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Abstract 

Temporal and spatial distribution of incoming vehicular charging demand is a significant 

challenge for the future planning of power systems. In this thesis the vehicular loading is-

sue is categorized into two classes of stationary and mobile; they are then addressed in 

two phases. 

The mobile vehicular load is investigated first; a location-based forecasting algorithm for 

the charging demand of plug-in electric vehicles at potential off-home charging stations is 

proposed and implemented for real-world case-studies. The result of this part of the re-

search is essential to realize the scale of fortification required for a power grid to handle 

vehicular charging demand at public charging stations. 

In the second phase of the thesis, a novel decentralized control strategy for scheduling 

vehicular charging demand at residential distribution networks is developed. The per-

formance of the proposed algorithm is then evaluated on a sample test feeder employing 

real-world driving data. The proposed charging scheduling algorithm will significantly 

postpone the necessity for upgrading the assets of the network while effectively fulfilling 

customers’ transportation requirements and preferences.       
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Chapter 1 

Introduction 

1.1 Background  

Electrification of transportation in recent years has attracted a great deal of attention be-

cause of its tremendous environmental and economic benefits for the society as a whole. 

With an urgent necessity to reduce greenhouse gas emissions, employment of renewable 

energy sources in generation of electricity and using electric vehicles (EV) have been 

promoted by various means such as international agreements, government incentives, 

media, etc. Currently, the majority of on-road vehicles consume gasoline as the primary 

fuel for their propulsion systems and this has been pointed out as the main reason for air 

pollution. Therefore, gradual substitution of gasoline with electricity not only signifi-

cantly diminishes the adverse effects of transportation on the environment, but also prom-

ises a sustainable fuel for the future vehicular industry  [1]- [4].  

However, lower performance of commercial EVs as well as their higher prices in 

comparison with conventional internal combustion engine (ICE) vehicles has hindered 
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the rate of penetration of EVs in the market  [5]. As a result, hybrid electric vehicles 

(HEVs) have been proposed and manufactured as an interim solution for cost and per-

formance obstacles of EVs. Indeed, in the transitional period while EV technologies such 

as battery storage and electrical engines are still at the development stages, the combina-

tion of the two energy sources in the propulsion system of a vehicle seems to be the most-

suited possible option. This combination can be accomplished in various ways (e.g., se-

ries, parallel, series-parallel, and complex) aiming to employ advantages of both energy 

sources  [5],  [6].  

Unlike initial models of EVs, HEVs could provide longer driving range. In order to 

maximize the overall efficiency and performance of the vehicle, different control strate-

gies can be applied in HEVs. Managing the energy flow between two sources and battery 

sizing have been the main issues regarding HEVs  [5]. 

Plug-in hybrid electric vehicles (PHEV) followed by plug-in all-electric vehicles are 

the latest achievements of vehicular industries. PHEVs have the capability to operate in 

electric mode over a significant distance, so they have battery storages with higher capac-

ity and smaller ICEs in comparison to HEVs. Moreover, adding an on-board charger in 

plug-in electric vehicles (PEVs1) has made the recharging of battery storage much more 

convenient as its ideal aim is to have the possibility of charging wherever a plug of the 

electrical grid is accessible. All of these improvements have led to a positive reaction of 

the market to some commercial models of PEVs in recent years  [1],  [2],  [5]. 

                                                 

1
 “PEV” stands for both plug-in hybrid and plug-in all-electric vehicles  
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However, the fast penetration rate of PEVs, as well as unique characteristics of load 

demand of their corresponding battery storages, have spun some new and challenging is-

sues in the power system area. The charging demand of PEVs is presently considered as 

one of the problematic concerns for planning of the electrical network. Currently operat-

ing electrical networks are mostly designed without taking in to account a fast rate of 

growth for vehicular charging load and might be inadequate to supply and properly oper-

ate in many nodes of the system  [3],  [4],  [6],  [10].  

Convenience of charging is an important factor for commercializing PEVs. It should 

be fast, efficient, and cost-effective. To do so, battery chargers are designed to draw 

maximum power for considerably long periods from the available outlet in order to 

charge the battery as fast as possible. Therefore, battery storages of PEVs present much 

larger loads in comparison to other household loads. For example, for a regular outlet 

with household ratings of 120V/15A (North-American standard) a maximum power of 

1.8 kW may be drawn by chargers of PEVs. 

The duration of the charging demand depends on various factors. Most importantly 

the driving profile of the vehicle determines the required energy and also potential time 

for charging. Furthermore, personal preference on capacity of battery storage (all-electric 

range of the vehicle), and the vehicle technology are other influential aspects.  

Mobility of PEVs adds another uncertainty factor to the positioning of charging de-

mand in the distribution network. This is much more difficult in the low level of penetra-

tion of PEVs due to the challenge of accurately estimating the driving behavior and 

charging habits of the majority of electric vehicle drivers; moreover, information about 

market acceptance of various kinds of PEVs with different all-electric capabilities cannot 



 1.2 Potential Impacts and Possible Solutions  4 

 

 

be obtained easily. These all make it difficult to identify the place and the amount of the 

required or demanded charging load. 

Therefore, vehicular loading on power systems is a multifaceted issue, which initially 

deals with vehicle technology, transportation network, electrical power network as well 

as human (drivers) interactions with all of these technological entities.  

1.2 Potential Impacts and Possible Solutions 

The electrical power system in its different voltage levels namely generation, transmis-

sion, and distribution will be affected by unforeseen vehicular charging load. Among 

these different levels of the electrical network, the assets of the distribution system (e.g. 

transformers, feeders), which are not only the closest infrastructures to customers, but 

also have the lowest capacities, are more vulnerable to the adverse effects of excessive 

charging demand. Indeed, at a low penetration level of PEVs, studies have shown that 

generation and transmission levels of the grid are sufficiently capable of handling the in-

coming charging load and their reserve margins and regular upgrading pace are adequate 

to meet the anticipated penetration rate of PEVs; on the other hand, at the distribution 

level with low reserved capacity of assets, coincidental charging of even a small number 

of PEVs, energised from the same low-voltage feeder, might lead to overloading of assets 

 [7]- [12]. This is mainly due to the fact that PEVs are not going to be uniformly distrib-

uted among the area of interest and therefore, there will be some hot-spots in the power 

network where charging demand is higher than the present capacity of the grid. Identifi-

cation of such locations in advance will not be an easy task. This is due to the fact that 
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this issue deals with an excessively large number of low-rating nodes of the distribution 

system as well as their associated customers’ transportation preferences and electrical en-

ergy usage habits. As a result, many potential issues might arise in the power system en-

vironment such as lower longevity of network elements as well as power quality and reli-

ability concerns.  

 Upgrading assets of the distribution network at problematic locations is an obvious 

but least-favoured solution for the PEV loading issue due to its cost. The distribution 

level is the most expensive part of the power network due to its high number of elements; 

hence, upgrading of the assets especially at low penetration levels must be considered as 

the last solution. Therefore, maximizing the utilization of the current capacity of the net-

work has been considered as the main solution for the vehicular loading issue in order to 

postpone the need for upgrading. 

The block diagram of Figure 1-1 illustrates major approaches that have been taken by 

researchers mostly in the last five years striving firstly to enlighten the status of the pre-

sent power systems and potential charging patterns of PEVs; secondly to assess possible 

impacts of charging demands on the system; and ultimately to investigate viable solutions 

to effectively address planning and operating concerns of the network. Handling these 

upcoming issues by employing facilities enabled in the future smart grid environment 

such as customer/demand-side responses and intelligent control schemes, has been the 

dominant approach in various studies. The main aim of such studies has been to find out 

an optimal charging profile meeting both the utility’s and customers’ objectives. 
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Figure  1-1 Dominant areas of research on vehicular loading. 

1.2.1 Impact assessment 

Firstly to deal with the vehicular loading issue, the present capacity of the power grid and 

its capability to feed incoming charging demand must be investigated. Data on current 

demand, load growth and generation as well as rating of assets are part of the required in-

formation to determine the status of a distribution network  [12],  [13].  

Planning of the electric grid requires reliable estimation of the load demand on all 

nodes of the network. In fact, all subsequent actions, such as determining the rating of as-

sets, managing the power distribution and so forth, depend on the accuracy of this essen-

tial and critical stage. Poor quality and waste of capital money are the adverse impacts of 

underestimation and overestimation of load demand, respectively  [13],  [14]. Therefore, 

having a proper picture of spatial and temporal features of charging demand is the initial 
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and main step of the planning for upcoming vehicular load in the power system and per-

formances of all following preventive measures depend on its validity.   

The main challenge in this regard is the lack of historical data for charging patterns of 

PEVs. Therefore, to address this problem, studies have been conducted to estimate poten-

tial patterns for recharging PEVs storages within power systems  [8]- [12]. Features such 

as location, starting time, duration, and amount of demand are essential for a comprehen-

sive assessment of adverse effects of unsupervised (or uncontrolled) charging on the 

power network.  

Due to the uncertainties involved in the traits of vehicular demand in terms of vehicle 

specifications, driving cycles (patterns), and drivers’ preferences, there is not an exact 

and perfect approach to resolve this issue. As a result, researchers have examined differ-

ent approaches including deterministic and stochastic (by employment of real-world driv-

ing data) to characterize the vehicular demand.    

In stochastic approaches, by means of analysis of real-world driving data, essential 

features of vehicular load, which vary stochastically, are estimated  [15]- [22]. In fact, in 

light of the lack of historical records of actual charging behavior of majority of drivers, 

local driving patterns of conventional vehicles can provide a realistic picture of potential 

starting time and duration for charging as well as daily mileage and its associated amount 

of energy consumption. Demographic and geographic attributes of the area of interest are 

also reflected properly in such data. However, it should be noted that driving pattern of a 

specific location might not always be a good representative of all jurisdictions. Therefore, 

availability of reliable and informative data restricts the application of such approaches of 

vehicular load feature realization.  
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In deterministic approaches, different probable scenarios for charging period (e.g. 

peak or off-peak) are considered. The amount of required charge is also specified accord-

ing to the average mileage of vehicles and their specific energy consumptions  [8],  [25], 

 [26].   

Locations of charging are commonly defined deterministically as well. In this deter-

mination, accessibility of a plug as well as convenience in terms of availability of ade-

quate time and cost of charging plays a critical role. Home, work, and public charging 

stations are the main potential locations considered for recharging battery storages of 

PEVs. Due to the undeniable convenience of the home charging mode, it is often identi-

fied as the dominant location for upcoming vehicular demand, and therefore many studies 

have focused on efficient management of demand at residential areas  [21]- [31]. 

Moreover, charging rate of battery storages of PEVs is an influential element, which 

greatly affects the drawn power from the grid and may change the level of adversity of 

the impacts. Depending on the assumed available charging infrastructure, charging rate 

can be regular or fast (ac or dc).  

1.2.2 Scheduling charging demand  

Studies about vehicular loading on power systems have pointed out the effect of uncon-

trolled charging is excessive especially on the assets of the residential or domestic load 

class of the distribution network. As a result, a significant share of the existing research is 

focused on alternative charging scenarios aiming to content both utility and customers 

 [5]- [30]. Different terms such as coordinated, controlled and smart charging have been 

used in the literature for a supervised mode of charging, necessitating demand or custom-
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er side management in order to enhance satisfaction degree of utility service and custom-

ers in presence of vehicular load. 

1) Customers’ objectives /Utility’s objectives 

From the customers’ point of view, a charging pattern with the least possible cost while 

fulfilling all of their transportation requirements is the most favorable one. Note that cos-

tumers' or drivers' prior objective in this case is a convenient driving experience; then, 

minimizing the cost comes into the picture.  

From the utility's point of view, the vehicular load is initially considered as an addi-

tional unforeseen load and thus a potential threat for the normal operation of the system. 

This is due to the fact that the unsupervised mode of charging, especially if it takes place 

during the present peak demand, causes overloading of assets and thus operational prob-

lems for the overall system. Therefore, the main criterion is preserving the peak demand; 

of course this cannot be accomplished without systematic cooperation from the custom-

ers’ side.  

After overcoming the danger of additional unplanned demand, utilities’ second objec-

tive can be shifting the additional load to periods of low demand to improve load factor 

of assets (valley filling of the aggregated load curve). In other words, charging demands 

with flexibility in time can be employed to enhance the overall utilization of elements of 

the power distribution network  [32],  [33].    

 The power system is affected by the customers’ dominant criteria of driving features 

and the utility can only influence the customers’ later objective of cost. In fact, utility 

services can enact proper pricing scenarios or designate incentives (according to the sys-

tem performance objectives) in order to make it beneficial for customers to follow the de-



 1.2 Potential Impacts and Possible Solutions  10 

 

 

sired charging pattern. However, in every planning method, upgrading is inevitable after 

some level of penetration of PEVs in the system when charging management schemes 

become incapable of meeting the desired criteria. 

2) Smart gird environment 

In the future smart grid environment, PEVs are going to play a more significant and in-

teractive role. Besides their strong potential to serve as a flexible demand, they can also 

be considered as auxiliary distributed small scale generation assisting the main generation 

during critical periods.   

The vehicle-to-grid (V2G) concept has been investigated by various researchers to 

augment the performance of the power system in different ways such as voltage stability, 

frequency regulation, etc.  [33]- [38]. The main idea is using batteries of PEVs as distrib-

uted small storages in the system. They are supposed to be charged in off-peak period 

(ideally while renewable energy sources are generating power); then supply their stored 

energy during the peak power demand or when a quick reaction to an unexpected incident 

such as fluctuation or failure is required. Therefore, PEVs’ battery technologies and their 

capacities are integral factors to enable V2G power exchange. 

One of the unique attributes of a smart grid is engagement of the customer-side re-

sponses in the planning procedure to improve efficiency  [32],  [33]. Indeed, having intel-

ligent communication between the utility and the customer will give a modern active role 

to the customer side of the grid rather than its conventional passive role. In the scheduling 

techniques for PEVs charging demand, customers’ actions and responses to the changes 

in the interaction environment (e.g. variation in electricity tariff) play significant roles. 
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The degree of reliance on demand-side responses and customers’ cooperation depends on 

the fundamentals and objectives of the scheduling strategy. 

3) Centralized strategies versus decentralized strategies:   

Generally, explored methods for supervised charging patterns in the smart grid environ-

ment are categorized as centralized and decentralized (or distributed) control strategies. 

In the centralized approach, the charging profile of all distributed PEVs in the system is 

determined by the central intelligence of the utility aiming to achieve an optimal aggre-

gated charging profile. On the other hand, in the decentralized approaches, charging pat-

terns of distributed PEVs are decided locally aiming to fulfill individual’s desires and 

thus a decentralized strategy is not necessarily perusing the objective of overall system’s 

optimal operation  [40]- [43]. 

Indeed, in a centralized strategy, system performance criteria have priority over cus-

tomers’ preferences; however, customers can still define their strict and inflexible objec-

tives. On the one hand, having comprehensive awareness of the whole system status can 

lead to higher utilization of assets. On the other hand, as all decisions are made centrally, 

information on a large number of PEVs must be gathered and command signals must be 

sent back. Firstly, this requires a complicated computational procedure. Secondly, a com-

prehensive and reliable communication infrastructure is necessary to handle transferring 

data between distrusted PEVs and the central decision maker. At the same time, many se-

curity and privacy concerns might arise (and need to be addressed) due to huge amounts 

of communicated personal data. 

Several studies have been conducted in recent years on developing decentralized 

strategies, which better suit the modern power system environment by emphasizing on 
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individual PEVs’ unique objectives  [40]- [43]. Generally, distributed scheduling of the 

charging demand requires less communicational expenses and computational complexity. 

Local control also provides faster responses to a change in the status of the power system. 

Furthermore, adding a new PEV to the system is handled simply in decentralized ap-

proaches, so they have much better scalability than centralized approaches. 

Multi-agent systems possess all the means required to implement a comprehensive 

decentralized control strategy. Agent-based systems have been developed throughout the 

years in different disciplines prior to attracting power engineers and thus they are in a 

mature shape and are well-defined to be employed. In  [44], applications of multi-agent 

systems in the power system field are discussed. Unique characteristics of agents that 

make them different from conventional supervisory facilities (e.g. protection relays) are 

also clarified. Three main features are associated to an intelligent agent: 1) reactivity, to 

react in a timely manner according to the change of its predefined environment, 2) pro-

activeness, to have a goal-directed behavior and be able to take imitative and 3) social 

ability, to collaboratively communicate with other intelligent agents. Flexibility in taking 

one of many possible actions and extensibility, as adding or modifying a functionality 

without need to re-implement the existing functionality, are other important traits of a 

multi-agent system  [44]. 

In an ideal smart distribution network, which is comprehensively controlled by a 

multi-agent system (comprising a utility agent, distributed generation agents, customer 

agents, and a database agent) and real-time communication is enabled among agents, 

scheduling of charging demand can be carried out by individuals in a way that every 

agent pursues its own goal.  
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1.3 Motivations, Objectives, and Outline 

1.3.1 Motivations  

In this thesis, vehicular loading issue on the power system, from a planning point of view, 

is categorized into two classes. They are stationary and mobile vehicular charging de-

mand. This categorization is done based on the location where charging occurs.  Figure 1-

2 demonstrates this categorization and their associated challenges.   

 

 

Figure  1-2 Categorization of vehicular charging load based on location of demand in the power network 

 

1) Stationary vehicular demand  

Charging of PEVs during home parking is one of the common logical assumptions 

among most scenarios mainly because of its convenience in terms of available time and 

expense. In fact, it is highly expected that a major portion of the required charge of a 

PEV is demanded at the home of its owner. Therefore from the planning point of view, in 
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this case, vehicular charging load is a “stationary” demand similar to other household 

loads. As it is elaborated in Section 1.2.2, the main challenges of handling vehicular load 

at residential areas are initially the efficient management of charging patterns and, even-

tually, upgrading endangered or incapable assets. 

 2) Mobile vehicular demand  

Any charging demand of PEVs away from home is considered as a “mobile” charging 

demand. This class of vehicular load is directly affected by the mobility of PEVs; mobile 

charging load can potentially take place in any possible charging location, based on the 

charge requirement and driver’s will; therefore, from the planning point of view, it cannot 

be predicted in a similar fashion to the stationary demand. 

Although PEVs have the potential to be charged through any available plug of the 

electric network, in reality charging of PEVs are restricted to only accessible plugs. In 

other words, besides home and in some rare cases work, other charging stations are de-

fined deterministically. As are result, in planning the power systems for mobile charging 

demand, first, potential suitable charging locations within the area of interest must be 

identified. Of course, the number of parking events and their corresponding length at 

such locations must be adequately high. Utility service needs to be convinced that instal-

lation of the new charging infrastructure will be beneficial in terms of returning the capi-

tal money and encouraging society to switch to green transportation with more confi-

dence.  

The PEV drivers’ charging behaviors at off-home stations must also be investigated 

to predict the potential amount of demand at a specific location to decide on the capacity 

of the charging facilities.  
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1.3.2 Objectives and outline 

This thesis is divided into two phases. In the first part, the focus of the study is on the 

mobile portion of the vehicular demand. In Chapter 2, an overview of traditional load 

forecasting in power systems and vehicular load forecasting considerations is presented 

first; then an algorithm is developed to predict the charging behavior of PEV owners at 

off-home parking locations and forecast the potential demand. Moreover, owing to the 

fact that several local factors, such as characteristics of the present grid and driving pat-

terns, contribute to PEVs charging demand on a specific power system, this study empha-

sizes the importance of employing real-world data as far as they are available. To do so, 

in Chapter 3 the proposed location-based vehicular load forecasting is applied to real-

world data of two potential charging stations at major shopping centers.  

     The second part of this work is dedicated to scheduling charging demand at residential 

distribution network. In Chapter 4, an overview of flexible demand management at the 

customer side and decentralized control scheme is presented first; then, a distributed con-

trol strategy, which can be implemented by a multi-agent system, is developed. Chapter 5 

presents specifications of a case-study followed by its corresponding simulation results to 

demonstrate the performance of the proposed distributed charge scheduling technique.   

Finally, in Chapter 6, conclusions and contributions of the accomplished study are 

stated and some future trends for continuation of this work are suggested.  



 

 

Chapter 2 

Location-Based Forecasting of Vehicular 

Charging Demand 

2.1 Introduction 

In order to investigate the significance of the potential issues due to addition of vehicular 

demand, a reliable prediction of the profile of the charging demand on the distribution 

network is essential. Conventional load forecasting methods in power systems for differ-

ent time horizons employ various statistical and artificial intelligence techniques (e.g. 

time series, multiple regression, expert systems, fuzzy logic, neural network, etc.)  [13], 

 [14],  [45]- [49]. These methods mostly use historical data along with influential parame-

ters on the demand profile (e.g., climatic conditions, day-type, land usage, etc.). Howev-

er, due to lack of actual comprehensive historical data, efforts for prediction of the charg-

ing demand of the upcoming vehicular load have been mostly done through defining op-



 2.1 Introduction  17 

 

 

timal charging scenarios from the points of view of both the utility and the customers 

 [25]- [29]. 

Generally, realizing the temporal and the spatial behavior of the charging demand on 

the power system depends on such factors as the convenience and cost of charging, ade-

quate parking time, availability of charging stations and their rating, and most important-

ly the charging need of PEVs  [19],  [50]. It is also reasonable to assume that the society 

will not develop radically different transportation habits based on the charging require-

ments of the PEVs. In fact, the PEV technologies and the utility planners may aim to cap-

ture the existing driving traits of the society and enhance their services in that direction.   

  Therefore, in the absence of actual measured data of the charging demand, use of re-

al-world driving data in the area of interest provides a realistic picture of driving habits 

and characteristics of drivers of PEVs  [15]- [23]. Layout of roads and traffic patterns in-

fluence not only the driving traits, but also vehicular energy consumption. These together 

contribute to the timing and the distribution of charging demand. Local driving data also 

provide information about potential parking locations where future PEVs may be con-

nected to the network for charging. 

For as long as PEVs are not widely adopted in a given jurisdiction, it is reasonable to 

assume that home plugging will be the dominant (or in most cases perhaps the only) 

mode of charging  [51]. As the penetration-level of PEVs increases, additional off-home 

charging stations should be gradually assigned in strategic locations in order to fulfill the 

charging demand of on-road PEVs. Places where a large number of parking events occur 

(e.g. shopping centers) will obviously be more subjected to vehicular charging, so they 
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can be considered as main candidates for future charging stations and necessary fortifica-

tions of the network. 

This chapter investigates the potential charging demand in such high-density off-

home parking locations, while considering home charging as the most favorable charging 

mode. In Sections 2.2 and 2.3, a location-based fuzzy decision-making algorithm is de-

veloped to predict the probability of charging for a given parking event. Model sensitivity 

is then analyzed in Section 2.4 followed by conclusions. In the next chapter the devel-

oped forecasting procedure is implemented on real-world case studies.  

2.2 An overview of location-based vehicular load 

prediction 

A location-based study of vehicular load aims to predict the potential load demand due to 

PEV charging at off-home parking locations. Whether or not drivers decide to charge 

their vehicles in a specific place depends on various parameters; however, a person’s de-

cision making process for cases like this often does not involve precise computations or 

analyses. Indeed, drivers usually evaluate the situation using their own experience, con-

venience, and other factors, perhaps most importantly economic considerations. 

The essence of a fuzzy inference engine is to quantify a complex process, e.g. charg-

ing decision making, through reasonable assumptions that capture the experience of the 

expert (i.e., the driver). A fuzzy inference system was proposed in  [52] to simulate a 

driver’s decision-making process for PEV charging. It used the present state-of-charge 

(SOC) and parking duration (PD) as its inputs to predict the probability of charging, in-
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dependently of the actual place of parking. However, in the location-based prediction 

method presented in this chapter, the actual driving distance to home (DTH) is also used 

as an additional input. This is done as it seems natural that most drivers would prefer to 

charge their vehicles at home rather than at other locations. Several factors contribute to 

this preference including longer duration of vehicle down-time at home (e.g. overnight), 

and potentially less expensive electricity. The developed fuzzy inference system takes 

this preference into account but also includes provisions for the case when there is doubt 

whether the current state of charge of the battery is adequate or not for the drive to home. 

This is done through definition of proper fuzzy rules. 

Figure 2-1 illustrates the block diagram of the proposed procedure for location-based 

vehicular load prediction. This procedure starts with an analysis of a real-world driving 

dataset for the area of interest, and extracts characteristics of recorded parking events. 

Then, a fuzzy decision-making engine uses the extracted statistical results to determine 

the average probability of charging for every hour at the location of interest. This, togeth-

er with local parking characteristics and market information, determines the expected 

charging demand. The following sections present details of the procedure. 

2.3 Location-based fuzzy decision making unit 

The three input parameters of SOC, PD, and DTH need to be expressed with linguistic 

terms and their corresponding membership functions. Once the inputs are fuzzified, the 

rules of the fuzzy system are applied to generate the respective outputs. The outputs are 

then combined and defuzzified to yield the output of the fuzzy inference engine, which is  
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Figure  2-1 Block diagram of the location-based vehicular charging load forecasting procedure 
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the probability of charging. The following subsections present details of the membership 

functions assigned to each input and output variable  [53],  [54]. 

2.3.1 State of charge (SOC) 

The SOC is the most readily available input to the driver. It indicates the amount of 

stored electrical energy that is presently available. Figure 2-2(a) shows membership func-

tions created for the SOC. Three linguistic terms, i.e. Low, Medium, and High, are de-

fined to cover the whole working area of the battery storage. The on-board vehicle con-

troller only operates the battery within lower and upper bounds, to ensure its longevity. In 

the study presented here a range of [15,85]% is considered (corresponding to a 70% 

depth of discharge); that is why the Low and High membership functions shown in Fig-

ure 2-2(a) attain a value of 1.0 below 15% and over 85% SOC, respectively.  

2.3.2 Parking duration (PD) 

Parking duration is a variable that represents the anticipated length of the parking event. 

Note that most drivers do not have an exact length of time for parking at the onset of a 

parking event. Therefore, it is assumed that they express the parking duration with three 

linguistic terms (Short, Average, Long) as shown in Figure 2-2(b). For example, the 

membership function labeled ‘Average’ fully encompasses (degree of membership = 1.0) 

all parking events ranging from around 45 minutes to around 3 hours. Therefore, any 

parking with a duration in this interval will be treated equally; this makes the model less 
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sensitive to the deviation between the actual length of the parking event and its antici-

pated duration by the driver. 

 

 

 

Figure  2-2  Membership functions of the input variables: a) state-of-charge (SOC); b) parking duration (PD); c) 
normalized driving distance to home (DTH). 

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

SOC (%)

Low Medium High

(a)
D
eg
re
e 
o
f 
m
em

b
er
sh
ip



 2.3 Location-based fuzzy decision making unit  23 

 

 

The linguistic terms for the PD input are highly affected by the available level of 

charging. This is because the amount of charge that can be replenished over the period of 

charging is directly determined by ratings of the charger. For example a parking event 

whose duration may be considered ‘Short’ (and hence not worthwhile) for regular charg-

ing may indeed be considered ‘Average’ if fast-charging facilities exist. The membership 

functions in Figure 2-2(b) are designed with the assumption of level-1 charging (120-V, 

15-A). 

2.3.3 Actual driving distance to home (DTH) 

By experience a prudent driver of a plug-in vehicle may have a reasonable estimation of 

how much SOC is required to drive the vehicle to a convenient charging location, i.e. 

home in this study. However, knowledge of the required SOC may be a higher-than-

normal expectation for an average driver and involves several uncertainties. On the other 

hand, an estimate of the driving distance to home is doable for most drivers. Therefore, in 

the fuzzy inference system described here the actual driving distance to home is used as a 

representative of the required SOC to drive home.  

The DTH assigned to a parking event includes the mileage of all the subsequent trips 

during the day before arriving home for overnight parking. Indeed, the DTH is a factor 

that enhances the precision of the charging behavior prediction significantly: it shows the 

experience of the driver about daily trips, and their timing and mileage (i.e. the expert 

knowledge). It also considers the location of each parking event, thereby making the de-

cision-making process location-specific. 
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The DTH input is categorized under three linguistic terms of Short, Average, and 

Long (Figure 2-2(c)). Note that the battery capacity plays an important role in the defini-

tion of the range for these linguistic terms. A battery with a higher capacity allows a 

longer all-electric range. To avoid development of membership functions for the DTH for 

vehicles with different battery capacities, a normalized figure (based on the maximum 

all-electric range) for the DTH is used.  

In reality the all-electric range of a vehicle will depend on such factors as the age of 

the battery, driving patterns of the driver, and traffic, among other things (see Section 

2.3.5 for further discussion); thus the actual all-electric range will likely be less than 

nominal.   

2.3.4 Rule table and defuzzification 

A set of 25 rules for charging decision-making are developed for a Mamdani-type fuzzy 

model  [54] as shown in Table 2-1. These rules act on the three inputs of the fuzzy system 

to produce outputs that are then aggregated and defuzzified to yield the probability of 

charging for a specific parking event. Before defuzzification, the probability of charging 

is described using seven linguistic terms as shown in Figure 2-3. The fuzzy ‘AND’ is im-

plemented using the ‘min’ operator, and the center-of-mass (centroid) method is used for 

defuzzification.  

The design of the rules in this fuzzy system is done with a view to maintain reasonability 

of the assumption from a prudent driver’s point-of-view. The main consideration in the 

design of the rule table is that if the SOC of the battery is less than the driver’s estimation 
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of the required SOC to drive the vehicle home (based on the DTH), the probability of 

charging increases with respect to the parking duration. 

 

Figure  2-3 Probability of charging (output of fuzzy system) 

 

Table  2-1 Rules of the fuzzy system 

if SOC is AND PD is AND DTH is then  Probability of Charging is 

Low Short Short Very Low 

Low Short Average Low 

Low Short Long Medium Low 

Low Average Short Low 

Low Average Average Medium High 

Low Average Long High 

Low Long Short Medium Low 

Low Long Average High 

Low Long Long Very High 

Medium Short Short Very Low 

Medium Short Average Low 

Medium Short Long Medium Low 

Medium Average Short Low 

Medium Average Average Medium 

Medium Average Long High 

Medium Long Short Low 

Medium Long Average Medium 

Medium Long Long Very High 

High Short Average Low 

High Short Long Medium Low 

High Average Average Low 

High Average Long Medium 

High Long Average Medium Low 

High Long Long Medium High 

High - Short Very Low 
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It should further be noted that when the DTH is ‘Long’ both the ‘Medium’ and ‘Low’ 

SOC are treated similarly; this reflects the fact that a ‘Long’ DTH most likely represents 

a parking event in the earlier hours, and from a driver’s point-of-view foreseeing all fu-

ture trips throughout the rest of the day might not be possible; therefore an increased 

chance of charging is given to the ‘Medium’ SOC range.  

2.3.5 Additional factors 

1) Climatic conditions and aging 

It must be noted that other factors than the ones considered here may impact a driver’s 

decision to plug in for charging. Severe climatic conditions (e.g. extreme heat or cold, 

humidity, etc.) not only affect the driver’s decision making, but may also affect the three 

considered inputs. For example, temperature variations do impact the chemical reactions 

within a battery and hence its SOC, its total capacity (affecting the DTH) and the required 

heating/cooling energy. Although there are studies that aim to approximate such varia-

tions  [55]- [56], the level of detail and complexity required by these methods renders them 

infeasible for aggregated long-term vehicular load forecasting, which also involves a 

large number of storage units with different properties. Therefore, instead of attempting 

to augment the model to directly include such auxiliary effects, this work investigates the 

sensitivity of predicted probability of charging (output of the fuzzy model) as well as fi-

nal forecasted load (for the presented case study) to uncertainties in its input variables 

collectively caused by such factors as seasonal temperature variations, humidity, aging, 

measurement errors, etc. These analyses are shown in Sections 2.4 (for the model) and 

3.4.2 (for the presented case study). 
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2) Utility tariffs 

The DTH input, which is the preference-factor for the location of charging, accounts for 

the driver’s desire for the least expensive transportation and convenience of charging.  In 

the design of the fuzzy rule table two cost effectiveness objectives are considered as fol-

lows: 

a) consumption of electricity has preference over gas because of the lower cost of 

electricity; 

b) home-charging has preference over off-home charging because of lower cost (as 

well as convenience);  

Although the convenience of charging is not directly quantifiable, it is possible to in-

clude the effect of electricity cost variation by only modifying the DTH input without any 

further change in the kernel of the developed model. A favorable charging rate at the time 

of parking will entice the driver to charge at an off-home location, and this can be cap-

tured by suitably increasing the DTH input. Conversely a decrease in the DTH resembles 

an unfavorable charging rate, and hence a driver’s inclination to charge at home. For ex-

ample, these can be due to a utility’s time-variant tariffs for peak and off-peak hours, 

and/or incentives offered for off-home charging. However, it should be noted that as long 

as the two said cost objectives of the model are valid the change in the DTH is expected 

to be small; i.e., when the price increases but stays below the equivalent gas price, or 

when the price decreases but remains more expensive than the convenience threshold 

over which a driver prefers to charge at home.  



 2.4 Model performance assessment  28 

 

 

The investigation of the effect of price variation is mostly useful when a more accu-

rate short term forecast of charging demand is required, and then exact charging costs in 

each location and for different time (during a day) are available.  

2.4 Model performance assessment 

The developed fuzzy model is designed to capture the driver’s decision making process 

through a reasonable set of rules acting on the three inputs. The adopted membership 

functions and rules will certainly have an impact on the output of the fuzzy system, i.e. 

the predicted probability of charging.  

Figure 2-4 shows the probability of charging for three representative values of the PD in-

put (30 min, 120 min, and 240 min), while the SOC and the DTH vary within their re-

spective ranges. In all three surfaces, the probability of charging increases gradually start-

ing from maximum SOC and minimum DTH. Furthermore, the figures show an increas-

ing probability of charging as the PD increases, as noted by the top left corner of each 

figure where the probability of charging increases from 60% for PD = 30 min to essen-

tially 100% for PD = 240 min.  These are reasonable expectations, which are satisfied 

through the selection and composition of the rules. 

In order to assess the performance of the fuzzy model, an analysis of the sensitivity of 

its output is undertaken with respect to variations of the inputs. This analysis quantifies 

the expected deviation of the output when inevitable uncertainties occur in the estimation 

of the inputs. These uncertainties may arise due to factors such as the ones discussed in 

Section 2.3.5.  
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Figure  2-4 Fuzzy decision making surfaces for three representative PDs 
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Table 2-2 presents the results of sensitivity analysis for individual variations of ±20% 

in each input. For example the table shows that the average change in the probability of 

charging (predicted by the fuzzy model) is +5.70% when the SOC input decreases by 

20%. To calculate these statistical quantities, 100 equally-spaced samples are selected for 

each of the three input variables (PD over [0,4], SOC over [15,85]%, and DTH over 

[0,1]). Perturbations of ±20% are introduced in each sample while keeping the remaining 

two constant, and the probability of charging is calculated using the fuzzy inference en-

gine. The difference between the results of the perturbed values and the nominal value 

are then calculated and recorded. This is repeated for all samples, which results in 1003 

values for each of the +20% and -20% perturbations and for each input variable. The av-

erage and the standard deviation are then calculated as per Table 2-2. 

The table shows that the output is most sensitive to the DTH input, which encapsu-

lates cost effectiveness and convenience of charging (home preference factor). The SOC, 

which captures the available charge factor, is the second most influential input; and the 

least sensitivity belongs to the PD input, which quantifies the worthiness of the available 

parking time for charging. 

 

Table  2-2 Sensitivity analysis results of the fuzzy model 

 Mean +20% St. dev. +20% Mean -20% St. dev. -20% 

SOC -4.67% 4.24% 5.70% 5.12% 

DTH 5.55% 5.64% -7.65% 6.80% 

PD 1.49% 2.40% -2.21% 2.91% 
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2.5 Closing remarks 

In this chapter a location-based forecasting algorithm for vehicular charging load was de-

veloped. It uses a fuzzy inference system with three real-world inputs to emulate a 

driver’s decision to charge at an off-home charging location. The main advantage of this 

approach is that it incorporates the driver’s experience factor to the decision making 

process.  

Moreover, sensitivity of the output probability of charging to the input variable was 

investigated. This analysis showed that the combination of the membership functions and 

the rules do indeed, and as intended, make the probability of charging more responsive to 

the inputs considered to be more important, i.e. the DTH and the SOC. It further suggests 

a certain robustness of the fuzzy model’s output to the variations of the inputs. The sensi-

tivity of the fuzzy inference engine to the shape of the deployed membership functions 

and also to the particular implementation of the fuzzy operations is not considered, al-

though it may be an additional topic of investigation.   

In Chapter 3, the method developed in this chapter is examined by considering real-

world case studies. The corresponding results and complementary conclusions are pre-

sented.



 

 

Chapter 3 

Implementation of Location-Based Fore-

casting and Simulation Results 

3.1 Introduction 

In this chapter a real-world application of the location-based algorithm of forecasting 

charging demand of upcoming PEVs at off-home charging stations is presented.  

In the following sections, firstly a set of real-world driving data (for the city of Win-

nipeg) is introduced (in Section 3.2) and for the selected case studies of two major shop-

ping centers partaking events are characterized. Section 3.3 is dedicated to specification 

of the vehicular model used in the simulations. The results of probability of charging as 

well as forecasted vehicular load are presented in Section 3.4 followed with conclusions 

in Section 3.5.   
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3.2 Recorded driving data 

A set of real-world driving data collected from 74 conventional internal combustion en-

gine (ICE) vehicles in Winnipeg  [57] is used in the analyses shown in this chapter. This 

data-set includes participants from different areas of the city with diverse demographic 

characteristics (income, education, gender, etc.). Instantaneous latitude, longitude, and 

speed of the vehicle in each trip as well as their time and date were recorded.  

This data-set is fairly small and may not include an adequate number of participants 

to satisfactorily demonstrate all the driving traits of the entire population of the area of in-

terest; however, its use in this study is important firstly because it does comprise of real-

world measurements of actual driving profiles, and secondly because it only serves to en-

able a demonstration of the proposed location-based forecasting algorithm in Chapter 2. 

If a larger and more comprehensive data-set is available, the numerical results on the 

proposed algorithm become more trustable as indicators of the actual charging load; this 

however will not adversely impact the essence of the proposed algorithm.  

Two major shopping centers in Winnipeg are considered as the case studies. All re-

corded parking events in these two locations are extracted from the data-set and their sta-

tistical characteristics (e.g., parking time, duration, number, etc.) are extracted and used 

as attributes of parking events in these shopping centers. The large number of parking 

events recorded (from different participants with the said demographic characteristics) in 

each of the two locations provides reasonable confidence about the parking trends in 

these two locations  [58]. 
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Weekday and weekend data are analyzed separately as their corresponding driving 

patterns are different  [15], which in turn will lead to a different expected charging load 

during weekdays and weekends. 

Figures 3-1 and 3-2 illustrate the probability distribution of parking time at the two 

shopping centers. The results demonstrate strong similarity for both locations. However, 

the curves for shopping center 1, which has a larger sample size, are somewhat smoother 

than those for shopping center 2. 

 

Figure  3-1 Probability of parking for shopping center 1 for weekday and weekend 

 

Moreover, Table 3-1 provides the cumulative probabilities of short duration parking 

events (considered to be up to 2 hours) at these malls. The results indicate that short-

duration parking events occur more frequently on weekdays than on weekends; however, 

most parking incidents on both weekdays and weekends tend to last less than 2 hours. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.120.12

Time of day [h]

P
ro

ba
bi

lit
y 

of
 p

a
rk

in
g

 

 

Weekday

Weekend



 3.3 Vehicle subsystem models  35 

 

 

 

Figure  3-2 Probability of parking for shopping center 2 for weekday and weekend 

 

Table  3-1 Cumulative probability of the short duration parking at 

 shopping center 1 (top) and shopping center 2 (bottom) 

 

 

 

 

3.3 Vehicle subsystem models 

A backward vehicular model  [6] is developed to calculate the mechanical energy (Em in 
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consecutive stops). This model is based on Newton’s second law of motion and is shown 

in (3.1)-(3.4) below. 
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where, Pm, v, and FP are the instantaneous mechanical power (W), speed (m/s), and pro-

pulsion force (N), respectively. Fa, Froll, and Fg (all in N) are the aerodynamic drag, roll-

ing force, and grading resistance, respectively. ρ is the air density (kg/m3), Af is the fron-

tal area of the vehicle (m2), CD is the aerodynamic drag coefficient, vw is the tailwind 

speed (m/s), θ is the road grade, and mυ is the vehicle mass (kg). In the simulations pre-

sented in section 3.4, the road grade and the wind speed are set to zero.  

The total required electrical energy from the battery can be calculated using the con-

sumed mechanical energy, the contribution of regenerative braking, and the efficiencies 

of different drive train components, as shown in (3.5). 
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where Ee is the total electrical energy (from the battery) and Ereg is the total regenerative 

energy (mechanical) during a trip. ηT, ηG, ηM, and ηreg are efficiencies of the vehicle 

transmission system, generator, motor, and regenerative braking system respectively. 

EH/C(T) is the amount of energy consumed for heating or cooling (air-conditioning load) 

the vehicle cabin in a trip, which will depend, at least partly, on the ambient temperature 

T. Note that other factors such as a driver’s choice and the action of the vehicle controller 

may impact the amount of heating/cooling power consumed.  

The change in the electrical energy manifests itself as a variation of the SOC of the 

battery. It is, therefore, necessary to determine the battery SOC given the electrical ener-

gy transactions. A simplified expression  [59] for calculating the SOC is given in (3.6). 
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(3.6)

where SOC0 is the state of charge at the beginning of the trip, Vb is the nominal terminal 

voltage of the battery (V), and Cb is the capacity of battery (Ah). To account for the losses 

that occur during grid charging (ac-dc converter, plug, etc.) an efficiency figure of 90% is 

applied to the drawn power. 

3.4 Simulation results 

The simulation results in this section show the probability of charging for both weekday 

and weekend in the two shopping centers. As an example of the load forecasting proce-

dure shown in Figure 2-1, the expected vehicular load in one of the locations is shown. 

The simulation results also include level-1 and level-2 charging scenarios. 
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3.4.1 Simulation setup and vehicle specifications 

In the simulations presented it is assumed that vehicles leave home fully charged (with 

SOC = 85%). This is because the typically long overnight downtime of the vehicle is 

adequate to fully charge its battery. It also conforms to the underlying assumption that 

home is the preferred location for charging. During daily trips, the SOC of the battery 

may decline down to a minimum of 15%. Although charging may be available to some 

PEV owners at other places (such as work place) to create the worst-case scenario no 

charging is considered in other off-home locations prior to arriving in the locations of in-

terest. 

Equations (3.1)-(3.5) show that specifications of a vehicle have a significant effect on 

its required energy. In relation with the required energy, the battery capacity determines 

the variations of the SOC. The battery capacity also directly impacts the all-electric 

range, which is a determining factor in the DTH input to the fuzzy system. 

In this study three types of plug-in vehicles, namely the Toyota Prius plug-in hybrid, 

the Chevrolet Volt and the Nissan Leaf, are considered. The Prius and the Volt are repre-

sentatives of PHEVs with light-duty and heavy-duty battery storage, respectively. Nissan 

Leaf represents EVs with higher capacity of battery storage (in comparison with PHEVs, 

which have the option of switching to gas). 

Some adjustments to the developed decision making procedure are required to meet 

the special conditions of Nissan Leaf (or other battery electric vehicles, if considered); 

i.e., it is assumed that if there is doubt whether or not the remaining SOC is adequate to 
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drive the vehicle home, the driver will have to charge the battery. This primarily affects 

conditions when the SOC is ‘Low’ or ‘Medium’ and the DTH is ‘Long’.  

Table 3-2 shows the specifications of the three vehicles considered in the simulation, 

as well as the efficiencies for drive train components. Although the efficiency of drive 

train components do vary depending to the operating conditions, an assumption of con-

stant efficiency figures is commonly made in high-level vehicular studies  [60]- [61], and 

is therefore adopted here as well.  

A constant value of 500 W is used to approximately represent the heating/cooling 

power or additional electrical loads onboard. Note that an accurate characterization of the 

actual heating/cooling power requires data that is not reliably quantifiable, and also that 

the EH/C is only a small portion of the consumed energy during a trip and hence the im-

pact of its variations on the SOC are small. The analysis in Section 2.4 showed that the 

probability of charging has only modest sensitivity to SOC variations, and hence the use 

of a constant value will not be detrimental to the validity of the results shown.  

    

Table  3-2 Vehicle and drivetrain specifications 

Parameter Prius Volt Leaf 
Curb mass (kg) 

Frontal area (m2) 
Drag coefficient 

Battery capacity (kWh) 
All-electric range (km) 

1436 
2.23 
0.26 
4.4 
18 

1715 
2.13 
0.29 
16.5 
61 

1535 
2.27 
0.29 
24 
117 

Efficiencies of drivetrain components 
Generator 

0.8 
Motor 

0.8 
Transmission 

0.85 
Reg. braking 

0.7 
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3.4.2 Weekday/weekend probability of charging and load 

The SOC, PD and DTH attributes for every parking event at the selected shopping cen-

ters are given to the fuzzy system to generate a probability of charging. The value of 

probability for each parking event contributes to the average probability for the hour the 

parking occurs. If parking continues to the next hour(s), the same probability of charging 

will be carried to the next hour(s) as long as the battery is not fully charged.  

Figures 3-3 and 3-4 show the predicted average probability of charging in every hour 

for the two locations during a typical weekday and weekend, respectively. The value of 

probability in each hour indicates the percentage of the vehicles that are parked during 

the given hour and will charge. It is calculated by taking the average of all charging prob-

abilities associated with the recorded samples during every hour. As can be seen in Fig-

ures 3-1 and 3-2 the probability of parking during the early morning and late night hours 

is small. This implies that negligible charging is expected during these hours. Therefore, 

in the calculation of the probability of charging (Figures 3-3 and 3-4) an average proba-

bility of zero is assigned to them. 

As shown in Figures 3-3 and 3-4, the value of probability is mostly dependent on the 

type of vehicle (i.e., the capacity of their battery storage). The probability of charging for 

light-duty battery storage (e.g., Prius plug-in) is much higher than the other two. It is due 

to the fact that in most cases such vehicles arrive with nearly depleted battery. The sub-

stantially lower probability of charging for the Volt and Leaf at these off-home locations 

is an indication that the daily mileage of these large-capacity vehicles (prior to arriving in 

the shopping centers) is likely to be much less than their all-electric range; this implies 
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that these vehicles will likely receive the main part of their charging demand during home 

plugging. 

Apart from the probability for charging, in order to predict the potential peak load 

(kW) and energy demand (kWh), the number of parking events that occur during the day, 

their duration, and distribution among different hours must also be known (Figures 3-1 

and 3-2). 

As an example of the prediction process, the potential peak load is calculated at shop-

ping center 1 for both weekday and weekend. This example shows how the probability of 

charging curves in Figures 3-3 and 3-4 enable calculation of the peak load for any given 

number of parking events, types of vehicles, and market penetration levels of PEVs. In 

particular, with an assumption of 20% penetration level of PEVs, and an average daily 

number of parking events in shopping center 1 equal to10,000 it is expected that 2,000 

PEVs will arrive and park in this shopping center each day. As seen in Figure 3-1, at 4 

PM, the probability of parking is equal to 9% for a weekday, implying that 2,000×0.09 = 

180 of the PEVs are expected to be parked at this particular hour. It is further assumed 

that of the PEVs, 35% are light-duty (similar to Prius), 35% are heavy-duty (similar to 

Volt) and 30% are all-electric (similar to Leaf). The number of PEV types as per the as-

sumed breakdown will therefore be 63 Priuses, 63 Volts and 54 Leafs. The probabilities 

of charging at 4 PM for each PEV type is then read from Figure 3-3(a) as 47% for the 

Prius, 20% for the Volt and 13% for the Leaf. With a nominal power of 1.8 kW for level-

1 charging (with unity power factor), this results in an expected charging load of 

(63×0.47+63×0.20+54×0.13)×1.8 kW=88.61 kW. Similar calculations can be repeated 

for other hours.    



 3.4 Simulation results  42 

 

 

 

 

Figure  3-3 Average charging probability for weekday (level 1) a) shopping center 1, b) shopping center 2. 
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Figure  3-4 Average charging probability for weekend (level 1) a) shopping center 1, b) shopping center 2. 
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can be easily used to consider other PEVs, other penetration levels or other composition 

of PEV types according to market acceptance of specific vehicle types in different juris-

dictions. The procedure can also be adopted to analyze the charging load for each indi-

vidual day of the week if adequate samples are available.  

Figures 3-5 and 3-6 each also show two additional traces labeled as ‘lower’ and ‘up-

per’ around the ‘expected’ peak power. These curves show the average upper and lower 

bands of the expected charging power for a given level of uncertainty in the input pa-

rameters. As mentioned in Sections 2.3.5 and 2.4 factors such as temperature variations, 

aging, measurement error, etc. may contribute to uncertainty in the inputs to the fuzzy 

engine and thereby impact the predicated charging load. In this section simultaneous ran-

dom variations in the inputs around their nominal values for each parking event are con-

sidered and their collective impact on the charging load is evaluated. In particular, for 

every parking event a randomly selected change (of up to 20%) is applied to each input 

with a directional consideration for the SOC and DTH inputs. In particular two sets of 

experiments are conducted; the first set considers random changes in the positive direc-

tion for the SOC and negative direction for the DTH input (e.g., resulting from a chance 

of charging before or after the event), yielding the ‘lower’ probability of charging. A sec-

ond set of experiments is done with negative changes in the SOC and positive changes in 

the DTH (e.g., due to severely cold temperatures), leading to the ‘upper’ probability of 

charging. Each experiment consists of 1000 number of randomly and directionally 

changed samples of each parking event involved. The relatively tight placement of the 

two bands around the ‘expected’ trace is an indication of the model robustness to inevita-

ble variations of the inputs.  
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The predicted vehicular charging power must be added to the present load profile to 

obtain the total peak power at the location of interest. This will be necessary for planning 

of the distribution network to decide about augmentation of network assets to prepare for 

the potential vehicular charging demand.  

 

Figure  3-5  Peak power at shopping center 1 during a weekday (level 1 charging) for 2000 PEVs. 

 

Figure  3-6 Peak power at shopping center 1 during a weekend (level 1 charging) for 2000 PEVs. 
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3.4.3 Probability of charging and demand for fast charging 

To examine the impact of fast charging on the potential load demand, the feasibility of 

level-2 charging (240 V, up to 30 A) is also considered at shopping center 1. The mem-

bership functions for the PD variable of the fuzzy decision making unit (section 2.3.2) 

need to be modified, as the linguistic terms Short, Average, and Long are defined based 

on the charge that can be received by the battery in a certain time interval. This increases 

significantly with a level-2 charger over the same period of time. All other parts for cal-

culating the probability of charging remain unaffected.  

Figure 3-7 displays the probability of charging using a level-2 charger at shopping 

center 1. The general shape of these probability curves are not drastically different from 

those for level-1 shown in Figure 3-3(a), despite the effective change in the PD. This is 

due to the fact that the charging decision is mainly dependent on the two other factors 

(i.e., DTH, and SOC), which remain unchanged. The implications of level-2 charging on 

the peak power, however, are significant as seen in Figure 3-8, which shows the peak 

charging load under the same conditions as in Figure 3-5. As seen, the ‘expected’ peak 

power steeply rises to 620 kW (as opposed to just under 130 kW in level-1 charging). 

The power remains significantly higher than level-1 charging for the entire duration of 

time. ‘Upper’ and ‘lower’ bands similar to the ones in Figure 3-5 are also shown.  

Figure 3-9 demonstrates the hourly “average” load demand curves for the two levels 

of charging for shopping center 1 and for the considered composition of PEVs. They are 

obtained by considering the duration of each parking event for as long as charging con-

tinues. These curves are indicators of the expected energy demand for every hour. For 
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example, the curve for level-2 charging shows an average load of around 400 kW at 1 

PM. This indicates that the charging vehicles between 12 noon and 1:00 PM are expected 

to receive 400 kWh of energy. 

 

Figure  3-7 Average probability of charging (weekday, shopping center 1, level-2). 

 

Figure  3-8 Peak power at shopping center 1 (weekday, level 2) for 2000 PEVs. 
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It is observed from Figure 3-9 that the expected energy demand for level-2 charging 

will be much higher. Additionally, it is seen that its variations are much steeper. This is 

due to the fact that PEVs connected to a level-2 charger will draw large amounts of 

power over a short period of time and disconnect when fully charged, which suddenly 

drops their power demand by a large amount. This is particularly true for light-capacity 

PEVs (such as the Prius) whose battery can be charged from a level-2 charger in less than 

half an hour. 

 

Figure  3-9 Average load demand in shopping center 1 for level-1 and level-2 charging (weekday) for 2000 PEVs. 
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and are plugged in overnight. This may in fact assist in reducing the impact of coinciden-

tal charging on the distribution network in residential areas. 

The foregoing analysis of level-2 charging is done with the assumption that the cost 

of charging is not affected significantly by the charging level. In reality level-2 charging 

is likely more expensive than level-1 charging. As it was explained in Section 2.3.5, it is 

possible to include the effect of the price of charging in prediction of the probability of 

charging by adjusting the DTH input. Despite this, the given analysis is still valid because 

it shows the potential increase of the load should level-2 charging be made available. It 

can also be used in deciding whether level-2 charging is economically viable, given the 

revenue that can be obtained from the sale of the extra energy. 

3.5 Conclusions 

Implementation of location-based vehicular load forecasting was carried out in this chap-

ter. The fuzzy system produces an average probability of charging curve (e.g., Figure 3-

3), which together with a probability of parking curve (e.g., Figure 3-1) can be used to 

predict the vehicular charging load due to any perceived combination, number, and type 

of plug-in vehicles. Central to this is the availability of data for driving and parking that 

best characterize the local patterns. The general procedure outlined in Figure 2-1 can be 

easily adopted for any other location, any day-type or season, as long as reasonably reli-

able driving samples are available.  

Note that since plug-in vehicles are still in their early stages of entering the market, 

there is no large-volume tagged (measured) data pertinent to the charging behavior of 
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PEV owners. Hence it is not directly possible to fully validate the proposed model and 

the associated predictions of charging load; however the sensitivity analysis results pre-

sented in Chapter 2 demonstrate the ability of the model in realizing the assumptions un-

derlying its design.  

Utilities can affect the charging demand by proper coordination of (i) offering fast 

chargers, which change the effect of the PD input on the received charge, and (ii) regulat-

ing tariffs, which in effect change the DTH input. The results such as the ones produced 

in this chapter (Figures 3-5, 3-6, 3-8 and 3-9) along with other economic and technical 

considerations can be used in the planning of the scale, location, and type of charging in-

frastructure, and whether upgrading network assets will be required in providing such 

service.   

 

 

 



 

 

Chapter 4 

Distributed Control of Charging Demand 

at Residential Areas 

4.1 Introduction 

Residential nodes of the distribution network are the most vulnerable part of the power 

system to charging demand of upcoming PEVs.  On the one hand, home-charging is the 

dominant mode of charging due to its convenience and (in most cases) cost-effectiveness; 

on the other hand, power network assets at residential areas have the lowest capacity and 

highest coincidence factor. Uncertainty in forecasting the charging behavior as well as 

the penetration level and distribution of PEVs must also be added to the challenges of the 

vehicular loading issue. Therefore, there is an urgent necessity for comprehensive inves-

tigation of the influences of the charging load of PEVs on the distribution network at its 

residential nodes (i.e. stationary vehicular demand as described in Chapter 1) in advance 

of the vast adoption of electrified transportation.  
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Forecasting the temporal behavior of the stationary vehicular demand is the main 

challenge; unlike the mobile portion of the charging demand, spatial forecasting is not an 

issue in this case, as it is highly expected that the majority of PEV owners receive all or 

major portions of their daily battery energy requirement during their home parking. 

Generally, from the power system planning point of view, battery storages can be 

seen as potential time-flexible (or simply flexible hereinafter) loads whose attributes (i.e. 

intensity and period) depend on each individual customer’s commute require-

ments. Flexible loads play a critical role in modern techniques of load dispatching in fu-

ture power systems. In  [32], some of the main issues regarding real-time demand dispatch 

for modern power systems are elaborated. In traditional dispatching with conventional 

generation and old-fashioned systems and loads, to preserve frequency and voltage within 

their specified bounds, generation is supposed to follow the changes in the load. How-

ever, in a modern power grid with an appreciable level of penetration of distributed re-

newable energy resources, due to uncertainties associated with their availability, rapid 

commanded changes in generation are not necessarily doable; hence secure performance 

of the grid requires high amounts of spinning reverse. Therefore, the idea of reversing the 

dispatching direction comes to the picture wherein the loads follow (at least in part) the 

generation in order to maintain the stability of the system.  

In order to implement this idea, first it is needed to identify potential controllable and 

flexible loads within the power system. Flexibility of a load means there is flexibility in 

the timing of its demand because it is not as critical as other loads; therefore, it can be de-

layed while there is shortage in generation or be demanded with full strength during high 

generation periods. For example, for a residential customer, lighting and air conditioning 
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loads are considered as critical loads that cannot be shifted; while clothes dryer loads can 

be shifted to off-peak hours, and hence might be classified as flexible loads  [69], [70].  

The controllability attribute of the load is part of the smart grid concept, which strives 

to make monitoring the states and controlling the power system in different voltage levels 

more intelligent. In a smarter network, customer-side responses can also be included in 

the decision making processes towards improvement of the performance of the grid as 

well as satisfaction of customer’s energy requirements. This subject has also attracted 

several control and stability studies in the micro-grid field  [62],  [63]; that is, reliable per-

formance of micro-grids, especially during the transient conditions such as loss of the 

main source, requires controllability of shedding at least part of the non-critical (i.e. 

flexible) loads. 

Charging demand of the battery storages of PEVs are among the most probable flexi-

ble loads in future intelligent power systems. As the focus of this chapter is on the charg-

ing demand of PEVs on the residential distribution network, it is assumed that battery 

storage is the only flexible load of each household with a PEV; however, in reality any 

other load defined by a customer can be added to the class of flexible loads, and this 

study remains valid for the total predefined flexible load. 

In Chapter 1 a general review of studies undertaken by several research groups 

mainly during the last five years was presented. Indeed, this issue has been approached 

from different angles with different strategies aiming to address various objectives and 

concerns of utility services and customers regarding the influence of the PEV charging 

demand. What the adverse effects of uncontrolled or unsupervised charging of PEVs at 

home will be, and which profile of charging is the most suited, are the main common 
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questions all of these research efforts have strived to answer  [25]- [30]. These works dif-

fer in their control strategies applied to determine PEVs’ charging profile, reliable im-

plementation of the suggested methods, and specification of incentive factors (in most 

cases electricity tariffs) in a way to make abiding by the developed techniques convinc-

ingly beneficial.    

Performance validation of these methods is also accomplished differently in terms of 

specification of the amount and timing of the vehicular load. Deterministic, stochastic 

(employing real-world driving data) and custom combinations of the two are approaches 

deployed  by researchers to demonstrate such vehicular load attributes as the charging pe-

riod, the charging rate, and the amount of charging energy. 

All of the efforts for managing the PEV charging load in the power system are aimed 

to postpone upgrading of the network assets; however, it should be noted that, as any so-

lution for this problem is a planning for the future smart grid, there is not an absolute 

“best” technique that excels others in all aspects. In fact, the validity of a method at this 

stage can only be evaluated based on the reasonability of its underlying assumptions as 

well as sensibility of the results that demonstrate the method’s performance. 

A comprehensive comparison between two dominant control strategies, namely cen-

tralized and decentralized, was also presented in Section 1.2.2. Due to the attractive fea-

tures of decentralized control schemes and the appropriate compatibilities of multi-agent 

systems with the future smart grid, the latest focus of research on the vehicular loading 

issue has been on this approach  [40]- [43]. The specification of time-variable tariffs based 

on the variation of aggregated load and proposing non-cooperative game-based strategies 
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to realize the equilibrium point for final charging profile are common attributes of corre-

sponding researches  [41],  [64].   

In this chapter a novel decentralized control algorithm is proposed to determine a 

suitable and realistic charging profile for PEVs in a residential distribution network. The 

overall goal of this algorithm is to satisfy customers’ charging needs while meeting the 

utility’s operating constraints. The algorithm is designed to be implemented by a multi-

agent system. In the following sections, the development and rationales of the proposed 

control algorithm are elaborated. The actual agent-based implementation and its associ-

ated considerations  [65] such as architecture, communication language, coordination pro-

tocols, content language and ontology are not investigated in this thesis.  

 

Figure  4-1 Block diagram of the developed charging demand scheduling algorithm 
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Figure 4-1 demonstrates the block-diagram of the proposed control strategy. It should 

be noted that the control algorithm is performed in two stages with a complex timing 

manner for input and output parameters. The next section is devoted to elaborate various 

parts of the algorithm and the logics underlying its design with a comparative approach to 

other existing methods. In Section 4.3 a detailed account of the algorithm along with a 

customized example are presented.  

The developed algorithm is simulated for a distribution system case-study in Chapter 

5, which includes the specifications of the test-case distribution network, attributes of the 

employed driving data and residential load as well as results and discussion. Complemen-

tary clarification of features of the developed algorithm and conclusions are also pre-

sented in Chapter 5.    

4.2 Logics of the proposed algorithm  

The main aim of this section is to explain the logics behind different steps of the pro-

posed algorithm in Section 4.3. At the same time some short-comings associated with 

other counterpart studies are discussed and corresponding improvements to address such 

short-comings in the proposed method are presented.  

In the diagram of Figure 4-1 the main participants of the proposed charging schedul-

ing algorithm and their associated actions are depicted. These include:  

1) Customer agent (CA), serving as the intelligent representative of a customer perus-

ing his/her benefit according to predefined objectives (e.g. receiving the desired charge 

by the specified deadline and with minimum possible cost) using available data. 
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  2) Utility agent (UA), serving as the representative of the utility service aiming to sat-

isfy the grid’s performance criteria (e.g. enhancing the grid’s asset utilization to postpone 

their upgrading) while monitoring the network’s actual state in all nodes. 

3) Database agent (DA), which might also be considered as a part of the utility, is a 

data access point for both the UA and all CAs. DA mainly serves as a medium between 

UA and CAs.  

In the following subsections, the underlying logics of the developed algorithm and the 

function of each agent are presented. 

4.2.1 Overall agenda of the proposed scheduling algorithm 

In the developed distributed control algorithm, scheduling of charging is accomplished in 

two independent stages. In the initial stage UA and CAs all pursue their own objectives 

with reliance on the forecasted demand and in the ensuing stage they modify their initial 

plan according to the actual status of the demand. 

In order to begin with the explanation, it is essential to firstly define the time intervals 

in which the scheduling algorithm aims to determine the amount of flexible (charging) 

power; the 24 hours of a day are divided into a certain number of equal intervals. For ex-

ample in the simulations of this study (presented partly in this chapter and also in Chapter 

5) the interval is selected to be 15 minutes; so there are a total of 96 intervals throughout 

a day.  Therefore, the scheduling problem for an individual customer is to specify the 

flexible demand during every interval within his/her available charging period.  

In the initial stage of scheduling, which is done individually and uniquely for each 

customer, each CA calculates the initial charging plan of its associated customer accord-
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ing to predefined tasks as well as input parameters received from its social environment 

(i.e. database agent).  

As it is shown in Figure 4-1, the customer defines his/her objectives by means of 

three parameters of (i) deadline, (ii) risk degree (RD), and (iii) flexibility degree (FD) and 

delivers them to the CA. The amount of the required charge also depends on customers’ 

transportation energy consumption and can be realized based on the state-of-charge 

(SOC) of PEV’s battery upon arrival. Furthermore, the parameters reflecting the utility’s 

objectives (i.e. forecasted aggregated demand (AD) and critical point (CP) of demand) 

are accessible through the database agent. The implication of these parameters is elabo-

rated in detail in Sections 4.2.2 and 4.2.3.   

All of the employed load data in this stage of planning are forecasted states of the sys-

tem obtained from historical data; therefore the initial stage of this study is called the 

static stage, in order to differentiate it from the ensuing dynamic stage that is carried out 

in real-time (i.e. every charging interval). The dynamic stage uses information of the ac-

tual states of the grid to fortify the static stage; thus the dynamic stage requires active 

communication between UA and all CAs.  

In the dynamic stage of scheduling, the UA which has dominant social intelligence 

receives signals based on the status of individuals’ demands (i.e., UL/MOL in Figure 4-1) 

from all CAs, who are willing to modify their plan for the sake of better satisfaction (i.e. 

less cost), and sends back signals based on the status of the aggregated demand (POL in 

Figure 4-1) aiming to enhance the target asset’s utilization. Section 4.3.3 is dedicated to 

detailed elaboration of the dynamic stage. 
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4.2.2 Utility service objectives: logics and specifications 

Generally, a residential distribution system (e.g. Figure 5-2) starts from a slack bus con-

nected to a step down transformer with a certain capacity and voltage level. This sub-

network is designed and planned to feed a certain number of customers mainly with re-

spect to their present peak demand, load growth, and future expansion. Moving down-

stream in the network and closer to customers, capacities of assets and thus their security 

margins reduce. For example, the closest transformer to the customer is responsible for a 

small number of houses, and any deviations from individual estimated load behavior will 

have more severe effect on the aggregated demand on this lower rating, less tolerant as-

set. Therefore, after addition of charging load due to PEVs, in most cases, the first con-

straint will take place at the utility asset that is the closest to customers prior to reflection 

of its aggregated effect on a higher-level distribution network.  

Consequently, in the proposed algorithm, preserving the peak demand (on the most 

vulnerable asset) as it is currently for the base (i.e. critical, uncontrollable) load, is con-

sidered as the utility’s main objective. As this peak value is the main criteria for specifi-

cation of the network assets’ capacity, the chosen objective equivalently aims to enhance 

the load factor (LF), defined in (4.1), and utilization of assets. Valley filling techniques 

follow the same goal as well, aiming to fill the valleys of the demand curve with vehicu-

lar charging load.    

 

max

av

D

D
LF   

(4.1)
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where Dav and Dmax are average and maximum demand on the asset throughout a day re-

spectively.  

Moreover, in  [25] it is proven that maximizing the load factor is equivalent to mini-

mizing the load variance, and approximately (except in a single line case with all loads at 

the end of the line for which the exact minimum is achieved) minimizes losses in the dis-

tribution network.  

From the utility’s point of view, a reliable algorithm should be able to utilize maxi-

mum capacity of the grid by efficient management of the flexible charging load. At the 

same time, a complete plan should be capable to reliably detect the necessity for upgrad-

ing upon inability of the technique in satisfying the objectives of utility and customers.  

Although in most cases having a smooth demand curve throughout 24h is desired by 

the utility service, shortage of generation in some hours of the day might change the util-

ity’s objectives within a period; therefore, the algorithm should have adequate flexibility 

to meet generation restrictions when it requires the customers to follow a certain load 

profile at a specific node. 

 Customer-side responses play a crucial role in the implementation of any planning 

technique in the future smart grid; moreover, success of all of these planning efforts de-

pends on what extent the aggregated reactions of associated customers is similar to the 

utility’s desires. In other words, the average of individual customer’s goals must be in 

line with the overall utility's goal in order to have a successful plan.  

Time-variable tariff is the most commonly used parameter in studies in this area, as 

an incentive to make following the desired load profile beneficial for customers  [41], 

 [43],  [64]. In these methods the aggregated demand curve determines the price of elec-
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tricity; therefore, demanding the flexible load (PEV charging in this study) during the 

peak hour will be costly. In fact under conventional time-variable tariff, a customer has to 

pay more while the majority of people will demand highly, even if his/her own demand is 

low. This strategy might be considered as the best possible solution now and prior to the 

time when the power grids become practically more intelligent to monitor every node and 

customers’ behavior; however, when customers’ responses are actually included in the 

control procedure, which is the case in most researches in this field, it will not be fair to 

penalize one due to others’ actions.  

The alternative to the incentive factor in the proposed algorithm is assigning an equal 

share from the target asset’s capacity to all customers fed by the same asset of 

the network. This allocation is named Critical Point (CP), and for every time interval it is 

determined based on the first constraint of the system performance and forecasted aggre-

gated base load. In Section 4.3.2 the details of the calculations involved and other practi-

cal issues are elaborated. In order to guarantee that costumers’ benefit is in following the 

CP curve, a pricing scenario is designed to have a constant regular tariff for any demand 

below the CP. On the other hand, for demands over CP, the tariff will increase with re-

spect to the demand to make excessive over-loading in any interval a costly action. 

Moreover, another penalty-reward pattern is considered to further encourage customers to 

demand less during the peak hours; that is, customers who consume less than the as-

signed CP can gather rewards while other customers demand more than the CP. These 

rewards can be utilized for either penalty compensation or total cost reduction. Conse-

quently, a CA mainly strives to preserve its demand less than the appointed CP as much 
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as possible, and depending on the customer’s objectives defines its strategy (see Section 

4.2.3).  

4.2.3 Customers objectives: logics and specifications 

The main duty of a customer agent is to capture the customer's desires and objectives and 

satisfy them as far as possible. In the proposed scheme, a customer interacts with his/her 

agent via three parameters that serve this purpose and are, at the same time, easily com-

prehensible (Figure 4-1). In this section these input variables as well as the driving profile 

attributes are explained:  

1) Deadline:  

The most critical expectation from a vehicle is its availability upon requirement; it is not 

acceptable in most cases to delay a trip and wait until charging is completed. Therefore, a 

user (driver) must specify the deadline he/she wishes the battery to be charged by to a 

certain SOC. This specification can also be more complex; for example, one might want 

to consider some charge for urgent need by some earlier time, so the deadline specifica-

tion can be a profile compromising SOC targets versus time.  

The effect of deadline is significant in the success of the plan: a longer deadline pro-

vides more time, so less load may be demanded in each available charging interval. As a 

result, the utility asset can handle the additional load more easily. Moreover, the total 

charging cost will be less since the probability that the total demand stays below the as-

signed CP is more. 
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2) Flexibility degree (FD):  

It indicates the degree of flexibility of a customer in his/her desired objective (i.e. amount 

of drawn charge by the deadline). FD can vary between [0,1]; for example, a FD of 0.1 

implies that for the sake of an overall cheaper charging cost (i.e. transportation expense), 

the customer agrees to charge less, by up to 10% (=0.1) of the desired value (depending 

on the actual condition of the network’s aggregated load). In the scheduling algorithm, if 

in a charging interval the total demand of a customer is over the CP, and the extra de-

mand is charged (monetary) by an incremental tariff,  CA takes initiative and applies FD 

to the flexible part of the load to lower the customer’s excess demand (Section 4.3.3). 

 A customer may show flexibility for various reasons mainly for (i) having chance of 

off-home charging at a work place or a public charging station with cheaper price than 

the incremental tariff of demand over CP or (ii) having a heavy-duty battery storage and 

no need to fully charge every day if the existing charge is enough for making the next 

day’s trips. 

3) Risk degree (RD): 

Every planning technique, involving estimated parameters based on historical data, has a 

chance of failure due to inconsistency of the actual data with their historical counterparts 

or error in the estimation. In fact, any vehicular load management technique, which aims 

to optimize utility’s or customers’ objectives such as minimizing the cost and maximizing 

utilization by using the forecasted load, is subject to failure due to this type of error.  It 

should be noted that because the vehicular loading problem deals with assets shared 

among a limited number of customers (high coincident factor), the uncertainty in the 
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forecasted aggregated behavior is high as an individual’s accidental actions will have a 

significant effect on the aggregated value.   

In the proposed distributed control algorithm, each customer defines the level of 

his/her trust in the forecasted demand during a charging period, and the CA autono-

mously reflects it in the decision-making process. In fact, customers define the strategy of 

their agents by specifying their own risk hoping to achieve less charging cost. This pa-

rameter is named Risk Degree (RD) and can vary between [0,1]; RD=0 (i.e. no confi-

dence in the forecasted demand) implies that flexible demand scheduling is accomplished 

only based on the customer’s own remaining capacity and independently of the fore-

casted aggregated demand; on the other hand, RD=1 (i.e. complete trust in the forecasted 

demand) is interpreted as that the charging pattern should follow exactly the predicted 

aggregated demand in a way that minimum charging is demanded during the peak and 

vise versa.  

RD specification can be done either systematically by employing historical data to 

find out the optimal risk, or empirically based on one’s experience. More detail about the 

RD is presented in the algorithm procedure along with its formulations and functions.  

4) Driving profile: 

Transportation requirements of a customer also specify two other influential parameters, 

namely the arriving time, and the required battery charge (energy) (see Figure 4-1). In-

deed, these parameters are entered in the planning procedure indirectly through custom-

ers. Besides geographical and demographical situations of the area of interest, for each 

vehicle the daily mileage, dynamic specification, and accessibility to off-home charging 

stations are influential factors on the driving profile.  
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4.3 Description of the proposed algorithm  

In this section, the procedures of the static and dynamic stages of the proposed algorithm 

are elaborated. First the problem of scheduling the charging demand is formulated 

mathematically; then the role and functionality of all variables are described. Agents’ ac-

tions and reactions in different circumstances are also expressed mathematically. For the 

sake of better clarification, a single customized case study is developed and presented 

step by step along with the description of the algorithm. The calculations and results from 

each step of the algorithm on this case study will be used in the subsequent steps of the 

algorithm as shown in the following pages. 

4.3.1 General formulation  

The main aim of this algorithm is to determine the demand profile of every individual 

customer within the time span that time-flexible load is demanded. In general, an indi-

vidual residential demand has two parts of (i) uncontrollable (base, or critical) load and 

(ii) controllable (or time-flexible) demand. As the focus of this study is on the control of 

the vehicular load, in the following formulation only PEV storage will be considered as 

the flexible part of the demand and all other household loads will be considered as the 

base load.  

Consider there are N customers sharing a target asset of the network (i.e. a distribu-

tion transformer) and their aggregated demand curve, AD, is predicted for 24 hours (and 

every interval) using conventional load forecasting techniques (e.g. time series, neural 

networks, etc.)  [45]- [49]. As it is indicated in Section 4.2.2, the utility’s main goal is pre-
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serving the aggregated demand peak (ADmax), which means it can continue to supply the 

existing demand without having to upgrade any assets. The problem of scheduling, in 

mathematical form, is defined as follows. 

For an individual customer n, where Nn ,...,1 , in an interval t, where nTt ,...,1 , and 

Tn is the number of possible charging intervals starting from the arriving time of the cus-

tomer’s PEV till the deadline, what is the charging demand, Pn,t, subject to (4.2). 

],0[]kW[ max, PP tn   
(4.2)

where Pmax depends on the rating of the available plug enabling regular or fast charging. 

For the sake of simplicity and since the discussion will continue with a description of a 

single customer, the subscript n will be dropped from Tn from now on. 

The amount of energy En,t [kWh] drawn from the grid in each interval will be as fol-

lows. 

LPE tntn  ,,   (4.3)

where L is the length of each charging interval (the time-step in hour unit). 

Case study: Assume that for a specific case the arriving time is at 18h, and the deadline 

or the intended departure time is at 6h of the next day. If the length of each charging in-

terval is set to 15 minutes, then L=0.25h, and there are 4 intervals in each hour. As there 

are 12 hours available to charge the battery in this example, the total number of charging 

intervals will be T=48.                                                                                                      ■ 

Moreover, for every customer n, the summation of En,t by the deadline T should be 

equal to desired charge, CHn , considering the charger efficiency c ((4.4) and (4.5)). It 
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should be noted that ECn, the effective desired charge, is subjected to reduction based on 

each customer’s FD (see Section 4.3.3). 

n

T

t
tn ECE 

1
,

 

(4.4)

c

n
n

CH
EC




 

(4.5)

The total demand of a customer, TDn,t [kW] in each interval, consisting of flexible 

(PEV) load and base (non-PEV) load, Bn,t [kW], in each interval is given as follows. 

tntntn PBTD ,,,    (4.6)

The actual aggregated demand curve is the summation of all TDn for N customers, which 

is different from the forecasted aggregated demand curve (AD). 

4.3.2 Static stage  

The static stage of scheduling is done individually for each customer (who possesses a 

PEV) and begins by their agents at time zero, at the onset of the first charging interval of 

every customer; only one CA is considered in this section and its associated formulations 

and actions in different circumstances are presented next. Figure 4-2 demonstrates a 

flowchart of the static stage of the algorithm.  

1) Critical point (CP) 

As it is demonstrated in Figure 4-1, besides the customers’ objectives and transportation 

features, the critical point (CP) and forecasted aggregated demand (AD) are the other re-

quired inputs to a CA. The utility agent is responsible to provide these pieces of informa-

tion.  



 4.3 Description of the proposed algorithm  68 

 

 

Start

UA provides forecasted 
aggregated demand (AD) and 

critical point (CP), Eq. (4.7)-(4.8) 

CA calculates charging desire (EC), 
(Eq.(4.4)-(4.5)), and maximum 

remaining energy (RE),(Eq. (4.9)-(4.11))

End

RE≥ EC
Calculate the charging power for 
zero risk degree (PZ) and full risk 
degree (PF), (Eq.(4.18)-(4.25))

NO

Calculate the charging power for 
zero risk degree (PZ) and full risk 
degree (PF), (Eq.(4.12)-(4.17))

YES

Calculate the charging power at the static stage (Eq. (4.27))

PZ PF

PZ PF

Risk degree (RD) 
defined by the 

customer

CA determines the status of demand 
in comparison to CP: under-load (ULt) 

or over-load (OLt) and
maximum over-load (MOLt) 

 

Figure  4-2 Static stage of scheduling   

 

Critical point assigned by the UA is the principal component of scheduling. UA’s 

goal is preserving the peak demand (ADmax) based on which the asset capacity is assumed 

to be selected mainly. Therefore, the utility's intention is to encourage customers to shift 
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their flexible load to the off-peak hours. According to the proposed strategy of pricing, 

explained in Section 4.2.2, regulating variable tariffs based on the aggregated demand 

will not be fair to all customers. Instead, the UA designates an equal share from the target 

asset’s capacity (or aggregated peak demand) to all customers (CP from (4.7)), and 

charges (monetary) any demands below the CP with regular tariff and any demand over 

the CP with an incremental tariff. As a result, an individual customer agent can choose its 

own strategy to compromise between the total cost and the fulfillment of its associated 

customer’s objectives. However, it must be noted that the utility cannot be completely 

oblivious to the fact that there is always more chance of overloading during peak hours; 

therefore, besides the pricing scenario in order to have a more secure planning, in the cal-

culation of CP, the UA considers a security margin in each interval (SMt). SMt is calcu-

lated based on the ratio of the forecasted demand in the interval t (i.e., ADt) to the peak 

demand (ADmax), for which the security margin is maximum (SMmax) (4.8). 

N

ADSM
CP t

t
max)1( 


 

(4.7)

max
max

SM
AD

AD
SM t

t 
 

(4.8)

Effectively the UA considers the fact that the chance of overloading during peak 

hours is higher; therefore, the critical point is set lower at such periods in order to reduce 

the likelihood of overloading. A proper SMmax should be obtained for each node of the 

network depending on the capacity of the shared asset and the present peak demand as 

well as the collaboration level of its associated customers. 
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It should be noted that the AD curve, prior to the emergence of the charging demand, 

is forecasted only using historical data on the base-load. With an increase in the penetra-

tion of PEVs, the AD curve will naturally include the charging demand as well. In the 

calculation of the CP in (4.7), the role of SMt (through adjustment of SMmax) is to allow 

the utility to adapt to the increasing ADmax while maintain the desired CP. This is aimed 

at preserving the peak demand at its value prior to the introduction of the charging load.  

Case study: Figure 4-3 demonstrates the forecasted aggregated demand for 6 customers 

(N=6) at the same node within 24h. Assume that for this node of the system, SMmax=0.1 

is selected by the UA, which takes place during the peak demand of ADmax=16.2 kW and 

at 18:15h. Figure 4-4 shows the CP curve for customers on this node, comprising critical 

points of demand for 96 intervals of a day in this case. For instance, at 2:00h, 

ADt=6.4234 kW, and thus from (4.8), SMt=0.0964. As a result, from (4.7), CPt=2.5929 

kW.                                                                                                                                      ■ 

 

Figure  4-3 Aggregated base-load for 6 residential customers  
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Figure  4-4 Critical points for every interval designated to each single customer  

 

2) Remaining capacity (RC) 

CP is available at the database agent and is accessible by all CAs upon need to schedule 

their flexible load. CA is responsible, and the most eligible part of the control system, to 

estimate the base-load (B curve) of its own customer. 

As a result, the remaining capacity can be obtained from (4.9) for every charging in-

terval. Equation (4.10) gives the maximum energy (RE) (in kWh) that can be drawn from 

the grid by the deadline while preserving the demand below the critical point in all inter-

vals with positive RCt.  
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where  0:  tu RCt . Let Tu be the number of intervals with positive RCt. Note that 

the base-load might be already over the CP in some intervals, i.e.,  0:  to RCt , and 

let To indicates the number of such intervals; therefore,  

ou TTT    (4.11)

It should also be noted that as the upper constraint of the flexible power is Pmax, to ob-

tain the effective remaining energy in (4.10), the smaller of RCt and Pmax is used in every 

interval.  

Case study: Assume Figure 4-5 is the base-load profile of a single residential customer 

among the 6 mentioned customers.  

  

Figure  4-5 Base-load profile of a case study single residential customer  

 

Figure 4-6 shows the RC curve for this case. For the customized transportation fea-
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To are 41, and 7 respectively. Moreover, it is assumed that Pmax=1.8 kW in this case 

study, which corresponds to a regular charging rating of 120V/15A North American 

standards plugs.  

  

Figure  4-6 Remaining capacity for 24h and remaining energy within the charging period (RE)  

 

Note that, in reality, the demand curve of one customer often has many sharp varia-

tions; however, since an exact prediction of these variations is not possible, a typical pro-

file, obtained from averaging, is usually used instead.                                                       ■                          

3) Strategies in different situations:  

At this step, based on the comparison between the customers’ charging need (EC), and 
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State A) When ECRE   (the total available energy exceeds the customer’s charging 

need): 

In this condition, the demand of the customer will always be kept below the critical point 

(exceptions are intervals with negative remaining capacity). In the following description 

ULt stands for the amount of under-load a CA determines for an interval t, which is then 

communicated to the UA in the hope of receiving rewards upon other customers’ need. 

Depending on the degree of risk of the customer (RD), distribution of the charging (flexi-

ble) load among available charging intervals or determination of every ULt varies as fol-

lows: 

A1) RD=0 

This is when the customer has no confidence in the forecasted aggregated demand and 

only relies on his/her own estimated demand, and wishes to have the most secure plan for 

charging. It should be noted that, in practice, the forecasted base-load is also subjected to 

uncertainties; however, such uncertainties in the total forecasted demand of a household 

are inevitable and cannot be quantified in advance. Therefore, when RD is equal to zero, 

it is assumed that the chance of error in estimation of the base-load in all charging inter-

vals is the same; thus, the CA treats all intervals equally in a way that, as far as it is pos-

sible, a uniform boundary separates the CP curve and the demand curve. The amount of 

under-load is calculated as follows. 

u
u

t t
T

LECRE
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
      

/)(
 

(4.12)

PZt, which is the charging demand with zero risk, can be obtained as follows. 
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A2) RD=1 

 In this case, one wishes to take risk by fully relying on the forecasted aggregated de-

mand; as a result, the CA should plan in a way that ULmax is provided during the interval 

of peak aggregated demand while the chance of over-loading of other customers is the 

highest, and thus maximum rewards can be achieved. For the rest of the intervals, de-

pending on the ratio of the aggregated demand to the peak, the charging energy is distrib-

uted in (4.14).   
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max

 
(4.14)

where ADmaxT is the peak aggregated demand within the available charging period (T), 

which might be different from ADmax. 

To calculate ULmax, the main condition shown in (4.15), should be considered. 
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(4.14) and (4.15) together yield the following: 
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PFt, which is the charging power with full risk is calculated by (4.17): 
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Since PZt and PFt must be in [0, Pmax], a correction to the ULt in (4.12) and (4.14) may be 

necessary to obtain the final demanded power. If ULt>RCt then it will be set as ULt=RCt,; 

the balance of this will be distributed among other eligible intervals according the defined 

strategy for RD=0 or RD=1. For example such correction is reflected in the initial few in-

tervals (between 20h and 21:15h) in Figure 4-7 where the ULt is below the constant value 

of the later intervals.  

Case study: To simulate the influence of the selected RD, the UL curves for risk degrees 

of 0.0 and 1.0 during the charging time are shown in Figure 4-7, for CH=6 kWh and 

c=0.9; from (4.5), EC=6.67 kWh, which is less than RE (=11.4465 kWh). The uniform 

trend of distribution of the blue bars, except for the few initial intervals with the said cor-

rection, illustrates the equal treatment of all intervals for RD=0; while, for RD=1 the red 

bars are specified by following the trend of the forecasted aggregated demand. Note that 

between 18h and 20h the remaining capacity is negative and therefore UL =0.                 ■ 

  

Figure  4-7 Under-load values for every interval: RD=0 and RD=1  
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State B) When RE <EC (the total available energy is less than the customer’s charg-

ing need): 

In this circumstance, even if the remaining capacities in all charging intervals are used, in 

order to satisfy the customer’s objectives, there is no way but to demand more than the 

assigned critical point. In this case, the first priority will be to use all the available capac-

ity below the CP curve; then to schedule for overloading according to the specified RD.  

Two parameters should be introduced before explaining the method for the calcula-

tion of OLt, which is the amount of over-load in every interval t. Firstly, the maximum 

possible OL in each interval should be defined as the charging power is limited by Pmax. 

This is denoted as MOLt, which also plays a significant role in the dynamic stage (Section 

4.3.3). It should be noted that intervals with RCt>Pmax will be limited to Pmax only, and 

thus cannot be used for overloading; in the subsequent description  max: PRCt tl   

denotes the intervals that are eligible for overloading; let Tl be the number of such inter-

vals. 









l

lt
t t

tRCP
MOL




0
max

 
(4.18)

Secondly, according to (4.11), To might be greater than zero, meaning that in some in-

tervals the base-load is already above the CP. NRC is the summation of negative remain-

ing capacities (4.19).  





T

ot
tRCNRC


 

(4.19)

Determination of OLt in two extreme risk degrees can be accomplished as follows. 
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B1) RD=0 

When the customer’s intention necessitates no risk in the scheduling, CA only relies on 

its own prediction. Similar to the sub-state A1, the probability of deviation of the actual 

base-load from the forecasted one is assumed to be equal in all intervals; therefore, CA 

treats them the same. Moreover, the utility charges demands above the CP incrementally 

in all intervals in the same manner, so it is obvious that having a uniform over-demand 

leads to the minimum cost. This is always true if the trend of pricing for $/kWh incre-

mentally goes up by the amount of over-load, and the actual pricing curve does not inter-

fere in this deduction. 

Identical OLt in all eligible intervals is calculated as in (4.20).  

l
l

t t
T

NRCLREEC
OL 


     

/)(
 

(4.20)

OLt is limited by its corresponding MOLt in all intervals, and if the limit is reached, 

the balance will be distributed uniformly in all other eligible intervals to obtain the final 

OLt. The charging power (PZt) for the RD=0 case is then calculated as follows.  


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tOLRC
PZ




max

 
(4.21)

B2) RD=1 

In this case, a customer wishes to take risk by fully relying on the forecasted aggregated 

demand assuming that the chance of other customer’s consumption to be less than the as-

signed CP is highest during the minimum aggregated demand within the available charg-

ing period (ADminT); as a result, if one plans to demand his/her maximum over-load dur-

ing ADminT and for the rest of intervals according to (4.22), the overall cost of charging 



 4.3 Description of the proposed algorithm  79 

 

 

will be minimized. In fact, due to the adopted pricing scenario, the probability of com-

pensating a major portion or the entire over-load by other customers’ under-load will be 

the highest, which means the corresponding customer has to pay only the penalty (com-

pensating the reward of the providers) and not incrementally by the amount of OLt.       

l
t

T
t tOL

AD

AD
OL  max

min  
(4.22)
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(4.22) and (423) together yield the following: 
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(4.24)

Again, OLt in each interval must not be above MOLt, and if that occurs, the balance 

will be distributed among other eligible intervals with the full-risk strategy (RD=1). The 

charging power with full-risk, PFt, is calculated as in (4.25). 


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max

 
(4.25)

Note that in (4.25) (and (4.21) if 0tRC and tt OLRC  , PFt (and PZt ) will be set 

to zero. In this condition the balance should be deducted from the calculated OLt (in 

(4.22) and (4.20)) for the rest of eligible intervals according to the applicable risk strategy 

(i.e., RD=0 or RD=1). In both cases, the additional part of NRC will be compensated in 

the intervals with negative RCt as part of the base-load; thus, by the deadline only       

(EC-RE) will be the charging energy above the CP curve. 
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Case study: To illustrate the effect of RD for scheduling in the overloading situation, it is 

assumed that CH=12 kWh and c=0.9; thus, EC=13.33 kWh, which is greater than RE 

(=11.4465 kWh). Figure 4-8 shows the result for OL curves for risk degrees of 0.0 and 

1.0. As can be seen, when RD=1 the value of OL in each interval is determined based on 

the forecasted demand; while, in RD=0, the OL is distributed uniformly. Note that outside 

of the charging period, the OL and UL curves are obtained only according to the base-

load and thus are not shown in their associated figures.                                                     ■ 

  

Figure  4-8 Over-load values for every interval: RD=0 and RD=1  
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is determined by (4.27), eventually by the deadline the total drawn energy will be equal 

to the required EC. 
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tnntnntn PZRDPFRDP ,,, )1(    (4.27) 

Case study: For RD=0.7 and the given over-load and under-load conditions, the schedul-

ing result of the static stage is displayed in Figure 4-9. The total demand including the 

base and the charging load at the static stage is the summation of Figures 4-4 and 4-8. 

To illustrate the benefit of the proposed algorithm in terms of the total cost of charg-

ing, a sample pricing scenario is considered for this case. It is assumed that the regular 

tariff is 5¢/kWh (for demands below the CP curve) and the incremental tariff curve is lin-

ear with a 5¢/kWh slope beyond CP. The explained overloading situation with EC=13.33 

kWh is considered. In Figure 4-10, charging costs during every interval for two condi-

tions of controlled charging (proposed static-stage of the algorithm) and uncontrolled 

charging (charging with Pmax=1.8 kW starting at the arrival time) are shown. The total 

cost for the controlled charging is 58.8¢, which is 69% of the cost of 85.27¢ for the un-

controlled case. It should be noted that the result of the static stage may be subjected to 

change in the dynamic stage, which will further reduce the total cost of charging, depend-

ing on the aggregated condition of all CAs.                                                                        ■     
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Figure  4-9 Flexible (Charging) profile at the static stage (over-load and under-load classes): RD=0.7  

 

Figure  4-10 Charging cost at every interval for uncontrolled and controlled (the proposed algorithm) charging 
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Finally, at the end of the static stage, the CA determines the status of its customer’s de-

mand by comparing the summation of the customer’s base-load and Pn,t with the critical 

point CP. The status signifiers are ULt (in case of under-load) and OLt and MOLt (in case 

of over-load). It should be noted that outside of the charging period (or if a customer does 

not own a PEV), CAs determine the amount of under-load and over-load only according 

to their base demand; in this case MOL=OL as there is no flexible demand involved.    

4.3.3 Dynamic stage  

The dynamic stage of the algorithm follows the flowchart shown in Figure 4-11. In this 

stage, which is performed in real-time (i.e. every interval), each CA communicates its ei-

ther ULt or MOLt to the UA; sending ULt signal indicates that the customer’s consump-

tion is below the CPt and that he/she wishes to receive rewards in return upon other cus-

tomers’ need for overloading. Likewise, sending the MOLt signal signifies a customer’s 

potential over-load and his/her wish to use other customers’ share upon availability and 

to pay a penalty in return.  

The scheduling scheme is designed deliberately in a way such that the UA has the 

least interference in CAs’  decision making process, and mainly plays a supervisory role; 

consequently, charging powers are determined by distributed CAs while the UA guides 

them to modify their plans contributing to better satisfaction of both the utility’s and the 

customers’ objectives. Thus, the UA is responsible to receive the status signals from CAs, 

to calculate the permitted over load POLt as in (4.28), and to communicate it back to the 

CAs.  
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where No is the number of customers sending their MOLt (for whom ULt=0) in the inter-

val t. There is one modification that must be done before sending POLt back to the cus-

tomers of the over-load class. If POLt> MOLn,t then obviously this customer cannot con-

sume all the available capacity, so the rest will be again distributed between the remain-

ing members of the over-load class.  

 

 

Figure  4-11 Flowchart of the dynamic stage 
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Then CAs receive POLt from the UA, and depending on their objectives, determine 

the final charging power in the following interval. The flexibility-degree (FD), defined by 

the customer, comes to the picture at this stage aiming to reduce the overall cost of charg-

ing required to fulfil the customer’s transportation. As it was explained in Section 4.2.3, 

FD is only taken into account while over-demand of the customer is in the incremental 

tariff area; that is, POLt is less than OLt and the customer’s overall benefit is in charging 

less in that interval.    

According to (4.29), there are two options for the CAs and whichever is greater will 

be the ultimate decision for the members of over-load class. As a result, the total drawn 

charge by the deadline will be in the desired range of ],)1[( ECECFD  . 
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(4.29)

There is no change in the charging power (calculated in the static stage) for the cus-

tomers of the under-load class in this stage; thus the static stage for these customers re-

mains unchanged. The same condition is valid for the CAs who reduced their charging 

power in the desired range. It should be noted that CAs will keep the summation of any 

deviation from the static plan, as in the following intervals (up to the deadline) there 

might be other opportunities to compensate it.  

On the other hand, for CAs who modified the charging power to a value more than 

the planned one, the static stage must be repeated for the updated remaining amount of 

the required charging in order to find out the charging demand for the next interval. 



 4.4 Conclusion  86 

 

 

Finally, the amount of actual consumption of each customer (TDn,t) will be recorded 

by the database agent (DA) for the purpose of calculation of rewards/penalty and energy 

cost as well as for forecasting procedure. 

Case study: Assume the customer’s FD=0.1 and, according to Figure 4-9, at 4h for the 

over-load class curve the amount of charging power is P=1.5228 kW; therefore, this 

power can be diminished up to 10%  to 1.3705 kW from (4.29-b). The amount of over-

load at the static stage is (P-RC), which at 4h is OL=1.5228-1.2632=0.2596 kW 

(RC=1.2632 kW from Figure 4-6). The amount of maximum possible over-load from 

(4.18) is MOL=1.8-1.2632=0.5368 kW. 

 First assume that in this interval POL=0.15 kW. From (4.29-a), a value of 1.4132 

kW is obtained, which is greater than (4.29-b) of 1.3705 kW; thus, the ultimate value of 

P=1.4132 kW is selected and there is no need to repeat the static stage. As another exam-

ple, consider the case when POL=0.3 kW; as POL is greater than OL and still less than 

MOL, the final decision of CA will be P=POL+RC=0.3+1.2632=1.5632 kW. As more 

power is drawn in this interval the static stage will be repeated to find out the next inter-

val’s demand.                                                                                                                      ■                          

4.4 Conclusion 

The decentralized scheduling algorithm of charging demand developed in this chapter 

comprehensively captures both the utility’s and the customers’ objectives and preferences 

and thus plans the charging pattern in a realistic manner. This gives authority to the cus-

tomers in order to prioritize the trend of their charging profile by their own risk while 
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their privacy is well preserved. Moreover, the utility can be confident that the shared as-

set is fairly utilized by its associated customers and thus decide for upgrading upon ne-

cessity.  

The case study presented for various steps of the algorithm in this chapter demon-

strates the reflection of an individual customer’s defined variables in the scheduling proc-

ess. In the next chapter the aggregated reflection of distributed customers’ charging pat-

tern on the grid’s performance is investigated for a test feeder. 



 

 

Chapter 5 

Performance Assessment of the Devel-

oped Distributed Control Algorithm 

5.1 Introduction 

In this chapter the distributed scheduling algorithm for vehicular load, introduced in 

Chapter 4, is implemented on a sample small-scale residential distribution network in or-

der to investigate its performance in a real-world application. In the following sections, 

firstly the necessary elements to build a valid test case-study along with its associated as-

sumptions are specified (Section 5.2); these elements are network topology and character-

istics, residential load profile, and PEV charging demand features. Secondly the strategy 

for analyzing of the performance of the algorithm is described and its corresponding 

flowchart is presented (Section 5.3). Then, simulation results are classified and presented 

as a function of the penetration level of PEVs in the system from 0% to 100% and for two 
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conditions of (i) employing the proposed technique and (ii) unsupervised charging (Sec-

tion 5.4). The investigated results are both system performance parameters including 

losses and voltage deviation as well as the algorithm performances indicators including 

peak demand rise and load factor. Section 5.5 is dedicated to complementary discussions 

aiming to comprehensively elucidate the aspects of the developed technique. Finally, 

conclusions and significant remarks are presented. 

5.2  Test case features and assumptions 

In this section all of the employed data in the simulation, their specifications, and corre-

sponding assumptions are introduced in order to clarify for what conditions the subse-

quent reported results are obtained. It is important to be attentive to the fact that features 

of the defined conditions in this part shape a customized case study using a combination 

of real-world data, and deterministic and stochastic approaches; therefore, their associ-

ated results are only valid for this case-study, which aims to demonstrate the performance 

of the scheduling technique.  

5.2.1 Topology and specifications of the test distribution net-

work  

A modified version of the IEEE 13-node radial test feeder  [66] (Figure 5-1) is used in this 

study. In this modified model, all conductors are substituted with three-phase lateral 

overhead lines of ACSR #4 and with twice the length. It is also assumed that buses 2-13 

are load buses and 2 houses are connected to each phase at every node; thus, a total of 6 



 5.2 Test case features and assumptions  90 

 

 

houses are fed by each distribution transformer. Moreover, at the secondary/customer 

side, the maximum charger power is set to be 1.8 kW for 120V/15A (regular charging 

rate). 
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Figure  5-1.The modified IEEE 13-node test radial distribution network 

5.2.2  Base-load profile of the household  

Figure 5-2 shows a typical residential load profile on a weekday during summer, which is 

employed in the simulations. This curve shows the amount of the demand for every 15-

minute interval throughout 24h, and therefore there are a total of 96 points on the graph. 

In order to partly consider the uncertainty in the base demand for different houses, the 

curve of Figure 5-2 is randomly shifted in the range of [-2h,2h] (as marked) and with 15-
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minute step sizes to assign the daily base-load of each household in the simulation. Thus, 

17 different load profiles are generated in a random manner. 

  

Figure  5-2 Typical residential load for summer 

5.2.3  PEV charging demand specifications 

As it was shown in Figure 4-1 and was also described throughout Chapter 4, flexible 

(charging) demand and its specifications, including the amount of charge, arriving time, 

and deadline, are inputs to the customer agents, and are determined according to the 

transportation requirements of individual customers and their personal preferences.  

In order to more realistically demonstrate the performance of the developed algorithm 

in the actual distribution system, random variations in the features of vehicular load (and 

thus customers’ objectives influencing CAs actions) are emulated by employment of a 

real-world driving dataset of 66 vehicles (a subset of the driving data introduced in Sec-

tion 3.2  [57], with at least 15 days of recording during weekdays of summer). To do so, 
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for each participating vehicle, and for weekdays of summer in the dataset, the arriving 

time, next-day departure time, and daily energy consumptions/mileage are extracted.  

 Note that the arriving time and the charging need are approximately dependent on 

each other as an earlier arrival is most likely equivalent to less charging need (less daily 

mileage). Therefore, in the simulations for each simulated day to specify the vehicular 

load of a household the actual arrival time and its associated transportation energy are 

used together. (See Section 5.3.1 for the details of designation of vehicular loads to a 

house/customer in the test network.)    

Transportation energy consumption or charging need of a vehicle depends on its dy-

namic specifications as well as its driving pattern. The available driving dataset contains 

instantaneous speed and location of daily trips of participating vehicles; so by using dy-

namic specifications of the three vehicles introduced in Chapter 3 and Table 3-3, their in-

stantaneous energy consumption can be calculated according to (3.1)-(3.5). The average 

value of the total energy consumptions of these three vehicles at arriving time at home is 

used as the charging need for the next day in the simulation.   

Figure 5-3 displays the probability distribution of the arriving time for different hours 

of day. For example, at 18h the value is 0.1369, which means that for 13.69% of all re-

corded days, for all the participants, the arrival time at home was between 17h and 18h. 

Figure 5-4 demonstrates the average transportation energy (with removal of the outliers) 

for arrival in each hour of the day (hours with enough samples). As can be seen, the aver-

age of the consumed energy prior to arrival increases modestly in later hours of the day. 
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Figure  5-3 Probability distribution of arrival time for hours of day 

  

Figure  5-4 Average consumed daily energy for every arrival hour of day 

Although the deadline for charging is also dependant to the customer’s transportation 

necessities, as it was explained in Section 4.2.3 and also shown in the block diagram of 

Figure 4-1 customer’s personal preference is also a significant factor in this case. There-
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fore, in the simulations the maximum deadline of charging is set deterministically at 8h, 

unless according to the dataset the participating vehicle’ departure time happens earlier, 

in which case the actual departure time is used to specify the deadline. Figure 5-5 illus-

trates the probability distribution of departure times associated with the employed data 

indicating that the majority of departures took place between 7h and 9h. 

  

Figure  5-5 Probability distribution of departure time 

5.3 Analyzing strategy 

The data and assumptions introduced in Section 5.2 form the fundamentals of the devel-

oped test case study. Figure 5-6 demonstrates the flowchart of the process undertaken to 

simulate the proposed algorithm and generate results verifying its effectiveness. In order 

to compare the results, uncontrolled charging is also implemented. The whole procedure 
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is coded in MATLAB; in fact, in this simulation distributed agents’ functionality and 

their real-time communications are implemented virtually.  

Start

Evoke simulation data: 
Network, Base-load, PEV Load

❶Based on PL, randomly select a 
participating vehicle and  randomly 

place in the network

❷ For the selected participant, 
randomly select a day and its 

corresponding vehicular load info 
(Section 5.2.3) 

For all houses randomly select  
a base-load curve
(Section 5.2.2)

Specify customer’s 
objectives (RD,FD, 
and deadline)

Generate total load on 
each node

(every 15min for 24h)

Perform:
backward-forward sweep 
load flow at every interval

Calculate:
1) Load factor
2) Peak demand rise

Calculate:
1) Total loss increase
2) Maximum voltage deviation 

Perform scheduling algorithm: 
static and dynamic stages  

(Section 4.3)

Repeat ❷ N2 times and ❶ N1 times, 
then take average of the results

End

 

Figure  5-6 Flowchart of test case simulation procedure 
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In Chapter 4 the kernel of the algorithm (static and dynamic stages) along with a 

case-study was elaborated; indeed, that example was aimed to demonstrate the function-

ality of the method and the influence of its different parameters for one of the distributed 

CAs. However, in this section the performance of the control technique is investigated 

from the utility’s point of view; thus, results showing the status of the distribution net-

work are reported. 

To further explain the flowchart of Figure 5-6, the following subsections divide the 

process into two main parts: (i) simulation of the control scenario to shape the aggregated 

load on every node of the network of Figure 5-1, which is essentially every block up to 

the scheduling algorithm block, and (ii) assessment of the performance of the distribution 

system. 

5.3.1 Simulation of the controlled scenario  

Data evocation is the first step, which comprises test-system topology and specifications, 

historical demand, and vehicular load data. The number of PEVs in the test network is 

determined according to the penetration level (PL) of PEVs and can vary between 0 and 

100%. Here, an increment of 10% for PL is chosen, so there will be a total of 10 different 

PL values in the final result. Then, for the chosen PL, a corresponding number of partici-

pating vehicles are randomly selected from the pool of 66 vehicular samples (introduced 

in Section (5.2.3)) and are placed in random locations in the network (each assigned to 

one random house). For each selected vehicle there is a pool of weekdays of summer and 

for each day the three vehicular load identifiers of arrival time, deadline, and amount of 

daily transportation energy consumption. In this step, a random day and its associated 
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identifiers are selected for each chosen PEV. Moreover, the base-load curves of all 

houses are chosen randomly from the pool of 17 possible curves introduced in Section 

5.2.2. It should be noted that this stochastic variation in the base-load is considered to ac-

count for the fact that the actual aggregated demand on each node can be somewhat dif-

ferent from the forecasted one. For the forecasted aggregated demand curve on each 

node, which is used by the UA to determine the CP curve (with SMmax=10%) and also by 

the CAs in their static stage scheduling, the original typical residential load (Figure 5-2) 

times the number of customers (N=6 in this case) is employed (Figure 4-2). 

The utility does not have the authority to directly select RDs and FDs for distributed 

customers; in fact, these parameters are specified in a distributed manner by individual 

customers reflecting their objectives and preferences. It can be expected that customers 

will gradually develop an optimal trend in the choice of parameters for their better satis-

faction, which, eventually, in most cases, contributes to the utility's objectives as well; 

however, in the simulations, the RD of the customers is selected randomly between zero 

and one to ensure that the obtained results are independent of the choice of RDs.  

The strategy for the selection of FDs is quite different: as it was alluded to in Chapter 

1 there are a number of main issues hindering penetration of PEVs in the market; among 

them the necessity to recharge their relatively light-duty battery capacities and not having 

enough opportunity for charging away from home or other convenient charging stations 

are significant. Therefore, in the simulations, when a higher penetration level is assumed, 

it is taken to imply that the PEV owners are more likely (as a whole) to have access to 

off-home charging stations and this has contributed to their higher acceptance of electri-

fied transportation. Hence for higher PL values, it can be assumed FDs, which are ex-
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pressed by customers and mainly depend on the opportunity of charging away from 

home, also increase correlatively. However, the convenience of home charging cannot be 

completely neglected; as a result, in the simulations, the FDs are randomly selected be-

tween zero and PL/2; for example in 100% PL, FDs can have a random value (uniformly 

distributed) between zero and 50%. Note that, even with 100% PL there is a chance that a 

customer wishes or has to charge only at home (FD=0); thus only the maximum possible 

FD is increasing with PL and FDs are still selected randomly to obtain independent re-

sults from customers’ choices.  

Another essential factor in the specification of FDs and RDs is the actual cost of 

charging. This depends on the actual regular tariff (for below the CP curve), incremental 

tariff figures (for above the CP curve), off-home charging tariff, and most importantly 

their values in comparison to one another. An investigation of the effect of relative prices 

on the customers’ decisions is outside of the scope of this study.      

5.3.2 Investigation of the simulated performance results  

The total demand on each node of the system is generated for every time interval (15 

minutes in this case) after executing the distributed static and dynamic stages. In Section 

4.2.2, it was stated that preserving the peak demand is considered as the main objective of 

the utility in this study to postpone upgrading of network assets by better utilization of 

their available capacity. This is the only consideration the utility uses in designating the 

CP curve. In fact, it is assumed that the utility’s main agenda in this case is treating all 

customers at all nodes in the same way; in other words, in determining the CP, the UA 

does not pursue other overall network-performance improvements such as reduction of 
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losses or voltage deviation at the expense of restricting some customers’ demand on cer-

tain nodes in order to achieve an optimal load profile. Moreover, such actions by the UA 

might also be considered as its direct interference in control of the flexible loads, which is 

in contradiction to the decentralized control concept in real-world. 

Consequently, in order to gauge the effectiveness of the proposed control technique 

the parameters that indicate the state of the aggregated demand on every target node are 

considered. They are (i) the load factor, and (ii) the peak demand rise. 

Furthermore, striving to preserve the peak demand indirectly aims to fill valleys of 

the load curves as far as possible and ultimately makes them smoother; it is expected that 

having a smoother demand on every node of the system enhances the performance of the 

overall network as well. 

To investigate the network performance a load flow analysis is performed on the test 

system of Figure 5-1 using the backward-forward sweep method  [67],  [68] suitable for 

distribution networks: a flat voltage is assumed for node 1 (the slack bus). Loads of each 

household including the base load and the PEV load are modeled as constant real power 

during each interval. Adding reactive power only makes the assessment more complex 

and does not contribute drastically to the drawn conclusions  [25],  [26]. The increases in 

the total losses (kWh) as well as the maximum voltage deviations are considered parame-

ters in this part.  

In the final step, for each PL value, the simulations are conducted N2 (30 in this case) 

times, each comprising the same randomly drawn participants placed at the same random 

locations for N2 randomly selected days. This is repeated N1 (100 in this case) times for 

the same PL level but with N1 different combinations of participants at different loca-
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tions. This will results in N1xN2 simulations. The average of these random day selections 

and vehicle placements for every PL varying from zero to 100% with 10% step are then 

reported. 

Ultimately in order to compare the results with uncontrolled charging within the test 

residential network, the same selected random base-load and PEV features (i.e. sample 

days) are used and it is assumed that, in the uncontrolled condition, charging starts at the 

onset of arrival with full strength (Pmax) until the required energy is obtained or the dead-

line is reached.  

When investigating the results, one must always be attentive to the fact that, in real-

ity, the vehicular load is not specified based on grid’s enhancement criteria but based on 

individuals’ transportation requirements. As it is stated in Section 5.2.3 and can be seen 

from associated figures, in real world, the vehicular load features vary in a wide range. In 

the literature this realistic consideration is referred to as heterogeneous PEV demand as 

opposed to homogeneous vehicular load where it is assumed that the characteristics of the 

vehicular load for all customers are similar. Most flexible demand management tech-

niques are designed to enhance the forecasted aggregated demand. Therefore, advantages 

of their control technique are more evident while a deterministic homogeneous flexible 

load is assumed at the customer side which idealistically fill the valley of the aggregated 

demand curve. However, the main aim of this chapter has been providing a realistic pic-

ture for real-world implementation of the developed algorithm; all random selections of 

vehicular demand features, RD and FD, as well as the random shift of base-load will shift 

the final result from idealistic towards realistic.   
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5.4 Simulation results 

In this section, simulation results for the introduced strategies including the developed 

distributed control method and its associated uncontrolled charging mode are presented. 

Figures 5-7 and 5-8 illustrate daily load curves of the entire test system on the main dis-

tribution transformer for the developed distribution control method and uncontrolled 

charging, respectively. As can be seen, with an increase in the number of PEVs in the 

system (increasing PL) the peak demand in the uncontrolled charging rises up to 230 kW, 

while in the distributed control case it remains below 200 kW. From these curves it is ex-

pected that performance of the network shows proper improvement by employing the de-

veloped technique. The results are classified based on objective-related parameters, being 

the load factor and the peak demand rise, beside load flow related parameters, being the 

total loss increase and maximum voltage deviation. 

 

Figure  5-7 Proposed distributed control algorithm: Entire load on the test network’s main transformer, while 
PL increases from 0 to 100% 
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Figure  5-8 Uncontrolled charging: Entire load on the test network’s main transformer, while PL increases from 
0 to 100% 

5.4.1 The utility’s objectives results: load factor and peak rise 

The average load factor and maximum peak rise for the 12 load-buses of the test network 
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adding the vehicular loads; as it was explained earlier, vehicular loads in realistic situa-
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Figure  5-9 Average load factor for distributed controlled, uncontrolled strategies, and present  

Peak demand rise can be considered as the main criteria for the utility to consider up-
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Figure  5-10 Maximum peak rise for distributed controlled an uncontrolled strategies  

5.4.2 Load flow results: total loss increase and voltage devia-

tion 
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Figure  5-11 Total daily loss rise for distributed controlled an uncontrolled strategies  

 

 

Figure  5-12 Maximum voltage deviation for distributed controlled, uncontrolled strategies, and present  
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5.5 Complementary discussion  

The aim of this section is to shed further light on the attributes and constraints of the pro-

posed control algorithm. In addition, complementary discussions about the real-world 

implementation and future developments of the method are presented. 

1) One of the advantages of the power network over other technological complex net-

works is that it has a consistent topology of edges between vertices and for most of the 

time forecasting the behavior and the trend of the load is possible with an acceptable de-

gree of confidence. Applying an agent-based control for such a stable network will ensure 

that any change in the performance and criteria of each part of the network can be seen 

and handled locally within a proper time by suitable actions, while the rest of the network 

remains unaffected following their routine trends. This certainly reduces the cost of cen-

tralized control (i.e. communication and computation) and makes the response time to 

probable disturbances much faster.  

Furthermore, higher utilization of network assets as well as more secured and flexible 

control in the smart grid environment, when the privacy concerns and communication 

cost comes to picture with a stronger stance, are other benefits of relying on a distributed 

control with agents.  

However, it must be noted that in a wide area with few customers where an unintelli-

gent distribution network is designed with a capacity more than customers’ consumptions 

and distribution system loss and its utilization factor is not a utility's concern, the capital 

cost of having such intelligent control system will not be economically justifiable. There-

fore, such intelligent and comprehensive control schemes mainly concern weak distribu-
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tion networks with dense population where network assets function close to their capacity 

and are vulnerable to additional unsupervised vehicular charging load. 

2) Simplicity of the proposed algorithm makes it intelligible for most customers, who 

constitute the main part of a decentralized control scheme and without their collaboration 

any solution is not doable: therefore, simplifying the interaction with the algorithm and 

ease of its required inputs are important attributes of a successful technique. 

3) Gradual development from the present unintelligent network to a highly intelligent 

system with distributed agents will involve a transient period. In that period, a less ideal-

istic version of the algorithm needs to be used, which for example does not require real-

time communications. In fact, separating the two stages of the control scheme has been 

done with the same purpose. The static stage is accomplished only based on the historical 

data and independently for the distributed PEVs and if the risk of trusting the average be-

havior of others is included in the scheduling process, this stage can approximately han-

dle the load management to an acceptable level. Enabling real-time communication will 

make the dynamic stage possible for the sake of better utilization of assets by modifica-

tion of the distributed PEVs’ charging plans.  

4) It is important to be always aware of the fact that in this proposed multi-agent system 

every agent is supposed to pursue its own benefit in a non-cooperative manner; however, 

the utility agent with dominant social intelligence and authority plays the role of an in-

termediate object between the CAs by assigning CP and real-time communication while 

still perusing its own target of better utilization. The overall result of this control scheme 

will be indirect collaboration of the CAs to some extent: they charge less when others 

consume more, to achieve an overall less cost. 
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 The same strategy can be expanded for a game-based control scheme with a major 

difference that the CAs have wider social intelligence and can bid their own needs with 

other agents, taking their own risks. The result might be better or worse than the former 

control method depending on which agent plays wiser. The UA still supervises the over-

all circumstances and regulates appropriate rules and limitations. 

5) Pricing scenario will certainly influence the whole scheduling process, and thus the 

developed algorithm is valid only with its corresponding pricing scenario. For example if 

the utility decides to use variable incremental curves for different hours, the amount of 

reward and penalty in different hours will be certainly different; and so the agents might 

alter their strategies as violation of the CP curve will have different costs depending on 

the time. A solution to address this change can be assigning different target SOCs with 

associated RD, FD, and deadline.      

6) In the proposed scenario every customer for its selected RD and FD achieves the min-

imum possible cost. However, there might exist a better charging profile (i.e. less costly) 

according to the actual aggregated demand, but a CA decides only based on its defined 

tasks as well as the forecasted demand at every interval, so cannot foresee the following 

intervals’ actual demand (i.e. other customers’ future decisions). This makes the final re-

sults more realistic rather than idealistic. 

7) Privacy concerns have been pointed out as one of the major issues associated with all 

control strategies of flexible demands at customer side. The developed distributed algo-

rithm in this regard has a highly secure plan as only under-load and maximum over-load 

are communicated in each interval and the actual arrival and departure time are not acces-

sible to the UA.    
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8) The proposed algorithm has a high degree of scalability as adding a new customer only 

affects each individual's share from the common asset’s capacity; this can be simply re-

flected in critical point calculation.  

9)	For determination of the flexibility degree availability of off-home charging stations 

plays a critical role. Accessibility of an individual to these stations as well as comparative 

price of home charging and off-home charging are the most significant factors for each 

PEV owner to decide on his/her flexibility degree. Having an estimation about daily trips 

(i.e. daily mileage and thus daily energy consumption), traffic conditions and discharging 

performance of the battery storage in various seasons and day-type of the week (week-

end, weekday) provide a reasonable picture for a driver to make a sound decision. 

10) The role of the risk degree (RD) in the developed algorithm is critical to make the 

scheduling close to reality. The deadline is the intended time to leave, which is subjected 

to change. Suppose in a condition with a high degree of risk that the main part of the 

charging is drawn much later than the arriving time which in an urgent need for vehicle 

will lead to failure of customer satisfaction. As a result, there must be a parameter to re-

flect the customer’s will on this crucial matter. 

11) There might be other criteria for specific power system for example due to transient 

lack of generation or fault, which might force the utility to modify its objective for a short 

period; this can be reflected in the calculation of CP and accordingly regulations should 

be considered to compensate customers’ dissatisfaction resulting from an abrupt change 

in CP. 
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5.6 Conclusions 

A sample residential distribution network was investigated under control of the devel-

oped decentralized charging scheduling algorithm with PEV penetrations in various lev-

els. A set of real-world driving data was employed to specify the vehicular load. In order 

to simulate a closely realistic situation, a stochastic approach for distribution of partici-

pating PEVs, recorded days, and base loads was adopted.   

The idealistic common assumption is that by optimal management of the charging 

demand it is possible to postpone the upgrading of the network assets up to the point their 

capacity is fully utilized (by completely filling the valleys of the aggregated demand 

curve). The main deduction from the simulated results however, is that in reality this as-

sumption is not exactly true; in fact under realistic conditions distributed customers’ 

charging demand will have different features in terms of time and amount, which might 

not take place exactly at valleys of the load curve; therefore, upgrading will be required 

prior to full utilization of the assets. However, employment of the developed control 

strategy will indeed significantly delay the necessity for upgrading and will also enhance 

the network operation in comparison to an uncontrolled charging scheme. 

 It should be also noted that the results presented in this chapter are valid for the given 

case-study and its corresponding attributes in terms of topology, base load, vehicular de-

mand, and so on. Therefore, if, for example, fast charging is made feasible for customers 

in a residential distribution network, the assets (i.e. transformers) will be saturated in 

much smaller penetration levels.   

 



 

 

Chapter 6 

Conclusions, Contributions, and      

Future Work  

6.1 Conclusions and contributions 

In this thesis the charging demand of upcoming PEVs on a power systems was classified 

spatially as stationary (i.e. home charging) and mobile (i.e. off-home charging) vehicular 

demand; then planning issues regarding each class of vehicular load were addressed. 

1) Mobile vehicular demand at off-home charging stations:  

In the first phase of this research a location-based procedure for predicting the charging 

load at off-home charging stations was proposed and implemented. A fuzzy logic-based 

charging decision-making engine was designed to emulate the realistic behavior of the 

driver at the instant of arriving at an off-home charging location. The method was then 

exemplified by means of a driving dataset for two major shopping centers. The forecasted 
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loads by the developed algorithm are the initial and essential information for investiga-

tion of the required scale for upgrading the network, the rate and/or number of charging 

facilities, and related economic studies on the profit versus expenses of adding new infra-

structure. 

The main contributions of the first phase of the research included (i) developing a lo-

cation-based fuzzy decision making unit for prediction of off-home charging behavior of 

drivers; and (ii) designing a procedure for vehicular load forecasting at potential public 

charging stations by means of real-world driving data from the area(s) of interest.  

2) Stationary vehicular demand at residential distribution network:  

In the second phase of the research the stationary class of the vehicular load was as-

sessed. The main focus was on a realistic scheduling of the charging demand at residen-

tial distribution networks and a multi-agent decentralized control strategy was proposed 

and investigated.     

The developed procedure localizes the realization of the charging profile for each 

PEV while it simplifies and individualizes the scheduling process for customers. The ag-

gregated impact of the distributed, supervised charging patterns obtained through the 

proposed algorithm will result in enhanced utilization of the assets and a moderate 

growth of the peak demand. It will therefore, postpone the necessity for their upgrading. 

The consequence of such load management at the customer side will also moderately im-

prove the performance of the power systems in comparison to an unsupervised mode of 

charging. 

The main contributions of the second phase of the research included (i) development 

of a novel decentralized control strategy to manage flexible demand at the customer’s 
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side to satisfy customers’ transportation requirement while fulfilling the utility’s objec-

tives at the same time; (ii) design of a two-stage scheduling algorithm comprising static 

and dynamic stages, (iii) assigning critical points of the demand (CP) by the utility along 

with a specific pricing scenario in order to charge customers in a fair manner; (iv) engag-

ing customers’ defined risk degrees (RD), to account for the uncertainty in the forecasted 

demand, and flexibility degrees (FD), to account for the opportunity of off-home charg-

ing. These two are new parameters designed to capture the customers’ desires and to re-

flect them in the scheduling algorithm. The proposed algorithm features simplicity in 

terms of computations and implementation, and protection of customers’ privacy to the 

extent possible.                

The overall conclusion from the two phases of the research is that although the main 

share of the charging load of each PEV occurs most likely during home parking, predic-

tion of off-home charging behavior of the PEV owners is still a challenging and essential 

question in the planning procedure. Several factors contribute to this fact. Firstly, an ade-

quate number of charging stations in eligible locations must be accessible to the PEV 

owners in order to encourage the society to switch at a faster rate to the more-electric 

transportation. Secondly, every candidate location requires an individual study of driving 

and parking patterns for the majority of the vehicles in the area of interest to realize the 

scale of fortifications as well as the rate of capital return required. Thirdly, alleviating the 

charging demand at home (i.e. higher flexibility degrees) by providing ample off-home 

charging opportunity in many cases can lower the probability of coincidental home-

charging at lower levels of the distribution network.  
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To sum up, the implication of the results is that, although addition of the vehicular 

load in the system is inevitable, it is possible to obtain better satisfaction of both the cus-

tomers and the utility through efficient management of the location and time of this de-

mand. 

3) Publications arising from the thesis:  

At the time of writing this document, the following publications had resulted from the of 

the work carried out: 

1) N. Ghiasnezhad, and S. Filizadeh, “Location-based forecasting of vehicular charging 

load on the distribution system,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 632-641, 

March 2014;  

2) N. Ghiasnezhad, and S. Filizadeh, “Characterization of prospective charging locations 

of plug-in vehicles using real-world driving data,” in Proc. IEEE Power & Energy Soci-

ety General Meeting, Vancouver, Canada, July 2013. 

6.2 Future work 

From the viewpoint of classification of the vehicular charging demand on the power net-

work as mobile and stationary, the following areas are found to be essential and useful to 

be investigated in the future. 

1) For the mobile vehicular load, optimal placing of fast chargers in the transporta-

tion network can effectively accelerate the trend of adoption of a more green 

transportation. Unlike regular chargers, PEVs receive a substantial amount of 

charge in a short period from a fast charger; thus, in comparison to the regular 
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charging case, parking duration will not be as important. In fact, the main chal-

lenge in the case of fast charging stations is to answer the following questions: (i) 

where in the area of interest the public charging station should be installed, and 

(ii) what should be the pricing scenario to make it beneficial to drivers to charge 

at such stations rather than home (where the power network is more vulnerable). 

The answers to these questions will be based on the majority's driving habits, and 

transportation network's attributes (which make the issue complicated in terms of 

time and intensity of load). 

2) In the present power systems where the initial stages of a smarter distribution 

network are still under development, strategies such as the one developed and in-

vestigated in this research are proposals for the future developments. In a smart 

distribution system, which is fully controlled with a multi-agent system, many 

other approaches can be assessed to achieve an optimal control strategy; however, 

there needs to be a great deal of consideration and regulation in terms of market, 

communication, and security as well as physical infrastructure to enable possibili-

ties of some strategies such as monitoring the states of the network in various lev-

els or bidirectional flow of power in case of vehicle-to-grid to gradually get closer 

an comprehensive supervisory condition. Eventually, in an idealistic free market 

situation, agents with a high level of intelligence and authority can participate in a 

complex game in which they interact directly with others and the utility agent(s) 

to finalize their decision on demanded power in every interval.   
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