation Summary using Quadratic Discriminant Function 

Generaliztd Squared Distance Function: Posterior Probability of Mernbership in each SPECIES: 

2 - 1 2 2 
D (X) =-(x-x )' C ~ V  (X-X ) + ln JCOV I Pr(jU<) = exp(--5 D (X)) / SUM exp(--5 D (X)) 
j (x)j (x>j cx)j mi j k k  

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 

Total 72 
Percent 40.00 

NonPararnetric Method, Using 8 color Features 08:35 Thursday, ApnI 10, 1997 

Discriminant Analysis Classification Summry for Calibration Data: WORICCALIB 

Cross-validation Summary using 5 Nearest Ncighbors 



Squared Distance Function: Postenor Probability of Mernbership in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X 
D (X,y) = (X-Y)' COV (X-Y) k 

Pr(jDL) = rn (X) PRIOR I SUM ( m (X) PRIOR ) 
j j k k  k 

Nurnber of Observations and Percent Classified into SPECIES: 

From SPECIES 

1 57 
95.00 

2 11 
18.33 

3 6 
10.00 

Total 74 
Percent 41.1 1 

Priors 0.3333 

OTHER Totai 

Paramehic Method, Using 12 color Features 

Discriminant Analysis Classification Sumrnary for Calibration Data: WORK.CALIB 

Cross-vaIidation Surnmary using Quadratic Discriminant Function 

Generdized Squared Distance Function: Posterior ProbabiIity of Membership in each SPECIES: 

Nurnber of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 Total 

Total 67 7 1 42 1 80 



Percent 37.22 39.44 23.33 ~00.00 

Riors 0.3333 0.3333 0.3333 

NonPararnctric Mcthod. Using 12 coIor Fcatum 08:35 Thursday, April 10, 1997 

Discriminant Analysis Classification Summary for Calibration Data: WORK-CALIB 

Squared Distance Function: Posterior Probability of Mcrnbership in each SPECIES: 

2 -1 rn (X) = Proportion of obs in group k in 5 neartst ncighbors of X 
D K Y )  = (X-Y)' COV (X-Y) k 

WK) = m (X) PRIOR / SUM ( rn (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 

1 57 
95.00 

2 4 
6.67 

3 4 
6.67 

To ta1 65 
Percent 36.1 1 

Priors 0.3333 

OTHER Total 

O 60 
0.00 100.00 

1 60 
1 -67 100.00 

2 60 
3.33 100.00 

3 180 
1 -67 100.00 

Parametric Method, Using 16 color Features 08:35 Thursday, Aprii IO, 1997 39 

Discriminant Analysis Classification Summary or Calibration Data: WORK-CALIB 

Cross-vaiidation Summary using Quadratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 



Nurnber of Observations and Percent Classificd into SPECIES: 

Fmm SPECIES 1 2 3 Total 

Total 70 
Percent 38.89 

NonParatnetsic Method, Using 16 color Features 08:35 Thursday, ApnI 10, 1997 

Discriminant Analysis Classification Summary for Calibration Data. WORKCAWB 

Cross-validation Summary using 5 Nearest Ncighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 - f m (X) = Proportion of obs in group k in 5 nearest neighbors of  X 
D (X,Y) = O(-y)' COV (X-Y) k 

PrGlX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classifîed into SPECIES: 

From SPECIES 

Total 69 
Percent 38.33 

OTHER Total 

O 60 
0.00 100.00 

1 60 
1.67 100.00 

O 60 
0.00 100.00 

1 1 80 



Parametric Method, Using 20 color Features 08:35 Thursday. April 10, 1997 63 

Discriminant Analysis Classification Surnmary for Caiibration Data: WORK-CALE3 

Cross-validation Summary using Quadratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membcrship in each SPECIES: 

Number of Observations andPcrcent Classified into SPECIES: 
-- 

From SPECIES 

Total 67 
Percent 37.22 

3 Total 

O 60 
0.00 100.00 

8 60 
13.33 100.00 

49 60 
8 1.67 100.00 

57 1 80 
3 1.67 100.00 

0.3333 

NonParametric Method, Using 20 color Features 08:35 Thursday, April 10, 1997 

Discriminant Analysis Classification Summary for Calibration Data: WORK.CAï5  

Cross-validation Su- using 5 Nearest Neighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 m O<) = ProporÜon of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

PrU[X) = m (X) PRIOR / SWM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and f ercent Classified into SPECIES: 

From SPECIES f 2 3 OTHER Total 



Total 65 
Percent 36.1 1 



APPENDM F-1 

RESULTS OF GRAIN TYPE IDENTIFICATION ANALYSE 
OF INDIVIDUAL GRAIN KERNELS 

USING STATISTICAL CLASSIFIERS 



Pararneuic Method, Using 24 mof features, Group 1 : tn 1 ts 1 
10:33 Friday. February 14. 1997 

Discriminant Analysis Classification Summary for Test Data: WORK-TS 1 1 

Classification Sumrnary using Quadratic Discriminant Function 

GeneraIized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

j j j j  j j k k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 

Total 5961 

Total 

6300 
100.00 

2100 
100.00 

2100 
100.00 

2100 
100.00 

2 1 0 0  
100.00 

Paramenic Method, Using 24 mof features, Group2: tn2 ts2 28 
10:33 Friday, February 14, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORK-TS 12 

Classification Summary using Quadratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 , 2 2 
D O() =-X-x )' COV (X-X ) + ln tCOV I PrQiX) = exp(- 5 D (X)) I SWM exp(-.5 D (X)) 
j j j j  j j k k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 Totai 



3 O 
0.00 

4 20 
0.95 

5 O 
0.00 

Total 6059 
Parameûic Method, Using 24 rnof features, Group3: tn3 ls3 12 

10:33 Friday, February 14. 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORK-TS 13 

Classification Summary using Quadratic Discriminant Function 

Generaiized Squared Distance Function: Posterior Robability of Membeship in each SPECIES: 

Nurnber of Observations and Percent Classified into SPECIES: 

From SPECIES 

Totai 5080 

4 5 Total 

75 3 5400 
1.39 0.06 100.00 

265 O 1 800 
14.72 0.00 100.00 

24 22 1800 
1.33 1.22 100.00 

1721 5 1 800 
95.6 1 0.28 100.00 

13 1750 1800 
0.72 97.22 100.00 

2098 1780 1 2600 
Paramettic Method, Usine 20 color features, Group 1 : rn 1 ts 1 53 

10:33 Fnday, Febniary 14, 1997 

Discriminant Anaiysis Classification Summary for Test Data: WORK.TS21 

Classification Sumrnary using Quadratic Discriminant Function 



Generalized Squared Distance Function: Posterior Probability of Mernbership in each SPECIES: 

Number of Observations and Percent Classified into SPECIES : 

From SPECIES 1 2 3 4 5 

1 4975 1080 IO1 144 O 
78.97 17.14 1.60 -29 0.00 

2 17 1652 329 102 O 
0.8 1 78.67 15.67 4.86 0.00 

3 40 12 1909 58 8 1 
1.90 0.57 90.90 2.76 3.86 

4 10 5 Il - r v . t  
CUI-.  0 

0.48 0.24 0.52 98.76 0.00 

5 4 O 25 5 2066 
0.19 0.00 1.19 0.24 98.38 

Total 

6300 
100.00 

2100 
100.00 

2100 
100.00 

2iW 
100.00 

2 100 
100.00 

Total 5046 2749 2375 2383 2147 14700 
Parametsic Method. Using 20 color features. Group2: tn2 ts2 64 

1 O:33 Friday, February 14, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS22 

Classification Summary usine Quadratic Discriminant Function 

Generalizeà Squared Distance Function: Postenor Probability of Membership in each SPECIES: 

2 - - 1 ,  2 2 
D (X) = (X-X )' COV (X-X ) + In lCOV I PrUlX) = exp(4 D (X)) / S ü M  exp(-.5 D (X)) 
j j j j  j j k k 

Number of Observations and Percent Classified into SPECIES: 

From SPECES 1 2 3 4 5 

1 2782 2569 23 26 O 
51.52 47.57 0.43 0.48 0.00 

2 3 1784 4 9 O 
0.17 99.1 1 0.22 0.50 0.00 

3 7 1 74 1611 5 3 
0.39 9.67 89.50 0.28 0.17 

4 3 9 6 1782 O 

Total 

5400 
100.00 

1800 
100.00 

1 800 
100.00 

1800 



O. 17 0.50 0.33 99 -00 0.00 100.00 

5 O O 8 O 1792 1800 
0.00 0.00 0.44 0.00 99.% 100.00 

Total 2795 4536 1652 1822 1795 12fXO 
Pararnctric Methoci, Using 20 color ftahires, Group3: m3 ts3 

10:33 Friday, February t4.1997 

Discriminant Analysis Classification Summary for Test Data- WORLCTS23 

Classification Summary using Quadratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 
- - 

2 - - 1 -  2 2 
D (X) = (X-X )' COV (X-X ) + In ICOV I Pr(jlX) = rxp(-3 D (X)) / SUM exp(--5 D (X)) 
j j j j  J j k  k 

Number of Observations and Percent Ciassified into SPECIES: 

Total 4918 

Total 

5400 
100.00 

1800 
100.00 

1800 
100.00 

1800 
100.00 

1800 
100.00 

Parametric Method, Using 28 selected features, Group 1 : tn 1 ts 1 
10:33 Friday, February 14. 1997 

Discriminant Anaiysis Classification Summary for Test Data: WORK.TS3 1 

Classification Summary using Quadratic Discriminant Function 

Generaiizd Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

Number of Observations and Percent Classified into SPECIES: 



From SPECIES 

Total 6129 1942 2068 

Total 

6300 
I00.00 

2100 
100.00 

2 100 
100.00 

2100 
100.00 

2100 
100.00 

Parametric Method, Using 28 selectcd features, Group2: m2 ts2 1 03 
10:33 Friàay. February 14, 1997 

Discriminant Anaiysis Classification Summary for Test Data- WORK.TS32 

Classification Surnrnary using Quaciratic Discriminant Function 

Gcneralized Squarcd Distance Function: Posterior Probability of Mcmbership in each SPECIES: 

2 - - 1 -  2 2 
D (X) = (X-X )' COV (X-X ) + In COV I Pr(jlX) = exp(--5 D (X)) / SUM exp(--5 D (X)) 
j j j j  j j k k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 

I 6171 
97.95 

2 140 
6.67 

3 1 
0.05 

4 17 
0.8 1 

5 O 
0.0 

Total 6329 

Total 

6300 
100.00 

2100 
100.00 

2100 
100.00 

2100 
100.00 

Parametric Methoà, Using 28 selected features, Group3: tn3 ts3 
10:33 Friday, February 14, 1997 



Discriminant Analysis Classification Summary for Test Data: WORKTS33 

Classification Surnrnary using Quaciratic Discriminant Function 

Generalizcd Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

j i j  i k 

Nurnber of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 

1 

2 

3 

4 

5 

Total 

Total 

5400 
100.00 

1800 
100.00 

1800 
I00.00 

1800 
100.00 

1800 
100.00 

5279 1441 1808 2272 1800 12600 
Nonparametric Methoci, Osing 24 mof features, Group 1 : tn 1 ts 1 127 

10:33 Friday, February 14, 1997 

Discriminant Andysis Classification Surnrnary for Test Data: WOU-TS 1 1 

CIassification Summary using 5 Nearesr Neighbors 

Squared Distance Function: Posterior Robability of Membership in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

Pr(jiX) = m (X) PRIOR / SUM ( m ( X )  PRIOR ) 
j j k k  k 

Nurnber of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 OTHER Total 



3.05 8967 0.00 6.52 0.00 0.76 100.00 

3 O 7 2040 24 24 5 2 IO0 
0.00 0.33 97.14 1.14 1-14 0.24 100.00 

4 6 195 12 1 849 4 34 2100 
0.29 9.29 0.57 88.05 O. 19 1 -62 100.00 

5 O 9 2 f 11 2050 6 2100 
0.00 0.43 1 -00 0.67 97.62 0.29 100.00 

Nonparametric Method, Using 24 mof features, Group2: tn2 ts2 
1033 Friday, February 14, 1997 

Discriminant Analysis Classification Summary for Test Dam WORK-TS 12 

Classification Summary using 5 Ncarcst Neighbors 

Squated Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 m ( X )  = Proportion of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

Pr(jiX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES OTHER Total 

Nonparametric Method, Using 24 mof features, Group3: tn3 ts3 
10:33 Friday, February 14, 1997 

Discriminant Analysis Classification Surnmary for Test Data: WORK.TS 13 

Classification Summry using 5 Nearest Neighbors 

Squared Distance Function: Postenor Probability of Members hip in eac h SPECIES : 



2 -1 m (X) = Proportion of obs in group k in 5 ncarest neighbors of X 
D (X.Y) = (X-Y)' COV (X-Y) k 

Pr(jIX) = m (X) PRIOR 1 SUM ( m OC) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 OTHER Total 

Nonpararnetric Method, Using 20 color features. Group 1 : ai 1 ts 1 
10:33 Friday, Febmary 14, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS21 

Classification Surnmary using 5 Nearest Neighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 nearest neighbon of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

Paix) = m (X) PRiOR 1 SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 OTHER Total 



4 17 74 5 1990 O 14 2100 
0.8 1 3.52 0.24 91.76 0.00 0.67 100.00 

5 O 2 11 O 2085 2 2100 
0.00 0.10 0.52 0.00 99.29 0.10 100.00 

Nonparamtric Mcthod, Using 20 color features, Group2: ta2 ts2 
10:33 Friday, Febniary 14, 1997 

Discriminant Analysis CIassiftcation Sumrnary for Test Data: WORKTS22 

Classification Summary using 5 Nearest Neighbors 

Squared Distance Function: Posterior Robability of Mernbership in each SPECIES: 

2 -1 m OC) = Proportion of obs in group k in 5 neartst neihbors of X 
D (X,W = (X-Y)' COV (X-Y) k 

R(jIX) = rn (X) PRXOR / SUM ( m 0 PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 3 4 5 OTHER Total 

Nonpararnetric Method, Using 20 color features, Group3: m3 ts3 
10:33 Friday, Febmary 14, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORK.TS23 

Classification Surnmary using 5 Nearest Neighbors 

Squared Distance Function: Postenor Probability of Mernbership in each SPECIES: 

2 -1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X 
D K Y )  = O[-Y)' COV (X-Y) k 

Pr(jiX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 



j j k k  k 

Numbcr of Observations and Percent Classified into SPECIES: 

From SPECIES OTHER Total 

8 5400 
0.15 100.00 

6 1800 
0.33 100.00 

2 1800 
0.1 1 I00.00 

3 1800 
0.17 I00.00 

O 1800 
0.00 100.00 

Nonparametric Method, Using 28 seltcted features, Group 1 : tn 1 ts 1 
10:33 Friday, February 14, 1997 

Discriminant Anaiysis Classification Summary for Test Data: WORK.TS3 1 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X D 
(X,Y) = (X-Y)' COV (X-Y) k 

Pr(jLX) = m (X) PRIOR I SUM ( rn (X) PRiOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECES 

1 62 12 
98-60 

2 9 
0.43 

3 O 
0.00 

4 6 
0.29 

5 O 

OTHER Total 

8 6300 
0.13 100.00 

2 2100 
0.10 100.00 

5 2100 
0.24 100.00 

6 2100 
0.29 100.00 

6 2100 



0.00 0.33 0.19 0.00 99.19 0.29 I00.00 

Nonparametsic Method, Using 28 selected features, Group2: tn2 ts2 
10:33 Friday, Fcbniary 14, 1997 

Discriminant Anaiysis Classification Summary for Test Data: WORKTS32 

Classification Summary using 5 Neartst Neighbors 

Squared Distance Function: Posterior Probability of Mernbenhip in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 neasest ncighhrs of X 
D (XY) = (X-Y)' COV (X-Y) k 

Pr(jIX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 

1 6280 
99.68 

2 86 
4.10 

3 1 
0.05 

4 9 
0.43 

5 O 
0.00 

Nonparamctric Method, Using 28 selected feamres, Group3: tn3 ts3 
1 0: 1 2 Friâay, February 1 4, 1 997 

Discriminant Analysis Classification Summary for Test Data: WORKTS33 

Classification Summary using 5 Nearest Neighbors 

Squartd Distance Function: Posterior Probability of Membenhip in caçh SPECIES: 

2 - 1 m (X) = Roportion of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

Pr(jIX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 



From SPECIES OTHE. Total 



APPENDIX F-2 

RESULTS OF DAMAGE TYPE IDENTIFICATION ANALYSIS 
OF INDIVIDUAL CWRS WHEAT KERNELS 

USING STATISTICAL CLASSIFIERS 



Pararnemc Method, Using 28 mof features, Group 1 : tn 1 1 ts 1 1 16 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Surnrnary for Test Data: WORICTS 1 1 

From SPECIES 2 3 4 5 6 7 Total 

Parametric Mcthod, Using 28 mof features. Group2: tn 12 ts I2 32 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORKTS 12 

From SPECIES 3 4 5 6 7 Total 



7 7 O W b  93 9 39 13 210 300 
2.33 0.00 7.33 3.00 13.00 4.33 70.00 100.00 

Pararnetric Method, Using 28 rnof features, Group3: tn 13 ts 13 48 
10:19 Wdnesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK-TS 13 

From SPECIES 3 4 5 6 7 Total 

2 10 15 12 400 
0.50 2.50 3.75 3.00 100.00 

50 1 8 5 400 
12.50 0.25 2.00 1.25 100.00 

15 1 I 17 27 400 
3.75 2.75 4.25 6.75 100.00 

330 1 21 22 400 
82.50 0.25 5.25 5.50 100.00 

3 274 2 1 66 400 
0.75 68.50 5.25 16.50 100.00 

24 64 103 137 400 
6.00 16.00 25.75 34.25 100.00 

26 24 25 30 1 400 
6.50 6.00 6.25 75.25 100.00 

Nonparamctric Method, Using 28 mof feacures. Group 1 : tn 1 1 ts 1 1 62 
10: 19 Wednesday, March 19, 1997 

Discriminant Anal ysis Classification S ummary for Test Data: WORK-TS 1 1 

From SPECIES 



Nonpar~~i~triz Method, Using 28 rnof fcatures, Group 1 : tn 1 1 ts 1 1 63 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK-TS 1 1 

From SPECIES 6 7 OTtiER Total 

Nonparamctric Method, Using 28 mof features, Group2: tn 12 ts 12 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK-TS 12 

From SPECIES 



5 2 O 6 6 202 
0.67 0.00 2.00 2.00 67.33 

6 19 O 18 9 39 
6.33 0.00 6.00 3 .O0 13.00 

7 2 0 3 9 23 
0.67 0.00 1 -00 3.00 7.67 

Nonparamemc Method, Using 28 mof featurcs, Group2: tn 1 2 ts 1 2 78 
IO: 19 Wcdnesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS 1 2 

Nonpararnemc Method, Using 28 mof features, Group3: m 13 ts 1 3 92 
10: 19 Wcdnesday, March 19, 1997 

Discriminant Anal ysis Classification Su- for Test Data: WORICTS 1 3 

From SPECIES 



5 3 1 14 O 264 
0.75 0.25 3 -50 0.00 66.00 

6 15 O 19 17 70 
3.75 0.00 4-75 4.25 17.50 

7 4 O 10 18 29 
1 .O0 0.00 2.50 4.50 7.25 

Nonparametnc Method, Using 28 mof features, Group3: tn 13 ts 1 3 9 3 
10: 19 Wdnesday. March 19, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORKTS 1 3 

From SPECIES 7 OTHER Total 

67 400 
16.75 100.00 

41 400 
10.25 100.00 

75 400 
18.75 100.00 

54 400 
1 3.50 100.00 

52 400 
13.00 100.00 

94 400 
23.50 100.00 

90 400 
22.50 100.00 

Parametric Method, Uing 28 col features, Group 1 : tn2 1 ts2 1 1 09 
10: 19 Wednesciay, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS21 

From SPECIES 1 2 3 4 5 6 7 Total 



4 O 1 O 287 9 3 O 300 
0.00 0.33 000 95.67 3.00 1 -00 0.00 100.00 

5 O 1 O O 298 1 O 300 
0.00 0.3 3 0.00 0.00 99.33 0.33 0.00 100.00 

6 1 O O 18 4 277 O 300 
0.33 0.00 0.00 6.00 1.33 92.33 0.00 100.00 

7 O O O O O O 300 300 
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 

Paramctric Mcthod, Using 28 COI feamres, Group2: tn22 ts22 125 
10: 1 9 Wednesday, March 19, 199? 

Discriminant Anaiysis Classification Summary for Test Data: WORKTS22 

From SPECIES 

Paramctric Method, Using 28 col features, Group3: tn23 ts23 14 1 
10: 19 Wednesday, March 19, 1997 

Discriminant Aaalysis Classification Summary for Test Data: WOFKTS23 

From SPECES 1 2 3 4 5 6 7 Total 



14 1 385 O O O O 400 
3.50 0.25 96.25 0.00 0.00 0.00 0.00 I00.00 

O 1 O 39 1 O 8 O 400 
0.00 0.25 0.00 97.75 0.00 2.00 0.00 100.00 

O O O 1 O 374 16 O 400 
0.00 0.00 0.00 2.50 93.50 4.00 0.00 100.00 

O O O 3 5 2 363 O 100 
0.00 0.00 0.00 8.75 0.50 90.75 0.00 100.00 

O O O O O O 400 100 
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 

Nonparamettic M e t h a  Using 28 col feaîures, Groupl : m21 tç21 155 
10: 19 Wednesday, March 19, 1997 

Discriminant AnaIysis Classification Sumrnary for Test Data: WORK-TS2 1 

From SPECIES 



Nonparamecric Method. Using 28 col features. Groupl: tn21 ts2l 156 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data. WORKTS21 

From SPECIES 6 7 OTHER Total 

Nonpararnctric Metfiod, Using 28 col feanires, Group2: tn22 ts22 1 70 
10: 19 Wednesday. March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORICTS22 

From SPECFc 

1 264 
88-00 

2 2 1 
7.00 

3 4 
1.33 

4 O 
0.00 

5 O 
0.00 

6 O 
0.00 



7 O O O O O 
0.00 0.00 0.00 0.00 0.00 

Nonparameuic Method, Using 28 col fearures, Groupî: m22 ts22 171 
10: 19 Wcdncsday, March 1 9, 1997 

Discriminant Analysis Classification Summary for Test Dam: WORK-TS22 

From SPECIES 6 7 OTHER Total 

1 O O 10 300 
0.00 0.00 3.33 100.00 

2 1 O 8 300 
0.33 - - 0.00 2.67 100.00 

3 O O 4 300 
0.00 0.00 1.33 100.00 

4 2 O 2 300 
0.67 0.00 0.67 100.00 

5 3 O O 300 
1 .O0 0.00 0.00 100.00 

6 297 O O 300 
99.00 0.00 0.00 100.00 

7 O 300 O 300 
0.00 100.00 0.00 100.00 

Nonpararncmc Method, Using 28 col features, Group3: tn23 ts23 185 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORKTS23 

From SPECIES 1 2 3 4 5 



7 O O O O O 
0.00 0.00 0.00 0.00 0.00 

Nonparamettic Mcthod. Using 28 col featurcs. Group3: tn23 ts23 186 
10: 19 Wednesday, March 19,1997 

Discriminant Analysis Classification Summary for Test Data: WORKTS23 

From SPECIES 6 7 OTHER Total 

Paramenic Method, Using 28 cmb features, Groupl: tn3 1 ts3 1 202 
1 0: 1 9 Wednesday, Marc h 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORECTS3 1 

From SPECIES 1 2 3 4 5 6 7 Total 



5 O 2 O 1 296 1 O 300 
0.00 0.67 0.00 0.33 98.67 0.33 0.00 100.00 

6 O O O 8 4 288 O 300 
0.00 0.00 0.00 2.67 1.33 96-00 0.00 100.00 

7 O O O O O O 300 300 
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 

?arametric Method, Using 28 cmb fcaturcs, Group2: tn32 ts32 21 8 
1 O: 19 Wednesday, March 19, 1 997 

Discriminant Analysis Classification Surnmary for Test Data- WORICTS32 

From SPECIES 

Paramctric Methad, Using 28 cmb features, Group3: m33 ts33 234 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis CIassification Summary for Test Data: WORiCTS33 

From SPECIES 1 2 7 4 5 6 7 Total 

1 328 3 66 O 2 1 O 400 
82-00 0.75 16.50 0.00 0.50 0.25 0.00 100.00 

2 68 29 1 33 4 3 1 O 4UO 
17.00 72.75 8 -25 1 .O0 0.75 0.25 0.00 100.00 

3 I l  1 388 O O O O 400 
2.75 0.25 97.00 0.00 0.00 0.00 0.00 100.0 



4 O 1 O 394 O 5 O 400 
0.00 0.25 0.00 98-50 0.00 1.25 0.00 100.00 

5 O O O 3 392 5 O 400 
0.00 0.00 0.00 0.75 98.00 1.25 0.00 100.00 

6 O O O 3 1 2 367 O 400 
0.00 0.00 0.00 7.75 0.50 91.75 0.00 100.00 

7 O O O O O O 400 400 
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 

Nonparamctric Method. Using 28 cmb features, Groupl : tn3 1 ts3 1 248 
10: 19 Wcdnesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS3 1 

From SPECIES 

Nonparametric Method, Using 28 cmb features, Group 1 : tn3 1 ts3 1 249 
10: 19 Wednes&y, March 19, 1 997 

Discriminant Analysis Classification Sumrnary for Test Data: WORICTS3 1 

From SPECIES 6 7 OTHER Total 

1 O O 4 300 
0.00 0.00 1.33 100.00 

2 O O 9 300 
0.00 0.00 3.00 100.00 



3 O O 1 300 
0.00 0.00 0.33 100.00 

4 2 O O 300 
0.67 0.00 0.00 100.00 

5 1 O 1 300 
0.33 0.00 0.33 100.00 

6 289 O 2 300 
96.33 0.00 0.67 100.00 

7 O 300 O 300 
0.00 100.00 0.00 100.00 

Nonparamctnc Method, Using 28 cmb features, Group2: tn32 ts32 263 
10: 19 Wednes&y, March 19,1997 

Discriminant Analysis Classification Summary for Test Data: WORItTS32 

From SPECIES 

Nonparamctric Method, Using 28 cmb fcatures, Group2: tn32 ts32 264 
10: 19 Wednesday, March 19, 1 997 

Discriminant Analgsis Classification Sumrnary for Test Data: WORK.TS32 

From PECIES 6 7 OTHER Total 



Nonparametric Method, Using 28 cmb fcatures, Group3: tn33 ts33 278 
10: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Summary for Test Data: WORK.TS33 

From SPECIES 



Nonparametric Method. Using 28 cmb features, Group3: tn33 ts33 279 
1 O: 19 Wednesday, March 19, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORK.TS33 

From SPECIES 7 OTHER Total 



APPENDM F-3 

RESULTS OF GRAIN TYPE IDENTIFICATION ANALYSIS 
OF BULK GRAIN SAMPLES 

USING STATISTICAL CLASSIFIERS 



Paramecric Method. Using 8 slc features, Group 1 :  tn 1 ts 1 1557 Sunday. April 1 3. 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORK-TS 1 

CIassificaîion Summary using Quadratic Discriminant Function 

Gcndizcd Squartd Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 - 2 2 
D (X) ;(X-X )' COV O[-X ) + In ICOV I R(jW = exp(--5 D O()) I SUM cxp(--5 D (X)) 
j  j j j  j  j k k 

Nurnber of Observations and Percent Classificd into SPECIES: 

From SPECIES 1 2 3 4 5 Total 

Percent 46.26 10.88 14.29 14.29 14.29 100.00 

Paramehic Method, Using 8 slc features, Group2: tn2 ts2 1557 Sunday, April 13, 1997 

Discriminant Analysis Classification Sumrnary for Test Data: WORICTS2 

Classification Summary using Quadratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 - 2 2 
D O() :m-~ )' COV (X-X ) + In COV I RUE) = exp(-.S D O[))  I SUM exp(-.5 D (X)) 
j j j j  j j k k 

Number of Observations and Percent Classified into SPECFc: 

From SPECIES 1 2 3 4 5 Total 



100.00 

2 O 
0.00 

3 O 
0.00 

4 O 
0.00 

5 O 
0.00 

Total 63 
Percent 42.86 14.29 14.29 14.29 14.29 100.00 

Parametric Method, Using 8 slc fcatures, Group3: m3 ts3 1557 Sunday, April 13, 1997 

Discrimicant Anaiysis Classification Summary for Test Data: WORK.TS3 

Classification Summary using Quaciratic Discriminant Function 

Generalized Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 - - 1 -  2 2 
D (X) = (X-X )' COV (X-X ) + ln ICOV I Pr(jlX) = exp(-.5 D (X)) / SUM exp(-.S D (X)) 
j j j i  j j k k 

Number of Observations and Percent Classified into SPECES: 

From SPECIES 1 2 3 4 5 

1 

2 

3 

4 

5 

Total 
Percent 

Total 

54 
100.00 

18 
100.00 

18 
100.00 

18 
100.00 

18 
100.00 

1 26 
42.86 14.29 14.29 14.29 14.29 100.00 

Nonpararncmc Method, Using 8 slc features, Group 1 : tn 1 ts 1 1557 Sunday, April 13, 



1997 36 

Discriminant Anaiysis CIassification Sumrnary for Test Data: WORK-TS 1 

Classification Summary using 5 Nearcst Neighbors 

Squatcd Distance Function: Posterior Probability of Membership in each SPECIES: 

2 - 1 m ( X }  = Proportion of obs in group k in 5 ncarest neighbors of X 
D (X,Y) = (X-Y)' COV O[-Y) k 

MD() = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECiES: 

From SPECIES 1 2 3 4 5 Total 

Nonpararnetric Method, Using 8 SIC features, Group2: m2 ts2 1557 Sun&y, April 13, 

Discriminant Analysis Classification Sumrnary for Test Data: WORK.TS2 

Classification Surnmary using 5 Nearest Neighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 m (X) = Proportion of obs in group k in 5 nearest neighbos of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

PrQlX) = m (X) PRIOR / SUM ( rn (X) PWOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 Total 



Nonpafamctnc Method, Using 8 sic feanires. Group3: tn3 ts3 1557 Sunday, April 13, 

Discriminant Analysis Classification S u m q  for Test Data: R70RKTS3 

Classification Summary using 5 Nearest Neighbors 

Squartd Distance Functioa: Posterior Probability of Mernbership in each SPECIES: 

2 - 1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

MjIX) = m 0 PRIOR / SUM ( m (X )  PRïOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 4 5 Total 

54 
100.00 

18 
100.00 

18 
100.00 

18 
100.00 

18 
100.00 



APPENDM F-4 

RESULTS OF GRADE IDENTIFICATION ANALYSIS 
OF BULK CWRS WHEAT SAMPLES 
USING STATISTICAL CLASSIFIERS 



Discriminant Analysis Classification Sumrnary for Test Data: WORECTS 1 

Classification Swimary using Quadratic Discrirninant Function 

Generaiizeû Squared Distance Function: Posterior Robability of Mernbenhip in each SPECIES: 

2 - -1  - 2 2 
D LO = Oc-X )' COV (X-X ) + in !CCx! I Paix) = exp(--3 D (X)) / SUM exp(--5 D (X)) 
j j  j j  j  i k  k 

N u m k  of Observations and Percent Classifîed into SPECIES: 

 mm SPE- 1 2 3 T O ~  

Total 26 9 28 63 
Percent 41.27 14-29 44.44 100.00 

Error Count Estimates for SPECIES: 

Pararnetric Method, Using 20 slc features, Group2: tn2 ts2 1557 Sunday. April 13, 1997 

Discriminant Anaiysis Classification Surnmary for Test Data: WORK.TS2 

Classification Summary using Quadratic Discriminant Function 

Generalizcd Squared Distance Function: Posterior Probability of Mernbership in each SPECIES: 

2 - - 1 -  2 2 
D (X) = (X-X )' COV (X-X ) + In KOV I RÿK) = cxp(-J D (X)) / S U M  cxp(-J D (X)) 
j j j j  j j k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 Total 



Total 24 26 13 63 
Percent 38.10 41 -27 20.63 100.00 

E m r  Count stirnates for SPEQES: 

Paramcaic Method, Using 20 SIC feanires, Group3: ai3 ts3 1557 Sunday, April 13, 1997 

Discriminant Andysis Classification Summary for Test Data: WORK.TS3 

Classification Summary using Quaciratic Discriminant Function 

GeneraIized Suarcd Distance Function: Posterior Probability of Membership in each SPECIES: 

Number of Observations and Percent Classified into SPECIES: 

From SPEClES 

1 10 
55.56 

2 O 
0.00 

3 O 
0.00 

Totaf 1 O 
Percent 18.52 

Mors 0.3333 

Total 

18 
100.00 

18 
100.00 

18 
100.00 

54 
100.00 

Error Count Estimates for SPECIES: 

Nonparamcmc Method. Using 20 slc features, Group 1 : tn 1 ts 1 1557 Sunday. ApriI 1 3, 
1997 84 

Discriminant Analysis Classification Summary for Test Data: WORK-TS 1 



Classification Surnmary using 5 Nearest Neighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES : 

2 - 1 m (X) = Roportion of obs in p u p  k  in 5 ncarest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

h(jlX) = m (X) PRIOR 1 SUM ( m ( X )  PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 OTHER Total 

Totai 2 1 23 13 6 63 
Percent 33.33 36.5 1 20.63 9.52 100.00 

Nonparamtric Method, Using 20 slc features. Group2: tn2 ts2 1557 Sunday, Apd 13. 

Discriminant Analysis Classification Su- for Test Data: WORK.TS2 

Classification Surnrnary using 5 Nearest eighbors 

Squared Distance Function: Posterior Probability of Membership in each SPECIES: 

2 -1 m (X) = Proportion of obs in group k in 5 nearest neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

WlX) = m (X) PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 1 2 3 OTHER Total 



Total 26 28 7 2 63 
Percent 4 1.27 44.44 11-1 1 3.17 100.00 

Nonparamctric Methoci, Using 20 SIC fcaunes, Group3: tn3 ts3 1557 Sunday. April 13, 

Discriminant Analysis Classification Sumniary for Test Data: WORKTS3 

Classification Su- using 5 Ncatest Neiphbors 

Squarcd Distance Function: Postaior Pmbability of Membenhip in each SPECIES: 

2 - 1 m (X) = Roportion of obs in group k in 5 ncartst neighbors of X 
D (X,Y) = (X-Y)' COV (X-Y) k 

PrQW = m 0 PRIOR / SUM ( m (X) PRIOR ) 
j j k k  k 

Number of Observations and Percent Classified into SPECIES: 

From SPECIES 

I 16 
88.89 

2 O 
0.00 

3 O 
0.00 

Total 16 
Pcrcen t 29.63 

Prion 0.3333 

O= Total 

2 18 
1 1 . 1  1 100.00 

6 18 
33.33 100.00 

O 18 
0.00 100.00 

8 54 
14.81 100.00 




