STOCHASTIC ARITHMETIC
IMPLEMENTATIONS
OF
ARTIFICIAL NEURAL NETWORKS

BY

JEFFREY A. DICKSON

A THESIS
PRESENTED TO THE
UNIVERSITY OF MANITOBA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF
ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF MANITOBA
WINNIPEG, CANADA 1992

(©OJEFFREY A. DICKSON 1992

National Library
of Canada

Acquisitions and

Bibliothegue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch ~ des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre rélérence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa theése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBHE 0-315-77888-6

STOCHASTIC ARITHMETIC IMPLEMENTATIONS OF

ARTIFICIAL NEURAL NETWORKS

BY

JEFFREY A. DICKSON

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in
partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© 1992

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to
lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm
this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to
publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author’s permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by
photocopying or by other means, in total or in part, at the request of other
institutions or individuals for the purpose of scholarly research.

ABSTRACT

Artificial Neural Networks require highly parallel computing implementations to
be effective. This thesis examines the application of stochastic arithmetic to neu-
ral networks. Stochastic arithmetic uses values encoded as probabilistic pulse
streams. It is shown that this arithmetic requires only simple digital logic gates.
Stochastic arithmetic neural networks are demonstrated. In addition, a novel de-
sign for in-situ learning aritifical neural networks employing stochastic arithmetic
is presented. The circuits require simple hardware to implement. The hardware

is simulated and shown to successfully learn sample problems.

v

ACKNOWLEDGEMENTS

I would like to thank my advisors, Professor H. C. Card and Professor R.
D. McLeod for their guidance in this work. I would like to particularly single
out Professor McLeod for his advision during my Master’s thesis and two NSERC
Undergraduate Summer Research Scholarships. This thesis represents a very small
portion of what I have learned and done during my association with him. To his
chagrin it is pretty much all that I have written up. I feel fortunate to have been

able to call him my advisor, and, most of all, friend.

I thank Brion Dolenko for sharing his neural network expertise, and David

Blight, Gord McGonigal and Bob Pelletier for discussions.

Finanical support from the Natural Sciences and Engineering Research Council
of Canada and equipment loans from the Canadian Microelectronics Corporation

are greatfully acknowledged.

CONTENTS

List of Figures
1 Introduction

2 Artificial Neural Networks

2.1 Network Architecture
22 Tralning o e e e e e e e e
2.3 Example of Network training
24 Conclusion e

3 Stochastic Arithmetic

3.1 Stochastic Encoding
3.1.1 Addition e
3.1.2 Multiplication
3.1.3 Pulse Independence L.
314 Division . . . v v vt e e e e e e e e e e e e e e

3.2 Pulse Stream Generation

33 Conclusion e

4 Stochastic Arithmetic Neural Networks

4.1 Biological Motivation
4.2 Stochastic Arithmetic meets Neural Networks
4.2.1 Activation Function

vii

13
17

18
19
20
23
24
26
27
32

4.3 Rerandomizer v v v v v o v e e e e e e e e e e e e e . 41
4.4 Training Stochastic Arithmetic Neural Networks 43
4.5 Pulse Stream Neural Networks 48
451 The XOR Problem 48
45.2 Fourbitparity, 52
4.5.3 Hexadecimal character recognition 56
454 Impactofdivision. 57
4.5.5 Comparison with conventional hardware 60
4.5.6 Weight Resolution 62
4.6 VLSI Implementation. 65
4.6.1 ORgate Addition 65
4.6.2 Random Number Generation 66
4.6.3 Chip Implementation 67
4.7 Conclusion e e e e 68
In situ Learning 69
5.1 Previous Work o 70
5.2 Derivation of the in situ Learning procedure 71
5.2.1 Calculation of the Exror 71
5.2.2 Back-propagation of theerror 71
523 Weight Updates 73
5.2.4 Analysis of the Learning Procedure 74
5.3 Hardware Implementation 75
5.4 Simulations of in situ Learning 82
5.4.1 The XOR and Hexadecimal OCR Problems 82
5.4.2 The Rerandomizers and in situ learning 86
5.4.3 Weight Resolution 87
5.5 VLSIImplementation. 87
3.6 Conclusion v i i v i i e e e e e e e e e e e e e 89

6 Conclusions and Future Work

90

LisT OF FIGURES

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Simplified neural biology
Model of the McCulloch-Pitts neuron.
Feed-forward network architecture
The Sigmoid nonlinearity
Network architecture for the XOR problem
Training evolution of the XOR Problem
Output space for the XOR problem

Examples of pulse stream representations
Pulse Stream Additiono L
Output probability of OR gate addition
Pulse Stream Multiplication
Removing temporal dependency with delay elements
Computing the derivative of the logistic function
Circuit for stochastic division.
Simulation of the Stochastic Arithmetic Division circuit.
Pulse Stream generation scheme
Block diagram of cellular automata
Distribution of random numbers from a cellular automata register
Rate Multiplier Schematic« . v v v oL

Probability density for 8172 cycles of an 8 bit random number gen-
erator for 7 desired output densities.

iX

10
14
15
16

3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23

4.24

Output of Rate Multiplier averaged over 16 periods 34

Biological motivation [1], 36
Pulse Stream Implementation of the basic neural network operation. 37
Negative and Positive Weights 39
Activation Function of a two-input pulse stream neuron 40
Re-randomizer circuit . . . v v v v o v v b v e n e e e e e e e 41
Test of the re-randomizer circuit. 42
Re-randomizer circuit Lo oL 43
Output of the filtered re-randomizer. 44
Output of the hybrid filtered re-randomizer. 44
Equations for training. oL 49
The user interface of the pulse stream neural network simulator . 50
Training error for XOR problem. 51
Network output for the XOR problem 52
Network activation for XOR problem 53
Network activation for XOR problem 54
Training error for the four bit parity problem 55
Training data (left) and network output (right) for the four bit

parity problem o i e e e e e e e e e e e e e e e 55
Network activation for the four bit parity problem 56
Training error for the hexadecimal character recognition problem . 57

Network activation for the hexadecimal character recognition problem 58
Network outputs for the hexadecimal character recognition problem 59
The impact of division on network training 60

Comparison of the decision spaces of Stochastic Neural Networks
and conventional sigmoidal Backpropagation Networks 61

Comparison of the stochastic arithmetic network and the XOR
function e e e e e 62

4.25 The weight space of a two layer network trained to solve the Hex-
adecimal OCR problem.

4.26 The weight space after quantization to (41, +.5, 0, -.5, -1). The
network continues to produce the correct outputs.

4.27 The wired OR gate and bus contention circuit.
4.28 Block Diagram of integrated circuit
4.29 VLSI Implementation of Stochastic Arithmetic Neural Networks .

5.1 Block diagram of in situ learning synapse.

5.2 Hardware required for generating the error streams at the output
DEUTOMS. .« ¢ v v v e v o e e e e e e o e e e e e e e e e e e

5.3 Hardware implementation of § variables.
5.4 Hardware implementation of error back propagation.
5.5 Hardware implementation of weight change computation.
5.6 Up/Down counter building block
5.7 State transition diagram for a three bit sign magnitude counter.
5.8 Counter control logic for sign magnitude up/down counter

5.9 Sign logic for sign magnitude count
5.10 Simulation of in situ learning for the XOR problem.

5.11 Simulation of in situ learning for the hexadecimal character recog-
nition problem. oL

5.12 The impact of variance on in situ learning
5.13 Effect of the rerandomizer on learning

5.14 Layout of synapse with in situ learning.

6.1 The XOR multiplication bipolar representation.

=

6.2 Block diagram of a neural network architecture using the bipola
representation. L e e

64
66
67
68

CHAPTER 1

INTRODUCTION

T he area of Artificial Neural Networks experienced a great resurgence of interest
in the 1980’s. In the past it has experienced two boom periods, only to have them

go bust.

The first boom started in 1943, when McCulloch and Pitts proposed a simple
model of neuron operation [2]. This model attracted much interest because of its

simplicity.

The second boom was due to the networks of neurons that could learn to solve
problems, given the inputs and the desired output. While effective for some prob-
lems, Minsky and Papert showed in the book Percepirons [3] that these networks
were unable to solve a wide range of problems. Interestingly some researchers be-
lieved they knew the solution to the problem, but they could not find the procedure
to train the networks. Researchers left the field in the face of this roadblock, and

the field became dormant.

In the 1980’s new results, such as a learning algorithm that addressed the

problems of the networks discussed in Perceptrons, started a resurgence in the

CHAPTER 1. INTRODUCTION 2

field. The availability of computers assisted simulation and exploration. There

has been a tremendous amount of simulation of neural networks in recent years.

There has been comparatively little study of hardware implementation. Arti-
ficial Neural Networks are fine-grained, massively parallel systems; however, most
of the work has been by simulation on sequential computers. General purpose
computers are not optimized for the calculations of neural networks; they require
specialized hardware. The hardware ranges from a few special purpose processors
to large arrays of processors implemented on an integrated circuit. Most promis-
ing is the latter approach: highly parallel computing structures implemented on

a single chip or multi-chip systems.

Networks can consist of thousands of computational elements. It is necessary
to implement these processors efficiently. There are two approaches to implement-
ing artificial neural networks in hardware: analog and digital. Each method has

its disadvantages and advantages.

Analog circuitry permits high density implementation as the operations re-
quired in neural networks can be implemented using few transistors. This allows
for many computational units to be included on one chip. Communication be-
tween units is typically via a single wire carrying a voltage or current. However,
there are many drawbacks to analog implementation. Analog hardware does not
produce high accuracy arithmetic. Analog values are susceptible to noise, and
mismatch between transistors can have a serious effect on arithmetic. Device

matching and connection impedance make it difficult to communicate analog val-

CHAPTER 1. INTRODUCTION 3

ues between chips, so multi-chip systems are not feasible. The amount of circuitry
that one can implement on a single chip limits the size of the networks. Storage
elements are very difficult to implement in analog hardware. In addition, analog
circuit design and implementation is not well supported by CAD tools and fab-
rication houses as is digital. While analog circuitry is an interesting medium for
neural network implementation, these drawbacks restrict its effectiveness at this

time.

Digital hardware can perform arithmetic operations with a high degree of
accuracy. Unfortunately, this accuracy comes at the expense of hardware size
and computation speed. A single multiplier to perform an 8 bit multiplication
can consume a large percentage of the available chip area. Another drawback
of digital hardware is that communication of binary values requires many wires.
There are many benefits of digital hardware. It is very easy to implement memory
to store values. Digital signals are not as susceptible to noise as are analog signals.

Finally, digital circuit design and fabrication is well-established.

With the tradeoffs between analog and digital circuits, some implementations
are hybrids. Analog hardware performs the arithmetic and digital hardware is
used for off-chip communication and data storage. The drawback is that the

interface between analog and digital carries a large overhead.

This thesis examines a unique implementation architecture: stochastic arith-
metic. Stochastic arithmetic encodes values as the probability of a pulse in a

pulse stream. While the hardware considered in this thesis is digital, stochastic

CHAPTER 1. INTRODUCTION 4

arithmetic allows low area implementation of the hardware required to perform

the arithmetic required for artificial neural networks.
The organization of this thesis is as follows:

Chapter 2 gives a brief introduction to artificial neural networks. A brief
history and motivation is presented. An example of an artificial neural network

training procedure is also presented.

Chapter 3 examines stochastic arithmetic. The hardware for the arithmetic

required for neural networks is examined.

Chapter 4 discusses the implementation of stochastic arithmetic neural net-
works and presents simulation results. These networks are trained off-line. The

data from a trained network is then loaded into a hardware implementation.

Chapter 5 is the main contribution of this thesis. The networks examined in

Chapter 4 are extended to hardware implementations that can train themselves.

Chapter 6 presents the conclusions and discusses future work.

CHAPTER 2

ARTIFICIAL NEURAL NETWORKS

M odern computers perform complex calculations and can store and retrieve
information with speed and accuracy. However, the most advanced computer is
humbled by the problem solving power of even the most primitive brain. An
Artificial Neural Network is a computation paradigm inspired by neural biology.
The ultimate goal is to apply the methods and models of the brain to create
computers capable of what the brain can perform that conventional computers

cannot.

One area where the brain excels is pattern matching. People can recognize
objects easily, even when presented with partial information. Moreover, people
are able to grasp the concept of a book and can correctly classify a book that they
have never seen. The exact process by which this done is not fully understood.
Computers with such a capability are desired in many applications, such as weapon

systems, handwriting recognition, and computer vision.

Artificial Neural Networks are attractive because it is not necessary to under-

stand the problem well enough it solve it. It is only necessary to present it to the

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 6

neural network in the appropriate form. For example, in training a network to
perform character recognition one presents the inputs and desired outputs and has
the network learn to perform the classification. Conventional approaches require

study of pattern recognition algorithms.

An interesting and dramatic example of the application of artificial neural
networks was the work by Pomerleau at CMU[4]. He used a neural network
controller for driving a vehicle along a winding road. The network trained with
data from a video camera and a range finder. The resulting network could navigate
the vehicle at a speed of 5 km/hr. This was twice as fast as previous attempts
using conventional algorithms. Perhaps more significantly, the research required
far less time to complete, since it was not necessary to spend time devising the

necessary algorithms.

The basic computational element in the nervous system is the neuron. The
neuron receives inputs from other neurons through synaptic interconnections.
When the net input to the neuron is above a certain threshold, the neuron gen-
erates an output signal. The signal, encoded as a train of pulses, propagates
through the filamentary wire of the neuron: the axon. At the end of the axon are
more synaptic junctions that communicate the activation signal to other neurons.
The firing threshold is not uniform, neither is the contribution of each synaptic
junction to the net input. The strength of these contributions are modified by
learning. The neuron compensates for the lack of complexity in computation with

complexity of connection. The brain uses this simple element millions and millions

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 7

\ ~_ Dendritic Tree

Synapﬁc
Connectoin

Figure 2.1: Simplified neural biology

of times with great effect. Figure 2.1 shows a simplified drawing of two neurons.

McCulloch and Pitts first formalized a simple model of neural operation in
1945 [2]. Figure 2.2 shows a block diagram of the McCulloch-Pitts neuron. The
inputs to the neuron are weighted by the strength of the synaptic connection and

summed. The resulting sum passes through a nonlinearity to produce the output.

The calculation of the net input is shown in Equation 2.1. The output of
the previous neuron is multiplied by the synaptic “weight”. The © term is a
bias, which models the threshold of a biological neuron. The net input is passed

through the nonlinearity function f to determine the output in Equation 2.2.

n; = Zwéjoz- + @j (21)

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 8

1)

02*W2j——q>@——4»—-—~ _—I—— SE— 0j
Summation Nonlinearity

03,-¢W3j

Figure 2.2: Model of the McCulloch-Pitts neuron. The outputs of the input
neurons are multiplied by the interconnection weights and summed. The sum
passes through a nonlinearity to determine the neuron output.

0; = f(n;) (2.2)
2.1. NETWORK ARCHITECTURE

There are many different architectures of artificial neural networks. This thesis is
limited to feed-forward networks. A feed-forward network has neurons arranged in
layers, shown in Figure 2.3. Each layer has neurons that receive their inputs from
the previous layer and propagate their outputs to the next layer. Neurons in the
same layer do not communicate with each other. The first layer is called the input
layer: it receives the inputs from the outside world. The final layer is the output
layer. Neuron values in this layer are the considered result of the network. The
layers between the input and output are called hidden layers. Networks without

hidden layers can only solve a restricted problem set.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 9

Figure 2.3: Feed-forward network architecture

There is no formula to calculate the number of hidden layers and units needed
to solve a particular problem. Too few units and a network will be unable to
solve the problem. Likewise too many units can cause problems[5]. Some learning
algorithms, such as cascade-correlation [6], add units as needed during learning.
Back-propagation, the learning algorithm considered in this thesis, requires the

architecture to be specified in advance.

2.2. TRAINING

The interconnection weights must be set to produce the correct outputs. One
method is to set the weights explicitly, using apriori knowledge of the data. Typ-
ically this method is only useful for simple problems. A more sophisticated and
useful method is to train the network by example. Each input and desired out-
put is presented to the network and the weights modified to produce the correct

response.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Sigmoid Function

1 T T T

Figure 2.4: The Sigmoid nonlinearity

10

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 11

There are many different techniques to train a network. A popular is Back-
propagation[5], the discovery of which started the current boom in neural net-

works.

The goal of this learning algorithm is to minimize the error at the outputs by
adjusting the synaptic weights. The error is commonly defined as the total sum
of squares error measure. The error for a single training pattern, summed over all
the output neurons, is shown below. The factor of 1/2 is included to cancel the

factor of 2 that comes out of the derivative.

1 2
E =32 .(t;— o)

J
where ¢; is the desired output and o; is the output of neuron j. Each weight is
modified in proportion to the negative gradient of this error with respect to the
weight:

oF

0w2‘j

Aw;; o«

By applying the chain rule the derivative of the Error with respect to the

weights can be determined.

0B _ 9F 0o; on,
811}2'3' N an an 6w,~j

For the output units the first factor is:

OF
B0, = 1
7

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 12

Calculating the other terms:

8nj = o

Gwij ’
30j Y
57:;; —J (J)

where f(z) is the nonlinearity of the neural activation. For a sigmoidal neuron it

can be shown that: !

The updates for the weights from the hidden layer to the output layer is:

Awij = 775]'0,;

where 7 is the constant of proportionality, called the learning rate.
For weights to output units §; = (¢; — 0;) f'(n;).

Updates to the connection weights of the hidden units require further appli-
cation of the chain rule. The ¢’s for the hidden units turn out to be the weighted
summation of the ¢§’s from the units each hidden unit is connected to in the next

layer.

(5;' = f,(Oj) Z 6jwi]~ (23)

!The simplicity and continuity of the sigmoid’s derivative is one of the main reasons that it
is commonly selected for neural network activations.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 13

Training using back-propagation has two phases. First the inputs are presented
to the network and the output is calculated. Next the output is compared with
the training data to compute the error. The error is propagated backward through

the network to compute the weight derivatives for all the units.

The weight derivatives can be accumulated and applied after presentation of
the set of training data. Fach pass through the training set is called an epoch.

Alternatively the weights can be updated after each individual training vector.

The training procedure is repeated until the total error is reduced to an ac-
ceptable level. It is possible that the error cannot be sufficiently minimized. This
can be due to being trapped in local minima or the network having too few units
or layers. Possible solutions are to try again with a different set of initial weights,

different learning rates, or different network sizes.

2.3. EXAMPLE OF NETWORK TRAINING

This section demonstrates the training of a simple feed forward network using
back-propagation. The problem is to train a network to perform the XOR opera-

tion on two inputs.

The network architecture is shown in Figure 2.5. The network has one layer of
two neurons, one for each input. These connect to a hidden layer of two inputs,
which in turn connect to one output neuron. There are six weights and the bias

values for the two hidden units and the output unit to determine in this network.

The weights are initialized to random values, and the network is trained using

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 14

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Figure 2.5: Network architecture for the XOR problem. The network consists of
two hidden units and one output unit.

the back-propagation algorithm. The evolution of the training procedure is shown
in Figure 2.6. The training error, weights, and bias values are plotted against the
number of passes, or epochs, through the training data. After 900 passes through
the training set the training error has reached zero, and the network has learned

the XOR problem.

The output space of the trained network is shown in Figure 2.7. The training
data is located at the corners of the graph. The analysis of the decision space is
instructive because it shows how the network will respond to inputs not included
in the training set (assuming analog inputs). The steep trough in the decision
space indicates that the network has made a distinct classification, either one or
zero. The trough is located in the region where the two inputs are very similar.
This is reasonable since the XOR function is zero when the inputs are equal. The
network classifies inputs that are very dissimilar with an output of 1, shown by

the high regions of the graph around (0,1) and (1,0).

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Training Error

Weight Value

Learning the XOR Probiem

0.8

0.6

0.4

0.2

-10
0 200 400 600 800 1000

Training Epochs

Figure 2.6: Training evolution of the XOR problem

15

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

XOR Decision Space
Conventional Networks

(1,0

{0.0)

Figure 2.7: Output space for the XOR problem

16

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 17

2.4, CONCLUSION

This chapter has presented a brief introduction to artificial neural networks, specif-
ically feed forward network trained using back-propagation of error. It was not
intended as a comprehensive review of the field, but as a foundation for the rest
of the thesis. More information on artificial neural networks is available from a

variety of sources, such as reference [7].

CHAPTER 3

STOCHASTIC ARITHMETIC

S tochastic arithmeticis not a new idea. It was developed in the 1960’s by several
groups seeking a new method of computing[8]. The research was motivated by
the difficulty in assembling large computers, either analog or digital, in that era.
Without a convenient means of programming digital computers, analog computers
were considered easier to use. To multiply two numbers with digital hardware
required programming using punch cards or setting switches — in analog you simply
patched two wires into the multiplier. Stochastic arithmetic was proposed to
allow digital hardware to be used as conveniently as analog hardware. The arrival
of programming languages and powerful digital hardware changed the future of
computing. Analog and stochastic computers were run over by the great digital

steamroller.

This chapter shows how stochastic arithmetic is used to perform computations.
The motivation for using stochastic arithmetic in artificial neural networks is

discussed in the next chapter.

18

CHAPTER 3. STOCHASTIC ARITHMETIC 19

1.0

B O B A

1 2 3 4 5 6 7 8 9 10

Figure 3.1: Examples of pulse stream representations. Values are represented by
the probability of a high pulse in a pulse stream.

3.1. STOCHASTIC ENCODING

Stochastic arithmetic represents numbers as a probability of a pulse in a stream
of pulses. For example, the value of .5 could be represented by a pulse stream
with an equal chance of an individual pulse being a 1 or 0. Some examples of

pulse representations are shown in Figure 3.1.

There are different ways of encoding a number for stochastic arithmetic. This
paper deals primarily with the representation shown in Figure 3.1, where num-
bers are encoded as the probability of a one in a binary pulse stream. This
representation is unipolar: only values between 0 and 1 can be encoded. Other

representations can encode bipolar values or use more than one line for signalling.

Stochastic arithmetic offers the advantages of analog and digital computation.
Like analog, pulse representation requires only one line to carry the values, and

the size of the hardware to perform arithmetic computations is comparable to

CHAPTER 3. STOCHASTIC ARITHMETIC 20

analog hardware. Contrast this to digital hardware, where large buses are gener-
ally required to communicate data, and the hardware requirements of arithmetic
are excessive. Analog circuitry is plagued by problems such as device matching,
which makes intra-chip, and in some cases inter-chip, communication impossible.
Stochastic computing, which requires only simple digital hardware, does not suffer

from these drawbacks.

Stochastic computing has some unique benefits. Consider a pulse stream that
to represent 11 values: (0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1). A pulse length of 10 is re-
quired. Ifit is required to extend the system to handle 20 values: (0,.05,.1,...,.90,.95,1)
all that is required is to double the length of the pulse: no hardware modification

is necessary. In addition, the inherent noise can be beneficial to neural networks.

3.1.1. ADDITION

It is not possible to perform exact addition with pulse streams because of limita-
tions of the representation. The maximum value that can be expressed is 1 (i.e.
all pulses high), so OR gate addition cannot handle a sum greater than 1. One
solution is to perform weighted summation. For example, the weighted summa-
tion of A and B would be é + % = A%B. The factor of two scaling on the inputs

prevents the final summation from exceeding 1. The summation hardware can be

a simple counter.

Another approach is to use approximate addition, sacrificing accuracy for hard-

ware simplicity. Figure 3.2 shows that the OR gate truth table provides an ap-

CHAPTER 3. STOCHASTIC ARITHMETIC 21

APPROXIMATE
A B | suM SUM
cp oy 0 LA
o} 1} 1 L
10} 1
1 1 io0

3 M1 7 L UL
+2 [] v I LT 1

s T L L_J1 9 | L |

Figure 3.2: Pulse Stream Addition. Addition can be approximated for small
inputs using an OR gate. For inputs approaching one the OR gate adder saturates
to 1.

proximation of addition. The output of an OR gate is given by:

Aor B = AB+ AB+ AB (3.1)
= A0l-B)+(1-A)B+ AB
= A-AB+B—-AB+ AB

= A+B-AB (3.2)

Thus for 4 << 1 and B << 1 the AB term is small and the output of the
OR gate is approximately A + B. For large A and B the output of the OR gate
saturates to 1. This results in a saturating nonlinearity that we will see is useful

for artificial neural networks. Figure 3.2 shows two examples of pulse streams

added using the OR gate.

More than two numbers can be added using an OR gate with more inputs.

CHAPTER 3. STOCHASTIC ARITHMETIC 22

OR Addition Probability

Output Probability - P(1)

Figure 3.3: Output probability of OR gate addition. Note that the probability of
a one output quickly approaches one as the number of inputs increases. For OR
gate addition to be effective for large fan-in, the inputs must be small.

Because the maximum sum of any number of inputs is 1 (limited by the represen-

tation), the OR gate addition will be accurate for a smaller range as the number

of inputs increases. The output for an OR gate with n inputs is given by:

Output =1 — H(l — 1)

i

Figure 3.3 shows the output probability of the OR gate for increasing numbers
of inputs. As the number of inputs increases the output of the OR gate addition

saturates for a greater range of input. For large fan-in the inputs must be small.

CHAPTER 3. STOCHASTIC ARITHMETIC 23

A B PRODUCT
0 0 0 PRODUCT
4] 1 0 n—i
1o o o —
1 1 1

4 [1 LI s I U LI

5 M L I 1L 7 | LT 1] |

2 [M 5 L__T1LILd

Figure 3.4: Pulse Stream Multiplication. The AND gate can be used for multi-
plying two pulse streams.

3.1.2. MULTIPLICATION

Since product of two numbers less than or equal to one is guaranteed to be less than
one, multiplication using stochastic arithmetic does not suffer from the limitations
of the representation as did addition. Calculation of the product of two (or more)
pulse streams requires only simple hardware. Figure 3.4 shows that the AND
function performs the multiplication of two pulse streams. The output of an

AND gate is given by:

Aand B=AB (3.3)

The product of n inputs can be computed by a n-input AND gate.

CHAPTER 3. STOCHASTIC ARITHMETIC 24

s)
L 4x

D
'Drx .

DELAY

Figure 3.5: Removing temporal dependency with delay elements

3.1.3. PULSE INDEPENDENCE

It is important that pulse streams used in stochastic arithmetic be free from
temporal dependency. Two bit streams are dependent when the probability of a
one or zero at a given instant in time is a function of another bit stream. This

can has a significant impact on calculations.

The impact of temporal dependency is best illustrated with an example. Con-
sider calculating the product X(1-X) using stochastic arithmetic. A stream X
with the desired probability is generated. The term (1-X) is computed by passing
X through an inverter. The product of X and (1-X) is then calculated using a two
input AND gate, as shown in the upper schematic of Figure 3.5. However, the
output of the AND gate will always be zero, independent of the value of X. When
there is a high pulse (Jogic 1) on X, the inverter will always produce an opposite
(logic 0) for the (1-X) term. The inputs to the AND gate will either be 01 or 10,

which will always result in a 0 output.

CHAPTER 3. STOCHASTIC ARITHMETIC 25

Derivative of Logistic Function

0.3 T i i ' § B i 1] 1 I i] f i

025 [~ Nf\/‘\/\/\/w\f\uﬂf‘t\‘]

Lo N
N N

AL /‘v’/ q\“v"\\]
oos | ,/ \]

i § !

Derivative
X(1-X)

0 .25 5 75 1
input X

Figure 3.6: Computing the derivative of the logistic function. Glitches in the out-
put are due to the pulse generation circuitry. Averaging the output will eliminate
the glitches.

The dependency can be removed by adding a delay element to one stream, as
shown in Figure 3.5. Because the pulse streams have no temporal correlation (if
properly generated) and the delay removes the temporal dependency, the AND
gate will produce X(1-X). Figure 3.6 shows a simulation of this circuit. The inputs
have eight bit resolution, and the output had been averaged over four 28 —1 clock
cycles for smoothing. Averaging over greater time will increase the accuracy of

the arithmetic.

CHAPTER 3. STOCHASTIC ARITHMETIC 26
3.1.4. D1vISION

This section shows that stochastic arithmetic can perform mathematical calcula-
tions more complex than addition or multiplication. Division, for example, is a
sophisticated but useful operation and is not trivial to implement in binary arith-
metic with digital hardware. An approximation to division using a J-K flip flop
is possible [8]. This section demonstrates a powerful error minimization method

to produce the quotient of two numbers [8].

Let P, be an approximation of the quotient, and e is the error in this approx-

imation.

N&
~ 5,

FRROR =e=PFF, - P

P,

Note that e? is positive and bounded below by zero. If P, is changed so that

the derivative of (e?) is negative, then the error will be minimized.

62 - (POPQ—P1)2

d(e? , .
—Ez—) — ABE)(P,P, — P) = 2P,Pye

For the derivative of e? to be negative we need:
2P, Poe < 0
since P >0,

then P = —ae= —o(PP, — Py)

CHAPTER 3. STOCHASTIC ARITHMETIC 27

Rate XY
Multiplier

£ 4 i B A

X INCREMENT

v Counter
j—_ DECREMENT

Figure 3.7: Circuit for stochastic division.

Therefore to minimize the error the output P, must be changed by P, — F, P.
An AND gate computes the product P,P, and P, is updated using the up/down
counter arrangement shown in Figure 3.7. Figure 3.8 shows a simulation of the
circuit, using an eight bit counter. Initially the approximation is 0. The error
correction improves the approximation until the error in minimized. After 1500
clock cycles the quotient (the value in the counter) settles to the final answer. The
oscillations in the output are due to the variance present in the random streams,

which is discussed in the next section. The variance can be reduced by averaging.

3.2. PULSE STREAM GENERATION

An essential component of stochastic arithmetic is the generation of the pulse
streams for use in the arithmetic operations. The generation must be efficient in

both time and area so as not to offset the benefits of the stochastic arithmetic.

CHAPTER 3. STOCHASTIC ARITHMETIC 28

Stochastic Arithmetic Division

Quotient

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Clock Cycles

Figure 3.8: Simulation of the Stochastic Arithmetic Division circuit.

In general, to generate a pulse with a probability P(1)=p the following proce-

dure will produce a random stream:

e Generate a random number, R, such that 0 < R <1

e If p < R, output a 1 else output a 0.

Figure 3.9 shows a block diagram of a rate multiplier to generate weighted

pulse streams.

In digital hardware R and p are usually represented as a binary integer. If the
maximum value in the weight register is M, and the value stored in the weight

register is p, then the probability of a pulse should be P(1) = p/M.

Generation of a true random number is extremely difficult. In digital hardware
the problem is amplified by the necessity to use a minimum of the silicon resources.

A common technique to generate a random number is using a linear feedback

CHAPTER 3. STOCHASTIC ARITHMETIC 29

Random Number
Generator

I

A
Comparator (A<B) === Pulse Stream Out

B P(1) = weight

ili

Weight Register

Figure 3.9: A pulse stream of desired valued is generated by comparing the desired
weight with a random number.

shift register (LFSR). These structures have been studied extensively for VLSI
implementation and found to produce correlated streams. High-quality random

numbers are essential.

A solution to this problem is to employ a particular configuration of a Cellular
Automata (CA) register. A CA is a set of registers whose next state is governed by
nearest neighbor connections. Hortensius [9] has shown that certain arrangements
of CAs possess maximal length sequences with superior random number properties
compared to the LFSR. The maximal length CAs are composed of cells that are

governed by the following state equations:

Rule90: O(t+1,2) = Oipo1 ® Osppa

Rule 150 : O(t+1,2) = Oipoc1 ® Ory @ Ot pps

CHAPTER 3. STOCHASTIC ARITHMETIC 30

CA CELL |, CA CELL CA CELL

Figure 3.10: Block diagram of cellular automata

Cellular Automata Random Number Generator

192

CA Register Output

b4

o] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Clock Number

Figure 3.11: Distribution of random numbers from a cellular automata register

CHAPTER 3. STOCHASTIC ARITHMETIC

Ao A Ap Apna
Yo

0 Y1
0 YZ

1 0 Yg / /
1 0

_] // BIT STREAM
ouT
l—— 1
WR WO W W2 Wh

Figure 3.12: Rate Multiplier Schematic

The rate multiplier used in this thesis originates out of research in VLSI
pseudo-random test pattern generation [10]. The schematic is shown in Fig-
ure 3.12. The circuit takes a binary set of weights and a set of random bit streams

with P(1)=.5, and produces a weighted bit stream with P(1) between 0 and 1 in

increments of 1/(28-1 +1).

For R = 3 the circuit analysis is as follows:

Yo = WP
Vi = AYo+ AW
= AWE+ AW°
Y, = AYi+A4W?
= A AWE 4 A AW + AW

Yo = A Yy + AW?

31

CHAPTER 3. STOCHASTIC ARITHMETIC 32

= AzAlAOWR + AgAlAQWO + fTZAlWl + AQWZ

Since P(A;) = .5 and P(4,) =1~-.5=.5,
1R R

2

~1 1R—2
WR——Z + = WR—I
2

1

R
1
P(Yp=3) = WR+§ WO+§

For arbitrary R, the general equation is:

R
P(Yg) =27RWhR 4 5 2m Wi

=1

The output of the rate multiplier for seven different desired output densities
is shown in Figure 3.13. The controlling weight register was eight bits wide, and
thus the densities could range from 0 to 255. Inspection of Figure 3.13 shows that
while there is a variance in the output, the mean value is equal to the desired
density. Figure 3.14 shows the output of the rate multiplier averaged over 16

periods. The variance in the pulse stream adds noise to the computations.
3.3. CONCLUSION

This chapter presented a method of arithmetic using pulse trains called stochastic
arithmetic. Stochastic arithmetic allows calculations using only simple gates. The
next chapter will examine the use of stochastic arithmetic in neural networks,

where the ability to implement arithmetic with small circuitry is desired.

CHAPTER 3. STOCHASTIC ARITHMETIC 33

Random Number Output Density

120 T

Frequency

Output

Figure 3.13: Probability density for 8172 cycles of an 8 bit random number gen-

erator for 7 desired output densities.

CHAPTER 3. STOCHASTIC ARITHMETIC

256
240
224
208
192
176
160
144
128
112

96

80

64

Average Output

32
16

Average Weighted Pulse Stream Output

Averaged over 16 periods

! H ! 1 i H H i ! H I ! 1 i

i6 32 48 64 B0 96 112 128 144 160 176 192 208 224 240 256

Desired Weight

Figure 3.14: Output of Rate Multiplier averaged over 16 periods

34

CHAPTER 4

STOCHASTIC ARITHMETIC
NEURAL NETWORKS

S tochastic Arithmetic Neural Networks use Stochastic Arithmetic to perform
the network calculations. This chapter explores the theory, operation, and imple-

mentation of artificial neural networks employing stochastic arithmetic.
4.1. BIOLOGICAL MOTIVATION

The brain uses trains of pulse to communicate information. Examples of neural
pulse trains for different levels of activation are shown in Figure 4.1. This com-
parison is for interest sake only - the signalling of the brain is probably much more

complex than the simple pulse representation considered in this thesis.
4.2. STOCHASTIC ARITHMETIC MEETS NEURAL NETWORKS

The main motivation of applying stochastic arithmetic to neural networks is the
ability to implement arithmetic operations with high density using digital cir-

cuitry. The simplicity of the hardware can allow addition and multiplication, the

35

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 36

my

_ss WWM&VWWAW&MMMW
o5 WINPT e AL Ay
S 1 a1 Vit e T I TR W

o W WIS
o DU U A T A
_108 ﬁwmmmﬂﬂw“ Mﬁmm&mu

RS DO | O S

BRTCS e A oad iy --M«A,l

Figure 4.1: Biological motivation [1]

two most important operations in neural network hardware, to be implemented
in small areas. Related work to that of this chapter can be found in [11, 12]. The

work in this chapter is based on research by Tomlinson et. al. [13]

The implementation of the feed forward networks in this thesis requires the
computation of a dot product consisting of an addition and a multiplication. As
discussed in the previous chapter these operations can be computed by the OR

gate addition and AND gate multiplication, shown in Figure 4.2.

4.2.1. ACTIVATION FUNCTION

The circuit shown in Figure 4.2 does not support negative synaptic weights, due

to the unipolar nature of the pulse stream representation that is employed. To

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 37

[— >
23

Figure 4.2: Pulse Stream Implementation of the basic neural network operation.
The output of the input neurons are multiplied by the synaptic weights using the
AND gate multiplier. The summation and non-linearity are performed by the OR
gate addition.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 38

accommodate negative weights, each synapse output is separated into two distinct
nets: the excitatory and the inhibitory nets. Therefore, each neuron will have two
net input terms. Each neuron 7 will combine the excitatory net input nj and the
inhibitory net input n; to determine the neuron output o;. The net inputs are
calculated using the OR gate addition; these are then combined to result in the
final output stream using a simple logic function. These variables can be written

in terms of the network values as:

wi; >0
ny =1— [(1+wijo5) (4.2)
w;; <0

The two nets are not referred to as negative and positive because the net out-
put of the neuron is not o; = n;“ — n;. Unfortunately there is no simple means
of performing subtraction in stochastic arithmetic. Moreover negative and posi-
tive nets would require accommodation of negative neuron outputs. The output
of the neuron is determined by Equation 4.3. The hardware required for this

computation is shown in Figure 4.3.

o; =nli(l —nj) (4.3)

The saturating effect of the OR gate addition provides the saturating non-

linearity of the neurons. Figure 4.4 shows the average output of a two-input

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 39

SYNAPSE NEURON

FROM OTHER +
i
Oi oj
—
Wheight Sign Bit e AN
{Positive=1}

/ FROM OTHER n-

NEJRONS J

Figure 4.3: Negative and Positive Weights

neuron for the possible inputs. The average output is presented because the
nonlinearity is a function of the inputs — the OR gate addition will give a different
output for inputs of .4 and .2 than it will for .55 and .05, although the net input

is the same.

In conventional digital approaches, the sigmoid nonlinearity is performed using
a table look-up or power series expansion. Both approaches take time and area to
perform. The computation of the nonlinearity function using OR gate addition is

free.

One potential problem of using the OR gate neurons mentionned earlier is as
the number of inputs to a neuron (and thus the OR gate) increases, the probability
of a 1 output for a given input will rise. This was shown in Figure 3.3. This result

suggests that the weights in a neural network must be very small to prevent the

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 40

Average Output

300] I L i I i L}

250 =

200 |~

150 |~

Average Output

100

Sigmoidal
Pulse Stream Activation

"

512 -384 -256 -128 0 128 256 384 512
Average Input

Figure 4.4: Activation function of a two-input pulse stream neuron. The average
output is shown for all possible combinations of two inputs resulting in a certain
net input. A translated and scaled sigmoidal activation function is shown for
comparison.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 41

Rate » Output Pulse
Multiplier Stream
J: 8 A £ Y
Input Pulse __ Integrator
Stream

Figure 4.5: Block diagram of the re-randomizer circuit. The counter controls
the density of the output stream. If the output is high when the input is low,
the counter is decremented. If the output is low and the input is high, then the
counter is incremented. If the input and output are equivalent, then there is no
change.

neurons from constantly saturating.

4.3. RERANDOMIZER

To prevent correlation between pulse streams from earlier layers the output stream
of each neuron must be “re-randomized.” This is accomplished by an adder con-
trolling an output stream that is configured to follow the input stream, as shown
in Figure 4.5. If the output is high when the input is low, then the value of the
counter is decremented. If the output is low when the input is high, then the
counter is incremented. If the output and the input are equivalent then there is

no change.

The output of the re-randomizer circuit for different input densities is shown

in Figure 4.6. Note that the output is not constant but varies due to the variance

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 42

Rerandomizer Output Density

240 I~
204
208
192
176
160 [
1oa]
128
112 18
96
80
84

Density

32
16 [~

0 512 1024 1536 2048 2560 3072 3584 4096
Clock Cycles

Figure 4.6: Test of the re-rerandomizer circuit. The re-randomizer was reset to
the mid-point before each test. The target densities are 0 to 240 in steps of 15.

inherent in the random number generation. In applications where this variance is

not desirable it is possible to increase the time constant of the integrater.

Figure 4.7 shows the re-randomizer circuit modified to produce a smoother
output. The lower bits on the counter/integrater are ignored. This divides the
output value by a factor of two for each bit shift. Changes in the lower bits due
to the variance have no direct effect on the density output by the rate multiplier.
Figure 4.8 shows the output of this arrangement for one bit and for two bit shifts.

Not only does the output become smoother as more bits are ignored, but it also

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 43

Rate » Output Pulse
Multiplier Stream

< Lower bits are ignoraed

Input Pulse _

integrator
Stream

Figure 4.7: Block diagram of the re-randomizer circuit modified for output
smoothing. After integrating normally until the input and output streams have
equal densities, the value in the integrater is shifted to the left and the lower bits
are ignored.

takes longer for the re-randomizer to settle the correct output value.

The output of the re-randomizer can be both rapid and smooth using a hybrid
arrangement. Initially the re-randomizer is operated without smoothing, allowing
it to quickly count to the target output. After allowing time for the integrater to
reach the correct output, the value in the integrater shifts by n bits and the first
n bits are not passed to the rate multiplier. This approach has the benefits of
the quick response of the non-filtered re-randomizer and the smooth output of the
filtered re-randomizer. The output of a re-randomizer employing this approach is

shown in Figure 4.9.

4.4. TRAINING STOCHASTIC ARITHMETIC NEURAL NETWORKS

The following weight update derivation follows standard back-propagation [5] and

is taken from Tomlinson et al [13]. The procedure performs gradient descent over

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 44

Rerandomizer Quiput Density

1 Bit Shift

E

Density
7
Density

0 512 1024 1536 2048 2560 3072 3584 4096 o 5§12 1024 1536 2048 2560 3072 3584 4096

Clock Cycles Clock Cycles

Figure 4.8: Output of the filtered re-randomizer

Hybrid Rerandomizer Qutput Density

2 Bit Shift

< No g -+

Mgwa-'\'wwﬁ'vy‘wﬁ\ e e AN

e T e o

Wr../"'\mw
SO X TN o e,

Density

0 512 1024 1538 2048 2560 3072 3584 4096

Clock Cycles

Figure 4.9: Output of the hybrid filtered re-randomizer. Integration operates
normally for 1023 clock pulses, when two extra low order bits are added to the

integrater

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 45

the sum-squared error measure given by Equation 4.4.

1
E =32 .(t—0) (4.4)
J
where t; is the target value from the training data and actual o; is the output

of neuron j. To minimize the error, each weight is modified in proportion to the

negative gradient of the error with respect to each weight, given by Equation 4.5.

0E

8’1,053'

(4.5)

Awij o —

Since the output of a neuron is not a simple function of its input, but a function
of the contribution from the positive and negative streams, the derivative must

be considered separately for positive and negative weights.

For positive weights, w;*j, the chain rule results in Equation 4.6, while negative

weights w;; require Equation 4.7.

OE OF Oo; @n}-F

—_— 4.6
6w§; Jo; ﬁnj 3wj; (4.6)
OF OF Oo; 5nj_
= — 4.
ow;; do; Ony Jwj; (4.7)
Let:

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 46

OF Jo;

+ = e —— — J
. onf = €T ont (4.9)
5 — _ oF 80] (4.10)

J 57@: J@n

For output neurons and the sum-squared error measure (4.4) the error is simply

the difference between the training data and the network output:

oF

——5;;:6]':15]‘-—03' (4.11)
7

For the hidden layers the error is propagated back through the network. Each

of the k output neurons connected to hidden unit 7 will contribute to this error.

Using the chain rule:

0E OE Joy, Onf OF 0oy Ong
do; Z oy, On; do; E doy, On; o, (4.12)
Using Equation 4.1:
Oni Huyso(l —wiko)(—1)(wjk) (4.13)
80_7' - i-— Wik 0; '
_onf(cwik) (—w)
a] — 'kaOJ 1 — wjkoj (414)
— wak(l —nf)
= T wso; (4.15)
¥ sol(l —wji0:)(—1)(0s

8101'2" 1 — wj;0

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS

nf(=o) (o)
1—wio; 1~ wjio;
0i(1 —nf)

1- 'wjioi

Similarly from Equation 4.2:

Onj, (=Dwjr(1 — ng)
0o; 1 —wj
ony oi(1 —n7)

8wﬁ 14+ w;;0;

From Equation 4.3:

do;
3_771;55 7
60j +

on; J

7

The resulting weight update equations are:

oF 0;
i — A1 —n" W1 -) (——
8’(1);; E.?(ng)(ng)(1 _ w;-t-oi
oF 0;
— = ent(l —n7)(———
owy; «ny (1= n; >(1 + wj_ioz-)

47

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Note that it is possible for the denominator in the above equations to equal

zero, which is unacceptable. A scaling factor of .95 is added to the wj;0; term to

prevent the denominator from approaching zero. These weight update equations

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 48

are further modified with the inclusion of a learning rate factor. In addition, the

weights must be restricted to the range [-1,41].

The error back-propagation summation is given by:

(4.25)

98 _ o8 - Wi 08+ _y_ W
0= 2 (gm0 mhEs) 3 (b -

Where g—fc is simply the error from the layer immediately above.
4.5, PULSE STREAM NEURAL NETWORKS

This section presents the results of stochastic arithmetic neural networks applied
to three problems: the XOR problem, the four bit parity problem, and a hexadec-

imal character recognition problem.

The networks were simulated using C++ code interfaced with the XERION[14]
neural network simulator library. The networks can be simulated on two levels:
probability and pulse stream. The probability level models the network activa-
tions as probabilities; the pulse level models all activations as pulses and directly

emulates a hardware implementation of these networks.

4.5.1. THE XOR PROBLEM

The XOR problem is a frequently applied test of neural networks. A network

consisting of two input neurons, two hidden neurons, and one output neuron was

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 49

’ 1 5 Wi
0; = Z[(l —nH)nf (wy > 0) + (1 —n)ny (wy; < 0)] —
i 1 —lwylo;

Figure 4.10: Equations for training.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 50

s
bp-> randonize
bp-> train -rep 100 10000
Using momentus descent and fixed step size.
Mininize paransters: tolerance= 1g-06 accentahlnFun:mn-
Paranetsrs for acsentua dascant: smlsntun(a'luha)-
Paraneters for fixed step size: epsilon« D.
itera 0 nfE= 4 f« 12.792293 1]
iter= 100 nfE= 181 Ff= 4.3107203 lql- .5
ACCTRL-C datvctvd. qu stop at end of step or Hnesaarc
iter= 140 nf f= 3, igl= 0.7 d=
code- 8 nFE- 141 f= 3.5540248

error = 3,55208 extra cost =

v X vector - resetting iteration and evaluati
:annot continus prekus direction {because of
Using nomentun descent and Fixed step size
Mininize parameters: tolerance= 18-06 uccantah'laFuncM{n- &
Paransters for nomentus des<ant. nomentuz(alpha)= k
Paraneters for Fixed step size: epsilon= 8.1
13.59342 Igl= 6.1 d=
F- 4 3435855 iq;- 0.52 d=
= gi= 0. d-
f= 1 638817 I 96 d-
f= 1.2377746
f- 1,0276612 g d-
i1l stop at end of ?t?p 8;’ hnesearch

d=
niaize: (ude- B NFEw 567 Fa 1,0224226
mmmzs. mterrupt signa] :aught - stopped normally.
och » reor * 1,018 extra cost = 000411257
En-> &'oadrlei ghts hexo2ha.vsights
p->

onize
n-> train -reb 100 1000

Figure 4.11: The user interface of the pulse stream neural network simulator

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 51

XOR Function

Error

08 |~ 1

08 [

04 I

02

L L i L} i 1

[200 400 §00 800 1000 1200 1400

Training Epochs

Figure 4.12: Training error for XOR problem.

trained using the weight update equations presented in the previous section. The
total sum-squared (tss) error for the network is shown in Figure 4.12. After 1000

presentations of the training data the error approaches zero.

Figure 4.13 shows a Hinton diagram of the outputs of the trained network. The
area of the white box is proportional to the value of the output. For example, a
half filled box would equal represent an activation of 1/2. The figure shows the

network produced the correct outputs.

Figure 4.14 shows the output of the neurons as the inputs are presented to the
trained pulse stream network. The output is the value of the re-randomizer reg-
ister. The output waveforms strongly resemble those of analog circuitry charging

and discharging. Figure 4.15 shows the output of the neurons with “precharging”

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 52

NETWORK
INPUT AXORB OUTPUT

Figure 4.13: Hinton diagrams showing the training data and the output of the
trained network.

the rerandomizers. With each presentation of an input vector the value of the

rerandomizer is reset to 1/2.

4.5.2. FOUR BIT PARITY

The four bit parity problem is a natural extension to the XOR problem. It in-
creases the number of bits from two to four; therefore, the number of input vectors
rises from 4 to 16. Experience from training with standard back propagation shows
this to be an extremely difficult problem. The network used for the four bit parity
problem consisted of two hidden layers of 12 and 8 units respectively. Figure 4.16

shows the training error, and the network outputs are shown in Figure 4.17.

The time evolution of the pulse stream network for the presentation of the

CHAPTER 4. STOCHASTIC ARITEMETIC NEURAL NETWORKS

INPUT 0 INPUT 1 Hidden A Hidden B OUTPUT

o o] o (@]

O Ul =~ O UM 2O Ui =0 Gl = O O =

(=

XOR Network Activation

53

‘——\\ },_/""" """‘--.,-__,.,.-.—a.—~—.-,.-.__._‘\h\s.~
T P y

_ S 11(,' : -

P S D

U S 7 P

. TN

1 an S

— ’ I l l ! J T T T T]

0 0.504 1.008 1512 2016 252 3.024 3528 4032 4536

Clock Cycles (x10°%)

Figure 4.14: Network activation for the XOR problem. Shown are the two inputs,
two hidden units, and the single output unit. The top three curves represent the

value of the counter in the re-randomizer.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 54

XOR Network Activation

Node Precharging
0.5 T T i
. = %
L e i
] T :
0 { " i
- . . RN
B i S Fs
N) H
| - H :
S . :\\\ ‘‘‘‘‘ \\._“\~ .

i

o

INPUT 0 INPUT 1 Hidden A Hidden B OQUTPUT
omaAom—-\og-aom—kcm—a

T T Y T | T T T T
2.016 252 3.024 3528 4.032 4536 5.04
Clock Cycles (x10°%)

I i 1

T
0 0.504 1.008 1.512

Figure 4.15: Network activation for the XOR problem. Shown are the two inputs,
two hidden units, and the single output unit. The top three curves represent the
value of the counter in the re-randomizer.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS)

4 Bit Parity

4.5 T T T T T

Error

o 500 1000 1500 2000 2500 3000

Training Epochs

Figure 4.16: Training error for the four bit parity problem

TRAINING NETWORK
DATA QUTPUT

Figure 4.17: Training data (left) and network output (right) for the four bit parity
problem

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 56

Four bit parity network activation

LN N LN
TNl NS

(=]

e

=
O Ul 2 O M O 20 v o U -
1

Input 0 OUTPUT

o

o

Input 3 Input2 Input 1

I 1 1 T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Clock Cycles (x10°)

o

Figure 4.18: Network activation for the four bit parity problem

input vectors is shown in Figure 4.18.

4.5.3. HEXADECIMAL CHARACTER RECOGNITION

The final example considered in this section is a hexadecimal character recognition
problem. The input to the network is 20 bits, determined from a 4X5 matrix
representing the hexadecimal character. The output is the 4 bit binary number
corresponding to the input character. The network consisted of 1 hidden layer of
12 units and an output layer of 4 units. The training error is shown in Figure 4.19.
The activation of the pulse stream network is shown in Figure 4.20 and a Hinton

diagram of the outputs is shown in Figure 4.21.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 57

Hex Character Decoder

6 T 1 T T T

Error

o 500 1000 1500 2000 2500 3000
Training Epochs

Figure 4.19: Training error for the hexadecimal character recognition problem

4.5.4. IMPACT OF DIVISION

The equations for the learning algorithm contain division. Division is undesirable
for a number of reasons. First, division by zero must be avoided. Second, division
is a time consuming operation for most computers. Third, and most important,
division is a difficult operation to implement in hardware. Implementation of an
on-chip divider for each synapse and output would be prohibitive to the imple-

mentation of on-chip learning, discussed in the next chapter.

To determine whether division was necessary, the networks were trained with
the division operation omitted. The results of the simulation are shown in Fig-
ure 4.22. The results show that eliminating the division does not impair the abil-

ity of the networks to minimize the error. The hexadecimal character recognition

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 58

Training Data

4 Outputs mmmm— m:tmn:cn m:l:ﬂm:nn:ncmmum

Output of Trained Stochastic Arithmetic Network

0 287
Clock Cycles (x10%)

Figure 4.20: Network activation for the hexadecimal character recognition prob-
lem

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 59

Figure 4.21: Network outputs for the hexadecimal character recognition problem

Error

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 60

XOR Function Hex Character Decoder

T T

! ¥ 3 T T T ¥ T

1
Error

\ﬂ—— With denominator

N, Without dsnominator

i i \:-With denominator

Moo

Y
s
3
04 [Y _
;s
%
02 - \\ o
.‘\ M“hm‘.«
I] v " A 5 i L 1 B

+— Without denominator

0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500

Training Epochs Training Epochs

Figure 4.22: The impact on division on network training. The graphs show com-
parison of the training with and without the division term. As can be seen, the
exclusion of the division does not impair the ability to minimize the error. This
has significant benefits for the development of in situ learning

problem trained in fewer epochs without the division.

4.5.5. COMPARISON WITH CONVENTIONAL HARDWARE

The limitations of the stochastic representation, specifically the limited range of
the synaptic weights, is not without its cost. The four bit parity example required
two hidden layers of 12 and 8 stochastic units. Conventional arithmetic using
back propagation, sigmoidal neurons, and synapses of unlimited range required
only 1 hidden layer of 10 units to solve the parity problem. The addition of the
extra layer, which provides scaling to accommodate the limited synaptic connec-
tions, is crucial for the success of these stochastic arithmetic networks. While

the network complexity of the networks is greater for stochastic arithmetic, the

3000

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 61

XOR Decision Space XOR Decision Space
Stochastic Arithmetic Network Conventional Networks
(0,0) (0,0)

Figure 4.23: Comparison of the decision spaces of Stochastic Neural Networks and
conventional sigmoidal Backpropagation Networks.

hardware complexity is still significantly less. Since the hardware requirements of
the stochastic arithmetic approach are significantly less than conventional digital

approaches, the cost of adding more computing elements is not severe.

It is also instructive to compare the decision spaces of Stochastic Arithmetic
and conventional sigmoidal networks. Figure 4.23 compares the XOR problem
decision space of the stochastic arithmetic net (section 4.5 and the sigmoidal

network (section 2.3).

While the stochastic network may not have been a good classifier for this
particular problem it is interesting to compare the solution with the analog XOR
function. Figure 4.24 shows that the stochastic arithmetic, trained on only the

four binary inputs, has correctly predicted the function for the entire input space.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 62

XOR Decision Space XOR Function
Stochastic Arithmetic Network X E=-N+-X)(Y)

N | \ 1,0

(0.0)

Figure 4.24: Comparison of the stochastic arithmetic network and the XOR func-
tion

The logic gates used in the stochastic arithmetic network coincidentally produced

the complete solution.

4.5.6. WEIGHT RESOLUTION

During training and simulation of network outputs the resolution of the weights
was 8 bits plus 1 sign bit. Thus there were were 28 — 2 possible positive values,
2% — 2 negative values, and the zero. Increased resolution requires more hardware
due to larger weight registers and expanded rate multipliers. Reduced resolution

requires less hardware.

To investigate the weight resolution necessary to solve an arbitary problem a

network was trained to perform the hexadecimal character recognition problem.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 63

Weights
1 — "
-+
+ ++ +
L3 +
0.5 -+ T+ o « -7 et
. + P + + 4
* 4 + FaF + _?_'*' _Ii.-h‘.{— + +-;’;- +
++ pFg F * + 5# + ++
e e ++ . T oFF #
E + NN i T AT L " o F
T O prmE g Fo LS S
= +E o+ T e oy T ++_!._*.-£p
4+ + + 4 + +,
+F + +-¥-" + # 4 ++¢ +‘%. £ Tyt @42_-!-} ++ s
TR BTG s + Bt +
b + A » -
"0.5 * i + -+ + i <N 4+
+ +4 + + 5 + 4+ *
. + # o+ Fu + .
+ ++ +
+ * * F
°1 + T = '“- IAL’ % + - T T T +
0 185 370 555 740 925

Figure 4.25: The weight space of a two layer network trained to solve the Hex-
adecimal OCR problem. The values of the weights in the network are plotted.

The resulting weights are shown in Figure 4.25. Note that the distribution of the
weights favours numbers of small magnitude. This is expected due to the large

fan-in to the OR gate adders.

The weights were successively mapped to weights of smaller resolution until
the network produced incorrect outputs. Figure 4.26 shows that only 5 distinct
weights(+1, +.5, 0, -.5, -1) were needed in the network to solve the problem. This
weight set requires little hardware to implement, since the (41,-1) weights are
direct connections and the 0 weights imply no connection. Further experimen-
tation is required to determine the effect of this quantization on generalization

performance.

The weight distribution in Figure 4.25 suggests that it may be beneficial to

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS

Quantized Weights

0.5 —lpp < B e R S T B b

Weight

0.5 bkt A b

-1 ¥

bR e s L R o

=T

&5

b e

0

185

T
370

555

740

825

64

Figure 4.26: The weight space after quantization to (+1, +.5, 0, -.5, -1). The
network continues to produce the correct outputs.

employ a nonlinear set of weights for these networks. The upper magnitudes

could be represented by only a few weight values, while more values would be

located closer to zero. The OR gate saturation characteristic means that weights

should be kept small, and there is no point in accommodating large weights that

will encourage saturation. A nonlinear rate multiplier could be constructed using

AND gate multiplication of predetermined pulse streams. For example, the set of

pulse streams densities 0, 1/4, 1/3, 1/2, 1 could generate weights of 0, 1/24, 1/12,
1/8,1/6,1/4,1/3, 1/2, 1.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 65

4.6. VLSI IMPLEMENTATION

This section discusses the implementation of stochastic arithmetic neural networks

in VLSI hardware.

4.6.1. OR GATE ADDITION

For fan-in to the neurons greater than four inputs, OR gate addition has severe
drawbacks. The large OR gates consume area and time. More important, it is
undesirable to have many lines coming into a neuron for summation. One solution
is to multiplex the data on one line. Another method to address this problem is to
distribute the OR gates among the synapses. Both these methods add complexity

and size to the system, and slow down the operation of the network.

The solution is to use a wired OR gate. A wired OR gate requires no active
circuitry to compute the OR function. The inputs are simply wired together, as
shown in Figure 4.27. To avoid contention between HIGH and LOW signals, it
is necessary to convert the inputs to the OR gate from [0,1] to [Z,1], where Z is
the high impedance state. The three transistors required for this are also shown
in Figure 4.27. This circuit would be placed on the nj and nj outputs of each
synapse. The final pmos transistor should be sized to provide adequate drive,
and it may be wise to include pull-down transistors at each synapse to accelerate

circuit operation.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 66

VDD]
’—q : '——d : ~——————— OROUT
TO WIRED OR
i—li PULLDOWN %;
RESISTOR
BUS CONTENTION

ELIMINATION CIRCUIT WIRED-OR GATE

n-—HCvuvZ—

Figure 4.27: The wired OR gate and bus contention circuit.

4.6.2. RANDOM NUMBER GENERATION

Random numbers will be required at every synapse and neuron to provide a set of
bits to use in the generation of a weighted pulse stream. It would be impractical
to include a CA based random number generator at each rate multiplier. One
solution is to use a shift register and shift a random number to each rate multiplier.
This approach has the drawbacks of requiring area for the registers and time
for the shifting. The method proposed here is based on the same principles of
temporal independence discussed in Chapter 3. All synapses extending from a
neuron will use the same random number, since each communicates its result to a
unique neuron. Delay registers between neurons provides temporal independence.

Figure 4.28 shows this method. Only one random number generator is required.

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 67

RANDOM ning ng ng ng N
NUMBER
GENERATOR

Figure 4.28: Block Diagram of integrated circuit

4.6.3. CHIP IMPLEMENTATION

To demonstrate hardware pulse stream networks, a custom VLSI implementation
of a simple network was designed and fabricated. The chip implements a network
of two hidden layers, each with four hidden units, as shown in Figure 4.29. The
weights are represented with an eight bit storage register and can be loaded serially
from off-chip. The random number generator has not been placed on the chip to
enable experimentation with alternate generation methods. The random number
used in the synapses and rerandomizers is stored in a register local to each unit.
These registers are connected in parallel and are separated by a delay register.
By using a delay between registers, each random number can be used by each

pulse generation unit (synapse or rerandomizers). The fabricated chip is shown

CHAPTER 4. STOCHASTIC ARITHMETIC NEURAL NETWORKS 68

R

Figure 4.29: VLSI Implementation of Stochastic Arithmetic Neural Networks.
The chip implements a two layer network of 4 units per layer

in Figure 4.29.

4.7. CONCLUSION

This chapter has discussed stochastic arithmetic implementations of neural net-
works. The training rule was discussed and applied to three problems. The

hardware necessary to implement these networks was also presented.

While the results of this chapter have shown stochastic arithmetic to be a viable
implementation option for neural networks, further experimentation should be
performed. Larger and more complex problems should be trained on the network.

More detailed comparisons with other implementations should also be performed.

CHAPTER 5

IN SITU LEARNING

T he previous chapter examined the operation of Stochastic Neural Networks
whose weights were determined by off-line training. This chapter presents an
extension to that work: Stochastic Arithmetic Neural Networks that perform the

learning in situ using on-chip circuitry.

It is desirable in many applications to have the learning 'performed by the
hardware. First of all, the training procedure typically requires many passes
through the input data and is generally very time consuming especially since it is
usually performed on sequential computers. In addition, if certain neurons are not
functioning in the hardware, the learning algorithm can compensate by adjusting
the weights to the other neurons. Neural networks can also be found in control
applications, where a network must adapt according to inputs which may not be
available for off-line training. In situ learning frees neural networks of complex
external hardware required for training thereby increasing their flexibility and

areas of application.

However, learning is rarely found in dedicated neural network hardware. Net-

69

CHAPTER 5. IN SITU LEARNING 70

works with in situ learning must calculate the error at the output, propagate
it backwards towards the inputs, and modify the synaptic connections accord-
ingly. In addition to extra hardware required to perform the weight updates, the
communication complexity alone is enough to make in situ learning intractable,

especially for digital implementations with wide data buses.

This chapter derives the equations for in situ learning, describes the hardware
necessary to implement the equations, and presents simulations of the hardware

as it learns two of the problems from the previous chapter.

5.1. PrREViOUs WORK

The only previous stochastic arithmetic implementation with in situ learning is
the work by Eguchi et al. at Ricoh[15]. The networks were like the networks
described in the previous chapter. Their learning seems to be based on a simple

delta learning rule.

Their implementation differs in many aspects from the approach described in
this chapter. There was only a single neuron on each chip, with the weights stored
in on-chip static RAM, indicating that the implementation was not fully parallel.

Random number generation used linear feedback shift registers.

The efficacy of the learning rule described in [15] could not be duplicated for

the training problems examined in this thesis.

CHAPTER 5. IN SITU LEARNING 71

5.2. DERIVATION OF THE IN SITU LEARNING PROCEDURE

5.2.1. CALCULATION OF THE ERROR

It Chapter 4 the error at the output neurons was

Error =t; — o; (5.1)

This presents two difficulties for stochastic arithmetic. First, the pulse repre-
sentation has no simple implementation of subtraction. Unlike the other neural
network operations of addition and multiplication, subtraction can not be per-
formed by a simple gate. Second, only unipolar quantities are available. A single

stream can not represent the error when ¢; > o; and t; < o;.

The solution is to split the error into two pulse streams, errorP and errorM.
The stream errorP has a pulse when the training pulse stream is high and the
output is low, while the errorM stream has a pulse when the output is high and
the training stream is low. If the training and output pulses are the same, there
is no error and both errorM and errorP are low. For binary training data this

calculation of the errors will be exact.

5.2.2. BACK-PROPAGATION OF THE ERROR

The implementation of two error streams complicates learning, since there are two

error signals in addition to the two net inputs (nj',n]—) The equation for error

propagation was given in Equation 4.25 (page 48) as:

CHAPTER 5. IN SITU LEARNING T2

oF OE _ wi) (8E o wh)
—— = —(1 — 1 —nty——F2 ——(nt)(1 = — ks
do; k,u§>0 <80k (mi) i) ; +k,wz,~j:<o oy, (n;)() +

It was shown in Section 4.5.4 that the denominator terms are unnecessary
for effective learning. While division is possible with stochastic arithmetic (Sec-
tion 3.1.4), it requires time and area to compute. Ignoring the division reduces

the complexity of the circuits.

Since the error is split into two separate nets, errorP and errorM, the above
equation must be modified. The errorP net will be modified by terms that pro-
duce positive results. Examining the equation shows that positive error will be
contributed when the incoming error and the weight of the unit have the same sign
(i.e. the product will be positive). Thus error P;;, the positive error at neuron j

due to neuron k of the layer above is:

errorPy; = [(1 —nf)(errorP;)(1 = n; w0y + (1 — nj_)(erroer)(nj"))(wiKg)} |wij]
(5.2)

Similarly, the errorM net will arise from terms that have a negative result when

the error and weight have opposite signs:

errorM;; = [(1 —n})(errorM;)(1 = 1})y, >0) + (1 — n;)(erroer)(nj")(wij@)] |w;|
(5.3)

CHAPTER 5. IN SITU LEARNING 73

Each connection from a neuron will have a back propagated error signal as-
sociated with it. These errors must be added to produce the errorP and errorM
values. This summation is performed like the summation of the net inputs to the
neuron using OR gate addition. For large errors the addition will saturate, but as
the network learns, the errors will become small and the addition will be accurate.

Let:

& = (1 =nf)ErrorP(1 —nj) (5.4)

67 = (I —=n;)ErrorM(n]) (5.5)

&t = (1—-nl)ErrorM(l —nj) (5.6)

&'~ = (1—=nj)ErrorP(n}) (5.7)

These variables are computed for each neuron and transmitted to the synapses

that feed into it.

5.2.3. WEIGHT UPDATES

The weight update equations, ignoring the division, are shown below:

OF _

507 = G =n7)(1—nf)o; (5.8)
Jt
OF _

—50= = &n (1—-nj)o (5.9)
7t

Recall that the weights are modified in proportion to the negative gradient of

the error with respect to the weight. Therefore:

CHAPTER 5. IN SITU LEARNING 74

Weight Condition =~ Weight Change

Cwy >0 §TT &g w T
§~F 6t g o w |
wi; <0 §t 8§ no; w T
5 6o w]

Table 5.1: Weight updates

oFE _
Auwf = ng-(1=n7)(1=nf)o (5.10)
- oF _
Awy; = Wé‘(;j‘nj(l—nj)oi (5.11)

The learning rate is determined by a pulse stream generated with P(1) = 7.

These weight equations must be modified for the two error streams.

ij]'. = n(errorP — errorM)(1 — n]_)(l - ";‘F)Oi

If » and o; are both high then a positive weight will be increased when §++ >
6~F. This will occur when §*+ =1 and 6=+ = 0. The weight will be decreased
when 6%% = 0 and §™+ = 1 and 7 and o; are high. A similar analysis holds for

negative weights. The weight update equations are summarized in Table 5.1.

5.2.4. ANALYSIS OF THE LEARNING PROCEDURE

The learning procedure described in Chapters 2 and 4 performed the weight up-

dates after each epoch or after each individual training pattern. The learning

CHAPTER 5. IN SITU LEARNING 75

rules presented above are different in that the weight updates are made during

pattern presentation. In effect, we are calculating:

dwi]- . 8E
dt nawij

Previous work has shown this form of weight update to be effective in speeding

up learning[16].

The learning will have to deal with the variance inherent in the pulse streams.
Learning is notorious for its requirement of high accuracy, and it is not clear that
the noise will allow effective learning to occur. However, it has been observed that

noise can be beneficial to learning [17].

Simulation of this learning algorithm is presented later in the chapter.

5.3. HARDWARE IMPLEMENTATION

This section describes the hardware required to implement in situ learning. In
situ learning adds complexity in two ways: it requires hardware to compute and
propagate the error signals, and it requires hardware to adjust the weights ac-
cording to those signals. Figure 5.1 shows a block diagram of an in situ learning
synapse. The synapse weight is held in an up/down counter, which is controlled

by the error calculation hardware.

As shown in Figure 5.2 only simple gates are required to generate the error

streams at the output units.

CHAPTER 5. IN SITU LEARNING

Rate Multiplier

i

Error
Calculation

Counter

Woeight Sign Bit
(Positive=1)

Figure 5.1: Block diagram of in situ learning synapse.

}

i

——

ErrorM

} ErrorP

76

Figure 5.2: Hardware required for generating the error streams at the output

neurons.

CHAPTER 5. IN SITU LEARNING 77

errorM

n errorP

L)
J

A —

Figure 5.3: Hardware implementation of § variables.

[

Each neuron will compute the § nets and propagate through the synapses to
the previous layer. Figure 5.3 shows the hardware required to compute these

variables, as given by Equations 5.4 through 5.7.

The synapses are responsible for computing the error for back propagation and
the weight changes. Figure 5.4 shows the hardware to compute the errorP and
errorM nets. The errorP and errorM nets incoming to a neuron are summed using

wired OR summation.

The weight change computation circuitry is a direct implementation of Ta-
ble 5.1 and is shown in Figure 5.5. The output of this circuit controls an up/down

counter that handles the weight modification.

CHAPTER 5. IN SITU LEARNING 78

5T ——)

sign(wij) Wii

s T+ j—— errorM
5t —“——)

Figure 5.4: Hardware implementation of error back propagation.

} Weight 4

i

sign(w.) —

F— Weight v

Figure 5.5: Hardware implementation of weight change computation.

@j

9

CHAPTER 5. IN SITU LEARNING 79

UP/DOWN COUNTER

Counter_Direction —
"1 UP/DOWN COUNT

Counter_Enable

ENABLE

1 CLOCK ZERO

OVERFLOW p——s

Figure 5.6: Up/Down counter building block

The basic element performing the weight updates is an up/down counter.
Based on the results of the weight learning circuit, the counter will increment,

decrement, or perform no operation.

A block diagram of a basic up/down counter is shown in Figure 5.6. The
counter inputs are: direction control (0=UP, 1=DOWN), enable (1=COUNT),
and clock. The outputs are the count (n bits), a zero flag (count=0) and an
overflow flag (count=full range). Also shown in Figure 5.6 is the state diagram of

a 3 bit counter (only the up direction is shown).

This counter must be modified for use in these networks. It must support
negative values and it must represent values in sign magnitude form. Since the
counter is a crucial element of the learning hardware, the circuitry for these en-
hancements will be presented in detail. The state diagram for a 3 bit counter that
meets these requirements is shown in Figure 5.7. The up/down counter circuit

can be found in many common references, such as [18].

When the number is positive, the up/down counter operates normally. For

sign magnitude the number in the counter gets larger when a negative number in

CHAPTER 5. IN SITU LEARNING 80

NEGATIVE
(SIGN=0)

POSITIVE
(SIGN=1)

Figure 5.7: State transition diagram for a three bit sign magnitude counter. The
full count state can only be left by decrementing the magnitude.

decremented. Likewise, incrementing a negative number will make the magnitude
smaller. When the number is zero, the next value is always magnitude 1, so the
counter must increment when the value is zero. The additional control logic to

implement this behavior is shown in Figure 5.8.

Figure 5.8 also shows the logic necessary to make the counter stop at plus or
minus full range. If the counter is at full range, the counter will be enabled only

when the count is reduced in magnitude.

The sign of the weight can only change when the value passes through zero. If
the DIRECTION line is low, then the counter is counting up and the next value
is +1, which means the sign bit will be high. If the DIRECTION line is high, the
next value will be -1 and the sign bit will be low. The sign is simply the inverse

of the DIRECTION line if the count is currently 0; otherwise the sign will not

CHAPTER 5. IN SITU LEARNING 81

ENABLE
Counter_Enable
OVERFLOW }J—JD)—H

SIGN
DIRECTION
E Counter_Direction
ZERO

Figure 5.8: Counter control logic for sign magnitude up/down counter

DIRECTION ——-[>O—
ZERO

SIGN REGISTER

Figure 5.9: Sign logic for sign magnitude count

change. The logic for the sign is shown in Figure 5.9.

The only other additional hardware required for the counter is an XOR gate
to perform ENABLE = WEIGHT 1 @WEIGHT |. The direction input is
connected to WEIGHT |.

5.4. SIMULATIONS OF IN SITU LEARNING

The simulator used in Chapter 4 was extended to simulate learning at the pulse
level using the equations derived in the previous section. The simulator is ef-

fectively a mixed mode gate/behavioral simulation of the hardware needed to

CHAPTER 5. IN SITU LEARNING 82

implement in situ learning. Except for counters and registers, the simulation was

at the gate level.

5.4.1. THE XOR AND HEXADECIMAL OCR PROBLEMS

The performance of the in situ network on the XOR problem is shown in Fig-
ure 5.10. The training error is graphed for six different learning rates. The
network consisted of 1 layer of three hidden units. Note that the training error
was effectively zero after only 75 iterations through the training set. The network
in chapter 4 required over 800 epochs to reach the same level of error reduction.
This could have been due to a number of causes. The random noise present in
the learning and activation pulse may have assisted learning, or the continuous
weight updates may be responsible. It is likely that the learning improvement is

due to a combination of these factors.

The training for the hexadecimal OCR problem is shown in Figure 5.11. The

network consisted of one layer of 10 hidden units.

Figure 5.12 shows the effect of variance on the bit streams. If it were not for
the variance of the pulse stream densities, the effective learning rate for each of
the two graphs would have been the same. Observe, however, the learning curves

are different.

CHAPTER 5. IN SITU LEARNING

XOR Problem
In-Situ Learning Chip

Learning
Rate

Training Error

0.6

0.4

0.2

0 50 100 150 200
Epochs

Figure 5.10: Simulation of in situ learning for the XOR problem.

83

CHAPTER 5. IN SITU LEARNING 84

Hexadecimal Character Recognition
Chip Simulation

I i I I T i T] I

Training Error

Srciebbers wi o 2idS o donSondescs

R T TR DOy i ORI

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epochs

Figure 5.11: Simulation of in situ learning for the hexadecimal character recogni-
tion problem.

CHAPTER 5. IN SITU LEARNING 85

Training Error

Training Error

XOR Problem - Chip Simulation

n =.05,

08 A Nﬁ”\\ number of pulses = 512
¥

0.6
0.4 [~ n =1,]
0o number of pulses = 256 _
0 : . :
0 20 40 60 80 100
Epochs
Hexadecimal Character Recognition Problem
10 1] L] T L}
s F .
6 -
<~ 1] =05, 512 learning clocks
4 -
] n =.1, 256 learning clocks
» F _
tas RO WO
0 : . :
0 200 400 800 800 1000

Epochs

Figure 5.12: The impact of variance on in situ learning

Training Error

Training Error

0.8

0.6

0.4

0.2

0.4

0.2

CHAPTER 5. IN SITU LEARNING 86

XOR Problem - Chip Simulation

Effects of the Rerandomizer Effects of the Rerandomizer

Hexadecimal Character Recognition Problem

[20

2500 3000 3500

Epochs

0 500 1000 1500 2000

0
Epochs

Figure 5.13: Effect of the rerandomizer on learning.

5.4.2. THE RERANDOMIZERS AND IN SITU LEARNING

Figure 5.13 shows the effect of the rerandomizers on the learning process. The left
graph shows that the network successfully learned the XOR problem without the
rerandomizers, although it took longer. The hexadecimal character recognition
was unable to minimize the error without the rerandomizers. The noise on the
training error curve for the situation without rerandomization indicates that the

correlation noise had a detrimental effect on the learning.

The rerandomizer has another benefit for learning in addition to the removal
of correlation. Note from the weight update rules of Table 5.1 that o, is one of the
factors. If the activation of the neuron becomes zero, then no weight change will
take place. All weights from a neuron with activation of zero will remain constant.

Even small, non-zero activations, will impair learning. The rerandomizers can be

5
- = - o 4 I~ -
A\/\N!\Q . ; 5
A N -) Gl |
2 e 4 -
™ No £ go domi
f = - oral izer e
- : Rerandomizer - = 2 ncom
Rerandomizer \\ = ot ddedtd B
i o 7 1 Rerandomizer Mmﬁm
~— ey —tas) A
e : " : " .
0
5
- \é 4
T No
b o ° Rerandomizer
No E
! Rerandomizer - ® e[
Rerandomizer - =R L A i I
"\ B I e,
L \\;\ R 1 ; Rerandomizer
| .
80

4000 4500

5000

CHAPTER 5. IN SITU LEARNING 87

designed so that the activation will not fall below a certain activation. As learning
progresses, the full range of the rerandomizer can be employed to complete the
training. Simulations have shown this to be a very powerful technique to improve

learning.

5.4.3. WEIGHT RESOLUTION

For the previous simulations the weights had resolutions of eight bits. The variance
of the pulse density, clearly evident in Figure 3.13 and Figure 4.5, suggests that far
less resolution may be required. However, simulations of in situ learning for seven

bit weights were largely unsuccessful. From this can be drawn two conclusions:

1. Despite the variance in the pulse density, the average pulse density was

dominant.

2. Small weight changes are important.

The second point suggests that the nonlinear weight set discussed in the pre-

vious chapter may not be suitable for in situ learning.

5.5. VLSI IMPLEMENTATION

To investigate the area and time required of the in situ learning algorithm, the
hardware presented in this chapter has been implemented as an integrated cir-

cuit. In 1.2 um CMOS, approximately 200 in situ learning synapses could be

CHAPTER 5. IN SITU LEARNING 88

Figure 5.14: Layout of synapse with in situ learning.

implemented on a single chip. Because the design is digital, larger networks can
be accomodated by simply cascading chips. At a conservative 25 MHz clock, the
chip can process 100 000 patterns per second without the rerandomizers. With
the rerandomizers enabled the design can process 25 000 patterns per second. The
chip could learn the hexadecimal OCR problem in under 1 second. In compar-
ison the algorithm from Chapter 4 takes 60 seconds to train on a Sun Sparc 2

workstation. The layout of the in situ learning synapse is shown in Figure 5.14.

5.6. CONCLUSION

This chapter has formalized in situ learning using stochastic arithmetic neural net-

works. The learning algorithm has been developed and the necessary circuitry for

CHAPTER 5. IN SITU LEARNING 89

a hardware implementation has been designed. Both have been verified through

simulation. A VLSI implementation of the in situ learning synapses has been

presented.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The thesis has demonstrated the application of stochastic arithmetic to artificial
neural networks. The hardware requirements of these networks was shown to be
minimal; only simple gates were required to perform the arithmetic. This is very
important for artificial neural network implementation, as area-efficiency results

in larger networks and greater speed.

In addition, a novel in-situ learning neural network was presented. The learn-
ing hardware requires only simple digital gates to implement. This allows parallel

implementation of the learning networks.

Future work should test the performance of these networks on larger prob-
lems. In addition, there are other pulse representations that could be used. A
preliminary investigation into using a bipolar representation has been made. This

representation uses an XOR gate for multiplication, shown in Figure 6.1.

The block diagram of the architecture envisioned for this representation is
shown in Figure 6.2. This is not a fully parallel approach like the representation

examined in this thesis. Each neuron stores the synaptic weights in local static

90

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

Multiplication

PRODUCT

b

P OO
R Ok o od
(=28 L S =]

+25 _[1] 1 LI
x -1 | |

-25 [L LI

Figure 6.1: The XOR multiplication bipolar representation.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

XOR gate Adder performs Thresholding There is ono
Multiplier bit serial addition provides nonlinearity output bit for sach cycls
L L through the weights
SRAM l
Store of Adder —| Threshold == Output
Synaptic Weights ¢ (To next layer)

SRAM holds the weights

for all inputs to the g Bus presents all activations

Neuron. of previous layer in serial form

Figure 6.2: Block diagram of a neural network architecture using the bipolar

representation.

RAM storage, and cycles through all the inputs accumulating the net input. A
step nonlinearity with a gaussian random threshold is used to generate a sigmoid-
like transfer function. While this architecture is not fully parallel, the synapses
require no hardware since their function is incorporated into the neurons. In

situ learning implementation with this representation is possible, although formal

experiments have yet to be carried out.

Investigation should also be made into applying stochastic arithmetic to other

neural network paradigms. Competitive learning algorithms would make an in-

teresting subject for stochastic arithmetic.

92

BIBLIOGRAPHY

[1] B. U. Keller, R. P. Hartshorne, J. A. Talvenheimo, W. A. Catterall, and
M. Montall. Sodium channels in planar lipid bilayers. Journal of General

Physiology, 88(1), 1986.

[2] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
[3] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, 1969.

[4] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
In D. S. Touretzky, editor, Advances in Neural Information Processing I,

pages 305-313, San Mateo, 1989. Morgan Kaufmann.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-
resentations by error propagation. In Parallel Distributed Processing. MIT

Press, 1986.

[6] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architec-
ture. In D. S. Touretzky, editor, Advances in Neural Information Processing

Systems 11, pages 524-532, San Mateo, 1990. Morgan Kaufmann.

93

BIBLIOGRAPHY 94

7]

[11]

[13]

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the
Theory of Neural Computation. Santa Fe Institute Studies in the Sciences of

Complexity. Addison Wesley, Redwood City, 1991.

B. R. Gaines. Stochastic computing systems. In Julius T. Tou, editor, Ad-

vances in Information Systems Science, volume 2. Plenum Press, 1969.

Peter Hortensius. Parallel Computation of Non-deterministic alogorithms
in. VLSI. PhD thesis, Department of Electrical Engineering, University of
Manitoba, 1987.

F. Brglez, C. Gloster, and G. Kedem. Hardware-based weighted random pat-
tern generation for boundary scan. In IEEE International Test Conference,

aug 1989.

W. Wike and D. Van den Bout. Stonn: A stochastic neural network chip.
In W. J. Dally, editor, Advanced Research in VLSI: Proceedings of the Sizth
MIT Conference. MIT Press, 1990.

Journi E. Tomberg and Kimmo K. K. Kaski. Pulse-density modulation tech-
nique in vlsi implementations of neural network algorithms. IEEE Journal

of Solid State Clircuits, 25(2):1277-1286, oct 1990.

Max Stanford Tomlinson, Jr., D. J. Walker, and M. A. Silvilotti. A digital
neural network architecture for VLSL. In Proc. IJCNN-90, pages 545-550,
San Diego, CA, 1990.

BIBLIOGRAPHY 95

[14] Drew van Camp, Evan E. Steeg, and Tony Plate. XERION Neural Network

Simulator. Computer Science Department, University of Toronto, 1991.

[15] H. Eguchi, T. Furuta, H. Horiguchi, S. Oteki, and T. Kitaguchi. Neural
network Isi chip with on-chip learning. In Proceedings of IJCNN-91, volume 1,
pages 453-456, 1991.

[16] A. J. Owens and D. L. Filkin. Efficient training of the back propagation
network by solving a system of stiff ordinary differential equations. In In-

ternational Joint Conference on Neural Networks, pages (II) 381-386, jun
1989.

[17] A.von Lehman, E. G. Paek, P. F. Liao, A. Marrakchi, and J. S. Patel. Factors
influencing learning by back-propagation. In IEEE International Conference

on Neural Networks, pages 335-341, New York, 1988. IEEE.

[18] M. Morris Mano. Digital Logic and Computer Design. Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1979.

