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ABSTRACT

The spectrum of light scattered during binary molecular
collisions, in gés samples at about one tenth the ligquid
density, has been studied both experimentally and thepreti- .
cally, It is found that the molecular collision—inducéd
scattering (CIS) spectrum can be accounted for by the sum of a
component due to collision-induced translational Raman traﬁsi-4
 ti9ns and a cémponent due toicollision—induced rotational
Raman transitions. The theory of the collision;induced}
rotationallscattering.(CIRS) spectrum has only recently been
developed; the first quantitative comparison of theory ana

experiment for the CIRS spectrum is presented herein,
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CHAPTER 1

INTRODUCTION

The present study is the outgrowth of the more-or-less unsec-
cessful (from the narrow viewpoint of the following thesis) study ,
of collision~-induced light scattering from 1iquids.l The difficulty , ;Eﬁﬁﬁ
with the study of liquids is that the constituent molecules are - -
densely packed, so that the scattered light spectrum depends on the
details of the molecular motions as well as details of the méchanism

by which light interacts with the molecules, The straightforward

way out of the difficulty is to choose a system with a density low
enough that only two molecules at a time need to be considered, Thus
we'have chosen to study the spectrum of light scattered from rela-
tively low density gases, |

Before discussing éollision—induced light scattering (CIS), we
will discuss the mechanism by which light is scattered by a single
atom or molecule, We will adopt the classical picture of the inter-
action of light with matter because of its relative simplicity com-
paréd to the quantum mechanical description,

According to the classical picture, the oscillating electric

field of the light wave induces an oscillating polarigzation 1nﬁﬁhe
atom with the same phase and frequency as the incident wave, The
dipole induced in the atom follows the polarizing field essentially

instantaneously -- even though the frequency of the light is large

( 6x 1014 Hz for light of wavelength 5000 A ) the orbital frequency
of even the outer shell electrons isusually 100 times larger, and to
the electrons the variation of the applied electric field seems very

slow indeed, Theboscillating dipole induced in the atom is the source




of a radiated electromagnetic wave which is called the scattered wave
- and vwhich has the same frequency, polarization and phase as the in-
cident wave, If the atom is well removed from its neighbours, as in

a dilute gas, then the relative phases of the waves scattered from

neighbouring atoms will be random and thelwaves will add incoherently,
The scattered light will have a very wide angular distribution about -
the direction of the incident light beam and is called "Rayleigh"

~ scattered light,

Molecules, in addition, have internal vibrational and rotational

'.degrees of freedom, The polarization induced in the molecule by the
'incident light wave is modulated at the vibrational or rotational
fre@uency of the molecule, The scattered wave will now also contain
the sum and difference of the vibrational (or rotational) frequency ‘
and the frequency of the incident light wave, The phase of the scat-
tered wave depends on the phése of the molecular vibration (or rotation)
and so the scattered, frequency shifted waves from neighbouring-moi— |
ecules will add incoherently, This is called "Raman" liéht scdttering‘
In a dense medium, the total Raman scattered intensity is just the sum
of the intensity scattered by each molecule,.while for Rayleigh scat-~

tering we have to take into account the interference between waves

scattered from individual molecules, In a perfect crystal the Rayleigh
scattered waves will all cancel to give zero scattered intensity, but

in real liquids and solids density fluctuations of the material will
. ) }

prevent this from occurring,
In all the above discussion, the individual molecules are con-
sidered as being independent scattering sources - the resultant secat-

tered wave is determined by superposing all the separately scattered waves




téking into account their phases and amplitudes. In the case of
coliision-induced light scattering, we can no longer consider the in-
dividual molecules as independent scattering sourées,unaffected' by
their neighbours. Consider again the case of the dilute gas and in
particular the light scattered-by a pair of atoms when they are

close enough. to interact appreciably, -

The dipole moment induced in the pair of atoms when they are close
together is generally larger‘fhan the sum of the dipoles on the sep~
aiated atoms p%aced invthe same electric field, and the direction of
the induced dipole need no longer be parallel ﬁo the incident electric
field, As the atoms move past each other the amplitude of the scattered
wave will be increased for a short time. The modulation of the scat-
tered wave introduces new frequency components —the collision.
induced scattered light is shifted in frequency from the incident and the
Rayleigh scattered light. The faster the modulatioh,_%he larger the
frequency shift, Molecular velocities are in‘the order of 5 X/bsec
‘(500 m/sec) and the interaction between atoms occurs within -about 2,5 }
of the closest approach distance so that the amplitude of the scattered
wave is moduléted for a period of about 1,0 pséc each time a pair of
atoms collide., The peak value of the modulation is about 10 percent
of the amplitude of the wave scattered by the pair when the atoms are
far apart, The period of the modulation is very long compared to the
period of oscillation of the light wave, which is about 0,002 psec,

(See Figure 1-1 a,)

We may note in passing that for Rayléigh scattering there is phase

modulation of the scattered wave due to the translational motion of the

atom, For a dilute gas the period of phase modulation is given by the




FIGURE 1 -~ 1

‘Modulation of the Scattered Light Amplitude by Molecular Collisions

Each diagram shows the envelope of the electric field of the
scattered light wave and a schematic representation of the trajec-
tories of the colliding molecules in the gas during the same time

interval.

.a) The gas density is about 0,2 mole/liter or less, - Only iéolated
binary collisions are important since the time interval between
collisions is about 25 psec (25 x lO—lzsec.), which is about 25 times
the duration of the intermolecular interaction during a collision,.
The amplitude of the scattered wave has a constant value due to
Rayleigh scattering when the molecules are far apart, Vhen they are
sufficiently close together the ampiitude of the scattered wave is
increased; the hodulated wave has the form of a short pulse on a

flat baseline,

b) The gas density is about 2,0 mole/liter and the average time
between collisions is about 2.5 psec, 1Isolated binary collisions
still .account for a large fraction of all collisions, but triple col-~
lisions of tﬁe type vhere 1 hits 2 and 2 hits 3 in rapid succession
are also common, The intensity scattered in this type of triple col-
lision is less than if the two successive collisions were more widely
separated in time, because of destructive interference between the

waves scattered in the two collisions,

c) The density is about 20 mole/liter or more and the time between

collisions is only 0,25 psec, Tt is no longer possible to talk about

isolated binary collisions since the motion of each individual molecule

depends on the motion of all the other molecules in the clus€er. The
scattered amplitude must take into account all the molecules in the
cluster, and it takes the form. of a "randon'" fluctuation around the

mean amplitude,







time an atom takes to travel one wavelength of light - about (5000 Z)/
(5 K/%sec) = 1000 psec ~ which is a very long time compared with the
duration of the events with which we will be dealing,

Coilision—induced scattering from pairs‘of atoms or molecules
becomes conveniently observablé in gases at densities of the order of
1 mole/liter, (For comparision, a gas at NTP hés a density of abéuf
1/25 mole/liter while a liquid will have a density of about 25 nole/
- liter,) The time interval betweén successive colliéions of a molecule
will be about 5 psec at this density and there will seldom be more
than tﬁo molecﬁles participating in a collision, At these low densities i
the intensity of the ¢IS will increase as the'square of fhe density
since the density of pairs of molecules increases as the square of the
density of molecules, At higher densities, collisions involving three
molecules will become more frequent and the<iénsity—cub@d term be-
comes significant in'the expansion of tﬁe scattered light intensity as
a power series in the sample density, The sign of the so-called three-
body term is negative and the scattered light inteﬁsity increases more
slowly than before because of it.3 (See Figure 1-1 b,) When densities
greater than 10 mole/liter are considered the clusters of‘interacting}
molecules are so large that our déscription, based on the model of
independent binary collisions, becomes inadequate, The modulation of
the scattered wave no longer looks like distinct pulses on a flat
baseline but rather undergoes a continual random fluctuation, (See
Pigure 1-1 c,) Our experiments have been conducted in the density range
of 0,5 - 5,0 mole/liter, where the CIS spectrum is conveniently ob-
servable and interpretation in terms of binary collisions is possible,

¥

The defining features of collision-induced light scattering in




the chosen density range are:

1) The intensity behaves as T =VI(2) pz‘- 1(3)':3, so that the con-

| tribution to the scattered light due to colliding pairs may be ex~
tracfed from the data with little difficulty,

2) fThe CIS spectrum is "depolarized"; that is to séy, light may 5e
scattered with a polarization different from that of the incident light,
3) The spectral distribution is very broad compared to that of the

Rayleigh scattered lighf.

' Thé frequency shifts corresponding to vibrational Raman scattering

are much largér than those corresponding to CIS, but the frequency

shifts due to Raman scattering by rotafing molecules lie in the same
range as those due to CIS. Since the rotational Raman scattering by

a molecule is usually much stronger than CIS by the same molecule, and

is also depolarized and occurs at the same frequencies, we have beén
forced to observe oniy those molecules.fo: which there is no rﬁtational
Raman spectrum., We may choose molecules of tetrahedral or higher
symmetry or atoms, where the polarizability is invariant under rotations.
The particular atoms and molecules chosen for this study were Ar,

CHM) CDL}' CFLL and SFéo

The object of this study is to compare the experimental and
theoretical results for the intensity and spectral distribution of the
light scattered by colliding pairs of 0ptica11y isotropic atoms or

molecules with the hope of elucidating the mechanisms involved. The

thorough understanding of binary CIS is considered to be a necessary
prereqﬁisite for an understanding of the more complicated three-body
and N-body CIS processes which occur in high density gases.and iiquids.

Even in the two-body case the molecular dynamics of the collision and




the mechaniém of light scatiering are linked in describing the
scattered spectrum, Both the intensity and the spectral distribution
- of the CIS spectrum must be studied since, very roughly, the collision
dynamics governs the spectral width while the cluster polarizability
Vgoverns the total intensity, 1In the following chapters we will de-

| velop the theory of collision-induced light scattering by pairs of
molecules as an extension of the theory for Raman light scattering by
a rotating diatomic molecule and the results of our model will be

compared with the observed CIS speétrum.
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. CHAPTER 2

THE DIATOMIC ROTOR

This chapter will consist of a falrly detailed discussion of
light scattering by a rotating diatomic molecule, both in terms of
the classical theory and the quantum mechanical ﬁheory. The dis-
cussion of light scattering by a pair of colliding molecules in the
next chapter will be an extension of the classical scattering theory
developed for the rigid diatomic rotor, Likewlse, the discussion of
~the quantum iotor will provide an introduction to the theory of col-
lision-induced rotational scattering covered in Chapter'#q,

Besides providing the background‘fof discussion of collision-
induced light scattering, the diatomic rotor is important in its own
right, As a matter of experimental convenience (bprdering dnvnecessity)
the intensity of the CIS Spectrum is measured by comparing it with the
intensity of thé rotational Raman lines of the hydrogen molecuie. The
intensity of these Raman lines may be calculated uéing the quantum
mechanical theory of the diatomic rotor. Finally, since the theory
of the diatomic rotor can bé worked out in both the classical and the
gquantum cases, the comparison of the classical and quantuﬁ results for
the diatomic rotor at least gives an indication of the acéﬁracy and
range of validity of the classical approximation as it is applied to

light scattering,

2,1 The Classical Case

In the classical theory of light scattering,l'the scattered wave

is generated by the oscillating dipole moment induced in an atom by




the oscillating electric field of the incident light wave; The
strength of the induced dipole moment is proportional to the strength
of the applied electric field; the constant of proportionality is
calledfthe polarizability of the atom, However, the induced dipole
will not in general lie along the direction of the applied electric
field when we consider molecules rather than atoms, The scalar pélar-
izability must be replaced by a second rank tensor called the polar-
izability tensor, The induced dipole moment is now given by the ex-
pressioh:

| d= %%

or in Cartesian tensor notation

di = o%j E

J ' _

For our purposes, the incident 1light wave is completely specified
by its amplitude, wavevector and (1inear) polarization vector. (In the
quantum mechanical description this is called the random phase approx-
imation,) The wavevector 'E is ihe vector in the direction of propa-
gation with magnitude l k l = W/e , fThe polarization vector A is the
vector orthogonal to i? which lies in the direction of the electric
field of the light wave, The electric field of’the‘light wave specified
by i,ﬁ is:

= N iwt
= - e .
E= B3 |
The elctric field of the light wave radiated by an induced dipole
oscillating at the frequency Wy is given by;
— ta — - 1
E = ks x ( ks x d )—Ev
vhere the subscript s denotes "scattered" and R is the distance

from the scattering source to the observation position, The component




i

| of the scattered field with polarization .X; is given by:

agb

e B = At (Ey x (%, x B ) )+
where we have expressed the induced dipole in termé of the molecular
polarizability and the applied field,

Rather than work directly with electric field amplitudes, it is
usual to describe the light scattering in terms of the differential
scattering cross section, The cross section is the ratio of thé
~ intensity of the light scattered with wavevector and polarization

| ks’jis into the solid angle d0., to the intensity of the incident
light'wave{ |

- a2
SR RO e S
- [ [3Gs5) - B, G, 9)] 7
| CexdO R - GefEe gy |2
w;,,,‘f -

where the relation 'Xéfﬁg =.jii'é 0 has been used in the last step,
The expression for the scattering cross sectibn Just given
pertains to a molecule of fixed oiientation. For a frgely rotating
molecule, we must average this expression'over‘all possible orienta~
tions of the molecule in order to obtain the obsefved cross section,
The orientation dependence of the cross section arises from the orien-
‘tation dependence of the components of the polarizability tensor,

The scattering cross section for a freely rotating molecule will be;

L2 @' J5, (0,93 [* >
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vhere fhe brackets <:...>> &enote an average over all orienta-~
tions of the molecule, This expression gives the total scattered
intensity but no information about the spectral distribution of in-
tensity, )

In order to calculate the spectral distribution of the scattered
light, we will make use of thevwiener-xhintchine theorem which relates
the power spectrum of a time varying quantity to its autocorrelation
function.z The autocorrelation funétion of A(t) is defined as:

o) =<a(t) At +T)> |
vwhere the brackets <:...:> now denofé the foll&wing time average;

1 [T |

1 [0 at A(t) A(t +T) .

The brackets are also used to denote an ensemble average, that is an
a#erage of the quantity A(t) A(t +T) over all possible states of
the system, Systems for which the time average and the ensemble aver-~
age may be used interchangeably are termed "ergodic", The Wiener-

Khintchine theorem states that:

(o ]

I,(w) =~%-;;./ at e‘i““ZA(t)_A(t *T)> .

Loo
The frequency spectral intensity distribution of A(t) is just the
Fourier transform of the time autocorrelation function of the variable
A(t) . The inverse relation is:

o0
 A(t) At +~;)> - f dw V" LW .

. ) o _
This is formally identical with our expression for the differential
- scattering cross section of a molecule., The correlation function

from which we may calculate the spectral distribution of the scattered

light is:
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o) = ('O g X ) By e 4TI RS

W
Before proceeding with the discussion, we should mention a cer-
tain inconsistency in our notation. While the correlation function

that we have just written down is essentially the same as:

. < = .
<OGE®) YOS E(t +) > s
- ¢(z) = , 7
2]
' iaht
the two forms differ in that the factor e of
’)"S.ﬁs(t) = ('A\s. ‘%(t):)\) ettt has béen suppressed in the former ex-

Pression, For this reason, the spectrum cialcula.ted from the first cor-

relation function will have the frequency of the incident light as its

origin and W will represent the frequency shift of the scattered

light rather than i’gs actgal frequency, However, the W 'which appears

in the facter (%f'ﬁ)h Stilll represents the actual fequency of the =

scattered light and not its frequency shift, Since we are interested

in the time dépendence arising from moleéular notions we will usually |
mean frequency shift when we say frequency, 1::u‘t'r it should be clear *
from context whether frequency or frequency shift is int ended 3 |
| In order to apply our expression for ¢(t) we must know the form

of o<(t) Tn the case of a diatomic molecule the polarizability ten-

sor is completely specified in terms of the polarizabilities of the
molecule for electric fields applied parallel to and perpendicular tq

the internuclear axis; these two polarizabilities are denoted X; and

&, respectively, When the molecule has its symmetry axis oriented
along the space fixed z-axis, the polarizability tensor has diagonal

form ]

X

<y

¥R
I

e




To determine the time depéndence of X(t) for the diatomic rotor we
must first determine how X transforms under rotations of the mol-
ecule,

Let the unit vector T specifyt the orientation of the inter-
nuclear axis of the molecule, The components of the electric field
E parallel to and perpendicular to the molecular axis are;

By =UWE) and E,=F-F, =F-3@H .

The Cartesian components of -5 and % are thus;

-

- — . -
d=gcwE= og.,E,, + %EL

a; = uij' F:j..a O uy s Ej +°(J—(Sij Ej - Uy ug Ej)

— 1 —
Xy = Xy 5+ By Us -3 Sij) = R y5+ Py

where = 2(—/%——299 rand  B= po4~04 ., The polarizability tensor of

a diatomic molecule is the sum of an orientation independent part
proportional to o, called the isotropic part of the polarizability, and
an orientation dependent part proportiornal to B called the anisotrepic
part of the polarizability, |

Now that we know the form of % for a diatomic molecule, we may

‘attempt to compute C(T) . The correlation function isg
oe) = €2 L0y ON N>
= (—tgi)h Asi >\j )\sk )\1 <0(13(0) “kl(t)>

where the first step involves the invariance of the correlation function
- )
under time translations and the second is possible because )\S y A are

space fixed and time independent. The bracket may be expanded to give
o -2 —
LU0 (@ =K by5 8y +K G <Pr1>
+& by <Pisr * <131j/3k1>
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The average < ﬁij> may be written explicitly as:

</313> P --—31-81.>
Z
-é sinGdG [d?(u us --——8 ) .

(i v
Recalling the W is the unit vector specifying the orientation of

the internuclear axis with respect to the space fixed z-axis,
sin6 cos ¢
= sind sing
cos B

we may easily show by direct substitution that < ﬂij> =0,

Hence, our expression simplifies to:
' _2
<0<ij(0)0<k3..(-t)>4 =X Sij gkl + </Bij(0)/9kl(7:)>
and ve have only Bi; ,ﬁk1> left to work out,

Since We are averaging over an ensemble representing an iso-
tropic gas the tensor < Pis /”o‘k1> is isotropic, even though /6)1;3

is not., The only isotropic fourth rank tensors are 513. ‘Sk'}’.' '

Sik 5:;1 and ‘Sil S‘jk « The tensor </815ﬁk1> is symmetric in

the index pairs i,j and k,1 because the tensor fgi is symmetric,

The most general fourth rank isotropic tensor of the required symmetry

has the formA;'

<AusPury =Ab58,+8 (&, S50 % 641 b5 -

The tensor ﬁij is traceless, /Bii = tra.ce(/?ij) = 0, so that
(/311 /gkl> = 0 as well, This condition allows us to determine . A,‘

and the expi'ession which results when the value of 4 1s substituted is:

<pi; ﬁkD = B (by 531 + by 5 3 1.351:1) .




In order to fix the value of B we may set i=1, j=k in the

above equatien, which gives the result:
~ 35 <Buy(® pu(e> | |
%P [100) uy0) ’}‘Sij] [‘?5(7") "“1({")1'% & ] >
g5 < (O (Duy(0)u(z) -5 54 v 1(0)25(0) #+ uy (<)u =)
“F 88515 >
3 < [#(0)-u(r)] 2 -~( W(0)W(0) + i) ) r T
1w L[R2 -3y
=55 F° L B R(0)E(D) ) >
where Py(x) = #('3x° - 1) is the second Legendre polynomial, and

u(O)cu(t) is the cosine of the angle through which the internuclear

axis has rotated between t=0 and t=T » Having determined B , our

expression for (o, ,(0) o<k1(~c)> becomes:

<25 > =& 858, +L < Py( (ko) ) S

1k 851 * 811 By "'3‘ 85 81 ] |
Finally we may write down the expression for the correlation function as:
@s)" X, 13 s A1 <04 5(0) 06y (@)>
@)'%200)? + <éga>“-§ B0 ) >
[ % G + G OV NVl

= G PN + et £ 5 <P2< W(0) (D) N>« (1 +5 Og W)

it

¢()

The choice of one of the four right angle scattering geometries

described in Figure 2-1 allows a further slight simplification of the




FPICURE 2 - 1

Polarization Ceometries

The incident beam travels in the y - direction and is either
vertically (y) or horizontally (H) polarized with respect to the
scattering (x, y) plane., The scattered light is observed in the
x - direction and either the vertically (v) or horizontally (H)
polarized component is selected. Ue may note that the spectral v
intensities of the light scattered in the VH, HV and HH geometries
are all equal.by'symmetry for the gas samples which we will be

considering,
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'éxpression for ¢(T)
(D) gy = Sy = O = () ﬁf R (W) ) D

@y = @* §% + oDy,
The contributioen to C(r) from the isot;‘oPic part of the polariz-
ability is polarized parallel to th‘e incident light and is unshifted
in frequeney ~-- this is the Rayleigh scattered lighj:., The anisotropic
part of the polarizability yields a comtribution which is depolarized
and vwhich is shifted in frequency»from th.e incident light frequehcy
‘because of the time dependent factor Po( u(0)u(v) ) — this. is the
so-called Raman scattered 1ight.z"1 |

wé hay noﬁ caléula.te the éorrelation function and hence the
spectral distribution of light scattered by a diatomic rotor using the
results we have obtéined. For a free rotor, the normalized distribution

function of molecular angular speeds at thermal equilibrium is Just:
1., 2

2 Iah

g(ap) = ( ) exp( -~ )
Knowing the dist‘ribution function we proceed as follows:

< P,( T(0)-u(T) )> <P2( cosT ) >
=/dwR g(w) Pz(cosw‘t) Tﬁfd%{ g((AR)co.s;Zw'c

- VB -
(d'Q‘dw)VH (—cfi) 15 27 f;we vt <P2( cos (T )>

iWT
- (c—) 15 {u 2n

+-—-/ db) g((,JR) '-é—,ﬁ_-f dw e cos sz'C }

S(g&) -W) + §(20, +w)
= (%’ﬁ))"'ﬁ -—S(w) +-——j d(«k 8(&JR)[ 2 % :I %




i, - et f {3 s 3 4 l“lem-fi-i?i-)}

The angular frequencies bh 'Ws g  are respectively the molecular

rotation frequency, the frequency shift and abSolute frequency of
the scattered light, The quantity | %T. dT‘ e WT . 8y is a
representation of the Dirac delta functlon.

The spectrum as predicted by the classical theer has a sharp
~central component at zero fkéquency shift with a syﬁmetric palr of
broad peaks on either side of it, The above result is the scattering
cross section per unit frequency interval and per unit solid angle

for a single nolecule,

2,2 The Quantum Case

The starting point of the quantum mechanical description of
light scattering is very different from the classical picture, In the
quantum mechanical case, the scattering process is represented by the

following two diagrams.Sa
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In the first diagram the original prhoton, specified by wavevector T?
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- and polarigzation vectar.x, 1s absorbed by the molecule,'prdmoting

it from the initial state | o) to an intermediate state |1) .

A short time later the molecule emits the scattered photon, specified by
wavevector k and polarization vector "is » and makes the transition
to the final  state Iq> + The second scattering diagram differs
from the first only in the order of absorption and emission, The
internediate state Ii:} is called a "virtual" state, During the time
when the molecule is "in" the intermediate state li:> the energy of
the system is nét coﬁserved; The lifetime of such a virtual state is
,liﬁited by the uncertainty principle, The process represented by the
two diagrams is called Raman scattering, Tb determine the probability

—d ey

of the scattering event in which the photon k,\ 1is replaced by the
photon 'ﬁg,iis and the molecule goes from the state [d>> to the
state |1£> y We must sum the contribution of all possible processes
connecting the initial and final states of the systen, For each of thé
two diagrams the intermediate state must be allowed to rahgé over all
the states of the molecule and the tfansition amplitudes corresponding
to the various | i:> must be summed, (If the energy difference be-

- tween the initial state loj? and an intermediate state [i:> coin-
cides with the photon energy, then the scattefing changes and the pro-
cess 1s called iesonance Raman'scattering or iesonance fluorescence.)

Using second order perturbation theory we may write the expres-

sion for the transition rate in Raman scattering as;

I-' =%r §<N§\s+l,NE;;—l,n! 1nt|N :}&\ ""’ £ i>

» A Y
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Nﬁ‘“ is the number of photons in the state specified by k,A .  The
. :

ket 1, Ns-1, n> is the state where theinitial number
. ' ’ ‘ N .

N = +
, ks,‘_?‘s

of photons with wavevector and pdlarization _I?S ,&s ha.s been increased

by one, the number of photons in the state .1?:5\ has been reduced by
one, and the molecule now resides in the state [ n> o The opexrator
;. 1is the part of the Hamiltonian of the system which describes

the interaction between radiation and natter, In terms of thé electro-

magnetic potentials, the Hamiltonian of the system will be of the form:

»H=2m(P"’EA) +e?P+v

and the interaction Hamiltonian will bes

H ==& (DE+ 15 +—~——-2A°A+
int Zme \ P A2 ) 2me °f ‘

In the electric dipole approximation only the first term is retained,

Introducing the creation and annihilation operators of the photon field
and a Fourier representation of the current distribution, the matrix
elements 'become, for example;

<Nk—s-l,nlﬁ } NA& , op

1 27T’hc2

= (o2 S (s )T () AR (e

Ve

: N ‘
~where d=e Z?j is the dipole operator, Using this result, the
J ' .



transition rate for Raman scattering becomes:

2 A
: 2T , 1 e 2 \2
M= ;2 (—v,,z) ( 2T1He™ ) Wi - N’E‘“}‘\ N X'f‘l )
. C

ICOWED <ild)\lo> @ EB) 1><1{d)\ B
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g0 * W4 fo m By -ty

> g(ge +AW- g - A, )

- \ i .
'I‘he scattering cross section is the num'ber of photons scattered

into the solid angle dfl per incident photon, and :‘Ls given by:

- jk dk rl \'] fwsz dwsr'

a (zr)3 N T2’ | .t

where the number of states within the solid angle d. and centered

at T{; is k 52 d{)l. and where the incident flux of photons is

NE?: ’;— « Substituting the expression for r1 s the scattering cross
' ' .

section becomes:

- ' | & lEX D <i!dhl°>
%%l:e (W‘zsg) ( Nﬁs’-—gs“"l ) z £, *+ W~ &
c .
o QIEX D G1dF o

&o ~ Rl - €4

In ordinary Raman écattering NI—; oy <<1 and we may use the approx- '
. ? .

imation ( K o +1 )M‘l « (When the incident beam comes from a
s's

glant pulse laser, with a typical power of 10° W, then the number of

UL T, ¥
scattered photons in a single state ks’)‘s may be very large,




Under these conditions the scattering is étrongly enhanced and the
effect'is called the stimulated Raman effect.6>_

. Now that we have obtained an expression for the Raman scattering
cross sectioh, we will apply it to the case of the diatomic rotor.7‘
In order to compute the matrix elements, we make the assumption that
the overall wavefunction of the molecule may be factored into an elec--
tronic part and a part describing the nuclear motion, - This is called
the Born—0ppenhe1mer approximation and fortunately it is usually a
good approxima.tion.8 The dipole operator 3 only operates on the
electronic wavefunction and the polarization veétor Ti only operates
on the part inﬁolvingvthe molecular orientation — the rotational wéve—
function, Thus, we may factor the matrix elements to obtain the fol-

lowing expression for the rotational Raman scéttering cross section:

do_ pusd, o <‘C'dj|’6”><t"{dilu><f"l)\s 1P"> (/)”P\i

)
da- c4 Ep R Ei

.t// PII

<elayl -c'>> <Al <piAilp"’> P \p>

€6~ ‘ﬁag - Eiv

The electronic and rotational states are denoted by T and P
respectively, It is assumed that the initial and final electronic

- -\
states are the same, The scalar products 5;)\ have been expressed

i/\i ]

ih terms of Cartesian components as 4
One further approximation must be made beforeithe expression for

the cross section can be cast in a useful form, We will assume that

the energy denominators are essentially independent of the rotational

state of the molecule, This is a good approximation as long as there

are no electronic . excitations near-the incident frequency so that




20"31 > (.’fxcé;ﬁws )>>'ﬁu?mt holds for all intermediate state; }1‘> . 2

With this assumption, we may factor the rotational and electronic

matrix elements once mores

g + ‘hi)- 2

a (fgtgz_ ) ( <l > fay |y Z@l/\s W(F Mlp>

C

g -ﬁw

. [s <lagfe ><~c”fd !'z>>; PN {p" P po>
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The suis over " yiela (| ,\sj;i( pr andly| >‘15§85lf)> + . Since

Ds  and >\i commute, both matrix ,elements are the same, Thus:
J

a. S ~
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Tdentifying the quantity summed over T7 ‘ as the polarizability

tensor, the cross section assumes the following form;

2
35 G [<Poasgpy] - £ ’<FIM,A w,

This has Just the same form as the classical result for the scattering

cross section, (The factor (,_}CJSB rather than Q)Su in the quantum

cross section arises because it is defined in terms of the number of
'scattered photons per incident photon instead of the scattered intensity

per uniit incident intensity,) 1In the classical description, one had




to average over all orientations of the molecule to obtain the
observed intensity, In the quantum case this averaging occurs in
evaluating the ma.trix element of ( A.%. As ) between the initial
and final rotational sta.te?.
The diagonal form of the polarizability temsor for a diatomic , i

molecule must be:

When the internuclear axis of the diatomic molecule is oriehted at
h]
angles 6 ?’ with respect to the space Fixed coordlnahe axes, the

diagonal form for & will be transformed to;

0 . ‘
X = r(e,$) ¢ W (©4P) = oI + (m,,—xl)'ﬂ(ee?)< 0 1,)1%'1(9,‘?)

vhere R(0 ,‘F) is thé matrix generating the rotation, By explieitly

constructing R(8,9) we may evaluate O\”%j‘s) for the cases

Y

Mo s = @ and >\”>‘,s = 1, The results are:

(°<" ;) cosd sind cos P ‘X’Xs =
'_A\,%,'A-s: ' : RN :.
“*(03-0(1_) cose Aedg = 1

where the first case corresponds to the VH, HV or HH polarization

geometries and the second case corresponds to the VV geometry,

The eigenfunctions of a rigid diatomic rotor are Jjust the spher-

ical harmonics:
lf)>= YI;(@:?) = lJ!M> .

The energy levels for the diatomic rotor depend only on J and not M,
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8o that all transitions J-s»J' will have the same energy difference
and hence give rise to scattered photons with the same frequency shift,
The total cross section for scattering involving the transition J—= J°¢

will bes

2 Z '<J° M*|cos® sinp cos‘]-”lJ M>|

o, gogr = (OO . ) G- B
ot | % )

‘ with a similar expression for the vv geometry. Since a molecule can

| start in any one of the 2J+1 degenerate sta.tes [J M> the cross
section has been a.vm:aged over M. However, a molecule starting in a
particular state | J,M> can make a trahsition f.o any of the sta.t.es
[J ',M'> allowed by the selection rules, sb that the cross seétion
nust be summed over the possible values of M° . Using the Legendre
polynemial recursion relations we may evaluate the matrix élements. 10
The selection rules are;

AT=J3"~-J=0,+2

AM=M =M=2+1

The total cross section for the J>J+2 transition is: ' -

gz Y (J"'l)z = Mz
@), Jo-g+2 (dh ) CRUN (2J+1) Z b (23+1)(2343)(25+5)

. {(szm)(.mm) + (J_-i-Z-M)(JfB-M)}

with similar expressions for the other cases, The above expression

may be rearranged as:

3 : ]
(d.f)_)VH, JoJ+2 = (%%S‘) (M,"-O(L)z 'él- [(2J+1)2(2J+3)2(2J+5)J

%{(Jﬂﬁm)(m) - W (2gs5) - u {

M=-J
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The sums 2, Mk may be evaluated using the Fuler-Mauclarin in-
M=-J

tegration 3‘.‘01’1::1,11a,.>11 The final result for the cross section is;

do- J+1)(J+2
e, g2 (w_h__) 04 -a,)° 10 (Z5+1)(2543)

The scattering cross sections for all the allowed transitions are;
3. B2
do o Mus? BT (J41)(g4R
(m)VH. J>J+2 (T) 10 (RF+1)(2343
: v s , v
( ) ey £ J(J+1
y J>J ) 15 (2J-1 (23+3)

dory L Wl 165
VH, J=J-2 M 10 (23-1)(25+1)

(._Q‘.) - (_P__)
A0V, J=>J+2 3 \AOUVH, J-g+2
(d.Q_)VV, J=>J (‘c‘) °< + ( )VH J=J

( ) g J>J=2 3( )VH J>J-2

vhere X = ﬁﬁz—"‘ and P = %%_are the mean polarizability and the

polarizability anisotropy as previously defined,
The energy levels of a rigid rotor are E(J) = J(J+1)-AB where

the rotational constant B is defined as B =-K/2I with T being the

moment of inertia. fThe energy difference between the initial and final
levels in the transition J=J+2 is just E = (43+6) BB . Photons
scattered during the transition J->J+2 will give up energy to the

molecule and be shifted in frequency by the amount AW= (4J+6) B ,

The set of transitions J=J+2 generates the so-called "S-branch"



 of the spectrum, Similarily the J=J and Jog-2 transitions

. produce the "Q-branch” and "o-branch" of the spectrum. In general

‘- Lthe downward frequency shifted side of the spectrum is ca.lled the

| “'\:"Stdkes" side, while the upward shifted side of the spectrun is called

' the "a.nti-stokes" side.
The spectrum of light scattered by a gas of diatomic rotors con-
sists of a number of discrete llnes with f‘requency shifts aw= 0,

(ll»J+6) B . The scattering cross sections we have so far calculated

,"‘ perta.in to a. single molecule in the appropria.te initial state. At

thermal equilibtrium, the probability of finding a molecule in the level '

‘fl'v_; J 1s given by normalized distribution functiong ’

(2341 exp( -  B@)fer )
n(J') s (2J+1) exp(. -’E(J)/ﬁg) "'
Thus the intensity of the spectral line cerres;;onding to the transition

J-—>J+2 for a molecule in the gas will be;

A | 3 .iz :
B s -
ée ) - &%) 3+1)(g52
y J>3+2 (D 10 ) (253 u{J)
with analegous expressions for the other cfoss sections, If we' sum

over all the transitions for the 0,Q and S-branches of the spectrum,

we obtain the following results for the total cross section:
N
e ) = (3
2
Wb, 2 4 p
(M) =@ 5 E)

These expressions are precisely the same as the classical results

previously obtained, 12 Next, we will compare the spectral distribution




for the classical and quantuﬁ calculations,

The obvious difference between theAclassical and the quantum
spectra for the rigid rotor is that the classical spectrum is a con-
finuous distribution while the quantum spectrum consists of discrete

lines, The second major difference is that while the classidal'spec—

trum is symmetric about zero frequency shift, the quantum sPectrum is
asymmetric, The transitions J-J+2 and J+2->J have equal and

opposite frequency shifts and the transition rates in the two directions

are the same (when we count all the states in each level.) However,

at thermal equilibrium the transitions starting from a higher energy
level will tend to have a lower populatlon in their initial state, (For
rotational Raman tran31t10ns the degeneracy factor 2J+1 for the level
cancels with a similar factor in the scattering cross section,) For a
given frequency shift W, the intensity on the anti-Stokes side of the
spectrum will tend to be lower than on.the Stokes side by the Boltgmahn
faetor exp( -Aw/kT ).+ This result holds for any Raman scattering |
mechanism, not just that involving rotational trensitions,l3 since the
Boltzmann factor eventually dominates any competlng population factors@

Despite these differences, the classical calculation correctly

predicts the envelope of the spectrum obtained by the quantum calou- .
lation in the limit of large quantum numbers J and small rotational
“constant B , In this limit, the scattering cross section may be ap-

proximated as:

W3 B2 2)  (25+1) exp(=S(I+1) BB
v, sogez = Co T Gy () ew(Reg )
2 2
£
— & 4 oo Loy
2 2
a I 3° 48
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exp( Tv’ﬁB)

( )VH. J—>J-2

The 0 and S—branch lines appear at a frequency shif% of

| = (k3+6) B: 2 458 , Substitutlng B = 'ﬁ/?I and J =w/4B we have

) ‘(—'4)“ £ ow <"*’2 1‘&) §(w~ 4gB)
AaVH, J>2 " ‘10 8 1?,52 kT |

=<%’> .' ‘1% 3 + ew(- 21 >>s<w- m)

Now vie approximate the spectrum as continous distribution, introducing

the normalization constant (~% kT) to preserve the total intensity
of the S-branch 1ines, with the result;.

2 52 02
& )VH J~>~J+2 dilgw)m, S-branch (w) (w) IT exp(- "ﬁi)

The 0 and Q-branches may be treated similarily with the final

result;
11 0/2Y2.
oy - @t 15{ 8<>+ llir;%(*gtli)} :

This is just the classical resultvfor the'diatomic rotor., The clas-

sical model of light scattering seems to be adequate in describing the
 gross features of the spectrum; the total intensity and the'envelope

of the spectral distribution,

Before leaving the quantum description of the diatomic rotor, we

must consider several effects which appear when we consider real mol-
ecules: the nuclesrstatistical weights, centrifugal distortion and

vibration-rotation coupling, The nuclear statistical welghts, gns(J) ,



cause the population of successive rotational levels of a homonuclear

diatomic molecule to alternate, yhen the gnS(J) are included, the

intensity of the S-branch lines (per molecule) becomes:

| B (my(m2y (éd+1) €,s(7) exp(-E(3)/kT)
( )VH, T>g+2 (T) 10 (2%«‘1‘%2‘,;7%5 Z @) £,,(3) on(-a3)D)

The nuclear statistical weights are dlscussed in Appendix 2-a, A real

diatomic molecule is not perfectly rigid, so that the average spacing

of the nuelei will depend on both the rotational and vibrational quantum

numbers, These effects are called;centrifugalfdistortion andvvibration-
rotation coupling, and they chiefly result in shifts in the frequencies
at which the rotational lines occur, Since the poiarizabilitj of the
molecule also depends on the internuclear separation, these effects
also change the intensities of the rotational lines, The effect of im-
perfect rigidity of the molecule may be treated as a perturbation and
the results are sketched out in Appendix 2-B,

The scattered 1ight spectrum depends not only on the molecular
proPerties, but also to some extent on the environment of the molecules,

The principal envirommental effect is line broadening due to collisions

between the molecules, When collisions become so frequent that the mol-
ecule no longer behaves as a free rotor, then the description in terms
of free rotor wave functions [J,M>> is no longer a "faithful" repre-

sentation, The molecules reorient, not by an unhindered rotation, but

by a series of large or small'steps whose direction may also change with
every step, The discrete line characteristic of the free rotor first
broaden, then coalesce, and finally even the envelope of the band be-

comes disterted. At pressures low enough to preserve the appearance



of discrete lines, the pressure broadening coefficient is about
5x lo‘zcm"l/étm in simple non-polar‘gases such as N, or 05, while
for polar gases it is about 1 cm-l/étm and mere-strongly J de-
pendent, As a rough estimate we may consider that the molecules no
. longer exhibit free rotor behaviour when the time between collisions
becomes shorter than the period of rotation, At a density of 1 mple/
liter (about 40 atmospheres) the time between collisions is approximately
5 psec, Let us see how this éom?ares with the period of rotation for
various holecules. _
The energy of the quantum mechanical rotor is E(J)=J(Jfl)ﬁﬁ§ =
J(J+1) héB where B=h/2T and I=;&R2 .14 Comparing this with the
classical expression, p= %Icuz, we find that QJ¥ (ﬁJ/i) s The peak

intensity of the rotational band occurs at approximately the value

‘ kr 1 1 .0
Jmax = 55%%7 -5 (at room temperature, T=22°¢, the value of

kT/hc = 205 ém-l .) The characteristic rotational periods for several

rotors at room temperature are;

rotor B gcm"'l ) Inax - T (psec) 3? Imax
Hy 59,32 1 | 0.28

Ny 2,00 ? 1,18

CH,, 5.25 L - 0.79

- CFy 0.186 23 -~ 3.85

dimers of CF,, ‘0.0116 94 | 15,11

Only the lightest molecules may be adequately described as free rotors
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for the densities, in the range of 0.5 -- 5.0 mole/liter, at which
our collision-induced scaitering experiments are conducted, This
must be Eorne in mind when considering the bound-dimer spectrun of
Chapter 2 and the collision-induced rotationel spectrum of Chapter 4,
since the free rotor model has been assumed in the calculations, We
must also keep in mind the iimitaiions of the free rotor model in
Chapter 5, since the experiment uses the S(1) rotational line of Hz
as an internal standard in determining the intensity of the spectrum
being observed; fortunately H, behaves as a free rotor even at the
highest densities that we will consider. The experiment alsc uses |
the computed rotational spectra of O, and N, with the lines suitably
broadened, to subract out the econtribution of these 1mpur1t1es to
the observed spectrum- fortunately the intensity of the 0, and No
rotational spectrum becomes relatively weaker compared with the over-
all spectrum»at the same time as the deviations from Ffree rotor be-
havior become large at higher densities. _

The final task to be performed in this.chapter is to work out
the rotational Raman spectra for the moleculeS-Hz, N, and 0y + We
start with Hy . Taking into account vibratlon—rotation coupling and
centrifugal distortion, the rotational energy levels for the H, mole

ecule are;

BHD - 51) K- 5P (341)? D,

where B = 59,32 en ' ana ﬁ; =b,7 x 1077 o . The normalized

distribution function n(J) for the population of the rotational

levels is.




_ '(2J+1) g‘ (J) exp(- E(J)/kT)
"9 SRy e, <J> ew3(~5(2)r)
)

=even
where g (J) = {3 g=od§. .

The intensity of the S-branch ones is;

'6 H J+1Y(J+2
Z%Tl%m%} A

Using the values PH = 0,314 f& , (i =—]—'- w 20492 ¢m~1 = 2-9'4'92 x 1074 .

3 .
Sy, - 5 PHZ
s() ¢

Py =1 mole/liter = 6.02 x 10““ X‘B and T = 22°c ( ='205.l enty

we may ca.lcula.te the S-branch of the spectrum. The factor o

/3H2

[(“') PH2 — ] has the value 1.63 x 10717 K"l sterad‘l -

1,63 x 1077 n~1 sterad-l . The relative intensity of the S»branch

lines is determined by the dimensionless factor:

3 J+l J+2
[(U") 2J+1)(25+3) n(J) | .
The cross section is just the product of these two factors. - Table 2-1
contains the results for Hoe -The brightest line of the H, rotational

spectrun by a large margin is the S(1) line; it is for this reason that

the S(l) line is used as an intensity standard, (the Q-branch under

the stated conditions will have [Z (z§-§§{%}+35 n(J)] . 0.3218.

but since it occurs at zero frequency shift it is not useful as an in-
tensity standard, )
Tn terms of the Hoy S(1) line 1ntensity, we may express the spectral

Intensities for Nz and o2 in dlmensionless form:




The Rotational Spectrum of H,

les

N

o W

0,000009

: measured
-n(J) n(J)
10,1305 0,1293 + 0,67
0.6585 0,6628 + 0,44
0;1150 . 0.1146 £ 1,09
0.0851 0,079 £ 1.37
0.0036 0,0030 £ 9 %
0,0073 - |

(g+1)(g+2)

(23+1)(2543)

TABLE

2/3
- 2/5
12/35
20/63
- 10/33
YT

-

2 -1
| :E(J) " -1 o -1 ‘ 3 (J+1)($+2)
he _(c’“ ) L Bgy(em ™) (¥ (21+1)(25+3) *(7)
o 354,23 0,082566
118,45 586,62 0.241421
W5.23 L 813,34 0,034917
705.07 ©1032.23 ©0,023136
116760 1240,93 0,00090
1737.30 137,23 0,001724




(J+1)(g+2) (1) 2

IS(J). _ Ws 3 (R R (B ) ( P )
Tn, s1) - WH 8(1) (2/5) (0.662) ﬁsé Pi,
I | 3
- B TSRy 4 <“10>
H, S(1) Hy 5(1) A
(2/5) (0. 662) Hy

For N, the value of n(J)(at T=22° C) is:

n(g) = (B3+1) g (3) exp( —J(J+1)/103.07 )
155, 1051

~§? J=even _
where gns(J)_{l J=odd *

Similarily for Oy the value of n(J) is:

n(3) = (20+1) g, _(3) exp( -3(3+1)/142,67 )

71,5017
_§0 Jg=even
where gns(J)"i 1 J=odd

The values ofthe sumse, (ZJ_:%—(EJL-FT) n(J) for N, and 0, are 0.2012 angd
10,2992 respectively while PI‘ =0, 69 A3 and IBO =1,09 A3 « The rotatlonal

lines occur at frequency shifts given byd“*(lm‘-fé) Bo where B, had

the value 1.9902 cm -1 for N, and 1,4378 cm-l for 0,. The rotational

‘1
spectra computed for HZ’NZ and 0, presented in Figure 2-2, 5




FTGURE 2 ~ 2

Rotational Spectra of Ho, Np and O,.

The intensity scales are in units of the intensity of the Ho
S(1) rotational line, where all the gases are held at the same tem-
perature (2200) and density., The frequency scale gives the down~’
ward shift in the frequency of the scattered photon (Stokes side of
the spectrum) in units of cm_l. Unless otherwise noted, spectral
intensities will be given in units of the intensity of the H, 5(1)
rotational Raman line in H, gas at 220(;and at unit (1 mole/liter)
density. The origin of the frequency scale (0 c:m”1 shif%) will be
at 20492 en”t (the incident photon wavelength is 4880 R.)

a) The brightest line (which is usable for intensity calibration
purposes) of the H, rotation spectrum is the s(1) line at a fre-
quency shift of 587 cmnl. The effect of the Boltzmann factor is

. very marked; the first line on the anti-Stokes side of the spectrum,
0(2), has intensity about 10 times smaller than the corresponding

transition, S(0), on the Stokes side,

b) The lines of the N, rotational spectrum alternate in intensity
because of the nuclear statistical weights., The peak of the spec-
trum occurs at 60 cm—l and the tail of the spectrum will be obser-

vable to 200 cm_l.

c) Every second line of the 0o rotational spectrum is missing be-
cause of the nuclear statistical weight factor. The peak of the
spectrum occurs at 60 cm-l and the tail of the spectrum will be ob-

servable to 200 cm~1¢
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APPENDIX | 2~A
16

 Nuclear Statistical Weights

For a homonuclear diatomic molecule the wavefunction must Be
symmetric or antisymmetric under exchange of the spatial and spin o=
ordinates of the two identical nuclei according to whether they are

bosons or fermions (integral or half-integral spin,) We may approxi-

mate the total wavefunction of thé diatomic molecule by V/tti:: ‘{/ ‘{’ s=
. - n

4, i q: where the factors are the electronic, vibrational,
el lvitrlrot'ns
rotational and nuclear spin functions respectively, Under exchange
. ' N J
of the nuclear spatial coordinat and ¥V _ have eigenvalues (-1
pakiat. R L A & (-1)
and(+1) respectively, where J is the rotational angular momentum quantum

number, For the electronic states of a diatomic molecule the eigen-

values for exchange of the space fixed nuclear coordinates are:

+ - -t .
+1 . for flg ' 'Ezu v Tig s TTy v oo

e + - +
"1 for zg, zu,_ﬁg'ﬂupo-o

where the symbo]fsfj » TV, ...represent electronic orbital angular

-momentum of 0,1, ,,, unit, the subscript g (or u) specifies that the

electronic wavefunction is symmetric (or antisymmetric) under inver-

sion of the molecule fixed coordinates, and the superscripﬁ + (or - )
specifies that the electronic wavefunction is of even (or 0dd) parity
under inversion of the space fixed coordinates of all particles in the

molecule,




Let us denote a wavefunction symmetric (or antisymmetrié)
under exchange of the nuclei as \p (or \l/ .) If the nuclei are

bosons (I = nuclear "spin" = integral) then only states sbttl 41 l}l

or Sb (/)ns are a.llowed, similarily if the nuclei are fermions ( T =

half integral) then only states (// 41 ¢ ‘x'ns or (/, ¢ns are

allowed. The states (/l are those for which;

J=even and llﬁl Z Eu T
J=odd and (// Zg Zu’ y see

" while the states (}) . are those for which;
. . + - '
J=odd and Sbel= 2igr Dy e

) | - + . . ‘
J=even and (/'el = Eg D YN .

The number of degenerate states Vlns which are symnefric or anti~
symmetric under exchange of the nuclear spin coordihates is (I-!fi)(ZIfﬁ-l)
or T(21+1) respectively, where T is the total angular momentum
quantum number of the nucleus (nuclear "spin") which results from addlng
the orbital and spin angular momenta of the nucleions, Since s a.nd{ a
rotational levels alternate, the nuclea:c statistical degneracy or weight
8, S(J ) and hence the population of the levels will alternate mth the
ratio 1/ (1+1) . The nuclear statistical weights for the three nolecules

of immediate interest to us are given below,




=

molecule
molecule

. %_ symmetry of €ns (J3) symmetry of
el

J=even J=odd J=even J=odd eyl
Hzl‘ 1 l Z; s a 1 3 a
' 1oty s 23) 13) s
0216 0 32; - a s 0o 1 s

i (The left superscript of - z; refers to the pair of electrons in

0, wh:'gch have unpaired spins, which makes the ground _eléctronic state
a triplet,) |




“APPENDIX 2-B

The Non-Rigid Diatomic Rotor16 

The Schroedinger equation in the center of mass frame for a ro-

tating diatomic molecule is:
2
| [-':;—’f; Ve 4 U(R)] ¢ = B iy

where;kis the reduced mass of the nuclei, R is their separation and
(PN is tbe wa,vefunction foi‘ the relative motion of the nuclei, (The
Born-Oppenheimer approx1mat10n has already been applled to separate
the total wavefﬁnctlon into factors describlng the electronlc motlon

and the nuclear motion,) TIf the wavefunction is assumed to have the

M
»form: (//N = R ¢(R) YJ(@N.‘PN)

the the Schroedinger equation becomes:

’gf& G"(R). + [ﬂﬁ%—ﬁz + U(R) - E ]G(Rj =0 .

2pR

We proceed by Taylor expanding the potential energy function u(R)

about the equilibrium separation R

B = 0(Rg) + 2 () o + U (a) o 4

where qF(R~Re) and U'(R)=0 at R=R,. Making the change of variable

S(a)= G(R) and substituting the expansion for y(R) we have

) 2
-5 s+ [A-J—g;g;; 2+ v v Ry o

+ 0 &+ (R, o Peen-m a0

Keeping only the lowest order terms we have;
2

h " 2
'Z;&S(Q)‘*“( k a -W)s(e)=0




where . W= E - U(R) Mlzﬁ = U"(Re) .

Z/LR
Solving this equation one obtains the following wavefunctions

and energies (for nuclear motion of the diatomic molecule);
_ s (qd) ™
="( Y (6.,9.)
N R JVN'IN

B=U(R) + (v3) B, + J(3+1) 4 B

where sv(q) is the v-th harmonic oscillator wavefunction and W,and B
are the equilibrium vibrational and rotational constants, respectively,
ap -2 wm = urZ 1s the equilibri
an Be —ZIe where Ié—f&Re is ‘the equilibrium mo-
ment of inertia,
We may now include the previously neglected terms as perturbations
in order to calculate covrections to the energies of the rotational

and ¥ibrational states. The perturbation is:.

A : ‘
H= ag + bq? fv0q3 + dq4 where
q=_ 2J{(J +1)RB, , b w31+ l)‘fi&Be
R | 2
e Ry
o =1
1 "y v ‘ = _____ ‘ .
c=¢l (Re) 4 (R )

The improved expression'for the energy of the diatomic molecule is

(using the unperturbed- wavefunctions}:
= Y 2
E = U(R,) RO vid ) o+ BB, J(3+1) —’ﬁuexe( i )

. 1 _ 2 112 .
ﬁﬁfe( v+z ) J(J+1) D J7(a+1) +AY

where the new constants are:




oty [ 20 e -0y |

WX, =
¥ pru? 3h w?
2 2 L
—2B, [ 2B_RU™(R) -
e “%‘ ‘ﬁag :
5
B
e weZ'-
B 2 2
Yoo + e & oouwe _weXe .
: b 12Be , 1#¢B83 4

The constants a%}e, A and De are called the arharmonicity con-

stant, the vibration-rotation coupling constant and the centrifugal-
distortion constant respectively, To this approximation, we may ex-

‘press the rotational energy asg
E(3) = 3(3+1) B (B~ o (w)) = 5°(341) AD,
2 2 :
= J(J+1) ﬁBv - J7(J+1) “hD,

The SPectroscopic constants for Hyy Ny and 0, are given in Table 2-2,
The constants are given in units of (cm-l) rather than (rad/sec) and

this expressed by the tilde above the symbol, The conversion factor

is  w(rad/sec) = 2pc akcm-l) .
The imperfect rigidity of the molecule will also perturdb the

radial nuclear wavefunction., Since the polarizability of the nolecule

depends on the internuclear Separation, the polarizability will depend
on the vibrational and rotational state of the molecule., The polar-
izability will depend on the vibrational and rotational state of the

molecule, The polarizability of the H, molecule and the matrix
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elements for transitions between various states have been cal-

culated by Kolos and Waniewicz.l7 Thelr results show that the
polarizability anisotropy /B increases by about 1 percent for each
successive rotational line in the pure rotation spectrum of Hy o
(Their calculated va_.lue.of ,3 for the S(1) thansifion is . 0.304 33’
while the experimental value is 0,314 §° .) For molecules heavier
~than Ho éentfi‘f\lgal distortion will be ﬁeg]igibly small and it should

be a good approximation to use the same value of the polarizability

‘ anisotropy for all rotational transitions of a given molecule,




"R,

3.

NOTES AND REFERENCES

J. D. Jackson, Classical Electrodynamics, Wiley, New York,1975

R.- X, Pathrla, Statistical Mechanics, Pergamon Oxford, 1972

We may also note at this point that the factor () /c)

Will usually be treated as if it were a constant. This is
permissible because fhe relative spread of scattered_1ight
frequencies ws is usually very small compared to the average

value of (J - for the entire spectrum, Whether a particular

| value of’u% or the average value of‘&gﬁ is intended in a

given expression should be clear from context, The average
value of ag will usually be equal to the incident-frequency;

which is just denoted as b,

In fact the Rayleigh component has a finite frequency spread

which arises because of the phase modulation due to transla-
tional motion, as mentioned in Chapter 1, The time dependence,
of the phase modulated signal is given by the correlation

. Y .Y
function: F(Ak,T) = <exp [—@S-k)»(r(t)—r(O))]>
The frequency spread of the Rayleigh signal is several orders

of magnitude less than the spectral width of the other spectral

features which we will consider, For an extensive treatment

of the Rayleigh spectrum, see;:

B. J. Berne, R, Pecora, Dynamic Light Scattering, Wiley, New

York, 1976 ,
The next few pages will follow the discussion in Chapter 13 of-

Co Baym, Lectures on Quantum Mechanics, Benjamin, Tondon, 1973

See, for example, Chapter 8 of:

D. A, Iong, Raman Spectroscopy, MeCraw-Hill, New York, 1977




7.

9.

10,

11,

12,

13,

The derivation of the rotational Raman cross section follows

N. J. Bridge, A. D. Buckingham, Proc, Raoy, Soc. A295, 334 (1968),.:

See Chapter 13 in.

I. N. Levine, Quantum Chemistry.yol I: Quantum Mechanics and

Molecular Electronic Structure, Allyn and Bacon, Boston, 1970 ,

Molecules such as Br2 and NOZ y for example, do not satisfy
this condition for photons in the red end of the visible
spectrum since they have electronic excitations at these ‘

energies ~— they will exhibit Tesonance Raman scattering,

G.“Arfken, Mathematical Methods for Physicists, Academic
Préss, New York, 1970

See page 284 ofiArfken .

Weiﬁave”;used the approximation &%=0é ¢ Where v&% is the

incident light‘frequency. If this approximation is not used,

the terms in /%2‘ will be multiplied by the factor (1—18B45+...)

The ratio of the cross sections for the transitions J+2 =g

and J->J+2 is:

&)

L s )
dg~ YA P kT
(ae) s |
VH, J—=>J+2
6Aws

The fransition rates do not look equal in the expressions we
have written for the.cross sections because the degeneracy
factor 2J+1 of the level has been incorporated in the pop-
ulation factor n(J) and the expression'for the O0-branch has

been written in terms of the transition J—>J-2 rather than




1k,

15.

16,

17.
18,

JH2—7J , The:equaiity of the :ra.’t.es'r1 = rﬂ  for

o>n 'n-o

transitions between two states, o and n , of a system

is generally true for radiative transitions,

~, el
The rotational constants B(rad/sec) and B(em 7) differ

bin their units, For theoretical calculations B is more

convenient, while for experimental purposes it is convenient

to reduce most quahtities to units of cm-1 o Quantities ex-

pressed in wavenumber (cm_l) units will be distinguished by

a tilde, as in B ,

The values of /3 are the experimental values from;
N. J. Bridge, A. D. Buckingham, Proc, Roy. Soc. A295, 334 (1968) .
The values oflﬁg are from Chapter 3 of:

I. N. Levine, Quantum Chemistry vol 1I; Molecular Spectroscopy,

Allyn and Bacon, Boston, 1970 ,

T. N. ILevine, guantum Chemistry Vol TT: Molecular Spectroscopy,

Allyn and Bacon, Boston, 1970 s Chapter 3

G. ¥W. King, Spectroscopy and Molecular Structure, Holt, Rinehart

and Winston, New York, 1964 , chapter 5

W. Kolos, L, Wolniewicz, J. Chem, rhys. 46, 1425_(1957),

The experimental value is from

N. J. Bridge, A. D. Buckingham, Proc, Roy. Soc.. A295, 334 (1968) .
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CHAPTER 3

THE COLLISTON. ~INDUGED SPECTRUM

Viewed from the: center of mass frame of reference, é péir of
colliding atonms will look just like a-rotating diatomic moiecule with
va time-varying intefnuclear_separation. This similarity will enable
us to formulate the theory of binary collision-induced scattering as
én extension of thekclassical theory of thevdiatomic rotor, Forvthe,
riéid diatomic rotor, the time dependence of 55(t) was due only.to
the change in the orientation of the ﬁolecule duiing fotation. In
the case of CIS by a pair of atoms or molecules, ‘the time dependence
of ggt> will have a‘éomponent due to the dependence of X on the in-
termolecular separation in addition to the componentbdue to the depend-
ence of SS on the orientation of the intermolecular axis, As in the
previous chapter, the first step in computing the spectrum will be to

determine the form of &ﬁ(r) .

3.1 The Pair Polarizability

3.1.1 The Point Dipole-Induced Dipole Model

The polarizability tensor of an isolated closed shell atom is
completely isotropic and is completely specified by the scalar polar-

izability ;. The polarizability of a widely separated pair of these




atoms has the value 2(Xo.l However, when the separation of the two

is made small enough, the field of the dipole moment induced on one of
the atoms by an extgrnally applied electric field will change the value
of the local field seen by the other atom, The interaction between

the induced dipoles on the atomscauses the polarizability of the pair
to differ from the sum of the isolated atom polarizabilitie$,2 From
symmetry considerations we know that the pair polarizability tensor'can o
be specified completely in terms of the values X and K . .Thus Wwe
will proceed by calculating the values of the pair éolarizabiiity for
atomic pairs oriénted parallel to and perpendicular to the applied field,

The components of £he electric field due to a dipole moment
located at the 6rigin and orientedalong thevz-axis, whén the observation
point.lies in the x,z plane at a disﬁance i from the origin, are:
z 0 'E(r,e)

E, =~§§ (3 cosze - 1) r
r ' 3

=4 ;
E, = 3 (3 sinB cos®)

vhere © is the angle measured from the z-axis, The dipole moment
is produced by a uniform external field polarizing an atom sitting
at the origin;

= x,E 7
OEO *

If the second atom is placed at the observation point (xy6) , it will




see a local field which is the sum \ of the externally applied field
and thé dipole field of the; first-a.tom. We will choose the two
values © = 0 (for X ) and & = T/2 (for 04) as the direction of
the second atom with r;;sPect to the first, and then use a perturbation

iteration to calculate the total induced dipole in each of the two

cases,

For €= 0 the calculation of the dipole on the second atom

: éroceeds as follows;

&(1)¥0<E (l)——g—)(Bcos(O)-l) _?EQ_E,
o0 1,3 !3 0
R L R C I S PR
[0 A r3 (o] Z r r6. ¢/
. R R R
r6 ' 1'9'

L" .
(#) (3)_.8 |
" = o 5P = °g B, e e
xr
2 S L Y
EO = o(o + r3 + r6 + r9 -+ et

Adding the contributions of both atoms we obtain:



In a similar fashion, the calculation for O = T/2 is ,

_ 1 _ | :
a® . % B, Egl) = —(—) ( 3cos (TT/Z) -1 ) __0_(.3;_ B,
r

2

., 2 \ :
d(z) = Egl) = :’f_:_ E, | Eéz) s - (;,-..1,,) = + 0% E_

3 T o
ete,

The result for the pair polarizability is;

o : 2
_ 0 20% <%
Ky = R -+

Having obtained the values of Xy and &; , we may write down the

isotropic and anisotropic parts of the pair polarizability tensor;

L
b3y
— 0(:-!-20(_1_ % %
= ATENL
O<(r) - 3 202) + 0 +—T + r9 + e
2 2 L
6 6 18
PO ooy = 0w 2 T %




To lowest order, the pair polarizability tensor has the diagonal form:

The leading COnt;ibution -of the Dipole~Induced Dipole.(DID) model, as

far as CIS is concerned, comes from the iotal}y ahisotropic tensor f?(r) o
: W

We will henceforth confine our discussion of the pair polarizability

to consideration of the polarizability aniéotropy‘/g(r) . The CIS

spectrum due to (r) (wheré K(x) = O((r) 20() is much weaker than that

‘due to /3(1‘), a.nd since the spectrum due to o(r) is polarized, it is not

observed in\our experiments, 'The expressions for polarized CIS due to

&(r) will beﬁanélogous to those involving fg(r)i’

3.1.2, oOther Contributions to the Pair Polarizability of Atoms3
| The point DID model yields a good first approximation to thé atomic‘
pair polarizability.but its results are modified by serveral effects,
" These modifications arise from the effect of; |
1) electron §verlap,
2) electron density fluctuations, and
3) the non-uniformity of the local fields,
The effect of overlap of the electron clouds ébout the two col-
liding atoms, for smali overlaps, is to reduce the polarizability of
the pair below the DID value, TFor small overlaps, the electronic states:

"of the colliding atoms will be essentially unchanged but the volume
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occupied by the electrons will be slightly reduced, whén.%he’elec-
trons are more tightly confined they move less in résponse to aﬁ
applied field and hence the polarizability is reduced, The movement

of the electrons away from the region of overlap also tends to reduce
the anlsotropy of the diatom, For collisions with very large overlap,
the polarizablllty will not necessarily be reduced — for example, vwhen
two. He : Eatoms are made to overiap compietelygthe electronic configup~
- ation changes to that of a Be atom and the polarizability is much
gréater than that of the separated atoms, Electron ovérlap-isvalso
responsible for the repulsive part of the interatomic potential, so it
is expected that the dépendence on interatomic separation of the electron
overlqppolarizabilityIeductioﬁ ﬁill have the same form as the repul- -
sive part of the interatomic potential,

The term in the atomic palr polarizability due to electron density
fluctuations is analogous to the London-disPersién term which accounts
for tﬁe attractive part of the interatomic poténtial. The quantum
mechanical result for the first order DID contribﬁiioh‘ isbthe éame as
the classical result, but the second and higher order DID terms will'
be affected, The Iondoﬂ dispersion term arises because the electrons
are not static wifhin the atom; at any.given moment the electron den~
sity dist?ibution within the atom may differ from its time-averaged
value, with the result that the net dipole moment of the atom fluctuates -

rapidly about zero, The instantaneous dipole moment on the atom tends




to induce a parallel dipole moment in any neighbéuring atoms, Two
parallel dipoles always attract and the time averaged effect of the
vcorrelated fluctuations is a net attraction between the charge dis-
tributions, vThe correction to the second order bID’resuI% arises in
a similar fashion. The'fluctuating dipolé on one atom gives rise, at
the site of its neighbouring atom, tova fluctuating field with mean’
value zero-which is superimposed on thevmore slowly varying compon-‘
ents of the 10051 field.' Becaﬁse of the'non-linear.teims in the atomic
'polarizabllity (the so-called "hyperpolarlzablllties"), the average
value of the polarization due to the fluctuating field plus the local
field is greater than it would be in the absence of the fluctuatlng
field, The atom‘behaves>as if its polarizability has been increased
by the~presenq§"of its neighbour, Since the fluctuating dipole field
falls off as r-3 » the polarizability enhancement also falls off as
r-3 + Uhen the polarizability enhancgment is ipcluded in therDID cal~-"’
culation, the firét term of p(r) which :j.s changed is the term in r~6 .
The iowest order term introduced into (r) by the electron dénsity
fluctuations is a "non-classical" term in r;u; non-classical terms in
rf8, r‘lg, ++» are also introduced into the expression for A(x) A

So far we have treated the atom as if it were a point.polarizabilitya
The point DID model takes the field at the atomic center as being rep-

resentative of the field seen by the atom and uses the uniform field:

polarizability to compute the induced dipole, This approach gives the




correct4¥§symptotic form of F(r). However, when the intergtomic sep~
aration is small, thé field due té the dipole induced on one atom of
the pair will be highly non-uniform over the volume of the other atom
of the pair, 1n this case, the field at the atomic center is not even
the average value of the field over the volume of the atom, and there
'is no reason to.expect that the uniform field polaringility will cor-

rectly relate the applied non-uniform field to the induced dipole moment.5

3;1.3 Contributions to the Pair Polarizability of Molecules

All tﬁat hgs been said fof étoms also applies in the case of
molecules except that the sitvation is worse becau#e molécules are
usuélly lé¥ger aﬁd nore complex thén atoms, Since molecules lack the
spherical symmetry of atoms, by virtue of containing more than one
nucleus, there are #dditional internal degrees of freedom, We will
consider tWO'cqntributions to the pair polarizability which arise for

molecules;

1) frame distortion, and

2) higher order molecular polarizabilities,

The second contribution will give rise to collision-induced rotational
transitions and we will discuss it in the next chapter,
The frame distortion contribution to the molecular pair polar-

zability may be estimated by using vibrational frequencies to deter-

mine the bond stiffness, and the bond incremental polarizabilities



derived from intensity measurements of vibrational lines to determine
the polarizability changes due to bond compression during a collision,
For an intermolecular potential of the Lennard-jones 6-12 form,

the intermolecular force is:

P(r) = - dgﬁr) = - qof( ~12x7 13 4 67 )

where x = r/o-, The bond compression force is

iiFv(Ar) - ks Ar *

Neglecting inertial effects:

2h€ .. 13 -
= k 0__ (2x . 3 - X 7) .
S

'TFV( AY) ="'_F(r) and  Ar
The frame distortional polarizability change, 'counting bdth molecules,

is just:

21 € -13

Aty = z(%r"—‘—) e (2 "

-~ x-
while the DID polarizability change is:

2
6 &% 3

Aty = ( 5) X7 .
2

The frame distortion and DID contributions to the pair polarizability

are compared in Table 3-1, The peak value of the frame distortion
contribution is only about 1 percent of the peak DID contribution (at

the turning point for thermal coilisions.) The contribution to the total

scattered light, denoted by ;6' (0) the zeroth spectral moment, is only
0.1 percent of the DID value, Frame distortion provides a negligble

correction to the DID result for the molecular pair polarizability,




TABLE3 -~ 1
Frame Distortion Contribution to the Pair Polarizability

L.J. 6~12 parameters results for the "breathing" vibrational mode( )
molecule ¢/ (%)  o(k) (i o™k (nayme/l)(®) g2 )
CH), 148,2 3.82 2.633 (at 5145R) 2914 5,083 1,04
CF), 152,5 4,70 2.85 (at 63288) = 908 9,228 100
ccl, 282 6,1 10.6  (at 5890) 459 b, ho1 2,17
SF 200,9 5,51 4470 (at 6328}) 775 | 6.723 : 1,23
molecule @ ® 80y /sty (1) DALOVAFC) 2

DID
cH, 2,65 x 1073 1.21 x 10~° /-0,87 0.55 / 195
oF, 1,16 x 1072 | | 0.57 x 1072 / 0.55 0.28 / 144
ccy, 7.55 x 1072 3,72 x 1072 / 3,16 25,58 / 12581
SFg | 2,21 x 1073 | 1,09 x 1072 / 0,84 | 1.33 / 540




(a) from Murphy, Holzer, Bernstein, Appl,. Spect, 23, 21~1 (19692,

Gas Phase Raman Intensities; A Review of "Pre-laser" Data,

(b) The typical "stiffness" of the intemolecular potential at the turning pdint for *'the:mal
collisions between these molecules is 0,1 ndyne/&; 1 mdyne/i = 100 Nt/m
= odX 24 € w13 =7 5 . - ..6_95_0;. <3, -
(c) Adte = 25 kSG.)( 2x 7 -x"); A0 i X= /o
o0 e
2 2 o 2 6o<c,
(@) g9 = wf ar = g(r) p(r) & W/o ax 5 g(x) o [( )

+

o

zrr-i-—-—(o 50) + 477 (Lp)(sog,)(z‘“E (0,10 = (°) + g0

Thé integrals were evaluated for _I% = 0,52

.85
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3.2 The Role of Molecular Dynamics in Collision—Induced Light Scatterigg

The correlation function which describes light scattering by pairs
of atoms or molecules is a simple extension of the result obtained for

the diatomic rotor.

i

b . -
6) = B GO IR se)3) >

-

e
@ AP LrOIw D

5 :
+ 6 5 (1A COVIORNE DETRN

vhere  x(t) = X( z(t) \) , /g(t) =/5( r(t) ) and U(t) is the
unit vector along the.intermolecular axie at time t ; The molecular
dynamics of the collision enters the description through the determination
of r(t) and fﬁ(t) which in turn determine the fime dependence ef the
quantities appearing in the correlation function, The correlation
function itself involves an average over the Canonical ensemble to ob-
tain the observable result, e shall now proceed to evaluate the cor-
relation function which describes tﬁe depolarized CIS spectrum goverped
by /B(r) .

The motion of two colliding molecules can be resolved into the
motion of the center of mass and the relative motion of the two par-
ticles, The relative motion may in turn be expressed as the motion of

-1

a single particle of "reduced” mass mn = (my™ + mél

)—1 interacting with -




a fixed center of force described by the intermolecular potential
energy function ¢(r)  The correlation function for the depolarized
light scattering may be evaluated in terms of the following ensemble

average:

L) B8 By () (D) ) >

~H/kT
e - dr de dgo dpr dpe dPgo

vhere H is the Hamiltonian of the system :
2 2

2 Pe‘l pq) '
H= (p_+ + ) / 2n + g(r)
o r2 ' r2 sinze ¢
.2 LZ |
= (ep*r=z)/2n + vy .
r

. 2. . .
(The Canonical momenta are p. = mr , Pg= mr 8 and P‘P = mrzsinzeq), )

. 2
We may change variables ( r,e,go,pr,pe,pq, )—>( r,0,p,E,L fPW/L ) by
multiplying the new volume element in phase space by the Jacobian of

the transformatibn:

0E  OE s |1
P, dPg apy)
. 1
0(pprpgpg) | 512 52 317 _ sine [ 2 P2 ] 2
- R - el

B(E,LZ,P‘P/L)

IPp/1, 3Pp/1 Py
(5 Pr d Py 0 ng

f ~H/kT | |
d e dr de dg dp,, dp, dpg ﬁ(r(t)) Ax(t+T)) Pz(ﬁ(t).ﬁ(t+t)) ,




The quantities B and 1 are the total energy ahd the magnitude of
the angular momentum of the system. Vhen we éénsider the equations of
motion for the systen we ﬁill see that r(t) and ﬁ(?)éﬁ(tfij‘ are
completely determined 1? terms of =, L2 and E. This will enaBle us
to integrate 1mmediately over 8,( and P‘P/L .

Because tﬁe interaction between the molecules can be expressed
as a scalar central poteptial,:the orbit of the single particle of the
ﬁreduced“ problem lies in a singlé plane passing through the center
‘of force and thé total energy and angular momentum are constants of
the motion, Specifyiné the position of the particle in the orbital
plane by the polar coordinates (r,%), the energy and angularvmomentum

may be expressed as:

' 2
1.2 1 2 1 .2 11
E=—2‘mvo =Znv +P/(I‘) =sznmnr E +/Q5(I')
-ty

Introducing b, the impact parameter of the collision, these re-

lations can be written as: _‘
r | b,? ggr) z
) = [1-(—;) - ]

™o

The turning point of the orbit, r

min °* °an be found by solving the

following equation;




s 2 xr
(%—)=0=[1-(;b—~)~'—“;"§—
0 " Thin |

Taking the values:

r(t=0) = x | o |
$(=0) = 0

as intial conditions, we may obtain r(t) and ()l)(t) by iniégrating
¢

.
the equations for (%;—-) and S(/ . The only parameters which appear
o .

ih these equations are vo2 and b , which may be expressed in terms

.of E and L as vo "mE and b-m—VO-.

The quantity "G(t)v'ﬁ(t#c) is the cosine of the angle through which
“the intemolecular axis has rotated between times. t aﬁd t+T, which
may be expressed in t.erms of ¢(t) as;

U(t)U(H+T) = cos( gﬂ(t) - (,b(t»i-’t‘) )
Thus, the function being averaged in the correlation :t‘u'nction.‘-'

(4, 847) = B(=(4)) p(2(+7) By(cos((t)-f(t+7)))

has been expressed entirely in terms of r(t) and }(/(t) , which in

turn may be specified in terms of r, E and L2 .

We may now proceed by integrating over 0, ¢ and Pp/L to obtain

the following result,

~E/kT

-t
2

2 |
(B-(x) -gi’—r?) T(t,t+T)

£, 00> = 1P (2m)? f dr dg ai° e

3/2
v (RmmkT)




Changing variable from (E,Lz) to (E/kT,b) and rearranging, the

expression beconmes:

| | it 2(2 4

- L)y < AEEEIL, [ By (B
V (2mmkT) 0 L

i
2

" [1'@2 ﬂﬁ:ﬁ]* (et)

i
However, [l - (%)2 - Qg—rl] o= ";'Q* = vo% » and by introducing

this substitution and writing € = E/kT we get the final result
{e(t STy =
’ oo o) o0 .
: i _f :
.&E/d&gze /bdb/vodtiﬁ;—él:ﬂl
0 0 -0

v

The integration limits for the /X and t integrals reguire some

explanation, A t¥pical orbit will appear as follows:

Since only r is specified, it is equally likely that the particle is
on the ingoing or the outgoing trajectory, and the values of r(t+‘c)
and cos( (ﬁ(t)-(ﬁ(tﬂ_‘) ) will depend on the direction chosen, In order

to calculate the correct value of < £(t,t+T)> we must average over




 ingoing and outgoing directions, Thus, the iﬁtegrand of the 'rhintegral

becones;

.'i:(t.t+‘c) = f(;t,t+'c’).+_ f(-t,—tfr)
. 5

to account for»the fact that the inteération only extends éver the out-
going branch of the orbit, r = rmiﬁ~$'00 + Since the orbit is
symmetric about the apsidal direction (the directi&n'of the turning |
point) we may express functions of ’~t and -t+T in tefms of t
and £?7: as fbllpws: . .

r(-t) = x(t) b6 =gy

(-t+T) = r(t-7) P(-t+1) = = P(t-T) ,
so thét T(t,t+T) ma} be expressed entirely in terms of ( xup )
along the outgoipg branch of_the orbit, ﬁy‘extending the . t~integration'
limits to t = =0>+00 ,  we may write the in?egrand as f(t,tft)/é .
The factor of 1/2 is necessary because the originél ensemblé average
correctly accounted for the time spenf at a given r-value withouf
distinguishing as to the girection of travel.

Thé Fourier transform of the correlation function
s b 1 22 2
¢(T) = ) T (O ) £t teT) Yy

will give the depolarized scattering cross section per unit frequency

‘interval and per unit solid angle due to a single pair of molecules




confined in the volume vV , If the gas consists of N molecules,
the number of pairs will be N(N-l)/2¥$°N2/2 » and the density of pairs
will be NZ/ZV « When we multiply the above correlation function by

the density of pairs in the gas, we get the nmore useful result:

3 2 .
(ﬁ‘—s‘) 11'5(1-#(_};‘1\)2 —g'- eﬁ‘[dee? - /bdb/v dt F(t,t+T)

o ()

Nh—h
M

it

(‘“) 15 ( 1+(XS,&) %’E 81—' de ¢

0

’-f‘_\lbv db f v, dt £(t,t+T)

o N

where ‘p is thg number density of molecules in the gas, The Fourier
fransform of this correlation function is the depolarized scattering
~cross section per unit frequency interval énd per unit solid angle and
per unit volume of the gas with number density g e

The évaluation of the correlation function and of the scattered
light spectrum can proceed from this point in two diréctions: vin térms
of the moments of the spectrum or in terms of the spectral distribution

function, We will consider each of these methods in turn,

3.2,1 The Moments of the Spectrum 4

There are seyeral reasons for computing the moments of the spectrum
rather than the complete sPectrai distribution, The chief reason is
that the first few moments are far easier to compute theoretically than

the entire spectral distribution, The second reason is that -they present




the information about the spectral distribution in a compacﬁ and
-cohveniént“ form, The first two non-vanishing momenfs are essente
ially the total scattered intensity and the spectral width; so that
theAgross features of the spectrum are described by just two‘numbers.
The experimental determination of the moments-requlres knowledge of the
spectrum over an extended frequency range, which is sometimes difficult
to manage. Ho%ever, knowledge of the complete spectrum is usualiy nec-
essary for proper interpretation in any case, so that this dlsadvantage
is not unlqué to the analysis in terms of the moments.

- The spectral intensity and the correlation function are Fburier

transforms of each other:

ORI f O
c@ = fawdTy

but since the classiecal correlation function and spectral intensity are
even functions of their arguments,
c(t) = ¢(~1) and I(w) I(~cu) '

the second relation may be written as:
o0

¢(o) = [ dw cos(w‘c) I(w)

hat ¢}

Using the Taylor expansion of cos(Wt) about T= 0 we have:

e(o) - [ 4 1(w) 2(1) L

mn=




00

oo n__2m V :
o) = 2_; % -iw 1) .

Expanding C(T) in a Taylor series about T = 0 and equating coeffi-

ciéntS:-Of equal degree inT , we obtain the following result;

oD .
- f aw ™ 1) .
T=0 — D0

‘The derivatives of C(r) evaluated at T= 0 are equal to the moments

2%V - (& o)

dIZm

of the spectrum to withina + or - sign, fhe zeroth moment, '55(0),
is just the total intensity of the spectrun. We will compute the
first two moments for the depolarized (IS spectrum using the correlation

function:

¢(t) = v</z(t) [3(1;-4»7:) Pz(ﬁ(t)--ﬁ(t+-c))> | .

The expressions for moments higher than the second become quite cumber-
some.8' We will make use of the following property of the correlation

 function of the quantity A(t).

2
. - —d;.. A
A() Ai(tf"[_‘)>lt=o 7 <AG) AT e
::."‘(‘1—“ A T = .‘.i-_.. .."C A
= <A(t) A(t+ )>t=o gz <A(-T) A(t)> o

]

- CA(E) A(FT)S

== A(t-T) At))




The invariance of the correlation function under the time translation
t—>1t ~-T has been used,

The first two moments are:;

B0 = c@lpo = VPR

2 d =4
¢( ) - _E_-g C(‘r) l‘c=0 = -(-1_;—2- V{ﬁ(t) Ig(t-i-“l:) -Pz(-cv:_:s—ev)?fl..c:o
_ where  cos 8 = f(t)eﬁ(tff) .

Continuing, we have;

PO T p) [/;(m) B,(cos 0) + 2/;(1-,+7:) Pz(cos )
. Ig(tﬂ:) Pz(cos e) ]> ,T =0

With the results:

Py(cos 6) =0 ° = 1
Py(cos 0) 60 =0
P, (cos 0) = =3 8%

the expression for ¢( ) reduces to:

R CY OREY Ok <t>> »

Applying the relation <A(t) A(t)> =:--<A (t)> .We o'bt;.in;
LGOIV S ORION

V<(—é)f + 358>

From the equations of motion we know that

I

]

2
“E(E- gx) - L) ana @ <-—z>“

2mr

so that we may compute the moments using the ensemble average:
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-B/kT

<A(t)> = LHTZ (Zm)%/dr dE sz e

v (21”1:1&1’1")3/:2

2
(Bpe) -—L) 7 ac
ITII’

n order to 1ntegra.te over all phase space, “the integration limits will be;

/ / Zmr (E—-;é(r))
(I‘)

[ ar?
~and the results of the iﬁtqgration_s ares

0

- B - r)/kT
g wr - fa 2 T

_ 0 - r)/kT : é
¢(2)-_— yr KT [odr = e¢( ((%)2"'6%2—)

These results show very clearly the manner in which the dynamiecs of
fhe céllison, determi_ned by the intermolecular potential function ;ﬁ’(r),
and the form of the pair‘polarizability function ﬁ(r)-, which dgpends
on the scattering mechanism, both enter into the determinat'ion of the

scattered light spectrum — it is not possible to separite their re-

spective contributions to the integrals they é.ppear in, We have put
our gmphasis on the polarizability in our discussion of light scattering

because the intermolecular potential is discussed extensively else-

9

where,

By altering the integration limits it is possible to restrict the
average involved in calculating the spectral moments to only a portion

of the phase space accessible to the system 3‘ 0 rTo understand the value
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of this division of phase space we must consider the nature of the
orbits of the colliding molecules., The particle of the "reduced"
collisdbn problem moves under the influence of'the "effective” . o
"ﬁupbiéﬁiial:
Ty POLT

" 95 yé , I?

(2) = Px) + 2 |

eff - © omr . )

A schematic ;5ff(r) for a particular value of 1° is drawn below;
e o

A
E

Particles in region I, with total energy R <0 will be bound, Particles
in region IT, with total energy less than the local maximum, will re-

main bound so long as i? is left unchanged — they may be called

metastably bound, Particles in region TV have the same energy as par-
ticles in region II, but started to the right of the local maximum -

Awe may call them low energy free particles. The remainder, region 11T,

is composed of high'energy free particles,

While the distinctién between the various regions is not important
insofar as calculation of the moments of'uuaspectruﬁ is concerned,
when it comes to calculating the spectral distribution from the correla-
tion function we must compute the actual orbits,‘and the orbits of bound

and free particles are vewy different, However, when we calculate the




vcontributlion of the bound and free particles to the scattered inten-
sity, that is the zeroth moment ¢( O)’ we find that the free particles
| typically account for 85 percent of the total intensity at room temp~
era.i':ure. for the ;nolecules we have studied, The free particle contri-
bution increases for higher moments and for higher temperatures, For
Ar at room temperature the contributions from the different regions of

phase space to the first two moments a.'re:lo

A e

~high energy free 79% ' 95%

low energy free 11z 3%
bound ’ ‘ : 7% 1z

metastable bound ' 3% 1%

'Ffom this we see that fhe spectrum, except perhaps at small frequency
shifts, is dominated by the free particle contribution, Therefore it
is a good first approximation to calculate the spectrum ignoring th'é '
scattering from bound diners,

As a last illustration of the spectral moments, let us consider
the spectrum of scattered light using the lowest order DID model for

the pair polarizability:

6 o(oz

pE) = —

T
Substituting p(r) into the expression for ¢(0) Wwe obtain:




TABIE 3 - 2

The DID CIS Spectral Parameters for Several Atoms and Molecules (at 22001

P . neasured(®)
potontins | | G S
parameters measured(d) _ 1 ' _ 1
molecule  ¢/k(%) o (£) o(a(li3 ) ¢§S%D %) ¢(0) (%) M(amu) ‘vrms(x/ psec) 211_7.0(%2) "rns 2%—3(%@33)
He 10,8 2,57  0,2051 0,040 | . 4 15.65 88,6 -
Hy 3.3 2,92 0,805  3.69 3.87 2 22,14 110,2 64,8
e Y Y Y 515 40 14,95 19,1 15.6
o, 27 sss 2633 102 296,216 7.83 32,0 28,6
CDa(c) 232 3.551 2,597 183 232.3 20 - 7.00 28,7 25.6
cr, 125 koo 285 ue 2 88 3.34 10,3 1209

57, 200,9 551 470 . soy 1212 146 2,59 6.8 5.3




' N 6 -n n -6
(2) The parameters are glven for the Ar potential of the form A(x) = G(R. X " ==z X ) vhere
= L4 +9x and x = :r'/rm 3T, = 3.?6.3. and €/k = 142,1% .
See  Smith, Physica 73, 211 (1974) ,

(b) The parameters of the 'Lennaid—Jones 6-20 potential suggested by

Matthews, Smith, Mol, Phys.' 32, 719 (1976) are given,

(c) Thé parameters for CD;, are related to those for CH, as follows:

' €
CH CH CH :

—_h_ o —_l —=b _ -1

Q‘CDQ’ 1,014 , €CD4 1,022 , . Gap 4 (1. 0022) .

See Thomaes, Steenwinkel, Mol, Phys. 5, 307 (1962} ,

(d) fThe uncertainly of the mea.surements is expected to be in the ra.nge of £ 5 - 15 percent,

increasing down the table. The accuracy is of the results is difficult to evaluate because of

the possibility of unaccounted for systematic errors,

(e) The uncertainty in the experimental results is in the range of * 5 - 10 percent, .

In camparﬁ,ng these figures with the caloulated values of w :r:ecs,ll that we have

used the approximation- f dx g(x) x

fodxg(x)x |




0 r3
o0
e (36°§) /dx g(x) x ,
ro 0

vhere x = r/'ro‘ and g(x) = exp(- ;?S(x)/k‘l‘). Similary for ¢(2) we

have:

: | o V: 2 2
1();)) = b %‘T‘ /dr r* &(r) [(-BQQ) +6 (f%‘s-) ]

L .
a1y (—3%'-4—"—) 15 kT [dx g(x) x6 .

r

o
vhen the unit of length ro is chosen as the molecular. diameter (for ex~
: gmp-lg T, = 0’ where o is the radius parameter in the LennurdnJones 6-n

potential function) then both integrals are approximately equal to %«.

An‘ estimate of the frequency spread of the spectrum is then given by:

(2) = v |
= %)_ = (15 kT) = ( ) rms __%E.

. m

Wrms

T is roughly the time it takes a molecule to travel one moleculaxr

1
(—Iz[; kT)?2 . fThe spectral

I

diameter at the mean thermal velocity, V.rr;s

width, in cn” ' units is given by Q?i,ms(cm~l) - Wy (rad/sec)/ 2Wc ,

and is typically 20 cm"l « The depolarized scattering cross section

(per unit solid angle and per unit volume) may be expressed in terms

of the zeroth moment as:

b 2
@w = & BF .




1In T able 3-2 are presented the values of ﬁl()%)) and ’Q;ms for several

| (0 (2).L
molecules as well as the experimental values of ¢ “and - (Qgg%)z
for comparison, The simple DID model predicts the intensity to within
a factor of two for all the molecules in the table and does much better

for the spectral width which depends chiefly on'the molecular velocity .11

12
3.2,2, Calculation of the Spectral Distribution -

The spectral distribution of the scattered light is computed as

the Fourier transform of the previoyslyderived correlation function.

— o0 ad oo
c(r) = 8w Ldz: a% ot [ bdb | v 4t £(t,t4T)
o o '

The éomputation of C(T:j involves two steps, The first step is to com-
pute the orbits of the vcolliding moleculés for the required va.lu’es> of
energy and impact paraineter, E= E/kT and b, neglecting the effect
of the incident light, The second step is to evaluate - f(t,t-ﬂ:)
for each orbit and value of T y and then compute the integrals over
;t, b and€ to obtaiﬂ the correlation function c(T).

This method is not wholly satisfacfory. Let us consider the energy
and momentum changes when a photon is sca.ftered' during a molecular coi-
lision, The ineident photon has an energy about 100 times the mean

thermal energy kT at room temperature, The energy change of a photon

scattered with a frequency shift of 205 et wilx be equal to kT. fThe




iargest possible momentum change for this photon as a result of a col-
lision is only about.}O-B of the total momentum of a pair of molecules,
Thus we are probably justified in ignoring the recoil of the molecules,
However, a photon scattered with a frequency-éhift of ?OO 9m~l on the
Stokes side of the spectrum has given up.enough energy to haQe doubled
the energy of the pair of molecules 1t was scattered bye In the
quantun mechanical description, the change of translational state is
explicitly taken into aécount in calculatlng the scattering cross sec-
tion, but thls is not so for the cla§s1ca1 calculation. For the diatomic
rotor,-the quantum results agree with the classical results in the
1limiting case that the initial and flnal rotatlonal states are very
close together. Simllarlly, the classical calculation for the CIS
spectrgm may{be expected to agree with the quantum caiﬁulation ‘sq ;ong
as the intiél and finalltranslational states lie very closé togethér‘in
energy, At very large frequenéy shifts ( kT~205 cm"l ), our célcu-
lation may not be able to ;ccount'for the observed scattering at all,
Since the energy of the‘molecules changes duriﬁg the collision, the
symmetry of the orbit about the turning point is removed along with the
symmetry of the correlation function and spectrum about T = 0 and
Ww= 0, réspectively.

Fortunately for our calculation, most of the scattered photons

suffer frequency shifts of about 10 em T or less (< 1/20 kT ) .




so that the actual velocities of the molecules during a collision will
differ by only a few percent from the values calculated ignoiing the
interaction with the_light. Our simple mode of calculation should be
adequate to account for the most intense part of the spectrum and it
is only at large frequency shifts that tﬁe ;esults mustnge viewed with
suspiéion.

Let us return to ’che calculation of the correlation funection and

the specfral diétrigutioﬁgihe organizati&n of the subroutinéé En thg
. program for calculating the spectrum.ié given in Figure 3-1; the ﬁfo—

| gram listing appeérs in Appendix 3-A, Ve will discuss the design of
the program below;g'

4 The firét consideration is to rewrite‘the expression for ¢(t)

in a form appropriate for computation. As a unit of length we choose
vthe molecular diameter G (in fact tﬁis willlbe the 1ength.parameter'in

~what~-ever potential function yxr) is chosen,) The time taken'to travel

the distance 0" at the velocity vo==,€% E 1s taken as the unit of timé.4

The velocity v, may be expressed in terms of the root mean square vel~

¥ _ [z _ o $ .
ocity, Vims = - kT , as vo = Vens /E/kT = Vens ? "« With

these changes, .C(t) becomes;

it

8 62 / & o Ef d(g,) (W)/ d(~ms t) £t t4+T)

BP(TB [dg £ E/dBE BE deE £(t, t+7)

c¢(t)

. ". '




FIGURE 3 ~ 1

The Organization of the Correlation Function Computation.

Information is passed between subroutines connected by lines,
in the direction of the arrows, A line also represents a subrou-
tine call, except in the case of ORBIT and COORD, where the infor-
mation is passed through labeled common block storage. ‘

The input data read by CORREL are:

L 39]
const = 14u1L A

vsr = T o () |
TSTEP = AT (psec)
EPSKT = €/kT (=)
SIGVEE = §/vy, . (psec)

and EXT(5), WEKT(5) (the abscissae and weights of a five-point
Gauss- laguerre quadrature, In the casevof Ar, the parameter
of the Lennard-Jones potential is replaced by T of the smith
potential, ) _ ' ‘

The'output from CORREL and OUTCOR consists of listings
and graphs of C(€ ,T ), for each of the five values of € in
the energy inﬁegral, and of the final correlation function
,C(t‘). The function values of C(T ) are given in units of £°.
The output of OUTFFT consists of a listing of the Fourier
transform of ¢(T ) and graphs of the first 1/8, 1/4 and 1/2

of the tranSform, and listings of the spectrum interpolated

every 1 cm—l.
i) Ybefore "normalizing"”,
ii) after'normalizing", and
iii1) after "normalizing" and correcting for the Boltz-
mann asymmetry of the spectrum,

The "normalization" involves scaling the spectrum so that the

spectral intensity is given in units of the Hp S(1) rotation
line intensity per unit frequency interval (1 cm_l) when all
gases have a density of 1 mole/liter,

The correlation function program for Ar is presented in
Appendix 3 - A, The first page of output, where the input
parameters are tabulated, is included in the listing, fThe

computation uses the parameter values given in Table 3 —>2,
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) 1
where BE =b /o~ and TE»=—6_9-t= s £2:

t..  Next we factor

S a
the polarizability anisotropy function,

R
P =55 poy

so that for the simple DTD model B(x) = X7, where x = r/o~ . Making

this substituﬁion, the expression becomes:

” wlTog (7 NS o |
o 1 i ‘1 - p
(7)) = ( o3 ) [ at £2 &¢ / dBE BE / aTE  h(t, )
6 : o _ '
o )

. Where

A :h:/(’t,'t‘i"('.') =1 h(tt+T) & .h(=t,~t+T)
and’

O RERT) =ACR(Y) ) A(x(E+T) ) Byloos( (1) - Pt +T)))

The calculation begins with the computation of the orbit for given
values of BE and £ by numerically integrating the equations of motion
starting from the turning point of the motion, The intermolecular sep—
aration at the turning point, -x'mm, is the largest solution to the

equation

, 2 :
L= (BJEC ) T ER ¢(Xmin) =¢eff(xmin)~j"‘
waere EE = €/E= (€/kT)/e B(x) = Bz /) and € is the well
' ‘ €

' 1
depth of the intermolecular potential 5.,3, In Figure 3-2 the function
s

;Je ﬁ(x) for Argon is plotted for several values of the parameter
2

A= (—%?T) which determines the shape of the effective potential, s

the value of A increases, the positions of the local minimum and the

local maximum of}ﬁeff(x) move closer together, until when 'A;Acrit




FIGURE 3 - 2

The Tnteratomic Effective Potential for Argon

The interatomic potential function assumed for Ar has the
fornm, . ¢ o ' ‘ L
e ¢ 6 _-n i -
Bx) = ( n-6* " 78X )
where n= 4 + 9x , x = r/ih and r, = 3.76 £ is the radius of
the minimum of the interatonmic potential, The "effective"

potential, including "centrifugal Trepulsion”, is

Hope(x) = BB &(x) + (31%2)2 |
where EE = €/E and BE = b/rm i € is the well depfh of the p64
tential, B is the total energy (of relative motion) of the .

colliding atoms and b is the impact parameter of the collision,
The effective potentiél, ;Zéff(x) » 1s plotted versus x for‘the
parameter values EE = 1,0 and BpE = 0.0, 1,0, 1,2, 1,4, 1.5,
1,6 and 2,0 , _

The turning point in the collision between two ﬁnbound
atoms will be at the largest value of x which satisfies the

equation ﬂgff(x) = 1. fThe shape of the effective potentiql

pjéff(x) is specified by*thé pdrameterlA»=-%%% « As the value
of A increases, the local minimim of opp(X) Moves outward
from x = 1 and the local maximum moves inward from x =¢o ,
Eventuélly the local minimum ang maximum merge at a horizontal

inflection point, and for larger values of A, }a;ff(x) is mono-

~tonic, fThe value of A at which the ﬁéff(x) becomes monotonic
is called ACRIT, and it is the largest value of A for which
there is a solution to the equation A = % © &(x) (this is
derived from ;jéff(x) = 0,) For the Ar-Ar potential which we

have chosen, ACRIT = 2,1133325 . 1n the diagram this corres-
ponds to BE £ 1,45 ,

Tor non-monotonic Qéff(x) » the peak value at the local
maximum will always be smaller than theheight of the horizontal
inflection point obtained by increasing BE, with ER held con-
stant, until A = ACRIT. The height of the inflection point is




FIGURE 3 - 2 (continued)

A . :
_ crit
Pore(Fepsy) = X1 + P(xepsy) VEE

and BE gt = EERIT is defined by

Bopp(XCRIT) = 1 = (459_3112’? ¢(XCRIT) )/ECRIT

XCRIT

‘For all EE<ECRIT the colliding atoms will have enough energy
to surmount the local maximum of g%ff(x), and there will be
only one solution to the equation ﬁfeff(x) =1, For our
Ar-Ar potential, ECRIT = 0,46086516 and XCRIT = 1.15278 ,
¥hen A<ACRIT and EE}ECRIT ‘,'bhere may be two or three
solutions of Jgéff(x)~= 1, and it is possible to have bound

states of the interacting Ar atonms,
For potentials of the Lennard-Jones 6 - n form,
B(x) = ¢ (" - xﬂé) where x = r/o- , the critical values

of A, x and EE are:

‘n c  ACRIT XCRIT ECRIT
6 4,0 2, 4623653 1.30766 1.25000000

20 2,3932763  2,5759863 1,213405 0.70707961
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they merge to give a horizontal inflecﬁion point at the position Xopit®
For larger values of A the effective potential is monotonic. Similafily,
for values of EE less than E%rit' given by:;

BBorit = [Acrit oy * 96(xcrit)] T
only one root of the equation 1 = Q%féx) exists, For other values
of A and ER there may be one, two or three roots to this equation, The A
'_ largest root, corresponding to “the turning point, was obtained by sol&ing
the equation by Newton's mefhogf%&?The other solutions .ﬁéfif(x) =1 |
correspond to turning points in the orbits of molecules bound by the
local minimum of the effective potential and are ignored in this cal-
culation,

Having obtained the position 6f the turning point, the orbit is

computed by numerically integrating the equations of motion:

o, .
ax e _ N F
a¥ _ 4 _-BE
dTE ¢ - x2’

using the lowest order Runge~Kutta method, When the orbit reaches the
- asyliptotic region, where EE}QKX)<3(1, the parameters specifying the
asymptote are computed, The angle @, between the asymptote and the

apsidal direction ¢= 0, is given by ¢ =% + ,ell where;

. . 2 .1
. 1 1 - EE ¢(x;) - (BE/%,)" |°
cos Ee— = v

and the poéint (xl,yﬁj lies in the asymptotic region., The results of




the orbit calculation are passed to the subroutine COORD which will
compute the position (%, ¢) of the particle at any value of ¢ re~
quired by the TE-integral,

The correlation function C(ﬁ) is to be computed for 100 values

of T in steps of TSTEP. The TE-integral is evaluated for every value
of T each time it is called, since each pair of values (€,BE) re-

quires the computation of a new orbit, The energy integral is evaluated

using a five_point Gauss—Laéﬁerre quadrature, The abscissae and weights -
, of the quadrature are read in at the beginning of the computatlon as

the arrays T and WEKT, 1?

For the BR and TE-integrals, the following
‘substitutions are made to reduce the domain of integration to the unit- ' 5-
interval.
oo
deE BE f(EE,BE,T)
. [o]
1 -3 :
">/a. z~ (1-2z) dz f(EE,BE,T)
0 } .

vhere BE = a (zT%el) and a1 ; and

_fodTEA £(EE, BE, TE, )

1
-2
— [ a 2z dz £(EE,BE,TE,T)
(+]

where TE = a (z-l-l) and a = .

The integrals were evaluated using Simpson's rule, with 64 and 16
intervals respectively, and three steps of Romberg's method, fThe
small interval size in the BE-integral is required because there is a

discontinuity in the integrand for low energy collisions, As the




impact parameter BE iﬁcreases,'for a fixed value of €, the centfi-
fugal barrier of ?%ff will eventually become high enough to re-
 flect the particle and prevent it fronm reaching the repulsive core

of the potential, vhen this happens, the turning point of the orbit
will switch from a small raéius to a larger oné; since thg pair polai-'

lzability function varies rapidly with intermolecular separation, this

- results in a large reduction in the peak value of the pair polarlzabllity

when the value of BE becomes large enough to cause the swltch " This

behavior is illustrated in Figure 3-3,

| After obtaining ¢(t¢), the Fourier transform is applied and the
resulting spectrum.is interbola%eé at intervals of 1 cm°1@ 'Finally,
the spectrum is normalized so that the CIS intensity is expressed in
units of the Hoy S(1) rotation line séattefing cr;ss section per ﬁhit’
(1 cm“;) frequency interval, when both gases are‘maiﬁtained at unit
(1 mole/liter) density, The spectrum is "corrected” for the Boltzmann
-1)

asymmetry by multiplying the Stokes side by exp(+ cu(cm
2(205 em ™)

:where kr/he = 205 cm-l at room temperature., The correction on the

anti-Stokes side would be the inverse of this factor, The total scat-

tering cross section for the spectrun is given by the value of CC'=O)ﬁb(02
The computation of a single spectrum requires about 25 minutes

on an IBM 370, The final results are expected to be accurate to about

one percent and the execution time could be reduced by several factors



FIGURE 3 - 3

Discontinuity in the Integrand of the BE - Integral for Iow

Energy Collisions

a) The BE-integral sums the contribution to the correlation
function , 6f collisions with different impact parameters but a
fixed energy. 1In the example we are presenting, EE = €/R =
1.1575281 , T= 0 in ¢o(z) , px) = x> and the substitu-
tion BE = 0,9 (z ~ ~ 1) has been used to map the range 0->060
of BE onto the unit interval, z=0->1 , V The discontinuity in
the integrand of the BE—lntegral plotted as a function of z,
occurs at z = 0,37 (BE = 1,52 ,)

b) The discontinuity in a) occurs when the turning point

lle

Jumps abruptly from x £ 1,07 to x £ 1,18 as BE increases
through the value BE = 1,52 , - (The turning point of the mo~-
tion is the point where the effective potential gfff(x)

crosses the horigontal line f£(x) = 1,) The discontinuity in

‘a) is very pronounced in this case because the gfff(x) is al-
most flat in the region around the turnlng point for B = 1,52 ,
For BEK1,52 , the particle has a very small velocity over a

wide region approaching the turning point, It stays at small

x values for a disproportionately long time, and slncefe(x) x3
is strongly dependent on x, the contirbution to the BE-interal is
also large, When BE>1,52 , the turning point moves to a larger
X Value,7and the velocity of thevparticle as it approaches the
turning point remains high. The particle spends less time near .
the turning point and the turning point is at a larger separation,
so the contribution to the BE-integral is much smaller, A discon-
tinuity in the BE-integrand can occur whenever the local maximum

of g%ff(x) lies near the horizontal line f(x) =
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of two by eliminating all calculations which are uﬁnecessary for
achieving the required accuracy in the final result, This however
would require a more flexible and more complicated program,

A tyfical calculated correlation function, fbf Ar, is‘presented
in rigure 3-4 and the corresponding spectrum is given in Figure 3-5.

As was mentioned before, colllslons involving free particles

are not the only ones poséible. But since the scatfering from bound

dimers is responsible for only about 10 pgrcenf of the total intensity
:and_this,qgntribupioniés confined to the.region at small frequeﬁcy
shifts, we will be satisfied with a very rough approximation to the
bound dimer spectrum., Ve will considér thevbound dimer spectrum as
being due to rigid, freely rotating pairs with the intermblecular
separatioﬁ fixed at the minimﬁm of the intermolecular potential, The
rotational constants are then B =0, 060, 0,140, 0,105, 0, 0116 and

0,0051 cnm -1 for dimers of Ar, CHQ. CD&’ CFa and SF6, respectively,

In faét, the bound dimers are not rigid rotors but are only weakly
bound, particularily the ones we classed as metastable bound dimers,

Vibrations will have large amplitudes and the vibrational Raman spectrum

(to the extent that we may talk about separate vibration and rotation
spectra in this strongly coupled case) will lie in the same frequency
range as the rotational spectrum and have a comparable intensity, Further-

more, the vibration and rotation frequencies will be lower than the




FIGURE 3 - 4

The Calculated Correlation Function Tor Unbound Dimers of Ar

9

The correlation function G(¢) , in units of A7 , is plotted ver-
sus T in the range of 0 to 10 psec. _The DID model, /3(x) == X—B, was
used in the calculation, along with the parameters in Table 3 - 2
and the program listed in Appendix 3 - A, The zeroth moment due to

free dimers is ¢(T= 0) = %f:(:'gl = 37.5 °A9 ‘while the zeroth moment

due to all contributions is 52&5'2])_ = 42,7 .29 , so that our calculation _
which ignores bound dimers, accounts for 88 percent of the total scat--
tered intensity,

The correlation function C(T) is calculated using five values of
the total energy of the colliding pair of atoms, Past T = 1,0 psec,
¢(t) is almost completely determined by the lowest energy collisions
E = 0,26 kT, except the higher energy collisions deepen the dip at
T= 3.0 psec by a factor of two, ForT<1,0 psec, the next two en-
ergies, B2 1,4 kT and E £ 3.6 kT account for about 1/2 and 1/6,
iespectively, of the value of C¢(r) . The next two values of E
(7.1 kT and 12,5 kT) are completely negligible except for
T £ 0,1 psec.
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FIGURE 3 - 5

‘The Calculated CIS Spectrum for Ar

The spectral intensity of CIS from Ar, obtained by Fourier
transforming the C(T) of Figure 3 - 4, is plotted as a function
of frequency shift in cmnl. The spectrum due only to unbound
dimers of Ar is given by the dashed line, while the spectrum in-
cluding the approximate bound dimer contribution is given by the
solid line, The contribution to the spectral intensity due to
bound dimers is significant out to about 8 ent . The overall
'Spectrum decreases roughlyeexponentiallyv’with frequency shift:

I(w) A exp(- w/w,) v ;

The spectral intensity scale is in. unlts of the spectral

intensity per unit frequency interval (1 cm ) lelded by the
intensity of the H2 S(l) rotational Raman line when both gases
~ (H, and Ar) are at unit (1 mole/l;ﬁgr) density.
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collision frequency at moderateldensities, which makes even thé
assumption of free rotor behavior a poor approximatioh,l Since it is
difficult to proceed otherwise, ﬁe will take the shape of the bound
dimer spectrum as given by rigid rotor calgulation (with the grbranch
broadened to'giQe a smooth spectralgpfofile) and adjust its intensity
to match the difference between the total scattered intensify and the

free (unbound) dimer contribution, The result of this simple and crude

approximation for the bound dimer spectrum is shown for Ar, along with

: 16
the free dimer spectrum, in Pigure 3-5,
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. NOTES -AND_REFERENCES

When the separation of the atoms becomes comparabie to the
wavelengfh of the incident light, the phases of the scattered

waves from the two atoms will not be the same, But, in the

ICOntext of Cls;_VEry large distances are about 40 atomic

radii or about 0,02 wavelength of lighf So, for our intents
and purposes the asymptotlc value of the pair polarizablllty
is just 20( .

L., Silberstein, thil, Mag. 33, 521 (1917)

The results for two interacting point dlpoles polarlzabllltles

ares;

3 2
bt ;2
— 8 -1
(x) = —2 (1-._§.~.%_)
o r r r

per = — a-%. %

The present state of the theory of the pair polarlzablllty of

atoms is indicated in:

K. Clarke, P. A, Madden, A. D. Buckingham, Mol, Phys. 36, 301 (19?8)

A. D. Buckingham, R, g. Watts, Mol, Phys, 26, 7 (1973)
K. Clarke, P, A, Madden, A, D, Buckingham, Mol. Fhys. 36 301 (1978)

Goldstein, ¢lassical Mechanics y Addison-~YWesley, Reading,1950

Pathria, Statistical Mechanics, Pergamon, oxford; 1972

Chilag, Molecular collision Theory, Academic Press, Iondon 3 1974

P. Iallemand, Compte Rendu Acad, Se, Paris 2733; 89 (1971)
H. E. Levine, J. Chem, fhys, 56, 2455 (1972)

D. P. Shelton, G. C. Tabisz, Phys. Rev. 51;, 1571 (1975).




10,
11,

12,

13'

The expres31ons for the 0, 2, 4 and 6 th noments are given
in the papers c1ted in Reference 6, above,
For examples

Te M. Reed, X, E, Gubbins, Applied Statistical Mechanics,

MeGraw-Hill Kogakusha, Tokyo, 1973 ,
H, BE. Levj.ne, Je Chemﬁ. IJhySo 56 21"’55 (19?2)
The experimental values of the spectral moments may be used,

along wruzthe'unoretlcal expressions for the moments to

' determlne the parameter values in emplrlcal models for the

\

function P(x) « Ssee for exanple:
H. E. Levine, a. Birnbaum, J, Chem. Phys., 55, 2914 (1971)
F. Barocchi, M, Zoppi, D. P, Shelton, @, C. Tabisz, Can, J,.
Phys. 55, 1962 (1977) |
The classical calculation of the spectrum has been given in;
P. Iallemand, J. de Phys, (Paris) 32, 119 (1971).
The quantum mechanical calculation of the spectrum has been
given in:
L. Froﬁmhold, K. H. Hong, M. H, ?:offitt, Mol. Fhys, Qé,
665 (1978) " | |
The potential functions used were usually of the Lennard~Jones
6~-n type: |
€ ¢Qx) = ¢ (x " x_6) |
where =4 for n=12 and C = 2,393276 for n = 20 .
For Ar, a potential of the form
655():) = n‘fg x . n_r.l x—6 )
was used, vwhere n = 4 4+ 9x , X = r/fﬁ ~and L = the radius

of the minimum in the intermolecular potential,




14, -

15.

16,

For the techniques of numerical analysis see;

G, Dahlquist, A, Bjork, Numerical Methods, Prentice-Hall,

Englewood Cliffs, 1974 ,

M,-Abramqwitz, I. Stegun, Handbook of Mathematical Functions,

Dover, New Ybrk, 1965

The results of a (quantum mechanical) calculation of the CTS
spectrum for Ar which correctly accounts for the bound dimer

spectrum is presented ing -

L. Frommhold, M, §, Proffitt, Mol, Phys, 35, 681 (1978) .




APPENDIX 3 ~ A

Iisting of the Program for the Correlation Function Calculation

The subroutines in the lisﬁing are:
MATN \ |
OUTFFT (COFT, TSTEP, A)
OUTCOR (CT)

GRAPH (PIOT, NPTS)

SPLINE (A, Y, N)

+  SOFX (A, X0, X1, N)

FFT (M, A, CX, €S, N)

CORREL (COFT, TSTEP)

BNTGRL (CT, EE, TSTEP, N)
+ TNTGRL (TAU, BE)

ROMBRG (FVAL, RESULT, Ni)
+  FOFT (TE, TAU, BE) |
+ BFX (X)

COORD (T, BE, CX, CPSI)

ORBIT (BE, ER)

RUNGE (TX, TSI, BE, EE, H)
+ FUNC (EX, BE, EE)

TURNIN (BE, EE, XMIN)

POTOFX (X, POT, POTD, POTDD)
The subroutines marked with a % are functions. See Figure 3-1

for the organization of the calculation.




0001
0002
0003

0004
0005
0006
0007
0008

- FORTRAN IV ¢

(10fﬁf}ﬂ(ﬁ(ﬁﬂ(ﬁ()ﬁtﬁf}n(ﬁfﬁrbﬂ

T e e S e i e e T e e S g VT e e e e et an SN il g N T T e,

CHMAINT

IMPLICIT REAL*8 (A-H,0-7)
REAL*8 COFT (100) ,
COMPLEX*16 A (1024)

BOTH PROGRAM STEPS AND INPUT DATA NUST BE CHANGED WHEN MOLECULAR PARAMETERS
ARE CHANGED , : .

CHANGES IN THE POLARIZABIIITY FUNCTION ARE INCORPORATEL DIRECTLY IN 'BFX{X)* .
CHANGES IN THE INTER¥OLECULAR POTENTIAL RESULTS IN CHANGES TO THE PARAMETERS
'ACRIT',‘ECEIT’,'XCRIT' AND 'C' IW 'TURNIN (BE,EE,XMNIN)® AND REQUIRES THAT
SEGMENTS OF ‘FUNC(EX,BE.EE)' AND ‘POTOFX(X,POT,POTD,PCTDD)' EE REWRITTEN .,

THE PARAMETERS T0Q BE READ FROM CARDS ARE 'CONST','TSTEP','EPSKT' AND 'SIGVEE!
FROM THE FIRST CARD AND YEKT(5)' aND 'WEKT (5) ' FROM THE NEXT TWO CARDS .

THE NUMBEERS 'EKT(5) ' aND 'WEKT{5)' ARE THE ABSCISSAE AND WEIGHTS OF A FIVE
POINT GAUSS-LAGULERRE QUATDFATURE . '

THE VARIABLE SEGHENTS OF THE PROGRAY ARE DENOTED BY STARS AS FOLLOWS
%k e e 3k ok ok

VARIABLE SEGMENT

e He e e Fe e

CALL CORREL(COFT,TSTEP}
CALL TRNSFHN (COFT, A) ,
CALL OUTFFT(COFT,TSTEFyA)
STOP

END

%6




T i L W e W e L B 2 I P U S R i T S -

 FORTRAN IV ¢~ T T gurrpr T =

0001 SUBROUTINE OUTFFT(COFI,TSTEP,A)

D002 INPLICIT REAL*8 (A~H,0-7)
0003 CCHPLEX*16 A {1024)
0004 ~ REAL*S TEMP(1024)
0005 REAL*4 PLOT {128)
00056 REAL*8 COFT{100)
0007 ‘ REAL*8 B(1027),Y(1027),C{400)
0008 - NPTS=128 .
0009 DO 100 J=1,1024
0010 100 TEHUP (J)=CDABS {A (J))
0011 WRITE {6,295)
0012 ' WRITE(b,296){TEMP(J),J=?,102M
0013 295 FORMAT('1v/1Q1) .
0014 296 FORMAT({'0',5D16, 6)
0015 DO 110 J3=1,1024
0016 IF (TEMP (J) .EQ.0.D0) TEMP {J)=1. DO
0017 110 TEHP {J) =DLOG (TENP (J))
0018 DO 120 J=1,128
0019 120 PLCT (J) =TEHP {J) : . ‘ |
0020 CALL GRAPH{PLOT,NPTS) . ' |
0021 DO 130 J=1,128 . L , |
0022 130 PLOT{J) =TENP (2% J-1) ‘ ;
0023 CALL GRAPH({PLOT,NPTS) o ‘ , ;
0024 DO 140 J=1,128 : ' - : g
0025 140 PLOT (J) =TEMP (4%*J~3) ' §
0026 CALL GRAPH(PLOT,NPTS) ' ' ' ¢
0027 Y{514)=CDABS {A{ 1)) : ’ - ;
0028 DO 150 J=1,512
0029 Y {514+4J)=CDABS (A {J+1))
0030 _ 190 Y{514=3) =Y (5144 7)
0031 N=1027 -
0032 CALL SPLINE{B,Y,N)
0033 X0=-16,678230D0/TSTEP

0034, . ¥il=-x0




0035
0036

0037 -

0038
0039
0040
0041
0042
0043
00ty
0045
0046
0047
0048
Q0uy
0050
0051
0052
0053
0054
0055
0056
0057
0058

0059 .
0060

0061
0062
0063

006y
0065

155

300
301
305

160
165

302

170

303

NMAX=X1

DO 155 J=1,NMAYX

X=J-1 '

C{J) =S0FX(X,B,X0,X1,N)
- WRITE(6,300)

WRITE (6,301) : S
WRITE(6,305)(C(J),J=1,NﬁAX) . A g

FORMAT(*11/101) : '

FORUAT {* *,5%,! SPECTRUH EVERY 1 CHM-1 BEFORE SCALING!)

FORMAT ('01,5D16., 6)

TTL=C (1) -

DC 160 J=2,NHAYX

TIL=TTL+2%C (J).

COFT1=COFT {1)

CONST=8.38Y668D-3*COFT1

FACTOR=CONST/TTL

DO 165 J=1,NMAX

C{J)=C(J) *FACTOR

WRITE (6,300)

WRITE (6,302) ,

WRITE(6,305)(C(J),J=1,NMAX)

FORHAT (' ?,5X,'SPECTRUM EVERY 1 Cl=1 AFTER SCALING ')

DO 170 J=1,NMAX

X=J-1

C(J)=C(J)*DEXP(X/Q?O,19DO)

WRITE (56,300) '

WRITE (6,303) '

WRITE(6,305) (C{J) ,JI=1,NMAX _ :
FQB&AT{im',§X,'SPECTRUM:EVEBY 1 CﬂfingﬁxﬁBMSCALINQMAND BOLTZMANN?Y
C ,? CORRECTION') o : S '
RETURN

END

6




FORTRAN IV G

0001
0002

0003
000y
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

300

100

CUTCOR

SUBRQOUTINE OUTCOR(CT)
TMPLICIT REAL*8 (A-H,C-72)
REAL*8 CT(100) ,cC(100) -
REAL*Y PLOT(128) _
WRITE(B,BOO)(CT(J),J=1,100)
FORMAT ('0',5D16.6)

DO 100 J=1,100

CC(J) =DABS(CT(J))

IF{CC (J) .EQ.0.D0) CC{J)=1.D0
CC{J)=DLOG (CC(J))
PLCT (J) =CC {J)

NPTS=100

CALL GRAPH(PLQT,NPTS)
RETURN

END




FORTRAN Iv ¢~~~ = - GRAPH

0001 | SUBROUTINE GRAPH(PLOT,NPTS)
C 5
€ INPUT IS A REAL*S VECTOR ELOT (128)
C NPTS MAY BE 100 OR 128 POINTS
c
0002 REAL*4 PLOT (128)
0003 REAL*4 MAX,MIN
0004 INTEGER*4 IPLOT (128, 2)
0005  LOGICAL*1 LINE(128) s128%¢ v
0006 LOGICAL*1 BLANK/' ', STAR 1%+, |
c | » |
C FIND MAX AND MIN |
: C
0007 MAX=PLOT (1) |
0008 HIN=PLOT (1)
0009 DO 100 I=1,NPTS
0010 IF (PLOT(I).GT.MAX) ¥AX=ELOT (1)
0011 100 IF(PLOT (I).LT.MIN) MIN=ELOT (1)
C SCALE AND ROUND TO NEAREST INTEGER
- C ; ‘
0012 ~ IF(MAX.EQ.MIN)GO TO 121
0013 SCALE=50. / (NAX-NIN)
0014 GO TO 122
0015 121 SCALE=0,
0016 122 IBSLN=-SCALE*HIN
0017 DO 120 I=1,NPTS |
0018 PLOT (I) =PLOT {I) *SCALE+IBSLY
0019 IPLOT (I, 1) =PLOT(I) -
0020 IF((19L0T(1,1)+1.-PL0$(I;).LT,G,S)IPLOT(I,z;=IPL0T;I,a)+1

96




0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

0036
- 0037
- 0038
0039
0040
00419
. 0042
0043
0044
- 0045
0046
0ou7

SRRl

C
C
C

SORT

142 ISORT=0
N=NPTS-1 _
DC 140 I=1,N
ITF(IPLOT(T,1) .1T.IPLOT(I+1,1))G0 TO 141
GO TO 140
141 ITEMP1=IPLOT(T,)
ITENP2=IPLOT (T, 2)
IPLOT (I,1) =IPLOT(I+1,1)
IPLOT (I,2) =IPLOT(I+1,2)
IPLOT(I+1,1)=ITENP]
IPLOT (I+1,2) =ITEMD2
ISORT=1
140 CCONTINUT
IF (ISORT.EQ.1)G0 TO 142

PLOT

WRITE {6 ,200)

IF{NPTS.EQ.100) WRITE(6,205)

IF (NPT5.EQ.128) WRITE (6,206)

. _ _

DO 180 ¥=1,52

u=0

DO 181 I=1,NPTS

IF(I.GT.NPTS)GO TO 182 |

IF{IPIOT(T,1) .EQ. {52~K))GC TO 183
182 GO TO 184 ’
183 J=IPLCT(I,2)

LINE(J) =STAR

46




B e e

181 M=p+1
0049 184 IF(NPTS.EQ.!OO)WRITE(6,210)(LINE(J),J=1,100)
0050 IF(NPTS;EQ.128)WRITE(6,211)(LINE(J),J=1,128)
0051 IF(szs.EQ.100.AND.IBSLN.EQ.(52—K3)WRITE(6;215)
0052 IF(NPTS.EQ.128.AND.IBSLN.EQ.(52-K))WRITE(6,21&
0053 DO 185 N=1,NPTS ‘ : '
0054 185 LINE (N) =BLANK
0055 180 L=L+y - _
0056 : IF(NPIS,EQ.100) WRITE (6,205)
0057 IF (NPIS.EQ.128) WRITE(¢,206)
0058 WRITE {6,220) MAX,NIN
0059 200 FCRMAT('1'/101)
0060 205 PORMAT(' *,18X,10( '4m=mmoma- =) P 4mry
0061 206 FORMAT {? 'r2X 13 (T Hommm e a1y :
0062 210 FORMAT (' TAA8X, 17,1004, 1)
0063 211 FORMAT(® 'e2X,'1,12881,7 ) _ |
0064 215 FORMAT('+',18X,1O(’+--°--5---’),'+—') |
0065 216 FORMAT('+’,2X,13('+~-’---—~-')) ' o ;
0066 220 FORMAT{"0',30X,'HAXINUN VALUZ=' ,E14,7,5X, *MININMUH VALUE="Y,

C E14.7/107) } -

0067 RETURN
0068 END

© 86




PORTRAN IV G

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

SEoNoNe

SELINE
SUBROUTINE SPLINE{(A,Y,N) _ '
FIND THE COEFFICIENTS OF THE BELL-SHAPED BASIS FOR THE CUBIC SPLINE PASSING
THROUGH N-~2 EQUIDISTANT PGINTS WITH ZIRo CURVATURE AT THE END POINTS.
THE N¥=-2 FUNCTION VALUES ARE ENTERED 1X Y(2) TO Y{(N-1), ~
THE GAUSS-SEIDEL METHOD IS USED TO FIND THE COEFFICIENTS RETURNED IN A(N).
IMPLICIT REAL*8 (A-H,0-7)
REAL*8 A (N), Y (N)
EPS=1,D=10"
Y (1) =0.D0
Y (§¥)=0.D0
DO 100 J=1,N
100 A (J) =Y (J)
150 A0LD=A(N,/2) |
A1) =2%R(2) A (3) +Y (1)
NN=N-1
DO 155 J=2,NN
195 A(J) =-2(3=1) /5=R(J+1) 4+3%1 (J) /2

A(N)=-A(N-2)+2*A(N~1)+Y(N) .
IF(DAES((A(N/Z)-AOLB)/A(N/2}).GT.EPS) GO TO 150
RETURN , _

END

66




FORTRAN IV G S T serx T

0001 ' DOUBLE PRECISION FUNCTION SOFX(X,A,XO,X1,N) ,
~ € THE COEFFICIENTS QOF THE BELL-SHAPED BASIS FOR THE CUBIC SPLINE PASSING
C THROUGH N-2 EQUIDISTANT POINTS BETWEEN X0 AND X1 WITH ZERO CURVATURE AT THE
C END POINTS ARE GIVEN IN A{N), ' ’
C THE VALUE OF THE SPLINE AT THE POINT X BETWEEN X0 AND X1 IS CALCULATED.

0002 INPLICIT REAL*S {A-H,0-Z)
0003 REAL*8 A (N)

0004 ‘ U= (X1-X0) /(N=3)

0005 JAY=(X-X0) /H

0006 J=JAY +2 _ :

0007 XJ=X0+JAY*H |
0008 DXJ=(X~XJ) /H ‘ :
0009 ~ DXJP=(XJ+H-X) /H ' , |
0010 IF(J.EQ.N=1) GO TO 100 ;
- 0011 SOFX=A(J-1)*DXJP**3/6+A{J)*(DXJ**3/2-DXJ**2+2.DO/3) ' §

C +A(J+1)*(DXJP**S/Z—DXJP**2+25DO/3)+A(J+2)*DXJ**3/6 ’ :

0012 : GO TO 105 ‘

0013 100 SOFX=A{J-1)/6+A(J)*2/3+A(J+1)*(DXJP**3/2-DXJP**2+2.DO/3)

0014 105 CCNTINUE '

0015 RETURN

0016 END

- 00T




FORTRAN IV ¢ =~ - 7 oRNSEM

0001 SUBROUTINE TRNSFM{COFT, a)
C FOURIER TRANSFORN THE CORRELATICN FUNCTION. USE ZERO FILLING.
0002 IMPLICIT REAL*8(A~H,0-7) ' :
0003 - REAL*8 COFT (100)
0004 INTEGER*4 CK
0005 REAL*8 CS(1024)
0006 COMPLEX*16 A(1024),CHPLY
0007 CK=1 :
0008 M=10 |
0009 N=1024 : : |
0010 DO 100 d=1,1024 o : .
0011 100 A{J)=(0.D0,0.D0) ‘ §f
0012 DO 102 J=2,100
0013 A (J+511) =COFT (J)
0014 102 2(513-3) =a(3+517)
0015 A {512)=COFT (1)
0016 CALL FFT({M,A,CK,CS,N)
0017 - RETURN
0018 END

10T




FORTRAN IV G - N . FET

0001 SUBROUTINE FFT (M,A,CK,CS,N)
C
c CR=90 GENERATE TABLE OF CS5(I) ONLY
C _ =1,~1 GEN. TABLE AND TRANSFORM(?),INVDRSE( 1)
0002 INTEGER*4 CK
C =2,-2 ASSUME TAELE EXISTS, GEN. TRAN.(Z),INV.(-2)
0003 ' REAL*8 DFLOAT,DCCS
0004 REAL*8 FNH, FNMT PION,FI,THT, WI » HR
0005 REAL*8 pI/3, 1u1592653589830/ CS(N)
0006 CONPLEX*16 A(N),W,T, LCHPLYX,DCONJG
0007 IC=CK .
0008 IF(IABS (IC).GT.1)GO TO 20 , : : |
: C GENERATE TABLE OF COSIN“S ETC. N |
0009 _ IF (M. LE 0) sToOP : |
0010 MOLD= |
0011 NM= 2**m '
0012 FNU = DFLOAT(NM)
0013 ' ~ NUT=NN/2
0014 : NMTP1=NNMT+1
0015 NMF=NMT /2
0016 NMFP1=NNF#+1
0017 FNNT = DFLOAT (NHT)
0018 PION=PI/FNNT
0019 DO 10 I=1,8MFP1
0020 : FI = DFLOAT(I-1)
0021 , THT=FI*DPIQON
0022 10 CS{T) = DCOS(THT)
0023 IF{IC.EQ.0)GO TO 140
0024 . 20 IF (M.NE.NCLD)STOP
0025 : IF{IC.GT.0)GO TO 40
C INVERSE= (TRANSFORM{A*)/N)*, THUS, CONJUGATE
0026 DO 30 I=1,NH ' '

0027 o 30 AT _,F_.,F??QNJ‘G.(E\__ @y

20T




e TRANSFORH

0028 40 DO 100 L=1,u ,
0029 LP1=L+1 -
0030 EMLobot - . _ i
0031 NSTEE=2%%My],
0032 NS2=2%NSTEP
0033 ITER=NM/NS2
0034 DO 90 J=1,ITER
C _THE LAST BIT SHOULD ALWAYS BE ZERO FOR IR
0035 . IR={J~1) %2
0036 IBR=0
0037 DO 50 IL=1,L |
0038 K=MOD (IR, 2) 5
0039 IBR=2%IBR+K
0040 IR=IR/2
0041 50 CCNTINUE
0042 IER=IBR*NSTEPD
0043 IBI=TABS (NMF~IBR) +1
004y WI=CS (I3I)
0ous , IF (IBR.GT.NNF)GO 70 60
0046 WR=CS {IBR+1) ,
0047 GO TO 7¢ :
0048 60 WR=-CS (NMTP1~IBR)
0049y 70 W = DCHPLX({WR,WI)
0050 " NB=(J-1) *NS2
0051 DO 80 I=1,¥STEP
0052 N=NB+1I
0053 : N1=N+NSTED
0054 , T=A(N1) *W

0055 © A{NT)=A(N)-T

€0t




0057
0058
0059

0060
0061
0062
0063
0064
0065
0066
0067

0068
0069
0070
0071
0072
0073

0074

0075
0076
0077
0078

Ooggwmmhw

aOnn

)

80
90
100

110

120

130
140

CONTINUE
CONTINUE
CONTINUE
THE FOURIER SUMS ARE COMPLETE, BUT THEIR
ALDRESSES ARE BIT-REVERSED. THE FOLLOWING
CCDING PUTS THEM IN ORDER.
DO 120 I=1,NH
IR=I-1
IBR=0
DO 110 J=1,N
K=MOD (IR, 2)
IBR=2*IBR+K
IR=IR/2
CCNTINUE :
IER IS THE BIT REVERSED VALUE OF I-1
IER=IBR+1
IF(IBR.LE.I)GO TO 120
T=2(I)
A (I)=A{IBR)
A {IBR)=T
CCNTINUE :
BIT REVERSAL IS COXPLETE
IF{IC.GT.0)GO TO 140
CCNJUGATE AND DIVIDE EY ¥
DO 130 I=1,Np ' ‘
A(I) = DCCNJG (A (I)) /FKN
RETURN
END
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FORTRAN IV g  CORREL

0001 SUBROUTINE CORREL(COFT,TSTEP)

0002 IMELICIT REAL*8(A-H,0-%)

0003 : REAL*S COFT(100) ,CT (100) ,CE (100, 5)
0004 REAL*8 EKT(5) ,WEKT(5) |

0005 REAL*8 EEI(S5),WT(5), ALPHA (5)

C YEKT' AND 'WEKT'! ARE THE ABSCISSAE AND WEIGHTS FOR A FIVE POINT
C GAUSS-LAGUERRE QUADRATURE . -

0006 ' ¥=100 : :

0007 ' READ(5,200)CGNST,TSTEP,EPSKT,SIGVEE

0008 READ(S,ZOO)(EKT(J),J=1,5)

0009 READ(S,ZOO)(WEKT{J),J=1,5)

0010 200 FCRMAT (5D16, 8)

0011 WRITE (6,293)

0012 293 FORMAT(*17 /107 5%, 7CONST= "+ 11X,*TSTEP= ' ,11X,1EPSKT= ', 11%,
C 'SIGVEE= 0

0013 WRTTE(6,29a>CONST,TSTEP,EPSKT.SIGVEE

0014 294 FORMAT ('0',4D 18, 8) :

0015 WRITE (6,295) ‘ -

0016 295 FORMAT(70'/107,5%,1 3= *eSX,'EKT= 1, 12X, WERT= ry

0017 . DC 100 J=1,5 ‘

0018 100 WRITE(6,296)J,EKT(J),HEKT(J)

0019 296 FCRMAI('O’,SX,IB,ZD18.8)

0020 _ DC 101 J=1,5

0021 - LEI{J)=EPSKT/EKT (J)

0022 WT(J)=WEKT{J)*DSQRT(EKT(J))

0023 101 AIPHA(J}=SIGVEE/DSQBT(EKT(J})_

0024 ' HRITT {6,300) o :

0025 300 FORMAT(*Q' /107 5%, 13= "y 8X,"EEI(J) = P10, TRT(I) = 1,11,
C "ALPHA([J)= 1?) , ’

0026 DO 102 4=1,5

0027 102 WRITE(6,305)J,EEI(J),WT{J),ALPHA(J)

0028 305 FOBMAT('ov,sx,13,3x,anvs.m

0029 DO 110 J=1,5

0030 sTEp=Ts TER/ALPHA(T)
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0031 EE=EEI(J)

0032 CALL ENTGRL(CT,EE,STEP, N)

0033 DO 115 K=1,¥ ‘ .

0034 115 CT (X) =CT (K) *CONST

0035 WRITE {6,298) '

D036 298 FORHAT (111)

0037 HRITE (6,300) ,

0038 WRITE(6,305)J,EEI(J),WT{J),ALPHA(J),CT(1)

0039 WRITE (6,299)

0040 299 FORMAT('0')

0041 CALL CUTCOR(CT)

0042 DO 110 K=1,N

0043 110 CE(K,J)=CT (K) ;
0041 DO 120 K=1,N - S ' : |
0045 120 COFT (K) =CE(K, 1) *HT (1) | | | | | S
0046 DO 130 K=1,N . _ é
0047 PO 130 J=2,5 é
0048 130 COFT (K) =COFT (K) +CE (K, J) *WT () i
0049 WRITE (7,330) (COFT(J),d=1,N)

0050 330 FORMAT(5D15.6)

0051 WRITE (6,310) '

0052 WRITE {6,315) TSTEp :

0053 310 FORMAT(*111/70%, 'CORRELTATION FUNCTION IN STEPS OF PSEC?)

0054 315 FORMAT('+',33X,F6,3,7¢")

0055 CALL CUTCOR(COFT)

0056 RETUR N

0057 © END

90T
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FORTRAN IV ¢ BNTGRL R S Con

0001 _ SUBROUTINE BNTGRL (CT, FE, STEP, N)

0002 INPLICIT REAL*8(A~H,0-7)

0003 REAL*S CT(100),TEMP(129,100),FVAL(129)

0004 ' N¥M=6

0005 NPT=2%% (NM+1) +1

0006 _ RNPT=NPT~-1 .

0007 - DO 100 K=1,%

0008 TENP{NET,K)=0.D0

0009 100 TEMP{1,K)=0.D0

0010 JJI=NPT=-2

0011 DO 105 J=1,dJ » ~ |
0012 Z=J/RNPT A : i
0013 A=0,9D0 ' : - C
0014 , BE=(1/4-1) *A

0015 CALL CRBIT{BE, EF)

0016 CONST= (A%%2) % (2% (~3) ) % (1~7)

0017 DO 105 K=1,N ' ;
0018 CTAU=STEE* (K-1) , :
0019 105 TEMP (J+1,K) =TNTGRL (TAU, BE) *CONST. ‘
0020 ' DO 110 K=1,N :

0021 DG 115 J=1,NPT

0022 115 FVAL(J) =TEMP (J,K) _
0023 CALL BCMBRG(FVAL,RESULT,NHN)
0024 110 CT{X) =RESULT

0025 RETURN

0026 - END

AQI
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FORTRAN IV g
0001 DOUBLE PRECISION FUNCTION TNTGRL (TAU,BE)
0002 IMPLICIT REAL*8{A-H,0-7)
0003 REAL*8 FVAL(129)
0004 Ni=4 -
0005 NPT=2%% (NM+1) +1 .
0006 RNPT=NPD-1
0007 FVAL{1)=0.D0
0008 JJ=NPT~-1
0009 DC 100 J=1,3J
0010 Z=J/RNPT
0011 A= {BE+0.9D0)
0012 TE=(1/2~1) %A
0013 TEN=-TE
0014 CONST=A%*Z%*% (=2) , ‘
0015 100 FYAL (J+1)={ POFT(TE, TAU,BE) +FOFT (TEM,TAU, BE) ) *CONST !
0016 CALL RGMBRG(FVAL,RESULT,NN) . . §
0017 TNTGRI=RESULT ?
0018 RETURN
0019 END

80T




FCHMBRG

FORTRAN TV ¢ - N
0001 SUBROUTINE ROMBRG(FVAI,RESULT,NH)
0002 IMELICTIT REAL*8({4-H,0~2) , _
0003 ‘ REAL*8 FVAL(129) ,FHAT {3) '
C THE INTEGAL OF F(X) ON THE INTERVAL (0,1) IS COUPUTED USING SIMESON?S
C RULE AND TWO STEPS OF ROMBERG'S METHOD. THE VALUES OF F(X) AT 2%% (NM+1) +1
C EQUALLY SPACED POINTS, INCLUDING X=0 AND X=1 + ARE TO BE CONTAIKED IN TFYALY,
C THE VALUE OF THE INTEGRAL IS EETURNED IN *RESULT!, THE QUADRATURE IS
C EXACT FOR SEVENTH ORDER PFCIYNOMIALS.,
C NM.GE.3 IS REQUIRED .
C . .
C THREE APPROXIMATIONS TO THE INTEGRAL ARE CONPUTED USING SIMPSON'S RULE,
C THE STEP SIZE BEING HALVEL FOR EACH SUCCESSIVE APPROXIMATION.
- c , : A o
0004 NPT=2%% {(NM+1) +1 , :
0005 DO 100 E=1,3 , ' %
0006 BM=M+N1-3 - ’ §
0007 N=2%*xMH B
0008 H=1.D0/ (2%N) 7
0009 , NN=N-1
0010 JJI=(NPT-1) %1
0011 FHAT (M) =FVAL (1)
0012 DO 110 J=1,88 . ’ -
0013 110 FHAT(M;=FHAT{M)+Q*FVAL§1+(2*J~1)*JJ)+ 2*FVAL(1+(2*J}*JJ}
0014 FHAT(M)=FHAT(E)+4*FVAI(NPT*JJ)+FVAL(NPT}
0015 100 FHAT(M)=(H/3}*FHAT{M)
C
C NOW APPLY TWO STEPS OF RCMEERG®'S METHOD.
c T ‘
0016 FHAT(1)=FHAT{2)+(FHAT(2)fFHAT{1))/15
0017 FHAT(Z}=FHAT(3)+(FHAT(3)~EHAT(2))/1S
0018 FHAT(?}=FHAT(2)+{FHAT(2)-FHAT(1))/63.'
0019 RESULI=FHAT (1) '
0020 ' RETURN -
0021 END

- 60T




FORTRAY IV ¢ , FCFT , SR ;
0001 DCUBLE PRECISION FUNCTION FOFT(TE,TAU,BE)
0002 INPLICIT REAL*8 (A-H,0-2)
0003 - T1=TE .
0008 T2=TE+T AU
0005 : CALL COORD(T1,BE,CX,CESI)
0006 . X1=Cx
0007 PSI1=CpSI
0008 - CALL COORD(T2, BE,CX,CPSI) .
0009  X2=C¥
0010 PSI2=CPSI
0011 P2=( 3%DCOS (PSI2-PSI1)%%2-1 )/2 %
0012 FCFT=BFX {X1) *BTX (X2) *E2 . - §
0013 RETURN - - ' ' ' ]
0014 END - ' ' g
- FORTRAN IV g o BF ¥ ' ' R
0001 DOUBLE PRECISION FUNCTION BFX (X)
0002 IMPLICIT BREAL*8 (A~H,0-7)
: C %kkkokk
C
0003 BEX=X%* (~3)
c _
C Fodkdedeskse
0004 RETURN
0005 : END

oIt




FORTRAN IV G S " ccopp

0001 , SUBROUTINE COORD (T, BE,CX,CPST)
0002 , IMPLICIT REAL*8(A-H,0-7)
0003 'REAL*8 X(101),PSI(101)
0004 CCMMON /AREA1/ X,PSI,INOT,PHI
0005 . TSIGN=1,D0
0006 IF{ T.NE.DABS(T) ) TSIGN=-1,D0
0007 T=TSIGN*T
0008 IF(T.GF.5.D0) GO TO 100
0009 FN=20%T+1 »
0010 N=FW .
C QUADRATIC INTERPOLATION, FIRST FOR x{ry .
0011 Y2=X (N) |
0012 Y3=X (N+ 1) ;
0013 - IF{N.EQ.1) GO TO 115 ¥
0014 Yi=x{n-1) - |
0015 GO TO 116 ?
0016 115 Y1=X {N+1)
0017 116 CCNTINUE
0018 : A={Y3+Y1) /2~12
0019 B=(Y3-Y1) /2
0020 ‘ C=Y2 :
0021 XH=FN~-N
0022 CX=A*XH*%2+ B*XH+ C
C NOW INTERECLATE FOR PST(T)
0023 Y2=PSI (N)
0024 : Y3=PST{N+1)
0025 IF(N.EQ.1)GO TO 117
0026 Y1=PSI (N-1)
0027 GC TO 118
0028 117 Y1=PSI (N+1)

0029 118 cewrimur




0030
0031
0032
0033
0034

0035
0036
0037
0038
0039
0040

A=(Y3+Y1) y2-v2
B=(Y3-Y1) /2
C=Y2 ,
CPSI=AXXH*%2+ BXXH+ C
GO TO 150
C ASYMPTOTIC RESULT

100 CX=DSQRT{ (T-INCT) **24BE*%2 )
CPSI=PHI-DARSIN(BE/CX)

150 CCNTINUE
"CPSI=TSIGN*CPSI
RETURN
END




FORTRAN IV G ' R ORBIT

0001 SUBROUTINE ORBIT(BE, EF)
0002 IMPLICIT REAL*8 {A-H, C~Z)
0003 REAL*S X{101) ,PST(101)
0004 CCMMON /AREA1/ X,PSI,TNOT,PHI
C FIRST INTEGRATE THE ORBIT OUT TO T=5 . STORE THE RESULTS IN STEPS OF 0.05 .
0005 } CALL IURNIN(BE,EE, XHIY)
0006 X{1)=XMIN+2.D-§
0007 PST {1)=0.D0Q
0008 TX=X (1) '
0009 TSI=PST (1)
0010 H=1.D-2
0011 DC 100 K=2,21
0012 DO 10% g=1,5 :
0013 105 CALL RUNGE(TX,TSI,BE, FE, H) :
0014 X(K)=TY ' ’ - |
0015 100 PSI({K)=TST : : o
0016 H=2,5p=2 ’ : - g
0017 BO 110 K=22,41
0018 DO 115 J=1,2
0019 115 CALL RINGE(TX,TSI, BE,FE,B)
0020 . X(K)=TX
0021 110 PSI(R)y=7s1
0022 . H=5.D=-2
0023 DO 120 K=42,101
0024 "CALL RUNGE (TX,TSI,BE,EE,H)
0025 X{R)=TX :
0026 120 PSI(K)=TSI ' , :
C NOW CCMPUTE THE PARAMETERS FOR THE ASYMPTOTIC REGION OF THE ORBIT.
0027 - INOT=5,DU-DSQRT ( X{101) #*2~-BE*x%2 ) -
0028 . EX=X (10 1) : '
0029 XDOT=FUNC (EX ,BE,BE)
0030 : VE=DSQRT { XDOT**2+ (BE/EX) %2 )
0031 : THETA=DARCOS(XDOT/VE)
0032 PHI=PSTI (101) +THETA
0033 RETURN . L
0034 ; END : =




FORTRAN IV G

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018

RUNGE

SUBROUTINE RUNGE(TX,TSI,BE,EE,H)
INPLICIT REAL*S(A’H,O'Z) '
EX=TX :
XKAY1=H*FUNC(EX,BE,EE)

- PKAYT=H*BE/EX%%2

EX=TX+XKAY1/2
YKAY2=H*FUNC (EX, BE,EF)

PKAY2=H*BE/EX*%2

EX=TX+XKAY2 /2

XKAY3=H*FUNC(EX, BE, ¥ )

PKAY3=H*BE/EYX*%2

EX=TX+XKAY3 ‘

XKAYU4=H*FUNC (EX, BE,EE)

PKAY4=H%*BE/EX*%2

TX =TX *XKAY 1+ 2¥XKAY2+42%XKAY34 XKAYY) /6
TSI=TSI+(PKAY1+2*PKAY2+2*PKAY3+PKAY4}/6
RETURN

END

HIT




FORTRAN IV G N © FUNC T S T

0001 DOUBLE PRECISION FUNCTION ?UNC(EX;BE;EE)

0002 IMPLICIT REAL*8 (A-H,G-7)
C THE SEGMENT BETWEEN THE STARS CONPUTES THE VALUE OF THE INTERHOLECULAR
C POTENTIAL AT THE EOSITICN *Egt
C kol :
C .
0003 . EN=449%EX
0004 IF{EX.GT.7.D0) GO TO 100
0005 A= (6/(EN-6)) *EX*x (- £N)
0006 GO TO 105
0007 100 A=0.D0 - ,
0008 105 B=(6/ (EN=6) ) ¥EX** (=6)
0009 POT=2-(EN/6) *B
c |
C ok sk : ~
0010 FUNC=DSQRT (1- (BE/EX) *#2~EE*D0OT) ;
0011 RETURN |
0012 END ;

41T




FORTRAN IV & S o TURNIN gt

0001 SUBEOUTINE TURNIN(BE,EE,X&IN)
0002 IMPLICIT REAL*B(A-H,C-Z)
C FIND THE LARGEST.ROQT OF THE EQUATION (1/EE)*ALPHA*X**(*2)-POT=O .
C THE EFFECTIVE POTENTIAL IS MCNOTONIC POR ALPHA.GT.ACRIT .
C WHEN ALPHA.LT.ACRIT + BUT EE,LT.ECRIT + THERE IS ONLY CONE ROCT EVEN THOUGH THE
C EFFECTIVE POTENTIAL IS NCT MCNOTONIC . _
C OTHERWISE THERE WILL BE ONE, TH®O OR THREE ROOTS DEPENDING ON THE HEIGHT OF
C THE LOCAL MAXIMUM OF THE EFFECTIVE POTENTIAL .,

0003 : EpPS=1.D~-8 :
: THE VALUES OF THE FQUR PAFAMETERS BETWEEN THE STARS DEPEND ON THE FORM OF

C
C THE INTERNOLECULAR POTENTIAL .
C &Rk '
C
0004 ACRIT=2.1133325p0 - . |
0005 ECRIT=0.46086516D0 ;
00086 XCRIT=1.15278D0 , ' |
0007 C=1,D0 ‘ _ g
C ’ A ;
C %edesfokookak
0008 BESQ=BE**2
0009 ALPHA=BESQ/EE
C ,
0010 IF{ ALPHA.GE.ACRIT } GO TO 130 o
0011 IF ( (ALPHA.LT,ACRIT),AND.{EﬂoLEgECRIT) ) 60 TO 135
0012 IF{ ALPHA.LT.ACRIT ) €O TO 110 N -
C WHEN ALPHA.LT.ACRIT AND FE.GTI.ECRIT THE POSITION AND HEIGHT OF THE LOCAL
C MAXIMUM OF THE EFFECTIVE FOTEN'IAL MUST BE CALCULATED TO DECIDE ON THE NUMBER
' C OF PCSSIBLE ROOTS . o ’
0013 110 IF( AIPHA.EQ.0.D0 ) GG TO 135
0014 XUAX= { 3%C/ALPHA ) #*(0,25)
0015 IF( XMAX,LT,XCRIT ) XMAX=XCRIT
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0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028

0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042

116

120

USE
130

135
140

150

I=XMAX

CALL EOTOFX(X,POT,POTD,PCTDD)
STEP={ EQTD-2
IF{ DABS (STEP

XHAX=X-STEP

*ALPHA/X*%3 ) /1 POTDD+6%ALPHA /X%y )
/%) «GT.0.3D0 ) STEP=O.3DO*X*(STEP/DABS(STEP))

IF{ DABS((XMAX-X)/X).IT.EPS }) GO TO 120

GC TO 116
X=XMAX

CALL EOTOFX(X,POT,POTE,POTDD)

PEAK=ALPHA/X*%2+DOT ' . '

IF{ {1/EE) .GT.PEAK } G0 TD0 135

I¥( (1/EE).LE.PEAK ) GC TG 130

NEWTON*S METHOD TO FIND THE TURNING POINT OF THE ORBIT .

X=BE

IF{ X.1T.0.9D0 ) X=0,9T0

GO TO 140 .
X=0,9D0

CALL EOTOFX(X,POT,POTD,EOTDD)
STEP=( 1/EE=ALPHAYX* (-2) =DOT ) /( 2XALPHA¥X** (=3) =pOTD )
IF{ DABS(STEP/X) .GT.0.3D0 ) STEP=0.3D0*X* {STEP/DABS (STED) )

XHEW=X~-STEP

IF{ DABS((XNEW*X)/X).IT.EPS ) GO TO 150

{=XNEW

GO TO 1490
XUIN=XNEW
RETURN
END

it




FORTRAN IV @ : ' " PCTOFX

0001 SUBROUTINE POTOFX(X,PCT,POTD,POTDM
0002 IMPLICIT REAL*8 (A-H,0-2)

C THIS SEGUENT COMPUTES THE INTERMOLECULAR POTENTIAL AND ITS FIRST TWO

C DERIVATIVES AT THE PCSITICN ty¢ .

C  #sokolsk ok :

: C.

0003 EN=4+ Gk}
0004 IF(X.GT.7.D0) GO TO 100"
0005 A= (6/ (EN=6) ) *X** (-EN)
0006 GC TO 101
0007 1060 3=0.D0 , - : . :
0008 101 B= {6/ (EN=6) ) *X*%x (~6) ) ; |
0009 C=( EN/X+9/(EN-6) ) ' ;
0010 D={ 6/X+9/(EN-5) ) : ;
0011 E={ Q/X*%24(9/(EN=6) ) #%2 ) |
0012 POT=A~ (EN/6) *B :
0013 POTD=-2%( C+9%DLOG (X) ) #B*C ;
0014 POTDD=A%{( (C+9*DLOG (X)) **2+ (E~-9) )=B¥*{ C*D+E )

C _ _ . - :

C ook ko
0015 RETURN
0016 END

81T




CONST= TSTEP=

EESKT= SIGVEE=
0.34903301D+02 0.10000000D+00 0.48143379D+00
J= EKT= WER T=
1 0.26356032D+00 0.52175561D+00

2 0.14138031p+01

3 0.35964258D+01
4 0,70858100D+01
5 0.12460801D+02

J= EEI{J) =

1 0.18266559p+01

2  0.380620310+00
3 0. 133864510400
4 0.67943367D-01

-5 0.38635863D-01

0.39€66681D+00

0.75942450D=-01

0.36117587p-(2 .

0.23369972p-04

WT {J) = |
0.26785955p+00
0.47396153D4+00
0.14401912D+00
0.96142072D=02
0.82495673D- 04

ALPHA(J) =
0. 147844750401
0.63842945D+00

0.40023068D+00

0.28513542D4+00

0.21501707p+00

0.75900725p+00




CHAPTER 4

'COLLI SION-INDUCED ROTATTONAL SCATTERING

In the previous chapter, we considered the collision-induced light
scaftering by a pair of molecules, negleéting the infernél dégrees of
freedom of the interacting molecules, In this chapter we will consider.
rthe way in which higher order pola.mza’bilities can lead to> a rotatlona,l
. ‘Raman spectrum from colliding, optlcally isotropic molecules, . The‘mgch-
anism we shall present is essentially the result of thé work done by
Buckingham and Tabisz{;

To begin, let us consider the form of the interaction of a molecule

with an externally applied field T and its gradient f""z The first few

multipole moments of the molecule in the applled field are;
o = M oy s |
== ~ + L : -
“ T * 7 IQ«pxFﬁ ™y 6 X«?xa FP:PX Fg *

4 / -__l_ " ‘
| o 3Tt Bys Ty v
@0(13 = @OSB AO(IQX Fy + ..
. ©)
| ‘O"osgx— ﬂo(/gx ‘E“FXS Fe +
(0 w)

The terms }, ' @ o o and ‘D'DQBX represent the "permanenf. dipole,
quadrupole and octopole moments of the molecule, The term O%ﬂ is the
usual 1inear dipole polarizability, while the terms K%WX ) X;§38 Poeee
which make contributions to the induced dipole moment P that are non-

linear in the applied field, are called the hyperpolarizabilities, Just
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as the dipole polarizability tensor & 5= 0< determlnes the dlpole in-
duced in the molecule by the applied field F, the quadrupole and oc< ’
'topole induced 'by the field F are determined by the tensors A“FX ="A

W

and-

"‘FVS = v?v- » The induced dipole also depends on the gradients

32

of the field, F,;x = %ﬁpx and 133’;5 =Wps, through the same
" two tensors, The tensor A is called ffhe dipole-quadrupole polérizabil—
vity' and E is called .the dipole—octopole ; polarizability 3 The mul-
» tlpole expansion, in fact, extends to ali orders in the applied field
and its gré,d;énts. |

In our i)revious discussion of light scattering we only_ gonsidered
the terms o(@}?}‘g s but now we will consider the terms of ’c;he m.ultii;oie
‘expénsion including the perﬁtanent moménts and the tensoré g(, \f}, and “}g .
But we are only considering collisioﬁ—induced s-ca,tterihg from optically
isotropic molecules ang this r_esults in some simplifications, For mol-
ecules of tetrahedral or higher symmetry the polarlzablllty tensor is -

completely 1sotroplc, X So( For tetrahedral molecules the first

up =

non-vanishing permanent multipole moment is the octopole moment and for

octaliedral molecules it is the hexadecapole moment, For molecules with

a center of symmetry (such as octahedral molecules) the tensor A also
W

vanishes, Thus the multipole moments of tetrahedral and octahedral

molecules in the applied field ¥, to our order of approximation, will be;




- : 1 ! n
M X Tp * g Ay By 4 15 Bogys Fpys

@o(ﬁ = A O(ﬁg Fz{

)
for a tetrahedral molecule; and .
= ] "
Foo T R e T 4 g B P

Llogy = Bayys

for an octahedral molecule,
Now let us consider the interaction of a pair of identical
tetrahedral molecules with-a uniform externally applied field 7.

The multipole moments induced‘ on the first molecule. will be;

{ .
(,)/Aog = ')O( 80(,6 F}q
0) - W
&) W) 0] '
_Qo(/:x = I)_ o(/eb/ + Eaﬁb’b Fs e

Just as in the DID model previously discussed, the fields of the in-

duced dipole, quadrupole and octopole on the first molecule. will in- »

duce an additional dipole moment on the second molecule, Ignoring

¥ill be;
@ 2 , @ l o)

N = @y Fe — + ( Teeg mMp "F Tagy Gy )
4 @ t) - ()

T R (s TR - b r Ve )

where TO(N = VO( vﬁ 'vX (‘}%‘) .




For example:

A

and T&PO%% is the field at the site of molecule 2 due to the
{

T°$g = —g—— %}? (—}J‘.‘:") "“' (BR‘XRﬁ ""rRz Bdﬁ )R

dipole U%% on molecule 1, similérily, the total induced dipole

on molecule 1, to first order, will be

G 1) . 2
)Mo(, U B o+ Uy (TD%(Z)M(& +%_. Ty Gy )

i) N - (2 N _
3 Ay (T ,exs Ms 3 Ty By DA

The pair polarizability is given, to lowest order, by;
() (,2) ) 0) (2
0(0%. = 0((90\ = "5—17—:8 ( Mo( + Mo(, )

: ) ¢)
R T Tuys (Paps - Aeys )

{n
(&Axxs - Axys )

@ o), '
Dhpen, Aays Apen )

]

t ' )
g Tygen (g
TIf the octopole terms were included, terms involving E would appear

in the expression, The permanent octopole moment would however, only

polarizabilltles vwhich we have neglected, b

4.1 The Scattereq intensity

The'polarizability tensor A of a tetrahedral molecule is com-
‘Pletely specified by the oriehtation of the moiecule and by a single

parameter A, fThe usual molecule-fixed reference frame has the central




~atom at the center of a unit cube with the corner atoms of the
tetrahedron at alternate corners of the cube, The orientation of
the molecule-fixed reference frame with respect to the space-fixed
— [ N § '
‘reference frame is specified by the unit vectors 1, j, k which lie
along the x, Y and z axes of the molécule—fixed frame, The tensor

A is given in terms of the components 10( Jmk‘x as;

A“ﬂx = A [i«‘}.}kx + 1“5‘53-_4_ Ja’k"‘ + j X ixjokk/i_f ix%k“ ]

The scattered intensity is given as usual by the expression:

R D R T AN

where the average < ...> now extends over all orientations of each
vmolecule individually ang over all orientations of one molecule re-
lative to the other. Substltuting the derived above ang

performing the average we obtain the following results:

Lol = [(2«) +3 (Fyolt 56

+2 D) () &8 “%5(62%) ..10]

Loy 7= [ 19 o 8 4 238 (oany? 578

62912 u ~10

The term in R~6 is just the first‘order DID result,




The tensor ;L 1s also specified by a single parameter E
for tetrahedral and octahedral molecules, Includingtermsinvolv1ng
'E in the pair polarizabllity results in the fbllow1ng additlonal

contributions to the mean square polarizability:

| <0<$V> 2(11)(~—)(<><E) R + Ky B g2
A 2(3) ()’ R‘1° s B R E

The coefficients of'the terms in Eu have not yet been determined
‘lvbut we may estimate that the ratio of the Jcoeffiéients‘of the El*
‘and GXE)Z terns is the same as the ratio of the coefficients of L
L 2 ‘ : '
“the A" and (a)”  terms, By this means we arrive at the estimates
Ky =21 and K, = 12,%
In addition to the orientational average, we must avérage oﬁer

the intermolecular sepafation R. This average will have just the

same form as the R-integral in our expression for the zeroth'momentg

<E(R)> = 4T [ ar B &R/t £(R) .
: 0 : v

A Lennard-Jones 6-12 potential with €/k7 = 0.52 is fairly represen-
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tative of the intermolecular potehtial for the molecules we have studied,

With this substitution, the integrals may be evaluated to give the

following result f°r<O<VI-2I > :

<0< > = [( )"‘4 (0.495) + 2(“8)("‘“ (0.334)
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s |
+ (623%2) (0.261) + 2( )(.__l (0.261) + 12 B! 5 (0.200) ] .

The values of A and p may be approximated using the bond
polarizability model ' in which the molecule XYn is represented by
n  anisotropically polarizable groups, each one symmetrlc about its

XY bond direction.5 The results of this model are;

' : 8 2
‘A = "/';;L.(dqf-“l) R, - E= =3 (O(ﬁ_' 0&) R,

for tetrahedral molecules ands
E=6(x-x) R 2
[

for octahedral molecules, where (o(”-o( 1) is the polarizability
anisotropy of Y and R is its distance from the center of the

molecule, Based on this model, the following estimates may be mades

A = 1,2 8% E -1 0 ©5
CHy, | 1,2 4 CH,, 1,2 A
Aop, = 2,2 3% - Bor, =-2,2 35
4 . L .
A _ ol .
e = 04 sr, =20 }

Using the values o= 3,82 X. and &= 2,633 33, Wwe may calculate the

relative size of the various terms in<0(\2m> for CHy, « Thus;

2 2 »
Loy > = 4T [1,02 4+ 1,12 % 1072 4 6.1 x 107

+ 5.4 %x107% 4+ 3.2 5 1075 ] ,
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‘Mhére fﬁe terﬁs in the sum involve1_ (Xu, @XA)Z, Ah, GXE)ZJ and

; E4,>in thaﬁvorder.‘ The Qéntribution of the terms involving A ang
E to the total iﬁtensity islSmall'compared to the DIp ( 055 con-
tribution, and the contributlon due to the tensor E is much smailer
than that due to A, | |

Ww

42 The Spectral Distribution

The calculation of thg spectral distribution for collision in-
duced rotational scattering is analoggus/té the quantum mechanical
calculation of the spectruﬁ of the diatomic rotor, except fhat we must
now coﬁ81der the rotational states of fhe two molecules in the pair,

The tran51tion probabllltles .are given by the matrix elements;

]
<Jl sJZ ' (,3} , J1|J2> I
where Oﬂ£g$ ‘is the pair polarizability and Jy»J; Tepresent the
1 initial and final state of the i-th molecule, The rotational state J

has the normalized Symmetric top wavefunction

Z *

g1

vwhere DiK(Il) is the Wigner rotation matrix.7 The quantum numbers
m and K are associated with the projection of the angular momentum
J on the space-fixed and molecule-fixed z-axes, respectively, The

Euler angles relating the space-fixed and molecule-fixed frames are
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Trepresented by ), To evaluate the matrix elements, the pair polar-
izabillty is written in spherical tensor form. For example‘, the

E contmbutlon-

Q) .
—”°"T;<y5 ( Aﬁ'a’a Aﬂxs) + (XTMS @ Auxa Axys )

- 8lves rise to a matrix element of the form;
& Jz 'sz(ﬂj) - D 2(ﬂ ) |3y J2>
' from which one obtains the selection rules:

a3y =0 oA 7""’1‘?!#’#313 R &

‘These transn:ions 1nvolve changes of rotational state for one or the
other of the molecuies in the pair, since this term o.f‘ the polarizability
involves the tensor &\ of either one or the other of fche molecules, -
Similarily, the term in the pair poiariZability invoiviné products

“)‘ﬁ ()‘)&\ will gi;re rise 'v(:pbc‘lou’ble rotational ftra,nsitiéns since it con-
tains the tehsors h;}ﬂ for both molecules, Proceeding‘i.n this fashion
 wWe may obtain the selection rules A_for transitions corresponding' to

each term in the pair polarizability, fhe selection rules corresponding

to the various terms in the mean square polarizability <0<2> are; .

AJ, =0 g =
i Aj

for the term in ((XA)z,

0,+1,+2,+3 I 23

\\/
W

Ay = 0,41,42,33 AJs = 0,312,343 - JiFII 3 J5t33
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for the term in Al} ’

for the term in (o(E)2 , and

AJy = 0la2,83,5h AT, = 0,41,12,43,44 I YR Iy e
‘ L
for the term in g ,

The intensity of the transition Jl J2—>J1,J2 is proportlonal to: -

'I"(Jl’Jz,Ji.Jé) = T) (2J1+1)(2J1+1)(232+1)(2J2+1)

x exp(-E(Jl)/kT) exp(-E(Jz)/kT)
vhere ﬁwR_ ='ﬁ% - [E(Ji) - E(Jl) + B(73) - E(3,) ]
and E(J) = J(jfl)ﬁg .

To obtain tbe spectral distribution from the selection'l;ules and
the expression for F(JI.JZ 1J1033) , we comp‘ute the position amd re-
ia’give intensity of all .the spectral lines arising from a gifren term
of < O(2> » and then normalize the ini-;ensities »of these lines so that
the sum of their intensities agrees with results obtained in section
4,1 for total intensity, Finally, we must remember that because of the
dependence of the pair polarizability on the intérmolecular separation
R, each line will be broadened by the translational motion of the nol-
ecules in the pair, The pair polarizability contributions governing

the rotational scattering fall off faster with R than does the prp




130

contribution, so0 that the spectral width of each rotational “line"
will be at least as great as the width of the DID spectrum,

The collision induced rotational spectrum for CH4 may be cal-
culated using the same polgrizability parameters as were used in thc
Preceeding section for calculating the total inten31ty. The spectral
lines are broadened to the same width as the DID spectrum. The spectra
..due to each of the terms QXA) , A ' (dE) _and Eh are graphed in'
"'Eigure 4—1. The sum of these contrlbutions gives the total colllslon

"'induced rotational spectrum for CHh and is plotted in Figure 4-2,

ﬁhile only classical multlpole 1nteractlons have teen considered
yin computing the collision-induced rotational scattering (CIRS) spectrum
val] the additlonal mechanisms dlscussed in the context of the DID model
in section 3-1 may modify the molecular pair polarlzability. YA short
range angle dependent interaction of the electron’overlap type, for
example, would result invthe same selection rules as the multinole
~ interactions, since the selection rules are essentlally determined by
the molecular symmetry. ‘The spectral distribution of the CTRS spectrum
is in turn essentially determined by the selection rules, Additlonal
contributions to the pair polarizability would chiefly affect the total

intensity ang only Secondarily affect the spectral distribution of the

CTRS spectrunm,




FIGURE 4 - 1

I

The CTRS Spectra of CH, Due to the Terms ((xA)2 , A
T } : :
B

—r—

,
+ (XE)~ and

The CIRS spectra due to the terms (o(A) (solid line) , Aa

(dashed llne) ' (D(E) (solid line) and E (dashed line) pro-
duce successively smaller contributions to the total CIRS spectrum,
As usual, the intensity scale is in units of QIS scattering cross
section per unit frequency interval (l’cmnl) divide. by the scat-
“tering cross seétion of the HZ S(l) transition under the same con-
ditions, when both gases (H, and CH,) are at unit density (1 mole/ =
liter,) The individual lines of the CIRS spectra have been broad- o OED
“d' ) , waere W= 15,5 cm -1 is the

same as the decay constant in the roughly exponentlal translational

cIs spectrum, The values A = 1,2 24 , EBE= 1,2 ﬁ5 and B = 5,25 cm"1

end using the function exp( -

have been used in cemputing the spectra, The first 20 rotational _
states have been considered in ecomputing the spectrum, and the number

of allowed transitions originating from these 20 states are:

single A transitions 2561
wdouble A transitions 16385
single E transltlons 3201
double E transitions 25601

(ror CF), and SFg at least the first 100 and 140 states, resPectlvely,

must be considered in computing the CTRS spectrun, The nmunber of

transitions involved is prohibitive unless only every 5th of 7th

state is considered, since the number of possible double rotational

transitions increases as the square of the number of states included, )
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FIGURE 4 - 2

The CIRS Spectrum of CH,,

The four components of Figure 4 ~ 1 have been summed to glve
the total CIRS spectrum of CHL;' The spectrum is determined chiefly
by the A transitions, even in the far tail, for the values of A and

E vhich we have assumed,
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NOTES AND REFERENCES

The theory of colligion-induced rotational Raman scattering is
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&N < 5y and ENTE Ty Ty ¥sy , respectively;
S lry'r ,8> and {r, =, r{} are the dipole, quadrupole

and octopole transition moments.

Light scatterlng arising from the interaction of the hyper-

polarlza.bllltles with the permanent multipole moments has been
shown to be negllglble ing
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CHAPTER 5

THE EXPERIMENT AND DATA ANALYSIS

5.1 The Experiment Design

The experiment consists of sending ; beam of lightufgenerated by
a lasér, through a sample 6f gas and meésurlng the intens1ty and spee-

. tral dlstrlbutlon of' the llght scattered at rlght angles to the beam
directlon uélng a dlffraction grating . spectrometer-the;plan view of
~ the apparatus is presented in pigure 5-1. Since the light is only
keakly scattered by the sample, the design of the egperiment is mainly
concerned with ‘ensuring that the scattered iight is brigh£ enough to
>measure. To understand why the scattered light signal is so weak, we
will follow the path of the llght in a typlcal experlment, starting ét
the laser.

The beam from the Ar - ion laser is dlrected to the sample cell by
means of a series of glass prléms. The polarlzatlon of the beém is ro-
tated to the correct orientation and any extraneous polarization compo-
ments are removed.by a combination of half-wave plate and Nicol prism
polarizer.l1 Finally, the beam is brought to a focus inside the sample'
cell by mean of a lens., By the time the beam has been transported,
polarized and focussed into the cell, it has traversed 20 air-glass in-

terfaces, pNot withstanding the fact that all the surfaces have been




FIGURE 5 ~ 1

Top View of the Experiment Drawn 1/12 Full Scale

1) fThe other parts of ihe apparatus are fastened to the surface
of a honey-comb core steel table (8 inches thick by 4 feet by 8
feet, weighing about 400 kg). The surface of the table has threaded
" ~holes on a'}ﬁindusqugge;gird which facilitatesbmounting‘éf parts._
The table may be floated on 8 inner tubes for vibration isolation

and provides a rigid base for all the other épmponents.

2) ~ The light bean écattered by the sample is generated by;an'Arnu

ion laser (built by Coherent Radiation.) The laser has a prism in
"-thé_resonant cavity to force opératiohvon only one line, usually
v_4880 ﬁ, andvthe-spectral‘widih'is abouﬁ 0.1 cmul. The maximum out~
?ﬁt is about 1 Watt at 30 Amperes tube current‘(the'power supply is
mounted underneath the table.) Part of the beam is split off at (2Db)
and used to monitor and regulate fhevoutput of the laser,

3) The beam is directed to the other end of the table and steered =~ e
by prism (3a) and two prisms at (3b) which are mounted on orﬁhogénal. |

translation stages.

k) A half-wave plate is used to rotate the plane of pola?ization‘of
the beam, followed by a Nichol prism which removeS"uuéﬁndesired

polarization component, These parts are mounted on a 1.0 meter tri-

angular steel optical bench,

5)  The sample cell assembly is mounted on the optical bench at (52).

The bean isreflectedfvertically upward by a prism and is focussed by

a 10 em focal length lens placed just below the cell, The equipment

for filling the sample cell is contained in the area (5b),

6) The collection optics are mounted op g 0.5 meter optical bench
and image the source region onto the entrance slit of the Spectrometer,

The 20cm  focal length collection and focussing lenses are mounted on




FiGURE 5 - 1 continued

translating stages to allow the image to be focussed and steered,

Filters and polarizers may be placed in the collimated beam be-

tween the two lenses, as required.

7) The spectrum is scanned by a tandem Czerny-Turner (subtractive
dispersion mode) monochromator built by Jarrell-Ash., The two mono-
chromators are mounted one above the other and the light path in the
second monochromator is the same as in the first, but in the oppo-
site direction, The focal length of the monochromators is 1,0 m ~
and with 102 mm square gratings of 1180 lines/mm (blazed at 4000 Z)
thediffraction limited resolution is about 0,3 cm-l. The light
path goes from the (adjustable) entrance slit (7a) to the collinator
mirror (7b), the grating (7c), the camera mirror (7d) and then is
reflected vertically downward through the intermediate slit (7e).
Thereafter, the light retraces its path in the lower monochromator
until it is finally deflected to the exit slit (71). 'Thé spectrum
'is scanned by rotating the gratings about a vertical axis using a

stepping‘motor and a cosecant-bar linkage.

8) The light emerging from the double monochromator is focussed on
to the photocathode of an RGA C31034;mbtoﬁultipliertube (the com-
bination of the double monochromator and the detector is called the
spectrometer) which is mounted in a refrigerated housing (8a). The
refrigerator compressor, condensor and temperature controller
(evéporator pressure regulator) are mounted at (Sb). ‘The ¢31034 PyT
has a (negativeelectroh affinitﬁ GaAs photocathode with a high and -

relatively constant quantum efficiency throughout the visible spectrun, :

9) The experiment is run from this position; the controls for the

laser, the spectrometer and the elecronics are all within reach,

10) fThe electronics are mounted in a standard 20 inch wide rack, They 5
consist of an amplifier-and»single channel analyzer for processing |
the PMT pulses, a multichannel scaler which counts the pulses due to
photons at the selected frequency shift and a clock for synchronously

’ advancing the stepping drive of the spectrometer and the address of

the multichannel scaler,
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anti-reflection coated, the intensity of the beam is only one half of
Cits original value by the time the beaﬁ has entered the samplé - the
sample is typically illumimated by a power of 300 mW or 7,5 x 101?
photons/sec at a wavelength of 4880 3.

Focu531ng.the beam serves to match the width-of the scattering re~
gion t§ the width of the eﬁtrance-slit.bf fhe spectroﬁeter. Diffraction

makes the focal region of the beam take the form of a cylindert'vThe di-

ameter and length of the diffraction limited focal cylinder for a 3 mm

diameter beam focussed by a 10 cm focal 1ength lens will be:

d

2.4 )\ (%) = 0,040 mn

i

1=16 ) &% 9m

. D

In fact, the focus is nowhere near being diffraction limited because of
the lens aberratlons and the wavefront deformation caused by passage
“through 20 air-glass interfaces and obllque reflection at 4. snrfaces. The

actual dimensions of the focal cylinder are about 0,2 mm diameter and 10 nm

2
long. .-

The light scattered by the gas in the foecal region is collected by

a lens and an image of the source cylinder is formed (with unit magni~-

fication) on the entrance slit of the spectrometer, The wavelength dis-

ai

persion of the spectrometer in the plane of the entrance slit is i

8.26 }/mm; the frequency dispersion is -%§)= - -%é)i»z = 33.04 cm_l/hm'g“

(30.3 pxm/cm—l) at A= 4880 1. Thus, a spectral slit width of 3.0 em~t
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correspoﬁds to a physical siit width of 0.090 mn, whicb is ebout half
the.width of the image of the Source cylinder, Since we will not use
a spectral slit wiéth greater than 3,0 cm-l, the entrance slitvwill
always be fully 111umiﬁated but at least half of the'iight will be
wasted Having the slit narrower than the spot of llght does reduce
the sensitivity of the apparatus to misalignment of the collection
‘optics whlch partially compensates for the lost light,

 fThe w1ndows of the sample cell linmit the field of view to at most a

diameter of 8 mm in the plane of the focussed beam and the edges of
'  this field will be almost totally vignetted.. AS5nmnm diameter, ﬁnvig-
netted field of view is selected by restricting the height of the en-
trance slit to 5 mm,
The solld angle over whlch light is collected is also llmited by
- the spectrometer, The aperture stop of the system is the 10.2 cm
\ _

Square diffraction grating, oriented at 12.5° to the incident Iight

for A= 4880 £, The focal length of the collimator mirror is 100 on,

-2

so that the aperture of the system is (o0, 102) (0.98) = 1,02 x 10
steradian (or £/8.8 when expressed as an f/no.)

Now let us calculate how much light is collected by the spectrometer

in our experiment, The probability that a photon travelling a unit

distance in the sample will be scattered into a unit solid angle about

a Specifled direction is given by the scattering cross sectiong

S <“>~%—~f~>¢‘°’ :
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For our typical experiment we will take the samplevto be Ar at a den-

sity of 1,5 méle/liter (about 35 atmospheres ar room temperature.) With
O 29

the value 9ﬁ = 51,5 A7, and allowing for a 10 percent reduction ip

scattered intensity because of three-body collisions, the cross section

per unit volume is,

2717

23

' 2

@™ (, 2T 2 i 5<6°10i‘31§ D (0530515 x 1090
= 3.4 x 1078 51 steraq™t .

2 (3.4 x 1078 o “sterad 1) (5 x 10%n) (1,02 « 10 %steradq)

X (?,5,x 1017 photons/éec) = 1.3 x 106 photons/sec .

However, not all the photons which eﬁter the spectrometer will even~
tually be detected, After being scattered, each photon must fraverse
12 air-glass interfaces (wlth an average transmission of 98 percent),
be reflected from 8 aluminized mirrors (with an average reflectivity
of 85 percent) 2 gratings (with individual efficiendies of 78 per-
cent), and finally knock an electron out of the photocathode of the
detector (with the overall quantum efficiency for the photocathode
and the signal Processing electfonics being 13 percent) before it is
actually detected, The overall detection efficiency of the spectrometer

is just:
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(0.98)12 (0.85)8 (0.78)2 (0.13) = 0,014 count/photon, so that
collecting 1, 3 x 106photons/sec allows us to detect only (1.4 x 10~ )x
;(1 3 x 10 )= 1.8 x th counts/sec.

Our original intent was to measure the specﬁ;al distribution of
the'scattered light, For small frequenc& shifts, the Ar collision in-
duced Spectrum will have the approkimate.diétribution ,u1<gd)«=

A exp(- (aﬂ/ﬁZ cm ), so that fractlon of the photons which will lie

w1th1n the 3.0 cm 1 pass band of thevspectrometer is approximately:

-1 ;‘ .
'1'3*3:1) ‘%‘ exz)(—lwl/lz cm’l) .

The actual sPeétrum varies more slowly with®than the e#ponential, both
for w<5 cﬁqand for large frequency.shifis. Taking into accou@ﬁ'the
spectral distribution and the band pass,‘we find that the sigmal at the
peak of the spect¥um_is léOQlcounts/sec while at a f?equency shifi of
120 cm"1 the signal is only 0,6 count/sec.- He may noté that the backa
grouﬁd count rate of the photomultiplier tube used to detect the photoﬁs

is 0,6 count/éecJ?n Thus, the accuracy of spectral measurements at large

frequency shifts will be limited by the noise in the background count-
rate and by counting statistics for the signal photons (since the photons

arrive randomly in time, the uncertainty in the number of photons, N,

. . i
which will be counted in a fixed time interval is N f) It is for this

reason that}maximizing the scattered light signal is one of the main de-

sign objectives in the experiment,
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Iow frequency spectral measurements meet with a'different problem,
vhose solution is incompatible with the objective of maximizing the sig~
nal at large frequency shifts, The problem is thgt, suﬁerimposed on the
CIS spectrum at gzero frequency shift, there is a strong, narrow line due
to so-called "stray" ligh£ h which origiﬁates from Rayleigh scattering
and from light scattering by dust particles, First let us consider the

Rayleigh scattering cross section of our Ar gas sample:

2 .28 - .26 -
({%%E)W= (%)Sﬁhfo( = (2,8 x 10 Bm» )(6.02 xlq' n 3)

x (L.64%2 x 1070 , 3)2 = 4,2 x 107 07! sterag! .

The numbér of Rayleigh scaﬁtered photons is
4,2 x 1075

= 580
2(3.4 x 10-83—

times the number of photons of both polarizations in thebentire CISs séec-
trun, With a 3 on”l spectral siit Width, the peak intensity of the Ray-
leigh line will be 12(580) = 6100 times as great as the peak intensity of
the ¢T3 spectrum, The fraction of the incident bean vhich is Rayleighb

scattered from the 5 mn long focal region of the beam is (4.2 x lOfb)x

-

(5 x 10-3) = 2,1 x 1077 sterad -1, Now let us consider the light scattering

due to dust, If we assume that a dust particle scatters in all directions
Just 10 percent of the light incident uponlit,h'we find that a single lpm

diameter dust particle in the focussed beam will scatter:

1, 0L bwmo, -1
(iaj (MTT) (zqum) x 10 ' sterad :

the scattered intensity due to dust particles easily exceeds the Ray-
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leigh intensity unless the most stringent precautions are taken,

Both the Rayleigh scattered light and_the_light_scé§ter¢g by small dust

- them in the experiment, Tf IVV is the intehsity of the.polarized scat-

I | 552 532
HV + HH, stray = -2 4 O .
I 2 4

- For then values §,= (17,6) rad ang &= (60) Lrag (£/8.8 ana f/BO) the

of the=polar-

HV + HH. stray 1.7 x 10~3
Ty
ized scattered intensity and the "stray” llght peak arising from Rayleigh

"stray" light intensity is

scattering will be (6, l x 10 3)(1 7 x 10° ) =10 times as bright as the

CIS SPeCt?@?ai zero frequency shift in our "typical" experiment, Any

effect which tends to depolarized the incident beam, such as stress-

-;indgcsibirefringence of the pressure.cell windows, will increase the

stray light signal; so also will scattering of the incidenﬁ ‘bean byiiust

particles or from the walls of the sample cell increase the strgy light,
The stray light due to scattering from the cell walls may be reduced

to negliglble proportions by anti-reflection coating and carefully cleaning

the w1ndows of the cell, blackening the interior surfaces of the cell,

using field stops around the incident beam ang in front of the collection

arm window and by using a blackened, off-axis Wedge as g backdrop for the




focal region of the beam, pust scattering can be reduced to manageable

in diameter, 71n order to reduce dust scatterlng to a small fraction of |
-the Raylelgh scattered intensity, sub«mlcron pore sized bacterlologlcal
filters would be necessary but. _ probably not sufflClent — the interior
- surfaces of the sample cell ‘and pressure equipment are Jusf too compli-~
cated to be adequately cleaned of all dust, The stray llght 1ntens1ty at
ZEero frequency shift is typlcally 30 times the peak 1ntens1ty of the CIS.
spectrum so that about %- or-% " of the stray light is due to dust

Since the stray light peak is from 10 to lOO times as brlght as the
peak of the (1§ spectrum, depending on the sample molecule and the con-
ditions of observatlon, it is in no case possible to recover 1nformat1on
about the ¢T3 spectrum underlylng the 1nstrumentally broadened stray light
peak by any sort of subraction teqhnique. The greater part of the total
CIS intensity lies at sméll fréquency-shifts. In order to obtainbinfbru
mation about the behavior of the CIS spectrﬁm near W= 0, which is essential'
for deterﬁining’ﬁdto), the spectral slit width must be narrow compared to
the spectral width of the CI8 spectrum, It is also essential tha£ the in-
tensity of the stray llght transmitted by thespectrometer be very small
when the pass band is shifted away from ()= 0. This is achieved by using

two monochromators in tandem; the shape of the pass band for the Jarrell-
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Ash double monochromator is showm in Figure 5-2 fof two choices of the
slit width, The transmission of an intense narrow spectral line Just
outside'dze instrumental pass band falls by a factor of about 103 per cm 1;
for frequency shifts of a few hundred wavenumbers. the transmission is

about 1077 of its peak value,

cessing electronics, The eleétronics have been optimiged for low signél
conditions (.photon countihg‘) and at count raies of 104 counts/sec or
more the "dead-time" losses nmust be considered, (Dead time losses will be
discussed briefly in section 5:3. ) At count rates of lO6 Hz or greater
the photomultlpller tube may bve damaged., When the signal fromAthe far
- tail of the spectrum is large enough to bé measured, then the peak ihten~'
sity of the ¢T3 spectrum will usually strain fhe dynamic.range capability
of the apparatus, and the ngleigh line will.be so bright thai-the col-
lected light must be atfehuated with a filter,

The one good thing we can say about the Rayleigh line is that 1t pro~
vides a reliable frequency referencé. The line appears at Preecisely zero
frequency shift ang is so narrow that its spectrum is always instrumentally
broadened by our equipment,

The experiment has two conflicting goals; measurement of the very weak

spectrum at large frequency shifts and measurement of the spectrum near




FTGURE 5 - 2

Band Pass Profile of the Spectrometer

The intenéity of the signal tiansmitted by the spectrometer is

. plotted as a function of the frequency shift of the center of the
pass band from the frequency of a very narrow épectral line inci-

dent on the entrance slit. (The narrow spectral line is obtained

by shining the beam of the Ar~ion laser onto the slit through a ground
glass screen and filters,) fThe responsé functions for two spectral

slit widths are plotted;;vO.B.cm-l (diffraction limit) and 3,0 cm—l.

With all slits set to the same physical width, the "ideal" band pass

function is triangular with a full width at baseline equal to twice
the spectral slit width; outside this region the transmission should
fall abruptly to zero., The measured band pass profile is a good
approximation to the ideal, Wwith 3.0 cm"1 slits, the transmitted
intensity at iarger frequency shifts is:

1 1

AW ( cm ) I | AWlen ) |

I I
10 180 30 9
15 57 50 7
20 25 100 3
3

25 17 200
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= 0 in spite of the bright Rayleigh line, To obtain the (13 spectrum
near (W= 0 We must use & narrow spectral slit width so that only a small
Portion of the spectrum is obliterated by the instxumentally broédened

Rayleigh line, However, the 1ight enterlng the Spectrometer Wlll be pro-

by the too-wide image of -the focal region of the incident beam, Also, the
fractlon of the light enterlng the spectrometer whlch w111 be transmitted

to the detector is proportional to the spectral slit width, since the

and measurements at large frequency shifts will be favored by wide slits,
.The only way to reconCLle these conflicting requirements is to ‘make sep-
arate scans with narrow and wide slits, for the small and large frequenCJ

shift reglons of the spectrum Tespectively,.

2.2 _Sample Preparation

atmospheres, The sample handling equipment is arranged to allow the cell
to be purged, gases to be purified and filtered as necessary, and mixed
gas samples of controlled compoéition to be prepared. The apparatus is

comprised of the sample cell and "thermal compressor", tarnks of gas and




a #acuum system, two pressure gauges, and various valves , Tilters,
Piping and fittings. The components are mostly mahufacturedvby the
American Instrument Company (AMINCO) and are intended fbr‘hlgh pressore
-applications (for example, the piping and its 60° coned conneetions
are designed for operatlon at internal pressures of 106,000 pounds per
square inch oy 7000 atmospheres, whlle the sample cell rs designed to
operate at up to }oo atmosphereS.) The schematic arrangemeni of the
A components is shown in pigure 5-3, |

The. "thermal compressor" consists of a thiok walled stainless steel
vessel which may be cooled by immersion in llquld nitrogen, fThe gas
sample to be compressed is admitted to the thermal compressor and liqui-
fied therein, At this p01nt the liquified sample can be.purlzled b&
' fractianaldlstlllatlon. The samplewherethls was most necessary was
CFQ. The CFQ, as it comes from the supply cylinder, is contaminateq with
Q.2 mole percent of air.Using the difference in‘the’vapor pressures of Né
O and CF@ at and around the boiling temperature of liquid nitrogen, most
of the N, and O, may be removed with a vacuum pump, limited eventually
by the solubility of N, and 0, in liquid Crh. Thepuritymay'hepeasily
improved to 0,05 mole percent of air, and by repeated melting and freezing
of the CFa and prolonged pumping on the liquid Cry, held'io a bath at the
temperature of liquid Oxygen, the impurity concentration may be reduced

to 0,005 mole Percent of O,. The assay of the impurity concentration ig




FIGURE 5 - 3

Schematic of the Sample Handling Equipment

Elbow, "tee" and "cross"‘connections are indicated as R, T and X,
Valves are indicated as V., The filters are made of sintered copper
or staihless sfeel, The internal volume of some of the components are
32.3 cmeor the sample cell with its.liner installed, 9.1 cm3~for the
3 for the plumbing
between the cross (X) and the cell, The internal volume of the ther-

mal compressor is 105 cm3 but this can be reduced by inserting an

0 - 3000 psi (Bourdon tube) pressure gauge and 2,4 cm

aluminum cylinder, .

The sample cell is shown Sectioﬁed, looking towards‘the window
facing the collection optics (the cell is shown 0,3 times fu1113caleo)
The laser beam travels vertically'upwards through the cell, and the
fused silica windows are shown "hatched."‘ The sample cell is essen~
tially a solid block of stainless steel which has been cross-bored
with 1 inch diameter holes. The blackened aluminum liner has not been
indicated. -

The placement of the O - 3000 psi gauge shown in the diagram is

very poor -- it should be placed on the inlet side of the sample cell

instead, if an internal intensity standard of Hy gas is to be used,
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readily done Spectroscopieally, using the intensity of their pure
rotation Raman lines to determine the concentration of NZ and Oy in a
low density gas sample of CF4. After being purifled, the pressure of
the sample is increased by valving off the thermal compressor and al-v
lowing it to warm to room temperature. The liquified sample evaporates
and the final Pressure is determined by the fraction of the-ﬂhermalcom-.
pressor's internal-: ‘volume which was filled by liquid, Pressures of upv
to 1000 atmospheres at roomvtemperature may be obtained in this way
(the gas density may be as high as the liqsid density.)
The sample obtained from the thermal compressor are invariably

dustier than the samples obtained directly from the supply cyllnders.
Theathermalcompressor was only necessary for preparing CF& and CDh"
~. 80 the other gas samples were prepared directly from the supply cyllnders,
Cylinders of UHP Ar and CH4 contain gas at 150 atmospheres (the Ultras-
High Purity grade is of 99.999 mole percent ang 99-97 ‘mole percent purlty
for Ar and CHy, respectlvely), SFg (with 0,06 mole percent O, as an im- )
purity) is supplied as a liquid at 23 atmospheres; Hé was "prepurified"
grade of 99,95 percent minimum purity, All the gases except CD4 were
obtained from'Matheson; CDh was obtained from Merck, Sherpe and Doheme
with an isotopic purity of 99 percent. In the case of CD&, a leaky
coupling between the gas bottle and the sample handling apparatus re-

sulted in contamination of the CDy, by 0.8 mole percent air, (Ten

grams of CD@ cost $500 and was Just enough to f£il1 the sample cell to 80
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atm, Fractional distillation would have resulted in too large a loss of
CD;, to be afforded )

The preparation of the sample for an experiment Begins by repeat-
edly purging (with HZ) aﬁd evacuating the entire gas hendling system‘ex—
cept the thermal compressorgw Then, the systen is filled with 1 atmo-
sphere of Hy gas and the pressure is measured with a nercury barometer,
The dens1ty of the H2 us calculated from its temperature ang presoure.z

Now the sample gas may be 1ntroduced on top of the H?. If a serles of

previous sample ang recording the total pressure. The density of the

tered light 1nten51ty, is fixed by the amount iniiially added to the
systen,

The HZ density in the sample is higher than the initial density
of H, in the system because tﬁe sample gas, when it is first added,sweeps
the H, contained in the plping Anto the sample cell, vTheismall internal -

dlameter of the pipes (the Piping has a 1,5 mm internal diameter and a
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that tne density of Hy, in the sample cell is increased by about 8 per—
:_cent for our apparatus,
Some care must be exercised in the placement of components in the
gas handling system. In one configuration, the second pressure gauée
was attached to the sampie:cell'at a port'opposite.the gas inlet. ‘The

, [
internal volume of the gauge was comparable to that of the cell, and the

~Tresult of this arrangement was that part of the H2 in the cell was swept

'-1nto the gauge each time sample gas was added, lefu81onal m1x1ng be-

"tween the gas in the gauge and in the cell is negllglble, and the net
result is that the H2 internal standard in the cell is dlluted by some
-indeternminate factor each time sample gas is added to the systen, Under

these 01rcumstances, the H, internal standard becones v1rtually useless

thls is clearly a s1tuat10n to be avoideds

Presuming that the concentration of H, in the sample is known, the
- flnal step in sample Preparation is to calculate the concentration of

each constituent of the’ sample from its total Pressure and temperature.

Two pressure gauges (with accuracies of + 1 atm and + 0.5 atm) were'used

to measure the total pressure of the sample with an accuracy of + 0,3

atmosphere, The sample contains 1- 10 percent Hy and usually less than
- 0,1 percent impurities, Fwor purposes of calculating the sample density,
,We will ignore the impurities and treat the sample as a binary mixture

of H, and the sample gas, denoted ag X,
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As a first approximation, we will essume that each gas separately
‘obeys the van der Waals equation of state;
2 .
(P+a/0)(l—b)0)=PRT

where P and.f)have units of atmospheres and moles/llter, respectlvely,

‘I‘he equatlon of state of this mixture w1ll be a,pproxlma.ted by the ex-

vpress:v.on: [P-i-aP +2(X+ H)PX +aH PHZ ]

.[1--5}(,0‘X szsz] "-(,C)'C-FPHZ)'RT K

oo This nay be further approximated ass

(Pv;a B )(1-—b[)) PXRT

[ I

" where P'=p - PH + p"
: 2

TEo Rt (e T Py Py B) (2 + a’Hz)Pxf}Hz T, P,
We may calculate PH with sufficient accuracy, from PH and T using
2 : 2

the van der yaals equation of state for H, since the Hy density is low,

Next, we obtain an approximate value for PX which will enable us to com-

pute P", the bressure due to Hy - X interactions, Since the uncertainty
in the measurement of the total preseure P is on the order of 0.3 atn

whlle the value of p" ig usually in the range of 0,1 -~ 0,2 atm, it ig

quite adequate to use Very approximate densities in evaluating p",
Finally, we compute /DX as the density of the pure component X at
temperature T ang pressure P' = p . p 4 pn + For this step we use an

o

equation of state for the gas which better describes itsbehavior than the
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van der Waals equation of state, For CH4 and CF4 the Beattie~Bridgeman
equation of state was solved iteratlvely to obtaln. /’ . The entire
calculatlon can be iterated until a self—consistent value of f% is ob-

tained, if this is necessary,

2.3 The Data Analysis

Once a series of sPectra have been obtalned from samples of known ’

density and compos1t10n the data must be reduced to a form which is dl—

- rectly comparable with the theoretlcal predictions, fThe binary Crs
spectrum is obtained from the raw daté by applyihg instrumental correc-
tions, accounting for the effect of impurities in the sample and by Titting
& virial expansion to the measured intensities, wé will discuss fhe déta

analysis steps in the same order in which they are applied to the data,

5:3.1 Dead Time

anount of time, If two photons, both of vhich are detected, arrive with

@ separation less than the so-called "dead time" of the electronics, only
one event will be counted, The photons in the light signal being measuregd
arrive randomly in time and so the pulses due to detected photons will

be randomly distributed in time as well, The probability that a second
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- pulse will follow any given first pulse within the dead time interval

amithereforenot be counted, is just proportional to the mean pulse

rate. The fraction of the pulses which w1ll be counted is given by.

?jS' —/Qr

vhere r' = count rate and r = pulse rate; When the dead time losses
are smallv( r'/r ?ﬂp,?}, this relatlonbmay be inverted to give the pulse
,rate in terms of the cnunt rate;

"-‘—"’r' (]_ _+/9r.') .-

‘The rate limiting component is our datgy handliné electronics is
the {mﬁlfichannelkscaler, which counts the number of pulses that arflve
while the spectrometer is set at a partlcular frequency and stores the
. total in the appropriate memory address or channel, Thé‘deaditime is
‘/? = 2,52}&SQ¢ and the dead time losses increase,linearly for count rgtes
ué'to 80 KHz. Count rates near the peak of the (IS spectrum often reach

40 xHz (10 percent deag time losses) when the apparatus has been optimized

measured intensities will be affected long before the distortion of the
spectral shape becomes apparent, In all critical work, the (TS peak
count rate is kept below 2 xyz so that dead time losses are less than 0.5

percent,
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5.3.2 Spectral Res_ponie‘

The probability that g photon entering the spectrometer will be

detected depends on both its,frequency and its polarization, fThe col~

the slits ang the photocathode surfacé, which is inclined to the direc-

tion of the light, both make sﬁbstantial additional contributions, - As

ponent in the light path makes a significant contribution; Accordingly,_
one must be careful about making changes to the apparatus after the over-

all response of the system has been measured,

(NRCC) lab against a Secondary standard, The relative sensitivity of

the spectrometer to light polarized parallel to ang perpendicular to the

rarallel to the rulings, Since our measurements of the ¢ry spectrum

were made in the gy + HH geometry, and the intensity of the components




 FIGURE 5 - 4

_ Relative Response Function of the Spectrometer

The relative spectral response is plotted for 3.0 cm"1 (upper
curve) and 0,5 cm-l spectral slit width of the spectrometer, Zero
~ frequency shift occurs at 20492 en™ T (4880 A.) The curve for 3.0 cm

spectral slit width is characteristic of the response for slits wider

-1

than 1.0 cm_l. For slits narrower than 1,0 cmnl-the relative spectral
| response becomes dependent on slit width, The relative response plotted
o in. the graph is in units of counts per mw of incident light, within the 1 l
fixed wavelength bandpass of thé 1nstrument |
Since the spectral slit width, for a fixed physical slit width'
is proportlonal to Luz, and the number of photons per my is proportional
to w l, the plotted response curves must be multiplied by 003 to obtain
the relative response of the instrument in counts per incident photon
per unit frequency interval,
The relative response functions for 3,0 cm—l and 1,0 cm-l slits-

are then:

(wo‘:ﬁw )3 (1

i

0. 0442 (1000)'

0.0308 (1000) )

| R(counts/photon - cm~1) =

il
I

and R(counts/photon - cm—l) (ii%E?QQB (1 O 0645 (lOOO)

0.0222 (lOOO) )

- respectively, in the range AwW= -~ 200—>+ 1000 cm—l, where We= 20492cm™
The spectral response is flat largely because of the flat spectral

response of our photomultiplier tube,




relative response ———————sm

105

155

hog]

0.9% ]

09Q |




156

IHV and IHH are equal by symmetry, we need only apply the correction for

our light scattering measurements.is Presented in'Eiguie 5-4, Note that
the relative response is given in terms ef counteﬂnw for a fixed slit
width, fThe spectral slit width is proportional to u? for a flxed physi~
_cal slit width and the number of photons per mw is 1nverse1y proportloﬁal
e£§vu1. Thus to obtain the relatlve ‘Tesponse in counts per photon and
per unit frequency 1nterva1 with a fixed physical sllt width, we must

multlply the relatlve Yesponse values in the figure by @03.

'5.3.3 The Spectrum Due to Impurities

The only significant 1mpurit1es in the samples studied were NZ and
05, These 1mpur1t1es w1ll result in a weak rotational Raman spectrum
being superlmposed on the CIS spectrum, Tf the impurity concentration
in a given sample is knowﬁ, then the pure rotation spectrum of the im-
purity may be calculated, suitably pressure broadened and subtracteq
from the CIS spectrum, The rotational Raman spectrum.fbr N2 and O, was
calculated at the end of Ghapter>2. The concentration of N, and 0, may

be assayed spectroscopically by comparing the intensity of the rotation

lines of N, and 02 in a low pressure sample (of measured density) to the

intensity of the S(1) line of g sample of Hy (of measured deneity.) The
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/

'pressure broadened lines may be taken to have Lorentzian - ‘profiles,
with a width whlch is the sum of the spectral slit width and the width

due to pressure broadening.

5.3.4 The Hy ~ X CIS Spectrun

H2 - X and H2 - Hé collisions. Because of the low concentration of Hé
and its small polarizability, we will ignore the Hz = H, spectrum as
being to weak to concern us, The Hy - XvCISSPectrum:hdwever, will make

a small but significant contribution to the total intensity, Since we

we will subtract the Hy - X spectrum, Ang since the intensity of the
' Hy - X spectrum is only a few percent of the X - % intensity, a .
rough approximation to the real Hy, - X spectrum will be sufficient for
our purposes,

The zeroth moment of the binary ¢1g spectrum for the mixture will

be, in the prp approximation,
, Bt e Bl o |
¢(0) = b /Dx 3 ﬁc'“ag (x) ax + 2p /Dz xm’*g (x) ax

6ot 2

1, [ -4
+P}2I2 GB'Z[X gHz(x)dx /([JH2 +f>x)

Hy
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| 2
SR /’Hsz 3 o /
pex (9"’ cri 0)3;? x €H<x>dx

—_— =BPX{"

I
(iasgpﬂz (0.662)2/5)( oy )?

Hy S(1)

expressed in terms of the Hy S(1) rotation line intensity, The H, - H,

CIS spectrum may be represented as T(w) = A exp(- &/50 en~t ), on the

Stokes side, The'collision time for Hy - X collisxons is determlned by .

the inverse Square root of the reduced mass of the collidlng pair, the
decey constant of the Hy ~ X spectrum is inversely proportional to the
collls1on time, and is about 36 cn -1 fbr the moiecules studied, For
the purpose of subtracting the H, - X c1Is spectrum, we will approximate
it by an exponential spectral profile whose integrated intens1ty iu

Agiven by the DID model,

2:3+5. _Separation of the TWo-Body and Three Body Components

After removing the contributions due to the impurities Né. 0, and
Hy, the inten31ty of the CIS spectrum may be represented by a power

series expansion in density:6

I(w) = 1(2)((») p;‘; + 1(3)(w) p; + I(M(w) )o; + eee

The leading term is I(z)(qD f? since the CIg spectrum arises from

the interactions of at least two molecules, Qver the range of densities
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‘We have used in our experiments, the spectrum is adequately expressed
in terms of Just the two-body and three-body terms.v When the four -
body term ‘becomes important, it will appear first at small frequency .
shifts, The two ang three body spectra are obtained from a senies of
spectra at different densities by firet normalizing the intensities to
the Hy S(l) line intensities, then multiplying by-f’ / f% s and then
finally fitting a straight line of the form A+ B/D .at each separate -

‘frequency. The coefflclents of the fit are just I( )(OJ) and'I(B)(UJ) .

5.3.6, The Zeroth Moment

The zeroth moments of the two body and three body‘spectra may be -
obtained by inteérating I(Z)(QJ) and T(B)(oo) Howeverr it is prefer-
able to obtain the zeroth moments by fitting T( ) '(3)F§ to a plot
of I(p )/P versus P, where I(P) is the integrated intensity of the
- spectrum obtained from the sémple with density /7. The e&vantage-of
this method is that each spectrum is Tepresented by a single point so
that it is easier to critically assess the qualify of the fit in terms
of statistical and systematic uncertainties,

The measurement of the zeroth moment is difficult because the central
vpart of the spectrus which contributes most of the total intensity, is
partially obscured by the Rayleigh line, Unless the spectrum is scanned

with sufficiently high resolution, the extrapolation of the_spectrum to




FIGURE 5 ~ 5

Extrapolatioh'to Zero Frequency for the (IS Spectrum of Ar

The number of counts per channel (10 sec ‘per channel) of an ex-
perimental Ar CIS spectrum is plotted versus channel number (4 channels
per cm 1, the full spectrum COnulSta of 256 channels, ) The Ar sample
is at a pressure of 120 atm. ai room temperature (5,3 mole/llter) and
the spectral slit width used in the scan was 0,5 cm l. The CIS spec-
trum may be followed down to a frequency shift of 1 cm—l. The extra-
polation which we have used for frequency shifts below 1 cmm1 is shown
by the line; the extrapolation is not expected to 1ntroduce grosS errors

’ln the determination of the zeroth moment,
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FICURE 5 - 6

Determination of the Zeroth Moment of the Ar CIS Spectrum

The graph is of I?D)APZ versus p , where P has units of mole/
liter and _IQP)4DZ = ¢ %) has units of 82, The ’5(0) is related
to the integrated intensity of the Ar spectrum by:

. do
(119.2) p i, (mole/llper) (T)ar ors

ID-10-
75[2_ /92 (molez/literz)_ (%%.)Hé s(1)

where the H, S(1) rotation Raman line has been used as an internal
‘standard for determining the intensity of the Ar CIS spectrum, The
plotted values of gé(o)gp) have been corrected for effects such as
Hy - Ar scattering, The zero density intercept gives the intensity
due to binary collisions, while the downward slope of -the line gives
the negative, three-body contribution to the scattered intensity. The
line is 95(O>(Z9) = 54,2 - 3,71f>(m/1}>. The crossesy.filledland open
| circles represent spectra taken at different times and of different

quality.
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ze;o frequency shift will be unreliable, The narrow slit width re-
quired fof high resolution,‘however, greatly reduces the observed in~v
£ensity, and eventually countlng statistics will limit the aceuracy of
the 1ntegrated intensity measurement' The small frequency shift re~v
gion of an Ar spectrun ecanned at hlgh:resolutlongls presented 1n,F1gﬁre
5-5. The extrapolatlon to zero frequency shift for this specirum will

contrlbute only a small uncertalnty to measurement of the 1ntegrated

J'1nten31ty. Por the high resolutlon Ar, spectra measured at lower den~

| sities, it is usually the counting statlstlcs and not @he,extrapolation
which llﬁlts the accuracy of the 1ntegrated 1nten31ty. ,The»plot of Iép 2
versus p for Ar is given in Figure 5-6, A straight line‘is an adequate
"representation of the data, which Justifies the neglect of the four~body
contrlbutlon to the 1nten31ty. For the molecules we have studied, the
zeroth moment is at least flve times as large asifbr Ar; this makes the
nmeasurement of the geroth moment for the molecules much easier than for

Ar.

The results of our measurements of the zeroth moments may be sum-

marized as;

Molecule
Ar ;J(O)=5l+.2-3.17/)
CH), | ;a'(o ) - 296 - 2h.7 p
oF, 2(0) o0 17,6 p
57, %) = 1212 3h2p
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vhere ¢(O) is given in units of X9 ‘a.nd P is given in units of mole, /
liter., fhe first term is due to binary collisions while the second is
due to thr@e body collisions, The uncertainty of the measurements is

about + 5 to 4+ 15 percent, increasing down the table,

5:3.7. Comments on Absolute Intensity Measurements

morﬁent of the ¢18 spectrum of Ar, and the results have been in the
Tange of 0,5 to 0,8 times the calculated prp result for ¢(O) ’ The
results disagree with each other and with the theoretical predictlons.
The disagreement between the various mea.surer_nents of ¢(0) for Ar
has prompted our group, and the group headed by Barocchi, at .CNR Firengze,
Italy, to make independent determinations’ of ¢(0) for Ar., Ve have used
the internal standard method, where a measured amount of Hy is present
in the sample, and the measurements of the iﬁtensity scé,ttered'by the

sample and by the standard are Measured at the same time, This elim~-

inates the effect of focussing or alignment changes in the optics,
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Barocchi uses the external standard method, where the cell is filled -
: flrst with pure H, for the standard measurement, and then filleq with
a2 pure gas sample for all the other measurements, This eliminates the
interaction between sample ang H2 molecules which must be accounted
for in the internal standard method Ardecisive factor in choosing
the 1nternai standard method in our case is the fact that thetexperi—
mental room is not temperature stabilized Varlatlons in room temper-
ature requlre that the tracklog of the two halves of the tandem mono-
: chromator be adjusted every day and sometimesvfor every measurement,
when one is operating at high resolution (0.5 cmnl.)

Sinoe the H, S(1) rotation llne appears at a large frequency shlft'
from the IS spectrum, it is necessary to know the spectral response
functlon of the spectrometer.'_We have measured the spectral response
- of our instrument using a calibrated tungsten lamp; Barocohi has used a
black body source for this purpose,

The results for the zeroth moments»of the two~body CIS spectrum of
AT are 54,2 + 3 A9 for our lab and 48,8 + 3 A for Barocchi's lab.8 The
two results agree with each other ang have an average of 51,5 39, which‘
is 1.2 times the calculateo DTD value of'¢(0). These results are clearly
inconsistent with the measurements reported by previous workers, Ve may
suggest several reasons for erroriin the previous reports:

1) fThe variation in spectral sensitivity between zero frequency
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shjft and the position of the Hy 5(1) line has not been taken into
vaccpunt. |
2) The effect of the negative three—body contribution to the
total scattered intensity has not been taken into account. At 40 atmo-
sPheres (about 15 mole/ilter) the three body contrlbutlon is already
10 percent of the two body intensity, The intensity of the spectrum be~
- comes lnconvenieptly\vlow for Ar if the density is reduced much below -

~ this value,

cause the spectrum‘is Symmetric about gzero frequency shift, except for
the Boltzmann factor.s The zeroth moment includes the entire speetrum
and 1f only the Stokes side is used in computing ;5(0) the result will
v be too - small by a factor of two. |

Unless one has the specific intent of making accurate absoluﬁe in-
tensity measurements, the results are likely to be affected by systematlc y
errors due to features of the experlment which are of little consequence
when only the spectral shape 1s desired, As a final consideration, we
must note that the absolute intensity measurements we have méde can be
10 more accurate than the value of ( 0%-—01)H = 0,314 £ that we have

assumed for our internal sfandard. The etperlmental value of (o@ o )

careful theoretical calculetion so that the absolute intensities we

have obtalned may be systematically too large by'thls amount, J
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smaller than the wavelength, the angular distribution becomes

: very broad

The Beattle-Bridgeman equation of state has the forn
RT(1~zjﬁ (B+ 1) - AF where A=A _(1-ap), B=B_(1-tp)
and £'=ng « The density may be obtained by the iteration
LR #
Cqp #.0,0 - Cy f 0P
where Cl = RT. _
.- ,‘ 2
Co = R(B,T - /1) - A,

P:

i

.CB - aﬁo - RBO(C/TZ + bT)

G, = BB be/1°
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CHAPTER 6

DISCUSSION AND CONCIUSTIONS

In the previous chapters, the theoretical framework for the

} discussion of collision~induced light scattering was presented In
this chapter, we will compare the theoretical predictions with the
observed spectra and draw our conclusions,

The first comparison we will make is between the spectra com-

. -)
puted using the point prp model, X )= y and the e erimentally
/9 : , Xp

‘observed spectra for Ar, CHQ’ CW4 and SF6. The spectra are plotted
in Figures 6—1 2, 3 and 4, fThe computed spectra agree well with the
observations in terms of the spectral shape, especially considering

that there are no free parameters involved, This agreement in the

spectral shape 1s relatively insensitive to the form of the pair polar-
izability function However, the intensity of the calculated spectrum
does not agree with the observed spectrum; the error bars on the

measurements have a width of the order of %10 percent while the dis-

Crepency between the theory and experiment is of the order of ;t 100
percent, Tt would seem that the simple point prp nodel is not a suf-
Ticiently good approximation to P(x) We will consider refinements

of the DID model shortly,

The comparision we just made was limited to the low and inter-
nediate frequency regions of the spectrum, If we continue into the

high frequency shift region, we find an abrupt change in the shape of




FIGURE 6 - 1

Comparison of the Experimental and the Calculated DID CIS Spectrum

for Ar

The experimental measurements are indicated by dots (plotted

every 2 cmnln) The spectrum calculated using the DID model,
p(x) = x~3, is shown by the solid line, The dashed line (near

- zero frequency shift) is the calculated spectrum ignoring the con-
tribution of bound dimers, The bound dimer spectrum is somewhat
too narrow while the unboﬁnd dimer spectrum is SQmewhat too wide,
'Howéver, the overall shape of the calculated spectrum agrees re-
markably well with the observed spectral shape.

The intensity calculated us1ng;ﬁ9(x) = x , (the other par-
ameteg values used are given in Table 3 - 2) is ggttl = L2.7 39
(¢f](: ) - 37.5 A9) as compared with the measured value ;Ii( ) =

5L5 A9

than the observed intensity,

for Ar. The calculated intensity is slightly smaller

The intensity scale is in units of the CIS scattering cross
section per unit frequency interval (1 em ) divided by the scat-
tering cross section of the H, S(1) transition under the same v
conditions, when both gases (Hz and Ar) are at unit den31ty (1 mole/
liter,)
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FIGURE 6 - 2

Comparison of the Experimental and Calculated DID CIS Spéctrum
for CH, R ’ o : | X

The experlmental measurements are indicated by dots (plotted
every L cm ) The spectrum calculated using the DID model,
Ax) = , is shown by the solid line, The dashed line (near
zZero frequency shift) is the calculated spectrum ignoring the con-
“tribution of bound dimers, The bound dimer- spectrum is too narrow,
. while the unbound dimer spectrum is too wide, Past 180 cm -1 the
shape of the observed spectrum changes abruptly. .

The intensity calculated using p(x) 3 is & gg% 211—9 9 29
( ﬁfree 191,7 A9) as compared to the measured value of ¢

2962 37 ( ¢(O) 291 2 17 vhen the CIRS contribution is sub-
tracted, ) The observed intensity is sllghtly larger than the
calculated value,
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_FIGURE 6 - 3

Comparison of the Experimental and Calculated DID CIS Spectrum
for CF&

The experlmental measurements are indicated by dots (plotted
every 1 cm ) The spectrum calculated using the DID model,
px) = x , is shown by the solid line, 'The dashed line (near
Zero frequency shift) is the calculated spectrum ignoring the
contribution of bound dimers. The bound dimer spectrum is some~
what too narrow, but the overall shape of the calculated spectrum
agrees very well with the observed shape, Past 60 cm-1 the shape
of the observed spectrum changes abruptly, ' '

The intensity calculated using /e(x) =x~ is. ¢(0) = 142,1 39

( g%(o) 128.8 A9) as compared to the neasured value of gﬁ(o)

277 A 57 ( ¢ﬁ0) 271,5 7 when the CIRS contribution is subtracted )
tYhile the shape is correctly predicted, the predlcted intensity

much too small,
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" FIGURE 6 - 4

Comparison of the Experimental and Calculated DID CIS Specfrum
for sm 6

The experimental mea.surements are indicated by dots (plotted
every 1 cm ) The sPectrum calculated using the DID model,

Ig(x) = x , is shown by the solid line, The dashed line (near
zero frequency shift) is the calculated spectrum ignoring the con-
tribution of bound dimers. The bound dimer spectrum and the un-
‘bound dimer spectrum are both too narrow, Past 40 cm"].' the shapé
of the observed spectrum changes abruptly, : -

‘The intensity calcula.ted using B(x) = X2 is ¢ttl 57,5 37

( ¢f(0) h60.6 39) as compared to the measured value of ¢(O) =

1212 Xg_ ¢(O) = 1188 A.9 when the CIRS contribution is subtracted,)
Both the width and intensity of the predicted spectrum are smaller

than:the experimentally measured values.
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- not account for at all, 1n fact, a different mechanism, collision-
induced rotational scattering, takes over from the translational ¢Ts
mechanism, This change is sﬁggesﬁed by the fact that a ‘high “
frequency tail is present for all the molecules, but not for Ar, WYe
may confirm our surmise about the nature:of the high fréquency tail
by making an isotopié substitution., As we have said before, the fre~-
Quency spread of the translational CIS sﬁectrum is essentially deter-
mined by the molecular diameter ang velocity, The frequehcy spread of
:the CIRS spectruﬁ on thé,other hand; depends on the moment of inértia-
of the molecule, .Consider the pair of moleculés CH4 and_th,-with
masses 16 amu and 20 amu respectively, The molecular velocity of
& CD) molecule will be (16/20)% =0,89 times the velocity of a CHQ
nolecule withvthe Same energy, All the‘other properties of these
molecules, such as their polarizability; diameter and intermolecular
potential, are very similar, Except fbr a slight shift to lower‘fre~ |
quencies, the CDhﬂtranslational CIS spectrum should be identical to
 that of CH),. Thé moment of inertia of CDy, h'owever, is twice as large
as that of CHy. The frequency of all rotational trahsitions for CDy,

will be reduced by a factor of two from the CH), rotational transition |
frequencies and so the entire CIRS spectrum will be shifted down in

frequency by a factor of two, The spectra of CHy, and_CD4 ;obtaiﬁedf
under the same conditions, are compared in Figure 6-5, At small fre-
quency shifts the two spectra are almost identical, The high frequency
tail of the spectrum however, is drastically different for the two
molecules, This is the clear signature of collision-iﬁduced rotational

scattering in the far tail of the CH,, and CD,, spectra,

Having demonstrated that CIRS actually contributes to the observed
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FIGURE 6 -~ 5

Comparison of CHM and CDLP Spectra

The raw data for scans of a CH,, spectrun (dots) and a CDy,
spectrum (crosses) under the same conditions are plotted in this
figure, The samples were both at a pressure of 75 atmospheres at
22°C and the spectra were scanned with 3,0 cm—l slits at a speed
of 20 sec/ch (1 channel
plotted (every 4 cm_l), and the background count rate has been
indicated by the dashed line at the bottom of the graph, The
sharp pesk at 354 cm © is the H, S(O) line (H, gas at 1 atm has

been added to the samples as an internal intensity standard.)

2 cmnl). Every second point has been .

i

From 0> 60 cm_1 the CH,, and CD;, spectra are very similar
with the CDQ spectrum being slightly narrower, as expected. From
60 —>180 cm * the CD), spectrum bulges upward -- this is due to
'the presence of 0,8 mole percent air as a contaminant(in the CD4
(see Figure 2 -2b,c for the shape of the’N2 and Oy rotational
'spectra,) Past 200 cmu1 the contaminant spectrum no longer inter-
feres with the measurement of the CIS spectrum, At large frequency
shifts the spectral profiles for CHy, and €Dy, are quite different;
the CH), spectrum bends sharply upwards at 200 cm—l, but the.CDu
does not, The CHu spectrum is much more intense at large fre-
quency shifts than the €Dy, spectrum, as is predicted by the CIRS
theory,
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spectrum we will now compare the computed (TRg spectra with the
observed spectra of the molecules CHQ, CD@’ CF# and SF6. The spectra
are plotted inE&gureséFé 7y 8 and 9, The bond polarlzabillty
values of A ang E from Chapter 4 and the values 35, 25, 2,63,
0,185 ang 0,0867 cnm -1 for the rotational constants B, have been
used in calculating the spectra, The total intensity of the CIRS |
- spectrum is 1,7, 2 »5 and 5 percent of the total intensity of the

CIS spectrum for CHQ' CF4 and SF6 respectively. For both CH# and CDQ

the calculated CIRS spectrum agrees very well with the observed high
frequency tail of the spectrum. However, at very high frequencles,

the calculated CH), spectrum becomes too weak compared to the measured
vspectrum. In the cases of Cﬁh and S“6, the results are less satlsfactory
For CF, and SF6 there is only a short range of frequencies where the
CIRS spectrum clearly contrlbutes to the observed spectrum, Fbr-both
CF4 and SF6, the observeq intensity at large frequency shifts is greater
than can be accounted for by our calculation,

This excess intensity at high frequencies appears only in the mol—
ecular’ spectra, so it is most likely that the scatterlng mechanism ig
rotational, The frequency shift of this spectral tail lies in the
range Wthh can be produced by double rotational transitlons involving
the tensor E, . The bond polarizablllty model was used to obtain
estimates of A ang E, and for the estimated values of R the con-
tribution of 51ngle and double g transitions to the overall CIRS
" spectrum is small (except of course for SFgs where A = 0,) TIf the
values of R ‘which we have used were underestimated by a factor of
about 2 «5, then the double R transitions would be able to account

for the far tail for CH,, and CDye For CFy,s the slope of the far tail




FIGURE. 6 - 6

Comparisoh of the Experimentél and the Calculated CTRS Spectrum
for CHq

The experimental measurements are indicated by the dots_(plotted
every 10 cm-l to 200 cm‘l, then every 20 cm-l 0 460 cn™t and then
at 550, 640 and 730 cm—l), while the upper curve is the DID calcula-
tion shown in Figure 6 - 2, fThe lower curve is the CIRS spectrum
calculated for CHy, with A= 1.2 ﬁq and E= - 1,2 KS  The CIRS
calculation begins to fall below the experimental measurements

past 400 cm—l. The contribution of thé terms in E to the calcu~

lated CIRS spectrum is very small for the chosen values of A and E.

The intensity scale is in units of the CIS scattering cross
section per unit frequency interval (1 cm-l) divided by the scat-
tering cross section of the Hy S(1) transition under the same con-
ditions , when both gases (Hy and CH),) are at unit density (1 mole/

. liter). _ ~
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FIGURE 6 - 7

Comparison of the Experimental and the Calculated CIRS Spectrum
for CDL’»

The experimental measurements are indicated by the dots (plotted
every 10 en™t to 200 cmfl, and every 20 em™ L thereafter), while the
upper curve is the DID calculation shown in Figure 6 - 2, but with
the frequency scale compressed by a factor of 0,9 ', The lower curve
is the CTRS spectrum calculated for CDH with A= 1,2 Kh and E = -
-1,2 35. The CIRS calculation agrees well with the experiment,

though it seems to fall somewhat below the measurements past 300 cm‘}

The contribution of the terms in E to the calculated CIRS spectrum

is very small for the chosen values of A and E.
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FTGURE 6 -~ 8

Comparison of the Bxperimental and the Caléﬁlated CIRS Spectrum

for CFA

The experimental measurements are indicated by the dots (plotted:
every 2 en™ L to 60 cmfl, and every 10 et thefeafter), while the
upper curve is the DID calculation of Figure 6 - 3. The lower curve
is the CIRS spectrum calculated with A = 2,2 54 and E = -2,2 35;

From 60 to 80 cm_l the calculated CIRS spectrum lies near the ex-

periméntal measurements, but for larger frequency'shif%s'the observed

intensities are far larger than the calculated values, The contribu-

tion of the terms in E to the calculated CIRS spectrum is small for

' the chosen values of A and R,
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FIGURE 6 - 9

Comparison of the Experimental and the Calculated CTRS Spectrum
for SF‘6

The experimental measurements are indicated by the dots (plotted-
B every 2 cm -1 to 40 cm l, and every 10 cm -1 thereafter), while the
upper eurve is the DID calculation of Figure 6 - 4, The lower eurve
is the CIRS spectrum calculated with A = 0 A4 and B = 20 A5 From

30 to 70 em -1 -the calculated CIRS spectrum agrees w1th the exper-
~imental measurements, ut for larger frequency shifts the calculated

~ spectrum falls below the measured spectrum, The calculated CTRS

~ spectrum is almost completely due to the E4 term,
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is too shallow to be accounted for only by double g transitions,

. In the case of Sﬁ6, one has to invoke the next higher order polar-
izability, since the calculated SF6 CIRS spectrum is already all
due to the double B transitions,

. Unfortunately, the present experimental results for CD4 do
not extend far enough in frequency to rule out, by comparison be-
tween the CH4 and CDh spectra, the possibility that the excess in-
tensity at very high frequencies is due to a translational CIS
mechanism, The very high freqency tail of the spectrum may, in
that case, arise either from the effect of a very short range
contribution to the pair polarlzablllty,rsuch as frame dlstortlon
or from the break-down of our classical correlatlon functlon cal-'
culation, The tail in the CH,, (stokes) spectrum, for example, cor-
Tesponds to eollisions where the energy of the molecules is 1ncreased
by more than 3 kT. . Since our calculatlon does not incorporate the
four-fold energy change of the CH# nolecules during these collisions
vwhen determining the tragectories, it will probably be incapable of

- predicting the correct spectrum at such high frequencles, In that

and some modifications of the simple DID nodel of the pair polar-
1zability. In the point prp model, the polarlzabllity anisotropy is
given by the series P x) = -3 + (~—j X 6 ees (recall that

2

ﬁ(r) = ( 3) lg(x) ) A perturbation calcula.tionl for the diatom (He)2

gives the asymptotic form of lg(x) as




/B(X) + 2,52 (——j .
When we 2djust the coefficient of the x70 term of p(x)  for ar so

: 1
that the calculateq ¢(O) agrees with the measured value (see Table
3-2) the form of IB(x) is; |

Ig(x) + O 114? x -6 + 3,71 (-oi) ‘x“6- .
r

“m
~ This result for Ar is quite pla,usﬂ)le in the light of the result of
the calculation for (He)2 » Repeating this proceedure for CHL;'

taking account of the CIRS contrlbutlon, we get:
AO) = %7+ 0,135 x6 4 2,3 (E?) X0

which is againkréasona;"bl‘e in the light of the (He)2 result,

- For (:F,+ and CF6" the corresponding expressions for 18(;{) ares
p(x) = +0?723x =x3+2813(-—-)x
p(x) 34 0. 7231 x6 - X + 2?.06 (ﬁ) x .

For both CF,, and SFév the coefficlent of the b's =6 term is'about iO
times as large as'expected on the basis of the (He)2 result, Tt is
not clear at first whether this abrupt increase in the coefficient of
X ° is reasonable, The main feature which distinguishes CF& and SP6
as a group from He, Ar and CHQ’ is just that there are F atoms on .
the outside of the molecule, 2 |

In Figure 6-10 we have plotted the spectra computed for Ar with
three values of the coefficient of the x é term; the coefficient

has values of 0, 2,5 ang 15 times the value of the coefflclent of

term for the point prp model, Since the translational Scattering
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- caleculation ignores internal structure, the behavior of the Ar spectra o

as the coefficient of x -6 -increases, should be representative of the




FIGURE 6 - 10

The Effect of a short Range Term in the Ppair Polarlzablllty Upon
the Calculated Spectral Profile

Three sPeétra calculated for Ar using the pair polarizability

function B(x) = e A x'.6 are plotted (only the unbound dimer B
spectra are shown, )

O o O ©
A s @® Q@
0.6879 982 | 111.1
0,1147 - 45,3 5L.5

0.0000 37.5 y2,7

The spectral profile swings upward as A increases, so that
the spectrum becomes relatively more imtense at high frequencies
when the short range component of p(x) becomes larger. However,

no abrupt changes in shape are introduced by the short range term.
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beha.v1or of the molecular spectra under the sape circumsta.nces.

The successive Ar Spectra become relatively more intense at high
frequencies as the short range component of ’S’(x) gets larger, but
the dominant change in the spectra is just the increase in inten-
sity at all :E'requoncms. The spectral shape is relatively insensi-
tive to the form of Ig(x) The large x -6 term needed to ‘account
for the excess inten31ty in the case of CFIL and Sﬁ‘é cannot be ruled
out on the ba.31s of the sPectra.l shape since the spectral shape is
only weakly affected 'by the 1nclusion of the x ~6 term.

The large short range term Ain /g(x)for CFL:, and SFg may in fact
a.rise because of the inadequacy of the point DID model in descrlblng
the interaction of these molecules. ‘I‘he point DID model is satis-
factory for large intermolecular separations, but for close encounters .
the induced fields may vary grea.tly over a molecular dlameter. The
electric field at the center of the molecule will be smaller than its
value near the collidlng edge, so that the point prp model which
considers the fields at the center of the molecule, will underestimate
the intera,ctlon. In the case of CFQ and SF6, the interaction. between
molecules in a collision may be localized at the impacting fluorine
atoms rather than at the center of the molecule. This would account.
for the unexpectedly large x -6 term in ,3(x) when the 1nteractlon is
expressed in terms of the distance from the molecular center, 3

The spectrum calculated for Ar with p(x) = 3 has an intensity
greater than the observed value at large frequency shifts, Inclusion
of the short range x -6 term will make the disagreement between theory
and experiment at large frequency shifts even worse. A mechanism which

decreases /g(x) at short Tanges would counteract the tendency for the
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high frequency shift part of the spectrum to become relatively too
bright, one such mechanism is the so-called electron overlap in-
teraction, yhen two colliding molecules come close enough together
for thelr electron clouds to partially overlap, the electrons will
be compressed into a smaller volume against the effects of their
electrostatlc repulsion and the Paylj exclusion principle, and the
molecules wWill be strongly repelled, The compression of the electron
clouds also results in a reductlon 1n the polarizability of the
molecule, Since the Trepulsive force between the molecules decreases
exponentially w1th their separatlon, we may expect that the change
in the pair polarlzabillty of the molecules due to electron over- |
1ap will also decrease exponentially with distance.

To see the effect of electrcn overlap on the shape of’the Spectrum
- We have included in /B(x) a term whlch falls exponentially with
distance at the sape rate as the repuls1ve part of the 1ntermolecular
potential, 4 The size of this hegative contribution was chosen arbi-
trarlly to be equal to one half the value of the x -6 term at the
distance of closest appreach in collisions at room temperature, The
exponential tern sharply reduces /Q(X) at short ranges as can be seen
in Figure 6-11,. - Spectra computed with the inclusion of this term are
plotted in Figures 6-12 and 6-13 for Ar and CHy, along with the cor-
responding spectra computed with the inclusion of only an x~6 term,
The total intensity for each of the computed spectra is just equal to
the observed zeroth moment of the appropriate molecule, There are no .
abrupt changes in the shape of the spectrum accompanying the changes
in /S(x) The relative intensity at high frequencies is reduced in-

the expected fashion by the inclusion of the electron overlap ternm,
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and for both Ar ang CHL},A the‘épectra are too intense only'in the
intermediate frequency region, By a suitable choice of _the three'’
parameters in le(x), the calculated spectra may be forced to hettexf‘
fit the d‘bservations; but to decid:é whethér the resulting parameter
values are meaningful, one reé.lly requires a better theoretical under-
standing of the forn of /B(x). It must not be forgotten, for example,
that the detaileg shape of the scattered light Spectrum }depends on

the form of the intermolecular potential as well as the pair polar-

. izaBility,

Our conclusions » drawn from the study of the translational CIS

| sPéctrum‘,'. may be summarized as foll&ﬁs: _ _ | |

'a) The simple DID model of the pair polarizability jields 2 good
first approximation to fhe spectral shape, The spectral shape is

| ‘rela,tively insensit}ive to the form of IB(X)' depending maiﬁly on the
collision dyﬁamics. - o |

‘b) The experimentally observed zeroth moment, ¢£}?I)) t » is larger
than the v?'iue, ]g]?}% , calculated using the DID model; for the aton
“and molecules that we have studied, ’¢e£§% is in the rangé 1.2 to »
2,2 times ¢]g§g . | , |
'¢)  In order to account for the- ‘discrepency " between the-quérved and
calculated intensities, the pair polarizabilify function must be
modified. The additional conﬁ:ibutions to Ig(x) ‘which have been
considered seem to be short range — for example second order 1D,
electron overlap and frame distortion, Inclusioﬁ of such short range
termé tends to increase the intensity at intermediate angd high fre-

quencies, making the shape of the calculated spectrunm deviate further

from the shape of the dbserved spectrum than it does for the simple
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DID model, fhis tendency is partially countered by the negative
electron overlap term, The spectral shape seems to favor a long
range form for IB(x) . | |

d) vhile the scattered intensity is sensitive to the form of IB(X)'
experimentally it is difficult to obtain information about the form
of B(x) because the Measured quantity has been averaged over all
the values of .accessible to the collidihg molecules, Working
over a wide range of temperat{zres would enable one fo select the

range of x values being probed in the collisions; the information

about the form of lg(x), obtained from measurements of ¢(0) yersb.s )

T,  would be pa:cticuia.rily valuable because it is independent of the -
theoretical models of plx) . | |

e) Finally, shoft range terms in Ig(x) do not cause abrupt ghanges
.in shape of .the spectrum but only tend to smoothly shift the inten—

sity to higher frequencies, The spectra of all the molecules show an

From the study of the high frequency spectral tails which ocour

in the CIS spectra of moleculesA, we may draw the following conclusions;
a) The spectral component which appears (abruptly) at high frequencies
in the ¢r3 spectra of molecules is due to collision-induced rotational

scattering (CIRS) which arises from the higher order polarizability

tensors of the molecules, fThe high frequency spectra are well accounted
for, in intensity ang shape, by the ¢TRg spectra calculated using

reasonable parameter estimates,

b) The magnitude of the lowest order polarizability contributirig to



the CIRS spectrum may be determined from the spectral measurements,

For the molecules we have studied;

Sl ] ol
CHa = ACDL" , = 1,2+ 0,1 £
Acpa’ = 22400234
ESF6, = '(20;&225

c) At'very high frequencies, the calculated QIRS spéctrum falls
below the measuremenfs, This appears to be due to the effect of the
next hlgher order’ polarlzabllity tensors, For CH,, the excess intensity

~at very high frequencies may be accounted for, in intensity and shape,
by the double E transitions. Ihis allows us to estimate the value

of B for CH4 ass
CHI.}! = lECDLL, = 3.0:!: 0.53 ] .
d) For CF# » We cannot properly extimate E from the dats because

we cannot ascribe all the intens1ty excess over the A trans1tions

to the g transitlons = as a rough estimate we may take
,EEF', = 10=zx5 A5 + For both CF# and SFg » the very far tail is too»
L

broad to be accounted for by the double E"transitions, so it would
seem that the d1pole~hexadecapole pOlaleablllty‘ tensor must be 1nvoked
to describe this part of the spectrum, 5 ‘ _

e) The CIRS spectrum not only accounts for the high frequency talls N
of the molecular CIS spectra, but it also provides a stralghtfbrward
method for experimentally determlnlng the magnitudes of the hlgher

order molecular - polarlzabllities.
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NOTES AND REFERENCES ‘

P. J. Certain, P. R. Fortune, J, Chenm, Phys., 55. 5818 (1971)
The polarlzabllltles of He, Ar, CH&' CP& and SF6 are

0.2051, 1,642, 2,633, 2,85 and b, 470 33 , respectlvely.

The molecular diameters (the parameter 0~ of the I-J 6~12
potential) are 2.57, 3,43, 3.68, 4,70 ang 551 X . The

C-H, C-F and S-F bong lengths are 1,091, 1,33, ang 1 .59 &

in CHQ, Cva and SF6, the } molecular dlameter ‘0" as determined
by the 1niermolecu1ar potential is about 1,7 times the diameter
of the molecular frame for each of these molecules, The
atomic ang molecular masses are 2, 40, 16, 88 and 146 amu..

On the basis of the polarizablllty, size and mass of the atoms
and molecules, they do not seen to divide into two distinct
groups even though there is a clear progr9581on to larger size
and polarlzablllty as one goes down the llst

¥hen we say that the interaction is localized at the F atoms
Wwe do not mean thls too literally; we only w1sb to draw
attention to the fact that the electron density is less
centrally peaked for CF@ and 3“6 than for Ar and CH,,. ThlS
may make the effect of the finite molecular ‘size upon the
scattered intensity relatively larger for CF4 and SF6 than fbr
Ar and CH&'

For the repulsive core potentials calculated for the inert gas
atoms, see:s

A+ A. Abrahamson, hys, pev, 130, 693 (1963) .

We have used a multipole expansion to describe the angle-
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dependent in’cera,ctlon between two molecules which allows

the CIRs spectrum. A model whlch represents a diametrically
opp031te viewPoint is to represent the angle—dependent
interaction as being due to (point dipole) atom-atom inter-
actions between the outer atoms comprising the two collldlng

- molecules (see: R. A. Stuckart C. J. Montrose, T, A, Litovitz,
Sy'mpos:La Faraday Soc, 11, 94 (1977) ) While the scatterlng by
- such ‘an atom-aton interaction would be much smaller than for
the induced quadrupole and octopole 1nteract10ns we have con-
sidered, it could very well compete with the 1nduced hexadeca~
-pole interactions; for Jc.e'l:ral'xed:c‘all. e,nd octahedral molecules
the atom-atom and hexadecapole polarizabilities will both
1nvolve moments of the 5- th rank (see- A. De Bucklngham,

G. C. Tabisz, Mol, phys, 36, 583 (1978) )






