
S ro cr{.asrrc AnrrmndETIC

Agrm'rcrAr þ[puner Npu'wonKs

lnnplpMENTATroNs
oF'

A rnpsrs
PRESENTED ßO THE

Ut{IvpnsrrY oF MRitrtose
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Mestgn or ScIpNcp

Jpppnpv A. Drcrso¡l

BY

DnpenrvrENT oF
Er,BctnrcAl AND Corvrpurnn ElqcrNBERrNG

UiqrvnnsrrY oF MnNmoee
Wrnnrpnc, Ca.nao-a. 1"992

@Jrrnnnv A. Drcxso¡r 1992



ffi@ffi )'*îå'o'io*"
Acquisitions and
Bibliographic Services Branch

395 Weltington Street
Otlawa, Ontar¡o
K.IA ON4

The author has Eranted an
irrevocable non-exclusive licence
allowing the håational [-ibrary of
Canada to reproduce, Ioan,
distribute or sell copies of
his/her thesis by any mea¡'¡s and
in any form or format, rmaking
this thesis available to interested
persons.

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A ON4

T'he author retains ownership of
the copyright in his/her thesis.
hüeither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

å-'auteur a accordé une licence
!rrévocable et non exclusive
perrnettant à !a Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque nnanière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

Your l¡le Volte ètércnce

Oú lile Nolre rélérence

[-'auteur conserve la propriété du
droit d'auteur qu¡ protège sa
thèse. ffrli la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprirnés ou
autrement reproduits sans son
autorisation.

tSBI'J m-315-7788Ø-6

Ðawxad;ä



STOCHASTIC ARITITMETÏC IMPLEI"IENTATIONS OF

ARTIFICIAL NEURAL NETWORKS

JEFFREY A. DICKSON

BY

A Thesis submitted to the Faculty of G¡aduate Studies of the Universify of Manitoba in

partial fuIfillment of the requirements fo¡ the degree of

I"IASTER OF SCIENCE

@ !992

Pe¡srission has been granted to the LIBR.{RY OF TlÍE tNTITERSITY OF lvfA¡\TïOBA to

lend or seil copies of ihis thesis, to the NATIONAL LIBRARY OF CAÀIADA to microfilm

this thesis and to lend o¡ sell copies of the film, and IINT!¡ERSITY MICROFILMS to

publish an absüact of this thesis.

The author ¡eserr¡es other publication rights, and neithe¡ the thesis nor extensive extracts

ftom it may be printed o¡ othe¡wise reproduced withoui the autho/s perrrissioru



I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholarly research"

I further authorize the University of N{anitoba to reproduce this thesis by
photocopying or by other means, in total or in part, at the request of other
institutions or individuals for the purpose of scholarly research.



Artificial Neurai Networks require highly parallel computing implementations to

be effective. This thesis examines the application of stochastic arithmetic to neu-

ral networks. Stochastic arithmetic uses values encoded as probabilistic pulse

streams. It is shown that this arithmetic requires only simple digital logic gates.

Stochastic arithmetic neural networks are demonstrated. In addition, a novel de-

sign for in-situ learning aritifical neural networks employing stochastic arithmetic

is presented. The circuits require simple hardware to implement. The hardware

is simulated and shown to successfuilv iearn sampie problems.

AnsrnACT'

1V



I would like to thank my advisors, Frofessor H. C. Card and Frofessor R.

D. Mcleod for their guidance in this work" I would like to particularly single

out Professor Mcleod for his advision during my Master's thesis and two NSERC

Undergraduate Summer Research Scholarships. This thesis represents a very small

portion of what I have learned and done during my association with him. To his

chagrin it is pretty much all that I have written up. I feel fortunate to have been

able to call him my advisor, and, most of all, friend.

I thank Brion Dolenko for sharing his neural network expertise, and David

Blighi, Gord McGonigai and Bob Pelletier for discussions.

Finanical support from the Natural Sciences and Engineering Research Council

of Canada and equipment loans from the Canadian Microelectronics Corporation

are greatfully acknowledged.

AcNmowT"EDGEMENTS



CoxTENTS

[,ist of F igunes

L lntroduction

,{rtifi cia} Neural Networks

2.7 Network Architecture .

2.2 Training

2.3 Bxample of Network training

2.4 Conclusion

Stochastic Arithmetic
3.1 Stochastic Encoding

3.7.2 Multiplication .

3.1.3 Pulse Independence .

3.1.4 Division

3.2 Pulse Stream Generation

3.3 Conciusion

3.1.1 Addition

Stochastic Arithmetic Neuratr l{etwor}cs 35

4.7 tsioiogical Motivation 35

4.2 Stochastic Arithmetic meets Neurai Networks 35

4.2.7 Activation Function 36

vi

vlt

d

I
I

13

17

L8

19

20

23

24

26

27

JL



4.3 Rerandomizer "

4.4 Training Stochastic Arithmetic Neural Networks

4.5 Pulse Stream Neural Networks

4"5.I The XOH. Problem

4.5.2 Four bit parity

4.5.4 Impact of division

4.5.5 Comparison with conventional hardware .

4.5.6 Weight Resolution

4"6 VLSI Implementation 
"

4.6"1 OR gate Addition

4"6"2 Random Number Generation

4.5.3 ÏIexadecimal character recognition

4.7 Conciusion

4.6.3 Chip implementation

In situ l,earning

5.1 Previous \Mork

5.2 Derivation of the in situ Learning procedure

5.2.I Calculation of the Error

5.2.2 Back-propagation of the error

5.2.3 Weight Updates

5.2.4 Analysis of the L,earning Procedure

5.3 Hardware Implementation

5.4 Simulations of in situ T,earnir,g 
"

5.4.I The XOR. and Hexadecimal CCR Froblems

5.4.2 The Rerandomizers and in situ iearning.

5.4.3 Weight Resolution

5.5 VLSI Implementation "

5.6 Conclusion

4I

43

48

48

52

bf)

Ðt

60

62

bll

0Ð

66

67

68

t):,

70

77

7T

7I

t.)

(+

tô

82

82

B6

87

87

89



6 Conclusions and Fbture trMorlc 90



Ltsr oF F.rcunas

2"I Simplified neural biology

2.2 Model of the McCulloch-Pitts neuron.

2.3 Feed-forward network architecture . .

2.4 The Sigmoid nonlinearity " "

2.5 Network architecture for the XOR probiem

2.6 Training evolution of the XOR Froblem

2.7 Output space for the XOR problern

3.1 Examples of pulse strearn representations 19

3.2 Fuise Stream Addition 2l

3.3 Output probability of OR gate addition . 22

3"4 Fuise Stream Multiplication 23

3.5 Removing temporal dependency with delay elements 24

3.6 Computing the derivative of th,e logistic function 25

3.7 Circuit for stochastic division. 27

3.8 Simulation of the Stochastic Arithmetic Division circuit. 28

3.9 Pulse Stream generation scheme 29

3.10 Block diagram of cellular automata 30

3.11 Distribution of random numbers from a cellular automata register 30

3.12 Rate hdultiplier Schematic 31

3.13 Frobability density for 8172 cycles of an 8 bit random number gen-

erator for 7 desired output densities" 33

ix

t

oo

I
i0

74

15

16



3.14 Output of Rate iVlultiplier averaged over 16 periods

4.7

4.2

4.3

4.4

4"Ð

Biological motivation [1]

Pulse Stream Implementation of the basic neural network operation.

Negative and Positive Weights

Activation Function of a two-input pulse stream neuron

Re-randomizer circuit

4.6 Test of the re-randomizer circuit"

4.7 Re-randomizercircuit

4.8 Output of the filtered re-randomizer " "

4.9 Output of the hybrid filtered re-randomizer " "

4.10 Equations for training.

4.11 The user interface of the pulse stream neural network simulator

4.72 Training error for XOR problem"

4.13 Network output for the XOR problem

4.14 Network activation for XOR problem

4.15 Network activation for XOR problern

4.16 Training error for the four bit parity problem

4.17 Training data (left) and network output (right) for the four bit

34

parity problem 55

4.18 Network activation for the four bit parity problem 56

4.19 Training error for the hexadecimal character recognition problem " 57

4.20 Network activation for the hexadecimal character recognition problem 58

4.21 Network outputs for the hexadecimal character recognition problem 59

4.22 The impact of division on network training 60

4.23 Comparison of the decision spaces of Stochastic Neural |[etworks
and conventional sigmoidal Backpropagation Networks 61

4.24 Comparison of the stochastic arithmetic network and the XOR
function 62

36

37

39

40

47

42

43

44

44

49

50

51

52

53

54

55



4.25 The weight space of a two layer network trained to solve the Hex-
adecimal OCR problem. 63

4.26 The weight space after quantization to (*1, +.5, 0, -.5, -1). The

4.27

4.28

a)a

5.1

5.2

5.3

b.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

network continues to produce the correct outputs. 64

The wired OR gate and bus contention circuit. 66

Block Diagram of integrated circuit 67

VI,SI Implementation of Stochastic ,{rithmetic Neural Networks 68

Block diagram of in situ learning synapse.

Hardware required for generating ihe error streams at the output
neurons.

Hardware implementation of á variables

ÏIardware implementation of error back propagation.

Hardware implementation of weight change computation.

{Jp/Down counter building block

State transition diagrarn for a three bit sign magnitude counter.

Counter control logic for sign magnitude up/down counter

Sign logic for sign magnitude count

Simulation of in situ learning for the XOR problem.

Simulation of in situ learning for the hexadecimal character recog-
nition problem.

5.12 The impact of variance on in situ learning

5.13 Effect of the rerandomiz,er an learning

5.14 Layout of synapse with in situ learning.

6.1 The XOR multiplication bipolar representation. 91

6"2 tslock diagram of a neural netwo¡k architecture using the bipolar
representation. 92

76

77

77

78

T9

79

80

81

81

83

84

85

86

88



CmaprER l-

lruunoÐucrrcN

T n" area of Artificial Neural Networks experienced a great resurgence of interest

in the 1980's. trn the past it has experienced two boom periods, only to have them

go bust.

The first boom started in 1943, when McCulloch and Pitts proposed a simple

model of neuron operation [2]. This model attracted much interest because of its

simplicity.

The second boom was due to the networks of neurons that could learn to solve

problems, given the inputs and the desired output" While effective for some prob-

lems, Minsky and Fapert showed in the baok Perceptrons [3] that these networks

were unable to solve a wide range of problems" Interestingly some researchers be-

lieved they knew the solution to the probiem, but they could not frnd the procedure

to train the networks. Researchers left the freld in the face of this roadblock, and

the field became dormant"

In the 1980's new results, such as a learning aigorithm that addressed

problems of the networks discussed in Perceptrons, started a resurgence in

1

the

the



CHAPTER. 1. INTRODUCTTO¡{

field. The availability of computers assisted

has been a tremendous amount of simulation

There has been comparativeiy little study of hardware implementation. Arti-

ficial Neural Networks are fine-grained, massively parallel systems; however, most

of the work has been by simulation on sequential computers. General purpose

computers are not optimized for the calculations of neural networks; they require

specialized hardware. The hardware ranges from a few special purpose processors

to large arrays of processors implemented on an integrated circuit. Most promis-

ing is the latter approach: highly parallel computing structures implemented on

a single chip or multi-chip systems.

2

simulation and exploration" There

of neural networks in recent years.

Networks can consist of thousands of computational elements. It is necessary

to implement these processors efficiently. There are two approaches to implement-

ing artificial neurai networks in hardware: analog and digital" Each method has

its disadvantages and advantages.

Analog circuitry permits high density implementation as the operations re-

quired in neural networks can be implemented using few transistors. This allows

for many computational units to be included on one chip. Communication be-

tween units is typically via a single wire carrying a voltage or current. However,

there are many drawbacks to analog impiementation. Analog hardware does not

produce high accuracy arithmetic. Analog vaXues are susceptible to noise, and

mismatch between transistors can have a serious effect on arithmetic. Device

matching and connection impedance make it d.ifficult to communicate analog vai-



CHAPTER. 1. TNTRODUCTION

ues between chips, so multi-chip systems are not feasible. The amount of circuitry

that one can implement on a single chip lirnits the size of the networks. Storage

elements are very difficult to implement in analog hardware" In addition, analog

circuit design and implementation is not well supported by CAD tools and fab-

rication houses as is digital. While analog circuitry is an interesting medium for

neural network implementation, these drawbacks restrict its effectiveness at this

time.

Digital hardware can perform arithmetic operations with a high degree of

accuracy. Unfortunately, this accuracy comes at the expense of hardware size

and computation speed. A single rnultiplier to perform an 8 bit multiplication

can consume a large percentage of the available chip area. Another drawback

of digital hardware is that communication of binary values requires many wires.

There are many benefi.ts of digital hardware. It is very easy to implement memory

to store values. Digital signals are not as susceptible to noise as are analog signals.

Finally, digital circuit design and fabrication is well-established.

With the tradeoffs between analog and digital circuits, some implementations

are hybrids. Analog hardware performs the arithmetic and digital hardware is

used for off-chip communication and data storage. The drawback is that the

interface between analog and digital carries a large overhead.

This thesis examines a unique implementation architecture: stochastic arith-

metic. Stochastic arithmetic encodes values as the probability of a pulse in a

pulse stream. lVhile the hardware consicLered in this thesis is digital, stochastic



CHAPTER 1. TNTR"ODUCTIAN

arithmetic allows low area implementation of the hardware required to perform

the arithmetic required for artificial neural networks"

The organization of this thesis is as foilows:

Chapter 2 gives a brief introduction to artificial neural networks" A brief

history and motivation is presented. An example of an artificial neural network

training procedure is also presented.

Chapter 3 examines stochastic arithmetic. The hardware for the arithmetic

required for neural networks is exarnined.

Chapter 4 discusses the impiementation of stochastic arithmetic neural net-

works and presents simuiation results. These networks are trained off-line. The

data from a trained network is then loaded into a hardware implementation.

Chapter 5 is the main contrit¡ution of this thesis. The networks examined in

Chapter 4 are extended to hardware implementations that can train themselves.

Chapter 6 presents the conclusions and discusses future work.



CmaprER 2

Anrrp'ICIAr, Npuner hTmuwcn KS

l\4 
od"ttt computers perform complex calculations and can store and retrieve

information with speed and accuracy. However, the most advanced computer is

humbled by the problem solving pov/er of even the most primitive brain. An

Artificial Neural Network is a computation paradigm inspired by neurai biology.

The ultimate goal is to apply the methods and models of the brain to create

computers capable of what the brain can perform that conventional computers

cannot.

One area where the brain exceis is pattern matching. Peopie can recognize

objects easily, even when presented with partial information. Moreover, people

are able to grasp the concept of a book and can correctly classify a book that they

have never seen. The exact process by which this done is not fully understood.

Computers with such a capability are d.esired in many applications, such as 'treapon

systems, handwriting recognition, and computer vision.

Ariificial Neural Networks are attractive hecause it is not necessary to under-

stand the problem well enough it solve it. It is only necessary to present it to the



CHAPTER 2. ARTTFTCIAL NEUR"AT. T{F,TWORKS

neural network in the appropriate {orm. For example, in training a network to

perform character recognition one presents the inputs and desired outputs and has

the network learn to perform the ciassifrcation. Conventional approaches require

study of pattern recognition algorithms.

An interesting and dramatic example of the application of artificial neural

networks was the work by Pomerleau at CA{U[ ]. IIe used a neural network

controller for driving a vehicle along a winding road. The network trained with

data from a video camera and a range finder. The resulting network could navigate

the vehicle at a speed of 5 km/hr. This was twice as fast as previous attempts

using conventional algorithms. Ferhaps more significantly, the research required

far less time to complete, since it was not necessary to spend time devising the

necessary algorithms.

The basic computational element in the nervous system is the neuron. The

neuron receives inputs from other neurons through synaptic interconnections.

When the net input to the neuron is above a certain threshold, the neuron gen-

erates an output signal. The signal, encoded as a train of pulses, propagates

through the filamentary wire of the neuron: the axon. At the end of the axon are

more synaptic junctions that communicate the activation signal to other neurons.

The firing threshold is not uniform, neither is the contribution of each synaptic

junction to the net input. The strength of these contributions are modified by

learning. The neuron compensates for the lack of complexity in computation with

complexity of connection. The brain uses this simple element millions and millions



CHAPTER 2. ARTTFTCTAT. NEUP,AL NETWARIß

Dendritie Tnee

of times with great effect. Figure 2.1 shows a simplified drawing of two neurons.

McCulloch and Pitts first formahzeð, a simple model of neural operation in

1945 l2l. Figure 2.2 shows a block diagram of the McCulloch-Pitts neuron. The

inputs to the neuron are weighted by the strength of the synaptic connection and

summed. The resulting sum passes through a nonlinearity to produce the output.

The calculation of the net input is shown in Equation 2.1" The output of

the previous neuron is multiplied by the synaptic "weight". T'he O term is a

bias, which models the threshold of a biologicai. neuron. The net input is passed

through the nonlinearity function ./ to determine the output in Equation 2.2.

Figure 2.1: Simplified neural biology

nr:Ðus¿¡o¿JØ¡
i

(2.1)



CT{APTER 2" ARTTFTCIAT. NEUR,4L NETWORKS

o1.*1j

Figure 2.2: Modei of the McCuiloch-Fitts neuron. The outputs of the input
neurons are multiplied by the interconnection weights and summed. The sum
passes through a nonlinearity to determine the neuron output"

O^*W^,¿¿J
,f\--/

,/ 
summation

ug"*gj

o¡ : f (n¡)

2. l- . Npr\MoR K Anculrpcrun E

There are many different architectures of artificial neural networks. This thesis is

limited to feed-forward networks. ,4. feed-forward network has neurons arranged in

layers, shown in Figure 2.3. Each layer has neurons that receive their inputs from

the previous layer and propagate their outputs to the next layer. Neurons in the

same layer do not communicate with each other. The first layer is called the input

layer: it receives the inputs from the outside world. The final layer is the output

iayer. Neuron values in this layer are the considered result of the network. The

layers between the input and output are called hidden layers. Networks without

hidden layers can only solve a restricted problem set.

Nonlinearity

(2.2)



CHAPTER 2. ARTTFTCIA,L ¡üEUR.AL NETWORTß

There is no formula to calculate the number of hidden layers and units needed

to solve a particular problem. Too few units and a network will be unable to

solve the problem. Likewise too many units can cause problems[5]. Some learning

algorithms, such as cascade-correlation [6], add units as needed during learning.

Back-propagation, the learning algorithm considered in this thesis, requires the

architecture to be specified in advance.

2.2. TmINING

Figure 2.3: Feed-forward network architecture

The interconnection weights must be set to produce the correct outputs. One

method is to set the weights explicitly, using apriori knowledge of the data. Typ-

ically this method is only useful for simple problems. -A more sophisticated. and

useful method is to train the network by example. Each input and desired oui-

put is presented to the network and the weights modified to produce the correct

response.



CHAPTER" 2. ARTIFTCIAL NEUR"AT. NETWARTß

Sigmoid Furnretion

10

-3-2-10't23
X

Figure 2.4: The Sigmoid nonlinearity



CHAPTE,R 2. ARTTFICTAL NEUR,A¿ ¡úETT4/ORKS

There are many different techniques to train a network.

propagation[5], the discovery of which started the current

works.

The goal of this learning algorithm is to minimize the error at the outputs by

adjusting the synaptic weights. The error is commonly defined as the total sum

of squares error measure. The error for a single training pattern, summed over all

the output neurons, is shown below. T'he factor of 712 is included to cancel the

factor of 2 that comes out of the derivative"

E ::Ð(¿¡ - oj)z2j

where ú¡ is the desired output and o; is the output of neuron j. Each weight is

modified in proportion to the negative gradient of this error with respect to the

weight:

11

A popular is Back-

boom in neural net-

6w;i o( -#
By applying the chain rule the derivative of

weights can be determined.

AE ôE ôo¡ Ðn¡

A"u: Att A"t õw

For the output units the first f¿,ctor is:

the Error with respect to the

tþ
A%

: l,: 
- 

D;JJ



CHAPTER 2, ARTIFTCTAL NEURAT. NETWORTß

Calculating the other terms:

where /(r) is the nonlinearity of the neural activation. For a sigmoidal neuron it

can be shown that: I

The updates for the weights from the hidden layer to the output layer is:

Lw¿¡: r¡6¡o¿

on¡
6w;i

_ V7,

H:i'@¡)

where 4 is the constant of proportionality, cailed the learning rate.

For weights to output units 6¡ : (t¡ - o¡)f'(n¡).

Updates to the connection weights of the hidden units require further appli-

cation of the chain rule. The ó's for the hidden units turn out to be the weighted

summation of the á's from the units each hidden unit is connected to in the next

layer.

T2

lThe simplicity and continuity of the sigmoid's derivative is one of the main reasons that it
is commoniy selected for neural network activations.

6¿: f'(o¡)Ð61u,oo
j

(2 3)



CTTAPTER" 2. ARTTFICIAL NE,UR,AT. NETWORT{S

Training using back-propagation has two phases. F irst the inputs are presented

to the network and the output is caiculated. Next the output is compared with

the training data to compute the error. The error is propagated backward through

the network to compute the weight derivatives for all the units.

The weight derivatives can be accumulated and applied after presentation of

the set of training data. Each pass through the training set is called an epoch.

Alternatively the weights can be updated after each individual training vector.

The training procedure is repeated until the total error is reduced to an ac-

ceptable level. It is possible that the error cannot be sufficiently minimized. This

can be due to being trapped in locai minima or the network having too few units

or layers. Possible solutions are to try again with a different set of initial weights,

different learning rates, or different network sizes.

2"3. ExaMpLE oF NIET'woRK TRATNING

This section demonstrates the training of a simple feed forward network using

back-propagation. The problem is to train a network to perform the XOR opera-

tion on two inputs.

The network architecture is shown in Figure 2.5. The network has one layer of

two neuronsl one for each input. These connect to a hidden layer of two inputs,

which in turn connect to one output neurorr. There are six weights and the bias

values for the two hidden units and the output unit to determine in this network.

The weights are initialized to random values, and the network is trained using

r3



CHAPTER 2. ARTIFICTAL NEUR"A[" NETWORT(S

Figure 2.5: Network architecture for the XOR problem. The network consists of
two hidden units and one output unit"

the back-propagation algorithm. The evolution of the training procedure is shown

in Figure 2.6. The training error, weights, and bias values are plotted against the

number of passes, or epochs, through the training data. After 900 passes through

the training set the training error has reached zero, and the network has learned

the XOR problem.

The output space of the trained network is shown in Figure 2.7. The training

data is located at the corners of the graph. The analysis of the decision space is

ínstructive because it shows how the network will respond to inputs not included

in the training set (assuming analog inputs). The steep trough in the decision

space indicates that the network has rnade a distinct classification, either one or

zero. The trough is located in the region where the two inputs are very similar.

This is reasonable since the XOR function is zero when the inputs are equal. The

network classifies inputs that are very dissimilar with an output of 1, shown by

the high regions of the graph arouncl (0,1) and (1,0).

INPUT h{IDDENI OUTPUT
LAYER LAYER LAYER

T4



CT{APTER" 2, ARTTFTAIA¿ ¡{ETIR,A[" NHTWORT(S

1.2

LIo
u.! 0.8

o)
.E 0.6
L'F 

o.4
F-

0.2

0

6

4

2

(l)

=Uõ
-c -2
.s)
o)

= -4

-b

-8

-10

Learnlng the XOR F¡'oblem

15

TÉê,INING ËHHêR

Tnaining ËBochs

Figure 2.6: Training evolution of the XOR problem



CHAPTER" 2. ARTTFICIA¿ NEUR,,AL NE,TWART{S

XOR Decision Space
Conventional Networks

16

Figure 2.7: Output space for the XOR problem



AHAPTE,R 2. ARTTFTCTA¿ ¡{E[/R,AL NETWARI{S

2.4. CoxcLUSroN

This chapter has presented a brief introduction to artificial neural networks, specif-

ically feed forward network trained using back-propagation of error. It was not

intended as a comprehensive review of the field, but as a foundation for the rest

of the thesis. More information on artificial neural networks is available from a

variety of sources, such as reference [7].

I7



CrueprER 3

Srocr{,{srrc AmTTmMETTC

Q tochastic arithmetic is not a new idea. It was developed in the 1960's by several
r-)
groups seeking a new method of computingf8]" The research was motivated by

the difficulty in assembling large computers, either analog or digital, in that era.

Without a convenient means of programming digital computers, analog computers

were considered easier to use. To rnultiply two numbers with digitai hardware

required programming using punch cards or setting switches - in analog you simply

patched two wires into the multiplier. Stochastic arithmetic was proposed to

allow digital hardware to be used as conveniently as analog hardware. The arrival

of programming languages and powerful digital hardware changed the future of

computing. Analog and stochastic computers were run over by the great digital

steamroller.

This chapter shows how stochastic arithmetic is used to perform computations.

The motivation for using stochastic arithmetic in artificial neurai networks is

discussed. in the next chapter"

18



CHAPTE,R 3. STOCT{ASTIC ARTTHMETIC

1, 2 3 4 5 6 7 8 9 10

Figure 3.1: Examples of pulse stream representations" Values a e represented ty
the probability of a high pulse in a pulse stream.

.o

1.0

3.1. SIocI{ASTIC ENcoorlc

Stochastic arithmetic represents numt'ers as a probability of a pulse in a stream

of pulses. For example, the value of .5 couid t,e represented by a pulse stream

with an equal chance of an individual pulse being a 1 or 0. Some examples of

pulse representations are shown in Figure 3"1"

There are different ways of encoding a number for stochastic arithmetic. This

paper deals primarily with the representation shown in Figure 3.1, where num-

bers are encoded as the probability of a one in a binary puise stream. This

representation is unipolar: only -7¿]¡6s between 0 and 1 can be encoded. Other

representations can encode bipolar values or use more than one line for signailing.

Stochastic arithmetic offers the advantages of analog and digital computation.

Like analog, pulse representation requires only one line to carry the values, and

Lhe size of the hardware to perforrn arithmetic computations is comparable to

19



CHAPTER 3. STOCHASTIC AR"TTT{MÍETÍC

analog hardware. Contrast this to digital harclware, where iarge buses are gener-

ally required to communicate data, and the hardware requirements of arithmetic

are excessive. Analog circuitry is piagued by problems such as device matching,

which makes intra-chip, and in some cases inter-chip, communication impossible.

Stochastic computing, which requires only simple digital hardware, does not suffer

from these drawbacks.

Stochastic computing has some unique benefits. Consider a pulse stream that

to represent 11 values: (0,.1,.2,.3,.4,"5,"6,.7,"8,.9,1). A pulse length of 10 is re-

quired. If it is required to extend the system to handle 20 vaiues: (0,.05,.1,...,.90,.95,1)

all that is required is to double the length of the pulse: no hardware modification

is necessary. nn addition, the inherent noise can be beneficial to neural networks.

3.1.1. Anorrrolr

It is not possible to perform exact addition with pulse streams because of limita-

tions of the representation. The maximum value that can be expressed is 1 (i.e.

all pulses high), so OR gate addition cannot handle a sum greater than 1. One

solution is to perform weighted summation. For example, the weighted summa-

tion of A and B would be ! + + : ry" The factor of two scaling on the inputs

prevents the final summation from exceeding 1. The summation hardware can be

a simple counter.

Another approach is to use approximate addition, sacrificing accllracy for hard-

ware simplicity. Figure 3.2 shows that ihe OR gate truth tatle provides an ap-



CTTAPTER 3, STACHASTTC ARITTTMETTT

A
0
0
L
1

B

0
L
0

l"

SUM

0

L
L

1"0

+.2 L

Figure 3.2: Pulse Stream Addition. Addition can be approximated for small
inputs using an OR gate. For inputs approaching one the OR gate adder saturates
io 1.

.5ffi

rlrl-n 
-n 

SUM
) !- n-nrul

n-rr- -1-J

proximation of addition. The output of an OR gate is given by:

AorB: AE+Ãn+eP

APPROXIMATE

"7 ruru

21

.eru

T'hus for A << 1 and B << L th.e AB term is small and the output of the

OR gate is approximately A * B. For large A and B the output of the OR gate

saturates to 1. This results in a saturating noniinearity that we will see is useful

for artificial neural networks. Figure 3.2 shows two examples of pulse streams

added using the OR gate.

More than two numbers can be added. using an OR gate with more inputs.

A(1 -F) +(1 -A)B+AB

"4_ Aß + B _ AB + AE

A+ ts _ Ats

(3.1)

(3.2)



CHAPTER. 3. STOCHASTTC {RITHNÏETIC

0R,A'ddition Fnobahílity

Figure 3.3: Output probability of OR gate addition. Note that the probability of
a one output quickly approaches one as the number of inputs increases. For OR
gate addition to t¡e effective for large fan-in, the inputs must be small.

Because the maximum sum of any number of inputs is 1 (limited by the represen-

tation), the OR gate addition will be accurate for a smaller range as the number

of inputs increases. The output for an OR gate with n inputs is given by:

Output, - 1- [.[(t - ¿,)

22

Figure 3.3 shows the output probability of the OR gate for increasing numbers

of inputs. As the number of inputs increases the output of the OR gate addition

saturates for a greater range of input" For large fan-in the inputs must be small.



CHAPTER 3. STOCHASTTC ARITT{hIETTC

A
0
0
L
t_

B

0
L
0

L

ÞRÓH

.4

.5

0
0

0
1

.2

Figure 3.4:
plying two

mm

[-].ljl_

u

3.7.2 . Mur,rrpr,rcATroN

[LnJ1

Pulse Stream Multiplication.
pulse streams.

PRODUCT

I I- n_fL

-j

Since product of two numbers less than or equai to one is guaranteed to be less than

one, multipiication using stochastic arithmetic does not sufer from the limitations

of the representation as did addition" Caiculation of the product of two (or more)

pulse streams requires only simple hardware. Figure 3.4 shows that the AND

function performs the multiplication of two pulse streams. The output of an

AND gate is given by:

"8

"7

mW

.¡0
L¡)

.5m
The AND gate can be used for multi-

A.a,ndB:AB

The product of n inputs can be computed by a n-input AND gate.

(3.3)



CHAPTER" 3" STOCHASTTC ARTTHAíETTC

F'igure 3.5: Removing temporal dependency with delay elements

3"1"3. Fursn INonpnNnENCE

It is important that pulse streams used in stochastic arithmetic be free from

temporal dependency. Two bit streams are dependent when the probability of a

one or zero at ø gi.uen instant in time is a function of another bit stream. This

can has a significant impact on calculations.

The impact of temporal dependency is best illustrated with an example. Con-

sider calculating the product X(1-X) using stochastic arithmetic. A stream X

with the desired probability is generated. The term (1-X) is computed by passing

X through an inverter. The product of X and (1-X) is then calculated using a two

input AND gate, as shown in the upper schematic of Figure 3.5. llowever, the

output of the ANÐ gate will always lte zero, independent of the value of X. When

there is a high pulse (logic 1) on X, the inverter will always produce an opposite

(logic 0) for the (1-X) term. The inputs to the AND gate will either be 01 or 10,

which will always result in a 0 outpu'c.

24

x(x-x)



CHAPTER. 3. STOCHASTTC .AR.TTH.NIETIC

o)

'i= ^6X
59n^

Derivative of Log[stic Function

Figure 3.6: Computing the derivative of the logistic function. Giitches in the out-
put are due to the pulse generation circuitry. Averaging the output will eliminate
the glitches.

The dependency can be removed by adding a delay element to one stream, as

shown in Figure 3.5. Because the pulse strearns have no temporal correlation (if

properly generated) and the delay retrnoves the temporal dependency, the AND

gate will produce X(l-X). Figure 3.6 shows a simulation of this circuit. The inputs

have eight bit resolution, and the output had been averaged over four 28 -! clock

cycles for smoothing. Averaging over greater time will increase the accuracy of

the arithmetic.

0 .25 .5 .75

Input X

25



CHAPTER. 3. STACHASTTC ARITHNTETIC

3.L.4. Drvrsrow

This section shows that stochastic arithmetic can perform mathematical calcula-

tions more complex than addition or multiplication. Division, for example, is a

sophisticated but useful operation and is not trivial to implement in binary arith-

metic with digital hardware. An approximation to division using a J-K flip flop

is possible [8]. This section demonstrates a powerful error minimization method

to produce the quotient of two numbers [8].

Let Po be an approximation of the quotient, and e is the error in this approx-

imation"

Note that e2 is positive and bounded below by zero. If P, is changed so that

the derivative of (e2) is negative, then the error will be minimized.

26

Ð-ao-

ERROR : e

"2 : (F"Fr_ pr)"

d("zt

"tt 
: Z(P,P")(P"Pz - Fù :2PzPoe

For the derivative of. e2 to be negative we need:

.tT
E
,r. 2

_ÐI)
- 

t2ro -P1

2?2Þoe < 0

since

then

F2)A,

þo : -ae: -a(Fo7z - Pù



CHAPTER. 3. STOCHASTIA ARITHNIETTC

Therefore to minimize the error the output Po must be changed by Pt - PoPz.

An AND gate computes the product FoP2 and P, is updated using the up/down

counter arrangement shown in Figure 3.7. Figure 3.8 shows a simulation of the

circuit, using an eight bit counter. nnitially the approximation is 0. The error

correction improves the approximation until the error in minimized" After 1500

clock cycies the quotient (the value in the counter) settles to the final answer. The

oscillations in the output are due to the variance present in the random streams,

which is discussed in the next section. The variance can be reduced by averaging.

3.2. FulsÐ STREANT GENERATToN

Rate
Multiplier

INCRÊMENT

Goumter
DECHEMENT

Figure 3.7: Circuit for stochastic division.

27

An essential component of stochastic arithmetic is the generation of the pulse

streams for use in the arithmetic operations. The generation must be efficient in

both time and area so as not to offset the henefrts of the stochastic arithmetic.



CHAPTER" 3. STOCHASTTC ARTTHMETTC

1

0.9

0.8

o.7

q u.b
o
E 0.5
:Jg o.4

0.3

0.2

0.1

0

Stochastie Arithmetic Eivisisn

Figure 3.8: Simulation of the Stochastic Arithmetic Division circuit.

In general, to generate a pulse with a probability P(1):p the following proce-

dure will produce a random stream:

o Generate a random number, R, such that 0 < B < 1

e If p ( Æ, output a 1 else output a 0.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Clock Cycles

Figure 3.9 shows a block diagrarn of a rate muitipiier to generate weighted

pulse streams.

In digital hardware R and p are usually represented as a binary integer. If the

maximum value in the weight register is M, and the value stored in the weight

register is p, then the probability of a pulse should be P(1) : p/M.

Generation of a tru,e random number is extremely diffrcult. In digital hardware

the problem is amplified by the necessity to use a minimum of the silicon resources.

A common technique to generate a random number is using a linear feedback

28

)



CTTAPTER. 3. STOCHASTIC ARTTT{METÏC

Random Numher
Generaton

Figure 3.9: A pulse stream of desired valued is generated by comparing the desired
weight with a random number.

shift register (LFSR). These structures have been studied extensively for VLSI

implementation and found to procluce correlated streams. High-quality random

numbers are essential.

A solution to this problem is to employ a particular configuration of a Celluiar

Automata (CA) register. ,4. CA is a set of registers whose next state is governed by

nearest neighbor connections. Hortensius [9] has shown that certain arrangements

of CAs possess maximal length sequences with superior random number properties

compared to the LFSR.. The maximal length OAs are composed of cells that are

governed by the foliowing state equations:

Pulse Stream Out
F(1) = weight

29

RuIe 90 : O(t + 1,s)

Rule 150 : O(t * 7,æ)

Or,r-, Ø Ot,r+r

Or,r-rØtt,"@Ot,r+t



CHAPTER 3. STOCTTASTTC AR"TTTNMTETIC

Figure 3.10: Block diagram of celluiar automata

Cellular Autonnata Random Number Generator

f 192
o-
:J
o
Lo
Ø 12a
'u)
(I)
E.

O

30

Figure 3.11: Distribution of random numbers from a cellular automata register

1500 2000 2500 3000 3500

Clock NJurnber



CHAPTER 3. STOCTTASTTC,LRTTHTVTETTC

wR

The rate multiplier used in this thesis originates out of research in VLSI

pseudo-random test pattern generation [10]. The schematic is shown in Fig-

ure 3.12. The circuit takes abinary set of weights and a set of randombit streams

with P(1):.5, and produces a weighted bit stream with P(1) between 0 and 1 in

increments of IIQR-r +Ð.

For -R : 3 the circuit analysis is as follows:

wo w1 wa

A 
R-r

Figure 3"12: Rate Multiplier Schematic

óI

WR-1

BIT STREAM
OUT

Tlro

Yt:

WR

ÆYo + Aowo

Æw* * Aowo

ÆY + Arw"

EÆwR+AÃwD+Arw1

Æn + Arw'



CHAPTER 3. STOCT{ASTTC ARITTTMETTC

Since P(A,): .5 and P(A,) - 1 - .5 : .5,

= trfig14rR +ÃÃAoWo +ÆArW * AzW2

1R 1R rR-i tR-2
P(YRú) : ; *" o ä *' o à *"-' *, wR-I

For arbitrary R, the general equation rs:

The output of the rate multiplier for seven different desired output densities

is shown in Figure 3.13. The controlling weight register was eight bits wide, and

thus the densities could range from 0 to255. Inspection of Figure 3.13 shows that

whiie there is a variance in the output, the mean value is equal to the desired

density. Figure 3.14 shows the output of the rate multiplier averaged over 16

periods. The variance in the pulse stream adds noise to the computations.

3.3. CorucLUSroN

R

P(Yn) - 2-R7ry4 *\z-;Yrn-t
,i=1

¡f.t
ùlJ

This chapter presented a method of arithmetic using pulse trains calied stochastic

arithmetic. Stochastic arithmetic allows calculations using only simple gates. The

next chapter will examine the use of stochastic arithmetic in neural networks,

where the ability to implement arithmetic with small circuitry is desired.



CHAPTER 3, STOCHASTTC ARTTHNÏETTC

120

100

80

oc
o)
fo60
6)

LL

40

20

0

Random Nurnber Output Density

33

Figure 3.13: Probability density for 8772 cycles of an I bit random number gen-

erator for 7 desired output densities.

128

Output



CHAPTER 3. STOCHASTTC AR.ITHMETTC

256

24Ð

208

192

t16
fo- 160
Jo 144
(Þ
u, t¿é
(ú
b 112

80

õ4

4A

32

16

0

Average Weighted Fulse Stream Output
,Averaged over 16 periods

34

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Desired Weight

Figure 3.14: Output of Rate Multiplier averaged over 16 periods



Cmeprnn 4

S t'o CF{ASTIC Arut'mrvÍET'Ic
þtnunar INnrwoRKS

Q tochastic Arithmetic Neural Networks use Stochastic Arithmetic to perform
r_)

the network calculations. This chapter explores the theory, operation, and imple-

mentation of artificial neural networks employing stochastic arithmetic.

4.1. BroLocICAL MotIvarloN

The brain uses trains of pulse to communicate information. Examples of neural

pulse trains for different levels of activation are shown in Figure 4.1. This com-

parison is for interest sake only - the signalling of the brain is probably much more

complex than the simple pulse representation considered in this thesis.

4.2" SrocHASTrc AnrrnvrpTrc MEETS Npunal NprwonNs

The main motivation of applying stochastic arithmetic to neural networks is the

ability to implement arithmetic operations with high density using digital cir-

cuitry. The simplicity of the hardware can allow addition and multipiication, the

35



CHAPTER 4. STOCHASTIC ARTTT{fu{ETTC NEUR"AL NETWORTß

ï **'*s-+aï..mdr*. F+-*y,L Ð.*,*Êf

.or "fffiP**nqt**51,.,rY\o'r,'¡ffflïi*JffT**
,o T|T([l"-11lil/M1r#1¡'Fnr"rrûrirf¡^rru1¡filrv4

-,, -i/rtTJ!ï'rr'ïl1f/fifynûh1¡¡1ìrum 
ïIr^1T nÈf

-,, lÊL(ftft",Íitfhu$tx.rl*fllifuTl 1li1n ruffilttfl¡ï
_, ,- JTt,[*[.i,1*l1JJ"J,lfulJ,ft*Jri,lrtf ttil
-,," r]**JL-u-L-{**t*rdJJJljJ

two most important operations in neural network hardware, to be implemented

in sma11 areas. Related work to that of this chapter can be found in [11, 12]. The

work in this chapter is based on research by Tomlinson et. al. [13]

The impiementation of the feed forward networks in this thesis requires the

computation of a dot product consisting of an addition and a multiplication. As

discussed in the previous chapter these operations can be computed by the OR

gate addition and AND gate multiplication, shown in Figure 4.2.

4.2.1. ActtvatroN Fil¡rcrroN

Figure 4.1: tsiological rnotivation [1]

36

The circuit shown in Figure 4.2 does not support negative synaptic weights, due

to the unipolar nature of the puise stream representation that is empioyed. To



CHAPTER 4. STOCHASTIC ARTTHÌVÍETTC NE,URAT. NETWORT(S tnùt

Figure 4.2: Pulse Stream Implementation of the basic neural network operation.
The output of the input neurons are multiplied by the synaptic weights using the
AND gate multiplier. The summation and non-iinearity are performed by the OR
gate addition.



CHAPTER 4" STOCHASTIC ARXTHTVIETTC NET]RAL NETWARTß

accommodate negative weights, each synapse output is separated into two distinct

nets: the excitatory and the inhibitory nets. Therefore, each neuron wili have two

net input terms. Each neuron j will combine the excitatory net input nf and the

inhibitory net input n¡ to determine the neuron output o¡. The net inputs are

calculated using the OR gate addition; these are then combined to result in the

fina1 output stream using a simple logic function. These variables can be written

in terms of the network values as:

The two nets are not referred to as negative and positive because the net out-

put of the neuron is not o¡ : nl - n¡ . dinfortunately there is no simple means

of performing subtraction in stochastic arithmetic. Moreover negative and posi-

tive nets would require accommodation of negative neuron outputs. The output

of the neuron is determined by Equation 4.3. The hardware required for this

computation is shown in I'igure 4.3.

nI:n- F{ (t -?Dijoi)
_ri>o

n; :I- ÏT tt *w¿¡o¡)
-;j1A

The saturating effect of the OR gate addition provides the

linearity of the neurons. Figure 4.4 shows lhe auerage output

(4.1)

(4.2)

I/-oj:nj\L-n¡) (4.3)

saturating non-

of a two-input



CHAPTER 4. STOCHASTTC AR"ÏTHAIETÏC NEUR.AL NETWORKS

w..
I

oi

Weighl Sign Bit
(Positive=1)

SYNAPSE NEURON

neuron for the possible inputs. The average output is presented because the

nonlinearity is a function of the inputs - the OR gate addition will give a different

output for inputs of .4 and .2 than it wiil for .55 and .05, although the net input

is the same.

In conventional digital approaches, the sigmoid nonlinearity is performed using

a table look-up or pov¡er series expansion. Both approaches take time and area to

perform. The computation of the noniinearity function using OR gate addition is

free.

One potential problem of using the OR gate neurons mentionned earlier is as

the number of inputs to a neuron (and thus the OR gate) increases, the probability

of a 1 output for a given input will rise. This was shown in Figure 3.3. This result

suggests that the weights in a neurai network must be very small to prevent the

Figure 4.3: Negative and Fositive \Meights

39



CHAPTER 4" STOCT{ASTTC ARTTH]\IETTC NEURAT, NETWORKS 40

J
o-
3o
o)
ËÎJ(ú
Lo

Avenage Output

Figure 4.4: Activation function of a two-input pulse stream neuron. The average
output is shown for all possible comt¡inations of two inputs resuiting in a certain
net input. A translated and scaled sigmoidal activation function is shown for
comparison.

0

-512 -3S4 -256 -128 0 128 256

Average lnput

Sigmoidal

Fulse Stream Activation

512



CHAPTER. 4. STOCHASTTC ARTTT{METTC NEUR"AL NETWORTß 4T

lnput Pulse
Stream

Figure 4.5; Block diagram of the re-randomizer circuit. The counter controls
the density of the output stream. If ihe output is high when the input is low,
the counter is decremented. If the output is low and the input is high, then the
counter is incremented. If the input and output are equivalent, then there is no
change.

neurons from constantly saturating.

4.3. RpnANDoMrzER

To prevent correlation between puise streams from earlier layers the output stream

of each neuron must be "re-randomized." This is accomplished by an adder con-

trolling an output stream that is configured to follow the input stream, as shown

in Figure 4.5. If the output is high when the input is low, then the value of the

counter is decremented. If the output is low when the input is high, then the

counter is incremented. ïf the outpui and the input are equivalent then there is

no change.

The output of the re-randomizer circuit for different input densities is shown

in Figure 4.6. Note that the output is not constant but varies due to the variance



CHAPTER 4. STOCHASTIC ARITHIWETIC NEURAL NETWORT{S

2N

224

208

192

176

160

à 144a
6.oao1n

96

80

48

16

0

Rerandomizer euþut Density

Figure 4.6: Test of the re-rerandornizer circuit. The re-randomizer was reset to
the mid-point before each test. The target densities are 0 to 240 in steps of 15.

inherent in the random number generation. In applications where this variance is

not desirable it is possible to increase the tiine constant of the integrater.

Figure 4.7 shows the re-randomizer circuit modified to produce a smoother

output. The lower bits on the counter/integrater are ignored. This divides the

output value by a factor of two for each bit shift. Changes in the lower bits due

to the variance have no direct effect on the density output by the rate multiplier.

Figure 4.8 shows the output of this arrangement for one bit and for two bit shifts.

Not only does the output become smoother as more bits are ignored, but it also

512 1024 1536 204A 2560 3072 3584

CIock Cycles

42



CHAPTER" 4" STOCHASTIC ,LRTTHNTETTC NEURAL NETWORKS 43

lnput Pulse
Slream

Figure 4.7: Block diagram of the le-randomizer circuit modified for output
smoothing. After integrating normally until the input and output streams have
equal densities, the value in the integrater is shifted to the left and the lower bits
are ignored.

takes longer for the re-randomizer to settle the correct output value.

The output of the re-randomizer aan be both rapid and smooth using a hybrid

a rangement. Initially the re-randomizer is operated without smoothing, allowing

it to quickly count to the target output. After allowing time for the integrater to

reach the correct output, the value in the integrater shifts by n bits and the first

n bits are not passed to the rate multiplier. This approach has the benefrts of

the quick response of the non-filtered re-randornizer and the smooth output of the

filtered re-randomizer. The output of a re-randomizer employing this approach is

shown in Figure 4.9.

4.4. Tn,qrNrNG SrocHesrrc AnmnvrpTrc NpuRel Nprwonxs

The following weight update derivation follows standard back-propagation [5] and

is taken from Tomiinson et al [13]. The proced-ure performs gradient descent over



AHAPTER 4. STOCHASTIC ARTTT{NTETTC NEURAL NETWORKS

240
221

204

192

176

> 160

ã 144

$ raa
o 112

96

8o

64

4a

32

0

Rerandomizer Output Density

r Ër shift z Bí1 shifr

1024 1536 æ48 2560 æ72 3æÅ

Clock Cycles

240

æ.4

208

152
f76

> 160

Ë 144

5 r2B
É) 112

96
80

64

48

16

0

Figure 4.8: Output of the filtered re-randomizer

44

Hybrid Herandomizer Output Density
+ NoSmooh¡ng ++ 2E!¡tshift +

210

208

192

t76

f60

144

128

112

96

80

64

48

t6

0

--

o

f024 ts36 2048 25æ 9072

Clock Cycles

Figure 4.9: Output of the hybrid filtered re-randomizer. Integration operates
normally for 1023 clock pulses, when two extra low order bits are added to the
integrater

0 512 1024 ts3Ð 2048 2560 3072 3584 4096

Clock Cycies



CHAPTER 4. STOCHASTTC AR"TTT{METTC NEURAL NETWARTß

the sum-squared error measure given bry Equation 4.4"

where ú; is the target value from the training data and actual o¡ is the output

of neuron j. To minimize the error, each weight is modified in proportion to the

negative gradient of the error with respect to each weight, given by Equation 4.5"

I
tt 

- -2

Since the output of a neuron is not a simple function of its input, but a function

of the contribution from the positive and negative streams, the derivative must

be considered separately for positive and negative weights.

For positive weights, uI, the chain rule results in Equation 4.6, while negative

weights tr¿ require Equation 4.7"

Ð(¿¡ - r¡)'
j

AE
Au.r¿; o< - ;-" 61!;i

45

(4"4)

Iret:

ôE _ ôE 0o¡ ônl
^I-^^fñf6ui'i Ooj dnì dw¿'j

0E :ôE 0o¡ \
0.u ôo¡ ôn¡ 0w;¡

(4.5)

AE
ão¡

(4.6)

(4.7)

(4.8)



CHAPTER 4. STOCHASTIC AR.TTHMETTC NEURAL NETWORTß 46

For output neurons and the sum-squared error measure ( .a) the error is simply

the difference between the training data and the network output:

ôE
- 6, - €i : t¡ - oi (4"11)

For the hidden layers the error is propagated back through the network. Each

of the k output neurons connected to hidden unit j will contribute to this error.

Using the chain rule:

AE 
- 

ôE öon 7nt , -- ôE 0o¡" ônr (a 1r\
a%:4aaaæ a; + laa*-ra¡ \+'LL)

Using Equation 4.1:

(4.e)

(4.10)

ðo¡

,1 - w¡¡ro¡

ðú : [i-r,>o(i -tor¿o¿)(-i)(o¿)
ôw¡; l-wj¿oi (4'16)

(4.13)

(4.14)

(4.i5)



CHAPTER 4. STOCHASTTC ARÏTT{METTC NEURAL NETWORKS 47

Similarly from Equation 4.2:

: "l?on) - 
(-o¿)

I-w¡;o; 1-w¡;ot
a\

o¿\I - nj )

I - w¡.;o;

From Equation 4.3:

95 : ?r):n¡n(r - ni) 
(4.1e)ôo¡ 7 - w¡*

y : ai1-nî) 
(4.20)}tn¡; 7 ! w¡¿o;

The resulting weight update equations are:

ôE a' o.
" .{'t _- ôq, : e¡(i - ")(i - ni)( 

r ålq) @l3)

ÐE L,- oi
- . : e;n!(I- n. )l \ (4.24\

ð-n J r\ r"l**ior' \ /

Note that it is possible for the denominator in the above equations to equal

zero, wlrich is unacceptable. A scaiing factor of .95 is added to the u¡;o; term to

prevent the denominator from approaching zero. These weight update equations

(4.17)

(4.18)

(4.2\)

(4.22)



CHAPTER 4. STACHASTIC AR.TTHME,TTC NEURAL NETWORT{S 48

are further modified with the inclusion of a learning rate factor. In addition, the

weights must be restricted to the range [-1,+i].

The error back-propagation summation is given by:

ry:5- (9n
oo¡ n'#'o \ô'n'

Where

4"5. FulsE SrREA\¿ IIIEURAI, NET\MoRKS

-n)(r-affi)*
AE
ãot is simply the error from the layer immediately above.

This section presents the results of stochastic arithmetic neurai networks applied

to three problems: the XOR protiem, the four bit parity problem, and a hexadec-

imal character recognition problem.

The networks were simulated using C++ code interfaced with the XERION[14]

neural network simulator library. The networks can be simulated on two ievels:

probability and pulse stream. The prohability level models the network activa-

tions as probabilities; the pulse level modeis all activations as pulses and directly

emulates a hardware implementation of these networks.

4.5.7. Tso XOR Pnoer.nl{

n,E.o(ffiwto

J\wí; \-n*)¡:ffi)
(4.25)

The XOR problem is a frequently applied test of neural networks. A network

consisting of two input neurons, two hidden neurons, and one output neuron was



CHAPTER 4. STOCT{ASTIC ARNTTil/TETTC NEURAL NETWORT{S

nt' = oi(r-nj

r, nf'(7 -nf)o¡
1/ t.'- 

-,,u - 
1, _wt¡o¡

o¡=t¡-o¡

= oiT - n1)

_ nj'(l - nj)o¡

1+w¡¡o¡

49

o; = :[(n - n!)nf'(wi¡> 0) + (I - nl)nl'(wij < a)]ffi

Figure 4.10: Equations for training.



CHAPTER" 4. STOCHASTIC ARTTHNTE,TIC NEURAL NETWORI{S

Uslnq õoEentu! des(ent ùd fi¡ed steg sjze.
Hnlòlzo påràêtors: tolerâf,co- 1o-06 â<cepta¡lôtunaHln-
ÞârdBtBÍs for !o!EntuE das(Ent: 6orBntu!(alpha). 0
Psreeters for fixed step 5j¿e: elslìon- 0.1
ftor. 0 nfE. 1 f" 12.732293 l9l" 4.5 d" -
itér- 100 nFE- lot f- 4.3107209 ¡91- 0.S7 d- -
^CCTRI-C 

d€tgctod: illl Jtop et ond of stop or llnessar<
Itcr- 110 nfE- 141 f- 3,5S0218 l9l- 0.7 d. -
Dlnl¡1ze: <ode- I nFE- l4t f- 3.5540218
Elni!1zs: lntarrupt slqna] ceght - stoppsd no¡¡slly.
spæh . 140. €rror . 3.55208 ertra (ost . 0.0spæh . 140. €rror . 3.55208 extra (ost . 0.
b!-> rÐdorlze
br-) trâln -rêô 100 1000bp-) trâln -têÞ luu ruuu
hrning: n€! * v8ctor - r€ssttlng itoration úd €valuatl
hrnìñg: cMnot <ontlnue previous dire<tlon (because of
Uslng ¡olentu! de5(ent ad flled rtep size.
ldni¡lz6 Dsrrât6rs: tol6rån<6- l0-06 s<<oDtB¡leFundln-perÐÉtsrs for ¡o¡eDtuÊ dss<ent: oo¡sntu!(alpha). 0
Para¡etcrs for fired step 5iz€: epsi¡on' 0,1Paraoetcrs for fixed ste9 5jz€: epsi¡0n.0,1
itor, 0 ntE. I f. t3.5s342 lsl- 6,1 d. -37,5 dr. 1

Itar. 100 ntE. 101 f. 4.3435859 l9l. 0.52 d. -0.366 dr. -0. lt
iter- 200 ntE- 201 f- 2.q5?309 lil- 0.71 d- -1.8?7 dr- -0.4
lrer.300 ntE. 301 f.1.63881t lql.0.9E d. -3.38 dr- -0.28
Itor- 40û nFE- 401 f- 1.2377746 l9l- 0.79 d- -2.î2 dr- -0.31
it€r.50û nFE. 501 f.1.0270E12 191.0.8 d. -0.776 dt- -D.71a(fr8l-C detected: rill stop at end of stcp or linesear(h
Iter. 556 nFE. 5Ê7 Í- 1.D22422Ê lSl- 0.96 d- -2-39 dr- -0-18
Elnlrlz0: coda. I nFE. 567 f. 1.0224226
oinìnize: interrupt slgnal <ilght - stopped nor¡elìy.
ep(h ¡ 568, errÐr . 1.01831 extra <ost . 0.0ffi11257

50

Figure 4.11: The user interface of the pulse stream neural network simulator



CTTAPTER 4. STOCT{ASTTC ARTTHMETTC NEUR"AL NETWARTß

XOR Function

trained using the weight update equations presented in the previous section. The

total sum-squared (tss) error for the network is shown in Figure 4.I2. After 1000

presentations of the training data the error approaches zero.

Figure 4.13 shows a Hinton diagram of the outputs of the trained network. The

area of the white box is proportional to the value of the output. For example, a

half filled box would equal represent an activation of 112. The figure shows the

network produced the correct outputs.

Figure 4.14 shows the output of the nellrons as the inputs are presented to the

trained pulse stream network. The output is ihe value of the re-randomizer reg-

ister. The output waveforms strongly resemi¡le those of analog circuitry charging

and discharging. Figure 4.15 shows the output of the neurons with "precharging"

0 æ0 400 600 800 1000 1æ0 1400

Training Epochs

F'igure 4.I2: Training error for XOR problem"

51



CHAPTER 4. STOCHASTTC ARTTHMETTC NEUR"AT. NETWORI{S

A

ffi
ffiffi
ffiffi
ffi

[lll

T

INPUT
B

888ff88trÉ8ffÈffi

ffir
ffiffi

ffi

T

AXOR B

ffi_

tr
T
ffi
ffi
B8S8H8æÈS8$Èfi1

Figure 4.13: Hinton diagrams showing the training
trained network.

the rerandomizers. lvith each presentation of an input vector the value of the

rerandomizer is rcset ta 7f 2.

4.5"2" Foun Brr PARTTY

NETWORK
OUTPUT

ffi
É6ff898$åü88fffl

ffi

tltt
llll
*
B8æ8tr88$8$8$8gt

data and the output of the

Ð¿

The four bit parity problem is a natural extension to the XOR problem. It in-

creases the number of bits from two to four; therefore, the number of input vectors

rises from 4 to 76. Experience from training with standard back propagation shows

this to be an extremely difficult probiem. The network used for the four bit parity

problem consisted of two hidden layers of 12 and 8 units respectively. Figure 4.16

shows the training error, and the network outputs are shown in Figure 4.17.

The time evolution of the pulse stream network for the presentation of the



CHAPTER 4. STOCHASTTC ARTTTTMETTC NEUR"AL NETWORKS

t-4
ll
È o.s
fo0
(fl 

1c
€ o.sÞïo
:1I o.s-õ
ïo

1
l-
R 0.s
zO
o1
t--

e 0.5
zO

XOFT [Network Activation

o 0'504 1'008 "t t'oå'fHo.,u3 
Tir d)t'o'o 

3'528 4'032 4'536

Figure 4.14: Network activation for ihe XOR problem. Shown are the two inputs,
two hidden units, and the single output unit. The top three curves represent the
value of the counter in the re-randomizer.

53

0.504 1.008



CHAPTER 4. STOCHASTTC ARTTHMETTC NEURAL NETWORT{S

51
È o.s
fo0
?1
3 o.sÐ

=0
c
3 o.sp
-0

1
t-
i 0'5
zO
o'r
F,-

R 0.5
z.o

XOR Network Activation
Node Precharging

54

Figure 4.15: Network activation fo¡ the XOR problem.
two hidden units, and the single output unit. The top
value of the counter in the re-randomizer"

0 0.504 1 .008 1.512 2.016 2.52 3.024 3.528 4.032 4.536 5.04
Clock Cycles (x1d)

Shown are the two inputs,
three curves represent the



CHAPTER 4, STOCHASTIC AR"ITT{NTETTC NEURAL NETWORTß

4.5

4

3.5

3

2.6

2

1.5

I

0.5

0

4 Bit Parity

Training Epochs

Figure 4.16: Training error for the four bit parity problem

ool lffil lffitttt

I tffil rffi

55

tttt01 ffil I I Iffit tffit I

ffirrl lffil II tffit IBüåå¿$ffi Båååååååååáååg

11

,0ffil] ffil-_]
ffil I | |

- -

Figure 4.17: Training data (left) and network output (right) for the four bit parity
problem

ffi
ttt¡

utj I l¡ffi| I

tlt¡

T'RAINIh¡G
ÐATA

ffit I I I

0tllll

0l

ffitI tffit Iffi'Í1 I lffil Iffiffiffi

11

wt tffit I10 ffit tffit I

¡{ET1trORK
Oi','TFUT



CHAPTER" 4. STOCHASTIC ARWHMETTC NEURAL NETWORTß 56

F-{
ll

È o.s
fo0
c)l

äo.uco
I

ão.u
-çO
c\¡ 1

äo'tSo
a)1
äo.uco

Figure 4.18: Network activation for the four bit parity problem

input vectors is shown in Figure 4.18.

o2468

4.5.3. HBxanncrMAL cI{ARACT'ER RECoGNIT'IoN

The final example considered in this section is a hexadecimal character recognition

problem. The input to the network is 20 bits, determined from a 4X5 matrix

representing the hexadecimal character. The output is the 4 bit binary number

corresponding to the input character. The neiwork consisted of t hidden layer of

12 units and an output layer of 4 units. The training error is shown in Figure 4.19.

The activation of the pulse stream network is shown in Figure 4.20 and a Hinton

diagram of the outputs is shown in Figure 4.21.

10 12 14 16'r8 20 22 24 26 28 30
Giock Oycles (x1d)



CHAPTER. 4. STOCHASTTC ARTTHMETIC NEUR"AT, NETWORI(S 57

Flex 0haracter Ðecoder

Figure 4.19: Training error for the hexadecimal character recognition problem

4.5.4. Iupncr oF DrvrsroN

The equations for the learning algorithm contain division. Ðivision is undesirable

for a number of reasons. F irst, division by zero must be avoided. Second, division

is a time consuming operation for rnost computers. Third, and most important,

division is a difficult operation to implement in hardware. Implementation of an

on-chip divider for each synapse and output would be prohibitive to the imple-

mentation of on-chip learning, discussed in the next chapter.

To determine whether division was necessary, the networks were trained with

the division operation omitted. The results of the simulation are shown in Fig-

we 4.22" The results show that elimina'r,ing the division does not impair the abil-

ity of the networks to minimize the error. The hexadecimal character recognition

f000 1s00 2000 2s00

Training Epochs



CHAPTER" 4. STACHASTIC ARTTHTvIETTC NEURAL NE,TWORKS

Î.î'åTïl:D ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi w ffi ffi ffi ffi ffi
4 Outputs @@ EMr @ MTr FM rFr MTB E Tn E@ @Ð @ røfl tr@ t'røn @ rrrrr

1

o
.= 0.5
ffì

0

I

.= 0.5
cn

0

1

c!
.= 0.5
c0

0

I(Ð

in- 0.s

0

Output of Trained Stoehastic Arithmetic Network

Training Data

58

Figure 4.20: Network activation
lem

Clock Cycles (x1d)

for the hexadecimal character recognition prob-



CHAPTER" 4. STOCHASTIC ARTTHMETTC NEUR.AL NETWORI{.S

ffiffi'ffiffiffiH
WWztwrw#llffi
ffiffi ffi

4 mFgtrüütrtrql ll Io L'-------_Jt tt tt Iffiffi
.m wffi
þ | | tffi, I I

I teÈnr$ÈËÈ#Èül I
ffiffi

ffi
ffi
ffi
ffi
ffi
ffi

6WffiffiW ffiffiffi

ffi
*
ffiffit

M
ffiM
M
m
n

'mffimr'mffiffin
Figure 4.21: Network outputs for the hexadecimal character recognition problem

ffi
ffiM
ffi
m
ffi
ffiM
ffi

M

W

ffi
ffiffi
ffitM
H
EÉff88ffiM
n



CHAPTER 4. STOCFIASTIC ARTTHMETIC NEURAL NETWARKS

o
trl

XOR Function

Figure 4.22: The impact on division on network training. The graphs show com-
parison of the training with and without the division term. As can be seen, the
exclusion of the division does not impair the ability to minimize lhe error. This
has significant benefits for the development of in situ learning

problem trained in fewer epochs without the division.

600 800 1000 1200 140

Training Epochs

o
L3

¡.u

Hex Character Decoder

4.5.5. CoupanrsoN wrrn coN\/ENTioNAL IIARDwARE

\
Í

\r* 
With denominator

+ Withoutdenominalor

The limitations of the stochastic representation, specifically the limited range of

the synaptic weights, is not without its cost. The four bit parity example required

two hidden layers of 12 and 8 stochastic units. Conventional arithmetic using

back propagation, sigmoidal neurons, and synapses of unlimited range required

oniy t hidden layer of 10 units to solve the parity problem. The addition of the

extra layer, which provides scaling to accommodate the limited synaptic connec-

tions, is crucial for the success of these stochastic arithmetic networks. While

the net-work complexity of the networks is greater for stochastic arithmetic, the

60

0 500 1000 t500 æ00 2500

Training Epochs



CHAPTER 4, STOCHASTIC AR.[TT{h[E,TIC NEURAL Î{ETWORTß

XOR Decision Space
Stochastic Arithmetic Network

Figure 4.23: Cornparison of the decision spaces of Stochastic Neural Networks and
conventional sigmoidal Backpropagation Networks.

hardware complexity is stil1 significantly less. Since the hardware requirements of

the stochastic arithmetic approach are significantly less than conventional digital

approaches, the cost of adding more computing elements is not severe.

It is also instructive to compare the decision spaces of Stochastic Arithmetic

and conventional sigmoidal networks. Figure 4.23 compares the XOR problem

decision space of the stochastic arithmetic net (section 4.5 and the sigmoidal

network (section 2.3).

While the stochastic network may not have been a good classifier for this

particular problem it is interesting to compare the solution with the analog XOR

function. Figure 4.24 shows that the stoch,astic arithmetic, trained on only the

four binary inputs, has correctly predicted the function for the entire input space.

XOR Decision Space
Conventional Networks

6i



CHAPTER 4. STOCHASTIC ARTTHME,TÏC NEURAL NETWARIß

XOR Decision Space
Stochastic Arithmetic Network

Figure 4.24: Cornparison of the stochastic arithmetic network and the XOR func-
tion

The logic gates used in the stochastic arithmetic network coincidentally produced

the complete solution.

(1,0) (0,1)

XOR Function
(Ð(t-Y)+(1-Ð(Ð

4.5.6. Wnrcnt Rnsoturror,r

D¿

During training and simulation of network outputs the resolution of the weights

was B bits plus 1 sign bit. Thus there 'urere v/ere 28 - 2 possible positive values,

28 -2 negative values, and the zero. Increased resolution requires more hardware

due to larger weight registers and expanded rate multipliers. Reduced resolution

requires less hardware.

To investigate the weight resoiution necessary to solve an arbitary problem a

network was trained to perform the hexadecimal character recognition problem.



CHAPTER" 4. STOCHASTTC AHTTT{METTC NEURAL NETWORT{S

+

f_t+

+ iþqij"".-+xF

WeiEhts

F igure 4.25: The weight space of a two layer network trained to solve the Hex-
adecimal OCR problem. The values of the weights in the network are plotted.

The resulting weights are shown in Figure 4.25. Note that the distribution of the

weights favours numbers of small magnitude. This is expected due to the large

fan-in to the OR gate adders.

The weights were successively mapped to weights of smaller resolution until

the network produced incorrect outputs. Figure 4.26 shows that only 5 distinct

weights(*1, +.5, 0, -.5, -1) were needed in the network to solve the problem. This

weight set requires little hardware to implement, since the (+1,-1) weights are

direct connections and the 0 weights imply no connection. Further experimen-

tation is required to determine ihe effect of this quantization on generalization

performance"

The weight distribution in Figure 4.25 suggests that it may be beneficial to

+I'r

, + ¿ #:

0 185

++ +i: ++ ++++

63

++

370 555



CHAPTER 4. STACHASTIC ARTTH]VIETTC NEURAL NETWORTß 64

Suantízed \ffeights

Figure 4.26: The weight space after quantization to (*1,
network continues to produce the correct outputs.

0 185 370

employ a noniinear set of weights for these networks. The upper magnitudes

could be represented by only a few weight values, while more values would be

located closer to zero. The OR gate saturation characteristic means that weights

should be kept small, and there is no point in accommodating large weights that

will encourage saturation. A nonlinear rate multiplier could be constructed using

AND gate multiplication of predetermined puise streams. For example, the set of

pulse streams densities 0,1f 4,713,712,1 couid generate weights of 0,7f 24,7f 72,

1 lB, 1 16, r 1 4, 7 13, 7 12, 7.

l.'+fi.ÊFf.ffr+fi++f+*+¡.+ew+. +.H+

4:åff-r+Eil$j{+.+ +++" ++S+fi.Hf+-{t "+{SHH-flH-+St8F+

-+ll{++ {#Èli.ll. i.+jr.t'++++Êå=+ + +¡

740 925

+.5, 0, -.5, -1). The



CHAPTER 4. STOCHASTIC ARITT{ME,TTC NEURAI. NETWORKS 65

4. 6" VLSI ïH¿pr,pnnENTATroN

This section discusses the implementation of stochastic arithmetic neural networks

in VLSI hardware.

4.6.7. OR GATE Anrrrrorv

For fan-in to the neurons greater than four inputs, OR gate addition has severe

drawbacks. The large OR gates consume area and time" More important, it is

undesirable to have many lines coming into a neuron for summation. One solution

is to multiplex the data on one line. Another method to address this problem is to

distribute the OR gates among the synapses. Both these methods add complexity

and size to the system, and slow down the operation of the network.

The solution is to use a wired OR gate" A wired OR gate requires no active

circuitry to compute the OR. function. The inputs are simply wired together, as

shown in Figure 4.27. To avoid contention between IIIGH and T,OW signais, it

is necessary to convert the inputs to the OR gate from [0,1] to lZ,7], where Z is

the high impedance state. The three transistors required for this are also shown

in Figure 4.27. This circuit would be placed on the nf and n; outputs of each

synapse. The final pmos transistor should be sized to provide adequate drive,

and it may be wise to include pull-down transistors at each synapse to accelerate

circuit operation.



CHAPTER. 4. STOCHASTIC ARTTT{hIETTC NEUR"AT. T{ETWORT{S

n{

BUS CONTENTION
ELtMtNATtoN ctRCUtT WIRED-OR GATE

Figure 4-27: The wired OR gate and bus contention circuit.

4.6.2 " RaNnol,{ Nuunnn GBrcpnarloN

Random numbers will be required at every synapse and neuron to provide a set of

bits to use in the generation of a weighted pulse stream. It would be impractical

to include a CA based random number generator at each rate multiplier. One

solution is to use a shift register and shift a random number to each rate multiplier.

This approach has the drawbacks of requiring area for the registers and time

for the shifting. The method proposed here is based on the same principles of

temporal independence discussed in Chapter 3. All synapses extending from a

neuron will use the same random number, since each communicates its result to a

unique neuron. Delay registers between neurons provides temporal independence.

Figure 4.28 shows this method. Only one random number generator is required.

TO WIRED OR

I

N
P

U
T
S

66



CHAPTER 4. STOCHASTIC ARTTHMETTC NEURAL NETWORKS 67

Figure 4.28: Block Diagram of integrated circuit

4.6.3. CHrp Impr,nunnrATroN

To demonstrate hardware pulse stream networks, a custom VLSI implementation

of a simple network was designed and fabricated. The chip implements a network

of two hidden layers, each with four hidden units, as shown in Figure 4.29. The

weights are represented with an eight bit storage register and can be loaded serially

from off-chip. The random number generator has not been placed on the chip to

enabie experimentation with aiternate generation methods. The random number

used in the synapses and rerandomizers is stored in a register local to each unit.

These registers are connected in parallel and are separated by a delay register.

By using a delay between registers, each random number can be used by each

pulse generation unit (synapse or rerandomizers). The fabricated chip is shown



CHAPTER" 4. STOCHASTIC ARITHMETTC NEURAL NETWORT{S 68

Figure 4.29: VLSI Impiementation of Stochastic Arithmetic Neural Networks.
The chip implements a two layer network of 4 units per layer

in Figure 4.29.

4.7. CoNCL{JSroN

This chapter has discussed stochastic arithmetic implementations of neural net-

works. The training rule was discussed and applied to three problems. The

hardware necessary to implement these networks was also presented.

While the results of this chapter have shown stochastic arithmetic to be a viable

implementation option for neurai networks, further experimentation should be

performed. Larger and more complex probiems should be trained on the network.

More detailed comparisons with other implementations should aiso be performed.



CuaprER 5

lN srru Lpanxrr{c

T n" previous chapter examined the operation of Stochastic Neural Networks

whose weights were detennined by off-line trainilg. This chapter presents an

extension to that work: Stochastic Arithmetic Neural Networks that perform the

leaming in situ using on-chip circuitry.

It is desirable in many applications to have the learning performed by the

hardware. First of all, the training procedure iypically requires many passes

through the input data and is generally very time consuming especially since it is

usually performed on sequential computers. In addition, if certain neurons are not

functioning in the hardware, the learning algorithm can compensate by adjusting

the weights to the other neurons. Neural networks can also be found in control

applications, where a network must adapt according to inputs which may not be

available for off-line training. In situ learning frees neural networks of complex

external hardware requirecl for training thereby increasing their flexibility and

areas of application.

However, learning is rarely found in dedicated neural network harclware. Net-

69



CHAPTER 5. I¡ú SI"T/ LEARNTNG

works with in situ learning must calculate the error at the output, propagate

it backwarcls towards the inputs, ancl rnodify the synaptic connections accord-

ingly. In addition to extra hardware required to perform the weight updates, the

communication complexity alone is enough to rnalçe in situ learning intractable,

especially for digital implementations with wide data buses.

This chapter derives the equations for in situ learning, describes the hardware

lìecessary to implement the equations, and presents simulations of the hardware

as it learns two of the problems from the previous chapter.

5. 1. Pnpvrous Wonx

The only previous stochastic arithmetic implementation with in situ learning is

the work by trguchi et al. at Ricoh[15]. The networks were like the networks

described in the previous chapter. Their learning seems to be based on a simple

delta learning rule.

Their implementation differs in many aspects from the approach described in

this chapter. There was only a single neuron on each chip, with the weights stored

in on-chip static RAM, indicating that the implementation was not fully parallel.

Random number generation used linear feedback shift registers.

The efficacy of the learning rule described in 115] could not be duplicated for

the training problems examined in this thesis.

70



CHAPTER 5, IN SITU LEARNING

5.2. DpnIVATToN oF THE rN sTTU

5.2.7. Car,cur,RTroN oF ruB ERRon

It Chapter 4 the error at the output neurons was

Error:tj-oj

This presents two difficulties for stochastic arithrnetic. First, the pulse repre-

sentation has no simple implementation of subtraction. Unlike the other neural

networlc operations of addition and multiplication, subtraction can not be per-

forrned by a simple gate. Second, only unipolar quantities are available. A single

stream can not represent the error when t¡) o¡ andt¡ 1o¡.

The solution is to split the error into two pulse streams, errorP and errorM.

The strearn errorP has a pulse when the training pulse stream is high and the

output is low, while the errorM stream has a pulse when the output is high and

the training stream is low. If the training and output pulses are the same, there

is no error and both errorM ancl errorP are low. For binary training data this

calculation of the errors will be exact.

LpaRivrNG PRocEDURE

71

5.2.2. Bacx-pRopAcATroN oF THE ERRoR

The implementation of two error streams complicates learning, since there are two

error signals in addition to the two net inputs ("I,"1). The equation for error

propagation was given in Equation 4.25 (pug" 48) as:

(5.1)



CHAPTER 5, IN SITU LEARNING

AE.- \
oo¡ - r,îro

It was shown in Section 4.5.4 that the denominator terms are unnecessary

for effective learning. While clivision is possible with stochastic arithmetic (Sec-

tion 3.1.4), it requires time and area to compute. Ignoring the division reduces

the cornplexity of the circuits.

/ôE
Ia*(t -,)(1 -"Ð:h)*-,*t=,

Since the error is split into two separate nets, errorP and errorM, the above

equation rnust be modified. The errorP net will be modified by terms that pro-

duce positive results. Examining the equation shows that positive error will be

contributed when the incoming error and the weight of the unit have the same sign

(i.e. tlre product will be positive). Thus errorP¡n,lhe positive error at neuron j

due to neuron k of the laver above is:

(ffiwto

errorP¿¡: l(t - nf)(errorP¡)(l - n¡)@,¡ro¡ * (1 - n¡)(errorM¡)(nl)){,,,,<o¡] l,u¿¡l

(5.2)

Similarly, the errorM net will arise frorn terms that have a negative result when

the error and weight have opposite signs:

72

- ,r; I 
tfj, 

)"'I - wï¡o¡ )

errorM¿¡: l(t - nf)(errorM¡)(I - n¡)p,¡>o¡ I (I - n¡ )(errorP¡)(nl){-,r.0¡] lrn¡ ¡

(5 3)



CHAPTER 5. I¡.I SITU ¿EARNI¡\/G

Each connection from a neuron will have a back propagatecl error signal as-

sociated with it. These errors must be added to produce the errorP and errorM

values. This sumrnation is performed like the summation of the net inputs to the

neulon using OR gate addition. For large errors the addition will saturate, but as

the network learns, the errors will become small and the addition will be accurate.

Let:

ó++ : Q-nf)ørrorp(I-";) (b.4)

á-- : (t-n¡)ErrorM(nf) (b.b)

5-+ : 0-r"l)ErrorM(I-";) (b.6)

5+- : g-no)ErrorP(nf,) (b.7)

These variables are computecl for each neuron and transmitted to the synapses

that feec{ into it.

5.2.3. WBtcur Upoarns

.7t
It)

The weight update equations, ignoring the division) are shown below:

Recall that the weights are modified in proportion to the negative gradient of

the error with respect to the weight. Therefore:

ã". : e¡nl(I-n¡)o;
- --Jx

(5.8)

(5 e)



CHAPTER 5. IN SITU ¿EAR¡\TIA/G

Weight Condition Weight Change

w;i)0 6++FTo, ul
6_+ y+- n oi w !

w¿j10 6+-Fnoo wl
c-- -7-i-ö--ö+-no¿ ul

Table 5.1: Weight updates

ðEL*i : rÌ A%0-"j)(1 -nl)o, (5.10)

AEL.u : nrniQ-n¡)o; (5.11)

The learning rate is determined by a pulse stream generated with P(1) : ry.

These weight equations must be rnodified for the two error streams.

A,u[ : r¡(errorP - errorMXl - ";)Q - "I)oo

If 17 and oi are both high then a positive weight will be increased when 6++ >

ó-+. This will occur when ó+* : 1 ald á-+ - 0. The weight will be decreased

wlren 6++ : 0 and 6-+ - 1 and ry and o¿ ã.re high. A similar analysis holds for

negative weights. The weight update equations are summarized in Table 5.1.

5.2.4. Awarysrs oF THE LoRRNINç PRocnounn

74

The learning procedure described in Chapters 2 and 4 performed the weight up-

clates after each epoch or after each individual training pattern. The learning



CHAPTER 5. I¡ú SITU LEARNING

rules presented above are different in that the weight updates

pattern presentation. In effect, we are calculating:

d,uij : _. aE
dt ', 6w;i

Previous work has shown this forrn of weight update to be effective in speeding

up learning[16].

The learning will have to deal with the variance inherent in the pulse streams.

Learning is notorious for its requiremeni of high accuracy, and it is not clear that

the noise will allow effective learning to occur. However, it lias been observecl that

noise can be beneficial to learning [17].

Simulation of this learning algorithm is presented later in the chapter.

5. 3. HnnDwARE lvipl,prvroNTATroN

75

are made during

This section describes the hardware required to implement in situ learning. In

situ learning adds complexity in two rvays: it requires hardware to compute and

propagate the error signals, and it requires hardware to adjust the weights ac-

cording to those signals. Figure 5.1 shows a block diagram of an in situ learning

synapse. The synapse weight is held in an up/down counter, which is controlled

by the error calculation hardware.

As shown in Figure 5.2 only simple gates are required to generate the error

strearns at the output units.



CHAPTER 5. IN SITU LEARNING

Figure 5.1: Block diagram of in situ learning synapse.

76

Weight Sign Bit
(Positive=1)

o.
J

tj

Figure 5.2: Hardware required for generating
neurons.

the error streams

ErrorM

at the output



CHAPTER 5. IN SITU LEARNING

n."J

+n.
J

errorM

errorP

Each neuron will compute the ó nets and propagate through the synapses to

the previous layer. Figure 5.3 shows the hardware required to compute these

variables, as given by Equations 5.4 through 5.7.

Figure 5.3: Hardware implementation of á variables.

The synapses are responsible for computing the error for back propagation and

the weight changes. Figure 5.4 shows the hardware to compute the errorP and

errorM nets. The errorP and errorM nets incoming to a neuron are summed using

wired OR summation.

The weight change computation circuitry is a direct implementation of Ta-

ble 5.1 and is shown in Figure 5.5. The output of this circuit controls an up/down

counter that handles the weight moclification.

77



CHAPTER 5, IN SITU LEARNING

ô++

ò

sign,*il )

õ+-

Figure 5.4: Hardware implementation of error back propagation.

78

errorP

errorMT

Figure 5.5: Hardware irnplementation of weight change computation.

Weight 4

Weight &



CHAPTER 5. IN SITU ¿EAR¡úI¡\TG

Counter Direction

Counter_Enable

UP/DOWN COUNTER

The basic element performing the weight updates is an up/down counter.

Basecl on the results of the weight learning circuit, the counter will increment,

decrement, or perform no operation.

A block diagram of a basic up/down counter is shown in Figure 5.6. The

counter inputs are: direction control (0:UP, 1:DOWN), enable (l:COUNT),

and clock. The outputs are the count (n bits), a zero flag (count:O) and an

overflow flag (count:full range). Also shown in Figure 5.6 is the state diagram of

a 3 bit counter (only the up direction is shown).

This counter must be modified for use in these networks. It must support

negative values and it rnust represent values in sign magnitude form. Since the

counter is a crucial element of the learning hardware, the circuitry for these en-

hancements will be presented in detail. The state diagram for a 3 bit counter that

meets these requirements is shown in Figure 5.7. The up/down counter circuit

can be found in many common references, such as [18].

When the number is positive, the up/down counter operates normally. For

sign magnitude the number in the counter gets larger when a negative number i1

ENABLE

clocK ou=*.ttj,l

Figure 5.6: Up/Down counter building block

79



CHAPTER 5. IN SITU ¿EARNING

011

100

010

\

NEGATIVE
(SIGN:0)

[-

Figure 5.7: State transition diagram for a three bit sign magnitude counter. The
full count state can only be left by decrernenting the magnitude.

101

001

\

decrernented. Likewise, incrementing a negative number will make the magnitude

srnaller. When the number is zero, the next value is always magnitude 1, so the

counter must increment when the value is zero. The additional control logic to

implement this behavior is shown in Figure 5.8.

111
a

110

110

00c

{/ i")
\

S.

POSITIVE
(slGN=1)

Figure 5.8 also shows the logic necessary to make the counter stop at plus or

minus full range. If the counter is at full range, the counter will be enabled only

when the count is reduced in rnagnitude.

\$;

001

80

10

\

\

Tlre sign of the weight can only change when the value passes through zero. If

the DIRECTION line is low, then the counter is counting up and the next value

is f 1, which means the sign bit will be high. If the DIRECTION line is high, the

next value will be -1 and the sign bit will be low. The sign is simply the inverse

of the DIRECTION line if the count is currently 0; otherwise the sign will not

010

100

é.

t/

011



CHAPTER 5. IN SITU LEARNING

Figure 5.8: Counter control logic for sign magnitude up/down counter

DIRECTION

ZERO

change. The logic for the sign is shown in Figure b.9.

The only other aclditional hardware required for the counter is an XOR gate

to perform ENABLE: WEIGHT 1 ØWEIGHT I. The direction input is

connected to WEIGHf I.

5.4. SluuLATroNS oF rN srru LpaRNlNc

Countor Enablê

Figure 5.9: Sign logic for sign magnitude count

81

The simulator used in Chapter 4 was extended io simulate learning at the pulse

level using the equations derived in the previous section. The simulator is ef-

fectively a rnixed mode gate/behavioral sirnulation of the hardware needecl to



CHAPTER 5. I¡\r SITI/ LEARNING

irnplement in situ learning. Except for counters

at the gate level.

5.4.I. TsB XOR AND HEXADECTMAL OCR pRoerel4s

The performance of the in situ network on the XOR problem is shown in Fig-

ure 5.10. The training error is graphed for six different learning rates. The

network consisted of 1 layer of three hidden units. Note that the training error

was effectively zero after only 75 iterations through the training set. The networlc

in chapter 4 required over 800 epochs to reach the same level of error reduction.

This could have been due to a number of causes. The random noise present in

the learning and activation pulse may have assisted learning, or the continuous

weight updates may be responsible. It is likely that the learning improvement is

clue to a combination of these factors.

82

and registers, the simulation was

The training for the hexadecimal OCR problem is shown in Figure 5.11. The

network consisted of one layer of 10 hidden units.

Figure 5.12 shows the effect of variance on the bit streams. If it were not for

variance of the pulse stream densities, the effective learning rate for each of

two graphs would have been the same. Observe, however, the learning curves

different.

the

the

aTe



CHAPTER 5. IN SITU LEARNING

1.8

1.6

1.4

1.2

1

0.8

u-b

o.4

0.2

0

o
LIJ

o,
.cc'õ
F

XOR Problem
ln-Situ Learning Chip

83

Figure 5.10: Simulation of in situ learning for the XOR problem.

50 100

Epochs



CHAPTER 5. IN SITU LEARNING

Hexadecimal Character Recognition
Chip Simulation

o
Lb

uJ
vt
.=c'õ
F4

84

Figure 5.11: Simulation of in situ learning for the hexadecimal character recogni-
tion problem.

1000 1500 2000 2500 3000 3500 4000 4500 5000

Epochs



CHAPTER 5. I¡\T SI?U LEARNING

1.4

1C

91
ut

.P o.t

:E 0.6

0.4

0.2

0

XOR Problem - Chip Simulation

85

o
L!
o)
.c
c'õ
t-

Hexadecimal Character Recognition Problem

Figure 5.12: The

<- q =.05, Sl2learning clocks

400 600

Epochs

impact of variance on

î =.1 , 256 learning clocks

in situ learning



CHAPTER 5. IN SITU ¿EAR¡,TI¡\¡G

XOR Problem - Chip Simulation
Effêcts of thê Rerandomizer

I

g 0.8
o
U
D
.sc'õ 04

¡--
0.2

0

ì

0.8

o

oc'- 0.1-d

' o.2

0

Rerandomizer
Herandom rTef

No

Rsrandom¡zet

86

Hexadecimal Characier Recognition Problem
Effscls of the Rerandomlzer

5.4.2. Tsn RonnNDoMrzERS AND rN srru LEARNTNG

5

o
LU

o3
.Éc'õ2

1

0

T-.'."üIJSJ
No
Rerandomizer

40 60
Epochs

Figure 5.13:

Figure 5.13 shows the effect of the rerandomizers on the learning process. The left

graph shows that the network successfully learned the XOR pïoblem without the

rerandomizers, although it took longer. The hexadecimal character recognition

\Mas unable to minimize lhe error without the rerandomizers. The noise on the

training error curve for the situation without rerandomization indicates that the

correlation noise had a detrimental effect on the learning.

The rerandomizer'has another benefit for learning in addition to the removal

of correlation. Note from the weight upclate rules of Table 5.1 that o¿ is one of the

factors. If the activation of the neuron becomes zero, then no weight change will

take place. All weights from a neuron with activation of zero will remain co¡stant.

Even small, non-zero activations, will impair learning. The reranclomizers can be

5

o
tx
o3
.Ec

F
t

0

Rerandomizer

Effect of the rerandomizer on learning.

No
Rerandomizer

0 s0 1000 1s00 æ00 ã00 3000

Epochs

No
Rerandomizer

Rerandomizer



CHAPTER 5. IN STTU LEARNING

clesigned so that the activation will not fall below a

progresses, the full range of ihe rerandomizer can

training. Simulations have shown this to be a very

learning.

5.4.3. Wnrcur RBsor,uriox

For the previous simulations the weights had resolutions of eight bits. The variance

of the pulse density, clearly evident in Figure 3.13 and Figure 4.5, suggests that far

less resolution rnay be required. However, simulations of in situ learning for sevel

bit weights were largely unsuccessful. From this can be drawn two conclusions:

1. Despite the variance in the pulse density, the average pulse density was

dominant.

87

certain activation. As leaming

be employed to complete the

powerful technique to improve

2. Small weight changes are important.

The seconcl point suggests that the nonlinear weight set discussed in the pre-

vious chapter may not be suitable for in situ learning.

5.5. VLSI In¿plpr¿ENTATToN

To investigate the area and time required of

harclware presented in this chapter has been

cuit. In I.2 pnz CMOS, approximately 200

the in situ learning algorithm, the

implementecl as an integrated cir-

in situ learning synapses could be



CHAPTER 5. IN SITU ¿EAR¡{/¡IG

irnplemented on a single chip. Because the design is digital, larger networks can

be accomodated by simply cascading chips. At a conservative 25 MHz clock, the

chip can process 100 000 patterns per second without the rerandomizers. With

the rerandomizers enabled the design can process 25 000 patterns per second. The

chip could learn the hexadecimal OCR problem in under 1 second. In compar-

ison the algorithm from Chapter 4 takes 60 seconds to train on a Sun Sparc 2

workstation. The layout of the in situ learning synapse is shown in Figure 5.14.

5.6. CorrrcLUSroN

Figure 5.14: Layout of synapse with in situ learning.

88

This chapter has formalized in situ learning using stochastic arithmetic neural net-

works. The learning algorithm has been developed and the necessary circuitry for



CHAPTER 5. IN SITU LEARNING

a hardware implementation has been designed. Both have been verifiecl through

simulation. A VLSI implementation of the in situ learning synapses has been

presented.



CuaprER 6

CoxcLUSroNS AND F'urunp WonN

The thesis has demonstrated the application of stochastic arithmetic to artificiai

neural networks. The hardware requirements of these networks was shown to be

minimal; only simple gates were required to perform the arithmetic. This is very

irnportant for artificial neural network implementation, as area-efficiency results

in larger networks and greater speed.

In addition, a novel in-situ learning neural network was presented. The learn-

ing hardware requires only simple digital gates to implement. This allows parallei

implementation of the learning networks.

Future work should test the performance of these networks on larger prob-

lems. In addition, there are other pulse representations that could be used. A

preliminary investigation into using a bipolar representation has been made. This

representation uses an XOR gate for multiplication, shown in Figure 6.1.

The block diagram of the architecture envisioned for this representation is

shown in Figure 6.2. This is not a fully parallel approach like the representation

examined in this thesis. Each neuron stores the synaptic weights in local static

90



CHAPTER 6. CONCLUSIO¡,IS A¡\rD FUTURE WORI(

-1

-.25

0

+.25

+1

ftfir.rltiplicatios't

A

91

0
0

1
1

B

0

1
0

1

PRODUCl

0

1
1
0

_.25

Figure 6.1: The XOR multiplication bipolar representation.

+.25
x-1 I

lL>



CHAPTER 6. CONCLUSIO¡íS A¡\rD FUTURE WOR.K

A,

I
SFA¡.1 holds lhe w€ights
lor all inputs to the
Nflron

Figure 6.2: Block diagram of a neural network architecture using the bipolar
representation.

RAM storage, and cycles through al1 the inputs accumulating the net input. A

step nonlinearity with a gaussian random threshold is used to generate a sigmoid-

like transfer function. While this architecture is not fully parallel, the synapses

require no hardware since their function is incorporated into the neurons. In

situ learning implementation with this representation is possible, although formal

experiments have yet to be carried out.

Investigation should also be made into applying stochastic arithmetic to other

neural network paradigms. Competitive learning algorithms would make an in-

teresting subject for stochastic arithmetic.

XOR gale Adder perlorms
MuhipÍer bit srial additionl+

ê Buspresentsall activations- 
of previous layer in serial fom

Thresholding
provides nonl¡nea¡ity

+

ouFut b¡t loreach ryclê
through the we¡ghts

I
v

Output
(Io next layer)

92



BrsrrocRAPHY

[1] B. U. Keller, R. P. Hartshorne, J. A. Talvenheimo, W. A. Catterall, and

M. Montall. Sodium channels in planar lipid bilayers. Journal of General

Physiolosy, 88(1), 1986.

[2] W S. McCulloch and W. Pitts. A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysi,cs, 5:115-133, 1943.

[3] M L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, 1969.

[4] D A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network.

In D. S. Touretzky, editor, Aduances in Neural Information Process'ing I,

pages 305-313, San Mateo, 1989. Morgan Kaufmann.

[5] D E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-

resentations by error propagation. In Parallel Distri.buted Processing. MIT

Press,1986.

[6] S. tr. Fahlman and C. Lebiere. The cascade-correlation learning architec-

ture. In D. S. Touretzky, editor, Aduances in Neural Information Processing

Systems 11, pages 524-532, San Mateo, 1990. Morgan Kaufmann.

93



BIBLTOGRAPHY

[7] John Hertz, Anders Krogh, and Richard G. Palmer. Introd,uction to the

Theory of Neural Computatioz. Santa Fe Institute Studies in the Sciences of

Complexity. Addison Wesley, Redwood City, 1g91.

[8] B. R' Gaines. Stochastic computing systerns. In Julius T. Tou, editor, Ad,-

aances i'n' Information Sgstems Science,, volume 2. Plenum Fress, 1969.

[9] Peter Hortensius. Parallel Computation of Non-determi,nistic alogorithms

in VLSI. PhD thesis, Department of Electrical Engineering, University of

Manitoba, 1987.

f10] F. Brglez,, C. Gloster, and G. Kedem. Hardware-based weighted random pat-

tern generation for boundary scan. In IEEE International Test Conference,

aug 1989.

[11] W. Wike and D. Van den Bout. Stonn: A stochastic neural network chip.

In W. J. Dally, editor, Aduanced Research in VLSI: Proceedings of the Sirth

MIT Conference. MIT Press, 1990.

94

[12] Journi E. Tomberg and Kimmo K. K. Kaski. Pulse-densiiy modulation tech-

nique in vlsi implementations of neural network algorithms. IEEE Journal

of Solid State Circuits,2S(2):1277-1286, oct 1990.

[13] Max Stanford Tomlinson, Jr., D. J. Walker, and M. A. Silvilotti. A digital

neural network architecture for VLSI. In Proc. TJCNN-77) pages b4b-b50,

San Diego, CA, 1990.



BIBLIOGRAPHY

[14] Drew van Camp, Evan E. Steeg, and Tony

Sirnulator. Computer Science Department,

[15] H. Eguchi, T. Furuta, H. Horiguchi, s. oteki, and r. Kitaguchi. Neural

network lsi chip with on-chip learning.In Proceedings of IJCNN-ï1,, volume 1,

pages 453-456, 1991.

[16] A. J. Owens and D. L. Filkin. Bfficient training of the back propagation

network by solving a system of stiff ordinary differential equations. In In-

ternational Joint Conference on Neural Networks, pages (II) 381-8g6, jun

1989.

95

Plate. XERION Neural Network

University of Toronto, 1991.

[17] A. von Lehman, E. G. Paek, P. F. Liao, A. Marrakchi, and J. S. patel. Factors

influencing learning by back-propagation. In IEEE International Conference

on Neural Networks, pages 335-341, New York, 1988. IEBB.

[18] M. Morris Mano. Digital Logic and Computer Desi,gn. Prentice-Hall Inc.,

Englewood Cliffs, N.J., 1979.


