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Abstract

Let there be m parallel machines and n jobs to be scheduled non-preemptively. A

job j scheduled on machine i takes pi,j time units to complete, where 1 ≤ i ≤ m and

1 ≤ j ≤ n. For a given schedule, the makespan is the completion time of a machine

that finishes last. The goal is to produce a schedule of all n jobs with minimum

makespan. This is known as the makespan problem on unrelated parallel machines

(UPMs), denoted as R||Cmax. In this thesis, we focus on subclasses of R||Cmax.

Our research consists of two components. First, a survey of theoretic results for

R||Cmax with a focus on approximation algorithms is presented. Second, we present

exact polynomial-time algorithms and approximation algorithms for some subclasses

of R||Cmax. For instance, we present k-approximation algorithms on par with or

better than the best known for certain subclasses of R||Cmax.
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Chapter 1

Introduction

1.1 Motivation

Imagine that you are a production planner for a textile manufacturing plant. Your

responsibility is to determine a schedule for each order within the upcoming week

for manufacturing various fabrics. The manufacturing plant has three multipurpose

weaving machines that independently operate in parallel. Independent of each ma-

chine, textile batches (jobs) of an order can complete at fluctuating times depending

on various characteristics of input raw materials. Each job is to be scheduled on one

machine, and can be assigned in any order. At initialization, a technician schedules

the weaving machines to commence simultaneously. A machine continues to operate

without interruption for each job until all the jobs assigned to that particular ma-

chine complete. Assuming this plant operates all hours of the day, your objective is

to schedule every job of an order, such that the machines finish the order as early

as possible. Based on previous experience of how the machines operate, you have

1



2 Chapter 1: Introduction

prepared estimates rounded to the next highest hour in Table 1.1.

Machine \ Jobs Cotton1 Cotton2 Silk1 Silk2 Wool1 Wool2

Machine 1 5 6 5 6 5 6
Machine 2 5 7 8 7 8 8
Machine 3 5 6 5 7 8 6

Table 1.1: Estimated times for a potential assignment of jobs prepared by the pro-
duction planner rounded to the next highest hour. Jobs are uniquely identified by
their material, and a subscript.

Your goal this week is to schedule all six jobs of this order on the weaving machines,

so that the processing time of the last machine to finish is minimized. Suppose your

supervisor gave you a deadline of twelve hours to have all the batches manufactured,

because the machines need maintenance for the remainder of the week. Based on your

estimates, is it possible to produce a schedule of all the jobs that completes within

the deadline? Also, what is the minimum completion time of a machine that finishes

last for this instance? A schedule that completes in twelve hours exists (see page 7),

so the deadline given by your supervisor can be met.

Our goal is to find a schedule where the completion time of a machine that finishes

last is minimized. This is an example of a problem instance of the makespan problem

on unrelated parallel machines (UPMs), which we define in Section 1.3. This problem

is called the makespan problem on UPMs, because the goal is to schedule all given

independent jobs on unrelated machines while minimizing the completion time of a

machine that finishes last—the makespan. This scheduling problem arises in numerous

areas including multiprocessor computer scheduling, and is a core problem of study

in combinatorial optimization. The makespan problem on UPMs is an example of an

optimization problem.
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1.2 Optimization Problems

The makespan problem on UPMs is an optimization problem. An optimization

problem [28, Section 15.7] consists of three parts:

1. A non-empty set I of problem instances;

2. An objective function c(x, y) that yields a rational value called its objective value,

where y is a feasible solution to a given instance x ∈ I; and

3. A goal of either minimization (min) or maximization (max) for the objective

function.

Each instance x ∈ I is associated with an ordered pair (Sx, OPT (x)). Sx is a set

of feasible solutions of x, and OPT (x) is the optimal objective value for a feasible

solution of x, where the optimal objective value depends on the goal of the problem

(i.e., min, or max). Given an instance x of a given optimization problem, the goal

is to find a feasible solution y′, where c(x, y′) = OPT (x), called an optimal solution.

For instance, the makespan problem is a minimization problem where the goal is to

find a feasible schedule whose makespan (objective value) is of minimum size.

In combinatorial optimization and theoretical computer science, many problems

studied are optimization problems. The research in these areas often fall into one of

three major categories:

1. Given an optimization problem, what is its computational complexity? For

example, can any instance of the optimization problem be solved in polyno-

mial time with respect to input size (i.e., polynomial-time solvable), or is the

optimization problem NP-hard? Some useful computational complexity theory
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references with sections on optimization problems are Cormen et al. [5], Korte

and Vygen [28], and Papadimitriou and Steiglitz [37].

2. Is the optimization problem polynomial-time solvable? That is, is there an

algorithm that solves any instance of the optimization problem in polynomial-

time with respect to input size? Typically, researchers show an optimization

problem is polynomial-time solvable by designing an algorithm, showing its

worst-case time complexity is polynomial with respect to input size, and then

proving the correctness of the algorithm. If an optimization problem has a

polynomial-time algorithm, then there is no need to consider case 3.

3. Given an NP-hard optimization problem, can we design approximation algo-

rithms for the optimization problem that yield feasible solutions in polynomial

time that are guaranteed to be within a given factor of the optimal objective

value? We discuss approximation algorithms and hardness of approximation

in Section 1.5. As a consequence of hardness of approximation and the dif-

ficulty in designing better approximation algorithms for certain optimization

problems, some researchers focus on subclasses of optimization problems. A

subclass (I ′, c′, goal′) of an optimization problem (I, c, goal) is a set of sub-

instances I ′ ⊆ I, with objective function c′ = c, and goal′ = goal. In this

thesis, we consider subclasses of the makespan problem on UPMs.
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1.3 The Makespan Problem on UPMs

We define a general scheduling problem called the makespan problem on unrelated

parallel machines (UPMs), which is the major focus of this thesis. Let pi,j ∈ Z+ be

the processing time for job j on machine i. Call m×n matrix P = (pi,j) a processing

requirement matrix. Given a m× n processing requirement matrix P , n jobs, and m

machines, the goal is to find a non-preemptive schedule of the jobs that minimizes the

completion time of a machine that finishes last. In non-preemptive job scheduling, if a

job is scheduled on a machine, then the job must complete without being interrupted.

The sum of job lengths of a machine that completes last is called the makespan of

the schedule [46, Section 2.3]. As a note, for a machine, its completion time or load

is the sum of job lengths to be processed by the machine. The makespan problem on

unrelated parallel machines is NP-hard, because the makespan problem on identical

parallel machines when m = 2 is NP-hard [14].

An instance of the makespan problem on UPMs is given by a 3-tuple (P,m, n)

where P is the processing requirement matrix, m is the number of machines, and n

is the number of jobs of the instance. Given an instance (P,m, n) of the makespan

problem on UPMs, a feasible solution is a schedule that contains all n jobs, where each

job is scheduled on exactly one machine. We call such solutions feasible schedules.

Also, we assume that feasible schedules do not contain idle time between any two

consecutive jobs scheduled on a machine. The assignment of jobs to machines for

an instance forms a schedule. This assignment of jobs can be represented as an

assignment matrix X = (xi,j), where xi,j = 1 if job j is assigned to machine i, and

xi,j = 0 otherwise. We interchangeably represent solutions as either a schedule, or



6 Chapter 1: Introduction

an assignment matrix that yields a schedule. The objective value of a solution is the

makespan of a schedule. More precisely, given an assignment matrix X, the makespan

of a schedule is c((P,m, n), X) = max1≤i≤m{
∑n

j=1 pi,jxi,j}. The completion time of a

job that finishes last in a schedule is the same as the completion time of a machine that

finishes last. So we denote the makespan of a schedule as Cmax, the completion time

of the job that finishes last in a schedule. An optimal solution or optimal schedule is

a feasible schedule for which the makespan is smallest. The minimum makespan for a

given instance of the makespan problem on UPMs is OPT ((P,m, n)). For simplicity,

we denote the optimal makespan of an instance instead as OPT (P ).

Let us consider the example we presented in Section 1.1 more formally now. The

input instance is a 3 × 6 processing requirement matrix P with m = 3 machines,

and n = 6 jobs. This matrix represents the durations of possible processing times

for six jobs with three machines prepared by the production planner. The goal is to

produce an optimal schedule, a feasible schedule where the makespan is minimized.

The production planner’s table given as Table 1.1 as a processing requirement matrix

is

P =


5 6 5 6 5 6

5 7 8 7 8 8

5 6 5 7 8 6

 .

To help understand the concepts introduced, let us consider a feasible schedule

(that may not be optimal). Suppose we assign jobs 1, 2 and 3 to machine 1; job 6

to machine 2; and jobs 4 and 5 to machine 3. The schedule that is the result of our

assignments is a feasible schedule. Figure 1.1 shows this schedule. Notice that the
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makespan of this schedule is sixteen.

makespan

M3

M2

M1 1 2 3

4 5

6

time
4 8 12 16

Figure 1.1: A feasible schedule for an example instance of the makespan problem on
UPMs. The makespan of this schedule is sixteen.

In Section 1.1, we remarked that the production planner could meet the deadline

proposed by the supervisor, and that a schedule with makespan of twelve exists. Let

X∗ be an optimal assignment that represents an optimal schedule. Then, an optimal

assignment X∗ is

X∗ =


0 1 0 0 1 0

1 0 0 1 0 0

0 0 1 0 0 1

 .

As a result, c((P,m, n), X∗) = OPT (P ) = 12. Figure 1.2 is the schedule produced by

this assignment. Though our instance has only one schedule with optimal makespan,

most instances have many different optimal schedules.

We focus on subclasses of the makespan problem on UPMs to develop theoretic

results and algorithms in this thesis. By investigating subclasses of the makespan

problem on UPMs, we perform two fundamental tasks. First, we search for new

properties that cover many instances of the general problem. Second, we develop

efficient algorithms or find improved approximation algorithms for subclasses which
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makespan

M3

M2

M1 2 5

1 4

3 6

time
4 8 12 16

Figure 1.2: An optimal schedule for our example instance of the makespan problem
on UPMs. The makespan of this schedule is twelve.

are not possible for the general makespan problem on UPMs.

1.4 Notation for Scheduling Problems

In this thesis, we adopt notation for describing many theoretic scheduling problems

called the Graham notation, introduced by Graham et al. [17]. The notation uses three

fields, α|β|γ, where α specifies a machine environment, β describes job characteristics,

and γ denotes an optimality criterion. We now describe in more detail each field based

only on the scheduling problems we consider in this thesis.

The machine environment α =“α1α2” describes the type of machines α1 for

scheduling jobs, and a fixed number of machines α2 ∈ Z+. In Table 1.2, we de-

fine each machine type. If α1 is not provided, then it is assumed that α2 = 1. If α2 is

not provided, we assume the number of machines m is variable and though it is not

written, α2 = m. If α2 is given as positive integer, it is assumed that the number of

machines is fixed. Note that each machine environment presented is a special case of

UPMs.
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α1 Machine Type Definition
Single Machine 1 × n processing requirement matrix, where

p1,j = pj ∈ Z+ and 1 ≤ j ≤ n.
P Identical Parallel Machines α2×n processing requirement matrix, where

pi,j = pj ∈ Z+, 1 ≤ j ≤ n, and 1 ≤ i ≤ α2.
Q Uniformly Related Parallel Machines For 1 ≤ i ≤ α2, let each machine i

have a speed si ∈ Z+. Then there is a
α2×n processing requirement matrix, where
pi,j = sipj ∈ Z+, and 1 ≤ j ≤ n. Each
machine i has a speedup factor of si. When
each si = 1, the machines become identical
parallel machines.

R Unrelated Parallel Machines α2×n processing requirement matrix, where
pi,j ∈ Z+, 1 ≤ i ≤ α2, and 1 ≤ j ≤ n.

Table 1.2: Some machine environments under Graham notation along with their
definitions.

The job characteristics further specify the scheduling problem, and what entries

may be permitted in a processing requirement matrix. We organize job characteristics

by four major types in Table 1.4. These four types are preemption (B1), partial

order (B2), release dates (B3), and processing times (B4). Let β ⊆ {β1, β2, β3, β4},

where β1 ∈ B1, β2 ∈ B2, β3 ∈ B3, and β4 ∈ B4 are described in Table 1.4. Job

characteristics are written as “β1, β2, β3, β4”, and describe properties jobs may have

beyond the machine environment. For B4 under restricted processing times, the

symbol ∞ denotes that a job cannot be assigned to a particular machine. In this

context, ∞ represents an arbitrarily large positive integer, and when pi,j =∞, job j

takes too long to complete on machine i. Let A be a set of positive integers. If∞ ∈ A,

and pi,j = ∞, then job j cannot be scheduled to machine i. We call instances with

∞ ∈ A, restricted assignment instances. If no job characteristics are provided, then

the initial machine description is used without modification, jobs are non-preemptive,
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with no precedence constraints, and job processing times are not restricted.

At last, we consider the third field, the optimality criterion γ. The optimality

criterion is the property we seek to minimize in the scheduling problem. For example,

we have discussed one such property, the makespan Cmax of a schedule. In Table 1.3,

we give a few examples of optimality criteria explored in the literature.

γ Optimality Criterion Associated Problem
Cmax Makespan/Maximum Completion Time Find a schedule that

minimizes the comple-
tion time of a machine
that finishes last.

Lmax Maximum Lateness For 1 ≤ j ≤ n, each job
j is assigned a deadline
dj for an ideal comple-
tion time of a job. Late-
ness of a job is computed
as Lj = Cj − dj, where
Cj is the completion time
of job j in a schedule.
Produce a schedule that
minimizes the maximum
lateness of a job.∑

j wjCj Weighted Completion Times Each job j has an as-
signed weight wj, where
1 ≤ j ≤ n. Find a
schedule that minimizes
the sum of weighted com-
pletion times.

Table 1.3: Some examples of optimality criterion under Graham notation for schedul-
ing problems.
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Characteristic
Type

Job Characteristic Definition

B1 - Preemption pmtn (Preemptive Jobs) Jobs being processed can
be interrupted and resumed
later.

B2 - Partial Order prec (Precedence Constraints) Let there be a directed
acyclic graph G = (V,E),
where V = {1, . . . , n}.
Given a directed path from
vertex u to vertex v, define
u ≺ v. If u ≺ v, then job
v cannot be processed until
job u completes.

tree (Partial Order as Tree) Special case of prec, where
G is a tree.

chains (Partial Order as Chains) Special case of prec when
G is comprised of chains:
paths consisting of distinct
vertices.

forest (Partial Order as Forest) Special case of prec when G
is a forest: each connected
component is a tree.

B3 - Release Dates rj (Release Dates for Jobs) For 1 ≤ j ≤ n, each job j
is assigned a release date rj,
where rj ≥ 0. Job j can-
not be schedule to a ma-
chine until rj time units
have elapsed.

B4 - Processing Times pi,j = 1 (Unit Times) Given a processing require-
ment matrix, each entry
pi,j ∈ {1}.

l ≤ pi,j ≤ u (Bounded Times) Entries pi,j of a process-
ing requirement matrix are
bounded by some constant
lower and upper bounds l
and u, respectively.

pi,j ∈ A (Restricted Times) Each entry pi,j of a process-
ing requirement matrix is a
member of a set A of posi-
tive integers.

Table 1.4: Examples of commonly-used job characteristics in Graham notation along
with their definitions.
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Here are some examples of the Graham notation being used to represent scheduling

problems:

• P2|prec|Cmax denotes the makespan problem on two identical parallel machines

with precedence constraints enforced for each job,

• 1||
∑

j wjCj represents minimizing the weighted completion times on a single

machine,

• Q|pmtn, tree|Cmax denotes the makespan problem on uniformly related parallel

machines with a partial order in the form of a tree, where jobs are scheduled

preemptively.

The makespan problem on UPMs is represented by R||Cmax. Such notation can be

used also to describe subclasses of the makespan problem on UPMs. For instance,

R|pi,j ∈ {1, 2}|Cmax denotes the makespan problem on UPMs when processing times

pi,j ∈ {1, 2}.

1.5 Approximation Algorithms

Many optimization problems such as the makespan problem for UPMs are NP-

hard problems. NP-hard optimization problems are not thought to be polynomial-

time solvable, unless P = NP [28, Chapter 15.7]. Researchers are primarily interested

in using approximation algorithms to find approximate solutions for these types of

optimization problems.

An approximation algorithm for an optimization problem is a step-by-step finite

procedure that returns in polynomial time, for all instances to a given problem, an
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approximate solution. See Chapter 1 of Williamson and Shmoys [46] for a good

introduction. A k-approximation algorithm guarantees a feasible solution whose ob-

jective value is within a factor of k of the optimal objective value, and terminates in

polynomial time. For example, if a 3-approximation algorithm is given for a mini-

mization problem, then this algorithm will return a solution A for an instance x with

objective value c(x,A), where OPT (x) ≤ c(x,A) ≤ 3 ·OPT (x). We call k the approx-

imation factor, performance guarantee, or approximation ratio. For a maximization

problem, the approximation factor k by convention is less than one. Furthermore, a

k-approximation algorithm that solves a minimization problem has an approximation

factor greater than one. Since the justification for applying k-approximation algo-

rithms is to terminate in polynomial time, algorithms such as these give an efficient

means of obtaining an approximate solution to many NP-hard problems. Another type

of approximation algorithm is a k-absolute approximation algorithm. A k-absolute

approximation algorithm terminates in polynomial time, and for any feasible solution

of a minimization problem, OPT (x) ≤ c(x,A) ≤ OPT (x) + k.

To help us understand the process of developing an approximation algorithm,

we use an example in the context of scheduling. Consider the scheduling problem

P ||Cmax, the makespan problem on identical parallel machines. Recall from Table 1.2

that this is a special case of the makespan problem on UPMs when the rows of

a processing requirement matrix P are the same. To present a k-approximation

algorithm for P ||Cmax, we must:

a) Develop an algorithm for P ||Cmax that returns a feasible schedule X for any

processing requirement matrix P , and terminates in polynomial time.
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b) For any feasible schedule X produced by the algorithm, prove that Cmax ≤

k ·OPT (P ), where k is the approximation factor.

c) Present a tight example. A tight example is an infinite set of instances where

the k-approximation algorithm produces a schedule with makespan Cmax =

k ·OPT (P ). The existence of a tight example for a k-approximation algorithm

implies that its approximation factor is no smaller than k.

When we present approximation algorithms, we present both results a) and b) to-

gether as a theorem, then follow with c). Next, we present a (2−1/m)-approximation

algorithm by Graham [15]. It is worth noting that Graham [16] also gave a 4/3-

approximation approximation for P ||Cmax, which we discuss in Section 4.2.1. The

proof presented for this result is based on one given by Marchal [34].

Theorem 1.5.1 (Graham [15]). There is a (2− (1/m))-approximation algorithm for

P ||Cmax.

Proof. Suppose we are given an arbitrary processing requirement matrix P . For

j = 1, 2, . . . , n, assign job j to a machine with least load. Upon assigning all n jobs,

return the schedule then terminate. This algorithm terminates in polynomial time.

For any instance, we can clearly see that a feasible schedule is returned, as it is a

schedule that contains n jobs.

Next, consider the schedule produced by the algorithm. For simplicity, denote

pj = pi,j, as the rows of the processing requirement matrix P are identical. Let

machine L be a machine that finishes last, and job l be the last task to complete on

this machine. Notice that the completion time of job l is the makespan Cmax. Job l
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was scheduled to machine L by the algorithm, because machine L had the least load

at the time job l was scheduled. Therefore,

n∑
j=1

(pj)− pl ≥ m(Cmax − pl),

or,

Cl − pl ≤
1

m

( n∑
j=1

(pj)− pl
)
≤ OPT (P )− pl

m
, (1.1)

as ∑n
j=1 pj

m
≤ OPT (P ),

because the average processing time of a machine is a lower bound on the optimal

makespan for identical parallel machines. In an optimal schedule, at most m·OPT (P )

total processing times is done by all the machines.

Consider the makespan Cmax of a schedule produced by the algorithm. Machine L

finished last, so Cmax = Cl + pl = (Cmax − pl) + pl. Then, by inequality (1.1),

Cmax = (Cmax − pl) + pl ≤ OPT (P )− pl
m

+ pl = OPT (P ) + pl

(
1− 1

m

)
.

Since pl ≤ OPT (P ),

OPT (P ) + pl

(
1− 1

m

)
≤
(

2− 1

m

)
·OPT (P ).

Therefore, we have presented a (2− (1/m))-approximation algorithm for P ||Cmax.

We now present a tight example by Graham [15] for the (2−(1/m))-approximation

algorithm. Let there be n = 2m − 1 jobs, where p1 = p2 = · · · = pm−1 = (m − 1),

pm = · · · = p2m−2 = 1, and p2m−1 = m. If applied to the (2− (1/m))-approximation
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algorithm, a schedule with makespan of 2m − 1 is produced. An optimal schedule

has makespan of m. An optimal schedule pairs jobs of length one with jobs of length

(m− 1), then places the single job of length m on a machine of its own. The approx-

imation algorithm we presented is called the list scheduling algorithm. We discuss in

Section 4.2.1 how this simple greedy algorithm can be used or augmented for P ||Cmax.

Some approximation algorithms belong to a particular family of approximation

algorithms called a polynomial-time approximation scheme (PTAS). Let ε > 0 be

rational. For minimization problems, a PTAS is a family of algorithms {Aε}, where an

algorithm Aε exists for each ε > 0, such that Aε is a (1 + ε)-approximation algorithm.

Similarly, for maximization problems, for each ε > 0, algorithm Aε is a (1 − ε)-

approximation algorithm. Thus, if an optimization problem has a PTAS, we can

solve it with great flexibility of approximability by varying ε. Note that a PTAS can

be exponential in 1/ε. The drawback of a typical PTAS is that, as we approximate

closer to an optimal solution with small ε, the worst-case running time may rise

exponentially. To resolve this issue, researchers seek efficient PTASs called fully

polynomial-time approximation schemes (FPTASs). A FPTAS is a special type of

PTAS where the worst-case time complexity of every algorithm is polynomial with

respect to 1/ε and the input size.

Let us introduce hardness of approximation. As researchers are motivated to

find k-approximation algorithms that terminate faster and have better approxima-

tion factors, a question arises in computational complexity theory. Given a NP-hard

optimization problem, how small can approximation factor k be for a k-approximation

algorithm, assuming P 6= NP? For some NP-hard minimization problems, one can
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show if there were a k-approximation algorithm for some k, then P = NP. Such a

result is an example of a hardness of approximation result, and gives a lower bound

on the approximation factor for which there exists a k-approximation algorithm, as-

suming P 6= NP. For a good introduction to techniques for proving hardness of

approximation results, refer to Chapter 16 of Williamson and Shmoys [46].

1.6 Problem Statement

In this thesis, we cover two major parts. First, we present a survey of theo-

retic results for the makespan problem on UPMs (R||Cmax) with a focus on sub-

classes and related scheduling problems. Second, we investigate the computational

complexity of certain subclasses of R||Cmax. In addition to this, we investigate the

boundaries of polynomial-time-solvable subclasses and their relationships with other

NP-hard subclasses of R||Cmax. For instance, to the best of my knowledge, there

have been no studies of subclasses of R||Cmax when processing times are restricted to

pi,j ∈ {p, q,∞}, where p ≤ q. Note that if pi,j = ∞, then job j cannot be scheduled

on machine i. A particular case we consider is when processing times pi,j ∈ {1, 2,∞}.

Also, Lenstra et al. [33] showed that R||Cmax is polynomial-time solvable when pro-

cessing times pi,j ∈ {1, 2}. We determine the tractability of the subclass when pro-

cessing times pi,j ∈ {1, 2, 4}, and if NP-hard, design an approximation algorithm with

approximation ratio at most two. These are three problems considered in this thesis.

In Section 1.7, we give our major results from our investigation.
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1.7 Organization and Overview of Results

In this thesis, we present a variety of constructions, examples, and proofs. We

indicate the end of a construction with X, the end of a example with �, and the

end of a proof with �. With our problem described, we provide an overview of the

remainder of this thesis. In our overview of each chapter, we summarize our results.

In Chapters 2 to 4, a literature review is provided. Our literature review focuses on

approximation algorithms for subclasses of R||Cmax, and related scheduling problems.

First, we explore the history of approximation algorithms for R||Cmax to this date

with a brief summary. To accompany this, we present the hardness of approximation

result for R||Cmax by Lenstra et al. [33]. In Chapter 3, we present a 2-approximation

algorithm for R||Cmax by Lenstra et al. [33], the first of its kind. Results given in

their 1990 paper are fundamental to a present-day understanding of the makespan

problem on UPMs and approximation algorithms. With our focus on subclasses

of R||Cmax, Chapter 4 is devoted to a discussion about subclasses of R||Cmax and

related scheduling problems. We separate results known in the literature into two

major categories; tractable problems, and NP-hard problems.

In Chapters 5 and 6, we develop new results for particular subclasses of R||Cmax.

We concentrate our study on new or pragmatic subclasses that are similar to known

NP-hard subclasses of R||Cmax. We are especially interested in three-valued sub-

classes, which are not as well understood in the literature. Upon gathering our re-

sults, we organize our outcomes in two chapters by subclass, polynomial-time-solvable

subclasses and NP-hard subclasses of R||Cmax, respectively. We summarize the con-

tributions we present in Table 1.5 by section number.
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Finally, in Chapter 7 we summarize our investigation, and give our conclusions.

Section Subclass of R||Cmax Contribution
5.1 R|pi,j ∈ {ω,∞}|Cmax with initial loads Polynomial-time algorithm

(Theorem 5.1.2)
R|pi,j ∈ {1, 2, 4}|Cmax NP-hard (Theorem 6.1.1)

6.1 R|pi,j ∈ {1, p, q}|Cmax NP-hard (Theorem 6.1.5)
R|pi,j ∈ {p, q, r}|Cmax NP-hard (Corollary 6.1.6)
R|pi,j ∈ {1, 2, 4}|Cmax 2-approximation algorithm*

(Theorem 6.1.7)
6.2 R|pi,j ∈ {1, 2,∞}|Cmax NP-hard (Theorem 6.2.1)

R|pi,j ∈ {p, q,∞}|Cmax NP-hard (Theorem 6.2.3)
R|pi,j ∈ {p, q,∞}|Cmax (q/p)-approximation algorithm*

(Theorem 6.2.4)
R|pi,j ∈ {1, 2,∞}|Cmax 2-approximation algorithm*

(Theorem 6.2.6)
R|pi,j ∈ {p, q}|Cmax Linear-time (q/p)-approximation

algorithm* (Theorem 6.2.7)
R|pi,j ∈ A(p, q) ∪ {∞}|Cmax (q/p)-approximation algorithm*

(Theorem 6.2.9)
R|p ≤ pi,j ≤ q|Cmax Linear-time (q/p)-approximation

algorithm* (Corollary 6.2.10)

Table 1.5: Summary of our major results presented in Chapters 5 and 6 of this thesis.
Results with * indicate an approximation algorithm with approximation factor that
has the potential to be on par with or better than best-known approximation factor
to date.
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Results for R||Cmax

In this chapter, we give a brief survey of results for R||Cmax. First, we summarize

some of the major developments in approximation algorithms for R||Cmax. Then, we

present hardness of approximation results for R||Cmax that were given by Lenstra et

al. [33].

2.1 Approximation Algorithms

We now provide a synopsis of the known results on approximation algorithms for

R||Cmax. Table 2.1 outlines approximation algorithms for R||Cmax. Though sub-

classes such as P ||Cmax have been studied since 1966 [15], the first approximation

algorithm for R||Cmax was found in 1977 by Ibarra and Kim [20]. Ibarra and Kim

gave an m-approximation that is similar to the list scheduling algorithm. Instead of

assigning each job to a machine with least load like the list scheduling algorithm, their

m-approximation algorithm assigns each job to a machine that completes the job ear-

20
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Year Researchers k-Approximation Algorithm
1977 Ibarra and Kim [20] m-approximation algorithm.
1981 Davis and Jaffe [7] 2

√
m-approximation algorithm

1990 Lenstra et al. [33] 2-approximation algorithm.
2005 Shchepin and Vakhania [42] (2− (1/m))-approximation algorithm.
2007 Gairing et al. [13] 2-approximation algorithm, improved time-

complexity compared to [33; 42].

Table 2.1: Summary of k-approximation algorithms for R||Cmax.

liest. In 1981, Davis and Jaffe [7] developed a 2
√
m-approximation algorithm using

two additional techniques when the assignments are made by the m-approximation

algorithm. These two techniques are precomputation to develop estimates for po-

tential job assignments, and activating or deactivating machines using a threshold.

Before 1990, no constant-factor approximation algorithm existed for R||Cmax.

In 1985, Potts [38] presented an algorithm for R||Cmax with an approximation

factor of two. The algorithm by Potts has worst-case time complexity of O(mm−1),

so it is not a 2-approximation algorithm. Though its running time is exponential,

this algorithm uses polynomially-bounded space. Lenstra et al. [33] refined Potts’

result, and obtained a polynomial-time algorithm for R||Cmax with the same approx-

imation factor. This algorithm employs a variation of fractional rounding and linear

programming. In Chapter 3, we present the 2-approximation algorithm by Lenstra et

al. [33] for R||Cmax. Also, it is worth noting that Lenstra et al. presented a PTAS for

Rm||Cmax, but it is not a FPTAS. A FPTAS for Rm||Cmax was given later by Jansen

and Porkolab [22].

In 2005, building upon results developed by Potts [38] and Lenstra et al. [33],

Shchepin and Vakhania [42] designed a (2− (1/m))-approximation algorithm for the
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makespan problem on UPMs. The algorithm developed by Shchepin and Vakha-

nia [42] uses a linear programming formulation based on the linear program by Lenstra

et al. [33] that includes more constraints. Upon finding a feasible solution to the pro-

gram, the algorithm rounds the values of a given solution in a manner given by the

authors. This algorithm provides an improved approximation factor, but for arbitrar-

ily large number of machines m, this result still only provides an approximation ratio

of two. The authors suggested that this result is the best approximation result that

can be obtained through the rounding technique.

Most recently, Gairing et al. [13] in 2007 showed the linear programming aspects

of the 2-approximation algorithm by Lenstra et al. [33] can be replaced by solving a

generalized network-flow problem. The authors showed that this generalized network-

flow problem can be adapted and solved by combinatorial techniques in polynomial

time, and yield a more efficient 2-approximation algorithm for R||Cmax. At this point,

for any m, there is no better constant approximation factor than two for R||Cmax.

2.2 Hardness of Approximation

The most recent results for the hardness of approximation of R||Cmax were given

in 1990 by Lenstra et al. [33]. Lenstra et al. showed that there does not exist a

k-approximation algorithm with an approximation factor of k < 3/2 for R||Cmax,

unless P = NP. We present their second corollary, though the proof resides in their

Theorem 5. Theorem 5 [33] states that given an instance of R||Cmax, to determine

if there is a schedule with makespan at most two is NP-complete. In order to show

this result, we use the 3-dimensional matching (3DM) problem, which is known to be
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NP-complete [25].

Problem 2.2.1 (3-dimensional matching (3DM)). Given three disjoint n′-sets

A = {a1, a2, . . . , an′}, B = {b1, b2, . . . , bn′}, C = {c1, c2, . . . , cn′},

and a family of 3-sets F = {T1, . . . , Tm′}, where |Tγ ∩ A| = |Tγ ∩ B| = |Tγ ∩ C| = 1,

for 1 ≤ γ ≤ m′, is there a 3DM? That is, is there a subfamily F ′ ⊆ F , such that

|F ′| = n′, and
⋃
Tγ∈F ′ Tγ = A ∪B ∪ C?

This decision problem is a special case of the qDM problem (Problem 4.2.1) when

q = 3. We define an instance of the 3DM problem as I = (m′, n′, A,B,C, F ).

Theorem 2.2.2 (Lenstra et al. [33], Corollary 2). For any α < 3/2, there does not

exist an α-approximation algorithm for R||Cmax, unless P = NP.

Proof. Let us assume there exists a α–approximation algorithm, for some α < 3/2.

Consider the following decision problem.

Problem 2.2.3 (MAKESPANUPM2). Given a m×n processing requirement matrix

P for UPMs, does there exist a schedule with makespan at most two?

Under the assumption that we have an approximation algorithm with approxima-

tion ratio strictly less than 3/2, we develop a polynomial-time procedure that solves

any instance of the 3DM problem. To begin, we show how to create an instance I ′ ∈

MAKESPANUPM2 from any instance I ∈ 3DM in polynomial time.

Construction 2.2.4. Given an instance I = (m′, n′, A,B,C, F ) of the 3DM problem,

we wish to create an instance I ′ = (P,m, n) ∈ MAKESPANUPM2. Given an element
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a ∈ A, define k(a) where

k(a) = |{a ∈ Tγ | Tγ ∈ F, 1 ≤ γ ≤ m′}|.

If m′ < n′, or there exists a ∈ A such that k(a) = 0, create a trivial “no” instance. A

3DM will not exist when there are not enough 3-sets to contain the members of the

three n′-sets, and each element a ∈ A needs to appear in at least one of the 3-sets in

F . After this point, we assume m′ ≥ n′, and k(a) > 0 for all a ∈ A. Let there be

m = m′ machines, and n = 2n′ +
∑

a∈A (k(a)− 1) jobs. For each 3-set of the family

F , introduce a machine. For the 3-set Tγ ∈ F , we denote the corresponding machine

by γ. A machine γ is said to be of machine type a if a ∈ Tγ, where a ∈ A.

There will be two types of jobs, “element jobs” and “dummy jobs”. Each element

job corresponds to an element contained in B∪C. If an element is in a 3-set Tγ, then

its corresponding element job can be scheduled on machine γ to take one time unit,

and two time units otherwise. Each dummy job is of a particular machine type. A

dummy job of machine type a can be scheduled on a machine of type a for two time

units. For all other machines, such a job can be scheduled to take ∞ time units. For

each Tγ ∈ F , recall that |Tγ ∩ A| = 1. If k(a) > 1, then there are at least two 3-sets

in F that contain element a. The dummy jobs ensure that if a feasible schedule of

length two exists, only one machine of type a can be assigned two element jobs, while

each remaining (k(a)− 1) machines must be assigned one dummy job. There are 2n′

element jobs, and for each a ∈ A, there are (k(a)−1) dummy jobs of machine type a.

As a result, an instance I ′ ∈MAKESPANUPM2 is constructed in polynomial time.

X

With a scheduling instance I ′ ∈MAKESPANUPM2 created by Construction 2.2.4,
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we show that there is a 3DM for I ∈ 3DM if and only if there is a schedule with

makespan at most two. We use this result to develop a polynomial-time algorithm

that solves the 3DM problem assuming that there is an α-approximation algorithm,

where α < 3/2.

Lemma 2.2.5 (Lenstra et al. [33], Theorem 5). There is a matching (3DM) for

instance I ∈ 3DM if and only if the scheduling instance I ′ ∈ MAKESPANUPM2

produced by Construction 2.2.4 using I has a schedule with makespan at most two.

Proof. Suppose there is a matching F ′. For each 3-set Tγ ∈ F ′, schedule element jobs

that corresponds to elements in B ∪C on machine γ in one time unit. Each of these

machines have load 2 upon scheduling the jobs of B ∪C. Next, consider each a ∈ A.

There are exactly (k(a)− 1) machines of type a available with no jobs assigned yet.

Schedule (k(a) − 1) dummy jobs on each remaining machine of type a for two time

units. This assignment produces a schedule with makespan of two.

Next, suppose there is a schedule with makespan of two. In order to respect the

makespan, each dummy job of machine type a must be scheduled on a machine of type

a for two time units. Since there are exactly (k(a)− 1) dummy jobs of machine type

a each, there is exactly one machine of machine type a available to schedule element

jobs. There are 2n′ element jobs that need to be scheduled on n′ machines. To respect

the makespan of two, element jobs must all be scheduled to take one time unit on a

machine, such that only two element jobs are scheduled on each remaining machine.

If element jobs that correspond to b ∈ B and c ∈ C are scheduled for one time unit

on a machine of type a, then this assignment corresponds to a 3-set {a, b, c} ∈ F . As

there are n′ machines that schedule element jobs, then the corresponding set of 3-sets
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is a subfamily F ′ ⊆ F , and |F ′| = n′. If the makespan cannot be respected, then a

matching F ′ cannot exist. Thus, F ′ is a matching.

Therefore, there is a matching if and only if there exist a schedule with makespan

at most two.

If there is an α-approximation algorithm with approximation ratio of α < 3/2,

then we can use it to solve the 3DM problem in polynomial time, as follows. Given

an arbitrary instance I ∈ 3DM , construct an instance I ′ of the makespan problem on

UPMs using Construction 2.2.4. Since α < 3/2, 2α < 3. The makespan is of integral

value, so the approximation algorithm will guarantee a schedule with makespan at

most two only if a 3DM exists. By Lemma 2.2.5, if the schedule produced by the

approximation algorithm has makespan less than or equal to two, say “yes” as there is

a 3DM. If the schedule returned by the approximation algorithm has makespan greater

than or equal to three, then say “no”. This procedure will complete in polynomial

time.

Therefore, there is no α-approximation algorithm with approximation α < 3/2 for

R||Cmax, unless P = NP.

To help us understand the decision procedure found in Theorem 2.2.2 that employs

Construction 2.2.4, let us apply the procedure to an example 3-dimensional matching

(3DM) instance.

Example 2.2.6. Let

A = {1, 2, 3, 4}, B = {5, 6, 7, 8}, C = {9, 10, 11, 12},
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and a family of 3-sets,

F = {{1, 5, 9}, {2, 5, 9}, {2, 7, 10}, {2, 6, 10}, {3, 6, 11}, {4, 8, 12}}.

In this example, we see that m′ = 6, and n′ = 4.

Next, apply Construction 2.2.4 to the 3DM instance. There will be m = m′ = 6

machines, and n = 2n′ +
∑

a∈A (k(a)− 1) jobs. Of the n jobs, there will be 2n′ = 8

element jobs, and
∑

a∈A (k(a)− 1) dummy jobs over at most |A| = n′ = 4 machine

types. Recall that k(a) equals the number of 3-sets in F that contain element a ∈ A.

In Table 2.2, we show these calculations.

a ∈ A k(a) k(a)− 1
1 1 0
2 3 2
3 1 0
4 1 0

Table 2.2: For each element a ∈ A in an example instance of the 3DM problem, the
calculation of k(a) to determine the number of dummy jobs of a particular machine
type.

So in the example, we have eight element jobs, and two dummy jobs of machine

type 2. The dummy jobs of machine type 2 will be scheduled to take two time units.

These dummy jobs will be scheduled on machines that correspond to 3-sets that

contain the element 2 ∈ A, and ∞ time units otherwise. As a result, we obtain the
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processing requirement matrix

P =



1 2 2 2 1 2 2 2 ∞ ∞

1 2 2 2 1 2 2 2 2 2

2 2 1 2 2 1 2 2 2 2

2 1 2 2 2 1 2 2 2 2

2 1 2 2 2 2 1 2 ∞ ∞

2 2 2 1 2 2 2 1 ∞ ∞


.

Circled in the entries of P above is an optimal solution to this scheduling instance.

Notice that each machine that schedules element jobs has exactly two element jobs

on a machine. Dummy jobs are scheduled on each remaining machine. This schedule

has makespan of two, which corresponds to a matching that consists of a subfamily

of 3-sets of F that match the machines that are assigned the element jobs in the

schedule. �

If there was an α-approximation algorithm with α < 3/2, then the objective value

is guaranteed to be strictly less than three if there is a matching. With such an

approximation algorithm, one could solve the the 3DM problem in polynomial time.



Chapter 3

A 2-Approximation Algorithm for

R||Cmax

In 1990, Lenstra et al. [33] developed the first 2-approximation algorithm for

the makespan problem on unrelated parallel machines. Before their result, the best

approximation factor for any approximation algorithm for R||Cmax was 2
√
m. Having

an approximation algorithm that does not have a constant approximation factor is

undesirable, because the quality of a solution depends on the input instance. To this

date, for any number of machines m, the best known approximation factor is 2. Since

many of the known 2-approximation algorithms for R||Cmax are derived from the 2-

approximation algorithm by Lenstra et al. [33], this chapter is dedicated to presenting

their 2-approximation algorithm. To understand this algorithm, some background in

linear programming is required. We recommend reading Appendix A if the reader is

not familiar with basic feasible solutions (BFSs), integer programs (IPs), integrality

gap, linear programs (LPs), relaxed LPs, or the rounding technique.

29
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3.1 Background and Overview of the Algorithm

A common technique in approximation algorithms is the routnding technique. In

the rounding technique, the idea is to formulate the problem of interest as an IP, then

relax the integral constraints and solve its relaxed LP. Once the relaxed LP is solved,

round each component in the solution of the relaxed LP to form a feasible solution to

the original IP. Then, the approximation factor is at least the integrality gap of the IP.

For an example of this process, refer to our example with the minimum vertex cover

problem in Section A.4. We use the rounding technique. Let us begin by presenting

an IP formulation IP0(P, t) for R||Cmax. Given a processing requirement matrix P ,

let decision variable xi,j = 1 if job j is assigned to machine i to take pi,j > 0 time

units, and xi,j = 0 otherwise. Assume t ∈ Z+ is fixed, then define IP0(P, t) as

minimize 0 (IP0(P, t))

subject to
m∑
i=1

xi,j = 1 , for j = 1, 2, . . . , n (3.1)

n∑
j=1

pi,jxi,j ≤ t , for i = 1, 2, . . . ,m (3.2)

xi,j ∈ {0, 1}, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (3.3)

For IP0(P, t), the makespan is represented as t. For this IP, the smallest value t

when IP0(P, t) is feasible is the optimal makespan. Notice the objective function of

IP0(P, t) is 0—a feasible schedule with makespan at most t follows from the con-

straints of this IP. Constraints (3.1) enforce that each job is scheduled on exactly one

machine. Also, constraints (3.2) maintain that each machine takes at most t time

units to complete. Since each decision variable xi,j ∈ {0, 1} in IP0(P, t), IP0(P, t)
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models R||Cmax when t is the optimal makespan. We use the subscript 0 in IP0(P, t)

to indicate that this is our first attempt at devising an IP for R||Cmax. To develop

an approximation algorithm with a constant approximation factor, relax IP0(P, t) so

that each xi,j ∈ [0, 1]. We obtain LP0(P, t), where

minimize 0 (LP0(P, t))

subject to
m∑
i=1

xi,j = 1 , for j = 1, 2, . . . , n (3.1)

n∑
j=1

pi,jxi,j ≤ t , for i = 1, 2, . . . ,m (3.2)

xi,j ≥ 0, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (3.4)

Since LP0(P, t) permits rational values for each decision variable xi,j, the pro-

cessing time needed for each job can be distributed across more than one machine

while satisfying all the constraints. Unfortunately, the integrality gap of IP0(P, t) is

unbounded. For example, consider a m× 1 processing requirement matrix P , where

each pi,1 = m. The minimum value of t for which LP0(P, t) is feasible is 1 as one could

assign each xi,1 = 1/m. Unlike LP0(P, t), the minimum t when IP0(P, t) is feasible is

m; one job assigned to one machine. So in this example, the worst-case ratio between

IP0(P, t) and LP0(P, t) is m. Thus, we cannot develop a rounding strategy as easily

as we did for the 2-approximation algorithm for the minimum vertex cover problem

in Section A.4, and the integrality gap is not as good an indicator as before.

We want to eventually obtain a feasible solution for IP0(P, t). As with the round-

ing technique, a rounding strategy is needed. An ideal rounding strategy would be

to round all positive decision variables to integral assignments so that xi,j = 0 means

that the job is not assigned to a machine. For some values of k, j, constraints (3.1)
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enforce when a decision variable xk,j = 1, each xi,j = 0, where k 6= i. What about

when xi,j ∈ (0, 1)? It is not clear how these decision variables should be rounded.

We need to assign jobs carefully so the constraints of IP0(P, t) are satisfied. First,

consider constraints (3.2). For some processing requirement matrix P and fixed t, an

immediate issue arises with the formulation of LP0(P, t). For IP0(P, t), if pi,j > t, it is

guaranteed that xi,j = 0 as xi,j ∈ {0, 1}. Unlike this, a feasible solution of LP0(P, t)

can assign some xi,j > 0, even when pi,j > t. For example, consider processing

requirement matrix

P =

 8 1 1 1

2 1 1 1

 .

Fix t = 3, the optimal makespan for this instance of R||Cmax. A feasible solution to

LP0(P, 3) is

(x1,1 = 2/8, x1,2 = 0, x1,3 = 1, x1,4 = 0, x2,1 = 6/8, x2,2 = 1, x2,3 = 0, x2,4 = 1).

But, p1,1 = 8 > 3. If we were to perform some kind of rounding strategy, such

decision variables could potentially lead to an infeasible solution to IP0(P, 3). For

instance, assigning job 1 to machine 1 would violate one of constraints (3.2). We

need to include more constraints to ensure no decision variable in LP0(P, t) is non-

zero when pi,j > t. Introduce artificial constraints that impose that each decision

variable xi,j = 0, when pi,j > t. We give the new LP LP1(P, t) in standard form. For
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some processing requirement matrix P and fixed t ∈ Z+, define LP1(P, t), where

minimize 0 (LP1(P, t))

subject to
m∑
i=1

xi,j = 1 , for j = 1, 2, . . . , n (3.1)

n∑
j=1

pi,jxi,j + si = t , for i = 1, 2, . . . ,m (3.2)

xi,j = 0 , for i, j, where pi,j > t (3.5)

xi,j ≥ 0, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n (3.4)

si ≥ 0, for i = 1, 2, . . . ,m. (3.6)

By including artificial constraints (3.5), we have introduced an alternate version of

the same LP that Lenstra et al. [33] used for their 2-approximation algorithm. The

2-approximation algorithm by Lenstra et al. [33] gives a rounding strategy used to

satisfy constraints (3.1), while maintaining an approximation factor of 2.

Now we give a brief description of the 2-approximation algorithm to outline the

remainder of this chapter. We present the 2-approximation algorithm by Lenstra et

al. [33] as pseudocode in Algorithm 3.1.1. First, the algorithm finds a value t = dbest,

such that dbest ≤ OPT (P ) and LP1(P, t = dbest) is feasible. Section 3.2 describes how

to calculate dbest by constructing a greedy schedule with makespan we denote as κ,

and perform binary search on LP1(P, t) over [bκ/mc, κ] in polynomial time. Next,

the algorithm finds a BFS of LP1(P, dbest). As elaborated in Section 3.3, a BFS of

LP1(P, t) guarantees properties we can use to develop a rounding strategy for any jobs

when decision variables are not integral. Then, in the same section we present graph

theoretic properties between pseudoforests and a BFS of LP1(P, t). Upon obtaining a

BFS of LP1(P, dbest), two sets of jobs are assigned: integrally set and fractionally set
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jobs. In Section 3.4, we discuss the definitions of each job type and present some of

their properties. Consequently, we show how the algorithm “rounds” the fractionally

set jobs to obtain a feasible schedule. This feasible schedule has makespan at most

2 · OPT (P ). In Section 3.5, we present the complete algorithm, and prove that it is

a 2-approximation algorithm.

Algorithm 3.1.1 2-approximation algorithm for R||Cmax
1: procedure 2ApproxMakespanUPMs(P,m, n)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: F := ∅; . Will contain a matching
4: Construct schedule S using the greedy algorithm in Section 3.2;
5: Let κ be the makespan of S;
6: Obtain lower bound dbest by applying the binary search procedure given in

Section 3.2;
7: Let (x̃, s1, . . . , sm) be a basic feasible solution of LP1(P, t = dbest);
8: Apply Construction 3.3.2 with decision variables x̃ to get G(x̃) = (M ∪ J,E);
9: for each j ∈ J do . Construct partial schedule of integrally set jobs
10: if degG(x̃)(j) == 1 then . Is x̃i,j = 1?
11: e := {i, j} ∈ E; . Exactly one edge to some i ∈M
12: Xi,j := 1; . Integral job; assign job j to machine i
13: E := E \ {i, j}
14: J := J \ {j};
15: end if
16: end for
17: J ′ := J ;
18: E ′ := E;
19: Let G′(x̃) = (M ∪ J ′, E ′);
20: Let F be a maximum matching in G′(x̃);
21: for each {i, j} ∈ F , where i ∈M and j ∈ J do . Complete partial schedule
22: Xi,j := 1; . Round a fractionally set job; assign job j to machine i
23: end for
24: return X; . Return schedule
25: end procedure



Chapter 3: A 2-Approximation Algorithm for R||Cmax 35

3.2 Finding a Lower Bound on the Optimal Makespan

Algorithm 3.1.1 begins by constructing a greedy schedule as follows. Assign each

job to a machine that takes the least time to process the job. That is, for j = 1, . . . , n,

assign each job j to machine argmin1≤i≤m{pi,j}. For any instance of R||Cmax, such

a schedule can be produced in polynomial time by this procedure; we denote its

makespan as κ.

Now, we will prove that bκ/mc is a lower bound on the optimal makespanOPT (P ).

Lemma 3.2.1 (Lenstra et al. [33], Lemma 1). Suppose we obtain a greedy schedule

with makespan κ using P as described in Section 3.2. Then, bκ/mc ≤ OPT (P ).

Proof. Observe bκ/mc ≤ OPT (P ) is true if and only if κ ≤ m ·OPT (P ). Notice that

the total processing time of an optimal schedule

m∑
i=1

n∑
j=1

pi,jx
∗
i,j ≤ m ·max1≤i≤m

n∑
j=1

pi,jx
∗
i,j = m ·OPT (P ).

Consider the makespan of the greedy schedule κ = max1≤i≤m
∑n

j=1 pi,jxi,j. Each job

in the greedy schedule is assigned to a machine for which the job takes the least

amount of time. Since the total processing time of the greedy schedule is at least the

makespan of the greedy schedule,

κ ≤
m∑
i=1

n∑
j=1

pi,jxi,j ≤
m∑
i=1

n∑
j=1

pi,jx
∗
i,j ≤ m ·OPT (P ).

Therefore, κ ≤ m ·OPT (P ), and bκ/mc ≤ OPT (P ).

It is worth noting that since this greedy schedule can be constructed in polynomial

time and κ ≤ m · OPT (P ), we have described a m-approximation algorithm for
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R||Cmax. A tight example for this m-approximation algorithm is a m×m processing

requirement matrix, where each entry is m. An optimal schedule will have makespan

of m, and the greedy schedule produced can have makespan at most m2.

In the next step, Algorithm 3.1.1 employs binary search over a range of values to

determine the smallest value dbest for which LP1(P, t = dbest) is feasible. Using the

algorithm binary search to find such lower bounds for LPs is a common technique in

linear programming; see page 171 of Papadimitriou and Steiglitz [37]. The goal for the

2-approximation algorithm at this stage is to find a feasible LP with the smallest value

dbest between bκ/mc and κ, inclusively. Since bκ/mc is a lower bound on OPT (P )

by Lemma 3.2.1, when the smallest value for dbest is found where LP1(P, t = dbest) is

feasible, dbest ≤ OPT (P ).

The algorithm performs a binary search procedure using U = κ and L = bκ/mc

as initial upper and lower bounds, respectively. Set d = b(L + U)/2c and test the

feasibility of LP1(P, t), when t = d. The feasibility of LP1(P, t = d) can be determined

by solving LP1(P, t = d), which can be done in polynomial time [24; 26]. Note that

when the the objective function of a LP is set to zero, determining the feasibility of an

LP is the same as determining the feasibility of a system of linear inequalities (LSI),

which is just as difficult computationally [37]. If LP1(P, d) is feasible, set dbest = d, and

let U = d. Otherwise, let L = d+1. Repeat this process until U = L. Let pmax be the

longest processing time in processing requirement matrix P . The smallest value dbest

for which LP1(P, dbest) is feasible can be found in O(log2(pmaxn)) feasibility checks.

If the LP is found to be feasible at any step of this process, the algorithm can keep

the best solution obtained so far as this method will find a BFS (x̃, s1, . . . , sm) when
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feasible. A BFS of LP1(P, t = dbest) is needed following the binary search procedure.

3.3 Basic Feasible Solutions and Pseudoforests

Following the binary search procedure that finds a lower bound dbest for which

LP1(P, t = dbest) is feasible, the 2-approximation algorithm finds a BFS (x̃, s1, . . . , sm).

Finding a BFS of LP1(P, t = dbest) can be done in polynomial time as this LP is

bounded, and we can solve LP1(P, t = dbest) in polynomial time [24; 26]. An optimal

solution is one of the BFSs of LP1(P, t = dbest) as a consequence of Theorem A.3.1.

We show a particular property of a BFS for LP1(P, dbest). Later, we exploit this

property when finding a feasible schedule.

Lemma 3.3.1 (Lenstra et al. [33], Theorem 1). Given the decision variables x̃ in a

BFS of LP (P, dbest), there are at most (m+ n) non-zero decision variables.

Proof. There are m+ n+ z constraints in LP (P, dbest), where n constraints are from

constraints (3.1), m constraints are from constraints (3.2), and z of the constraints

are the artificial constraints (constraints (3.5)). By the definition of a BFS, there are

at most m+ n+ z non-zero variables. From the z artificial constraints, each decision

variable x̃i,j is set to zero when pi,j > t. Since these z constraints set z decision

variables to zero, there remain at most (m+n) non-zero decision variables. Therefore,

there are at most (m+ n) non-zero decision variables in a BFS of LP (P, dbest).

Next, Algorithm 3.1.1 uses the decision variables x̃ of a BFS in LP1(P, dbest),

and constructs a bipartite graph G(x̃) = (M ∪ J,E) in polynomial time by applying

Construction 3.3.2.
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Construction 3.3.2. Fix t ∈ Z+. Consider the decision variables x of a feasi-

ble solution to LP1(P, t). Let there be machine vertices M = {1, 2, . . . ,m} for the

machines, and job vertices J = {1, 2, . . . , n} for the jobs. Construct a bipartite

graph G(x) = (M ∪ J,E), where E = {{i, j} | i ∈ M, j ∈ J, xi,j > 0}. Delete all

machine vertices with degree zero. X

A pseudotree is an undirected connected graph with at most one cycle. As a con-

sequence, a pseudotree is a tree or a tree with an extra edge that forms a cycle. A

pseudoforest is an undirected graph for which each connected component is a pseu-

dotree. We wish to show that the resulting bipartite graph G is a pseudoforest when

decision variables x̃ are used from any BFS in LP1(P, t = dbest).

Lemma 3.3.3 (Lenstra et al. [33], Theorem 1). The bipartite graph G(x̃) is a pseud-

oforest.

Proof. For some processing requirement matrix P and fixed t ∈ Z+, consider the

decision variables x̃ of a BFS in LP1(P, t). By definition, a pseudoforest is comprised

of pseudotrees. In order to show G(x̃) is a pseudoforest, we consider any connected

component and show the number of edges cannot exceed the number of vertices. Thus,

each connected component would be a pseudotree. Let GC(x̃) = (MC ∪ JC , EC) be a

connected component of G(x̃), where MC ⊆M , JC ⊆ J , and EC ⊆ E.

For LP1(P, t), consider its constraint matrix A. In the constraint matrix A, there

are n rows that correspond to each job, m rows of A that correspond to each machine,

and a row for each processing time pi,j when pi,j > t. Let z denote the number of

rows that correspond to the last set of rows we specified, the artificial constraints (i.e.,

constraints (3.5)). Restrict the rows of A to those corresponding to machines MC and



Chapter 3: A 2-Approximation Algorithm for R||Cmax 39

jobs JC , and columns indexed by each decision variable x̃i,j, where edge {i, j} ∈ EC .

In addition, remove any rows that correspond to artificial constraints with xi,j = 0,

where {i, j} /∈ EC . Say there are z′ rows remaining from the z artificial constraints.

Call this submatrix A′. Notice that A′ has |MC ∪ JC |+ z′ rows and |EC | columns.

Next, restrict the decision variables x̃ to those that index the columns of A′.

Observe that each column of A′ can be indexed by a non-zero decision variable in x̃.

The columns of A indexed by non-zero decision variables are linearly independent.

Since the columns of A′ are a subset of the columns that are indexed by non-zero

decision variables in A, the columns of A′ are also linearly independent. So by the

definition of a BFS, there are at most |MC ∪ JC | + z′ non-zero decision variables.

Then, consider the z′ rows of A′ that correspond to artificial constraints. An artificial

constraint appears in A′ if pi,j > t, and {i, j} ∈ E ′. But, if pi,j > t, then x̃i,j = 0. The

z′ artificial constraints will set z′ decision variables to zero. Thus, |EC | ≤ |MC ∪ JC |.

Since EC = {{i, j} ∈ E | i ∈ MC , j ∈ JC , x̃i,j > 0} and |EC | ≤ |MC ∪ JC |,

connected component GC(x̃) is a pseudotree. Therefore, for the decision variables x̃

of any BFS in LP1(P, t), G(x̃) is a pseudoforest.

3.4 Jobs and Matchings

In this section, we discuss how the Algorithm 3.1.1 creates a feasible schedule.

Using a BFS in LP1(P, t = dbest) and bipartite graph G(x̃), matching techniques are

used as a rounding strategy to obtain a feasible schedule.

For the bipartite graph G(x̃), consider each job vertex j ∈ J . If degG(x̃)(j) = 1

and {i, j} ∈ E, assign job j to machine i. Each of these jobs will correspond to some
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x̃i,j = 1 from the decision variables x̃, because each job j is scheduled on exactly one

machine due to constraints (3.1) in LP1(P, t = dbest). Upon scheduling each job, for

G(x̃), remove vertex j, and edge {i, j}. After all the vertices of J are considered, call

the resulting bipartite graph G′(x̃) = (M ∪ J ′, E ′).

We now show at most m jobs still need to be scheduled following the assignment

of the integral jobs. Consider the decision variables x̃ of a BFS in LP1(P, t = dbest).

Say that a job j is fractionally set if there is a machine i, such that 0 < x̃i,j < 1. To

contrast, for all machines i, a job j is integrally set if x̃i,j ∈ {0, 1}.

Lemma 3.4.1 (Lenstra et al. [33], Theorem 1). For any BFS in LP1(P, t = dbest),

let x̃ be its decision variables. There are at most m fractionally set jobs.

Proof. Suppose we are given decision variables x̃ in a BFS of LP1(P, dbest). Let α

and ψ be the number of integrally set and fractionally set jobs, respectively. Since

these two types of jobs are disjoint and there are n jobs, α + ψ = n. By definition,

each fractionally set job is assigned to at least two machines. For each fractionally

assigned job, there are at least two non-zero entries contributed to x̃. By Lemma 3.3.1,

α + 2ψ ≤ (m+ n). Recall that α + ψ = n, so

(n+ ψ)− n ≤ (m+ n)− n,

and

ψ ≤ m.

Therefore, there are at most m fractionally set jobs.

At this point in Algorithm 3.1.1, there are at most m jobs left to be assigned to

m machines. At least (n−m) jobs were assigned, because there are at least (n−m)
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integrally set jobs. Next, the algorithm builds a matching F of G′(x̃) = (M ∪ J ′, E ′)

that saturates all every j ∈ J ′. In Lemma 3.4.2, we show such a matching exists, and

that it can be found in polynomial time.

Lemma 3.4.2 (Lenstra et al. [33], Theorem 1). The bipartite graph G′(x̃) = (M ∪

J ′, E ′) contains a matching that saturates all vertices j ∈ J ′. Such a matching can be

found in polynomial time.

Proof. By Lemma 3.3.3, G(x̃) is a pseudoforest. Since G′(x̃) is formed by removing

an equal number of edges and vertices from G(x̃), G′(x̃) is also a pseudoforest. In

the construction of G′(x̃), job vertices of degree one and their incident edges were

removed from the original graph G(x̃). As a result, for each j ∈ J ′, degG′(x̃)(j) ≥ 2.

Also, the only vertices of G′(x̃) that can have degree one are in M .

Since G′(x̃) is a pseudoforest, each connected component is a pseudotree. Also,

the only vertices with degree of one are machine vertices of M . For each i ∈ M , if

degG′(x̃)(i) = 1 and {i, j} ∈ E ′, then match job vertex j to machine vertex i. Upon

doing so, delete job vertex j, and machine vertex i at each stage. When all i ∈ M

have been considered after each step and no remaining machine vertices have degree

of one, call the resulting bipartite graph G′′(x̃) = (M ′ ∪ J ′′, E ′′).

Since G′′(x̃) is a bipartite pseudoforest, what remains are vertex-disjoint cycles

of even length. For each connected component, apply a depth-first search (DFS)

procedure to find each cycle. There are at most m connected components at this

stage, so this procedure will find all the cycles in polynomial time. Since all the leaf

vertices have been removed, each connected component is now an even-length cycle,

and there be no job vertices excluded from such a cycle. Match alternating edges of
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the cycle. Remove any edges that are matched at each step. As a result, a matching

F that saturates all the job vertices is found in polynomial time.

To obtain a matching F that saturates all remaining job vertices of G′(x̃) apply

the procedure described in the proof of Lemma 3.4.2. Note that any polynomial-time

maximum matching algorithm for bipartite graphs can also be used, but the method

we described is efficient and exploits properties of any BFS in LP1(P, t = dbest). For

each edge {i, j} ∈ F , schedule job j on machine i. Since the matching F saturates each

vertex j ∈ J ′, the algorithm returns a schedule that contains all n jobs, and terminates

in polynomial time. The algorithm then terminates with a feasible schedule.

3.5 Algorithm

In this section, we first present the 2-approximation algorithm by Lenstra et al. [33]

as we have presented all the essential pieces needed to understand this algorithm.

Following this, we give a tight example, and provide an example execution of the

2-approximation algorithm.

Theorem 3.5.1 (Lenstra et al. [33], Theorem 2). There is a 2-approximation algo-

rithm for R||Cmax.

Proof. Let there be an arbitrary m × n processing requirement matrix P . First we

describe the polynomial-time algorithm, then show that it has an approximation

factor of 2. Pseudocode for the algorithm is provided as Algorithm 3.1.1.

To begin, the algorithm constructs a greedy schedule by assigning each job to

a machine on which the job takes the least processing time. Denote the makespan
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of the greedy schedule as κ. Next, the algorithm uses the binary search procedure

described in Section 3.2 over the range [bκ/mc, κ]. The binary search procedure

finds in polynomial time the smallest value t = dbest that LP1(P, t) is feasible. Since

dbest is the smallest value for t that LP1(P, t) is feasible, and bκ/mc ≤ OPT (P ) by

Lemma 3.2.1, dbest ≤ OPT (P ).

Then, the algorithm finds a BFS (x̃, s1, . . . , sm) of LP1(P, t = dbest), where x̃ are

the decision variables and s1, . . . , sm are the slack variables of LP1(P, t = dbest). The

algorithm then considers the decision variables x̃ in the BFS. Using the decision vari-

ables, the procedure uses Construction 3.3.2 to build in polynomial time a bipartite

graph G(x̃) = (M ∪ J,E), where E = {{i, j} | i ∈ M, j ∈ J, x̃i,j > 0}. The al-

gorithm assigns all the integrally set jobs by considering each job vertex j ∈ J . For

each j ∈ J , if degG(x̃)(j) = 1 and {i, j} ∈ E, schedule job j on machine i. Note

that this assignment corresponds to when decision variable x̃i,j = 1. Upon scheduling

each job that satisfied this condition, remove job vertex j from J . Call the result-

ing set of job vertices J ′ and set of edges E ′, then denote the bipartite graph as

G′(x̃) = (M ∪J ′, E ′). By Lemma 3.4.1, there remains at most m fractionally set jobs

to be assigned, and |J ′| ≤ m. Assign the fractionally set jobs by finding a matching F

in G′(x̃) in polynomial time as described in Lemma 3.4.2. For each edge {i, j} ∈ F ,

assign job j to machine i. Return the schedule, and then terminate.

Now, let us show that this polynomial-time algorithm has an approximation factor

of 2. As previously stated, when the smallest value dbest is found by the algorithm

that LP1(P, t = dbest) is feasible, dbest ≤ OPT (P ). So, when the algorithm obtains

a BFS (x̃, s1, . . . , sm) of LP1(P, t = dbest), the algorithm schedules an integrally set
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job whenever x̃i,j = 1. The assignment of integrally set jobs produces a partial

schedule of length at most dbest, because the BFS (x̃, s1, . . . , sm) is a feasible solution

to LP1(P, t = dbest). Only the fractionally set jobs remain after all the integrally

set jobs are scheduled by the algorithm. By Lemma 3.4.1, there are at most m

fractionally set jobs. The matching F assigns one fractionally set job to each machine.

Observe that an edge {i, j} ∈ E ′ appears in G′(x̃) if 0 < x̃i,j < 1. This implies that

pi,j < t = dbest for any fractionally set job j assigned to machine i as a consequence of

the matching F . Thus, when the schedule contains all n jobs, the schedule has length

at most dbest + dbest = 2 · dbest ≤ 2 · OPT (P ). Therefore, this is a 2-approximation

algorithm for R||Cmax.

Consider the following tight example for the 2-approximation algorithm presented

by Lenstra et al. [33]. Let there be m2−m+1 jobs and m identical parallel machines.

Then, let job 1 take m time units, and every other job take one time unit. Notice

that the optimal makespan for such an instance is m because one machine is assigned

job 1, then the remaining m2 − m = m(m − 1) jobs of length one are assigned to

the remaining machines to respect the makespan of m. When a greedy schedule is

produced, and the binary search procedure is carried out, the smallest value dbest for

which LP1(P, t) results in a feasible LP is m. Job 1 can distribute one time unit of

its processing to each machine while maintaining a feasible solution to LP1(P, dbest).

When dbest = m, a possible BFS with decision variables x̃ in LP1(P, dbest) can consist

of one time unit of job 1 (which is of length m) on each machine, and then (m−1) unit

time jobs assigned to each machine. When the bipartite graph G(x̃) is constructed

through rounding, notice that job 1 must be forced onto a machine that also assigns
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(m− 1) jobs that take one time unit each when the matching is found. This results

in a schedule with makespan of 2m− 1.

Now we give an example execution of the 2-approximation algorithm by Lenstra

et al. [33].

Example 3.5.2. Consider the following processing requirement matrix

P =


5 2 3 3 2

1 3 2 1 3

2 2 3 4 1

 .

First, a greedy schedule is produced by assigning each job to a machine for which it

takes the least time. Such a greedy schedule can assign job 2 to machine 1, jobs 1,

3, and 4 to machine 2, and job 5 to machine 3. As a result, we can obtain a feasible

schedule with makespan of four (i.e., κ = 4). Next, the algorithm assigns an initial

upper bound U = 4, and initial lower bound L = b4/3c = 1. So d = b(L + U)/2c =

b(4 + 1)/2c = 2. We test the feasibility of LP1(P, t), when t = d = 2.
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minimize 0 (Testing feasibility)

subject to x1,1 + x2,1 + x3,1 = 1

x1,2 + x2,2 + x3,2 = 1

x1,3 + x2,3 + x3,3 = 1

x1,4 + x2,4 + x3,4 = 1

x1,5 + x2,5 + x3,5 = 1

5x1,1 + 2x1,2 + 3x1,3 + 3x1,4 + 2x1,5 + s1 = 2

1x2,1 + 3x2,2 + 2x2,3 + 1x2,4 + 3x2,5 + s2 = 2

2x3,1 + 2x3,2 + 3x3,3 + 4x3,4 + 1x3,5 + s3 = 2

x1,1 = 0, x1,3 = 0, x1,4 = 0

x2,2 = 0, x2,5 = 0

x3,3 = 0, x3,4 = 0

xi,j ≥ 0, for j = 1, 2, 3, 4, 5, i = 1, 2, 3.

After considering the artificial constraints, if constraints “0x1,3 + x2,3 + 0x3,3 = 1”

and “0x1,4 + x2,4 + 0x3,4 = 1” are satisfied, then constraint “1x2,1 + 0 · 3x2,2 + 2x2,3 +

1x2,4 + 0 · 3x2,5 + s1 = 2” cannot be satisfied as x2,1 + 0 + 2 · 1 + 1 + 0 + s1 ≥ 3. So,

LP1(P, d = 2) is infeasible. So the algorithm sets L = d + 1 = 3. Now, this process

is repeated again using U = 4 and L = 3.
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minimize 0 (Testing feasibility)

subject to x1,1 + x2,1 + x3,1 = 1

x1,2 + x2,2 + x3,2 = 1

x1,3 + x2,3 + x3,3 = 1

x1,4 + x2,4 + x3,4 = 1

x1,5 + x2,5 + x3,5 = 1

5x1,1 + 2x1,2 + 3x1,3 + 3x1,4 + 2x1,5 + s1 = 3

1x2,1 + 3x2,2 + 2x2,3 + 1x2,4 + 3x2,5 + s2 = 3

2x3,1 + 2x3,2 + 3x3,3 + 4x3,4 + 1x3,5 + s3 = 3

x1,1 = 0

x3,4 = 0

xi,j ≥ 0, for j = 1, 2, 3, 4, 5, i = 1, 2, 3.

The procedure sets d = b(L+U)/2c = b(3 + 4)/2c = 3. So the algorithm next tests if

LP1(P, t) is feasible when t = d = 3. The LP LP1(P, 3) can be shown to be feasible.

So the algorithm assigns dbest = 3, and sets U = 3. Since U = L = 3, the algorithm

proceeds to the next step of the algorithm with dbest = 3. The method finds a BFS

(x̃, s1, . . . , sm) in LP1(P, t = dbest). In our example, one such BFS (x̃, s1, . . . , sm) in
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LP1(P, t = dbest = 3) has each slack variable set to zero, and decision variables

x̃ =


0 0.5 0 0 1

1 0.2 0.2 1 0

0 0.3 0.8 0 0

 .

As expected, LP1(P, 3) does not use any entries of P , where pi,j > 3.

Now, Algorithm 3.1.1 applies Construction 3.3.2 using the decision variables x̃ of

the BFS to build a bipartite graph G(x̃) = (M ∪J,E). Eight of the decision variables

in the BFS are non-zero, so there are eight edges in G(x̃). The bipartite graph G(x̃)

is shown in Figure 3.1.

M

J

1 2 3

1 2 3 4 5

Figure 3.1: A bipartite graph G(x̃) = (M ∪ J,E) built from Construction 3.3.2 for
an example execution of the 2-approximation algorithm by Lenstra et al. [33].

Algorithm 3.1.1 considers each j ∈ J . If degG(x̃)(j) = 1 and {i, j} ∈ E, then

job j is scheduled on machine i. Upon scheduling each job, E = E \ {i, j} and

J = J \ {j}. In this example, jobs 1, 4, and 5 are assigned at this step. After

this process, Algorithm 3.1.1 obtains a subgraph G′(x̃). The bipartite graph G′(x̃) is

shown in Figure 3.2.

For this example, there is only one pseudotree. Algorithm 3.1.1 finds a matching

F that saturates all remaining job vertices in G′(x̃). The first phase of this is applied

by checking if any machine vertices have degree of one. Notice that machine vertex 1
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M

J

1 2 3

2 3

Figure 3.2: The subgraph G′(x̃) = (M ∪ J ′, E ′) in the example execution of the 2-
approximation algorithm by Lenstra et al. [33]. For our instance, a matching F is
found that saturates all remaining job vertices in G′(x̃). Matching F is shown with
dark edges and shaded vertices.

has degree one, so it is matched with job vertex 2. Upon removing job vertex 2 and

any of its edges, notice that either machine vertex remaining can be used to pair the

last job vertex. In this example we match job 3 with machine 3. Since there are

no more job vertices, the DFS procedure is not needed to match alternating edges.

Matching F consists of all remaining job vertices. For the final step, the algorithm

assigns all remaining jobs based on the matching F , then returns the schedule shown

in Figure 3.3, and terminates. The optimal makespan for this instance is three, and

the makespan of this schedule is four. �

makespan

M3

M2

M1 2

1 4

5

3

time
1 2 3 4

Figure 3.3: The schedule produced by the 2-approximation algorithm for R||Cmax by
Lenstra et al. [33] when applied to an example instance.



Chapter 4

Results for Subclasses of R||Cmax,

and Related Scheduling Problems

In Chapter 2, we presented a brief summary of approximation algorithms and

hardness of approximation results for R||Cmax. Also, in Chapter 3, we gave a 2-

approximation algorithm for R||Cmax by Lenstra et al. [33]. In this chapter, we present

known results for subclasses of R||Cmax, and scheduling problems that are related to

R||Cmax. First, we thoroughly describe algorithms for subclasses of R||Cmax that

can be solved in polynomial time. Following this, we summarize known results for

NP-hard subclasses of R||Cmax and some related intractable scheduling problems by

machine environment.

50
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4.1 Known Tractable Subclasses of R||Cmax

We now present known results for subclasses of R||Cmax that can be solved in

polynomial time. In this section we focus on three tractable results that are given by

Lenstra et al. [33]. Three subclasses of R||Cmax for which we present polynomial-time

algorithms are R|pi,j = 1|Cmax, R|pi,j ∈ {1,∞}|Cmax, and R|pi,j ∈ {1, 2}|Cmax.

4.1.1 R|pi,j = 1|Cmax and R|pi,j ∈ {1,∞}|Cmax

In 1990, Lenstra et al. [33] investigated subclasses that have restricted processing

times. To begin, the authors remarked two restricted cases that are stated without

proof. We give these two remarks as Theorem 4.1.1 and Theorem 4.1.3.

Theorem 4.1.1 (Lenstra et al. [33]). R|pi,j = 1|Cmax can be solved in polynomial

time.

To solve any instance of R|pi,j = 1|Cmax, apply the list scheduling algorithm

presented in Theorem 1.5.1. Since each job completes in one time unit, such a greedy

algorithm produces optimal schedules as there is no contention amongst the jobs. For

this subclass, the algorithm can be improved to have time-complexity Θ(n). Instead

of finding the machine with least load each time, cyclically assign jobs to machines.

Example 4.1.2. For example, consider the processing requirement matrix

P =


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 .
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Each job is assigned by the greedy algorithm to a machine with least load. For this

instance, a schedule with an optimal makespan of two is produced. An assignment

obtained by cyclically assigning jobs to machines is
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,

where each circled entry corresponds to a job j being assigned to a machine i, for

1 ≤ i ≤ 3 and 1 ≤ j ≤ 5. The schedule constructed by the greedy algorithm is shown

in Figure 4.1.

makespan

M3

M2

M1

3

2 5

1 4

time
1 2 3 4

Figure 4.1: An optimal schedule for an example processing requirement matrix of
R|pi,j = 1|Cmax.

�

Another subclass of R||Cmax that Lenstra et al. [33] state as polynomial–time

solvable is R|pi,j ∈ {1,∞}|Cmax. We describe an algorithm that solves R|pi,j ∈

{1,∞}|Cmax, then provide an example. We state the following theorem without

proof.

Theorem 4.1.3 (Lenstra et al. [33]). R|pi,j ∈ {1,∞}|Cmax can be solved in polyno-

mial time.



Chapter 4: Results for Subclasses of R||Cmax, and Related Scheduling Problems 53

Algorithm 4.1.4 Polynomial-time Algorithm for R|pi,j ∈ {1,∞}|Cmax
1: procedure MakespanUPMsAssignment(P,m, n)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: Mmax := ∅; . Will contain a maximum matching
4: feasible := false; . Stays false until a feasible schedule is found
5: n′ := 0; . Number of jobs to be scheduled
6: for i := 1; i ≤ m; i+ + do . Counting jobs that are not redundant
7: counter := 0;
8: for j := 1; j ≤ n; j + + do
9: if pi,j ==∞ then
10: counter := counter + 1;
11: end if
12: end for
13: if counter == m then
14: n′ := n′ + 1;
15: end if
16: end for
17: d := dn′/me; . Proposed deadline
18: while ¬feasible do . Do until a feasible schedule can be found
19: Apply Construction 4.1.5 to obtain G = (M ∪ J,E);
20: Let Mmax be a maximum matching of G;
21: if |Mmax| < n′ then
22: d := d+ 1; . Feasible schedule cannot be found yet, increment d
23: else
24: feasible := true; . |Mmax| = n′

25: end if
26: end while
27: for each {k, j} ∈Mmax, where k ∈M and j ∈ J do . Construct schedule
28: Let i be the machine that corresponds to machine vertex k in Construc-

tion 4.1.5;
29: Xi,j := 1; . Assign job j to machine i
30: end for
31: return X; . Return schedule
32: end procedure

Let us describe an algorithm that solves this problem in polynomial time. Pseu-

docode for this algorithm is provided as Algorithm 4.1.4. Assume the algorithm is

provided an arbitrary instance of R|pi,j ∈ {1,∞}|Cmax. If a job cannot be assigned
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to any machine, then we say a job is redundant. The processing requirement matrix

P is checked for any redundant jobs. All redundant jobs are removed from P by the

algorithm, and, as a result, an m × n′ processing requirement matrix is obtained,

where n′ ≤ n. Denote the modified processing requirement matrix as P ′. The al-

gorithm assigns a deadline variable d to be d = dn′/me. The deadline d represents

the minimum makespan. Next, the algorithm applies Construction 4.1.5 to build a

bipartite graph G = (M ∪ J,E) using processing requirement matrix P ′.

Construction 4.1.5. Given a m × n′ processing requirement matrix P ′ with pi,j ∈

{1,∞} and a deadline d, create a bipartite graph G = (M∪J,E), where M consists of

machine vertices and J consists of job vertices. For each job in P ′, create a job vertex.

For each machine, create d machine vertices. For each entry pi,j = 1 in P ′, create d

edges from a job vertex corresponding to job j to each machine vertex corresponding

to machine i. This correspondence of machine vertices with machines can be stored

in a lookup table. Since d ≤ n′, this construction takes a polynomial number of steps

to build. X

Upon creating a bipartite graph G by applying Construction 4.1.5, the algorithm

finds a maximum matching Mmax of G. A maximum matching Mmax of G can be

found in polynomial time [19]. Next, a schedule is constructed using the maximum

matchingMmax. If there is an edge connecting a job vertex j ∈ J and a machine vertex

that corresponds to a machine i, then the algorithm schedules job j on machine i.

The algorithm does this for each edge in Mmax. If a schedule containing all the non-

redundant jobs is not found, there are not enough machine vertices to saturate all

the job vertices in the matching. If such is the case, then d is not the minimum
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makespan and the makespan must be larger. If the algorithm does not saturate all

the job vertices for a given value of d, then the makespan is larger than d.

If |Mmax| < n′, the algorithm increases d by one and repeats the previous step

starting at applying Construction 4.1.5 to P ′. A schedule is found in polynomial time,

as d ≤ n′ ≤ n. If |Mmax| = n′, the algorithm returns the constructed schedule and

terminates. A schedule is found with makespan d by this procedure.

Let us apply this algorithm to an example instance of R|pi,j ∈ {1,∞}|Cmax.

Example 4.1.6. Consider the processing requirement matrix

P =

 1 1 ∞ 1 ∞

∞ ∞ 1 ∞ ∞

 .

The algorithm begins by removing any redundant jobs that cannot be scheduled.

Upon removing any redundant jobs, n′ = 4, and

P ′ =

 1 1 ∞ 1

∞ ∞ 1 ∞

 .

In the next step, the algorithm assigns the deadline d = dn′/me = d4/2e = 2. First,

a bipartite graph G = (M ∪ J,E) is constructed as shown in Figure 4.2 based on

the one entries in P ′. There are d = 2 vertices representing each machine for M . A

maximum matching Mmax is found for G by the algorithm, and |Mmax| = 3. Since

|Mmax| < n′ = 4, the deadline d is incremented by one, and the algorithm repeats the

procedure once again for d = 3.

In this iteration, a bipartite graph G = (M ∪ J,E) is constructed as seen in

Figure 4.3. Notice that there are d = 3 vertices representing each machine, and when

a maximum matching Mmax is found by the algorithm, |Mmax| = 4.
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M

J

11 12 21 22

1 2 3 4

Figure 4.2: The bipartite graph G = (M ∪ J,E) constructed for d = 2 using the
example R|pi,j ∈ {1,∞}|Cmax instance. The edges of a maximum matching Mmax of
G are shown with thick edges.

M

J

11 12 13 21 22 23

1 2 3 4

Figure 4.3: The bipartite graph G = (M ∪ J,E) construction for d = 3 using the
example instance of R|pi,j ∈ {1,∞}|Cmax. A maximum matching Mmax of G is shown
with thick edges.

Since |Mmax| = n′ = 4, a schedule is constructed based on Mmax, then the al-

gorithm terminates. Using the edges in maximum matching Mmax, jobs 1, 2, and 3

are assigned to machine 1; and job 4 is assigned to machine 2. Such a schedule has

makespan of three, which is optimal. The optimal schedule produced is shown in

Figure 4.4.

�
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makespan

M2

M1

3

1 2 4

time
1 2 3 4

Figure 4.4: An optimal schedule for an example processing requirement matrix of
R|pi,j ∈ {1,∞}|Cmax.

4.1.2 R|pi,j ∈ {1, 2}|Cmax

The last subclass of R||Cmax for which we present tractable results in this chapter

has processing times of lengths one and two. In 1990, Lenstra et al. [33] showed that

R|pi,j ∈ {1, 2}|Cmax can be solved in polynomial time. At the heart of their algorithm

are two ideas. First, to pair jobs of length one together, then treat each paired job as

a job of length two. Second, to then treat the remaining tasks as a partial scheduling

problem with unit processing times, where pi,j = 2.

Before we present the polynomial-time algorithm by Lenstra et al. for R|pi,j ∈

{1, 2}|Cmax, we consider a graph theoretic problem we call the maximum 2-1 con-

strained bipartite subgraph problem (maximum 2-1 CBS). Finding an optimal solu-

tion to a maximum 2-1 CBS instance is a core subroutine for “lumping” jobs of length

one together in the algorithm.

First, we define a 2-1 constrained bipartite subgraph (2-1 CBS). Given a bipartite

graph G = (S ∪ T,E), a 2-1 CBS H = (S ′ ∪ T ′, E ′) is a subgraph of G, where

S ′ ⊆ S, T ′ ⊆ T , E ′ ⊆ E, with degH(s′) = 2 for s′ ∈ S ′, and degH(t′) = 1 for t′ ∈ T ′.

The graph G does not need to be connected. Next, we give the maximum 2-1 CBS

problem. Given a bipartite graph G = (S ∪ T,E), the goal of the maximum 2-1 CBS
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problem is to find a 2-1 CBS H = (S ′ ∪ T ′, E ′), where the number of edges |E ′| is

maximized. Let us give an example to illustrate this problem.

Example 4.1.7. Suppose we are given the bipartite graph G = (S ∪ T,E) shown

on the left in Figure 4.5 as an instance of the maximum 2-1 CBS problem. As

shown in the middle in Figure 4.5, one possible feasible solution could be a subgraph

H = (S ′∪T ′, E ′), as every vertex s′ ∈ S ′ ⊆ S has degree two and every t′ ∈ T ′ ⊂ T has

degree one. Finally, an optimal solution for our instance can be H∗ = (S∗ ∪ T ∗, E∗),

as shown in Figure 4.5 on the right.

S T

G

S ′ T ′

H

S∗ T ∗

H∗

1

2

3

4

5

6

7

2

4

7

1

3

4

5

6

7

Figure 4.5: Three bipartite graphs G, H, and H∗; the input graph G = (S ∪ T,E)
given as an instance of the maximum 2-1 CBS problem (left); a feasible solution H =
(S ′ ∪ T ′, E ′) for the given instance (middle); an optimal solution H∗ = (S∗ ∪ T ∗, E∗)
for the maximum 2-1 CBS instance (right).

�

We next show that the maximum 2-1 CBS problem is polynomial-time solvable.

The algorithm we present employs a construction that is based on one for degree-

constrained subgraphs by Gabow [12], and one for perfect b-matchings presented by

Schrijver [40] and Tucker [44].

Theorem 4.1.8 (Gabow [12], Schrijver [40], Tucker [44]). The maximum 2-1 CBS
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problem can be solved in polynomial time.

Proof. First, let us describe a polynomial-time algorithm for the maximum 2-1 CBS

problem, then show its correctness. Pseudocode for this algorithm is given as Algo-

rithm 4.1.9. Assume we are given an arbitrary bipartite graph G = (S ∪T,E). Using

G, construct a graph G2 by invoking Construction 4.1.10. This construction creates

G2 in polynomial time. Note that the number of vertices and number of edges in the

new graph G2 are 2|S|+ |T |+ 2|E|, and 4|E|+ |S|, respectively.

Construction 4.1.10. Assume we are given a bipartite graph G = (S∪T,E), where

S = {1, 2, . . . , |S|} and T = {1, 2, . . . , |T |}. Create a graph G2 as follows. For each

s ∈ S, create two vertices s1 and s2, and include an edge between these two vertices.

Also, create a vertex t1 for each t ∈ T . Next, for every e = {s, t} ∈ E, create two

vertices es and et, and include an edge {es, et}. Also, add edges {s1, es}, {s2, es}, and

{et, t1}. X

Example 4.1.11. Continuing Example 4.1.7, we apply Construction 4.1.10 with

bipartite graph G = (S ∪ T,E), which is shown on the left in Figure 4.6. As a result

graph G2 is obtained. We show this graph on the right in Figure 4.6. �

Next, the algorithm finds a maximum matching Mmax in G2, which can be done

in polynomial time [10; 36]. In particular, a maximum matching in G2 can be found

in Θ((|S||T |)3/2) steps. Let us consider the size of the maximum matching before

continuing with our algorithm. Since the size of a maximum matching in G2 cannot

be more than the number of edges in G2,

|Mmax| ≤ 4|E|+ |S| ≤ 4|S||T |+ |S| ∈ Θ(|S||T |).
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Algorithm 4.1.9 Polynomial-time Algorithm for the Maximum 2-1 CBS problem

1: procedure Maximum2-1CBS(G = (S ∪ T,E))
2: Mmax := ∅; . Will contain a maximum matching
3: M2−1 := ∅; . Will contain the edges of a 2-1 CBS
4: Apply Construction 4.1.10 to obtain G2;
5: Let Mmax be a maximum matching of G2;
6: for each s ∈ S do . Construct 2-1 CBS
7: if degG(s) ≥ 2 then
8: v := 0;
9: w := 0;
10: for each {s, z} ∈ E do . Consider each edge incident to vertex s
11: if (v == 0) ∨ (w == 0) then
12: b1 := {s1, {s1, z}s}, {{s1, z}z, z} ∈Mmax?; . In Mmax?
13: b2 := {s2, {s2, z}s}, {{s2, z}z, z} ∈Mmax?; . Also in Mmax?
14: if (b1 ∨ b2) then
15: if (v == 0) then
16: v := z;
17: else
18: w := z;
19: end if
20: end if
21: end if
22: end for
23: if (v > 0) ∧ (w > 0) then
24: M2−1 := M2−1 ∪ {s, v} ∪ {s, w}; . Found a pair of edges
25: end if
26: end if
27: end for
28: Let H = (S ′∪T ′, E ′ = M2−1) be an induced subgraph of M2−1, formed by the

vertices at the end points of each edge in M2−1, and edges M2−1; . Can be done
by checking each edge of M2−1

29: return H; . Return the subgraph H
30: end procedure

Let M2−1 be a set of edges created by the algorithm to produce an induced subgraph

H = (S ′ ∪ T ′, E ′ = M2−1). Assume there are vertices v, w, z ∈ T in G, where

v 6= w. Consider each s ∈ S. Then, if there is a pair of edges {s, v}, {s, w} ∈

E, such that {s1, {s, v}s}, {{s, v}v, v1}, {s2, {s, w}s}, {{s, w}w, w1} ∈ Mmax, the
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{1, 4}1 {1, 4}4

{1, 5}1 {1, 5}5

{2, 4}2 {2, 4}4

{2, 6}2 {2, 6}6

{2, 7}2 {2, 7}7

{3, 6}3 {3, 6}6

{3, 7}3 {3, 7}7

Figure 4.6: Given the bipartite graph G = (S ∪ T,E) from Example 4.1.7 (left), we
give the new graph G2 produced by applying Construction 4.1.10 (middle).

algorithm adds edges {s, v} and {s, w} to M2−1 (lines 10–25 in Algorithm 4.1.9). The

algorithm checks this condition for each s ∈ S by considering each edge {s, z} ∈ E

in G, and observing if the edge satisfies either {s1, {s, z}s}, {{s, z}z, z1} ∈ Mmax or

{s2, {s, z}s}, {{s, z}z, z1} ∈Mmax. This requires checking each edge in the maximum

matching Mmax. Keep track of z each time when the test is passed as v, then w.

Note that no more than two edges incident to some s ∈ S can satisfy either condition,

because maximum matching Mmax can saturate at most two vertices representing s

in G2; namely, s1 and s2. Though this is not required, if the degG(s) < 2, one can

proceed to the next vertex in S. Upon checking each s ∈ S, return the induced
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subgraph H of M2−1. This algorithm terminates in polynomial time. If the input

graph G is given as an adjacency list, this algorithm has worst-case time complexity

of O(|S||T ||E|).

Example 4.1.12. Following from Example 4.6, a maximum matching in G2 is found

as shown on the left in Figure 4.7. Next, the algorithm checks each s ∈ S in G, and

attempts to find two vertices v, w as we have described. When s = 1 and s = 3, two

such vertices were successfully found. With s = 1, v = 4 and w = 5. Also, when

s = 3, v = 6 and w = 7. So edges {1, 4}, {1, 5}, {3, 6}, and {3, 7} were added to

M2−1. We show the resulting 2-1 CBS H = (S ′ ∪ T ′, E ′) on the right as thick edges

and shaded vertices in Figure 4.7.

�

To complete our proof, we verify that H from the algorithm is indeed a 2-1 CBS,

and that the number of edges |E ′| = |M2−1| in H is maximized. Consider both the

set of edges M2−1 and the induced graph H = (S ′ ∪ T ′, E ′ = M2−1). To form M2−1,

the algorithm picked either zero or two edges that are incident to each vertex s ∈ S in

G. So, for each vertex s′ ∈ S ′, degH(s′) = 2. Next, by the definition of a matching, at

most one edge in Mmax saturates each vertex t1 in G2, for t ∈ T . As a consequence,

for each t′ ∈ T ′, degH(t′) = 1, and H is a 2-1 CBS.

Suppose the number of edges |E ′| = |M2−1| is not of maximum size. Then there

is a 2-1 CBS H∗ = (S∗ ∪ T ∗, E∗), where |E∗| > |M2−1|. As a consequence, H∗

contains as many vertices from s ∈ S as possible, and |S∗| > |S ′|. Consider the

graph G2 constructed from bipartite graph G = (S∪T,E) using Construction 4.1.10.

Each edge in M2−1 was added because there were two vertices v and w, such that
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{1, 4}1 {1, 4}4
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Figure 4.7: Upon building graph G2 from bipartite graph G = (S∪T,E) by applying
Construction 4.1.10, a maximum matching Mmax is found in G2 (left). The maximum
matching Mmax is shown with thick edges in G2. As carried out by the algorithm, a
2-1 CBS H = (S ′ ∪ T ′, E ′) is found in G. Thick edges and shaded vertices show H in
G (right). The subgraph H is a maximum 2-1 CBS.

{s1, {s, v}s}, {{s, v}v, v1}, {s2, {s, w}s}, {{s, w}w, w1} ∈Mmax. Construct a matching

M∗
max with two steps. First, consider each pair {u, v}, {u,w} ∈ E∗, and include edges

{u1, {u, v}u},{{u, v}v, v1} and {u2, {u,w}u},{{u,w}w, w1} in M∗
max, where u ∈ S∗.

Second, match as many vertices as possible that remain inG2 and include the resulting

edges in M∗
max. Since Mmax is a maximum matching in G2, |M∗

max| ≤ |Mmax|. Next,

decompose Mmax and M∗
max in the following manner. For any s ∈ S, consider an

induced subgraph Z(s) = (Z(s)V , Z(s)E) formed by edges {s1, s2} and all vertex-

disjoint paths from s1 or s2 to each vertex t1 in G2, where t is a neighbour of s in G.
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Decompose the edges of Mmax and M∗
max into sets we denote M(s)max and M∗(s)max,

where each set contains the edges of Mmax and M∗
max found in Z(s), respectively.

Clearly, Mmax =
⋃
s∈SM(s)max and M∗

max =
⋃
s∈SM

∗(s)max. As at most one edge

can be matched with one vertex t1 that corresponds to t ∈ T ,
⋂
s∈SM(s)max = ∅

and
⋂
s∈SM

∗(s)max = ∅.

Suppose we found a maximum matching MZ(s) in Z(s). We prove that if degG(s) ≥

2, |MZ(s)| = degG(s) + 2. Observe that K2,degG(s) is a subgraph of Z(s), and that the

length of the longest vertex-disjoint path in any Z(s) including one of s1 or s2 to

some t1 is at most 3. Two vertices can be matched along two such paths, so four

edges will be matched. Next, remove the vertices at the end points of each matched

edge as we cannot match any edges incident to such vertices. This leaves degG(s)− 2

connected components, each containing at most three vertices. Since only one edge

can be included in the maximum matching for each connected component, degG(s)−2

additional edges are matched. So, |MZ(s)| = degG(s) + 2.

Observe that the only vertices that intersect between any Z(s) and Z(g) when

s 6= g correspond to each t ∈ T . If an edge is matched with some t1 in Z(g), and t1

is a vertex of Z(s), then this vertex cannot be matched. So we consider a maximum

matching in Z(s) when there are some vertices corresponding to t ∈ T removed due

to being matched in some other Z(g). Notice that a matching of size degG(s) + 2 can

only be found as in our explanation before when there are two vertex-disjoint paths

from s1 and s2 to some t1 and q1 without the first path traversing through s2 and the

second path traversing through s1, where t, q ∈ T and q 6= t. When this is not the

case, the number of edges matched is at most degG(s) + 1, as there exists at most
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one vertex-disjoint path from some si to t1 without traversing through some sj in

G2, where i 6= j. This matching is found by matching the edge connecting to s1 and

s2, then considering the remaining vertices. If the vertices at the end points of the

matched edge are removed, we are left with degG(s) connected components, each with

at most three vertices. In each connected component, at most degG(s) vertices can be

matched with an edge. When no path exists from some si to t1 without including sj

(where i 6= j), degG(s)+1 edges are still matched. This is because the edge connecting

s1 and s2 can be matched, and 2·degG(s) vertices remain, each with an edge connected

between them that are matched. Thus, if a maximum matching were found in G2,

edges would be matched so that as many Z(s) in G2 have a maximum matching of

size degG(s) + 2, and as few Z(s) with maximum matching of size degG(s) + 1 as

possible.

When a vertex s ∈ S is included in a 2-1 CBS by the algorithm and degG(s) ≥

2, two vertex-disjoint paths with two matched edges each were found in G2, and

correspond to edges in Mmax. But, Mmax is a maximum matching, and |M∗
max| ≤

|Mmax|. This implies either E∗ = M2−1 or E∗ has a vertex s∗, where degH∗(s
∗) > 2;

which violates the definition of a 2-1 CBS. So, the 2-1 CBS H produced by the

algorithm is a maximum 2-1 CBS. Therefore, the maximum 2-1 CBS problem is

polynomial-time solvable.

Now we present the polynomial-time algorithm by Lenstra et al. [33] for R|pi,j ∈

{1, 2}|Cmax. This algorithm employs a decision procedure that pairs as many jobs

of length one on the machines while respecting a proposed deadline. The idea is to

group as many jobs of length one in pairs on machines as if each pair were a job that
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takes two time units. Then all remaining jobs are assigned for two time units while

attempting to continue to respect the proposed deadline. If the deadline cannot

be met, the proposed deadline is incremented by one, then the decision procedure

repeats. We present their result in a more general form to show its significance with

respect to other subclasses of R||Cmax.

Theorem 4.1.13 (Lenstra et al. [33], Theorem 6). Let p ∈ Z+. R|pi,j ∈ {p, 2p}|Cmax

is polynomial-time solvable.

Proof. Consider an arbitrary processing requirement matrix P , where pi,j ∈ {p, 2p}.

Since p | 2p and p ∈ Z+, create a new processing requirement matrix P ′ with pi,j ∈

{1, 2} by dividing each element of P by p. Clearly such a transformation can be

done in Θ(mn) steps. If we find an optimal schedule for P ′, then its job assignments

correspond to an optimal schedule for P . We give pseudocode for an algorithm that

finds an optimal schedule for P ′ in polynomial time as Algorithm 4.1.14.

We wish to find a feasible schedule A with minimum makespan. The algorithm

performs a decision procedure in which a deadline variable d is incremented until

an optimal schedule is found. The procedure begins by setting d := 1. Then, the

algorithm constructs a bipartite graph G = (S ∪ T,E) based on one of two cases

depending on the parity of d. Consider the following two cases.

1. Case (d = 2k): Apply Construction 4.1.15 using P ′ to create a bipartite

graph G = (S ∪ T,E).

Construction 4.1.15. Construct a bipartite graph G = (S∪T,E), where each

machine has k vertices in S, and each job corresponds to one vertex in T . For
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Algorithm 4.1.14 Polynomial-time Algorithm for R|pi,j ∈ {1, 2}|Cmax
1: procedure MakespanUPMs12(P ′,m, n)
2: Let X be a m× (n+m) matrix with zero entries; . m× (n+m) assignment

matrix
3: P := P ′; . Storing a copy of the processing requirement matrix
4: d := 1; . Proposed deadline
5: feasible := false; . Stays false until a feasible schedule is found
6: while ¬feasible do . Do until a feasible schedule can be found
7: P ′ := P ; . Reset the processing requirement matrix
8: X := 0m×(m+n); . Ensure all the entries of the matrix are zero
9: if (d mod 2 == 1) then . Case 2: d is odd
10: Apply Construction 4.1.16 to create processing requirement matrix P ′;
11: end if
12: Apply Construction 4.1.15 to obtain G = (S ∪ T,E);
13: Call Maximum2-1CBS(G) to get H = (S ′ ∪ T ′, E ′); . Max 2-1 CBS;
14: for each {k, j} ∈ E ′, where k ∈ S ′ and j ∈ T ′ do . Construct schedule
15: Let i be the machine that corresponds to machine vertex k in Con-

struction 4.1.15;
16: Xi,j := 1; . Assign job j to machine i
17: end for
18: Assign each unscheduled job for two time units with X while respecting d;
19: Let L be the makespan of the schedule for assignment matrix X;
20: if ((d mod 2 == 0) ∧ (L > d)) ∨ ((d mod 2 == 1) ∧ (L > d+ 1)) then
21: d := d+ 1; . Feasible schedule cannot be found yet, increment d
22: else
23: feasible := true; . We have a feasible schedule
24: end if
25: end while
26: Let X ′ be a m× n submatrix comprised of the first n columns of X;
27: return X ′; . Return schedule
28: end procedure

every job, add an edge that connects from a job vertex corresponding to job j

to a machine vertex corresponding to machine i if p′i,j = 1, where 1 ≤ i ≤ m.

Keep track of what machine each machine vertex corresponds to in a lookup

table. X

2. Case (d = 2k − 1): If d = 2k − 1 (i.e., d is odd), then create a modified P ′
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by applying Construction 4.1.16. Now, consider case 1 (when d = 2k) with this

modified instance of P ′.

Construction 4.1.16. Assume we are given a processing requirement matrix

P ′. Create m dummy jobs n+ 1, n+ 2, . . . , n+m, where each corresponds to

one machine. For 1 ≤ i ≤ m, if a dummy job corresponds to machine i, then

pi,n+i = 1, and is assigned two time units in P ′ for every other machine. X

Upon applying the appropriate case, the algorithm has a bipartite graph G =

(S ∪ T,E). The graph G is an instance of the maximum 2-1 CBS problem. By

Theorem 4.1.8, the maximum 2-1 CBS problem can be solved in polynomial time.

Solve this instance of the maximum 2-1 CBS problem, and obtain a maximum 2-1

CBS H = (S ′ ∪ T ′, E ′). Using the subgraph H, we build a schedule A. Consider

each edge in H. If there is an edge from T corresponding to job j to a machine

vertex corresponding to machine i, then schedule job j on machine i for one time

unit. Next, schedule all remaining jobs for two time units greedily while respecting

the makespan d. If a schedule A can be produced without the makespan exceeding

d, then the deadline d is met. If the makespan is not d, increase d by one, and repeat

the process described until a feasible schedule A that has makespan d is produced. If

d = 2k, return the schedule A and terminate. Next we consider if there was a feasible

schedule for d = 2k − 1.

Returning to the case d = 2k − 1, dummy jobs are created and then included in

P ′. If the modified instance met the deadline, remove all the dummy jobs in A. Since

the dummy jobs in A correspond to pairings of unit time jobs in P ′ that appeared in

H, there is at least one dummy job that could be scheduled for one time unit on each
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machine. Removing the dummy jobs produces a schedule with makespan (2k− 1) for

P ′. The algorithm then returns the feasible schedule A, and terminates.

This procedure finds a feasible schedule with minimum makespan as this procedure

finds a feasible schedule with makespan at most d, if it exists. For P ′, the largest

value the makespan d can be is d2n/me. So this algorithm terminates in polynomial

time after at most d2n/me applications of this decision procedure. Since the schedule

contains all n jobs and each job is assigned a processing time of either one or two

time units, this is a feasible schedule for P ′. In turn, the same assignments to P ′

applied to P yields an optimal schedule. Therefore, for any p ∈ Z+, this algorithm

solves R|pi,j ∈ {p, 2p}|Cmax in polynomial time.

We now apply the algorithm described in Theorem 4.1.13 to an example R|pi,j ∈

{1, 2}|Cmax instance.

Example 4.1.17. Consider

P =


2 2 1 2 2

1 2 2 1 1

2 2 2 1 1

 .

Since pi,j ∈ {1, 2} for our instance, the algorithm divides all entries of P by p = 1,

then define this as P ′. Next, the procedure sets the deadline d to one.

Since d = 1, the algorithm creates m = 3 dummy jobs and includes them in P ′.

Each dummy job corresponds to one machine and is scheduled to take one time unit

on that particular machine. Otherwise, pi,j = 2. After including the dummy jobs in
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the processing requirement matrix,

P ′ =


2 2 1 2 2 1 2 2

1 2 2 1 1 2 1 2

2 2 2 1 1 2 2 1

 .

Next, using P ′, Construction 4.1.15 is applied, and a bipartite graphG = (S∪T,E)

as shown in Figure 4.8 is constructed. Notice that k = 1 as d = 2k − 1.

S

T

11 21 31

1 2 3 4 5 6∗ 7∗ 8∗

Figure 4.8: A bipartite graph G = (S ∪T,E) constructed by the algorithm for d = 1.
A subgraph H obtained by solving the maximum 2-1 CBS problem for G has edges
shown with thick edges, and vertices are a darker shade of grey. The dummy jobs of
T are indicated by an asterisk beside the job number.

A maximum 2-1 CBS H is found in G. Consider the edges of H. For one time

unit each, the algorithm assigns jobs 3 and 6 to machine 1; jobs 1 and 7 to machine 2;

and jobs 4 and 8 to machine 3. After such, jobs 2 and 5 are greedily scheduled for

two time units. This produces a schedule with makespan of four. Since d = 2 6= 4,

the algorithm increments d by one, then repeats the decision procedure.

Next, d = 2, so the algorithm doesn’t include dummy jobs, and

P ′ =


2 2 1 2 2

1 2 2 1 1

2 2 2 1 1

 .
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As d = 2k, k = 1, and Construction 4.1.15 is applied to P ′ to produce a bipartite

graph. The bipartite graph G = (S ∪ T,E) built by the algorithm is shown in

Figure 4.9.

S

T

11 21 31

1 2 3 4 5

Figure 4.9: A bipartite graph G = (S ∪ T,E) construction for the example instance
by the algorithm when d = 2. A maximum 2-1 CBS H in G has edges shown with
thick edges, and the vertices that are a darker shade of grey.

After finding a maximum 2-1 CBS H in G, the algorithm schedules jobs 4 and 5

for one time unit each on machine 3. Also, jobs 1, 2, and 3 are greedily scheduled for

two time units each. Such a schedule will have makespan of four, which is not two.

So d = 3, and the odd case is considered once again.

Like d = 1, when d = 3, the algorithm includes m = 3 dummy jobs in the

processing requirement matrix P ′. Thus, the algorithm considers

P ′ =


2 2 1 2 2 1 2 2

1 2 2 1 1 2 1 2

2 2 2 1 1 2 2 1

 .

Since d = 3 = 2k − 1, k = 2. So when the bipartite graph is constructed by

the algorithm in this iteration, there are k = 2 machine vertices representing each

machine as shown in Figure 4.10. The algorithm then constructs a bipartite graph

G = (S ∪ T,E) using P ′ by applying Construction 4.1.15. Then, a maximum 2-1
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CBS H is found in G.

S

T

11 21 3112 22 32

1 2 3 4 5 6∗ 7∗ 8∗

Figure 4.10: A bipartite graph G = (S∪T,E) construction for d = 3 in using example
instance of R|pi,j ∈ {1, 2}|Cmax. A subgraph H from finding a maximum 2-1 CBS
in G has edges shown as thick edges, and vertices are a darker shade of grey. The
dummy jobs of T are indicated by an asterisk beside the job number.

Using the edges of H, jobs 3 and 6 are assigned to machine 1; jobs 1, 4, 5 and 7

are assigned to machine 2; for one time unit each. Following this, jobs 2 and 8 are

scheduled greedily while respecting the deadline. As seen on the left in Figure 4.11,

a schedule containing dummy jobs with makespan of four is produced. When the

dummy jobs are removed, a schedule with optimal makespan d = 3 is obtained. This

schedule is shown on the right in Figure 4.11. �

makespan

M3

M2

M1 3

2

51 4

6∗

7∗

8∗

time
1 2 3 4

makespan

M3

M2

M1 3

2

51 4

time
1 2 3

Figure 4.11: The schedule produced when d = 3 (i.e., d is odd, so dummy jobs are
included then treated as d = 4) before removing dummy jobs (on the left) and final
schedule (on the right) after removing all the dummy jobs. The schedule on the right
is a schedule with minimum makespan d = 3.
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4.2 Some NP-hard Subclasses of R||Cmax and Re-

lated Scheduling Problems

In this section, we briefly summarize a variety of results for NP-hard scheduling

problems. We focus on special cases of R||Cmax, and related problems. We begin by

considering scheduling problems on identical parallel machines, uniformly related par-

allel machines, then unrelated parallel machines. One particular subclass of R||Cmax

we give in-depth results for has processing times of constant lengths p and q, where

q 6= 2p. We present a proof shown originally by Lenstra et al. [33] that says this

subclass of R||Cmax is NP-hard.

4.2.1 Identical Parallel Machines (P ||Cmax)

Recall that P ||Cmax denotes the makespan problem on identical parallel machines.

The first approximation algorithm results for this subclass of R||Cmax were by Gra-

ham [16]. Through two papers, Graham considered P |prec|Cmax and P ||Cmax. Orig-

inally in 1966, Graham [15] solved this problem using directed graphs with a partial

ordering to design a greedy 2-approximation algorithm called the list scheduling al-

gorithm. In Section 1.5, we presented this algorithm for P ||Cmax. Graham [16] also

described this solution with another set of analyses in his 1969 results. Based on his

1966 greedy algorithm, Graham used the strategy of assigning tasks by arranging jobs

from longest execution time to the shortest execution time. He showed this simple

modification of the job inputs yields an approximation ratio of 4/3. This is called

the longest processing time first (LPT) algorithm. Graham [16] also developed one of
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the first known PTAS for R||Cmax. In 1976, Sahni [39] reduced Graham’s result to a

FPTAS.

4.2.2 Uniformly Related Parallel Machines (Q||Cmax)

We now focus on the scheduling problem Q||Cmax, the makespan problem on

uniformly related parallel machines. For Q||Cmax, a job j with processing time pj

takes sipj time units to complete for any machine i, where si ∈ Z+ is the speed of

machine i, 1 ≤ i ≤ m and 1 ≤ j ≤ n. This subclass of R||Cmax has applications in

scheduling homogeneous computer systems, where processors may vary in speed but

jobs process identically. Often jobs are queued in such computer systems, so some

researchers have focused their efforts on Q|prec|Cmax for this application. Note that

Q||Cmax is a special case of Q|prec|Cmax, where each vertex of the directed acyclic

graph (DAG) G is isolated. For the following results, assume there is a partial order

for the jobs.

In 1999, Chudak and Shmoys [4] considered bothQ|prec|Cmax, andQ|prec|
∑

j wjCj

which was introduced by Hall et al. [18]. Chudak and Shmoys improved a previ-

ously known O(
√
m)-approximation algorithm by Jaffe [21] for the makespan prob-

lem for uniformly related parallel machines. Based on Graham’s list scheduling al-

gorithm [15] and a relaxed mixed integer program, Chudak and Shmoys developed

an algorithm that minimizes the makespan based on the number of distinct speeds

of each machine K. The authors developed a O(log(m))-approximation algorithm,

where K = O(log(m)) was the number of distinct machine speeds. Also, the au-

thors extended the algorithmic results to Q|prec|
∑

j wjCj. As a remark, Chudak
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and Shmoys also investigated the scheduling problem Q|prec, rj|
∑

j wjCj.

In 2001, Chekuri and Bender [3] developed a different O(log(m))-approximation

algorithm for Q|prec|Cmax. Though inspired by many of the ideas of Chudak and

Shmoys [4], the graph-theoretic combinatorial algorithm by Chekuri and Bender was

based on finding longest length chains in a DAG. Their algorithm hasO(n3) worst-case

time complexity. The algorithm they designed is based on maximal chain decomposi-

tions, where they define a chain to be all the jobs assigned to a particular uniformly re-

lated parallel machine. This procedure exploits their lower bound for building a maxi-

mal chain decomposition algorithmically in O(n3) worst-case time. Also, if a problem

instance is given with its maximal chain decomposition, then this algorithm, as well as

the algorithm by Chudak and Shmoys [4], executes in O(n log(m)) worst-case time.

Chekuri and Bender also considered Q|prec, rj|Cmax and Q|chains, rj|Cmax. If re-

lease dates are included with each job, the modified algorithm still executes in O(n3)

worst-case time, and the approximation ratio remains O(log(m)). When precedence

constraints are restricted to chains (i.e., Q|chains, rj|Cmax), Chekuri and Bender

showed that this same procedure is a 6-approximation algorithm.

For Q|prec|Cmax and Q|prec|
∑

j wjCj, Chekuri and Bender [3] conjectured that

there exists an algorithm with constant approximation ratio. In recent years, other re-

searchers have developed polynomial-time approximation schemes, and k-approximation

algorithms for less general variations Q|prec|Cmax. These new algorithms [23; 29]

are close to a constant approximation ratio. To this date, there is no known k-

approximation algorithm for Q|prec|Cmax with a constant approximation factor.
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4.2.3 Other Known NP-hard Subclasses

Based on the hardness of approximation results and the best known approxima-

tion factor of two for R||Cmax, researchers have focused on intractable subclasses of

R||Cmax. Recall that Theorem 4.1.13 by Lenstra et al. [33] says R|pi,j ∈ {p, q}|Cmax

when q = 2p is polynomial-time solvable. The authors also considered all other

two-valued integer instances of R||Cmax as well. Lenstra et al. [33] showed that

R|pi,j ∈ {p, q}|Cmax, where q 6= 2p is NP-hard. Their proof uses a polynomial-time

reduction from the q-dimensional matching (qDM) problem, which is known to be

NP-complete [14].

Problem 4.2.1 (q-Dimensional Matching (qDM)). Let q > 2. Let there be q disjoint

sets A1 = {a1,1, . . . , a1,n′}, . . . , Aq = {aq,1, . . . , aq,n′}, and a family of q-sets F =

{T1, . . . , Tm′}, where |Ti ∩ Aj| = 1 for i = 1, . . . ,m′, and for j = 1, . . . , q. Does F

contain a matching? That is, does F contain a subfamily F ′ ⊆ F , where |F ′| = n′

and
⋃
Ti∈F ′ Ti =

⋃n′

t=1At?

Theorem 4.2.2 (Lenstra et al. [33], Theorem 7). R|pi,j ∈ {p, q}|Cmax, where q 6= 2p,

is NP-hard.

Proof. Without loss of generality, assume gcd(p, q) = 1, and q 6= 2p. In order to show

the makespan problem for UPMs when pi,j ∈ {p, q} is NP-hard, we show its decision

problem counterpart is NP-complete. Consider the following decision problem.

Problem 4.2.3 (MAKESPANUPM-{p, q}). Let there be a m× n processing require-

ment matrix P , where each pi,j ∈ {p, q}, and q 6= 2p. Does there exist a schedule with

makespan at most d?
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We wish to show that MAKESPANUPM-{p, q} ∈ NP-complete by showing

MAKESPANUPM-{p, q} ∈ NP, and qDM ≤P MAKESPANUPM-{p, q}. Given a

schedule, one can find the completion time of the machine that finishes last in a

polynomial number of steps. Thus, MAKESPANUPM-{p, q} ∈ NP. Next, we wish

to show a reduction from the qDM problem to MAKESPANUPM-{p, q}.

Suppose we are given an arbitrary instance I = (A1, . . . , Aq, F, n
′,m′) ∈ qDM , if

m′ ≥ n′, use Construction 4.2.4 to get an instance I ′ = (m,n, P, d) ∈MAKESPANUPM-

{p, q} in polynomial time. Ifm′ < n′, create a trivial “no” instance of MAKESPANUPM-

{p, q}.

Construction 4.2.4. Given an arbitrary qDM instance, create an m×n processing

requirement matrix P , with m = m′ machines and n = qn′ + p(m′ − n′) jobs that

consist of qn′ element jobs and p(m′ − n′) dummy jobs. Next, let d = pq. Each

machine corresponds to a q-set of the family F , and the element jobs correspond to

the elements contained over all q disjoint sets A1, . . . , Aq. An element job takes p

time units on a machine if a q-set corresponding to a machine contains an element

represented by the element job. If that is not satisfied, an element job is processed in

q time units. Each dummy job takes q time units on every machine. Clearly, this is

an instance of MAKESPANUPM-{p, q}, and can be constructed in polynomial time.

X

Next, we need to show that there is a matching in a qDM instance I if and only if

there is a schedule with makespan at most d = pq for I ′, when m′ ≥ n′. First, let us

show that if there is a matching then there is a schedule with makespan at most pq.

If there is a matching, then exactly n′ of the machines are scheduled with q jobs that
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take p time units, then the remaining m′ − n′ machines each schedule p dummy jobs

for q time units. Element jobs that take p time units in such a schedule correspond to

elements contained in exactly n′ q-sets of F . Such a schedule has makespan at most

pq.

Second, let us show that if there is a schedule with makespan at most d = pq,

then there is a matching. Suppose there exists a schedule that has makespan at most

pq, but doesn’t contain a matching, implying that at least one element is not covered

by n′ q-sets of F . If a schedule containing all n jobs has makespan at most pq, then

there is no idle time for any of the machines. Either a machine is scheduled with q

element jobs that take p time units each, or with p dummy jobs, each with duration

of q time units. But, at least one element job must take q time units. A schedule

with makespan at most pq cannot be produced as at least one machine will cause at

least (q − p) idle time for the remaining machines and have makespan strictly larger

than pq. By contradiction, such a schedule cannot exist. Thus, if there is a schedule

with makespan at most pq, then there is a matching.

Since there is a matching if and only if there is a schedule with makespan at most

pq, an instance I ′ is a “yes” instance only if there is a schedule with makespan at

most pq. If m′ < n′, or there is no schedule with makespan at most pq, then it is a

“no” instance of MAKESPANUPM-{p, q}. Thus, qDM ≤PMAKESPANUPM-{p, q},

and MAKESPANUPM-{p, q} ∈ NP-complete.

Therefore, R|pi,j ∈ {p, q}|Cmax when q 6= 2p is NP-hard.

As a consequence of Theorem 4.2.2, given any two integral values p ≤ q,
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R|pi,j ∈ {p, q}|Cmax is NP-hard.

To help understand the decision procedure of Theorem 4.2.2 and application of

Construction 4.2.4, let us consider an example.

Example 4.2.5. To begin, suppose we are given a 4DM (i.e., q = 4) instance, where

A1 = {1, 2, 3, 4, 5}, A2 = {6, 7, 8, 9, 10}, A3 = {11, 12, 13, 14, 15}, A4 = {16, 17, 18, 19, 20},

and

F = {{1, 6, 11, 16}, {2, 7, 12, 17}, {3, 8, 15, 19}, {3, 8, 13, 19}, {4, 9, 14, 20}, {5, 10, 15, 18}}.

For this example, m′ = 6 and n′ = 5. Let us apply Construction 4.2.4 to create

a MAKESPANUPM-{1, 4} instance where p = 1 and q = 4. As m = m′ = 6 and

n = 4n′+p(m′−n′) = 4·5+1(6−5) = 21, create a 6×21 processing requirement matrix

P consisting of twenty element jobs, and one dummy job. Applying the conditions

for the processing requirement matrix, we obtain matrix P with entries
1 4 4 4 4 1 4 4 4 4 1 4 4 4 4 1 4 4 4 4 4

4 1 4 4 4 4 1 4 4 4 4 1 4 4 4 4 1 4 4 4 4

4 4 1 4 4 4 4 1 4 4 4 4 4 4 1 4 4 4 1 4 4

4 4 1 4 4 4 4 1 4 4 4 4 1 4 4 4 4 4 1 4 4

4 4 4 1 4 4 4 4 1 4 4 4 4 1 4 4 4 4 4 1 4

4 4 4 4 1 4 4 4 4 1 4 4 4 4 1 4 4 1 4 4 4

 .

Each circled entry above in the processing requirement matrix is an assignment of

a job to a machine. The makespan of such a schedule is pq = 4. Notice that the 4-sets

found in the 4DM instance that consist of a matching correspond to the element jobs

scheduled to take one time unit each. Since there is a matching if and only if there is

a schedule with makespan at most pq, this is a “yes” instance. �
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Werner and Vakhania [45] in 2012 presented a q-absolute approximation algo-

rithm for R|pi,j ∈ {p, q}|Cmax. The q-absolute approximation algorithm developed by

Werner and Vakhania is comprised of two phases. First, it uses the polynomial-time

algorithm by Lenstra et al. [33] for R|pi,j ∈ {1, 2}|Cmax to create an initial sched-

ule. In its second phase, it solves a LP to reassign jobs from the assignments in

phase one to guarantee their result. To this date, no k-approximation algorithm has

been presented for R|pi,j ∈ {p, q}|Cmax from our investigation of the literature. In

Section 6.2.1, we investigate this subclass and R|pi,j ∈ {p, q,∞}|Cmax.

Researchers have also focused on other restricted cases of R||Cmax and related

scheduling problems, discovering approximation algorithms with better approxima-

tion factors [1; 8; 9; 11; 30; 31; 41; 43; 45]. Some researchers have focused on mul-

tiple objectives or enforcing precedence constraints. For instance, in 2005, Kumar

et al. [30] used randomized rounding to yield a bicriteria (2T, 3C/2)-approximation

algorithm for R||
∑

j wjCj with the goal of minimizing the makespan (where the op-

timal makespan is T ), and weighted completion times (where the optimal weighted

completion time is C) simultaneously. Also, Kumar et al. [31] in 2007 considered

R|forest|Cmax. For this instance, the authors developed an O(log2(n)/ log(log(n)) ·

dlog(min{pmax, n})/ log(log(n))e)-approximation algorithm,, where pmax is the max-

imum total processing time along a path in the forest. Also, Kumar et al. discovered

the same approximation ratio for R|forest|
∑

j wjCj.

Researchers have also considered subclasses, that restrict jobs to certain machines.

Ebenlendr et al. [8; 9] considered a subclass of R||Cmax called graph balancing. This is

R|pi,j ∈ {pj,∞}|Cmax, where every job has a choice of being assigned on at most two
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machines. By using LP techniques such as rounding, Ebenlendr et al. [8; 9] designed

a 1.75-approximation algorithm. In 2010, Svensson [43] investigated a more general

subclass, R|pi,j ∈ {pj,∞}|Cmax. Svensson developed a polynomial-time algorithm

that has an approximation ratio of 1.9412. The performance guarantee of 1.9412 for

this algorithm is obtained through linear programming.

When considering subclasses of Rm||Cmax, PTASs have been discovered [1; 11;

22; 33]. Efraimidis and Spirakis [11] in 2006 developed several improved PTASs us-

ing a rounding technique called combinatorial randomized rounding, including for

Rm||Cmax. Some other problems the authors considered are the generalized assign-

ment problem, load balancing, two-cost objective scheduling, and, lastly, assigning

each machine one specific load. In 2012, a PTAS for the makespan problem for UPMs,

where we have a fixed number of types of machines scheduling D-dimensional jobs,

was developed by Bonifaci and Wiese [1]. For this PTAS, the number of machines

are fixed, D is fixed, and machines of the same type are identical. The authors used

linear programming techniques to formulate their (1 + ε)-approximation algorithm,

for any ε > 0.



Chapter 5

A New Polynomial-Time

Algorithm for Certain Subclasses

of R||Cmax

In this chapter, we present a polynomial-time algorithm for certain restricted as-

signment instances ofR||Cmax. By Theorem 4.1.3, R|pi,j ∈ {1,∞}|Cmax is polynomial-

time solvable We extend these results to solve R|pi,j ∈ {ω,∞}|Cmax in polyno-

mial time, where ω is a fixed positive integer. Then, we generalize this subclass

to R|pi,j ∈ {ω,∞}|Cmax with an initial load for each machine. Our algorithm for

R|pi,j ∈ {ω,∞}|Cmax with initial loads employs matching techniques.

82
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5.1 R|pi,j ∈ {ω,∞}|Cmax with Initial Loads

Recall Theorem 4.1.3 states R|pi,j ∈ {1,∞}|Cmax is polynomial-time solvable.

Assume ω ∈ Z+ is a constant. What if we generalized this problem to R|pi,j ∈

{ω,∞}|Cmax, a subclass of R||Cmax when processing times are restricted to pi,j ∈

{ω,∞}? This generalization can be solved in polynomial time by changing each

entry that takes ω time units to one time unit in the processing requirement matrix

P , then applying the algorithm described for R|pi,j ∈ {1,∞}|Cmax in Section 4.1. So

we obtain the next corollary from Theorem 4.1.3.

Corollary 5.1.1. Let ω ∈ Z+ be fixed. R|pi,j ∈ {ω,∞}|Cmax is polynomial-time

solvable.

We now use this generalized problem to define a simple, but pragmatic scheduling

problem. Let there be m machines, and n jobs to be scheduled. For each machine i,

assume there is an initial load of µi time units to complete before any jobs may be

scheduled, where µi ≥ 0, and 1 ≤ i ≤ m. A job j can be scheduled on machine

i to take pi,j ∈ {ω,∞} time units, where positive integer ω is fixed. Assume that

processing requirement matrix P has at least one positive integer in each column; if

not, it contains redundant jobs. For this problem, the goal is to find a feasible schedule

with minimum makespan that includes each initial load on the machines. We call this

the makespan problem on UPMs with initial loads and processing times pi,j ∈ {ω,∞},

where ω ≥ 1. This problem is denoted R|pi,j ∈ {ω,∞}|Cmax with initial loads. The

R|pi,j ∈ {w,∞}|Cmax problem is the special case of R|pi,j ∈ {w,∞}|Cmax with initial

loads where each µi = 0.
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This problem is common in homogeneous computer systems with similar tasks

and speeds. Very often, homogeneous systems execute unrelated start-up processes

that are predetermined before applications may be scheduled. For example, given

four cores, one machine may be booting an operating system that takes a number

of time units, while the remaining three may have applications already scheduled

that have given completion times. Suppose that, at this point, a scheduler for the

entire system of cores needs to schedule a set of similar-length processes that can be

scheduled on particular machines from a batch script to complete amongst all four

cores. It would be ideal if the tasks in the batch script need not be delayed any

further than necessary.

Consider an example instance of R|pi,j ∈ {ω,∞}|Cmax with initial loads. Fix

ω = 3. Suppose we have four machines with initial loads shown in Table 5.1, and

P =



3 3 ∞ ∞ ∞

∞ 3 3 3 3

3 ∞ 3 ∞ 3

∞ 3 3 3 ∞


.

machine i µi
1 2
2 5
3 6
4 2

Table 5.1: Initial loads of each machine in an instance of R|pi,j ∈ {3,∞}|Cmax with
initial loads.

If one applied the same method that yields Corollary 5.1.1, it is possible to obtain

a feasible schedule with makespan of twelve. Unfortunately, this is not optimal. The
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optimal makespan for this instance is eight. Using matching techniques, we show that

R|pi,j ∈ {ω,∞}|Cmax with initial loads, where ω ≥ 1, is polynomial-time solvable.

Theorem 5.1.2. Let ω ∈ Z+ be fixed. R|pi,j ∈ {ω,∞}|Cmax with initial loads can be

solved in polynomial time.

Proof. We wish to describe an algorithm to solve this problem in polynomial time,

then prove its correctness. Our algorithm is outlined as pseudocode in Algorithm 5.1.4.

Let constant ω ≥ 1. Assume the algorithm is given an arbitrary list of initial loads

µ1, . . . , µm, and an m×n processing requirement matrix P , where pi,j ∈ {ω,∞}. We

use a proposed deadline d′ to keep track of the makespan of the schedule tested in

each iteration. Since the minimum makespan cannot be less than the largest initial

load, initially set d′ := max1≤z≤m{µz}.

Next, the procedure calculates how much available time is on each machine based

on the proposed deadline d′. The intention is to place as many jobs of length ω on the

machines as possible such that the makespan is at most d′. If
∑m

i=1

(
b(d′ − µi)/ωc

)
<

n, the makespan cannot be respected, because not all n jobs of length ω can be sched-

uled even if all n jobs could be scheduled on any machine. If this is the case, restart

this procedure with d′ := d′+ 1. Otherwise, the algorithm applies Construction 5.1.3

to build a bipartite graph G using the availability for jobs of length ω time units on

each machine.

Construction 5.1.3. Create a bipartite graph G = (M ∪ J,E) consisting of a

set M of machine vertices and a set J of job vertices. For each machine i, create

b(d′ − µi)/ωc machine vertices to represent machine i. Create n job vertices, one

for corresponding to each job. The correspondence between machines and machine
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vertices can be stored in a lookup table. For each pi,j = ω of processing requirement

matrix P , include edges from job vertex j to every machine vertex of machine i. This

construction can be created in polynomial time. X

Next, the procedure finds a maximum matching Mmax in G using any polynomial-

time maximum matching algorithm for bipartite graphs [19]. If |Mmax| < n, restart

the algorithm after incrementing d′ by one. If |Mmax| = n, then all n job vertices are

saturated. For each edge {j, v} ∈Mmax, where j ∈ J , schedule job j on the machine

that corresponds to machine vertex v. Upon returning the schedule, the algorithm

terminates. Such a schedule has makespan of d′, and is feasible.

Recall that the algorithm starts by setting deadline d′ = max1≤z≤m{µz}. For

any instance, the makespan is at most ωn + max1≤z≤m{µz}. When the algorithm

terminates, the number of times d′ is increased is at most

(d′ −max1≤z≤m{µz}) ≤ ωn ∈ Θ(n).

Thus, the algorithm finds a feasible schedule in polynomial time.

Suppose d′ is not the optimal makespan. Then, there exists a schedule S ′ with

makespan d∗, such that d′ > d∗. Consider the algorithm when the proposed deadline

is d∗. At this stage,
∑m

i=1

(
b(d∗ − µi)/ωc

)
< n, or |Mmax| < n. If S ′ exists and is

feasible, then
∑m

i=1

(
b(d∗ − µi)/ωc

)
≥ n, and |Mmax| = n. But, this violates the

definition of a matching of a graph as a machine vertex in the matching would have

more than one incident edge from a job vertex. That implies the makespan of d∗

could not have been respected for schedule S ′, and S ′ cannot exist. Thus, d∗ = d′.

Therefore, R|pi,j ∈ {ω,∞}|Cmax with initial loads can be solved in polynomial

time.
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Algorithm 5.1.4 Polynomial-time Algorithm for R|pi,j ∈ {ω,∞}|Cmax with initial
loads
1: procedure MakespanUPMsAssignmentInitLoads(P,m, n, µ)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: d′ := max1≤i≤m{µi}; . Proposed deadline
4: Mmax := ∅; . Will contain a maximum matching
5: feasible := false; . Stays false until a feasible schedule is found
6: while ¬feasible do . Do until a feasible schedule can be found

7: if
∑m

i=1

(
b(d′ − µi)/ωc

)
≥ n then . Is there enough time available yet?

8: Apply Construction 5.1.3 to obtain G = (M ∪ J,E);
9: Let Mmax be a maximum matching of G;
10: end if
11: if |Mmax| < n then
12: d′ := d′ + 1; . Feasible schedule cannot be found yet, increment d′

13: else
14: feasible := true; . |Mmax| = n
15: end if
16: end while
17: for each {v, j} ∈Mmax, where v ∈M and j ∈ J do . Construct schedule
18: Let i be the machine that corresponds to machine vertex v in Construc-

tion 5.1.3;
19: Xi,j := 1; . Assign job j to machine i
20: end for
21: return X; . Return schedule
22: end procedure

We now apply the algorithm described in our proof for Theorem 5.1.2 on the

example we gave earlier.

Example 5.1.5. Recall that we fixed ω = 3. Let there be m = 4 machines with

initial loads in Table 5.1, and

P =



3 3 ∞ ∞ ∞

∞ 3 3 3 3

3 ∞ 3 ∞ 3

∞ 3 3 3 ∞


.
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In the algorithm, we begin by setting proposed deadline

d′ = max{µ1, µ2, µ3, µ4} = max{2, 5, 6, 2} = 6.

Next, the algorithm calculates the available time based on deadline d′ for each machine

and how many machine vertices to represent each machine will be needed for the

bipartite graph construction. We show these calculations in Table 5.2.

machine i µi d′ − µi Machine vertices for machine i
1 2 6− 2 = 4 b(d′ − µ1)/ωc = b4/3c = 1
2 5 6− 5 = 1 b(d′ − µ2)/ωc = b1/3c = 0
3 6 6− 6 = 0 b(d′ − µ3)/ωc = b0/3c = 0
4 2 6− 2 = 4 b(d′ − µ4)/ωc = b4/3c = 1

Table 5.2: Determining the number of machine vertices when d′ = 6 in the example
instance with initial machine loads.

Observe that
∑4

i=1

(
b(6− µi)/3c

)
= 2 < 5. This means the makespan of d′ = 6

could not be respected, so the procedure increases the proposed deadline to d′ = 7.

The algorithm then repeats the same task of calculating the available time for jobs

of length three on each machine. We show these calculations for d′ = 7 in Table 5.3,

and we would obtain the same outcome as the previous iteration when d′ = 6. We

leave this iteration as an exercise to the reader, and proceed to d′ = 8.

machine i µi d′ − µi Machine vertices for machine i
1 2 7− 2 = 5 b(d′ − µ1)/ωc = b5/3c = 1
2 5 7− 5 = 2 b(d′ − µ2)/ωc = b2/3c = 0
3 6 7− 6 = 1 b(d′ − µ3)/ωc = b1/3c = 0
4 2 7− 2 = 5 b(d′ − µ4)/ωc = b5/3c = 1

Table 5.3: Calculating the number of machine vertices for each machine when d′ = 7
in the example.

The algorithm now determines the available load on each machine for d′ = 8

as shown in Table 5.4. Next, the algorithm applies Construction 5.1.3 to produce



Chapter 5: A New Polynomial-Time Algorithm for Certain Subclasses of R||Cmax 89

a bipartite graph G = (M ∪ J,E) as shown in Figure 5.1. This bipartite graph

consists of five job vertices, and five machine vertices. Of the machine vertices, two

correspond to machine 1; one corresponds to machine 2; and the last two machine

vertices represent machine 4.

machine i µi d′ − µi Machine vertices for machine i
1 2 8− 2 = 6 b(d′ − µ1)/ωc = b6/3c = 2
2 5 8− 5 = 3 b(d′ − µ2)/ωc = b3/3c = 1
3 6 8− 6 = 2 b(d′ − µ3)/ωc = b2/3c = 0
4 2 8− 2 = 6 b(d′ − µ4)/ωc = b6/3c = 2

Table 5.4: Computing the number of machine vertices that represent each machine
when d′ = 8 in the example R|pi,j ∈ {3,∞}|Cmax with initial loads instance.

M

J

11 12 21 41 42

1 2 3 4 5

Figure 5.1: A bipartite graph G = (M ∪ J,E) by the algorithm for d′ = 8 using
Construction 5.1.3 on an example instance of R|pi,j ∈ {3,∞}|Cmax with initial loads.
A maximum matching Mmax found in G is shown with darker edges and vertex labels.
Such a matching saturates all the job vertices of J .

After finding a maximum matching Mmax in G, we observe that the matching

contains edges incident to every job vertex, and |Mmax| = 5. Thus, we can schedule

all n = 5 jobs, with makespan is eight. Based on the edges of the maximum matching,

jobs 1 and 2 are assigned to machine 1, job 5 is scheduled on machine 2, and jobs 3

and 4 are assigned to machine 4. The algorithm returns an optimal schedule, then

terminates. �
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As a final remark for this chapter, R|pi,j ∈ {ω,∞}|Cmax with initial loads can be

modelled as a set of restricted assignment instances. Consider the m×m matrix

C =



µ1 ∞ . . . ∞

∞ µ2 . . . ∞
...

...
. . .

...

∞ ∞ ∞ µm


,

where each µi ≥ 0, 0 ≤ i ≤ m. Then, let m× n processing requirement matrix P ′ be

from an instance of R|pi,j ∈ {ω,∞}|Cmax. Now consider the processing requirement

matrix P = (C P ′). Let us show that any instance (P,m, n) of this form can be solved

in polynomial time. For 1 ≤ i ≤ m, let µi be the initial load for machine i. Next,

use P ′ as the processing requirement matrix for the R|pi,j ∈ {ω,∞}|Cmax with initial

loads instance. Thus, we can solve in polynomial time such restricted assignment

instances as a corollary to Theorem 5.1.2.

Corollary 5.1.6. Consider the m×m matrix

C =



µ1 ∞ . . . ∞

∞ µ2 . . . ∞
...

...
. . .

...

∞ ∞ ∞ µm


,

where µi ≥ 0, for 1 ≤ i ≤ m. Also, let there be a m × n processing requirement

matrix P ′ of R|pi,j ∈ {ω,∞}|Cmax. Then, the makespan problem on UPMs with

processing requirement matrix P = (C P ′), can be solved in polynomial time.
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New Results for NP-hard

Subclasses of R||Cmax

In our investigation into subclasses of R||Cmax, we also focused on subclasses with

three-valued processing times. That is, only three types of job lengths are allowed

as entries in a processing requirement matrix. We present new intractability results

in this area, and approximation algorithms with approximation factors on par with

or better than the best known approximation ratio for R||Cmax of two. Finally in

Section 6.2 we present some NP-hard subclasses of R||Cmax and approximation al-

gorithms for certain subclasses that can violate the hardness of approximation of

R||Cmax. Though the existence of such approximation algorithms for certain sub-

classes of R||Cmax does not imply P = NP, they may provide insight into what prop-

erties may lead to an intractable scheduling problem. To this date, such subclasses

of R||Cmax and their approximation algorithms do not seem to have been discussed

in the literature. At the end of this chapter, we give two conjectures as future work.

91
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6.1 R|pi,j ∈ {1, 2, 4}|Cmax

In order to determine the computational complexity of R|pi,j ∈ {1, 2, 4}|Cmax, we

will prove that R|pi,j ∈ {1, 2, 4}|Cmax is NP-hard.

Theorem 6.1.1. R|pi,j ∈ {1, 2, 4}|Cmax is NP-hard.

Proof. Consider the makespan problem on UPMs when processing times are restricted

to pi,j ∈ {1, 2, 4}. We show {1, 2, 4}-MAKESPANUPM is NP-complete in order to

prove the makespan problem with restricted processing time of pi,j ∈ {1, 2, 4} is

NP-hard. Consider the following decision problem.

Problem 6.1.2 ({1, 2, 4}-MAKESPANUPM). Let µ ∈ Z+ ∪ {0}. Given an m ×

n processing requirement matrix P with processing times pi,j ∈ {1, 2, 4}, does there

exist a schedule with makespan at most µ?

If we are given a schedule, we can check in polynomial time if the makespan of

the schedule is at most µ. So {1, 2, 4}-MAKESPANUPM ∈ NP. We will reduce from

the qDM problem when q = 4. Recall that m′ and n′ are the number of 4-sets in a

family F and number of elements in each of the 4 disjoint sets, respectively. When

m′ ≥ n′ for a 4DM instance, we define a construction that takes a 4DM problem

instance and constructs an instance of {1, 2, 4}-MAKESPANUPM in polynomial time.

Construction 6.1.3. Given an instance I = (A1, . . . , Aq, F, n
′,m′) of the 4DM prob-

lem, where m′ ≥ n′, we construct from I an instance I ′ = (P,m, n, µ) of {1, 2, 4}-

MAKESPANUPM in polynomial time. Create a m × n processing requirement ma-

trix P , where m = m′ and n = 4n′ + m′ − n′. There are two types of jobs: dummy

jobs, and element jobs. A dummy job takes 4 time units on every machine. For
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1 ≤ i ≤ m′, an element job takes 1 time unit on machine i if element as,t ∈ Ti of F

and 2 time units otherwise, where 1 ≤ s ≤ 4 and 1 ≤ t ≤ n′. Let 4n′ of the jobs

be element jobs and (m′ − n′) of the jobs be dummy jobs. Assign µ = 4. Such a

processing requirement matrix P consists of elements pi,j ∈ {1, 2, 4}. X

Example 6.1.4. To demonstrate Construction 6.1.3, we present an example. Sup-

pose we wanted to build a {1, 2, 4}-MAKESPANUPM instance from a 4DM problem

instance. Let m′ = 3, n′ = 2. Also, let there be four disjoint sets A1 = {1, 2},

A2 = {3, 4}, A3 = {5, 6}, A4 = {7, 8}, and a family of three 4-sets

F = {T1, T2, T3} = {{1, 3, 5, 7}, {2, 3, 5, 7}, {2, 4, 5, 8}}.

We now apply Construction 6.1.3 to our instance (A1, A2, A3, A4, F, 3, 2) ∈ 4DM .

Build an m× n processing requirement matrix P , where

m = m′ = 3,

and

n = 4n′ + (m′ − n′) = 9.

There will be 4n′ = 8 element jobs, and (m′ − n′) = 1 dummy jobs. The one

dummy job takes 4 time units on every machine. An element job takes 1 time unit

on machine i if its corresponding element is in a 4-set Ti ∈ F . Otherwise, an element

job takes 2 time units on a machine. For instance, 1 ∈ T1, so element job 1 takes

1 time unit on machine 1. Element job 1 takes 3 time units on each other machine
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as 1 /∈ T2 and 1 /∈ T3. Set µ = 4. So processing requirement matrix

P =


4 1 2 1 2 1 2 1 2

4 2 1 1 2 1 2 1 2

4 2 1 2 1 1 2 2 1

 .

There does not exist a schedule with makespan at most four for P . It is worth noting

that the 4DM problem instance we provided does not have a matching. �

Consider an arbitrary instance I ∈ 4DM , where m′ ≥ n′. Apply Construction

6.1.3 to I to produce an instance I ′ ∈ {1, 2, 4}-MAKESPANUPM. In the next step of

our proof, we demonstrate that there is a matching F ′ in I if and only if there exists

a schedule with makespan at most µ for I ′. First, we wish to show that if there is a

matching F ′ in I, then there is a schedule with makespan at most 4 for instance I ′.

If there is a matching, then |F ′| = n′ and
⋃
Ti∈F ′ Ti =

⋃4
b=1Ab. After creating I ′ by

applying Construction 6.1.3 with I, there are n = 4n′ + (m′ − n′) jobs. Each 4-set in

F ′ corresponds to a machine with 4 element jobs that can be scheduled for one time

unit each. This means exactly n′ of the machines are each scheduled with 4 element

jobs. So each machine processing element jobs completes in 4 time units. As there

are (m′−n′) dummy jobs, exactly (m′−n′) of the machines are assigned one dummy

job since one machine available for each dummy job. Since each dummy job can be

assigned to take 4 time units, the makespan of the schedule produced is at most 4.

Thus, if there is a matching, then there exists a schedule with makespan at most 4

using the processing requirement matrix P of I ′.

Next, we show that if we are given I ′ = (P,m, n, µ) and it has a schedule with

makespan at most µ = 4, then there is a matching F ′ in instance I ∈ 4DM . Suppose
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there exists a schedule that has a makespan at most 4, and does not correspond to

a matching. Thus, there is at least one element job that is scheduled to take 2 time

units. Since the makespan of the schedule is at most 4, an element job cannot be

scheduled along with a dummy job on the same machine. Exactly (m′ − n′) dummy

jobs must be scheduled on (m′ − n′) machines; one dummy job on each machine. No

other jobs can be scheduled on these machines while respecting the makespan 4. All

that remain are 4n′ element jobs to be scheduled on n′ machines. The 4n′ element

jobs must be scheduled so that the processing time of each job is 1 time unit. So

4 element jobs are assigned to each of the n′ remaining machines. But, if one element

job takes 2 time units, at least one machine has load greater than 4, which violates our

assumption. Thus, if there exists a schedule with makespan at most 4, then there is a

matching. Therefore, assuming m′ ≥ n′, there is a matching with instance I ∈ 4DM

if and only if there is a schedule with makespan at most 4 for instance I ′ ∈ {1, 2, 4}-

MAKESPANUPM.

If m′ ≥ n′, then apply Construction 6.1.3 to obtain instance I ′ = (P,m, n, µ = 4).

Our construction I ′ is an instance of {1, 2, 4}-MAKESPANUPM and can be pro-

duced in polynomial-time from any instance I ∈ 4DM . If there is a schedule with

makespan at most 4, then it is a “yes” instance. A “no” instance is one where ei-

ther m′ < n′, or there is no schedule with makespan at most 4. Thus, 4DM ≤P

{1, 2, 4}-MAKESPANUPM, and {1, 2, 4}-MAKESPANUPM is NP-complete. There-

fore, R|pi,j ∈ {1, 2, 4}|Cmax is NP-hard.

Below are two direct consequences of Theorem 6.1.1. Let positive integers p and

q be constants, where 1 < p < q. The first of these two results follows from the proof
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if 2 is replaced with p, and 4 is replaced with q.

Theorem 6.1.5. Let p, q ∈ Z+ be fixed, where 1 < p < q. R|pi,j ∈ {1, p, q}|Cmax is

NP-hard.

Corollary 6.1.6. Let p, q, r ∈ Z+ be fixed, where p < q < r. R|pi,j ∈ {p, q, r}|Cmax

is NP-hard.

6.1.1 2-approximation algorithm

Next, we present an approximation algorithm for R|pi,j ∈ {1, 2, 4}|Cmax.

Theorem 6.1.7. There is a 2-approximation algorithm for R|pi,j ∈ {1, 2, 4}|Cmax.

Proof. Pseudocode for our algorithm can be found in Algorithm 6.1.8. Given any

m × n processing requirement matrix P when pi,j ∈ {1, 2, 4}, create a copy of the

processing requirement matrix P ′ where all entries are only ones and twos by taking

all entries that equal four and replacing such entries with two. Next, apply to P ′

the polynomial time algorithm for R|pi,j ∈ {1, 2}|Cmax described in Theorem 4.1.13.

Upon completion of this procedure, assign all the jobs in P as they were assigned in

P ′. This terminates in polynomial time and produces a feasible solution for R|pi,j ∈

{1, 2, 4}|Cmax.

Let us show that this algorithm has an approximation factor of two. Let us

consider the assignment matrix of a schedule S produced by the algorithm. Suppose

α is a machine that finishes last in the schedule S. Since the algorithm applies an

procedure that solves optimally an instance when p′i,j ∈ {1, 2} after constructing P ′,

n∑
j=1

p′α,jxα,j = OPT (P ′).
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Each job that is assigned two time units in processing requirement matrix P ′ is

either of length two or four in processing requirement matrix P . So

OPT (P ′) ≤ OPT (P ),

and
n∑
j=1

pα,jxα,j ≤
n∑
j=1

(2p′α,j)xα,j = 2 ·
n∑
j=1

p′α,jxα,j ≤ 2 ·OPT (P ).

Thus, when we consider any schedule S produced by our algorithm for a given in-

stance,
n∑
j=1

pα,jxα,j ≤ 2 ·OPT (P ).

Therefore, this is a 2-approximation algorithm.

Algorithm 6.1.8 2-approximation algorithm for R|pi,j ∈ {1, 2, 4}|Cmax
1: procedure MakespanUPMOneTwoFour(P,m, n)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: Let P ′ be a m× n matrix with zero entries; . m× n processing requirement

matrix
4: for i := 1 to m do . Construct processing requirement matrix P ′

5: for j := 1 to n do
6: if pi,j ≥ 2 then
7: p′i,j := 2;
8: else
9: p′i,j := 1;
10: end if
11: end for
12: end for
13: X := MakespanUPMs12(P ′,m, n); . Optimal schedule for P ′

14: return X; . Return feasible schedule for P
15: end procedure

Consider the following tight example. Create a m × n processing requirement

matrix P , where n = m. For i = 1, 2, . . . ,m and j = 1, 2, . . . ,m, if i = j, then
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let pi,j = 4. Otherwise, let pi,j = 2. Applying the 2-approximation algorithm to P

produces a modified processing requirement matrix P ′, where each p′i,j = 2. As a

result, it is possible for this algorithm to pick each diagonal entry, which yields a

schedule with makespan of four. The optimal schedule has makespan of two.

6.2 R|pi,j ∈ {1, 2,∞}|Cmax, and R|pi,j ∈ {p, q,∞}|Cmax

Scheduling short or long jobs on certain machines can arise in multiprocessor

scheduling. So a subclass of R||Cmax of pragmatic interest has processing times that

are restricted to pi,j ∈ {1, 2,∞}. We know that R|pi,j ∈ {1,∞}|Cmax and R|pi,j ∈

{1, 2}|Cmax are polynomial-time solvable by Theorem 4.1.3 and Theorem 4.1.13, re-

spectively. What about when we consider arbitrary processing requirement matrices

with processing times pi,j ∈ {1, 2,∞}? We show R|pi,j ∈ {1, 2,∞}|Cmax is NP-hard.

This subclass is closely related to the hardness of approximation of R||Cmax proved

by Lenstra et al. [33].

Theorem 6.2.1 (Lenstra et al. [33], Theorem 5). R|pi,j ∈ {1, 2,∞}|Cmax is NP-hard.

Proof. In order to prove the makespan problem on UPMs when pi,j ∈ {1, 2,∞} is NP-

hard, let us show its decision problem variant is NP-complete. Consider the following

decision problem.

Problem 6.2.2 (MAKESPANUPM-{1, 2,∞}). Given a m×n processing requirement

matrix P , where pi,j ∈ {1, 2,∞}. Does there exist a schedule with makespan at most

d?
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Clearly MAKESPANUPM-{1, 2,∞} ∈ NP, because one can find the load of a

machine that completes last in polynomial time. We show that there is a polynomial-

time reduction between the 3DM problem and MAKESPANUPM-{1, 2,∞}.

Suppose we are given an arbitrary instance I of the 3DM problem. Begin by

applying Construction 2.2.4 to I. If a trivial “no” instance is constructed, ensure the

processing requirement matrix has processing times that consist of pi,j ∈ {1, 2,∞}.

Let d = 5. Next, include slack jobs. A slack job is one that can be assigned to only one

machine and no others (i.e., the other machines are set to take∞ time units). Include

a slack job for each machine that takes one time unit, then an additional slack job for

each machine that takes two time units. This procedure includes an additional 2m′

jobs and takes a polynomial number of steps. Call the resulting scheduling instance I ′.

It is clear that I ′ ∈ MAKESPANUPM-{1, 2,∞}. Since Construction 2.2.4 can be

performed in polynomial time, this modified construction can be built in polynomial

time. Next, let us prove a result that links a 3DM to the schedules produced.

Consider a schedule S produced by our procedure. Notice two slack jobs are

assigned to each machine. Ignore all the slack jobs in S and the load of each machine

decreases by three time units. If we ignore the slack jobs of S, then we need to show

there is a matching if and only if S has makespan of at most two. By Lemma 2.2.5,

when we consider the whole schedule of S, there is a matching if and only if S has

makespan of at most five as each machine must execute exactly three time units

of slack jobs. Thus, there is a matching if and only if there exists a schedule with

makespan at most five.

If there is a schedule with makespan at most five, then it is a “yes” instance. Also,
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if there is no schedule with makespan at most five, then I ′ is a “no” instance as it

does not correspond to a matching. Thus, 3DM ≤P MAKESPANUPM-{1, 2,∞},

and MAKESPANUPM-{1, 2,∞} ∈ NP-complete. Therefore, R|pi,j ∈ {1, 2,∞}|Cmax

is NP-hard.

As a consequence of Theorem 6.2.1, we obtain the following computational com-

plexity result.

Theorem 6.2.3. Let p, q ∈ Z+, where p ≤ q. R|pi,j ∈ {p, q,∞}|Cmax is NP-hard.

At this stage, we could attempt to design an approximation algorithm for subclass

R|pi,j ∈ {1, 2,∞}|Cmax. One method that could be taken is to combine both ap-

proaches used in the polynomial-time algorithms of R|pi,j ∈ {1, 2}|Cmax and R|pi,j ∈

{ω,∞}|Cmax with initial loads. We break the proposed algorithm into two major

steps. The first step is to pick jobs of length one using a modified processing require-

ment matrix by pretending entries containing pi,j = ∞ are pi,j = 2 instead. Upon

building this, solve it as an instance of R|pi,j ∈ {1, 2}|Cmax using the algorithm by

Lenstra et al. [33] given in Theorem 4.1.13. Now enter step two, and reassign a job

length of one to all the jobs of length two that were not assigned. Taking the orig-

inal processing requirement matrix, form a new processing requirement matrix with

columns of the remaining jobs. Change all entries in this new matrix that are pi,j = 1

to pi,j = 2; call the processing requirement matrix K. Let initial load µi be the load

of machine i after the assignment of jobs of length one in the first step. Apply our

algorithm for R|pi,j ∈ {2,∞}|Cmax with initial loads to assign all the remaining jobs

using K. This is a 3-approximation algorithm for R|pi,j ∈ {1, 2,∞}|Cmax. Can we
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obtain a better approximation ratio? Yes, we can. We find a better k-approximation

algorithm in Theorem 6.2.4 by focusing on R|pi,j ∈ {p, q,∞}|Cmax. It is important

to note that no k-approximation algorithm for R|pi,j ∈ {p, q,∞}|Cmax with k < 2

exists in literature to this date.

6.2.1 (q/p)-approximation algorithm for R|pi,j ∈ {p, q,∞}|Cmax

To open this section, we prove one of our main results in this thesis.

Theorem 6.2.4. There is a (q/p)-approximation algorithm for R|pi,j ∈ {p, q,∞}|Cmax,

where p ≤ q.

Proof. First, we describe the approximation algorithm, then we demonstrate its ap-

proximation ratio. The pseudocode for our algorithm is given by Algorithm 6.2.5.

Suppose we are given an arbitrary m×n processing requirement matrix P . Create

another m×n processing requirement matrix Ψ as follows. For each entry pi,j 6=∞, let

ψi,j = 1, and ψi,j =∞ otherwise. Clearly, this can be done in polynomial time. Notice

that Ψ is an instance of the makespan problem on UPMs when processing times are

restricted to ψi,j ∈ {1,∞}. Apply the algorithm described for Theorem 4.1.3 using Ψ

as the processing requirement matrix. Denote the schedule produced by this process

as S{1,∞}. Next, using S{1,∞}, schedule job j to machine i for pi,j time units if job j

is assigned to machine i in S{1,∞}. All jobs are then scheduled in polynomial time,

and is a feasible schedule using processing requirement matrix P . Therefore, the

following algorithm terminates in polynomial-time and produces a feasible schedule

for any given instance of R|pi,j ∈ {p, q,∞}|Cmax.

We consider two cases, first when p = q, then the case when q > p. For q = p,
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the last step of the algorithm only extends the schedule by a factor of p, and consist

of only jobs of length p. This means only jobs of length one are being replaced by

jobs of length p. By Theorem 4.1.3, the algorithm produces a schedule with optimal

makespan when p = q.

Next, consider when q > p. Notice that each job is either of length p or length q

when assignd to machines, and q/p > 1. So to determine the quality of a schedule

produced by the algorithm, rescale the jobs assigned to be of lengths 1 and q/p,

respectively. By considering this transformed schedule, the makespan of the original

schedule is only p times larger. Let P ′ contain entries p′i,j ∈ {1, q/p,∞}. Call the

transformed schedule S ′.

Let us consider the assignment of jobs by the algorithm. Also, consider an optimal

schedule S∗ that has undergone the same scaling as S ′. Such an optimal schedule has

makespan (OPT (P )/p). Define optimal assignments of S∗ to be x∗i,j = 1 only if job j

is assigned to machine i in schedule S∗, and x∗i,j = 0 otherwise. Let α and β each be

a machine that completes last for schedules S ′ and S∗, respectively.

The makespan of schedule S ′ is

n∑
j=1

p′α,jxα,j =
n∑

j=1,
pα,j = p

xα,j +
n∑

j=1,
pα,j = q

(
(q/p)xα,j

)
.

Since q/p > 1, we have

n∑
j=1,

pα,j = p

xα,j + (q/p) ·
n∑

j=1,
pα,j = q

xα,j ≤ (q/p) ·
n∑
j=i

xα,j.

For an optimal schedule using processing requirement matrix P , let machine φ be
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a machine that is assigned the most jobs. Clearly,

n∑
j=1

x∗φ,j ≤
n∑
j=1

p′β,jx
∗
β,j = OPT (P )/p.

Recall that the algorithm constructs a processing requirement matrix Ψ, where ψi,j ∈

{1,∞}. An optimal schedule for Ψ is found by the algorithm described in Theo-

rem 4.1.3. Each job in schedule S ′ is assigned by the resulting assignments for Ψ.

Then, the algorithm produces a schedule for which the maximum number of jobs

assigned to a machine is minimized, and

n∑
j=1

xα,j ≤
n∑
j=1

x∗φ,j.

As a consequence,

(q/p) ·
n∑
j=i

xα,j ≤ (q/p) ·
n∑
j=i

x∗φ,j ≤ (q/p) · (OPT (P )/p).

Thus, when we consider a schedule produced by the algorithm,

n∑
i=1

xi,jpi,j ≤ (q/p) ·OPT (P ).

Therefore, we have presented a (q/p)-approximation algorithm forR|pi,j ∈ {p, q,∞}|Cmax.

Here we give a tight example for our (q/p)-approximation algorithm presented in

Theorem 6.2.4. Create a m × 1 processing requirement matrix, where m ≥ 3. Let

p1,1 = p, p2,1 = q, and all remaining entries be pi,j = ∞. The algorithm can assign

job 1 to machine 2, though a schedule with optimal makespan has job 1 assigned to

machine 1. The schedule produced has makespan of q, but the schedule with optimal

makespan has makespan of p.
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Algorithm 6.2.5 (q/p)-approximation algorithm for R|pi,j ∈ {p, q,∞}|Cmax
1: procedure MakespanUPMAssignmentpq(P,m, n)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: Let Ψ be a m× n matrix with zero entries; . m× n processing requirement

matrix
4: for i := 1 to m do . Construct processing requirement matrix Ψ
5: for j := 1 to n do
6: if pi,j 6=∞ then
7: ψi,j := 1;
8: else
9: ψi,j :=∞;
10: end if
11: end for
12: end for
13: X := MakespanUPMsAssignment(Ψ,m, n); . Optimal schedule for Ψ
14: return X; . Return feasible schedule for P
15: end procedure

Observe that the obtained approximation ratio for this algorithm depends entirely

on the values the processing requirement matrix entries take. This means that if values

are close to one another, we can produce schedules with near optimal solutions. This

subclass of R||Cmax need not follow the hardness of approximation results for the

general problem. For example, there is a (5/4)-approximation algorithm for R|pi,j ∈

{4, 5,∞}|Cmax, and 5/4 < 3/2.

6.2.2 2-approximation algorithm for R|pi,j ∈ {1, 2,∞}|Cmax

Notice that the (q/p)-approximation algorithm gives us an approximation factor

of two for the sub-instance of the makespan problem on UPMs when pi,j ∈ {1, 2,∞},

as q = 2 and p = 1.

Theorem 6.2.6. There is a 2-approximation algorithm for R|pi,j ∈ {1, 2,∞}|Cmax.
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6.2.3 (q/p)-approximation algorithm for R|pi,j ∈ {p, q}|Cmax

Observe that R|pi,j ∈ {p, q}|Cmax is NP-hard, because R|pi,j ∈ {p, q}|Cmax when

q 6= 2p is NP-hard. We can modify our (q/p)-approximation algorithm from Theo-

rem 6.2.4 to be a simple greedy algorithm due to a way our approximation algorithm

assigns jobs for these instances. Observe that the processing requirement matrix Ψ

produced by the algorithm for any instance of this form contains only unit processing

times. But, this means Ψ is a processing requirement matrix for R|pi,j = 1|Cmax.

So we can bypass constructing Ψ, and modify our (q/p)-approximation algorithm

as follows. For j = 1, . . . , n, schedule job j on machine ((j − 1) mod m) + 1. We

will refer to this variation as the greedy (q/p)-approximation algorithm, and its pseu-

docode is given as Algorithm 6.2.8. Since assigning jobs in this manner also gives an

optimal assignment for Ψ when each ψi,j = 1, our argument for Theorem 6.2.4 still

holds. Clearly, this (q/p)-approximation algorithm terminates in Θ(n) steps. As a

consequence we obtain the following theorem.

Theorem 6.2.7. There is a (q/p)-approximation algorithm for R|pi,j ∈ {p, q}|Cmax.

Greedy (q/p)-approximation algorithm terminates in Θ(n) steps.

6.2.4 Generalizing to Certain Multiple-Valued Instances of

R||Cmax

What if we generalized our results from Section 6.2.1 for restricted two-valued

instances to restricted multiple-valued instances between two fixed integral values?

Let p, q ∈ Z+ be fixed, where p ≤ q. Define A(p, q) = {a ∈ Z+ | p ≤ a ≤ q} .
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Algorithm 6.2.8 (q/p)-approximation algorithm for R|pi,j ∈ {p, q}|Cmax
1: procedure MakespanUPMpq(P,m, n)
2: Let X be a m× n matrix with zero entries; . m× n assignment matrix
3: i := 1;
4: for j := 1 to n do . Cyclically assign jobs to machines
5: Xi,j = 1
6: i := i+ 1;
7: if i > m then
8: i := 1;
9: end if
10: end for
11: return X; . Return feasible schedule for P
12: end procedure

Consider the subclass R|pi,j ∈ A(p, q) ∪ {∞}|Cmax. That is, given p, q ∈ Z+ and

p ≤ q, let there be a processing requirement matrix P with either positive integer

entries p ≤ pi,j ≤ q, or pi,j = ∞. This subclass of the makespan problem on UPMs

is NP-hard as when processing times pi,j ∈ {p, q,∞}, the problem is NP-hard by

Theorem 6.2.3. In this section, we consider R|pi,j ∈ A(p, q) ∪ {∞}|Cmax, and then

R|p ≤ pi,j ≤ q|Cmax, a NP-hard special case when P consists only of positive integral

entries inclusively between p and q.

Theorem 6.2.9. Let p, q ∈ Z+ be constants, where p ≤ q. There is a (q/p)-

approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax.

Proof. Assume there are constants p, q ∈ Z+, and p ≤ q. Given an arbitrary pro-

cessing requirement matrix P , apply the (q/p)-approximation algorithm given in

Theorem 6.2.4. Since this algorithm terminates in polynomial time, what remains

to be shown is that the approximation factor remains (q/p) for subclass R|pi,j ∈

A(p, q) ∪ {∞}|Cmax.

Next, list the entries ofA(p, q) asA(p, q) = {z1, . . . , z|A(p,q)|}. For b = 1, 2, . . . , |A(p, q)|,
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p ≤ zb ≤ q. Using a similar technique as in our proof for Theorem 6.2.4, in-

troduce a processing requirement matrix P ′ that is P with rescaled job lengths

p′i,j ∈ {z1/p, z2/p, . . . , z|A(p,q)|/p,∞}. Denote an optimal schedule for P as S∗, where

x∗i,j = 1 if job j is scheduled on machine i. Let α be a machine that completes

last when we apply the (q/p)-approximation algorithm of Theorem 6.2.4. Call the

schedule produced S, and denote its corresponding schedule with P ′ schedule S ′. The

makespan of schedule S ′ is

n∑
i=1

p′α,jxα,j =

|A(p,q)|∑
b=1

n∑
j=1,

pα,j = zb

(
(zb/p)xα,j

)
.

Each zb ≤ q and q/p > 1, so

|A(p,q)|∑
b=1

n∑
j=1,

pα,j = zb

(
(zb/p)xα,j

)
≤ (q/p) ·

n∑
j=i

xα,j. (6.1)

Once we have inequality (6.1), we can employ a similar argument as the proof for

Theorem 6.2.4. In an optimal schedule for P , let machine φ be a machine that is

assigned the most jobs. Denote machine β as a machine that completes last for

schedule S∗, where S∗ is an optimal schedule. Observe

n∑
j=1

x∗φ,j ≤
n∑
j=1

p′β,jx
∗
β,j = OPT (P )/p.

Our algorithm employs the procedure described for Theorem 4.1.3 on Ψ. The as-

signment of jobs for schedules S and S ′ are determined by the assignments made for

Ψ. So, the algorithm produces a feasible schedule for which the maximum number of

jobs assigned to each machine is minimized. Then it follows that

n∑
j=1

xα,j ≤
n∑
j=1

x∗φ,j,
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and

(q/p) ·
n∑
j=i

xα,j ≤ (q/p) ·
n∑
j=i

x∗φ,j ≤ (q/p) · (OPT (P )/p).

Thus, the makespan of schedule S is

n∑
i=1

xi,jpi,j ≤ (q/p) ·OPT (P ).

Therefore, this is a (q/p)-approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax.

Notice that for b = 1, . . . , |A(p, q)|, each p ≤ zb ≤ q in our proof. Any integral

values between p and q can be used, and our (q/p)-approximation algorithm can

still guarantee an approximation factor of q/p. So for R|p ≤ pi,j ≤ q|Cmax, we

can employ the greedy (q/p)-approximation algorithm described as Algorithm 6.2.8,

which completes in linear time.

Theorem 6.2.10. There is a (q/p)-approximation algorithm for R|p ≤ pi,j ≤ q|Cmax

that terminates in Θ(n) worst-case time.

Let us give an application of Theorem 6.2.10 for general instances of R||Cmax.

We can apply Theorem 6.2.10 when a processing requirement matrix has entries

close enough in value to obtain better approximation results than the best known

approximation algorithms for R||Cmax. Let τ ∈ Q+ be fixed and p, q ∈ Z+, where

p ≤ q. Given an arbitrary processing requirement matrix P , let p and q be its

smallest and largest integral valued entries, respectively. Let τ = 2. If q ≤ 2p, then

we apply our approximation algorithm to obtain a schedule with makespan at most

(q/p) · OPT (P ) with greater efficiency. If q > 2p, then apply one of the known 2-
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approximation algorithms [13; 33; 42]. Likewise, if we consider other subclasses of

R||Cmax, other approximation factors can be guaranteed by changing τ .

Example 6.2.11. Let us consider an example of the (q/p)-approximation algorithm.

Consider a processing requirement matrix

P =



2 2 ∞ 3 2 ∞

3 ∞ 3 ∞ 3 ∞

3 ∞ 2 ∞ 2 ∞

∞ 3 ∞ 3 2 2


.

The algorithm begins by constructing another processing requirement matrix Ψ,

where ψi,j ∈ {1,∞}:

Ψ =



1 1 ∞ 1 1 ∞

1 ∞ 1 ∞ 1 ∞

1 ∞ 1 ∞ 1 ∞

∞ 1 ∞ 1 1 1


.

Next, the (q/p)-approximation algorithm solves optimally Ψ by applying the polynomial-

time algorithm in Theorem 4.1.3. Upon completion, this algorithm yields deadline

d = 2, and produces a feasible schedule for P using the assignment of jobs shown

by circled entries in Ψ above. This schedule has makespan of six, while the optimal

makespan is four. The algorithm then terminates. �



Chapter 7

Conclusions

We have explored many aspects of R||Cmax. Though there has been little progress

for improving the best known approximation factor of two for approximation algo-

rithms of R||Cmax, researchers found improved approximation algorithms for sub-

classes of R||Cmax. In our investigation, we found a polynomial-time algorithm

for R|pi,j ∈ {ω,∞}|Cmax with initial loads. Also, we proved subclasses such as

R|pi,j ∈ {1, 2, 4}|Cmax, R|pi,j ∈ {p, q, r}|Cmax, and R|pi,j ∈ {p, q,∞}|Cmax are NP-

hard. In response, we gave a 2-approximation algorithms for R|pi,j ∈ {1, 2, 4}|Cmax

and R|pi,j ∈ {1, 2,∞}|Cmax. We gave a (q/p)-approximation algorithm for subclasses

such as R|pi,j ∈ {p, q,∞}|Cmax, and R|p ≤ pi,j ≤ q|Cmax. In pursuit of understanding

the relationship between the tractable and intractable instances, we emphasized the

relationship between matchings and R||Cmax. Additionally, we demonstrated that

not all subclasses of R||Cmax follow the general hardness of approximation results.

In conclusion, we have contributed new results to theoretical computer science, and

combinatorial optimization.
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As a consequence of this work, an open problem stands for the NP-hard subclass

R|pi,j ∈ A(p, q) ∪ {∞}|Cmax. The fact that R|pi,j ∈ A(p, q) ∪ {∞}|Cmax does not

apply to the hardness of approximation result for R||Cmax may indicate that a PTAS

exists. Is there a PTAS for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax? If there is no PTAS for

this subclass, are there any non-trivial hardness of approximation results for R|pi,j ∈

A(p, q) ∪ {∞}|Cmax? Since there exists a (q/p)-approximation algorithm for the NP-

hard subclass R|pi,j ∈ A(p, q)∪ {∞}|Cmax, the hardness of approximation results for

R||Cmax do not apply when q/p < 3/2.



Appendix A

Linear Programming

The following appendix is to prepare readers for any concepts in linear program-

ming that may be presented in this thesis. In this appendix, the concept of a linear

program (LP) is given; a system of non-negative linear inequalities with the goal of

minimizing or maximizing an objective function. We discuss some forms LPs can

take, summarize some computational complexity results relating to LPs, and the

concept of a basic feasible solutions for a LP. Following this, introduced are integer

programs (IP), a natural way to formulate many optimization problems of interest to

theoretical computer science. At the end of this chapter, we discuss the integrality

gap of an IP.

We recommend reading Section 1.2 on optimization problems before this appendix,

because we adopt the terminology used in Section 1.2 when describing optimization

problems.

112
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A.1 Linear Programs

At times, we employ linear programming to assist in solving optimization prob-

lems. Before defining what a linear program (LP) is, we provide an example. Consider

the following optimization problem we call the Perfect Ice Cream Sundae Problem.

Imagine you are the owner of an ice cream parlour called Yummy’s Ice Cream Treats.

Suppose you are given ρ toppings, and taste value τ ∈ R+. For 1 ≤ i ≤ ρ, each top-

ping i has a cost ci ∈ R+ in cents per gram (c|/g), and a yumminess factor yi ∈ R+,

each set by the owner based on the performance of various ice cream sundaes served.

First, assume that all sundaes served are the same size, so the amount of each topping

used is of concern. Next, define, for each 1 ≤ i ≤ ρ, an amount of topping xi grams

to be placed on the sundae, where xi ≥ 0. Develop the perfect ice cream sundae that

satisfies the following constraints while minimizing the cost of the sundae:

• The sum of the yumminess factors is at least the taste value τ . This constraint

ensures that the quality of taste based on your data is splendid.

• The amount of toppings used for each sundae is at most 3 grams. You boast

how your sundaes only have 3 grams of toppings while maintaining a splendid

flavour.

For this problem, denote an instance I = (τ, (c1, . . . , cρ), (y1, . . . , yρ)), and for

x = (x1, . . . , xρ), c(I,x) as an objective value for the objective function c. Consider

the following example instance of the Perfect Ice Cream Sundae Problem with ρ = 2.

Example A.1.1. Let τ = 3.5. In Table A.1, we give the costs and the yumminess

factor of each topping.
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i Topping Cost (ci) Yumminess Factor (yi)
1 Fudge 3 c|/g 5
2 Sprinkles 2 c|/g 7

Table A.1: An example table of toppings for an instance of the Perfect Ice Cream
Sundae Problem.

There are many feasible solutions to this problem. Selecting x1 = 2 grams, x2 = 1

gram is a feasible solution for this instance. The optimal solution that minimizes

c((3.5, (3, 2), (5, 7)), (x1, x2)) = 3x1 + 2x2 is when x1 = 0 grams, and x2 = 0.5 grams.

In this case, it seems a simple sundae with a dash of sprinkles minimizes their costs

while maintaining the quality of taste. �

The Perfect Ice Cream Sundae Problem is an example of an minimization problem

we can formulate as linear program (LP). One LP formulation LPic of this problem:

minimize

ρ∑
i=1

cixi (LPic)

subject to

ρ∑
i=1

yixi ≥ τ (A.1)

ρ∑
i=1

xi ≤ 3 (A.2)

xi ≥ 0, for i = 1, 2, . . . , ρ. (A.3)

In this LP, we call:

•
∑ρ

i=1 cixi the objective function,

• inequalities (can be equalities) A.1 – A.2 the constraints,

• inequalities A.3 the non-negativity constraints.
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A feasible solution (x1, . . . , xρ) to LPic is one that satisfies all the constraints and non-

negativity constraints. The objective value is the output of the objective function for

a given feasible solution x. An optimal solution (x∗1, . . . , x
∗
ρ) for LPic is feasible, and

has minimum objective value. Notice that the objective function, and constraints are

comprised of linear terms with respect to variables x1, . . . , xρ. In LPic, we assumed

there were two constraints, ρ non-negativity constraints, and ρ variables.

With a better understanding of some of the terminology we need, let us give the

general linear programming problem. Let A be a v×h real-valued matrix, where each

row corresponds to the coefficients of linear terms on the LHS of each constraint. Call

matrix A a constraint matrix. We assume that the rows of A are linearly independent.

Also, let b and c be real-valued column vectors of length v and h, respectively. The

LP problem is to find a feasible solution x (a column vector of length h) so that

cTx is minimized, subject to a system of inequalities or equalities called constraints,

while each x ≥ 0. As a convention, we will write x, c, and b horizontally when being

described as a tuple, but will properly use them as column vectors otherwise. An

important note is that maximizing cTx is equivalent to minimizing −cTx, so we do

not need to consider LPs that state their goal as “maximize”. An LP is called feasible

if there exists a feasible solution to the LP. Also, if the set of feasible solutions for

the LP is empty, then the LP is called infeasible. When we discuss our constraints

as a system of linear inequalities of any form, an LP is said to be in general form. If

constraints of the system take the form Ax = b, with goal of minimization, and valid

non-negativity constraints, we say the LP is in standard form. That is, the standard
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form of an LP is

minimize cTx

subject to Ax = b

x ≥ 0.

Though we can formulate LPs in general form, we present LPs in standard form,

because any LP can be written in standard form. Standard form is useful when we

discuss basic feasible solutions in Section A.3. Next, we describe how to convert any

LP in general form into a LP in standard form. After, we show how to give a LP

in standard form for our instance of the Perfect Ice Cream Sundae Problem from

Example A.1.1.

To turn a general form LP into a standard form LP, replace all inequality con-

straints with equality constraints as follows. Given an inequality constraint of the

form “
∑h

j=1 ai,jxj ≤ bi”, introduce a slack variable si ≥ 0, and write instead “
∑h

j=1 ai,jxj+

si = bi”. A slack variable represents a compensatory amount to enforce equality. Like-

wise, we can introduce a surplus variable si ≥ 0 when an inequality constraint is of

the form “
∑h

j=1 ai,jxj ≥ bi”, and write as a substitute “
∑h

j=1 ai,jxj−si = bi”. Similar

to a slack variable, a surplus variable models excess numeric contribution in case the

original constraint did not meet with equality. Finally, include all slack and surplus

variables in the objective function, each with coefficient of value 0. As a byproduct of

these two possible transformations, a LP in standard form is produced that models

the original LP in general form.

Let’s put everything together now in an example to help demonstrate the pro-

cedure of transforming a general form LP to a standard form LP and give how we
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defined the linear programming problem.

Example A.1.2. In Example A.1.1, we presented an instance of the “Perfect” Ice

Cream Sundae Problem. Using our formulation LPic, we give the problem as a LP in

general form.

minimize 3x1 + 2x2 (LPic-general)

subject to 5x1 + 7x2 ≥ 3.5 (A.4)

x1 + x2 ≤ 3 (A.5)

x1 ≥ 0, x2 ≥ 0. (A.6)

Following our definition of the LP problem, c = (3, 2), b = (3.5, 3). We now put

LPic-general in standard form. Introduce a surplus variable s1 ≥ 0 for inequality A.4,

and slack variable s2 ≥ 0 for inequality A.5. Then, we obtain LPic-standard:

minimize 3x1 + 2x2 + 0s1 + 0s2 (LPic-standard)

subject to 5x1 + 7x2 − s1 = 3.5 (A.7)

x1 + x2 + s2 = 3 (A.8)

x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0. (A.9)

The constraint matrix A for this standard form LP is

A =

 5 7 −1 0

1 1 0 1

 .

So the goal is to find what non-negative values for (x1, x2, s1, s2), so that



118 Appendix A: Linear Programming

 5 7 −1 0

1 1 0 1




x1

x2

s1

s2


=

 3.5

3

 ,

and the objective value

(
3 2 0 0

)


x1

x2

s1

s2


= 3x1 + 2x2

is minimized. �

To conclude this section, we next introduce the idea of unboundedness for a LP.

We say that a LP is unbounded if the objective function of the LP is not bounded

from above. When a LP is unbounded, variables in the LP can always be reassigned

to yield a better objective value without finding an optimal solution. Unbounded LPs

can be feasible, but do not have an optimal solution.

A.2 A Brief Note on Solving Linear Programs

Recall the problem instance of the Perfect Ice Cream Sundae Problem given in

Example A.1.1 of Section A.1. We stated that the optimal solution for LPic-general

was x = (0, 0.5). Consider the LP LPic-standard from Example A.1.2. The same

optimal solution for picking the same toppings is (x1, x2, s1, s2) = (0, 0.5, 0, 2.5). In
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order to understand what makes this x an optimal solution for LPic-standard, let us

first consider the possible feasible solutions for LPic-general.

x1

x2

0 1 2 3 4
0

1

2

3

4

Figure A.1: A geometric plotting of the feasible region that corresponds to all the
feasible solutions of LPic-general.

In order to be feasible, all the constraints need to be satisfied, such that each

x1, x2 ≥ 0. As seen in Figure A.1, this forms a closed region. We call such a region

a feasible region, because all feasible solutions to LPic-general are found in it. No-

tice that the optimal solution sits at a corner of this feasible region. These corners

solutions are called basic feasible solutions. We discuss basic feasible solutions in

Section A.3.

Though we do not focus on linear programming itself in this thesis, it is fundamen-

tal to understand two points that need to be made about LPs. One, linear programs

can be solved algorithmically. Two, there is a polynomial-time algorithm to solve any

LP. The first known algorithm that solves any LP is the simplex method [6]. The

simplex method traverses each of the corners of a feasible region to find an optimal
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solution, which also exists at a corner if there is an optimal solution. Of the times

we apply linear programming in this thesis, we do not use the simplex method. The

simplex method in general is not a polynomial-time algorithm. In the worst case, the

simplex method has an exponential running time [27]. Though the simplex method

is not a polynomial-time algorithm, it performs well for many instances, and is often

considered the “workhorse” for linear programming. In 1979, Khachiyan [26] devel-

oped the first polynomial-time algorithm for solving any LP. This algorithm is called

the ellipsoid method. Though this result is theoretically significant, Karmarkar [24]

in 1984 developed an algorithm that solves any LP in polynomial time, and is more

efficient in practice than the ellipsoid method. Karmarkar’s projection algorithm (or

Karmarkar’s algorithm) is an example of an interior-point method, that is, an algo-

rithm that does not traverse the outer boundaries of a feasible region and, instead,

finds a feasible solution that is optimal by traversing the inside of the feasible region.

A.3 Basic Feasible Solutions of a Linear Program

Suppose we are given a LP in standard form with v constraints and h variables.

Consider its v× h constraint matrix A and some solution x, so that Ax = b. We say

a solution x is basic if there are at most v non-zero components of x. A basic feasible

solution (BFS) is a basic solution that is also a feasible solution for the given LP.

When we consider a basic solution, we call h− v of the variables that have value zero

non-basic variables, and the remaining v variables basic variables. A basic solution

is called non-degenerate when there are exactly v basic variables that are non-zero.

Note that a basis B for the column space of constraint matrix A can be constructed
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by taking linearly independent columns of A that are indexed by each non-zero basic

variable.

Consider the example instance we introduced for the Perfect Ice Cream Sundae

problem in Section A.1. A solution x = (x1, x2, s1, s2) = (0.5, 0.5, 2.5, 2) is a feasible

solution to the LP but is not a BFS, because there are more than two non-zero

variables in x. In Section A.2, we said that an optimal solution to the LP for this

instance was (x1, x2, s1, s2) = (0, 0.5, 0, 2.5). Observe that this is a (non-degenerate)

BFS that occurs at a corner in the feasible region of the LP. This is no coincidence.

Since we have an understanding of what a BFS is, we can now provide a complete

characterization for the existence of optimal solutions for any LP in standard form

called the Fundamental Theorem in Linear Programming.

Theorem A.3.1 (J. Matoušek and B. Gärtner [35], Theorem 4.2.3). Consider any

arbitrary LP in standard form. Then the following is true:

• if there is no optimal solution for the LP, then the LP is unbounded or infeasible,

• if the LP is bounded and feasible, then there is an optimal solution for the LP,

• if there is an optimal solution, then there exists a BFS (see Section A.3) that

is optimal.

Finally, there is an important theorem in linear programming that follows from

Theorem A.3.1 that says if the LP is bounded and feasible, then there is an optimal

solution that occurs at one of the corners, and that this corner is the same as a BFS.

In a standard form LP that is bounded, the number of corners is finite. Geometrically,
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each corner when connected by edges from each constraint forms a convex polyhedron

P = {x |Ax = b,x ≥ 0},

the feasible region. We remind the reader that A is the constraint matrix of a given

LP. Each corner cannot be written as a convex combination of any two points in the

feasible region, since P is a convex hull. That is, given a corner x of P , there do

not exist points y, z ∈ P with x 6= y and x 6= z, so that x = λy + (1 − λ)z with

λ ∈ (0, 1). What we have been calling the corners of the feasible region are called

extreme points of P . As we have previously stated, an extreme point of P corresponds

to a BFS of P . This correspondence is drawn from the linear independence of the

columns indexed by non-zero basic variables in a BFS of P , and because an extreme

point cannot be formed by a convex combination of different points in P . We now

give this correspondence as a theorem, and we refer the reader to a proof of this result

by Lau et al. [32].

Theorem A.3.2 (Lau et al. [32], Theorem 2.1.5). Given a constraint matrix A,

consider convex polyhedron P = {x |Ax = b,x ≥ 0}. The extreme points of P are

the BFSs of P .
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A.4 Integer Programs, Linear Program Relaxations,

and Integrality Gaps

To begin this section, let us define an Integer Program (IP). An IP takes the form,

minimize cTx

subject to Ax ≤ b

x ∈ Zh,

where A is a v × h constraint matrix, b and c are real-valued column vectors of

length v and h, respectively and x is a column vector of length h whose components

all are integers (that correspond to what are often called integrality constraints).

In many instances, x ∈ {0, 1}h, because IPs can model numerous decisions in an

optimization problem. That is, variables of this form can represent a yes/no choice

with 1 or 0, respectively. Due to this, variables of this form are called decision

variables and can model many NP-hard optimization problems. Unlike solving any

linear programming problem, solving any general integer programming problem is

NP-hard, because solving any general IP when x ∈ {0, 1}h is NP-hard [25]. In order

to reconcile this, researchers have developed techniques for some IPs to find feasible

solutions with an approximate objective value in polynomial time. One such technique

we will focus on is LP relaxation of an IP, and rounding.

To illustrate the concepts throughout this section, we will use a continuing exam-

ple, the minimum vertex cover problem. Let G = (V,E) be a graph with vertices V

and undirected edges E. The goal is to find a subset of vertices S ⊆ V such that every

edge e ∈ E is incident with a vertex in S and |S| is as small as possible. For example,
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given a graph G as shown in Figure A.2, the smallest vertex cover is of size two, and

is S = {2, 6}. Every edge is incident with vertex 2 or vertex 6. The minimum vertex

1 2

3

45

6

Figure A.2: A drawing of an input graph G = (V,E) for the minimum vertex cover
problem. The minimum vertex cover of G is S = {2, 6} as every edge is incident with
either vertex 2 or 6.

cover problem can be formulated as an IP. Given a graph G = (V,E), one such IP

formulation is IPV C(G).

minimize
∑
v∈V

xv (IPV C(G))

subject to xu + xv ≥ 1, ∀ {u, v} ∈ E (A.10)

xv ∈ {0, 1} , ∀v ∈ V (A.11)

Observe that the above IP models the minimum vertex cover problem. Notice

that for each vertex v ∈ V , xv = 1 when vertex v ∈ S. The objective function of

IPV C(G) minimizes the number of vertices included, and constraints A.10 ensure that

at least one vertex in S is at the endpoint of each edge. Given a feasible solution x

to IPV C(G), the size of a vertex cover |S| =
∑

v∈V xv.

Since we cannot solve this IP in polynomial time under the assumption that

P 6= NP, maybe we can consider an “LP-counterpart” of IPV C(G) that can be solved

in polynomial time. We can construct such a LP by relaxing the integrality constraints

to be non-negativity constraints. This is called relaxing an IP, and the byproduct is
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a LP called the LP relaxation of an IP. For instance, with IPV C(G), we can make a

LP by replacing each xv ∈ {0, 1} with xv ≥ 0. We call this new LP LPV C(G).

minimize
∑
v∈V

xv (LPV C(G))

subject to xu + xv ≥ 1, ∀ {u, v} ∈ E (A.12)

xv ≥ 0 , ∀v ∈ V (A.13)

Clearly, any feasible solution of IPV C(G) is a feasible solution for LPV C(G), but many

feasible solutions for LPV C(G) are not feasible solutions for IPV C(G). So we have two

problems. First, how can we obtain a feasible solution for IPV C(G) from an optimal

solution of LPV C(G)? Second, how “good” is the objective value of a feasible solution

for IPV C(G) if we can find it? We can approach the second question by considering

the integrality gap of an IP. Later we will give an example of how we could approach

the first problem.

The integrality gap of an IP is the worst-case ratio for all instances between the

optimal objective values of an IP and its relaxed LP counterpart. To be precise,

given an instance I of some minimization problem Π, the integrality gap of an IP is

maxI
OPT (I)

OPTLP (I)
, where OPTLP (I) is the optimal objective value of the LP relaxation

for instance I. The integrality gap indicates a limit on how well a LP relaxation of

an IP can approximate a feasible solution to the IP. If the integrality gap is found,

researchers who design approximation algorithms employ techniques such as rounding

to attempt to match the approximation factor with the integrality gap. In many cases,

such an approximation algorithm can be designed from a proof for the integrality gap.

For example, let us show that the integrality gap of IPV C(G) is two. The proof we
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present is based on a proof given by Chekuri [2].

Theorem A.4.1 (Chekuri [2]). The integrality gap of IPV C(G) is at most two.

Proof. Let graph G = (V,E). Consider optimal solutions x∗ and x̃ for LPV C(G) and

IPV C(G), respectively. Set S = {v | x∗v ≥ 1/2}. Since x∗ is a feasible solution to

LPV C(G), for any {u, v} ∈ E, x∗u + x∗v ≥ 1. So, either x∗u ≥ 1/2, or x∗v ≥ 1/2, and at

least u or v can be found in S. By definition, S is a vertex cover, and OPT (G) ≤ |S|.

Now, let OPTLP (G) =
∑

v∈V x
∗
v. Then, |S| ≤ 2 · OPTLP (G). As a consequence,

OPT (G) ≤ |S| ≤ 2 ·OPTLP (G). Therefore, OPT (G)/OPTLP (G) ≤ 2.

To conclude this section, we describe a 2-approximation algorithm for the mini-

mum vertex cover problem that is a consequence of the integrality gap of IPV C(G).

Assuming we are given an some input graph G, first solve LPV C(G) to obtain x∗. Con-

struct a set S as in the proof of Theorem A.4.1, then return S as a vertex cover. It is

straightforward to see that this is a 2-approximation algorithm from Theorem A.4.1.
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1, see single machine

3DM , see 3-dimensional matching

A(p, q), 105

Cj, see completion time (job)

Cmax, see makespan

Lmax, see maximum lateness

OPT (P ), see makespan, optimal

P‖Cmax, see makespan problem on iden-

tical parallel machines

P |prec|Cmax, 73

P , see identical parallel machines

Q‖Cmax, see makespan problem on uni-

formly related parallel machines

Q|chains, rj|Cmax, 75

6-approximation algorithm, 75

Q|prec, rj|Cmax

O(log(m))-approximation algorithm,

75

Q|prec|Cmax, 74

O(log(m))-approximation algorithm,

74, 75

O(
√
m)-approximation algorithm, 74

Q|prec|
∑

j wjCj, 74

O(log(m))-approximation algorithm,
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Q|prec, rj|Cmax, 75

Q, see uniformly related parallel ma-

chines

R‖Cmax, see makespan problem on un-

related parallel machines

R‖Cmax with D-dimensional jobs and a

fixed number of machine types

PTAS, 81

R‖
∑

j wjCj, 80

(2T, 3C/2)-approximation algorithm,
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R|forest|Cmax, 80

approximation algorithm, 80
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R|forest|
∑

j wjCj, 80

approximation algorithm, 80

R|p ≤ pi,j ≤ q|Cmax, 19, 108

R|pi,j ∈ A(p, q) ∪ {∞}|Cmax, 19, 106

(q/p)-approximation algorithm, 106

NP-hard, 106

R|pi,j ∈ {1, 2, 4}|Cmax, 19

2-approximation algorithm, 96

NP-hard, 92

R|pi,j ∈ {1, 2,∞}|Cmax, 19, 98

2-approximation algorithm, 104

3-approximation algorithm, 100

NP-hard, 98

R|pi,j ∈ {1, 2}|Cmax, 12, 57

polynomial-time algorithm, 66

R|pi,j ∈ {1,∞}|Cmax, 52

polynomial-time algorithm, 52

R|pi,j ∈ {1, p, q}|Cmax, 19

NP-hard, 96

R|pi,j ∈ {ω,∞}|Cmax, 83

polynomial-time algorithm, 83, 85

R|pi,j ∈ {ω,∞}|Cmax with initial loads,

19, 83

polynomial-time algorithm, 85

R|pi,j ∈ {p, 2p}|Cmax, 66

polynomial-time algorithm, 66

R|pi,j ∈ {p, q,∞}|Cmax, 19

(q/p)-approximation algorithm, 101

NP-hard, 100

R|pi,j ∈ {p, q, r}|Cmax, 19

NP-hard, 96

R|pi,j ∈ {p, q}|Cmax, 19, 79, 80

(q/p)-approximation algorithm, 101,

105

NP-hard, 79

q-absolute approximation algorithm,

80

R|pi,j ∈ {p, q}|Cmax when q 6= 2p, 76,

80

NP-hard, 76

q-absolute approximation algorithm,

80

R|pi,j ∈ {pj,∞}|Cmax, 81

1.9412-approximation algorithm, 81

R|pi,j = 1|Cmax, 51

polynomial-time algorithm, 51
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R, see unrelated parallel machines

Rm‖Cmax

PTAS, 21, 81

α|β|γ, see Graham notation

∞, see restricted assignment∑
j wjCj, see weighted completion time

chains, see partial order as chains

forest, see partial order as forest

l ≤ pi,j ≤ u, see bounded processing

times

m, see machine

n, see job

pi,j ∈ A, see restricted processing times

pi,j, see processing time

pi,j = 1, see unit processing times

pmtn, see preemptive jobs

prec, see precedence constraints

qDM , see q-dimensional matching

rj, see release dates

tree, see partial order as a tree

u ≺ v, see precedence constraints

2-1 CBS, see 2-1 constrained bipartite

subgraph

2-1 constrained bipartite subgraph, 57

3-dimensional matching, 23

approximation algorithm, 12

k-absolute approximation algorithm,

13

k-approximation algorithm, 13

example, 13

fully polynomial-time approximation

scheme, 16

polynomial-time approximation scheme,

16

approximation factor, 13

approximation ratio, see approximation

factor

assignment matrix, 5

basic feasible solution, 120

basic variables (basic solution), 120

BFS , see basic feasible solution

binary search, 36

bounded processing times, 11

completion time (job), 10

completion time (machine), see sum of

job lengths (machine)



136 Index

computational complexity, 3

constraint matrix, 115

decision variable, 123

duration, see processing time

extreme point, 122

feasible (linear program), 115

feasible region (linear program), 119

FPTAS, see fully polynomial-time ap-

proximation scheme

fractionally set (job), 40

fully polynomial-time approximation scheme,

16

fundamental theorem of linear program-

ming, 121

goal, 3

Graham notation, 8

examples, 12

job characteristics, 9, 11

machine environment, 8, 9

optimality criterion, 10

graph balancing, 80

1.75-approximation algorithm, 81

hardness of approximation, 16

identical parallel machines, 9

infeasible (linear program), 115

initial load, 83

instance, 3

integer program, 123

integrality constraints (integer program),

123

integrality gap, 125

integrally set (job), 40

job, 5

length (job), see processing time

linear program

general form, 115

standard form, 115

linear program relaxation (of an integer

program), 125

list scheduling algorithm, 16, 51, 73, 74

load, see sum of job lengths (machine)

longest processing time first algorithm,

73

LPT algorithm, see longest processing

time first algorithm
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machine, 5

makespan, 2, 10

definition, 5, 6

minimum, 6

optimal, 6

makespan problem

feasible solution, 5

identical parallel machines, 9, 13,

73

2-approximation algorithm, 14, 73

4/3-approximation algorithm, 73

FPTAS, 74

PTAS, 74

optimal solution, 6

single machine, 9

uniformly related parallel machines,

9, 74

O(log(m))-approximation algorithm,

74

O(
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m)-approximation algorithm,

74

unrelated parallel machines

2-approximation algorithm, 21, 22,

42

2
√
m-approximation algorithm, 21

NP-hard, 5

m-approximation algorithm, 20,

35

definition, 5, 9

example, 6

hardness of approximation, 22

PTAS, 21, 81

subclass, 4

maximum 2-1 CBS problem, see max-

imum 2-1 constrained bipartite

subgraph problem

maximum 2-1 constrained bipartite sub-

graph problem, 57

maximum completion time, see makespan

maximum lateness, 10

non-basic variables (basic solution), 120

non-preemptive jobs, 5, 9

objective function, 3

objective value, 3

optimal, 3

optimal solution, 3
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optimization problem, 3

NP-hard, 3, 12

sub-instances, 4

subclass, 4

partial order, 11

as chains, 11

as forest, 11

as tree, 11

Perfect Ice Cream Sundae Problem, 113

performance guarantee, see approxima-

tion factor

polynomial-time approximation scheme,

16

precedence constraints, 11

preemption, 11

preemptive jobs, 11

processing requirement matrix, 5

processing time, 5

processing unit, see machine

pseudoforest, 38

pseudotree, 38

PTAS, see polynomial-time approxima-

tion scheme

q-dimensional matching, 23, 76, 92

redundant (job), 54

release dates, 11

restricted assignment, 9, 82

restricted processing times, 9, 11

rounding technique, 30

schedule

feasible, 5

optimal, 6

scheduling

non-preemptive, 5

notation, see Graham notation

single machine, 9

slack variable, 116

sum of job lengths (machine), 5

surplus variable, 116

task, see job

tight example, 14

unbounded (linear program), 118

uniformly related parallel machines, 9

unit processing times, 11
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