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ÄBSTRACT

The objective of this disse¡tation is to exprore ways of achieving high perfor-
mance fo¡ numerical analysis and Computer-Aided Engineering (CAE) algorithms
with minimal cost. The transputer microprocessor and its accompanying language
(occam), which provide a readily accessibre means to perform Multipre Instruc-
tion/Multiple Data paraller processing, we¡e found to ideary satisfy these goars.

The main category of aJgorithms studied dears with matrix and vector op-
erations since these are so pervasive in the targeted fields. Monadìc and dyadic
vector operations a¡e shown to be efficient on rinea¡ t¡ansputer arrays, whiie scaJar
product and dense mat¡ix-vecto¡ murtiprication algorithms a¡e mo¡e suited to the
shuffe-exchange netwo¡k. A nover sparse matrix-vector murtipìication algorithm is
demonst¡ated fo¡ banded matrices.

Mat¡ix sorution methods studied include Gaussian erimination and the polyno-
mial Preconditioned Conjugate G¡adient (ppcc) techniques. The Gaussian elimi-
nation algorithm is shown to achieve nearry the maximum theo¡etical efficiency on
a linea¡ array of transputers by virtue of communication and computation overlap.
A novel implementation of fhe ppCG algorithm is described, and applied to the
fi nite-difie¡ence technique.

As an example of the implementation of a complex CAÐ algorithm, the MAN_
iioba Integrated rransputer/ o ccam Boundary erement Accererato¡ (MANIToBA)
is described' MANIT'BA consists of a nover argorithm that tightry coupres a parar-
lelized version of the boundary erement method (BEM) with a Gaussian erimination
mat¡ix solver on a linea¡ transputer array. Fundamental theory of the BEX,I is pre_
sented, along with architectural and algorithmic deta s ofthe implementation. The
performance of MANITOBA is compared to a simila¡ serial algorithm running on
a workstation.
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CHAPTER I

INTRODUCTION

The goar of this disse¡tation is to implement high-performance accere¡ators for nu-
merical analysis and computer-Aided Engineering (cAE) algorithms in a mic¡o-
computer or workstation envi¡onment. using such platforms for cAE is desirabre
because of thei¡ low cost and easy accessibility when compared to operating within
a mainf¡ame environment-

Moreover' softwa¡e provided in a mainf¡ame envi¡onment is constrained by
the info¡mation bandwidth between the mainf¡ame and the use¡'s te¡minal, and as
a ¡esult tends not to be user-f¡iendry' The wo¡kstation environment, on the other
hand, allows high-bandwidth communication to a user,s sc¡een.

The problem we address here is that, more often than not, the wo¡kstation
lacks the power needed to execute CAE algorithms. One strategy to overcom€
this sho¡tcoming is to use the workstation as a graphicar design device with the
heavv computation of-roaded onto a ma.inr¡ame through a network. This best of
both worlds approach achieves the desi¡ed resurts but requires the presence of a
mainframe computer locally with subsequent high costs.

Another strategy, which we adopt here, is to seek ways of speeding up the
workstation itself so that it can sorve dificult problems in a ¡easonabre amount of
time. Again, because we are operating in a low_cost environment, it is imperative
that the methods used be suficiently inexpensive to justify thei¡ use. Naturally,
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these goals a¡e somewhat conflicting, and any practical system produced must be a
compromise between them.

The workstation can be accele¡ated in a number of ways. For example, time
consuming operations such as murtiplication and division courd be augmented with
special-purpose hardwa¡e' Indeed, most present day microprocessors have compan-
ion co-processors to perform such tasks. The probrem with this approach is that
one can only go so far before the cost becomes prohibitive because of the speedup
in the support circuitry necessary to keep the fast computation unit busy.

In addition, fundamental physical limits are being reached in the speed at
which conventionar computer ha¡dware can operate, so even the most optimistic
advances in present-day circuii technorogy can onry hope to provide marginal im-
provements' Even if some unforeseen new technorogy evolves, it is unlikery that it
will be inexpensive enough to find use in desktop computers in a timely fashion.

A bette¡ way to achieve speedup is to exploit parallelism in the problems
at hand. In the present context, the aJgoriihms used in numerical anarvsis and
cAE need to be dissected into pieces that can be executed in parater on diffe¡ent
processo¡s.

The level at which an argorithm is partitioned is refer¡ed to as its granularity
(Geist et al' i1987,2981). Àn argorithm is said to be coarse-grøined if each processor
is given a signiflcant portion of the probrem data to operate on in each computation
step' For example, many of the algorithms presented in this dissertation a¡e coa¡se-
grained since each p¡ocessor is given many columns of a matrix to operate on.

Converseiy, we say an algorithm is f,ne-grained, if each processor has only
a smal.l amount of the computation to perform in each step. An example is the
distributed sum algorithm in chapter 3, where each processor has only to perform
a single multiplication and addition in each step of the algorithm.



wh'e the possibre partitionings of an algorithm depend intimately upon the
algorithm itserf' they arso depends upon the architecture of the target paratel sys-
tem. The two main factors a¡e the power (size) of the processors in the svstem, and
the provisions made fo¡ communicatrion between them.

Pa¡allel architectures can be broadly categorized into two main groups (Fl¡,nn
11972]); Murtiple Instruction stream/Multipre Data st¡eam (MIMD); and singre In_
struction stream/Multiple Data st¡eam (SIMD). In practice, these groupings sup_
port well defined types of parallelism (coarse and fine_grain respectively).

A MIMD machine (multiprocessor) consists of many autonomous computers,
each executing a difre¡ent p¡ogram (multipre instruction stream) on data in its ro-
cal memory' Typica,y' each computer communicates to othe¡ processors through
either sha¡ed memory (bus based multiprocessor) or through point_to_point com_
munication netwo¡ks. Since every node is a computer in its own right, it is by
necessitv rather rarge' Therefore, it is not usua,r to see large numbers of proces-
so¡s in a system, and sma'' netwo¡ks of rerativery powerfur computationar nodes
are favou¡ed. Because the processors are very powerfuJ, svstems of this type most
naturally addiess coa¡se_ grain paraJlelism.

A SIMD machine consists of many processors, each obeying the commands
of a common maste¡ controller which interprets a single instruction stream, The
processors operate in rockstep (performing identical instructions at identicaJ times)
upon data sto¡ed in rocal memory. This a¡chitecture tends to favou¡ large numbers
of very simple processo¡s' Exampres incrude the connection Machine with 65,536
single-bit p¡ocessors (H ris [19g51). and the ICL DAp with 4096 single-bit processors
(Hockney and Jesshope l1gg1,1Zg-192]). Since there are so many processors, bus
based communication through shared memory is impractical, and communication
networks a¡e used to sha¡e information.

Since it is a ra¡e aJgorithm that can be partitioned into pieces that a¡e not
inter-dependent in some way, eficient and versatire interprocessor communication

-ù-



is a key requirement of a parallel system. Making the necessary data available to a
processor at the proper time encompasses much of a partitioning strateg)..

Obviously, if every processor was directly connected to every other proces-
sor' this would not be a probiem, and all communication could take place in one
timestep' However' engineering and cost const¡aints prevent this fo¡ networks of
any appreciabre size, so we are fo¡ced to limit the numbe¡ of processors to which a
given processor can be connected.

Sinèe two processors that need to communicate may not be directly connected.
strategies that can fac'itate communication through intervening processors must be
developed As such, we are required to continually weigh the ga.ins in paralrerism
against the communication cost int¡oduced by a particular partitioning on a given
communication network.

Many diferent network topologies have been devised in an attempt to add¡ess
these issues (Haynes et at' r1gg2], Gottrieb and schwa¡tz i19g2]). Most represent an
attempt to minimize communication costs wh'e maxirnizing connectivity, and are
usually successful only on ce¡tain classes of problems.

The hypercube is perhaps the most versatile of the ,,exotic,, inte¡connection
networks. lt has the appealing property that, in a 2K processor hypercube, a pro-
cesso¡ is never anlr fu¡the¡ than K communicafion sfeps from any other processor.
This property comes at a the price of hardwa¡e compledty, howeve¡. since it ¡e_
quires that each processor have K communication rinks. This in turn t¡anslates
into high system cost due to the rarge amount of wire routing required. The other
netwo¡ks step back f¡om this ideal case, and sacrifrce communication distance so
that ha¡dware requirements will be less stringent.

It can be readily seen that paraJlel processing is not a panacea. The issues
are fu¡ther complicated by the fact that most of the development of numerical and
non-nume¡ical algorithms has been geared toward implementation on scaiar (non-
parailel) processors. The conversion of sca,rar algorithms to paralrer algorithms is



not a straightforv¡ard process' In fact there is no way of predicting whethe¡ or not
an efficient parallel implementation of a given algorithm even exists. The ciux ol
the problem is io find the right algorithms for a given architectu¡e.

Working in the paraìlel reaÌrn requires a total ¡ethinking of one,s approach
to programming lt is no ronger the case that every variabre and procedure in a
p¡og¡am is ava''able for use by all 0ther parts. one has to adapt the algorithm so
that its paralrel components have available (or can obtain through communication.l
those ¡esou¡ces and data that they need to carry out thei¡ duties.

Afte¡ conside¡ation of the above issues, it was appa¡ent that the transputer mi_
c¡oprocessor (Barron et al. i19g3l, INMOS lt985a,t985b], Whitby_Strevens 

119g5j,
Homewood et ar' [1ggz]) was very welr suited as the basis of a hardware accerera-
to¡. The transputer and its companion language Occam (Taylor and Wilson il9g2l,
INMOS 11983]) directly address many of the above-mentioned issues.

The transputer microprocessor is unique in providing direct support for par_
ailel processing' As we w'r see in chapter 2, it has been designed from the ground
up for this purpose ln many respects it atows one to b¡eak the rure that M'MD
processo¡s be few in number by allowing the construction of a powerful computa_
tional node in minimar circuit boa¡d a¡ea. This in turn t¡ansrates into cost efiective
processing power.

with four high-speed serial I/o channers, a transputer directry add¡esses com_
rnunication issues' This allotment of channers a.tows construction of point-to-point
communication netwo¡ks such as a linear array, square array, shuffie_exchange, 16-
node hypercube, and cube connected cycle (Hiìl 11gg6]). Thus one can make use of
existing algorithms fo¡ these network topologies.

conversely' it should be emphasized that wh'e this work concentrates on
transputer networks, the algorithms developed a¡e not limited to them. Any MIMD
a¡chitectu¡e with point-to-point communication can provide a suitabre platform.

-5-



The transputer's only advantage is that it provides these required featu¡es at ror¡.

cost.

we begin in chapter 2 by describing the transputer and occam in some detair
so that the intimate rerationship between the two can be better appreciated. The
special features that support parallel processing are described.

In chapter 3, matrix and vector algorithms are discussed. such argorithms
fo¡m the core of numerical analysis and cAÐ and, as such, it is imperative that
eftcient ways of implementing them exist. Basic vector operations such as vector
addition and subtraction are implemented on a linear array. A scalar product
aJgorithm running on a shuffe-exchange network is also implemented.

Two matrix-vector multiplication algorithms are arso presented. The flrst, for
dense matrices, makes use of the shufle-exchange network in a manner quite similar
to the scalar-product algodthm to achieve high efficiencies. A nover argorithm for
banded sparse matrices, which requires a linear arra¡, of processors, is aiso presented.

Chapter 4 discusses two matrix solution techniques. The fi¡st. a novel im_
plementation of Gaussian elimination, is appried to dense matrix svstems. This
solver was designed in conjunction with the boundary erement algorithm discussed

in chapter 5. The second aJgorithm is a nover implementation of the preconditioned
conjugate gradient method fo¡ the solution of banded sparse matrices.

Finally, chapter 5 presents a novel paraJiel system that combines the Gaussian

elimination solve¡ from chapter 4 with a Boundary Erement ]vlethod (BEM) matrix
generator' The objective was to integrate the two algorithms so that they would
execute cooperatively on a problem with a minimum of data movement. so that
high algorithmic efficiencies could be achieved.

-6-



CHAPTER II

OCCAM AND THE TRANSPUTER

Occam's Razor: ', Entities should not be multiplied. unnecessarily,,

_ William of Occam fOckham], euodlibeta Sepfum, c. I320.

This chapter describes the Occam programming language and the transputer micro_
processor which we¡e used as parallel processing tools fo¡ the wo¡k described in this
disse¡tation' There we¡e a number of ¡easons fo¡ this choice. Firstry, the t¡ansputer
is designed to allor¡, easy assembly of multiprocessor systems. Secondly, Occam
allows the specification of parallel systems in a simple and concise manne¡. Also
important is the fact that they alrow inexpensive and powerfur parallel processing
syslems to be constructed.

Together, Occam and and the transputer provide a means of implement-
ing multiple inst¡uction stream/multipre data stream (MIMD) parater algorithms
(Fl¡'nn I1972i)' As such, man¡, aJgorithms designed for murtiprocessor systems will
appl¡' to them. However, some a¡chitectu¡ar features, such as the rack of shared
memory, will invalidate othe¡s.

The version of Occam desc¡ibed here is mo¡e properly known as Occam 2. It
supersedes the original version of the language which has become known as proto_
occam P¡oto-occam was intended only as a demonst¡ation of the occam paralrer
processing paradigm and lacked many features consistent with a useful program_
ming language (a major omission being floating_point number support). Occam 2
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lmproves on proto-occam in many areas and is at reast as usefur for numericar pro-
gramming as FORTRAN, but with the advantages that a strongly typed structured
language provides.

While this chapter presents some examples of Occam ptogramrning, it is not
meant as a tuto¡iaì. The purpose is to convey the main featu¡es and philosophies
of the language. Should a tuto¡ial be desired, see pountain 

119g7], or Appendix A
- which provides an in-depth programming exampre of a tutorial nature. It should
be noted that since Occam is an evolving language, the examples presented here
may not be syntactically correct according to future language specifications.

Because technology is fast moving, transputer hardwa¡e specifics will only be
presented whe¡e absolutely necessary. Instead, the generic attributes of a typical
transputer are described, with major emphasis on those features that direcfly sup_
port the occam programrning paradigm. Above all eise, it is these features that
make a transpute¡ what it is.

2.1 Occam

Occam has its ¡oots in the theory of Communicating Sequential processes (CSp)
pioneered bv c'A'R' Hoare 1197g,19g5]. It borrows many of its concepts f¡om that
work, but difers from the formal CSp model where required for practical imple_
mentation For exampre, csp theory alrows ¡ecursively defined para.rlel procedures.
since a ha¡dware imprementation of such a construct wou.rd be dificurt or impossibre
to reaJize, such capability was excluded f¡om the language.

PracticaJity is perhaps the overriding tenet of Occam. True to Occam,s razor,
it is kept as simple as possibre to alrow di¡ect hardware imprementation of its fun_
damental featu¡es. Thus, on the proper ha¡d.wa¡e (i.e. the transputer), Occam can
execute with an efficiency approaching that of assembly language while still pro_
viding the benefits of a high level language. Moreover, the Occam model is simple
enough so that such ha¡dware can be inexpensive.

-8-



In keeping with its csp heritage. occam provides a toor for describing paratel
systems which consist of sequeniially coded sections (called processes) executing in
parallel' These processes are completery separate f¡om one another, except for the
existence of communication channers between them. sha¡ed memo¡y is not part
of the programming model, avoiding the memory bottrenecks and expense of that
multiprocessing technique.

occam provides a rittle bit old and a rittle bit new. A programme¡ is able ro
ca¡¡v over sequentiaJ programming skills when writing the sequential parts of Occam
p¡ograms' while having available paraJrer execution of the component sequential
p¡ocesses.

2.1.1 Occam Processes

Occam programs are constructed f¡om three primitive processes.

1. The assignment process

a := (expression)

The effect is the same as in other programming languages. The variable a is
given the value of (expression).

2. The input process

Cha¡nelNð[e ? a

The value ¡eceived on the communication channer cha¡ne'Na.ne is assigned to
va¡iable a. The value input can be of any type.

3. The output process

ChannslNan€ ! (expression>

The value of <expression> ( which can be of any type) is output on the

communication channei Cha¡nelNane. The output process can be t¡eated as

a way of assigning a value to a variable in another process. Since shared

Eemory is not part of the Occam progranming model, the only way of doing

this is through a channel.
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An occam plogram is created by combining these primitive processes in a hierar_
chical fashion. The following sections describe the special featu¡es of the language
*'hich facilìtate this process fo¡ the const¡uction of both sequentiar and para[er
Programs.

2.1 .2 SEQ Constructor

The simplest way to combine the primitive processes is with the SEQ constructor.
It identifies a list of processes (primitive or complex) that are to be executed in
a sequential fashion. Thus SEQ allows the specification of conventional sequential
programs. As an example, consider the following Occam code fragment (text that
follows a double-dash is a comment):

CHAN 0F Alrly FronXeyboard :

CIIAN 0F ANY ToSc¡een:
BYTE Teap:
sEq

Fronf,eyboa¡d ? TeE'p

ToScreen lTenp

CHAN 0F lNY caÌ tÌa!.srBit
any va-"iable typ€.

Get keybos¡d data
Send it to thê scre€n

The example displays a number of Occam syntactical and semantic conven_
tions' The indentation of the two lines after the sEQ indicates that they a¡e com-
bined into a single non-primitive (comprex) process by the sEQ. Thus. the effect of
the sEQ (or any other construcior) is to combine the processes at the same inden_
tation ievel under it into what is treated as a singre process. This can be ca¡ried
on indefrnitely with the component processes themserves being defined in terms of
SEQ.

The example also shows how identifiers used by a program are decla¡ed. Notice
that channels are treated just like any other variable in the program, and must
be explicitly declared before they are used. The ihree identifie¡s (at the same
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indentation rever as the sEQ) are tied to the process created by the sEQ and a¡e onlv
valid within the scope of that process. In a hie;arch¡, of processes, variables decla¡ed
in the inne¡ p.rocesses are not known outside of those levels (i.e. syntactically at
smaller indenrarion levels ).

In te¡ms of Hoa¡e,s CSp theory, the SEQ const¡uctor provides the fi¡st nec_
essary condition for a CSp computaiion environment, namely, a way of defirring
conventional sequential processes (programs). The final step is to combine these
processes into parallel prog¡ams composed of sequentiaì processes executing in par_
allel with each othe¡.

2.1.3 PAR Constructor

Consider the parallel ptocessing system shown in Figure 2.1. w.e have two processes
that a¡e to execute in paralrer with communication ove¡ a channer. The processes
are totaJly sepa¡ate except for communication ove¡ the channer. Most importantry.
they run asynchronously f¡om one another (except when thev communicate), and
do not sha¡e memo¡y. In Occam, such systems may be specified using the pAR

constructo¡.

Figure 2.1: Ðxample of a parallel system
paraJìel processing paradigm.

This represents the basics of the Occam

11



lntroducing some more Occam syntax, consider the following named proce-
dures:

pROC First(CH¡,N 0F ANy Tolast)
INT Â: __ Intetet v¡¡iabla
SEQ __ Construct sequentj-aI p¡ocôss

A := 10 __ Assignnent primitive
Tolast ! 4 -_ Output on channel Tolast: __ End of pROC

PROC Last ( CHÂII¡ 0F ¡,Ny F¡onFirst)
INT B:
SEQ

Fronlirst ? B __ fnput on charnel F¡onlirst
B := B + B

As in conventional languages, the two code sequences are given names by which they
can be refe¡red. Additionaìly the procedures (processes) can be given argüments
which in this case happen to be channels. Using pAR the two processes mav be
combined into a single concurrent/parallel program.

CH¡JI 0F ANY Hediu.a:

PAR

Fi¡st (l.tedir¡.n)

Last (Medíuu)

-- DecIa¡E intEt-process Co¡¡r. CHAN
-- Ends of llediun a¡e assitned to an

input aad arr output procèss.
-- D€nots pa.rat).el consttuct
-- Conponent processes of pAR

€x€cute in parallel.
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2.7.4 
^LT 

Constructor

Ii is often necessary to construct a process that se¡vices a numbe¡ of channels,
consider for instance, the situation depicted in Figure 2.2, in which a process has
to take rnessages f¡om channels A, B, and C and multipìex them down channel D. A
paraìlel construct cannot be used., since it ìs not possible to share channel D among
three processes servicing the input channels separately.

Figure 2.2: A sequential process servicing three inputs.

A possible solution would be to input f¡om each of the channels in sequence.
which wiII work if messages come often and regularìy.

}'HILE TB.IIE

SEQ

ChanA ? l{sg
ChanD I l{sg
ChanB ? Itsg
ChaaD ! l{sg
ChanC ? Msg

ChalD I lfsg

-- Loop fo¡eve¡
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The problem s¡ith this apptoach is that once an input statement is entered, the
prog¡am will waii until it ¡ecejves an input on that channel. If an input never
comes (or cÕmes at ¡andom times), the program will be deadlocked. Even though
there may be messages ready on the other channels, they will never be serviced.

To handle such situations, the ALT constructor is provided. It provides a way
of testing a number of input channels to see if they have messages pending. The
first input channel to have a message on it is serviced. In the case of ties, the
channels are serviced in an unspecified orde¡. The following Occam code fragment
shows holv an LLT can be used to solve the present problem.

IIHTLE TRI'E

ALT
ChaaA ? l{sg

CharD I l1sg
CharB ? t{sg

ChaaD ! ÞIsg

CharC ? llsg
ChaaD I Ìfsg

-- Loop fo¡sver

Inputs if E6ssag6 ptesent.
Process €x€cutèd if messaga pr.6sont.

Once the ALT inputs from a channel, it termìnales. It therefore must be set up in a
loop if it is to repeatedly service a.n the channers. Noie, that the clauses under the
ALT are combined into a single process, and that each clause itsell fo¡ms a p¡ocess

unde¡neath it.
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2,1.5 Characteristics of Occam Channels

we have seen that communication between parater occam processes takes place over
channels' First of at, it should be emphasized that channel communication onry
makes sense between two processes that a¡e executing in paraJler. It is not possibre
to use channel communication between two processes that a¡e components of trre
same sequentia.l process. In any case, such communication wourdn,t be necessarv
since processes that a¡e components of a sequential process can pass information
through variables in the normal way.

An Occam channel is a one way communication link between an input and
an output process. Additionalry, because (as we wiìr see) channels are identified
with fixed hardware lesources) they cannot be sha¡ed among parallel components
of a program' once a channer is identified as a connection between two paralrer
components of a prograrn, it can only be used between those two components and
in only one di¡ection until those components terminate. In terms of Occam synta-t,
this requirement is enfo¡ced via variable/cha.nnel scoping conventions.

Communication on channels can only take place when both the input and
output p¡ocesses on either end of the channer are ready to communicate. If either
of them is not ready to ente¡ into comrnunication, the first must wait unt the other
is ready' Thus, channel communicat.ion serves to synchronize the two processes and
the programme¡ does not need to explicitly manage this.

The cha¡acteristics of Occam channels, along with the various featu¡es of the
occam prograrnming moder were not chosen arbit¡a¡iry. A major consequence of
these design decisions is that a simulation of an Occam protram running on a
single processor multitasking system w l run exactry the same as it wourd with
its component p¡ocesses split up among a number of processors. This gives the
program designer great freedom when partitioning a paraJlel p¡ogram to ¡un on a
network of processors. The program is guaranteed to run identically no matter ho'r,
the partitioning is done. The onìy ¡estriction is that the resou¡ces of the target



hardw"are must be accommodated. One cannot place a process thai requires five
I/C channels onto a processo¡ that has onl¡, four available.

2.1.6 Occam Time

In most languages the concept of time is a superfluous one. occam makes it an
integral part of the language by providing each process with access to a special
channel of type TrlfER. channers of this type retu¡n the varue of a counter that is
incremented at regular inte¡vals (ticks). For example, a computation can be tirned
with the following code fragment:

VAL TictsperSecond IS 1024: __ Ila¡dca::e dspend.ént value
TIIÍXR Tine: -_ TIITIER cha¡rne1INT StartTínê, EndTine, TotalTime :
SEQ

Tine ? Sta¡tTine
,,, Cornputation proçess
Tine ? EndTiure
Tota1Ti¡ne := (EndTine _ St a¡tTine ) /Ti cksperS econd.

Because occam processes are independent, the occam sense of time is nec_

essarily locaì to each process. wh e the above code w'r yierd identicar times on
two identical processors within a system, there is no guarantee that sta¡tTine and
EndTine will be given the same values on the two p¡ocessors. Only the dife¡ence
between them will be the same on each processor.

The time¡ can also be used to int¡oduce timed delays. For example, the
p¡ocess

VAL DelayTicLs IS 40:
TIIfER Tiae:
IIVT Cu¡rentTina:
SEQ

Tiae ? Cur¡entTiae
Tine ? AFTER (Cur¡entTiue + DelayTicks)
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u'ill delay until the timer counter is greater than the sum of cur¡entri¡re and
DalayTicks (for simpricity, the case s,here this sum exceeds the maximum integer
representation is ignored).

The latte¡ usage of the occam time¡ is important when channel communica-
tion is unpredictable (the ¡esurt of ¡andom externar events, for example). In these
cases it allows, through the AIT statement, a way to test fo¡ input from a channel or
a number of channels and escape to do othe¡ work if no input is present. Consider
the following code fragmenr:

VAL Tine0utTicks IS 40:
TIIIER Tine :

flIT CurrentTine , TímeoutTiEe:
IlüT Randonlnput
CHAN 0F ANy Ra¡don:
SEQ

Tine ? Cu¡rentTi¡te
TineoutTine := Cur¡entTimo + TieeoutTicks
AI,T

Ra¡do¡r ? Rardomlnput
.,. se¡vice raadom input

Tine ? AFTER Tirre0utTí¡ne
.. , se¡vice time out

, . . other processing duties

If no message on channer Ra¡dom is received before 40 timer ticks have erapsed., the
last cLause of the ALT is entered, allowing other processing duties to be performed.
without the last clause, the Arr wourd wait until a messate was received on Ra¡dom.
This mechanism is important as it arlows one to have asynchronous interprocess
communication.
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2.2 ilhe tansputer

We have seen that Occam provides a simple and concise (if not powerful) l,l,ay to
express parallel systems. By itself it might be a useful tool. what makes occam
special is the existence of the transputer microprocessor. The transputer is designed

to implement in hardwa¡e what the language occam describes in software. Together
they provide a potent tool for the impiementation of parallel algorithms.

2.2.1 -A,rchitecture

This section describes the a¡chitectu¡e of the transputer microprocessor. The fea-

tures desc¡ibed a¡e that of a genedc transputer and represent the minirnum ha¡d-
ware requirements that a microprocessol must have to be called a transputer.

As can be seen in Figure 2.3, the main features of a transputer are:

1' cPU: currently a reduced inst¡uction set (RISC) design. The compactness

of the cPLl alrows othe¡ essential featu¡es to be integrated on the same die.

2. RAM: on-board static RAM that can be accessed at reast th¡ee times faster
than external memory. Current transputers possess 2K or 4K bytes. This is
general system RAM, and is not used as cache.

3' communication Links: cur¡ent transputers possess four INMOs bidi¡ectional

communication links which imprement a 10 o¡ 20 MHz occam channer in each

direction ( 1 or 2 megabytes/second).

4. Programmable memory inte¡face: Interfaces the transputer to exte¡nal mem-

ory with the minimum of exte¡nal interface rogic by providing ar necessa¡ï

refresh, tirning, and control signals.

S special purpose function units: a¡chitectura.l extensions that allow transputers

to be tailored to specifrc applications.

Figure 2.4 depicis the simplest possible view of a transputer _ a black_box

with four (or more) communication rinks (an input chauner and an output channel

are coupled together in pairs to form a rink). As such, the transputer can ¡ea.rize any
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Figure 2.3: The transputer architectu¡e. Copyright INMOS Corporation. Repro_
duced with permission.

netwo¡k which requires fou¡ or fewer communication channels per computationa.l
node ln this work, they are used in linear array and. shufie-exchange configurations.
other possibÌe netwo¡ks incrude the square mesh and the toroidar mesh, as wen as

va¡ious multistage networks and the cube connected cycre (Hilr [1gg6]). This kind
of flexibility is important as it alrows one to tailor the netwo¡k topoiogy to the data
flow properties of the target algorithm.
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Figure 2,4: Transputer communication model.

The transputer deflnition atows for speciar-purpose ha¡d.wa¡e ove¡ and above
what is pictured. For example, in one ve¡sion of the transputer (the T_g00). an
on-board floating point unit is added (Homewood et al. l19g7]), while in anothe¡
a disk-cont¡olle¡ is featu¡ed (Moore 11gg6]). Each special pu¡pose transputer then
plays a particula¡ ¡ole in a given paratel system, with the rinks serving to tie the
entire system together.

With these features, the transputer is reaJly a microcomputer on a chip. pos-
sessing built in CPU, com¡nunication links, and RAM. In fact, it is capable of
functioning with only exte¡nal power and clock suppÌied.

The transputer's a¡chitectu¡e is designed to support parallel processing. -4,s

such, the transpute¡ lacks features desirabre in singre p¡ocesso¡ systems that may
comprornise its applicab ity to pararer processing (e.g. memo¡y management). The
success of this approach can be measu¡ed in a number of ways. we wilì see that
the transputer has been designed to minimize cost, communication complexity, and
board a¡ea - making it ideally suited fo¡ constructing Large networks.
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2.2.2 S upport for Occarn

The ve¡v reason for the transputer:s existence is to provide hardware supporl for the
occam parallel processing model perhaps the most visibre and important of these
features are the on-chip communication channels. They provide the means by which
occam processes can communicate, and have characteristics entirery compatibre
with the definition of occam channels in section 2.1.5. It is important to realize
that these are point to point communication channels (as is dictated by the occarr,
channel model), and there can only be one transputer at either end of a channel. It
is not possibìe to connect one channel to many transputers in a b¡oadcasting type
of topology.

The point to point communication architectu¡e that transputers impremeni
has a numbe¡ of advantages over conventionaJ bus-based systems. Firstry. there is no
contention fo¡ communication ¡esources as might be found on a bus shared among
man-v processors. Also, as the system grows, total communication bandwidth grows
with it' This assumes that the communication requirements of the algorithms to
be implemented are predominantly local.

To provide for seamress distribution of occam processes over a netwo¡k of
processors) the transputer cpu possesses a murtitasking ke¡nel in hardware. It
maintains tìryo queues of occam processes (row and high priority) which it timesrices
automatically. If a process is waiting to communicate, it is descheduled unt'its
companion process is ready to communicate with it. In this rruay, CpU cycles are
not wasted in busy-wait (polring) loops and communication is ca¡ried out with the
maximum possible efi ciency.

In accordance with the Occam model, these parallel Occam processes com_
municate via channels. processes on the same chip communicate via internal vi¡-
tual channels, while processes on different chips use the external ha¡dware channels.
Since channel communication synchronizes communicating processes, the transputer
is able to execute any numbe¡ ol them as if each resided on its own processo¡. This
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allows a given Occam program (essentially a collection of communicating processes)
to be partitioned on a- netwo¡k as one desires (as rong as enough hardware channers
a¡e available to support the connecrivity of the partitioning).

To handle Occam's sense of time (see Section 2.1.6), each transputer inco¡_
porates a time¡. In current transputer implementations, the high-priority process
timer has greater resolution than the time¡ for row-priority processes (under the as-
sumption that high-priority processes are more time critical). occam sees the timer
as a special channel which is ava abre to aJ1 processes within a given transputer
(normal channels can have only one originating and terminating process).

Finally, the transputer's CpU instruction set is designed to optimally imple_
ment the various leatures of the Occam language. We have already seen that the
cPU is able to directry implement a pAR occam const¡uct. It arso has inst¡uctions
fo¡ the installation of processes on execution queues, the ALT operation, as we' as

instructions to perform channel input and output.

2.2,3 Constructing Large Transputer Networks

Since the intention of the transputer is to provide a means of doing parallel com_
putation, if is important that such systems be easy to build. A number of features
of the transpute¡ make the svstem engineer's job easier.

The fi¡st feature is ihat the transputer does not require the dist¡ibution of a
high-frequency clock. conventionar rnicroprocessors require that an externar crock
be supplied at their inte¡na^l crocking rate, which courd be as high as 20-J0 MHz.
Such high frequency signaJs cause much grief for boa¡d designers. especia"lly if they
are required to travel large distances on the ci¡cuit board.

Transputers, on the other hand, only require an exte¡nal clock of 5 MHz no
matte¡ what the inte¡nal device clock-rate. This standa¡d input clock is then used

to de¡ive a higher internar crock speed. The system designer need onry distribure
this relatively low speed clock throughout a circuit board.
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The engineering characteristics of transputer communication channels a.rso

support the const¡uction of large netwo¡ks. Transputer channels are implemented
as bidi¡ectionaÌ seria'l communication lines as shown in Figure 2.5, ando¡ovide one
Occam channel in either di¡ection.

Transpuler 1

Figure 2'5: Transputer communication rink. copyright INMos corporation. Re-produced with permission.

Such an a¡chitecture has a numbe¡ of important cha¡acteristi cs. For one, it is
much less costly to dist¡ibute a three-line bus than it wourd be to distribute wide
parallel buses. Since transputers may number in the hund¡eds in a given parallel
cornputation system, reducing cost is paramount.

Besides the obvious ease of routing 3 lines, one does not pay a capacitive
load penalty as more transputers a¡e added to the system. In a bus_based system,
the whole sl'stem must srow down as the bus is lengthened to accommodate mo¡e
processors. In a transputer system, this penalty is mo¡e or less constant fo¡ each
transputer no matter what the size of the system. Moreover, link communication is
insensitive to clock phase between the sending and receiving transputer. Alr that is
necessary is to ma.intain the crock frequency within fairly loose tolerances, a owing
the system designer flexibility in routing crock signars. As Figure 2.5 shows, the
input transputer clocks need not come f¡om the same source.

fransouter 2
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!\'hen building systems with a rarge number of processors, it is desi¡abre to
pack as manv processors on a singre board as possibre. The usuar rimiting factor
is the amount of support circuitry that must be placed arcund a microprocessor

to provide inte¡faces to memory and peripherals. For the most part INMOS chan_

nels can inte¡face to peripherals with no exte¡nal circuitry, ofering great savings in
boa¡d area. Furthermore, the transputer's programmable memory inte¡face virtu_
all-r' eliminates the need for externar memory interfacing circuitry by generating a[
timing, control, and refresh signals for a variety of exte¡nal memory types.

With these space-saving features, it is possible to construct a transputer node

with two Megabytes of RAM in as little as 51 cm2 of boa¡d area (Electronics [19gg]).
If an applicaiion did not require much RAM, the node size could be reduced still
further by utilizing only the inte¡nar transputer RAM and running the transputer

without any external support circuitry save clock generation (which courd be shared

among all transputers on a single board).

2.2.4 Hardware Considerations for Occam programming

While the transputer hardware is designed to support the Occam programming

model, it has a¡chitectural features that enhance program performance which are

not required by the model, This section outrines two of the most important ones.

Fu¡ther notes about performance issues can be found in Atkin i1gg7l.

Using On-Board RÄM

f'nlike microprocesso¡s with on-board cache, the on-board RAM of a transputer is
part of its no¡mal address space. Its advantage ove¡ externar memory is that it can

be accessed at least three times faster. Since it is no¡ma,l memo¡y, it can be used

to store both code and/or data.

since the transputer encodes fou¡ inst¡uctions within a singre word., it fetches

instructions faste¡ than it does data words. It is the¡efore desirable to place critical

data into the on-chip RAM, to speed access to it. Indeed, the cur¡ent occam
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compiler places data on chip in preference to code. If one has ìarge vectors, it is
impossible to place code on-chip in preference to data because the vectors wiÌr take
up all of the on-chip RAM IT is possibre that tl,is ¡estriction may be removed in
the futu¡e. however.

Making use of internal RAM for data storage is (at the moment) an implicit
¡ather than an explicit process. The prograrnmer is given deta s of how va¡iables
defined in the Occam source are placed into memory. By arranging the sou¡ce cod.e

declarations properly, the desi¡ed criticar variabres can be placed into internar RAM.

Channel Communication

Ðach link on a transputer possesses an independent cont¡oìle¡ that has di¡ect mem_

ory access (DMA) to the transputer,s memory space. once a t¡ansfer is initiated
on a link, the cont¡olle¡ takes ove¡ responsib ity for the t¡ansaction and f¡ees the
processor to do othe¡ tasks. Thus each iink t¡ansfe¡ is a direct memory to memory
transfe¡ between the processors at eithe¡ end of the link.

An important featu¡e of the link contro'er, called srice communication, is rhe
ability to transfer blocks of memo¡y in addition to single byte and word transfers.
with processor ove¡head equivaJent to a singre word transfer, the cpu is abìe to
initiate a multi-word transfer that is totarly controred by the link ha¡dwa¡e. The
cPU is then able to perform other tasks wh e the t¡ansfer is taking prace. Moreover.
slice communication can be performed on th¡ee rinks simurtaneousry without cpu
interaction, and on all fou¡ rinks with only a sma cpu degradation because of
memory-bus contention.

To use this feature of the transputer, Occam provides a special syntax on the
output and input process statements. For example, an integer array of length 1000

could be sent down a channel by the output process

0utCha¡ne1 ! [IntArray FROü O FOR IOOO]

and ¡eceived by the input process



Incha¡nel ? [IntArray FROf.f O FoR IOOO]

slice cornmunication allows the t¡ansfer of large amounts of information be-

tween processors while computation is beiag performed at fulr o¡ nearry fuli speed.

It thus has the potential to provide nearry transparent loading/ unroading of data

fo¡ the nexi computation step, while the cu¡rent step is proceeding. This could be

especially important in applications such as computer vision, where the next image

could be loaded in while the previous one is being analyzed.
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CHAPTER III

MATRIX AND VECTOR OPERATIONS

vecto¡ and matrix operations a¡e a-rmost ubiquitous when it comes to argorithms

in numerical analysis. Fo¡ this reason it is particularly important that efficient

u'ays of handling them exist. This chapter details ways of implementing important
representatives of these algorithms on t¡ansputer arrays.

The most important aspect of the partitioning strategy is the way vector and

matrix storage is dist¡ibuted among the processo¡s. This not onry dictates what

cornputations a processor can perform, but what communication is needed. The

important thing is to choose a partitioning that minimizes global communication

as much as possible.

The algorithms presented in this chapter view an array of processors with
local memory as a distributed storage and computation network. The storage of
each vector and matrix is divided up more or less equa.lly belween the processors,

allowing each processor to work on its portion independent of the othe¡s.

For the sake of simplicity, and in keeping with the goals of this research,

the implementations are rest¡icted to linea¡ arrays of transputers or simpre shuffie-

exchange (SE) graphs (Stone l1g71l). The linear array accommodates algorithms

with nearest neighbour comrnunication requirements wh e the sE network is par-

ticularly efficient for performing globaJ accumuìations.

The beauty of these two networks is that the transputer is capable of support-

ing both of them simuJtaneously, which allows a much greater range of algorithms
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to be impìemented eficiently. unfortunately. restrictions in the hardwa¡e used fo¡
this d.issertation prevented the simul.taneous use of the two networks. This would

have been desirable for the conjugate gradient algorithm presented in chapter 4.

A frnal note is in order. The reade¡ will notice that while this chapter contains

estimates of algorithm performance, it lacks results f¡om actual implementation.

This was done fo¡ a numbe¡ of reasons, the fi¡st being that experience has shown

the estimates to be quite accurate. The major reason. however, is that most of

the algorithms described here a¡e used for the preconditioned conjugate gradient

algorithm in chapter 4. As actual results are given for that implementation, the

merits of the algorithms of this chapter can be inferred f¡om there.

3.1 Estimating Algorithm Execution Times

For the algorithms considered here, it is possible to accurately estimate their ex-

ecution times on transputer or MIMD networks by counting the sequential vector

and sca.la¡ operations and multiplying by the empirically derived times fo¡ these

operations. when identical operations are performed in parallel, they count only

once toward the final tally (i.e. they are t¡eated as one sequential operation).

Table 3.1 shows timing resuLts for some ,,primitive', operations on the T_4I4

and r-800 (a T-4L4 with floating-point support) t¡ansputer microprocessors. since

the T-800 was unava,ilable, timings fo¡ it had to be estimated as indicated in the

table. while the list is not exhaustive, it is sufficient to give a fairly accurate

estimate of execution times for matrix-vector algorithms.

Some things to note about the tabie:

1. the timings were performed for 32-bit floating-point operations and 32-bit

word transfers on a 15 MHz T-414;

2- vector timings include the overhead of looping and array subscúpting, and

are given as the execution time per vector component;
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Table 3.1 : Timings for primitive operations on T-414 and T-800.

+ (per vector component)
i (using 10 MHz links)
f (estimaied to be 0.1 of the T-414 value)

3. Vecto¡ communication utilizes the "slicing" featu¡e of the transputer hardrvare

discussed in Section 2.2.4; and

4. use of on-chip transputer RAM (which is a min.imum of three times faster

than exte¡nal RAM) was avoided as it would have artifrciaJly decreased the

measured timings (thus the numbers presented contain the penalty for of-chip

RAM access).

By using actual execution times as weights for the operation counts it is

possible to provide clock time estimates for the algorithms of this and the next

chapter. This is much more usefuÌ than the operation counts alone, as it allows

comparison to similar aJgorithms running on othe¡ ha¡dware.

The metric used to characterize the algorithns in this dissertation is speedup

efficiency (,Ð¡;). Letting the time taken for 1 and .l{, processors to solve a problem

Symbol ] Operation T-414 (¡.rs) , T-800 (¡rs)

T: Scalar Addition 20.3 I 2.031
T Scalar Subtraction 19.8 i 1.98i
TI Scalar Multiplication t5.4 r.J+.l.
T= Scalar Division 18.5 1.857
T++ Vecto¡ Addition 26.0
7'- Vecto¡ Subtraction 26.6 2.661
r": Vector Multiplication 21.6 2.16ï
T:. !'ecto¡ Division 24.3
T^1"* Scale Vector bv Constant I9.8 1.987
T: Vector Assignment 4.8 4.8
r!t Transmit Scala¡ Word 10.8 10.8
:fi t T¡ansmit Vecto¡ Word 8.4
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be ?1 and ?¡." respectively, the speedup efficiency is defined as

En-_ = roo(?l/¡[o)
-¿ 

^i

(3.1 )

and represents the percentage of ideal speedup that is atta.ined. In an idear worÌd
-E¡; would be 100%, but in practice it is less ihan r00% due to communication and
synchronization ove¡head.

3.2 Vector Operaf ions

We conside¡ two classes of vecto¡ operations in this section. The frrst class includes
monadic and dyadic vector operations that yield a vector ¡esult. The second is the
scaJar product, which combines two vectors to produce a sca.lar result.

These two classes have very diferent requirements for parallel execution be_

cause of their communication requirements. The monad.ic and dyadic vector oper-
ations a¡e such that they require no inter_processo¡ communication when properly
partitioned' llowever, data input and resurt output operations a¡e stilr necessary,

so we will implement them on a linea¡ array of processors as shown in Figure 3.1.

The scalar product, on the other hand, requires a great deaì of communication,
since partial-sums f¡om all of the processors in the netwo¡k must be brought together
for a final summation. while the rinear array is fairly efficient for the operation when

the network contains a small number of processors, the efficiency would degrade

for larger netwo¡ks. Fo¡ this reason, section 3.2.2 introduces the shufle-exchange

network for this operation.
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Figure 3,1: A linear array of p¡ocessors.

3.2.1 Vector Combination

The dyadic vector combination operations considered incrude addition, subtraction,

muJtiplication, and division. Monadic operations include vector assignment and

scaling. In all these cases. vectors a¡e combined or operated on in a component_

by-component fashion, giving a vector result. The most notable property of these

component operations is that they are independent f¡om one another.

Since each component operation is independent, no inter-processo¡ communi-

cation is required for the algorithm if a given processor contains alr the information

necessary to carry out that operation. In the case of the dyadic operations we re_

quire that a p¡ocessor contain corresponding components of the two vectors that are

to be combined. A consequence of this is that we are f¡ee to choose any partitioning
for the vecto¡s as long as we agree to partition each of them identica.lly.

We are ignoring the case whe¡e different processoÍs are operating on disjoint
sets of vectors' Each processor courd sto¡e aü the components of the vectors it is

operating on and process them independentry from the other processors. This is
a more macl.scopic (larger gra.in) type of algorithm, however. while it gives an
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average speedup, it does nothing to speed up an individual operation such as vector

addition.

Figure 3.2 sho¡¡¡s the vector partitioning that was used in this wo¡k. This is

not the only imaginable partitioning, merely the most orderly (a specia.l applica-
tion might require a different partitioning). Each vecto¡ is divided into a number

of contiguous segments! with each segment stored on a processor within a rinear

array The segments are assigned to the processors such that segment i is sto¡ed in
processor i.

Figure 3.2: Partitioning of vecto¡s for parallel computation.

Given this partitioning, Occam allows us to express the vecto¡ operations

quite simply. Conside¡ the Occam procedure VectorÀd.d,:

PRoC Vecto¡Add( l]B'ftf¡Z ¡, -- result
VAL []REAL32 B,c, -- operand.s
Vj,L INT Nu.uConponant s)

SEQ I = 0 FOR ltu.uConponent s

t[r] := B[I] + clrl

Proc. I Proc. 2



Each processor in the netwo¡k would contain a local copy of this procedure along
with the storage for the segments from the vecto¡s involved. A paraìrel system of
four processors could then be denoted (ignoring decla¡ations of the variables):

PAR

Vector.Add (A, B, C, Nu.nConponent s)
VectorAdd (A, B, C,lrlunConponent s )
Vsctor.0,dd (.å,, B, C, Irluarconponent s )
VactorÂdd (.A, B , C, ¡lum0otùponent s )

or mo¡e succinctly (where Nu-uprocessols = 4)

P.{'R I = O FOR lrlu¡procassors
VectorAdd (A, B, C, NunConponent s)

Given knowledge about how many components of the vector it is storing, each
p¡ocessor (each component of the pAR) can operate with virtually 100% eficien*..

3.2.2 Scala¡ Product

The scalar product between two vecto¡s presents a very diferent problem. Given
that each processoÌ can compute a partiar sum of the scaJar product, we a¡e left
with a single number in each processo¡ that must be summed with a.lr the othe¡s.
what remains then, is the problem of communicating these numbers between the
processors so that a final sum can be computed.

First, consider y'úo processors arranged in a ljnea¡ array. The sum could be
obta^ined i" (¡ùo - 1) communication steps and (-lfo _ l) addition steps simply by
passing a partial sum from processor to processor - reaving the final answer in the
last processor in the cha.in. If the resurt is needed in aü the processors, an additional
(/[o - 1) communication steps are required to distribute the finar result, giving a
total of 2(Np - I) communication steps.



This simplistic approach can be improved upon by recognizing that the accu_

mulation of the partiar sum is independent of the order in which it is done. Instead
of forming the sum from one end of the array to the other, we can have two parar-
lel accumulations proceeding f¡om each end to the middre of the array. with this
scheme, the scala¡ product can be calculated in +¡/p computation steps and (¡{p _ 1)

communication steps (incruding distribution of the final sum to an processors).

In both these cases, we a¡e const¡ained by the linear array, and a¡e forced
to compute the scalar product in almost a sequential fashion, with considerable
communications overhead. As the number of processors inc¡eases the operation can

become quite costly. This bottle-neck can be overcome using the shuffe_exchange

(SE) network shown in Figure 3.3.

Figure 3.3: Time sequence of shufle-exchange operations. Each row of processors
represents the same set of processors at a subsequent step in the communication
sequence. The lines represent the interconnections within the set of processors.
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The sE network was fr¡st popurarized by sroneilgTlì. He demonst¡ated its

applicability to a wide variety of probLems including the Fast Fourier Transform

(FFT) and matrix transposition. Lang and stonel19z61 showed its usefulness as a

permutation network' of inte¡est here is its abiiity to sum iú, numbe¡s in o(1og2 1{r)

steps.

Formally, the SE topology is defined for networks of N, = 2K processors

(K an integer) which we numbe¡ 0 to (2r - 1). it combines the so caled perfect

shufle inte¡connection with a pair-wise exchange to form a simple, yet powerful

inte¡connection netwo¡k' The perfect shufie connects p¡ocessor p; to a processor

whose index is given by ihe following rule (a permutation mapping):

p, 
-!Pr;, 

0<i< Npl2-7 (tower half).'' - I Pz¡-t- No, Nelz<i3Np-t(upperhalf). (3.2 )

The effect of this operation can be seen in Figure 3.3. Messages from the lower and

upper halves of the array a¡e shufled through the array in an alternating fashion,

much like the two halves of a deck of playing cards would be ü'hen perfectly shuffied.

The shufle ope¡ation is followed by a bi-directional exchange between adjacent

pairs of processors according to the ru_le:

Pz¡- Pt,-t û < i < Nelz-L

Keeping in mind that these connections involve the same set of processors,

Figure 3'3 can be collapsed to give a truer picture of the sE inte¡connections as

shown in Figure 3.4.

Given the SE topology, we can now describe an aigorithm for summing a set

of /fp numbe¡s (with one number located in each processor). Let each processo¡

contain one of the numbers to be summed in variable A. Further, let there be a

temporary location B in each processor. The following algorithm, which is performed

identicaJly by each processo¡! will sum the y'{o vaJues of A together:

.t<



Figure 3.4: The shufle-exchange interconnection network

I ' send -À out on shufie-out port and input into B on shuffie-in port (shufle

operation);

2. output B on exchange-out port and input value into A on exchange_in port
(Ðxchange operation);

3. sum B into A (Add operation); and

4. loop back to step 1.

If there are Np = 2K processors, then after 1og2(1lo) : K iierations each processor

will contain the sum of all the numbe¡s in va¡iable a. Table 3.2 shows a detailed

listing of these operations for an eight processor netwo¡k adding the numbe¡s 0 to T

inclusive.

This scheme has two advantages ove¡ the linea¡ interconnection network:

1. the operation is completed in logarithmic time (2 rog(/[o) communication steps

and 1og(1{r) computation steps to sum lúo numbers); and

2. each processo¡ ends up with the finar sum, so there is no need. to expricitiy

distribute it.

Additional insight into the workings of the SE algorithm presented. here can

be gleaned by following the path of a number from its starting point (the so-called
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Table 3.2: shufle-exchange vecto¡ sum. Each row shows the varues contained in
A and B after the operation in the first coh'mn is performed (S = Shuffie, E : Ðx_

change,andn:Add).

radioactive tracer technique). By marking the processors touched by that number

and any numbers afrected by it (directly or indirectly) as they cycle through the

ar¡ay. one can see the path fan-out in a binary tree like fashion. At the end of

Iogr(JVo) cycles all processors in the array will have received the numbe¡ or one of

its descendants. since a number and its descendants never cross paths, they always

cont¡ibute to an independent sum. Moreover, because this happens from all the

processors, 1[o independent sums are accumulated.

We are now in a position to compare the estimated execution times fo¡ the

two scalar product / distributed addition algorithms outlined here. since the time

needed to calculate the initial partial sum in each processor is the same for all the

algorithms, it is not included in the times given. Figure 3.5 shows the results for

OP
PROCESSOR

A A D A B A B
^ B A B A B A B

0 I 2 3 4 5 b 7
S 0 0 I 4 2 l .) 5 4 2 5 6 6 t 7 7

Ð 4 0 0 4 5 1 Ð 6 2 2 6 7 i)
2 7

A 4 4 6 6 I 8 10 10
S 4 4 4 E t) 4 6 8 8 b 8 10 10 6 10 10
E I 4 4 8 8 4 4 8 10 o t) r0 10 6 6 10
A 12 12 72 l2 16 16 16 16
S 72 12 T2 i6 I2 72 12 1f) 16 L2 Itt lf) 16 T2 12 it)
E 16 t2 t2 lh 16 L2 72 16 tb t2 t2 l6 16 t2 T2 16
A 28 28 28 28 28 28 28 28

* (don't care)
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Figure 3.5: comparison of the sca.rar-product (distributed addition) argorithms.

various network sizes (constrained by the requirements of the SE network). In a
cases of interest, the SE network outperforms the linear array.

Thus the sE network is very usefur for combining objects that a¡e distributed
amongst a collection of processors. For small numbe¡s of processors, the gains are

not great, but owing to the logarithmic growth in costs, the gains are very significant

for larger numbers of processors.

This example also serves to illustrate the ability of the transputer/ Occam

programming model to address both coarse-grain and fine-grain pararlerism. The

distributed addition algorithm is essentiarly a flne-grain algorithm, since very rittre
computational r¡¡ork is done at each step. In the next section, we w l see the same
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sE network used for a coarse-grain argorithm (dense matrix-vector murtiprication).

This property allows great flexibility when designing algorithms.

An Occam example in Appendix A shows how a SE netwo¡k could be imple_

mented on a transputer array. The code demonstrates the distinct advantage of
the SÐ network on transputer arrays, namely, ease of implementation. A compar_

ison of the code to implement the bi-directionar sum on a linea¡ array to the sE
network shows the code for the SE to be simpre and eregant, requiring no rogic for
its execution The linea¡ array implementation, on the othe¡ Land, requires consid-

erable logic to handle special cases in communication, and is generally ,,messy,, in
comparison.

3.3 Matrix-Vector Multiplication

Matrix-vecto¡ multiplication represents a step up in complexity from the vector ar-

gorithms described in this chapter. The biggest problem arises from the interaction

between storage partitioning of the ¡natrix and the communication requirements

that a¡e dictated bv that partitioning.

An algorithm for dense mat¡ix-vecto¡ multiprication is presented frrst. rt is

shown that an efficient algorithm is possible using a shufle-exchange netwo¡k. As

for the scalar product, the SE network,s ability to sum ly'p objects in log2 1úo steps

is the important factor. The only dife¡ence is that instead of summing numbers,

we are summing vectors.

Next, an aJgorithm for sparse matrix_vecto¡ multiplication is presented. In
this case, the sE network did not offer a viable solution. Instead, it was necessary

to ¡estrict the application of the algorithm to banded matrices, which allows an

eficìent implementation on a linea¡ array of processors. This algorithm forms the

kernel of the conjugate gradient algorithm described in Chapter 4.
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3.3.1 Dense Matrices

unlike the vector operations, partitioning of matrix operations is not straightfor-

ward. To extract any kind of parallelism at all, it would seem necessary to distribute

the storage of the vector and matrix ove¡ the array of processors. Figures 3.6 and

3.7 illustrate two ways of performing such a partitioning.

It iÞl i

Proc. 1

Proc. ?

Figure 3.6: Row-wise matrix and vector partitioning. The entire vecto¡ multipli-
cand must be present in each processor.

Each of these partitionings has some advantages and disadvantages. with the

¡ow-wise scheme, each processor produces a fully summed segment of the resultant

vector (of length equal to the numbe¡ of rows that a processor stores). If the re_

sultant vecto¡ is to be used in another multiplication, all of the segments must be

communicated to all of the other p¡ocessors, resulting in considerable communica-

tions overhead.

c)
o
I

L
o

IA

F

áProc. N
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Mult ipl ica!¡d Vector Segments

ooo

S€ts of Cont iguoÌ¡s ùhtrix Co I uEr¡.Ê

Figure 3.7: column-wise mat¡ix and vector partitioning. only a segment of the
vector muJtiplicand is needed in each processor.

The column-wise storage scheme arso carries with it conside¡abre comrnunica-

tions overhead' However' it has the virtue of only requiring a segment of the mu]-

tiplicand vector in each processor, and is compatible r¡'ith the vector partitioning

for parallel vector operations. Because of this property, column_wise partitioning is

used here, as it allows the simultaneous application of rnatrix-vector multiplication

and the monadic and dyadic vector operations desc¡ibed previously.

with this partitioning, mat¡ix-vector multiplication produces (in each proces-

sor) a full length vector whose components are partial sums of the resultant vector.

To form the flnal resuli, it is necessary to perform a sum of aJl such vectors. As in

the scaJar-product case, we must combine -Àro objects distributed over y'úo proces-

sors. Again, a solution is offered in the form of the shufle-exchange network, the

only difierence being that, instead of scalars, vectors are transmitted and summed

in each ite¡ation of the algorithm.

f | -j-l
Pl.oc.2

m
U
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This aJgorithm is not optimal in that it performs more communication than

is necessary. Each processor only needs to end up with the segment of the resul-

tant vector it will store, but instead ends up with the whole vector. In the case of

transputer arrays, however, the communication cost of the algorithm is not signif-

icant when compared with the computation cost, and we can trade off algorithmic

efficiency for algorithrnic simplicity.

As a measure of the algorithm's performance, its efficiency can be estimated

in terms of calculated multiprocessor and uniprocessor execution times. consider

a square matrix of size 1y'. No generality is lost by requiring that the numbe¡ of

columns 1ú be evenly divisible by the number of processors trüo. A single p¡ocessor

has to perform N2 multiply-adds in o¡de¡ to form a matrix-vector p¡oduct. In te¡ms

of the constants deflned in Table 3.1, the execution time can be estimated as:

T: N'?Qj +r:) (3.4)

Note that vector operation timing constants have been used so that array indexing

costs are implicitly catered for.

The multiprocessor execution time consists of two components. The fi¡st is the

time required to form the partially summed vector (the computational component).

This is an identical operation to what is done in the single processor case, except

that it is applied to 1{/N, matrix columns instead of I[ co]umns.

The second component is the time needed to sum the ,lÍo vectors using the

sE addition algorithm. An iteration of the sE algorithm consists of two vecto¡

communic¿tion steps (shuffie vector, exchange vector) followed by a vector sum.

Since the vectors involved are of length N, the cost of an ite¡ation is ¡{(2q-{ + 4l),
with a total of log2(,Vo) such iterations required to complete the sum.
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Combining the execution times of these two components of the aJgorithm gives

(3.5)

computation shufle-sum

Equations (3.4) and (3.b) can be used to caiculate the algorithmic efficiency

defined in section 3.1. The ¡esults are summa¡ized in Figure 3.g for various problem

and network sizes- we can see that the algorithm has the desirable characte¡istic

of maintaining efficiency for larger probrem sizes when the number of processors is

inc¡eased. Moreover, the efficiencies are high, indicating that the ove¡head due to
communication is small ¡elative to the cost of computation.

3.3.2 Sparse Matrices

In anticipation of the needs of Section 4.2, the next task is to examine the behaviour

of the algorithm for sparse matrices. t If one takes advantage of the sparseness of
a matrix, the effect is to ¡educe the amount o{ computation required to perform a
matrix-vector product. we still must communicate full length vectors 

'r,hen 
shuf-

fling, however, so the sparseness of the mat¡ix does not reduce these costs. As the

matrix becomes more sparse, the communication costs then become dominant and

the effciency of the algorithm drops.

We may use equations (3.4) and (3.b) to calculate the eficiency for a randomJy

sparse matrix by augmenting them to represent the reduced computation costs. Let

-l['". denote the average number of non-ze¡o coefficients in a matrix column. If we

take advantage of the sparsity and onry compute with non-zero mat¡ix coefficients.

(3.4) and (3.5) become:

T: N""N(TÏ +T,i). (3.6 )

T\ : !N2 I Np)(T; + T{ ) - rúlog,(¡rrxzrf - rJ )

t rhe sparse matrix-vectol multiplication argorithm desc¡ibed in this section was presented by
the autho¡ at lhe Thi¡d Occam Use¡s Group Meeiing in Chicago lL, September 19g?.
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Figure 3.8: SE efficiency for dense mat¡ices (T-414). Estimates a¡e shown fo¡
matrices of size 256, 57217024, and 2048.

and

(3.7)

computatron shufle-sum

Figure 3.9 shows the efficiencies estimated using equations (3.6) and (3.2) for

a 1024 x 1024 matrix with 31 non-zeros per column. As expected, the efficiency

drops dramatically for larger numbers of processors. In fact, the expected execution

time for 64 processors is actuaJly 1ar6er than that for 32 processors - a dismal result

indeed.
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Figure 3'9: sE efficiency Íot 1024 x 1024 sparse mat¡ix. Eficiency carcurated
assuming 31 non-zero coefficients per column.

with this rea.lization, it can be seen that a new algorithm is needed in the

case of sparse mat¡ix-vector multiplication. The basic problem is that the global

communication inherent in the sE network is too costly ¡elative to the smali amount

of computation required for a sparse matrix-vector multiplication.

Instead, conside¡ an implementation on a linear array of processors, with the

matrix columns and vectors partitioned as befo¡e. If we a¡e computing A,x : þ, a

typical component of ! is given by

b,:Ðo,j,j,

-45-
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where it is assumed that no calculations are performed when a¿, : Q.

Because vectors are partitioned across the array of processors, each of the ò, is

located on a particular p¡ocessor (the one which contains corumn i of the matrix).
As a result, te¡ms that contribute to åi must be communicated to that processor

if they are not generated locally. Given a randomJy sparse matrix, however, it is

possible for non-ze¡o terms in equation (3.g) to be produced in any of the processors

in the network. It would therefore be necessary to perform a great dear of globar

comrnunication to accumulate the components of ! in the proper processors.

For randomìy sparse matrices, then, the picture is rather gloomy, as global

communication translates into dgorithmic inefficiency. Ideally, one would like to
have nearest o¡ next-nea¡est neighbour communication onry. It is possibre to a¡range

this, but we must sac¡ifice the generality of the algorithm in the process.

conside¡ equation (3'8) again. If we restrict the range over which non-ze¡o

coefficients occu¡ in row i, we can effectivery limit the range oI processors rrhich

contribute to ö, since columns are topologically contiguous ac¡oss the array. In
general terminology, we must rest¡ict the application of the aJgorithm to banded

matrices as shown in Figure 3.10.

Restriction to banded matrices is a common requirement for parallel sparse

mat¡ix-vector multiplication. For example, systolic algorithms that have been de-

veloped require that the marrix be banded (Kung l1gg2]). Moreover, they have the

uncomfortable requirement that there be as many processors as the band is wide.

This requirement reduces their flexibility, and makes no provision for the band itself

being sparse - causing them to compute with ze¡o coeficients. vector computers re-

quire similar restrictions, although they can avoid calculating with zero coefficients

(Madsen et al. [19 76]).

Let a matrix of size Ìú x ll be distributed ove¡ a rinear array of processo¡s such

that Co x Np = y'ú, where Co is the number of columns stored in each processor.

Defining P to be the row bandwidth, and e to be the column bandwidth (as shown
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Figure 3.1o: A banded mat¡ix. P and e defrne the range over which non-zero
coeficients occur. The bandwidth of the mat¡ix is defined as p + e ,1.

in Figure 10), the key to an eficient algorithm is the ¡elative size of p, e, and C".

We can insu¡e /th neighbour communication if

P,Q<ICp+I. (3.e )

For any given row i, there will not be any non-zero coefficients in the (1 + 1)th
ptocessor to the Ìeft or right under these conditions. By restricting the band, we

restrict the range of processors q¡hich can cont¡ibute to a given row-sum of the

product, which in turn minimizes the communication requirements.

The efficiency of this aigorithm can be estimated in a manner similar to the

sE case. The major difference is that the communication requirements are vastly

reduced. For simplicity, let P and Ç be such that nearest neighbour communication

is possible (1 : 1 in equation (3.g)). Each p¡ocessor w I accumu-late row-sums for

all of its non-ze¡o ¡ows. If it contains the diagonaì element of that row, it wilì

not need to send that row-sum, as it is the accumulator for the corresponding å;.



Rather, it will need to receive partial row-sums from neighbouring processors so

that it can form the finai accumulation for the ð; that it stores.

It is only necessary for each p¡ocessor to send (e - 1) row_surns io the nei3h_

bour to the left since the band only extends (e - 1) rows above the row containing

a processor's ieft-most diagonal element. similarìy, only (p - 1) row-sums will
need to be communicated to a neighbour to the right since the band extends only
(P - 1) ¡ows below the ¡ow containing a processor's right-most diagonal erement.

This ignores the special cases which occu¡ at each end of the array.

The time needed to calculate the row-sums is proportional to the number of

non-zeros as in the sE case. since transputer hardware makes it possìble to send

and ¡eceive values both to the left and right simuJtaneously, the communication

time is proportional to (max(P, Q) - 1) and not (2(p - 1) +2(e - 1)) as it would be

if aJl communication had to be done serially. once the values are communicated,

however, the frnal accumulation in each processo¡ is a seriar process and is thus

proportional to (P +Q -2). Tallying up the communication and computation costs

yields:

TNp : !N",cp)(ri - r; ) - (max(p,e) - lXr.f)- (p - e - Ðe; ).
computation communication flnal accum.

(3.10)

Equations (3.10) and (3.6) allow us to calculate the eficiency for the ne'r,

aJgorithm. The ¡esuìts a¡e shown in Figure 3.11 fo¡ a matrix with 5 non-zero

coefficients per column. Results are shown fo¡ two bandwidths, to demonstrate the

effect of a wide¡ band on the eficiency of the algorithm.

This example presents what is just about the wo¡st case for the algorithm.

with only five non-zeros per column. there is very little computation ¡elative to the

communication involved. Despite this, eficiencies are still high, even for the larger

bandwidth where communication costs a¡e even greater.
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Figure 3.11: Estimated efficiency for banded matrix-vecto¡ multiplication. calcu-
lated assuming a 4096 x 40g6 matrix with 5 non-zeros per column.

Lest one get the impression that this ,,wate¡ed down" algorithm is not very

useful, consider that it is used in conjunction rvith the conjugate gradient algorithm

in section 4.2 to solve linear systems of equations. The mat¡ices considered there,

are not only banded in this way, but ¡esult from common CAE techniques such

as finite-differences (Forsythe and wasow [1960]) and finite-erements (Zienkiewicz

11971]). Thus, while not a general algorithm, it is st r very usefur for its intended

application.
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CHAPTER IV

MATRIX SOLUTION ALGORITHMS

Matrix solution algorithms play an important ¡ore in numerical analysis and cÀE
algorithms. virtuaJly a.11 methods of solution (even sorutions of non-linear problems)

produce a linear system o{ equations which must be solved.

Two algorithms are presented. The fi¡sr is a fairry straightforward impre-

mentation of a Gaussian elimination solver with row pivoting on a linea¡ array of
transputers. The partitioning used is not the most efficient imaginable, but was

cast this way to allow its use as part of the boundary element engine described in

chapter 5. The efficiency of the implementation is presented as part of the results

in Chapter 5.

The second algorithm is a sparse-mat¡ix solver based upon the Conjugate

Gradient (cG) algorithm. while the algorithm is ¡est¡icted to banded matrices

with rather stringent properties, this does not hinde¡ its usefulness, as such matrices

are produced by a variety of standard numerical analysis techniques. The algorithm

has the additional advantage of serving as a proving ground for many of the mat¡ix-

vector algorithms introduced in Chapter 3,
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4.1 Gaussian Elimination

As we will see in Chapter 5, the Boundary Elemenr Method (BEM) produces a ma_

trix system that must be solved. This section outrines a para[er imprementation of
the Gaussian elimination matrix sorution argorithm on a linear array of transputers
(the same a¡chifectu¡e as fo¡ the BEM mat¡ix generation algorithm).t Thus the
two algorithms are able to work cooperatively on a problem.

4.1.1 The Älgorithm

Gaussian elimination (GE) is a systematic u'ay of performing erimination on N
equations in N unknorvns. Conside¡ the linea¡ svstem

Sa:å. (4.1)

For convenience in implementing the algorithm, the ! is amalgamated with the S
mat¡ix to form

/""

':[,":l

This allows all the row-ope¡ations to be car¡ied out in a singre step, rather than
needing a separate step to handle the right-hand side. Gaussian elirnination solves

such a system by using row-operations to eliminate all coefficients below the diag_

onal, forming an upper-triangular svstem that can be solved by back-substitution.

The flrst step in the elimination of column k is to choose a suiiable pivot
equation' In the partial-pivoting form of the algorithm desc¡ibed here, the system

¡ow 
'Lr > fr that has the largest coefficient in column fr is chosen as the pivot equation

and swapped with ¡ow È ' This procedure is done to ensure stab ity of the argorithm

and to avoid ze¡o va.lue diagonal elements which will cause execution e¡¡ors.

t Presented by the author at the second occam use¡s Group Meeting in santa crara c.{,
Ma¡ch 1987.

st2 sl¿ ål \
s22 s:n år I:.'::l

sm2 snn b" /

(4.2)
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Afte¡ the pivoting procedure, the next step is to eliminate the entries below

the diagonal in the pivot column by subtracting an appropriate murtipÌe of the

pivot row Ë f¡om the rows below it (this operation is a"lso appried to the right-hand

side oI the system). In equation form, the elimination of the À'th column can be

represented as

-À_l
-fr Ë-l "À: k-l
tJ tJ -t_1-?/c

/f /r

(k+t<¿<
t*+ri¡i N

N+1 (4.3)

(4.4)

(4.5)

whe¡e the superscript denotes the elimination step and we have included the right-

hand side of the system in an extra corumn of the system matrix (hence the range

to ¡f + t for the column index).

After this a-lgorithm is applied iteratively to the fi¡si N - 1 columns of the sys-

tem, the diagonalized system is then solved through the following back-substitution

process. The fr¡st step is to solve for o,, giving

sN.N+1

Thereafter, each succeeding ø; is determined by

N
ri,N+l - L si jt ¡

j=¿+1



4.1.2 Partitioning of Forward Elimination phase

The GE aìgorithm has the advantage of having an obvious partitioning for paralel
processing. Before detailing the partitioning, a few observations are worth noting:

1. All information necessary for the erimination of a corumn ,L is derived f¡om
the coeficient values present in that column. This impries that a processor

which possesses all the information within a corumn can determine the actions

and coefficients necessary to eliminate that colurnn.

2. When eliminating column fr, each coeficient in rows {å + 1, fr + 2, . .. , ¡ir }
is augmented by a muJtiple of the pivot equation coefficient in row ,b in the

column directly above it. Furthermore, the value of the multiplying coefi_

cient is de¡ived from the pivot column. In short, calculations in all columns

(including the right-hand side vector) to the right of the pivot corumn require

information from the pivot column.

3. No calculations are performed within a column after it has been eliminated

(except when back-substitution is being performed). This fact has important
implications on the ma-timum possibie speedup eficiency of the algorithm.

To execute the GE algorithm in parallel. each processor is given a contiguous

series of columns within the matrix in which it is responsible for all computation

as was shown in Figure 3.6' Because alr the information necessary for eriminating

a column is contained within that column, it is possible for each processor to play

rnaster and direct the elirnination process in the processors to the right whire the
pivot column is one o{ the columns it is responsibre for. This is done by determining

which matrix rows have to be swapped and the values of the coefficients of eli,oina-

tion for each row and sending this info¡mation to the next processor on the right.
The pivot processor then goes on and finishes the elimination computation in the
columns to the right of the pivot column for which it is responsible.

All processors to the right of the pivot processor! upon receiving the message,

pass it on (if there is another processor to the right) and use the information ¡eceived



to compute the ¡esults of the cu¡rent elimination step. The end resurt is that the
work of performing the cur¡ent eÌi¡nination step is shared between a number of
p¡ocesso¡s.

The global communication required in this partitioning is compensated for by
the fact that computation and communication are overrapped. After a processor

passes on the message, it is f¡ee to perform calculations. Because computation
time dominates communication time (for most practical problems and processing

systems) the processors are kept busy most of the time. Thus grobal communication
does not impact the eficiency of the algorithm to a great extent.

what does impact the efficiency, though, are the implications of observation 3.

once a processor has supervised the erimination of its corumns, it has nothing to do
until the back-substitution phase. It the¡e{ore sits idle and does not cont¡ibute. The
onJy compensating factor is that while fewer processors come into play, the work
that each o{ the ¡emaining acti'e processors have to do for each corumn becomes

less (i.e. the elimination involves a shorter length in the column).

The theoretical expressions for eficiency and execution times are derived in
chapter 5, where they are compared to experimental results. since the de¡ivation
ignores all communication costs, we arrive at an expression that gives the maximum
possible efficiency. comparing this number to the experimental results allows us to
show that communication and computation are overrapped, thus lessening the efect
of global communication. The end ¡esurt is that the argorithm as impremented does

not have a theoretical maximum efficiency of 100%. As we w r see in chapter 5, the
theoretical efficiency with two processors is around T0To fu the forward elimination
phase, and falls slowly as the number of processors is increased.

This problem could be avoided to a large extent by choosing a difierent par_

titioning of the system matrix. Fo¡ exampÌe, instead of using contiguous sets of
mat¡ix columns for each processo¡t we courd have assigned successive columns to
diffe¡ent p¡ocesso¡s in a cyclic fashion. In this way processors would have corumns
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f¡om all regions of the mat¡ix and courd be kept busy doing computation a' of
the time' This strategy combined with fu, Gauss-Jordan erimination lead.s to an
efficient aJgori+hm (Li er al. [1982]).

one problem with this approach is that it wourd require more logic and more
communication to implement, perhaps ofsetting some of the computational gains.
The column elimination information would have to be shipped to ar processors (and
would always be of length tr[), instead of onry those to the right, which represents
a sizable increase in communication costs.

Fu¡ther to the point, the present a.lgorithm was designed to work in consort
with the BEM algorithm of Chapter 5. Without a matrix partitioned into con_

tiguous sets of columns' the imprementation of an efficient BEM mat¡ix generator
would have been much more difficurt, if not impossible. It was the¡efo¡e d.eemed

acceptable to sac¡ifice some eficiency in the sorve¡ so that the combined algorithrns
could be mo¡e efrciert.

4.1.3 Partitioning of the Back-substitution phase

In comparison to the elimination process) the amount of carcuration invorved in the
back-substitution phase of the algorithm is of rittle consequence. wh'e the¡e is
some parallelism present. it is debatable if exproiting it wourd be worthwhiie. As
such, we seek a rnethod which caries out the operations in a simple manner. and
will ignore the parallelism present.

Examination of equation (4.5) reveaJs that, while each processor can evaluate
the terms in the summation in paraner, we are st l faced with the sequentia.r ac-
curnulation of the sum. Worse, the accumu.lation requires trans{e¡ of partial sums
from the last processor in the array to the processor containing the column co¡-
responding to the unknown being sorved fo¡ (corum,' i). This communication is
wasteful since the transputer comrrrunicates vecto¡s mo¡e eficiently than it does a

single value (due to overhead involved in initiating the communication sequence).



If it can be arranged that we t¡ansmit vectors instead of scalars, the argorithm will
be ;no¡e efficient.

This can be accomplished by restructuring the back-substitution process so

that all the calculations performed with a rnatrix corumn are done in one step. In
this way, each o¿ is partialìy accumu.lated as each columr i {i : (n_I),(n_Z),. . . ,t}
is dealt with in turn. we are then able to pass g backwards as a vecto¡ rather than
scalar partial sums' An additionar saving occurs at the end of the process when the

final solution vector is left in processor one, and can be extracted to the controlling
processor in one step.

The frrst step is to assign the right-hand side to ø. Then fo¡ each corumn È

{À : ¡/, (¡f - 1), . . . ,1} of the S-¡natrix we calculate

followed bv

Ckok: 
-,

ci -- ti - sikok i : 1,2,..., (fr - 1),

(4.6 )

(4.7)

where this last step (4.7) is not performed v,hen fr:1.
Each processor, proceeding f¡om last to first, performs these calculations,

and passes the intermediate g back to the proceeding processor. Finally the first
p¡ocessor, after having frnished all its calculations, passes the now complete q back

t,o the cont¡ol[ng processor.

The disadvantage of thìs approach is that we sacriflce the parallel evaluation

of the summation terms in favour of communication eficiency. The choice made

will depend upon the relative speed of communication and computation on the

transputer being used. For example, the T-800's floating per{orrnance might dictate

that communication be favored.
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4.2 The Conjugate Gradient Algorithm

This section desc¡ibes a paralrel imprementation of the polynomiar preconditioned

conjugate gradient method (ppCG) on a linea¡ array of transputers.t We begin by
describing the conjugate gradient (cG) method, which is a semi-iterative technique

for the solution of sparse.-symmetric sets of linea¡ equations.

This method is most useful in the preconditioned (pcG) form desc¡ibed in
section 4.2.2, and has ¡eceived much attention as a sorve¡ for finite-diference prob-
lems on vector supercomputers (Kightley and Jones l19gb], Wong and Jiang I19g7],
wong 11987]). It has a.lso been implemented on a singre instruction/muJtipre data
(SIMD) processor by AUen11983j.

Most of these paraJlel implementations make use of the porynomiar precondi-

tioning technique desc¡ibed in section 4.2.3 (Dubois et ar. 11929]). This method of
preconditioning has proved to be pivotal in a owing efficient parallerization of the
PCG algorithm.

4.2.1 The Classical Conjugate Gradient Algorithm

The conjugate gradient algorithm is de¡ived from an optimization point of view.f
An iterative method is developed that seeks a sorution to a set of linea¡ equations

by requiring that each iterant minimize an error functionar. The er¡o¡ functionar
is designed to give a measure of the cu¡¡ent iterative solution's ,,closeness,, to the
exact solution, and as such, the solution vector that minimizes the e¡ror functional
is the solution to the system o{ linear equations.

The solution to the system of equations

A,n : b, (4.8)

t Presented bv the author at the Thi¡d occam use¡s Group Meeiing in chicago IL, september
1987 .

{ The presentation of the theory of the conjugate gradient method in this and the folrowing
sections is de¡ived f¡om a previous wo¡k of the author (Aren [1983]), and r"rr"*r o*"rrr"" lintzf."



is sought, where Ä is a symmetric positive defrnite 1{ x N matrix, and z and þ are

respectively the unknown and forcing vectors (length N). Let the exact solution to

the equation (a.8) be denoted by

h: r'--lb.

Given an estimate ø of the solution vector, deflne the residual to be

(4.e)

r:b- A,æ (4.10)

\Mith the above defrnitions, consider the quadratic functionar ( Mikhrin [1g64ì, Ax-

elsson [1977,5-6] )

1¡'(s) : t(s,A¡) - (ö,e), (4.r1)

which is a so-called energy functional. The solution which rninimizes (4.11) is the

solution of minimum energy. Note that ( , ) denotes the standard inner product,

which is assumed valid for real spaces.

As the name of the CG method implies, information about the gradient of
the functional (4.11) is used to determine a path to its minimum. The gradient of

(4.11) is given by

s(e) : v(¡(q)) : AE - þ. (4.r2)

Noting the defrnition of the residuaJ, (4),2) can be ¡ew¡itten as

g(s): -r' (4.13)

obse¡ve he¡e. ihat in following a path to the minimum of the functional, the negative

of (a.13) is used since it is in the direction of the minimum.
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Rewriting (4.11) in the form

¡tsl = itt¿ - s). A(& - q)) -

and using the fact that the last te¡m is constant, it
(4.1 1 ) is equivalent to minimizing

(4.r4)

¿lql : I tt¿ - s), a(å - s)), (4.r5)

which shall be ca"lled the er¡or functional. Two alternate forms of (4.f 5) are

E@):Tþ,r,r),

¡(ql : 1(g(s), A-1g(*)),¿-

and

can be seen that minimizing

(4.16 )

(4.17)

where g(z) is given bv (a.t3). Note, that rhe gradients of (a.r1), (a.15), (a.t6), and

(4.17) are equa1.

In a CG iteration, one constructs a path through the space of solution vectors

such that (a.17) is minimized and a solution is obtained on the N'th step. Each

iterative step may be considered as an exact line sea¡ch of the form

q.k*t : q.k I o¡dk . (4.18)

That is, in proceeding from the current solution vector to the next, one t¡avels

aJong a direction fÀ a distance a¡. The di¡ection vector is chosen with some idea

of the gradient, and the parameter o¡ is chosen so that ØÀ+1 will be located at

the minimum of $.I7) along the line dÀ. The requirement ihat E(¿) be mini-

mized successiveìy by each step of the CG algorithrn ailows the value of a¡ to be

dete¡mined.
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Applying this search to (a.IT) we observe that

E("h + o'¡!k): ((å - alnr * a¡dÀ)), a-r(ö * Á-'(so + oodþ))), (4.19)

may be written as

E(rk + ot"dk) : -z",t"(xL , dk) + ol@k /.dk\ . (4.20)

setting the de¡ivative with respect to a¡ of (+.20) equar to zero gives the minimiza-
tion requirement that

(rk . dk\
ûÀ: --l=----.::-1-

@.,^d-)
(4.2r)

Now conside¡ the calculation of the residuar vectors fo¡ each cG ite¡ation. wh e

they may be calculated from (4.10), the mat¡ix multiprication involved is not usefur

an)¡where else in the algorithm. using (4.10) and (4.1g), the forlowing recu¡sive
definiiion fo¡ the ¡esidual is obtained:

Lk+1 :tk - o,¡Ad,k (4.22)

This expression involves a matrix product that is used elsewhe¡e in the a.rgorithm.

giving greater efficiency.

At this juncture, recursive expressions for both ¿ and r have been determined.
All that is needed to complete the argorithm is a definition for l. It is the choice

made for d ihai distinguishes the cG method from the more generar conjugate

direciion (cD) method. The conjugate direction method d.oes not specify how the
direction vecto¡s are to be derived, save that they be A_orthogonal (i.e. (d, Ad) : 0).
The conjugate gradient method, on the other hand, requires that the direction
vectors be const¡ucted via A-orthogonaJization of the residuar vectors generated by
(4.22).
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The orthogonalization could be realized by a Gram-schmidt process (Lang

i1972,138-139]), but it is undesirable to sto¡e each ¡ vector that is generated. In_

stead, the follorving ite¡ative procedure is used:

followed by

do:Lo,

dk+1 - rk+\ t \kdk.

(4.23)

(4.24)

To prove the vaiidity of this process, the orthogonarity of the residua"l vectors

must be demonstrated. with that fact, the A-orthogonality of the direction vecto¡s

can be proved. and finally the value of B¡ determined.

Using (4.23), (4.22) can be rewritten as

,k : 1I + ct{ + czÃz + ... + C*Ak)r. (4.25)

,k :11 + p¡(Á))r"
\4.26)

where P¡(A) is a polynomial of degree ,Ë in A with no constant term. substituting
(4.26) into the e¡ror functional (4.16) produces

E(qk) : ((1+ pÀ(À))r", A-1(r + ,a¡(-a))r"). (4.27)

Interpreting (4.27) as deflning the square of a no¡m with respect to the rnat¡ix

A-1, the minimization of (4.27) is equivalent to requiring thai -p¡(.A.)¡o be an

approximation to ro - so that iheir sum is zero. The best approximation to ro
occurs when the error is orthogona.l (in the A-t norm) to the basis of approf mating

vectors (Davis llg7b,126]).
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It is therefore required that

((1 + P¿(A))r", A-tj,j(A)¿") : 0 (j < k). e.z|)

But

P,(A): A + APj*r(A)

Substituting (4.29) into (4.28) sives

(4.2e)

((r+pr(Â))r",(1+pj(A))¡o):0 (j < k_t), (4.30)

which (using (4.26)) demonst¡ates the orthogonality of the ¡esidual vectors.

With the ¡esult in (a.30), the A_orthogonaJity of the di¡ection vectors can be
proved. Let j be less than &, then (using (4.22) and, (a.2 ))

@k,^ü) : TUrr -.À+1),d,-').

Extending (4.31) b]' induction leaves

(dL, ¡'di) - þ¡-tþ¡_.2 . . . ß. ((¡o _ rÈ*, ), d").ak

(4.31)

(4.32)

using (4 23) and the orthogonarity of the residual vectors shows that (4.32) equats
zero, which proves the A-orthogonality of the direction vectors.

It remains for the value of p¡ to be determined. The A-orthogonality of the
di¡ection vectors gives

(rkot + B¡dk,l'do) : o. (4.33)

Solving for B¡ produces

^ {rÈ+1. AdÈ\
,vÉ - - -_---ì----_----- .

(d.,Adr)
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It is profitable to

forms. Using (4.24) anò,

put (a.21) and (4.3a) into mo¡e computationally efficient

the orthogonality of the ¡esidual vectors gives

ak:

Substituting (4.22) anð. then (4.35) inro (4.34) yields

/-,t+1 -À+l\,. \L iL I
lJk : -------;-'-;--- --(t^, t" )

(4.35)

(4.36)

(.4.37)

(4.38)

(4.3e)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

The derivation of the classical conjugate gradient argorithm is now complete.

Using equarions (a.10), (4.1,8), (4.22), (4.2J), (4.24), (4.35), and (4.36), the aJgo_

¡ithm can be summarized as follows:

a" : ARBITRARI',

Lo : h- A,qo,

)o _-a

(r À. r[)
(d.,Ãd-)

ek+7 = Lk + al,dk ,

Lk+] : Lk - a¡"A.d,k ,

i-À+I -À+r \. \a ,L IpÈ:-.
(r", r^)

dk+7 -rk+l * þt"dk,
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where ,b : 0,1,. '. oo and the iteration terminates when the Euclidean no¡m of the

residuaì vecto¡ is less than some prescribed value.

4.2,2 The Preconditioned Conjugate Gradient Algorithm

Theoretically' the cG method should terminate in a finite numbe¡ of steps (ress

than or equal to trf - the dimension of the rinea¡ system). However, if round-of
er¡or occurs) or if the system matrix has a rarge spectral condition numbe¡ (defined

as the ratio of the largest to the smallest eigenvalue), conve¡gence may nevel occur

or rnay take considerably mo¡e than 1f iterations. Also, Ior large i{, even a well_

conditioned system will require a rarge amount of execution time owing to the fact

that each CG iteration is fairly expensive.

The slow convergence rate of the CG algorithm can be improved by performing

a preconditioning process on the system mat¡ix. The effect is to ¡educe the spectral

condition numbe¡ of the system mat¡ix which in turn improves the convergence rate

(Kershaw 11978,46], Axelsson [1977,17 -29]).

Preconditioning is realized by multiplying the original system (4.g) by matrix
K-I which is an approximate inverse to the system matrix. The optimal precondi-

tioning matrix would be the precise inverse of the system matrix, since murtiprying

by such a matrix would solve the system exactry in one iteration. The efiect of
preconditioning, then, is to put the linear system ,,close¡,' to its solution.

Since our system matrix is symmetric, the matrix K will also be syrnmetric,

and can be written as

K: (LL").

Multiplying (+.8) by K-l gives the new system

(4.45)

(LLr)-lAæ: FLr)'1þ
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For the present purpose, it is necessary to rewrite (+.g) as

(L-1ar'-r¡1¡zq) : (L-1¿),

or (to define the primed quantities),

ð(sÈ ) : f,ln-"k ), {r-ì Á.L-";-r 1L-t,r;¡,

allows the defrnition of rf as

-à,t r' : b' , (4.48)

since (LLr¡-t¡ and (L-lA¡*") are similar mat¡ices and have the same

eigenvalues, the convergence properties of (a.ag) and (a.46) w r be identical. The

cG method, now called the Preconditioned conjugate G¡adient (pcG) method,

can be applied to the system (a.a8) in a manner identical to its application to (4.g).

This ¡esults in a set of equations ,,identical,, to equations (4.J7)_(4.44), but with
primed quantities replacing the normal quantities,

A',!/, and s' are as defined in (a.a8). As for r,, rewriting (a.16) in the form

(4.47)

(4.4e)

(4.50)

(4.51)

(4.52)

E(sk) : 
f;\r,o , A'-'r'o¡ ,

!:.'k : ¡'-' ,* .

giving finally

Similarly to (4.23),

o, :î -

is somewhat arbitrary. The choice

dk : ¡'r ¿"

-b5-

The relationship between d. and d'

(4.53)



and

(4.Í,4)

(4.55)

(4.56)

(4.57)

(4.58)

(4.5e)

(4.60)

(4.61)

is made as it ¡esults in a considerable simplification in ihe equations deflning the

PCG method.

With ihe above deflnitions for the primed variables, it is possible to transform

the equations back to normal variables. The resulting algorithm is given in the

following equations:

r' : ARBITRARY,,

Lo:þ-'Alo,

do : K-tLo ,

(rÀ. K-r7À)a¡:#.
ß,^d^,

p.h+1 : &.1 + ot"dk ,

Lk+t __ Lk _ d¡Ldk ,

- (¡À+1, ¡-trfr+t ¡11':-
(rÈ, K-lr¡)

dk+r : K-rrk+t + þ¡dk,

whe¡e fr : 0,1,... æ and the iteration te¡minates when the Euclidean norm of the

residual is less then some prescribed value.
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4.2.3 Polynomial Preconditioning

The PCG a.lgorithm presented in (a.5a) - (4.61) is a special case of the generalized

CG method first presented by Hestenes i1956,83-102]. In his derivation, Hestenes

places no requirements on the properties of the matrix K. As a result, the choice

for K is not entirely obvious. The derivation presented he¡e has the advantage

of indicating exactly what properties K should possess, namely that K-l be an

approximate inverse of the system rnatrix. Moreover, the method by which K-1 is

obtained has not been specifred.

Fo¡ scalar processors, the most efficient way to obtain an approximate inverse

seems to be the incompìete Cholesky factorization method put forth by Meijerink

and van der Vorst 1.1577,148-162] (An implementation of which is discussed by Ker-

shaw 11978,43-65]). A1so, Nakonechny [1983] has shown that the the Incomplere

Cholesky Conjugate G¡adient (ICCG) method has the advantage of allowing effi-

cient implementation of a linked-Iist sparsity scheme.

Despite its advantages, ICCG is not suitabìe for implementation on a parallel

computer (Webb et aL 17982,325-329]). The incomplete Cholesky decomposition is

inherently a recursive process that does not ]end itself to parallel implementation.

successive column eliminations must proceed serially. while some paraJlelism can

be extracted f¡om a column elimination when a sparsity scheme is not used, with a

sparsity scheme, parallel implementation is hopeìess.

The goal here, then, is to arrive at an algorithm that:

f. incorporates preconditioning in its framework;

2. allows sparse storage of sparse system matrices; and

3. is efficiently implementable on a transputer array.

The above requirements are met by combining the basic PCG algorithm with

a class of polynomial preconditioners discussed by Dubois et at. 11979,257-268] and

Johnson et aL [1983,362-376].
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The Polynomial Preconditioned Conjugate Gradient (ppCG) algorithm ap_

proximates the inverse of the system mat¡ix A by a truncated Neumann series

expansion. This approxima.te inverse is then used as K-1 in the pCG algorithm

((4.54) - (4.61)). Consider the splitting of the sysrem matrix

¡, = (M - N): vr(r - M-lN). (4.62)

In exact ana.logy with the theory of scalar series (as opposed to matrix series), A-1
can be represented exactly by

A-r : (I_M-lN)-rM-l, (4.63)

which can be written as

a-l (1.64)

ot as

a-r:

Ðquation (4.65) assumes that

(4.65)

p(M-'N) : p(r- M-1A) < 1, (4.66)

where p is the spectral radius ofits matrix argument (Mirsky 11982,332]). The latter

point (4.66), follows from the fact that a matrix raised to higher and higher powers

will approach zero only if its spectral ¡adius is less than one (Mirsky l1gg2,32g]).

wong 11987] discusses strategies for handling cases where the mat¡ix d.oes not meet

this requirement.

/æ \

= f t fno-'*l'lu-'.t4 I
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Owing to the fact that the calcuiation of (a.65) is impossible, an approximation

to the inve¡se of tLe system matrix can be constructed by truncating the series (4.65)

after a few terms (tvpically 1 to 4). Let the truncated inverse be defrned by

K"t: (4.67)

where the possible z va.lues ( one to infinity) determine the degree to which A-t is

approximated. The PPCG algorithm is therefore parameterized by the quantity z

and shall, hereafter, be denoted as PPCG(z).

Since the mat¡ix K-l is needed onlv for the matrix vector products in (a.ba)

- (4.61) of the form

ç:Kllr, (4.68)

the product can be eva.luated whenever it is needed and K-l never explicitly stored

(which represents a considerable saving on storage since K-1 will usually be denser

than A itself)' This is a great advantage over the ICCG method which requires

additional storage equal to the storage required for the A matrix. ppcG(z) requires

only the storage of an additional vecto¡ of length ll over the basic CG algorithm.

The value of z should be user-specifiable since the matrix vector multiplication

required to evaluate (4.68) is very expensive. For increasing values of z, there is a

definite trade-ofi between:

1. the decrease in total execution time resulting from the decrease in the number

of ite¡ations needed to achieve a specifled accuracy; and

2' the inc¡ease in total execution time resulting f¡om the inc¡eased execution

time of a single iteration for higher z vaJues.

(Ð,'- '-'o¡')na-'

-69-



The choice for M-I in (a.67) is of fundamental importance. It must be such

that (4.66) holds t¡ue. An exceptional choice is to take

¡.{-t : (DTAGONAL(AD-I, (4.6e)

since it allows any matrix-vector products involving M-1 in the evaluation oI (4.6g)

to be replaced by a vector-vector product. With M-1 of this form, (4.66) is guar-

anteed to hold if A is strictly or irreducibly diagonally dominant (varga 11965,23]).

In particular, if Ais a¡eallú x 1ú matrix, and (a¿¡) < 0fo¡ alli : j, thenM-1N
is nonnegative, irreducible, and convergent if (Varga [i965,84]):

1. A is nonsingular and A,-l is > 0; or

2. the diagonal entries of ,4 are positive real numbe¡s.

Mat¡ices of this type arise in many cases of interest. Varga [1965,161-20g]

demonstrates that mat¡ices with the above properties arise naturally f¡om the flnite-

diffe¡ence solution of elliptic partial differential equations.

It can be seen that the preconditioning algorithm presented here is only as

good as the matrix-vector multiplication ¡outine used to implement it. It is impor-

tant that the chosen sparsity scheme aJlow for a very efficient routine to be coded.

This point is especiaJly important with paral1el processors since the a¡chitecture will

often limit the usable sparsity schemes with a resulting limitation in the options

available for mat¡ix-vector multiplication routines.

The impiementation of PPCG(z) on paraJleì p¡ocessors will involve compro-

mises between sparsity schemes and multiplication ¡outines.
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4.2.4 Transputer Implementation

since sparse matrix-vecto¡ multiplication is the most influential component of the

PPCG algorithm, its implementation is wholìy determined by this component al-

gorithm. we saw in section 3.3.2 that we can hàve an eficient multiplier on a

Iinear array of transputers when the matrices are banded. Fortunately, the numer-

ical methods for which PPCG is applicable (frnite-difierences and finite-elements)

produce banded matrices. As long as the requirements fo¡ ppcG preconditioning

are met, we can implement an efficient algorithm.

The vector operations also require a linear array of processors (see section

3.2), so we are twice fortunate. Given the presence of the component algorithms,

the only necessary constituent for a complete algorithm is a sparse storage scheme.

Since each transputer in the network is essentially a scalar processor, rpe can

apply any of the linked-list sparsity schemes that have been developed for sequential

processo¡s (Zollenkopf 11971], Gentleman et a.1. 11926], Eisenstat et a.l. f1976]). The

method adopted here sto¡es each coÌumn as a linked list along with a pointer to

the flrst location in a column. A particularly convenient scheme is used in which

all storage (for pointers and coefficients) is contained in a single one-dimensional

array. t Aithough not exploited at present, this would allow easy transferal of these

matrices between transputers.

In o¡der to make use of the principles presented in Chapter 3, the CG and

PPCG solvers are implemented on a linear array of transputers. Each processor

in the network is given an identical copy of the prog¡am, with logic to handle the

special cases in communication requirements that arise at each end of the array.

For example, being at the end of the array would imply that a processor not pass

information to the right, and only accept information f¡om the left (or however one

wishes to defrne the directionsì.

t rhe hey occam techniques used in implementing the sparse matrix storage scheme we¡e
suggested by .Andy Rabagliotti of INMOS Corporation.
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Given the algorithms of Chapter 3, the coding o{ the equations defining the

cG and PPCG aìgorithms is a straightforward substitution of procedure calls with

additional logic to detect conve¡gence. The only departure from chapter 3 is that

the scalar product algorithm is implemented on a linear array instead of a shufle-

exchange network. This is due to lirnitations in the available hardware which did

not allow the simu.ltaneous use of the two networks. Since the network used is small

(8 processors), the diference wilÌ not be significant.

To test the algorithm, a test mat¡ix was generated locally in each processor

using the finite-diference cAE algorithm. In addition, the solver could be couplerl

with anothe¡ physical modelle¡ which generates sparse mat¡ices such as the finite

element method, or could ¡eceive all matrix data from the hosi. The latter case

would incur some start-up ove¡head which is not conside¡ed here.

4.2.5 Results

We begin by constructing a theoretical model fo¡ execution time of the ppCG

algorithm so that the behaviour of the algorithm can be studied for matrices larger

than the specific problem used to test the implementation (and allowed by available

hardw-are). This also allows characterization of the algorithm for larger numbers of

processo¡s.

In general, many iterations of the CG/PPCG algorithms are required to

achieve a solution. The numbe¡ of iterations is dependent upon the size of ihe

system, as well as the conditioning of the mat¡ix. Totai execution time is the¡efore

only useful in directly comparing cG to PPCG (or other preconditioning methods)

where we are interested in the me¡it of the method as a whole.

Fo¡ our purposes, the best way to characterize these algorithms is in te¡ms

of the execution time for a single iteration (",¿""). fnir gives a measure of the

efficiency of the implementation, ignoring considerations of the speciflc problem at

hand.
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consider the PPCG(z) algorithm of sections 4.2.2 anð,4.2.3. The following

model makes use of the primitive execution times in Table 3.1 as weights, and is

parameterized by five main factors:

1- the number of processors (lfo);

2. the mat¡ix half-bandwidth Wt;

3. the number of non-zero coeficients per column (I{,"" );

4. the number of colurnns stored per processor (Cp: NlNr) where 1{ is the

problem size; and

5. the PPCG parameter z.

Table 4 1 gives the cost of the main components of the ppcG(z) aJgorithm in terms

of these parameters, it being assumed that the requirements fo¡ nearest neighbour

sparse matrix-vector multiplication outlined in Section 3.3.2 a¡e met.

Table 4.1: Estimated cost fo¡ an iteration of PPCG(z) (tro l2). Adding up the
terms in the cost column gives the execution time for an iteration of ppCG(z).

Matrix-Vecto¡ Mult.
Vecto¡ Addition
Vector Subtraction
Vector Multiplication
Scale Vecto¡
Vector Àssignment
Scalar P¡oduct

zlCoN""(Tl + f,+) + 2(W - 1)TÌ + (W -
(z + t)fcorjl

-t n .r-ztvp!1r 
)

4COT¡]
SlceT;")
llceT;l

3[CeN".(1:í + rl) + Nprd]

t The calculation is performed for symmetric mat¡ices fo¡ which i4l = p = e (as defined bX
Figure 3.10) and thus have bandwidih 2W - 1.

Cost

- f J -



As an example of the use of the PPCG aJgorithm, conside¡ the flnite-difierence

solution of Laplace's equation

-v'ó :0, (4.70)

in the region depicted in Figure 4.1. W'e proceed by laying a regular grid of nodes þ¿,¡

ove¡ the region (incìuding the boundaries) and forming a system of equations using

the frnite-difference approximation of the Laplacian (Forsythe and Wasow 11g60])

(-Ó;-t,¡ - Ót,¡-t + 4ö¡,¡ - ön,i*t - Ó;+t,¡) :0. (4.71)

Here i and j represent the roi¡' and column index of a node (with /¡,1 in the top

left corne¡ of the region).

É=g É=t

Figure 4.1: Example frnite-diference problem.

Applying (a.71) to the nodes generates a system of equations which can be

solved for the unknown /. The traditional approach for solving problems ofthis sort

on se¡ia1 machines, however, is not to form this mat¡ix at all. The coefficients ofthe

matrix are generated as needed in an ite¡ative scheme. successive over-relaxation

(SOR), for example, uses (4.70) directly to compute the next value of ó;,¡ given

É=o

-vt ó =o

þ=z



existing values of the other /'s in the formu.la (Forsythe and Wasow 11960]). Newly

computed values are used immediately in subsequent node evaluations. This process

is ite¡ated over all the nodes until the newly calculated / cease to differ f¡om the

old ones by some prescribed measure - at which time the solution is obtained.

Parallelization of the SOR ite¡ative sequence is dificult since values generated

in the current step are used in the current step. This enforces an ordering on the

calculations, and makes the algorithm highly sequential, In simple cases such as

we have here, it is possible to "colour" the mesh into disjoint sets of nodes (the

so called ¡ed-black ordering) which do not afiect one anothe¡ in an iterative sweep

(Barlow and Evans 11982]). In this case, applying (a.77) to the red nodes produces

the next set of black nodes. Similarly, the black nodes produce the next set of ¡ed

nodes. Since the calculations involving a given colour are completely independent,

a highly efficient algorithm is possible.

In more complicated problems with varying boundary conditions , a different

opetalor, or arbitrary boundaries, the task becomes mo¡e dificult. First of all,

conside¡able logic is needed to dete¡mine which equation applies to a particuiar

node (this is also a probìem in the sequential case). Secondly, given the right

equation, we must ensure that we a¡e able to colour connecting nodes differentìy.

Any, or all, of the above complications might cause us to reach an impasse, creating

the need for multi-colour schemes (Adams and Ortega 11982]).

To avoid the above complications, the enti¡e matrix can be formed as we

have done here. This approach has been taken by Wong and Jiang 11g77], and

Wong 11977], who use a method similar to PPCG to solve finite-difference problems

with up to 65,000 unknowns on a CYBER 205 vector supercomputer (Ilockney and

Jesshope 119811).

It is interesting to note that vector supercomputer implementations of PPCG

suffe¡ from limitations simila¡ to the cu¡rent aJgorithm, in that they must also



rest¡ict themselves to st¡uctu¡ed matrices (i.e. banded) to obtain efÊcient matrix-

vector muJtiplication. The most comrnon method, due to }rladsen et al. 11926], relies

on the mat¡ix having a well defined diagonal band structure.

For the problem in Figure 4.1, equation (4.71) is applied only to the interio¡

nodes, since the boundary nodes are specified by the boundary conditions (other

t1'pes of boundary conditions have to be catered for differently). Furthermore, for

nodes immediately next to the boundary nodes, (4.71) must be modified to ¡eflect

the fact that the value of þ for some of the nodes in the operator is aJready known

by virtue of the bounda¡y conditions. Conside¡ the equation lor $2,2. In this case,

we know that þ1,2: 0 and ózJ : 3, so that equation (a.71) becomes

4þt,z - þr,t - öt.z =3. (4.72)

Generating equations for all of the interio¡ nodes results in the following ma-

trix system (using a 5 x 5 grid with 9 interior nodes):

4-7 0

-1 4 -1
0 -1 4

-1 0-1
0 -1 0

0 0 -1
000
000
000

-1 0 0 0 0 0

0 -1 0 0 0 0

-1 0 -1 0 0 0

4-70-1 00
-1 4 -I 0 -1 0

0 -1 4 -7 0 -1
-1 0 -1 4 *7 0

0 -1 0 -1 4 -l0 0-1 0-1 4

óz,z

óz,t

óz,z

öt,t
þz,q
ó",
ó+,t
ó n,n

3

0

1

0

1

5

2

3

(4.73)

For a grid wiih -l[" nodes on each side, a system'¡/ith 1{ : (N, - 2) x (¡¿, - 2)

unknowns is produced (with an associated matrix of size 1{ x .À[). Important for

our purposes, is that the matrix is banded, with bandwidth (2(N, - 2) - 1). As

we have mentioned, the matrix meets the requirements for PPCG convergence and

effi cient mat¡ix-vector multiplicaiion.
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Table 4.2 compares the execution time of a CG/PPCG(z) iteration estimated

by the computation time model in Table 4.1 (for both the T-414 and T-800 transput-

ers) with an implementaiion oI CG/PPCG(z) running on an 8-processor transputer

array. It should be emphasized that the times given are for a single iteration, and are

not the execution times needed to reach the final solution. these results are shown

for a 66 x 66 node problem (which has 4096 unknowns). Also shown are results

given in Allen 11983] which show the execution time per ite¡ation for an identical

problem running on a DAP processor array (Hockney and Jesshope l1g8ll) and on

an Amdahl 5850 mainframe.

Table 4.2: ?i¿¿, estimates and ¡esults for PPCG(z) (trp : 8). The time is given in
milliseconds.

System cG PPCG(2) PPCc(4)
T-414 Array
T-414 (Est.)
T-800 (Est.)

DAP
Amdahl

25I 461 825
245 447 772
25 48 81
33 64 125
52 90 762

The first thing to notice from Table 4,2 is the accuracy of the estimated T-

414 execution time relaiive to the time obtained on an actua"l array of transputers.

Generally, the estimated values a¡e ,ñilhirL 7Ta of the actual values. This gives us

some license to speculate on the behaviour of the algorithm on larger netwo¡ks and

problem sizes. While this is important in its own right, we are a.lso given some

confldence in the estimates for the T-800 transputer, allowing us to discuss the

expected ¡esults for it as well.
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Table 4.3: Estimated fr¿""
onds, and E¡¡, in To.

for PPCG(2) for different Nr. T¡u is given in millisec-

Np T,t", (T-414) ENÞ (T-4t4)
",¿"" 

(T-800) I tN- (T_800)
4

8

16

64

884 99
447 98
229 96
123 89
t+ t4

94 98
48 96
26 91
15 76
12 49

Given this, we can tabuiate estimates of execution time and eficiencies for
othe¡ network sizes for both the T-414 and the T-g00 transputers. The resurts a¡e

given in Table 4.3 for an array of processors executing the ppCG(2) algorithm.

We can see that in all cases. the eficiencies are quite hígh, only faltering
when there are 64 processors (the maximum a[owabre for a problem of this size

and bandwidth - while stiil maintaining nearest neighbou¡ communication). Thus
it represents the maximum in communication and the minimum in computation.

we are consoled by the fact, then, that the efficiencies will rise when the probrem
size is increased.

The algorithm possesses at least one shortcoming. This example problem

is admittedly quite special in that the bandwidth is quite s,.al in comparison

to the number of unknowns. Given different finite_difierence operators, or more

complicated shaped regions and grids, this may not be the case. It would then be

ha¡de¡ to mainta.in nearest neighbour communication, causing efficiency to sufer.
This problem can be controlled somewhat by judicious node numbering, but there

mav be cases where that may not be enough. Even in the event that next_nea¡est

neighbour communication is required, the argorithm should stiil be quite eficient.
what has to be avoided is having a bandwidth so large that values have to be passed

across a significant portion of the array.
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This example shows hou'transputers can provide high power at a ¡easonabre

cost As the estimated results in Figures 4.2 and 4.3 show, a transputer array with

8 T-800 processors could execute the flnite-dìfierence problem faster than either the

DAP or the Amdahl. since the cost of these computers is on the o¡der of millions

of dollars, and the cost of an 8 transputer array is currently around $25,000. we can

see that the¡e is a conside¡able diference in the power/cost ratio. Thus, for this

problem at 1east, we have achieved to goals set forth in the int¡oduction.
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CHAPTER V

PARALLELIZATION OF THE BEM ALGORITHM

This chapter presents a parallel implementation of a two-dimensionaJ Boundary E1-

ement Method (BEM). This method was chosen as an example of a CAE algorithm,

since it is currently being used in a comme¡cial CAE system that is used to aid in

the design of printed circuit boards (Poltz and Wexle¡ [1986]).

The partitioning of the BEM algorithm described here is dependent upon a

number of details specific to the algorithm used. Most important of these is the way

in which one chooses to describe the geometry of the structures being modelled. The

particuiar properties of the modelling method used he¡e (see Section 5.2.2) cannot be

guaranteed to carry over to othe¡ geometric rliscretization techniques such as cubic

spline based modelling. As such, this chapter in no way describes a general attack

on such problems. Its purpose is to present a particularly innovative partitioning

of a CÀE algorithm.
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5.1 MANITOBA: A Boundary Element Àccelerator

In this section, the MANitoba Integrated rransputer/ occam Boundary element

Accele¡ator (MANITOBA)I is desc¡ibed. Í MANITOBA necessarily integrates two

algorithms, because the end ¡esu1t of applying the BEM to a problem is a system of

linear equations which must be solved for the unknowns. since the execution times

for these two separate phases are comparable, an implementation cannot conside¡

only one, but must address both probrems simurtaneously. It is in cases like this

that the art of parallel programrning comes to the fore. The algorithms must be

implemented in a complementary fashion, so that neither is undury crippled by the

architecture needed for the other.

Once it was decided that the transputer and Occam would be used, it was

necessary to dete¡mine how the two algorithms could best be partitioned to allow

eficient co-implementation. Decisions about the partitioning were made within the

bounds of a numbe¡ of competing constraints-

The frrst and perhaps most important const¡aint was that the algorithm could

be adapted (or would adapt itself) to transputer networks of varying sizes. This is

important because it is not reasonable to limit users to some standa¡d confrguration

if it does not meet their performance requirements. If mo¡e power is needed, then

mo¡e processols could be added to obtain the required performance cha¡acteristi cs.

Also important was the requirement that both the matrix generation and ma-

t¡ix solution phases of the algorithm be implemented on the same netwo¡k topology.

This avoids any waste or inefficiency involved in shoe-horning an algorithm onto an

incompatible netwo¡k configuration. It also avoids the possibility that some pro-

cessors might have to sit idle if they are not part of the topology required for the

other algorithm.

t In the spirit of self-¡efe¡ence (Hofstadter 11980]) - a self-¡efe¡ential acronym.
I M,A'NITOBA was presented at the second occam use¡s Group meeting in senta cle¡a cA,

Ma¡ch 1987.
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The last major criterion ¡evolves around global communication in transputer

netwo¡ks. Since transputer r:,etworks are best at loca.l communicaiion and degrade

greatiy in efficiency if much ra.ndom global communication takes place, we must

avoid it if at all possible. Failing this, the required communication must be regular

and predictable so that communication and computation can be overlapped in dif-

ferent parts of the array. After study of va¡ious matrix solution algorithms and the

BEM algorithm it was decided that a linear array of processors as shown in Figure

5.1 was best suited to accommodating both the algorithms and the design criteria.

ooo

Figure 5.1: M,A.NITOBA a¡chitecture.

Aside from allowing implementation of the BÐM and matrix solution algo-

rithms, the linear array has a side benefit in keeping with the goals of this research.

If one is targeting the acce]erator for small workstations, cost is a major consid-

eration. Given const¡aints of cost, it is not feasible to offer a very large number
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of processors, so it is better to pick the architecture that is most versatile for the

problems at hanC.

MANITOBA is divided into two sections. The flrst section, which runs on a

transputer located in the host computer, is responsible fo¡ communicating with the

host computer and feeding data from the host to the computational array. It also

maintains a protocol with the BEM array that allows it to control its operation.

The second part of MANITOBA, which is distributed over a linea¡ array of

transputers attached to the control processor, implements the BEM and matrix

solution algorithms. Each processor is assigned a set of contiguous columns over

which it is responsible fo¡ both matrix generation and solution as shown in Fig-

ure 5.2. Every processor { 1, 2, . . . , i[] contains a copy of the matrix generation and

solution algorithms as well as a complete copy of the problem specification data so

that each has all the resources necessary to carry out its task.

ooo

Sets ôt Cont iguous Mat r ix Colurn¡s

Figure 5.2: Matrix partitioning on an array of processors.

Proc. 1

u
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As with any solution to a comprex probìem, an acceptabre sorution represents a

compromise in some respects. For exampre, the chosen matrix solution method was

Gaussian elimination. This algorithm has the virtue cfa rather obvious parallelism,

but also requires global communication of coefficients of erimination. Fortunately,

this global communication is very regular and can be overlapped with computation

in a pipelined fashion, making for an eficient algorithm.

The matrix solution algorithm was the fundamenta.r driving force behind

choosing a linear array since having an efficient matrix solve¡ is important to algo_

rithm performance. Given this, it was necessary to put restrictions on the geomet-

rical description given to the BEM matrix generator so that global communication

would be minimized. Details of this are discussed in Section 5.2.4.

5.2 The Boundary Element Method

The focus of this chapter is the Boundary Erement Method (BÐM) which is a general

technique for the solution of boundary varue probrems posed in an integral equation

f¡amework (Jaswon and Symm llgZZ]). It is applicable to many kinds of problems

in both two and three dimensions.

For the purposes of this dissertation, two_dimensional electrostatic boundary_

vaJue problems are solved in piecewise homogeneous regions (i.e. a two-dimensionar

plane segmented into regions of difrering dielectric permittivity e that is constant

throughout each region). The method used was fr¡st described by McDonald et ar.

i1974] Further treatment of the method appeared in Jeng and \4'exler 11927], Jeng

and wexler 11978i, Lean and wexler [1982], ãnd Klimpke 119g3]. The spirit of the

implementation described he¡e comes from these wo¡ks. but has been extend.ed to

accommodate parallel partitioning on a linear transputer array.
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5.2.1 BEM Theory

Consider a three-region problem consisting of the whole of exterio¡ space (.R") with

free-space dielec;ric permittivity eo, and two inte¡io¡ regions -R1 and rR2 (or -R¿

generally) with permittivities e1 and €2 as shown in Figure S.3. The labels B"

and B, are the exte¡ior and inte¡io¡ interface boundaries respectively, while f is

an observation point and r-r is the location of charges distributed on the various

bounda¡ies. Moreover, lhe outward, pointing normals fo¡ the interio¡ and exterio¡

regions are denoted as á¿ and â" respectively, wiih outward pointing normals on the

interface between regions I and 2 being denoted it,t anà ñz-

Figure 5.3: Region, surface, and no¡mal definitions for muiti-media regions.

The boundary element analysis that follows seeks the charge distribution along

the problem boundaries shown in Figure 5.3. The effect is to replace the bounded re-

gions of differing pe¡mittivity with equiaalent charge distibutions on their boundary.

This allows the probiem to be viewed as a free-space distribution of charges, and in

Ar(er) Rzkz)
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turn allows the use of the free-space Green function. Once the boundary charges

have been determined, they can be used to calculate the potential throughout the

two-dimensional plane.

The solution of Laplace's equation

V'd: o (5.1)

in this two dimensional plane is sought. Remembering that in two-dimensions, the

field of a point charge has logarithrric variation, consider the fie1d due to a collection

of N point charges g¡ whose locations are given by various vectors r-f . Elementary

superposition allows us to express the potential at some obse¡vation point r- with

respect to some reference point r-o as the sum

N

þ(í) - a(f") = - t # U" r- - r-it - lntío - r-;t ).
- 

211ê"i=l
(5.2)

Ifinstead of discrete charges, we have a continuous charge densitv distribution

a(r-') along a boundary curve B, then the sum is replaced by an integral and

becomes

ó(,-) - ó(í"): - o(r-t)lln)r- - r-' - lnir-o - r-' jdr' . (5.3 )

unlike the three-dimensional case, the potential has logarithnic va¡iation. Thus we

cannot use inflnity as a reference potential, and must instead choose io to be finite.

Letting /(r-" ) : C yields

ó(,-): -* l"o¡)tt.l,- - r-, - tnlí" - r-,lldr, + c.

t1_t
2treo J s
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Consider the second term of equation (5.4) for a moment. If we choose r-o )) r-t ,

then ln r-o - r-' is essentia.lly a constant. We can therefore write the second term

as

lnlr-o -r-' 
.-,,,,

,"% J 
"o\' 

)o' '

If we impose the physicaJly realistic constraint that the total charge be zero

we are left with

I o|''¡a,' = s,
JB

AG-) = ! [ Gþ-,-,)o1r-'1d,, + C.
to JB

(5.5)

(5.6)

(5.7)

Here, G(r-lr-') is the two-dimensional G¡een funcrion

and plays the role of kernel for the Fredholm integral equation of the first kind.

Equation (5.6) describes the potential for Dirichlet boundary conditions. For

Neumann boundaries, the derivative of the potential is specified. This is modelled

by the Fredholm equation of the second kind (Stakgold 11979])

G(r'ir-') : -!t,,- - ,'' ,zfi

ó, (,-) : ! f"ci t, r-,)olr-,)d.r, - "*

(=) l"oo-,)ci{rt-,)a, - ("-rt¿'")"1;,¡: o.

(5.8)

in which $' and G' a¡e the derivatives of / and G with respect to the outward

normal to the boundary.

For the case where the¡e is an internal interface bet.n¡een materials with diffe¡-

ent e, the appropriate equation is (Jeng and Wexler 11978], Lean and Wexler [f982])
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While we are seeking /(r-) throughout the plane, it is not the unknown. In-

stead, we must first frnd the charge distribution ø(fr) on the boundaries which'r,ill

give rise to the spatial potential fleld under the prescribed Dirichlet, Neumann, and

interface boundary conditions. Once the charge distribution is known, ii can be

substituted back into Equation (5.a) to calculate /(r-).
With the above equations in hand we a¡e able to solve for the potential in the

plane in te¡ms of the boundary charges necessary to produce that potential field.

The variational process used to obtain the boundary charges is similar to that used

to solve finite element problems. Consider equation (5.4) under Dirichlet boundary

conditions ó(r-) : S(;). The integral operator for this case is

K= G(r-lr-')dr' ¡ C, (5.10)

which produces the operator equation

K o(r-) : s(r') (5.n)

Defrning the inner product

![
eo JB

(5.12)

the solution of (5.11) is accomplished via a variational approach in which the sta-

tionary point of the "energy" functional (Jeng and W-exler [1gZZ])

F: (Ko,a) -2(",s\,

coincides with the desired solution when the operator K is seif adjoint

(5.13)

(Ko,rl - (o, Kr).
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Substituting (5.6) into (5.13), we obtain

I f 7 t IF: lo(r)l :G("- tr-')"lr-' ¡dr' d.r - l oçr')d.rC -2 l o@1slr-1dr. (ã.1s)JB JB'eo Ja Je '-'

To minimize this functional, a Rayleigh-Ritz procedure is used (Harrington

119681) in which a is expressed as the sum of orthogonal expansion functions with

unknown coefficients. This generates a matrix system which can be solved for the

coefficients of expansion, yielding the value of ø aìong the boundaries.

Let there be expansion functions {a1(r-), a2(r-), . . . , a"("-)} which are param-

ete¡ized along the path of integration by coeficients of expansion {o7,a2,...,on).
We can then write o as

,(r)=É o;a¿(r'), (5.16)
?=l

which after forming column vecto¡s a and q (5.16) may be expressed in vector

notation as

o(r-): elq= da.

Equation (5.15 ) then becomes

F: or [ "v-l [ 
!Gþ'r'')o'(,-')d.r'drq. qr I a(r-)drc- Ja-' Jaro ^ Jp-

- 2o' I a(r-\o(r- ldr. (5.18)- Jn' "

l"e?-) Iutrrrr-rnrç,-'¡d,'d,o + 
luøU)a,c 

: 
luø?)se)ar. (5.1e)

(5.17)

The functional r' is minimìzed by differentiating with respect to the va¡iational

parameter q and setting the resuit equal to zero which yields
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Ðquation (5.i9) can be written as the matrix system

Sø:ö,

where

(5.23)

apply to all the Dirichlet bounda¡ies in the problem.

Ànalysis similar to that producing (5.f9) can be applied to the equations gov_

erning the Neumann and interface boundaries. In the case of Neumann boundaries.

the analysis produces

Ir,n l7 6t,¡1;tror¡-" ' ' ' 1l r
Juor' , Ja ro- \, 1, ¡s 1'')d.r'd.ro - 2q J"ø?-)a'(i)dlo: J"a\r-Iót(r-)dr,

(5.24)

whe¡e G' represents the normal gradient of the G¡een function with respect to the

boundary in question and is given by

";¡ 
: 

Ia"n(Ò luLG(,- 
F')o¡(r,)d,,d,

t;: 
f"orq,-¡s1,-¡a,.

Equation (5.19), and its accompanying constraint equation

I at (r-\dro = 0
J a-

(5.20)

(5.21)

(5.22)

(5.25)

The only restriction implied by (5.2a) is that the solution will only be valid in

the region into which the normal to the Neumann surface is pointing. For example,

if the su¡face norma.ls of the Neumann boundaries all point into the exterior region,
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the solution obtained will be valid there. Conve¡sely, if the¡' point into the interior

region, the soÌution will only be valid in that region.

For interface boundaries, (5.9) becomes

P*)L qþ-) 
IBGl'(r- 

r'')ar (F')d,r'd.ro

/a-e,\ I
- (:r--_:r. - ) /- etr;qr1r¡dro : 0. (ã.26)

\ --! / ¿Þ

Here, the no¡mal de¡ivative of the G¡een function is calculated with respect to the

normal pointing into region 2 (the outward normal of region 1).

Equations (5.24) and (5.26) accumulate into the system matrix and forcing

vector in a fashion simila¡ to the Dirichlet case (equations (5.2t) and (5.22)).

Given the above equations for Dirichlet, Neumann, and interface boundaries,

most of the machinery is in place for the solution of boundary element problems.

The only detail left is to desc¡ibe the expansion functions used to model the ge-

ometry and the charges. These dictate how the boundaries are subdivided and the

matrix equation accumulated.

5.2.2 Surface and Charge Modelling

Applying the Rayleigh-Ritz variational method to (5.15) expresses the boundary

charges in terms of orthogonal expansion functions with unknown coefficients. Solv-

ing for the coeficients gives us the boundary charges, which can in turn be used to

calculate potentiaJs in problem region(s).

It turns out to be convenient to carry this same f¡amework over to the ge-

ometric model of the boundary surfaces so that both a¡e modelled in the same

way and to the same polynomial order. Fo¡mally this is called an isoparametric

representation.

However, it is hard to imagine how one could model a complicated geometry

with a single polynomial, since such geometries are made up of combinations of
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many lines and curves with geometric singularities. To get around this problem^

the surlaces are broken up into many patches or elements (hence the name Boundary

Elements). A polynomial is frtted over each patch separately, with the control points

(called zodes) defining the path of the element on the trvo-dimensional p1ane.

The charges a¡e then modelled isoparametrica.lly by specifying thei¡ va¡iation

along each element in terms of their values at the nodes used to model the geom-

etry. Interpolation between the nodal values gives the charge anywhere along the

boundary.

Conside¡ Figure 5.4, in which some function /(æ) is known at three points

(nodes) in the range fc1,z3l. We sha1l call this set of th¡ee nodes an element. If
we assume that the function varies quadratically we may construct a function to

interpolate it over the whole range considered.

Figure ã.4: Mapping of a boundary eiement from global to local space_

f (,) ,f (€)
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This is done by first mapping the element into what is called the standard

simplex. In this case, the simplex corresponds to the interval 10,1ì on the ( axis,

where { is our parametric coordinate. We deflne a set of orthogonal quadratic

polvnomials a¿ over this interval (called local or { space) which take on values

''({) : {å ll :,itì;:. ""0."

We may then express /(O in terms of its value /, at the three nodes as

3

/(O: I a¿G)i;

(5.27)

(5.28)

Note, that while we know f in te¡ms of (, it is not easy to obtain a particular /(a).
This restriction is of no consideration here, however. The interpolaiion merely gives

a parametric representation of the functions involved which can be used to evaluate

the integral equations in a simple fashion.

The particular expansion functions used here are called the Lagrangian shape

(or interpolation) functions (Wexler f1980], Lean and Wexle¡ 11985]). Such functions

may be defrned for any order of approximation, but are restricted to quadratic

representation here. In te¡ms of the local space coordinate the¡' are

al :2t2 - 3€ + 1,

"z:4(t-t2),
ot :2Ê2 - €.

(5.2e)

This same formulation is used to model both geometry and charge distribution

for the algorithm. The charge distribution representation follows the description of

/({) above, and allows a quadratic representation of the charge along a curve in

space.
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curved boundaries are modelled in a simira¡ way, but have a parametric repre-

sentation for both the z .nd gr coordinate. Given a cu¡ve in space , it is subdivided

along its length into bouncla.ry elements (as in Figure 5.5) which are deflned by

three nodes {(tr,gl), (rz.,az),("¡,gz)} along the curve. The location of any point

on a boundary element is desc¡ibed parametrically as

3

¿({) : Ð â,(4)¿,

3

u({): f a¿(¿)s;

(5.30 )

(5.31)

(5.33)

Thus a particular { on the interva,l [0,1] will generate a point in space (ø, y) on the

boundary element.

since we are going to evaluate line integrals on the simplex element, it is desir-

able to know the Jacobian of the transformation (the magnitude of the incremental

vector dr-) as a function of {. Given the above parametric representations for a

boundary element defined by three real space coordinates, the Jacobian is defined

such that )dí): J dt, which yields

r_
(5.32)

where

and

,,@*ø
ôn
a¿

ôy
âÊ

F- oat(f J

,¿,--/ ))ç "
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AÌso important to the proper evaluation of the boundary equations is the unit

no¡ma-l veclor to a boundary element. By convention, we define the unit normal as

pointing to the lefl when traversing the boundary element from node 1 to node 3.

Specifrcally, the unit no¡mal is deflned as

/ ôy'. â" ,\
\at" - a¿ )

(5.36)

5.2.3 Matrix Generation

Given the results of the two previous sections, we can now describe the matrix

generation process in detail. The data given to the matrix generator consists of

a list of boundary elements descríbing geometrically the various bounda¡ies and

interfaces present in the problem. Each eÌement is assigned a boundary or interface

condition and is defined by three nodes on the boundary as described in the previous

section. Finally, a list indicating the (æ,g) coordinates of each node is given. Each

node is indexed by a unique number that is in one-to-one correspondence with the

unknown coefficients of expansion for the charge along the boundary. Figure 5.5

shows a sample geometric discretization for a paraJlel plate capacitor.

With the problem disc¡etized in this fashion. the task is to evaluate equations

(5.19), (5.24), or (5.26) on the appropriate boundaries. Since the boundaries are

discretized, so too are the evaluations of the integraJs. Thus the limits of integration

extend only over one element at a time, but are evaluated for all elements.

In the case of the double integral, both the inner and outer integra"ls are

evaluated in this fashion. If the¡e are try' elements, the double integral must be

evaluated .¡[2 times to perform the required integration ove¡ a]l of the boundaries

(1,2...,/[ on the inner integral, and 1,2,...,N on the oute¡ integral). In this

way every element is integrated "against" every other element and itself (the self-

element integration). When performing these integrations, the appropriate equation

1-j
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Figure 5.5: Boundary element discretization of a parallel plate capacitor.

(Dirichlet, Neumann, or interface) is chosen accord.ing to the bounda¡y condition

on the element used in the inner integration.

Note that, when performing the self-element integration. the Green function

is singular (i.e. r- and r-r coincide, and a logarithmic singularity results). This siiu-

ation requires special care in order to obtain accurate results. while the necessary

techniques have been implemented in the program, they are not important to the

present discussion. Detaiis of the process are discussed by Lean l1gg1], Klimpke

11983], and by Lean and Wexler [1985].

considering equation (5.1g), let the inne¡ integral be evaluated over element

-Et (defined by nodes Nl, N2, and N3) and let the outer integral be evaluated ove¡

eLement .Ð2 (defined by nodes N3, N4, and N5). Appl¡,ing the eiement-simplex

t¡ansformation from Section 5.2.2 to (5.19) we obtain

11 ¡1 i
J, "@ J, 

:c1116¡, 
"-11' ¡ 7 

ar ç¿' ¡ t 1q' a¿, J (€)d€" - J o 
ø(€) t @atc

-96-

= lo øG)øG)t@a(, (5.36)



whe¡e J and J' are the Jacobians for the outer and inner integra.ls respectively.

The important concept to be gleaned from (5.36) is the process b¡' which

mat¡ix coefficients are accumulated, for it is the properties of this process which

dictate how the BEM algorithm can be partitioned. Remembering the vector nature

of q and ø, it can be seen that the multiplication of the row vector and column

vector present in the double integra.l p¡oduces a 3 x 3 mat¡ix of coeficient values.

Thus the evaluation of (5.36) must be performed for each oI these lerms. In the

present case we have

qour .-TN : a2 a3)= ü;3j)
(5,3) /

/ (3,r)

l[:;l](i:) ,"'
(3,2)
(4,2)
(5,2)

(5.37)

The first index in the o¡dered pairs of (5.37) indicates the row that the calculated

coefi.cient will sum into, while the second coeficient indicates the column. Thus,

for every element pair, the nine values resulting from the eva-luation of (5.36) are

summed into mat¡ix locations as shown above.

After the element integrations have been performed, the integrations for the

constraint equation (5.23), the C constant, and the right-hand side are performed.

The results of these integrations are then placed into appropriate matrix locations

giving, flnally, the complete svstem matrix which can be solved for the charge o

and the constant C.
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5.2.4 Parallel Matrix Generation

Paralìel matrix generation must be done within the context of matrix inversion. The

Gaussian elimination solver described in Chapter 4 requires that each processor in

the array contain a set of contiguous matrix cÕlumns. Furthermore, we require

that the columns be contiguous ac¡oss the array of processors (column numbers

must increase as we go from the beginning to the end of the processor array).

Any generation scheme must respect this requirement, lest we sufie¡ an inordinate

penalty moving data into the required format.

Since the element-element integrations of equations (5.19), (5.24), and (5.26)

are completely independent, the BEM algorithm has an obvious parallelism. One

just divides the task of performing all of the integrations equally between all of

the processors. This obvious solution does not wo¡k unless care is taken, however,

because it ignores important details of interaction between the matrix accumula-

tion process, the matrix solution algorithm, and the underlying para.llel processing

architecture.

For exarnple, consider the implications of equation (S.37). Given two elements

with arbitrarily numbered nodes, we see that the element-element integrations have

the potential to generate coefficients that sum anywhere in the S-mat¡ix. Since

the architectural design has specified that a processor handles only a smaJl set of

contiguous columns of the S-matrix, it is highly probable that a processor will have

to communicate a large number of coeficient values to other processors. Thus,

while a simple partitioning of the work of integration will give near perfect speedup

eficiency, it introduces unacceptable global communication costs. The problem,

then, is to seek ways to minimize the global communication.

Careful examination of equation (5.37) reveals that the global node numbers

of the elements on the inner loop of the double integral determine the matrix column

that a coefficient will gei summed into. If a p¡ocessor had only to process nodes in

its inne¡ loop whose index numbers corresponded with the matrix columns it was
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accumulating, global comrrunication 'rould be eliminated. It would be impossible

for a processor to generate coeficients that fall outside of its responsibilities. Note,

that the ouler integration loop still ranges over al1 of the elements, so it is necessary

fo¡ each processor to contain data describing each of the elements.
'We can arrange for this to happen by numbering the elements and nodes

appropriately. All that is required is that the index numbers ofthe nodes comprising

an element steadily increase as the element number inc¡eases (with the exception

that the index numbe¡ oI node 3 of element i can equal the index numbe¡ of node

1 of element (t + 1)). If one has control over the element generation process, it can

be constrained to produce data in this fashion. Failing that, the nodes could be

renumbered. This does not restrict the geometries in any manner, but does require

care when constructing the boundary element mesh. An example of such a data set

is shown in Table 5.1.

Table 5.1: Example of node numbering required for paraJlel partitioning. The
global index numbe¡s of the nodes defining the elements are given.

Ðlement Nodes

I
2

4

567
789

With elements deflned this way, the communication costs of the algorithm are

greatly reduced. Because the node numbers making up the element in the inne¡

integration specify which columns are accumuLated into, it is easy to divide up the

elements between the processors so that a processor performs only those integrations

which accumulate into its matrix section. Consider, for example, two processors and

the element definitions of Table 5.1. Assigning elements I and 2 io processor 1, and
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elements 3 and 4 to processor 2 would cause processor 1 to accumulate into columns

1 to 5 while processor 2 would accumulate into columns 5 to 9.

The only case where communication of coeficients between processors is re-

quired occurs when the last element assigned to one processor shares a node with

the first element assigned to the next processor. In this case, both processors ac-

cumulate coefficients fo¡ the same matrix column. To simplify the matrix solution

algorithm, it is deemed that the shared column of coeficients be passed backward

(towards the host) in the processor array. Thus in the example above, processor 1

would be responsible for columns 1 to 5 and processo¡ 2 would be responsible for

columns 6 to 9.

5.3 Combining the Generator and Solver

The major points impacting the implementation of the BEM and Gaussian elimina-

tion algorithms on a linear array of processors have already been mentioned. Given

these, the ways in which the algorithms impact each other are now detailed.

Most of the interaction stems from the fact that the boundary element is the

smallest "quantum" with which one can deal when generating the system matrix.

Because of this, it is not possible (or at least practical) to distribute the matrix

columns between the processors as evenly as the matrix solution algorithm allows.

Ordinarily, the maximum disparity in the numbe¡ of columns per processor would

be one, but because of this element quantization, the diffe¡ence could be as much as

three columns. This slows the algorithm down since processors with fewe¡ columns

will have to wait fo¡ processors with more columns.

For completeness (and robustness) of the algorithm it is necessary to conside¡

the details of mat¡ix accumulation and solution when the number of boundary

elements is comparable to the number of processors. Again, since the element is

the sma,llest '¡quantum" with which we can deal in generating the system matrix, a

processor must generate at least three columns of the matrix. The only exception
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is the case when there are more processors than elements, whe¡e some processors

sit idle during the whole of the algorithm execution.

While ii may seem lvasteful not to distribute the load of non-idle p¡ocessors

onto the idle ones, it is not. Fo¡ most problems of practical interest, it is improbable

that the¡e will be more large-grain processo¡s than the¡e are elements. Moreover, the

communication costs involved in redistributing the matrix columns would probably

outweigh the gains in execution time.

In addition, there is the possibility of node sharing. If node 3 of the last

eÌement of processor i is the same as node 1 oI the fl¡st element of processor (i + 1)

(e.g. both with an identical node index number fr), then both processors will sum

into a common column k. To arbitrate this occurrence. it is deemed that processor

(ã-r- 1) will pass back its partially accumulated column to the ith processor. Thus

the minimum number of columns that a processor handles (excluding zero) is two.

The maximum number of columns handled by a processor is limited only by

available memory and round-of error. The a.ctual number of columns it handles

is equal to the number of distinct global node numbers present in the boundary

elements processed in its inner integration loop (minus one if it shares a node with

the previous processor in the pipeline).

5.4 Results

Initially a single transputer board (IMS 8004) was used to develop the algorithm.

Because of the rnutual support provided by Occam and the transputer the multi-

processor version of the program could be ¡un on the single transpute¡. The self-

synchronizing nature of Occam programs guarantees that the program running in a

simu-lated parallel processing environment (multitasking) would perform the sarne

as it would on an a¡¡ay of transputers (multiprocessing).

Subsequently, an a¡¡ay of eleven transputers was obtained. As proof of the

validity of the Occam/transputer programming modei, the algorithm was adapted
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to run on the hardwa¡e array in a matter of hours - and ran correctly the flrst

time.

To evaluate the performance of the algorithm, MANITOBA was applied to

three problems of varying sizes (36 Ðlements - 81 Nodes, 77 Elements - 175 Nodes,

and 130 Elements - 299 Nodes). This range of problem sizes corresponds to small,

medium, and large respectively. Figures 5.6, 5.7, and 5.8 show the speedup eficien-

cies E¡,'o (deflned in equation (3.1)) attained by MANITOBA for the three problems

using two to eleven processots. To further quantily the algorithm, Ð¡.0 was calcu-

lated separately Ior the matrix generation and solution portions of the algorithm as

well as fo¡ the algorithm as a whole.

Q cønerote

56789
Number of Proc€ssors

$] sotve Ø ovøra¡¡

Figure 5.6: Eyo for 36 element - 81 node p¡oblem.
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Figure 5.7:.Ð¡; for 77 element - 175 node problem.

It can be seen that excellent results are obtained for the the matrix generation

portion of the algorithm. For the medium and large problems -Ð¡¡" is well over g0%,

and only fa.lls below 90% on the small problemin which communication costs become

significant in comparison to computation costs. In fact, eficiencies rise steadily with

increasing problem size, indicating that the matrix generation algorithm can be used

on larger arrays of processors with little penalty.

A periodic rise and fall in efficiency can also be obse¡ved. While it is most

predominant for the matrix generation algorithm, it also occu¡s for the matrix

solution algorithm. The peaks in efficiency correspond to cases where there are an

equal number of mat¡ix columns assigned to each processor. This generally occurs
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Figure 5.E: -E¡¡o for 130 element - 299 node problem.

when the¡e are an equal number of elements assigned to the inner integration loop

of each processor (see Section 5.3 for details). The word "generally" is used because

saying exactly how many columns are assigned to a given processo¡ is dificult.

The possibility of of node sharing between elements makes the numbe¡ of columns

dependent upon details of the node numbering scheme.

Although it may not appear so at frrst glance, the results for the matrix

solution portion of the algorithm are afso good to excellent. To see this, we can

calculate the theo¡etical efficiency when solving a 1{ x lú problem on Np processors.

In this case each plocessor will be assigned Ce: N lNe columns of the nat¡ix to

eliminate.
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To calculate eficiency, we need both 71 (the uniprocessor execution time)

and 7¡1 (the No processo¡ execution time). When elimirrating the ith column. row-

operations are performed on (,Àr' - i) rows, each of length ((¡ú - 1) - i). Thus each

elimination step requires ((¡{ + 1)- i) + (1{ - z) multiply-subtractions (note that

this number includes manipulation of the right-hand side o{ the linear system). To

fully eliminate below the diagonal, (JV - 1) steps will be needed, since (N - 1) rows

have coefficients below the diagonal. Summing a-ll of these operations gives

N-Ì
Tr - (T,- +-T"") )-{(/ú - r)- t) ' (N - i).- t zr|

¡,=1

(5.38)

Using the fact that

i-_¡/(1v+1)L"- t

and

(r ,r _ I'/(¡ir - 1)l2N - t)

=,'- 
6

allows us to simplify (5.38), giving

4(^) = (r,.- - r,.')N(iv - r)(+ - 3) (5.3e)

The task of estimating Tal is simplified with the recognition that the last

processor is the bottleneck in the system, and we need only to calculate its execution

time to obtain the execution time of the whole aJgorithm. Until the last processor

sta¡ts eliminating its or,vn columns, it will be performing row operations upon all

ol its (Co t 1) columns (including the right-hand side). Since there are (N - Cp)

columns to the left, the last processor will have to do row operations on each of

its columns (N - Cò times (for a length (¡f - t) in the ith elimination step).

Ilaving done that, it eliminates a sub-mat¡ix of dimension Co on its own, giving
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an execution time formula identical to (5.39), but with Co substituted for 1{ (i.e.

ft(C r)) Pulling all of these contributions together yields

((ce +r)- i)+ (.,ú -;l] - ntc,l (5.40)

which can be simplified to grve

I lN-c"
-?'") I I t

LL'='

r¡¡o : (r,- + r,")lep+ 1X¡\r - co)lN - Y, + rl(cò). (5.41)

The execution time predicted by (a.39) and (4.41) is for forward elimina-

tion on1y, and does not include the overhead of communicating the coeficients of

elimination. It is instructive to see how close the predicted per{ormance comes to

experimental performance, as it offers a meãsure of how effective the overlapping of

communication and computation is.

Figures 5.9 and 5.10 compare predicted elimination execution times and ef-

flciencies for the 175 node BEM problem. The fact that the curves follow each

other so closely indicates that communication time is not much of a factor in the

total execution time of the algorithm, and that cornmunicatìon and computation

are effectively overlapped in the Gaussian elimination algorithm. A1so, since the

theoretical expressions ignore the cost of back-substitution, the result also indi-

cates that we are justified in assuming that the cost of back-substitution is small

when compared to the cost of elimination. As such, these results indicate thai the

implementation of Gaussian elimination is close to optimai for this architecture.

Since the ¡esults indicate that communication is of small cost in the algorithm,

we can expect that we will still have ¡elatively good efficiencies with the faste¡ T-800

-106-



d

E
i:
c

a)
o

Lrl

1456-7A
Nùrnbêr of Prô.éss,rrs

V-V E t eri^.nrot I \ -J lh€orgttcol

Figure 5.9: Theoretical vs. measured elimination execution times. Gaussian elim-
ination ¡esults are compared for the 175 node BEM problem fo¡ 1 to 11 prôcesso¡s.

transputer. The efficiencies will definitely be lower, however, as the computational

costs will be reduced by approximately a factor of 10 with the T-800.

Finaliy, looking at the overall efficiency of the algorithm shown in Figures

5.6, 5.7, and ã.8, we can see that it ranges between 88% and 75% îor the medium

and large problems. Since the decline in efficiency with increasing numbers of

processo¡s is not very steep, the implementation could also be applied to larger

arrays. In general, for arrays of practical size, it can be seen that MANITOBA

provides a realistic route to obta,in significant boundary element performance in a

desktop v¡orkstation enviroument.
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Figure ã.10: Theoretical vs. measured elimination efficiencies. Gaussian elirnina-
tion resuìts are compared fo¡ the 175 node BEM problem for 2 to 11 processors.

It is easily seen, however, that the major limitation of the combined algorithm

is the matrix solver and not the matrix gene¡ator. It is the solver that will ultimately

Iimit the number of processors that can be used eficiently.

It is doubtful that this imposes a practical limit however. Since a processor

must have at least one element on its inner integration loop, it must be responsible

for at least three mat¡ix columns on average. Examination of theo¡etical efficiency

for a 300 node problem indicates that with 100 processors, the efficiency would

be still a¡ound 50%. Doubling the problem size to 600 nodes only inc¡eases the

eficiency.
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Thus, a 100 processor array can solve a 600 node problem at least as efficientr¡r

as a 300 node problem. However, without care, solving a matrix of that size using

Gaussian elimination can incur problems with ¡ound-ofi error. using double pre-

cision would allow larger problem sizes, but this would only increase the efficiency

of the elimination algorithm by increasing the cost of computation, and further

reducing the efects of communication. Thus, if one is happy with b0% efficiency,

the parallel algorithm will always be practical within the constraints of Gaussian

elimination itself.

To gauge the relative performance of MANITOBA, it was compared against

a uniprocessor implementation running on a HP 9000-320 wo¡kstation consisting

of a Motorola 68020 (16 MHz) assisted by a 68881 nume¡ic coprocessôr (12 MHz).

Figure 5.11 summarizes the results for the small, medium, and large problems.

With eleven p¡ocessors MANITOBA is about 6 times faste¡ than the 6g020

based machine. This result speaks well for the speed of the T-414 transputer micro-

processor) since it is an integer chip with no floating point support. However, using

the T-800 would decrease the computation component of the algorithm by about

a factor of 10 (Electronics 11987]). Conservatively speaking, then, MANITOBA

would perform at about 30 to 40 times the 68020 workstation,s speed if it used

eleven T-800 transputers. An impressive ¡esult indeed.

This chapter has addressed a two-dimensional BEM {o¡mulation. In three-

dimensions, elements are two-dimensiona"l patches instead of line-elements. and the

issues become more cornpiicated. With line elements we only had to worry about

common node numbe¡s at each end of the element. With patches, however, common

node numbers can occur at any node on the bounda¡y of the element. Thismakesit

harder to divide up the inner loop as nicely as we have done in the two-dimensionar

case) so that matrix generation may require more communication,
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Figure 5.11: Comparison of MANITOBA to 68020 based workstation. This figure
gives the ¡atio of the execution time for a 16 MHz 68020 based workstation (with
L2 MHz 68881) to the execution time of MAI{ITOBA with one to eleven transputers.

Again it should be possible to put suitable restrictions on the mesh node

numbering to minimize communication between processors. However, the process

wiìl be more complex than the two-dimensional case.
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CHAPTER VI

CONCLUSION

The goal of this dissertation was to show ways of achieving high performance for

numerica.l analysis and CAE aJgorithms on microcomputers and workstations. The

fact that we were working in a low cost environment made this task harder by

requiring that the acceleration mechanism be low-cost. Conside¡ation of this issue

lead us to adopt the transputer as the implementation pìatform.

Again, it should be emphasized that this is the transputer's main advantage

over other MIMD systems. All of the algorithms presented here can be adapted

equally well to any MIMD systern that utilizes simple point-to-point communication

and local memory. Shared memory multiprocessing systems can also be used, but

with fewer processors, since memory and bus contention would slo*' them dor¡'n.

Therefore, what is presented in this dissertation should be taken in a more global

context, and not applied speciflcally to transputer networks.

If one wishes to assess the algorithms presented he¡e on other MIMD proces-

sors, a table similar to Table 3.1 can be const¡ucted and used in conjunction with

the execution time formulas provided (except for BEM matrix generation). This

will weight operation counts appropriately, and allow valid comparisons between

difle¡ent architectures, which are sure lo have different strengths and weaknesses.

In addition to afiecting the choice of implementation platform, the low-cost

requirement had other far reaching implications. The major one being that the

algorithms had to be developed fo¡ a limited number of processors. Since there
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were fevr' processors, the simple linear array and shufle-exchange communication

networks we¡e sufficient for our purpose. Given access to an unlimited number of

processors) it would be necessary to consider more complex networks.

It can be seen that cost was a very influential factor in the algorithms presented

here. Experience and the results presented show that the choice of the transputer

wasagoodone. ThePPCG(z) algorithm in Chapter4is able to compete favourably

with computers costing considerably more on just eight T-800 transputers (based

upon theoretically derived data).

We began in Chapter 3 with a study of basic matrix and vecto¡ algorithms.

By carefully choosing a partitioning of vectors and matrices, it was shown that

dyadic and monadic vector operations could co-exist with matrix operations on a

linea¡ network augmented with a shufle-exchange network. These aigorithms serve

to demonst¡ate that programming MIMD computers is basically a probÌem in data

organization. One has to insure that the data is where it is needed, or can be

communicated there easily.

The monadic and dyadic vector operations present an âlmost ideal case, since

all the component operations are independent. It was thus possible to process them

on a linea¡ array with virtually 100% efficiency. This presupposes that the coeffi-

cients of the vecto¡s can be orde¡ed and distributed identicaJly on all processors.

The scalar product presented difficulty since va"lues from all parts of the a¡ray

had to be combined. This necessitated the introduction of the shuffie-exchange

(SE) network because of its superior capabilities in that area. This is reaJly onlv

necessary for larger numbe¡s of processors, however, since the advantage over the

linear array is small for smaller array sizes.

The same SE network also allowed an efficient dense matrix-vector mu.lti-

plication since matrix-vector multiplìcation is essentially a number of independent

scalar products. The communication requirements were too expensive when applied



to randomìy sparse matrices, however, and we were 1ed to consider a restricted class

of sparse matrices (banded) in o¡der to have an efficient algorithm.

The tools developed in Chapier 3 enabled a novel PPCG algorithm to be

developed, since PPCG is entirely composed of these algorithms. This opened the

door to parallel implementation of the finite-difference method (FDM), and we were

able to solve a simple problem with high efficiency. Since the finite-element method

(FEM) also produces sparse matrices of the type required by the PPCG algorithm,

we can expect that the solver.can also be applied to that CAE technique.

This is rea11y only the first step in the process, however, as it does not conside¡

the production of the matrices. In the simple finite-difference problem presented

in Chapter 4 it was very easy to generate the mat¡ix in parallel, but the general

application of the FDM or the FEM w'ill not adapt as easily to parallel partitioning.

In the case of the FEM, the integration over each element is independent, but

coupling due to common nodes between elements may result in large communica-

tion costs fo¡ matrix generation. In addition, matrices v'ith unacceptable bandwidth

may be produced, invalidating the use of the banded sparse matrix-vector muLti-

plication routine in the PPCG ¡outine. Thus, the major issue involved is keeping

the bandwidth of the mat¡ix narrow so that we may solve the matrix equation effi-

ciently. To do this, one may be forced to compromise the performance of the solver

in favour of the generator or vice versa.

MANiTOBA, on the othe¡ hand, successfully addresses both of these issues,

and represents a complete CAE aigorithm. By making rest¡ictions on the the input

data, the matrix generation algorithm was partitioned efficiently, and in such a

r ay that very little data movement was required to put the matrix into the fo¡mal

required by the Gaussian elimination ¡outine.

It is argued by some that the types of algorithms studied here are most suit-

able for vector supercomputers. Cost issues aside, the results presented here and

elsewhere indicate that MiMD parallelism is also suitable fo¡ such algorithms. Of
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course there are arguments for both sides, but one should not dismiss MIMD par-

allelism out of habit.

The problem with MIMD parallelism, when compared to vector computers,

is that a MIMD computer faces problems when aJgorithms require global access

to the data. A vector computer merely has to fetch a value from memory, while

a multiprocessor may have to communicate the value through several intervening

p¡ocessors.

However, ìhe un¡estricted access to data has problems associated with it.
Memory becomes a bottle-neck since al1 accesses must come through one place.

While schemes such as interleaving can be implemented, they quickly drive up the

cost of the computer. In fact, it can be argued that most of the resources (and

hence cost) of a vector computer are dedicated to memory systems whose purpose

is to feed the data-hungry pipelines.

MIMD processors do not suffe¡ this bottìe-neck (excluding shared-memory

types), since they all access independent memo¡v. This effectively multiplies the

speed of the memory by a factor equal to the numbe¡ of processors, giving very

high effective memory bandwidth. Also, since increasing the speed of a memory

svstem causes costs to grow exponentially, the slower memor¡' system of the MIMD

machine can be very inexpensive when compared to the vecto¡ computer. This in

turn, implies that each node in a MIMD machine can be disproportionately cheaper

than the vector counterpart.

This work has shown that programming of MIMD machines is not a trivial

task. Generally, the kind of paralielism they support requires that one have a very

extensive idea of what is happening in the algorithm at all levels of parallelism.

Where a vector computer attains speed by shear brute-force, a MIMD algorithm

must approach a problem with surgical-1ike precision.

Conside¡ MANITOBA for a moment. MÁ.NITOBA represents a tight {usion

of two very different algorithms. The requirernents on input data, although basically
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sirnple, couid not have been realized without a thorough "global" picture of data

dependency in the algorithm. In fact, the necessary conditions are born of the

innermost loop in the program combined with the method of geometric modelling.

Having a machine recognize such a tactic would be enormously difficuìt, if not

impossible.

Because MIMD programming is essentia,lly a "thought" process, it does not

seem likely that automated MIMD programming will be possible in the near future,

so perhaps the best that can be hoped for is a "programming assistant". Since this

work has shown that a linear array (or more generally, a ring of processors) and

the shufle-exchange network allow eficient MIMD algorithms for both rumerical

analysis and CA,E, it is proposed that the combination of the two networks can be

the basis of a versatile hardware accelerator. This allows much flexibility within a

flxed network topology. Given a frxed topology, it might be possible to automate

some aspects of algorithm development. Since the transputer with four links is

capable of implementing both netwo¡k topologies together, it would be an ideal

implementation vehicle.
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APPENDIX A

An Occam-tansputer Programming Example

This Appendix is included to bette¡ explain the methodology of programming in

Occam for a transputer array. Specificaily, it shows how the Transputer Develop-

ment System (TDS), marketed by INMOS Corporation, is used to develop parallel

p¡ograms. While environments using other ianguages are appearing, they are not

considered here.

The TDS is discussed fl¡st- Thisis necessaryto give afeel for the programming

envi¡onment in the hope that it will make what follows as clea¡ as possible. This

will also explain why the host- accelerator concept is used throughout this wo¡k.

Development using the TDS mandates it.

The algorithm chosen is the dist¡ibuted addition of No numbers on a No

processor shuffie-exchange (SE) network described as described in Section 3.2.2.

It has the virtue of being simpie to understand and presenl, while siill illustrating

some important Occam/transputer programming principles. The thoughi processes

required at each step of the aJgorithm's development are discussed.
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.A..1 The Transputer Development System

The TDS is a complete programming environment for the development of transputer

programs. Although other languages are available, it is primarily a vehicle for

Occam programming. The author's system is hosted on an IBM PC containing an

IMS 8004 transputer board (Ghee 11986]) as shown in Figure 4.1. The PC and

the 8004 are interfaced through the PC bus and a transputer link adapter which

effectively gives the PC a transputer link.

I ì.fs-Boo4

L INK
I NTERFACE TRANSPUTER

Figure À.1: PC-based transputer development system.

The TDS used here consists of two parts:

1. a file and screen server progtam running on an IBM PC platform; and

2. a compiler-editor system running on the transputer located on the 8004 board.

All file and screen I/O required by the server takes place over a standard transputer

link (see Chapter 2).

With the TDS, one is able to code and execute Occam programs entirely on

the 8004's transputer. Any paraJlel components of these programs can be executed

concurrently using the transputer's hardwa¡e time-slicing abilities. This is usually

the first step when developing a paraJlel algorithm, as it is much easier to debug

TDS

FILE SERVER
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programs running on the host processo¡. Moreover, the laws of Occam programming

guarantee that the behaviou¡ of the program;¡ill be identical when distributed over

an array of transputers.

When a program is debugged, additional facilities exist for specifying how to

distribute it over an array of transputers. This process, called conflguration, allows

the programmer to specify which process should be placed on a given transputer.

and which transputer links to associate with its input and output channels.

A conflgured program can then be loaded into a network of transputers that

is connected via a transputer link to one of the f¡ee links of the transputer on the

8004 (assuming, of course, that the network is inte¡connected in the appropriate

topology). This loading process is entireiy t¡ansoa¡ent to the user, as the TDS

includes a distributing netwo¡k loader. A program running on the host 8004 can

then be used to provide any data required by the computational array and to receive

the computational results.

A',2 Specification in Occam

As an example we will implement the SE network discussed in Chapter 3. It will be

used to sum a set of numbers, one in each processor of the network. The collapsed

view of the SE network is shown in Figure 4.1 (reproduced from Chapter 3).

We fl¡st describe how this netwo¡k and algorithm can be desc¡ibed for execu-

tion on a single transpute¡. This is usually the first target for new algorithms, as it

provides a more convenient testing environment. The next section will desc¡ibe horv

this description can be adapted to ¡un on a network of transputers with I/O links

connected in the SE iopology. The Occam/transputer programming modeÌ guaran-

tees that the single processo¡ and dist¡ibuted versions will behave identically.

First a practicai note: since present transputers possess four I/O links, any

process that we construct for placement on a single transputer must not require

more than this numbe¡. We could, if we choose to, implement a link multiplexing
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Figure 4.2: The SE interconnection network.

scheme. but this may carry with it performance penalties. as well as introducing

complexity to the algorithms. The SE network is fortunate in that it only requires

a maximum of th¡ee I/O links per computational process.

This is only a concern if one intends to execute the algorithm on a real netwo¡k

of transputers. If one is only interested in developing parallel algorithms, with no

intention o{ actual parailel execution on a speciflc hardware target, a process with

any channel requirement can be c¡eated.

Isolating a single processor from Figure A.2, we can view it as a black box

with two input channels and two output channels as shown in Figure 4.3. The

channels ShuffOut and Shuffln serve to implement the perfect shufle network,

while Exchgln and Exchg0ut mediate the exchange operation (see Section 3.2.2 lor

defrnitions of these operations).

In Occam (ignoring the contents of the black box fo¡ the moment), we could

express Figure 4.3 as follows:

SE.Proc(CHAN 0F ANY Shuff fn, Shuff0ut , Exchgln, Exchg0ut )
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Shuf f In

Shuf f Out

Exc hg Out

Exchg In

Figure 4.3: A single SE processor.

Note, the direction of communication on a channel is not explicitly defined

in Occam. Rather, it is implicitly defrned to be from the output process on one

end to the input process on the other. The channel itsell car¡ies no info¡mation

about its direction. By appending the channel's name with In and Out we defrne

the direction mnemonically.

Somehou'we must arrange that a number of copies of SE.Proc be used with

proper channel arguments to implement the SE topology. This, of course, must be

done with the constraint that the number of processors must be an integral power

of 2 (i.e. 1úp : 2N).

Since we may wish to look at the results of the computation, we will use the

host-accele¡ator a¡chitectu¡e that has been used throughout this work (see Figure

5.1 for example). This requires that we designate a single processor as the interface

between the host and the SE network. Conveniently, we choose processor 0 for

this purpose. This will require that the homogeneity of the network be destroyed

somewhat. Whe¡e we could have placed identical programs in each processor, it

is necessary to place a somewhat modified one in processo¡ 0 to handle external

communication.
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A side effect of this is that we must rese¡ve one channel of processor 0 for

communication with the host. Thus we must arrange that the process(program) we

place in that processor only require at most, 3 links. Looking at Figure A.2, we can

see that processor 0 only requires 3 iinks, so no extra effort is required to address

the problem ln addition, we should notice that the shuffe operations on processor

0 and 7 (ilo - 1) are redundant, and could be replaced with internal memorlr to

memory copy. Eliminating them would f¡ee up links at each end for other purposes

(multiple links to host o¡ between each end of array).

This introduces additional complexity, but does not require we burden the

processors wiih logic to a¡bitrate the special cases fo¡ communication at each end

of the array. We now require three procedures for the beginning, middle, and end

of the array:

SE.Proc.0 (CHAN 0F AI\IY Fronllo st , ToHo st , ExchgIn, Exchg0ut )
SE.Proc.I (CHAIù 0F ANY Shuff In, Shuff Out , Exchgln, ExchgOut )
SE.Proc.L (CHAN 0F ANY Exchgln, Ercchg0ut )

Each of them will be designed opiimally fo¡ their ¡ole in the communication and

computation process.

Recalling the defrnition ofthe perfect shuffie from Chapter 3, the i'th processor

P" "shufles-out" to another ptocessor whcse index is:

(,4.1)

The bi-directional exchange connections between the processors are deflned

P2¿,------+ P2;*, 0 < i < 2N-1 -L

D lPr,, o<i< Nl2-1,
''- l. Pz¡-t- ¡¡, Nl2 < i < .¡V - t.

by'
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A straightforward t¡anslation of the sE operation yierds the forowing occam pro-
cedure (where we nor?v use a more descriptive name for the procedure):

-- lfiddle processors (I,th processor)

PRoC SE.Add.I(CII.A,N 0F ANy Exchgln, Exchgout ,
CHAN 0F ANy ShuffIn, Shuff0ut ,
VAL INT Log2Np,
V.{,L INT p¡ocNurn)

fNT yNun,lilextNun:
SEQ

l,fyNurn : = p¡ocNum -- Su¡n all the procNr¡ms
SEqI=0FORLog2Np

SEQ

PAR __ pa¡aIlel shuffl-e
Shuffout ! l,tyNurn

Shuffln ? Ne¡ctNuìr
pAR __ parallel exchange

Exchg0ut ! NextNum
Exchgln ? Hylùum

MyNunr : = l,[yNurn + I\IextNun __ Accumulate

This represents the generic SE procedure, and is used. for all shufle pro_

cesses except the frrst and the last. Ii is important to notice the use of pAR in the

communication sections. This alrows input and output communication to proceed

concurrently. When running entirely on a single transpute¡ this is noi as irnpor_

tant, but on a multiprocessor application, true concurrency can be achieved on rink
communication because of the transputer,s 1ink architecture.

The parallel communication also eriminates the possibility of deadrock for the

shufle and exchange operations in a transparent fashion. Otherwise, the program_

mer would have to devise an orderly communication scheme to prevent deadlock.
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This is most easily seen in the case of the exchange operation. If the communica_

tion u'as done sequentially, and both processes tried to exchange_out. they would

be deadlocked since neithe¡ could ¡eceive the others message. This could be cir-

cumvented by ensuring that one of the pair was exchanging out while the other was

exchanging in, but this would add more complexity than is necessary, while ignoring

the performance benefits discussed above.

The last processor in the chain requires some speciar consideration. As was

aJready mentioned, the shufle operation feeds the information back on itself and

could be replaced by an internal data transfer. Doing this would have the side

benefit of releasing precious channel resources at the end of the array {or other

purposes should the need arise. Taking the shufle operation inside the process

results in the following Occam procedure (suffix ,,L" indicates last):

__ 
t""t processor - internal shuffle step.

PROC SE.Add.L(CHAN 0F ÂNT ExchgIn, Exchg0ut ,

VAL INT Log2IIp,

VAL IM P¡ocNun)
INT llyNun, NextNum:
SEQ

llyltlum : = ProcNum
SEQI=0FORLog2Np

SEQ

NextNum : = I'lyNum

PAR

Exchg0ìtt !NextNum
Exchgln ? t{yNum

llyNum := ÌfyNum + Nèxtlüu¡n -- Accumulation

The same issues apply to the flrst processor (0), so the shuffie operation is

also placed internally fo¡ it. There is howeve¡ an additional requirement placed

- LZò -

-- Sum è11 the ProcNums

-- Internal shuftle
-- Parallel exhange



upon it. Namely, that it communicate the result of the sum operation back to the

host. \&e the¡efore must add channels to it fo¡ this purpose, along with the code to

communicate the final resulr, which yields:

-- Fi¡st Processo¡ 
_ :::iï:ï:l *::::"":';:",

PRoC SE.Add.0(CHAN 0F ANy ToHo st , Fronjlost ,

CHÂN 0F ANT ExchgIn, Excht0ut ,

vAL INT Log2Np,

VAL IIüT procNum)
IIIIT l{yNurn, NextNum:

SEQ

MyNun : = ProcNum -- Surn all the ptocNuns
SEQI=0FORLog2Np

SEQ

NextltÌu¡n : = l{yltum -- Int ernal shuf f le
PAR -- parallel exchange

Exchgout ! NextNu¡r
Exchgln ? MyNurn

MyNum :- MyNum + N€xtNuIr -- Accu¡nulation
ToHost ! I'lyNum -- Give host the a¡s¡er

-- (thís processor only)

Given the above procedures, we must connect them up wiih channels in the

proper fashion (i.e. the SE topology). This is most easily done using an array o{

channels (deflned in the same way as an array of variabres) and the occam replicated

PAR construct. It also aliows us to target different size sE netwo¡ks in a convenient

fashion. we will need separate arrays for both the shufle connections and the

exchange connections, with each input and output treated separately. Also, the

arrays for the exchange operation need only be half the size of the shufle channel

alrays.
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vAL lrlp IS 8 :

VÂL Log2Np IS 3:

lupl cHAN oF ÀNY shufr:
lNp/21 cHÀN 0F AI\IY ExrtoR,ExRtoL:

-- number of ptocessols
-- 1og base 2 of Np

-- shuffLe channels
-- exchange cha¡nels

We use the convention that each processor i has channel Shuff [i] as its

shufle-out channel. Given this, we must determine the channeì to use for input.

Ðquation (.A.1) is not immediateìy helpful, as it indicates the connection between

processors and not channel resources. since we are making a one to one identifi-

cation oI output channel numbers and processor numbers, we can invert equation

(4.1) to give

P¿- ? evenr
i odd, (.4-3)

( P",".

i ",1-,*",,,,
which indicates the processor that P¡ inputs from. Given this information, we

immediately kno'¡' the channel index to use.

Exchange operations will be keyed f¡om their representation in Figure 4.2

(left to right and right to left). The only thing to luatch is that we rnap a given

channel between the proper set of processors.

The following Occam code fragment embodies the above considerations in the

connection of a SE array:
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-- Para1lel shuffle-adds

PAR

SE. Add. 0 (ToHost , Fronllost , -- processor O

ExRtoL [0] , ExLtoR [O] , Log2Np , O)

PÀR I = 1 FoR ((Np-2)/2) -- ltiddle procôssors
DrÞ

VAL INT PN IS ((Z*I) -1): -- proc. Iùu-m (odd)
sE.Add.I(ExLroRlI-ll , ExBroL [t- 1] ,

shuff [( (PN-1)+Np) /2], Shuff [PN],
Log2Np , PN)

VAL I¡lT PN IS (2*I): -- proc. Num (evan)
SE . Àdd. I (E)cRtoL II] , ExLtoR II] ,

shuff [PN/2] , shuff [PN] ,

Log2Np , PN)

SE.Add.L(ExLtoR[(Np-2)/2J processor (Numprocs-1)
ExRtot [(Np-2) lzJ ,Lo6zwp, (Np-1) )

Note the use of the replicated PAR. By changing the constants Np and Lo62Np

we can construct sE arrays of any size. These numbe¡s mustbe constants however,

as dynamic use of the PAR is not allowed.

All the preceding code fragments can then be wrapped up into a single Occam

procedure SE . Add . Unit.
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PR0C SE.Add.llnit(CHAN 0F ANY ToHost,FronHost)
... PRoC SE..A,dd.oo
... PRoC SE. Add. r o
... PRoC SE.Add.Lo
VAL Np 1S 8:
VAL LogzNp IS 3:
[Np] CHAN oF ANy shuff:
[Np/z] CHAN oF AIVT ExLtoF.,ExRtoL:
... Pa¡allel shdffle-adds

Note, that we have used the convention of the INMos rDS whereby sections

of hidden text are denoted by " . . , " on the left margin. conceptually this represents

a "crease" in the program listing, which hides the text. This is a useful'vay of seeing

the ove¡all structure of the program without the distraction of seeing all the detail.

P¡ocedure sE.Add.Ilnit is a model for the computational system as it would

exist on an actual array of transpute¡s. The properties of occam and the transputer

together ensure that this procedure will execute identically on one transputer, or

with its parallel components distributed over rnany. It and its component procedures

have been designed with multiprocessor implementation in mind. The process of

taking the single processor version and placing it on an array of transputers is

described in the next section.

-- nr¡mbg¡ of procassors
-- log base 2 of Np

-- shuffle channels
-- exchaage channeLs
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4.3 Mapping onto a Transputer Network (Configuration)

The following discussion makes a number of assumptions regarding the equipment

of the user. Fi¡st of all, it applies onl¡' to the Beta-2 release of the TDS. second,

it assumes that a set of transputers is available with access to aH ihe rinks of

each transpute¡. The author's ha¡dware does not meet this requirement (vadher

and walker [1986]), as each set o{ four processo¡s is hard-wired as a 2 x 2 square

array. This ¡est¡icts the assignment of channels and introduces an unnecessarv

complication to the conflguration process.

The basic idea behind configuration is to assign hardware (physicar) resources

to the virtual resoutces defined in the previous section. Fo¡ example, you might

tell the TDS to put process (,4" on transputer number 0. Further, you may also

request that the input or output side of a transputer link ',i" be associated with a
particular channel of process A. Figure 4.4 shows how the four links of a transputer

are numbered. Further, each link consists of two channels (input and output), whose

numbe¡s are also shown. These index numbers are used to ¡efer the channels when

allocating ¡esources.

7

Figure 4.4: Transputer link numbering.

|-
z
¿\)
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configuration replaces pAR by the const¡uct pLAcED pAR. Each processor that

is placed is identified by a number and type specification (which indicates what

version of transputer is used) via the pRoCESS0R statement. For example, the line

PROCESSOR 2 T4

specifres that a T-414 transputer is being identified as processor number 2 in the

network being defined.

The PR0cESS0R statement is followed by pLACE statements which assign named

channels to specific hardwa¡e channels of the transpute¡. The statement

PLACE ToHost AT 2:

associates channel 2 (part of link 2) with the channel name ToHost. This name can

than be used as an argument to an instance of one of the procedures that are being

placed in the network.

Here in complete detail is the configuration specification fo¡ the sE network

(assuming previous definitions for the SE,Add procedures). For simplicity, the same

links (channels) on each transputer a¡e used in an identical role. Link 1 is used

for shufling-out' Iink 2 for shuffiing-in, and Link 3 for both exchange channels.

since Exchrn and Exch0ut a¡e both between the same p¡ocessor we are able to

assign them to a single transputer link. The shufle channels, on the other hand,

are between different processors, so each require a separate link.
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VAL Np lS 8: -- nr¡rnbe¡ of plocessors
VAL Log2Np IS 3: -- log base 2 of Np

CHAIìI 0F ANY ToHost,FrornHost: -- host Í/o channels
[Npl CIIAN 0F ANY Shuff: -- shufflê channels
[Np/2] CHAN 0F ANy ExLtoR,ExBtoL: -- exchange channels
VAL ShufflnChan IS 1: -- Shuffle,s must b€ on different
VAL Shuff0utCha¡ lS 6: li¡ks (1 and 2).
VAL ExchlnChan IS 7: -- Exchange uses both channels
VAL Exch0utChan IS 3: of link 3.
PLACED PAR

PROCESSOR 0 T4 -- First proc.
PI.{,CE ToHost ÂT 0: -- Link O to host
PLACE F¡or¡Jlost AT 4:
PLACE ExRtoL [0] AT ExchlnChan:
PLÀCE ExLtoR[0] AT Exch0utChan:
SE. Add. 0 (ToHost , FromHost , ExRtoL [O] , ExLtoR [0] , Log2Np, O)

PLACED PAR I = 1 FoR ((np-z) /z)
PLACED PAR

vAL PN rs ((2*r) - 1):
PR0CESSOÈ PN T4 -- t)dd middle procs.

PLACE ExRtoL [I-1] ÂT Exch0utCha¡:
PLACE ExLtoR[I-1] ÀT ExchlnChan:
PLACE Shuff [( (PN-l)+Np) /2] AT ShufflnChan:
PLACE Shuff [PN] AT Shuffoutchan:
SE. Add.I (ExLtoR lI-ll ,ExRtoL II-1] ,

shuff [((pN-1)+Np)/2J,Shuff [pNl,Log2Np,pN)
VAL PN TS (2*T):
PROCESSOR PN T4 -- Even niddle procs.

PLACE ExRtoL []l AT ExchlnChan:
PLACE ExLtoR[I] AT ExchoutCha¡:
PLACE Shuff [PN/2] AT ShufflnCha¡:
PLACE Shuff [PN] AT Shuff0utGhan:
SE.Add. I(ExRtoLII],ExLroRIr],shuff [pN/2],shuff tpNl,

Log2Np, pN)

PBOCESSOR (Np - 1) T4 -- Last proc.
PLACE ExRtoL [ (ttp-2) /Z) AT Exchourchan:
PLACE ExLtoR [ (t'lp-Z) /ZJ ÂT Exch]nChan:
S3. Add. L (ExLtoR [ (Np-2 ) /2], ExRtoL l (Np-2) /2J,

Log2Np, (Np-r ) )
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While this certainly looks mo¡e complicated, the similarity to what we had

before is quite evident. LogicaJly, nothing has changed. We have merely specified a

physical mapping for the parallel cornponents of the algorithm.

.4'.4 Observations

one of the major points to be obse¡ved in the previous sections is that programming

parallel algorithms using occam is in no sense an automatic process. considerable

effort is required on the part of the programmer to partition an algorithm for the

Occam programming model (and the transputer architecture). Some additional

effort is then required to map the aigorithm onto a transputer array.

Placing the onus on the programmer is not wjthout its benefits, however. It
is unlikely that "automatic parallelization" will reach a level that will aliow it to
partition problems efrciently in the near futu¡e. The process requires too much

of a global picture of a given algorithm to expect it. The human mind is capable

of assembling such globa1 pictures, and hence should be expected to cÕme up with

novel approaches which would escape machine analysis of the problem.

Configuration, however, is one area that might be improved. While it is fairly

straightforward, there is no reason that it could not be automated, removing an

extra step from the programming p¡ocess. The idea of conflguration seems to have

¡esulted from the fact that a transputer netwo¡k is usually a fixed entity. once it
is connected in a conflguration, it will probably stay that way. Thus the designer

needed a strict way o{ specifying the topology that was to be used. In the case of

the author's hardr¡¡are (Vadher and walker 11986]), this capability was absolutely

necessary since the 8003 boa¡d had the four transputers hard-wired irrto a 2 x 2

array.

With the advent of the IMS C004 (Hill 11987]) the situation has torally

changed. The C004 is a 32 x 32 INMOS transputer link crossbar switch. That

is, it is capable of connecting any of the inputs and outputs of 32 separate links
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(each input and output can be connected only once - many-to-one interconnections

are not allowed). Moreover, the connection topoÌogy is entirely soft.¡¡are cont¡o11ed.

With the C004, the confrguration process could be automated. Given the

occam representation of the algorithm, the c004 connection pattern could be gen-

erated, saving the programmer the necessity of producing the configuration himself.

The manuai connection of links using patch-cords would also be avoided.

Also evident is that the TDS is able to produce programs for imbedded sys-

tems. That is, systems that do not require any exte¡nal support. For example, once

the SE array is loaded, it operates totaÌly independent of the host. In principle,

the code could be placed in read only memory (RoM) for each transpute¡ so that

the array could be autonomous. in digital eiect¡onics parlance, the TDS produces

RoMable code. Because of this, the transputer can be used in appiications where

there may be no host computer to boot it. Aga,in, the transputer is able to provide

a low-cost, yet powerful system.

All this aside, one thing speaks for itself. The occam/transputer combination

provides inexpensive, powerful, and accessible paraJlel processing.
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