THE APPLICATION OF TRANSPUTER ARRAYS
TO NUMERICAL ANALYSIS AND COMPUTER-AIDED ENGINEERING

ROBERT ARTHUR MAXWELL ALLEN

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

Winnipeg, Manitoba, Canada
March 1988

© Robert Arthur Maxwell Allen, 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author {copyright owner)
has reserved other
publication rights, anad
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
& la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication:
ni la thése ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-44199-2

THE APPLICATICN OF TRANSPUTER ARRAYS TO NUMERICAL

ANALYSIS AND COMPUTER~-ATDED ENGINEERING

BY

ROBERT ARTHUR MAXWELL ALLEN

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY
© 1988

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis, to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or scll copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's written permission.

To my parents

I hereby declare that | am the sole author of this thesis. I authorize the University
of Manitoba to lend this thesis to other institutions or individuals for the pur-
pose of scholarly research. I further authorize anyone to reproduce this thesis by
photocopying or by other means, in total or in part, for the purpose of scholarly

research,

Robert A M. Allen

—iil -

ABSTRACT

The objective of this dissertation is to explore ways of achieving high perfor-
mance for numerical analysis and Computer- Aided Engineering (CAE) algorithms
with minimal cost. The transputer microprocessor and its accompanying language
(Occam), which provide a readily accessible means to perform Multiple Instruc-
tion /Multiple Data parallel processing, were found to ideally satisfy these goals.

The main category of algorithms studied deals with matrix and vector op-
erations since these are so pervasive in the targeted fields. Monadic and dyadic
vector operations are shown to be efficient on linear transputer arrays, while scalar
product and dense matrix-vector multiplication algorithms are more suited to the
shuffie-exchange network. A novel sparse matrix-vector multiplication algorithm is
demonstrated for banded matrices.

Matrix solution methods studied include Gaussian elimination and the Polyno-
mial Preconditioned Conjugate Gradient (PPCG) techniques. The Gaussian elimi-
nation algorithm is shown to achieve nearly the maximum theoretical efﬁciencybn
a linear array of transputers by virtue of communication and computation overlap.
A novel implementation of the PPCG algorithm is described, and applied to the
finite-difference technique.

As an example of the implementation of ctomplex CAE algorithm, the MAN-
itoba Integrated Transputer/Occam Boundary element Accelerator (MANITOBA)
is described. MANITOBA consists of a novel algorithm that tightly couples a paral-
lelized version of the boundary element method (BEM) with a Gaussian elimination
matrix solver on a linear transputer array. Fundamental theory of the BEM is pre-
sented, along with architectural and algorithmic details of the implementation. The
performance of MANITOBA is compared to a similar serial algorithm running on

a workstation.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my advisor and friend Dr. A.
Wexler. The trust he has placed in me throughout this research was most encour-
aging. I am also deeply indebted to my friends and colleges. In particular, Mr. N.
Aitken, Mr. A. Ang, and Dr. J. Poltz are thanked for their advice on the theory and
implementation of the boundary element algorithm. I would like to aéknowiedge
the financial support of the Natural Sciences and Engineering Research Council of
Canada, the Province of Manitoba, and the University of Manitoba. In addition,
the financial and moral support of my wife and best friend Val was indispensable.
Finally, I would like to thank my parents, whose faith and inspiration have given

me the strength to persevere.

~vi-

TABLE OF CONTENTS

ABSTRACT ... v
ACKNOWLEDGEMENT vi
TABLEOF CONTENTS vii
LISTOFFIGURES ... ix
LISTOF TABLES e x
LIST OF PRINCIPAL SYMBOLS xi
CHAPTER I INTRODUCTION 1
CHAPTER II OCCAM AND THE TRANSPUTER 7
2.1 Occam ..o 8
2.1.1 Occam Processes 9

2.1.2 SEQ Constructor 10

213 PAR Constructor 11

2.1.4 ALT Constructor 13

2.1.5 Characteristics of Occam Channels .,........... 15

216 Occam Time 16

2.2 The Transputerooo 18
2.2.1 Architecture ... 18

2.2.2 Support for Occam 21

2.2.3 Constructing Large Transputer Networks 22

2.2.4 Hardware Considerations for Occam Programming 24
CHAPTER III MATRIX AND VECTOR OPERATIONS 27
3.1 Estimating Algorithm Execution Times 28

3:2 Vector Operations 30
3.2.1 Vector Combination 31

3.2.2 Scalar Product o 33

3.3 Matrix-Vector Multiplication 39
3.3.1 Dense Matrices 40

3.3.2 Sparse Matrices 43
CHAPTER IV MATRIX SOLUTION ALGORITHMS 50
4.1 Gaussian Elimination 51
4.1.1 The Algorithm 51

4.1.2 Partitioning of Forward Elimination Phase 53

4.1.3 Partitioning of the Back-substitution Phase 55

4.2 The Conjugate Gradient Algorithm 57

— vii ~

4.2.1 The Classical Conjugate Gradient Algorithm BT

4.2.2 The Preconditioned Conjugate Gradient Algorithm 64

4.2.3 Polynomial Preconditioning 67

4.2.4 Transputer Implementation 71
425Results ... 72
CHAPTER V PARALLELIZATION OF THE BEM ALGORITHM 80
5.1 MANITOBA: A Boundary Element Accelerator 81

5.2 The Boundary Element Method 84
521 BEM Theoryo 85

5.2.2 Surface and Charge Modelling a1

5.2.3 Matrix Generation 95

9.2.4 Parallel Matrix Generation 98

3.3 Combining the Generator and Solver ,............ 100
S4Results ... 101
CHAPTER VI CONCLUSION ... 111
APPENDIX A An Occam-Transputer Programming Example 116
A.1 The Transputer Development System 117
A.2 Specification in Occam 118

A.3 Mapping onto a Transputer Network (Configuration) 128

Ad Observations 131
REFERENCES 133

- Vil -

2.1
2.2
2.3
24
2.5
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
4.1
5.1
5.2
3.3
5.4
5.5
5.6
3.7
5.8
3.9
5.10
5.11
Al
A2
A3
A4

LIST OF FIGURES

Example of a parallel system. 11
A sequential process servicing three inputs. 13
The transputer architecture. 19
Transputer communication model. 20
Transputer communication link. 23
A linear array of processors. 31
Partitioning of vectors for parallel computation. 32
Time sequence of shuffle-exchange operations. 34
The shuffle-exchange interconnection network. 36
Comparison of the scalar-product (distributed addition) algorithms. ...38
Row-wise matrix and vector partitioning. 40
Column-wise matrix and vector partitioning. 41
SE efficiency for dense matrices (T-414). 44
SE efficiency for 1024 x 1024 sparse matrix. 45
Abanded matrix. ... 47
Estimated efficiency for banded matrix-vector multiplication. 49
Example finite-difference problem. 74
MANITOBA architecture. 82
Matrix partitioning on an array of processors. 83
Region, surface, and normal definitions for multi-media regions., 85
Mapping of a boundary element from global to local space. 92
Boundary element discretization of a parallel plate capacitor. 96
Ey, for 36 element - 81 node problem. 102
En, for 77 element - 175 node problem. 103
Ey, for 130 element - 299 node problem. 104
Theoretical vs. measured elimination execution times. 107
Theoretical vs. measured elimination efficiencies. 108
Comparison of MANITOBA to 68020 based workstation. 110
PC-based transputer development system. 117
The SE interconnection network. 119
A single SE processor. 120
Transputer link numbering. 128

—ix -

3.1
3.2
4.1
4.2
4.3
5.1

LIST OF TABLES

Timings for primitive operations on T-414 and T-800. 29
Shuffie-exchange vector sum. 37
Estimated cost for an iteration of PPCG(z) (N >2). 73
Titer estimates and results for PPCG(z) (N, =8). 77
Estimated T}, for PPCG(2) for different Noo oo 78
Example of node numbering required for paralle] partitioning.,.. 99

Symbol

7.~

S
S TN

[) ey

LIST OF PRINCIPAL SYMBOLS

Meaning
Chapter III

Time for scalar addition.

Time for scalar subtraction.
Time for scalar multiplication.
Time for scalar divisjon.

Time for vector addition.
Time for vector subtraction.
Tirne for vector multiplication.
Time for vector division.

Time to scale vector.

Time to assign vector.

Time to transmit scalar.

Time to transmit vector.
Uniprocessor execution time.
Multiprocessor execution time.
Efficiency of multiprocessor algorithm.
Number of processors.
Processor number.

Problem size.

Matrix row bandwidth.

Matrix column bandwidth.

Nearest neighbour communication index.

Chapter IV

Residual vector.

System matrices.

Linear system unknown vectors.
Linear system source vector.
Exact solution of linear system.
Direction vector.

Symbol Meaning

F(z) Quadratic energy functional,
g(z) Gradient of F{z).
E(z) Error functional.
a Optimum line search constant for z and r.
3 Optimum line search constant for d.
I Identity matrix.
M Part of system matrix splitting.
M-! Splitting of A chosen to be (DIAGONAL(A))-1.
N Part of system matrix splitting.
K Preconditioning matrix.
K! Approximate inverse of system matrix.
L Lower triangular factor of K.
p Spectral radius.
z PPCG accuracy parameter.
Chapter V
B, Exterior region boundary.
B; Interface boundary.
) Electric potential.
o' Normal derivative of 4.
€ Free-space permittivity.
€ Permittivity.
a Field point.
Ty Reiference point.
o Source point.
n Normal vector pointing outward from a region.

G(77") Green function.
G'(77") Normal derivative of Green function.

() Charge density distribution.

F Energy functional.

o Lagrange interpolation function.
£ Pararmetric coordinate.

J Jacobian.

—xii -

CHAPTER I

INTRODUCTION

The goal of this dissertation is to implement high-performance accelerators for nu-
merical analysis and Computer-Aided Engineering (CAE) algorithms in a micro-
computer or workstation environment, Using such platforms for CAF is desirable
because of their low cost and easy accessibility when compared to operating within
a mainframe environment.

Moreover, software provided in a mainframe environment is constrained by
the information bandwidth between the mainframe and the user’s terminal, and as
a result tends not to be user-friendly, The workstation environment, on the other
hand, allows high-bandwidth communication to a user’s screer.

The problem we address here is that, more often than not, the workstation
lacks the power needed to execute CAE algorithms. One strategy to overcome
this shortcoming is to use the workstation as a graphical design device with the
heavy computation off-loaded onto a mainframe through a network. This best of
both worlds approach achieves the desired results but requires the presence of a
tnainframe computer locally with subsequent high costs.

Another strategy, which we adopt here, is to seek ways of speeding up the
workstation itself so that it can solve difficult problems in a reasonable amount of
time. Again, because we are operating in a low-cost environment, it is imperative

that the methods used be sufficiently inexpensive to Justify their use. Naturally,

these goals are somewhat conflicting, and any practical systern produced must be a
compromise between them.

The workstation can be accelerated in a number of ways. For example, time
consuming operations such as multiplication and division could be augmented with
special-purpose hardware. Indeed, most present day microprocessors have compan-
lon co-processors to perform such tasks. The problem with this approach is that
one can only go so far before the cost becomes prohibitive because of the speedup
in the support circuitry necessary to keep the fast computation unit busy.

In addition, fundamental physical limits are being reached in the speed at
which conventional computer hardware can operate, so even the most optimistic
advances in present-day circuit technology can only hope to provide marginal im-
provements. Even if some unforeseen new technology evolves, it is unlikely that it
will be inexpensive enough to find use in desktop computers in a timely fashion.

A better way to achieve speedup is to exploit parallelism in the problems
at hand. In the present context, the algorithms used in numerical analysis and
CAE need to be dissected into pieces that can be executed in parallel on different
processors,

The level at which an algorithm is partitioned is referred to as its granularity
(Geist et al. {1987,238]). An algorithm is said to be coarse-grained if each processor
is given a significant portion of the problem data to operate on in each computation
step. For example, many of the algorithms presented in this dissertation are coarse-
grained since each processor is given many columns of a matrix to operate on.

Conversely, we say an algorithm is fine-grained if each processor has only
a small amount of the computation to perform in each step. An example is the
distributed sum algorithm in Chapter 3, where each processor has only to perform

a single multiplication and addition in each step of the algorithm.

While the possible partitionings of an algorithm depend intimately upon the
algorithm itself, they also depends upon the architecture of the target parallel sys-
tem. The two main factors are the power (size) of the processors in the system, and
the provisions made for communication between them.

Parallel architectures can be broadly categorized into two main groups (Flynn
[1972]); Multiple Instruction stream/Multiple Data stream (MIMDY; and Single In-
struction stream/Multiple Data stream (SIMD). In practice, these groupings sup-
port well defined types of paralielism {coarse and fine-grain respectively).

A MIMD machine (multiprocessor} consists of many autonomous computers,
each executing a different program (multiple instruction stream) on data in its lo-
cal memory, Typically, each computer communicates to other processors through
either shared memory (bus based multiprocessor) or through point-to-point com-
munication networks. Since every node is a computer in its own right, it is by
necessity rather large. Therefore, it is not usual to see large numbers of proces-
sors in a system, and small networks of relatively powerful computational nodes
are favoured. Because the processors are very powerful, systems of this type most
naturally address coarse-grain parallelism.

A SIMD machine consists of many processors, each obeying the commands
of a common master controller which interprets a single instruction stream. The
processors operate in lockstep (performing identical instructions at identical times)
upon data stored in local memory. This architecture tends to favour large numbers
of very simple processors. Examples include the Connection Machine with 65,536
single-bit processors (Hillis [1985)), and the ICL DAP with 4096 single-bit processors
(Hockney and Jesshope [1981,178-192]). Since there are so many processors, bus
based communication through shared memory is impractical, and communication
networks are used to share information.

Since it is a rare algorithm that can be partitioned into pieces that are not

inter-dependent in some way, efficient and versatile interprocessor communication

-3 -

1s a key requirement of a parallel system. Making the necessary data available to g
PToCessor at the proper time encompasses much of a partitioning strategy.

Obviously, if every processor was directly connected to every other proces-
sor, this would not be a problem, and all communication could take place in one
timestep. However, engineering and cost constraints prevent this for networks of
any appreciable size, so we are forced to limit the number of processors to which a
given processor can be connected.

Since two processors that need to communicate may not be directly connected,
strategies that can facilitate communication through intervening processors must be
developed. As such, we are required to continually weigh the gains in paralielism
against the communication cost introduced by a particular partitioning on a given
communication network,

Many different network topologies have been devised in an attempt to address
these issues (Haynes et al. [1982], Gottlieb and Schwartz [1982]). Most represent an
attempt to minimize communication costs while maximizing connectivity, and are
usually successful only on certain classes of problems.

The hypercube is perhaps the most versatile of the “exotic” interconnection
networks. It has the appealing property that, in a 2% processor hypercube, a pro-
Ccessor is never any further than & communication steps from any other processor.
This property comes at a the price of hardware complexity, however, since it re-
quires that each processor have K communication links. This in turn translates
into high system cost due to the large amount of wire routing required. The other
networks step back from this ideal case, and sacrifice communication distance S0
that hardware requirements will be less stringent.

It can be readily seen that parallel processing is not a panacea. The issues
are further complicated by the fact that most of the development of numerical and
non-numerical algorithms has been geared toward implementation on scalar (non-

parallel) processors. The conversion of scalar algorithms to paralle] algorithms is

— 4 -

not a straightforward process. In fact there is no way of predicting whether or not
an efficient parallel implementation of a given algorithm even exists. The crux of
the problem is to find the right algorithms for a given architecture.

Working in the parallel realm requires a total rethinking of one’s approach
to programming. It is no longer the case that every variable and procedure in a
program is available for use by all other parts. One has to adapt the algorithm so
that its parallel components have available (or can obtain through communication)
those resources and data that they need to carry out their duties.

After consideration of the above issues, it was apparent that the transputer mi-
croprocessor (Barron et al. (1983], INMOS (19852,1985b], Whitby-Strevens [1985],
Homewood et al. [1987]) was very well suited as the basis of a hardware accelera-
tor. The transputer and its companion language Occam (Taylor and Wilson [1982],
INMOS [1983)) directly address many of the above-mentioned issues.

The transputer microprocessor is unigue in providing direct support for par-
allel processing. As we will see in Chapter 2, it has been designed from the ground
up for this purpose. In many respects it allows one to break the rule that MIMD
processors be few in number by allowing the construction of a powerful computa-
tional node in minimal circuit board area. This in turn translates into cost effective
processing power.

With four high-speed serial I /O channels, a transputer directly addresses com-
munication issues. This allotment of channels allows construction of point-to-point
communication networks such as a linear array, square array, shuffle-exchange, 16-
node hypercube, and cube connected cycle (Hill [1986]). Thus one can make use of
existing algorithms for these network topologies.

Conversely, it should be emphasized that while this work concentrates on
transputer networks, the algorithms developed are not limjted to them. Any MIMD

architecture with point-to-point communication can provide a suitable platform.

The transputer’s only advantage is that it provides these required features at low
cost.

We begin in Chapter 2 by describing the transputer and Occam in some detail
so that the intimate relationship between the two can be better appreciated. The
special features that support paraliel processing are described.

In Chapter 3, matrix and vector algorithms are discussed. Such algorithms
form the core of numerical analysis and CAE and, as such, it is imperative that
efficient ways of implementing theﬁ exist. Basic vector operations such as vector
addition and subtraction are implemented on a linear array. A scalar product
algorithm running on a shuffle-exchange network is also implemented.

Two matrix-vector multiplication algorithms are also presented. The first, for
dense matrices, makes use of the shuffle-exchange network in a manner quite sirnilar
to the scalar-product algorithm to achieve high efficiencies. A novel algorithm for
banded sparse matrices, which requires a linear array of processors, is also presented.

Chapter 4 discusses two matrix solution techniques. The first, a novel jm-
plementation of Gaussian elimination, is applied to dense matrix systems. This
solver was designed in conjunction with the boundary element algorithm discussed
in Chapter 5. The second algorithm is a novel implementation of the preconditioned
conjugate gradient method for the solution of banded sparse matrices.

Finally, Chapter 5 presents a novel parallel system that combines the Gaussian
elimination solver from Chapter 4 with a Boundary Element Method (BEM) matrix
generator. The objective was to integrate the two algorithms so that they would
execute cooperatively on a problem with a minimum of data movement, so that

high algorithmic efficiencies could be achieved.

CHAPTER II

OCCAM AND THE TRANSPUTER

Occam’s Razor: “Entities should not be multiplied unnecessarily”

— William of Occam [Ockham], Quodlibeta Septum, c. 1320.

This chapter describes the Occam programming language and the transputer micro-
processor which were used as parallel processing tools for the work described i this
dissertation. There were a number of reasons for this choice. Firstly, the transputer
is designed to allow easy assembly of multiprocessor systems. Secondly, Occam
allows the specification of parallel systems in a simple and concise manner. Also
important is the fact that they allow inexpensive and powerful parallel Processing
systems {o be constructed.

Together, Occam and and the transputer provide a means of implement-
ing multiple instruction stream/multiple data stream (MIMD) parallel algorithms
(Flynn [1972]). As such, many algorithms designed for multiprocessor systems will
apply to them. However, some architectural features, such as the lack of shared
memory, will invalidate others.

The version of Occam described here is more properly known as Occam 2. It
supersedes the original version of the language which has becorne known as proto-
Occam. Proto-Occam was intended only as a demonstration of the Occam paralle]

processing paradigm and lacked many features consistent with a useful program-

ming language (a major omission being floating-point number support). Occam 2

7=

improves on proto-Occam in many areas and is at least as useful for numerical pro-
gramming as FORTRAN, but with the advantages that a strongly typed structured
language provides.

While this chapter presents some examples of Occam programining, it is not
meant as a tutorial. The purpose is to convey the main features and philosophies
of the language. Should a tutorial be desired, see Pountain [1987], or Appendix A
— which provides an in-depth programming example of a tutorial nature. It should
be noted that since Occam is an evolving language, the examples presented here
may not be syntactically correct according to future language specifications.

Because technology is fast moving, transputer hardware specifics will only be
presented where absolutely necessary. Instead, the generic attributes of 2 typical
transputer are described, with major emphasis on those features that directly sup-
port the Occam programming paradigm. Above al] else, it is these features that

make a transputer what it is.

2.1 Occam

Occam has its roots in the theory of Communicating Sequential Processes (CSP)
pioneered by C.A.R. Hoare [1978,1985]. It borrows many of its concepts from that
work, but differs from the formal CSP model where required for practical imple-
mentation. For example, CSP theory allows recursively defined parallel procedures.
Since a hardware implementation of such a construct would be difficult or impossible
to realize, such capability was excluded from the language.

Practicality is perhaps the overriding tenet of Occam. True to Occam's razor,
1t is kept as simple as possible to allow direct hardware implementation of its fun-
damental features. Thus, on the proper hardware (i.e. the transputer), Occam can
execute with an efficiency approaching that of assembly language while still pro-
viding the benefits of a high level language. Moreover, the Occam model is simple

enough so that such hardware can be inexpensive.

In keeping with its CSP heritage, Occam provides a tool for describing parallel
systems which consist of sequentially coded sections (called processes) executing in
parailel. These processes are compietely separate from one another, except for the
existence of communication channels between them. Shared memory is not part
of the programming model, avoiding the memory bottlenecks and expense of that
multiprocessing technique.

Occam provides a little bit old and a little bit new. A programmer is able to
carry over sequential programming skills when writing the sequential parts of Occam
programs, while having available parallel execution of the component sequential

processes.

2.1.1 Occam Processes

Occam programs are constructed from three primitive processes.

1. The assignment process
a := <expression>
The effect is the same as in other programming languages. The variable a is
given the value of <expression>,
2. The input process
Channellame ? a

The value received on the communication channel ChannellName is assigned to
variable a. The value input can be of any type.
3. The output process
ChannelName ! <expression>
The value of <expression> (which can be of any type) is output on the
communication channel ChannelName. The output process can be treated as
a way of assigning a value to a variable in another process. Since shared
memory is not part of the Occam programming model, the only way of doing

this is through a channel.

An Occam program is created by combining these primitive processes in a hierar-
chical fashion. The following sections describe the special features of the language
which facilitate this process for the construction of both sequential and parallel

prograrns.

2.1.2 SEQ Constructor

The simplest way to combine the primitive processes is with the SEQ constructor.
It identifies a list of processes (primitive or complex) that are to be executed in
a sequential fashion. Thus SEQ allows the specification of conventional sequential
programs. As an example, consider the following Occam code fragment (text that

follows a double-dash is a comment):

CHAN OF ANY FromKeyboard: -- CHAN OF ANY can transmit
CHAN OF ANY ToScreen: -~ any variable type.
BYTE Temp:
SEQ
FromKeyboard 7 Temp ~- Get keyboard data
ToScreen ! Temp -- Send it to the screen

The example displays a number of Occam syntactical and semantic conven-
tions. The indentation of the two lines after the SEJ indicates that they are com-
bined into a single non-primitive (complex) process by the SEQ. Thus, the effect of
the SEQ (or any other constructor) is to combine the processes at the same inden-
tation ievel under it into what is treated as a single process. This can be carried
on indefinitely with the component processes themselves being defined in terms of
SEQ.

The example also shows how identifiers used by a program are declared. Notice
that channels are treated just like any other variable in the program, and must

be explicitly declared before they are used. The three identifiers (at the same

-10 -

indentation level as the SEQ) are tied to the process created by the SEG and are only
valid within the scope of that process. In a hierarchy of processes, variables declared
in the inner processes are not known outside of those levels (i.e. syntactically at
smaller indentation levels).

In terms of Hoare's CSP theory, the SEQ construcior provides the first nec-
essary condition for a CSP computation environment, namely, a way of defining
conventional sequential processes (programs). The final step is to combine these
processes into parallel programs composed of sequential processes executing in par-

allel with each other.

2.1.3 PAR Constructor

Consider the parallel processing system shown in Figure 2.1. We have two processes
that are to execute in parallel with communication over a channel, The processes
are totally separate except for communication over the channel. Most importantly,
they run asynchronously from one another (except when they communicate), and
do not share memory. In Occam, such systems may be specified using the PAR

constructor.

FIRST MEDIUM LAST

Figure 2.1: Example of a parallel system. This represents the basics of the Occam
parallel processing paradigm. '

-11 —-

Introducing some more Occam syntax, consider the following named proce-

dures:

PROC First(CHAN OF ANY Tolast)

INT 4: -- Integer variable

SEQ -- Comstruct sequential process
4 = 10 -~ Assignment primitive
Tolast ! A -- Output on channel Tolast

: -= End of PROC
PROC Last(CHAN OF ANY FromFirst)

INT B:

SEQ
FromFirst 7 B =~ Input on channel FromFirst
B :=B * B

As in conventional languages, the two code sequences are given names by which they
can be referred. Additionally the procedures (processes) can be given arguments
which in this case happen to be channels. Using PAR the two processes may be

cornbined into a single concurrent /parallel program.

CHAN OF ANY Medium: -- Declare inter-process Comm. CHAN
=~ Ends of Medium are assigned to an
=~ input and an output Process.

PAR ~- Denote parallel construct
First(Medium) —= Component processes of PAR
Last (Medium) = execute in parallel.

~-12 -

2.1.4 ALT Constructor

It is often necessary to construct a process that services a number of channels.
Consider for instance, the situation depicted in Figure 2.2, in which a process has
to take messages from channels A, B, and C and multiplex them down channel D. A
paralle]l construct cannot be used, since it is not possible to share channe] D among

three processes servicing the input channels separately.

Figure 2.2: A sequential process servicing three inputs.

A possible solution would be to input from each of the channels in sequence,

which will work if messages come often and regularly.

WHILE TRUE == Loop forever
SEQ
Chand ? Msg
ChanD ! Msg
ChanB ? Msg
ChanD ! Msg
ChanC 7 Msg
ChanD ! Msg

-13 -

The problem with this approach is that once an input statement is entered, the
program will wait until it receives an input on that channel. If an input never
comes (or comes at random times), the program will be deadlocked. Even though
there may be messages ready on the other channels, they will never be serviced.
To handle such situations, the ALT constructor is provided. It provides a way
of testing a number of input channels to see if they have messages pending. The
first input channel to have a message on it is serviced. In the case of ties, the
channels are serviced in an unspecified order. The following Occam code fragment

shows how an ALT can be used to solve the present problem.

WHILE TRUE -~ Loop forever
ALT

ChanA ? Msg == Inputs if message present.
ChanD ! Msg -- Process executed if message present.

ChanB 7 Msg
ChanD ! Msg

ChanC ? Msg
ChanD ! Msg

Once the ALT inputs from a channel, it terminates. It therefore must be set upin a
loop if it is to repeatedly service all the channels. Note, that the clauses under the
ALT are combined into a single process, and that each clause itself forms a process

underneath it,

- 14 -

2.1.5 Characteristics of Occam Channels

We have seen that communication between parallel Occam processes takes place over
channels. First of all, it should be emphasized that channel communication only
makes sense between two processes that are executing in parallel. It is not possible
to use channel communication between two processes that are components of the
same sequential process. In any case, such communication wouldn’t be necessary
since processes that are compornents of a sequential process can pass information
through variables in the normal way.

An Occam channel is a one way communication link between an input and
an output process. Additionally, because (as we will see) channels are identified
with fixed hardware resources, they cannot be shared among parallel components
of a program. Once a channel is identified as a connection between two parallel
components of a program, it can only be used between those two components and
in only one direction until those components terminate. In terms of Qccam syntax,
this requirement is enforced via variable/channel scoping conventions.

Communication on channels can only take place when both the input and
output processes on either end of the channel are ready to communicate. If either
of them is not ready to enter into communication, the first must wait until the other
1s ready. Thus, channel communication serves to synchronize the two processes and
the programmer does not need to explicitly manage this.

The characteristics of Occam channels, along with the various features of the
Occam programming model were not chosen arbitrarily. A major consequence of
these design decisions is that a simulation of an Occam program running on a
single processor multitasking system will run exactly the same as it would with
its component processes split up among a number of processors. This gives the
program designer great freedom when partitioning a parallel program to run on a
network of processors. The program is gnaranteed to run identically no matter how

the partitioning is done. The only restriction is that the resources of the target

-15 ~

hardware must be accommodated. One cannot place a process that requires five

1/O channels onto a processor that has only four available.

2.1.6 Occam Time

In most languages the concept of time is a superfluous one. Occam makes it an
integral part of the language by providing each process with access to a special
channel of type TIMER. Channels of this type return the value of a counter that js
incremented at regular intervals (ticks). For example, a computation can be timed

with the following code fragment:

VAL TicksPerSecond IS 1024: -- Hardware dependent value

TIMER Time: -- TIMER channel
INT StartTime,EndTime yTotalTime:

SEQ
Time 7 StartTime
Computation Process

Time 7 EndTime
TotalTime := (EndTime - StartTime)/TicksPerSecond

Because Occam processes are independent, the QOccam sense of time is nec-
essarily local to each process. While the above code will yield identical times on
two identical processors within a system, there is no guarantee that StartTime and
EndTime will be given the same values on the two processors. Only the difference
between them will be the same on each processor,

The timer can also be used to introduce timed delays. For example, the

process

VAL DelayTicks IS 40:

TIMER Time;
INT CurrentTime:
SEQ
Time 7?7 CurrentTime
Time ? AFTER (CurrentTime + DelayTicks)

- 16 -

will delay until the timer counter is greater than the sum of CurrentTime and
DelayTicks (for simplicity, the case where this sum exceeds the maximum integer
representation is ignored).

The latter usage of the Occam timer is important when channel communica-
tion is unpredictable (the result of random external events, for example). In these
cases it allows, through the ALT statement, a way to test for input from a channel or
a number of channels and escape to do other work if no input is present. Consider

the following code fragment:

VAL TimeOutTicks IS 40:
TIMER Time:

INT CurrentTime,TimeOutTime:
INT RandomInput

CHAN OF ANY Random:

SEQ]
Time ? CurrentTime
TimeOutTime := CurrentTime + TimeOutTicks
ALT

Random ? RandomInput
service random input

Time ? AFTER TimeOutTime
service time out
other processing duties

If no message on channel Random is received before 40 timer ticks have elapsed, the
last clause of the ALT is entered, allowing other processing duties to be performed.
Without the last clause, the ALT would wait until a message was received on Random.
This mechanism is important as it allows one to have asynchronous interprocess

comrmunication,

-17 -

2.2 The Transputer

We have seen that Occam provides a simple and concise (if not powerful) way to
express parallel systems. By itself it might be a useful tool. What makes Occam
special is the existence of the transputer microprocessor. The transputer is designed
to implement in hardware what the language Occam describes in software. Together

they provide a potent tool for the implementation of parallel algorithms.

2.2.1 Architecture

This section describes the architecture of the transputer microprocessor. The fea-
tures described are that of.a, generic transputer and represent the minimum hard-
- ware requirements that a microprocessor must have to be called a transputer.

As can be seen in Figure 2.3, the main features of a transputer are:

1. CPU: Currently a reduced instruction set (RISC) design. The compactness
of the CPU allows other essential features to be integrated on the same die.

2. RAM: On-board static RAM that can be accessed at least three times faster
than external memory. Current transputers possess 2K or 4K bytes. This is
general system RAM, and is not used as cache.

3. Communication Links: Current transputers possess four INMOS bidirectional
communication links which implement a 10 or 20 MHz Occam channel in each
direction { 1 or 2 megabytes/second).

4. Programmable memory interface: Interfaces the transputer to external mem-
ory with the minimum of external interface logic by providing all necessary
refresh, timing, and control signals.

5. Special purpose function units: architectural extensions that allow transputers
to be tailored to specific applications.

Figure 2.4 depicts the simplest possible view of a transputer — a black-box
with four (or more) communication links (an input channel and an output channel

are coupled together in pairs to form a link). As such, the transputer can realize any

- 18 -

Reset

Analyse

Error
BootFromROM
Cilocklin

vCC

GND

System N Processor
services —

[t

A—N""Tink Linkin
fnterface L LinkQut

On-chip N

RAM N— U ®
[]
L J

J‘Jx

s 5

Application specific Interface

Figure 2.3: The transputer architecture. Copyright INMOS Corporation. Repro-
duced with permission.

network which requires four or fewer communication channels per computational
node. In this work, they are used in linear array and shuffle-exchange configurations.
Other possible networks include the square mesh and the toroidal mesh, as well as
various multistage networks and the cube connected cycle (Hill {1986]). This kind
of flexibility is important as it allows one to tailor the network topology to the data

flow properties of the target algorithm.

- 19 -

LINK 1
—-Bv‘o t_‘—*-é-
z z
-E—-—h] m(—-——
LINK 3

Figure 2.4: Transputer communication model.

The transputer definition allows for special-purpose hardware over and above
what is pictured. For example, in one version of the transputer (the T-800), an
on-board floating point unit is added (Homewood et al. [1987]), while in another
a disk-controller is featured {(Moore {1986]). Each special purpose transputer then
plays a particular role in a given parallel system, with the links serving to tie the
entire system together.

With these features, the transputer is really a microcomputer on a chip, pos-
sessing built in CPU, communication links, and RAM. In fact, it is capable of
functioning with only external power and clock supplied.

The transputer’s architecture is designed to support parallel processing. As
such, the transputer lacks features desirable ig single processor systems that may
compromise its applicability to parallel processing (e.g. memory management). The
success of this approach can be measured in a number of ways. We will see that
the transputer has been designed to minimize cost, communication complexity, and

board area - making it ideally suited for constructing large networks.

~ 920 —

2.2.2 Support for Oceam

The very reason for the transputer’s existence is to provide hardware support for the
Occam parallel processing model. Perhaps the most visible and important of these
features are the on-chip communication channels. They provide the means by which
Occam processes can communicate, and have characteristics entirely compatible
with the definition of Occam channels in Section 2.1.5. Tt is important to realize
that these are point to point communication channels (as is dictated by the Occam
channel model), and there can only be one transputer at either end of a channel. [t
is not possible to connect one channel to many transputers in a broadcasting type
of topology.

The point to point communication architecture that transputers implement
has a number of advantages over conventional bus-based systems. Firstly, there is no
contention for communication resources as might be found on a bus shared among
many processors. Also, as the system grows, total comrunication bandwidth grows
with it. This assumes that the communication requirements of the algorithms to
be implemented are predominantly local. |

To provide for seamless distribution of Occam processes over a network of
processars, the transputer CPU possesses a multitasking kernel in hardware. It
maintains two queues of Occam processes (low and high priority) which it timeslices
automatically. If a process is waiting to communicate, it is descheduled until its
companion process is ready to communicate with it. In this way, CPU cycles are
not wasted in busy-wait (polling) loops and communication is carried out with the
maximum possible efficiency.

In accordance with the Qccam model, these parallel Occam processes com-
municate via channels. Processes on the same chip communicate via internal vir-
tual channels, while processes on different chips use the external hardware channels.
Since channel communication synchronizes communicating processes, the transputer

is able to execute any number of them as if each resided on its own processor. This

-92] -

allows a given Occam program {essentially a collection of communicating processes)
to be partitioned on a network as one desires (as long as enough hardware channels
are available to support the connectivity of the pariitioning).

To handle Occam’s sense of time (see Section 2.1.6), each transputer incor-
porates a timer. In current transputer implementations, the high-priority process
timer has greater resolution than the timer for low-priority processes (under the as-
sumption that high-priority processes are more time critical). Occam sees the timer
~as a special channel which is available to all processes within a given transputer
(normal channels can have only one originating and terminating process).

Finally, the transputer’s CPU instruction set is designed to optimally imple-
ment the various features of the Occam language. We have already seen that the
CPU is able to directly implement a PAR Occam construct. It also has instructions
for the installation of processes on execution queues, the ALT operation, as well as

instructions to perform channel input and output.

2.2.3 Constructing Large Transputer Networks

Since the intention of the transputer is to provide a means of doing parallel com-
putation, it is important that such systems be easy to build. A number of features
of the transputer make the system engineer’s job easier.

The first feature is that the transputer does not require the distribution of &
high-frequency clock. Conventional microprocessors require that an external clock
be supplied at their internal clocking rate, which could be as high as 20-30 MHz.
Such high frequency signals cause much grief for board designers, especially if they
are required to travel large distances on the circuit board.

Transputers, on the other hand, only require an external clock of 5 MHz no
matter what the internal device clock-rate. This standard input clock is then used
to derive a higher internal clock speed. The system designer need only distribute

this relatively low speed clock throughout a circuit board.

-29 _

The engineering characteristics of transputer communication channels also
support the construction of large networks. Transputer channels are implemented
as bidirectional serial comnmunication lines as shown in Figure 2.3, and provide one

Occam channel in either direction.

Transputer 1 Transputer 2 Transputer 1 Transputer 2
{—b e
g ——
—_—] . —_— L
Coemmon clock CIOCKTI I:ock 2

Figure 2.5: Transputer communicatjon link. Copyright INMOS Corporation. Re-
produced with permission.

Such an architecture has a number of important characteristics. For one, it is
much less costly to distribute a three-line bus than it would be to distribute wide
parallel buses. Since transputers may number in the hundreds in a given parallel
computation system, reducing cost is paramount.

Besides the obvious ease of routing 3 lines, one does not pay a capacitive
load penalty as more transputers are added to the system. In a bus-based system,
the whole system must slow down as the bus is lengthened to accommodate more
processors. In a transputer system, this penalty is more or less constant for each
transputer no matter what the size of the system. Moreover, link communication is
insensitive to clock phase between the sending and receiving transputer. All that is
necessary is to maintain the clock frequency within fairly loose tolerances, allowing
the system designer flexibility in routing clock signals. As Figure 2.5 shows, the

input transputer clocks need not come from the same source.

-923 -

When building systems with a large number of processors, it is desirable to
pack as many processors on a single board as possible. The usual limiting factor
is the amount of support circuitry that must be placed around a microprocessor
to provide interfaces to memory and peripherals. For the most part INMOS chan-
nels can interface to peripherals with no external crcuitry, offering great savings in
board area. Furthermore, the transputer’s programmable memory interface virtu-
ally eliminates the need for external memory interfacing circuitry by generating all
timing, control, and refresh signals for a variety of external memory types.

With these space-saving features, it is possible to construct a transputer node
with two Megabytes of RAM in as little as 51 cm? of board area (Electronics [1988]).
If an application did not require much RAM, the node size could be reduced still
further by utilizing only the internal transputer RAM and running the transputer
without any external support circuitry save clock generation (which could be shared

among all transputers on a single board).

2.2.4 Hardware Considerations for Qccam Programming

While the transputer hardware is designed to support the Occam programming
model, it has architectural features that enhance program performance which are
not required by the model. This section outlines two of the most important ones.

Further notes about performance issues can be found in Atkin [1987].

Using On-Board RAM

Unlike microprocessors with on-board cache, the on-board RAM of a transputer is
part of its normal address space. Its advantage over external memory is that it can
be accessed at least three times faster. Since it is normal memory, it can be used
to store both code and/or data.

Since the transputer encodes four instructions within a single word, it fetches
instructions faster than it does data words. It is therefore desirable to place critical

data into the on-chip RAM, to speed access to it. . Indeed, the current Occam

- 24 -

compiler places data on chip in preference to code. If one has large vectors, it is
impossible to place code on-chip in preference to data because the vectors will take
up all of the on-chip RAM. It is possible that this restriction may be removed in
the future, however.

Making use of internal RAM for data storage is (at the moment) an implicit
rather than an explicit process. The programmer is given details of how variables
defined in the Occam source are placed into memory. By arranging the source code

declarations properly, the desired critical variables can be placed into internal RAM.

Channel Communication

Each link on a transputer possesses an independent controller that has direct mem-
ory access (DMA) to the transputer’s memory space. Once a transfer is initiated
on a link, the controller takes over responsibility for the transaction and frees the
processor to do other tasks. Thus each link transfer is a direct memory to memory
transfer between the processors at either end of the link,

An important feature of the link controller, called slice communication, is the
ability to transfer blocks of memory in addition to single byte and word transfers.
With processor overhead equivalent to a single word transfer, the CPU is able to
initiate a multi-word transfer that is totally controlled by the link hardware. The
CPU is then able to perform other tasks while the transfer 1s taking place. Moreover,
slice communication can be performed on three links simultaneously without CPU
interaction, and on all four links with only a small CPU degradation because of
memory-bus contention.

To use this feature of the transputer, Occam provides a special syntax on the
output and input process statements. For example, an integer array of length 1000

could be sent down a channel by the output process
OutChannel ! [IntArray FROM O FOR 1000]

and received by the input process

— 925 _

InChannel ? [IntArray FROM ¢ FOR 1000]

Slice communication allows the transfer of large amounts of information be-
tween processors while computation is being performed at full or nearly full speed.
It thus has the potential to provide nearly transparent loading/unloading of data
for the next computation step, while the current step is proceeding. This could be
especially important in applications such as computer vision, where the next image

could be loaded in while the previous one is being analyzed.

- 926 —

CHAPTER I1I

MATRIX AND VECTOR OPERATIONS

Vector and matrix operations are almost ubiquitous when it comes to algorithms
in numerical analysis. For this reason it is particularly important that efficient
ways of handling them exist. This chapter details ways of implementing important
representatives of these algorithms on transputer arrays.

The most important aspect of the partitioning strategy is the way vector and
matrix storage is distributed among the processors. This not only dictates what
computations a processor can perform, but what communication is needed. The
important thing is to choose a partitioning that minimizes global communication
as much as possible.

The algorithms presented in this chapter view an array of processors with
local memory as a distributed storage and computation network. The storage of
each vector and matrix is divided up more or less equally between the processors,
allowing each processor to work on its portion independent of the others.

For the sake of simplicity, and in keeping with the goals of this research,
the implementations are restricted to linear arrays of transputers or simple shuffle-
exchange (SE) graphs (Stone {1971]). The linear array accommodates algorithms
with nearest neighbour communication requirements while the SE network is par-
ticularly efficient for performing global accumulations.

The beauty of these two networks is that the transputer is capable of support-

ing both of them simultaneously, which allows a much greater range of algorithms

—97 -

to be implemented efficiently. Unfortunately, restrictions in the hardware used for
this dissertation prevented the simultaneous use of the two networks. This would
have been desirable for the conjugate gradient algorithm presented in Chapter 4.
A final note is in order. The reader will notice that while this chapter contains
estimates of algorithm performance, it lacks results from actual implementation.
This was done for a number of reasons, the first being that experience has shown
the estimates to be quite accurate. The major reason, however, is that most of
the algorithms described here are used for the preconditioned conjugate gradient
algorithm in Chapter 4. As actual results are given for that implementation, the

merits of the algorithms of this chapter can be inferred from there.

3.1 Estimating Algorithm Execution Times

For the algorithms considered here, it is possible to accurately estimate their ex-
ecution iimes on transputer or MIMD networks by counting the sequential vector
and scalar operations and multiplying by the empirically derived times for these
operations. When identical operations are performed in paralliel, they count only
once toward the final tally (i.e. they are treated as one sequential operation).
Table 3.1 shows timing results for some “primitive” operations on the T-414
and T-800 (a T-414 with floating-point support) transputer microprocessors. Since
the T-800 was unavailable, timings for it had to be estimated as indicated in the
table. While the list is not exhaustive, it is sufficient to give a fairly accurate
éstimate of execution times for matrix-vector algorithms.
Some things to note about the table:
1. the timings were performed for 32-bit floating-point operations and 32-bit
word transfers on a 15 MHz T-414;
2. vector timings include the overhead of looping and array subscripting, and

are given as the execution time per vector component;

— 98 —

Table 3.1: Timings for primitive operations on T-414 and T-800.

Symbol Operation T-414 (ps) | T-800 (us)
T+ | Scalar Addition 20.3 ‘ 2.031
T, | Scalar Subtraction 19.8 1.98%
Ty Scalar Multiplication 15.4 1.541
Ty Scalar Division 18.5 1.85%
Tr* Vector Addition 26.0 2.60%
T, * Vector Subtraction 26.6 2.66%
Tyx* Vector Multiplication 21.6 2.161
T* Vector Division 24.3 2.431
Taex Scale Vector by Constant 19.8 1.98%
T=* Vector Assignment 4.8 4.8
T+ Transmit Scalar Word 10.8 10.8
TXt* Transmit Vector Word 8.4 8.4

* (per vector component)
t (using 10 MHz links)
1 (estimated to be 0.1 of the T-414 value)

3. Vector communication utilizes the “slicing” feature of the transputer hardware
discussed in Section 2.2.4; and

4. use of on-chip transputer RAM (which is a minimum of three times faster
than external RAM) was avoided as it would have artificially decreased the
measured timings (thus the numbers presented contain the penalty for off-chip

RAM access).

By using actual execution times as weights for the operation counts it is
possible to provide clock time estimates for the algorithms of this and the next
chapter. This is much more useful than the operation counts alone, as it allows
comparison to similar algorithms running on other hardware.

The metric used to characterize the algorithms in this dissertation is speedup

efficiency (Ey,). Letting the time taken for 1 and N, processors to solve a problem

- 929 -

be T; and TN,, respectively, the speedup eficiency is defined as

En, = IOOM (3.1)

Tw,
and represents the percentage of ideal speedup that is attained. In an ideal world
Ex, would be 100%, but in practice it is less than 100% due to communication and

synchronization overhead.

3.2 Vector Operations

We consider two classes of vector operations in this section. The first class includes
monadic and dyadic vector operations that vield a vector result. The second is the
scalar product, which combines two vectors to produce a scalar result.

These two classes have very different requirements for parallel execution be-
cause of their communication requirements. The monadic and dyadic vector oper-
ations are such that they require no inter-processor communication when properly
partitioned. However, data input and result output operations are still necessary,
so we will implement them on a linear array of processors as shown in Figure 3.1.

The scalar product, on the other hand, requires a great deal of communication,
since partial-sums from all of the processors in the network must be brought together
for a final summation. While the linear array is fairly eficient for the operation when
the network contains a small number of processors, the efficiency would degrade
for larger networks. For this reason, Section 3.2.2 introduces the shuffle-exchange

network for this operation.

-30 -

Figure 3.1: A linear array of processors.

3.2.1 Vector Combination

The dyadic vector combination operations considered include addition, subtraction,
multiplication, and division. Monadic operations include vector assignment and
scaling. In all these cases, vectors are combined or operated on in a component-
by-component fashion, giving a vector result. The most notable property of these
component operations is that they are independent from one another.

Since each component operation is independent, no inter-processor communi-
cation is required for the algorithm if a given processor contains all the information
necessary to carry out that operation, In the case of the dyadic operations we re-
quire that a processor contain corresponding components of the two vectors that are
to be combined. A consequence of this is that we are free 1o choose any partitioning
for the vectors as long as we agree to partition each of them identically.

We are ignoring the case where different processors are operating on disjoint
sets of vectors. Each processor could store al] the components of the vectors it is
operating on and process them independently from the other processors. This is

a more macroscopic {larger grain) type of algorithm, however. While it gives an

- 31 -

average speedup, it does nothing to speed up an individual operation such as vector
addition.

Figure 3.2 shows the vector partitioning that was used in this work. This is
not the only imaginable partitioning, merely the most orderly {a special applica-
tion might require a different partitioning). Each vector is divided into a number
of contiguous segments, with each segment stored on a processor within a linear
array. The segments are assigned to the processors such that segment ¢ is stored in

Drocessor 1.

Figure 3.2: Partitioning of vectors for parallel computation.

Given this partitioning, Occam allows us to express the vector operations

quite simply. Consider the Occam procedure Vectoridd:

PROC Vectoridd([JREAL32 14, -- result
VAL [JREAL32 B,C, -~ operands
VAL INT NumComponents)
SEQ I = 0 FDR NumComponents
A[Il := B[I] + ¢I[I]

—32 -

Each processor in the network would contain a local copy of this procedure along
with the storage for the segments from the vectors involved. A parallel system of

four processors could then be denoted (ignoring declarations of the variables}:

PAR
VectorAdd(4,B,C, NumComponents)

Vectoradd(4,B,C, NumComponents)
Vectoridd(4,B,¢ s NumComponents)
Vectoradd(4,B, C,NumComponents)

or more succinctly (where NumProcessors — 4}

PAR I = 0 FOR NumProcessors
VectorAdd(A,B,C,NumComponents)

Given knowledge about how many components of the vector it is storing, each

processor {each component of the PAR) can operate with virtually 100% efficiency.

3.2.2 Scalar Product

The scalar product between two vectors presents a very different problem. Given
that each processor can compute a partial sum of the scalar product, we are left
with a single number in each processor that must be summed with all the others.
What remains then, is the problem of communicating these numbers between the
processors so that a final sum can be computed.

First, consider N, processors arranged in a linear array. The sum could be
obtained in (N, — 1) communication steps and (N, — 1) addition steps simply by
passing a partial sum from processor to processor — leaving the final answer in the
last processor in the chain. If the result is needed in all the processors, an additiona)
(Np — 1) communication steps are required to distribute the final result, giving a

total of 2(N, — 1) communication steps.

- 33-

This simplistic approach can be improved upon by recognizing that the accu-
mulation of the partial sum is independent of the order in which it is done. Instead
of forming the sum from one end of the array to the other, we can have two paral-
lel accumulations proceeding from each end to the middle of the array. With this
scheme, the scalar product can be calculated in %Np computation steps and (N, —1)
communication steps (including distribution of the final sum to all Processors).

In both these cases, we are constrained by the linear array, and are forced
to compute the scalar product in almost a sequential fashion, with considerable
communications overhead. As the number of processors increases the operation can
become quite costly. This bottle-neck can be overcome using the shuffie-exchange

(SE) network shown in Figure 3.3.

0 1 2 3 4 5 & 7

4
0 1 P4 3 4 5 6 7
¢ 1 2 3 4 5 6 7

Figure 3.3: Time sequence of shuffle-exchange operations. Each row of processors
represents the same set of processors at a subsequent step in the communication
sequence. The lines represent the interconnections within the set of processors.

- 34 -

The SE network was first popularized by Stone{1971]. He demonstrated its
applicability to a wide variety of problems including the Fast Fourier Transform
(FFT) and matrix transposition. Lang and Stone[1976} showed its usefulness as a
permutation network. Of interest here is its ability to sum Np numbers in O(log, N,)
steps.

Formally, the SE topology is defined for networks of N, = 2% processors
(K an integer) which we number 0 to (2¥ — 1). It combines the so called perfect
shuffle interconnection with a pair-wise exchange to form a simple, yet powerful
interconnection network. The perfect shuffie connects processor P; to a processor

whose index is given by the following rule (a permutation mapping):

Np/2 — 1 (lower half),

< —
s R (3.2)
%it1—Np »/2 <1 < Np—1 (upper half).

The effect of this operation can be seen in Figure 3.3. Messages from the lower and
upper halves of the array are shuffled through the array in an alternating fashion,
much like the two halves of a deck of playing cards would be when perfectly shuffled.

The shuffle operation is followed by a bi-directional exchange between adjacent

pairs of processors according to the rule:
Py Pypy 0<i< Ny/2-1. (3.3)

Keeping in mind that these connections involve the same set of Processors,
Figure 3.3 can be collapsed to give a truer picture of the SE interconnections as
shown in Figure 3.4.

Given the SE topology, we can now describe an algorithm for summing a set
of N, numbers (with one number located in each processor). Let each processor
contain one of the numbers to be summed in variable A. Further, let there be a
temporary location B in each processor. The following algorithm, which is performed

identically by each processor, will sum the N, values of 4 together:

_.35 -

=l
]

Figure 3.4: The shuffle-exchange interconnection network.

3.
4,

. send A out on shuffle-out port and input into B on shuffle-in port (Shuffle

operation);

. output B on exchange-out port and input value into & on exchange-in port

(Exchange operation);
sum B into A {Add operation); and

loop back to step 1.

If there are N, = 2% processors, then after logy(N,) = K iterations each processor

will contain the sum of all the numbers in variable 4. Table 3.2 shows a detailed

listing of these operations for an eight processor network adding the numbers 0 to 7

inclusive,

This scheme has two advantages over the linear interconnection network:

. the operation is completed in logarithmic time (2 log(Np) communication steps

and log(N;) computation steps to sum N, numbers); and

. each processor ends up with the final sum, so there is no need to explicitly

distribute it.

Additional insight into the workings of the SE algorithm presented here can

be gleaned by following the path of 2 number from its starting point (the so-called

- 36 -

Table 8.2: Shuffle-exchange vector sum. Each row shows the values contained in
A and B after the operation in the first column is performed (S = Shuffle, E = Ex-
change, and A = Add).

PROCESSOR

oPp 0 1 2 3 4 5 6 7

AIB|/AI/B/ A B /A B|AIB|AB|AJB|AIB

0| "1 * 2 *1 30 x4 x5 *i¢]* 7 x
S 6 014]2 1|3 |5 4al215[6]6 377
E|4:0 0 /4|5 1|15 6,2 2617|337
Al4a > 416 6% 8] *]8> 110|* 10 *
S 4 1414 ,/8 6|4 68|86 ,8[10[10]6110!10
E | 8|4 /4|88 |4]4|8i10/6|61[10/10/6 610
A2 2120 12 % 1120 % |16 * [161 * |16 | * | 16 | *
S 112121121612]12|12[16[16 |12 16|16 | 16 | 12| 12] 16
E 11612 12 16 |16 12|12 (16 16 121216 | 16 | 12|12 | 16
A |28 * /28 * |28 * |28 * |28 | * (28| * [28] * |98 | *

*(don’t care)

radioactive tracer technique). By marking the processors touched by that number
and any numbers affected by it (directly or indirectly) as they cycle through the
array, one can see the path fan-out in a binary tree like fashion. At the end of
logy(Np) cycles all processors in the array will have received the number or one of
its descendants. Since a number and its descendants never cross paths, they always
contribute to an independent sum. Moreover, because this happens from all the
processors, N, independent sums are accumulated.

We are now in a position to compare the estimated execution times for the
two scalar product/distributed addition algorithms outlined here. Since the time
needed to calculate the initial partial sum in each processor is the same for all the

algorithms, it is not included in the times given. Figure 3.5 shows the results for

- 37 -

2.80
2.680 —
2.40 —
2.20 H
2.00

1.80 -

1.40

1.20 =

1.00 /

0.80 -
0.50 /E'/

Execution Time (msec.)

0.40 ~
0-20 7 ’,:54?-/

+

.00 T T 7 T
4 8 16 32 &4

Number of Processors

0 Linear Array + Shuffle Exchanga

Figure 3.5: Comparison of the scalar-product (distributed addition) algorithms.

various network sizes (constrained by the requirements of the SE network). In all

cases of interest, the SE network outperforms the linear array.

Thus the SE network is very useful for combining objects that are distributed

amongst a collection of processors. For small numbers of processors, the gains are

not great, but owing to the logarithmic growth in costs, the gains are very significant

for larger numbers of processors.

This example also serves to illustrate the ability of the transputer/Occam

programming model to address both coarse-grain and fine-grain parallelism. The

distributed addition algorithm is essentially a fine-grain algorithm, since very little

computational work is done at each step. In the next section, we will see the same

- 38 -

SE network used for a coarse-grain algorithm (dense matrix-vector multiplication),
This property allows great flexibility when designing algorithms.

An Occam example in Appendix A shows how a SE network could be imple-
mented on a transputer array. The code demonstrates the distinct advantage of
the SE network on transputer arrays, namely, ease of implementation. A compar-
ison of the code to implement the bi-directional sum on a linear array to the SE
network shows the code for the SE to be simple and elegant, requiring no logic for
its execution. The linear array implementation, on the other hand, requires consid-
erable logic to handle special cases in comrmunication, and is generally “messy” in

comparison.

3.3 Matrix-Vector Multiplication

Matrix-vector multiplication represents a step up in complexity from the vector al-
gorithms described in this chapter. The biggest problem arises from the interaction
between storage partitioning of the matrix and the communication requirements
that are dictated by that partitioning.

An algorithm for dense matrix-vector multiplication is presented first. It is
shown that an efficient algorithm is possible using a shuflle-exchange network. As
for the scalar product, the SE network’s ability to sum N, objects in log, N, steps
is the important factor. The only difference is that instead of summing numbers,
we are summing vectors.

Next, an algorithm for sparse matrix-vector multiplication is presented. In
this case, the SE network did not offer a viable solution. Instead, it was necessary
to restrict the application of the algorithm to banded matrices, which allows an
eflicient implementation on a linear array of processors., This algorithm forms the

kernel of the conjugate gradient algorithm described in Chapter 4.

— 39—

3.3.1 Dense Matrices

Unlike the vector operations, partitioning of matrix operations is not straightfor-
ward. To extract any kind of parallelism at all, it would seem necessary to distribute
the storage of the vector and matrix over the array of processors. Figures 3.6 and

3.7 illustrate two ways of performing such a partitioning.

Mult iplicand Vector

Proc., 1 -

Mult iplicand Vector

Multiplicand Vector

SMOY XTJI19W Jo s1ieg shon¥rjuoy

Proe. N __ = <

Figure 3.6: Row-wise matrix and vector partitioning. The entire vector multipli-
cand must be present in each processor.

Each of these partitionings has some advantages and disadvantages. With the
row-wise scheme, each processor produces a fully summed segment of the resultant
vector (of length equal to the number of rows that a processor stores). If the re-
sultant vector is to be used in another multiplication, all of the segments must be
communicated to all of the other processors, resulting in considerable communica-

tions overhead.

= 40 -

Multiplicand Vector Segments
A

LT T1 [T 177 o

Proe. 1 Proc. 2 Proc. N

v
Sets of Contignous Matrix Columns

Figure 3.7: Column-wise matrix and vector partitioning. Only a segment of the
vector multiplicand is needed in each processor.

‘The column-wise storage scheme also carries with it considerable communica-
tions overhead. However, it has the virtue of only requiring a segment of the mul-
tiplicand vector in each processor, and is compatible with the vector partitioning
for parallel vector operations. Because of this property, column-wise partitioning is
used here, as it allows the simultaneous application of matrix-vector multiplication
and the menadic and dyadic vector operations described previously.

With this partitioning, matrix-vector multiplication produces (in each proces-
sor} a full length vector whose components are partial sums of the resultant vector.
To form the final result, it is necessary to perform a sum of all such vectors. As in
the scalar-product case, we must combine N, objects distributed over N, proces-
sors. Again, a solution is offered in the form of the shuffle-exchange network, the
only difference being that, instead of scalars, vectors are transmitted and summed

in each iteration of the algorithm.

- 41 -

This algorithm is not optimal in that it performs more communication than
is necessary. Each processor only needs to end up with the segment of the resul-
tant vector it will store, but instead ends up with the whole vector. In the case of
transputer arrays, however, the communication cost of the algorithm is not signif-
icant when compared with the computation cost, and we can trade off algorithmic
efficiency for algorithmic simplicity.

As a measure of the algorithm’s performance, its efficiency can be estimated
in terms of calculated multiprocessor and uniprocessor execution times. Consider
a square matrix of size N. No generality is lost by requiring that the number of
columns N be evenly divisible by the number of processors N,. A single processor
has to perform N? multiply-adds in order to form a matrix-vector product. In terms

of the constants defined in Table 3.1, the execution time can be estimated as:
Ty = NYT} + T)). (3.4)

Note that vector operation timing constants have been used so that array indexing
costs are implicitly catered for.

The multiprocessor execution time consists of two components. The first is the
time required to form the partially summed vector (the computational component).
This is an identical operation to what is done in the single processor case, except
that it is applied to N/N, matrix columns instead of N columns.

The second component is the time needed to sum the N, vectors using the
SE addition algorithm. An iteration of the SE algorithm consists of two vector
communication steps (shuffle vector, exchange vector) followed by a vector sum.
Since the vectors involved are of length N, the cost of an iteration is N (2rX %T.j‘),

with a total of logy(N,) such iterations required to complete the sum.

— 42 —

Combining the execution times of these two components of the algorithm gives

Ty, = ENZ/NP)(Tj + 7)) '*’iVlogz(Np)(QTéX +T7). (3.5)
computation shuffle-sum

Equations (3.4) and (3.5) can be used to calculate the algorithmic efficiency
defined in Section 3.1. The results are summarized in F igure 3.8 for various problem
and network sizes. We can see that the algorithm has the desirable characteristic
of maintaining efficiency for lérger problem sizes when the number of processors is
increased. Moreover, the efficiencies are high, indicating that the overhead due to

communication is small relative to the cost of computation.

3.3.2 Sparse Matrices

In anticipation of the needs of Section 4.2, the next task is to examine the behaviour
of the algorithm for sparse matrices. 1 If one takes advantage of the sparseness of
a matrix, the effect is to reduce the amount of computation required to perform a
matrix-vector product. We still must communicate full length vectors when shuf-
fling, however, so the sparseness of the matrix does not reduce these costs. As the
matrix becomes more sparse, the communication costs then become dominant and
the efficiency of the algorithm drops.

We may use equations (3.4) and (3.5) to calculate the efficiency for a randomly
sparse matrix by augmenting them to represent the reduced computation costs. Let
N..: denote the average number of non-zero coefficients in a matrix column. If we
take advantage of the sparsity and only compute with non-zero matrix coefficients,
(3.4) and (3.5) become:

Ty = Np N(TF + T, (3.6)

¥ The sparse matrix-vector multiplication algorithm described in this section was presented by
the anuthor at the Third Occam Users Group Meeting in Chicago IL, September 1987.

- 43 -

100

7?? N 7~TW,§ N N
NN
72N AN BN I 2\

N BN AN Iy Il
i AN AN AN AN A
: AN AN AN AN RN
ENZY 7Y B2 W2 B
NN NN NN N A
SN VN AN NN TR
ANA N AN N A
77 256 LN 512 1024 2048

Figure 3.8: SE efficiency for dense matrices (T-414). Estimates are shown for
matrices of size 256, 512, 1024, and 2048.

and

Tn, = (Nuo N /N)T + T) + Nlogy (N,)(2TX + T;7). (3.7)

Mo,

computation shuffie-sum

Figure 3.9 shows the efficiencies estimated using equations (3.6) and (3.7) for
a 1024 x 1024 matrix with 31 non-zeros per column. As expected, the efficiency
drops dramatically for larger numbers of processors. In fact, the expected execution
time for 64 processors is actually larger than that for 32 processors - a dismal result

indeed.

- 44 —

0

7O

60 /
/]

- 7

Efficiency (%)

. %
7

N7
W77

NS

v

7

7
v

I
8

N7

Number of Processors

I
18

LA 31 Non-Zaros/Column

1
32

Figure 3.9: SE efficiency for 1024 x 1024 sparse matrix. Efficiency calculated

assuming 31 non-zero coefficients per column.

With this realization, it can be seen that a new algorithm is needed in the

case of sparse matrix-vector multiplication. The basic problem is that the global

communication inherent in the SE network is too costly relative to the small amount

of computation required for a sparse matrix-vector multiplication.

Instead, consider an implementation on a linear array of processors, with the

matrix columns and vectors partitioned as before. If we are computing Az = b, a

typical component of b is given by

N
b; = E :aijm.:"a
7=1

~ 45 —

where it is assumed that no calculations are performed when a;; = 0.

Because vectors are partitioned across the array of processors, each of the b; is
located on a particular processor (the one which contains column i of the matrix).
As a result, terms that contribute to b; must be communicated to that processor
if they are not generated locally. Given a randomly sparse matrix, however, it is
possible for non-zero terms in equation (3.8) to be produced in any of the Processors
in the network. It would therefore be necessary to perform a great deal of global
communication to accumulate the components of b in the Proper processors.

For randomly sparse matrices, then, the picture is rather gloomy, as global
communication translates into algorithmic inefliciency. Ideally, one would like to
have nearest or next-nearest neighbour communication only. It is possible to arrange
this, but we must sacrifice the generality of the algorithm in the process.

Consider equation (3.8) again. If we restrict the range over which non-zero
coefficients occur in row i, we can effectively limit the range of processors which
contribute to b; since columns are topologically contiguous across the array. In
genera} terminology, we must restrict the application of the algorithm to banded
matrices as shown in Figure 3.10.

Restriction to banded matrices is a common requirement for parallel sparse
matrix-vector multiplication. For example, systolic algorithms that have been de-
veloped require that the matrix be banded (Kung [1982]}. Moreover, they have the
uncomfortable requirement that there be as many processors as the band is wide.
This requirement reduces their flexibility, and makes no provision for the band itself
being sparse - causing them to compute with zero coefficients. Vector computers re-
quire similar restrictions, although they can avoid calculating with zero coefficients
(Madsen et al. [1976]).

Let a matrix of size N x N be distributed over a linear array of processors such
that Cp x N, = N, where C), is the number of columns stored in each processor.

Defining P to be the row bandwidth, and @ to be the column bandwidth (as shown

— 46 -

Figure 3.10: A banded matrix. P and Q define the range over which non-zero
coeflicients occur. The bandwidth of the matrix is defined as P + Q—1.

in Figure 10), the key to an efficient algorithm is the relative size of P, Q,and C,.

We can insure /th neighbour communication if
PQ<IC,+1. (3.9)

For any given row 1, there will not be any non-zero coeficients in the (I +1)th
processor to the left or right under these conditions. By restricting the band, we
restrict the range of processors which can contribute to a givent row-sum of the
product, which in turn minimizes the communication requirements.

The efficiency of this algorithm can be estimated in a manner similar to the
SE case. The major difference is that the communication requirements are vastly
reduced. For simplicity, let P and Q be such that nearest neighbour cornmunication
is possible (I = 1 in equation (3.9)). Each processor will accumulate row-sums for
all of its non-zero rows. If it contains the diagonal element of that row, it will

not need to send that row-sum, as it is the accumulator for the corresponding b;.

- 47 -

Rather, it will need to receive partial row-sums from neighbouring processors so
that it can form the final accumulation for the b; that it stores.

It is only necessary for each processor to send (@ — 1) row-sums to the neigh-
bour to the left since the band only extends (Q — 1) rows above the row containing
a processor’s left-most diagonal element. Similarly, only {P — 1) row-sums will
need to be communicated to a neighbour to the right since the band extends only
(P — 1) rows below the row containing a processor’s right-most diagonal element.
This ignores the special cases which occur at each end of the array.

The time needed to calculate the row-sums is proportional to the number of
non-zeros as in the SE case. Since transputer hardware makes it possible to send
and receive values both to the left and right simultaneously, the communication
time is proportional to {max(P,Q)—1}) and not (2(P —1)+2(Q— 1}) as it would be
if all communication had to be done serially. Once the values are communicated,
however, the final accumulation in each processor is a serial process and is thus
proportional to {P + @ —2). Tallying up the communication and computation costs
vields:

Ty = (Na:Co)(TF + 1)) + (max(P, Q) — INT,))+ (P + Q - 2)(T7). (3.10)

-)
.~ .

computation communication final accum.

Equations (3.10) and (3.6) allow us to calculate the efficiency for the new
algorithm. The results are shown in Figure 3.11 for a matrix with 5 non-zero
coefficients per column. Results are shown for two bandwidths, to demonstrate the
effect of a wider band on the efficiency of the algorithm.

This example presents what is just about the worst case for the algorithm.
With only five non-zeros per column, there is very little computation relative to the
communication involved. Despite this, efficiencies are still high, even for the larger

bandwidth where communication costs are even greater.

— 48 —

100

9@7 - £
/j N \ # \\ # N e
N N NN R
e so/\\\ // / \\ //\\
NN AN NN
g 40 /\\\ \\\\ e \\\ f/\k
NZ\NBZNWZN\WZ NN
a WHZNEBZN N
10 \;f /§ “ \\ ;/\\ :///\\
NZNBZNWZN NEZN

Number of Processors

771 Bandwidth=31 N Bandwidth=127

Figure 3.11: Estimated efficiency for banded matrix-vector multiplication. Calcu-
lated assuming a 4096 x 4096 matrix with 5 non-zeros per column.

Lest one get the impression that this “watered down” algorithm is not very
useful, consider that it is used in conjunction with the conjugate gradient algorithm
in Section 4.2 to solve linear systems of equations. The matrices considered there,
are not only banded in this way, but result from common CAE techniques such
as finite-differences (Forsythe and Wasow [1960]) and finite-elements (Zienkiewicz
[1971]). Thus, while not a general algorithm, it is still very useful for its intended

application.

— 49 —

CHAPTER IV

MATRIX SOLUTION ALGORITHMS

Matrix solution algorithms play an important role in numerical analysis and CAE
algorithms. Virtually all methods of solution (even solutions of non-linear problems)
produce a linear system of equations which must be solved.

Two algorithms are presented. The first is a fairly straightforward imple-
mentation of a Gaussian elimination solver with row pivoting on a linear array of
transputers. The partitioning used is not the most efficient imaginable, but was
cast this way to allow its use as part of the boundary element engine described in
Chapter 5. The efficiency of the implementation is presented as part of the results
in Chapter 5. ‘

The second algorithm is a sparse-matrix solver based upon the Conjugate
Gradient (CG) algorithm. While the algorithm is restricted to banded matrices
with rather stringent properties, this does not hinder its usefulness, as such matrices
are produced by a variety of standard numerical analysis techniques. The algorithm
has the additional advantage of serving as a proving ground for many of the matrix-

- vector algorithms introduced in Chapter 3.

- 50 -

4.1 (Gaussian Elimination

As we will see in Chapter 5, the Boundary Element Method (BEM) produces a ma-
trix system that must be solved. This section outlines a parallel implementation of
the Gaussian elimination matrix solution algorithm on a linear array of transputers
(the same architecture as for the BEM matrix generation algorithm).t Thus the

two algorithms are able to work cooperatively on a problem.

4.1.1 The Algorithm

Gaussian elimination (GE) is a systematic way of performing elimination on N

equations in N unknowns. Consider the linear system
Sc = b. (4.1}

For convenience in implementing the algorithm, the b is amalgamated with the S

matrix to form

811 812 - Sin b]
521 822 ... S, bo

S = , (4.2)
Snl Sm2 vae Sun bn

This allows all the row-operations to be carried out in a single step, rather than
needing a separate step to handle the right-hand side. Gaussian elimination solves
such a system by using row-operations to eliminate all coefficients below the diag-
onal, forming an upper-triangular system that can be solved by back-substitution.
The first step in the elimination of column k is to choose a suitable pivot
equation. In the partial-pivoting form of the algorithm described here, the system
row k' > k that has the largest coefficient in column k is chosen as the pivot eﬁuation
and swapped with row k. This procedure is done to ensure stability of the algorithm

and to avoid zero value diagonal elements which will cause execution €rrors.

1 Presented by the author at the Second Occam Users Group Meeting in Santa Clara CA,
March 1987,

— /1 -

After the pivoting procedure, the next step is to eliminate the entries below
the diagonal in the pivot column by subtracting an appropriate multiple of the
pivot row k from the rows below it (this operation is also applied to the right-hand
side of the system). In equation form, the elimination of the k’th column can be

represented as

k—1
R I {k—l-lSiSN

k+1<j<N+1 (4.3)

where the superscript denotes the elimination step and we have included the right-
hand side of the system in an extra column of the system matrix (hence the range
to N + 1 for the column index).

After this algorithm is applied iteratively to the first N —1 columns of the $Vs-
tem, the diagonalized system is then solved through the following back-substitution

process. The first step is to solve for o, giving

s
op = LA (4.4)

SNN

Thereafter, each succeeding o; is determined by
N
SIN+1 = D $ij0;

= .

o; = 1= 1=n—-1,n-2,...,1. (4.5)
841

-59 -

4.1.2 Partitioning of Forward Elimination Phase

The GE algorithm has the advantage of having an obvious partitioning for parallel
processing. Before detailing the partitioning, a few observations are worth noting:
1. All information necessary for the elimination of.a column k is derived from
the coefficient values present in that column. This implies that a processor
which possesses all the information within a column can determine the actions
and coefficients necessary to eliminate that column.
2. When eliminating column k, each coefficient in rows {k+1,k+2,...,N}
is augmented by a multiple of the pivot equation coefficient in row k in the
column directly above it. Furthermore, the value of the multiplying coeffi-
cient is derived from the pivot column. In short, calculations in all columns
(including the right-hand side vector) to the right of the pivot column require
information from the pivot column.
3. No calculations are performed within a column after it has been eliminated
(except when back-substitution is being performed). This fact has important
implications on the maximum possible speedup efficiency of the algorithm.
To execute the GE algorithm in parallel, each processor is given a contiguous
series of columns within the matrix in which it is responsible for all computation
as was shown in Figure 3.6. Because all the information necessary for eliminating
a column is contained within that column, it is possible for each processor to play
master and direct the elimination process in the processors to the right while the
pivot column is one of the columns it is responsible for. This is done by determining
which matrix rows have to be swapped and the values of the coeflicients of elimina-
tion for each row and sending this information to the next processor on the right.
The pivot processor then goes on and finishes the elimination computation in the
columns to the right of the pivot column for which it is responsible.

All processors to the right of the pivot processor, upon receiving the message,

pass it on (if there is another processor to the right) and use the information received

—-53 -

to compute the results of the current elimination step. The end result is that the
work of performing the current elimination step is shared between a number of
processors.

The global communication required in this partitioning is compensated for by
the fact that computation and communication are overlapped. After a processor
passes on the message, it is free to perform calculations. Because computation
time dominétes communication time (for most practical problems and processing
systems) the processors are kept busy most of the time. Thus global communication
does not impact the efficiency of the algorithm to a great extent.

What does impact the efficiency, though, are the implications of observation 3.
Once a processor has supervised the elimination of its columns, it has nothing to do
until the back-substitution phase. It therefore sits idle and does not contribute. The
only compensating factor is that while fewer processors come into play, the work
that each of the remaining active processors have to do for each column becomes
less (i.e. the elimination involves a shorter length in the column).

The theoretical expressions for efficiency and execution times are derived in
Chapter 5, where they are compared to experimental results. Since the derivation
ignores all communication costs, we arrive at an expression that gives the maximum
possible efﬁcieﬁcy. Comparing this number to the experimental results allows us to
show that communication and computation are overlapped, thus lessening the effect
of global communication. The end result is that the algorithm as implemented does
not have a theoretical maximum efficiency of 100%. As we will see in Chapter 5, the
theoretical efficiency with two processors is around 70% for the forward elimination
phase, and falls slowly as the number of pProcessors is increased.

This problem could be avoided to a large extent by choosing a different par-
titioning of the system matrix. For example, instead of using contiguous sets of
matrix columns for each processor, we could have assigned successive columns to

different processors in a cyclic fashion. In this way processors would have columns

— 54 —

from all regions of the matrix and could be kept busy doing computation all of
the time. This strategy combined with full Gauss-Jordan elimination leads to an
efficient algorithm (Li et al. [1987]).

One problem with this approach is that it would require more logic and more
communication to implement, perhaps offsetting some of the computational gains.
The column elimination information would have to be shipped to all processors (and
would always be of length N), instead of only those to the right, which represents
a sizable increase in communication costs.

Further to the point, the present algorithm was designed to work in consort
with the BEM algorithm of Chapter 5. Without a matrix partitioned inte con-
tiguous sets of columns, the implementation of an efficient BEM matrix generator
would have been much more difficult, if not impossible. It was therefore deemed
acceptable to sacrifice some efficiency in the solver so that the combined algorithms

could be more efficient.

4.1.3 Partitioning of the Back-substitution Phase

In comparison to the elimination process, the amount of calculation involved in the
back-substitution phase of the algorithm is of little consequence. While there is
some parallelism present, it is debatable if exploiting it would be worthwhile. As
such, we seek a method which caries out the operations in a simple manner, and
will ignore the parallelism present.

Examination of equation (4.5) reveals that, while each processor can evaluate
the terms in the summation in parallel, we are still faced with the sequential ac-
cumulation of the sum. Worse, the accumulation requires transfer of partial sums
from the last processor in the array to the processor containing the column cor-
responding to the unknown being solved for (column ¢). This communication is
wasteful since the transputer communicates vectors more efficiently than it does a

single value (due o overhead involved in initiating the communication sequence).

__55.._

If it can be arranged that we transmit vectors instead of scalars, the algorithm will
be more efficient.

This can be accomplished by restructuring the back-substitution process so
that all the calculations performed with a matrix column are done in one step. In
this way, each o is partially accumulated as each colurnn 7 {t =(n-1),(n-2),...,1}
is dealt with in turn. We are then able to pass ¢ backwards as a vector rather than
scalar partial sums. An additional saving occurs at the end of the process when the
final solution vector is left in processor one, and can be extracted to the controlling
processor in one step.

The first step is to assign the right-hand side to ¢. Then for each column k
{k = N,(N —1},...,1} of the S-matrix we calculate

o = 2 (4.6)
Skk

followed by
O = 07 — 830, 1= 1,2,...,(k~1), (4.7)

where this last step (4.7) is not performed when &k = 1.

Each processor, proceeding from last to first, performs these calculations,
and passes the intermediate g back to the proceeding processor. Finally the first
processor, after having finished all its calculations, passes the now complete ¢ back
to the controlling processor.

The disadvantage of this approach is that we sacrifice the parallel evaluation
of the summation terms in favour of communication efficiency. The choice made
will depend upon the relative speed of communication and computation on the
transputer being used. For example, the T-800’s floating performance might dictate

that communication be favored.

- 56 —

4.2 The Conjugate Gradient Algorithm

This section describes a parallel implementation of the polynomial preconditioned
conjugate gradient method (PPCG) on a linear array of transputers.} We begin by
describing the conjugate gradient (CG) method, which is a semi-iterative technique
for the solution of sparse-symmetric sets of linear equations,

This method is most useful in the preconditioned (PCG) form described in
Section 4.2.2, and has received much attention as a solver for ﬁnite—difference prob-
lems on vector supercomputers (Kightley and Jones (1985], Wong and Jiang [1987],
Wong [1987]). It has also been implemented on a single instruction/multiple data
(SIMD) processor by Allen|1983].

Most of these parallel implementations make use of the polynomial precondi-
tioning technique described in Section 4.2.3 (Dubois et al. [1979]). This method of
preconditioning has proved to be pivotal in allowing efficient parallelization of the

PCG algorithm.

4.2.1 The Classical Conjugate Gradient Algorithm

The conjugate gradient algorithm is derived from an optimization point of view.}
An iterative method is developed that seeks a solution to a set of linear equations
by requiring that each iterant minimize an error functional. The error functional
is designed to give a measure of the current iterative solution’s “closeness” to the
exact solution, and as such, the solution vector that minimizes the error functional
1s the solution to the system of linear equations.

The solution to the system of equations

t Presented by the author at the Third Occam Users Group Meeting in Chicago IL, September
1987.

{ The presentation of the theory of the conjugate gradient method in this and the following
sections is derived from a previous work of the author {Allen [1983}), and follows Axelsson [1977].

- 57 -

is sought, where A is a symmetric positive definite N x N matrix, and z and b are
respectively the unknown and forcing vectors (length N). Let the exact solution to
the equation (4.8) be denoted by

h=A"Tp. | (4.9)

Given an estimate z of the solution vector, define the residual to be

)

With the above definitions, consider the quadratic functional (Mikhlin 11964], Ax-
elsson [1977,5-6])

Fle) = (z, Az} ~ (b2), (4.11)
which is a so-called energy functional. The solution which minimizes (4.11) is the
solution of minimum energy. Note that { ,) denotes the standard inner product,
which is assumed valid for real spaces.

As the name of the CG method implies, information about the gradient of
the functional (4.11) is used to determine a path to its minimum. The gradient of
(4.11) is given by

g9(z) = V(F(z)) = Az - b. (4.12)

glz) = -r. (4.13)

Observe here, that in following a path to the minimum of the functional, the negative

of (4.13) is used since it is in the direction of the minimum.

- 58 —

Rewriting (4.11) in the form
(B-2), Ak - 2)) - 5(h, AB), (4.14)

and using the fact that the last term is constant, it can be seen that minimizing

(4.11) is equivalent to minimizing

B(z) = 1((h—2), A(k ~ 2), (4.15)

(E:A_lf)s (4'16)

and

E(z) = %(g(@.),A‘lg(gD, (4.17)

where g(z) is given by (4.13). Note, that the gradients of (4.11), (4.15), (4.16), and
(4.17) are equal.

In a CG iteration, one constructs a path through the space of solution vectors
such that (4.17) is minimized and a solution is obtained on the N’th step. Each

iterative step may be considered as an exact line search of the form
gt = gF + aydF. (4.18)

- That is, in proceeding from the current solution vector to the next, one travels
along a direction d* a distance a;. The direction vector is chosen with some 1dea
of the gradient, and the parameter a; is chosen so that z**! will be located at
the minimum of (4.17) along the line d*. The requirement that E(z) be mini-
mized successively by each step of the CG algorithm allows the value of oy, to be

determined.

— 59 —

Applying this search to (4.17) we observe that
E(z" + ard®) = (b — A" + ard®)), A~ (b — AN zb + apd®y)), (4.19)
may be written as
E(2® + ard") = —204(r%, &%) + o2 (d* A d"). (4.20)

Setting the derivative with respect to a; of (4.20) equal to zero gives the minimiza-

tion requirement that
(r*, d*)

O = ————,
© T AdY

(4.21)
Now consider the calculation of the residual vectors for each CG iteration. While
they may be calculated from (4.10), the matrix multiplication involved is not useful

anywhere else in the algorithm. Using (4.10) and (4.18), the following recursive

definition for the residual is obtained:

P = AR (4.22)

=3

This expression involves a matrix product that is used elsewhere in the algorithm,
giving greater efficiency.

At this juncture, recursive expressions for both z and r have been determined.
All that is needed to complete the algorithm is a definition for d. It is the choice
made for d that distinguishes the CG method from the more general conjugate
direction (CD) method. The conjugate direction method does not specify how the
direction vectors are to be derived, save that they be A-orthogonal (i.e. (d, Ad) = 0).
The conjugate gradient method, on the other hand, fequires that the direction

vectors be constructed via A-orthogonalization of the residual vectors generated by

(4.22).

- 60 -

The orthogonalization could be realized by a Gram-Schmidt process (Lang
[1972,138-139]), but it is undesirable to store each r vector that is generated. In-

stead, the following iterative procedure is used:

d® =r°, (4.23)

followed by
d* = okt g gk (4.24)

To prove the validity of this process, the orthogonality of the residual vectors
must be demonstrated. With that fact, the A-orthogonality of the direction vectors
can be proved, and finally the value of 3, determined.

Using (4.23), (4.22) can be rewritten as
rf = (I+C1A + CoA? + .. 4 CL AR, (4.25)

or

rk = (I + Py(A))r°, (4.26)

where Pi(A) is a polynomial of degree & in A with no constant term. Substituting
(4.26) into the error functional {4.16) produces

E(z") = (I + Py(&))r°, A7Y(I + Py(A))r%). (4.27)

Interpreting (4.27) as defining the square of a norm with respect to the matrix
A1, the minimization of (4.27) is equivalent to requiring that —P,(A)r° be an
approximation to r° — so that their sum is zero. The best approximation to r°
occurs when the error is orthogonal (in the A1 norm) to the basis of approximating

vectors (Davis [1975,176]).

- 61 -

It is therefore required that
(I +P(A))r", AT P (AN =0 (5 < k). (4.28)

But
Pi(A)= A+ AP;,_j(A). (4.29)

Substituting (4.29) into (4.28) gives
(I + P(ANe®, (I + Pi(A)°) =0 (5 < k1), (4.30)

which (using (4.26)) demonstrates the orthogonality of the residual vectors.
With the result in (4.30), the A-orthogonality of the direction vectors can be
proved. Let j be less than k, then (using (4.22) and (4.24))

(", AdT) = =1 ((pF — phety gin1y, (4.31)
233

Extending (4.31) by induction leaves

@A) = B2 By ey

d°y. (4.32)
Qg

Using (4.23) and the orthogonality of the residual vectors shows that (4.32) equals
zero, which proves the A-orthogonality of the direction vectors.
It remains for the value of 8, to be determined. The A-orthogonality of the

direction vectors gives

("1 + B d®, Adh) = 0. (4.33)

Solving for 8;, produces
(ﬂk—H,Adk)

B =~ (&, Ad")

(4.34)

- §2 ~

It is profitable to put (4.21) and (4.34) into more computationally efficient

forms. Using (4.24) and the orthogonality of the residual vectors gives

_ ek rh)
Substituting (4.22) and then (4.35) into (4.34) yields
(tkH,EkH)

The derivation of the classical conjugate gradient algorithm is now complete.
Using equations (4.10), (4.18), (4.22), (4.23), (4.24), (4.35), and (4.36), the algo-

rithm can be summarized as follows:

2° = ARBITRARY, (4.37)
r°=b— Az, (4.38)

d° =r°, (4.39)

o= L (4.40)
2" = 2F 4 o dF, (4.41)
rEHl = oF o AdE (4.42)

(£k+3,£k+3>

B = TR h (4.43)
and
Y = R g gk (4.44)

- 63 —

where k = 0,1,... 0o and the iteration terminates when the Euclidean norm of the

residual vector is less than some prescribed value.

4.2.2 The Preconditioned Conjugate Gradient Algorithm

Theoretically, the CG method should terminate in a finite number of steps (less
than or equal to N - the dimension of the linear system). However, if round-off
error occurs, or if the systemn matrix has a large spectral condition number (defined
as the ratio of the largest to the smallest eigenvalue), CONVErgence may never occur .
or may take considerably more than N iterations. Also, for large N, even a well-
conditioned system will require a large amount of execution time owing to the fact
that each CG iteration is fairly expensive.

The slow convergence rate of the CG algorithm can be improved by performing
a preconditioning process on the system matrix. The effect is to reduce the spectral
condition number of the system matrix which in turn improves the convergence rate
(Kershaw [1978,46}, Axelsson [1977,17-23]).

Preconditioning is realized by multiplying the original system (4.8) by matrix
K~! which is an approximate inverse to the system matrix. The optimal precondi-
tioning matrix would be the precise inverse of the system matrix, since multiplying
by such a matrix would solve the system exactly in one iteration. The effect of
preconditioning, then, is to put the linear system “closer” to its solution.

Since our system matrix is symmetric, the matrix K will also be symmetric,

and can be written as

K = (LLT). (4.45)
Multiplying (4.8) by K~ gives the new system

(LLTY 1Az = (LLT) . (4.46)

- 64 ~

For the present purpose, it is necessary to rewrite (4.8) as
(LTIALT) (L z) = (L71p), - (4.47)
or (to define the primed quantities),
Alz' =}, (4.48)

Since (LLT)~1A and (L7'AL"T) are similar matrices and have the same
eigenvalues, the convergence properties of (4.48) and (4.46) will be identical. The
CG method, now called the Preconditioned Conjugate Gradient {(PCG) method,
can be applied to the sysiem (4.48) in a manner identical to its application to (4.8).
This results in a set of equations “identical” to equations (4.37)-(4.44), but with
primed quantities replacing the normal quantities,

A"} and z' are as defined in (4.48). As for ', rewriting (4.16) in the form
1, _ _ Y S
B(z¥) = H(17'2%), (L AL-T) (L2, (.49

allows the definition of 7' as

1 _
E(z*) = -z-(t'k,A'), (4.50)
giving finally
p'* = L1k, (4.51)
Similarly to (4.23),
d° =" (4.52)

The relationship between d and d' is somewhat arbitrary. The choice

d* = LT (4.53)

- 65 -

1s made as it results in a considerable simplification in the equations defining the

PCG method.

With the above definitions for the primed variables, it is possible to transform

the equations back to normal variables. The resulting algorithm is given in the

following equations:

2° = ARBITRARY, (4.54)
r’=5h~ Az°, (4.55)
& =K1r°, (4.56)
ap = %{l, (4.57)
2" = g% + o dt, (4.58)
e = b — oy AR, (4.59)
Bi= Ltiﬁi:;) = (4.60)
and
g = K"+ gidh, (4.61)
where £ = 0,1,...00 and the iteration terminates when the Fuclidean norm of the

residual is less then some prescribed value.

- 66 -

4.2.3 Polynomial Preconditioning

The PCG algorithm presented in (4.54) — (4.61) is a special case of the generalized
CG method first presented by Hastenes [1956,83-102]. In his derivation, Hestenes
places no requirements on the properties of the matrix K. As a result, the choice
for K is not entirely obvious. The derivation presented here has the advantage
of indicating exactly what properties K should possess, namely that K-! be an
approximate inverse of the system matrix. Moreover, the method b.y which K1 is
obtained has not been specified.

For scalar processors, the most efficient way to obtain an approximate inverse
seems t0 be the incomplete Cholesky factorization method pﬁt forth by Meijerink
and van der Vorst [1977,148-162] (An implementation of which is discussed by Ker-
shaw [1978,43-65]). Also, Nakonechny [1983] has shown that the the Incomplete
Cholesky Conjugate Gradient (ICCG) method has the advantage of allowing effi-
cient irnplementation of a linked-list sparsity scheme.

Despite its advantages, ICCG is not suitable for implementation on a parallel
computer (Webb et al. [1982,325-329]). The incomplete Cholesky decomposition is
inherently a recursive process that does not lend itself to parallel implementation.
Successive column eliminations must proceed serially. While some parallelism can
be extracted from a column elimination when a sparsity scheme is not used, with a
sparsity scheme, parallel implementation is hopeless.

The goal here, then, is to arrive at an algorithm that:

1. incorporates preconditioning in its framework;
2. allows sparse storage of sparse system matrices; and
3. is efficiently implementable on a transputer array.

The above requirements are met by combining the basic PCG algorithm with
a class of polynomial preconditioners discussed by Dubois et al. [1979,257-268] and
Johnson et al. [1983,362-376].

— 67 ~

The Polynomial Preconditioned Conjugate Gradient (PPCG) algorithm ap-
proximates the inverse of the system matrix A by a truncated Neumann series
expansion. This approximate inverse is then used as K-! in the PCQ algorithm

((4.54) - (4.61)). Consider the splitting of the system matrix
A=(M-N)=MI-MIN). (4.62)

In exact analogy with the theory of scalar series (as opposed to matrix series), A1

can be represented exactly by
ATl =(I-MIN)"IM], (4.63)

which can be written as
A7l = (Z (M—IN)i) M, (4.64)
=0

OT &as

Al = (i(INM—lA)*’)M—l. (4.65)

1=0

Equation (4.65) assumes that
p(M7IN) = p(I-M™1A) <1, (4.66)

where p is the spectral radius of its matrix argument (Mirsky [1982,332]). The latter
point {4.66), follows from the fact that a matrix raised to higher and higher powers
will approach zero only if its spectral radius is less than one (Mirsky [1982,328]).
Wong [1987] discusses strategies for handling cases where the matrix does not meet

this requirement.

68

Owing to the fact that the calculation of (4.65) is impossible, an approximation
to the inverse of the system matrix can be constructed by truncating the series (4.65)

after a few terms (typically 1 to 4). Let the truncated inverse be defined by

z—1
K;!= (Z(I - M-lA)i) M, (4.67)

=0

where the possible z values (one to infinity) determine the degree to which A~! is
approximated. The PPCG algorithm is therefore parameterized by the quantity z
and shall, hereafter, be denoted as PPCG(z).
Since the matrix K~! is needed only for the matrix vector products in (4.54)
~ (4.61) of the form
c=Kr, (4.68)

- z

the product can be evaluated whenever it is needed and K~?! never explicitly stored
(which represents a considerable saving on storage since K1 will usually be denser
than A itself). This is a great advantage over the ICCG method which requires
additional storage equal to the storage required for the A matrix. PPCG(z) requires
only the storage of an additional vector of length N over the basic CG algorithm.
The value of z should be user-specifiable since the matrix vector multiplication
required to evaluate (4.68) is very expensive. For increasing values of z, there is a
definite trade-off between:
1. the decrease in total execution time resulting from the decrease in the number
of iterations needed to achieve a specified accuracy; and
2. the increase in total execution time resulting from the increased execution

time of a single iteration for higher z values.

- 69 —

The choice for M1 in (4.67) is of fundamental importance. It must be such

that (4.66) holds true. An exceptional choice is to take
M~ = (DIAGONAL(A))™!, (4.69)

since it allows any matrix-vector products involving M~! in the evaluation of (4.68)
to be replaced by a vector-vector product. With M~ of this form, (4.66) is guar-
anteed to hold if A is strictly or irreducibly diagonally dominant (Varga [1965,73]).
In particular, if A is a real N x N matrix, and (a;;}) < 0for all { = 7, then M™IN
1s nonnegative, irreducible, and convergent if (Varga [1965,84]):

1. A is nonsingular and A~! is > 0; or

2. the diagonal entries of A are positive real numbers.

Matrices of this type arise in many cases of interest. Varga [1965,161-208]
demonstrates that matrices with the above properties arise naturally from the finite-
difference solution of elliptic partial differential equations.

It can be seen that the preconditioning algorithm presented here is only as
good as the matrix-vector multiplication routine used to implement it. It is impor-
tant that the chosen sparsity scheme allow for a very efficient routine to be coded.
This point is especially important with parallel processors since the architecture will
often limit the usable sparsity schemes with a resulting limitation in the options
available for matrix-vector multiplication routines.

The implementation of PPCG(z) on parallel processors will involve compro-

mises between sparsity schemnes and multiplication routines.

- 70 -

4.2.4 Transputer Implementation

Since sparse matrix-vector multiplication is the most influential component of the
PPCG algorithm, its implementation is wholly determined by this component al-
gorithm. We saw in Section 3.3.2 that we can have an efficient multiplier on a
linear array of transputers when the matrices are banded. Fortunately, the numer-
ical methods for which PPCG is applicable (finite-differences and finite-elements)
produce banded matrices. As long as the requirements for PPCGQG preconditioning
are met, we can implement an efficient algorithm.

The vector operations also require a linear array of processors (see Section
3.2), so we are twice fortunate. Given the presence of the component algorithms,
the only necessary constituent for a complete algorithm is a sparse storage scheme.

Since each transputer in the network is essentially a scalar processor, we can
apply any of the linked-list sparsity schemes that have been developed for sequential
processors (Zollenkopf [1971], Gentleman et al. [1976], Eisenstat et al. [1976]). The
method adopted here stores each column as a linked list along with a pointer to
the first location in a column. A particularly convenient scheme is used in which
all storage (for pointers and coeflicients) is contained in a single one-dimensional
array. t Although not exploited at present, this would allow easy transferal of these
matrices between transputers.

In order to make use of the principles presented in Chapter 3, the CG and
PPCG solvers are implemented on a linear array of transputers. Each processor
in the network is given an identical copy of the program, with logic to handle the
special cases in communication requirements that arise at each end of the array.
For example, being at the end of the array would imply that a processor not pass
information to the right, and only accept information from the left (or however one

wishes to define the directions).

T The key Occam techniques used in implementing the sparse matrix storage scheme were
suggested by Andy Rabagliotti of INMOS Corporation.

-71 -

Given the algorithms of Chapter 3, the coding of the equations defining the
CG and PPCG algorithms is a straightforward substitution of procedure calls with
additional logic to detect convergence. The only departure from Chapter 3 is that
the scalar product algorithm is implemented on a linear array instead of a shuffle-
exchange network. This is due to limitations in the available hardware which did
not allow the simultaneous use of the two networks. Since the network used is small
(8 processors), the difference will not be significant.

To test the algorithm, a test matrix was generated locally in each processor
using the finite-difference CAE algorithm. In addition, the solver could be coupled
with another physical modeller which generates sparse matrices such as the finite
element method, or could receive all matrix data from the host. The latter case

would incur some start-up overhead which is not considered here.

4.2.5 Results

We begin by constructing a theoretical model for execution time of the PPCG
algorithm so that the behaviour of the algorithm can be studied for matrices larger
than the specific problem used to test the implementation {and allowed by available
hardware). This also allows characterization of the algorithm for larger numbers of
PTOCESSOTS.

In general, many iterations of the CG/PPCG algorithms are required to
achieve a solution. The number of iterations is dependent upon the size of the
system, as well as the conditioning of the matrix. Total execution time is therefore
only useful in directly comparing CG to PPCG (or other preconditioning methods)
where we are interested in the merit of the method as a whole.

For our purposes, the best way to characterize these algorithms is in terms
of the execution time for a single iteration {(Titer). This gives a measure of the

efficiency of the implementation, ignoring considerations of the specific problem at

hand.

-79 -

Comnsider the PPCG(z) algorithm of Sections 4.2.2 and 4.2.3. The following
model makes use of the primitive execution times in Table 3.1 as weights, and is
parameterized by five main factors:

1. the number of processors (N,);

2. the matrix hall-bandwidth WT;

3. the number of non-zero coefficients per column (N,.);

4. the number of columns stored per processor (C, = N/N,) where N is the

problem size; and

5. the PPCG parameter z.
Table 4.1 gives the cost of the main compenents of the PPCG(z) algorithm in terms
of these parameters, it being assumed that the requirements for nearest neighbour

sparse matrix-vector multiplication outlined in Section 3.3.2 are met.

Table 4.1: Estimated cost for an iteration of PPCG(z) (N, > 2). Adding up the

terms in the cost column gives the execution time for an iteration of PPCG(z).

Operation Cost
Matrix-Vector Mult. 2Z[CoNea T + T3) + 2(W — DT + (W — 1T
Vector Addition (z +)[CpT;]
Vector Subtraction 2[{C T
Vector Multiplication 2[{CpT)]
Scale Vector 3[C, T2
Vector Assignment 1[CpT]
Scalar Product [CoNuz(T) + T) + NI

1 The calculation is performed for symimetric matrices for whichk W = P = ¢ (as defined by
Figure 3.10) and thus have bandwidth 21 — 1.

- 73 —

As an example of the use of the PPCG algorithm, consider the finite-difference
solution of Laplace’s equation

~Vip =0, (4.70)

in the region depicted in Figure 4.1. We proceed by laying a regular grid of nodes ¢; ;
over the region (including the boundaries) and forming a system of equations using

the finite-difference approximation of the Laplacian (Forsythe and Wasow [1960])
(=@i-15 = bij—1 + 4¢ij — Pij41 — dit1,;) = 0. (4.71)

Here 1 and j represent the row and column index of a node (with ¢;; in the top

left corner of the region).

O

©-
1]

3| -V%4-0 b=

©-

b2

Figure 4.1: Example finite-difference problem.

Applying (4.71) to the nodes generates a system of equations which can be
solved for the unknown ¢. The traditional approach for solving problems of this sort
on serial machines, however, is not to form this matrix at all. The coefficients of the
matrix are generated as needed in an iterative scheme. Successive over-relaxation

(SOR), for example, uses {4.70) directly to compute the next value of ¢;,; given

- 74 —

existing values of the other ¢'s in the formula (Forsythe and Wasow [1960]). Newly
computed values are used immediately in subsequent node evaluations. This process
is iterated over all the nodes until the newly calculated ¢ cease to differ from the
old ones by some prescribed measure ~ at which time the solution is obtained.

Parallelization of the SOR iterative sequence is difficult since values generated
in the current step are used in the current step. This enforces an ordering on the
calculations, and makes the algorithm highly sequential. In simple cases such as
we have here, it is possible to “colour” the mesh into disjoint sets of nodes (the
so called red-black ordering) which do not affect one another in an iterative sweep
(Barlow and Evans [1982]). In this case, applying (4.71) to the red nodes produces
the next set of black nodes. Similarly, the black nodes produce the next set of red
nodes. Since the calculations involving a given colour are completely independent,
a highly eflicient algorithm is possible.

In more complicated problems with varying boundary conditions , a different
operator, or arbitrary boundaries, the task becomes more difficult. First of all,
considerable logic is needed to determine which equation applies to a particular
node (this is also a problem in the sequential case). Secondly, given the right
equation, we must ensure that we are able to colour connecting nodes differently.
Any, or all, of the above complications might cause us to reach an impasse, creating
the need for multi-colour schemes (Adams and Ortega [1982]).

To avoid the above complications, the entire matrix can be formed as we
have done here. This approach has been taken by Wong and Jiang [1977], and
Wong [1977], who use a method similar to PPCG to solve finite-difference problems
with up to 65,000 unknowns on a CYBER 205 vector supercomputer (Hockney and
Jesshope [1981]).

It is interesting to note that vector supercomputer implementations of PPCG

suffer from limitations similar to the current algorithm, in that they must also

75 _

restrict themselves to structured matrices {i.e. banded) to obtain efficient matrix-
vector multiplication. The most common method, due to Madsen et al. [1976], relies
on the matrix having a well defined diagonal band structure.

For the problem in Figure 4.1, equation (4.71) is applied only to the interior
nodes, since the boundary nodes are specified by the boundary conditions {other
types of boundary conditions have to be catered for differently). Furthermore, for
nodes immediately next to the boundary nodes, (4.71) must be modified to reflect
the fact that the value of ¢ for some of the nodes in the operator is already known
by virtue of the boundary conditions. Consider the equation for ¢s 5. In this case,

we know that ¢;2 = 0 and ¢3,; = 3, so that equation (4.71) becomes

422 — d23 — P32 = 3. (4.72)

Generating equations for all of the interior nodes results in the following ma-

trix system (using a 5 x 5 grid with 9 interior nodes):

4 -1 0 -1 0 0 0 0 © qsm\ 3
-1 4 -1 0 -1 0 0 0 o0 P2,3 0
0 -1 4 -1 0 -1 0 0 0 P2.4 1
-1 0 -1 4 -1 0 -1 0 0 $3,2 3
6 -1 0 -1 4 -1 0 -1 0 ¢33 | =10 (4.73)
0 0 -1 0 -1 4 -1 0 -1 $3.4 1
0o 0 0 -1 0 -1 4 -1 0 P42 5
o 0 0 0 -1 0 -1 4 -1 $4,3 2
0 0 0 0 0 —1 0 -1 4/ \eésa/ \3

For a grid with N, nodes on each side, a system with N = (N; —2) x (N, ~ 2)
unknowns is produced (with an associated matrix of size N x N). Important for
our purposes, is that the matrix is banded, with bandwidth {2(N, —2) —1). As
we have mentioned, the matrix meets the requirements for PPCG convergence and

efficient matrix-vector multiplication.

_.76"

Table 4.2 compares the execution time of a CG/PPCG(z) iteration estimated
by the computation time model in Table 4.1 (for both the T-414 and T-800 transput-
ers) with an implementation of CG/PPCG(z) running on an 8-processor transputer
array. It should be emphasized that the times given are for arsingle iteration, and are
not the execution times needed to reach the final solution. These results are shown
for a 66 x 66 node problem (which has 4096 unknowns). Also shown are results
given in Allen [1983] which show the execution time per iteration for an identical
problem running on a DAP processor array (Hockney and Jesshope [1981]) and on

an Amdahl 5850 mainframe.

Table 4.2: Ty, estimates and results for PPCG(z) (N, = 8). The time is given in

mmilliseconds.

System CG PPCG(2) PPCG(4)
T-414 Array 251 461 825
T-414 (Est.) 245 447 772
T-800 (Est.) 25 48 81

DAP 33 64 125

Amdahl 52 90 162

The first thing to notice from Table 4.2 is the accuracy of the estimated T-
414 execution time relative to the time obtained on an actual array of transputers.
Generally, the estimated values are within 7% of the actual values. This gives us
some license to speculate on the behaviour of the algorithm on larger networks and
problem sizes. While this is important in its own right, we are also given some
confidence in the estimates for the T-800 transputer, allowing us to discuss the

expected results for it as well.

77 -

Table 4.3: Estimated Tjse, for PPCG(2) for different Np. Tiser is given in millisec-
onds, and Eyn, in %.

Ny | Tier (T-414) | Ew, (T-414) | T, (T-800) | Ex, (T-800)
4 884 99 94 68
8 447 g8 48 96
16 229 96 26 91
32 123 89 15 76
64 74 74 12 49

Given this, we can tabulate estimates of execution time and efliciencies for
other network sizes for both the T-414 and the T-800 transputers. The results are
given in Table 4.3 for an array of processors executing the PPCG(2) algorithm.

We can see that in all cases, the efficiencies are quite high, only faltering
when there are 64 processors (the maximum allowable for a problem of this size
and bandwidth — while still maintaining nearest neighbour communication). Thus
it represents the maximum in communication and the minimum in computation.
We are consoled by the fact, then, that the efficiencies will rise when the problem
size is increased.

The algorithm possesses at least one shortcoming. This example problem
is admittedly quite special in that the bandwidth is quite small in comparison
to the number of unknowns. Given different finite-difference operators, or more
complicated shaped regions and grids, this may not be the case. It would then be
- harder to maintain nearest neighbour communication, causing efficiency to suffer.
This problem can be controlled somewhat by judicious node numbering, but there
may be cases where that may not be enough. Even in the event that next-nearest
neighbour communication is required, the algorithm should still be quite efficient.
What has to be avoided is having a bandwidth so large that vaﬂues have to be passed

across a significant portion of the array.

?8

This example shows how transputers can provide high power at a reasonable
cost. As the estimated results in Figures 4.2 and 4.3 show, a transputer array with
8 T-800 processors could execute the finite-difference problem faster than either the
DAP or the Amdahl. Since the cost of these computers is on the order of millions
of dollars, and the cost of an 8 transputer array is currently around $25,000, we can
see that there is a considerable difference in the power/cost ratio. Thus, for this

problem at least, we have achieved to goals set forth in the introduction.

— 79 —

CHAPTER V

PARALLELIZATION OF THE BEM ALGORITHM

This chapter presents a parallel implementation of a two-dimensional Boundary El-
ement Method (BEM). This method was chosen as an example of a CAE algorithm,
since it is currently being used in a commercial CAE system that is used {0 aid in
the design of printed circuit boards (Poltz and Wexler [1986]).

The partitioning of the BEM algorithm described here is dependent upon a
number of details specific to the algorithm used. Most important of these is the way
in which one chooses to describe the geometry of the structures being modelled. The
particular properties of the modelling method used here (see Section 5.2.2) cannot be
guaranteed to carry over to other geometric discretization techniques such as cubic
spline based modellin.g. As such, this chapter in no way describes a general attack

on such problems. Its purpose is to present a particularly innovative partitioning

of a CAE algorithm.

- 80 -

5.1 MANITOBA: A Boundary Element Accelerator

In this section, the MANitoba Integrated Transputer/Occam Boundary element
Accelerator (MANITOBA)t is described. § MANITOBA necessarily integrates two
algorithms, because the end result of applying the BEM to a problem is a system of
linear equations which must be solved for the unknowns, Since the execution times
for these two separate phases are comparable, an implementation cannot consider
only one, but must address both problems simultaneously. It is in cases like this
that the art of parallel programming comes to the fore. The algorithms must be
implemented in a complementary fashion, so that neither is unduly crippled by the
architecture needed for the other.

Once it was decided that the transputer and Occam would be used, it was
necessary to determine how the two algorithms could best be partitioned to allow
efficient co-implementation. Decisions about the partitioning were made within the
bounds of a number of competing constraints.

The first and perhaps most important constraint was that the algorithin could
be adapted (or would adapt itself) to transputer networks of varying sizes. This is
important because it is not reasonable to limit users to some standard configuration
if it does not meet their performance requirements. If more power is needed, then
more processors could be added to obtain the required performance characteristics.

Also important was the requiremnent that both the matrix generation and ma-
trix solution phases of the algorithm be implemented on the same network topology.
This avoids any waste or inefficiency involved in shoe-horning an algorithm onto an
incompatible network configuration. It also avoids the possibility that some pro-
cessors might have to sit idle if they are not part of the topology required for the

other algorithm.

1 In the spirit of self-reference (Hofstadter [1980]) ~ a self-referential acronym.
I MANITOBA was presented at the Second Occam Users Group meeting in Santa Clara CA,
March 1987,

~ 81 —

The last major criterion revolves around global communication in transputer
networks. Since transputer networks are best at local communication and degrade
greatly in efficiency if much rardom global communication takes place, we must
avoid it if at all possible. Failing this, the required communication must be regular
and predictable so that communication and computation can be overlapped in dif-
ferent parts of the array. After study of various matrix solution algorithms and the
BEM algorithm it was decided that a linear array of processors as shown in Figure

5.1 was best suited to accommodating both the algorithms and the design criteria.

HOST
A
3 > —d
1 2 000 N
<] e -~

Figure 5.1: MANITOBA architecture.

Aside from allowing implementation of the BEM and matrix solution algo-
rithms, the linear array has a side benefit in keeping with the goals of this research.
If one is targeting the accelerator for small workstations, cost is a major consid-

eration. Given constraints of cost, it is not feasible to offer a very large number

- 82 —

of processors, so it is better to pick the architecture that is most versatile for the
problems at hand.

MANITOBA is divided into two sections. The first section, which runs on a
transputer located in the host computer, is responsible for communicating with the
host computer and feeding data from the host to the computationa] array. It also
maintains a protocol with the BEM array that allows it to control its operation.

The second part of MANITOBA, which is distributed over a linear array of
transputers attached to the control processor, implements the BEM and matrix
solution algorithms. Each processor is assigned a set of contiguous columns over
which it 1s responsible for both matrix generation and solution as shown in Fig-
ure 5.2. Every processor {1,2,..., N} contains a copy of the matrix generation and
solution algorithms as well as a complete copy of the problem specification data so

that each has all the resources necessary to carry out its task.

Proec. 1 Proc. 2 Proc. N

(o]
o
Q
aplg puey ydiy

Vs

Sets of Contigucus Matrix Celumns

Figure 5.2: Matrix partitioning on an array of processors.

—~ 83 —

As with any solution to a complex problem, an acceptable solution represenis a

compromise in some respects. For example, the chosen matrix solution method was
Gaussian elimination. This algorithm has the virtue of a rather obvious parallelism,
but also requires global communication of coefficients of elimination. Fortunately,
this global communication is very regular and can be overlapped with computation
in a pipelined fashion, making for an efficient algorithm.

The matrix solution algorithm was the fundamental driving force behind
choosing a linear array since having an efficient matrix solver is important to algo-
rithm performance. Given this, it was necessary to put restrictions on the geomet-
rical description given to the BEM matrix generator so that global communication

would be minimized. Details of this are discussed in Section 5.2.4.

5.2 The Boundary Element Method

The focus of this chapter is the Boundary Element Method (BEM) whichis a general
technique for the solution of boundary value problems posed in an integral equation
framework (Jaswon and Symm [1977)). It is applicable to many kinds of problems
in both two and three dimensions.

For the purposes of this dissertation, two-dimensional electrostatic boundary-
value problems are solved in piecewise homogeneous regions (i.e. a two-dimensional
plane segmented into regions of differing dielectric permittivity e that is constant
throughout each region). The method used was first described by McDonald et al.
[1974]. Further treatment of the method appeared in Jeng and Wexler [1977], Jeng
and Wexler [1978], Lean and Wexler [1982], and Klimpke [1983]. The spirit of the
implementation described here comes from these works, but has been extended to

accommodate paralle]l partitioning on a linear transputer array.

-84 -

5.2.1 BEM Theory

Consider a three-region problem consisting of the whole of exterior space (R.) with
free-space dieleciric permittivity ¢,, and two interior regions R; and R {or R;
generally) with permittivities e; and e; as shown in Figure 5.3. The labels B,
and B; are the exterior and interior interface boundaries respectively, while 7 is
an observation point and 7' is the location of charges distributed on the various
boundaries. Moreover, the outwerd pointing normals for the interior and exterior
regions are denoted as 7i; and 7. respectively, with outward pointing normals on the

interface between regions 1 and 2 being denoted 71 and #o.

Figure 5.3: Region, surface, and normal definitions for multi-media regions.

The boundary element analysis that follows seeks the charge distribution along
the problem boundaries shown in Figure 5.3. The effect is to replace the bounded re-
gions of differing permittivity with eguivalent charge distibutions on their boundary.

This allows the problem to be viewed as a free-space distribution of charges, and in

_ 85—

turn allows the use of the free-space Green function. Once the boundary charges
have been determined, they can be used to calculate the potential throughout the
two-dimensional plane.

The solution of Laplace’s equation
Vig =0 (5.1)

in this two dimensional plane is sought. Remembering that in two-dimensions, the
field of a point charge has logarithmic variation, consider the field due to a collection
of N point charges g; whose locations are given by various vectors 7 '. Elementary
superposition allows us to express the potential at some observation point 7 with

respect to some reference point 7, as the sum

N

BT = ¢(Fo) = = 5o ~(Inli* 7|~ Il — 7). (5.2)

1=

H instead of discrete charges, we have a continuous charge density distribution
o(7') along a boundary curve B, then the sum is replaced by an integral and

becomes

O(F) — $(7) = — = /B oIl — 7| — Inffy =7 Jdr'. (5.3)

2me,

Unlike the three-dimensional case, the potential has logarithmic variation. Thus we

cannot use infinity as a reference potential, and must instead choose 7, to be finite.

Letting ¢(r,) = C yields

6(7) = —— f (7l = 7| = Inify - 7' ldr' + C. (5.4)
B

27e,

86

Consider the second term of equation (5.4) for a moment. If we choose 7, > 7,

then In|r, — 7'| is essentially a constant. We can therefore write the second term

Inlfy — 7 r| ()
27e, :

If we impose the physically realistic constraint that the total charge be zero

as

f o(7)dr' = 0, (5.5)
B

we are left with

&(7) / G(F|7)o(7)dr' + C. (5.6)
fo

Here, G(7|7") is the two-dimensional Green function

G(FIF) = —-2—1;r—ln|17' _ (5.7)
and plays the role of kernel for the Fredholm integral equation of the first kind.
Equation (5.6) describes the potential for Dirichlet boundary conditions. For

Neumann boundaries, the derivative of the potential is specified. This is modelled

by the Fredholm equation of the second kind (Stakgold [1979])

() = 2 f G (o)ar' — (5.8)

€o

in which ¢' and G' are the derivatives of ¢ and G with respect to the outward
normal to the boundary.
For the case where there is an internal interface between materials with differ-

ent ¢, the appropriate equation is (Jeng and Wexler [1978], Lean and Wexler [1982])

(El - 62) /B a(F'jai'(Flf’)dr' ~ (51;:—62) o(7) = 0. (5.9)

87

While we are seeking ¢(7) throughout the plane, it is not the unknown. In-
stead, we must first find the charge distribution o(#') on the boundaries which will
give rise to the spatial potential field under the prescribed Dirichlet, Neumann, and
interface boundary conditions. Once the charge distribution is known, it can be
substituted back into Equation (5.4) to calculate ¢(7).

With the above equations in hand we are able to solve for the potential in the
plane in terms of the boundary charges necessary to produce that potential field.
The variational process used to obtain the boundary charges is similar to that used
to solve finite element problems. Consider equation (5.4) under Dirichlet boundary

conditions ¢(7) = g(7'). The integral operator for this case is

K= 21. G(FIF) + C, (5.10)
o JB

which produces the operator equation
Ko(r) = g(7). (5.11)
Defining the inner product
(u,v) = /B wv dr, (5.12)

the solution of (5.11) is accomplished via a variational approach in which the sta-

tionary point of the “energy” functional (Jeng and Wexler [1977])
F = (Ka,0) — 2o, g), (5.13)
coincides with the desired solution when the operator K is self adjoint

(Ko,7) = {0, KT). (5.14)

— 88 —

Substituting (5.6) into (5.13), we obtain

far /]‘3 —G(7I7)o()dr drm/Bcr('F)drC-2LU(F)g(F)dr. (5.15)

To minimize this functional, a Rayleigh—Ritz procedure is used (Harrington
[1968]) in which o is expressed as the sum of orthogonal expansion functions with
unknown coefficients. This generates a matrix system which can be solved for the
coefficients of expansion, yielding the value of ¢ along the boundaries.

Let there be expansion functions {a;(7), as(7'),...,a,{7)} which are param-
eterized along the path of integration by coeflicients of expansion {o1,09,...,0.}.

We can then write o as

)= iai(F), (5.16)
=1

which after forming column vectors a and ¢ (5.16) may be expressed in vector
notation as

o(r) = alo = ola. (5.17)

Equation (5.15) then becomes
=0 / —G(F |7 (7)dr' dra + ng a(F)drC

P, /;? a()g(F)dr. (5.18)

The functional F' is minimized by differentiating with respect to the variational

parameter ¢ and setiing the result equal to zero which yields

/B_a_z_() B%G(T (7)dr' dra—i—f 7)drC = f (F)g(F)dr. (5.19)

— 89 —

Equation (5.19) can be written as the matrix system

S =9, (5.20)
where
1
55 = / ai(7) [—G(F |7)a; (7)dr'dr (5.21}
B Bt
and

b; = /J;ai(v_")g(?)dr. (5.22)

Equation {5.19), and its accompanying constraint equation

f ol (7F)dre = 0 (5.23)
B

apply to all the Dirichlet boundaries in the problem.
Analysis similar to that producing {5.19) can be applied to the equations gov-
erning the Neumann and interface boundaries. In the case of Neumann boundaries

?

the analysis produces

1
f ofF) | 2 FFT 7 Vdr dre — f o(7)aT(7)dre = / o) (7),
B B € 2¢; Jp B
(5.24)
where G represents the normal gradient of the Green function with respect to the

boundary in question and is given by

’ ~
VG k= — . (5.25)

The only restriction implied by (5.24) is that the solution will only be valid in
the region into which the normal to the Neumann surface is pointing. For example,

if the surface normals of the Neumann boundaries all point into the exterior regiomn,

-90 —

the solution obtained will be valid there. Conversely, if they point into the interior
region, the solution will only be valid in that region.

For interface boundaries, (5.9) becomes

(E] —‘52>\/g(7—'-)/ G]I(F|F1)QT(F’)dT,dT‘g_
€ B B

_(“+Q)/}gﬂ¢%ﬂmg=a (5.26)
2¢o B .

Here, the normal derivative of the Green function is calculated with respect to the
normal pointing into region 2 (the outward normal of region 1).

Equations (5.24). and (5.26) accumulate into the system matrix and forcing
vector in a fashion similar to the Dirichlet case (equations (5.21) and (5.22)).

Given the above equations for Dirichlet, Neumann, and interface boundaries,
most of the machinery is in place for the solution of boundary element problems.
The only detail left is to describe the expansion functions used to model the ge-
ometry and the charges. These dictate how the boundaries are subdivided and the

matrix equation accumulated.

5.2.2 Surface and Charge Modelling

Applying the Rayleigh-Ritz variational method to {5.15) expresses the boundary
charges in terms of orthogonal expansion functions with unknown coefficients. Solv-
ing for the coeflicients giveé us the boundary charges, which can in turn be used to
calculate potentials in problem region(s).

It turns out to be convenient to carry this same framework over to the ge-
ometric model of the boundary surfaces so that both are modelled in the same
way and to the same polynomial order. Formally this is called an isoparametric
representation.

However, it is hard to imagine how one could model a complicated geometry

with a single polynomial, since such geometries are made up of combinations of

-~ 91 -

many lines and curves with geometric singularities. To get around this problem,
the surfaces are broken up into many patches or elements (hence the name Boundary
Elements). A polynomial is fitted over each patch separately, with the control points
(called nodes) defining the path of the element on the two-dimensional plane.

The charges are then modelled isoparametrically by specifying their variation
along each element in terms of their values at the nodes used to model the geom-
etry. Interpolation between the nodal values gives the charge anywhere along the
boundary.

Consider Figure 5.4, in which some function f(z) is known at three points
(nodes) in the range [z1,23]. We shall call this set of three nodes an element. If
we assume that the function varies quadratically we may construct a function to

interpolate it over the whole range considered.

f(x) f (&)
? A
—
o x4, T 0 05 10> ¢

Figure 5.4: Mapping of a boundary element from global to local space.

-02 -

This is done by first mapping the element into what is called the standard
stmplex. In this case, the simplex corresponds to the interval [0,1] on the £ axis,
where £ is our parametric coordinete. We define a set of orthogonal quadratic

polynomials a; over this interval (called local or £ space)} which take on values

7ey . § 1 at node ¢;
(¢) = { 0 at all other nodes. (5.27)

We may then express f(£) in terms of its value f; at the three nodes as

F(E) =) ailé)fi. (5.28)
=1
Note, that while we know f in terms of ¢, it is not easy to obtain a particular f(z).
This restriction is of no consideration here, however. The interpolation merely gives
a parametric representation of the functions involved which can be used to evaluate
the integral equations in a simple fashion.
The particular expansion functions used here are called the Lagrangian shape
(or interpolation) functions (Wexler {1980], Lean and Wexler [1985]). Such functions
may be defined for any order of approximation, but are restricted to quadratic

representation here. In terms of the local space coordinate they are

ap =282 -3¢ +1,

ar = 4(€ ~ €2), (5.29)

This same formulation is used to model both geometry and charge distribution
for the algorithm. The charge distribution representation follows the description of
f(£) above, and allows a quadratic representation of the charge along a curve in

space.

- 93—

Curved boundaries are modelled in a similar way, but have a parametric repre-
sentation for both the z und y coordinate. Given a curve in space , 1t is subdivided
along its length into boundrry elements (as in Figure 5.5) which are defined by
three nodes {(z1,y1),(z2,42), (23,3)} along the curve. The location of any point

on a boundary element is described parametrically as

2(€) = 3 ai(€)as (5.30)

1=

—

and

y(€) = ail€)yi. (5.31)

i—1

P}

Thus a particular £ on the interval [0,1] will generate a point in space (z,y) on the
boundary element.

Since we are going to evaluate line integrals on the simplex element, it is desir-
able to know the Jacobian of the transformation {the magnitude of the incremental
vector di) as a function of {£. Given the above parametric representations for a
boundary element defined by three real space coordinates, the Jacobian is defined

such that |d7’| = J d€, which yields

R(CEEN

where
0z - Bal(€)]
B_E._; 65 T (033)
and
By _ o= Be(€)
B—£~Z 6£ Yi. i (535)

—94 —

Also important to the proper evaluation of the boundary equations is the unit
normal vector o a boundary element. By convention, we define the unit normal as
pointing to the left when traversing the boundary element from nede 1 to node 3.

Specifically, the unit normal is defined as

. 1[0y, Oz,
n=— (BEZ (965‘)' (5.36)

5.2.3 Matrix Generation

Given the results of the two previous sections, we can now describe the matrix
generation process in detail. The data given to the matrix generator consists of
a list of boundary elements describing geometrically the various boundaries and
interfaces present in the problem. Each element is assigned a boundary or interface
condition and is defined by three nodes on the boundary as described in the previous
section. Finally, a list indicating the (z,y) coordinates of each node is given. Each
node is indexed by a unique number that is in one-to-one correspondence with the
unknown coefficients of expansion for the charge along the boundary. Figure 5.5
shows a sample geometric discretization for a parallel plate capacitor.

With the problem discretized in this fashion, the task is to evaluate equations
(5.19), (5.24), or (5.26) on the appropriate boundaries. Since the boundaries are
discretized, so too are the evaluations of the integrals. Thus the limits of integration
extend only over one element at a time, but are evaluated for all elements.

In the case of the doub.ie integral, both the inner and outer integrals are
evaluated in this fashion. If there are N elements, the double integral must be
evaluated N? times to perform the required integration over all of the boundaries
(1,2...,N on the inner integral, and 1,2,...,N on the outer integral). In this
way every element is integrated “against” every other element and itself (the self-

element integration). When performing these integrations, the appropriate equation

— 95 -

Flement 1 Element 2

A A
Ie n'g M
L . —lp— —— L]
i 2 3 4 5
6 7 8 9 10
& . & & & —
N A J

W "4

Element 3 EFlement 4

Figure 5.5: Boundary element discretization of a parallel plate capacitor.

(Dirichlet, Neumann, or interface) is chosen according to the boundary condition
on the element used in the inner integration.

Note that, when performing the self-element integration, the Green function
is singular (i.e. 7 and 7' coincide, and a logarithmic singularity results). This situ-
ation requires special care in order to obtain accurate results. While the necessary
techniques have been implemented in the program, they are not important to the
present discussion. Details of the process are discussed by Lean [1981], Klimpke
(1983}, and by Lean and Wexler [1985].

Considering equation (5.19), let the inner integral be evaluated over element
E? (defined by nodes N1, N2, and N3) and let the outer integral be evaluated over
element E? (defined by nodes N3, N4, and N5). Applying the element-simplex
transformation from Section 5.2.2 to (5.19) we obtain

1

f a(8) / ZG(7(€), 7 (€)al (6)T(£) de' T (€)deer + f a(€)J(¢)déC
[E] Q

1
- / a()g(€)T(E)dE, (5.36)

~ 96 —

where J and J' are the Jacobians for the outer and inner integrals respectively.
The important concept to be gleaned from (5.36) is the process by which
matrix coefficients are accumulated, for it is the properties of this process which
dictate how the BEM algorithm can be partiiioned. Remembering the vector nature
of & and g, it can be seen that the multiplication of the row vector and column
vector present in the double integral produces a 3 x 3 matrix of coefficient values.
Thus the evaluation of (5.36) must be performed for each of these terms. In the

present case we have

a3 (3:1) (372) (353)
covraiy=|as |(a1 a2 a3)=1{(41) (42) (43)]. (5.37)
as (5,1) (5,2) (5.3)

The first index in the ordered pairs of (5.37) indicates the row that the calculated
coefficient will sum into, while the second coefficient indicates the column. Thus,
for every element pair, the nine values resulting from the evaluation of (5.36) are
summed into matrix locations as shown above.

After the element integrations have been performed, the integrations for the
constraint equation (5.23), the C constant, and the right-hand side are performed.
The results of these integrations are then placed into appropriate matrix locations
giving, finally, the complete system matrix which can be solved for the charge o

and the constant C.

- 97 -

5.2.4 Parallel Matrix Generation

Paralie]l matrix generation must be done within the context of matrix inversion. The
(Gaussian elimination solver described in Chapter 4 requires that each processor in
the array contain a set of contiguous matrix columns. Furthermore, we require
that the columns be contiguous across the array of processors {column numbers
must increase as we go from the beginning to the end of the processor array).
Any generation scheme must respect this requirement, lest we suffer an inordinate
penalty moving data into the required {format.

Since the element-element integrations of equations (5.19), (5.24), and (5.26)
are completely independent, the BEM algorithm has an obvious parallelism. One
just divides the task of performing all of the integrations equally between all of
the processors. This obvious solution does not work unless care is taken, however,
because it ignores important details of interaction between the matrix accumula-
tion process, the matrix solution algorithm, and the underlying parallel processing
architecture.

For example, consider the implications of equation (5.37). Given two elements
with arbitrarily numbered nodes, we see that the element-element integrations have
the potential to generate coeflicients that sum anywhere in the S-matrix. Since
~ the architectural design has specified that a processor handles only a small set of
contiguous columns of the S-matrix, it is highly probable that a processor will have
to communicate a large number of coeflicient values to other processors. Thus,
while a simple partitioning of the work of integration will give near perfect speedup
efficiency, it introduces unacceptable global communication costs. The problem,
then, is to seek ways to minimize the global communication.

Careful examination of equation (5.37) reveals that the global node numbers
of the elements on the inner loop of the double integral determine J&ua matrix column
that a coeflicient will get summed into. If a processor had only to process nodes in

its inner loop whose index numbers corresponded with the matrix columns it was

- 98 —

accumulating, global communication would be eliminated. It would be impossible
for a processor to generate coefficients that fall outside of its responsibilities. Note,
that the outer integration loop still ranges over all of the elements, so it is necessary
for each processor to contain data describing each of the elements.

We can arrange for this to happen by numbering the elements and nodes
appropriately. All that is required is that the index numbers of the nodes comprising
lan element steadily increase as the element number increases (with the exception
that the index number of node 3 of element 7 can equal the index number of node
1 of element (2 + 1}). If one has control over the element generation process, it can
be constrained to produce data in this fashion. Failing that, the nodes could be
renuimnbered. This does not restrict the geometries in any manner, but does require
care when constructing the boundary element mesh. An example of such a data set

is shown in Tabie 5.1.

Table 5.1: Example of node numbering required for parallel partitioning. The
global index numbers of the nodes defining the elements are given.

Element Naodes
1 123
2 345
3 567
4 789

With elements defined this way, the communication costs of the algorithm are
greatly reduced. Because the node numbers making up the element in the inner
integration specify which columns are accumulated into, it is easy to divide up the
elements between the processors so that a processor performs only those integrati;ons
which accumulate into its matrix section. Consider, for example, two processors and

the element definitions of Table 5.1. Assigning elements 1 and 2 to processor 1, and

- 99 —

elements 3 and 4 to processor 2 would cause processor 1 to accumulate into columns
1 to 5 while processor 2 would accumulate into columns 5 to 9.

The only case where communication of coeflicients between processors is re-
quired occurs when the last element assigned to one processor shares a node with
the first element assigned to the next processor. In this case, both processors ac-
cumulate coeflicients for the same matrix column. To simplify the matrix solution
algorithm, it is deemed that the shared column of coefficients be passed backward
(towards the host) in the processor array. Thus in the example above, processor 1
would be responsible for columns 1 to 5 and processor 2 would be responsible for

columns 6 to 9.

5.3 Combining the Generator and Solver

The major points impacting the implementation of the BEM and Gaussian elimina-
tion algorithms on a linear array of processors have already been mentioned. Given
these, the ways in which the algorithms impact each other are now detailed.

Most of the interaction stems from the fact that the boundary element is the
smallest “quantum” with which one can deal when generating the system matrix.
Because of this, it is not possible (or at least practical) to distribute the matrix
columns between the processors as evenly as the matrix solution algorithm allows.
Ordinarily, the maximum disparity in the number of columns per processor would
be one, but because of this element quantization, the .diﬁ'erence could be as much as
three columns. This slows the algorithm down since processors with fewer columns
will have to wait for processors with more columns.

For completeness (and robustness) of the algorithm it is necessary to consider
the details of matrix accumulation and solution when the number of boundary
elements 1s comparable to the number of processors. Again, since the element is
the smallest “quantum” with which we can deal in generating the system matrix, a

processor must generate at least three columns of the matrix. The only exception

- 100 -

is the case when there are more processors than elements, where some processors
sit idle during the whole of the algorithm execution.

While it may seem wasteful not to distribute the load of non-idle processors
onto the idle ones, it is not. For most problems of practical interest, it is improbable
that there will be more large-grain processors than there are elements. Moreover, the
communication costs involved in redistributing the matrix columns would probably
outweigh the gains in execution time.

In addition, there is the possibility of node sharing. If node 3 of the last
element of processor 7 is the same as node 1 of the first element of processor (z + 1)
(e.g. both with an identical node index number k), then both processors will sum
into a common column k. To arbitrate this occurrence, it is deemed that processor
(¢ + 1) will pass back its partially accumulated column to the ith processor. Thus
the minimum number of columns that a processor handles (excluding zero) is two.

The maximum number of columns handled by a processor is limited only by
available memory and round-off error. The actual number of columns it handles
is equal to the number of distinct global node numbers present in the boundary
elements processed in its inner integration loop (minus one if it shares a node with

the previous processor in the pipeline).

5.4 Results

Initially a single transputer board (IMS B004} was used to develop the algorithm.
Because of the mutual support provided by Occam and the transputer the multi-
processor version of the program could be run on the single transputer. The self-
synchronizing nature of Occam programs guarantees that the program running in a
simulated parallel processing environment (multitasking) would perform the same
as it would on an array of transputers (multiprocessing).

Subsequently, an array of eleven transputers was obtained. As proof of the

validity of the Occam/transputer programming model, the algorithm was adapted

- 101 -

to run on the hardware array in a matter of hours — and ran correctly the first
time.

To evaluate the performance of the algorithm, MANITOBA was applied to
three problems of varying sizes (36 Elements - 81 Nodes, 77 Elements - 175 Nodes,
and 130 Elements - 299 Nodes). This range of problem sizes corresponds to small,
medium, and large respectively. Figures 5.6, 5.7, and 5.8 show the speedup efficien-
cies Ey, (defined in equation (3.1)) attained by MANITOBA for the three problems
using two to eleven processors. To further quantily the algorithm, F N, was calcu-
lated separately for the matrix generation and solution portions of the algorithm as

well as for the algorithm as a whole.

100

] V4 g o7 e —
1. M4 U M
20 / ? |- I /
% % L7 7] % 7]
. ZRERZ f 4 Z [
ZRZR%RZRSRZR%R 7% 7Y% % ZRZRY% 7]
Hannpnhanognand i e
9 NZRZR% ZReR7ZRER% ZIRIRZ ZRIRZRPIN%
AN 175 BN L R o) N o AL
g ENZBENZRENZ B Z R Z %R Z %R Z %R %
S A MO N M e W Mg gL
w ZERENZRENZBENZBENZBINZ ZHgnz 7% %
. /\% ?Q? /\2 5? /\4 \é 5N R9N7 N7 /<<
NZ B NZ R NZ A7 N7 RN Z BN Z BN Z RN Z RSN 7
fﬁgﬁy,ﬁ%/w/ﬁﬁ \?/v‘ﬂff/?/vf
30 W P W 2 . £ 9 Z] 2 L/ \/.r‘ //‘x . \ /
ZK?/@/&§“¢,f¢?§,mjf¢/&§//
20 ¥ !] a a]/
N NG NG N TN TN R DN TN %
NN BN RN NN RN RN ZAN AN
10 21 s ve <] —t I e // L o 1 <
7 % ; %
INZEGNZRENZ N7 B NZ I GNZ N7 N7 Nz
MENZIANZ BEN7 BANZ RANZRGNZRANZBANZRGN7RGN7
2 3 4 5 5} 7 8 9 10 11
Number of Processors
A1 Generate [5S) selve Overalt

Figure 5.6: Ey, for 36 element - 81 node problem.

-102 -

100 g

_] % . ve
% % E “ 2 e W IO
;’7 e
so/,////?/jr/‘?/;_///,/,/?_,/ ¢
] "M Aardi A I T Ao
0 K e rararngnaraniging
¥ A NA MO AU A U
3 . NZRPYZ /Tf A0 N r AN
c ENZRENZ Y N LN VA RN TN NZHZNZ
2 N VNA A N N A I N T Tre
= ¢ N 77 BV AN FA—TAt v 17 2 N7
. ENZRONZRONZ RN/ RANZRINZRENZRENZRENZREN
0 DA A ZRENZRENZBANZBENZRANZBENZEEN
N LN N N NS N N TN NG A
BN RN Z RN AN RSN R NN NN
2 ~3 TN N7 LT ™ TN vy
NINININININ NN NN
20
A A VN VN N N R TN TN
NZRANZRENZRENZRENZRENZRENZRINZRENZREN’
0 ZRIN/BAN7RAN7 Be ZBINZ RN RINRINZRY 7
A N NZRGNZRENZRENZRENZRENZ N7
o KA INA IAVA IV 1A WG D))
2 3 4 3 6 7) 9 10 11
MNumper of Processors
E’Z] Genarate E Solve Overall

Figure 5.7: Ey, for 77 element - 175 node problem.

It can be seen that excellent results are obtained for the the matrix generation
portion of the algorithm. For the medium and large problems Ey, is well over 90%,
and only falls below 90% on the small problem in which communication costs become
significant in comparison to computation costs. In fact, efficiencies rise steadily with
increasing problem size, indicating that the matrix generation algorithm can be used
on larger arrays of processors with little penalty.

A periodic rise and fall in efficiency can also be observed. While it is most
predominant for the matrix generation algorithm, it also occurs for the matrix
solution algorithm. The peaks in efficiency correspond o cases where there are an

equal number of matrix columns assigned to each processor. This generally occurs

- 103 -

100 = -
L/] V4 e _— _] 7]
w0 1k Ca £ NS S N Gl
S sz
B3O o r > b b b
1M, e % % % %
oy nagnannanae e ng
T [TS [4% A 17 [~
s A nAaAnanandnanang g
AR NZREN7 REN7 RN 7R ENZ RN R ENZ Y= R =S
s A I I I I) ENZRN7
: RN AN AN AN BN RN BN RAN AN
ENZBGNZRONZRGNZ RGN Z BN 7ZREN/ BAN:
% /Qf \; /\f % j j\f bf £y /\f ENIRAN/
% N N N N N AR
« KA A 1 1A T) TN T T [
T~ <} 7 [~] 3
RN O RN BN RN BN BN/ RN BEN
BANZRANZRANZBANZRENZRANZRENZRANZRANZ AN
N N TN N A VA LN TN N
NN AN RN AN Z RN BN RN RSN RS
MEZN/ RN RINZRAN7 RON/RIN/REN/RINZ RPN/ RPN
v . s
0 /i/ |¢ 1/ \i\/ 1¢ /\i\ﬁ /\?\7/ /\l\f//’ |§f /|¢
2 3 4 5 B8 7 3) 10 11
Number of Frocessors
71 Generate N] sowve Gverall

Figure 5.8: Ey, for 130 element - 299 node problem.

when there are an equal number of elements assigned to the inner integration loop
of each processor (see Section 5.3 for details). The word “generally” is used because
saying exactly how many columns are assigned to a given processor is difficult.
The possibility of of node sharing between elements makes the number of columns
dependent upon details of the node numbering scheme.

Although it may not appear so at first glance, the results for the matrix
solution portion of the algorithm are also good to excellent. To see this, we can
calculate the theoretical efficiency when solving a N x N problem on N, processors.
In this case each processor will be assigned C, = N/N, columns of the matrix to

eliminate.

- 104 -

To calculate efficiency, we need both 7T) (the uniprocessor execution time)
and Ty, (the N, processor execuiion time). When eliminating the ith column, row-
operations are performed on (N — i) rows, each of length ((N¥N + 1) —4). Thus each
elimination step requires ((N + 1) — 1} = (N — 1) multiply-subtractions (note that
this number includes manipulation of the right-hand side of the linear system). To
fully eliminate below the diagonal, (N — 1) steps will be needed, since (N — 1) rows

have coeflicients below the diagonal. Summing all of these operations gives
N—
Ty =(T,” + T, Z N 4+1)—i)*(N =4), (5.38)

Using the fact that

N NN+
S bED)

1=1

and

N N(N +1)(2N +1
$°a N e

1=]

allows us to simplify (5.38), giving

Ty(N) = (T~ + T,*)N(N — 1)(%{

[O-

). (5.39)

The task of estimating T, is simplified with the recognition that the last
processor is the bottleneck in the system, and we need only to calculate its execution
time to obtain the execution time of the whole algorithm. Until the last processor
starts eliminating its own columns, it will be performing row operations upon all
of its (Cp + 1) columns (including the right-hand side). Since there are (N — C,)
columns to the left, the last processor will have to do row operations on each of
its columns (N — ;) times (for a length (N — £} in the ith elimination step).

Having done that, it eliminates a sub-matrix of dimension €, on its own, giving

- 103 -~

an execution time formula identical to (5.39), but with C, substituted for N (i.e.

T1(Cp}). Pulling all of these contributions together yields

N~Cp
Tn, = (T + 1) || D (Co+1) = i) = (N =0)| + Ta(Cp)| (5.40)

1=1
which can be simplified to give

Ty, = (o™ + 1) [(Cp L 1) (N - C)[N — W

|+ Ti(Cp)| - (5.41)

The execution time predicted by (4.39) and (4.41) is for forward elimina-
tion only, and does not include the overhead of communicating the coeflicients of
elimination. It is instructive to see how close the predicted performance comes to
experimental performance, as it offers a measure of how effective the overlapping of
communication and computation is.

Figures 5.9 and 5.10 compare predicted elimination execution times and ef-
ficiencies for the 175 node BEM problem. The fact that the curves follow each
other so closely indicates that communication time is not much of a factor in the
total execution time of the algorithm, and that communication and computation
.are effectively overlapped in the Gaussian elimination algorithm. Also, since the
theoretical expressions ignore the cost of back-substitution, the result also indi-
cates that we are justified in assuming that the cost of back-substitution is small
when compared to the cost of elimination. As such, these results indicate that the
implementation of Gaussian elimination is close to optimal for this architecture.

Since the results indicate that communication is of small cost in the algorithm,

we can expect that we will still have relatively good efliciencies with the faster T-800

- 106 -

20

S
A
20 /\\
\\\
70
g

’g‘ 60 N
e N VD
R NEGN
- N N e
R ZNEENESN
P NN PN P
. NN %

20 /t ;\ 4N //§ j'/i INNZES

. 1 \\ P S .
mfsf\h/\ /5///i/§?‘/q7 7 [
N A
RZSIENINIZNZASINIANNIANINIA
1 2 2 4 5 [+ 7 3 9 10 11
Number of Processors
7] Experimental L] Theorstical

Figure 5.9: Theoretical vs. measured elimination execution times. Gaussian elim-
ination results are compared for the 175 node BEM problem for 1 to 11 processors.

transputer. The efficiencies will definitely be lower, however, as the computational
costs will be reduced by approximately a factor of 10 with the T-800.

Finally, looking at the overall efficiency of the algorithm shown in Figures
5.6, 5.7, and 5.8, we can see that it ranges between 88% and 75% for the medium
and large problems. Since the decline in efficiency with increasing numbers of
processors is not very steep, the implementation could also be applied to larger
arrays. In general, for arrays of practical size, it can be seen that MANITOBA
provides a realistic route to obtain significant boundary element performance in a

desktop workstation environment.

- 107 -

o IS ZNEaNEZNEENIE S B ST
ERANNINIANIANIANININIANE
I AN
N NN

S A Al

ZNIZNEZNIZNIONEZNIONIZNIZNION

RN NN

Number of Pracessors

{ZZ} Experimental Theorstical

Figure 5.10: Theoretical vs. measured elimination efficiencies. Gaussian elimina-
tion results are compared for the 175 node BEM problem for 2 to 11 processors.

It is easily seen, however, that the major limitation of the combined algorithm
1s the matrix solver and not the matrix generator. It is the solver that will ultimately
limit the number of processors that can be used efficiently.

It is doubtful that this imposes a practical limit however. Since a processor
must have at least one element on its inner integration loop, it must be responsibie
for at least three matrix columns on average. Examination of theoretical efficiency
for a 300 node problem indicates that with 100 processors, the efficiency would
be still around 50%. Doubling the problem size to 600 nodes only increases the

efficiency.

- 108 -

Thus, a 100 processor array can solve a 600 node problem at least as efficiently
as a 300 node problem. However, without care, solving a matrix of that size using
Gaussian eliminatior can incur problems with round-off error. Using double pre-
cision would allow larger problem sizes, but this would only increase the efficiency
of the elimination algorithm by increasing the cost of computation, and further
reducing the effects of communication. Thus, if one is happy with 50% efficiency,
the parallel algorithm will always be practical within the constraints of Gaussian
elirnination itself.

To gauge the relative performance of MANITOBA, it was compared against
a uniprocessor implementation running on a HP 9000-320 workstation consisting
of a Motorola 68020 (16 MHz) assisted by a 68881 numeric coprocessor (12 MHz).
Figure 5.11 summarizes the results for the small, medium, and large problems.

With eleven processors MANITOBA is about 6 times faster than the 68020
based machine. This result speaks well for the speed of the T-414 transputer micro-
processor, since it is an integer chip with no floating point support. However, using
the T-800 would decrease the computation component of the algorithm by about
a factor of 10 (Electronics [1987]). Conservatively speaking, then, MANITOBA
would perform at about 30 to 40 times the 68020 workstation’s speed if it used
eleven T-800 transputers. An impressive result indeed.

This chapter has addressed a two-dimensional BEM formulation. In three-
dimensions, elements are two-dimensional patches instead of line-elements, and the
issues become more complicated. With line elements we only had to worry about
common node numbers at each end of the element. With patches, however, common
node numbers can occur at any node on the boundary of the element. This makes it
harder to divide up the inner loop as nicely as we have done in the two-dimensional

case, so that matrix generation may require more communication.

- 109 -

7
. _.
L
9 NZRINZ
® IV N N7 %
P NZBINZRANZ
SRS\ BANZ RN/ RN
4 — SN 27 N BONZ
2 N A I N A
5 _ NN RN 7RI Z BN 7RI
= % NN VN PN VN N
3 ~ VIS ZRINZRANZRINZ, %
) NZANZB AN ZBNZ BN ZAINZ /K¢
] - /TZ N ;\4 3/ ZINZRNZ NS Z
- NZRENZRANZ BN Z RN Z RN Z R NZ B N7
IN/N/RIN RN RAN BN N AN BN AN
Za N~ N7 BN RN NZBENZ N7 B2 N7 RPN
1 S B 4 h i 7y bt 4 -
7 ﬂézm//vffg \//y;ﬂ&,fj/y,/j
/?2 NZAINZR9NZ ZRINZR N RINZRINZR N7 7
o KINA LN /|4 ANA VN /VA ANA VN VINA N A}
1 2 3 4 5 6 7) 10 11
Number of Processors
71 81 Nodes 5N 175 nodes 277 299 nodes

Figure 5.11: Comparison of MANITOBA to 68020 based workstation. This figure
gives the rafio of the execution time for a 16 MHz 68020 based workstation (with
12 MHz 68881} to the execution time of MANITOBA with one to eleven transputers.

Again it should be possible to put suitable restrictions on the mesh node

numbering to minimize communication between processors. However, the process

will be more complex than the two-dimensional case.

~ 110 -

CHAPTER VI

CONCLUSION

The goal of this dissertation was to show ways of achieving high performance for
numerical analysis and CAE algorithms on microcomputers and workstations. The
fact that we were working in a low cost environment made this task harder by
requiring that the acceleration mechanism be low-cost. Consideration of this issue
lead us to adopt the transputer as the implementation platform.

Again, it should be emphasized that this is the transputer’s main advantage
over other MIMD systems. All of the algorithms presented here can be adapted
equally well to any MIMD system that utilizes simple point-to-point communication
and local memory. Shared memory muliiprocessing systems can also be used, but
with fewer processors, since memory and bus contention would slow them down.
Therefore, what is presented in this dissertation should be taken in a more global
context, and not applied specifically to transputer networks.

If one wishes to assess the algorithms presented here on other MIMD proces-
sors, a table similar to Table 3.1 can be constructed and used in conjunction with
the execution time formulas provided (except for BEM matrix generation). This
will weight operation counts appropriately, and allow valid comparisons between
different architectures, which are sure io have different strengths and weaknesses.

In addition to affecting the choice of implementation platform, the low-cost
requirement had other far reaching implications. The major one being that the

algorithms had to be developed for a limited number of processors. Since there

- 111 -

were few processors, the simple linear array and shuffie-exchange communication
networks were sufficient for our purpose. Given access to an unlimited number of
processors, it would be necessary to consider more complex networks.

It can be seen that cost was a very influential factor in the algorithms presented
here. Experience and the results presented show that the choice of the transputer
was a good one. The PPCG(z) algorithm in Chapter 4 is able to compete favourably
with computers costing considerably more on just eight T-800 transputers (based
upon theoretically derived data).

We began in Chapter 3 with a study of basic matrix and vector algorithms.
By carefully choosing a partitioning of vectors and matrices, it was shown that
dyadic and monadic vector operations could co-exist with matrix operations on a
linear network augmented with a shuffle-exchange network. These algorithms serve
to demonstrate that programming MIMD computers is basically a problem in data
organization. One has to insure that the data is where it is needed, or can be
communicated there easily.

The monadic and dyadic vector operations present an almost ideal case, since
all the component operations are independent. It was thus possible to process them
on a linear array with virtually 100% efliciency. This presupposes that the coeffi-
cients of the vectors can be ordered and distributed identically on all processors.

The scalar product presented difficulty since values from all parts of the array
had to be combined. This necessitated the introduction of the shuffie-exchange
(SE) network because of its superior capabilities in that area. This is really only
necessary for larger numbers of processors, however, since the advantage over the
linear array is small for smaller array sizes.

The same SE network also allowed an efﬁciént dense’ matrix-vector multi-
plication since matrix-vector multiplication is essentially a number of independent

scalar products. The communication requirements were too expensive when applied

- 112 -

to randomly sparse matrices, however, and we were led to consider a restricted class
of sparse matrices {banded) in order to have an efficient algorithm.

The tools developed in Chapter 3 enabled a novel PPCG algorithm to be
developed, since PPCG is entirely composed of these algorithms. This opened the
door to parallel implementation of the finite-difference method (FDM), and we were
able to solve a simple problem with high efficiency. Since the finite-element method
(FEM) also produces sparse matrices of the type required by the PPCG algorithm,
we can expect that the solver.can also be applied to that CAE technique.

This is really only the first step in the process, however, as it does not consider
the production of the matrices. In the simple finite-difference problem presented
in Chapter 4 it was very easy to generate the matrix in parallel, but the general
application of the FDM or the FEM will not adapt as easily to parallel partitioning.

In the case of the FEM, the integration over each element is independent, but
coupling due to common nodes between elements may result in large communica-
tion costs for matrix generation. In addition, matrices with unacceptable bandwidth
may be produced, invalidating the use of the banded sparse matrix-vector multi-
plication routine in ti’le PPCG routine. Thus, the major issue involved is keeping
the bandwidth of the matrix narrow so that we may solve the matrix equation effi-
ctently. To do this, one may be forced to compromise the performance of the solver
in favour of the generator or vice versa.

MANITOBA, on the other hand, successfully addresses both of these issues,
and represents a complete CAE algorithm. By making restrictions on the the input
data, the matrix generation algorithm was partitioned efficiently, and in such a
way that very little data movement was required to put the matrix into the format
required by the Gaussian elimination routine.

It is argued by some that the types of algorithms studied here are most suit-
able for vector supercomputers. Cost issues aside, the results presented here and

elsewhere indicate that MIMD parallelism is also suitable for such algorithms. Of

- 113 -

course there are arguments for both sides, but one should not dismiss MIMD par-
allelism out of habit,.

The problem with MIMD parallelism, when compared to vector computers,
is that a MIMD computer faces problems when algorithms require global access
to the data. A vector computer merely has to fetch a value from memory, while
a multiprocessor may have to communicate the value through several intervening
PrOCessors.

However, the unrestricted access to data has problems associated with it.
Memory becomes a bottle-neck since all accesses must come through one place.
While schemes such as interleaving can be implemented, they quickly drive up the
cost of the computer. In fact, it can be argued that most of the resources {and
hence cost) of a vector computer are dedicated to memory systems whose purpose
is to feed the data-hungry pipelines.

MIMD processors do not suffer this bottle-neck (excluding shared-memory
types), since they all access independent memory. This effectively multiplies the
speed of the memory by a factor equal to the number of processors, giving very
high effective memory bandwidth. Also, since increasing the speed of a memory
system causes costs to grow exponentially, the slower memory system of the MIMD
machine can be very inexpensive when compared to the vector computer. This in
turn, implies that each node in 2 MIMD machine can be disproportionately cheaper
than the vector counterpart.

This work has shown that programming of MIMD machines is not a trivial
task. Generally, the kind of parallelism they support requires that one have a very
extensive idea of what is happening in the algorithm at all levels of parallelism.
Where a vector computer attains speed by shear brute-force, a MIMD algorithm
must approach a problem with surgical-like precision.

Consider MANITOBA for a moment. MANITOBA represents a tight fusion

of two very different algorithms. The requirements on input data, although basically

m114_

simnple, could not have been realized without a thorough *“global” picture of data
dependency in the algorithm. In fact, the necessary conditions are born of the
innermost loop in the program combined with the method of geometric modelling.
Having a machine recognize such a tactic would be enormously difficult, if not
impossible.

Because MIMD programming is essentially a “thought” process, it does not
seem likely that automated MIMD programming will be possible in the near future,
so perhaps the best that can be hoped for is a “programming assistant”. Since this
- work has shown that a linear array (or more generally, a ring of processors} and
the shuffle-exchange network allow efficient MIMD algorithms for both numerical
analysis and CAE, it is proposed that the combination of the two networks can be
the basis of a versatile hardware accelerator. This allows much flexibility within a
fixed network topology. Given a fixed topology, it might be possible to automate
some aspects of algorithm development. Since the transputer with four links is
capable of implementing both network topologies together, it would be an ideal

implementation vehicle.

- 115 -

APPENDIX A

An Occam-Transputer Programming Example

This Appendix is included to better explain the methodology of programming in
Occam for a transputer array. Specifically, it shows how the Transputer Develop-
ment System (TDS), marketed by INMOS Corporation, is used to develop parallel
programs. While environments using other languages are appearing, they are not
considered here.

The TDS is discussed first. This is necessary to give a feel for the programming
environment in the hope that it will make what follows as clear as possible. This
will also explain why the host-accelerator concept is used throughout this work.
Development using the TDS mandates it.

The algorithm chosen is the disiributed addition of N, numbers on a N,
processor shuffle-exchange (SE) network described as described in Section 3.2.2.
It has the virtue of being simple to understand and present, while still illustrating
some important Occam/transputer programming principles. The thought processes

required at each step of the algorithm’s development are discussed.

- 116 -

A.1 The Transputer Development System

The TDS is a complete programming environment for the development of transputer
programs. Although other languages are available, it is primarily a vehicle for
Occam programming. The author’s system is hosted on an IBM PC containing an
IMS B004 transputer board (Ghee [1986]) as shown in Figure A.1. The PC and
the BOO4 are interfaced through the PC bus and a transputer link adapter which

effectively gives the PC a transputer link.

IMS ~BO04 —-emmmmmmemmcmy

J—_ |
l F =—| PC BUS o

1= - = \ e —— fe——

TDS | LINK T l
FILE SERVER INTERFACE TRANSPUTER

1
i
1
i
{

Figure A.1l: PC-based transputer development system.

The TDS used here consists of two parts:
1. a file and screen server program running on an IBM PC platform; and
2. a compiler-editor system running on the transputer located on the B004 board.
All file and screen I/0 required by the server takes place over a standard transputer
link (see Chapter 2).
With the TDS, one is able to code and execute Occam programs entirely on
the BO04’s transputer. Any parallel components of these programs can be executed
concurrently using the transputer’s hardware time-slicing abilities. This i-s usually

the first step when developing a parallel algorithm, as it is much easier to debug

- 117 -

programs running on the host processor. Moreover, the laws of Occam programming
guarantee that the behaviour of the program will be identical when disiributed over
an array of transputers.

When a program is debugged, additional facilities exist for specifying how to
distribute it over an array of transputers. This process, called configuration, allows
the programmer to specify which process should be placed on a given transputer,
and which transputer links to associate with its input and output channels.

A configured program can then be loaded into a network of transputers that
is connected via a transpuier link to one of the free links of the transputer on the
B004 (assuming, of course, that the network is interconnected in the appropriate
topology). This loading process is entirely transparent to the user, as the TDS
includes a distributing network loader. A program running on the host B004 can
then be used to provide any data required by the computational array and to receive

the computational results.

A.2 Specification in Occam

As an example we will implement the SE network discussed in Chapter 3. It will be
used to sum a set of numbers, one in each processor of the network. The collapsed
view of the SE network is shown in Figure A.1 (reproduced from Chapter 3}.

We first describe how this network and algorithm can be described for execu-
tion on a single transputer. This is usually the first target for new algorithms, as it
provides & more convenient testing environment. The next section will describe how
this description can be adapted to run on a network of transputers with I/0 links
connected in the SE topology. The Occam/transputer programming model guaran-
tees that the single processor and distributed versions will behave identically.

First a practical note: since present transputers possess four I/0 links, any
process that we construct for placement on a single transputer must not require

more than this number. We could, if we choose to, implement a link muliiplexing

- 118 -

]

]
0 ! 2 3 s 5 6
_*

Figure A.2: The SE interconnection network.

scheme, but this may carry with it performance penalties, as well as introducing
complexity to the algorithms. The SE network is fortunate in that it only requires
a maximum of three I/O links per computational process.

This is only a concern if one intends to execute the algorithm on a real network
of transputers. If one is only interested in developing parallel algorithms, with no
intention of actual parallel execution on a specific hardware target, a process with
any channel requirement can be created.

Isolating a single processor from Figure A.2,-we can view it as a black box
with two input channels and two output channels as shown in Figure A.3. The
channels Shuff0ut and ShuffIn serve to implement the perfect shuffle network,
while ExchgIn and ExchgOut mediate the exchange operation (see Section 3.2.2 for
definitions of these operations).

In Geecam (ignoring the contents of the black box for the moment), we could

express Figure A.3 as follows:

SE.Proc(CHAN OF ANY ShuffIn,ShuffOut,Exchgln,Exchglut)

- 119 -

Shuff In

l

—>» ExchgOut

«—— ExchglIn

|

Shuf f Out

Figure A.3: A single SE processor.

Note, the direction of communication on a channel is not explicitly defined
in Occam. Rather, it is implicitly defined to be from the output process on one
end to the input process on the other. The channel iiself carries no information
about its direction. By appending the channel’s name with In and Out we define
the direction mnemonically.

Somehow we must arrange that a number of copies of SE.Proc be used with
proper channel arguments to implement the SE topology. This, of course, must be
done with the constraint that the number of processors must be an integral power
of 2 (i.e. Np =2V).

Since we may wish to look at the results of the computation, we will use the
host-accelerator architecture that has been used throughout this work (see Figure
5.1 for example). This requires that we designate a single processor as the interface
between the host and the SE network. Conveniently, we choose processor 0 for
this purpose. This will require that the homogeneity of the network be destroyed
somewhat. Where we could have placed identical programs in each processor, it
is necessary to place a somewhat modified one in processor 0 to handle external

communication.

- 120 -

A side effect of this is that we must reserve one channel of processor 0 for
communication with the host. Thus we must arrange that the process(program) we
place in that processor only require at most, 3 links. Looking at Figure A.2, we can
see that processor § only requires 3 links, so no extra effort is required to address
the problem. In addition, we should notice that the shuffle operations on processor
0 and 7 (Np — 1) are redundant, and could be replaced with internal memory to
memory copy. Eliminating them would free up links at each end for other purposes
(multiple links to host or between each end of array).

This introduces additional complexity, but does not require we burden the
processors with logic to arbitrate the special cases for communication at each end
of the array. We now require three procedures for the beginning, middle, and end

of the array:

SE.Proc.0 (CHAN OF ANY FromHost,ToHost,ExchglIn,ExchgOut)
SE.Proc.I (CHAN OF ANY ShuffIn,Shufflut,Exchgln,Exchglut)
SE.Proc.L (CHAN OF ANY Exchgln,ExchgOut)

Each of them will be designed optimally for their role in the communication and
computation process.
Recalling the definition of the perfect shuffie from Chapter 3, the i’th processor

P; “shuffles-out” to another processor whose index is:

Pz—-—){PZ“ 0§1SN/2—1, (Al)

PN, N/2<i< N-1.

The bi-directional exchange connections between the processors are defined
by:
Prie—— Py 0< <2V 1, (A.2)

- 121 -

A straightforward translation of the SE operation yields the following Occam pro-

cedure (where we now use a more descriptive name for the procedure):

-~ Middle processors (I’th processor)

PROC SE.Add.I(CHAN OF ANY Exchgln,Exchglut,
CHAN OF ANY Shuffln,Shufflut,
VAL INT Log2Np,

VAL INT ProcNum)
INT MyNum,NextNum:

SEQ
MyNum := ProcNum -~ Sum all the ProclNums
SEQ I = O FOR Log2Np
SEQ
PAR ~- Parallel shuffle

Shufflut ! MyNum
ShuffIn 7 NextNum
PAR -- Parallel exchange
Exchglut ! NextNum
ExchgIn 7 MyNum
MyNum := MyNum + NextNum -- Accumulate

This represents the generic SE procedure, and is used for all shuffie pro-
cesses except the first and the last. It is important to notice the use of PAR in the
communication sections. This allows input and output communication to proceed
concurrently. When running entirely on a single transputer this is not as impor-
tant, but on a multiprocessor application, true concurrency can be achieved on link
communication because of the transputer’s link architecture.

The parallel communication also eliminates the possibility of deadlock for the
shuffle and exchange operations in a transparent fashion. therwise, the program-

mer would have to devise an orderly communication scheme to prevent deadlock.

~ 122 -

This is most easily seen in the case of the exchange operation. If the commmunica-
tion was done sequentially, and both processes tried to exchange-out, they would
be deadlocked since neitber could receive the others message. This could be cir-
cumvented by ensuring that one of the pair was exchanging out while the other was
exchanging in, but this would add more complexity than is necessary, while ignoring
the performance benefits discussed above.

The last processor in the chain requires some special consideration. As was
already mentioned, the shuffle operation feeds the information back on itself and
could be replaced by an internal data transfer. Doing this would have the side
benefit of releasing precious channel resources at the end of the array .for other
purposes should the need arise. Taking the shuffle operation inside the process

results in the following Occam procedure (suffix “L” indicates last):

-~ Last processor - internal shuffle step.

PROC SE.Add.L(CHAN OF ANY ExchgIn,ExchgOut,
VAL INT Log2Np,

VAL INT ProcNum)
INT MyNum,NextNum:

SEQ
MyNum := Proclum == Sum all the ProclNums
SEQ I = O FOR Log2Np
SEQ
NextNum := MyNum ~- Internal shuffle
PAR -- Parallel exhange

Exchglut ! NextNum
ExchgIn 7 MyNum
MyNum := MyNum + NextNum -- Accumulation

The same issues apply to the first processor (0), so the shuffle operation is

also placed internally for it. There is however an additional requirement placed

~123 ~

upon it. Namely, that it communicate the result of the sum operation back to the
host. We therefore must add channels to it for this purpose, along with the code to

communicate the final result, which yields:

-- First Processor - has internal shuffle step
- - communicates answer to host

PROC SE.Add.O(CHAN OF ANY ToHost,FromHost,
CHAN OF ANY Exchglin,Exchglut,

VAL INT Log2Np,
VAL INT ProcNum)
INT MyNum,NextNum:
SEQ
MyNum := ProcNum -~ Sum all the Procliums
SEQ I = 0 FOR Log2lp
SEQ
NextNum := MyNum -- Internal shuffle
PAR -- Parallel exchange
Exchglut ! NextNum
Exchgln 7 MyNum
MyNum := MyNum + NextNum -- Accumulation
ToHost ! MyNum -~ Give host the answer

-~ (this processor only)

Given the above procedures, we must connect them up with channels in the
proper fashion (i.e. the SE topology). This is most easily done using an array of
channels (defined in the same way as an array of variables) and the Occam replicated
PAR comnstruct. It also allows us to target different size SE networks in a convenient
fashion. We will need separate arrays for both the shuffie connections and the
exchange connections, with each input and output treated separately. Also, the
arrays for the exchange operation need only be half the size of the shuffle channel

arrays.

an 124._

VAL Np IS 8: -~ number of processors

VAL Log2Np IS 3: -- log base 2 of Np
[Np] CHAN OF ANY Shuff: -- shuffle channels
[Np/2] CHAN OF ANY ExLtoR,ExRtol: -- exchange channels

We use the convention that each processor 7 has channel Shuff[i] as its
shuffie-out channel. Given this, we must determine the channel to use for input.
Equation (A.1} is not immediately helpful, as it indicates the connection between
processors and not channel resources. Since we are making a one to one identifi-
cation of output channel numbers and processor numbers, we can invert equation

(A.1) to give

P—

- . even
{;/_H /2 ; odd, (4.3)
which indicates the processor that P; inputs from. Given this information, we
immediately know the channel index to use.
Exchange operations will be keyed from their representation in Figure A.2
(left to right and right to left). The only thing to watch is that we map a given
channe] between the proper set of processors.

The following Occam code fragment embodies the above considerations in the

connection of a SE array:

125

-- Parallel shuffle-adds

PAR
SE.Add.0(ToHost ,FromHost, ~~ Processor 0
ExRtoL[0],ExLtoR[0] ,Log2lip,0)
PAR I = 1 FOR ((Np-2)/2) ~- Middle processors
PAR
VAL INT PN IS {((2*I) -1): -- Proc. Num (odd)
SE.Add.I{ExLtoR{I~1],ExRtoL{I-1],
Shuff [((PN-1)+Np)/2],Shuff[PN],
Log2Np,PN)
VAL INT PN IS (2%I): -- Proc. Num (even)
SE.Add.I(ExRtoL[I],ExLtoR[I],
Shuff[PN/2],Shuff[PN],
Log2Nip,PN)
SE.Add.L(ExLtoR[(Np~2)/2], -- Processor (NumProcs-1)

ExRtolL [(Np-2)/2],Log2Np, (Np-1))

Note the use of the replicated PAR. By changing the constants Np and Log2Np
we can construct SE arrays of any size. These numbers must be constants however,

as dynamic use of the PAR is not allowed.

All the preceding code fragments can then be wrapped up into a single Occam

procedure SE.Add.Unit.

- 126 -

PROC SE.Add.Unit(CHAN OF ANY ToHost,FromHost)
.. PROC SE.add.0(D

. PROC SE.Add.I()
-.. PROC SE.Add.L()
VAL XNp IS 8: -- number of processors

VAL Log2Np IS 3: -- log base 2 of Np
[Np]l CHAN OF ANY Shuff: -- shuffle channels
[Np/2] CHAN OF ANY ExLtoR,ExRtol: ~- exchange chamrnels

. Parallel shuffle-adds

Note, that we have used the convention of the INMQS TDS whereby sections
of hidden text are denoted by “...” on the left margin. Conceptually this represents
a “crease” in the program listing, which hides the text. This is a useful way of seeing
the overall structure of the program without the distraction of seeing all the detail.

Procedure SE.Add.Unit is a model for the computational systern as it would
exist on an actual array of transputers. The properties of Occam and the transputer
together ensure that this procedure will execute identically on one transputer, or
with its parallel components distributed over many. It and its component procedures
have been designed with multiprocessor implementation in mind. The process of
taking the single processor version and placing it on an array of transputers is

described in the next section.

~ 127 -

A.3 Mapping onto a Transputer Network (Configuration)

The {ollowing discussion makes a number of assumptions regarding the equipment
of the user. First of all, it applies only to the Beta-2 release of the TDS. Second,
it assumes that a set of transputers is available with access to all the links of
each transputer. The author’s hardware does not meet this requirement (Vadher
and Walker [1986]), as each set of four processors is hard-wired as a 2 x 2 square
array. This restricts the assignment of channels and introduces an unnecessary
complication to the configuration process.

The basic idea behind configuration is to assign hardware {physical) resources
to the virtual resources defined in the previous section. For example, you might
tell the TDS to put process “A™ on transputer number 0. Further, you may also
request that the input or output side of a transputer link “” be associated with a
particular channel of process A. Figure A.4 shows how the four links of a transputer
are numbered. Further, each link consists of two channels (input and output), whose
numbers are also shown. These index numbers are used to refer the channels when

allocating resources.

T i
LINK 1
4 —m o —— 2
-
= 2
— =
|
1§ QR — W fe— §
LINK 3
7 3

Figure A.4: Transputer link numbering.

~ 128 -

Configuration replaces PAR by the construct PLACED PAR. Each processor that

is placed is identified by a number and type specification (which indicates what

version of transputer is used) via the PROCESSOR statement. For example, the line

PROCESSOR 2 T4

specifies that a T-414 transputer is being identified as processor number 2 in the
network being defined.
The PROCESSOR statement is followed by PLACE statements which assign named

channels to specific hardware channels of the transputer. The statement

PLACE ToHost AT 2:

associates channel 2 (part of link 2} with the channel name ToHost. This name can
than be used as an argument to an instance of one of the procedures that are being
piaced in the network.

Here in complete detail is the configuration specification for the SE network
(assuming previous definitions for the SE. Add procedures). For simplicity, the same
links (channels) on each transputer are used in an identical role. Link 1 is used
for shuffling-out, link 2 for shuffling-in, and Link 3 for both exchange channels.
Since ExchIn and ExchOut are both between the same processor we are able to
assign them to a single transputer link. The shuffle channels, on the other hand,

are between different processors, so each require a separate link.

- 129 -

VAL Np Is 8:

VAL Log2Np Is 3:

CHAN OF ANY ToHost,FromHost:
[Np] CHAN OF ANY Shuff:

[Np/2] CHAN OF ANY ExLtoR,ExRtol:

-- number of processors
-=- log base 2 of Np

-- host i/o channels
-- shuffle channels

-- exchange channels

VAL ShuffInChan IS 1: -- Shuffle’s must be on different
VAL ShuffOutChan IS 6 -- links {1 and 2).

VAL ExchInChan IS 7: -- Exchange uses both chanrnels
VAL ExchOutChan IS 3 -- of link 3.

PLACED PAR
PROCESSOR © T4

PLACE ToHost AT 0O:
PLACE FromHost AT 4:

PLACE ExRtoL{0] AT ExchInChan:

-- First proc.
-- Link 0 to host

PLACE ExLtoR{0] AT ExchOutChan:
SE.Add.O(ToHost,FromHost,ExRtoL[OJ,EthoR[O],LogZNp,O)

PLACED PAR I =1 FOR ({Np-2)/2)
PLACED PAR
VAL PN IS {((2+I) - 1):
PROCESSOR PN T4
PLACE ExRtoL[I-1]
PLACE ExLtoR[I-1]

-- 0dd middle procs.
AT ExchDutChan:
AT ExchInChan:

PLACE Shuff[{(PN-1)+Np)/2] AT ShuffInChan:

PLACE Shuff [PN]

AT ShuffOutChamn:

SE.Add.I(EthoR[I—l],ExRtoL[I-i],
Shuff[((PN-1)+Np)/2],Shuff [PN],Log2Np,PN)

VAL PN IS {(2*I}:
PROCESSOR PN T4

-- Even middle procs.

PLACE ExRtoL[I] AT ExchInChan:

PLACE ExLtoR[I] AT ExchDutChan:

PLACE Shuff[PN/2] AT ShuffInChan:

PLACE Shuff [PN] AT ShuffCOutChan:
SE.Add.I(ExRtoL[I],ExLtoR[I],Shuff[PN/2],Shuff[PN],

Log2¥p, PN)
PROCESSOR (Np - 1) T4

-- Last proc.

PLACE ExRtoL[(Np-2}/2] AT ExchOutChan:
PLACE ExLtoR[(Np-2)/2] AT ExchInChan:
SE.Add.L(ExLtoR[(Np-2)/2],ExRtoL[(Np-2)/2],

Log2Np, (Np-1))

- 130 -

While this certainly looks more complicated, the similarity to what we had
before is quite evident. Logically, nothing has changed. We have merely specified a

physical mapping for the parallel components of the algorithm.

A .4 Observations

One of the major points to be observed in the previous sections is that programming
parallel algorithms using Occam is in no sense an automatic process. Considerable
effort is required on the part of the programmer to partition an algorithm for the
Occam programming model (and the transputer architecture). Some additional
effort is then required to map the algorithm onto a transputer array.

Placing the onus on the programmer is not without its benefits, however. It
is unlikely that “automatic parallelization” will reach a level that will allow it to
partition problems efficiently in the near future. The process requires too much
of a global picture of a given algorithm to expect it. The human mind is capable
of assembling such global pictures, and hence shouid be expected to come up with
novel approaches which would escape machine analysis of the problem.

Configuration, however, is one area that might be improved. While it is fairly
straightforward, there is no reason that it could not be automated, removing an
extra step from the programming process. The idea of configuration seems to have
resulted from the fact that a transputer network is usually a fixed entity. Once it
1s connected in a configuration, it will probably stay that way. Thus the designer
needed a strict way of specifying the topology that was to be used. In the case of
the author’s hardware (Vadher and Walker [1986]), this capability was absolutely
necessary since the B003 board had the four transputers hard-wired into a 2 x 2
array.

With the advent of the IMS C004 (Hill [1987]) the situation has totally
changed. The C004 is a 32 x 32 INMOS transputer link crossbar switch. That

is, it is capable of connecting any of the inputs and outputs of 32 separate links

- 131 -

(each input and output can be connected only once — many-to-one interconnections
are not allowed). Moreover, the connection topology is entirely soft'ware controlled.

With the C004, the configuration process could be automated. Given the
Occam representation of the algorithm, the C004 connection pattern could be gen-
erated, saving the programmer the necessity of producing the configuration himsell.
The manual connection of links using patch-cords would also be avoided.

Also evident is that the TDS is able to produce programs for imbedded sys-
tems. That is, systems that do not require any external support. For example, once
the SE array is loaded, it operates totally independent of the host. In principle,
the code could be placed in read only memory (ROM) for each transputer so that
the array could be autonomous. In digital eiectronics parlance, the TDS produces
ROMable code. Because of this, the transputer can be used in applications where
there may be no host computer to boot it. Again, the transputer is able to provide
a low-cost, yet powerful system.

All this aside, one thing speaks for itself. The Occam/transputer combination

provides inexpensive, powerful, and accessible parallel pProcessing.

-~ 132 -

REFERENCES

Adams, L., and Ortega, J., “A Multi-Color SOR Method for Parallel Computation”,
in Proc. of the 1982 International Conference on Parallel Processing, IEEE,
pp. 53-61, 1982,

Allen, R.AM., Parallelization of the Preconditioned Conjugate Gradient Method
Using a Processor Array. Masters Thesis, The University of Manitoba, Win-
nipeg, Manitoba, Canada, 1983.

Atkin, P., Tech. Note 17: Performance Mazimization. INMOS Ltd. publication 72
TCH 017 00, March 1987.

Axelsson, O., “Solution Of Linear Systems of Equations: Iterative Methods”, in
Sparse Matriz Techniques (Lecture Notes in Mathematics #572). Barker,
V.A. (ed.), Springer-Verlag, Berlin, Germany, pp. 1-51, 1977.

Barlow, R.H., and Evans, D.J., “Parallel Algorithms for the Iterative Solution to
Linear Systems”, in The Computer Journal, Vol. 25(1), pp. 56-60, 1982.

Barron, I., Clayill, P., May, D, and Wilson, P., “Transputer does 10 or more MIPS,
even when not used in parallel”, Electronics, pp. 109-115, Nov. 17, 1983.

Davis, P.J., Interpolation and Approzimation. Dover Publications Inc., New York,
1975.

Dubois, P.F., Greenbaum, A., and Rodrigue, G.H., “Approximating the Inverse of a
Matrix for Use in Iterative Algorithms on Vector Processors”, in Computing,
Vol. 22, pp. 257-268, 1979.

Eisenstat, 5.C., Schultz, M.H., and Sherman A.H., “Considerations in the Design of
Software for Sparse Gaussian Elimination”, in Sparse Matriz Computations.
Bunch, J.R., and Rose, D.J. (eds.), Academic Press Inc., New York, pp. 263-
273, 1976.

Electronics, “Credit-Card Size Transputer Modules Can Turn A PC Into a Super-
Mini”, Electronics, pp. 85, Jan. 21, 1988.

- 133 -

Flynn, M.J., “Some Computer Organizations and Their Effectiveness”, in JEEE
Trensactions on Computers, Vol. C-21 (9), pp. 948-960, 1972.

Forsythe, G.E., and Wasow, W.R., Finite- Difference Methods for Partial Differen-
tial Equations. John Wiley and Sons, Inc., New York, 1960.

Geist, G.A., Heath, M.T., and Ng, E., “Parallel Algorithms for Matrix Computa-
tions”,in The Characteristics of Parallel Algorithms, Jamieson, L.H., Gannon,
D.B., and Douglass, R.J. (eds.), The MIT Press, pp. 233-251, 1987.

Gentleman, W.M., and George, A., “Sparse Matrix Software”, in Sparse Matriz
Computations. Bunch, J.R., and Rose, D.J. (eds.), Academic Press Inc., New
York, pp. 243-261, 1976.

Ghee, S., Tech. Note 11: IMS B00{ IBM PC add in board. INMOS Ltd. publication
72 TCH-011 00, 1986.

Gottlieb, A., and Schwartz, J.T., “Networks and Algorithms for Very-Large-Scale
Parallel Computation”, in IEEE Coemputer, Vol. 15(1), pp. 27-36, 1982.

Harrington, R.F., Field Computation By Moment Methods. Reprinted by R.F.
Harrington, R.D. 2, West Lake Road, Cazenovia, N.Y., 13035, 1968.

Haynes, L.S., Lau, R.L., Siewiorek, D.P., Mizell, D.W., “A Survey of Highly Parallel
Computing”, in JEEE Computer, Vol. 15(1), pp. 9-24, 1982.

Hestenes, M.R., “The Conjugate-gradient Method for Solving Linear Systems”, in
Proceedings of the Sizth Symposium in Applied Mathematics of the American
Mathematical Society, Curtiss J.H. (ed), McGraw-Hill Book Company, Inc.,
Toronto, 1956.

Hill, G., Tech. Note 13: Transputer networks using the IMS§ B003. INMOS Ltd.
publication 72 TCH-013 00, 1986.

Hill, G., Tech. Note 19: Designs and Applications for the IMS C004. INMOS Ltd.
publication 72 TCH-019 00, June, 1987.

Hillis, W.D., The Connection Machine. The MIT Press, Cambridge, Massachusetts,
1985.

Hoare, C.A.R., “Communicating Sequential Processes”, Communications of the

ACM, Vol. 21 (8), pp. 666-677, 1978.

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International,
U.K., Ltd., 1985.

Hockney, R.W. and Jesshope, C.R., Parallel Computers. Adam Hilger Ltd., Bristol,
1981. ' '

- 134 -

Hofstadter, D.R., Gédel, Escher, Bach: An Elernal Golden Braid. Vintage Books,
New York, 1980.

Homewood, M., May, D., Shepherd, P., and Shepherd, R., “The IMS T800 Trans-
puter”, in JEEE Micro, Vol. 7(5), pp. 10-26, 1987.

INMOS, Occam Programming Manual. INMOS Ltd. publication OPS-002 000,
July 1983.

INMOS, Transputer Architecture Reference Manual. INMOS Ltd. publication 72
TRN-048 01, 1985a. |

INMOS, IMS T414 Transputer Product Data. INMOS Ltd. publication 72 TRN-
049 01, 1985b.

Jaswon, M.A., and Symm, G.T., Integral Equation Methods in Potential Theory
and Elastostatics. Academic Press, New York, 1977.

Jeng, G., and Wexler, A., “Isoparametric, Finite Element, Variational Solution of
Integral Equations for Three-Dimensional Fields”, in Internetional Journal
for Numerical Methods in Engineering, Vol. 11, pp. 1455-1471, 1977.

Jeng, G., And Wexler, A., “Self-Adjoint Variational Formulation of Problems Hav-
ing Non-5Self-Adjoint Operators”, in IEEE Transactions on Microwave Theory
and Techniques, Vol. MTT-26(2),pp. 91-94, Feb., 1978.

Johnson, O.G., Micchelli, C.H., and Paul, G., “Polynomial Preconditioners for Con-
jugate Gradient Calculations”, in Siam J. Numerical Analysis, Vol 20 (2), pp.
362-376, April 1983,

Kershaw, D.S., “The Incomplete Cholesky-Conjugate Gradient Method for the Iter-
ative Solution of Systems of Linear Equations”, in Journal of Computational
Physics, Vol. 26, pp. 43-65, 1978.

Kightley, J.R., and Jones, LP., “A Comparison of Conjugate Gradient Precondi-
tionings for Three-Dimensional Problems on a CRAY-1",in Computer Physics
Communications, 37, pp. 205-214, 1985.

Klimpke, B.W., 4 Two-Dimensional, Multi-Media, Boundary Element Method.
Masters Thesis, The University of Manitoba, Winnipeg, Manitoba, 1983.

Kung, H.T., “Why Systolic Architectures?”, in Computer, Vol. 15(1), pp. 37-46,
1982.

Lang, 8., Linear Algebra. Addison-Wesley Publishing Company, Don Mills, Ontario,
1972.

- 135 -

Lang, T, and Stone, H.S5., “A Shuffle-Exchange Network with Simplified Control?”,
in IEEE Transactions on Computers, Vol. C-25 (1), pp. 55-65, 1976.

Lean, M.H., Electromagnetic Field Solution With The Boundary Element Method.
Ph.D. Thesis, The University of Mznitoba, Winnipeg, Manitoba, July 1981.

Lean, M.H., and Wexler, A., “Accurate Field Computation With the Boundary
Element Method”, in IEEE Transactions on Magnetics, Vol. MAG-18(2), pp.
331-335, March, 1982,

Lean, M.H., and Wexler, A., “Accurate Numerical Integration of Singular Boundary
Element Kernels Over Boundaries with Curvature”, in International Journal
for Numerical Methods in Engineering, Vol. 21, 211-228, 1985.

Li, Q., Klien, D., and Field Jr., W.B., “A Method for Solving Linear Equations on
a Transputer System”, in Proc. of the Third Occam Users Group Meeting,
INMOS Corp., Chicago 1L, 1987.

Madsen, N.K., Rodrigue, G.H., and Karush, J.1., “Matrix Multiplication by Diago-
nals on a Vector/Paralle]l Processor”, in Information Processing Letters, Vol.
5(2), pp. 41-45, 1976.

McDonald, B.H., Friedman, M., and Wexler, A., “Variational Solution of Integral
Equations”, in IEEE Transactions on Microwave Theory and Technigues, Vol.
MTT-22, No. 3, March 1974.

Meijerink, J.A., and van der Vorst, H.A., “An Herative Solution Method for Lin-
ear Systems of Which the Coeflicient Matrix is a Symmetric M-Matrix”, in
Mathematics of Computation, Vol. 31(137), pp. 148-162, Jan. 1977.

Mikhlin, S.G., Variational Methods in Mathematical Physics. MacMillan, New
York, 1964.

Mirsky, L., An Introduction to Linear Algebra. Dover Publications, Inc., New York,
1982.

Moore, P., Tech. Note 15: IMS B005 - Design of a disk controller board with drives.
INMOS Ltd. publication 72 TCH-015 00, 1986.

Nakonechny, R.L., A Preconditioned Conjugate Gradient Method Using a Sparse
Linked-List Technique For the Solution of Field Problems. Masters Thesis,
The University of Manitoba, Winnipeg, Manitoba, 1983.

Poltz, J., and Wexler, A., “Transmission-Line Analysis of PC Boards”, in VILSI
Systems Design, CMP Publications, Inc., pp. 38-43, March, 1986.

- 136 -

Pountain, D., 4 Tutorial Introduction to Qccam Programming. INMOS publication,
72 OCC 046 00, March, 1987.

Stakgold, I., Green’s Functions and Boundary Value Problems. John Wiley and
Sons, New York, 1979.

Stone, H.S., “Parallel Processing with the Perfect Shuffie”, in IEEE Transactions
on Computers, Vol. C-20 (2), pp. 153-161, 1971.

Taylor, R., and Wilson P., “OCCAM: Process-Oriented Language Meets Demands
of Distributed Processing”, FElectronics, McGraw-Hill, Nov. 30, 1982.

Vadher, A., Walker, P., Tech. Note 10: IMS B00g - Design of a multi-transputer
board. INMOS Ltd. publication 72 TCH-010 00, 1986.

Varga, R.S., Matriz Iterative Analysis. Prentice-Hall, Inc., Toronto, 1962.

Webb, S.J., McKeown, J.J., and Hunt, D.J., “The Solution of Linear Equations on a
SIMD Computer Using a Parallel Iterative Algorithm”, in Computer Physics
Communications, Vol. 26, pp. 325-329, 1982,

Wexler, A., Finite Elements for Technologists. Department of Electrical Engineer-
ing Technical Report TR-80-4, University of Manitoba, Winnipeg, Manitoba,
Canada, 1980.

Whitby-Strevens, C., “The transputer”, The 12’4 Symposium on Computer Archi-
tecture, IEEE, pp. 292-300, 1985.

Wong, Y.S., “Solving Large Elliptic Difference Equations on the CYBER 205", in
FParallel Computing, (to appear), 1987.

Wong, Y.S., and Jiang, H., “Approximate Polynomial Preconditioning Applied to
Biharmonic Equations on Vector Supercomputers”™, in NASA4 Technical Mem-
orandum 100217, ICOMP-87-5, 1987.

Zienkiewicz, O.C., The Finite Element Method in Engineering Science. McGraw-
Hill, New York, 1971.

Zollenkopf, K., “Bi-Factorization: Basic Computational Algorithm and Program-
ming Techniques”, in Large Sparse Sets of Linear Equations. Reid, J.K., (ed.),
Academic Press, New York, pp. 75-96, 1971.

- 137 -

