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Abstract

By mediating interactions between light and matter, polaritons offer a window into the fundamental nature of
material dynamics and have enabled the development of modern wireless communications technologies. In
microwave cavity systems, confined photons interacting with coherent magnon excitations can produce high
rates of light-matter coupling and allow the properties of the cavity magnon-polaritons coupling these sys-
tems to be studied in new detail. In this dissertation, we employ microwave cavity systems to develop new
methods for controlling the coupling properties of cavity magnon-polaritons. We demonstrate that magnon-
polariton coupling can be used to indirectly couple two orthogonal cavity resonance modes together, using
their mutual coupling to a resonant magnetic system as a bridge across which energy and dynamic informa-
tion can be transferred. The strength of this indirect coupling can be controlled through tuning the resonant
properties of the individual cavity or magnon systems, and in future may be employed to link many photon
and magnon systems together. Using a specially designed cavity system, we are also able to compare the
coupling effects seen in cavity magnon-polariton systems to those observed in polariton systems involving
non-magnetic excitations. These measurements show that the dynamics of polariton coupling are common
throughout all systems, but that in cavity magnon-polariton systems the averaged permeability of the entire
cavity-material volume plays an important role in determining the strength of coupling effects. We further
study the properties of magnon-polariton coupling in systems where the magnon mode has been excited to
amplitudes where non-linear effects become significant. We find that bistable resonance properties related
to those observed in uncoupled non-linear magnon systems are present in these systems, and that further
bistable behaviours unique to coupled systems can be created by controlling the individual properties of
the cavity or magnon systems. By uncovering new properties of light-matter coupling in cavity magnon-
polariton systems and new methods for controlling this coupling, this dissertation reveals a host of potential
applications for these systems in future data storage and processing technologies, and additionally shows
that the observed coupling dynamics can be extended into other varieties of polariton systems involving
non-magnetic excitations.
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Chapter 1

Introduction

One of the most remarkable things about modern physics is the difference between physical reactions at

large and small scales. While at macroscopic scales objects move and interact following mostly intuitive

Newtonian dynamics, at quantum scales a new dynamics regime takes over and the motion of particles

becomes governed by probability functions with interactions taking place via the transmission of gauge

bosons such as photons (electromagnetic forces) or gluons (strong interaction). In situations where these

quantum interactions are dominant a whole new wealth of material behaviours can occur, producing such

remarkable effects such as superconductivity[1], particle tunnelling[2], quantum entanglement[3], and mag-

netoresistance effects[4]. These effects of these quantum behaviours are often unintuitive from a Newtonian

perspective, but in many material systems the interplay of these behaviours has led (and continues to lead)

to many previously unknown physical properties[5][6]. For this reason the field of condensed matter re-

search is today one of the largest branches of physical studies, and, due to the rapid integration of these

quantum material properties into electronics and communications systems, is also a research field driving

the development of multi-billion dollar industries.

Within the field of condensed matter physics, one of the most important interactions is that which oc-

curs between electromagnetic (EM) radiation and magnetic materials. Although the general properties of

magnetism have been known and studied for hundreds of years[7], the unique interactions these materials

can have with EM radiation only began to be studied in the 20th century when they were found to strongly

absorb radiation at certain frequencies[8][9]. Later research showed that this EM absorption is a result of

interactions between photon excitations and the magnetic spin polarizations of a magnet, the latter of which

undergo collective Larmor precession at some resonance frequencies[10][11]. A theoretical understanding
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of ferromagnetic resonance (FMR) was first developed in 1935 by Lev Landau and Evengy Lifshitz[12], de-

scribing how periodic magnetic motions can be excited by EM fields. Further developments by T.L. Gilbert

in 1955 expanded Landau and Lifshitz’s model to include the effects of damping forces[13]. This model of

resonant ferromagnetic behaviour, termed the Landau-Lifshitz-Gilbert (LLG) model, permitted the dynam-

ics and characteristics of ferromagnetic (FM) materials (such as the effects of demagnetization, anisotropy,

and damping forces) to be studied in unprecedented detail by describing the absorption and dispersion of

EM radiation incident on the material near resonance[14].

The basis of FMR lies in the general principles of ferromagnetism, where exchange interactions between

neighbouring magnetic moments results in parallel moment configurations having lower energies[15]. When

any of these moments is influenced by an incoming photon the resonant effects produced are not limited

to the single moment which receives this energy, but are spread through the entire ferromagnetic sample

through exchange interactions between moments. These collective FM excitations can be considered a form

of quasiparticle, called a magnon, which carries energy and spin polarization through the lattice structures

of FM materials. These magnon excitations include the resonant motions described by the LLG model[16],

but also includes inhomogeneous excitations such as spin waves which may propagate through material

structures[17]. Magnons are generally excited in FM materials through the absorption of EM photons and

can similarly lose energy via radiative damping, emitting energy (via magnetic induction) back into the

environment as EM photons[18]. The interaction between photons and magnons during these energy ex-

changes are governed by another form of quasiparticle called magnon-polaritons (MPs), which exist as

superpositions of magnon and photon excited states[19]. Combining the quantum electrodynamic proper-

ties of photons with the magnetic properties of magnons, magnon-polaritons exist at an exciting crossroads

of physical research, holding the keys to converting information and energy between photon and magnon

systems.

As the effects of an individual photon excitation on a magnon system are generally quite small, indi-

vidual MP interactions can be difficult to detect. Thus in order to study MPs, and the interactions they

represent, a method must be found to increase their rate of production within a system. By entrapping the

photons involved in these interactions within a cavity resonator, a continuous source of photon-magnon in-

teractions can be produced with a relatively low power input. The closed system of the cavity resonator

also provides a further benefit; as the resonant EM fields (photons) within the cavity drive resonant motion

(magnons) within an FM material, and the resonant motion of the FM material generates EM field emis-
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sions (through inductive radiation) in the cavity system, a coupled feedback loop is created. Within the

enclosed cavity system the photon and magnon resonance states both become influenced by each other. In

cavity and magnon systems with low damping and high coupling, energy losses are minimized and energy

may be traded between photon and magnon excitations many times. This continual back-and-forth flow

of energy via photon-magnon interactions in a closed system creates a new hybridized quasiparticle, the

Cavity Magnon-Polariton (CMP). Unlike most MP systems, where a constant stream of input photons are

required to observe polariton coupling effects, in closed cavity systems CMPs can be continually gener-

ated with minimal photon input. This allows the cavity system to be measured separately from any input

photons, simplifying measurements and making the effects of polariton coupling clearer to observe. These

advantages permit CMP systems to give an unprecedented view of the basic properties of magnon-photon

interactions.

Early measurements of coupling in CMP systems was limited by the competing demands placed on the

magnon subsystems involved; they had to consist of macroscopic sized samples to achieve strong coupling

to cavity photons, but needed to be small enough that they could be uniformly excited by a microwave field

into a single homogeneous resonant mode. It wasn’t until 2010 that Soykal and Flattè showed theoretically

that CMP systems could be created using low-damping, high-spin-density, ferromagnetic materials up to

millimetre scales in size; utilizing the fact that the dynamics of single-domain magnetic crystals can be

approximated as those of a single stable macrospin[20][21]. In 2013 the first demonstration of strong CMP

coupling was realized by Huebl et al., who placed a supercooled Yttrium-Iron-Garnet (YIG) sample in a

planar superconducting resonator[22]. This demonstration ignited a flurry of activity in CMP studies, and

soon coupled CMP systems were being realized at room temperature[23], in 3D microwave cavities[24][25],

and using split-ring resonators[26][27][28][29][30]. Although YIG continues to be one of the most widely

used magnetic samples in CMP systems, due to its combination of low damping and high spin density,

magnon resonances in other magnetic samples have also been used to produce CMPs, such as gadollinium-

iron-garnet (GdIG)[31], lithium ferrite[32], and the chiral magnetic insulator Cu2OSeO3[33].

Beyond simply demonstrating CMP coupling, recent studies have rapidly advanced the scope of CMP

studies; to the ultrastrong CMP coupling regime at the quantum limit of hybridization[34][35][36] and to

CMP coupling involving spin waves[37][38][39][40], qubit resonators[24][41], multiple cavity modes[42],

and multiple magnon modes[43][44][45][46]. Developments into new spintronic methods to electrically

probe the magnon response during CMP coupling have also introduced new techniques for studying these
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systems[37][43][47]. With improved CMP systems and measurement techniques new CMP coupling ef-

fects have been discovered and analysed, including; exceptional points of the CMP eigenspectrum[52][53],

coherent perfect absorption[53], and the impacts of non-linear Kerr effects[54][55][56]. The wealth of pos-

sible applications of CMP systems is already being explored, despite the field being less than a decade

old, with on-chip devices demonstrating voltage control of CMP coupling[52], electromagnetically induced

transparency being demonstrated[29][53], quantum information systems being developed involving magnon

dark modes coupled to a cavity system[45], the design of CMP systems capable of converting microwave

signals to optical frequencies[54], and CMP coupling involving active resonators with extremely high Q

factors[55]. With the vast majority of new developments in CMP theory and technology taking place only in

the past few years the field of CMP coupling appears to be only warming up, with the new discoveries and

applications listed here to be used in the near future to discover more about these intriguing systems and the

fundamental nature of photon-magnon coupling.

1.1 Thesis Relation to Recent Works

Studying the fundamental properties of photon-magnon coupling through CMP systems has already re-

vealed many new coupling behaviours and applications, as have been listed above. To further research in

this field new methods for tuning CMP systems during coupling must be developed to explore new dynamic

behaviours. Broadly speaking, tuning in CMP systems can involve changing the properties of the magnon

resonance, the cavity resonance, or the coupling forces between them. Tuning any one of these properties

is often difficult, since (aside from external field control of magnon resonance) they are largely dependent

on material or structural properties of the resonant subsystems. During my doctoral research I was in-

volved with works exploring new topological properties of CMP systems via tuning the magnetization of a

magnon system relative to resonant cavity fields and allowing switching between strong and weak coupling

regimes[52], and with works using spintronic probes to study how CMP coupling can be used to manipulate

the spin properties of multiple distantly separated magnon systems[43]. Both of these studies show how

different forms of manipulating CMP systems can reveal new physical insights and applications. However,

the basis of my thesis report will discuss contributions made to CMP studies through the development and

application of new methods to tune coupled CMP systems through unique cavity and FM resonator effects.

The new dynamic behaviours and applications found in these works will be discussed in greater detail in the
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body of this report, which is organized as follows;

Chapter 2: This chapter introduces the key concepts and theories necessary for the understanding of

magnon-photon coupling and the production of CMPs. Emphasis is placed first on the description of individ-

ual FM and cavity resonators, before a discussion of how resonant modes in these systems can influence each

other to produce a coupled CMP system. Theoretically, coupled CMPs are described using both the quan-

tum Jaynes-Cummings model as well as a classical coupled harmonic oscillator model, which are shown to

produce equivalent results for the coupling cases we study. A brief description of the input-output theory

is then presented and used to derive the transmission and reflection properties of the CMP system from the

coupled dynamic equations calculated using these models.

Chapter 3: This chapter extends the models of CMP coupling to systems involving multiple photon

resonance modes simultaneously coupling to a single magnon mode. Although previous works have shown

that multiple magnon subsystems can be simultaneously coupled to a single cavity mode to create a chain

of indirectly coupled FM systems, our work extends beyond this by indirectly linking not multiple subsys-

tems, but different orthogonal excitation modes of a single cavity subsystem. By designing a cylindrical

microwave cavity with tunable height we were able to achieve simultaneous strong coupling between each

cavity mode and the Kittel resonance mode of a YIG sample. During this indirect coupling the resonant

motion of each individual cavity excitation is seen to influence the dynamics of the other orthogonal cavity

mode; this is evidenced by the aligning of the two cavity modes to either in-phase or out-of-phase motion

(depending on the coupled mode) during indirect coupling. Finally, by tuning the height of the cavity, we

show that the strength of the indirect coupling between cavity modes is inversely related to the difference

between the resonance frequencies of the two modes. Thus we show that the dynamics of indirect coupling

can be tuned by controlling either the dynamic phase or frequency of two indirectly coupled resonators rel-

ative to each other. The results discussed in this chapter are published in Appl. Phys. Lett. 109, 152405

(2016)[42].

Chapter 4: This chapter explores the connection between magnon-polariton (MP) coupling produced

in cavity systems and similar light-matter coupling produced by polaritions at different photon frequencies.

In coupled CMP systems, polaritons are produced by coupling between microwave cavity photons and

resonant magnon modes in a magnetic material; at higher frequencies phonon-polaritons can be produced

in material samples by coupling infrared photons with collective lattice vibrations termed phonons, and

exciton-polaritons can be produced by coupling optical photons with excitations produced by electron holes
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or quantum wells within a material. In measurements of phonon-polariton and exciton-polariton systems,

one of the most notable features of polariton coupling is the creation of a frequency gap, where no coupled

modes can exist, as the frequency of the resonant photons is shifted. This gap, termed the polariton gap,

is a result of changes to the electromagnetic properties of a material during coupling to photon modes. As

most cavity systems have no means to adjust the properties of their resonant states, similar measurements

cannot be performed on CMP systems, and thus no polariton gap has been measured in them. Although

their coupled subsystems might differ, the light-matter interactions experienced in all polariton systems

are expected to be the same, and many features of polariton coupling are expected to be shared. Thus

the absence of a polariton gap in measurements of cavity MPs has produced speculation that there are

factors influencing coupling in cavity systems which are absent in other systems. To settle this speculation

we develop a model describing polariton coupling in CMP systems, which is based on the experimental

differences between them and other polariton coupled systems. This model accounts for the much reduced

polariton gap seen in CMP systems and is seen to agree with other models of polariton coupling. Using the

adjustable cavity developed for the previous chapter, we perform the first measurements of the polariton gap

in a CMP system; showing that a small polariton gap is present in the system, whose magnitude agrees with

that predicted by our coupling model. Using this model we are additionally able to show that the polariton

coupling gap commonly measured in phonon-polariton and exciton-poalriton systems is closely related to

the Rabi oscillation gap typically measured in CMP systems, confirming that the coupling forces present in

all varieties of polariton systems are the same. The results discussed in this chapter are published in Physical

Review B 95, 094416 (2017)[57].

Chapter 5: This chapter explores the impacts of non-linear Kerr effects in resonant FM systems in-

volved in CMP coupling. These Kerr effects are produced at high resonant amplitudes and can generate

remarkable effects on the dynamics of FM resonance, producing bistable resonance lineshapes. By exciting

resonance in a YIG sample to high amplitudes during CMP coupling, these bistable resonant effects are

found to extend into the CMP system. Combining models of non-linear dynamics in FM resonators with

models of CMP coupling between cavity and FM systems, we are able to describe the lineshapes produced

by non-linear CMP systems and predict the boundaries of bistable regions of resonance. The ability to con-

trol these bistable regions through tuning the driving microwave frequency, external field strength, or applied

microwave power shows that non-linear CMP systems could provide versatile platforms for new switching

or data storage technologies. Additionally, since our model describing these non-linear light-matter interac-
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tions is not necessarily limited to FM systems, the non-linear dynamics seen in our coupled system should

be reproducible across many other areas of physics and engineering. The results discussed in this chapter

are published in Physical Review B 98, 174423 (2018)[56].

Chapter 6: This chapter will conclude the dissertation, summarizing the results of the previous chapters

and exploring possible areas of future research based on their results.
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Chapter 2

Theoretical Background

2.1 Ferromagnetic Resonance

The interactions between EM fields and material dynamics can take many complex forms, and is the ba-

sis of many fields of study in condensed matter physics. As a consequence of the numerous fundamental

physical phenomena discovered and described by these studies, EM fields and their interactions with mag-

netic materials now form the basis of modern telecommunications and data processing technologies which

have had a major impact on the way modern society shares and analyses information[58][59][60]. One

of the earliest studied forms of interaction between EM fields and materials was in ferromagnets, which

can be induced into resonant behaviour (ferromagnetic resonance, FMR) in the presence of on oscillating

EM field matching their precession frequency[61]. Indeed, despite resonant ferromagnetic behaviour hav-

ing been studied since the early 20th century, new physical behaviours and effects are still actively studied

today[62][63][64], including in the chapters of this thesis. One of the first models to describe ferromagnetic

resonance was developed in 1935 by Lev Landau and Evgeny Lifshitz[12]. The Landau-Lifshitz model

they developed follows from the Heisenberg equation of motion for a collection of spin operators (with a

magnetization, ~M , being produced by Zeeman-type interactions) as they interact with a magnetic field ~Hi;

d ~M

dt
= −γ( ~M × ~Hi) (2.1.1)

Here the term γ = µ0ge|q|/2m is termed the gyromagnetic ratio of each ferromagnetic spin, where q

and m are the charge and mass of the spin moment and ge is the Landé g factor (which is approximately

18



2 for a free electron, but may deviate from this value in ferromagnetic materials)[65][66]. If the magnetic

field experienced by magnetic moments within the material, ~Hi, is produced by an externally applied static

field, we can see from Eq. 2.1.1 that the interactions between ~M and ~Hi will generate a torque on the spin

moment. This torque will cause the magnetic moment, ~M , to precess aboutHi; if the magnetic moment does

not experience any damping effects to its motion this precession could continue indefinitely. However all

physical materials exhibit some non-zero damping effects (mainly due to spin-lattice or spin-spin relaxation

interactions)[67][68], which will cause the precessional motion to spiral inwards and eventually cause ~M

to align with the applied field. By applying an additional oscillating field to the material, such that ~Hi =

~Hi0 + ~hie
−iωt, the effects of damping in the system can be countered and the precessional motion of the

spin moment can be continually driven to resonant behaviour, a process known as ferromagnetic resonance

(FMR)[69][70].

2.1.1 Landau-Lifshitz-Gilbert Description

Although the Landau-Lifshitz model of FMR is able to describe the physical origin of resonant behaviour in

magnetic materials, without accounting for damping effects the dynamics of FMR behaviour near resonant

frequencies could still not be described. For a fuller description of FMR dynamics a damping-inclusive

model of ferromagnetic resonance was developed by T.L. Gilbert in 1955, termed the Landau-Lifshitz-

Gilbert (LLG) equation[13]. In this model the effects of damping can be introduced to the Landau-Lifshitz

equation through the addition of a damping term dependent on the precession of ~M , resulting in;

d ~M

dt
= −γ( ~M × ~Hi) +

α

| ~M |

(
~M × d ~M

dt

)
(2.1.2)

where α is called the Gilbert damping parameter and has a microscopic origin in spin-orbit interactions

within the FM material[71]. The magnitude of α is temperature dependent in magnetic materials, typically

increasing as the material’s temperature is increased towards its Curie Point[72][73]. The Gilbert damping

term in the LLG equation can be seen to produce a torque on ~M perpendicular to its precessional motion,

which will force ~M towards the orientation of the applied static field ~Hi0. As the magnitude of this damping

term is dependent on the precession of the magnetic moments, systems with large precession amplitudes

(large d ~M/dt) will experience strong damping effects while systems with smaller precession amplitudes

will experience less damping losses.
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Figure 2.1: (a) A diagram of the precessional motion of a spin moment ~M about an applied field ~H in the
absence of damping. (b) The behaviour of the same moment when the effects of damping are considered,
with the damping resulting in a spiralling decay of the precessional motion. (c) A diagram of the vector
components of a spin moment, ~M , during resonant motion as it is being polarized and driven by static ( ~Hi0)
and oscillating (~hi). The magnetic spin and field vectors in this diagram are given in Eqs. 2.1.3 and 2.1.4.

As it only needs to be strong enough to counter damping losses, an applied driving field with frequency

ω will generally be much smaller than any static field applied to the material. Applying this driving field

allows us to write the field experienced by the magnetic moments, ~Hi, as a combination of a large applied

static field ~Hi0 and the smaller oscillatory driving field~hi. Because it is mainly the component of the applied

driving field which is perpendicular to the magnetization ~M which generates torque on the moments, we

can define ~Hi0 as lying parallel to the ẑ axis, with the expectation that ~hi will have components in the x̂− ŷ

plane to generate precession when ~M is polarized mainly along the ẑ axis. We can similarly separate the

magnetic moment of the material, ~M , into a large ẑ polarization component produced by the presence of a

strong static field along this axis, with smaller oscillations in the x̂ − ŷ plane produced by its precessional

motion. Thus we write;

~Hi = ~Hi0 + ~hie
−iωt = (0, 0, Hi0) + (hix, hiy, 0)e−iωt (2.1.3)

~M = ~M0 + ~me−iωt = (0, 0,M0) + (mx,my, 0)e−iωt (2.1.4)

Inserting these expressions for ~Hi and ~M into the LLG equation will now allow us to describe the motion

of the magnetic moments in response to the driving field. After performing the cross products and removing

negligibly small terms of order ~m× ~hi, we find;

~m =
γ

iω
( ~M0 × ~hi + ~m× ~Hi0) +

α

M0
( ~M0 × ~m) (2.1.5)
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Having arrived at this expression, we can now separate the applied fields into two distinct elements. The

first element ( ~H or ~h) is composed of the field externally applied to the sample (applied static field and driv-

ing field), while the second element will be produced by demagnetization fields within the sample. These

demagnetization fields will tend to oppose externally applied fields and will have strengths dependent on

the shape of the sample; as the shape dependent anisotropy energy of a magnetized ferromagnetic sample is

minimized when more of its constituent moments are aligned parallel to the sample’s surface, demagnetiza-

tion fields tend to strongly oppose magnetization along shorter dimensions of a sample (hard axes) and more

weakly oppose magnetization along longer dimensions (easy axes). The effects of these demagnetization

fields can be expressed by amending ~Hi0 and ~hi to;

hik = hk −Nkmk (2.1.6)

Hi0k = Hk −NkMk (2.1.7)

Above, the k subscript is used to indicate components along the kth axis of a field vector and value Nk

describes the demagnetization factor along the kth axis of the sample. It should clarified that in Eq. 2.1.6

we define ~hi to be the oscillating field experienced by moments inside the sample, while ~h is the oscillating

field applied to the sample; similarly in Eq. 2.1.7 we define ~Hi0 to be the static field experienced inside the

sample, and ~H to be that static field externally applied to the sample. The difference between these internal

and external fields is a result of the effects of demagnetization forces. The demagnetization factors within a

sample are highly dependent on the geometry of a sample and will obey the sum rule Nx + Ny + Nz = 1,

with the factor for any given axis generally dependent on the length of the sample along that axis[74]. Thus

for an infinitely thin wire sample parallel to the ẑ axis we will have Nx = Ny = 0.5 and Nz = 0, for an

infinite planar sample in the x̂ − ŷ plane we would have Nx = Ny = 0 and Nz = 1, and for a spherical

sample Nx = Ny = Nz = 1/3. Applying these amended fields to Eq. 2.1.5 and simplifying the resulting

expression now leads us to the Polder tensor, χ, an equation relating the oscillating magnetization of the
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ferromagnetic sample to the applied driving field[75];

~m = χ~h =


χxx iχxy 0

−iχxy χyy 0

0 0 0

~h (2.1.8)

The matrix elements of the Polder tensor are can be expressed as;

χxx = (D + iL)
γM0[M0Ny + (H −NzM0)]

αω[2(H −NzM0) +M0(Nz +Ny)]
(2.1.9)

χxy = −(D + iL)
M0

α[2(H −NzM0) +M0(Nz +Ny)]
(2.1.10)

χyy = (D + iL)
γM0[M0Nx + (H −NzM0)]

αω[2(H −NzM0) +M0(Nz +Ny)]
(2.1.11)

We can see in these Polder tensor elements that the resonant behaviour of magnetic moments within

a material will be highly dependent on the geometric properties of the bulk material sample being excited

(which determine the Nk demagnetization parameters). The terms L and D in Eqs. 2.1.9, 2.1.10, and

2.1.11 are respectively termed the Lorentzian and Dispersive lineshape amplitudes of the resonant motion.

These amplitudes determine the shape of the precession amplitude peaks near resonance and have opposite

symmetries about the resonant field, they are defined by;

L =
∆H2

(H −Hr)2 + ∆H2
(2.1.12)

D =
∆H(H −Hr)

(H −Hr)2 + ∆H2
(2.1.13)

where we have defined Hr, the external static field strength which must be applied to the sample to excite

resonance at a frequency ω, according to the Kittel resonance formula[76];

ω2 = γ2[Hr +M0(Ny −Nz)][Hr +M0(Nx −Nz)] (2.1.14)

and ∆H has been defined as a measure of the width of the measured resonant lineshape near Hr, which
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Figure 2.2: Plots of the resonant peak shapes near resonance for a system with (a) an entirely Lorentzian
amplitude and (b) an entirely Dispersive amplitude. The equations describing these amplitude peak shapes
are given in Eqs. 2.1.12 and 2.1.13.

is closely tied with damping effects in the resonant system. For an entirely Lorentzian lineshape (D = 0)

∆H will be half the field width of the lineshape, measured at half its maximum amplitude [see Fig. 2.2(a)].

For a completely dispersive lineshape (L = 0) this ∆H value will represent the field displacement between

Hr and the position of the positive or negative amplitude peaks [see Fig. 2.2(b)]. The value of ∆H can be

expressed as;

∆H =
αω

γ

2H +M0(Nx +Ny − 2Nz)

H +Hr +M0(Nx +Ny − 2Nz)
(2.1.15)

For H ≈ Hr we can see that this expression will reduce to ∆H ≈ αω/γ. It should be briefly noted

here that an underlying assumption of the calculations used to derive the Polder tensor here is that the

amplitude of the precessional motion of the magnetic moments is assumed to be small (Mz � mx,my).

This assumption has been applied to our calculations after the addition of the demagnetization fields to our

calculations in Eqs. 2.1.6 and 2.1.7 as Mz ≈ M0 to simplify the resulting calculations. This assumption

of low precession amplitude is found to be valid for many resonant systems. The dynamic motion of the

magnetic moments for higher amplitude precession can be calculated using Mz =
√
M2

0 −m2
x −m2

y (this

is done later in Sec. 5.2) and results in non-linear behaviour such as lineshape foldover and bistable mode

solutions[57][77].
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2.1.2 Applications of FMR and Magnon Excitations

Physically, the resonant behaviours described by FMR are only one variety of the many possible magnon

excitations in magnetic materials. In the uniform FMR mode, often referred to as the Kittel mode, the

resonant motion of the magnetic moments throughout the material is homogeneous and can be excited by

the application of a uniform oscillating field. Closely related to resonant motion in magnetic materials

are magnon excitations known as spin waves. Unlike resonant magnon modes, in which all spin moments

within a material are excited into related oscillatory motion, spin waves are inhomogeneous excitations

which can propagate and carry spin polarization through a material’s spin lattice structure. The most basic

spin wave excitation would involve a uniformly polarized collection of spins where one spin is suddenly

flipped to oppose the others. As the system is allowed to evolve with time the polarization of this single

flipped spin will spread through the rest of the spin population through exchange interactions over the spin

lattice, travelling in a fashion similar to ripples on a pond (in 3 dimensions) after a pebble is tossed in.

Eventually lattice damping effects will cause the rippling effects to decay and the system will stabilize.

The wavelength and excitation frequency of spin waves are broadly dependent on the strength of exchange

interactions between spins on a lattice, but will vary depending on the external dimensions and polarization

of a magnetic sample. One form of spin waves are produced in thin film samples when edge pining effects

can result in standing spin waves propagating perpendicular to the film’s surface. These waves are termed

Perpendicular Standing Spin Waves (PSSWs), and have dispersions which can be calculated by the addition

of an additional exchange interaction term to the LLG equation[78]. Ignoring damping effects these PSSW

frequency dispersions are;

ω2
r = γ2

(
H +M0 +

2Ak2z
µ0M0

)(
H +

2Ak2z
µ0M0

)
PSSWs for ~M0 in-plane (2.1.16)

ωr = γ

(
H −M0 +

2Ak2z
µ0M0

)
PSSWs for ~M0 out-of-plane (2.1.17)

where we have defined A as the exchange stiffness constant between spins in the material[79], and kz to

be the propagation vector of the wave perpendicular to the surface of the film. Observing these PSSW

dispersions we see that for the case of kz = 0 the dispersions of the Kittel FMR mode is reproduced,

showing that resonant FMR modes within magnetic systems can be described as a special case of spin wave
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excitation. We can also note that these spin wave modes will have higher excitation frequencies than the

Kittel FMR mode, and will thus require more energy to excite. Other forms of spin waves include Damon-

Eshbach waves (surface spin waves), and backward/forward volume modes, which have similar dispersions

to PSSWs but will spread evanescently through the material’s structure[80].

Due to reasons of easy generation and detection, much research has historically focussed on studying the

Kittel FMR mode in magnetic materials. In addition to microwave absorption effects, resonant behaviour

is responsible for the spin rectification effect[81], in which a DC current is generated from an AC input

current in a resonant FM system. This effect has been used to develop a spin-torque diode[82], as well as

novel imaging techniques utilizing both the amplitude and phase information of EM signals[83][84]. The

later development of spin pumping further advanced the realm of possible uses for resonant behaviour[85];

using the resonance in a magnetic material to ’pump’ spin polarization into a neighbouring material. This

new technique represented a significant advancement in the field of spintronics, which works to develop

techniques to transfer polarization without charge currents and the Joule heating effects they bring. The

field of spintronics itself is closely tied to studies of spin waves, connecting the propagation of spin waves

in magnetic materials to the transport of spin currents in non-magnetic materials[86].

Experimentally, techniques have been developed to detect and study spin waves. These techniques

include several varieties of time-domain measurements, which detect the dynamics of magnetic moments

when spin waves are present. In Pulse-Inductive Microwave Magnetometry (PIMM) measurements a pulsed

EM excitation is used to produce spin waves in a magnetic sample, and a stripline placed next to the sam-

ple measures inductive induced voltages generated by spin wave motion[87][88]. Alternatively, spatially

resolved Magneto-Optic Kerr Effect (MOKE) measurements employ a femtosecond laser to both excite and

detect spin waves; using the changes in the polarization and intensity of light reflected from a magnetized

surface to detect spin wave dynamics[89][90]. More recently, X-ray Detected Magnetic Resonance (XDMR)

systems have been developed to use x-ray magnetic circular dichroism to probe local spin magnetization in

samples and directly observe spin-torque induced spin waves[91][92]. Several additional techniques are also

employed to study spin waves based on microwave reflection/transmission/absorption spectra in the field and

frequency domain. These techniques can make use of Brillouin Light Scattering (BLS) effects[93][94] in

addition to other direct measurements of the ω(k) spin wave dispersion[95]. Techniques involving spin rec-

tification have also been developed to detect rectified DC signals produced by spin waves[96]. Rectification

techniques benefit in that the material carrying spin waves is itself used as the detector; enabling simplified
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data analysis and increased sensitivity when used together with lock-in techniques[97].

2.2 CMP Coupling and Yttrium Iron Garnet

Although many magnetic materials are able to sustain magnon excitations when exposed to certain combi-

nations of static and EM fields, only a select number possess the certain characteristics which make them

ideal for use in coupled CMP systems. These characteristics include a strong coherence between magnetic

spins during excitation, strong coupling to EM photons, a relatively high Curie temperature, and a low mate-

rial damping[20]. A strong interspin coherence is crucial as magnon resonance modes must have a stronger

coupling to photon resonance modes than the decoherence rate between magnetic spins to achieve coherent

CMP coupling[21]. This interspin coherence assures that all spins of a magnetic system are excited into the

same resonant state, and couple equivalently to any incident photons. Magnetic systems with low interspin

coherence may form multiple polarization domains and during excitation may produce multiple resonant

magnon states. During CMP coupling the presence of multiple magnon modes within a material may pro-

duce inhomogeneous dynamics throughout the system and complicate the behaviour of photons interacting

with these modes. To ensure homogeneous coherence within a magnetic sample during excitation, the po-

larization fields must be stronger than any depolarization fields throughout a sample’s structure. For this

reason magnetic samples used in CMP systems are generally spherical in shape to limit the effects of shape

demagnetization fields, though strong external fields applied to a material may overcome demagnetization

fields and allow other sample geometries to be excited into a uniform mode[43][47], and commonly consist

of crystalline ferromagnetic materials. In small single-crystal samples, the uniform effects of crystalline

magnetic anisotropy fields act to ensure uniform dynamics among magnetic spins within the crystal and

suppress inhomogeneous behaviours[21]. Once coherently excited into a uniform Kittel resonance mode,

the multiple spin systems of a magnetic sample can be approximated as a single macrospin system exhibiting

photon-magnon coupling strengths orders of magnitude higher than single spins while maintaining coher-

ence to photon excitations during CMP coupling[20]. This observation is the basis of most CMP systems,

and directly led to the rapid development of the field after its publication.

The damping forces in a magnetic material are also an important factor in CMP coupling, as in the cou-

pling process energy must be exchanged between photon and magnon systems before it is lost to damping.

The strength of coupling within CMP systems is commonly defined relative to the system’s cooperativity,
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Figure 2.3: (a) A schematic diagram of the crystal structure of YIG as described in Ref. [106]. (b) A picture
of a large crystalline YIG sample[107].

C, defined as[43];

C =
g2c
αβ

(2.2.1)

where α refers to the strength of damping in the magnetic material, β is the cavity damping strength, and

gc defines the strength of the coupling forces between the cavity and magnon systems. Strong coupling in

CMP systems occurs in cases where C > 1; in these cases hybridization between the magnon and photon

modes will result in a splitting of the resonant CMP modes during coupling. In systems where C < 1, other

coupling effects such as electromagnetically induced transparency[103][104] or the Purcell effect[105], may

occur which will influence the behaviour of CMP modes during coupling but will not produce the mode

splitting indicative of the production of CMPs within the coupled system. We see from Eq. 2.2.1 that

producing a strongly coupled CMP system requires not only strong coupling between magnon and cavity

systems, but also damping effects small enough to not overcome these coupling forces.

To fulfil the material demands required to produce strongly coupled CMP systems, many studies[43][45][54]

Compound Formula Fe5O12Y3

Crystal Structure Cubic [110]
Unit Cell Lattice Parameter 1.2376 nm [110]
Atoms per unit cell 80 [110]
Curie Temperature 560 K [111]
Spin Density 2.1 ×1022 cm−3 [112]
Saturation Magnetization ∼178 mT [42]
Damping Parameter ∼10−5 [113][110]

Table 2.1: Typical material characteristics of crystalline Yttrium Iron Garnet
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have relied on the ferrimagnetic oxide known as Yttrium Iron Garnet (YIG) with a chemical formula

Y3Fe5O12. The crystal structure of YIG is shown in Fig. 2.3; here we can see oxygen ions (O2−) form

dodecahedron, octahedron, and tetrahedron structures within the crystal, with a yttrium ion (Y3+) occupying

the centre of the dodecahedron formation. At the centres of the octahedron and tetrahedron formations are

iron ions (Fe3+), which will be polarized in opposing directions with different spin magnitudes depending

on which formation they are centred in[106]. These Fe3+ ions are thus responsible for YIG’s ferrimagnetic

behaviour, resulting in a material which can be polarized similar to ferromagnets but has a relatively high

spin density. In addition to its high spin density (∼ 1027m−3)[108][109], YIG also has a very low damping

factor relative to most ferromagnets (∼ 10−5)[113][110], allowing stronger coupling effects to be achieved

with smaller samples. The garnet crystal structure of YIG is also a benefit to CMP studies, as it allows

homogeneous crystal macrospins to be created up to several millimetres in scale.

In the CMP coupling experiments detailed in this dissertation, we used single-crystal YIG spheres pur-

chased from Ferrisphere Inc. to generate our magnon modes. These spheres were of 1 mm diameter had a

surface roughness of approximately 50µm. The resonant frequency, ω, of the Kittel mode of these spherical

samples is related to the strength of an applied field, H , through the relation;

ω/2π = γ(H +HA) (2.2.2)

Where γ is the gyromagnetic ratio of the YIG moments and HA represents the effect of anisotropy fields

(both shape and crystalline) within the sample. The values of γ andHA for a YIG sample can be determined

by placing it within a microwave cavity resonator and fitting the relation between ω and H to Eq. 2.2.2 at

frequencies far from any cavity modes (to eliminate any coupling effects). The Gilbert damping parameter

of the sample can be determined at an H field value far from coupling as the half-width at half-maximum

of the absorption lineshape at resonance. Measurements performed on the samples showed they had a sat-

uration magnetization of µ0M0= 178 mT, and a gyromagnetic ratio of γ= 28 x 2π µ0GHz/T. Among the

samples, Gilbert damping factors were typically between 0.8-1.5 x 10−5. During measurements these sam-

ples exhibited strong, clear, resonance behaviours in the Kittel mode, indicating that they are homogeneous

crystal samples and can be approximated as magnetic macrospins during CMP coupling.

The measured values of HA tend to vary between experiments, due mainly to our use of a Hall probe

to measure the applied field H . Although Eq. 2.2.2 assumes that H is measured at the position of the YIG
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sample, practical considerations (electrical connections) require that the Hall probe be positioned outside

of the microwave cavity. Thus the H value measured by the probe will differ from the applied field felt

by the sample, which will modify the measured value of HA found by fitting the linear dispersion of Kittel

mode to Eq. 2.2.2 far from coupling. Because the relative positions of the YIG sample and the Hall probe

may change between experiments, this results in varying HA values for different experiments, even when

similar samples are used. However, because the value of HA is independent of ω and H variations, the

main consequence of a perceived change to HA is to shift the Kittel mode distribution to slightly higher or

lower applied field values (typically on the order of |µ0H|∼ 30 mT), which does not affect our experimental

results.

2.3 Cavity Resonators

2.3.1 General Description and Characteristics

In essence, a cavity resonator is a device designed to store EM radiation as resonant modes within a certain

volume. These devices operate by reflecting EM radiation at their outer edges through sudden permittiv-

ity/permeability shifts, resulting in the formation of stable resonance modes within the cavity[114]. The

interior volume of the cavity can either be left empty (air-filled) or filled with a low-loss dielectric mate-

rial (allowing higher energy resonant modes to be stored within the cavity)[115]. The resonant frequency

and field dispersions of the modes able to form within a cavity resonator are highly dependent the cavity’s

structure and composition. Determining the resonant properties of these modes involves calculating the

electric field, ~E, and related magnetic field, ~H , dispersions which satisfy Maxwell’s Equations for electric

and magnetic fields throughout the volume of the cavity[116] in the absence of free currents and charges;

~∇ · ~E = 0 (2.3.1)

~∇ · µ0 ~H = 0 (2.3.2)

~∇× ~E = −µ0
∂ ~H

∂t
(2.3.3)
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~∇× ~H = ε0
∂ ~E

∂t
(2.3.4)

The ~E and ~H fields are further restricted by boundary conditions at the edges of the cavity. Resonant

cavity states can be divided into two mode types depending on the field dispersions at the boundaries;

resonant transverse electric (TE) modes are created when the ~E field components tangential to the inner

surface of the cavity are equal to zero at the boundaries, while resonant transverse magnetic (TM) modes

are created when the ~H field components tangential to the inner surface of the cavity are equal to zero at the

boundaries. These two boundary restrictions are not mutually exclusive, and in some cavity designs (notably

rectangular cavities) resonant modes can be created which satisfy both conditions and are termed transverse

electromagnetic (TEM) modes[114]. The solutions to Eqs. 2.3.1 and 2.3.2 which satisfy these boundary

conditions are not necessarily analytical for cavities of arbitrarily shaped volumes. However, for cavities

which have certain symmetric properties (rectangular, cylindrical, spherical volumes) the field dispersion

solutions can be fairly easily solved[117]. These solutions give us several unique ~E and ~H field dispersions

which correlate to stable resonance modes within the cavity, each having a specific resonance frequency.

Although the total number of resonance modes able to be excited within a cavity resonator is unlimited,

many high energy modes are simply higher order solutions of low energy modes. This allows us to relate

these modes through a set of positive integers known as mode numbers (presented here as m, n, and p). For

a rectangular cavity of dimensions a, b, and d, the resonant frequency of the stable TEM modes within the

cavity can be described by[114];

fmnp =
1

2π
√
εµ

√(mπ
a

)2
+
(nπ
b

)2
+
(pπ
d

)2
(2.3.5)

where ε and µ are the permittivity and permeability of the material filling the cavity. For a cylindrical cavity

of radius R and length L, solving Eq. 2.3.1 will produce distinct sets of TE and TM resonance modes,

described by[114];

fmnp =
1

2π
√
εµ

√(
Xmn

R

)2

+
(pπ
L

)2
for TE Modes (2.3.6)

fmnp =
1

2π
√
εµ

√(
X ′mn
R

)2

+
(pπ
L

)2
for TM Modes (2.3.7)
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Figure 2.4: Diagrams of the EM field distributions for some of the lower order modes in a cylindrical
waveguide. These diagrams only show dispersions along the cross section of the waveguide, moving along
the length of the waveguide these dispersions will change periodically depending on the axial component of
the excited mode.

where in the above equations Xmn refers to the nth zero of the mth Bessel function, and X ′mn refers to

the nth zero of the derivative of the mth Bessel function. Some transverse ~E and ~H field dispersions of

the first few TE and TM modes for a cylindrical waveguide are shown in Fig. 2.4; here we see that the

dispersions of resonant cavity modes can vary significantly, even between modes having similar resonant

frequencies. Although in theory cavity resonators can be designed to have any possible shape or dimensions,

in practice most have interior volumes that are either rectangular or cylindrical in shape. This is due to these

structures being both simpler to manufacture and having structural symmetries which make their resonant

mode distributions easy to calculate[114].

In addition to the field and frequency dispersions of its resonant modes, another important parameter of

cavity resonators is their quality factor, Q. This value is defined as the ratio of the total EM energy stored in

the cavity during resonance, Wstored, to the power loss in the cavity per cycle, PL[117];

Q =
ωWstored

PL
(2.3.8)

with ω being the resonant frequency of the mode within the cavity. Losses in well-designed cavities are

chiefly due to a combination of conductive losses from currents travelling on the surfaces of the cavity,

and dielectric losses produced in the material filling the cavity[118]. To minimize conductive losses cavity

resonators are typically made of, or coated by, highly conductive metals such as aluminium, copper, silver,

or gold. Dielectric losses can be minimized by filling the cavity with a low-loss dielectric material, air being
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one simple and effective choice. Within a general cavity system, the conductive, Pcond, and dielectric, Pdiel,

losses can be calculated as[118];

Pcond =
1

2

∫
walls

| ~Js|2Rsds (2.3.9)

Pdiel =
1

2

∫
V

~J · ~E ∗ dV (2.3.10)

with ~Js representing the surface current on the walls of the cavity, Rs the surface resistance of the cavity

walls, and ~J the electrical current within the dielectric filling of the cavity. By design, the total power

loss in most cavities is much smaller than the amount of energy they can store; typical Q-factors can range

from a few hundred for simple cavities, up to values of several thousand for specially designed low-loss

cavities[119][120].

2.3.2 Measuring Material Properties using Cavity Resonators

In practice, one of the major uses of cavity resonators is in the measurement of material properties through

cavity perturbation measurements[121]. The basis of cavity perturbation theory is that very small physical

changes to the interior of a cavity can be detected through the effects they have on the measured properties

of the cavity. These physical changes can be produced by either changing the dimensions/shape of the

cavity (using adjustable walls, for example) or by inserting a small material sample into the cavity[122].

For practical reasons, due to the difficulty of designing adjustable cavities and the ease of placing small

samples into a cavity, the latter method is more typically used in measuring material properties. In order to

determine the effects of small perturbations to the cavity system, it is necessary to calculate the EM field

distributions throughout the perturbed cavity system; while this may be possible in some cases, it is often

non-trivial. To get around this limitation, the basic underlying assumption of cavity perturbation theory is

employed. This assumption states that for very small changes to the cavity system, the EM field distributions

within the cavity will remain essentially unchanged[114]. This makes calculating the material properties of

small samples within the system significantly simpler, as with this assumption the only changes to the cavity

system upon the introduction of the material sample will be the permittivity/permeability changes at the

sample’s location.

When performing cavity perturbation measurements the resonant frequency of the cavity is measured
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before and after a small material sample has been inserted into the cavity. The shift in resonant frequency

of the cavity modes is then used to characterize the the material which has been inserted. As seen in

Eqs. 2.3.5, 2.3.6, and 2.3.7, the resonant frequencies of cavity modes have relatively simple relations to

the electromagnetic properties of the volume within the cavity. This relation and the fact that the resonant

frequency of cavity modes can be easily and accurately measured (typically as peaks or dips in the S21

transmission of the cavity) make measuring shifts in the resonant mode frequencies of a cavity an ideal tool

to characterize material perturbations within the cavity[117]. If we consider initially a general unperturbed

cavity, such as that shown in Fig. 2.5(a), the unperturbed electric, ~E0, and magnetic, ~M0, fields are related

through Maxwell’s equations;

~∇× ~E0 = −iω0µ ~H0 (2.3.11)

~∇× ~H0 = iω0ε ~E0 (2.3.12)

where we have used µ and ε to be the real permeability and permittivity values of the material filling the

cavity, and ω0 to be the resonance frequency of a stable mode within the unperturbed cavity. By placing a

material perturbation, having permeability µ + ∆µ and permittivity ε + ∆ε, within the cavity we change

the resonant field distributions near the perturbation, thus altering the resonance frequencies of any stable

modes. Here we define ∆µ and ∆ε as the change in permeability and permittivity caused by the introduction

of the sample to the cavity. The values of ∆µ and ∆ε are dependent on position within the cavity system;

outside the material sample the local permeability and permittivity will be unchanged by the sample (for

small samples) and ∆µ and ∆ε will equal zero, while at locations within the material perturbation ∆µ and

∆ε may be quite large. The new relation between the EM field dispersions within the perturbed cavity, ~E

and ~H , can still be defined using Maxwell’s equations similar to before;

~∇× ~E = −iω(µ+ ∆µ) ~H (2.3.13)

~∇× ~H = −iω(ε+ ∆ε) ~E (2.3.14)

with ω representing the new, perturbed, resonance frequency of the stable mode in Eqs. 2.3.11 and 2.3.12.
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By combining Eqs. 2.3.11 and 2.3.12 with Eqs. 2.3.13 and 2.3.14 we can construct an expression for

the magnitude of the frequency shift experienced by the cavity resonance mode upon the introduction of

the material perturbation. This can be done by multiplying the complex conjugate of Eq. 2.3.11 with ~H ,

the complex cojugate of Eq. 2.3.12 with ~E, Eq. 2.3.13 with ~H∗0 (the complex conjugate of ~H0), and Eq.

2.3.14 with ~E∗0 (the complex conjugate of ~E0); creating a coupled system containing both the perturbed

and unperturbed EM field distributions. Rearranging these equations and integrating over the volume of the

cavity then allows us to write[117];

ω − ω0

ω
= −

∫
V0

(∆ε ~E · ~E∗0 + ∆µ ~H · ~H∗0 )dv∫
V0

(ε ~E · ~E∗0 + µ ~H · ~H∗0 )dv
(2.3.15)

As we have not yet made any assumptions of our system in our derivation this equation represents an

exact expression for how the resonant frequency of a cavity would change upon the insertion of a material

perturbation, valid for perturbations of any shape, size, or position within the cavity. However, solving

Eq. 2.3.15 is generally very difficult because, although the unperturbed EM field distributions ~E0 and

~H0 can be easily determined for most well designed cavities, the perturbed fields ~E and ~H are generally

unknown. This equation can be greatly simplified though if we now employ the main assumption of cavity

perturbation theory; that for small material perturbations the perturbed EM field distribution within the

cavity will be essentially unchanged from the unperturbed distribution. This allows us to approximate

~E ≈ ~E0 and ~H ≈ ~H0. As we expect only a small change to the resonant frequency of the system for

small perturbations, we can also assume
ω − ω0

ω
≈ ω − ω0

ω0
on the left-hand side of Eq. 2.3.15, further

simplifying calculations as ω will generally be an unknown parameter. Based on these assumptions, the

fractional change in the resonant frequency of the perturbed cavity system can now be written as;

ω − ω0

ω0
' −

∫
V0

(∆ε| ~E0|2 + ∆µ| ~H0|2)dv∫
V0

(ε| ~E0|2 + µ| ~H0|2)dv
(2.3.16)

In the above perturbation equation, we see that the addition of a material perturbation with a positive ∆ε

or ∆µ will tend to decrease the resonant frequency of modes within the cavity. By comparing the resonant

frequencies of the cavity before and after the perturbation is inserted, the permittivity and permeability of

the perturbation can be calculated as εperturbation = ε + ∆ε and µperturbation = µ + ∆µ. An example

of this frequency perturbation is shown in Fig. 2.5(c), where the addition of a glass rod (ε = 4.76 ×

ε0 = 4.21 × 10−11 F/m) to a rectangular air filled cavity causes the frequency of a resonant mode within
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Figure 2.5: (a) A diagram of a general resonant cavity system, of volume V0, filled with a material of
permeability µ and permittivity ε. At the resonant frequency of this system, ω0, the magnetic and electric
fields within the cavity will have the spatially dependent distributions ~H0 and ~E0. (b) Upon the introduction
of a material perturbation having permeability µ+∆µ and permittivity ε+∆ε, the resonant field distributions
within the cavity will be shifted to ~H and ~E, and the resonant frequency of the excited cavity mode will be
shifted to ω. (c) In this rectangular waveguide cavity we see that the introduction of a thin glass rod into the
cavity shifts the measured resonant frequency to a lower value. In this system |S11| represents microwave
reflection from the cavity system, decreasing when microwaves are absorbed during resonance.

the cavity to decrease. It can be seen in Eq. 2.3.16 that because ∆ε and ∆µ will only have non-zero

values at the location of the material perturbation, the magnitude of the ω − ω0 frequency shift will vary

depending on the size and location of the perturbation. This variation allows the values of either ∆ε or

∆µ to be measured individually by placing the perturbation at locations where either ~E0 or ~H0 equal zero.

This specific placement is not always necessary, as for many magnetic materials ∆µ � ∆ε and for many

dielectric materials ∆ε� ∆µ[114], meaning that in these materials the right-hand numerator of Eq. 2.3.16

will be dominated by either an ~E0 or ~H0 dependent term.

Looking closely at Eq. 2.3.16, we also see that the magnetic and electric field integrals can be related to

the stored magnetic, Umag, and electric, Uelec, energies of the original and perturbed cavity systems. This

allows us to interpret the frequency shift due to the perturbation in relation to these energies[118];

ω − ω0

ω0
= −∆Uelec + ∆Umag

Uelec + Umag
=

∆Utotal
Utotal

(2.3.17)

with Utotal representing the total electromagnetic energy stored in the unperturbed cavity. Thus we see

that cavity perturbation theory describes the fractional change in the resonance frequency of a cavity mode

caused by a material perturbation to be directly correlated to the change in EM energy stored within the

cavity.

The observed frequency shifts of cavity resonance modes due to the inclusion of material perturbations
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are closely tied to the frequency shifts within cavity magnon-polariton (CMP) systems during coupling. In

the latter case, large permeability changes are induced in ferromagnetic samples as they are excited to FMR

during coupling to a cavity mode[12]. However, within CMP systems the resonant FM sample couples itself

to the cavity system by producing EM fields during its resonant motion. In a strongly coupled system these

FM produced fields may have significant effects on the field distribution within the cavity system, even for

relatively small FM samples[123]. Thus, although Eq. 2.3.15 would still be correct within coupled CMP

systems, the assumption of unchanged EM field distributions used to derive Eq. 2.3.16 would no longer

hold. For this reason the perturbation equations derived here have greatly reduced accuracy in measuring

the properties of resonant materials, despite the fact that measurements performed on coupled CMP systems

are extremely similar to perturbative measurements on non-resonant samples[57][25]. However, within

these CMP systems we are still able to determine the dynamic properties of the FM sample (which are

closely related to its permeability), through frequency changes in the coupled cavity-magnon modes, using

coupled oscillator and Hamiltonian models[56][124].

2.3.3 RLC Oscillator Description

Although physically very different, cavity oscillators and RLC circuits prove to have extremely similar elec-

trical properties[114]. Indeed in many electrical applications, such as signal filters and amplifiers, these two

different oscillating electromagnetic systems are used in nearly identical roles, with cavities being generally

used where high Q factors are required and RLC circuits being preferred for smaller size and lower cost

applications[115][125]. Because of their similar resonant properties, it is common to see cavity oscillators

described in terms of an equivalent RLC circuit. In this description the damping of the cavity is analogous

to resistance in the circuit, while the ~E and ~H field distributions in the cavity can be related to the fields

produced by a capacitor and inductor in an RLC circuit[124][126]. This RLC circuit description of cavity

oscillators also proves useful for differentiating between impedance-matched cavity resonators, whose non-

resonant impedance matches that of the cables carrying electrical signals to it, and non-impedance-matched

cavities[114]. In impedance-matched cavities the S21 transmission (ratio of energy transmitted through sys-

tem relative to the input energy) is generally very high away from resonance, but decreases near the cavity

resonance frequency as the impedance of the cavity is changed by the presence of stable resonance modes;

these cavities thus display resonant modes as a sharp drop in S21 transmission and can be described by a

parallel RLC circuit. In non-impedance-matched cavities S21 transmission is low far from resonance but the
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presence of resonant modes in the cavity changes the impedance to match the input cables, resulting in an

increased S21 transmission; these cavities display resonant modes as S21 transmission peaks and are thus

described by a series RLC circuit.

Series RLC Circuit

For an RLC circuit with a resistive component R, an inductive component L, and a capacitive component

C, similar to the one shown in Fig. 2.6, the basic expression for the impedance in response to an AC input

signal is given by[114];

Zin = R+ iωL− i 1

ωC
(2.3.18)

with ω being the frequency of the input signal. This expression is clearly frequency dependent, with AC

current effects inducing resonant interactions between the inductive and capacitive components of the circuit.

The expression for the power delivered into the RLC circuit from an AC input can be derived from Eq. 2.3.18

using the complex expression of Joule’s Law for resistive heating[118];

Pin =
1

2
|I|2Zin =

1

2
|I|2

(
R+ iωL− i 1

ωC

)
(2.3.19)

with I being the magnitude of the AC current input into the circuit. We can see from this expression that

the real component represents the power dissipated by resistive elements of the system, Ploss, similar to

damping effects in cavities;

Ploss =
1

2
|I|2R (2.3.20)

while the imaginary components of Eq. 2.3.19 represent energy stored within the circuit system, as either

magnetic energies Um stored as fields within the inductive component or as electric potential energies Ue

stored in the capacitive component. As during resonant behaviour these electric and magnetic energies

will be continuously traded between the components as the inductor and capacitor continually charge and

discharge, the average Um and Ue values over several oscillation cycles will be equal to half their maximum
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Figure 2.6: A diagram of the layout of a basic series RLC circuit, consisting of a resistor, R, an inductor, L,
and a capacitor, C. The circuit is excited by an alternating current of voltage V , frequency ω, and amplitude
I .

values as given in Eq. 2.3.19;

Um =
1

4
|I|2L (2.3.21)

Ue =
1

4
|I|2 1

ω2C
(2.3.22)

The above equations allow us to rewrite Eq. 2.3.18 in terms of the energies stored and dissipated by the

elements of the RLC circuit, giving;

Zin =
2Pin
|I|2

=
2Ploss + 2iω(Um − Ue)

|I|2
(2.3.23)

The resonant condition for a series RLC circuit occurs when the impedance is minimized and expressed

in entirely real terms. In this state the energies stored in the inductive and capacitive components of the

circuit are maximized[114]. We can see from Eq. 2.3.23 that resonance will thus occur when Um = Ue,

thus we can define the resonance frequency of the circuit, ω0, by applying this condition to Eqs. 2.3.21 and

2.3.22;

ω0 =
1√
LC

(2.3.24)

We can define the quality factor, Q, of our RLC circuit as the ratio of total EM energy stored in the
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circuit relative to the power lost per oscillation cycle. This is the same definition as we used in Eq. 2.3.8 for

our cavity resonator. At the resonant condition of Um = Ue we find;

Q = ω0
Um + Ue
Ploss

= ω0
2Ue
Ploss

=
1

ω0RC
(2.3.25)

Using the expression in Eq. 2.3.24, we can now express the impedance of our series RLC circuit defined

in Eq. 2.3.18 in terms of its resonant frequency;

Zin = R+ iωL

(
ω2 − ω2

0

ω2

)
(2.3.26)

For input frequencies near resonance, such that ω0/ω ≈ 1, we can further express Eq. 2.3.26 in terms

of the RLC circuit’s Q factor given in Eq. 2.3.25;

Zin ' i2L
(
ω − ω0 − i

ω0

2Q

)
(2.3.27)

Parallel RLC Circuit

In a parallel configuration, such as that shown in Fig. 2.7, the resonant properties of an RLC circuit are

very similar to the series configuration discussed previously. Using the same resistive R, inductive L, and

capacitive C components, the input impedance of a parallel RLC circuit in response to an AC input signal

is given by[114];

Zin =

(
1

R
+

1

iωL
+ iωC

)−1
(2.3.28)

Figure 2.7: A diagram of the layout of a basic parallel RLC circuit, consisting of a resistor, R, an inductor,
L, and a capacitor, C, connected in parallel. The circuit is excited by an alternating current of voltage V ,
frequency ω, and amplitude I .

39



Similar to the process we used for a series RLC circuit in Eqs. 2.3.19 and 2.3.20, we can use the complex

expression of Joule’s Law for resistive heating to calculate the complex expressions for the power delivered

to the parallel RLC system, Pin, and the power dissipated, Ploss;

Pin =
1

2
|V |2

(
1

Z∗in

)
=

1

2
|V |2

(
1

R
+

i

ωL
− iωC

)
(2.3.29)

Ploss =
1

2

|V |2

R
(2.3.30)

where V represents the voltage of the input signal. As the electric and magnetic energies stored in the

capacitive and inductive elements of the parallel RLC system will be equal to those in Eqs. 2.3.21 and

2.3.22, we are able to describe the impedance of the parallel circuit as;

Zin =
|I|2

2Pin
=

|I|2

Ploss + 2iω(Um − Ue)
(2.3.31)

which is seen to be the inverse of Eq. 2.3.23 for the series RLC circuit. The resonant condition for parallel

RLC circuits will thus occur when the impedance of the circuit is maximized, and will again occur when

Um = Ue. We thus find that the resonant frequency of a parallel RLC circuit, ω0, is identical to that of a

series RLC circuit containing the same RLC components[114];

ω0 =
1√
LC

(2.3.32)

Similarly, the Q factor of a parallel circuit can be defined in the same fashion as the series case in Eq.

2.3.25, giving an inverse result;

Q = ω0
2Um
Ploss

= ω0RC (2.3.33)

For input frequencies near resonance, we can use the expressions for ω0 and Q in parallel RLC circuits

given by Eqs. 2.3.32 and 2.3.33 to rewrite the impedance given by Eq. 2.3.28 as;

Zin =
1

i2C

(
ω − ω0 − i

ω0

2Q

) (2.3.34)
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which we can see is nearly the exact inverse expression to that of Eq. 2.3.27 for the series RLC circuit.

2.3.4 Calculating S21 Transmission for RLC Circuits and Cavity Resonators

The impedance expressions for RLC circuits can be used to express the resonant properties of cavity res-

onators, with the S21 transmission properties of series RLC circuits corresponding with those of impedance-

matched cavities, and the S21 transmissions of parallel RLC circuits corresponding with those of non-

impedance-matched cavities[114]. For a given mnp cavity mode the inductive Lmnp and capacitive Cmnp

properties of a cavity can be calculated as[127];

Lmnp = µV k2mnp (2.3.35)

Cmnp =
ε

V k4mnp
(2.3.36)

with µ and ε representing the permeability and permittivity of the material filling the cavity and V defined

as the volume of the cavity. The term kmnp is the mode wavenumber of the cavity and is dependent on the

shape and structure of the cavity; for a rectangular cavity with dimensions a, b, and d this mode wavenumber

can be expressed as;

kmnp =

√(mπ
a

)2
+
(nπ
b

)2
+
(pπ
d

)2
(2.3.37)

While for a cylindrical cavity of radius R and length L the mode number is expressed as;

kmnp =

√(
Xmn

R

)2

+
(pπ
L

)2
(2.3.38)

withXmn describing the nth zero of the mth Bessel function for TE modes and the nth zero of the derivative

of the mth Bessel function for TM modes. From the above expressions, we see that the resonance frequency

of a microwave cavity, ωc, can be expressed in RLC circuit terms as;

ωc =
1√
LC

=
1
√
µε
kmnp (2.3.39)
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which agrees with the expressions for cavity resonance frequencies derived from Maxwell’s Equations given

in Eqs. 2.3.5, 2.3.6, and 2.3.7. The damping forces within a resonant cavity, β, can also be expressed in

terms of the cavity’s RLC circuit equivalent, for impedance-matched and non-impedance matched cavities

this relation is written as;

β =
R

2

√
C

L
for Series RLC Circuits (2.3.40)

β =
1

2R

√
L

C
for Parallel RLC Circuits (2.3.41)

Using the above relations, the impedance of Series RLC circuits (corresponding to impedance-matched

cavities) and Parallel RLC circuits (corresponding to non-impedance-matched cavities) can thus be given

by[25][114];

Zc = i2L(ω − ωc − iωcβ) for Series RLC Circuits (2.3.42)

Zc =
1

i2C(ω − ωc − iωcβ)
for Parallel RLC Circuits (2.3.43)

The S21 transmission properties of these two types of RLC circuit systems can be calculated from their

impedance properties using scattering theory[114], where the transmission and reflection properties of the

circuit are determined from the input and output signals at the ports leading into the system. The total

transmission of the system when attached to input/output cables will be affected by the impedance of these

cables, Z0. For the case where Z0 is equal to the non-resonant impedance of an RLC circuit, the equation

for S21 transmission is given by;

S21 =
2Z0

2Z0 + Zc
(2.3.44)

Inserting the calculated impedances of series and parallel RLC circuits from Eqs. 2.3.42 and 2.3.43, we

find the following S21 transmission dispersions, which have been plotted in Fig. 2.8;

S21 =
Z0/L

i(ω − ωc) + ωcβ + Z0/L
for Series RLC Circuits (2.3.45)
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S21 = 1− 1/4Z0C

i(ω − ω0) + ωcβ + 1/4Z0C
for Parallel RLC Circuits (2.3.46)

As can be seen in the above equations, the effect of the input/output impedances will be to add an addi-

tional damping factor to the measured S21 transmission spectra and limit the magnitude of the resonant peak.

This factor is typically termed extrinsic damping, as it is external to the dynamics of the RLC oscillator. As

this intrinsic damping occurs at the RLC/cable interfaces due to impedance mismatch, it can be limited by

closely matching the cable impedance to the non-resonant impedance of a resonant system.

Figure 2.8: Modelled transmission plots representing the S21 of (a) series and (b) parallel RLC circuits. The
RLC parameters used to calculate these plots are equivalent for the two circuit configurations.

2.4 Magnon-Photon Coupling

2.4.1 Polaritons

In the previous sections we have discussed some of the possible effects an applied EM field can impart on

a material, however the opposite can also occur. Similar to how changing currents and moving magnetic

systems can generate EM fields, the changing electromagnetic properties of a material under the influence

of an external EM field can generate an EM field of their own[117]. In specially designed systems this

material-generated EM field is able to influence the externally applied EM field sufficiently enough to change

how it interacts with the material. In these systems a form of feedback loop is created and it is no longer

possible to consider either element of the system, the external EM field or the material dynamics, alone

without considering the influence of the other element. This process of coupling between the two systems

leads to the generation of quasi-particles known as polaritons, which are combinations of EM and material

excitations that behave as a single excited state[128].
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Mathematically, the production of polaritons in a coupled system is a result of the interplay between

photon excitations and Maxwell’s equations within a material[129]. According to Maxwell’s equations the

dispersion of EM fields through a material will be governed by[117];

ω = k/
√
ε(ω, k)µ(ω, k) (2.4.1)

where k is the propagation wavevector of the fields through the material, ε(ω, k) is the material per-

mittivity, and µ(ω, k) is the material permeability[117]. The parameters ε(ω, k) and µ(ω, k) thus deter-

mine a material’s response to an applied EM field or photon excitation, and are themselves dependent

on the lattice, spin, and charge dynamics within the material. Under certain conditions the applied field

can generate excitations within the material, such as phonons[129][130], magnons[131], excitons[132], or

plasmons[133][134], which exist as dynamic resonance structures formed by a material’s lattice, spin, or

charge states. While these material excitations are present the ε(ω, k) and µ(ω, k) parameters of the ma-

terial may be significantly shifted from their original values, significantly altering the propagation of EM

waves through the material. As there exist several different possible excitation states within materials,

polaritons are typically differentiated based on the specific material and photon excitations which are cou-

pled; for example phonon-polaritons[129][130], magnon-polaritons[117], plasma-polaritons[133][134], and

cavity-exciton-polaritons[135][136][137].

The most visible consequence of polariton generation during the interaction between EM photons and

a material is a dramatic shift in the ω − k dispersion of the EM waves near the excitation frequency of the

material[130][138]. Following Eq. 2.4.1, as the material properties ε and/or µ diverge to ±∞ values when

excitation states are generated, the k propagation vector near these excitation frequencies will similarly di-

verge to ±∞. This produces an ω − k dispersion anti-crossing in coupled polariton systems (similar to

that shown in Fig. 2.9), in contrast to the steadily increasing, single-valued, ω − k dispersions expected

in materials where EM photons cannot generate material excitations[139]. The dynamics of coupling be-

tween the EM photon and material excitations will further impact the ω − k dispersion, as the energy (ω at

resonance) of the polaritons produced during coupling will be affected if the behaviour of the material ex-

citations is changed, even if k is otherwise unchanged[128][130][137]. The energies of polaritons produced

by photons coupling to a material excitation at resonance (photons absorbed by material) are found to be

different than those produced by coupling at antiresonance (photons pass through material). As no coupled
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Figure 2.9: A plot of the modelled frequency-wavevector dispersion curves (solid lines) for phonon-
polariton coupling in gallium phosphide, modified from Ref. [138], where dashed lines indicate the un-
coupled photon and phonon dispersions. In this system changes to the wavevector inside the material,
labelled as q here in the x-axis, are influenced by material permittivity changes (described by the upper
right-hand equation) near coupling frequencies. This has the effect of producing a mode anticrossing in
the dispersion and modifying the frequency of the transverse optical (TO) phonon mode within the mate-
rial. As the longitudinal optical (LO) phonon is an antiresonance mode, it does not hybridize with light
and does not experience the same frequency shift as the TO mode. Thus a polariton gap, where no coupled
phonon-polariton modes can exist, appears between the TO and LO phonon modes.

polariton modes are stable between these resonant and antiresonant states (due to the negative permittiv-

ity/permeability values)[140], a frequency band in the ω − k polariton dispersion is produced where no EM

waves are able to propagate through the material[139]. This band is shown in Fig. 2.9 for a phonon-polariton

system as the gap between photons coupled to the transverse optical (TO) phonon mode of a material and

those coupled to the longitudinal optical (LO) phonon mode[138]. The presence of this polariton gap in

ω − k dispersions is a clear sign that polariton coupling is occurring in a system, as it indicates that the

resonant properties of both the photon and material excitations are being influenced by each other.

2.4.2 Modelling Magnon-Photon Coupling

The physical background of the coupling between photon and magnon resonance modes can be described

as an interplay between Faraday’s Law, where the varying magnetization of the magnon system during

resonance generates an electric field, and Ampère’s Law, where the varying electrical currents produced by

EM photons generate magnetic fields[117]. Within a coupled system the magnetic fields produced by the

resonant photons act to drive resonant motion in the magnon system, while the electrical fields produced by
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the magnon system influence the EM dispersion of the resonant photons. Through the effects of these laws,

the combined magnon-photon system is described as ’coupled’ as the behaviour of the magnon and photon

subsystems can no longer be described independently of each other. Although the electromagnetic forces

governing this coupling are well understood, mathematically describing coupled magnon-photon systems

is complicated by the fact the physical systems involved can contain on the order of ∼ 1023 interacting

particles[141]. Clearly it is unnecessarily complicated, not to mention impossible, to individually describe

each quantum interaction within these systems. Thus a simpler model is required to study and understand

these systems, one which is able to reduce the numerous EM interactions to a simpler form while maintaining

the important dynamic information from the systems.

Jaynes-Cummings Model

For studies focusing on exploring the quantum nature of coupled magnon-photon systems, it is generally de-

sirable to base any model on quantum optics and quantum electrodynamics. In this formulation the canonical

Hamiltonian used is one originally designed to describe spontaneous photon emission from polarized spin

systems, called the Jaynes-Cummings model[142][143]. For a large collection of spins coupled to a resonant

photon system we are able to treat the resonant spin excitations (magnons) as bosons[144][145]. Restricting

ourselves to only a single photon resonance mode of frequency ωc and the lowest energy spin mode (the Kit-

tel FMR mode of frequency ωr), the Hamiltonian describing the interactions between magnons and photons

in a coupled system can be written as (setting h̄ = 1)[146];

Hjc = ωca
†a+ ωrb

†b+ g(a†b+ ab†) + Ωd(a
†e−iωt + aeiωt) (2.4.2)

Here g describes the coupling forces between the magnon and photon systems, while a† (a) and b† (b)

are the creation (annihilation) operators for the photon and magnon excitations, respectively. The final term

in this Hamiltonian describes the oscillatory driving force acting on the photon system over a time t, with

magnitude Ωd and at frequency ω. This driving force is assumed to only interact with the photon system,

driving it to resonance, while the magnon system only experiences its effects through its coupling to the

photon system. This coupling between the magnon and photon systems is described by the third term on the

right hand side of the Hamiltonian, with g describing the strength of the coupling forces between the two

systems. To make further calculations simpler, we begin by converting this Jaynes-Cummings Hamiltonian
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to a rotating reference frame, with respect to the driving frequency ω, using the unitary transformation

R = e(−iωa
†at−iωb†bt). This gives;

H = R†HjcR− iR†
∂R

∂t

= (ω − ωc)a†a+ (ω − ωr)b†b+ g(a†b+ ab†) + Ωd(a
† + a)

(2.4.3)

The energy dissipation from this system is defined as[57];

Q =
da†

dt

da

dt
β +

db†

dt

db

dt
α (2.4.4)

with β representing damping in the photon system and α representing the damping of the magnon excita-

tions. Here we assume that the magnon damping is linear to its excitation amplitude, which is valid for

low amplitude excitations[77]. As magnon excitation amplitude increases higher order non-linear magnon

damping terms will tend to become more significant; this non-linear damping and the dynamic effects it

leads to are further explored in subsequent chapters. With our Hamiltonian, H , and dissipation function, Q,

we are able to obtain the quantum Langevin equations for the coupled system through[147];

i
da

dt
=
∂H

∂a†
+

∂Q

∂

(
da†

dt

) (2.4.5)

i
db

dt
=
∂H

∂b†
+

∂Q

∂

(
db†

dt

) (2.4.6)

This gives us the following equations of motion for our system;

i
da

dt
= (ωc − ω)a+ gb+ Ωd +

da

dt
β (2.4.7)

i
db

dt
= (ωr − ω)b+ ga+

db

dt
α (2.4.8)

If the effects of coupling are small relative to the excitation energies of both the photon and magnon

subsystems (g � ωc, ωr), then to first order we can take the dynamic motions of a and b to be essen-
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tially unchanged from the non-interacting case, where H0 = ωca
†a + ωrb

†b. From this approximation we

determine;

a = Ae−iωct (2.4.9)

b = Be−iωrt (2.4.10)

where we find that the photon and magnon excitations will have large static components (A for the photon

system and B for the magnon system) combined with a smaller oscillating component. Assuming that the

dynamics of the cavity and magnon resonances will be dominated by the large static amplitude terms, we

can write Eqs. 2.4.7 and 2.4.8 as;

i
dA

dt
= (ωc − ω)A+ gB + Ωd − iωcβA (2.4.11)

i
dB

dt
= (ωr − ω)B + gA− iωrαB (2.4.12)

For the case where the energy lost to damping effects is balanced by the energy provided to the system

by Ωd, our coupled system will be in an equilibrium state. During equilibrium the resonant amplitudes of

the photon and magnon subsystems will remain constant, meaning we can set dA/dt = dB/dt = 0, and

allowing us to write the equations of motion for our coupled magnon-photon system in the following matrix

form;

 ωc − ω − iωcβ g

g ωr − ω − iωrα


 A

B

 =

 −Ωd

0

 (2.4.13)

This matrix allows the coupled dynamics of the cavity and magnon systems to be determined based on

their response to an input signal. The term on the right-hand side of the equation describes the input forces

on the magnon and photon systems, here the only driving force is Ωd which drives the photon system at

a frequency ω. On the left-hand side of the equation we see that the amplitudes of each subsystem during

coupled resonance (A and B) are determined by a 2x2 coupling matrix based on the intrinsic and coupled

properties of the two systems. By calculating the frequencies where the determinant of this coupling matrix
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equals zero, the eigenfrequencies denoting resonant modes of the coupled system can be found. For each

eigenfrequency a respective eigenvector can also be calculated, which allows us to determine the relative

phase between the motions of the magnon and photon systems during resonance. In general, if the magnon

and photon subsystems are arranged such that their uncoupled resonance frequencies are equal (ωc = ωr)

then two resonant frequencies will be possible for the system; in-phase motion with an eigenvector of (1,1),

and out-of-phase motion with an eigenvector of (1,-1)[148]. The relative eigenfrequencies of these modes

will depend on the nature of the coupling forces between the two systems, with one resonant mode having a

resonance frequency higher than that of the uncoupled systems and the other mode having a resonance at a

lower frequency.

Harmonic Oscillator Model

Although the quantum Jaynes-Cummings Model allows us to understand the coupled behaviour of a CMP

system from a quantum background, in many cases this behaviour can also be modelled using classical meth-

ods. In these models the precise electromagnetic origins of the resonant photon and magnon systems can be

replaced by assuming that each system acts as a classical mechanical oscillator[149]. The coupling forces

g between the two systems can then be modelled as a spring connecting them, resulting in the following

well-known equations of motion for a system of coupled oscillators;

F (t) =
d2a

dt2
+ ω2

ca+ 2βωc
da

dt
− 2gωb (2.4.14)

0 =
d2b

dt2
+ ω2

rb+ 2αωr
db

dt
− 2gωa (2.4.15)

Here we describe our photon and magnon systems as 1-dimensional oscillators with respective positions

of a and b relative to their unexcited background positions. The uncoupled resonant frequencies of these

oscillators are given by ωc and ωr for the oscillators respectively representing the photon and magnon

systems. The terms on the left-hand side of these equations describe the driving forces on each oscillator;

corresponding to our CMP system we only drive the oscillator corresponding to the cavity system. The

driving and coupling forces in the system will then accelerate both oscillators (the first terms on the right-

hand side). The value of these accelerations will be further determined by the energy of the system during its

resonant state (the second terms on the right-hand side), which will be generally dependent on the resonant
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motion of the oscillators, and damping forces proportional to the velocity of motion in each oscillator (the

third terms on the right-hand side). The final terms on the right-hand side of Eqs. 2.4.14 and 2.4.15 determine

the strength of the coupling force each oscillator exerts on the other, which is relative to g, the strength of

the coupling between the oscillators, and the position of each oscillator relative to its resting position. If the

driving force F (t) is periodic of the form F (t) = fe−iωt then we can assume that the motions of the two

oscillators will also be dominated by periodic terms, such that a = Ae−iωt and b = Be−iωt where A and

B represent the amplitudes of the oscillators’ periodic motion. Inserting this into Eqs. 2.4.14 and 2.4.15

allows us to rewrite the equations in matrix form as;

 ω2 − ω2
c + i2βωωc 2gω

2gω ω2 − ω2
r + i2αωωr


 A

B

 =

 −f
0

 (2.4.16)

Although the formulation of our coupled CMP system is not exactly the same in this harmonic oscillator

model as it is in the quantum model of Eq. 2.4.13, it can be found to be equivalent for input frequencies

near coupling where ωc, ωr ≈ ω. In the next section we will see that after calculating the S21 energy

transmission through our CMP system using both the quantum and harmonic oscillator models results in

functionally identical expressions.

2.4.3 Calculating S21 Transmission via Input-Output Theorem

Because the coupling effects between magnons and photons must of necessity take place in confinement,

we cannot directly observe the dynamics they produce on the coupled systems. Thus, to observe coupling

dynamics, we must measure the effects that they have on a measurable aspect of the coupled system. For-

tunately within cavity resonators the transmission of electromagnetic fields through the cavity structure is

directly tied to the resonant properties of the system[116]. In impedance matched cavities, whose non-

resonant impedances are equal to those of the transmission lines carrying electromagnetic signals into them,

there will be no signal reflection at off-resonance frequencies. Thus in these cavities the |S21|2 value (which

determines signal transmission) will be near unity at these frequencies. However, near resonant frequencies

the production of EM resonant modes will cause the impedance of the cavity to change. This impedance

difference between the input transmission lines and the cavity will now reflect some portion of the input EM

signal, resulting in a decreased |S21|2 transmission compared to the off-resonant case. This process allows

the resonant modes of impedance matched cavities to be detected and analysed via |S21|2 dips in the mea-
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sured transmission spectrum near resonance frequencies[114]. Alternatively, the opposite is true of cavity

resonators whose impedance is not matched to the input transmission lines. In these cavities an input EM

signal will typically experience large reflection at the input/cavity interface due to the large impedance dif-

ference at non-resonant frequencies, resulting in a |S21|2 value near zero. Near frequencies that correspond

to resonance modes within the cavity the |S21|2 transmission of EM signals through the cavity will increase

as the impedance of the cavity changes and the input signals begin to drive resonance within the system.

Because of this, the resonant modes of non-impedance matched cavities can be detected and analysed via

|S21|2 peaks in the measured transmission spectrum[114]. The resonant properties of these two types of

cavities, impedance matched and non-impedance matched, are thus very similar to (and often described by)

models of resonance in Parallel and Series RLC circuits, respectively.

The basis of the input-output theory for modelling S21 transmission is that all EM signals sent into a

system must be either reflected from or transmitted through it. There are also included in the model terms

allowing for the loss of EM energy inside the system due to damping effects and input/output losses, though

these are generally small relative to the total transmitted and reflected energies[150][151]. In a coupled

CMP system such as the ones studied in this report, only the cavity subsystem is connected to and measured

via input and output ports, while the effects of the FM subsystem are measured only via its coupling effects

Figure 2.10: A diagram displaying the input-output model of S21 microwave transmission through our
coupled CMP system. Here microwave signals are sent into, and detected from, the cavity resonator. The
dynamics of the FM resonator can be detected through its coupling effects on the field dispersion within the
cavity, which will alter the cavity’s resonant properties. S21 is measured as bout/ain for bin = 0
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on the cavity system. This set-up is shown in Fig. 2.10, where the resonance amplitudes of the cavity and

FM systems (A and B respectively) determine and are determined by the input and output signals at the a

and b ports of the cavity. For the coupled CMP system described by this set-up, the input/output equations

for an impedance matched cavity can be written as;

ain − bout =
√

ΩA (2.4.17)

bin − aout =
√

ΩA (2.4.18)

For the case of a non-impedance matched cavity, the input-output model equations take the similar form;

ain + aout =
√

ΩA (2.4.19)

bin + bout =
√

ΩA (2.4.20)

These input-output equations relate the input and output fields at each of the two ports of the cavity.

The term Ω describes energy losses experienced by the fields as they travel through the system. These

energy losses are dependent on the resonance amplitude of the cavity system and are generally dominated

by damping losses inside the cavity, though extrinsic damping effects at the ports of the cavity also contribute

to reduce Ω[114]. For our quantum model we can write Ω = ωcβ − Ωex, while in our harmonic oscillator

model we will have Ω = 2iωcωβ − Ωex, with Ωex in both cases representing energy dissipated before

reaching the CMP system by extrinsic damping at the cavity ports. With the input and output fields now

defined relative to the amplitude of the cavity system via these input-output equations, and the relative

amplitudes of the cavity and FM systems defined by Eq. 2.4.13 (quantum model) or Eq. 2.4.16 (harmonic

oscillator model) we are now able to quantify the S21 transmission through the system by combining terms.

As S21 = bout/ain for the case that bin = 0, we thus find, using the quantum model of coupling for a

impedance matched cavity;

S21 = 1− ωcβ − Ωex

i(ωc − ω) + ωcβ +
g2

i(ωr − ω) + ωrα

(2.4.21)
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Using the harmonic oscillator model of coupling for an impedance matched cavity similarly yields;

S21 = 1− 2iωcωβ − Ωex

ω2 − ω2
c + 2iωcωβ +

4g2ω2

ω2 − ω2
r + 2iωrωα

(2.4.22)

Using the input-output equations for a non-impedance matched cavity as described by Eqs. 2.4.19 and

2.4.20 produces similar results, except resonance effects are in this case observed as transmission peaks.

The quantum model for a non-impedance matched cavity thus gives;

S21 =
ωcβ − Ωex

i(ωc − ω) + ωcβ +
g2

i(ωr − ω) + ωrα

(2.4.23)

In the harmonic oscillator model, a non-impedance matched cavity will give the transmission;

S21 =
2iωcωβ − Ωex

ω2 − ω2
c + 2iωcωβ +

4g2ω2

ω2 − ω2
r + 2iωrωα

(2.4.24)

We see from the above equations that although the exact form of S21 is slightly different for the quantum

and harmonic oscillator models, both represent Lorentzian peaks modified by an addition Lorentzian term

representing coupling to the FM system. In practice these two theoretical descriptions are thus equivalent.

A further theoretical model for a coupled CMP system involves describing both the cavity and FM

systems in terms of their equivalent circuit elements, as was done in Sec. 2.3.3. In this RLC circuit model,

the resonant properties of the FM system can be described as a system whose dynamics act to perturb the

impedance of the cavity. The impedance effects of an FM system coupled to a cavity can thus be modelled

with a complex impedance Zm of[124];

Zm =
−iωmK2Lω

ω − ωr + iαω
(2.4.25)

Here ωm = γM0 is the saturation frequency of the FM, with γ being the gyromagnetic ratio in the material

and M0 being the saturation magnetization. The coupling between the cavity and FM systems is in this

circuit model represented by K, this coupling parameter corresponds to the parameter used in the harmonic

oscillator model viaK = g2
√
ωc/2ωm[124]. Using the RLC circuit description of a microwave cavity given

by Eqs. 2.3.42 and 2.3.43 for Series and Parallel RLC circuits, the total complex impedance experienced by
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a EM signal through the coupled CMP system can be calculated as Z = Zc − Zm for impedance matched

cavities and 1/Z = 1/Zc − 1/Zm for non-impedance-matched cavities[114], giving;

Z =
iL

ω
(ω2 − ω2

c + 2iβωcω)− iωmK
2Lω

ω − ωr + iαω
for impedance-matched cavities (2.4.26)

Z =
ω

iC(ω2 − ω2
c + 2iβωωc)−

iωmK
2Lω

ω − ωr + iαω

for non-impedance-matched cavities (2.4.27)

Knowing the total impedance of the coupled system we can then calculate the S21 transmission through

it using the microwave network analysis used in Sec. 2.3.3, finding;

S21 =
iZ0/L

ω2 − ω2
c + 2iβωωc + iZ0/L−

ω2ωmK
2

ω − ωr + iαω

for impedance-matched cavities (2.4.28)

S21 = 1− i/4Z0C

ω2 − ω2
c + 2iβωωc +

i

4Z0C
− ω2ωmK

2

ω − ωr + iαω

for non-impedance-matched cavities

(2.4.29)

We again find that the form of these S21 equations is equivalent to those found using the quantum and

harmonic oscillator models.

2.4.4 Determining CMP Coupling Strength

Although written in slightly different forms, the coupling strength, g, used in the above models is indepen-

dent of the coupling description used. The coupling strength between EM photons and a magnetic material

described by this term is largely determined by the density of magnetic spins within the material. For a po-

larized, homogeneous, material approximated as a macrospin state the collective coupling strength between

magnetic spins and EM photons gc can be expressed as[99];
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gc =
m0

2

√
ρµ0ωcρm

h̄
(2.4.30)

= gs
√
N (2.4.31)

In the first expression, m0 is the magnetic moment of a single spin, ρ is the number of spins per unit

volume in the material, µ0 is the vacuum permeability, and ωc is the EM photon frequency. The term ρm is

the cavity magnetic filling factor and describes the AC magnetic field confinement within the material[100];

it can be roughly calculated as the fraction of magnetic field power interacting with a material relative to the

total magnetic field power within the cavity system. In large cavity systems coupling to a small magnetic

sample the value of ρm may thus be quite small, while for higher frequency systems where resonant photons

may be generated within the magnetic sample itself ρm values may be close to unity. In macrospin systems,

where all the spins of a sample are collectively excited to a single homogeneous excited state, the coupling

strength in a CMP system can be reduced to the second expression, Eq. 2.4.31[101][102]. Here the coupling

strength can be approximated as proportional to the coupling of a single magnetic spin, gs, and increases

with the square root of the number of spins within the system, N . From this expression we can clearly see

that for collectively coupled macrospin systems, coupling strength increases with sample size.
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Chapter 3

Achieving Indirect Photon-Photon Coupling

using a Resonant Magnon Bridge

In this chapter we present the results of a study which used a CMP system to produce indirect coupling

between two orthogonal cavity resonance modes. This was achieved by strongly coupling both cavity modes

simultaneously to the same resonant magnon mode of a YIG sphere. Through the use of a height-adjustable

cavity and an applied static field, we were able to study how tuning the resonant properties of both the cavity

and magnon systems affects the dynamic properties of the indirectly coupled system. These measurements

showed that the relative phase difference between the oscillations of the cavity modes has a significant effect

on the nature of the indirect coupling between them. For the case where the cavity modes oscillated in-phase

with each other, we found the energy transferred between them via indirect coupling was enhanced due to

constructive interference between their direct coupling effects on the magnon system. Conversely, for the

case where the cavity modes oscillate out-of-phase, their resonant energies were significantly reduced due

to destructive interference in the magnon system. A coupled harmonic oscillator model was developed

to accurately describe the dynamics and phase-dependent properties measured in our indirectly coupled

system.

3.1 Introduction

In CMP systems the periodic behaviours of the photon and magnon oscillations become coupled by the

effects of Ampère’s and Faraday’s Law, through which the motions of one system directly influence the
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motion of another[117]. This coupling process is not limited to interactions between two systems, it is

possible to couple any number of resonators together to create a resonant system having properties dependent

on those of its constituent subsystems. The coupling together of multiple subsystems also allows for systems

which cannot directly interact with each other to both simultaneously couple to a third system, thereby

indirectly influencing each other’s motion while using the third system as a bridge over which they can

transfer energy and dynamic information. This form of interaction is called Indirect Coupling, and has been

extensively studied in optical systems, where two non-interacting cavity modes are coupled indirectly to

each other through their interactions with a micro/nano disk resonator[153][154]. These systems are studied

for their potential use in optical information technologies, and the effects of the indirect coupling between

the optical cavities can be used for optical filtering, buffering, switching, and sensing in photonic crystal

structures[155][156].

Recent studies have also begun to use indirect coupling to link the dynamics of magnetic systems

together[45][24]. These studies individually couple resonant magnetic systems to a resonant mode of a

microwave cavity, allowing the dynamic information from one magnetic system to be transferred to another

indirectly. Indirect coupling of multiple systems at room temperature has attracted considerable attention

due to its potential applications in hybrid quantum information processing technologies based on resonant

magnon dynamics[157][45][158]; technologies similar to how indirect coupling is currently used in optical

systems. Notable advancements include tuning the indirect coupling between two YIG spheres to create

dark magnon modes, magnon resonance modes within a coupled CMP system which are out-of-phase to

the cavity resonance mode and which hold potential for use in long term data storage applications[45]. In-

direct coupling via cavity resonance modes has also recently been used to link the dynamics of magnetic

systems with quantum bits known as Qubits[24], further extending the possibilities for using CMP systems

in quantum computing roles.

The published works discussed above have demonstrated the potential for using cavity modes to in-

directly couple resonant systems together. However indirect coupling is not limited to systems connected

through cavity modes; in principle any resonant system could be used as a medium for indirect coupling,

provided that there is strong coupling between the medium and each of the coupled systems. In our exper-

iment we show that the magnon mode of a YIG sphere can be used as an indirect coupling medium, and

indirectly couple the resonances two separate cavity modes together through this magnon mode. As different

resonance modes in a cavity system are orthogonal and normally unable to influence each other[117], this
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experiment shows the possibility for using indirect coupling to exchange information between higher/lower

energy resonance modes within one system; a potential which would be of great importance in new quantum

data storage systems. Additionally, by showing that resonant magnon systems can be used as mediums in

indirect coupling, we present the possibility of creating larger chains or webs of multiple indirectly coupled

systems, whose development would be a huge step forward in quantum computing systems and networks.

3.2 Modelling Indirect Coupling

To model the effects of indirect coupling in a system of multiple oscillators, we must set up a system

of coupled equations where the motion of each of the indirectly coupled subsystems influence, and are

influenced by, a third oscillator. In this model, the dynamic equations for the indirectly coupled subsystems,

which we will refer to as systems X and Z, will appear very similar to the direct coupling case;

dX

dt
= (ω − ωX)X − iωαX − gXY Y + ΩX (3.2.1)

dZ

dt
= (ω − ωZ)Z − iωδZ − gZY Y + ΩZ (3.2.2)

with both of these subsystems having a dynamic component determined by the amplitude the third oscillator,

labelled Y. Here ωX and ωZ are the respective resonance mode frequencies of the X and Z systems, while

α and δ describe damping factors in each respective system. Each of these indirectly coupled oscillators is

driven by an external oscillating force, oscillating at a frequency ω, at amplitudes of ΩX and ΩZ respectively.

The coupling coefficients between the indirectly coupled oscillators and the third oscillator are labelled as

gXY and gZY , for oscillators X and Z respectively. These coupling forces are not generally equal, as their

exact values are determined by how each indirectly coupled oscillator interacts with the third oscillator.

In a system involving cavity resonance modes these coupling coefficients will be closely related to the

distribution of the electromagnetic fields within the cavity, which will be dependent on the frequency of

these fields. Due to the coupling with oscillators X and Z, the dynamics of oscillator Y which indirectly

couples them together will take the form:

dY

dt
= (ω − ωY )Y − iωβY − gXYX − gZY Z + Ωm (3.2.3)
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where oscillator Y has a resonance frequency ωY , damping β, and is driven by an oscillating driving force

of amplitude Ωm.

In the system we experimentally study, the two indirectly coupled modes are produced by resonance

within a cylindrical microwave cavity. Based on the design of the cavity, the resonance frequency of the TE

and TM modes produced can be determined as[114]:

ωmnp =
1
√
µε

√(
Xmn

R

)2

+
(pπ
L

)2
TM Modes (3.2.4)

ωmnp =
1
√
µε

√(
X ′mn
R

)2

+
(pπ
L

)2
TE Modes (3.2.5)

where the mnp subscripts and coefficients in these resonance mode solutions are the mode numbers of the

chosen resonance distribution within the cavity. The parameters R and L describe the radius and length,

respectively, of the cylindrical cavity. The values for permeability, µ, and permittivity, ε, are determined

by the material filling the interior of the cavity; in our experiment we use an air-filled cavity which allows

us to approximate µ ≈ µ0 and ε ≈ ε0. Finally, the Xmn term represents the n-th zero of the m-th Bessel

function and X ′mn represents the n-th zero of the derivative of the m-th Bessel function, whose values can

be calculated. Each individual TM and TE mode within a cavity is defined as orthogonal to all other modes

able to be generated within the cavity, with the modes obeying the following orthogonality relations across

the surface boundaries of the cavity;

∫
S

( ~Ei · ~Ej)dS = 0 For i 6= j (3.2.6)

∫
S

( ~Hi · ~Hj)dS = 0 For i 6= j (3.2.7)

Where ~Ei( ~Hi) and ~Ej( ~Hj) are the electric(magnetic) field vectors at the boundaries of the cavity for modes

labelled i and j respectively.

The third oscillator in our system, which indirectly couples these two cavity modes together, is a mag-

netic resonator. Strong coupling between the magnetic system and the cavity modes is achieved by exciting

the Kittel magnon mode within the FM. The resonance frequency, ωY , of this mode is dependent on the

shape and composition of the FM sample as well as on the strength of an external field, H , magnetizing the
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material[159]; for a spherical sample it can be calculated as:

ωY /2π = γ(H +HA) (3.2.8)

where γ is the gyromagnetic ratio of the magnetic material and HA is the anisotropy field in the sample,

which may vary with sample shape and the orientation of crystalline axes within the material. Knowing

that in our indirectly coupled system this resonance mode will be coupled to two distinct cavity modes,

specifically the TM012 and TE211 modes, we can write the dynamic equations of each sub-component of

the system in the form of a single coupled matrix. For a system in equilibrium, where aside from small

variations we can take
dX

dt
=
dY

dt
=
dZ

dt
= 0, this matrix will appear as:


ω − ωX − iαω −gXY 0

−gXY ω − ωY − iβω gZY

0 gZY ω − ωZ − iδω




X

Y

Z

 =


−ΩX

0

−ΩZ

 (3.2.9)

In this indirectly coupled system we set Ωm = 0 as the magnon resonance excited in the FM is not

directly driven by an external force, but only through coupling to the cavity resonance modes. We also

see in Eq. 3.2.9 that the coupling coefficient between the TE211 cavity mode (resonator X) and the magnon

resonance is π out-of-phase with the coupling between the TM012 cavity mode (resonator Z) and the magnon

resonance (becoming negative). This phase shift is introduced based on our experimental observations of

the system, and may be due to the phase difference between the oscillating magnetic fields of each cavity

mode at the specific location of the FM sample. The oscillation amplitudes of each subsystem (X, Y, Z) can

be described as X = xe−iωt+φ1 , Y = ye−iωt+φm , and Z = ze−iωt+φ2 , having vector amplitudes of x, y,

and z rotating between electric and magnetic fields (for the cavity modes) or about a plane perpendicular to

an applied field (for the magnon mode). In general the oscillation of the cavity and magnon modes will not

be exactly in phase with each other, and will have relative phase shifts of φ1, φm, and φ2 respectively, with

the value of these phase shifts varying with applied frequency and field.

From Eq. 3.2.9 we can determine the resonant frequency and linewidth of the stable resonance modes

by calculating the determinant of the 3×3 coupling matrix. Defining this matrix as M and solving for the

complex eigenfrequencies ωn, where detM = 0, allows the resonant frequency of the system to be calculated

as Re(ωn) and the normalized linewidth of these modes as Im(ωn)/Re(ωn). Because the dynamics of our
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indirectly coupled system is defined as a 3×3 matrix, we expect 3 stable resonance modes to exist for the

system. For conditions where the resonant frequencies of the individual X, Y, Z subsystems are far from

each other, the resonant behaviours of the coupled system will appear almost unchanged from the uncoupled

case. When the resonant frequencies of either of the cavity modes are brought near to the resonant frequency

of the magnon mode, we will expect to see typical coupling behaviours such as mode anti-crossing and

linewidth changes[119][121]. Only when the resonant frequencies of all three subsystems are brought near

to each other will we expect the effects of indirect coupling to become visible, with the strong coupling

forces between the cavity and magnon modes carrying dynamic information from one cavity system, across

the magnon system, to influence the motion of the second cavity system.

3.3 Experimental Set-up

The system used to study indirect coupling consisted of a cylindrical cavity containing two excited resonance

modes, each coupled to the Kittel resonance mode of a YIG sphere. The key feature allowing our system to

detect the effects of indirect coupling is a specially designed microwave cavity whose height can be adjusted.

This allows the resonance frequency of many of the resonance modes generated in the cavity to be shifted

relative to other modes, allowing the resonances of two normally distinct modes to be brought near to each

other. The cylindrical cavity was constructed from oxygen-free copper and featured a threaded plunger

which could be rotated to increase/decease the length of the inner cavity. Through careful construction we

were able to apply this design to our cavity while still maintaining a reasonable Q factor for the cavity

(measured Q ≈ 1000 − 10000 for most cavity modes). Microwave transmission through the cavity was

measured via two input/output ports, located on opposite sides of the cavity approximately 1 cm from the

base. These ports were connected to thin copper wires which extended roughly 0.5 cm into the interior

of the cavity; care was taken to ensure that these wires extended far enough into the cavity to fully excite

the desired cavity modes, but not so far as to produce excess damping effects on these modes. The inner

diameter of the cavity was 25 mm, and the plunger assembly allowed the height to be tuned over a range

between 24 and 45 mm. Within this height range we can adjust the resonance of many resonance modes of

the cavity through Eqs. 3.2.4 and 3.2.5. As can be seen from these equations, and a plot of the cavity modes

produced within the cavity in Fig. 3.1, all cavity modes are not equally affected by height changes; the main

factor being the p value of the TM and TE mnp modes numbers (modes with p = 0 are seen to be entirely
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Figure 3.1: (a) A plot of how the resonant frequency of modes within our adjustable cavity are calculated to
shift as the height of the cavity is changed. Here TE modes are plotted as dashed blue lines, and TM modes
are plotted as solid red lines. (b) The measured dispersions of the TM012 and TE211 modes in our cavity
as the cavity’s height is changed. The inset to (a) relates these mode positions to our calculated values. (c)
A schematic diagram of our height-adjustable cavity, with a spherical YIG sample placed on the bottom.
(d) and (e)Show calculated E and H field distributions within the cavity for the TM011 and TE211 resonance
modes, respectively. In these figures red indicated the presence of a strong field, while blue indicates a weak
field. The distributions are shown as cuts along perpendicular axes of the cavity.

independent of cavity height).

From the plot of the resonant frequencies of the resonant modes produced within the microwave cavity

as a function of the cavity’s height, several instances where these modes cross each other as cavity height

is adjusted can be seen. The two modes we chose to indirectly couple together were the TM012 and TE211

cavity modes, whose resonance frequencies were observed to cross near a frequency of 12.5 GHz. These

modes were chosen for study because in our cavity their crossing point occurs at a frequency and cavity

height well separated from all other cavity resonance modes, allowing their interaction with the resonant

YIG mode to be studied without interference from other modes. The damping parameters of both these

modes were measured independently and were found to be: α = 1.9 × 10−4 for the TM012 mode, and

δ = 0.91 × 10−4 for the TE211 mode. Measuring the resonance frequencies of these two modes as the

height of the microwave cavity is changed, as shown in Fig. 3.1(b), we see no signs of coupling effects

such as mode anti-crossing, indicating that the two cavity modes are non-interacting. This agrees with the

orthogonality relations in Eqs. 3.2.6 and 3.2.7, which state that all excited resonance modes is a cavity will

be orthogonal to each other and non-interacting[114].
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The ferromagnetic sample placed in our cavity was a YIG sphere with a diameter of 1 mm, held in

position by a small piece of double-sided tape. Measuring the resonant properties of this sample inside the

cavity, well away from cavity resonance modes, the saturation magnetization of the sample was determined

to be µM0 = 0.178 T, the gyromagnetic ratio was γ/2π = 28µ0 GHz/T, and the Gilbert damping was found

to be β = 1.15 × 10−4. In placing the YIG sphere inside the cavity, special care must be taken to ensure

that the microwave fields created by the TM012 and TE211 cavity modes at the location of the YIG are large

enough to produce strong coupling between each cavity mode and the FM resonance mode of the YIG. As

the TM012 mode is circularly polarized about the central axis of the cylindrical cavity [as shown in Fig.

3.1(d)], placing the YIG sample near the outer edge of the cavity with the external field applied along the

radial axis parallel to the sample’s position will maximize the possible coupling forces between this cavity

mode and the FM resonance mode[160]. The microwave field of the TE211 cavity mode is not circularly

uniform [as shown in Fig. 3.1(e)], thus care was taken to avoid placing the YIG sample in a position near

a field node of this mode. Fortunately the sample position chosen for maximum coupling of the YIG to the

TM012 cavity mode also produced strong coupling between the YIG and the TE211 mode; this YIG position

relative to these modes is shown in Fig. 3.2. It is also observed that at this location the dominant driving

h-fields, which are in the ẑ-plane normal to the length of the cavity, will be π out-of-phase with each other.

This phase difference is accounted for in Eq. 3.2.9 by the coupling constants between each cavity mode

and the YIG magnon mode having opposite signs, as the coupling forces each cavity mode will exert on the

Figure 3.2: Plots of the h-field distributions in the ẑ-plane (along length of cylindrical cavity) near the YIG
sample location for, showing approximate (a) Field Amplitudes and (b) Field Vectors for the TM012 cavity
mode. Similarly shown are the (c) Field Amplitudes and (d) Field Vectors for the TE211 cavity mode. The
approximate location of the YIG sample in relation to these mode distributions is indicated. Note that at the
YIG location the field vectors are roughly anti-parallel to each other, resulting in a phase shift of π between
these two modes at this location.
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magnon system will be opposite each other.

During analysis of indirect coupling, we measured the S21 transmission through the coupled cavity/YIG

system. This was done using a Vector Network Analyser (VNA), which sent a microwave signal into the

microwave cavity then measured the transmission/reflection response of the coupled system. The output

microwave power sent into the system from the VNA was 1 mW. An external static field applied along the

radial axis of the cylindrical cavity allows the YIG sample to be excited to resonance; through tuning the

strength of this field the resonant frequency of the Kittel FMR mode can be changed according to Eq. 3.2.8.

Measurements performed after the YIG had been inserted into the cavity showed that the anisotropy field

of the sample was µ0HA = 0.0294 T. This value is dependent on the orientation of the YIG’s crystalline

axes relative to the applied field, thus care was taken to maintain the sample in a stable configuration during

measurements. The ability to control the cavity resonance mode frequencies through tuning cavity height,

and to control the FM magnon mode frequency through applied static field strength, allowed us to perform

numerous S21 transmission measurements with the resonance modes of each subsystem of the indirectly

coupled cavity/YIG system at different frequencies relative to each other. This permitted us to study the

properties of the CMP system as it is tuned from an uncoupled, to a coupled, and finally to an indirectly

coupled state.

3.4 Coupling 2 Cavity Modes via Indirect Coupling

The effect of inserting a YIG sample into our cavity resonator is initially, before the effects of coupling

are accounted for, to slightly shift the resonance frequencies of the excited cavity modes through the small

perturbations the YIG makes to the electromagnetic properties of the cavity. Because the size of of the YIG

sample is so small relative to the volume of the microwave cavity, these perturbative shifts will generally

be minor compared to those produced by coupling effects. The effects of the inserted YIG sample on the

resonant modes of the cavity only become really significant when the sample is brought near resonance.

Near its resonant conditions, the YIG begins to respond to the effects of the cavity resonance, with the

oscillating cavity fields driving the magnetic moment of the sample to resonance. The oscillatory motion

of the magnetic moment in turn generates its own microwave field within the space of the cavity through

Faraday’s Law. These generated fields alter the resonant cavity mode field distributions, affecting both the

resonant characteristics of the cavity modes and how they drive the magnetic sample. This process of the

64



Figure 3.3: (a) In a system of uncoupled resonators, the motion of any single resonator does not influence the
behaviour of other elements of the system. By simultaneously coupling two uncoupled resonators to a third
resonant system, an indirectly coupled system is created. Here even though the cavity modes cannot directly
interact, their mutual coupling to the YIG’s resonance allows them to use it as bridge to exchange dynamic
information between cavity modes. (b) The measured (markers) and modelled (solid lines) frequencies of
the TM012 and TE211 cavity modes as functions of cavity height near their crossing point at a height of
36 mm. The inset shows a diagram of the Cavity/YIG system. (c) The transmission S21 of our indirectly
coupled system as a function of external field strength. This measurement was taken at a cavity height of
36.5 mm [dashed line in (b)]. (d) The S21 transmission of our system in an uncoupled state [no YIG in
cavity]. Here the cavity height is 36.5 mm and the external field strength is µ0H = 0.412 T. (e) The S21
transmission of the system in an indirectly coupled state [resonant YIG in cavity], with cavity height and
applied field strength unchanged from (d).
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resonant cavity and magnetic subsystems both affecting and being affected by the dynamics of each other is

the basis of coupled CMP systems.

In Fig 3.3 we can see the effects of this coupling on the TM012 and TE211 cavity modes. Fig 3.3(d)

shows the two modes measured at a cavity height of 36.5 mm without the YIG sample inserted into the

cavity, where no coupling will be present. In this plot we can see the transmission peaks representing cavity

resonance modes near microwave frequencies of 12.36 GHz for the TM012 mode and near 12.38 GHz for the

TE211 mode. After placing the YIG sample into the cavity, setting the height again to 36.5 mm, and applying

an external field µ0H = 0.412 T to shift the YIG subsystem’s resonance frequency, ωm, to a value between

the two cavity modes, we can see the effects of coupling between the cavity and FM modes in Fig. 3.3(e). In

this plot we see that this coupling will produce 3 stable resonance modes within the CMP system. Although

in this situation we can no longer identify any of these modes as purely cavity or FM based, we can observe

that none of these modes are identical in frequency or amplitude to the uncoupled TM012 and TE211 modes

shown in Fig. 3.3(d). The change seen in both these cavity modes due to the presence of the YIG sample

indicates that both are coupled to the YIG resonance mode at the conditions shown in Fig. 3.3(e), though

we still require more information about the dynamics of this coupling before we can determine whether or

not indirect coupling between the cavity modes present.

As the strength of the external static field on the cavity/YIG system is adjusted we are able to see the

dynamics of the coupled modes change as the YIG resonance frequency ωy shifts relative to the uncoupled

cavity mode resonance frequencies; these dynamic changes are shown in Fig. 3.4 for a cavity height of

36.5 mm. In Fig. 3.4(a) we can see the resonance frequencies of the three coupled modes produced within

the CMP system; when these modes are far from each other, and the cavity/FM subsystems only weakly

coupled, we can label these resonance signals as H-field independent cavity modes or H-field dependent FM

modes, but when coupling effects are strong the resonance signals can no longer be described as uniquely

produced by a single subsystem of the CMP. Instead, where the dynamics of the subsystems are coupled

together the resonance signals represent the combined oscillatory motions of both cavity and FM systems.

This mixing of mode features is especially clear when we observe Fig. 3.4(b), which shows the evolution of

the normalized line widths, ∆ω/ω, of the three stable resonance modes of the CMP system as the applied

static H-field is adjusted. Here we see that as the YIG resonance mode (low frequency mode for H-fields

much less than coupling) is moved near to each of the cavity modes their damping effects begin to mix and

their observed linewidths each begin to move towards an average value. The H-field range over which these
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Figure 3.4: (a) The ω-H dispersions and (b) damping evolutions of the coupled modes in our system.
The measured data (points) are compared to calculations from Eq. 3.2.9 (solid lines). (c) The measured
amplitudes (points) of the coupled modes in our system, |S21|2, are seen to be dramatically enhanced or
suppressed during coupling. These measurements are again compared to calculations from Eq. 3.2.9 using
the same fitting parameters as used in (a) and (b). (d) The relative phase between the TM012 and TE211

cavity mode oscillations, φ1 − φ2, calculated during indirect coupling. The in-phase position of Mode B is
seen to correspond to its maximum amplitude in (c).

linewidths are affected by coupling between cavity and FM modes matches that over which the resonance

frequencies of the modes see variations due to coupling effects, showing that the resonance frequency and

linewidth changes are both intrinsically connected to CMP coupling in our system.

Using the dispersion and linewidth measurements shown in Fig. 3.4 we can compare our measured

results with those predicted using the indirect CMP coupling model of Eq. 3.2.9. Taking the resonance

frequencies and damping values of the cavity and YIG resonant modes measured far from coupling, we

can use fit the calculated mode frequencies to the measured mode frequencies to determine the coupling

coefficients between the YIG sample and the TM012 cavity mode, gXY , and between the YIG sample and

the TE211 cavity mode, gZY . Based on this fitting, indicated by the solid lines in Fig. 3.4(a), these coupling

parameters were calculated to be gXY = 60 MHz and gZY = 23 MHz. These coupling coefficients were

also fitted for cases where the two cavity modes were well separated from each other (not shown), with

similar values being obtained. The reason for the TM012 mode being much more strongly coupled to the
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YIG resonance signal than the TE211 mode is not immediately clear, but is likely related to the differing

microwave field dispersions of the two modes in the vicinity of the YIG sample[161][162].

The key information indicating that indirect coupling is present in our CMP system is found when we

analyse the |S21|2 transmission amplitudes of the resonant modes during coupling. In Fig. 3.4(c) we plot the

transmission amplitudes of the observed resonances labelled Mode A, Mode B, and Mode C in Fig. 3.4(a).

Far from coupling we can label these modes as almost entirely produced by the oscillatory motion of one

of the three subsystems of our coupled CMP system; at very low applied H fields Mode A represents the

ferromagnetic resonant mode of the YIG sample and Modes B and C would represent the cavity TM012

and TE211 modes respectively, while at very high H fields Modes A and B are the respective TM012 and

TE211 cavity resonances and Mode C would be the FM resonance of the YIG sample. During coupling these

modes can no longer be described by the motions of only a single oscillator, but by the combined motion

of all three coupled subsystems. Observing the amplitudes of these modes near coupling in Fig. 3.4(c)

we see very distinct amplitude changes for each of the three observed modes, with Mode B experiencing

a clear increase in |S21|2 transmission amplitude within roughly the same H field range where Modes A

and C experience decreases in amplitude. These amplitude changes occur near H fields where the YIG and

Cavity subsystems are expected to experience maximum coupling forces from each other, indicating that

these amplitude changes are tied to CMP coupling dynamics within the system.

Although amplitude changes are commonly a feature in coupled CMP systems they generally only occur

in one direction, with the amplitude of coupled modes either increasing or decreasing as the system moves

through the maximum coupled state and oscillatory energy is increasingly transferred from one subsystem

to another. As we can generally only measure the dynamics of one of the coupled subsystems, in our

system the resonance fields of the cavity modes, this energy transfer will result in amplitude decreases when

energy is transferred to unmeasured subsystems. In Fig. 3.4(c) we see this as Modes A and C respectively

move to lower and higher H fields their amplitudes approach zero, due to their resonant motion becoming

increasingly dominated by the YIG FM resonance, which is more difficult to detect in our CMP system.

Comparing the measured |S21|2 amplitudes to those predicted by Eq. 3.2.9 (solid lines), we see that the

amplitude maximum observed in Mode B is a predicted feature of an indirectly coupled system which does

not occur in coupled systems of two oscillators. The difference between the measured and predicted |S21|2

amplitudes of Mode B in Fig. 3.4 is not immediately clear, but may be a result of additional damping forces

produced during indirect coupling which are not present in our model.
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With the resonance frequencies and damping of the three modes present in our CMP system measured

we now know the measured eigenvalues of the 3×3 coupling matrix of Eq. 3.2.9. For each coupled mode we

can thus determine the corresponding eigenvector, which relates the oscillation phase differences between

each of the three subsystems of our CMP during their coupled motion. These relative phase differences are

unique to each mode and vary as the applied H field is changed and the coupling forces between the three

subsystems shifts. In Fig. 3.4(d) we plot the relative phase differences between the TM012 cavity mode,

φ1, and the TE211 cavity mode, φ2, showing how the oscillatory motions of the cavity subsystems changes

during coupling. In this plot we see that the phase difference between the two cavity systems, φ1 − φ2,

behaves very differently for each of the observed modes in our CMP system. While for Modes A and C

the phase difference increases from π/2 (essentially uncoupled) to nearly π (out-of-phase oscillations) near

coupling, for Mode B the phase difference instead decreases from π/2 to 0 (in-phase oscillations) during

coupling. These drastic changes in relative phase between the two cavity systems during coupling provide

definitive proof that indirect coupling is present in our system, since the TM012 and TE211 cavity resonances

are entirely orthogonal to each other and normally unable to interact. The fact that in coupled CMP modes

these two independent cavity resonances are seen to oscillate either in-phase or out-of-phase with each other

indicates that information is being transferred between them via the resonant YIG mode within the cavity,

creating an indirectly coupled system.

Comparing the phase differences between the two cavity systems for each measured CMP mode in Fig.

3.4(d) to the measured amplitudes of these modes in Fig. 3.4(c) provides even more information about

the dynamics of the indirectly coupled system. Doing this we see that the |S21|2 amplitude peak in Mode

B occurs at roughly the same H field where the TM012 and TE211 cavity resonances are almost exactly

in phase with each other. This indicates that while indirectly coupled in Mode B the two cavity systems

oscillate in-phase with one another and are able to constructively interfere with each other and transfer

energy between them via their mutual coupling to the YIG resonance, increasing measured amplitude of

Mode B. Conversely, we see that for Modes A and C the observed |S21|2 amplitude decreases roughly occur

at H fields where the two cavity systems oscillate almost entirely out-of-phase with each other, indicating

that in these modes the two cavity systems are destructively interfering with each other while indirectly

coupled through the YIG.
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3.5 Controlling Indirect Coupling

In CMP systems involving a single cavity mode coupled to a magnon mode, the magnitude of resonance

frequency and linewidth shifts produced through CMP coupling is observed to increase as the resonant

properties of the subsystems are moved closer together[163][164][165]. In the case of an indirectly coupled

system like ours, where the dynamics of two independent cavity oscillators are coupled through their mutual

interactions with a resonant FM system, the strength of the indirect coupling will be proportional to the

strengths of the direct coupling forces between the FM oscillator and the cavity subsystems. To produce

strong indirect coupling between the two cavity systems we thus require their uncoupled resonance frequen-

cies to be as near as possible to each other; this allows the FM resonator to be strongly coupled to both

cavity systems simultaneously. To study the effects that the resonant frequency separation between the cav-

ity modes has on the indirect coupling between them we can make use of our adjustable-height microwave

cavity, which permits us to tune the separation between the cavity modes by changing the dimensions of the

cavity.

In Fig. 3.4(c) we saw that one of the resonant modes of the CMP system, labelled Mode B, reaches a peak

|S21|2 transmission amplitude during coupling. The H field location of this amplitude peak was measured,

and found to correspond to theH field where Mode B crosses the dispersion of ωy, the uncoupled resonance

frequency of the YIG Kittel mode resonance. This crossing can be seen in Fig. 3.4(a). Although the exact

Figure 3.5: (a), (b), (c) The |S21|2 transmission spectrum of the observed coupled modes for different
frequency differences between the TM012 and TE211 cavity modes, plotted as ωZ − ωX . (d) The amplitude
of Mode B at the in-phase point of the two cavity modes, plotted as a function of ωZ − ωX .
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position of this crossing is dependent on the coupling strengths between the cavity and FM subsystems, as

well as the relative resonant frequencies and damping of the coupled subsystems, the location of the |S21|2

amplitude peak of Mode B, and the location of in-phase oscillation between the cavity subsystems, is seen

to follow this crossing position even as these values are shifted.

Fig. 3.5 shows a plot of the |S21|2 transmission amplitude of Mode B relative to the uncoupled distance

between the TM012 and TE211 cavity modes (ωZ − ωX ). Here we see that as the distance between the

two cavity modes decreases, the measured amplitude of Mode B increases, indicating that an increasing

amount of energy is being transferred between the two cavity resonances as the indirect coupling forces

between them grow larger. Figs. 3.5(a), (b), and (c) show transmission measurements taken at the crossing

H field for various cavity resonance separation frequencies, with Modes A, B, and C labelled. In these

plots we can clearly see that as the two cavity modes are moved closer together the amplitude of Mode

B increases. We can also observe from these plots that as the |S21|2 transmission amplitude of Mode B

increases, the amplitudes of Modes A and C correspondingly decrease (with Mode C no longer even visible

in the leftmost plot). This confirms that for Mode B, where the cavity modes move in-phase with each

other, the energy contained within the cavity subsystems is increased through constructive interference over

their indirect coupling, with this constructive interference increasing as the cavity resonances are moved

together. For Modes A and C, where the cavity modes are almost directly out-of-phase with each other,

the energy within the cavity subsystems is decreased by destructive interference which also increases as the

cavity resonances are moved nearer. Over the same height range which we adjusted the cavity, the change

in damping of the cavity resonances was seen to change by less than 10%, showing that the observed Mode

amplitude changes are indeed caused by the dynamics of indirect coupling, as opposed to mere physical

changes to the coupled subsystems.

3.6 Summary

In summary our experimental observations show that our CMP system allows us to not only observe the

effects of indirect coupling, but also to influence them through the use of our height-adjustable cavity.

The accurate description of these indirect coupling effects using our indirect coupling model in Eq. 3.2.9

indicates that the dynamics of indirect coupling can be described through an extension of the standard CMP

coupling model. However some features of indirect coupling, such as the observed increase/decrease in the
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|S21|2 transmission amplitude of the measured CMP modes as the dynamics of the indirectly coupled cavity

modes move towards in-phase/out-of-phase motion, are unique to indirectly coupled systems. The ability to

control the transmission amplitude of the coupled CMP modes through changing the strength of the applied

static field or the dimensions of our microwave cavity is another notable feature of our study. An apparatus

which is able to both indirectly couple resonant systems together and control the dynamics and strength of

this coupling would be useful in tunable optic and microwave filtering devices.
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Chapter 4

Linking Cavity Magnon-Polaritons to Other

Coupled Polariton Systems

In this chapter the connection between polaritons produced by magnon-photon coupling in cavity systems

and polaritons produced by photons coupling to other material excitation states is explored. Although the

light-matter interactions in all coupled polariton systems are expected to be the same, differences between

how photons are introduced to material systems during coupling and differences in measurement techniques,

mean polaritons produced in CMP systems have transmission spectra which have been difficult to reconcile

with polariton coupling models used for other systems. By modelling magnon behaviour during CMP cou-

pling using an effective permeability, based on the volume fraction of magnetic and non-magnetic materials

within a cavity during CMP coupling, we show that the observed differences between polaritons in cavity

systems and those in other light-matter coupled systems is a result of differing proportions of resonant pho-

tons interacting with material excitations during coupling. Using a height adjustable-cavity, allowing the

resonant photon mode to be adjusted during CMP coupling, measurements similar to those performed in

other polariton systems were performed in our CMP system. These measurements showed that the polari-

ton gap, which is indicative of the creation of polaritons during light-matter coupling, is present in CMP

systems, but with a much reduced amplitude. The measured CMP polariton gap was found to agree with

that predicted by our effective permeability model, confirming that this model can accurately describe how

interactions between photons and material excitations can produce polariton states in coupled light-matter

systems.
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4.1 Introduction

At a quantum level interactions between photons and materials can be described through the creation of

quasi-particles called polaritons, which mediate the transfer of energy and information between the photon

and material excitations[166]. There are many varieties of polariton which can be created, with the type

mainly depending on the specific material excitation states involved in the coupling[167][168][169][170].

In general these polariton coupled systems display many common features, including mode anti-crossing,

damping evolution, and phase induced line shape changes near the coupling point[124][137]. At a basic

level, since the underlying light-matter interactions will remain the same, one would expect the effects of

polariton coupling to be independent of the individual material excitations involved in the coupling. How-

ever, one feature commonly observed in higher frequency measurements of phonon-polaritons (produced by

infrared photons coupling to collective lattice vibrations in a material) and exciton-polaritons (produced by

optical photons coupling to electron hole or quantum well excitations in a material) has till now not been ob-

served in measurements performed on cavity MP systems. Called the ’Polariton Gap’, this feature appears as

a frequency band in which no stable polariton modes are possible[167][169][171][172]. This polariton gap

is a result of interactions between photon excitations and the dynamic permeability/permittivity of materials

near resonance and antiresonance frequencies[173]. In phonon-polariton and exciton-polariton systems this

gap can be directly observed and measured by tuning the resonant frequency (k wavevector) of the input

photons to the coupled system[167][172]. As the polaritons produced in these systems will have different

energies for photons coupled to resonant and antiresonant material excitations, and since between these

material excitation states large damping effects block photon propagation[140], a frequency band where no

coupled polariton mode can be excited (for any k value) becomes visible as the photon system is tuned.

In contrast, coupling in CMP systems like the ones used in our experiments are typically measured by

tuning the resonant behaviour of the magnon system. This produces transmission dispersions which contain

mode anti-crossing and lineshape changes, but notably do not exhibit a polariton gap[124][137]. The reason

for this may be because even though typical dispersion measurements in CMP systems might find regions

where coupled polariton modes cannot be excited, the specific frequency of these regions will change as the

magnon system is tuned, leaving no clear polariton gap frequency band where coupled modes are absent

for all magnon configurations. The absence of a visible polariton gap in CMP systems has been of some

interest to researchers in the field of magnon-photon coupling, since without confirmation that this gap is
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present the exact nature of light-matter coupling in cavity systems is unclear and a common coupling model

for both CMP and other polariton systems cannot be developed.

It is clear that the main reason for the disagreement between measurements of CMP coupling and cou-

pling in other polariton systems is due to the specific process of taking measurements in each system. In

higher frequency polariton systems it is relatively easy to control the k wave vector of photons input into the

system by changing their frequency[171][172]. Within cavity systems however, the frequency (k wave vec-

tor) of photon excitations is determined by the dimensions of the cavity, making consistent measurements

of coupling to a magnon mode at different k values difficult without specially designed systems. To study

the connection between magnon-polaritons in cavity systems and polaritons produced in other systems we

design a microwave cavity with an adjustable height, allowing us to produce a coupled CMP system which

can be measured by tuning either the magnon resonance state (through changing static field strength) or the

photon k vector (through changing cavity height). The ability to perform both types of measurements on a

single coupled CMP system gives us an unprecedented ability to compare them, both to each other and to

measurements performed on other coupled systems. We are thus able to use these comparisons to develop a

polariton coupling model which describes all observed features of both CMP and other coupled systems.

4.2 Modelling Magnon-Polariton Coupling

The interaction between electric and magnetic fields, and thus the interaction between photon and magnon

systems, is governed by Maxwell’s equations[116][117]. From these equations, the propagation of an elec-

tromagnetic wave travelling through a material can be described through its wave vector k;

[k2 − ω2ε(ω)µ(ω)]hem = 0 (4.2.1)

where ω is the frequency of the wave and hem is its amplitude. The parameters ε(ω) and µ(ω) respectively

describe the permittivity and permeability of the material the wave is travelling through; in general both

these material properties may depend on the frequency of the travelling wave[7].

The effects of the relation described by Eq. 4.2.1 in magnetic materials near resonant frequencies are

plotted in Fig. 4.1, which shows how the permeabilities and wave vectors of three related systems are

expected to change based on the frequency of an input electromagnetic signal. The plots in the left column

of this figure describe an electromagnetic wave travelling through air. In this case, the relative permittivity
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and permeability of air are independent of frequency (at least within the frequency ranges we measure)[7].

As shown for µair in Fig. 4.1(b), there will be no magnetic coupling effects influencing the travelling wave’s

propagation. The resulting ω − k dispersion can thus be described as k2 = (ω2εairµair)/c
2, and is shown

in Fig. 4.1(c).

The centre column of Fig. 4.1 describes the case for an electromagnetic wave travelling through a mag-

netic material. This scenario is related to the systems used to study phonon-polariton and exciton-polariton

coupling (except in these systems it is typically material permittivity changes that produce resonant features),

where photons are sent directly into a material sample to study coupling interactions. In this case the relative

permeability of the magnetic material, µm will have a strong dependence on the frequency of the electro-

magnetic signal, especially near its resonant frequency. For simplicity, and because for many magnetic

materials the change in ε is minor compared to the change in µ[174], we shall assume ε is approximately

constant within the frequency range we are interested in here (in phonon-polariton and exciton-polariton

systems the reverse assumption is applied). For a magnetic material polarized by an external field parallel to

the propagation of the input electromagnetic signal (and to k), we can expect MP coupling effects to exert

the following relation on µm in response to the electromagnetic signal[174];

µm = 1 + χL + χT (4.2.2)

where, following from the Landau-Lifshitz-Gilbert equation (for small damping), the variables χL and χT

refer to the longitudinal and transverse elements of the Polder tensor[175]. These elements are here defined

as;

χL =
γM0ωFMR

ω2
FMR − ω2

(4.2.3)

χT =
−iγM0ω

ω2
FMR − ω2

(4.2.4)

The parameters γ and M0 describe the gyromagnetic ratio and saturation magnetization, respectively, of

the magnetic material. The term ωFMR describes the uncoupled ferromagnetic resonance frequency of the

material, which for a bulk medium would occur at ωFMR = γH , where H is the strength of an applied

static field[174].
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Figure 4.1: (a) In an empty cavity [filling factor η = 0] the permeability of the air inside (b) is independent
of ω. (c) In this cavity, the magnitude of the propagation wave vector of EM waves, k, through the cavity
increases linearly with ω. (d) For the case where the EM wave is travelling through a magnetic material
[η = 1] the material permeability will exhibit a strong dependence on ω. (e) At ωFMR the value of µm
diverges, and at a higher frequency (called the antiresonance frequency), ωAR, crosses zero. (f) The change
in µm produces a wave vector k which approaches ∞ at ωFMR and equals zero at ωAR. Between these
two values a negative µm value results in an entirely imaginary k value. (g) For a cavity partially filled
with both air and a magnetic material, we can use Eq. 4.2.5 to approximate the filling factor of the system.
(h) Modelling for η = 0.1, we see the effective permeability of the system, µeff , behave similar to µm in
(e), but with the distance between ωFMR and ωAR reduced by a factor of η. (i) For a partially filled cavity
the k vector also behaves similar to the η = 1 case, but again with the distance between ωFMR and ωAR
reduced by a factor of η. Between ωFMR and ωAR the imaginary k values [dashed blue lines] seen in (f)
and (i) prevent EM waves from passing through the material, meaning no resonance modes can be observed
at these frequencies.
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Looking at µm as frequency, ω, is changed in Fig. 4.1(e), we see several important features related

to the coupling between photon and magnon systems. The most notable occurs at ω = ωFMR, where we

observe µm becoming divergent and approaching ±∞. This divergent behaviour indicates that at ωm the

material is almost entirely absorbing the incident wave, an effect caused by the magnetic moments in the

material being excited into resonant motion by the electromagnetic wave. This absorption of the incident

wave can be seen in Fig. 4.1(f), where at ωFMR we can see that the the k vector of this wave approaches∞,

indicating that electromagnetic propagation is completely blocked at this frequency. This feature of magnon-

photon coupling is known as ferromagnetic resonance and has been well studied[76][159]. A second notable

feature in Fig. 4.1 occurs at a frequency ωAR = ωFMR + γM0, where µm = 0 in the material. At this

frequency a behaviour known as ferromagnetic antiresonance (FMAR) occurs, where coupling between the

photon and magnon systems produces dynamics within the material that make it almost entirely transparent

to electromagnetic waves at this frequency[175][176][140]. This transparency is visible in Fig. 4.1(f) where

k approaches zero at ωAR, resulting in near perfect transmission of electromagnetic waves through the

material.

For frequencies between ωFMR and ωAR we can see in Fig. 4.1(e) that the value of µm is negative.

Referring back to Eq. 4.2.1 we can see that this will result in a wave vector, k, which has a purely imag-

inary value. The result of this imaginary wave vector is to induce a large amplitude decay in the incident

electromagnetic wave as it attempts to pass through the material. This effectively blocks the transmission of

all signals with frequencies between ωFMR and ωAR, leaving a visible frequency gap in the ω − k disper-

sion shown in Fig. 4.1. Within this frequency range MPs are being generated as the electromagnetic wave

interacts with the magnetic material, however they experience large damping forces (due to k having a large

imaginary value) and quickly decay. Unlike the case for other ω values, there is no stable mode possible for

MPs within this frequency range. The presence of this µm < 0 frequency range is a characteristic feature of

polariton coupling and the ω − k frequency gap that is produced is termed a ’Polariton Gap’, an expected

feature in systems coupling light-matter dynamics.

In our coupled CMP system, instead of having our EM wave travel through a homogeneous medium,

we confine it to a microwave cavity partially filled with a magnetic material. This situation is described

by the plots in the right-hand column of Fig. 4.1. In this case, we cannot define a single varying µm to

be present throughout the system, as multiple materials with different permeabilities are present within the

cavity. However, we can find an approximate solution to Maxwell’s equations by calculating an average µm
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value for the coupled system. To do this we calculate the filling factor, η, of the magnetic material within the

cavity. This filling factor will depend on the field distribution, hem, within the cavity and magnetic material,

and can be calculated as the total magnetic energy stored in the magnetic material as a fraction of the total

magnetic energy stored in the entire coupled CMP system[100]. Defining Vm as the volume of the magnetic

material within the cavity, and Vcav as the total volume of the coupled CMP system (equal to the internal

volume of the cavity), the filling factor can be written as;

η =

∫
Vm
|hem|dV∫

Vcav
|hem|dV

(4.2.5)

In general, mode dependent field distributions within both the cavity and magnetic subsystems will make

calculating an exact value for η difficult. However, if we assume a roughly homogeneous field distribution

within the system, then the integrals in Eq. 4.2.5 become very simple to calculate and the filling factor for

the CMP system can be described as the volume ratio of the system’s component subsystems, η = Vm/Vcav.

This allows us to define the effective permeability, µeff , in the CMP system as;

µeff = µ0

(
µair

Vcav − Vm
Vcav

+ µm
Vm
Vcav

)
= µ0(1− η + ηµm)

(4.2.6)

where for the second expression we have approximated µair = µ0. Applying this effective permeability to

our expression for the wave vector in Eq. 4.2.1, the microwave dispersion in our coupled CMP system can

be expressed as;

k2 = ω2εµ0(1− η + ηµm) (4.2.7)

It should be remembered here that the magnetic permeability, µm, still has the frequency dependence de-

scribed by Eqs. 4.2.2, 4.2.3, and 4.2.4. The right-hand side plots in Fig. 4.1 show the expressions for µeff

and k as functions of input ω for the case of η = 0.1. This case would represent a coupled CMP system

where the cavity is 10% filled with a magnetic material, which is still a significantly higher η value than we

experimentally study (in our coupled CMP measurements typically η ∼ 2× 10−5), but allows us to see the

effect of changes to η. In Fig. 4.1(h) we see that, as a function of ω, the behaviour of µeff for η = 0.1 is very
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similar to that of µm seen in Fig. 4.1(e). Both µm and µeff are observed to diverge to ±∞ at ω = ωFMR

and both permeabilities are later seen to cross zero at a somewhat higher ω value. However, the frequency

distance between ωFMR and this zero crossing is seen to be significantly reduced for the CMP case where

η = 0.1. Similarly, in Fig. 4.1(i) we that a visible polariton gap remains for η = 0.1, but that the position of

ωAR (still corresponding to µeff = 0) has moved closer to ωFMR, reducing the magnitude of the frequency

gap. On inspection we can see that the magnitude of the polariton gap has been reduced by a factor of 0.1

by changing η from 1 to 0.1, indicating that a direct correlation exists between the filling factor, η, and the

size of the polariton gap in a CMP system.

Taking the case for η = 0, representing the EM wave travelling through an empty cavity shown in Fig.

4.1(a), we can see that Eq. 4.2.7 becomes exactly equal to the equation for an EM wave in free space and

the µ and k plots in Figs. 4.1(a) and (b) are reproduced. If we take the case for η = 1, representing a cavity

entirely filled with material and similar to the system modelled in Fig. 4.1(d), we find that µeff = µm

and the MP coupling plots of Figs. 4.1(e) and (f) can be reproduced. Thus we find that by modelling the

overall permeability of a coupled CMP system as an average effective permeability using Eq. 4.2.6 allows us

not only to reproduce EM free-space dispersions and dispersions similar to those seen in phonon-polariton

and exciton-polariton systems, but also to model the dispersions of coupled CMP systems. This effective

permeability, µeff , thus provides a theoretical link between uncoupled EM waves, polariton coupling in

phonon and exciton systems, and coupling in CMP systems, showing that the same physical description of

polariton coupling can be used to describe all three systems. From the effects changes to µeff are expected

to have on the observed polariton gap we can also expect that in experimental CMP systems such as ours

(where η ∼ 2 × 10−5) the magnitude of the measured polariton gap will be significantly reduced, though

should remain detectable using the right measurement techniques.

4.3 Experimental Set-Up

To produce our coupled CMP system, we inserted a small sample of ferrimagnetic Yttrium Iron Garnet

(YIG) into a cylindrical microwave cavity. This YIG sample was spherical in shape and had a diameter of

1 mm; further details of the sample are given in Sec. 2.2. During measurements this sample was positioned

on the bottom of the microwave cavity, somewhat offset from the inner edge (shown in the inset of Fig.

4.2); this location was chosen for the YIG as it was expected to experience strong microwave fields from
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the cavity mode (TM011) during coupling, and was a convenient location to keep the sample stable during

measurements (no special YIG sample holder needed to be designed and placed inside the cavity). By

applying an external static field, H , to the YIG sample we can excite it to resonant motion. Measuring the

resonant frequency of the sample well away from cavity resonance modes (to minimize coupling effects)

allows us to determine the material properties of the YIG. The measured resonance signal (the Kittel mode)

occurs at a frequency ωFMR/2π = γ(H +Ha), with the gyromagnetic ratio measured to be γ = µ0 × 176

GHz/T and the anisotropy field of the spherical sample µ0Ha = −2.4 mT. Further measurements on the

YIG sample determined its saturation frequency to be ωm/2π = 4.984 GHz and its damping coefficient to

equal α = 1.5×10−4. Since we find α� 1, we can assume that the magnon damping effects in this system

will be small, allowing us to remove these damping terms from our calculations.

The key to our ability to measure a polariton gap within a coupled CMP system is our use of a specially

designed microwave cavity with an adjustable height, the same cavity used in the experiments of the previous

section. Using a plunger-type mechanism this cylindrical cavity is able to adjust its height, h, over a range

between h = 25− 45 mm, allowing the wave vector, k, of the cavity system to be adjusted. This cavity was

constructed of oxygen-free copper and had a radius of R = 12.5 mm. For this cavity design, the resonant

frequency of the TM011 mode (which has a circular EM field distribution about the cavity axis) can be

calculated from;

ωCav/2π =
1
√
εµ0

√(
X01

R

)2

+
(π
h

)2
=

1
√
εµ0

√
k2⊥ + k2z

(4.3.1)

Here the term X01 refers to the first root of the zeroth Bessel function. In the second part of Eq. 4.3.1

we have relabelled the components within the square root term to k⊥ representing the radius-dependent k

wave vector component perpendicular to the axis of the cavity, and kz representing the height-dependent

wave vector component parallel to the axis of the cavity (labelled ẑ). The total k wave vector of the cavity

system is a combination of k⊥ and kz where k2 = k2⊥ + k2z . From Eq. 4.3.1 we can see that kz = π/h,

thus as we adjust the height of the cavity we are able to see ωCav shift. This is shown in Fig. 4.2, where

we compare measured ωCav values for the TM011 cavity mode to those calculated from Eq. 4.3.1. As

the height of the cavity decreases we can see corresponding increases in ωCav, similarly increasing the
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Figure 4.2: A plot of the ω − kz dispersion of the TM011 resonance mode of our empty cavity. The solid
curve is calculated from Maxwell’s equations, while the markers denote measured resonance frequencies of
this mode at various cavity height (kz) values. Due to the geometry of our cavity, the TM011 mode frequency
does not equal zero at kz = 0, but approaches a minimum value indicated by ωCutoff . The inset depicts a
diagram of the cavity/YIG system used during our measurements.

height of the cavity results in a general decrease in ωCav. However, we can note from Fig. 4.2 that as

kz → 0(h → ∞) the resonance frequency of the TM011 mode approaches a minimum value defined by

ωCutoff/2π = k⊥/
√
εµ0 = 9.186 GHz. This minimum k wave vector is generated entirely by the radial

k⊥ component of the TM011 cavity mode; as this component is independent of cavity height we have no

way to change it in our system.

During measurements we examine the dynamics of the coupled CMP system by measuring the mi-

crowave transmission, |S21|2, through the system. Due to physical limitations, our height-adjustable cavity

is unable to be adjusted over the entire kz = 0 −∞ range; the kz range able to be measured can be inter-

preted from the spread of measured data points in Fig. 4.2, and ranges from kz/2π ∼ 0.12 to kz/2π ∼ 0.22.

However, measuring over this range we are able to gather sufficient data to be able to fit our measured data

to Eq. 4.2.7 and use this fitting to extrapolate the resonant frequencies of the system for extremely high/low

kz values. By changing the resonant properties of either the cavity subsystem (through changing cavity

height) or the YIG sample (though changing applied H field strength) we are able to perform measurements

of the resonant modes of the coupled system as functions of either kz or H , with each measurement type
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produced leaving the other subsystem unaffected except through coupling effects. This allows us to study

the connection between the polariton gap seen in ω − kz measurements and the Rabi gap (the ω separation

between coupled modes when ωCav = ωFMR) observed in ω −H measurements.

4.4 ω − kz Dispersion Measurements

We first investigate the effects of magnon-photon coupling in our CMP system by measuring the microwave

transmission, |S21|2, through the system as a function of cavity height, h, and microwave frequency, ω,

producing an ω − kz dispersion plot like that shown in Fig. 4.3. During these measurements an external

static field with a constant magnitude of µ0H = 0.4 mT was applied to the system, directed along the axial

vector of the YIG sample’s position relative to the cavity as shown in the inset of Fig. 4.2. This applied field

will polarize the magnetic moments within the YIG sample, causing it to undergo ferromagnetic resonance

at a measured (far from coupling) frequency of ωFMR/2π = 10.35 GHz. This uncoupled YIG resonance

frequency is indicated by the horizontal dashed line in the ω − kz plot in Fig. 4.3(a). Leaving ωFMR

constant, we can adjust the height of the cavity to move the resonant frequency of the TM011 cavity mode,

whose uncoupled dispersion is indicated by the diagonal dashed line in Fig. 4.3(a), near to ωFMR. As

ωFMR and ωCav are brought near to each other the coupled CMP resonant modes, indicated by maxima

in the measured |S21|2 dispersion of Fig. 4.3, are seen to display anti-crossing behaviour indicative of MP

coupling, separated by a distinct Rabi gap. At a frequency somewhat higher than ωFMR a second mode

anti-crossing is visible, produced through CMP coupling between the TM011 cavity mode and a spin wave

mode within the YIG sample. Although the physics of CMP coupling are expected to be the same for

all magnon resonance modes when coupled to a cavity mode, for this study we choose to focus on CMP

coupling displayed by the Kittel FM resonance mode at ωFMR.

The ω − kz coupling dispersion measured in Fig. 4.3(a) can be accurately described by the CMP

coupling model developed in Eq. 4.2.7; in Fig. 4.3 the modelled dispersion is plotted as solid lines. Since

the properties of both the YIG and cavity subsystems were both measured independent of coupling effects,

the only unknown parameter when fitting the data in Fig. 4.3(a) is the value of the filling factor, η. For

our coupled CMP system, a good fitting is obtained for η = 2.3 × 10−5; this value is similar to the ratio

between the volumes of the YIG and cavity subsystems (Vm/Vcav ∼ 2.7×10−5 for kz near coupling), which

supports the validity of our use of η to calculate the effective permeability of the CMP system. Although
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Figure 4.3: (a) An ω − kz plot of the microwave |S21|2 transmission through our cavity/YIG system at an
external field strength of 400 mT. Here the solid blue curve fits this data to the model in Eq. 4.2.7 using
η = 2.3 × 10−5, and the black dashed lines indicate the positions of the YIG and cavity resonance modes
for the case of no coupling. The Rabi coupling gap is half the frequency gap between the upper and lower
modes, measured at the kz value where the uncoupled cavity and YIG modes would cross. (b) Zooming
in near ωFMR, we see that the resonance frequencies of the measured modes do not approach the same ω
value for kz → 0 and kz → ∞. This leaves a frequency gap, ∆ωCMP (highlighted in yellow), where no
resonance modes can occur. A second coupling feature can be seen in (a) near ω/2π = 10.38 GHz, and is
the result of a spin wave magnon mode coupling to the photon system.

our measured range of kz is not sufficiently large to allow us to directly see a polariton gap in the ω − kz

dispersion in Fig. 4.3, we can use our fitted value of η from this plot to extrapolate the resonance frequencies

of the coupled CMP system at extreme kz values. As discussed previously in this section, the magnitude

of the CMP polariton gap, ∆ωCMP , will be equal to the difference between the YIG FMR and FMAR

frequencies. These frequencies are defined by the cases where kz → ∞ (ωFMR) and kz → 0 (ωAR), thus

from Eq. 4.2.7 we expect the following dispersion limits in our CMP system;

ω(kz →∞) = ωFMR (4.4.1)

ω(kz → 0) ' ωFMR +
γM0η

1−
(
ωCutoff
ωFMR

)2 (4.4.2)

From the above equations, we can see that a notable influence on the coupled behaviour of a CMP system

is contained within the [1−(ωCutoff/ωFMR)2]−1 term in the kz → 0 case. This term is produced by the k⊥
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component of the cavity’s wave vector and remains constant even as kz goes to zero. In our coupled system

this term becomes quite significant when ωFMR is near the value of ωCutoff ; for the data in Fig. 4.3 this

term is seen to increase the value of ∆ωCMP by a factor of 5, compared to the case where ωCutoff = 0. It

would be possible in theory to remove this term by setting the external field such that ωFMR � ωCutoff ,

this would essentially eliminate the influence of the k⊥ wave vector component on CMP coupling within the

system and result in our ω − kz dispersions being more similar to the ω − k dispersions measured in other

polariton coupled systems, however this would be impractical for our measurements.

A complication in measuring the ω − kz dispersion of our CMP system is that our method for tuning

kz (through changing the height of the cavity) will also shift the value of the filling factor, η. As a result

of this connection, a true fitting of the dynamics of our coupled CMP system to Eq. 4.2.7 would be very

inaccurate over large spans of kz . Our actual measured range of kz , as seen in Fig. 4.3, is relatively narrow

which allows us to approximate η as constant within this range. The comparison of this measured data to

Eq. 4.2.7 fits the data within the measured range to this constant η value, then extends outside the measured

range to extreme kz values to allow us to see the polariton gap, ∆ωCMP , produced by the fitted η value.

If our system were able to cover the large kz ranges required to experimentally see the polariton gap we

would see that, due to the changes to η as kz is changed, the magnitude of the gap would steadily decrease

as kz → 0 due to the effect of η = Vm/Vcav → 0. Fig. 4.3(b) shows a magnified plot of Fig. 4.3(a) at

frequencies near ωFMR; at this scale the polariton gap, ∆ωCMP , is clearly visible as the difference between

the modelled CMP resonance modes at high and low kz values. Because η is so small within our coupled

system the measured polariton gap, ∆ωCMP /2π = 0.54 GHz, is significantly smaller than that typically

seen in optical MP coupled systems where η = 1. However the presence of this polariton gap in our fitting

results, and the agreement between our fitted and measured η values, shows that this filling factor is an

important factor controlling the effective permeability, and thus coupling dynamics, of CMP systems.

4.5 ω −H Dispersion Measurements

Due to the necessity of using a specially designed adjustable cavity to perform ω − kz dispersion measure-

ments, most studies of coupled CMP systems perform simpler ω−H dispersion measurements to investigate

coupling dynamics in these systems. Despite the fact that many features of coupling are found in both types

of measurements, both theoretical and experimental studies have shown that the polariton gap, ∆ωCMP ,
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is not visible in ω − H dispersions[47][177]. To compare these two measured dispersion types to each

other we set our adjustable cavity to a constant height of h = 31.6 mm (kz/2π = 0.158 cm−1) as the

strength of the external static field, H , was adjusted. This produces a constant cavity resonance frequency

of ωCav/2π = 10.34 GHz, which allows us to write the CMP coupling described in Eq. 4.2.7 as;

(ω2 − ω2
Cav)(ω − ωFMR)− (ηγM0)ω

2 = 0 (4.5.1)

Looking at this expression we can see that it is equivalent to coupling expressions for CMP systems

developed using quantum[178][179], equivalent circuit[180][181], and transfer matrix models[182], where

in Eq. 4.5.1 we let the coupling coefficient g = ω
√
ηγM0. Coupling between magnon and photon systems

is dependent on the magnetization of the ferromagnetic material ωm = γM0 (how easy it is for the electro-

magnetic field to influence the motion of the FM) and the relative number of photons and FM spins in the

coupled system (odds of a photon and spin to interact). For a cavity system with many more excited photons

Figure 4.4: An ω-H plot of the |S21|2 transmission through our cavity/YIG system at a cavity height of 31.6
mm (kz/2π) = 0.158 cm−1). Similar to Fig. 4.3, the solid blue curve fits this measured data to the model in
Eq. 4.2.7 using η = 2.3× 10−5, with the dashed black lines indicating the positions of the YIG and cavity
resonance modes for the case of no coupling. Here the Rabi coupling gap is half the frequency gap between
the upper and lower modes, measured at the µ0H field where the uncoupled cavity and YIG modes would
cross. For equal η values, ∆ωRabi will be equal in measured ω− kz and ω-H dispersions. A smaller second
coupling feature is visible in this dispersion and is produced by a spin wave magnon mode coupling to the
photon system, the same as seen in Fig. 4.3(a).
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than spins, such as ours, the filling factor provides a simple method for estimating the relative chance of

interaction between the photon and magnon system, as in CMP systems coupling is typically proportional

to the square root of the number FM spins within the system. Of course this approximation assumes a ho-

mogeneous field distribution within the coupled system; the exact coupling coefficient between the magnon

and photon components will depend on the exact EM field dispersions within the CMP system.

By tuning the applied static field strength, H , applied to our CMP system, and leaving kz constant, the

ω − H dispersion in Fig. 4.4 was produced. This plot has a very similar appearance to the ω − kz plots

shown in Fig. 4.2, except that now ωCav is seen to remain constant while ωFMR is seen to linearly increase

withH . Where the resonance frequencies of the two systems approach each other we can clearly see a mode

anticrossing between the coupled modes, indicating strong coupling between them. By choosing to set the

height of our cavity such that kz/2π = 0.158 cm−1 in Fig. 4.4, we chose the value where ωFMR = ωCav

in the ω − kz dispersion of Fig. 4.2. In doing this we ensured that the applied field at the point where

ωCav = ωFMR in Fig. 4.4 would occur at µ0H = 400 mT, which is the magnitude of the constant H

field applied to the coupled CMP system in our previous ω − kz measurements. Setting H and kz to these

Figure 4.5: (a) A plot of the magnitude of ∆ωRabi (triangles) from ω − kz measurements as a function of
η, compared to values predicted from Eq. 4.5.2 (dashed curve). (b) A plot of the magnitude of ∆ωCMP

(circles) from ω − kz measurements as a function of η, compared to values predicted from Eqs. 4.4.1 and
4.4.2 (dashed curve).
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specific values means that during our ω − H and ω − kz dispersion measurements the conditions where

ωFMR = ωCav will be exactly the same; µ0H = 400 mT and kz/2π = 0.158 cm−1. This allows us to

directly compare the frequency differences between the two coupled CMP modes in both dispersions. The

frequency gap between coupled modes at the ωCav = ωFMR point is called the Rabi gap, ∆ωRabi, and is a

typical feature found in coupled multimode systems driven by an oscillating field[183]. From Eq. 4.5.1 the

magnitude of the Rabi gap can be calculated (assuming η < 5%) as;

∆ωRabi =

√
1

2
ηγM0ωCav (4.5.2)

The relation between this Rabi gap and the square root of ηγM0, representing the total number of spins

averaged over the volume of the cavity, is consistent with the predictions of other models[184]. Fitting the

measured dispersion in Fig. 4.4 to Eq. 4.5.1 (solid lines) we can obtain a good fit to the observed coupled

modes for η = 2.3 × 10−5, the same η value used to obtain a good fitting of the ω −H dispersion in Fig.

4.2 to Eq. 4.2.7. The agreement between both fittings indicates that the magnitudes of the polariton gap,

∆ωCMP , and the Rabi gap, ∆ωRabi, are both related through the filling factor of the CMP system, η. The

individual relations of both these gaps to η is further shown in Fig. 4.5, where the square root dependence

of ∆ωRabi and the linear dependence of ∆ωCMP are both seen to agree well with values from the measured

ω −H and ω − kz dispersions.

4.6 Summary

In summary, we have developed a model which links polariton coupling behaviours in cavity MP systems

to those observed in other polariton systems through the effective permeability of the CMP system. In

CMP systems this effective permeability value is calculated using the volume fraction of magnetic and non-

magnetic materials inside the cavity, and thus is related to the proportion of resonant photons interacting

with the magnon mode during coupling. Using a specially designed cavity with an adjustable height, we

were able to adjust the resonance frequency of the cavity mode during CMP coupling. This allowed us to

perform ω − k dispersion measurements on the CMP system similar to those typically performed in other

polariton systems. These measurements revealed that a polariton gap is produced during CMP coupling, with

its reduced amplitude (compared to other polariton systems) agreeing with that predicted by our effective

permeability based coupling model. Changing the magnon resonance frequency, by adjusting the strength
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of the static field applied to the CMP system, further allowed us to measure the ω −H dispersion and Rabi

coupling gap of the system during coupling. These measurements showed that both the ω − k polariton

gap and ω − H Rabi gap are related through effective permeability of the CMP system. By accurately

reproducing the results of ω − k dispersions typical in measurements of polariton systems and ω − H

dispersions typical in cavity MP measurements, our model shows that the dynamics of polariton coupling

in both systems are identical. Further, by relating the coupling gaps of both measurements to the relative

permeability of the CMP system, we reveal that this value is crucial for controlling the dynamics of polariton

coupling in cavity MP systems.
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Chapter 5

Non-Linear Damping in CMP Systems

In this chapter we explore the effects of non-linear dynamics in CMP systems. Using a Fabry-Perot-like

microwave cavity, we excite the magnon mode in a YIG sphere to high amplitudes where non-linear Kerr

effects become significant. When this magnon mode is coupled to a cavity mode to produce a CMP system,

the bistabilities produced by the non-linear magnon system are reproduced in the transmission lineshape

of the coupled CMP modes. By tuning the resonant frequency of the magnon system relative to that of

the cavity system we are able to produce bistable behaviours in the CMP system beyond those found in

uncoupled magnon systems. Developing a model for non-linear behaviour in CMP systems through the

addition of a non-linear Kerr term to the coupled CMP Hamiltonian, we are able to accurately reproduce

the array of bistability features observed in our CMP system. Further, this model allows us to calculate the

conditions necessary to produce bistable behaviour in CMP systems, allowing the limits of bistable CMP

features to be accurately determined. The method used to produce our non-linear CMP model is additionally

not limited to non-linearity in magnon systems, and can be extended to other coupled systems containing

non-linear components.

5.1 Introduction

During resonance, we have seen that the dynamics of a magnetic moment can be analysed using harmonic

oscillator models, and are in many respects quite similar to those of a classical swinging pendulum sys-

tem. Pendulum systems have been studied for centuries and consequentially the equations governing their

motion are well known[185][186]. However, in most cases these equations cannot be solved analytically;
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meaningful results can only be approximated for low amplitude oscillations. This is also the case for res-

onant behaviour in ferromagnetic materials, which can be analytically solved only for cases where their

magnetic moments are nearly parallel to an applied field[149]. As for many experimental systems the power

actually transferred to the resonant system is relatively small, most studies of ferromagnetic resonance are

able to accurately describe their results using low amplitude, parallel-to-field, approximations. However, as

studies of ferromagnetic resonance became easier and more frequent, interest in the physics behind and the

effects of higher amplitude resonance were increased[77][187].

In 1955 Anderson and Suhl studied the effects of high amplitude resonance in ferromagnetic systems

and found that effects similar to those found in pendulum systems, notably a resonance peak shift, should be

present[188]. These effects were soon experimentally verified in 1958 by high power resonance studies on

YIG[189]. However, due to the difficulty in effectively transferring power to ferromagnetic systems, some

of the more notable features of high power resonance remained undetected. It wasn’t until 2009, when Y.S.

Gui et al. published the results of experiments using their newly developed spin dynamo (which is able

to efficiently inject a much stronger microwave field into ferromagnetic samples than traditional radiative

measurements) that large resonance peak shifts and the notable ’foldover’ behaviour were first measured in

ferromagnetic conductors[77]. These results came at a critical period in the field of spintronics, for methods

to generate dc currents through spin rectification and spin pumping had just been developed[62][85]. As

both these methods rely on the resonant motion of ferromagnetic materials, the new spin dynamo technique

for injecting strong microwave fields into samples allowed many new studies in the background of these

effects to be performed[190][191].

By placing a magnetic material with non-linear dynamics into a cavity, strong coupling interactions

between the photon and magnon systems can produce entirely new non-linear dynamics[192], such as en-

hanced cooling in optomechanical systems[193][194]. Recently, the first bistabilities have been produced

in coupled MP systems composed of a small YIG sample placed in a high-Q 3D microwave cavity[195].

The cavity used in this experiment is specially designed with a third port connected to a loop antenna in the

vicinity of the YIG sphere which efficiently drives the magnon mode at high powers to produce non-linear

effects. Inspired by this new discovery, we created a non-linear CMP system by placing a highly polished

YIG sphere in the center of a Fabry-Perot-like cavity[196]. This CMP system allows a high input power to

excite the YIG magnon mode to the non-linear regime, while allowing us to use the same frequency to both

drive and measure the dynamics of the CMP system. This experimental set-up reveals a rich array of CMP
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bistability features, beyond what has been seen in uncoupled magnon systems.

5.2 Non-Linear Damping in Ferromagnetic Resonance

To understand the effects of high amplitude ferromagnetic resonance, we begin with the Landau-Lifshitz-

Gilbert (LLG) equation[149]. This equation, at both high and low powers, governs the dynamics of a

magnetic moment, ~M , in the presence of a periodically oscillating magnetic field;

∂ ~M

∂t
= −γ ~M × ~Heff +

α

M0

~M × ∂ ~M

∂t
(5.2.1)

Here ~Heff describes the effective magnetic field felt by the moment (both static and periodic), γ is the

gyromagnetic ratio, α is the Gilbert damping term, and ~Heff represents the total magnetic field acting

on the moments (both static and periodic). The expression M0 represents the vector magnitude of the

ferromagnetic moment, M0 = | ~M |. If we assume our ferromagnetic sample to be a thin film normal to

the ẑ direction and align a large static external field perpendicular to the film then the vector orientations

of both ~M and Ĥ can be written as combinations of a large static component and much smaller oscillating

components;

M̂ = (mx,my,Mz) (5.2.2)

Ĥeff = (hcos(ωt), hsin(ωt), H −Mz) (5.2.3)

where it is assumed that the static field is large enough to overcome the demagnetizing effects produced by

the shape of the sample, allowing the magnetic moments to oscillate around an axis parallel to the applied

static field, H . The electromagnetic field applied to the sample to induce resonance is taken to have a

propagation vector parallel to ẑ, producing periodic magnetic fields of magnitude h and frequency ω along

the x̂ and ŷ directions. Inserting these ~M and ~Heff terms into the LLG equation produces the following

coupled differential equations;

∂mx

∂t
= −γ(H −Mz)my + γMzhsin(ωt) +

α

M0
(−∂my

∂t
Mz +my

∂Mz

∂t
) (5.2.4)
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∂my

∂t
= γ(H −Mz)mx − γMzhcos(ωt) +

α

M0
(
∂mx

∂t
Mz −mx

∂Mz

∂t
) (5.2.5)

∂Mz

∂t
= −γ(mxhsin(ωt)−myhcos(ωt)) +

α

M0
(−∂mx

∂t
my +mx

∂my

∂t
) (5.2.6)

Although in general there will exist solutions to this system of coupled equations, they can be quite

complicated and not analytically solvable. However, we can arrive at an approximate solution by using Bo-

goliubov and Mitropolsky’s asymptotic method for general oscillating systems[197]. This method assumes

that the damping forces felt by the moment are small relative to the forces on the moment from the applied

external fields. Using this assumption, we first calculate an approximate solution by neglecting the damping

components in Eqs. 5.2.4, 5.2.5, and 5.2.6. These first order solutions are;

mx = acos(ωet) (5.2.7)

my = bcos(ωet+ ϕ) (5.2.8)

M2
0 = m2

x +m2
y +M2

z (5.2.9)

In these solutions we have defined a and b to be the respective amplitudes of the moment’s oscillations in

the x̂ and ŷ directions, with ϕ being the phase difference between these oscillations. ωe is the eigenfrequency

of the system when damping factors are neglected. For the case where mx,my �Mz , we can approximate

Eq. 5.2.9 as;

Mz ≈M0 −
m2
x +m2

y

2M0
(5.2.10)

For ease of calculations when we are taking mx and my to be small, it is often assumed that Mz ≈ M0.

Taking this assumption, the Kittel equations of motion for this system can be found. However, by letting

Mz vary with mx and my (and thus oscillation amplitude) we are able to find several interesting non-linear

features in this resonant ferromagnetic system. With these zero-damping first order solutions we can now

return to the full expressions of Eqs. 5.2.4, 5.2.5, and 5.2.6; inserting Eqs. 5.2.7, 5.2.8, and 5.2.10 we
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can now attempt to calculate solutions for the damped LLG equation. From the first two of the coupled

differentials we get;

−aωesin(ωet) = −bγ(H−M0)cos(ωet+ϕ)− γb

2M0
[a2cos2(ωet)+b2cos2(ωet+ϕ)]cos(ωet+ϕ) (5.2.11)

−bωesin(ωet+ϕ) = aγ(H−M0)cos(ωet)+
γa

2M0
[a2cos2(ωet)+ b2cos2(ωet+ϕ)]cos(ωet+ϕ) (5.2.12)

Because we are analysing a harmonic oscillating system, we know that sin(ωet) and cos(ωet) cannot

equal zero for all t values. Therefore we expect the sums of the cos(ωet) and sin(ωet) terms in Eqs. 5.2.11

and 5.2.12 will be equal to zero. Expanding the squared components in the last term of our equations using

a Fourier series, and taking up to the cubic term, we find the following relations;

cosϕ = 0 (5.2.13)

aωe + γb(H −M0 +
a2 + 3b2

8M0
)sinϕ = 0 (5.2.14)

γa(H −M0 +
3a2 + b2

8M0
) + bωesinϕ = 0 (5.2.15)

From the first of these relations we can see that the phase difference between the x̂ and ŷ oscillations, ϕ, is

±π/2, which intuitively makes sense for these orthogonal axes. If we assume that the motion of the magnetic

moment is roughly circular about the applied field axis, then the amplitudes of the x̂ and ŷ oscillations will

be equal, with a ≈ b. With these relations, Eqs. 5.2.14 and 5.2.15 tell us that the eigenfrequency of the

oscillating magnetic moment will be ωe = γ(H −M0 +
a2

2M0
), with corresponding eigenvectors of (1,±1).

Here we first see the effects of letting Mz vary in Eq. 5.2.10; for the case of negligibly small amplitude

oscillations (a = 0) the eigenfrequency of the magnetic moment will be ωe = γ(H − M0), however

allowing larger amplitude oscillations causes Mz to decrease and results in a higher eigenfrequency.

As we have taken the precession of the magnetic moment to be circular, we will have
∂Mz

∂t
= 0. This
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allows us to replace our amplitude parameters with a term representing the cone angle θ (angle between ~M

and external field ~H), where a = b = M0sinθ. Inserting this cone angle term into Eqs. 5.2.7, 5.2.8, and

5.2.10, we find the following expressions for the motion of the magnetic moment during resonance;

mx = M0sinθcos(ωet+ φ) ≈M0θcos(ωet+ φ) (5.2.16)

my = M0sinθsin(ωet+ φ) ≈M0θsin(ωet+ φ) (5.2.17)

Mz = M0cosθ ≈M0

(
1− θ2

2

)
(5.2.18)

where we have taken θ as small enough that sinθ ≈ θ. The parameter φ is inserted here to represent possible

phase differences between the precession of the ferromagnetic moment and the oscillations of the applied

microwave field driving this motion. We can now take these non-linear equations describing ~M and insert

them into our coupled LLG Eqs. 5.2.4 and 5.2.5. Combining terms from these equations gives the following

expression;

[
γ

(
H −M0 +

1

2
M0θ

2

)
− ω

]
θsin(ωt+ φ) + αω

(
1− θ2

2

)
θcos(ωt+ φ) = γ

(
1− θ2

2

)
hsin(ωt)

(5.2.19)

Expanding sin(ωt + φ) and cos(ωt + φ) using Fourier expansions and collecting sin(ωt) and cos(ωt)

terms as before allows us to find the following expression relating the cone angle of the moment’s resonance,

θ, to the amplitude of the applied oscillating field, h.

θ2 =
(1− θ2/2)2h2(

H −M0 +
1

2
M0θ2 −

ω

γ

)2

+

(
αω

γ

)2(
1− 1

2
θ2
)2 (5.2.20)

Taking ω/γ+M0 = H0 (the applied field needed to excite resonance for θ = 0) and αω/γ = ∆H (the line
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width of the resonance signal for θ = 0), and assuming that θ2/2� 1, this relation can be simplified to;

θ2 =
h2(

H −H0 +
1

2
M0θ2

)2

+ ∆H2

(5.2.21)

This relation is similar in form to that of a non-linear driven pendulum, and we shall see that it shares

many of the non-linear pendulum’s characteristic features as well. Calculating the resonance field, Hr, of

this system, we find;

Hr = H0 −
1

2
M0θ

2 = H0 −
1

2
M0

h2

∆H2
(5.2.22)

where the later term arises because at resonance θ2 = h2/∆H2. Thus we see that, just like in a swinging

pendulum system, the applied field(frequency) required to produce resonance will decrease(increase) pro-

portional to the square of the power of the driving force on the system. Calculating the dependence of θ

on h using Eq. 5.2.21 we find that for small h values a unique cone angle, θ, is produced for any applied

field value. However, at larger h values, as the shift in Hr increases, we will find that within a certain range

of H values multiple stable θ solutions are possible. This range is termed the ’foldover’ region, due to the

resonance peak shifting far enough away from its θ = 0 value that it begins to fold over itself. The presence

of this foldover produces a hysteresis-like state within the foldover range, where H field measurements are

held at one of two stable θ values until the field is shifted outside of the foldover range. Once outside of the

foldover range sudden jumps in the cone angle θ of the resonance may occur as the multiple stable states

within the foldover range converge onto a single stable state outside. The H field position of these jumps

can be calculated as the fields where the slope of dθ/dH reaches infinity in Eq. 5.2.21. Calculating this

derivative;

dθ

dH
= −

θ

(
H −H0 +

1

2
M0θ

2

)
(
H −H0 +

1

2
M0θ2

)(
H −H0 +

3

2
M0θ2

)
+ ∆H2

(5.2.23)

This derivative will reach infinity when the denominator equals zero. Using the quadratic equation we

can calculate two real roots for θ, describing the cone angle θ at which each of the two expected jumps will

96



occur.

θ2up =
−4(Hup −H0)− 2

√
(Hup −H0)2 − 3∆H2

3M0
(5.2.24)

θ2down =
−4(Hdown −H0) + 2

√
(Hdown −H0)2 − 3∆H2

3M0
(5.2.25)

where the subscripts up and down indicate whether the sudden change in the dynamics of the system is due

to an increase in θ or a decrease in θ. If we simplify these expressions by assuming that the linewidth of the

signal, ∆H , is significantly smaller than the resonance shift due to non-linear effects, so that (Hup/down −

H0)
2 � 3∆H2 (assumes high relatively high amplitude oscillations), we can calculate the approximate

cone angles where these Hup and Hdown jump positions will occur. We thus find;

θ2up ≈
−2(Hup −H0)

M0
(5.2.26)

θ2down ≈
−2(Hdown −H0)

3M0
(5.2.27)

We can then insert these cone angle values into Eq. 5.2.21 to find the relation between the H field

position of these jumps and the strength of the input oscillating field h.

Hup ≈ H0 −
3

2
h2/3M

1/3
0 ∝ P 1/3 (5.2.28)

Hdown ≈ H0 −
1

2

h2

∆H2
M0 ∝ P (5.2.29)

where the total power input into the system by the oscillating field, P , is taken as proportional to h2. Thus

we see that these jump positions have very different dependences on the parameters of the system. While

the Hup point will decrease relative to P 1/3 and be proportional to M1/3
0 , the Hdown point will decrease

linearly with input power and will have an inverse relationship to ∆H2.
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5.3 Extending Non-Linear Damping to Coupled CMP Systems

A non-linear magnetic system coupled to a resonant microwave cavity can be described by the following

Hamiltonian (where h̄ = 1)[195];

H ′ = ωca
†a+ ωmb

†b+Kb†bb†b+ g(a†b+ ab†) + Ω(a†e−iωt + aeiωt) (5.3.1)

where a† and a describe the creation and annihilation operators of the cavity photons at a frequency of ωc,

and b† and b describe the creation and annihilation operators of magnons within the magnetic material at a

frequency ωm. Thus the first two terms of this Hamiltonian describe the individual energies of the cavity and

magnon systems. The fourth Hamiltonian term describes the energy produced through coupling interactions

between the two systems, with a coupling strength g. The final term in the Hamiltonian describes the

energy transferred to the cavity system by an applied oscillating force of magnitude Ω and frequency ω.

The non-linearity of the FM system in this Hamiltonian is contained within the third term which depicts an

energy proportional, through the Kerr constant K, to the square of the FM system’s amplitude. This square

relation is found in uncoupled FM resonance and is a result of the Kerr effect, where the refractive index

of a material changing due to its resonant motion[198][199]. To make the following calculations simpler,

we first transform the Hamiltonian of our coupled system to a rotating reference frame, with respect to the

applied driving field, using the unitary transformation R = e−iωa
†a−iωb†b. This gives;

H = R†H ′R− iR†∂R
∂t

= (ω − ωc)a†a+ (ω − ωm)b†b+Kb†bb†b+ g(a†b+ ab†) + Ω(a† + a)

(5.3.2)

The dissipation function, Q, for this system can be classically defined as;

Q =
da†

dt

da

dt
β +

db†

dt

db

dt
(α+ α′b†b) (5.3.3)

Here β describes the intrinsic linear damping parameter of the cavity photon, while α is the linear damping

of the magnon excitation. The term α′ represents the effects of non-linear damping related to the Kerr effect,

which is proportional to the amplitude of the magnon excitation (b†b)[190]. From the Hamiltonian and the
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dissipation function we can determine the dynamic equations of motion for our coupled system using;

i
da

dt
=
∂H

∂a†
+

∂Q

∂(da†/dt)
(5.3.4)

i
db

dt
=
∂H

∂b†
+

∂Q

∂(db†/dt)
(5.3.5)

The resulting coupled dynamic equations are;

i
da

dt
= (ωc − ω)a+ gb+ Ω +

da

dt
β (5.3.6)

i
db

dt
= (ωm − ω)b+ 2Kb†b+ ga+

db

dt
(α+ α′b†b) (5.3.7)

For the coupled anharmonic oscillator systems described above, the exact dynamics may be quite com-

plicated and are not always analytically solvable. However if we initially neglect the damping and non-linear

terms we can take the system to have the periodic solutions a = Ae−iωt and b = Be−iωt, with A and B

representing the respective amplitudes of the cavity and magnon excitation modes. Inserting these periodic

solutions into Eqs. 5.3.6 and 5.3.7 results in;

i
da

dt
= [(ωc − ω)A+ gB + Ω− iωβA]e−iωt (5.3.8)

i
db

dt
= [(wm − ω)B + 2Kb†bB + gA− iω(α+ α′b†b)B]e−iωt (5.3.9)

If the system is driven at equilibrium, where the energy supplied by the driving force is matched by the

energy lost to damping, then we expect the system to be stable over relatively long periods. In this case we

can state that
da

dt
=
db

dt
= 0 and b†b = |B|2. This now gives us the equations of motion for our coupled

CMP system;

(ωc − ω − iωβ)A+ gB + Ω = 0 (5.3.10)
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(ωm − ω − iωα+ (2K − iωα′)|B|2)B + gA = 0 (5.3.11)

As these 2 equations contain 2 unknowns (A and B) we are able to solve for these unknowns and

determine the dynamics of the system based on its intrinsic properties. Using Eq. 5.3.10 to solve for A and

inserting this solution into Eq. 5.3.11 now gives us;

(
ωm − ω − iωα+ (2K − iωα′)|B|2 − g2

ωc − ω − iωβ

)
B =

gΩ

ωc − ω − iωβ
(5.3.12)

Before proceeding with further analysis, we simplify this equation to;

(δm + 2K|B|2 − iω(α0 + α′|B|2))B =
gΩ

ωc − ω − iωβ
(5.3.13)

Using the expressions;

δm = ωm − ω −
g2(ωc − ω)

(ωc − ω)2 + (ωβ)2
(5.3.14)

α0 = α+
g2β

(ωc − ω)2 + (ωβ)2
(5.3.15)

In these expressions δm describes the resonance frequency of the coupled FM magnon without non-

linear effects. We see that the shift due to this coupling is largest near the frequency of the cavity resonance

mode it is coupled to, and for the case of a linear FM system (K = 0 and α′ = 0) the frequency shift of

the magnon mode calculated here will be the same as was calculated in previous chapters. Similarly, α0

describes the damping of this coupled magnon mode without non-linear effects. With these substitutions we

can clearly see that the remaining terms on the left-hand side of Eq. 5.3.13 relate to the non-linear resonance

effects of the FM. By multiplying Eq. 5.3.13 by its complex conjugate expression, we can now obtain the

following expression which links the frequency shift produced by non-linear effects to the strength of the

applied oscillating field;

((δm + ∆m)2 + (α0ω +
α′ω

2K
∆m)2)∆m =

2Kg2Ω2

(ωc − ω)2 + (ωβ)2
(5.3.16)

where we have let ∆m = 2K|B|2 represent the non-linear frequency shift of the coupled magnon mode.
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Calculating the magnitude of this frequency shift for various applied fields, Ω, we see that in addition to

shifting the resonance frequency of the magnon mode, the presence of non-linear terms in our coupled CMP

system leads to other interesting effects. At low Ω values Eq. 5.3.16 has only a single stable ∆m solution

across all δm values (representing a sweep of ωm). However as Ω is increased the magnon frequency shift

will become larger, eventually leading to resonance foldover similar to that seen in uncoupled FM systems.

This foldover can be seen from the solutions of Eq. 5.3.16 for large Ω values, where there will exist a certain

range of ωm values where three different ∆m solutions (two stable and one unstable) exist.

5.4 Effects of Non-Linear Damping in CMP Systems

The calculations of the previous section show that one of the most notable features produced by non-linear

coupling in CMP systems is a foldover line shape. This foldover creates a bistable system within a certain

range of external parameters such as applied field strength, and the exact limits of this range would be

of vital importance to any possible application of this bistable behaviour. Because the bistable foldover

range of the non-linear CMP system’s dynamics described in Eqs. 5.3.10 and 5.3.11 is determined by the

range where the magnon resonance B has multiple stable resonance amplitudes described by Eq. 5.3.16,

we can determine the limits of foldover behaviour using this equation. As can be seen from the foldover

lineshape, the limits of the foldover bistability (when sweeping ωm) will occur where
d∆m

dH
= ∞. Taking

the derivative of Eq. 5.3.16 with respect toH , and remembering that when the FM is resonating in the Kittel

mode
dδm
dH

= γ (γ being the gyromagnetic constant of the FM), we find:

d∆m

dH
= − 2γ∆m(δm + ∆m)

δ2m + 4δm∆m + 3∆2
m + (α0ω)2 + 4α0ω∆m

(
α′ω

2K

)
+ 3

(
α′ω

2K

)2

∆2
m

(5.4.1)
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The foldover limits will thus occur at the ∆m values where the denominator of this equation equals zero.

Using the quadratic equation, we calculate these ∆m values to be:

∆m =

−2

(
δm + α0ω

(
α′ω

2K

))
±

√√√√4

(
δm + α0ω

(
α′ω

2K

))2

− 3

(
1 +

(
α′ω

2K

)2
)

(δ2m + (α0ω)2)

3

(
1 +

(
α′ω

2K

)2
)

(5.4.2)

5.4.1 Threshold Power

The first notable condition we can determine from the relation described by Eq. 5.4.2 is the threshold

magnon frequency shift, ∆m required to produce foldover. This threshold ∆m is the minimum value where

bistable solutions for the coupled non-linear CMP system can be found. For ∆m values below this threshold

there will exist only one stable solution to Eq. 5.3.16 across all δm values, while above the threshold ∆m

there will exist a range of δm values where foldover will occur and multiple solutions to Eq. 5.3.16 exist.

This threshold ∆m occurs when the two solutions described by Eq. 5.4.2 (differentiated by the ± square

root term) are equal, and thus requires:

4

(
δm + α0ω(

α′ω

2K
)

)2

− 3

(
1 + (

α′ω

2K
)2
)(

δ2m + (α0ω)2
)

= 0 (5.4.3)

Determining the δm value (and hence applied field strength, H) where this threshold occurs using the

quadratic equation, we find:

δm,thresh =

−4α0ω

(
α′ω

2K

)
±

√
16(α0ω)2

(
α′ω

2K

)2

−
(

1− 3(
α′ω

2K
)2
)(

(
α′ω

2K
)2 − 3

)
(α0ω)2

1− 3

(
α′ω

2K

)2 (5.4.4)

This δm,thresh value can then be inserted into Eq. 5.4.3 to find an expression for the threshold magnon

frequency shift required to produce foldover, ∆m,thresh. The ± resulting from the quadratic equation solu-

tion relates to whether the non-linear frequency shift is toward higher frequencies (for K < 0) or towards
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lower frequencies (for K > 0). Our expression for ∆m,thresh can be considerably simplified if we assume

that α′ is small, and thus
α′ω

2K
� 1. In this case the foldover thresholds in Eqs. 5.4.4 and 5.4.2 become:

δm,thresh ≈ ±
√

3(α0ω) (5.4.5)

∆m,thresh ≈
−2

3
α0ω

(
±
√

3 +
α′ω

2K

)
1 +

(
α′ω

2K

)2 (5.4.6)

Inserting these threshold values into Eq. 5.3.16 allows us to determine the driving field strength, Ωthresh

(and hence power, P ∝ Ω2) required to drive the coupled CMP system to foldover, assuming α′ is small.

Ω2
thresh =

4(α0ω)3
√

3

9|K|

(
(ωc − ω)2 + (ωβ)2

g2

)
(5.4.7)

5.4.2 H Field Jump Points

For Ω values above Ωthresh the two solutions of Eq. 5.4.2 will indicate the magnon frequency shift values

where the upper and lower limits of foldover will occur. If α′ is small then we can simplify Eq. 5.4.2 by

setting α′ = 0, allowing us to determine the δm values at the foldover limits:

∆m,up ≈
−2δm −

√
4δ2m − 3δ2m

3
= −δm (5.4.8)

∆m,down ≈
−2δm +

√
4δ2m − 3δ2m

3
= −1

3
δm (5.4.9)

where the up and down subscripts indicate the relative value of ∆m before the critical value is crossed.

At ∆m,up the magnon frequency shift occupies the higher of the two stable ∆m modes within the bistable

foldover range before dropping to a lower value at the critical value described in Eq. 5.4.8, while at ∆m,down

the magnon frequency shift occupies the lower of the bistable ∆m modes and suddenly increases to a higher

value upon leaving the bistable range at Eq. 5.4.9. Inserting the values from Eqs. 5.4.8 and 5.4.9 back

into Eq. 5.3.16 now allows up to see the δm value (and applied field strength, H) at which the limits of the
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bistable range will occur, relative to the applied driving field strength Ω.

(−δm,up)
(
α0ω − δm,up

(
α′ω

2K

))2

=
2Kg2Ω2

(ωc − ω)2 + (ωβ)2
(5.4.10)

(
−1

3
δm,down

)(
4

9
δ2m,down +

(
α0ω − 1

3

(
α′ω

2K

)
δm,down

)2
)

=
2Kg2Ω2

(ωc − ω)2 + (ωβ)2
(5.4.11)

where δm,up and δm,down are the δm values corresponding to the foldover limits described by Eqs. 5.4.8 and

5.4.9, respectively.

We begin by looking at the foldover limit at δm,up given by Eq. 5.4.10. Here we see that since in general

both α0 and α′ will be small relative to δm, the relation between Ω and δm,up will be highly dependent

on the magnitude of δm,up relative to these damping terms. For the case of small δm, corresponding to

low amplitude magnon oscillations and low input power, we can approximate α0ω � δm,up

(
α′ω

2K

)
. This

simplifies Eq. 5.4.10 to:

δm,up ≈ −
(

1

α0ω

)2 2Kg2Ω2

(ωc − ω)2 + (ωβ)2
(5.4.12)

As input power and magnon oscillation amplitude increases the magnitude of δm will also increase. Even-

tually at high input powers we will have α0ω � δm,up

(
α′ω

2K

)
, simplifying Eq. 5.4.10 to:

δm,up ≈ −
(

2K

α′ω

)2/3( 2Kg2Ω2

(ωc − ω)2 + (ωβ)2

)1/3

(5.4.13)

Turning our attention the the foldover limit at δm,down given by Eq. 5.4.11 we again note that δm � α0ω

except at very low input powers. Thus we can simplify Eq. 5.4.11 to:

δm,down ≈ −

 27

4 +

(
α′ω

2K

)2


1/3(

2Kg2Ω2

(ωc − ω)2 + (ωβ)2

)1/3

(5.4.14)

The above relations between δm and Ω at the foldover limits show that the upper and lower boundaries

can have very different relations to the power input into the coupled CMP system. To make this relation

clearer we can insert the total input power, Pd = Ω2/S2, into Eqs. 5.4.12, 5.4.13, and 5.4.14, where S is a

parameter relating the input power to the driving force acting on the CMP system, and is dependent on the
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cavity design and input microwave frequency. We thus find:

δm,up ∝ Pd (at low powers)

δm,up ∝ P 1/3
d (at high powers)

δm,down ∝ P
1/3
d (at all non-linear powers)

(5.4.15)

These dependencies are exactly the same as those seen in uncoupled anharmonic oscillator systems (such

as FM resonance) and are typical of results produced by a non-linear restoring force. Referring to Eq. 5.4.3

for the relation between δm and the magnon resonance frequency ωm, we find that the same power relations

hold. Thus when varying ωm using an externally applied static field, we will find that the external fields at

which the foldover limits occur will follow the above power relations.

5.5 Experimental Set-up

To study non-linearity in CMP coupling, we designed a system consisting of a microwave waveguide cavity

coupled to a small sample of Yttrium Iron Garnet (YIG). The microwave cavity is based on a Fabry-Perot

design, shown in Fig. 5.1, consisting of circular waveguides connected through circular-to-rectangular tran-

sitions to coaxial-rectangular adapters. In this type of cavity the circular and rectangular waveguides can be

rotated relative to each other at the transition points to control the reflection of microwave signals at each

transition port and change the off-resonance transmission through the cavity system[196]; for our experi-

ments the rotation between the waveguides was set at 45o to maximize microwave transmission through the

cavity at off-resonance frequencies. This Fabry-Perot cavity design allows high microwave energies to be

transferred to the magnon subsystem over a wide range of frequencies, permitting non-linear foldover effects

to be seen both near and far from cavity resonance modes. This is in contrast to the typical 3-dimensional

cavities used in the other experiments in this dissertation, where strong microwave fields are only present in

the CMP system near cavity resonance frequencies.

The YIG sample coupled to the cavity during our measurements was a polished single crystal sphere,

of 1 mm diameter. As in our previous experiments, YIG was chosen as the magnetic material for coupling

to the cavity due to its properties as an electrical insulator and its relatively low damping compared to other

FM materials. We see from Eq. 5.4.7 that the driving microwave power needed to produce foldover in a
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Figure 5.1: A diagram of the Fabry-Perot-type cavity used in our non-linear CMP measurements, displaying
how the S21 microwave transmission through the system is measured. Microwave signals are sent into,
and detected from the cavity resonator, while the dynamics of the FM resonator can be detected through its
coupling effects on the field dispersion within the cavity. S21 is measured as bout/ain for bin = 0.

ferromagnet is proportional to the cube of the material’s damping constant, thus a low damping material is

essential to achieving large foldover effects in our CMP system. During measurements the YIG sphere was

placed at the centre of the mid-plane of the cavity, halfway along the length of waveguide, held in place by

a thin plastic sample holder. This point is expected to have a maximum microwave field amplitude (directed

along the length of the cavity), and was chosen so as to achieve maximum coupling between the cavity and

YIG systems. The YIG was excited to ferromagnetic resonance through the use of an externally applied

static magnetic field, H , applied perpendicular to the length of the cavity and along the [110] axis of the

YIG’s crystalline axis. The crystaline axes of our sample were set during during production of the sample,

and marked by small dots on the sample to allow axis dependent measurements to be performed. When

resonating about this axis the non-linear Kerr constant is expected to have a negative amplitude[195].

Due to the different cavity design used in this CMP system, the transmission coefficient, S21, will be

different from those in the previous experiments. Since in our Fabry-Perot-type waveguide microwave

transmission is maximized away from the cavity resonance frequency and is minimized at the resonance

frequency where the cavity absorbs microwave energy, the input/output equations for this type of cavity will

be:

ain − bout =
√

ΓA (5.5.1)

bin − aout =
√

ΓA (5.5.2)
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Here we assume that only the cavity system is being driven by the applied microwave field, and that the

YIG subsystem is excited to resonance only through its coupling with the cavity. In this cavity system the

field sent into the system, Γ, will be equal to the driving force required to produce resonant equilibrium

and counteract damping forces (Ω in Eq. 5.3.1) plus an additional force representing the effects of extrinsic

coupling forces at the input/output ports of the cavity (Ωex); thus Γ = Ω + Ωex. Combined with the previ-

ously calculated equations of motion for the CMP system in Eqs. 5.3.10 and 5.3.11, the above input/output

equations allow us to calculate the S21 transmission coefficient for our coupled CMP system:

S21 =
bout
ain
|bin=0

= 1− Γ

i(ωc − ω) + ωβ +
g2

i(ωm + ∆m − ω) + ω

(
α+

α′∆m

2K

) (5.5.3)

Before proceeding to high power measurements, we first characterize the individual subsystems of our

coupled CMP system at low input powers. The cavity resonance mode we chose to excite during coupling

was the h-mode with a resonance frequency at ωc/2π = 12.082 GHz. Measuring the damping of this cavity

mode by fitting Eq. 5.5.3 to a frequency dispersion measurement taken far from coupling (where effects

from coupling to the magnon system are almost zero) we can determine β = 8.4 × 10−3 and Γ/2π = 99

MHz. Measuring the YIG resonance far from this cavity mode, we see that its resonance frequency follows

the Kittel mode dispersion described by ωm/2π = γ(Hr + Ha), where γ/2π = 26.9µ0 GHz/T is the

gyromagnetic ratio of the YIG, µ0Ha = 10.4 mT is the anisotropy field of the spherical sample, and Hr is

the strength of the applied static magnetic field needed to achieve resonance. The linear Gilbert damping

constant of the YIG sample was determined at ωm far from ωc to be α = 1.1×10−5. Knowing these values,

we then tune the externally applied static field to µ0H = 438.8 mT, which corresponds to ωm = ωc as seen

in Fig. 5.2(b). In this region of strong CMP coupling we can now fit Eq. 5.5.3 to the measured dispersion

to determine the coupling strength between the cavity and YIG subsystems, finding g/2π = 18.0 MHz.

With both the cavity and YIG subsystems now characterized, we are now able to accurately reproduce the

measured S21 transmission values both far from CMP coupling [Fig. 5.2(c)] and during CMP coupling [Fig.

5.2(d)].
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Figure 5.2: (a) A schematic diagram of the experimental setup, with a YIG sphere placed in the mid-plane
of a waveguide cavity and a static magnetic field applied along the YIG’s [110] crystal plane. (b) A plot of
microwave transmission through our coupled CMP system, displaying level repulsion near coupling. The
dashed lines indicate the CMP dispersion calculated by the model in Eq. 5.5.3 for ∆m = 0. (c) Fixed field
transmission measurements cut from (b) measured far below coupling fields and (d) where ωm = ωc. The
solid lines in (c) and (d) fit these dispersions to the model in Eq. 5.5.3.
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5.6 H Field Sweeps

Having characterized our coupled CMP system, we can now study the non-linear dynamics of the system

during coupling. This was done by sending high power microwave signals into the waveguide cavity using a

microwave generator to excite resonance in the CMP system, then measuring the transmission signal through

the CMP using a signal analyser. To first get a picture of what the linear transmission spectra of the CMP

system look like we inject very low power microwave fields, with Pd = 0.1 mW, into the system. This

low power microwave signal is still able to generate resonance within the CMP system, but is not strong

enough to excite the magnon subsystem to amplitudes where non-linear effects would become significant.

This allows us to fit these low input power transmission lineshapes by setting ∆m = 0 in Eq. 5.5.3.

The transmission measurements we perform involve sweeping the strength of the static magnetic field,

H , which is applied to the CMP system. This has the effect of shifting the resonance frequency of the

magnon subsystem through the relation ωm/2π = γ(H + Ha), so that when the applied microwave fre-

quency matches this ωm a magnon resonance signal will be observed. In doing these sweeps we will see

only a single transmission peak at the magnon resonance frequency, which will be shifted due to coupling

and non-linear damping effects, due to the fact that only the magnon subsystem of our CMP is susceptible

to changes in H . The cavity subsystem during these sweeps thus acts as a resonant background system

which the magnon system couples to when ωm is near ωc, though the cavity resonance can be still play an

important role in determining the transmission lineshape seen in H sweeps due to coupling effects between

the two CMP subsystems.

The impact of coupling to the cavity subsystem can be seen when comparing transmission lineshapes

at microwave frequencies far from ωc to strongly coupled CMP lineshapes near ωm = ωc. In Fig. 5.3

we measure the transmission spectra of the CMP system at microwave frequencies of ω/2π = 12.450

GHz, ω/2π = 12.082 GHz, and ω/2π = 11.800 GHz; respectively corresponding to the positions labelled

E, C, and A in Fig. 5.2. Positions E and A are far from the resonant mode of the cavity, thus we see

their lineshape matches the lorentzian dip expected for an uncoupled FM resonator in a Fabry-Perot type

cavity[196], with high transmission away from Hr and low transmission near Hr where the YIG sample

absorbs the microwave signals. Conversely at position C, which is at the cavity resonance frequency, we

see that the lineshape is reversed to form a lorentzian peak due to coupling with the cavity system. Here

there is low microwave transmission far from Hr, where the signal is absorbed by the cavity resonator, and
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high transmission near Hr, due to coupling effects shifting the resonance modes of the system away from

ωc at this field. Fitting the low input power transmission signals in Fig. 5.3 we determine the input driving

force necessary to achieve stable resonance at microwave frequencies ω = 12.450 GHz, ω = 12.082 GHz,

and ω = 11.800 to be Γ/2π = 180 MHz, 89 MHz, and 175 MHz, respectively. The higher driving fields

necessary to achieve stable resonance at frequencies farther from ωc is an expected result of lower transfer

efficiency of energy between the cavity and magnon subsystems at these frequencies.

Increasing the microwave power supplied to the CMP system, we can observe the resonance frequency

of the coupled system to gradually shift to higher H fields. The shift, ∆m, is positive due to the fact that

the Kerr term, K, is negative for a YIG sphere magnetized along its [110] crystal axis. At sufficiently

high microwave powers we begin to see that Up Sweeps (towards higher H fields) and Down Sweeps

(towards lower H fields) begin to produce different S21 transmission spectra. In both of these sweep types

we begin to notice that these differences occur over an H field range preceding a sudden discontinuity in

the transmission spectra. These sudden discontinuities correspond to the δm,up and δm,down jump points

analysed in Eqs. 5.4.12, 5.4.13, and 5.4.14, and the range of H values over which Up and Down H field

sweeps differ represents the range of foldover for a CMP system driven to non-linear amplitudes. The

two transmission values for each H field in the respective Up and Down sweeps thus represent the two

stable resonance states of the non-linear CMP system within the bistable foldover range, with the sudden

discontinuities representing the end of the bistable range and a return to parameters in which the CMP has

only a single resonance state.

In Fig. 5.3 we show transmission spectra taken at high microwave input powers, where foldover effects

have become clearly visible. The spectra shown were taken at the same microwave frequencies as the low

power measurements (ω/2π = 12.450 GHz, 12.082 GHz, and 11.800 GHz), but at microwave input powers

high enough to produce considerable foldover effects; the input powers shown correspond to Pd = 200 mW,

400 mW, and 200 mW for the three frequencies plotted. The reason higher input powers are required to

produce similar foldover ranges for frequencies nearer to ωc is due to increased damping felt by the magnon

sub-system produced through its extrinsic coupling to the cavity at these frequencies. In these plots we can

clearly see the S21 transmission differences between the H field Up and Down sweeps within the bistable

foldover ranges and the abrupt S21 jumps which occur at the limits of these ranges. These transmission

spectra are fitted to Eq. 5.5.3 using the same parameters as were used to fit the low power spectra, now

using non-zero ∆m values corresponding to KS2 = 5.77× 10−8 GHz3/mW, 1.58× 10−8 GHz3/mW, and
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Figure 5.3: (a) A plot of the |S21|2 transmission signal of the uncoupled YIG FMR mode, measured at a
microwave frequency far above ωc (ω/2π = 12.450 GHz) and at a low microwave input power of Pd = 0.1
mW. (b) A plot of the measured |S21|2 transmission at ω/2π = 12.450 GHz and a high input power of
Pd = 200 mW. (c) A plot of the measured |S21|2 transmission of our CMP system during coupling with
ωm = ωc (ω = 12.082 GHz) at a low microwave input power of Pd = 0.1 mW. (d) A plot of |S21|2 measured
at ω/2π = 12.082 GHz for a high input power of Pd = 400 mW. (e) A plot of the |S21|2 transmission of
the uncoupled YIG FMR mode measured at a microwave frequency far below ωc (ω/2π = 11.800 GHz)
and at a low input power of Pd = 0.1 mW. (f) A plot of the measured |S21|2 at ω/2π = 11.800 GHz for
a high input power of Pd = 200 mW. In the low power plot of (a), (c), and (e) the paths of the H field
up sweeps (blue symbols) and the H field down sweeps (red symbols) are seen to be equal. For the high
power measurements in (b), (d), and (f) non-linear effects become significant and the up and down H field
sweeps are no longer equal, with sudden |S21|2 jumps appearing at fields above Hr. The solid green lines in
these plots represent H field up and down sweeps calculated using the model in Eq. 5.5.3, with the dashed
portions indicating H field jump positions.

3.75 × 10−8 GHz3/mW for ω = 12.450 GHz, 12.082 GHz, and 11.800 GHz respectively. Where ∆m is

determined by solutions to Eq. 5.3.16 and KS is the Kerr constant multiplied by the parameter relating

input microwave power to the CMP driving force (Pd = Γ2/S2). Due to the presence of S, a frequency

dependent power conversion coefficient, we cannot determine the exact value of the Kerr coefficient in our
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YIG sample, but we can still observe its effects in the bistable foldover range.

Notable in the plots shown in Fig. 5.3 is the change in the bistable range produced by ω being near ωc.

Far from ωc we see that in the H field Up sweep the S21 transmission has a minimum value which shifts

to higher fields as power is increased, until at the field corresponding to δm,up the transmission suddenly

increases; in the Down sweep at these frequencies the transmission remains relatively high in the bistable

region, until suddenly decreasing at δm,down. At frequencies very near ωc this behaviour is reversed, with

Up sweeps having relatively low transmission in the bistable range before suddenly increasing at δm,up

and Down sweeps rising to high transmissions before dropping at δm,down. These differences represent

the main impact of the cavity resonance modes when coupled to non-linear FM resonance in the form of

CMP systems; by changing the transmission lineshape of the CMP, as seen in the low power plots shown

in Fig. 5.3, the foldover behaviour of the CMP system is changed. H field Up sweeps transform from

sudden transmission increases at δm,up (similar to uncoupled non-linear FM systems) to sudden transmission

decreases at this point for frequencies near ωc where coupling effects are strong, with the reverse happening

to the jumps at δm,down.

At intermediate frequencies between those very far from and very near to ωc additional lineshape fea-

Figure 5.4: (a) A plot showing the |S21|2 transmission signals of our CMP system at ω/2π = 11.938
GHz, showing how non-linear effects become apparent as input power is increased from Pd = 0.1 mW to
Pd = 240 mW. Here the H field up sweeps are plotted as blue symbols and the H field down sweeps are
plotted as red symbols. (b) Modelled results for the measured |S21|2 transmissions plotted in (a), using Eq.
5.5.3. (c) A plot showing the |S21|2 transmission signal at ω/2π = 12.136 GHz, as input power is increased
from Pd = 0.1 mW to Pd = 320 mW. H field up sweeps are plotted as blue symbols and H field down
sweeps are plotted as red symbols. (d) Modelled results for the measured |S21|2 transmissions plotted in (c),
using Eq. 5.5.3. In the plots of (b) and (c) the modelled paths of up and down sweeps are shown as blue and
red dashed lines. The dashed green portions of the modelled curves in these plots represent unstable CMP
resonant modes which cannot be measured in our system.
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tures can be seen in observed S21 transmission spectra. In Fig. 5.4 we show measurements taken at interme-

diate frequencies above ωc at ω/2π = 12.136 GHz, and below ωc at ω/2π = 11.938 GHz, corresponding

to the positions marked as D and B in Fig. 5.2. Focussing first on the low power (Pd = 0.1 mW) spectra

we see a marked change in lineshape as compared to the low power measurements shown in Fig. 5.3. The

lineshapes obtained during H field sweeps at these intermediate frequencies can be seen in Fig. 5.4 to be

mainly asymmetric; these lineshapes are produced by coupling between the cavity and magnon subsystems

within the CMP as the spectra changes from a negative Lorentzian lineshape at frequencies far from ωc to a

positive Lorentzian lineshape at ωc. The low power spectra at these intermediate frequencies can again be

reproduced by Eq. 5.5.3 for ∆m = 0, with Γ/2π = 47 MHz for ω/2π = 12.136 GHz and Γ/2π = 107

MHz for ω/2π = 11.938 GHz, as shown in Fig. 5.4.

As the microwave power input into the CMP system is increased at these intermediate frequencies we

again see a gradual shift in their resonance features towards higher H fields. At a certain threshold power

we again begin to see differences between the H field Up and Down sweeps, indicating the presence of

foldover bistabilities in the CMP system. However, the characteristics of this foldover are seen to be quite

different than for the previous cases. Instead of the resonance signal gradually folding over itself to produce

a range containing two stable modes and one unstable mode, with each mode having a unique transmission,

the foldover at intermediate frequencies produces a transmission loop within the foldover range; this loop is

clearly shown in the modelled S21 dispersions shown in Fig. 5.4. Within this loop there are still two stable

resonance modes and one unstable mode, but notably there exists a point where the two stable modes cross

one another and have equal transmissions. These high power measurements at intermediate frequencies

can again be fit using Eq. 5.5.3 using the same parameters as in the low power sweeps, with the values

of KS = 1.95 × 10−8 GHz3/mW and KS = 2.3 × 10−8 GHz3/mW for ω/2π = 12.136 GHz and

ω/2π = 11.938 GHz respectively determined based on the H field positions of the transmission jumps.

The behaviour of these transmission jumps are seen to also be changed due to the different foldover

characteristics of the CMP system at these intermediate frequencies. While in the foldover lineshapes near

to and far from ωc the two jumps at the edges of the bistable range are in opposite directions (one from

high to low transmission, the other from low to high transmission), at the intermediate frequencies shown in

Fig. 5.4 both transmission jumps are in the same direction. This produces a unique butterfly-like hysteresis

feature that has not previously been recorded in studies of either magnetic or coupled magnon-cavity sys-

tems. Notably, the polarity of the transmission jumps at intermediate frequencies is reversed when the input

113



microwave frequency is changed from ω > ωc to ω < ωc. Although the general butterfly-like hysteresis

remains, we can see in Fig. 5.4 that at ω/2π = 12.136 GHz (> ωc) both jumps are towards higher S21

transmissions, while at ω/2π = 11.938 GHz (< ωc) the jumps are towards lower transmissions. This polar-

ity change in the transmission jumps is a result of changes to the dispersive lineshape of the CMP system,

which reverses sign due to coupling effects between the cavity and magnon subsystems around ωc.

Measuring the H field positions of observed S21 transmission jumps in our H field sweeps, we can

compare the change in these values relative to applied microwave power, Pd, to those predicted in Eqs.

5.4.12, 5.4.13, and 5.4.14. Due to the ω dependent nature of the relation between input microwave power,

Figure 5.5: Plots of the measured H field up sweep jump positions δm,up (blue symbols) and H field down
sweep jump positions δm,down (red symbols), at input microwave frequencies of (a) ω/2π = 12.450 GHz,
(b) ω/2π = 12.082 GHz, and (c) ω/2π = 11.800 GHz. These relation of these jump positions to the applied
microwave power, Pd, are compared to that predicted by Eqs. 5.4.12, 5.4.13, and 5.4.14 (green curves). The
discrepancy between the modelled and measured δm,up jump positions at high input powers in (a) and (c) is
expected to be a result of higher order non-linear effects.
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Pd, and the driving field felt by the CMP system, Γ, (Pd = Γ2/S2) we cannot determine the value of the

Kerr constant K from these fittings. We can however still determine a value for KS2, which combines the

Kerr constant with the constant relating Pd and Γ, using this value to determine the magnon resonance shift,

∆m, when comparing S21 measurement data to Eq. 5.5.3. In Fig. 5.5 we compare the measured S21 jump

positions for frequencies near to and far from ωc to the low power rates of change relative to Pd, with δm,up

expected to have a linear dependence to Pd and δm,down expected to have a dependence relative to P 1/3
d . We

find good agreement between the measured and expected rates of change as Pd is increased, and from the

low power fittings determine KS2 = 5.77 × 10−8 GHz3/mW at ω = 12.450 GHz, KS2 = 1.58 × 10−8

GHz3/mW at ω = 12.082 GHz, and KS2 = 3.75 × 10−8 GHz3/mW at ω = 11.800 GHz. At higher input

microwave powers (< 200 mW) we begin to see significant deviations from the linear Pd relation described

by 5.4.12 for δm,up. This is expected from our model, as at high powers the linear Pd relation gradually

shifts to the P 1/3
d relation described by Eq. 5.4.13. The reason this deviation only occurs at frequencies far

from ωc is due to the increased extrinsic damping experienced by the magnon subsystem due to its coupling

to the cavity subsystem at frequencies near ωc; this increases the input power necessary to achieve foldover.

Because the butterfly-like hysteresis features observed in our CMP system are a product of resonance

lineshape, it is expected that they are not limited to this kind of system. In uncoupled magnon systems

similar dispersive lineshapes can be obtained for resonance measurements performed using electrical detec-

tion measurements or by manipulating the phase of the of the microwave signal relative to the oscillation of

the magnon[200]. By exciting magnon systems in these conditions to high amplitude oscillations, so that

non-linear damping effects become significant, it is expected that the butterfly-like bistability features seen

in our CMP system at intermediate frequencies should become visible. Additionally, since the dispersive

lineshape of Fano-like resonant systems is a general wave phenomenon, we expect that butterfly-like bista-

bility features should not be limited to magnon-based systems, but should be observable across many areas

of physics and engineering involving resonant systems.

5.7 Constant Field Power Sweeps

In addition to performing H field sweeps on our non-linear CMP system at a constant input microwave

power, Pd, we can also perform sweeps at a constant H field where Pd is swept toward increasing or

decreasing values. In the H sweeps discussed in the previous section, the resonance signals are formed
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when the changing H field shifts the magnon subsystem’s resonance frequency to match that of the input

microwave signal. This allows us to observe the magnon subsystem being shifted to higher amplitude reso-

nance states, and eventually to bistable foldover states. Alternatively, in sweeping Pd the characteristics of

the magnon subsystem are unchanged during coupling to the cavity subsystem; the only change experienced

in the CMP system is the dynamic response of the coupled magnon system to the input microwave signal as

microwave power is either increased or decreased.

In performing a Pd sweep we first choose to set the static H field on the system to a value where large

S21 variations are expected to occur as Pd is changed. Looking back to our H field sweep measurements

in Figs. 5.3 and 5.4 and focussing on the transmission at a single field value at different Pd values, we see

that the largest changes in S21 will occur at fields above the low power magnon resonance frequency (for

our K < 0 system), where H > Hr. As the coupled magnon resonance peak is shifted to higher fields

due to non-linear damping effects the measured S21 at these fields will increase as the shifted resonance

signal moves towards a specific H field, reach a maximum when the shifted resonance is equal to H , then

again decrease as the resonance peak moves to higher H values. If the selected H field is above the value of

δm,thresh, the minimum resonance shift required to produce foldover effects, then we will expect to see the

effects of foldover in our Pd sweeps due to the presence of bistable resonance modes at H for at least some

Pd values.

In Fig. 5.6 Pd sweeps are presented for the same frequencies whose resonance lineshapes were measured

via H sweeps in the previous section, namely ω/2π = 12.450 GHz, 12.136 GHz, 12.082 GHz, 11.938

GHz, and 11.800 GHz. The respective H fields these sweeps were taken at, µ0H = 452.70 mT, 441.08 mT,

439.02 mT, 433.67 mT, and 428.54 mT, were selected as fields above the lower limit of foldover bistability

defined by δm,thresh in Eq. 5.4.5 but still low enough to be below both the δm,up and δm,down jump positions

at the maximum Pd available to our microwave generator (∼ 500 mW). By choosing H fields within this

range we are able to see the effects of the S21 jumps at the upper and lower limits of the foldover range as

they pass through our chosen field with either increasing or decreasing Pd.

Observing the Pd sweeps in Fig. 5.6, the first thing we notice is the similarity between these dispersions

and the corresponding H field dispersions plotted in Figs. 5.3 and 5.4 at the same ω. Far from ωc at

ω/2π = 12.450 GHz and 11.800 GHz the S21 transmission is relatively high at very high and very low

Pd values, decreasing at intermediate values as the resonance signal is shifted through the static H values

selected at these frequencies. Near ωc at ω/2π = 12.082 GHz the reverse is true, with S21 increasing at
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intermediate Pd values where the resonance peak is shifted through the selectedH field. At the intermediate

frequencies ω/2π = 12.136 GHz and 11.938 GHz the measured Up and Down Pd sweeps are seen to cross

each other and produce butterfly-like dispersion curves, very similar to those observed in theH field sweeps

of Fig. 5.4. From these similarities, we can deduce that the dispersion lineshapes produced by Pd sweeps

are highly dependent on the shape of the H field dispersions observed at the same frequency.

The main difference between H field and Pd sweep dispersions are the positions of the S21 jumps

occurring at the edges of the bistable range. When comparing the jumps at frequencies near to and far from

ωc it is clear that the positions of the jumps to higher S21 and the jumps to lower S21 values appear to switch

positions in the Pd sweeps as compared to the H field sweeps. If we follow the S21 values at a constant

field in H sweep measurements as Pd is changed the reason for this switch becomes clear. Beginning at a

low input power Pd and an H field just above the critical threshold field where foldover appears (defined

in Eq. 5.4.5), the measured S21 transmission will (for ω far from ωc) remain high as the coupled magnon

resonance peak begins to shift to higher H . When foldover begins the S21 at our static H field will now

Figure 5.6: Plots of |S21|2 transmission measurements taken by sweeping the input microwave power, Pd, up
(blue symbols) or down (red symbols) while leaving the applied H field constant. The plotted measurements
were taken at microwave frequencies of (a) ω/2π = 12.450 GHz, (b) ω/2π = 12.082 GHz, (c) ω/2π =
11.800 GHz, (d) ω/2π = 11.938 GHz, and (f) ω/2π = 12.136 GHz. The green curves in (a), (b), and (c)
are modelled results for the measured systems, produced using the model in Eq. 5.5.3. For ω/2π = 11.938
GHz and ω/2π = 12.136 GHz, these modelled |S21|2 plots are shown in (e) and (g) respectively, where the
unstable resonant mode of the CMP system is shown as the dashed portion of the green curves.
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have two bistable solutions, a high transmission one and a lower transmission one.

In an H field Up sweep we would measure beginning from behind the resonance peak at high S21,

moving along the resonance signal towards lower S21 values until encountering the jump at δm,up and

suddenly returning to high S21 values. Because this H field Up sweep follows the folded over resonance

peak, the lower S21 values would be measured within the bistable foldover range. This is in contrast to a Pd

Up sweep where as foldover begins the measured S21 transmission, which at low powers will be high, will

remain high as the shifted resonance peak folds over it. In this Pd Up sweep the higher S21 values would be

measured within the bistable range, encountering the sudden transmission jump at δm,down as the bistable

foldover range is eventually shifted past the static H field being measured. For H and Pd Down sweeps

the reverse happens, with H sweeps remaining at high transmissions before experiencing a sudden jump at

δm,down and Pd measurements beginning on the crest of the folded over resonance signal, moving to lower

transmissions as the resonance peak passes through the selectedH value, then experiencing a jump to higher

transmission at δm,up. Thus the Up and Down sweeps of H field and Pd appear as mirror images of each

other, as can be seen from comparing the sweeps shown in Figs. 5.3 and 5.6. The same reversal of sweep

behaviour is true for ω values near ωc and for intermediate frequencies, with the folded over resonance peak

and butterfly-like resonance signals measured in H sweeps being mirrored in Pd sweeps.

5.8 CMP Hysteresis Loop Evolution

In Fig. 5.7 we summarize the foldover behaviour of the coupled CMP system as the input microwave

frequency is shifted through ωc. In this plot we show the CMP resonance modes as green lines, plotted

relative to the uncoupled magnon resonance mode H field, Hr, and the uncoupled cavity resonance mode

frequency, ωc. The solid black line indicates the low H field limit of foldover, at any fields below this value

no foldover effects can be observed. This value is determined by;

H = Hr +
1

γ

(
−(±)

√
3

(
αω +

g2ωβ

(ωc − ω)2 + (ωβ)2

)
− g2(ωc − ω)

(ωc − ω)2 + (ωβ)2

)
(5.8.1)

Here the sign of the ± is determined by the sign of the Kerr constant of the material coupled to the cavity

system, in our measurements and in Fig. 5.7 K < 0 and thus the − sign is taken. As the input microwave

frequency approaches ωc the effects of CMP coupling on foldover become apparent, with the foldover

lineshape changing significantly from its uncoupled state and the lower H field foldover limit moving away
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Figure 5.7: A ’Phase diagram’ of CMP power hysteresis loops for a negative Kerr term, where the grey
region indicates where CMP bistabilities are observed. Within this region distinct bistable behaviours are
observed: termed clockwise, butterfly-like, or counterclockwise. As the measured frequency of the system
is increased from far above to far below ωc the bistable lineshapes will evolve, as indicated by the modelled
plots in this grey region. Arrows in these plots indicate the sweeping direction of the microwave power. The
green curves indicate the positions of the coupled CMP modes in this system.

from Hr. This shift in the foldover limit is a result of coupling effects between the cavity and magnon

subsystems increasing the damping forces felt by the magnon subsystem at frequencies near ω = ωc.

In contrast to previous studies of uncoupled magnon systems[77][190] and coupled CMP systems[195],

we find that by coupling a resonant magnon system to a cavity resonator allows several forms of bistable

behaviour to be produced; with the type of behaviour strongly dependent on the strength of coupling between

the cavity and magnon systems. These same foldover behaviours are expected to be produced for a CMP

system having K < 0, but in this case magnon resonance shift will be towards fields below Hr, resulting in

the foldover H field limit and foldover lineshape behaviour being mirrored about the ωc and Hr axes.

5.9 Summary

In summary, we have both theoretically and experimentally studied the effects of non-linear magnon reso-

nance behaviour in a coupled CMP system. Using a specially designed Fabry-Perot-like cavity resonator,
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we excite the Kittel mode of a YIG sphere to amplitudes where non-linear Kerr effects become significant.

When coupled to a resonant mode of the cavity system, these non-linear effects produce bistability effects

unlike those seen previously in uncoupled magnon systems. By adjusting the frequency of the magnon

system relative to that of the cavity mode, we are able to tune our CMP system through a range of these

bistable lineshapes, producing clockwise, butterfly-like, or counterclockwise hysteresis loops in the trans-

mission spectrum of the CMP system. These bistable hysteresis loops appear in both H field and input power

sweeps, with the lineshapes produced by both sweep types closely corresponding. Developing a model for

non-linear behaviour in CMP systems through the addition of a non-linear Kerr term to the coupled CMP

Hamiltonian, we are able to accurately reproduce the bistable hysteresis loops observed in our measure-

ments. This model also allows us to calculate the limits of the bistable regions in our CMP system, with the

calculated power dependence of these limits agreeing with both our measurements and power dependencies

previously reported for uncoupled magnon systems. Because bistable systems are a key component of many

current data storage and processing systems, we expect that non-linear CMP systems similar to ours (which

combine coherent magnon-photon coupling with the ability to tune the relative energies of bistable states)

could play a key role in the development of future computing technologies. Further, because the method

used to produce our non-linear CMP model is not limited to non-linear magnon behaviour, and because the

Fano-like resonance lineshapes produced in our CMP system are a general wave feature, we expect that the

non-linear features observed in our system should be reproducible across many other areas of physics and

engineering.
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Chapter 6

Conclusions

As a recently developed field, the study of coupling between photons and magnons has advanced rapidly over

the past few years. The discovery that magnon-polaritons (MPs) can be created as hybridized quasi-particles

combining the properties of both photon and magnon excitations has further fuelled advancement by pre-

senting the possibility that these particles could combine the data storage capabilities of magnetic systems

with the data carrying capacity of photons in new communications and data processing systems. Although

magnon-photon interactions have formed the basis for magnetic resonance studies for many decades, only

recently have techniques been developed to directly study the nature of the coupling between them. This has

historically been due to the relatively low coupling strengths between individual photons and magnetic spins,

as well as the short coherence time of coupling interactions between them. Predictions that collective exci-

tations of certain magnetic materials could form macrospin states, behaving as a single spin system while

increasing magnon-photon coupling strengths by several orders of magnitude, revolutionized the study of

MPs by suggesting that their quantum properties could be observed even in macroscopic magnon systems.

Combined with mature microwave cavity excitation techniques already developed for magnetic resonance

studies, these predictions allowed continuous magnon-photon interactions to be studied as cavity magnon-

polaritons (CMPs), a new sub-field of MP quasi-particles.

Representing a new method to investigate magnon-photon interactions, the study of CMP systems has

quickly progressed from its theoretical origins. In 2014, when I began my PhD research, only a few studies

had demonstrated strong coupling in CMP systems at room temperature. Today, only a few years later,

these systems are now the subject of nearly 100 publications per year, in influential journals such as Physics

Review Letters, Nature, and Science. During the development of the field, research on CMP systems has
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also led to the creation of entirely new areas of research, such as the field of cavity spintronics. Combin-

ing the manipulation of spin polarization through magnetic and non-magnetic materials (spintronics) with

magnon excitations produced through CMP coupling, the field of cavity spintronics has worked to harness

the quantum coherence demonstrated in CMP systems to produce spin currents (currents where spin polar-

ization is transported as opposed to electric charge) able to carry quantum information. Although still in the

early stages of development, future cavity spintronic systems present the possibility for converting photon

signals directly into information carried by the polarization of a spin current. As opposed to present sys-

tems, where information carried by photons is converted to magnetic bits only after being converted into an

electric charge current, cavity spintronic systems could produce data processing technologies with a much

reduced size and power consumption (by eliminating the Joule heating effects associated with electric cur-

rents) while allowing for the transport and storage of quantum information required by quantum computing

systems.

Although CMP systems show significant promise for use in future information technologies, the relative

immaturity of the field means that much work remains to be done in learning how to control and apply

the effects of coupling in these systems. Towards this end, the ability of CMP coupling to help form a

bridge between multiple resonant photon systems was demonstrated in Chap. 3. Previous publications have

shown that multiple resonant magnetic systems can exchange energy when both coupled to the same cavity

mode excitation. The obvious next step in developing a method in which coupled CMP systems could be

used for data processing would be to link multiple cavity photon excitations together by coupling them

each to a single magnon excitation. Here difficulties in producing cavity resonators with mode frequencies

near enough to be able to simultaneously couple to another system were overcome with the development

of a high-Q cavity with an adjustable height. This allowed us to achieve indirect coupling between two

orthogonal cavity resonance modes via their simultaneous CMP coupling to a magnon mode in a YIG sphere.

Studying this indirect coupling, we found that its strength can be controlled through tuning the resonance

frequencies of the component subsystems relative to each other. The dynamics of indirect coupling were also

found to be highly dependent on the relative oscillation phases of the two cavity systems, with energy transfer

being either enhanced or suppressed when the cavity modes were in-phase or out-of-phase with each other,

respectively. By experimentally showing that CMP systems can be used to indirectly couple both photon and

magnon resonant systems together, the work demonstrated in this chapter reveals the possibility for similar

systems to couple large numbers of photon and magnon excitations together simultaneously, a goal which
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would represent substantial progress towards a quantum based computing and telecommunications system.

CMP systems are significant in their ability to use magnetic macrospin states and confined cavity systems

to create sustained coherent coupling between magnon and photon resonance states, but other systems have

also been developed to study light-matter interactions. These include phonon -polariton systems, which

couple infrared photons to material lattice oscillations, and exciton-polaritons, which couple optical photons

to electron hole or quantum well excitations. In these other polariton systems light-matter coupling has been

shown to produce a visible frequency gap, known as the polariton gap, where no stable coupled modes

can occur. However, despite similar light-matter interactions being present in these polariton systems and

cavity MP systems, no polariton gap was previously reported in CMP systems. In Chap. 4 we investigate

the connection between light-matter coupling in cavity MP and other polariton systems, developing a new

model to describe how differences between the systems leads to different frequency dispersions. This model

relates the two systems through the effective permeability the input photons experience; in CMP systems

(where photons travel through both the cavity and material volumes) the effective permeability will be

the average of both the material and cavity systems. Since most microwave cavities are designed to have

an unchanging permeability during coupling, the magnetic material permeability changes that occur during

magnon-photon coupling will appear significantly reduced when averaged with the cavity system to produce

an effective permeability. The effective permeability model we develop thus not only accounts for the much

reduced polariton gap in CMP systems, but also provides a single simple model which can describe polariton

coupling in all systems involving light-matter interactions. We further demonstrate that the height adjustable

cavity developed for previous measurements can be used to measure the polariton gap in CMP systems,

with the measured gap agreeing with that expected from our effective permeability model. The work in this

chapter thus conclusively shows that light-mater interactions in all coupled polariton systems are equivalent,

and demonstrates that changing the effective permeability of a CMP system through relative volume changes

could represent a method for controlling the coupled dispersions of these systems.

Much of modern information storage is dependent on magnetic bistabilities, with the hysteresis states

of magnetic bits being used to store information in binary form. In 2009 a new form of magnetic bistability

was discovered in resonant systems[77], where non-linear damping effects can cause resonant transmission

peaks to fold-over themselves so that multiple stable resonant states are possible for the same magnetic

configuration. In Chap. 5 we studied how non-linear Kerr effects in magnetic systems can be used to pro-

duce bistable foldover states in CMP systems, and how the behaviour of these bistabilites can be controlled
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through tuning the CMP system. Although the non-linear effects were only present in the magnon subsys-

tem, the coupled resonance states of the CMP system (which involve both magnon and photon dynamics)

were able exhibit foldover behaviour and produce bistable modes. Beyond the simple foldover behaviour of

uncoupled magnetic systems, the foldover behaviour in CMP systems was found to be extremely variable.

The resonant energies of the bistable modes in CMP systems can be adjusted relative to each other, and

even reversed (high energy modes becoming low energy modes), as the state of the coupled CMP system

is changed. The behaviour of the CMP bistable modes in CMP systems is accurately described by a model

combining non-linear resonant dynamics in magnon systems with a quantum description of CMP coupling.

This model additionally allows us to calculate the limits of foldover behaviour in CMP systems and how

tuning the driving frequency, input power, or applied field can affect the relative energies of the bistable

CMP modes. In addition to showing that non-linear magnetic bistabilites can be produced in coupled CMP

systems and how their tunable states could be used to extend the data storage and processing capabilities of

these systems, the non-linear model we use to describe them is not limited to CMP systems and is generally

applicable for non-linear behaviours in other coherently coupled systems. Thus the myriad array of foldover

behaviours seen in our measurements may be reproducible across many areas of physics and engineering.

In addition to the studies discussed in detail in this dissertation, I have had the opportunity to contribute

to several other works exploring the dynamic properties of coupled CMP systems. One of these works[180]

studied the relative phase properties of coupled CMP systems, which is seen to vary substantially as differ-

ent coupled resonance states are reached by the system. Of particular note in this study was the observation

of an antiresonance mode corresponding to the dynamic properties of the uncoupled magnon system. In

this antiresonance state the magnon dynamics are uncoupled from those of the cavity system, similar to

the dynamics of magnon dark modes explored in other studies[24] which have been proposed for use as

long-term coherent data storage technologies. The exploration of CMP phase dynamics near these antires-

onance modes, and other coupled CMP modes, allows an enhanced understanding of the evolution of these

systems near these states which can be extended to other examples of coupled systems. Another work I

participated in[201] examined the topological properties of CMP systems near the boundary between weak

and strong coupled states. By controlling the coupling strength of a CMP system an exceptional point was

found, at which both the eigenfrequencies and eigenvectors of the coupled modes were equal. Near this

exceptional point careful tuning of the CMP system permits switching between different resonant modes,

revealing new applications for CMP systems in data processing systems. Understanding coupled dynam-
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ics near this exceptional point could allow for the engineering of topological structures in CMP systems to

create additional stable resonance states and further the exploration of non-Hermitian dynamics in coupled

systems. A further work I contributed to during my doctoral studies[43] used spintronic-based measure-

ments to directly observe magnon dynamics during CMP coupling. By inserting multiple magnon systems

into a single resonant cavity, we demonstrated that spin systems could be electrically manipulated by each

other over distances much greater than the spin diffusion length through mutual coupling to the cavity mode.

By combining the coupling properties of CMP systems with spintronic measurement techniques, this work

contributed to the development of a new research field, cavity spintronics.

The research performed during my PhD studies has led to a greater understanding of the dynamics of

coupling in CMP systems and has produced several new methods for utilizing and controlling these sys-

tems, yet there remains much new physics waiting to be explored in them. The coupling studies presented

in this dissertation have all been of coherently coupled photon-magnon systems, but recently a new form

of coupling between magnon and photon excitations has been observed[152]. In this new coupling, termed

dissipative coupling, the coupling forces exerted on each system are out-of-phase with their general reso-

nant motion, such that coupling effects act to damp the resonant energies in the coupled systems. This is

opposed to the effects of coherent coupling, where coupling effects act in-phase with resonant motion and

help to drive resonant motion. Although the physical background of dissipative coupling remains unclear,

its effects can clearly be seen as changes to the coupled CMP mode dispersion and lineshape. The fact that

dissipative coupling can be achieved in coherently coupled CMP systems by simply changing the position

of the magnon system relative to the cavity excitation fields, in addition to the fact that it has recently been

demonstrated in planar CMP systems, reveal that studying this form of coupling may lead to a much greater

understanding of the dynamics of CMP systems and permit an entirely new range of possible applications.

The development of feedback-coupled cavities[202], which exhibit Q factors far in excess of normal cavity

systems through external amplification of the resonant signal, promise to allow far greater coupling strengths

in CMP systems and permit further exploration of the non-linear regime of coupling discussed in this disser-

tation. The planar design of these feedback-coupled cavities and the new coupling dynamics they may allow

should further accelerate the development of new applications for CMP systems in information processing

technologies.

In combining the quantum nature of magnon-photon interactions with macroscopic cavity and magnon

systems, coupled CMP systems permit a unique view of the physics underlying these interactions while
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providing the ability to harness these interactions in near-future applications. The near exponential increase

in publications related to CMP systems over the past few years serves to highlight how these systems have

advanced our understanding of magnon-photon interactions, while the combination of CMP systems with

spintronic techniques to control and utilize magnon excitations has produced an entirely new sub-field of

spintronic research. In the relatively new field of CMP studies, the models developed and the observations

made of CMP systems in this dissertation have helped to lay the foundation of the field, and will pave the way

for future theoretical and experimental development. With the recent intermingling of CMP systems with

other cutting-edge developments producing new fields of study such as cavity spintronics, cavity quantum

electrodynamics[203] and cavity optomechanics[204][205], it is certain that CMP systems have the potential

to reveal much more to future research.
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