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ABSTRACT

After alarge myocardial infarction (MI), ventricular chamber dilatation and

sphericalization are attended by cardiac hypertrophy and interstitial fibrosis, leading to

the loss of normal cardiac function. We have previously shown that nonmyocytes present

in the healed 8-week infarct scar overexpress transduction proteins required for initiating

the elevated deposition of structural matrix proteins in this tissue. Other studies indicate

that TGF-BI maY be involved in cardiac fibrosis and myocyte hyperhophy. Despite the

existence of this evidence, the significance of altered TGF-B signaling in heart failure in

the chronic phase of post-myocardial infarction (MI), particularly in the ongoing

remodeling of the infarct scar, is unclear. Pattems of cardiac TGF-p r and Smad 2, 3, and.

4 protein expression were investigated 8 weeks after MI and were correlated to relative

collagen deposition in border tissues (containing remnant myocytes) and the infarct scar

(nonmyocytes). Both TGF-PI mRNA abundance and protein levels were signif,rcantly

increased in the infarct scar vs. control values and this trend was positively correlated to

increased collagen type I expression. Cardiac Smad 2,3 and.4 proteins were significantly

increased in border and scar tissues vs. control values. Immunofluorescence studies

indicated that Smad proteins localized proximal to the cellular nuclei present in the

infarct scar' Decorin mRNA abundance was elevated in border and infarct scar and the

pattern of decorin immunostaining was markedly altered in remote remnant heart and

scar vs. staining patterns of control sections. TBRI (53 kDa) protein expression was

significantly reduced in the scar, while the75 kDa and 110 kDa isoforms of TBRII were



unchanged and signifrcantly increased in scar, respectively. using double

immunofluorescent analyses, we identified that the major cell type populating the g week

infarct scar was myofibroblasts. These results indicate that TGF-Br/Smad signaling may

be involved in the remodeling of the infarct scar after the completion of wound healing

per se, via ongoing stimulation of matrix deposition. Cardiac myofibroblasts may play

important roles in scar remodeling as well as cardiac hypertrophy and fibrosis of the

surviving tissue in post-Ml rat heart. As it is known that angiotensin II (angiotensin) and

transforming growth factor -Pr (TGF-Pr) play an important role in cardiac fibrosis and

infarct scar remodeling after myocardial infarction (MI), we further characterized 8 week

post-Ml rat hearts for altered expression of Smad proteins with and without losartan

treatment. ATI blockade was associated with attenuated activation of the latent form of

TGF-PI in remnant (viable) myocardium and infarct scar. Immunofluorescence (IF)

studies revealed Smad 2Iocalization to myofibroblasts in target tissues (many intensely

stained cells in the infarct scar) with less intense staining in cardiac myocytes. The

pattem of relatively intense staining in the remnant myocardium was limited to the

interstitial space. Cardiac myocytes stained weakly in the remnant heart, and these cells

are the predominant feature of this tissue. Losartan administration (15 mglkglday) for 8

weeks was associated with normalization of total cellular Smad 2 andsmad 4

overexpression in the infarct scar as well as Smad 2 overexpression in remnant heart

tissue. On the other hand, phosphorylated Smad 2 (P-Smad 2) staining was reduced in

cytosolic fractions from failing experimental heart tissues ys. controls and these trends

were nonnalízed in the presence of losartan, suggesting augmented P-Smad 2 movement

into (myo)fibroblasts nuclei in untreated hearts. Using cultured adult primary rat
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fibroblasts treated with 10-6 M angiotensin, we noted rapid translocation (15 min) of p-

Smad 2 into the cellular nuclei from the cytosol. Nuclear P-Smad 2 protein levels were

increased in cultured fibroblasts following 15 min angiotensin treatment, and this

response was blocked by losartan treatment. We conclude that angiotensin may influence

total Smad 2 and 4 expression in post-Ml heart failure, and that angiotensin treatment is

associated with rapid P-Smad 2 nuclear translocation in isolated f,rbroblasts. The results

of this study indicate that crosstalk between angiotensin and Smad signaling is associated

with fibrotic events in post-Ml hearts.

To determine whether angiotensin stimulation alone is suffrcient to stimulate

Smad 2 phosphorylation/transfection, we blocked TGF-Pr signaling in cultured cardiac

fibroblasts using TGF-P neutralizing antibody (1.5 ¡rgiml) in cultured cardiac fibroblasts.

We found that both angiotensin and TGF-81 (10 ng/ml) increased the accumulation of

phosphorylated Smad 2 in the nuclei in fibroblasts. This effect of TGF-B¡ was abrogated

in the presence of TGF-B neutralizing peptide. However, the effect of angiotensin on

Smad 2 activationwas not blocked in the presence of TGF-B neutralizing peptide.

Adenoviral dominant-negative TGF-B type II receptor (ADvDNTpRII) was

administered to cultured cardiac fibroblasts [Multiplicity Of Infection (MOI) :25 ).

Immunoreactive P- S m ad 2 lo calization was examined using immuno fl uorescent staining.

ADvDNTBRII-infected fibroblasts showed similar Smad 2 phosphorylation/translocation

responses to angiotensin stimulation (10 -6 M for 15 min) as controls treated with

Adenovirus expressing p-gal receptor gene (MoI:25), suggesting a direct effect of

angiotensin on Smad 2 activation. Thus angiotensin activates Smad 2 in cardiac

fibroblasts through a TGF-B¡ ligand-independent pathway.



Our studies indicate that R-Smad 2 is activated in post-Ml rat hearts and may

specifically mediate both angiotensin and TGF-B¡ signaling, which may be involved in

the pathogenesis of cardiac f,rbrosis and subsequent heart failure. Modulation of Smad 2

mediated signaling may provide a therapeutic target for the prevention of cardiac fibrosis

and heart failure and further investigation of this possibility is warranted in this regard.
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chapter 1. INTRODUCTION AND STATEMENT oF'THE PROBLEM

After left ventricular (LV) myocardial infarction (MI), the infarcted myocardium

undergoes a repair process, referred to as cardiac fibrosis. This general phenomenon

includes the occurrence of fibroblast proliferation and concomitant deposition of

extracellular matrix (1-3). Fibrosis occurs not only in the necrotic tissues (i.e., zone of

infarction), but also in remnant cardiac tissues (non-infarcted LV region) and in right

ventricle (RV) of post-Ml hearts. It has been well documented that cardiac collagen is an

important determining factor for passive cardiac stiffness and that excessive collagen

accumulation in the otherwise normal cardiac interstitium may contribute to increased

myocardial stiffness (4-7). The accumulation of interstitial collagen also leads to

disruption of electrical coupling among myocytes, reduced capillary density and

increased diffusion distance for oxygen and carbon dioxide (COz), which in turn may

lead to an increase of metabolic stress or even overt ischemia with increased incidence of

myocyte apoptosis (8-10). Thus, the occurrence of cardiac fibrosis in remnant

myocardium after MI may result in an impairment of cardiac function leading to the

development of congestive heart failure. However, the underlying mechanisms for the

pathogenesis of cardiac fibrosis remain unclear to date. Increasing evidence has

suggested that the pleiotropic angiotensin II (angiotensin) and transforming growth factor

(TGF)-Br play crucial roles in the progression of cardiac fibrosis during developing

cardiac hypertrophy and heart failure (1 1-15). TGF-Pr is a powerful initiator for the

production of collagens and other major extracellular matrix (ECM) components in a

variety of cell types (16). Increased expression of TGF-81 has been noted in the

myocardium during pressure overload-induced hypertrophy (17) and early after



myocardial infarction (18). Conversely, other evidence suggesting that angiotensin is

associated with cardiac fibrosis in different models of heart failure including myocardial

infarction exists (15,19-21). Chronic administration of an ACE inhibitor or an AT¡

receptor antagonist, significantly attenuates fibrosis in both infarcted and non-infarcted

rat myocardium (T2,14,15,22). Nevertheless, the precise signaling pathways and in

particular the post-receptor mechanism of TGF-B and angiotensin in post-Ml heart as

well as the relationship between these two cytokines is far from clear. Very recently,

Smad 2 has been identified as the downstream effectors of TGF-B¡ (23,24). Receptor-

activated Smad 2 dimerizes with Smad 4 upon phosphorylation of tyrosine residues on

the Smad 2 C-terminal region Q4,25). The phosphorylated Smad 2-Smad 4 dimer then

translocates to the nucleus and initiates gene transcription (24,26) by association with

eukaryotic nuclear transcription factors via their specific binding to Smad 2 e4,26).

Thus the phosphorylation of Smad 2 arÅ its subsequent translocation to the nucleus may

be the critical steps in modulation of signaling by this pathway in cardiac

(myo)fibroblasts. However, little information is available regarding the TGF-81 signaling

during development of post-Ml heart failure. There is little information dealing with

reports on the expression of Smad proteins in normal or failing heart of any etiologies.

Our working hypotheses are that 1). Smad 2 mediates TGF-Pr and angiotensin-induced

cardiac fibrosis, 2). blockade or inhibition of the phosphorylation or translocation of Smad 2

can attenuate the post-Ml fibrosis syndrome and alter the development of heart failure, and

3). angiotensin may stimulate Smad 2 independently of TGF-B¡ recepto¡s activation.
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Chapter 2. LITERATURE REVIEW

2.1 CanuAC FrBRosrs Posr-MyocARDrAL INFARCTToN

After myocardial infarction (MI), the myocardium undergoes a repair process

involving scar formation at the site of infarction that includes fibroblast and

myofibroblast proliferation and concomitant deposition of extracellular matrix proteins

(3). During the early phase of MI, activation of these processes is critical for normal

wound healing in the infarcted region. However, eventual interstitial fibrosis also occurs

in remnant tissue and acts to increase myocardial stiffrress. Further expansion of the

extracellular matrix impairs diastolic stiffness and compromises systolic mechanics

contributing to subsequent cardiac hypertrophy and heart failure (27,2g). Thus, the

investigation of mechanism(s) underlying post-Ml cardiac fibrosis has attracted

considerable attention in recent years.

2.2 Cot t'tcEN REMoDELING AND HEART Farr,unn AFTER Myoc¡,RuAL INFARCTIoN

The remodeling of non-infarcted cardiac tissue includes the appearance of

ventricular hypertrophy, interstitial fibrosis and loss of normal ventricular geometry

followed by the development of heart failure. The role of collagen in the remodeling of

both scar and remnant cardiac tissues after MI has been increasingly recognized as an

important factor in heart failure during recent years (3,29).

7
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After the initial inflammatory cell response, fibroblasts arrive at the site of repair

where they undergo phenotypic transformation to myofibroblasts (30). Myofibroblasts

have extensive rough endoplasmic reticule and Gulgi apparatus characteristic of

fibroblasts. In contrast to fibroblast, these cells express cr-smooth muscle actin (a-SMA),

which resemble the myofibrils of smooth muscle cells. Fibroblasts have an extensive

clonal heterogeneity and phenotypically transformed f,rbroblast-like cell populations,

having broad-ranged functional diversity, including their ability to promote fibrous tissue

contraction. Myofibroblasts proliferate and express cytokine and other peptide receptors

essential to their subsequent behavior (30).

The presence of myofibroblasts in actively contracting granulation tissue and

hypertrophic scars and their morphologic characteristics have led to the proposal that the

myolrbroblast is the cellular agent responsible for tissue contraction (31,32).

Myofibroblast contraction governs matrix remodeling, including scar thiruring(33). The

presence of myofibroblasts in myocardial granulation tissue following an infarct has been

shown to persist for a long time (34,35). Cardiac myofibroblasts are abundant at the site

of cardiac tissue repair, are known to synthesize fibrillar collagens and are major players

in the formation of infarct scar structure in the post-Ml heart (36). Although signals that

determine the appearance of the myofibroblast phenotype are not entirely certain, it has

been demonstrated that TGF-81 is able to induce, invitro, the differentiation of adult rat

cardiac fibroblasts to an angiotensin-converting enzymecontaining phenotype of

myofibroblasts (37). A recent study has shown that the TGF-pr stimulated collagen

production in cultured second passage of adult rat cardiac fibroblasts is positively

correlated with the appearance of o -sMA (38). TGF-Þ1 increases the collagen

8



production and stimulates the differentiation of fibroblasts to myofibroblasts. The

maximal stimulation of collagen production with TGF-Br for 48 hours is accompanied by

a maximal stimulation of s -SMA expression when cultures consist mainly of

myofibroblasts, which have a higher activity for collagen production than fibroblasts

(38). Myofibroblast also elaborate and metabolize various substances that regulate their

turnover of collagen and govern fibrous contraction in an autocrine manner. These

include angiotensin, endothelin-1 (ETr), catecholamines, bradykinin, and serotonin (39).

Myofibroblasts are eliminated by apoptosis when the fibrotic process is complete (32).

However, at the infarct site, a population of myofibroblasts persists long after healing is

complete and might contribute to an ongoing process of collagen turnover at the MI site

(34,40).

2.4 Earu,v Rnruoonr,rNc oF collacnN ArrBR MyocanorAl INFARcTToN

In the rat model of MI, total collagen content in the infarct zone is known to

decrease by 25% - 50% one to three hours after the induction of MI when compared with

non-infarcted myocardium (a1). Results from an electron microscopic study indicate that

collagen fibrils and elastic fibers are rapidly broken down in acute ischemic conditions

@2). Catdiac interstitial collagenase, elastase, and cathepsin G activities are significantly

increased in infarcted tissue compared with noninfarcted control values, and these

findings suggest that the increased activities of collagenase and other neutral proteases

may be responsible for these changes (4T,43,44). The acute loss of cardiac matrix may

lead to myocyte slippage in the ischemic zone causing thinning and dilatation of the

necrotic region (infarct expansion) and even rupture of the myocardium (4,45). Infarct
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expansion may impair heart function via an increase of ventricular volume beyond

optimal geometry in the early post-Ml phase. This rapid dilatation thereby reduces the

contractile efficiency of the remnant myocardium by invoking time-dependent secondary

changes in the noninfarcted tissue (2,27).

2.5 TsB CHnoNlc Ps¿,se oF'CoLLAGEN MATRTx RnruonnlrNc AFTER MyocaRor¡.1

INpaRcrroN

The heart has a three-dimensional extracellular fibrillar collagen scaffolding that

normally serves a variety of functions important to tissue integrity and efficiency of

muscular systolic pump and diastolic suction pump function (46,47). An adverse

accumulation of extracellular matrix structural protein compromises tissue stiffness and

adversely affects myocardial viscoelasticity leading to ventricular diastolic and systolic

dysfunction. Hormonal factors, such as chronic inappropriate (relative to dietary salt

intake and intravascular volume) elevations in circulating angiotensin II and aldosterone,

are accompanied by fibrosis of right and left sides of the heart. Hemodynamic factors

regulate cardiac myocyte work and their adaptive hypertrophic growth. The relative

contributions of hormonal and hemodynamic factors in regulating growth of muscular

and nonmuscular compartments must form the basis for the selection of pharmacologic

intervention that will optimizethe management of s¡rmptomatic heart failure that

accompanies hypertensive heart disease and ischemic cardiomyopathy (CMp) .

Cardioprotective strategies that prevent alteration of normal cardiac tissue structure by

fibrosis and appearance of abnormal ventricular stiffness (viscoelasticity) are based on
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negating the generation of these hormones or interfering with their receptor-ligand

binding' A regression of established cardiac fibrosis and an improvement in abnormal

ventricular stiffness is feasible. Experimental and clinical findings with lisinopril in

hypertensive heart disease, where cardiac fibrosis and abnormal ventricular stiffness are

present, indicate that such cardioreparation should be a targeted objective of

pharmacologic intervention. Systematic analysis of this approach using a controlled

clinical trial format is warranted. In recognizing the importance of viscoelastic elements

in regulating the mechanical behavior of cardiac tissue and in turn systolic and diastolic

ventricular function, a broader tissue compartment based paradigm (ECM versus

myocyte) for the management of heart failure emerges (48).

Cardiac interstitial fibrosis, present in the chronic phase of MI, is recognized as a

marker of irreversible cardiac hypertrophy and heart failure in post-Ml hearts (49).

Collagen deposition in the infarct zone is progressively increased from one to six weeks

after the induction of MI (50). Cardiac collagen is also found to be increased in the

myocardium from patients with coronary artery disease (51,52). Results from our

laboratory have indicated that the total collagen concentration in remnant LV and RV, as

determined by 4-hydroxyproline measurement, was increased at 2,4, and.B weeks after

MI (53). Moreover, others have shown that the mRNA abundances of collagen types I,

III and IV, as well as fibronectin are all increased in remnant myocardium after MI

(43,54). It is known that the stability and functionality of collagen are dependent not

only on the total amotmt of collagen but also on the degree of covalent cross-linkage and

organization among fibrils. A recent description of the degree of cross-linking of

collagen fibrils as assessed by hydroxylysylpyridinoline (HP) assay, indicates that cross-
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linkage was increased in remnant free wall, but was unchanged in cardiac septum after

infarction (55). HP is the major lysine aldehyde-derived, non-reducible collagen cross-

link in myocardium and the concentration of trivalent HP is directly proportional to the

tensile strength of constitutive collagen (56). It has been well documented that cardiac

collagen is an important determining factor influencing cardiac muscle passive stiffness

and that excessive collagen accumulation may contribute to abnormal (increased)

myocardial stiffness (4-7). Further work has revealed that increased myocardial stiffness

may also be a consequence of an enhanced collagen cross-linking (57). Increased

stiffüess was found in papillary muscle from post-Ml hearts and depression of normal

cardiac contractility was associated with an increase in myocardial collagen content (58).

The accumulation of collagen proteins may also lead to morphologic and functional

separation of myocytes (8). Enlarged or expanded interstitium due to excessive

deposition of collagen results in the inhibition of electrical coupling of these myocytes, as

well as, increased diffusion distance for oxygen and all metabolic substrates (8,9).

Apoptotic cardiocytes have been noted to be localizedincollagen-encased myocytes

bordering the infarct scar (10). This suggests that cardiac fibrosis may contribute to the

development of heart failure by the loss of myocytes via the creation of conditions that

favour myocyte apoptosis (10). Thus, cardiac fibrosisper se in post-Ml hearts may

contribute to the development of CHF in this primary, as well as several secondary

(aforementioned) mechanisms.

Recent studies have shown that MMP-I, MMP-2 and TIMP-I are co-expressed in

heart tissue (a3). The expression of these proteins in myocardium has been localized,to

both cardiac fibroblasts and endothelial cells (59). The activation of a number of MMps
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has been hypothesized to play a role in matrix remodeling in both coronary artery disease

and idiopathic dilated cardiomyopathy in humans (60-62). Increased MMp activities and

a steady-state shift in the rate of removal of fibrillar collagens for the supportive matrix

structures has been suggested to cause myocyte slippage and misalignment within the

myocardium, thus, resulting in abnormalities in contractile force production (63). This

data support the hypothesis that abnormal turnover of collagen mediated via increased

MMP activities leads to the development of heart failure.

2.6 TGF-B rN rHE Myocanuunr

TGF-BI has been shown to controi diverse cellular events such as development,

differentiation, tissue repair, tumorigenesis, and many immune and endocrine functions

(64). TGF-F proteins (i.e., TGF-Br, z ârid 3) are secreted by most mammalian cells and

their actions are locally mediated through autocrineþaracrine release (65,66). It has been

demonstrated that cardiac myocytes, endothelial cells, fibroblasts and myofibroblasts

may generate TGF-Ê¡ (65). However, the expression of cardiac TGF-BI is mainly

localized to cardiac fibroblasts (65,67). Typicalry, any given cell secretes TGF-p in

biologically inactive or latent form, as it is normally bound to latency- associated peptide

(LAP). Latent TGF-P can be activated through dissociation from LAP by heating, cell-

cell interactions(68) and proteolytic treatments including extreme pH, urea, sodium

dodecyl sulfate (SDS), or exposure to plasmin, cathepsin D, and glycosidases (69).

Despite this information, the mode of physiological activation is as yet unclear. It is

known that all active TGF-P isoforms are covalently linked homodimers of -12.5 kDa

subunit proteins. The 12.5 kDa band can be visualized in the presence of strong reducing
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conditions with specific antibodies (70). once released from the latent complex, active

TGF-B binds to components of the extracellular matrix (ECM or matrix) and accumulates

in the cardiac interstitium. This action may serve to protect TGF-p from degradation and

may function as a long-term source of this cytokine, also subserving normal turnover and

as a sink, ready for release in the occuffence of an exceptional event i.e., tissue damage

and wound healing. Decorin is yet another protein that binds TGF-p, and in doing so

may neutralize its activity. Some current investigation is ongoing to address potential

therapeutic avenues in this regard (7I,72). For example, it has been hypothesized that

overexpression of decorin may lead to a marked inhibition of TGF-81-inducedfibrosis

(7t,72).

2.7 TGF-P RBc¡rroRS rN THE MyocaR¡rurvr

Affinity labeling technology has been applied to identify three major TGF-H

receptors present in most mammalian cell types and they includ type I (TpRI, mass 53

kDa), type II (TPRII, mass 70-100 kDa) and type III (a relatively large betaglycan of

200-400 kDa) (16). These receptors have been identified in both cardiac myocytes and

cardiac (myo)fibroblasts (73,74). Cardiac myocytes may have -2000TBRI binding sites

and -5000 TBRII binding sites per cell (75,76} The dogma surrounding our current

understanding of TGF-B¡ receptor function is that this is mediated through

transmembrane TBRI and TBRII receptors, which normally display serine/threonine

kinase activity. TGF-P receptor activation is initiated upon the binding of TGF-B to

TPRII, which then recruits and phosphorylates TBRI (26). Although these early receptor

events were initially characterized using epithelial cells, it has been shown that receptor
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dimerization and subsequent phosphorylation of TBRI in TGF-B signaling also exists in

cardiac myocytes and fibroblasts (77,78).

It has been shown that overexpression of TpRIII results in increased

responsiveness of vascular endothelial cells and this was interpreted to suggest that

TBRIII may facilitate TGF- B¡ binding (79). Despite this report, a complete

understanding of the function of TBRIII is far from clear and requires firther

investigation.

2.8 Sua¡ PRorBrNs

Recent results have provided an indication that Smad proteins servo as important

post-receptor TGF-B signal transducing components (g0,g1). The phosphorylated

(activated) TPzu then phosphorylates in turn, the downstream target R-Smad 2 (or R-

Smad 3) carboxy-terminal serine residues. Specifically, this has been identified as the

ssxs motif (24,24,80). Phosphorylated smad 2 (and/or smad 3) then form(s) a

heteromeric complex with Co-Smad 4 and this protein bundle rapidty translocates (within

minutes) and accumulates in the cellular nucleus (24,25,82,83). In the nucleus, R-Smad

2/Co-Smad4 complexes then regulate cellular transcriptional responses by specifically

interacting with DNA-binding proteins. Each cell type expresses a specific complement

of these DNA-binding proteins known as Smad coactivators and corepressors (84).

In addition, Smad complexes may directly bind promotor regions in specific

Smad binding elements (SBE's) of many different genes, and some work has indicated a

direct activation of specific genes in this mode (85,86). The role that direct binding

Smad DNA plays in cellular physiology is controversial, but much new research points to
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the reliance of the Smad signal on coactivator and corepressor involvement. Recent

studies indicate that TGF-81 signaling may be inhibited by other smad proteins such as I-

Smad 6 and l-Smad 7 (70,87-89).

2.9 Tlan TGF-p SrcNauNc p.q,ruway

TGF-Pt signaling is involved in two major membrane receptor kinases, type I

TGF-P receptor (TBzu) and type II TGF-F receptor (TpzuÐ, and a family of recepror

substrates the smad proteins (6a). To initiate the TGF-B signaling cascade, two different

transmembrane protein serine / threonine kinases, known as TGF-BI receptor types I and

II are brought together by the ligand, which effectively acts as a receptor assembly factor.

In the ligand-induced comprex, the type I receptor kinase is activated by the

phosphorylation of its GS region by receptor type II. The type I receptors specifically

recognize the Smad subgroup known as receptor-activated Smads (R-Smads, Smad 2 and.

Smad 3) (64), which are recognized,by TGF-B receptors. The R-Smads consist of two

conserved domains that form globular structures separated by a linker region (90,91). The

N-terminal MHI domain has DNA-binding activity whereas the C-terminal MH2 domain

drives translocation (upon phosphorylation, which equates to the activation step) into the

nucleus and possesses transcriptional regulatory activity. Receptor-mediated

phosphorylation of the C-terminal SSXS motif appears to relieve these two domains from

a mutually inhibitory interaction and leads to R-Smad activation. once activated, the R-

smad then binds to a common-mediator smad (co-smad, smad 4 in TGF-B signaling)

and this complex translocates to the nucleus (92). Inthe nucleus, it appears that Smad

proteins can interact with a variety of nuclear factors that may act as DNA-binding
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proteins, transcriptional co-activators or co-repressors. [n fact,ageneral underlying

hypothesis to explain the pleurþotentiality of TGF-B¡ is embodied in the suggestion that

the type of responsiveness of a given cell is determined by its precise complement of

cofactors and corepressors. Fast 2 (i.e., FOXHI) is one such DNA-binding partner that

associates with the Smad proteins in the nucleus, allowing the entire complex to assemble

on a sequence-specific DNA element to strongly activate transcription (93,94). Recent

work from our laboratory indicates the presence and modulated expression of FOXH1 in

cardiac fibroblasts and that it may help to bind Smad proteins to the promoter region of

the collagen type I gene (Roth and Dixon, personal communication, unpublished data).

Further enhancement of Smad-mediated transcription occurs through the direct

interaction of CBP/P300 with the activated R-Smad, an interaction that is enhanced by

TGF-B-induced phosphorylation (95). Smads can also bind transcription repressors such

as TGIF, c-Ski or SnoN to inhibit or down-regulate the transcription of target genes

(96,97). Thus, the R-Smad-Co-Smad complex may be able to regulate transcription in a

positive or negative manner, depending on the interacting partners. In this sense, the mix

of Smad partners and regulators present in a given cell at the time of TGF-B stimulation

may decide the ultimate cellular response.

In addition to R-Smads and Co-Smads, which carry signals from receptors to the

nucleus, a third group of Smads called inhibitory Smads (I-Smads), including Smad 6 and

Smad 7 may abrogate TGF-B signal transduction. Smad 7 inhibits Smad phosphorylation

by occupying TGF-B type I receptors (98). The expression of both l-Smad 6 and I-Smad

7 are increased in response to TGF-p, supporting the existence of roles in negative

feedback of these pathways (99). The expression of Smad 7 can also be regulated by
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other cytokines such as interferon-y (100). Interferon-y stimulates the expression of

Smad 7 through Jak I tyrosine and the Stat 1 transcription factor and thus exerts an

inhibitory effect on TGF-B signaling (100).

2.10 TGF-B tN C,tnoIAC FIBRosIS, Myocyrc HypERTRopHy, AND HEART Fan uRn

TGF-pl is a powerful initiator for the synthesis of collagen and other major

extracellular matrix (ECM) components in a variety of cell types (101). The expression

of TGF-pr is increased in the myocardium during pressure overload-induced hypertrophy

(102) and early after myocardial infarction (103). We have observed activation of TGF-

Fr and the increased expression of novel downstream Smad 2 and Smad 4 proteins in

infarct scar and remnant myocardium during the chronic phase of MI (104). These

events were positively correlated to ongoing cardiac fibrosis in remnant tissues as well as

scar remodeling in post-Ml heart, which is modulated exclusively by cardiac fibroblasts

and myofibroblasts (104,105). Eghbali et al., found that the mRNA for TGF- B1 could be

detected only in the nonmyocyte fraction of heart cells (106).

In a variety of cell types TGF-B¡ is known to stimulate matrix component protein

synthesis, including the synthesis of fibrillar collagen species. It has been demonstrated

that TGF-81 is involved in many fibrotic disorders including glomerulonephritis,

cirrhosis, lung fibrosis and vascular restenosis (107). As a potent stimulus for collagen

synthesis, this cytokine may be important for the induction and development of cardiac

fibrosis (108). In adult rat cardiac fibroblasts, TGF-Pr induces a dose-dependent increase

in collagen production and secretion from 0.3 to 15 ng/ml (109).
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The binding density of TGF-Fr receptors are markedly increased in both infarcted

and noninfarcted myocardium and this increase localizes within microdomains that are

characterized by the appearance of abnormal matrix deposition (110). Furthermore, it has

been suggested that TGF-P regulates not only cardiac collagen synthesis, but also

collagen degradation by MMP (111). TGF-Pr receptor activation in cultured human

cardiac fibroblasts has been shown to elevate the matrix protein deposition by decreasing

via inhibition of MMP-1 activity and/or by stimulating TIMP expression in cultured cells

(111-113). In addition to the direct effects of TGF-B superfamily ligands on MMps and

TIMP expression and function, TGF-B¡ may regulate the activation of MMPs through the

inhibition of t-PA and stimulation of PA inhibitor (PAI-l) gene expression (l l4). In

srünmary, abnormal elevation of TGF-B is associated with elevated synthesis of matrix

proteins by fibroblasts and at the same time, it may inhibit its degradation via MMp-l

modulation thereby increasing the matrix protein production.

In addition to effects on fibroblasts and matrix protein deposition in the heart,

TGF-Pl is known to alter myocardial gene expression in cardiac myocytes. For example,

in cultured neonatal cardiac myocytes this ligand is associated with the induction of p-

myosin heavy chain (P-MHC), skeletal a-actin genes, smooth muscle a-actin, atrial

natriuretic peptide (ANP) as well as downregulation of c-MHC and sarcoplasmic

reticular Ca2* ATPase (SERCA2) mRNAs (65). These alterations mimic the changes that

characterize usual events in the development of cardiac hypertrophy and failure (65) and

these findings underscore the importance of this cytokine in the development of cardiac

hypertrophy and failure. Work by Long et al.,have demonstrated that TGF-81, TGF-B2

and TGF-B¡ maY all stimulate protein synthesis in cultured neonatal cardiac myocytes
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during the absence of other mitogens and under serum-free conditions (115,116). Despite

this finding, some controversy exists with respect to myocyte responsiveness. For

example, Parker et al., have reported that TGF-p1 had no effect on the growth of neonatal

cultured cardiac myocytes (117). It has been pointed out that the developmental age of

cells is critical to TGF-p responsiveness and that adult cells may respond differently than

the characteristic response observed in neonatal cells (1 18). Despite difficulties in

comparing different data sets using different cell types, the burden of evidence seems to

indicate a major role for TGF-B in the pathogenesis of heart failure. Furthermore, this

cytokine may act in concert with other known cardiac trophic factors. For example,

increased total protein synthesis in adult myocytes induced by isoproterenol was

abolished by the application of TGF-Bl neutralizing antibody, while the administration of

TGF-Br was associated with restoration of this hypertrophic response (119). Although

TGF-B does not induce c-fos expression in myocytes, it is known to potentiate

norepinephrine and stretch-induced c-fos expression and protein synthesis in this cell

(120). On the other hand,the in vlvo effects of TGF-B¡ on cardiac myocytes are less

clearly defined in the literature (L21-123). Increased cardiac expression of TGF-B

mRNA is associated with the development of cardiac hypertrophy in a variety of

experimental models (122-124). As alluded to in the preceding discussion, TGF-pr is

implicated in myocardial remodelingvia autocrine and/or paracrine mechanisms and that

both cardiac myocytes and fibroblasts participate in this remodeling. Recent studies have

indicated that TGF-Bl protein is increased in the myocardium from ch¡onically pressure-

overloaded experimental rat hearts and human idiopathic cardiomyop athy (17,125).

These data support the hypothesis that TGF-p may be involved in the development of
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cardiac hypertrophy. A recent study has shown that TGF-B¡ modulates enhanced iNOS

expression and phosphorylation of Aklprotein kinase B in rat myocytes exposed to

hypoxia-reoxygenation(126). The latter finding is of some significance as Aklprotein

kinase B are downstream of phosphatidyl inositol (PI) 3-kinase and are involved in many

cellular processes, including proliferation and apoptosis (127). In this regard, it is known

that supplementation with exogenous TGF-Þr can protect the heart from hypoxia-

reoxgygenation injury under controlled conditions (128,129). In vivo genetic induction

of TGF-B in the lungs resulted in prolonged and severe interstitial and pleural fibrosis

chancterized by extensive deposition of the extracellular matrix (ECM) proteins

collagen, fibronectin, and elastin and by the emergence of cells with the myofibroblast

phenotype (130). Expression of TGF-81 in normal arteries resulted in substantial

extracellular matrix production accompanied by intimal and medial hyperplasia.

Increased procollagen, collagen and proteoglycan synthesis in the neointima was also

noted (131). A major difficulty in the propagation of TGF-Br knockout mice is the

occurrence of early inflammatory events in most parenchymal tissues (132j33) including

the heart, this in turn culminates in death at approximately 3 weeks post-partum

(132,133). On the other hand, effective "knock-in" approaches have been made available

through the development of some elegant molecular strategies. For example, targeted

expression of a human TGF-Bl cDNA that harbors a cysteine-to-serine substitution at

amino acid residue 33 of the LAP markedly increased active TGF-pl levels in adult

transgenic hearts (1 34).

2.11 THn RBxrN-ANGrorENSrN svsrBu (RAS) rN rHE c¿,Rolov¿scuI,lRsysrnu
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The cardiac RAS components include renin, angiotensinogen, angiotensin

converting enzyme (ACE) as well as angiotensin I (Ang I) and angiotensin II

(angiotensin). Classically, research led to a relatively early understanding that the liver is

a major source of angiotensinogen which is a large plasma protein and the only known

natural substrate of renin (produced by the juxtaglomerular apparatus of the kidney).

Renin cleaves angiotensinogen to release the Ang I decapeptide and this inactive

precursor is immediately converted to active angiotensin (an octapeptide) by ACE. ACE

is a well-characterized protein and is widely acknowledged to be synthesized,by

endothelial cells lining the vascular system. Angiotensin also may be produced by un

ACE-independent pathway in cardiovascular system. For example, angiotensin can be

released by direct cleavage of angiotensinogen and AI by tissue plasminogen activator (t-

PA), cathepsin G, tonin and elastase in the vessel wall or from AI by a cardiac chymase

(135). During the past several years, the existence of a local or tissue RAS system in the

cardiovascular system has been acknowledged and has gained considerable attention.

This finding is supported by evidence indicating that most of the components of the RAS

are synthesized in cardiovascular tissues. However, the question as to whether renin is

synthesized by cardiac and extra-renal vascular tissues remains controversial (136).

Local cardiac RAS is defined by the ability of the heart to express most RAS components

leading to generation of angiotensin (137). It has since been demonstrated that

angiotensin is generated and released by cardiac myocytes and cardiac fibroblasts

(138,139). As the heart may use circulating renin for inslra synthesis of angiotensin,

cardiac synthesis of this component may not be crucial for local generation of angiotensin

(140). The observation that Ang I and angiotensin levels are greater than 100-fold higher
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in interstitial fluid than in plasma strongly supports the hypothesis emphasizing the role

of local production in cardiac myocytes and fibroblasts (l4i). Unlike the half-life of r2sl-

Angiotensin in the myocardiuminvivo,which is approximately 15 minutes, the t¡¿ of

angiotensin in the circulation is only 30 seconds (142). Thus, the accumulation and

compartmentalization of angiotensin in the myocardium can be seen to prevent its rapid

degradation. whether generated locally or not, angiotensin may influence the

myocardium in both a direct and indirect manner. The direct actions of angiotensin on

the cardiovascular system include potent vasoconstriction, positive cardiac inotropism

and positive cardiac chronotropism (143). Indirect actions of angiotensin on the heart

include increasing cardiac load due to activation of the sympathetic system and

stimulation of aldosterone synthesis (1a3).

2.12 ANclorENSrN Rpcnprons rN MyocARDruM

Cellular responses induced by angiotensin are dependent upon the balanced

activation of different angiotensin receptors. Biochemical, pharmacological and

functional studies have revealed the presence of two main subgroups which are further

divided into multiple receptor subtypes (I44). Studies on binding affinities for plasma

membrane receptors to nonpeptide antagonists such as losartan and PD123I77 have

defined the existence of AT¡ and ATz receptors, respectively (145-147). To date, the

majority of known physiological functions mediated by angiotensin within the

cardiovascular system are carried out by angiotensin binding to the AT¡ receptor (148), a

"typical" seven transmembrane domain membrane receptor protein. The AT1 group of

angiotensin receptors is further subdivided into AT¡a and ATls classes (144). Among

23



them the ATre and ATls isoforms contain 18-22 different amino acids and yet maintain

similar binding profiles for angiotensin and nonpeptide antagonists (including losartan) as

well as peptide AT¡ receptor antagonists (144,148). The ATre subtype is localized

mainly in vascular smooth muscle cells, hypothalamic tissue, lung, kidney, and adrenal

tissues (144,149). In the cardiovascular system, the AT¡a receptor is constitutively

expressed in all developmental stages (150). The ATls receptor has been noted to

localize in the zona glomerulosa of the adrenal medulla, uterine, anterior pituitary and

renal tissues (144,149). Recent work has shown that the AT¡s receptor contributes to the

regulation of blood pressure in ATre receptor-deficient mice (l5l). In a rat heart, both

AT¡ and AT2 receptors density are roughly equal based on binding assay (152). On the

other hand, the ratio of AT¡ to AT2 receptors in human heart (including myocytes and

nonmyocytes) remains controversial (153). In general, both neonatal and adult cardiac

fibroblasts are characterized by the predominant presence of ATr receptor with very low

levels of the AT2receptor (154,155).

The function of angiotensin type II (AT2) receptors is unclear but is an area of

intense investigation in the pathogenesis of cardiovascular disease (1 56). It has been

noted that transgenic mice overexpressing AT2 in a heart subjected to angiotensin

infusion for a period of 28 days failed to induce cardiomyocyte apoptosis (157). Thus, it

would appear that ATz receptors have little influence over the initiation of cardiomyocyte

apoptosis in vÌvo (157). In contrast, another study used transgenic mice overexpressing

angiotensinogen in cardiomyocytes, the transgenic mice were characterized by cardiac

hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme

inhibition and angiotensin II type I receptor blockade can prevent or normalize
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ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue

angiotensin II despite increased plasma levels. This suggests that angiotensin II may be

protected from metabolization by binding to its receptor. Blocking of the angiotensin II

type I receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may

prevent remodeling and may account for the beneficial effects of angiotensin antagonists

(158). A great deal of research indicates that the clinical or experimental use of ACE

inhibitors or AT¡ receptor blockers may prevent or normalize ventricular hypertrophy

(159). Recent experimental evidence indicates that in normal mice subjected to AT1

receptor blockade therapy, a decrease in tissue angiotensin levels is observed despite an

increase in plasma angiotensin levels (158). This suggests that angiotensin may be

protected from becoming rapidly metabolized in the plasma by binding to its receptor.

Recent evidence suggests that AT2 receptor actions oppose those of AT¡ activation (160),

and overexpression of angiotensin type 2 receptor preserves left ventricular function after

myocardial infarction (161), thus either blocking of the angiotensin II type 1 receptor or

stimulating the angiotensin II type2 receptor may prevent remodeling (l5g).

Unlike the ATI receptors, AT2 receptors do not undergo ligand-mediated

endocytosis upon ligand binding (156). Despite the recent intense investigation of the

function of ATz receptor in the pathogenesis of cardiovascular disease (162,163),the

precise role of this receptor in cardiac hypertrophy and heart failure is unclear.

Nonetheless, some lines of evidence point to multiple putative functions in various

tissues. These functions include i) mediation of apoptosis in PCt2W cells (rat

pheochromocytoma cell line) and R3T3 cells (mouse fibroblast cell line) (164), ii) the

inhibition of cellular proliferation in coronary endothelial cells (165), iii) an
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antiproliferative effect on VSMCs in neointima after vascular injury (165) and iv)

maintenance of normal cardiovascular and central nervous system fi.urction

(160,166,167). Thus, the observed response to angiotensin in the whole organism may

represent a balanced activation of ATI and ATz receptors, and that the response of a

given organ may depend on the relative level of expression of each receptor subtype.

2.13 RpcULATIoN oF ANGToTENSTN AND ANGToTENSTN Rncnprons

The mechanisms for release of angiotensin into the heart tissue and for the

regulation of ATr and AT2 receptors have been well examined during the past several

years. Sadoshima et al., have clearly demonshated that mechanical stretching of cardiac

myocytes induces angiotensin secretion from these cells ln vitro and.have suggested that

stretch-induced release of angiotensin is an important mechanism for stimulating

myocyte hypertrophy (168). In cultured neonatal cardiac myocytes, elevation of

angiotensin receptor expression at transcriptional and posttranscriptional levels may also

occur via mechanical stretching (169). Mechanical stretching of cultured myocytes and

pressure-overload in vivo results in the upregulation of ATI and AT2 mRNA as well as

receptor densities (169,I70). These studies strongly support the role of mechanical

stretch i.e., abnormal hemodynamic cardiac loading is pivotal in the development of

cardiac hypertrophy. Furthermore, in a canine model of RV chronic hypertrophy a study

has revealed that in failure induced by tricuspid valve avulsion and pulmonary artery

constriction, cardiac ACE, chymase, as well as AT¡ and AT2 receptor mRNAs were

subject to regulation by local mechanical stimuli (171). Several in vitro studies have

shown that binding of angiotensin to AT¡ receptor initiates internalization of receptor-
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ligand complex leading to receptor desensitization in different cell type including VSMC

(156,172-174). As only -25%o of the internalized receptors are recycled to the plasma

membrane (175), the degradation of an internalized receptor may be the main mechanism

by which angiotensin may regulate its receptor numbers. In addition, the ATl receptor is

regulated through inhibition of transcription, whereas the AT2 receptor

synthesis/expression is regulated mainly by decreasing mRNA stability (176).

2.14 ANctornNSIN IN Mvocvrr HvpnRrRoruy, Cannr¿.c Frsnosls, AND HnaRr

Farr.unB

2.14.1 ANcrorpnsrN AND Myocyrr HypnRrnopHy

Studies using neonatal cardiac myocytes have shown that angiotensin causes an

increase in protein synthesis via AT¡ receptor activation in these cells and along with the

induction of "early" and "late" markers for myocyte hypertrophy (168). This trophic

effect was enhanced by the administration of ATz receptor antagonist suggesting AT2

receptors may mediate an anti-growth effect in cardiac myocytes (177,178). Angiotensin

also increases protein synthesis in isolated adult heart via ATl receptor activation (l7g).

However, angiotensin-mediated enhancement of protein synthesis in unloaded perfused

adult rat heart may occur without preceding protooncogene expression (179). Recent

studies suggested that cardiac fibroblasts play an important role in angiotensin-induced

myocyte hypertrophy (180-182). Specifically, angiotensin failed to increase protein

synthesis in cultured pure neonatal myocytes. However, the addition of nonmyocytes

(mainly cardiac fibroblasts) to the myocyte culture is observed to restore angiotensin-

induced protein synthesis (181). Similarly, although angiotensin may stimulate protein

27



synthesis in adult myocytes, this stimulation was significantly inhibited when

bromodeoxyuridine was added to the culture to inhibit proliferation of fibroblasts (lg2).

Furthermore, the conditioned medium from untreated fibroblasts is seen to increase

protein synthesis in both angiotensin-treated and untreated myocytes (180,182). These

findings support the suggestion that the interaction between myocytes and

(myo)fibroblasts for the development of myocyte hypertrophy may be triggered by

angiotensin. In addition to the in vitro trophic effect of angiotensin on myocytes, some

lines of evidence also support the role of angiotensin in cardiac hypertrophy in vivo. It

has been shown that chronic infusion of suppressor doses of angiotensin caused

ventricular hypertrophy in rats without alteration of blood pressure. This supports the

hypothesis that angiotensin has a direct trophic effect on the heart (183). It is well

documented that suppression of angiotensin by administration of ACE inhibition is

associated with the attenuation of cardiac hypertrophy in post-Ml rat heart (159,184,1g5).

It has been postulated that the beneficial effect of ACE inhibitor in this regard may be

caused in part by elevation of bradykinin level (185). As it has been shown that kinins

may inhibit the interstitial accumulation of collagen but do not modulate myocyte

hypertrophy after MI, the inhibitory effects of ACE on myocyte hypertrophy has been

suggested to be related only to the reduction of angiotensin (185). This suggestion is

supported by recent findings in studies using AT1 receptor antagonists that effectively

inhibit cardiac hypertrophy without alteration of bradykinin post-Ml rat ( 13, I 86, 1 B7).

2.14.2 ArucrornlqsrN AND CaRurac FlsRosls
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Cardiac fibrosis occurs not only in the scar tissue but also in the remnant

myocardium in post-Ml heart. Recently, both in vitro and in vivo studies have suggested

that angiotensin plays a crucial role in the development of cardiac fibrosis. In cardiac

fibroblasts, the ATr receptor is known to participate in the induction of ECM protein

component synthesis and gene expression mediating mitogenic responses (168,188). The

results, ftom ín vivo administration of angiotensin to experimental animals, have

demonstrated an association with increased cardiac collagen and frbronectin via AT¡

receptor activation (54,180,189,190). Evidence from experimental studies undertaking

the investigation of ACE inhibition and ATl blockade indicates that their use is

associated with attenuation of cardiac fibroblast proliferation and deposition of cardiac

collagen (186,191,192). In the post-Ml rat model of heart failure, myocardial collagen

concentration was significantly increased in remnant tissue at7, 14,21 and,35 days post-

MI (191). These investigators found that this increase of cardiac collagen concentration

was inhibited by captopril treatment. In another study, ramipril (ACE inhibitor) is found

to inhibit cardiac fibrosis without lowering blood pressrue in spontaneous hypertensive

rats compared to Wistar-Kyoto control (193). These studies suggested that ACE inhibitor

therapy may attenuate cardiac collagen deposition, and that this inhibitory effect is

independent of afterload reduction. The molecular mechanisms responsible for the

attenuation of interstitial fibrosis by ACE inhibition remain obscure. It may be argued

that ACE inhibitor treatment may potentiate an increase in the concentration of

bradykinin in heart by inhibition of the kininase II enzyme (i.e. ACE) (lg5). In this

respect, ch¡onic treatment of infarcted hearts with ATI receptor antagonist is effective in

partial attenuation of collagen protein deposition to a level comparable to that by ACE
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inhibition (194). Thus, the effrcacy of ACE inhibition may lie in the ability of these

agents to suppress angiotensin in the stimulation of cardiac fibroblasts and potentiate the

inhibitory effect of bradykinin on collagen in post-Ml hearts. Therefore, these results

support the hypothesis that angiotensin may be a causal factor for the stimulation of

cardiac fibrosis after MI in rat heart.

The AT1 receptor has been shown to be highly expressed in cardiac fibroblasts

and myofibroblasts which appear at the site of infarct in I week post-Ml hearts (43,195).

On the other hand, the expression of the AT2 receptor is known to be elevated in tissue

undergoing wound repair, as well as in vascular injury and cardiac hypertrophy

associated with MI (165,196). However, the role of this receptor in cardiac fibrosis is not

clear. An AT¡ (but not AT2) receptor blockade is associated with attenuated cardiac

collagen accumulation in post-Ml heart suggesting that cardiac f,rbrosis is mediated by

AT¡ receptor activation (187). Furthermore, AT2 receptor antagonism is seen to abolish

the attenuation of cardiac collagen deposition mediated by AT¡ receptor antagonism,

indicating that the effects of ATr blockade are mediated by activation of the AT2 receptor

(187)' Adenovirus-mediated overexpression and stimulation of the human angiotensin II

type2 receptor in porcine cardiac fibroblasts does not modulate proliferation, collagen I

mRNA expression and ERK1/ERK2 activity, but inhibits protein tyrosine phosphatases.

Stimulation of the overexpressed human AT2 receptor in porcine cardiac fibroblasts

inhibited tyrosine phosphatase activity but had no significant effect on fibroblast

functions related to cardiac fibrosis (197).It is conceivable that possible antifibrotic ATz

r eceptor effects are species specific and./or require the interaction between frbroblasts

and cardiomyocytes, probably via paracrine factors, or mechanical load (197). In a study
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using human cardiac fibroblasts, angiotensin treatment was associated with an increase in

p38 MAP kinase activity and DNA synthesis, enhanced PAI-1 expression, upregulated

TGF-B¡, as well as inhibition of MMP expression (198).

2.14.3 ANcrorpxsrN AND Hnanr Farr,unn

A number of studies support the hypothesis that angiotensin is important in the

onset of irreversible cardiac hypertrophy and heart failure post-Ml (199). Ventricular

remodeling in post-Ml hearts is now strongly associated with the activation of RAS.

Specif,rcally, there is an increase in angiotensin concentration in scar and a transient

increase of angiotensin in the remnant tissue after MI (200,201). Furthermore, the

angiotensin receptor density is considerably elevated in both noninfarcted myocardium

and scar (35,195,196). For example, a 4.2-fold and 3.2-fold increase in AT¡a and ATz

mRNA levels, respectively, âre found in infarcted regions, while a-2-fold increase in

these mRNAs for both ATru and ATz receptors are observed in non-infarcted regions of

the myocardium in theT-day post MI group (196). Similarly, cardiac angiotensin and its

receptors have been shown to be upregulated in rapid pacing induced heart failure in dogs

and in hearts of hamster with genetic cardiomyopathy (202,203). The contribution of

locally generated angiotensin appears to be important for the development of cardiac

hypertrophy and failure (204,205). The local RAS may act in concert with circulating

RAS, and the effrcacy of ACE inhibitor therapy for patients with heart failure wherein the

overall effect of treatment is due to inhibition of both systems. Administration of ACE

inhibitors is well known to reduce afterload and preload in rat, and to cause an elevation

of bradykinin, as well as to be associated with prolongation of life after MI in rat
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(206,207).In two large clinical studies, long-term ACE inhibitor therapy for patients with

heart failure after MI has been shown to reduce mortality regardless of the degree of LV

dysfunction(208,209). Nevertheless, ACE inhibition is unable to prevent the formation

of angiotensin by non-ACE pathways such as by the activation of chymase (210). For

this reason, treatment with an ATl receptor antagonist such as losartan is an alternative

for more efficacious suppression of angiotensin in the cardiovascular system (210).

iMilavetz et al., have shown that the long-term use of losartan is effective in reducing

mortality and in improving heart function in post-Ml rats. This evidence supports the role

of angiotensin in the development of heart failure (2II). Furthermore, in heart failure

patients, treatment with losartan was associated with lower mortality than in those

patients receiving captopril (212). Taken together, these results strongly support the idea

that angiotensin plays a key role in the development of heart failure.

2.15 CnossrALK BBrwnBx ANcrotBNSrN AND TGF-P SlcNar,ri.¡c rN THE HnaRr

A significant body of literature indicates that other trophic ligands may act in

concert with TGF-B in the heart. For example, elevated angiotensin signaling is

associated with the onset of cardiac fibrosis in different models of heart failure, including

myocardial infarction (213,214).In the infarcted rat heart, local angiotensin generation is

activated in the remnant myocardium and scar (213). The predominant collagen-

synthesizing cells in post-Ml hearts have been identified as myofibroblasts (215) and ATI

receptor antagonism significantly attenuates fibrosis in both infarcted and non-infarcted

rat myocardium (214,216). Angiotensin-mediated modulation of the expression of TGF-
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B1 ligand occurs in vitro (217,218) and in vivo (219) in various cell types including

cardiac fibroblasts. However, information about crosstalk between angiotensin and TGF-

B' in post-Ml heart at the post-receptor level (Smad proteins) is lacking. Furthermore, the

role of putative angiotensin / TGF-B' crosstalk in the development of cardiac fibrosis and

heart failure is unclear. This thesis addresses whether a known anti-fibrotic strategy

(chronic AT1 receptor blockade) is associated with modulation of cardiac Smad

expression and activation in failing rat heart post-Ml.

A number of in vitro studies have shown that angiotensin stimulates the autocrine

production and release of TGF-BI in rat neonatal and adult rat cardiac fibroblasts in

culture by increasing the mRNA levels, biological activity, and total protein levels of

TGF-Pr (220,221). Angiotensin-induced matrix protein synthesis occurs also through the

increased expression of TGF-By in cardiac fibroblasts (168,222,223) andmyofibroblasts

(221). Other studies indicate that norepinephrine and angiotensin may elevate steady-

state levels of TGF-pr mRNAs in VSMCs (224). Early investigations in this field

provide evidence that the production of TGF-B tinked to induction by angiotensin is a

PKC-dependent phenomenon (224,225). Furthermore, angiotensin stimulation is

associated with an accelerated rate of conversion of latent TGF-Br to the active form

(224). TGF-BI may also play arole in the regulation of RAS, and this hypothesis is

supported by results that TGF-B¡ stimulates the release of renin from cultured

juxtaglomerular cells (226). It is pointed out that these factors may exert positive

feedback on each other in the failing myocardium and may take on an important causal

role for the development of pathological hyperhophy involving multiple cell types.

Losartan is a widely employed early-generation AT1 receptor blocker used in the clinical
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applications and in basic benchtop research. Chronic losartan administration to renal

replacement patients (25 mgld for the first week and 50 mg/d for the rest of the period

total of 6 weeks was associated with a marked reduction of plasma TGF-B¡ by

approximately 50%o (227). The cTnT-Q (92) troponin T knock-in mouse transgene is

associated with myocyte disanay and interstitial fibrosis. Losartan treatment (14.2 + 5.3

mglkglday and for 42 + 9.6 days) of adult cardiac troponin T (cTnT-Q (92)) transgenic

mice was associated with significantly reduced cardiac collagen volume fraction and the

mRNA expression of both collagen a (I) and cardiac TGF-Pr ys. nontreated transgenic

animals (228). Despite some controversy in this particular area of investigation (i.e.,

TGF-B was noted to be unchanged in a RAS component transgene line of rats (229)) and,

that the use of transgenes is now recognized to be somewhat limited by problems in data

interpretation, particularly when pleuripotent genes are tested (229). However, the basic

hypothesis that TGF-81 and angiotensin may be co-participants in the generation of

cardiac fibrosis via chronic stimulation of cardiac fibroblasts and myofibroblasts is

upheld by the bulk of the experimental evidence in the literature. Further studies dealing

with the nature of existence and mechanism of the crosstalk between these factors are

warranted and are taken up within the experiments outlined in this thesis.

on the other hand, the information regarding the effect of rGF-Þr on the

regulation of RAS is limited. A recent study has shown that when rat cardiac ventricular

fibroblasts were incubated with TGF-pr (10 ng/ml) for seven days, TGF-B¡ is able to

induce the appearance of ACE in cultures of adult rat cardiac ventricular fibroblasts (37).

The appearance of the enzqe is accompanied by the differentiation of fibroblasts to

myofibroblasts (37).
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Chapter 3. METHODS

3.1 ExpBruMENTALMotnl

All experimental protocols for animal studies rwere approved by an appointed

Animal Care Committee of the University of Manitoba, following guidelines established

by the Canadian Institute of Health Research of Canada. MI was produced in male

Sprague-Dawley rats (weighing200-250 g) by surgical occlusion of the left coronary

artery as described previously by Johns and Selye with minor modification(230-232). In

short, after isofluorane anesthesia, the chest was opened cutting the third and fourth ribs,

and the heart was extruded through the intercostal space. The left coronary artery was

ligated 2-3 mm from the origin with a suture (6-0 silk) and the heart was repositioned in

the chest. Closure of the wound was accomplished using a purse-string suture.

Throughout the operation, ventilation of the lungs was maintained by positive-pressure

inhalation of 95%o Oz and 5o/o C}2mixed with isofluorane. Sham-operated animals were

treated similarly, except that the coronary suture was not tied. The mortality of all

animals operated upon in this manner was about 45o/o within4S h (due to acute heart

failure subsequent to infarction).

Post-operated animals were divided into three groups, Group l: sham-operated

animals, Group 2:MI animals, and Group 3: MI rats treated with losartan (15 mg/kg/day)

(12). All losartan treatment regimens were initiated one day following coronary ligation

by implanting an Alzet osmotic mini-pump (AlzaCorporation, La Jolla, CA, model 2002)

and continued for 8 weeks. To achieve the 8 weeks treatment, two 2-week duration

osmotic mini-pumps lvere implanted consecutively (the t172 of losartanis 4.7 hours). For

comparative purposes, sham-operated controls (group l) and MI animals were

35



administered vehicle (0.9% saline) using the same method. After losartan or vehicle

infusion, the animals underwent LV functional assessment and infarct size determination,

then the remnant LV tissues were used to assess collagen protein profile, fibrillar collagen

steady-state mRNA abundance and immunoreactive prolyl4-hydroxylase concentrations.

The animals were sacrificed 8 weeks after ligation and the hearts were stored in

liquid nitrogen (-196'C) for further analysis. Animals from the losartan treatment study

and 8 weeks groups underwent assessment of cardiac function, determination of infarct

size, and subsequently the remnant LV (non-infarcted LV free wall remote to infarct) and

infarct scar tissues were used for further analysis. Animals with small infarcts (45% of

the LV free wall) were excluded from all studies.

3.2 HBiUoDyNAMIC MBasuRB¡r,¡BNrs

Mean arterial blood pressure (MAP) and LV function of sham-operated control,

MI, and MI treated with losartan groups were measured following induction of MI, as

described previously (230,233). Briefly, rats were anesthetized by intraperitoneal

injection of a ketamine:xylazine mixture (100 mg/kg : 10 mg/kg). A micromanometer-

tipped catheter (2-0) (Millar SPR-249) was inserted into the right carotid artery. The

catheter was advanced into the aorta to determine MAP and then further advanced to the

LV chamber to record LV systolic pressure (LVSP), LV end-diastolic pressure (LVEDP),

the maximum rate of isovolumic pressure development (+dP/dtm*) and the maximum rate

of isovolumic pressure decay (-dP/dt,*). Hemodynamic data was computed

instantaneously and displayed using a computer data acquisition workstation (Biopac,

Harvard Apparatus Canada).
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3.3 lxp¿,ncr Srzn

Following heart function recordings, the LV from different groups was fixed by

immersion in l}Yo formalin and embedded in paraffin. Six transverse slices were cut

from the apex to the base. Serial sections (50 ¡rm each) were made from each slice and

mounted and stained with Masson's trichrome. The percentage of infarcted LV was

estimated after coronary ligation by planimetric techniques as described previously (234).

3.4 DnrBnMrNATroN oF CARDTAC TorAL Colr,lcpN

Samples from different groups were ground into powder in liquid nitrogen. Then

100 mg (wet weight) of cardiac tissue was dried to a constant weight. Tissue samples

were digested in 6 M HCI (0.l2mllmg dry weight) for 16 h at 105'C. Hydroxyproline

\¡/as measured according to the method of Chiariello et al.,(235). A stock solution

containing 40 mM of 4-hydroxyproline in I mM HCl was used as a standard. Collagen

concentration was calculated by multiplying hydroxyproline levels by a factor of 7 .46,

assuming that interstitial collagen contains an average of 13.4 % hydroxyproline (235).

The data was expressed as pg collagen per mg dry tissue.

3.5 Anulr CaRorac FrsRonr,nsr IsoLATroN AND Culrunn

Adult cardiac fibroblasts were isolated from male Sprague-Dawley rats according

to the methods of Brilla et al.,(236) with minor modifications (237). The adult rat heart

was subjected to Langendorff perfusion at a flow of 5 mlimin at37"C with recirculatory

Joklik's medium containing 0.1Yo collasenase and2%obovine serum albumin (BSA) for

25-35 minutes. Liberated cells were collected by centrifugation at 2000 rpm for 10

minutes. Following this, the suspension of DMEM/F12 was plated on a 100 mm
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noncoated culture flask at 37'C with 5o/o COzfor 2 h. Cardiac fibroblasts attached to the

bottom of the culture flask during a2hincubation while non-adherent myocytes were

removed by changing the culture medium. The cells were maintained in DMEM/FI2

supplemented with 10%o fetal bovine serum, 100 unilml penicillin and 100 pglml

streptomycin. The cells used for the study were from the second passage (P2) and the

purity of fibroblasts used in these experiments was found to be > 95olo, using routine

phenotyping methods described previously (105,237). For stimulation with angiotensin,

fibroblasts were maintained in serum-free media for 24 h before administration of

angiotensin (10 -6 M) for 15 min. Equimolar losartan was added to cultured cells t hour

before angiotensin treatment to achieve ATr blockade.

3.6 IUnTUNoFLUoRESCENcE

Myocardium from sham-operated animals, remnant LV remote to the infarct, and

RV scar and border tissues from various times after induction of MI, were immersed in

OCT compound and stored frozenat -80"C. Serial cryostat sections of 7 pm thickness

were mounted on gelatin-coated slides. A minimum of 6 sections from different regions

of each group was processed. Sections were fixed in 4Yoparaformaldehyde for 15 min

and then washed 6 x 5 min in 1x PBS to eliminate background caused by

paraformaldehyde. Immunofluorescent staining was performed using the indirect

immunofluorescent technique (238). In brief, the tissue sections were incubated with

primary antibodies overnight at 4C. Sections were then washed 3 x 5 min in phosphate-

buffered saline (PBS) and were incubated with biotinylated secondary antibody for 90

minutes at room temperature. Sections were washed 3 x 5 minutes and then incubated

with FITC labeled or Texas Red labeled streptavidin. Finalt¡ the slides were mounted
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and coverslipped. The results were recorded by photography on Kodak T-MAX 400

black and white film. Quantification of resultant image data from immunofluorescent

staining was performed using digital image analysis software (SigmaScan pro).

The primary antibodies and secondary antibodies used in this study were listed.

Primary antibodies are as follows: 1. Goat polyclonal anti-types I & III collagen

antibodies were diluted in 1 :100 (Southern Biotechnology Associates Inc, Alabama,

USA), 2. Polyclonal antibody against active TGF-Pr was diluted in 1:50 (Promaga

Corporation, Madison, wI, usA). 3. Goat polyclonal antibody against TpRI, TBRII,

Smad2, 3 and 4 antibodies were diluted I :50 to I :100 (Sant a Cruz Biotechnology Inc.,

Santa cruz, cA, usA), 4. Monoclonal anti-vimentin clone #v9 (sigma-Aldrich,

Oakville, ON, Canada, 1:100 dilution), Monoclonal anti-myosin MF-20 (Developmental

Studies Hybridoma Bank, 1:100 dilution), monoclonal antibody against a SMA (Sigma,

1:400 dilution), human monoclonal antibody against smooth muscle myosin (SMM,

Signma, l:250 dilution), monoclonal antibody against factor VIII (von Willebrand factor,

Sigma, rabbit, l:250 dilution). Secondary antibodies are as follows: biotinylated anti-

goat, anti-mouse and anti-rabbit IgG were diluted 1:20 (Amersham Life Sciences Inc.

Canada). Texas Red-labeled streptavidin and FlTC-labeled streptavidin were diluted

1:20 (Amersham Life Sciences Inc. Canada). Texas Redlabeled streptavidin was used

for the detection of collagen type I and FlTC-labeled streptavidin was used for the

detection of all other proteins. All antibodies were diluted in PBS containing 1% BSA

and0.lYo sodium azide.
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3.7 RNA Exrn¡crrox

Total RNA was extracted from cardiac tissues by the procedure of Chomczynski

and Sacchi as described previously (54) MCB (239). Briefly, cardiac tissue was rapidly

excised, the atria were removed and the ventricular tissue was washed twice with a

solution containing 10 mM 3-[N-morpholino] propanesulfonic acid (MOPS) and l0 mM

sodium ethylenediaminetetraacetate (EDTA). Tissue samples were then quickly frozen

and stored in liquid nitrogen (-196"C). Previously frozen ventricular tissues were ground

with mortar and pestle while immersed in liquid nitrogen. Powdered samples were

suspended in 4 ml Solution D [4 M guanidinium thiocyanate,25 mM sodium citrate (pH

7.0) 0.5% N-lauroylsarcosine, 0.1 M 2-mercaptoethanol] and subjected to mechanical

homogenization (Diamed, Toronto) (3 x 10 seconds). At this point, tissue homogenates

were treated with 0.1 volumes of 2 M sodium acetate (pH 4.0), equal volumes of water-

saturated phenol (pH7 .4) and 0.2 volumes of chloroform-isoamyl alcohol mixture (49:I)

then mixed by inversion. After the mixture was cooled on ice for an additional 15

minutes, samples were centrifuged at 6,000 x g for 20 minutes at 4"c. The RNA-

containing aqueous phase was transferred to a fresh tube, mixed with an equal volume of

isopropanol and placed at -20"C for 60 minutes. RNA was sedimented at 10,000 x g for

20 minutes and resuspended in solution D and then again precipitated with an equal

volume of cold isopropanol and placed at -20"C for 30 minutes. Then the ventricular

RNA pellets were washed twice by repeated resuspendedinTlo/o ethanol and sedimented.

The ethanol solution was decanted and finally vacuum dried, (duration of 30 seconds to 2

minutes, then visually assessed to avoid complete drying of the pellet). RNA was
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dissolved in diethyl pyrocarbonate (DEPC)-treated water and the concentration of nucleic

acid was calculated from the absorbance at260 nm prior to size fractionation.

3.8 NoRTuBRN Blor Axalysrs

Steady-state levels of mRNA were determined by Northern hybridization

analysis. Twenty ¡rg of total RNA was denatured in 50%o formamide ,7%o formaldehyde,

20 mM MOPS (PH 7 .4),2 mM EDTA (pH 8.0), 0.1% SDS and electrophoresed in a lyo

agarose/formaldehyde gel to size fractionate the mRNA transcripts. The fractionated

RNA was transferred (using capillary action) on to a 0.45 ¡rm positively charge-modif,red

nylon filter (NYTRAN Maximum Strength Plus, Schleicher and Schuell, Keene, NH,

USA) filter. After 24 houts, the filter was removed and RNA was covalently cross-linked

using UV radiation (UV Stratalinker 2400, Stratagene). Blots were prehybridized in a

mixture of 50o/o formamide, 10x Denhardt's solution,l%o SDS, 0.2 mglml denatured

salmon sperm DNA and 10 mM EDTA (pH 8.0), 25o/o*4 x RNA,'solution [3 MNaCl,

0.6 M Tris-HCl (pH 7.5), 0.18 M NaH2poa, O.z4MNa2poa, 0.1 M Na+pzozl at 42oc for

6-16 hours. Membrane was hybridized for 6 to 16 hours at 42"C in the presence of

labeled probe with a specific activity > 10e cpm per pg DNA. The filter then was washed

for a certain period of time in each of the following: 2 x SSC / 0.1% SDS (first wash),

0.5 x SSC I 0J% SDS (second wash), and 0.1 x SSC / 0.1% SDS (third wash) using an

INNOVA 4000 incubator Q'{ew Brunswick Scientific, Canada) oscillating at a rate of 60

rotations per minute. After washing, the membrane was exposed to x-ray film (Kodak X-

OMAT) at -80'C with two intensifying screens.
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The following inserts were separated from recombinant plasmids and used as

cDNA probes in Northern blot analysis: human procollagen type ol(I) (Hf 677),type

crl(III) (Hf 934), TGF-Þ1 and human glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) were obtained from the American Type Culture Collection (Rockville, MD,

USA). Decorin cDNA was graciously provided by Dr. Kevin L. Dreher, United States

Environmental protection Agency, Research Triangle park, NC, USA. Rat lgS rRNA

(5' -ACGGTATCAGATCGTCTTCGAACC-3') was synrhesized using the Beckman

Oligo 1000 DNA synthesizer (240). The cDNA clones were prepared for hybridization

to specific mRNA transcripts and subsequent autoradiography using a Random primers

DNA Labeling system (GIBCO BRL) radiolabeled cr-32p-dcrp. Results of

autoradiographs from Northern blot analysis were quantified by densitometry (Bio-Rad

imaging densitometer GS 670 Hercules, CA, USA).

3.9 ENzyllrE IMMUNoAssAy FoR PRoLyL 4-HyDRoxyLASE

Cardiac tissues from different groups were gïound into powder under liquid

nitrogen. Powdered tissues (20 mg/ml) were homogenizedin 10 mM Tris-HCl buffer pH

7.8 containing 0.1 MNacl, 0.1 M glycine, 0.1% Triton X-100,20 mM EDTA, l0 mM N-

ethylmaleimide, I mM Phenylmethylsulfonyl fluoride (PMSF), I mM p-

hydroxymercuribenzoic acid and 1 mM Dithiothreitol (DTT). The homogenized samples

were centrifuged 20,000 x g at 4"C for 30 minutes. The supernatants were transferred to

fresh Eppendorff tubes and then used for prolyl 4-hydroxylase assays, employing an

ELISA kit (Fuji Chemical lndustries, Ltd. Toyama, Japan) (24r). Briefly, this assay

employs two monoclonal antibodies wherein the first is used as a capture antibody in

42



solid phase and the other antibody is linked to horseradish peroxidase. Myocardial

samples were diluted l:20 in distilled water prior to the total protein concentration assay.

3.10 NuclEAR IsoLATroN FRoM C,qnorac FrsnonI,asrs

Nuclei of cardiac fibroblasts were isolated using the Nuclei EZprepNuclear

Isolation Kit (Sigma-Aldrich, Oakville, ON, Canada) according to the manufacturer,s

instructions. The purity and integrity of isolated nuclei was confirmed by flow cytometry

and light microscopy following hypan blue staining (data not shown). Isolated nuclei

were resuspended in 100 mM Tris (pH7.4) containing 1 mM EDTA, I mM PMSF, 4 pM

leupeptin, 1 pM pepstatin A, and 0.3 pM aprotinin. Phosphatase inhibitor (10 mM NaF,l

mM NaOV and20 mM B-glycorophosphate) was also added to the solution. Samples

were subjected to sonication 3 x 10 sec to further disrupt the nuclei and the nuclear

protein concentration analysis was performed by BCA meth ods (242).

3.11 PnorpnvAssay

Total protein concentration in cardiac samples was determined using the

Bicinchoninic acid solution (BCA) Kit (sigma, st. Louis usA) (242).

3.12 WnsrERN Br,or ANar,ysrs

TGF-PI, TPRI, TÊRII, smad2, smad3, smad4, and phosphoryrated smad2

proteins were detected using Western blot analysis. Cardiac tissues from sham-operated

LV, remnant LV, border atea and scar were homogenized in 100 mM Tris (r,H 7.4)

containing 1 mM EDTA, 1 mM PMSF,4 pM leupeptin, I pM pepstatin A and 0.3 pM

aprotinin. Samples were sonicated for 3 x 5 seconds. Crude membrane and cytosolic
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fraction were isolated according to the method of Gettys et al.,(243). Briefly, samples

were centrifuged for 3000 x g at 4'C for 10 minutes to remove unbroken cells and nuclei.

The supernatant was further subjected to centrifugation for 48,000 x g for 20 minutes at

4oC. The subsequent crude membrane pellet was resuspended in the homogenizing

buffer. For total cardiac Smad proteins assay, myocardium was homogenized with above

buffer containing 0.1% Triton X-l00. This homogenate was sonicated for 5 x 5 seconds

to disrupt nuclear membrane. The homogenate was allowed to lyse for l5 min on ice to

further disrupt the nuclear membrane. After centrifugation at 10,000 x g for 20 min at

4"C, the resultant supernatant was used for Smad proteins assay. Total protein

concentration of membrane fractions was measured using the BCA method (242).

Prestained high or low molecular weight markers (Bio-Rad, Hercules CA, USA) and20

¡rg proteins from samples were separated on I\Yo SDS-PAGE. Separated proteins were

transferred on to 0.45 pm polyvinylidene difluoride (PVDF) membrane. PVDF

membrane was blocked overnight at 4oC or at room temperature for I hour in Tris-

buffered saline with 0.1% Tween-20 (TBS-T) containing s%-g%skim milk. After

washing with TBS-T solution, membranes were probed with primary antibodies for 1

hour at room temperature. After washing, membrane was incubated with HRp-labeled

secondary antibodies for t hour at room temperature. The target proteins were detected

and visualizedby enhanced chemiluminescence (ECL) or ECL "Plus" according to the

manufacturer's instruction (Amersham Life Science Inc. Canada). Specific bands from

autoradiographs derived from V/estern blots were quantified using a CCD camera

imaging densitometer (Bio-Rad GS 670, Hercules, CA, USA).
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Primary antibodies used in the current set of studies were as follows: 1. Rabbit

polyclonal antibodies against TGF-81, Smad 4, TPRI and TBRII were from Santa Cruz

Biotechnology, Inc., (Santa Cntz, CA, USA). Rabbit polyclonal antibodies against

phosphorylated Smad 2was obtained from Upstate Biotechnology (Lake placid, NÐ. 2.

Goat polyclonal antibodies against Smad 2, Smad 3 were purchased from Santa Cruz

Biotechnology, Inc., (Santa Cruz, CA, USA). The primary antibodies were diluted in

TBS-T containing up to 5% skim milk (smad 2,3 and4 at l:500 and TGF-B1, p-smad 2,

TPzu, TPRII at l:250). Secondary antibodies were as follows: Horseradish peroxidase

(HRP)Jabeled anti-rabbit IgG and anti-goat IgG were diluted in 1:10,000 with TBS-T

containing 1% skim milk.

3.13 ELISA Assay FoR CARDTAC TGF-B1

TGF-PI concentration was determined using a "sandwich" ELISA by the method

as described by Danielpour with minor modif,ications (244). After excision, the heart was

perfused with 5 ml cold PBS to flush out the remaining blood in the myocardial vascular

lumen in order to eliminate contamination by TGF-Fr from blood soruces.

Approximately 0.5 g heart tissue was homogenized in 4 ml cold acid-ethanol (93%

ethanol, 2o/oHCL85 pglml PMSF and 5 pglml pepstatin A). Three samples were pooled

in the case of border and scar tissues. After overnight extraction at 4"Cby gentle

rocking, extracts were subjected to centrifugation at 10,000 g for 10 minutes. The

resulting supernatants were dialyzed extensively (3 x 100 volume) against 4 mM HCI at

4"C, using a 3,500 MW-cutoff Spectrapore dialysis membrane. Plate wells were coated

with either soluble TpRII or PBS (control). Recombinant human TGF-pr was used to
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generate a standard curve (triplicate). Standards and samples were incubated for t h at

room temperature on a rotating platform, washed and incubated with chicken anti-TGF-

B¡ antibody (< 5% cross-reactivity with TGF-Ê2 and -Ê:). wells were washed again

before incubation with phosphatase-linked, goat, anti-chicken antibody for t hour. After

washing, the plates were incubated ovemight at 4'C with phosphatase substrate in

diethanolamine buffer (Kirkegaard & Peny Laboratories Inc., Gaithersburg, MD). The

difference in optical density between 405 and 450 nm was measured on â Vn'* microplate

ELISA reader (Molecular Devices, Menlo Park, CA). TGF-Br concentrations in the

samples were calculated by a four-parameter regression equation (after correction for the

background from control wells) with Molecular Device,s Sofmax program. TGF-pr

concentration was expressed as ng/g of tissue. This assay measured total cardiac TGF-B¡

since latent TGF-BI was activated during the acid-ethanol extraction step.

3.14 INTBCTToN onAnexovrRus ro CnRnrac FrnRo¡r,asrs

Cultured rat cardiac fibroblasts at a second passage were infected with adenoviral

dorminant negative type II TGF-F rype II receptor (Ad DN-TÊRII) following the

instruction of AdEasyrM vector System kit. Ad DN-TBzuI was from Dr. p. cattini,s

laboratory (in collaboration). Briefly, Ad DN-TBRII was administered to cultured cardiac

fibroblasts [Multiplicity Of Infection (MOI) :25 f for24 hours. The efficiency of

transfection is over 95% identified by Trypan Blue staining and no significant

cytotoxicity to fibroblasts was noted. Adenovirus expressing g-gal gene (MOI:25) was

used as a control. Infected fibroblasts were treated with angiotension (10-6 M) for 15 min.
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The P-Smad 2localization in cardiac fibroblasts was examined by double

immunofl uorescent staining as mentioned before.

3.15 Suusrrcal Axalysls

All values are expressed as mean + SEM. The difference between the control and

the experimental groups were calculated using the student's t-test. One way analysis of

variance (ANOVA) followed by the Student-Newman-Keuls Test was used for

comparing the differences among multiple groups at each time point (SigmaStat).

Significant differences among groups were defined by a probability of less than 0.05.

The Northern blot data in multiple time point study was expressed as a percentage of

control according to the method of Fisher and periasamy ea\.

3.16 Rnacaxrs

Angiotensin II (angiotensin) was purchased from sigma. co. TGF-p1 and rGF-B

neutralizing antibody was purchased from R & D systems Inc ( Minneapolis, usA).

Losartan (Los) was a kind gift from (Merck (Rahway, NJ). B-Gal staining Set was

purchased from Roche Diagnostics Co. ( Indianapolis, IN, USA).
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Chapter 4. RESULTS

4.1 GnNpnaL OBSERvATIoNS: c¡,Rolac HvpnRrRopny, TorAl caRnrac

Coll¿.cnx CoxcBNrnarloN ÄND HB¿.Rr F,rrr,unp

Hearts of experimental animals were charucterized by significant cardiac

hypertrophy as reflected by an increase in the mass of the remnant left ventricular tissue

(LV) and also by increased LV to body mass (B\Ð ratio in experimental animals

compared to control values (Table 1). These incidence and magnitude of left ventricular

hypertrophy noted was comparable to our previous findings (105,246). Cardiac collagen

concentration in surviving myocardium remote to infarct (i.e., remnant heart: 58.2 + S.t

vglmg dry wt) and border r scar tissues (126.3 + 10.8 þelmgdry wt) were both

significantly higher than that of control value (20.3 + 3.2 pglmgdry wt). Furthermore,

cardiac collagen concentration in remnant heart treated with losart an (37 .4 + 3.4 pg/mg

dry wt) was significantly reduced vs. values from nontreated tissues. Heart failure,

reflected by att increase in left ventricular end-diastolic pressure (LVEDP) and a decrease

in the maximum rate of isovolumic pressure development or decay GdP/dt,n*) relative to

their controls, along with congested lungs, has been charucterized in this model from our

previous studies (247). Losartan treatment was associated with normalization of indices

of cardiac hypertrophy and cardiac function (Table 1), in agreement with our previous

findings (214).

4.2 AlrnnarroN oF Torar, CaRtrac TGF-B1
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Quantitative assessment of total cardiac TGF-Pt protein concentration in control

and remnant left ventricular tissues as well as border * scar tissues of the g-week post_Ml

rats was carried out using ELISA. The results indicated that TGF-B¡ was increased by

approximately Z.4-fold in border and scar tissues, compared to that from the control

animals (Figure 1). There was no significant alteration of TGF-B¡ in samples from

remnant left ventricle vs. control values.

4.3 AlrBnarroN oF c¿,Ror¿,c TGF-FI, DBconrx AND CoLLAGEN Typn I ruRNA

AnuNoaNcn

We addressed steady-state mRNA abundance of cardiac TGF-B1, collagen type I and decorin

in tissues taken from various left ventricular regions of the 8 weeks post-Ml rats. Figure 2 shows

a representative Northern blot with autoradiographic bands specific for TGF-81, collagen type I

and decorin and GAPDH mRNAs from left ventricular samples of sham, remnant, as well as

border + scar tissues. Estimation of the target gene mRNA abundance was calculated by the ratio

of target gene to GAPDH signal. The ratios for TGF-B1, decorin and collagen type I were

signif,rcantly increased in the border and scar regions ys. values from remnant tissue and control

(histograms in Figure 2).

4.4LoctuzATIoN oFAcrIvE TGF-PI AND DECoRTN rN CaRolnc Trssun SBcrroNs

Active TGF-Pr was localized using immunofluorescent staining of frozen serial sections

of control (sham-operated) left ventricle from age-matched rats, remnant (viable) left ventricular

tissue remote to the site of infarction, as well as border * scar tissue samples (Figure 3). Active
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TGF-PI protein was localized mainly to the interstitial space in these sections. Compared to sham-

operated control samples, remnant tissues exhibited a relatively bright pattern of staining in the

interstitial spaces suggesting the presence of high levels of TGF-B¡. Intense staining of active

TGF-Pt protein was noted in the border f scar tissue in the post-Ml hearts as compared with that

of sham hearts. Localization of immunoreactive decorin in cardiac sections taken from the

control, remnant tissue remote to the infarct, and infarct scar was carried out (Figure 4), and the

presence of decorin (brightly stained material) is noted in the interstitial space of control (Figure

4A) and remnant (Figure 4B) sections. Decorin staining appeared to be more prominent among

the hypertrophied myocytes of the remnant heart compared to the control section. Compared to

these sections, a more compact pattern of decorin staining (bright patches of specific staining)

was noted in sections of the infarct scar (Figure 4C).

4.5 Qu,r¡rrrFrcATroN AND LoctrtztrroN oF CaRuac Suto 2, 3, aNn 4

western analysis was used to determine cardiac smad 2,3, and.4 protein

concentrations from the 8 week sham-operated control hearts and different regions of

post-infarct myocardium. Quantitative densitometry scanning of specific cardiac Smad 2

(55 kDa band), Smad 3 (45 kDa band) and Smad 4 (62kÐaband) bands revealed that the

concentrations of these proteins were significantly increased in border and scar tissues

(lanes 7-9) when compared to the control values (lanes 1-3, Figure 5A). Furthermore, the

total Smad 2 arñ Smad 3 proteins were increased in the remnant left ventricular samples

(lanes 4-6) from experimental animals vs controls. Immunofluorescence staining patterns

of Smad 2, Smad 3, and Smad 4 is shown in sections of remnant (viable) left ventricular

tissue remote to the infarct (Figure 6A) and of the infarct scar (Figure 68) from the g
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\¡ieek post-Ml rat heart. Double-staining of cellular nuclei in sections of the infarct scar

demonstrate the relative cellularity present in this tissue (Figure 68 ii, iv and vi). We

observed that in the remnant post-Ml tissue sections, cardiac Smad 2,3, and,4 proteins

were localized mainly in the perivascular space (Figure 6A). We also observed marked

localization of Smad 2, Smad 3 and Smad 4 proteins proximal to the nuclei of

nonmyocyte cells from sections of the infarct scar.

4.6 QuaNrrFrcArroN AND LocALrzArroN or TBRI (ALK-S) aNo TBRrI

Western blot analysis revealed that both TBRI and TPRII are detectable in the membrane

fraction but not in the cytosolic fraction. Figure 7A (upper band) provides a representative blot

illustrating the presence of a characteristic 53 kDa band for TBRI. It shows that there is a dramatic

decrease of TBRI in the border and scar tissues. Figure 7A (bottom band) illustrates the bands

specific for TBRII at75 and 110 kDa Q48). In contrast to TBRI, the major isoform of TBzuI (75

kDa) was modestly decreased, but the 110 kDa isoform was markedly increased in the border +

scar region. Figure 78 indicates relatively even loading of samples by amido black l0B staining

of the same Western blot membrane. TGF-P1 receptors and their distribution in 8-week

experimental and age-matched control tissues were localized using immunofluorescent

techniques. In a representative photomicrograph (Figure 8), the staining pattern of

immunoreactive TBRI (ALK-5) and TBRII appears as bright staining within and surrounding

cardiac myocytes, as well as in the interstial space. The latter staining is likely due to the

presence of nonmyocyte cells. Myocytes in the border region (lower portions of panels C and F)

contain brightly stained material, which was taken to represent TBRI and TBRII immunostaining,
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respectively. Notably the infarct scar þresent in the upper portion of panel C) is marked by the

appearance of very little TBRI immunoreactive material. In contrast to the results addressing

TPRI, stronger staining of TpRII was present in the scar and border region compared with sham

and remnant tissues.

4.7 CUaRACTERIZ.{TIoN oF MvonrnnoBLASTS rN THE INnaRcr Scan AT I WEEK Anrnn

Myocanuar, INrancuox

Viemntin, myosin and nuclear staining was noted among frozensections of

sham, remnant as well as scar and border tissues from 8 week post-Ml rat heart (Fig. 9).

From left to right, in samples of sham-operated and remnant myocardium, vimentin

staining (top row, apparent as brightly staining network) was prominent in the

intramyocytic spaces. Cardiac myocytes in these sections (Fig. 9 middle row) stained

positive for MF-20 (myosin) and these tissues appear as homogeneously brightly stained

secions. The infarct scar proper stained negatively for myosin.

As immunoreactive vimentin stains not only fibroblasts, but also myofibroblasts,

endothelial cells and smooth muscle cells, we canied out a series of

immunohistochemical experiments to determine the phenotypic distribution of these cells

in the infarct scar. Representative scar sections were stained with primary antibodies for

cr-smooth muscle actin (o-SMA), factor VIII (von Willebrand factor), and smooth

muscle myosin (SMM) and the results are shown in Fig. 10. In the 8 week infarct scar

tissue, significant o-SMA staining (Fig. l0A) was noted in parallel to relatively low

expression of SMM (Fig. 10C) and we took these combined findings to reflect the

appearance of myofibroblasts. In the remnant cardiac tissue remote to the scar, o-SMA

52



staining was localized to the perivascular space of vessels (data not shown). Staining of

the 8 week infarct scar sections with primary antibody against factor VIII was carried out

to mark endothelial cell distribution. This tissue was characterized,by a negative staining

pattern for this antibody (Figure 108).

4.8 LocalIZATIoN AND QUANTIFICATToN oF CARDTAC SMADS rN Posr-MI Hpanr

Immunofluorescent staining revealed that total Smad 2 protein was localized to

the extracellular space proximal to nuclei as shown in Figure 1 1. Double staining with

vimentin showed that Smad 2was mainly localized to nonmyocytes proximal to the

nuclei. We observed enhanced accumulation of Smad 2 proteins in the nuclei of cells

from scar tissue (Figure 11). Western analysis was used to determine the protein

concentration of cardiac Smad 2 and Smad 4 from different groups (Figure 12). Cardiac

Smad 2 (55 kDa) protein concentration was significantly increased in remnant and scar

tissues when compared to control values, while cardiac Smad 4 (62kDa)protein

concentrations \¡/as only significantly elevated in scar tissue vs the control. Losartan

treatment was associated with a significant inhibitory effect on Smad 2 and, Smad 4

accumulation in remnant tissue and infarct scar tissue, respectively (Figure 12).

4.9 Ernncr oF LosARTAN oN THE ExpRcssroN oF CARDlac TGF-B1

Using Western blot analysis, cardiac TGF-Pl protein concentration was quantified

in the control and the remnant left ventricular tissues as well as the border and scar

tissues of the 8-week post-Ml rats (Figure l3). The TGF-pr polyclonal antibody
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recognized both the latency associated peptide (LAP) and active forms of TGF-81 at -40

kDa and 25 kÐa,respectively. Although the LAP dimer of -80 kDa binds TGF-Br per se,

we observed the monomeric LAP band due to reducing gel conditions. The active form

of TGF-B¡ was increased in both remnant and scar tissues from post-Ml heart, which was

significantly attenuated by the administration of losartan. Conversely, the latent form of

TGF-BI was decreased in both remnant and scar tissues and this decrease was partially

prevented by losartan treatment (Figure 13). Previous studies have shown that TGF-B¡

can be released from latent complexes and can be activated by cleaving an inactive high

molecular weight precursor complex (249). We observed that the conversion of TGF-B1

from its latent to active form was augmented in remnant myocardium and infarct scar.

Losartan treatment was associated with an inhibition of this conversion.

Immunofluorescent staining revealed that the total TGF-B¡ localized to the extracellular

space in normal tissue and remnant myocardium (Figure l4). Furthennore, the infarct

scar stained brightly for total TGF-PI, as did myocytes bordering the infarct scar region.

Cardiac myocytes remote to the infarct scar expressed comparatively moderate levels of

TGF-Br figure 14).

4.10 Toral AND PnospHoRyLATED Suao 2 DrsrnlnurroN rN Posr-MI Haanr

Immunofluorescence data indicated relatively moderate staining of

phosphorylated Smad 2 (P-Smad 2) in myocytes of sham-operated, remnant and losartan-

treated remnant tissues from the post-Ml rat heart (Figure 154, C and E). Compared to

the control and remnant tissues, the scar and treated scar sections (Figure l5G and I,
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respectively) were characterized by brightly stained regions and areas of punctate nuclear

accumulation of P-Smad 2 were found in the scar (arrows) (Figure 15). This pattern was

associated with cellular nuclei in the scar tissue (Figure 15H and J). Western analysis of

cytosolic P-Smad 2revealed a significant decrease in band intensity from the cytosolic

remnant and scar tissue compared to the sham-operated control (Figure l6). These trends

were nolÏnalized by losartan treatment. Our results suggest that a decreased P-Smad 2 in

the cytosolic fraction may be associated with an increased P-Smad 2 in the nuclear

fraction from the remnant and scar tissues of the 8 week post-Ml hearts, and this is

supported by the following experiments.

4.11 THe EppBcr oFANGIoTENSIN oN SMAD 2 AcuvarroN rN Cur,ruRBo C¿,norac

FrsnonLasts

In studies of quiescent and unstimulated cultured cardiac fibroblasts, the total Smad

2localized to cellular nuclei and cytosol (Figure I7a - panel A), as did P-Smad 2 (Figure

6b -panel E). Total Smad 2 staining was elevated in intensity after stimulation with

angiotensin (10-6M) for 15 min vs the unstimulated cells (Figure l7a - panel c).

Furthermore, angiotensin (10-6 M) stimulation for 15 min was associated with marked

translocation of P-Smad 2 from the cytosol to the nuclei (Figure 17b - panel G). V/e

further isolated the nuclei from the cultured cardiac fibroblasts from a normal rat heart

stimulated with angiotensin (10-6 lvf) in the absence or prescence of losartan qtO -6 Vt; t

hour before stimulation. Western analysis revealed that angiotensin stimulation for l5

min was associated with a significant increase of P-Smad 2 protein, and this change was

inhibited by AT1 receptorblockade (Figure tB).
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4.12 AxcrorENSrN srnlulauoN oF snnau 2 lN cannr¡,c FTnRoBLASTS rN THE

PRBseNcs or TGF-B Nrurn¡.uzrxc ANrrBoDy

In order to investigate the possible existence of a direct angiotensin-Smad 2

interaction, we performed a series of experiments designed to eliminate TGF-81 ligand-

receptor interaction. First, we stimulated cardiac fibroblasts with angiotensin (tO -6lvl¡ in

the presence of TGF-81 neutralizing antibody (TGF-p1 NAb, 1.5 ¡rglml), which has been

widely used to inhibit TGF-P activity (250). TGF-Pr NAb at this concentration is able to

exert an inhibitory effect of over 95 % of TGF-B1 activity. Cultured cardiac fibroblasts

were treated with angiotensin (10 -6 M) or TGF-B¡ (10 ng/ml) for 15 min in the absence

or presence of TGF-81 NAb I hour before stimulation. In TGF-Br NAb and losartan (Los,

l0 { M) treated groups, Los was applied to fibroblasts t hour prior to angiotensin

stimulation. Immunoreactive P- smad 2 lo calization was examined using

immunofluorescent staining. Compared to untreated control, TGF-PI stimulation was

associated with brighter P-Smad staining, which was largely concentrated in the cellular

nuclei (Fig. 19), indicating an activation of R-Smad 2 (phosphorylation/activation) by

TGF-Pr, and this effect was blocked by TGF-Br NAb (Fig. 19). This result was confirmed

in other experiments using confocal microscopy (data not shown), providing evidence

that R-Smad 2 was present within the nucleus itself, and not in the perinuclear space.

Angiotensin also exerted a stimulatory effect on R-Smad activation, similar to that of

TGF-81, and this effect was inhibited by Los treatment (Fig. l9). However, the activation

of R-Smad 2 by angiotensin was not blocked in the prescence of TGF-B¡ NAb (Fig. 19),

suggesting that angiotensin can stimulate Smad 2 activation independent of TGF-B¡

receptor activation.
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4.13 STTULATIoN or ÄNctorENSIN ott C¿,Rnrac FrsRosr,asrs OvnRBXpRESSTNG

DourNlNr NEGATTvE TpRII

To add more evidence in support of the specificity of angiotensin- mediated

phosphorylation of R-Smad2, cultured cardiac fibroblasts at second passage at a

confluence of 70o/o were infected with an adenoviral dominant-negative TPRII

(AdDNTPRII, MOI:25). AdDNTPRII is a kinase-defective mutant of TBRII, lacking of

the function of normal TPzuI. Overexpression of an AdDNTPRII has been shown to

abrogate TGF-BI signaling mediated by TGF-B receptors (7s). Þ-Gal adenovirus

(AdBGal, MOI:25) was used as a control. The infection efficiency was over 95Yo after 24

hours infection examined by B-Gal staining (data not shown). There was no significant

cytotoxicity to the cultured cardiac fibroblasts under our conditions. Twenty four hours

after infection, fibroblasts were stimulated with angiotensin (10 -6 M¡ for 15 minutes.

Immunoreactive P - Sm ad 2 localization was examined using immuno fl uorescent staining.

In AdpGal infected fibroblasts, a weak staining of P-Smad 2, which was sparsely

localized at the perinuclear space (Fig. 20). Angiotensin stimulation was associated with

a brighter staining for P-Smad 2, which was mainly localized in the nuclei. In

AdDNTPRII infected f,rbroblasts, the pattern of P-Smad localization was similar to that of

AdpGal infected cells in the absence of angiotensin. Similar to AdBGal infected cells,

angiotensin stimulation of AdDNTBRII infected fibroblasts resulted in an increased

staining of P-Smad 2, which was mainly localized to the nuclei (Fig. 20). Some staining

was. also seen in the cytoplasm and in focal adhesions. Our results indicated that
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overexpressing AdDNTPRII in fibroblasts could not block the effect of angiotensin on

the activation of R-Smad 2, suggesting that angiotensin stimulates Smad 2 activation

independent of TGF-B1 receptor activation.
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Table 1. General and hemodynamic characteristics of age-matched sham, 8 week post-myocardial

infarction (MI) and I week losartan-treated post-Ml rats.

Parameters Sham-operated control Post-MI Losartan-treated

Post-MI

BW, g

LVW, g

LV/BW, mg/g

Lung wet/dry wt ratio

LVEDP, mmHg

LVSP, mmHg

+dP/dt,no*, mmHg/s

-dP/dt,no*, mmHg/s

514 + I
0.89 r 0.03

1.74 ! 0.03

3.42 r 0.21

3.1r 0.6

132f.8

5612 + 234

5478 + 229

481x9

1.02 + 0.03*

2.1 1 + 0.05*

4.73 + 0.23+

12.8 + 1,6*

119 t 11

4481 + 212*

3894 + 218*

486+ll

0.91 + 0.02 T

1.86 + 0.04 t

3.56 + 0.lg T

8.8+9.3T*

121 + t0

5032 + 224r

4652 + 2ß r

able 1. Experimental animals (MI) were charccferized by large left ventricular (LV) myocardial infarction

43 + 4% of the total LV circumference); sham-operated animals were noninfarcted age-matched controls;

W, body weight; LVW, left ventricular weight; LVEDP, LV end-diastolic pressure; LVSP, LV systolic

re; +dP/dt.*, the maximum rate of isovolumic pressure development; -dP/dt**, the maximum rate of
sovolumic pressure decay. The data depicted is the mean t SEM of 8-10 experiments. *P < 0.05 vs sham-

animals; T P < 0.05 ys untreated post-Ml animals.
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Figure 1. Cardiac transforming growth factor-81 (TGF-PI) protein concentration in sham hearts, as well as
remnant, border and scar tissues from 8 week post- MI as detected by enzyme-linked immunosorbent assay
(ELISA). The data depicted is the mean + SEM of 5 experiments. 

-P < 0.05 and IP < 0.05 ys sham and
remnant sample values, respectively.
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Figure 5. Westem blot analysis for total Smad 2, Smad 3, and 4 in sections of age-matched sham-
operated control hearts (lanes 1-3), as well as in remnant tissues (lanes 4-6) andborder * scar tissues
(lanes 7-9) from experimental rat hearts 8 weeks post-Ml. Panel A is a series of representative
Western blot autoradiographs indicating the 621<Da,45 kDa, and 62k<Dabands specific for Smad 2, 3,
and 4. Similar results were obtained in 3 experiments. Panel B shows histograms for the quantified
data of Smad protein expression (quantified by densitometric scanning), and is depicted as the mean +
SEM of 3 different experiments. *P < 0.05 and fP < 0.05 ys values from sham-operated control and
remnant sample values, respectively.
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Smad 2 Smad 3 Smad 4

Smad 2

Smad 3

Smad 4

Figure 6. Smad localization in sections of remnant tissue and infarct scar from post-Ml heart.
Immunofluorescent staining of Smad proteins in remnant tissue remote to the site of infarct (Panel A)
as well as infarct scar tissues (Panet B) from rat hearts 8 weeks after the induction of MI. Panel A:
Immunoreactive total Smad 2 (Ai), Smad 3 (Aii), and Smad 4 (AiiÐ proteins in the remnant tissue
localized to the perivascular space. Panel B: In the infarct scar, immunofluorescent staining for Smad
2 (Bi), Smad 3 (Biii), and Smad a @v) is shown on the left; sections Bii, Biv, and Bvi depict nuclei
(Hoechst 33342) from the identical fields to the immediate left, respectively. Magnification x 400.
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TpRr
(ALK-s) <- 53 kDa

110 kDa
<- 75 kDa

TFRII

M1 2

Figure 7. Western blot analysis of transforming growth factor-B receptor type I (TPRI, ALK-5)
and transforming growth factor-p receptor type II (TPRII) protein concentration in sham,
remnant, as well as border and scar tissues from 8 week experimental animals. A.
Representative Western blots showing specific bands of TBRI (AIK-5, 53 kDa) and TpRII (75
kDa and I l0 kDa).
Lanes I and 5 are sham, lanes 2 and 6 are refirnant LV, lanes 3 and 7 are border tissue, and lanes
4 and 8 represent scar. B. Amido black staining of the PVDF membrane showing the loading of
protein.

B.

7543

-66



Sham Remnant Border*Scar

rpRr

TPRII

Figure 8. Immunofluoresent staining showing transforming growth factor-B receptor type I
(TBRI) and transforming growth factor-B receptor type II (TPRIÐ in sham hearts (A and D), as
well as remnant (B and E), border and scar (C and F) tissues from rat hearts 8 weeks post-Ml.
Immunoactive TBRI and TBRII proteins appear as brightly stained material. Magnification x 400.
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Hoechst

Sham Remnant Border
& Scar

Figure 9. Representative frozen cardiac tissue sections stained for immunoreactive vimentin,
myosin (MF-20), and cell nucleus (Hoechst) staining patterns in sham, viable as well as border and
scar tissue from animals at 8 weeks after myocardial infarction. "M" depicts the myocytes
occupying the border region; "S" depicts the scar region of the field. The sections shown within
the tissue regions are not derived from serial preparation. Magnification, x 400.
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Figure 10. Characterization of myof,rbroblasts in the infarct scar at 8 weeks after myocardial
infarction. Panel A. Frozen sections of infarct scar were stained with immunoreactive c¿smooth
muscle actin (oSMA); panel B. factor WII (von Willebrand factor); panel C. smooth muscle
myosin (SMM). Conditions for fluorescence were optimized in each field. The relatively low level
of specific staining for smooth muscle myosin and negative staining pattem for factor VIII indicate
minimal numbers of smooth muscle cells and endothelial cells in the 8 week infarct scar.
Magnification, x 400.
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ffi sç¿¡.4 l6s

8 Weeks Post-MI

Figure 13. Western blot analysis of TGF-ß, in 8 week post-Ml heart tissue. Panel A: Representative
Western of latent (a0 kDa) and active TGF-ßr (25 kDa) protein in from sham-operated control hearts
(lane 1) as well as remnant tissue (lane 2), remnant tissue with 8 week losartan treatment (lane 3),
infarct scar tissue (lane 4) and infarct scar tissue \¡/ith 8 week losartan freatment (lane 5) from 8 week
post-Ml ratheart left ventricular samples. Panel B: Membrane from panel A stained with Coomassie
blue to veriff relatively even protein loading. Panel C: Histograms of quantified data from multiple
samples from the groups in A. The data depicted is the mean + SEM of 4-6 experiments. p < 0.05 is
expressed by * vs sham, t vs remnant and f vs scar values.

2.4

¿ .9 2.0
O:EtrÐ
oo1.6
.4,
oq)
6t El 1.
O ã L.L
LV

zö 0.8

Év
E 0.4

0.0

72







A

621<Da *

r control
EGts remnant (MI)
ffi remnant (MI) + los

I Weeks Post-MI

Figure 16. Western blot analysis of phosphorylated Smad 2 in 8 week post MI hearts. Panel A.
Representative Western blot of cardiac tissue cytosolic fractions probed for phosphorylated Smad 2 in
sham left ventricular tissue (lane 1), remnant myocardium (lane 2), remnant tissue treated for 8 weeks
with losartan (3); scar tissue (lane 4) and from scar tissue with 8 week losartan treatment (lane 5).
Experimental'animals were harvested 8 weeks after surgery. Panel B. Membrane from Panel A stained
with Coomassie blue to veriS relatiûely protein loading. Panel C. Histograms for quantified data
from multiple samples from the groups in A (quantif,red by densitometric scanning). The data depicted
is the mean + SEM of 4-6 experiments. P < 0.05 is expressed by * vs sham f vs remnant and f vs scar
values.
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ffil Angiotensin
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Figure 18. Western blot analysis of phosphorylated Smad 2 in cardiac fibroblast nuclei Panel A,
Representative Westem blot for phosphorylated Smad 2 in nuclei isolated from cultured cardiac
fibroblast cells. The 62 kDa band shown represents nuclear phosphorylated Smad2 ÍÌom untreated
control cells (lane 1), 15 minute angiotensin II (angiotensin,l0-6 M) stimulated cells (lane 2), and 15
minute angiotensin (10'6 M) stimulated cells with losartan (10'6 M) heatment (lane 3). Panel B.
Histographic representation of quantified data Íìom multiple samples from the groups in A. The data
depicted is the mean + SEM. of 3 experiments. P <0.05 is expressed by * vs untreated control and t vs
Angiotensin.
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Chapter 5. DISCUSSION

5.L ExppruMENTAL Monnr. oF CoNGESTIvE HB¡,nr F¡.rlunn

Animals with a relatively large infarct 8 weeks post-Ml were considered to be in

the moderate heart failure group based on current data and previous observations

(246,247). Using this model, we have previously observed significant elevation in the

deposition of cardiac collagen, in addition to the persistence of myofibroblasts in the

remnant myocardium and scar tissue (247,251). Chronic scar remodeling has been

shown to play a role in the functional preservation of the infarcted ventricle (252).

Elevated LVEDP, decreased time to peak pressure development and decay

(tdP/dt.*) and the presence of pulmonary congestion was confirmed in I week

experimental animals (due to a flattening of pressure wave). Although these were taken to

reflect significant disruption of normal cardiac function, these animals did not display

overt dyspnea, cyanosis, or marked lethargy and thus were considered to be in "moderate

heart failure", as previously demonstrated (28,230). This classification is based on our

observations of the development of post-Ml heart failure in rats with relatively large MI

(> 40% LV free wall) and provides an arbitrary classification system to facilitate the

comparison of differently timed experimental groups (28,230). The incidence of cardiac

hypertrophy in 8 week post-Ml rat hearts, as indicated by increased LV weight and the

ratio of LV to body weight, was also apparent when compared to the non-infarcted

controls. Significantly elevated deposition of cardiac collagens in the remnant tissue

(cardiac fibrosis) and scar tissues (in chronic phase healing of the infarct scar) in post-Ml
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hearts was confirmed in this investigation and was similar to the patterns of fibrosis

observed in our previous studies (28,53). As the mechanical properties of the infarct scar

are critical for cardiac function after MI (253), any alteration in its structure may

influence cardiac function. Thus, we chose to examine this stage of Ml-associated heart

failure to provide insights into the events associated with ongoing wound healing in

various regions of the infarcted heart, including the infarct itself.

5.2 FrsnoBLASTS, MvorrsRoBLASTS rxn C¿.Rur¿,c Flenosrs

Following MI, fibroblasts arrive at the site of repair where they undergo

phenotypic transformation to myofibroblasts, a process inducible by TGF-p1 (254).

Myofibroblasts express a-smooth muscle actin (a-SMA), providing contractility and

chronic mechanical tension to the remodeling scar (254). As vimentin is expressed by

cardiac nonmyocytes but not by myocytes, we used immunoflourescent staining for the

detection of this protein as a first step to highlight the distribution of these broad classes

of cells in infarct scar tissue. We used vimentin as a marker of nonmyocytes and MF-20

(myosin) as a marker for myocytes. Our results showed that the infarct scar was

populated with cells which stained positively for vimentin and negative for myosin, thus

indicating the absence of myocytes in the infarct zone (Fig. 9). Phenotyping of the

vimentin-positive cells of the infarct scar revealed significant positive staining for ct-

SMA (Fig. 10), which is not expressed by fibroblasts. The relatively low level of specific

staining for smooth muscle myosin (SMM) and negative staining pattern for factor VIII

indicates minimal numbers of smooth cells and endothelial cells in the 8-week post-Ml

infarct scar (Fig. 10). These results indicated that myofibroblasts are the predominant cell

type in 8 week post-Ml scar tissue in rats, which is in consistence with previous studies
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(34,43).It has been known that myofibroblasts have a high synthetic capacity for fibrillar

collagens and express cytokines including angiotensin and TGF-Br (30). These cells also

express angiotensin receptors as well as TGF-p1 receptors which potentiate

fibroproliferative behavior (255). Thus our results, together with other other

studies(33, 34,43),sguuest that and are major players in the formation of infarct scar

structure in the post-Ml heart.

5.3 AcrrvATroN oF THE TGF-B Srcl¿.r.rxc P.rrnwav rN posr-Ml HB¿,nr

TGF-P contributes to an array of biological functions including regulation of ECM

production, wound repair and growth inhibition (16,256). These phenomena are mediated

through transmembrane TGF-B receptors (TPPJ and TBRII) that display serine/threonine kinase

activity Q$. In experimental left ventricular hypertrophy, the selective increase in expression of

TGF-BI vs. either TGF-82 or TGF-B3 subtypes suggests that the former sub-type is important in

the pathogenesis of cardiac disease associated with hypertrophy (17). TGF-p receptor activation

occurs upon the binding of TGF-B to TpRII, which then recruits and phosphorylates TpRI (26).

It is now clear that phosphorylated Smad 2 (or Smad 3) proteins mediate the TGF-81 signal

transduction via binding of both Smad 4 (24,25,83) and FAST-I, a eukaryotic nuclear

transcription factor (257). The C-terminal region of FAST-I protein binds specifically to Smad 2

(258) and the heterotrimeric complex is required for initiation of TGF-81 mediated gene

transcription. The phosphorylated TBRI is activated and phosphorylates cytosolic Smad 2 or

possibly Smad 3 (24,80). Phosphorylated Smad 2 (arñ/or Smad 3) then form(s) a heterotrimeric

complex with Smad 4 and this complex accumulates in the nucleus leading to the activation of

target gene expre ssion (24,25,83).
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Interstitial fibrosis and attendant decreases in compliance of the surviving myocardium are

believed to contribute to the occurrence of cardiac dysfunction (1) and it has become clear that

the scar size is a reliable marker for the development of heart failure post-Ml (259). Although

gross morphological examination of experimental hearts has indicated that scar formation is

completed 3 weeks after MI (260), more detailed investigation suggests that the scar is not

quiescent even 8 weeks after MI (28). As opposed to interstitial fibrosis of the remnant heart,

normal fibrosis in the healing of the infarct scar may help to preserve ventricular function (253).

Although TGF-P stimulates ECM production which is involved in the development of heart

failure in post-Ml heart (26I), alteration of downstream Smad proteins in this pathology is

unknown. The present study represents a first step in this regard and our results support the

hypothesis that elevated expression of TGF-Bl (both mRNA and protein) is positively correlated

to the increased cardiac Smad protein expression, chronic phase healing of the infarct scar and

overt fibrosis of the remnant myocardium. Thus, it may be possible that activation of Smads 2, 3

and 4 expression in post-Ml heart is contributory to the ongoing scar remodeling. Although the

precise significance of the predominance of Smad proteins in the cellular nuclei within the infarct

scar is unclear, they may participate in the stimulation of expression of the matrix genes i.e.,

fibrillar collagens. We suggest that by this mechanism, scar structure is chronically influenced in

heart failure after MI. It is likely that balanced chronic infarct remodeling and marginal

compensation of cardiac function is not maintained in the presence of large MI, as the functioning

of experimental hearts rapidly deteriorates to overt decompensation by 16 weeks (230). In the

infarct scar, myofibroblasts have been shown to be the predominant cell type in post-Ml scar

tissue in rat heart (36,40) and are likely candidate ceils for the bulk of Smad protein expression in

this tissue (34,43).
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It has been reported that angiotensin concentration and AT1 receptor density in

myofibroblasts are significantly increased in the scar tissue post-Ml (35,200,262). As angiotensin

has been implicated in the stimulation of cardiac fibroblast proliferation (154,168,188), the net

proliferation of myofibroblasts may depend upon a balance between TGF-p signaling and other

trophic factors, i.e., angiotensin, during post-Ml wound healing.

Deco¡in is a proteoglycan which is expressed in heart and is known to sequester TGF-B¡

in the extracellular matrix of different organs (263). The current finding, with regard to decorin,

is the first to describe altered expression of this proteoglycan in experimental heart failure. The

significance of increased steady-state abundance of decorin mRNA and altered localization of

immunoreactive decorin in 8 week post-Ml hearts is unclear. Decorin may actas an effector

molecule in a negative feedback loop that regulates TGF-Pr (264). Thus, increased expression of

decorin may lead to inhibition of the action of TGF-81 de facto by binding this cytokine in the

extracellular matrix (265).

The significance of differential regulation of TpRII (increased) and TBRI (decreased)

receptors in border and infarct scar, is not easily explained by the current model of TGF-B

receptor signaling. As TBRI may act as a downstream component of TBRII (26,64,266), reduced

expression of either receptor subtype may simply confer a loss of TGF-81 responsiveness in target

cells. On the other hand, recent evidence supports the view that the antiproliferative and fibrotic

effects of TGF-p1 may be modulated independently in smooth muscle cells by selective changes

in the TPRI/TPRII ratio (267). Massague has speculated that the type II receptor may confer the

signal independently of the type I receptor by phosphorylating as yet unknown substrates (64).

The down¡egulation of TpRI may be due to the reciprocal regulation by stimulation of high

concentrations of TGF-Fr in the scar and border tissues. This view is supported by the
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demonstration that pre-exposure of osteoblasts to TGF-Bt is associated with decreased receptor

density (268). Conversely, TGF-p-mediated upregulation of TBRII receptors in vascular smooth

muscle cells has been observed (269) and this autostimulatory mechanism may partially explain

the expression in remnant border and infarct scar tissues in post-Ml hearts.

This data indicate that increased Smad protein expression as well as increased TGF-Bl

expression in infarct scar tissue in the chronic phase of post-Ml hearts is positively correlated to

elevated deposition of cardiac collagens. 'We 
suggest that overexpression of Smad proteins are

involved in ongoing extracellular matrix remodeling of the infarct scar and remnant myocardium

in post-Ml hearts by cardiac myofibroblasts and that these changes are involved in the

progression of heart failure. It follows that blockade of TGF-B signaling may inhibit TGF-pr-

mediated fibrosis in post-Ml heart. In fact, our previous studies have shown that a continued

increase of TGF-B1 expression as well as Smad 2 activationwas accompanied by a decreased

expression of Smad 7 in the infarct scar at 2 week and 4 weeks post-Ml hearts (70), suggesting a

loss of inhibitory effect on TGF-B¡ signaling in normal wound repair. In addition, overexpression

of Smad 7 in cultured cardiac fibroblasts resulted in a decreased collagen expression (70). Thus,

the direct regulation of cardiac Smad protein expression and activation may represent a novel

therapeutic approach for modulating fibrotic events in post-Ml hearts.

5.4 cnossrAlKBnrweBNANcrorBNSrN AND TGF-pr rN posr-Ml Hpanr

Angiotensin has been shown to stimulate cardiac fibrosis in several different

models of heart failure (214,216,270,271).Furthermore, angiotensin stimulates collagen

production in cultured cardiac fibroblasts (272).Its expression and ATl receptor density

in myofibroblasts of the infarct scar are significantly increased (273,274). We have
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demonstrated that ATI blockade is associated with partial attenuation of cardiac fibrosis

in post-Ml ruts (275,276), however, the precise mechanism of the antifibroproliferative

effect of this therapeutic intervention is unclear. Mounting evidence supports the

existence of putative crosstalk between angiotensin and TGF-Br at the level of ligand

expression in cultured cells including adult primary cardiac fibroblasts (217,218).

Furthermore, AT¡ receptor blockade has been shown to be associated with increased

steady-state abundance of TGF-B¡ mRNA observed in the 4 week post-Ml rat heart (219).

These findings support the hypothesis that AT1 modulation of TGF-p1 ligand may occur

in cardiac fibroblasts. Nevertheless, a role of angiotensin at the post-receptor levels of

TGF-Pr signaling has not been identified.

TGF-P is secreted as an inactive precursor complex containing a signal peptide,

the active TGF-Pl molecule, and the cleaved propeptide known as the latency associated

peptide (LAP) (277). Following removal of the signal peptide, the gene product

undergoes proteolytic cleavage to produce mature TGF-P¡ (residues 279-390) and LAP

(residues 30-278) (249,277). V/e found that the active form of TGF-pr (25 kDa) was

significantly elevated in remnant (viable) and scar tissues, whereas the LAP (-40 kDa in

monomeric form as seen in a reducing gel) latent form of TGF-B¡ was decreased vs. the

control in heart failure. This indicates a redistribution in expression of active TGF-

BIILAP ratio in the remnant myocardium and infarct scar. As losartan treatment led to a

normalization of this trend, ATI activation may play a role in relative activation of TGF-

B1 in experimental hearts and thus regulate the bioavailability of the active TGF-Pl

molecule.
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These results indicate that elevated Smad expression in experimental heart failure

is normalized by long-term AT1 receptor blockade and that these changes are paralleled

by modulation of fibroproliferative events in these hearts. Furthermore, AT1 activation is

associated with augmented nuclear accumulation of phosphorylated Smad 2 infailing

hearts and with angiotensin stimulation of cultured cardiac fibroblasts. The current

results also provide a link between angiotensin receptor activation and potentiation of

Smad protein function in cardiac fibroblasts.

5.5 ANcrorENSrN Acuv¿,rBs R-suan 2 rx culruRpD CARDTAC FTBRoBLASTS

fNoppnNoENT oF AcuvnrroN oF TGF-B Rncnnrons

It is clear that the phosphorylation and subsequent nuclear translocation of Smad

2 is required for regulation of transcription in TGF-B signaling in mammalian cells. Our

data has shown that P-Smad 2 is upregulated in the infarct scar 8 weeks after MI.

However, the effect of angiotensin on the activation of R-Smad 2

(phosphorylatior/nuclear translocation) in cardiac fibroblasts and post MI heart has not

been reported. In this study we noted an increased total Smad 2 and,a decreased p-Smad

2 in cytosol sections from remnant and scar tissues post-Ml. This suggesting an increased

nuclear accumulation of P-Smad2 andthese trends were normalized by AT¡ receptor

blockade (losartan 15 mglkg/day for I weeks). Our in vitro strdy demonstrated that

angiotensin (10 -{ M) stimulation of cultured adult rat cardiac fibroblasts was associated

with an elevation of total Smad 2 protein. Furthermore, the presence of angiotensin

caused an increased nuclear accumulation of P-Sm ad 2 in fibroblasts, as indicated by

immunofluorescent staining and Western analysis. The protein level of P-Smad 2 in

87



nuclei isolated from cardiac fibroblasts increased following angiotensin stimulation, an

effect that was blocked by AT¡ receptor blockade. Taken together, these results indicate a

possible link between angiotensin and the phosphorylation and nuclear translocation of
Smad 2' The molecular mechanism underlying this link is not yet clear and it is currently

unknown whether this action is dependent or independent of TGF-B¡ ligand. It has been

reported that Smad 2 activation may not be restricted to TGF-B receptors e7g)and our

data suggest a direct role for angiotensin in this regard. Recently, Janus N-terminal

kinase (JNK) activity has been shown to cause phosphorylation of the c-terminal

tyrosines on receptor-activated Smads Q79). Furthermore, AT1 activation causes a rapid

increase (5 min after stimulation) in JNK activity in cardiac cells in dose-dependent

manner (90)' Additionally, smad nuclear accumulation can by inhibited by Ras-activated

Erk kinases (280), which can be activated by angiotensin in cardiac fibroblasts (2g1,2g2).

Thus, it is reasonable to hypothesize that an angiotensin-mediated pathway for activation

of cardiac R-Smad 2 proteins that is independent of TGF-Br receptor activation exists.

In order to prove the existence of a direct angiotensin-Smad 2 interaction, we

first stimulated cardiac fibroblasts with angiotensin (10 -6 M ) in the presence of TGF-81

neutralizing antibody (1.5 ¡rglml ). We found out that TGF-pr neutralizing antibody

blocked the effect of rGF-Þr on the activation of cardiac R-smad 2. However, activation

of R-Smad 2by angiotensin could not be blocked by TGF-p¡ neutralizing antibody.

These results suggested that angiotensin stimulates R-Sm ad,2 activatron independent of
TGF-Br receptor activation.

To fuither support this conclusion, cultured rat cardiac fibroblasts were infected

with adenoviral dominant-negative TGF-p type II receptor (Ad DN-TÞRII) and then
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stimulated with angiotensin (10 -u 
tut ). Fibroblasts infected with adenoviral B-Gal was

used as control. The immunoreactive P-Smad 2localization was examined using

immunofluorescent staining. The efficiency of infection under our conditions was over

95%o and no significant cytotoxicity was found. Our results showed that the increased

nuclear accumulation of P-Smad2by angiotensin stimulation in control group, and this

effect of was not abrogated in DN-TBRII infected cardiac f,rbroblasts. These results

further support that activation of R-Smad2by angiotensin is independent of TGF-B

receptors activation. The precise mechanism for this action is unclear. It has been

reported that Smad 2 can be activated by JNK in primary bovine aortic endothelial cells

and by ERK in cell line (280,283). It has also been shown that angiotensin stimulates the

activation of MAP kinases in cardiac fibroblasts (291,282,284), suggesting a link

between angiotensin and Smad 2 activation through MAP kinases. Whether R-Smad 2

can be activated by these MAP kinases in cardiac fibroblasts is unknown and it is also

unclear that whether these MAP kinases play arole in TGF-BI signaling in cardiac

fibroblasts. Nevertheless, our studies indicate that R-Smad 2 is activated in post-Ml rat

hearts and may specificlly mediate angiotensin and TGF-p1 signaling, which may be

involved in the pathogenesis of cardiac fibrosis and subsequent heart failure. Modulation

of Smad 2 mediated signaling may provide a therapeutic target for the prevention of

cardiac fibrosis and heart failure and further investigation is required.
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Chapter 6. CONCLUSIONS

1. Increased R-Smad 2 protein expression as well as increased TGF-B¡ expression in infarct

scar tissue in the chronic phase of infarction is positively correlated to elevated deposition

of cardiac collagens in the infarct scar and the remnant heart.

2. Overexpression of Smad proteins may be involved in ongoing extracellular matrix

remodeling of the infarct scar and in remnant regions in post-Ml hearts by cardiac

myofibroblasts, and these changes are involved in the progression of heart failure.

3. ATr blockade is associated with i) altered TGF-Pr ligand processing in post-Ml hearts, ii)

normalization of both increased Smad 2 expression in remnant myocardium and infarct

scar and increased Smad 4 expression in infarct scar. Furtherïnore, these events are

positively correlated to normalized cardiac function and significant reduction in cardiac

fibrosis in treated experimental hearts.

4' Angiotensin may elevate Smad 2 expression and nuclear accumulation in cultured adult

cardiac (myo)fibroblasts, suggesting a link between angiotensin receptor activation and

potentiation of Smad protein function in these cells.

5. Angiotensin activates Smad 2 in cultured cardiac f,rbroblasts through a TGF-B¡ ligand-

independent pathway.
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In summarY, our studies indicate that R-Smad 2 is activated in post-Ml rat hearts and

may specifically mediate both angiotensin and TGF-B1 signaling, which may be involved in the

pathogenesis of cardiac fibrosis and subsequent heart failure. Modulation of Smad 2 mediated

signaling may provide a therapeutic target for the prevention of cardiac fibrosis and heart

failure and further investigation of this possibility is warranted in this regard.
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